

Mathematics and Visualization

Series Editors
Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier
Martin Rumpf

Neil A. Dodgson
Michael S. Floater
Malcolm A. Sabin

Editors

Advances
in Multiresolution
for Geometric Modelling

With 163 Figures

123

Neil A. Dodgson

Computer Laboratory
University of Cambridge
William Gates Building
15 J. J. Thomson Avenue
Cambridge CB3 0FD, UK
e-mail: nad@cl.cam.ac.uk

Michael S. Floater

Computer Science Department
Oslo University
P. O. Box 1053, Blindern
0316 Oslo, Norway
e-mail: michaelf@ifi.uio.no

Malcolm A. Sabin

Numerical Geometry Ltd.
26 Abbey Lane, Lode
Cambridge CB5 9EP, UK
e-mail: malcolm@geometry.demon.co.uk

Library of Congress Control Number: 2004094681

Mathematics Subject Classification (2000): 51M30, 53A25, 51J15, 70B10, 65Y25, 68U05, 14Qxx

ISBN 3-540-21462-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer TEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: design & production GmbH, Heidelberg

SPIN 10987803 46/3142YL - 5 4 3 2 1 0 – Printed on acid-free paper

Preface

This book marks the culmination of the four-year EU-funded research project,
Multiresolution in Geometric Modelling (MINGLE). The book contains seven
survey papers, providing a detailed overview of recent advances in the various
fields within MINGLE, and sixteen research papers. Each of the seven parts
of the book starts with a survey paper, followed by associated research papers
in that area.

All papers were originally presented at the MINGLE 2003 workshop held
in Cambridge, UK, 9–11 September 2003. Over the course of the three day
workshop there were thirty-one presentations covering the whole range of top-
ics within the MINGLE project. From those presentations, this book contains
twenty-three papers, one by an invited speaker and the rest by members of
the project. All papers have been refereed by an international panel.

Our thanks go to the authors and referees for their hard work, which has
made this an excellent collection of recent work in the field. We would also like
to thank Martin Peters, Ute McCrory, and Leonie Kunz at Springer-Verlag
in Heidelberg and Peggy Glauch at Le-TEX in Leipzig for guiding this book
from initial concept to finished product.

Cambridge Neil Dodgson
March 2004 Michael Floater

Malcolm Sabin

VI Preface

The MINGLE project

MINGLE was a European Union Research Training Network with nine part-
ners from six countries. The project ran from January 2000 to January 2004.
Its main objectives were: (1) to train young European researchers in vari-
ous aspects of multiresolution in geometric modelling, and (2) to accelerate
the research effort in this area with regard to both theoretical advances and
industrial and commercial applications. The first objective was undoubtedly
achieved: thirty-four young researchers were funded by the project and over
a hundred researchers attended the project’s Summer School in August 2001
in Munich1. There have also been a large number of academic publications
arising from the project, showing that the second objective has been met; this
book bears just some of the fruit of the research undertaken over the course
of the project.

The research topics of the MINGLE project included: thinning of triangle
meshes; coding of triangle meshes; remeshing; multiresolution deformation; hi-
erarchical meshes; data structures for hierarchical and nested triangulations;
subdivision surfaces; wavelets in geometric modelling; and surface parameter-
ization.

The nine MINGLE partners were:

• SINTEF Applied Mathematics, Oslo, Norway
• Tel-Aviv University, Israel
• Munich University of Technology, Germany
• Israel Institute of Technology (TECHNION), Haifa, Israel
• Max-Planck-Institut für Informatik, Saarbrücken, Germany
• Laboratoire de Modélisation et Calcul, Université Joseph Fourier, Greno-

ble, France
• Computer Laboratory, University of Cambridge, Cambridge, UK
• Department of Computer and Information Sciences (DISI), University of

Genova, Italy
• Systems in Motion AS, Oslo, Norway

1 The tutorial lectures given at the Summer School formed the basis for the compan-
ion volume Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak,
and M. S. Floater (eds.), Springer-Verlag, 2002, ISBN 3–540–43639–1.

Preface VII

Sponsors

We would like to thank our sponsors for their support. The European Union
funded the MINGLE project as a Fifth Framework Research Training Network
(Contract Number HPRN–CT–1999–00117). Emmanuel College, Cambridge,
UK was the venue for the MINGLE 2003 workshop, 9–11 September 2003,
and it provided extra funding to allow PhD students from outside the project
to attend the workshop.

Referees

We would like to thank our panel of referees, including those who chose to
remain anonymous, for their efforts and their attention to detail. Each paper
was refereed by at least one senior member of the MINGLE project and at
least one expert external to the project. We would like to extend special thanks
to Carsten Mönning for his help in administering the refereeing process.

Internal referees
Pierre Alliez
Georges-Pierre Bonneau
Neil Dodgson
Nira Dyn
Michael Floater
Craig Gotsman
Stefanie Hahmann
Armin Iske
Ioannis Ivrissimtzis
Leif Kobbelt
David Levin
Jürgen Prestin
Enrico Puppo
Ewald Quak
Malcolm Sabin

External referees
Lyuba Alboul
Richard Bartels
Rick Beatson
Peer-Timo Bremer
Stephan Dahlke
Wolfgang Dahmen
Gershon Elber
Stefan Gumhold
Igor Guskov
Øyvind Hjelle
Hugues Hoppe
Kai Hormann
Alain Le Méhauté
Burkhard Lenze
Charles Loop
Tom Lyche
Alan Middleditch
Knut Mørken
Jörg Peters
Gerlind Plonka-Hoch
Ulrich Reif
Alla Sheffer
Joachim Stöckler
Gabriel Taubin
Joe Warren
Zoë Wood

Contents

Part I — Compression

Recent Advances in Compression of 3D Meshes
Pierre Alliez, Craig Gotsman . 3

Shape Compression using Spherical Geometry Images
Hugues Hoppe, Emil Praun . 27

Part II — Data Structures

A Survey on Data Structures for Level-of-Detail Models
Leila De Floriani, Leif Kobbelt, Enrico Puppo . 49

An Algorithm for Decomposing Multi-dimensional
Non-manifold Objects into Nearly Manifold Components
M. Mostefa Mesmoudi, Leila De Floriani, Franco Morando, Enrico
Puppo . 75

Encoding Level-of-Detail Tetrahedral Meshes
Neta Sokolovsky, Emanuele Danovaro, Leila De Floriani, Paola Magillo . 89

Multi-Scale Geographic Maps
Raquel Viaña, Paola Magillo, Enrico Puppo . 101

Part III — Modelling

Constrained Multiresolution Geometric Modelling
Stefanie Hahmann, Gershon Elber . 119

X Contents

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction
from Clouds of Points
Yutaka Ohtake, Alexander Belyaev, Hans-Peter Seidel 143

Part IV — Parameterization

Surface Parameterization: a Tutorial and Survey
Michael S. Floater, Kai Hormann . 157

Variations on Angle Based Flattening
Rhaleb Zayer, Christian Rössl, Hans-Peter Seidel . 187

Part V — Subdivision

Recent Progress in Subdivision: a Survey
Malcolm Sabin . 203

Optimising 3D Triangulations: Improving the Initial
Triangulation for the Butterfly Subdivision Scheme
Nurit Alkalai, Nira Dyn . 231

Simple Computation of the Eigencomponents of a Subdivision
Matrix in the Fourier Domain
Löıc Barthe, Cédric Gérot, Malcolm Sabin, Leif Kobbelt 245

Subdivision as a Sequence of Sampled Cp Surfaces
Cédric Gérot, Löıc Barthe, Neil A. Dodgson, Malcolm Sabin 259

Reverse Subdivision
Mohamed F. Hassan, Neil A. Dodgson . 271
√

5-subdivision
Ioannis P. Ivrissimtzis, Neil A. Dodgson, Malcolm Sabin 285

Geometrically Controlled 4-Point Interpolatory Schemes
Martin Marinov, Nira Dyn, David Levin . 301

Part VI — Thinning

Adaptive Thinning for Terrain Modelling and Image
Compression
Laurent Demaret, Nira Dyn, Michael S. Floater, Armin Iske 319

Simplification of Topologically Complex Assemblies
Carlos Andújar, Marta Fairén, Pere Brunet, Vı́ctor Cebollada 339

Contents XI

Topology Preserving Thinning of Vector Fields on Triangular
Meshes
Holger Theisel, Christian Rössl, Hans-Peter Seidel 353

Part VII — Wavelets

Periodic and Spline Multiresolution Analysis and the Lifting
Scheme
Jürgen Prestin, Ewald Quak . 369

Nonstationary Sibling Wavelet Frames on Bounded Intervals:
the Duality Relation
Laura Beutel . 391

Haar Wavelets on Spherical Triangulations
Daniela Roşca . 405

Part I

— Compression

Recent Advances in Compression of 3D Meshes

Pierre Alliez1 and Craig Gotsman2

1 INRIA, Sophia-Antipolis, France
pierre.alliez@sophia.inria.fr

2 Technion, Haifa, Israel
gotsman@cs.technion.ac.il

Summary. 3D meshes are widely used in graphical and simulation applications
for approximating 3D objects. When representing complex shapes in raw data for-
mat, meshes consume a large amount of space. Applications calling for compact
storage and fast transmission of 3D meshes have motivated the multitude of al-
gorithms developed to compress these datasets efficiently. In this paper we survey
recent developments in compression of 3D surface meshes. We survey the main ideas
and intuition behind techniques for single-rate and progressive mesh coding. Where
possible, we discuss the theoretical results obtained for asymptotic behaviour or op-
timality of the approach. We also list some open questions and directions for future
research.

1 Introduction

The emerging demand for visualising and simulating 3D geometric data in
networked environments has motivated research on representations for such
data. Slow networks require data compression to reduce the latency, and pro-
gressive representations to transform 3D objects into streams manageable by
the networks. We distinguish between single-rate and progressive compres-
sion techniques depending on whether the model is decoded during, or only
after, the transmission. In the case of single-rate lossless coding, the goal is
to remove the redundancy present in the original description of the data. In
the case of progressive compression the problem is more challenging, aiming
for the best trade-off between data size and approximation accuracy (the so-
called rate-distortion trade-off). Lossy single-rate coding may also be achieved
by modifying the data set, making it more amenable to coding, without losing
too much information. These techniques are called remeshing.

Sect. 2 gives some basic definitions for surface meshes. Sect. 3 surveys
recent algorithms for single-rate compression, and Sect. 4 surveys recent tech-
niques for progressive compression.

4 Pierre Alliez and Craig Gotsman

2 Basic Definitions

The specification of a polygon surface mesh consists of combinatorial enti-
ties: vertices, edges, and faces, and numerical quantities: attributes such as
vertex positions, normals, texture coordinates, colours, etc. The connectivity
describes the incidences between elements and is implied by the topology of
the mesh. For example, two vertices or two faces are adjacent if there exists
an edge incident to both. The valence of a vertex is the number of edges inci-
dent to it, and the degree of a face is the number of edges incident to it (see
Fig. 1). The ring of a vertex is the ordered list of all its incident faces. The
total number of vertices, edges, and faces of a mesh will be denoted V , E, and
F respectively.

Fig. 1. Examples of polygon meshes. Left: Beethoven mesh (2812 polygons, 2655
vertices). Middle: Galleon mesh (2384 polygons, 2372 vertices). Right: close-up of
a polygon mesh – the valence of a vertex is the number of edges incident to this
vertex, while the degree of a face is the number of edges enclosing it.

3 Single-rate Compression

We classify the techniques into two classes:

• Techniques aiming at coding the original mesh without making any as-
sumption about its complexity, regularity or uniformity. This also includes
techniques specialised for massive datasets, which cannot fit entirely into
main memory. Here we aim at restoring the original model after decoding
(for carefully designed models or applications where lossy compression is
intolerable).

• Techniques which remesh the model before compression. The original mesh
is considered as just one instance of the shape geometry.

Recent Advances in Compression of 3D Meshes 5

3.1 Triangle Meshes

The triangle is the basic geometric primitive for standard graphics render-
ing hardware and for many simulation algorithms. This partially explains
why much of the work in the area of mesh compression prior to 2000 has
been concerned with triangle meshes only. The Edgebreaker coder [52] gives a
worst-case bound on the connectivity compression bit rate of 4 bits per ver-
tex. Besides the popular Edgebreaker and its derivatives [39, 17, 59, 30], two
techniques transform the connectivity of a triangle mesh into a sequence of
valence codes [62, 28], which can automatically benefit from the low statistical
dispersion around the average valency of 6 when using entropy encoding. This
is achieved either through a deterministic conquest [62] or by a sequence of
half edge collapses [28]. In [62], Touma and Gotsman proposed the conquest
approach and compress the connectivity down to less than 0.2 bit per ver-
tex (b/v) for very regular meshes, and between 2 and 3.5 b/v otherwise, in
practice. The so-called conquest consists of conquering the edges of succes-
sive pivot vertices in an orientation-consistent manner and generating valence
codes for traversed vertices. Three additional codes: dummy, merge and split
are required in order to encode boundaries, handles and conquest incidents
respectively. The dummy code occurs each time a boundary is encountered
during the conquest; the number of merge codes is equal to the genus of
the mesh being encoded. The split code frequency is linked mainly to the
mesh irregularity. Intuitively, if one looks at the coding process as a conquest
along a spiralling vertex tree, the split codes thus indicate the presence of its
branching nodes. The Mesh Collapse Compression scheme by Isenburg and
Snoeyink [28] performs a sequence of edge contractions until a single vertex
remains in order to obtain bit rates of 1 to 4 b/v. For a complete survey of
these approaches, we refer the reader to [14].

One interesting variant on the Edgebreaker technique is the Cut-Border
Machine (CBM) of Gumhold and Strasser [18]. The main difference is that the
CBM encodes the split values as a parameter like the valence based schemes.
This makes an upper bound on the resulting code more difficult to establish
(although there is a bound of 5 b/v in [17]), but on the other hand allows
for single pass coding and decoding. This difference is significant for coding
massive data sets.

3.2 Non-triangle Meshes

Compared with triangle meshes, little work has been dedicated to the harder
problem of connectivity coding of 2-manifold graphs with arbitrary face de-
grees and vertex valences. There are a significant number of non-triangular
meshes in use, in particular those carefully designed, e.g. the high-quality 3D
models of the Viewpoint library [65] contain a surprisingly small proportion
of triangles. Likewise, few triangles are generated by tessellation routines in
existing modelling software. The dominant element in these meshes is the

6 Pierre Alliez and Craig Gotsman

quadrilateral, but pentagons, hexagons and higher degree faces are also com-
mon.

The performance of compression algorithms is traditionally measured in
bits per vertex (b/v) or bits per edge (b/e). Some early attempts to code
general graphs [63, 34], which are the connectivity component of a geometric
mesh, led to rates of around 9 b/v. These methods are based on building inter-
locking spanning trees for vertices and faces. Chuang et al. [7] later described
a more compact code using canonical ordering and multiple parentheses. They
state that any simple 3-connected planar graph can be encoded using at most
1.5 log2(3)E + 3 � 2.377 bits per edge. Li and Kuo [48] proposed a so-called
“dual” approach that traverses the edges of the dual mesh3 and outputs a
variable length sequence of symbols based on the type of a visited edge. The
final sequence is then coded using a context based entropy coder. Isenburg and
Snoeyink coded the connectivity of polygon meshes along with their proper-
ties in a method called Face Fixer [29]. This algorithm is gate-based, the
gate designating an oriented edge incident to a facet that is about to be tra-
versed. A complete traversal of the mesh is organised through successive gate
labelling along an active boundary loop. As in [62, 52], both the encoder and
decoder need a stack of boundary loops. Seven distinct labels Fn, R, L, S, E,
Hn and Mi,k,l are used in order to describe the way to fix faces or holes to-
gether while traversing the current active gate. King et al. [40], Kronrod and
Gotsman [42] and Lee et al. [46] also generalised existing methods to quad, ar-
bitrary polygon and hybrid triangle-quad meshes respectively. However, none
of these polygon mesh coders come close to the bit rates of any of the best,
specialised coders [62, 3] when applied to the special case of a triangle mesh.
At the intuitive level, given that a polygon mesh with the same number of
vertices contains fewer edges than a triangle mesh, it should be possible to
encode it with fewer bits. These observations motivated the design of a better
approach to code the connectivity of polygonal meshes.

The Degree/Valence Approach

Since the Touma-Gotsman (TG) valence coder [62] is generally considered to
have the best performance, it seems natural to try to generalise it to arbitrary
polygon meshes. This was done independently by Khodakovsky et al. [35] and
Isenburg [23]. The generalisation relies on the key concept of duality. Consider
an arbitrary 2-manifold triangle graph M. Its dual graph M̃, in which faces
are represented as dual vertices and vertices become dual faces (see Fig. 2),
should have the same connectivity information since dualisation neither adds
nor removes information. The valences of M̃ are now all equal to 3, while the
face degrees take on the same values as the vertex valences of M. Since a
list of all 3s has zero entropy, coding just the list of degrees of M̃ would lead
to the same bit rate as found for the valences of M. Conversely, if a poly-
gon mesh has only valence-3 vertices, then its dual would be a triangle mesh.
3 See Fig. 2 for an illustration of a dual mesh.

Recent Advances in Compression of 3D Meshes 7

Hence, its entropy should be equal to the entropy of the list of its degrees.
This observation leads to the key idea of the degree/valence approach: the
compression algorithm should be self-dual, in the sense that both a mesh and
its dual are coded with the same number of bits. A direct consequence of this
is that the coding process should be symmetric in the coding of valences and
degrees. A second direct consequence is that the bit rate of a mesh should be
measured in bits per edge (b/e), since the number of edges is the only vari-
able not changing during a graph dualisation. This contrasts with the former
practice of measuring the coding efficiency for triangle meshes in bits/vertex.

3

5

3

5

Primal mesh Dualization Dual mesh

Fig. 2. Left: a polygon mesh with highlighted faces of degree 3 and 5. Middle: the
dual mesh is built by placing one node in each original face and connecting them
through each edge incident to two original faces. Right: the dual mesh now contains
corresponding vertices of valence 3 and 5.

The core technique underlying the algorithm described in [23, 35] is similar
to most connectivity compression methods: a seed element is chosen and all
its neighbours are traversed recursively until all elements of the correspond-
ing connected component are “conquered”. A new seed element of the next
connected component is then chosen and the process continues. Every time
the encoder conquers the next element of the mesh, it outputs some symbol
which uniquely identifies a new state. From this stream of symbols, the de-
coder can reconstruct the mesh. Various coding algorithms differ in the way
they traverse the mesh and in the sets of symbols used for identifying the
encoder state. During the mesh traversal of [23, 35], two sets of symbols are
generated to code vertex valences and face degrees using an entropy encoder.
At any given moment in time, both encoder and decoder know with which
type of symbol (face or vertex) they are dealing.

While the valence and degree sequences of a mesh dominate the mesh
code, they are not sufficient to uniquely characterise it. As in [62], some ex-
tra “split”, and possibly other symbols may be required during the mesh
conquest. To minimise the occurrence of such symbols – hence improve the

8 Pierre Alliez and Craig Gotsman

compression ratios – both techniques [23, 35] drive the traversal by various
heuristics inspired from the valence-driven approach [3]. To better exploit
correlation between streams and between symbols within each stream, it is
possible to use a context-based arithmetic coder.

3.3 Connectivity: Entropy and Optimality

The entropy is a measure of the information content of a set of symbols,
equipped with a probability distribution. It is thus the minimal average num-
ber of bits per symbol required for lossless encoding of a sequence of symbols
from the set, each appearing with frequency given by its probability:

entropy =
N∑

i=1

pi log2

1
pi
. (1)

When the probability is not specified, this means that all symbols are
equiprobable. When coding the connectivity of a mesh using entropy coding
of its valences as introduced by Touma and Gotsman [62] for the case of tri-
angular meshes, the bit-rates obtained are mostly dictated by the distribution
of the valences. This automatically benefits from the regularity in the mesh.
A triangle mesh is perfectly regular when the valence of all vertices is 6. The
vertex valence distribution then has an entropy of zero. Later work, mainly
generalisations of the Edgebreaker technique, developed methods to take ex-
plicit advantage of mesh regularity, and their performance has been shown
to scale with this measure [39, 16, 59]. In [35], Khodakovsky et al. discuss
the optimality of their valence/degree approach and show that the entropy
of both the valence and degree sequences is no more than the entropy of the
class of planar graphs as established by Tutte in the sixties [64]. Gotsman [13]
later showed that the precise entropy of the valence and degree sequences is
actually strictly less, but not by much, than the Tutte entropy, and the differ-
ence is made up by the split commands. Hence the number of split commands,
albeit very small, is not negligible.
Entropy and constructive enumeration. Given a finite class of discrete ele-
ments, all equally probable, the entropy e of the class is the logarithm of the
number of elements in the class. Obviously, the best possible performance of
any algorithm coding this class of elements is to use at most e bits to encode
one arbitrary element in the class. Hence, the issue of optimal coding of a class
is equivalent to the one of constructive enumeration [41]. Poulalhon and Scha-
effer [51] have described a provably optimal coder for connectivity of meshes
homeomorphic to a sphere, using a bijection between a triangulation and a
Schnyder tree decomposition (i.e. a constructive enumeration of the connec-
tivity graph). Although effective bounds are obtained, the code lengths do not
adapt to the mesh regularity (every mesh consumes the same number of bits,
whatever the distribution of valences). An objective of theoretical interest is

Recent Advances in Compression of 3D Meshes 9

to add flexibility to these methods in order to benefit from mesh regular-
ity. Another obvious extension is to obtain similar results for high genus and
non-triangular graphs.

3.4 Geometry Compression

Although the geometry data is often given in precise floating point represen-
tation for representing vertex positions, some applications may tolerate the
reduction of this precision in order to achieve higher compression rates. The
reduction of the precision involves quantisation. The resulting values are then
typically compressed by entropy coding after prediction relying on some data
smoothness assumptions.
Quantisation. The early works usually quantise the vertex positions uniformly
for each coordinate separately in Cartesian space [10, 61, 62], and a more so-
phisticated vector quantisation has also been proposed by Lee and Ko [45].
Karni and Gotsman [33] have also demonstrated the relevance of applying
quantisation in the space of spectral coefficients (see [14] for more details on
this approach). In their elegant work, Sorkine et al. [57] address the issue of
reducing the visual effect of quantisation errors. Building on the fact that the
human visual system is more sensitive to normal than to geometric distortion,
they propose to apply quantisation not in the coordinate space as usual, but
rather in a transformed coordinate space obtained by applying a so-called
“k-anchor invertible Laplacian transformation” over the original vertex coor-
dinates. This concentrates the quantisation error at the low-frequency end of
the spectrum, thus preserving the fine normal variations over the surface, even
after aggressive quantisation (see Fig. 3). To avoid significant low-frequency
errors, a set of anchor vertex positions are also selected to “nail down” the
geometry at a select number of vertex locations.
Prediction. The early work employed simple delta coding [10] or linear predic-
tion along a vertex ordering dictated by the coding of the connectivity [61, 62].
The approach proposed by Lee et al. [46] consists of quantising in the angle
space after prediction. By applying different levels of precision while quan-
tising the dihedral or the internal angles between or inside each facet, this
method achieves better visual appearance by allocating more precision to the
dihedral angles since they are more related to the geometry and normals.
Inspired by the Touma-Gotsman (TG) parallelogram prediction scheme [62],
Isenburg and Alliez [25] complete the techniques described in [23, 35] by gen-
eralising it to polygon mesh geometry compression. The polygon information
dictates where to apply the parallelogram rule used to predict the vertex po-
sitions. Since polygons tend to be fairly planar and fairly convex, it is more
appropriate to predict within polygons rather than across them. Intuitively,
this idea avoids poor predictions resulting from a crease angle between poly-
gons.

Despite the effectiveness of the published predictive geometry schemes,
they are not optimal because the mesh traversal is dictated by the connec-

10 Pierre Alliez and Craig Gotsman

Fig. 3. [Reproduced in colour in Plate 1.] The delta-coordinate quantisation to
5 bits/coordinate (left) introduces low-frequency errors to the geometry, whereas
Cartesian coordinate quantisation to 11 bits/coordinate (right) introduces noticeable
high-frequency errors. The upper rows shows the quantised model and the bottom
figures use colour to visualise corresponding quantisation errors. Data courtesy O.
Sorkine.

tivity scheme. Since this traversal order is independent of the geometry, and
prediction from one polygon to the next is performed along this, it cannot be
expected to do the best job possible. A first approach to improve the prediction
was the prediction trees [43], where the geometry drives the traversal instead
of the connectivity as before. This is based on the solution of an optimisation
problem. In some case it results in an decrease of up to 50% in the geometry
code entropy, in particular in meshes with significant creases and corners, such
as CAD models. Cohen-Or et al. [9] suggest a multi-way prediction technique,
where each vertex position is predicted from all its neighbouring vertices, as
opposed to the one-way parallelogram prediction. An extreme approach to

Recent Advances in Compression of 3D Meshes 11

prediction is the feature discovery approach by Shikhare et al. [56], which re-
moves the redundancy by detecting similar geometric patterns. However, this
technique works well only for a certain class of models and involves expensive
matching computations.

3.5 Optimality of Spectral Coding

Karni and Gotsman [33] showed that the eigenvectors of the Laplacian ma-
trix derived from the mesh connectivity graph may be used to transform code
the three Cartesian geometry n-vectors (x, y, z). The eigenvectors are ranked
according to their respective eigenvalues, which are analogous to the notion
of frequency in Fourier analysis. Smaller eigenvalues correspond to lower fre-
quencies. Karni and Gotsman showed empirically that when projected on
these basis vectors, the resulting projection coefficients decrease rapidly as
the frequency increases. Hence, similarly to traditional transform coding, a
good approximation to the geometry vectors may be obtained by using just a
linear combination of a small number of basis vectors. The code for the geom-
etry is then just this small number of coefficients (quantised appropriately).
While this method seems to work quite well, and intuitively it seems that
the Laplacian is a linear operator which captures well the smoothness of the
mesh geometry relative to the mesh neighbour structure, there was no proof
that this is the optimal basis for this purpose. The only indication that this
might be the case is that in the case of a regular mesh, the eigenvectors of the
Laplacian are the well-known 2D Fourier basis, which is known to be optimal
for common classes of signals [20].

Ben-Chen and Gotsman [5] have imposed a very natural probability dis-
tribution on the class of meshes with a given connectivity, and then used
principal component analysis (also known as the Karhunen-Loève transform)
to derive the optimal basis for that class. A series of statistical derivations then
shows that this basis is identical to the eigenvectors of the symmetric Lapla-
cian of the given connectivity (the sparse matrix whose diagonal is the vertex
valence sequence, a negative unit entry for an edge, and zero otherwise). While
this is a very interesting result, it remains theoretical, since computation of
the Laplacian eigenvectors is still considered too expensive to be practical.

3.6 Coding Massive Data Sets

Due to their size and complexity, massive datasets [47] require dedicated algo-
rithms since existing mesh compression are effective only if the representation
of the mesh connectivity and geometry is small enough to fit “in-core”. For
large polygonal models that do not fit into main memory, Ho et al. [21] propose
cutting meshes into smaller pieces that can be encoded in-core. They process
each piece separately, coding the connectivity using the Edgebreaker coder,
and the vertex positions using the TG parallelogram linear predictor. Addi-
tional information required to stitch the pieces back together after decoding

12 Pierre Alliez and Craig Gotsman

is also recorded, leading to bit-rates 25% higher than the in-core version of
the same compression algorithm. A recent out-of-core technique introduced by
Isenburg and Gumhold [27] makes several improvements upon [21] by (i) avoid-
ing the need to break the model explicitly into several pieces, (ii) decoding
the entire model in a single pass without any restarts, and (iii) streaming the
entire mesh through main memory with a small memory footprint. The key
technique underlying this compression method consists of building a new ex-
ternal memory data structure – the out-of-core mesh – in several stages, all of
them being restricted to clusters and active traversal fronts which fit in-core.
The latter traversal order, consisting of a reordering of the mesh primitives, is
computed in order to minimise the number of memory cache misses, similar
in spirit to the notion of a “rendering sequence” [6] developed for improving
performance of modern graphics cards, but at a much larger scale. The re-
sulting compressed mesh format can stream very large meshes through the
main memory by providing the compressor transparent access to a so-called
processing sequence that represents a mesh as a fixed, yet seamless interleaved
ordering of indexed triangles and vertices. At any point in time, the remaining
part of the mesh data is kept on disk.

3.7 Remeshing for Single-rate Geometry Compression

The majority of mesh coders adapt to the regularity and the uniformity of
the meshes (with the noticeable exception of [12] that adapts to the non-
uniformity). Therefore, if the application allows lossy compression, it is pru-
dent to exploit the existing degrees of freedom in the meshing process to
transform the input into a mesh with high regularity and uniformity. Re-
cent work produces either (i) piecewise regular meshes by using the subdivi-
sion paradigm, or (ii) highly regular remeshing by local mesh adaptation, or
(iii) perfectly regular remeshing by surface cutting and global parameteriza-
tion.

Szymczak et al. [60] first split the mesh into relatively flat patches with
smooth boundaries. Six axis-aligned vectors (so-called defining vectors) first
determine some reference directions. From these vectors a partition of the
mesh is built with a set of patches whose normals do not deviate more than a
prescribed threshold. An approximation of the geodesic distance using Dijk-
stra’s algorithm is then used in combination with a variant of the farthest
point Voronoi diagram to smooth the patch boundaries. Each patch is then
resampled by mutual tessellation over a regular hexagonal grid, and all the
original vertices, but the boundary ones, are removed by half edge collapses
(see Fig. 4). The connectivity of the resulting mesh is encoded using a ver-
sion of Edgebreaker optimised for regular meshes, and vertex positions are
compressed using differential coding and separation of tangential and normal
components.

Attene et al. [4] tile the input mesh using isosceles “triangloids”. From
each boundary edge of the tiling process, they compute a circle centred on

Recent Advances in Compression of 3D Meshes 13

Fig. 4. [Reproduced in colour in Plate 2.] Piecewise regular remeshing (data courtesy
A. Szymczak).

the edge mid-point and lying in the bisecting plane between the two edge
vertices. The location where the circle pierces the original mesh determines
the tip vertex of the newly created triangloid tile. The original mesh is this
way wrapped, the regions already discovered being identified as the triangles
lying inside the regions bounded by geodesic paths between the three vertices
of the new tile. Connectivity of the new mesh is compressed by Edgebreaker,
while geometry is compressed by entropy coding one dihedral angle per vertex,
after quantisation.

Surazhsky and Gotsman [58] generate a triangle mesh with user-controlled
sample distribution and high regularity through a series of atomic Euler oper-
ators and vertex relocations applied locally. A density function is first specified
by the user as a function of the curvature onto the original mesh. This mesh is
kept for later reference to the original surface geometry, and the mesh adapta-
tion process starts on a second mesh, initialised to a copy of the original mesh.
The vertex density approaches the prescribed ideal density by local decima-
tion or refinement. A new area-based smoothing technique is then performed
to isotropically repartition the density function among the mesh vertices. A
novel component of the remeshing scheme is a surprisingly efficient algorithm
to improve the mesh regularity. The high level of regularity is obtained by
performing a series of local edge-flip operations as well as some edge-collapses
and edge-splits. The vertices are first classified as black, regular or white ac-
cording to their valence deficit or excess (respectively < 6, = 6 and > 6). The

14 Pierre Alliez and Craig Gotsman

edges are then classified as regular, long, short, or drifting according to their
vertex colours (regular if both vertices are regular, long if both are white,
short if both are black and drifting if bi-coloured). Long edges are refined by
edge-split, and short edges are removed by edge-collapse until only drifting
edges remain. The drifting edges have the nice property that they can migrate
through regular regions of the mesh by edge-flips without changing the repar-
tition of the vertex valences. Improving the mesh regularity thus amounts to
applying a sequence of drifting-edge migrations until they meet irregular ver-
tices, and then have a chance to generate short or long edges whose removal
becomes trivial. As a result the models are better compressed using the TG
coder which benefits from the regularity in mesh connectivity and geometry.

Fig. 5. Highly regular remeshing (data courtesy V. Surazhsky and C. Gotsman).

Gu et al. [15] propose a technique for completely regular remeshing of sur-
face meshes using a rectangular grid. Surfaces of arbitrary genus must be cut
to reduce them to a surface which is homeomorphic to a disc, then parameter-
ized by minimising a geometric-stretch measure [53], and finally represented
as a so-called geometry image that stores the geometry, the normals and any
attributes required for visualisation purposes. Such a regular grid structure
is compact and drastically simplifies the rendering pipeline since all cache
indirections found in usual irregular mesh rendering are eliminated. Besides
its appealing properties for efficient rendering, the regular structure allows
direct application of “pixel-based” image-compression methods. The authors
apply wavelet-based coding techniques and compress separately the topolog-
ical sideband due to the cutting. After decoding, the topological sideband is
used to fuse the cut and ensure a proper welding of the surface throughout
the cuts. Despite its obvious importance for efficient rendering, this technique
reveals a few drawbacks due to the inevitable surface cutting: each geometry
image has to be homeomorphic to a disk, therefore closed or genus> 0 models

Recent Advances in Compression of 3D Meshes 15

have to be cut along a cut graph to extract either a polygonal schema [15] or
an atlas [54]. Finding a “smart” cut graph (i.e. minimising a notion of dis-
tortion) is a delicate issue and introduces a set of artificial boundary curves,
associated pairwise. These boundaries are later sampled as a set of curves (i.e.
1-manifolds) and therefore generate a visually displeasing seam tree. Another
drawback comes from the fact that the triangle or the quad primitives of the
newly generated meshes have neither orientation nor shape consistent with
approximation theory, which makes this representation not fully optimised
for efficient geometry compression as reflected in the rate-distortion trade-off.

Fig. 6. [Reproduced in colour in Plate 3.] Geometry image (data courtesy X. Gu).

3.8 Comparison and Discussion

A recent trend in mesh connectivity compression is generalisation from trian-
gle meshes to general polygon meshes, with arbitrary genus and boundaries.
Adapting to the regularity of the mesh, i.e. the dispersion in the distribution of
valences or degrees, is usually reflected in the coding schemes. Semi-regularity
being a common property of “real-world” meshes, this is a very convenient
feature.

On the theoretical side, the bit-rates achievable by degree/valence connec-
tivity coders have been shown to approach the Tutte entropy lower bound.
Because of some remaining “split” symbols, whose number has not been
bounded, some additional work has to be done in order to design truly optimal
polygon mesh coders which also adapt to regularity. In particular, the con-
nectivity coder of Poulalhon and Schaeffer [51] for triangle meshes offers some
promise for extension to polygonal models. As for volume meshes, although
some recent work has demonstrated a generalisation of the valence coder to
hexahedral meshes [24], nothing has been proven concerning the optimality of
this approach.

16 Pierre Alliez and Craig Gotsman

Most of the previous work has studied the coding of geometry as dictated
by the connectivity code, the vertex positions being predicted in an order
dictated by the connectivity coder. This happens even though the geometry
component dominates the code sizes, so the result will tend to be suboptimal.
One attempt to change this was to make the coding of the geometry cooperate
with the coding of the connectivity, using prediction trees [43] or multi-way
prediction techniques [9]. Other work [57] compresses the geometry globally,
showing that applying quantisation in the space of Laplacian transformed
coefficients, instead of in the usual space of Cartesian coordinates, is very
useful. In a way, the latter is an extension of the multi-way approach since it
amounts to predicting each vertex as the barycentre of its neighbours. More
recent work [5] aims to find an optimal basis best suited to decorrelate the
geometric signal.

Isenburg et al. provide an on-line implementation of the degree/valence
coder for bench marking purposes [26]. Isenburg also demonstrates an ASCII-
based compression format for web applications able to achieve bit-rates within
1 to 2 percent of those of the binary benchmark code [31].

In order to benefit most from the adaptation of a coding scheme to regu-
larity or uniformity in the input mesh, recent work advocates highly (or even
completely) regular remeshing without distorting the geometry too much. In
particular, the geometry images [15] technique demonstrates the efficiency of
modern image compression techniques when applied to geometry which has
been remeshed in a completely regular manner.

A more recent trend takes the remeshing paradigm further, with the design
of efficient meshes for approximation of surfaces [1]. This leads to anisotropic
polygon meshes, that “look like” carefully designed meshes. The efficiency
of such a scheme is expressed in terms of error per number of geometric
primitives. The question that now naturally arises is whether the remeshing
process should be influenced by the mesh compression scheme used, namely,
should it remesh in a manner that suits the coder best. Since rapid progress
in the direction of efficient surface meshing is emerging, it seems that it will
certainly motivate new approaches for dedicated single-rate mesh compression
schemes.

4 Progressive Compression

Progressive compression of 3D meshes uses the notion of refinement: the origi-
nal mesh is transformed into a sequence (or a hierarchy) of refinements applied
to a simple, coarse mesh. During decoding the connectivity and the geome-
try are reconstructed incrementally from this stream. The main advantage of
progressive compression is that it provides access to intermediate states of the
object during its transmission through the network (see Fig. 7). The challenge
then consists of rebuilding a least distorted object at all points in time during
the transmission (i.e. optimisation of rate-distortion trade-off).

Recent Advances in Compression of 3D Meshes 17

Fig. 7. [Reproduced in colour in Plate 4.] Intermediate stages during the decoding
of a mesh using a single-rate (top) or a progressive technique (bottom).

4.1 General Techniques

We call lossless the methods that restore the original mesh connectivity and
geometry once the transmission is complete. This is even though intermediate
stages are obviously lossy. These techniques mostly proceed by decimating
the mesh while recording the (minimally redundant) information required to
reverse this process. The basic ingredients behind most of progressive mesh
compression techniques are (i) the choice of an atomic mesh decimation oper-
ator, (ii) the choice of a geometric distance metric to determine the elements
to be decimated, and (iii) an efficient coding of the information required to re-
verse the decimation process (i.e. to refine the mesh). At the intuitive level, one
has to encode for the decoder both the location of the refinement (“where” to
refine) and the parameters to perform the refinement itself (“how” to refine).

The progressive mesh technique introduced by Hoppe [22] transforms a
triangle surface mesh into a stream of refinements. During encoding the input
mesh undergoes a sequence of edge collapses, reversed during decoding as a
sequence of vertex splits. The symbols generated provide the explicit location
of each vertex being split and a designation of two edges incident to this
vertex. This is a very flexible, but rather expensive code. In order to reduce
the bit consumption due to the explicit vertex location, several researchers
have proposed to specify these locations implicitly, using independent sets
defined on the mesh. This approach improves the compression ratios, at the
price of additional constraints during decimation (the decimation sequence
cannot be arbitrary). Pajarola and Rossignac [49] group some edge collapses
into a series of independent sets, each of them corresponding to a level of

18 Pierre Alliez and Craig Gotsman

detail. The location of each vertex to decimate is done by a 2-colouring of the
mesh vertices, leading to 1 bit per vertex, for each set. Experimental results
show an amortised cost of 3 bits per vertex for vertex location for all sets, plus
the cost of local refinements inverting the edge collapses, leading to 7.2 bits
per vertex. Cohen-Or et al. [8] define an alternation of 4- and 2-colouring over
the triangles in order to locate an independent set of vertices to decimate.
A local, deterministic retriangulation then fills the holes generated by vertex
removal at no cost, leading to 6 bits per vertex.

Observing the local change of repartition of valences when removing a
vertex, Alliez and Desbrun [2] improved the previous approaches by generating
an alternation of independent sets composed of patches centred on the vertices
to be removed. Each independent set thus corresponds to one decimation
pass. The even decimation passes remove valence ≤ 6 vertices, while the odd
ones remove only valence 3 vertices. Such a selection of valences reduces the
dispersion of valences during decimation, the latter dispersion being further
reduced by a deterministic patch retriangulation designed to generate valence-
3 vertices, later removed by odd decimation passes. This way the decimation
is coordinated with the coding, and for “progressively regular” meshes the
decimation generates a regular inverse

√
3-subdivision, and coding one valence

per vertex is sufficient to rebuild the connectivity. For more general meshes
some additional symbols are necessary. The latter approach can be seen as a
progressive version of the TG coder [62].

Using the edge collapse as the atomic mesh decimation operator, Karni et
al. [32] build a sequence of edge collapses arranged along a so called “vertex
sequence” that traverses all the mesh vertices. The mesh traversal is optimised
so that the number of jumps between two non-incident vertices is minimised.
The decoding process is this way provided with an access to the mesh triangles
optimised for efficient rendering using the modern vertex buffers. Compression
rates are similar to the progressive valence approach [2], with the additional
benefit of fast rendering.

4.2 Geometry-driven Coding

For progressive compression of a discrete point set in arbitrary dimension,
Devillers and Gandoin [11] decompose the space into a kD-tree and transmit
only a set of point occurrences, i.e. the number of points located in each cell of
the kD-tree hierarchy (see Fig. 8). They demonstrate that transmitting only
occurrences of points during successive space subdivision is enough to recon-
struct in a progressive manner – and lossless in the end – a discrete point set.
The compression achieved by this is due to bit sharing intrinsic to the no-
tion of transmission of occurrences, rather than transmission of explicit point
locations. For example, transmitting the information “300 points” located in
one cell at the beginning of the transmission process is equivalent to sharing
the first high-level bits of 300 points, simultaneously. Some compression gain
due to the sharing is thus obtainable for all cells containing more than one

Recent Advances in Compression of 3D Meshes 19

point. More precisely, the more populated the cell, the higher the compression
gain due to the bit-sharing principle. When all points are separated – each
cell containing only one point – the bits subsequently used are equivalent to
bit-plane coding for progressively re ning the point locations in space.

Fig. 8. The geometry coder on a two-dimensional example. The number of points
located in each cell of the 2D-tree hierarchy is encoded (data courtesy P.-M. Gan-
doin).

During the decoding process, the only available information corresponds
to the number of occurrences in each cell, i.e. a progressively re ned location
of the positions. At the end of the transmission, and if one does not care
about any particular ordering of the original points, the original information
has been restored in a lossless manner since every point is correctly located
in a cell that corresponds to the initial precision over the points. Compared
to a plain enumeration of the point coordinates, the information of the order
over the points is lost. This is precisely what saves some bits for compression.
It is proven that these savings are never less than logn 2.402 bits per point.
Moreover, in this case – and contrary to other prediction-based methods that
bene t from a uniform sampling – the uniform distribution corresponds to
the worst-case scenario for compression since it minimises the possibility of
bit-sharing.

The approach described in [11] codes only a set of discrete points. The au-
thors have shown how a geometric triangulation (e.g. Delaunay) of the points
allows progressive transmission of a meshed surface. More recently, Devillers
and Gandoin [12] have adapted this technique for progressive coding of simpli-
cial complexes (possibly non-manifold) by using the edge collapse operator for
coding the connectivity. Contrary to other methods, the connectivity coding
process is driven by the geometry alone.

4.3 Remeshing for Progressive Geometry Compression

When the original mesh is considered as one instance of the surface geom-
etry that is to be compressed, geometry compression has to be considered
rather than mesh compression. To this end, geometry compression techniques
proceeding by semi-regular remeshing are among the best reported to date.

The main idea behind semi-regular remeshing techniques [38, 19, 36, 50]
is to consider a mesh representation as having three components: geometry,

7 3 1 0
0

1 3

0

0 1 12

20 Pierre Alliez and Craig Gotsman

connectivity and parameterization, and assume that the last two components
(connectivity and parameterization) are not important for the representation
of the geometry. The common goal of these approaches is therefore to re-
duce these two components as much as possible. This is achieved through
semi-regular remeshing of an input irregular mesh, and efficient compression
of the newly generated model. The remesher proceeds by building a semi-
regular mesh hierarchy designed to best approximate the original geometry.
An irregular base mesh, homeomorphic (i.e. topologically equivalent) to the
original mesh, is first built by mesh simplification. This base mesh constitutes
the coarsest level in the semi-regular hierarchy. The hierarchy is then built
by regular or adaptive subdivision (typically by edge bisection) of the base
mesh. In the case of regular subdivision by edge bisection of a triangle base
mesh, all new vertices have valence 6. The finest level of the mesh hierarchy
is therefore built from patches of regular vertices, separated by (possibly ir-
regular) vertices from the base mesh. In the case of adapted subdivision, some
irregular vertices may be generated by adding a few conforming edges (note
that this choice can be decided on the decoder side, depending if it cares
about reconstructing the adaptivity pattern or not). We now describe how
the connectivity and the parametric components are reduced:

• Reducing the connectivity component. The regularity intrinsic to the sub-
division process deliberately removes almost all of the connectivity infor-
mation from the mesh since much of the resulting vertices have valence 6
for triangle meshes, and valence 4 for quad meshes.

• Reducing the parametric component. In a semi-regular mesh hierarchy gen-
erated by subdivision for purpose of geometric approximation, we use the
term detail to describe the differential vector component stored at each
newly inserted vertex during the construction of the mesh hierarchy. The
normal component of the detail coefficients stores the geometric informa-
tion, whereas the tangential component carries the parametric information.
Experiments show that by doing things right almost all of the paramet-
ric components can be “predicted”, i.e. removed from the representation.
Intuitively, this means that sliding a vertex in the tangent plane does not
modify the local geometry.

The way the parametric component is reduced is the main distinction
between the two compression methods described in this section. The first
method [38] uses local frames and different quantisation of normal/tangential
components, whereas the second normal mesh compression method [36] is
specifically designed to produce detail coefficients with no tangential compo-
nents. Normal meshes were introduced by Guskov et al. [19] as a new way to
represent geometry. A normal mesh is a multiresolution representation where
almost all the details lie in the local normal direction and hence the mesh ge-
ometry is described by a single scalar per vertex instead of three as usual (see
Fig. 9). Beyond the remeshing algorithm, both progressive geometry coding

Recent Advances in Compression of 3D Meshes 21

Fig. 9. [Reproduced in colour in Plate 5.] Adaptive normal mesh for the skull model
(data courtesy A.Khodakovsky).

methods proposed by Khodakovsky et al. [38, 36] require a wavelet transform
and a zerotree coder that we now briefly describe.
Wavelet transform. A semi-regular surface representation is a sequence of ap-
proximations at different levels of resolution. The corresponding sequence of
nested refinements is transformed by the wavelet transform into a representa-
tion that consists of a base mesh and a sequence of wavelet coefficients that
express differences between successive levels of the mesh hierarchy. The art
of compression then consists of choosing appropriate wavelets to best model
the statistical distribution of the wavelet coefficients. “Best” means decor-
relating the geometry so as to obtain a distribution of wavelet coefficients
favourable to efficient compression. For subdivision schemes designed to pro-
duce C2-differentiable surfaces almost everywhere (e.g. Loop), it produces
excellent results for smooth surfaces since the geometric correlation can be
exploited through the prediction of finer level geometry based on the coarser
level geometry (by low-pass filtering intrinsic to the subdivision scheme). The
reconstruction artifacts at low bit-rates depend mainly on the shape of subdi-
vision basis functions. Hence a surface reconstructed from Loop wavelets has
a visually more pleasing shape compared to Butterfly whose basis functions
exhibit some “spikes” which look unnatural on a smooth surface.

The zerotree coder (a popular method for wavelet-based image coding [55])
extends also to geometric wavelets. It is shown in [38] that a semi-regular mesh
can be represented as a hierarchy over the edges since the wavelet coefficients
are attached to the edges (and not the faces). The wavelet coefficients are

22 Pierre Alliez and Craig Gotsman

therefore naturally encoded in a forest of trees, where each wavelet coefficient
at the first level is the root of a tree. The branches of this tree may have
variable depth since all regions need not be subdivided to the finest level. For
the latter case the edges of the base mesh are subdivided in the tree until an
approximation quality is met during coding, and until an adaptive flatness
threshold is met during decoding (the subdivision scheme is prolongated to
produce a smooth surface even with null wavelet coefficients). Note that an
approximating wavelet scheme such as Loop requires uniform mesh subdivi-
sion. A zerotree coder is therefore used as a separate procedure to reflect this
adaptivity, a “zerotree” symbol coding at a given branching node in the tree
representing a sub-tree filled entirely with coefficients below the significance
threshold. It then remains to compress the zerotree symbols (significance bits,
sign bits and refinement bits), which is done using an arithmetic coder.

When using lossless compression, performance is measured by plotting
the rate-distortion curve. Measuring bits per vertex here would be irrelevant
since the initial mesh is not considered as optimal for approximation, and
the remeshing stage changes the number of vertices. The main observation
of [38] is that in many cases surface representation does not really matter for
geometry (i.e. there are many degrees of freedom in the meshing), but can lead
to high penalty for compression. Therefore, several degrees of sophistication
in the remeshing process can lead to significant gains for compression:

• semi-regular remeshing reduces the connectivity penalty.
• uniform remeshing reduces the parameterization penalty compared to non-

uniform meshes.
• uniform remeshing while considering local frames with different quantisa-

tion for different components reduces the influence of the parameterization
even further.

• normal remeshing, explicitly eliminating the tangential component by
building a normal mesh representation makes a significant improvement
for certain classes of wavelets (e.g. normal Butterfly is better than normal
Loop) [36].

Another observation of [36] is that normal Loop behaves better than [38]
because the normal parameterization is smoother than MAPS [44], which leads
to faster decaying wavelet coefficients and therefore more efficient compres-
sion. Moreover, recent experiments confirm the importance of the smoothness
of the parameterization for semi-regular remeshing and hence for geometry
compression [37]. Finally, a model-based bit-allocation technique has been
proposed by Payan and Antonini [50] to efficiently allocate the bits across
wavelet sub-bands according to their variance.

4.4 Comparison and Discussion

Most of the recent techniques for “lossless” progressive coding of carefully
designed meshes use the independent set concept to drive the mesh refinement

Recent Advances in Compression of 3D Meshes 23

operations, be they organised into a set of patches or along a chain of edges
optimised for efficient rendering. Vertex positions are coded using various
prediction schemes (barycentric, etc.) after uniform quantisation is applied in
vertex coordinate space. As already observed in Sect. 3, less work has been
done for geometry coding than for connectivity coding. There is even less work
on progressive coding techniques, since they are obviously lossy (at least at
intermediate stages), and the difficulty to objectively quantify the loss makes
it difficult to analyse their performance.

Although the successful single-rate valence-based approach generalises to
progressive coding of triangle meshes [2], nothing has been done for progressive
coding of polygonal meshes. The key problem here is to find a mesh decima-
tion scheme capable of transforming an arbitrary mesh into a polygon mesh
during decimation so that the so-called rate-distortion trade-off is optimised.
At the intuitive level, each bit transmitted during decoding should lead to the
largest decrease in geometric error. Although this problem is similar to that
encountered when designing a decimation scheme, the amount of information
represented by a given refinement operation has yet to be quantified.

Wavelet coding schemes, coupled with an initial semi-regular remeshing
stage to generate a good base mesh, have proven to be very successful for
shape compression [38]. One important question there is how to generate the
“best” base mesh, in the sense that it best reflects the mesh geometry and,
mainly, features. Another question is the choice of a wavelet scheme suited to
best decorrelate the geometric “signal” present in the mesh. Is it a subdivision-
related scheme or something more elaborate? The choice of an error metric for
driving both the approximation and the measurement of the rate-distortion
trade-off also plays a key rôle. The latter point has already proven to be of
crucial importance for applications related to visualisation (see the concept of
visual metric in [33, 57]). In fact, the optimisation of the rate-distortion trade-
off involves many challenging issues linked to sampling and approximation
theory, differential geometry, wavelets and information theory.

Acknowledgement

This work was supported in part by the EU research project “Multiresolution
in Geometric Modelling (MINGLE)” under grant HPRN–CT–1999–00117.

References

1. P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun. Anisotropic
Polygonal Remeshing. In Proc. ACM SIGGRAPH, 2003.

2. P. Alliez and M. Desbrun. Progressive Encoding for Lossless Transmission of
3D Meshes. In Proc. ACM SIGGRAPH, pages 198–205, 2001.

3. P. Alliez and M. Desbrun. Valence-Driven Connectivity Encoding of 3D Meshes.
In Eurographics Conference Proceedings, pages 480–489, 2001.

24 Pierre Alliez and Craig Gotsman

4. M. Attene, B. Falcidieno, M. Spagnuolo, and J. Rossignac. SwingWrapper: Retil-
ing Triangle Meshes for Better EdgeBreaker Compression. ACM Transactions
on Graphics, 22(4):982–996, 2003.

5. M. Ben-Chen and C. Gotsman. On the Optimality of the Laplacian Spectral
Basis for Mesh Geometry Coding. ACM Transactions on Graphics. to appear.

6. A. Bogomjakov and C. Gotsman. Universal Rendering Sequences for Trans-
parent Vertex Caching of Progressive Meshes. Computer Graphics Forum,
21(2):137–148, 2002.

7. R.C-N. Chuang, A.Garg, X. He, M-Y. Kao, and H-I Lu. Compact Encodings of
Planar Graphs via Canonical Orderings and Multiple Parentheses. In ICALP:
Annual International Colloquium on Automata, Languages and Programming,
pages 118–129, 1998.

8. D. Cohen-Or, D. Levin, and O. Remez. Progressive Compression of Arbitrary
Triangular Meshes. In IEEE Visualization Conference Proceedings, pages 67–72,
1999.

9. R. Cohen D. Cohen-Or and T. Ironi. Multi-way Geometry Encoding, 2002.
Technical report.

10. M. Deering. Geometry Compression. Proc. ACM SIGGRAPH, pages 13–20,
1995.

11. O. Devillers and P-M. Gandoin. Geometric Compression for Interactive Trans-
mission. IEEE Visualization Conference Proceedings, pages 319–326, 2000.

12. P.-M. Gandoin and O. Devillers. Progressive Lossless Compression of Arbitrary
Simplicial Complexes. ACM Transactions on Graphics, 21:372–379, 2002. Proc.
ACM SIGGRAPH.

13. C. Gotsman. On the Optimality of Valence-Based Connectivity Coding. Com-
puter Graphics Forum, 22(1):99–102, 2003.

14. C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression
of 3D Meshes, 2002. In Tutorials on Multiresolution in Geometric Modelling
(Munich Summer School Lecture Notes), A. Iske, E. Quak, M. Floater (Eds.),
Springer, 2002.

15. X. Gu, S. Gortler, and H. Hoppe. Geometry Images. In Proc. ACM SIGGRAPH,
pages 355–361, 2002.

16. S. Gumhold. Improved Cut-Border Machine for Triangle Mesh Compression.
Erlangen Workshop’99 on Vision, Modeling and Visualization, 1999.

17. S. Gumhold. New Bounds on the Encoding of Planar Triangulations. Technical
Report WSI-2000-1, Univ. of Tübingen, 2000.

18. S. Gumhold and W. Strasser. Real Time Compression of Triangle Mesh Con-
nectivity. In Proc. ACM SIGGRAPH, pages 133–140, 1998.

19. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal Meshes. In Proc.
ACM SIGGRAPH, pages 95–102, 2000.

20. Henry Helson. Harmonic Analysis. Wadsworth & Brooks/Cole, 1991.
21. J. Ho, K-C. Lee, and D. Kriegman. Compressing Large Polygonal Models. In

IEEE Visualization Conference Proceedings, pages 357–362, 2001.
22. H. Hoppe. Progressive meshes. In Proc. ACM SIGGRAPH, pages 99–108, 1996.
23. M. Isenburg. Compressing Polygon Mesh Connectivity with Degree Duality

Prediction. In Graphics Interface Conference Proc., pages 161–170, 2002.
24. M. Isenburg and P. Alliez. Compressing Hexahedral Volume Meshes. In Pacific

Graphics Conference Proceedings, pages 284–293, 2002.

Recent Advances in Compression of 3D Meshes 25

25. M. Isenburg and P. Alliez. Compressing Polygon Mesh Geometry with Parallelo-
gram Prediction. In IEEE Visualization Conference Proceedings, pages 141–146,
2002.

26. M. Isenburg, P. Alliez, and J. Snoeyink. A Benchmark Coder for Polygon Mesh
Compression, 2002. http://www.cs.unc.edu/∼isenburg/pmc/.

27. M. Isenburg and S. Gumhold. Out-of-Core Compression for Gigantic Poly-
gon Meshes. In ACM Transactions on Graphics (Proc. ACM SIGGRAPH),
22(3):935–942, 2003.

28. M. Isenburg and J. Snoeyink. Mesh Collapse Compression. In Proc. of SIB-
GRAPI’99, Campinas, Brazil, pages 27–28, 1999.

29. M. Isenburg and J. Snoeyink. Face Fixer: Compressing Polygon Meshes With
Properties. In Proc. ACM SIGGRAPH, pages 263–270, 2000.

30. M. Isenburg and J. Snoeyink. Spirale Reversi: Reverse Decoding of the Edge-
breaker Encoding. In Proc. 12th Canadian Conference on Computational Ge-
ometry, pages 247–256, 2000.

31. M. Isenburg and J. Snoeyink. Binary Compression Rates for ASCII Formats.
In Proc. Web3D Symposium, pages 173–178, 2003.

32. Z. Karni, A. Bogomjakov, and C. Gotsman. Efficient Compression and Render-
ing of Multi-Resolution Meshes. In IEEE Visualization Conference Proceedings,
2002.

33. Z. Karni and C. Gotsman. Spectral Compression of Mesh Geometry. In Proc.
ACM SIGGRAPH, pages 279–286, 2000.

34. Keeler and Westbrook. Short Encodings of Planar Graphs and Maps. Discrete
Appl. Math., 58:239–252, 1995.

35. A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schröder. Near-Optimal Con-
nectivity Encoding of 2-Manifold Polygon Meshes. Graphical Models, special
issue, 2002.

36. A. Khodakovsky and I. Guskov. Compression of Normal Meshes. In Proc. ACM
SIGGRAPH. Springer-Verlag, 2003.

37. A. Khodakovsky, N. Litke, and P. Schröder. Globally Smooth Parameteriza-
tions with Low Distortion. In ACM Transactions on Graphics (Proc. ACM
SIGGRAPH), 22(3):350–357, 2003.

38. A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive Geometry Com-
pression. Proc. ACM SIGGRAPH, pages 271–278, 2000.

39. D. King and J. Rossignac. Guaranteed 3.67V bit Encoding of Planar Triangle
Graphs. In 11th Canadian Conference on Computational Geometry, pages 146–
149, 1999.

40. D. King, J. Rossignac, and A. Szmczak. Compression for Irregular Quadrilateral
Meshes. Technical Report TR–99–36, GVU, Georgia Tech, 1999.

41. D. Knuth. Exhaustive Generation, 2003. volume 4 of The Art of Computer
Programming, in preparation, available electronically,
http://www.cs.stanford.edu/~knuth.

42. B. Kronrod and C. Gotsman. Efficient Coding of Non-Triangular Mesh Con-
nectivity. Graphical Models, 63(263-275), 2001.

43. B. Kronrod and C. Gotsman. Optimized Compression of Triangle Mesh Geom-
etry Using Prediction Trees. Proc. 1st International Symposium on 3D Data
Processing, Visualization and Transmission, pages 602–608, 2002.

44. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Mul-
tiresolution adaptive parameterization of surfaces. Computer Graphics, 32(An-
nual Conference Series):95–104, August 1998.

26 Pierre Alliez and Craig Gotsman

45. E. Lee and H. Ko. Vertex Data Compression For Triangular Meshes. In Proc.
Pacific Graphics, pages 225–234, 2000.

46. H. Lee, P. Alliez, and M. Desbrun. Angle-Analyzer: A Triangle-Quad Mesh
Codec. In Eurographics Conference Proceedings, pages 383–392, 2002.

47. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-
ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital
Michelangelo Project. In Proc. ACM SIGGRAPH, pages 131–144, 2000.

48. J. Li and C.-C. Jay Kuo. Mesh Connectivity Coding by the Dual Graph Ap-
proach, July 1998. MPEG98 Contribution Document No. M3530, Dublin, Ire-
land.

49. R. Pajarola and J. Rossignac. Compressed Progressive Meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 6(1):79–93, 2000.

50. F. Payan and M. Antonini. 3D Mesh Wavelet Coding Using Efficient Model-
based Bit Allocation. In Proc. 1st Int. Symposium on 3D Data Processing
Visualization and Transmission, pages 391–394, 2002.

51. D. Poulalhon and G. Schaeffer. Optimal Coding and Sampling of Triangulations,
2003. 30th international colloquium on automata, languages and programming
(ICALP’03).

52. J. Rossignac. Edgebreaker : Connectivity Compression for Triangle Meshes.
IEEE Transactions on Visualization and Computer Graphics, 1999.

53. P. Sander, S. Gortler, J. Snyder, and H. Hoppe. Signal-Specialized Parametriza-
tion. In Eurographics Workshop on Rendering 2002, 2002.

54. P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-Chart Geometry
Images. In Proc. Eurographics Symposium on Geometry Processing, 2003.

55. J.M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients.
IEEE Transactions on Signal Processing, 41(12):3445–3462, 1993.

56. D. Shikhare, S. Bhakar, and S.P. Mudur. Compression of Large 3D Engineering
Models using Automatic Discovery of Repeating Geometric Features. In proceed-
ings of 6th International Fall Workshop on Vision, Modeling and Visualization,
2001.

57. O. Sorkine, D. Cohen-Or, and S. Toldeo. High-Pass Quantization for Mesh
Encoding. In Proc. of Eurographics Symposium on Geometry Processing, 2003.

58. V. Surazhsky and C. Gotsman. Explicit Surface Remeshing. In Proc. Euro-
graphics Symposium on Geometry Processing, pages 20–30, 2003.

59. A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-Based Efficient Com-
pression Scheme for Regular Meshes. Computational Geometry, 20(1-2):53–68,
2001.

60. A. Szymczak, J. Rossignac, and D. King. Piecewise Regular Meshes: Construc-
tion and Compression. Graphical Models, 64(3–4):183–198, 2003.

61. G. Taubin, W. Horn, J. Rossignac, and F. Lazarus. Geometry Coding and
VRML. In Proc. IEEE, volume 86(6), pages 1228–1243, June 1998.

62. C. Touma and C. Gotsman. Triangle Mesh Compression. Graphics Interface 98
Conference Proceedings, pages 26–34, 1998.

63. G. Turan. Succinct Representations of Graphs. Discrete Applied Mathematics,
8:289–294, 1984.

64. W. Tutte. A Census of Planar Maps. Canadian Journal of Mathematics, 15:249–
271, 1963.

65. Viewpoint. Premier Catalog (2000 Edition) www.viewpoint.com. Viewpoint
editor, 2000.

Shape Compression
using Spherical Geometry Images

Hugues Hoppe1 and Emil Praun2

1 Microsoft Research, Redmond, Washington, USA
hhoppe@microsoft.com

2 University of Utah, Salt Lake City, Utah, USA
emilp@cs.utah.edu

Summary. We recently introduced an algorithm for spherical parametrization and
remeshing, which allows resampling of a genus-zero surface onto a regular 2D grid, a
spherical geometry image. These geometry images offer several advantages for shape
compression. First, simple extension rules extend the square image domain to cover
the infinite plane, thereby providing a globally smooth surface parametrization. The
2D grid structure permits use of ordinary image wavelets, including higher-order
wavelets with polynomial precision. The coarsest wavelets span the entire surface
and thus encode the lowest frequencies of the shape. Finally, the compression and
decompression algorithms operate on ordinary 2D arrays, and are thus ideally suited
for hardware acceleration. In this paper, we detail two wavelet-based approaches for
shape compression using spherical geometry images, and provide comparisons with
previous compression schemes.

1 Introduction

In previous work [20], we introduce a robust algorithm for spherical parametri-
sation, which smoothly maps a genus-zero surface to a sphere domain. This
sphere domain can in turn be unfolded onto a square, to allow remeshing of
surface geometry onto a regular 2D grid – a geometry image. One important
use for such a representation is shape compression, the concise encoding of sur-
face geometry. In this paper, we explore the application of shape compression
in more detail, describing two wavelet-based approaches.

As we will show, spherical geometry images are a powerful representation
for the concise description of shape.

2 Related Work on Shape Compression

The compression of geometric shape has recently been a very active area of re-
search. Since we will not be able to cover every paper here, we refer the reader

28 Hugues Hoppe and Emil Praun

to recent comprehensive surveys [3, 10, 22]. The many compression techniques
can be categorised into two broad approaches: irregular mesh compression and
remeshing compression, depending on whether or not they preserve the orig-
inal mesh connectivity.

Irregular Mesh Compression

Preserving the connectivity of the original mesh is important for accurately
modelling sharp features such as creases and corners, particularly in manufac-
tured parts. Also, meshes designed within graphical modelling systems may
have face connectivities that encode material boundaries, shading discontinu-
ities, or desired behaviour under deformation.

The compression of irregular meshes involves two parts: connectivity and
geometry. The mesh connectivity is a combinatorial graph; it can be encoded
using approximately 2 bits per vertex [2]. The mesh geometry is given by
continuous (x,y,z) vertex positions; these are typically quantised to 10, 12, or
14 bits per coordinate prior to entropy coding.

The compression of irregular meshes was pioneered by Deering [8], who
describes a scheme for streaming decompression in the graphics system.
Gumhold and Strasser [12] advance a front through a mesh using a state ma-
chine, and compress the necessary state changes. Touma and Gotsman [28] use
a similar technique based on vertex-valence encoding. Many other papers have
refined this approach, including the Edge Breaker scheme of Rossignac [21]
and several methods for non-triangular meshes.

Several schemes support progressive representations, whereby coarser ap-
proximations can be displayed as the data stream is incrementally received.
These include progressive meshes [14], progressive forest split compression [27],
and the valence-driven simplification approach of Alliez and Desbrun [2].

Compressing the geometry of irregular meshes is difficult because the irreg-
ular sampling does not admit traditional multiresolution wavelet hierarchies.
Most compression schemes predict the position of each vertex from its partially
reconstructed neighbourhood. A good example is the “parallelogram rule” of
Touma and Gotsman [28]. The drawback of basing the prediction model on
a local neighbourhood is that it cannot capture the low-frequency features of
the model. In other words, the local prediction rules cannot give rise to the
broad basis functions that one would obtain in the coarsest levels of a tra-
ditional multiresolution hierarchy. One exception is the scheme of Karni and
Gotsman [15], which constructs smooth basis functions using spectral analysis
of the mesh adjacency matrix. However, this spectral analysis is costly and
unstable, and therefore becomes practical only when performed piecewise on
a partitioned model.

Remeshing Compression

For many applications, preserving the connectivity of the given mesh is un-
necessary. In particular, many models are obtained through 3D scanning tech-

Shape Compression using Spherical Geometry Images 29

nologies (e.g. laser range scanners, computed tomography, magnetic resonance
imaging), and the precise connectivities in these dense meshes is somewhat
arbitrary. Since shape compression is generally lossy, resampling the geometry
onto a new mesh (with different connectivity) is quite reasonable.

In the remeshing approach of Attene et al. [5], an irregular-mesh compres-
sion algorithm resamples geometry as it traverses the mesh, by incrementally
wrapping the mesh with isosceles triangles.

A number of methods use a semi-regular remeshing structure. Such a
remesh is obtained by repeated quaternary subdivision of a coarse triangle
mesh (i.e. each triangle face is regularly subdivided into 4 sub-faces). Louns-
bery et al. [19] develop a wavelet-like framework over these semi-regular struc-
tures. Eck et al. [9] present a scheme for semi-regular remeshing of arbitrary
triangle meshes, and achieve shape compression by removing small wavelet
coefficients. Khodakovsky et al. [16] obtain better compression results using
zero-trees; also, they express wavelet coefficients with respect to local surface
coordinate frames, and assign fewer bits to the tangential components of the
wavelet coefficients. The globally smooth parametrization of Khodakovsky et
al. [18] reduces the entropy of these tangential components by constructing a
remesh that is parametrically smooth across patch boundaries. The “normal
mesh” representation of Khodakovsky et al. [17] attempts to remove tangen-
tial information altogether; each subdivision of the remesh is obtained by
displacing most of the newly introduced vertices along the surface normal;
only a small fraction of vertices require full 3D vector displacements.

Another approach, and the one pursued in this paper, is to form a com-
pletely regular remesh. As shown by Gu et al. [11], an arbitrary mesh can be
resampled onto a regular 2D grid, a geometry image. The given mesh is cut
along a network of cut paths to form a topological disk, and this disk is then
parametrized over a square. The geometry image is obtained by creating a reg-
ular grid over the square and sampling the surface using the parametrization.
Due to their simple regular structure, geometry images can be compressed
using ordinary 2D image wavelets. However, one difficulty is that lossy de-
compression leads to “gaps” along the surface cut paths. Gu et al. [11] over-
come these gaps by re-fusing the boundary using a topological sideband, and
diffusing the resulting step function into the image interior.

In this work, we construct geometry images for genus-zero surfaces using
a spherical remeshing approach, as described in the next section. By defining
spherical extension rules beyond the geometry image boundaries, we avoid
boundary reconstruction problems altogether.

3 Review of Spherical Parametrization and Remeshing

In previous work [20] we have presented a method for parametrizing a genus-
zero model onto the sphere and remeshing it onto a geometry image, as il-
lustrated in Figs. 1 and 2. Since the geometric signal is too smooth to be

30 Hugues Hoppe and Emil Praun

Map of original mesh onto sphere, octahedron domain, and image.

Illustration of the same map using image grid samples.

Map of original mesh onto sphere, flat octahedron domain, and image.

Illustration of the same map using image grid samples.

Fig. 1. [Reproduced in colour in Plate 6.] Illustration of remeshing onto octahedron
and flat octahedron domains.

Shape Compression using Spherical Geometry Images 31

Original meshes.

Spherical parameterizations.

Flat-octahedron geometry images (lit).

Fig. 2. Spherical parametrization and remeshing applied to the four test models.
The geometry images are shown shaded to better illustrate the parametrization.

visualised by directly mapping (x,y,z) to the (R,G,B) channels of an image,
we chose to visualise these geometry images in a different way. We compute for
each pixel an approximated normal by taking neighbour differences, and shade
the geometry image based on these normals (using two antipodal lights).

Spherical Parametrization

The first step maps the original surface onto a sphere domain. For genus-
zero models, the sphere is the most natural domain, since it does not require
breaking the surface using any a priori cuts, which would otherwise artificially
constrain the parametrization.

To be suitable for subsequent remeshing, the spherical map must satisfy
two important properties: (1) it must be one-to-one, and (2) it must allocate
enough domain area to all features of the mesh. Our spherical parametrization

32 Hugues Hoppe and Emil Praun

achieves these goals by employing a robust coarse-to-fine construction, and by
minimising a stretch distortion measure to prevent later undersampling.

Coarse-to-fine construction. The mesh is converted to a progressive mesh
format [14] by repeatedly applying half-edge-collapse operations. For trian-
gulated genus-zero models, one can always reach a tetrahedron as the base
domain [25]. This base tetrahedron is mapped to a regular tetrahedron in-
scribed in the unit sphere. We then visit the progressive mesh sequence in
coarse-to-fine order, adding vertices back into the mesh and mapping them
onto the sphere. To guarantee that the map is one-to-one, a vertex must lie in-
side the kernel of the spherical polygon formed by its neighbours. Fortunately,
if the map is one-to-one prior to inserting a new vertex, it can be shown that
the new vertex’s neighbourhood is always non-empty, and thus new vertices
can always be inserted into the parametrization while maintaining a bijection.

Stretch metric. To adequately sample all the features of a model, we em-
ploy a parametrization distortion metric based on stretch minimisation. We
minimise this nonlinear metric each time a new vertex is introduced, by lo-
cally optimising its location and those of its immediate neighbours. Each time
the number of vertices grows by a factor of 1.5, we also perform a global
pass, optimising all vertices introduced so far. When optimising any vertex,
we constrain it to the kernel of its neighbourhood, to prevent flips. Degenerate
triangles are prevented naturally by the stretch metric, which becomes infinite
in that case.

Spherical Remeshing

Once we have a spherical parametrization for the mesh, we seek to resample
the sphere onto a geometry image. For simplicity, this image should be square
and should have simple boundary conditions. We have explored two schemes
for unfolding the sphere onto the square, one based on a regular octahedron
domain and the other based on a flattened octahedron domain (see Fig. 1).
In either case, we regularly subdivide the octahedron, and map it to the
sphere using the spherical parametrization procedure described earlier. (The
one difference is that we measure stretch in the opposite direction, from the
domain to the sphere.)

The samples of the octahedron are then associated with the grid locations
of a square geometry image by cutting four edges of the octahedron meeting at
a vertex, and unfolding the four faces incident to the vertex-like flaps. In Fig. 1,
rows 2 and 4 illustrate the sampling pattern imposed by the regular grid. For
the octahedron, we use the linear 3-tap triangular reconstruction filter, and
the filter footprint varies across the four quadrants of the geometry image,
according to the faces of the base octahedron (shown in different colours for
easy identification). For the flat octahedron, we use the traditional 4-tap bi-
linear reconstruction filter, and this filter is uniform across the whole geometry
image.

Shape Compression using Spherical Geometry Images 33

The geometry of the regular octahedron corresponds nicely with the use of
spherical wavelets (Sect. 4.1), since it offers derivative continuity across edges
under the equilateral triangle sampling pattern. Similarly, the geometry of the
flattened octahedron corresponds with the use of image wavelets (Sect. 4.2),
since the flattened octahedron unfolds isometrically (i.e. without distortion)
onto the square image.

4 Compression Using Spherical Geometry Images

To compress a model, we first apply a wavelet transform to the geometric
signal, using either spherical wavelets or image wavelets. The bands resulting
from the wavelet transform are then run through a general-purpose quantiser
and entropy coder [7]. The process is summarised in Fig. 3, and in the pseudo-
code of Fig. 4.

Previous research [13] has shown that the geometric information associated
with displacement of samples from their predicted location along the surface
normal is more important than the “parametric” information associated with
the tangential components of the displacement. Accordingly, we express the
fine-scale detail (the high-pass bands or wavelet coefficients from each step
of the wavelet transform) in local coordinate frames predicted using the low-
pass band. During the quantisation and entropy coding, we assign greater
perceptual importance to transformed components normal to the surface than
to the tangential components (we found a factor of 3 to give the best results
for our models).

original
meshSpherical

remeshing

Wavelet
transform

level l

Entropy
coding

coarse level l-1

detail level l
Local

frame xform levels 1..L

iterate l=L-1..1

geometry image level L

base level 0 Quantization

compression

Wavelet
transform

level l

coarse level l-1

detail level l
Local

frame xform levels 1..L

iterate l=1..L-1

base level 0 De-
quantization

decompression

Entropy
decoding

geometry image level L

Fig. 3. Overview of compression process.

34 Hugues Hoppe and Emil Praun

Compression:

Read finest level L

For all levels from fine to coarse: l = L..1:

- identify "even" grid locations (i.e. those in coarser level l-1)

- apply low-pass analysis filter centred on "even" samples

- apply high-pass analysis filter to other ("odd") samples

(if low-pass or high-pass filter kernels reach outside

the geometry image, use boundary extension rules)

- gather all "even" samples into coarse level l-1

- gather all "odd" samples into detail plane(s) for level l

- using level l-1, compute local tangential frames for samples on

detail plane(s) of level l

- express detail in local tangential frames

Run coarsest level 0 and all detail planes for levels 1..L

through quantiser and entropy encoder to achieve target bit budget

Decompression:

Run entropy decoder and dequantiser to produce coarsest level 0

and detail planes for levels 1..L

For all levels from coarse to fine l = 0..L-1:

- using level l, compute local tangential frames for samples in

detail plane for level l+1

- transform detail from local frames to absolute coordinates

- apply synthesis filter to level l to predict level l+1

- apply synthesis filter to detail plane(s) for level l+1

and combine with prediction to produce level l+1

(using boundary extension rules as necessary)

Output finest level L

Fig. 4. Pseudo-code for the compression and decompression algorithms.

Note that the compression and decompression are lossy, and that the quan-
tisation errors combine non-linearly. For example, if a coarse level is recon-
structed inexactly, the errors are not simply added to the final result; they
additionally cause small rotations of the local coordinate frames transforming
the detail for the finer levels.

For the wavelet compression and decompression stage we present two alter-
native schemes. The first is based on spherical wavelets introduced by Schröder
and Sweldens [24]; the base (coarsest) sampling level is an octahedron, and
progressively finer levels are obtained by applying standard subdivision rules
such as Loop or Butterfly. The second is based on image wavelets. Both
schemes are interesting to consider since they offer different advantages. The
mesh-based spherical wavelet scheme seems more natural for coding geometry,
and provides good reconstruction of sharp detail at very low bit budgets. The
image-based method is easier to implement (just by modifying one of the
many existing image coders), and benefits from a large body of research into

Shape Compression using Spherical Geometry Images 35

image wavelets that resulted in well optimised wavelet bases with large sup-
port [4]. After presenting the implementation of both methods in this section,
we contrast their results in Sect. 5.

4.1 Spherical Wavelets

Rather than having a complicated pointer-based mesh data structure, we can
apply all the mesh-processing operations directly on the geometry image of
the unfolded octahedron by manipulating grid location indices. The vertices
of the base octahedron correspond to the samples at the corners, boundary
midpoints, and centre of the geometry image. The vertices of the octahedron
subdivided k times will be at locations (i∗2L−k, j ∗2L−k), for 0 ≤ i, j ≤ 2k+1,
where L is the finest level. Two samples on a given level are neighbours in
the subdivided octahedron if they are 4-adjacent in the grid restricted to the
samples on that level, or linked by a diagonal. The orientation of this diagonal
is determined by the image quadrant, i.e. “forward slash” for the upper left
and lower right one, and “backward slash” for the other two. This distinction
in the use of diagonals is needed because the sample connectivity in the grid
is not arbitrary but is inherited from the subdivided octahedron. We check
the quadrant at the midpoint between the two samples, to avoid ambiguities
created when one of the samples is a vertex of the base octahedron. Using this
simple set of rules, we efficiently gather the neighbours of a vertex on a given
level, to form the stencils required for wavelet analysis and synthesis (e.g. the
green stencil in Fig. 5).

Boundary extension rules. To complete the wavelet transform stencils
corresponding to samples near the boundaries, we sometimes need to “hal-

Fig. 5. Spherical wavelets on the unfolded octahedron geometry image. The dark
and light grey regions highlight two Butterfly stencils at different subdivision levels.
Since the dark grey stencil reaches outside the image, it uses boundary extension
rules.

36 Hugues Hoppe and Emil Praun

Fig. 6. A spherical geometry image and its infinite tiling in the plane. The
parametrization is globally smooth except at the image boundary midpoints.

lucinate” values outside the square grid of values. Standard tricks used in
signal processing to extend an image beyond its borders include replicating
the boundary samples or reflecting the image across its boundaries. These
methods provide a continuous signal, but introduce derivative discontinuities
in the infinite lattice produced, and discontinuities are more expensive to code
than smooth signals. Instead of using the standard tricks, we designed differ-
ent boundary extension rules for our unfolded octahedron geometry image,
which do produce an infinite lattice with derivative continuity. The general
idea for these rules is that whenever we must “march” outside the image across
a boundary to produce a sample, we flip the image (such that the boundary
is mapped onto itself by a 180-degree rotation) and return the value located
there (e.g. the red stencil in Fig. 5). Considering the image samples to be
labelled in row-major order, starting from 0 (so samples in the left column
are (0,j)), the rules are I(−i, j) = I(i, n − 1 − j), I(i,−j) = I(n − 1 − i, j),
I(n−1+i, j) = I(n−1−i, n−1−j) and I(i, n−1+j) = I(n−1−i, n−1−j),
where n = 2k + 1 is the number of rows and columns. This is equivalent to
filling the infinite plane of all sample locations by rotating the original image
around the boundary midpoints (see Fig. 6). The infinite lattice produced is
continuous everywhere and derivative continuous everywhere except at the
repeated instances of the four boundary midpoints (dots in the figure).

Note that for i, j = 0 and i, j = n − 1, the rules provide constraints on
the boundaries rather than a way to extend the image outside its borders.
Therefore, to avoid sample duplication we also consider the right half of the
top and bottom boundaries of the geometry image and the lower half of the
left and right boundaries to be “outside” the image (so we map those locations

Shape Compression using Spherical Geometry Images 37

to the surviving half of the same boundary, using the extension rules). These
“outside” boundary grid locations are not processed by the quantiser and
entropy coder.

Local tangential frame. We use the lifted Butterfly scheme, as described
in [24]. We compute a normal for each “odd” sample by averaging the normals
of the faces from the Butterfly stencil (with weights 1,4,1,1,4,1). Note that the
vertices of these faces are all “even” vertices. The Y coordinate of the frame
is obtained as the cross product between this normal and the row direction
in the grid of samples (obtained from differences of neighbouring samples,
similarly to the image wavelet case). We take a cross product again to obtain
the X axis of the frame.

4.2 Image Wavelets

The other scheme we consider is based on image wavelets, using the flat octa-
hedron parametrization. We use a general-purpose wavelet-based image com-
pression package [7], modified to make use of boundary extension rules and
local tangential frame coding.

Boundary extension rules. These rules come into play during both com-
pression and decompression phases when we are applying a signal processing
kernel to a sample that is closer to the image boundary than the kernel width
(see Fig. 7). In these cases, we have to “hallucinate” samples for the grid
locations outside the original image. Similarly to the spherical wavelets case,
we fill these grid locations using boundary extension rules.

For image wavelets there are two types of rules, depending on whether
the image boundary is located “on” the samples or “between” samples. To
simplify the discussion, let’s assume we need a sample located outside the
image across the left boundary. The first case corresponds to the original un-
folded octahedron, and all the coarser levels. These levels have 2k +1 columns,
and the left column is constrained: sample I(0, j) must be equal to sample
I(0, nr − 1 − j), where nr is the number of rows. In this case, the reflection
rule is the same as in the spherical wavelets case I(−i, j) := I(i, nr − 1 − j).

The second type of extension rules apply to the detail planes obtained
from the image wavelet transform. Some of these images have a number of
columns equal to 2k rather than 2k + 1 and lack the left boundary with
constrained samples. Specifically, the image wavelet transform uses separable
filters, so to apply a 2D transform, it first applies a 1D transform to all the
rows, producing images L and H (see Fig. 8) and then a 1D transform to all
the columns, producing images LL, LH, HL, and HH. Planes with an even
number of columns (such as H, HL, and HH) lack the leftmost boundary with
constrained samples, and use a reflection boundary located “between” grid
locations: I(−i, j) := I(i − 1, nr − 1 − j). Intuitively, in the geometry image
case, when we go outside the image across a “fat” edge in Fig. 8, we come
back inside the image across the same boundary, skipping the sample on the

38 Hugues Hoppe and Emil Praun

Fig. 7. Effect of domain extension rules on wavelet basis extents using the flat
octahedron image wavelets.

L H

LL HL

LH HH

2k-1+12k+1 2k-1

Fig. 8. Wavelet transform of an image level. Applying a 1D transform to each row
results in a low-pass plane L and a high-pass (detail) one, H. After a 1D transform
on each of the columns, we get the coarser level LL, and three detail planes. The
thick boundary edges have flip-symmetry constraints.

boundary itself, while in the case of a dotted boundary edge of a detail plane
in Fig. 8 we don’t skip the sample on the boundary.

Similarly to the spherical wavelets case, the first type of boundary rules
applied to the samples on the boundary provide constraints, rather than ways
to extend the image. During the compression phase, those constraints are sat-
isfied since the original geometry image was constructed using them. However,
since the whole compression/decompression process is lossy, the constraints
may be unsatisfied during decompression. To ensure that the resulting model
is crack-free, we enforce the constraints at all the resolution levels during de-
compression. After we recover a level, before using it to produce the local frame
and the coarse approximation for the next level, we first average together the
samples on the boundary that should be equal (for example, samples (i, 0) and
(n− 1− i, 0) on the top row of the image are averaged together and set to the
resulting value). Pairs of corresponding locations on the image boundaries are

Shape Compression using Spherical Geometry Images 39

averaged together, and the four corners are also averaged and kept consistent.
It is advantageous to enforce consistency at all the resolution levels, rather
than just once at the end, in order to avoid “step functions” from appearing
in the result.

The boundary rules benefit the compression/decompression algorithm in
two ways. First, they maintain consistency between samples on the bound-
aries, preventing cracks in the 3D model corresponding to the geometry image.
Second, they help the prediction for the samples near the boundaries, since
the image signal appears smooth not only in the interior of the image but also
near its borders (see Fig. 6).

An important thing to note is the fact that applying a symmetric filter
kernel to a lattice satisfying the boundary extension rules will result in a new
lattice with the same extension rules. We make use of this fact since we rely
on the extension rules at all the resolution levels, not just the finest resolution
geometry image. For arbitrary kernels, one would need to store two instances
of the processed image, one with the kernel itself and one with the reflected
kernel, in order to be able to represent the whole new infinite lattice. This
would be a significant drawback for compression, since the bit budget would
double. We therefore use wavelets based on symmetric kernels.

Local tangential frame. To compute a local frame for each “odd” sample,
we first obtain vectors corresponding to the row and column directions of the
grid. If the sample is on an even row (and necessarily an odd column), we get
the row direction from the difference of the two neighbouring (even) samples
in the same row. If the sample is from an odd row, we average the directions
computed using the two adjacent even rows. We compute the column direction
in a similar fashion. Taking the cross product of the two vectors we obtain the
normal direction, which we cross with the column direction to get the X axis.
The Y axis is obtained by cross product between the normal and X. Finally
we normalise the three vectors composing the frame.

Implementation details. We used the Antonini [4] image wavelet bases,
which are symmetric separable kernels with 7 entries for the 1D high-pass
and 9 entries for the low-pass. Since the wavelet kernels have large support,
we do not apply the wavelet transform all the way down to the 3x3 image,
but instead use a fixed number of stages (specifically, 5), starting from a fine
513x513 geometry image.

5 Results and Discussion

We have run compression experiments using the 4 test models shown in Fig. 2.
The spherical parametrization process took 1–3 minutes on the original meshes
with 28–134K faces. (This significant improvement in processing times over
those reported in [20] are simply due to code optimisation.) The given models
were remeshed into geometry images of size 513x513 and then compressed.

40 Hugues Hoppe and Emil Praun

1,445 bytes (61.6 dB) 2,949 bytes (67.0 dB) 11,958 bytes (75.7 dB)
Compression using spherical wavelets.

1,357 bytes (60.8 dB) 2,879 bytes (66.5 dB) 11,908 bytes (77.6 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Fig. 9. [Reproduced in colour in Plate 7.] Compression results on Venus model.

Shape Compression using Spherical Geometry Images 41

1,444 bytes (59.6 dB) 2,951 bytes (65.5 dB) 11,959 bytes (76.1 dB)
Compression using spherical wavelets.

1,367 bytes (60.5 dB) 2,889 bytes (66.2 dB) 11,915 bytes (77.5 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Normal mesh [2002]

Fig. 10. [Reproduced in colour in Plate 8.] Compression results on skull model.

42 Hugues Hoppe and Emil Praun

1,447 bytes (64.0 dB) 2,950 bytes (69.5 dB) 11,958 bytes (79.8 dB)
Compression using spherical wavelets.

1,364 bytes (63.2 dB) 2,881 bytes (70.2 dB) 11,906 bytes (81.9 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Fig. 11. [Reproduced in colour in Plate 9.] Compression results on rabbit model.

Shape Compression using Spherical Geometry Images 43

1,456 bytes (55.7 dB) 2,961 bytes (57.6 dB) 11,968 bytes (69.7 dB)
Compression using spherical wavelets.

1,376 bytes (54.2 dB) 2,900 bytes (60.6 dB) 11,932 bytes (73.1 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Fig. 12. [Reproduced in colour in Plate 10.] Compression results on horse model.

44 Hugues Hoppe and Emil Praun

The results for both spherical wavelets and image wavelets are shown in
Figs. 9–12. The rightmost images show each shape compressed to approxi-
mately 12,000 bytes. At this compression rate, the geometric fidelity is ex-
cellent, and these images should be considered as references for the more
aggressive compressions to their left. At approximately 3,000 bytes (middle
images), compression effects become evident in the blurring of sharp features.
At 1,500 bytes (left images), effects are even more pronounced. It is inter-
esting however that 1,500 bytes are generally sufficient to make the object
recognisable.

The graphs in Figs. 9–12 show Peak Signal-to-Noise Ratio (PSNR) graphs
for each model. We compare our rate-distortion curve with those of pro-
gressive geometry compression (PGC) [16], globally smooth parametrization
(GSP) [18], and normal mesh compression (NMC) [17]. Also included for com-
parison is the irregular mesh compression scheme of Touma and Gotsman [28]
(which preserves mesh connectivity). As can be seen from the graphs, our
rate-distortion curves are generally better than PGC, but just below GSP
and NMC.

The spherical wavelets generally offer better visual reconstruction, as is
most evident on the skull model (Fig. 10). The reason is that the spherical
wavelet kernels have more localised support than the particular image wavelets
that we used, and therefore adapt more quickly to the fine detail. However, the
PSNR graphs indicate that the error as measured using L2 Hausdorff distance
is generally lower when using the image wavelets. Thus, it can be argued that
L2 error is not an accurate visual norm [28], and that one should attempt
to recover high-frequency detail first [26]. A more comprehensive comparison
using other image wavelets (with more local support) would be useful.

The horse model (Fig. 12) shows a limitation of our spherical parametriza-
tion approach. For shapes containing many extremities, the parametrization
onto the sphere suffers from distortion, and these distortions give rise to rip-
pling effects under lossy reconstruction. In such cases, our compression is much
less effective than semi-regular remeshing.

6 Summary and Future Work

We have described a spherical parametrization approach to remeshing genus-
zero surfaces for shape compression. The surface is remeshed into a regular 2D
grid of samples, which is then compressed using wavelets. The compression
and decompression algorithm have great potential for hardware acceleration,
since they do not involve any pointer-based data structures. We have pre-
sented a wavelet scheme based on ordinary 2D image wavelets, and applied it
to the spherical domain using boundary extension rules, effectively creating
spherical topology over a square domain. Like prior semi-regular remeshing
schemes, our geometry image remeshing approach naturally supports progres-
sive compression.

Shape Compression using Spherical Geometry Images 45

Experiments show that spherical geometry images are an effective rep-
resentation for compressing shapes that parametrize well onto the sphere.
Although the scheme is robust on arbitrary models, shapes with long extrem-
ities suffer from rippling artefacts during lossy decompression. One area of
future work is to attempt to reduce these rippling effects by modifying the
parametrization process.

Also, our approach should be extended to support surfaces with bound-
aries. One possibility would be to encode a separate bit-plane indicating which
subset of samples lie in the “holes” of the remeshed model.

The accuracy of remesh representations can be improved by refitting to the
original model as an optimisation (e.g. [23]). Such optimisation would likely
help rate-distortion behaviour, particularly using an appropriate visual error
norm. However, local geometry optimisation does increase the entropy of the
“tangential” signal within the surface remesh, so it would be important to
introduce a smoothing term to minimise such entropy away from significant
geometric features.

In this work, we have used the sphere as an intermediate domain for
parametrizing a surface onto an octahedron or flattened octahedron. One
could also consider parametrizing the surface directly onto the octahedron,
thus bypassing the sphere. This task would be more challenging, since the
octahedron is not everywhere smooth like the sphere. However, it may allow
the construction of improved (more stretch-efficient) parameterizations.

Briceño et al. [6] explore the compression of animated meshes using the
geometry images of [11]. It would be interesting to apply a similar framework
using spherical geometry images.

Acknowledgements

We gratefully thank Andrei Khodakovsky for providing results for our com-
parisons. We thank Cyberware for the Venus, rabbit and horse models, and
Headus for the skull model.

References

1. Alliez, P., and Desbrun, M.: Progressive encoding for lossless transmission of 3D
meshes. Proc. ACM SIGGRAPH 2001.

2. Alliez, P., and Desbrun, M.: Valence-driven connectivity encoding for 3D
meshes. Proc. Eurographics 2001.

3. Alliez, P., and Gotsman, C.: Recent advances in compression of 3D
meshes. Advances in Multiresolution for Geometric Modelling, N. A. Dodgson,
M. S. Floater, and M. A. Sabin (eds.), Springer, 2004, pp. 3–26 (this book).

4. Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I.: Image coding using
wavelet transform. IEEE Transactions on Image Processing, 205–220, 1992.

46 Hugues Hoppe and Emil Praun

5. Attene, M., Falcidieno, B., Spagnuolo, M., and Rossignac, J.: SwingWrapper:
Retiling triangle meshes for better EdgeBreaker compression. ACM Transac-
tions on Graphics, to appear.

6. Briceño, H., Sander, P., McMillan, L., Gortler, S., and Hoppe, H.: Geometry
videos. Symposium on Computer Animation 2003.

7. Davis, G.: Wavelet image compression construction kit. http://www.geoffdavis.-
net/dartmouth/wavelet/wavelet.html (1996).

8. Deering, M.: Geometry compression. Proc. ACM SIGGRAPH 1995, 13–20.
9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle,

W.: Multiresolution analysis of arbitrary meshes. Proc. ACM SIGGRAPH 1995,
173–182.

10. Gotsman, C., Gumhold, S., and Kobbelt, L.: Simplification and compression of
3D meshes. In Tutorials on Multiresolution in Geometric Modelling, A. Iske, E.
Quak, M. S. Floater (eds.), Springer, 2002, pp. 319–361.

11. Gu, X., Gortler, S., and Hoppe, H.: Geometry images. Proc. ACM SIGGRAPH
2002, 355–361.

12. Gumhold, S., and Strasser, W.: Real time compression of triangle mesh connec-
tivity. Proc. ACM SIGGRAPH 1998, 133–140.

13. Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P.: Normal meshes. Proc.
ACM SIGGRAPH 2000, 95–102.

14. Hoppe, H.: Progressive meshes. Proc. ACM SIGGRAPH 1996, 99–108.
15. Karni, Z., and Gotsman, C.: Spectral compression of mesh geometry. Proc. ACM

SIGGRAPH 2000, 279–286.
16. Khodakovsky, A., Schröder, P., and Sweldens, W.: Progressive geometry com-

pression. Proc. ACM SIGGRAPH 2000.
17. Khodakovsky, A., and Guskov, I.: Normal mesh compression. Geometric Mod-

eling for Scientific Visualization, Springer-Verlag, Heidelberg, Germany (2002).
18. Khodakovsky, A., Litke, N., and Schröder, P.: Globally smooth parameteriza-

tions with low distortion. Proc. ACM SIGGRAPH 2003.
19. Lounsbery, M., DeRose, T., and Warren, J.: Multiresolution analysis for sur-

faces of arbitrary topological type. ACM Transactions on Graphics, 16(1), 34–73
(1997).

20. Praun, E., and Hoppe, H.: Spherical parametrization and remeshing. Proc. ACM
SIGGRAPH 2003, 340–349.

21. Rossignac, J.: EdgeBreaker: Connectivity compression for triangle meshes. IEEE
Trans. on Visualization and Computer Graphics, 5(1), 47–61 (1999).

22. Rossignac, J.: 3D mesh compression. Chapter in The Visualization Handbook,
C. Johnson and C. Hanson, (eds.), Academic Press, to appear (2003).

23. Sander, P., Wood, Z., Gortler, S., Snyder J., and Hoppe, H.: Multi-chart geom-
etry images. Symposium on Geometry Processing 2003, 157–166.

24. Schröder, P., and Sweldens, W.: Spherical wavelets: Efficiently representing func-
tions on the sphere. Proc. ACM SIGGRAPH 1995, 161–172.

25. Shapiro, A., and Tal, A.: Polygon realization for shape transformation. The
Visual Computer, 14 (8-9), 429–444 (1998).

26. Sorkine, O., Cohen-Or, D., and Toledo, S.: High-pass quantization for mesh
encoding. Symposium on Geometry Processing, 2003.

27. Taubin, G., Gueziec, A., Horn, W., and Lazarus, F.: Progressive forest split
compression. Proc. ACM SIGGRAPH 1998.

28. Touma, C., and Gotsman, C.: Triangle mesh compression. Graphics Interface
1998.

Part II

— Data Structures

A Survey on Data Structures
for Level-of-Detail Models

Leila De Floriani1, Leif Kobbelt2 and Enrico Puppo1

1 Department of Computer Science (DISI), University of Genova, Italy
{deflo|puppo}@disi.unige.it

2 Computer Graphics Group, RWTH Aachen, Germany
kobbelt@cs.rwth-aachen.de

Summary. In this paper we survey some of the major data structures for encoding
Level Of Detail (LOD) models. We classify LOD data structures according to the
dimensionality of the basic structural element they represent into point-, triangle-,
and tetrahedron-based data structures. Within each class we will review single-level
data structures, general data structures for LOD models based on irregular meshes
as well as more specialised data structures that assume a certain (semi-) regularity
of the data.

1 Introduction

Due to the rapidly increasing complexity of three-dimensional data sets such
as geometric free-form shapes, terrain models or volumetric scalar fields, the
investigation of hierarchical methods to control and adjust the Level Of Detail
(LOD) of a given data set has been an active research area – and it still is.
A LOD model essentially permits different representations of an object at
different levels of detail, where the level can also vary over the object. The
operation of extracting one such representation from a LOD model is called
selective refinement and most applications require that it must be supported
either in real time, or at least on-line for objects that often exhibit fairly
complicated geometry. Performance requirements impose several challenges in
the design of systems based on LOD models where geometric data structures
play a central rôle. There is a necessary trade-off between time efficiency and
storage costs. And also there is a trade-off between generality and flexibility
of models on one hand, and optimisation of performance (both in time and
storage) on the other hand.

In this paper, we provide a survey of geometric data structures that have
been proposed in the literature to implement LOD models. We consider free-
form surfaces described through point primitives or triangle meshes and two-
dimensional or three-dimensional scalar fields whose domain is partitioned

50 Leila De Floriani, Leif Kobbelt and Enrico Puppo

into meshes of triangles or tetrahedra. We consider mesh-based LOD models
described by hierarchies of meshes, which define the underlying discretisation
of the surfaces or of the domain of the field. In Sect. 2, we introduce some
background notions on meshes and we give a generic definition of LOD mod-
els. In Sect. 3, we review point-based data structures that process surface data
without the need to construct a mesh explicitly. In Sect. 4, we focus on 3D
objects represented with meshes of triangles and we describe triangle-based
data structures in the three cases of plain geometric models, progressive mod-
els, and LOD models supporting selective refinement. In Sect. 5, we review,
with a similar approach, tetrahedron-based data structures used to represent
volume data. Sect. 6 makes some concluding remarks.

2 Background Notions

In this Section, we introduce some background notions which we use in the
paper.

2.1 Meshes

A k-dimensional cell, or a k-cell, for brevity, is a subset of the d-dimensional
Euclidean space Ed homeomorphic to a closed k-dimensional ball, where
k ≤ d. Let M be a connected finite set of cells of heterogeneous dimen-
sion embedded in the Euclidean space Ed, where d is the maximum of the
dimensions of the cells of M , such that the boundary of each cell in M is a
collection of cells of lower dimensions, called facets, belonging to M . Then, M
is a d-dimensional mesh if and only if the interiors of any pair of d-dimensional
cells of M are disjoint, and any k-cell of M , with k < d, bounds at least one
d-cell of M . The union as a set of points of the cells of a mesh M is called the
carrier, or the domain of M .

A special and interesting case of meshes is that of simplicial meshes. A
k-dimensional simplex, or k-simplex, for brevity, in Ed is the locus of the
points in Ed that can be expressed as the convex combination of k+1 affinely
independent points. A simplicial mesh Σ is a mesh in which all cells are
simplexes. In a d-dimensional simplicial mesh, every k-simplex with k < d
is generated by a subset of vertices of some d-simplex. We call the set of
simplexes bounded by simplex σ the star of σ.

A mesh is said to be conforming if and only if, for each pair of d-cells σ1

and σ2, the intersection of the boundaries of σ1 and σ2 is either empty, or it
consists of a k-facet belonging to the boundary of both σ1 and σ2, for some
k < d. The use of conforming meshes as decompositions of the domain of a
scalar field, which is sampled at a finite set of points on a manifold, provides
a way of ensuring at least C0 continuity for the resulting approximation,
without requiring the modification of the values of the field at the facets
where discontinuities may arise.

Data Structures for LOD Models 51

The valence of a d-cell C in a mesh M is the number of (d+ 1)-cells also
in M that overlap C. The most important examples are the vertex valence
in a triangle mesh being the number of edges that meet at a vertex or the
edge valence in a tetrahedral mesh being the number of triangles meeting at
an edge.

We call regular grids conforming meshes in which all cells are hypercubes
(squares or cubes in two and three dimensions, respectively) and all d-cells
have the same valence respectively. Moreover, we call regular meshes those
meshes which are defined by the uniform subdivision of a d-cell into scaled
copies of it. Note that the vertices of a regular mesh are a subset of the vertices
of a regular grid and that all sub-cells with a given dimension d have the same
valence vd.

A semi-regular mesh is generated by starting with an irregular mesh and
applying a uniform refinement operator to each cell. The uniform refinement
does not generate new vertices or edges with irregular valences nor does it
change the valences of existing elements. As a consequence, a semi-regular
mesh is piecewise regular and only has some isolated irregular (a.k.a. extraor-
dinary) vertices or edges which correspond to the elements of the original
(unrefined) mesh.

2.2 Elements of a LOD Model

The basic ingredients of a LOD model of a spatial object are a base mesh, that
defines the coarsest approximation to the object, a set of updates, that, when
applied to the base mesh, provide variable resolution mesh-based representa-
tions of the spatial object, and a dependency relation among updates, which
supports combining them to extract consistent intermediate representations.

Intuitively, an update on a d-dimensional meshM consists of replacing a set
of cells in M with another set in such a way that the result M ′ is still a mesh
(see [14] for a formal definition). An update is conforming if, when applied
to a conforming mesh, it produces a conforming mesh as result. An update
is either described explicitly, as the set of cells involved in it, or implicitly,
by encoding the operation which produces it. The dependency relation can be
a containment hierarchy, or a representation of the possible orders in which
updates can be performed to extract meshes at different resolutions. We call
the mesh at full resolution reference mesh which can be obtained by applying
all available updates to the base mesh.

The basic operation in a LOD data structure, called selective refine-
ment, consists of extracting a conforming mesh satisfying some application-
dependent requirements based on level of detail, such as approximating a
surface or scalar field with a certain accuracy which can be uniform or vari-
able in space. We assume a Boolean function τ , that we call a LOD criterion,
defined on the set of nodes in a LOD model, which returns a value true if an
entity satisfies the requirements, a value false otherwise. The general selective
refinement query on a LOD model can thus be formulated as follows: given a

52 Leila De Floriani, Leif Kobbelt and Enrico Puppo

LOD criterion τ , extract from the model the mesh M of minimum size that
satisfies τ .

3 Point-Based Data Structures

The most primitive geometric object is a point . Yet we can (approximately)
represent an arbitrarily complex geometric object if we use a sufficiently dense
set of point samples. Modern 3D scanning devices such as laser range finders
often provide dense point clouds as their raw data output.

Points scattered in a k-dimensional region that carry optional attribute
values, can be considered as samples of a scalar- or vector-valued function
defined over this region. Obviously, we can distinguish the irregular case,
where samples are randomly scattered within the k-dimensional region, from
the regular case, where the samples are aligned to the nodes of a regular grid.

The easiest (mesh-less) way to reconstruct a continuous approximation of
the sampled function is to convolve the point set with a (weighted) reconstruc-
tion kernel, e.g., a radial basis function. This reconstruction, however, does
not provide any explicit structure and is mostly used for algorithms whose
only access to the geometry data is by function evaluation.

Another (more explicit) reconstruction technique is to generate a tessella-
tion of the k-dimensional region, e.g., into k-simplices with the points as their
vertices. In such a tessellation the function values at the sample points are
usually interpolated linearly across cells in order to obtain a piecewise linear
approximation of the sampled function.

A different situation occurs when the samples are taken from a k-dimen-
sional manifold embedded in R

(k+1). In this case we can still construct a
k-dimensional tessellation but additional topological information is neces-
sary to determine the proper (geodesic) neighbourhood relation between the
samples [51]. If the underlying manifold is topologically equivalent to a k-
dimensional disk, we can find a map of the sample points to some region in
R

k, construct a tessellation in R
k, and then use the same topological graph

structure for the samples embedded in R
k to obtain a piecewise linear approx-

imation of the manifold in R
(k+1).

The general goal in the design of point-based data structures is to effi-
ciently process large sets of points scattered in R

k without explicitly con-
structing a simplex tessellation. Since in this case no topological consistency
criteria (like conformity) have to be checked and enforced, many operations
such as re-sampling become much more efficient.

When designing data structures for point sets one is usually interested in
space partitions that are optimised for spatial queries since finding the closest
n neighbours to a given point in space or finding all neighbours within some
ε-ball are the most frequent operations. As a consequence octrees and binary
space partitions are most common [63].

Data Structures for LOD Models 53

Space partitions are mostly built top-down. In order to optimally balance
the resulting tree hierarchies, one usually prefers median cut techniques where
each node is split such that both children contain the same number of sample
points instead of splitting the node into sub-cells with equal volumes. The op-
timal orientation of the splitting (hyper-) plane is usually found by computing
the eigenstructure of the inertia tensor (assuming that the samples represent
unit masses distributed in space) [59].

By carefully analysing the approximation properties of discrete point sam-
ples (= piecewise constant functions) it turns out that the approximation
error to a smooth function or manifold is proportional to the distance be-
tween samples. Hence, in contrast to triangle meshes, the sampling density
for point-based representations is determined by surface area and not by sur-
face curvature [6]. The minimum redundancy in a point-based representation
is obtained when the coordinate quantisation for the sample points is propor-
tional to their density.

A convenient way to link the quantisation precision to the sampling reso-
lution is to discretise the space surrounding the given object into a uniform
voxel grid with grid size h and then label all voxels which the surface passes
through as full while all other voxels are empty . If we place sample points in
the centres of the full voxels then each sample is as most

√
3h/2 away from

the exact surface while the maximum distance between neighbouring samples
is h.

If h = 2−r for some r then the set of full voxels (and hence the set of
samples) can be stored as the leaves of an r-level octree. In [6], a very efficient
storage and processing technique for such hierarchical point clouds is presented
which only needs 2.67 bits per point (uncompressed) and usually less than one
bit per point if the data set is compressed by entropy encoding.

In order to guarantee a visually continuous appearance when displaying
a point-based geometry representation, the points are usually generalised to
splats, i.e., infinitesimal points are replaced by ellipses or rectangles – either in
object space or image space [72, 6]. Although surface splats require the deriva-
tion of attributes such as orientation and radius for each splat, the conceptual
simplicity of point-based representations is largely preserved. However, in a
strict sense, we are dealing with a piecewise linear surface representation just
like triangle meshes with the important difference that the linear pieces join
in a C−1 fashion rather than C0.

4 Triangle-Based Data Structures

In this section, we review data structures for describing models based on tri-
angle meshes. In Sect. 4.1, we review data structures for encoding a triangle
mesh. In Sect. 4.2, we describe data structures for progressive models. A survey
on progressive models can be found in [31]. Sect. 4.3 describes data structures

54 Leila De Floriani, Leif Kobbelt and Enrico Puppo

for LOD models based on regular meshes, while Sect. 4.4 presents data struc-
tures for LOD models based on irregular meshes. A survey on triangle-based
LOD models can be found in [14]. An extensive treatment of LOD models for
view-dependent visualisation and of their applications can be found in [47].

4.1 Data Structures for Triangle Meshes

There are essentially two classes of data structures for triangle meshes, those
in which edges are encoded as primary entities, called edge-based representa-
tions, and those in which triangles are considered as primary entities, called
triangle-based representations. In describing and analysing these data struc-
tures, we will only consider structural information, while disregarding geo-
metric information (which generally consists just of vertex coordinates) and
attribute information (which is application dependent).

Edge-based representations have been developed for general meshes and
can be used for triangle meshes without any change. The winged-edge data
structure originally proposed to represent polyhedra with polygonal faces [3],
explicitly encodes all entities forming the mesh. For each edge e, the data
structure maintains the indexes of the two extreme vertices of e, of the two
faces bounded by e, and of the four edges that are both adjacent to e and are
on the boundary of the two faces bounded by e. Vertices and faces are also
encoded: for each vertex v, a pointer to any edge incident in v, and for each face
f , a pointer to an edge bounding f is maintained. Links emanating from edges
support efficient navigation of the mesh by traversing either the boundary of
a face or the star of a vertex, in either counterclockwise or clockwise order. By
assuming the size of an index as a unit, the total storage cost (disregarding
geometric and attribute information) is about 27n, where n is the number of
vertices in the mesh.

A simplified version of the winged-edge data structure is the Doubly-
Connected Edge List (DCEL) [50] where, for each edge, indexes of just two
adjacent edges are maintained. This data structure has a lower cost (about
21n), but it allows traversing the star of vertices only counterclockwise, and
the boundary of faces only clockwise.

A widely-used data structure is the half-edge data structure [48] in which
two copies of the same edge are encoded, oriented in opposite directions. For
each edge of the mesh, the data structure stores two half-edges, and informa-
tion about the edge is split between such two halves. Each half-edge stores the
index of its origin, the index of the face on its left, two indexes of its previous
and next edges along the boundary of that face, and the index of its twin
half-edge, which is oriented in the opposite direction. Information attached
to vertices and faces are the same as in the winged-edge and in the DCEL
structures. In the implementation discussed in [64], the cost of the half-edge
data structure is equal to that of the winged-edge.

In [8] an efficient implementation of the half-edge data structure is pro-
posed that combines the advantages of the pointer-based and the index-based

Data Structures for LOD Models 55

approaches by grouping the three half-edges belonging to the same triangle
in the subsequent entries E[3i], E[3i+1], E[3i+2] of a global array. By
this the next and previous pointers can be replaced by simple index compu-
tations modulo 3 while the index of the corresponding triangle is obtained
through integer division by 3. As a consequence, each half edge requires only
two pointers: one to its starting vertex and one to its opposite half edge. In
addition each vertex has a pointer to one incident half-edge. The triangle to
half-edge pointer can be replaced with an index multiplication by 3. This sums
up to 13 pointers per vertex just as for indexed triangle structures. Yet, the
data structure enables the simple mesh navigation provided by half-edge data
structures.

In [5] a comprehensive public source implementation of a half-edge data
structure for manifold polygon meshes is described. Since the data structure
allows for arbitrary n-sided faces, it cannot group the half-edges per face as
in [8]. As an alternative it groups corresponding half-edges E[2i], E[2i+1]
such that the opposite half-edge pointer can be replaced by index computa-
tions modulo 2. What remains are three pointers per half-edge: starting vertex,
left face, next half-edge. A (full) edge is implicitly represented by a group to
two successive half-edges and hence does not require any storage. Vertices and
faces each store one pointer to an associated half-edge. In total this sums up to
about 21 pointers per vertex if most of the faces in the mesh are triangles. The
complete source code including some sample applications can be downloaded
at [1].

The most common triangle-based data structure is the so-called indexed
data structure: for each triangle t, three indexes to its vertices are maintained.
The cost of this data structure (disregarding geometry and attributes) is just
about 6n, where n denotes the number of vertices. The indexed data struc-
ture has been extended in order to support mesh traversal through edges by
storing, for each triangle t, also the indexes to the three triangles adjacent to
t [39]. The resulting data structure is called the indexed data structure with
adjacencies. To support an efficient traversal of the mesh passing through
vertices, it is convenient to attach to each vertex of the mesh a pointer to
one of its incident triangles. The storage cost of the extended incidence data
structure with adjacencies (disregarding geometry and attributes) is 13n.

4.2 Progressive Meshes

Progressive Meshes (PM) [33] are built by considering a sequence of edge
collapses that simplify a mesh step by step. An edge collapse consists of con-
tracting an edge e to a vertex v, which can either be a new vertex (full-edge
collapse) or one of the extreme vertices of e (half-edge collapse). Given a mesh
M at high resolution, edge collapses are applied until a drastically simplified
mesh M0 is obtained. The whole sequence of edge collapses is recorded and,
for each of them, the corresponding reverse update (called a vertex split) is
stored (see Fig. 1). A PM representation of a mesh M hence consists of a

56 Leila De Floriani, Leif Kobbelt and Enrico Puppo

base mesh M0 plus the reverse sequence of vertex splits. M can be obtained
from M0 through progressive refinement by applying all vertex split updates
in the sequence. If just a prefix of the sequence is applied then a model at an
intermediate LOD is obtained.

Fig. 1. Edge collapse and vertex split updates.

In a PM a vertex split is encoded as follows (refer to Fig. 1 for notation):

• a pointer to the vertex v to be split;
• the positions of vertices v′ and v′′: if either one of them coincides with v,

or v is the midpoint of e, then one offset vector is sufficient to specify them
both;

• a pointer to u: if the vertices incident at v are arranged in a conventional
order, it is sufficient to store an offset to find u in such a vertex list.

• an offset to find w by rotating around v starting at u.

It has been shown that encoding a PM requires less space than encoding
the mesh M at full resolution in an edge-based data structure [35]. In [56],
an alternative representation for PMs is described, in which vertex splits are
clustered into batches with the advantage of doubling the compression ratio.

4.3 LOD Data Structures for Regular and Semi-regular Meshes

LOD data structures for regular triangle meshes have been proposed in the
literature, for the case of terrain data and, more generally, for bivariate scalar
fields, where data are sampled at the nodes of a regular grid [20, 23, 25, 43, 54].

To allow for some flexibility with respect to the topology of the base do-
main, regular meshes are usually handled as a special case of semi-regular
meshes. Since conceptually these meshes can be considered as being generated
by the recursive application of some basic refinement operator, the natural
data structures for such meshes are trees. In some cases when the association
of mesh elements from the (n+ 1)-st refinement level with elements from the
n th level is not unique, more general data structures such as directed acyclic
graphs are necessary.

Data Structures for LOD Models 57

The most basic refinement operator for triangle-based data structures is
the quadrisection where on each edge a new vertex is inserted and each origi-
nal triangle is split into four sub-triangles (cf. Fig. 2). The resulting (nested)
hierarchy of triangles can be stored straightforwardly in a quadtree. The neigh-
bourhood search in this data structure after r refinement steps is O(r) in the
worst case but only O(1) in the average case. Neighbour finding algorithms
that work in worst-case constant time by using arithmetic operations and bit
manipulation are presented in [42].

Fig. 2. Mesh refinement by quadrisection.

In order to avoid the exponential growth in the number of triangles, one
usually tries to apply the subdivision operator only to those triangles that
do not meet a certain quality criterion. This selective refinement, however,
leads to non-conforming meshes if quadrisection is used locally [40]. The non-
conforming edges can be fixed by introducing temporary triangle bisections
that are undone once further refinement is necessary (red-green triangula-
tion) [2].

An alternative refinement operator introduces new vertices per triangle
(and not per edge). In this case each triangle is split into three sub-triangles
leading to a situation where all new vertices have valence three while the
valences of the original vertices are doubled. In order to make this refinement
operator a uniform one, we have to flip all original edges. By this we guarantee
that all newly introduced vertices have valence six and all other vertices keep
their original valence (cf. Fig. 3). This operator is called

√
3 subdivision, since

the double application produces a mesh that corresponds to a uniform 3-nary
refinement of the original.

Because the
√

3-operator uses only 1-3-splits of triangles and edge flips it
never generates non-conforming meshes – even if it is applied selectively. This
is why adaptive refinement strategies are much easier to implement based on
this refinement operator [38].

Several other data structures for regular LOD models are based on recur-
sive triangle bisection. A square universe S is initially subdivided in two right
triangles. The bisection rule subdivides a triangle into two similar triangles
by splitting it at the midpoint of its longest edge. The recursive application

58 Leila De Floriani, Leif Kobbelt and Enrico Puppo

Fig. 3. Mesh refinement by the
√

3-operator.

of this splitting rule to S defines a binary tree of right triangles, in which the
children of a triangle t are the two triangles obtained by splitting t.

In order to extract conforming meshes, every inserted vertex must be in-
troduced into two adjacent triangles at the same time (except for vertices at
the boundary). Any pair of triangles which need to be split at the same time
forms a diamond. Each diamond D is split into four triangles (as shown in
Fig. 4) by the vertex v, called the split vertex of D, which bisects the edge
shared by the two triangles forming D. The four triangles splitting a diamond
form a split set.

If we consider the split vertex of each diamond, a dual hierarchy of vertex
dependencies can be derived, which is a Directed Acyclic Graph (DAG) where
each vertex v has exactly two parents (namely, those two vertices that generate
the parents of triangles forming the split set centred at v; vertices at the
boundary have only two children) and exactly four children (namely, those
four vertices that split triangles forming the split set centred at v). An example
of such a hierarchy is depicted in Fig. 5. In [14, 61] an interpretation of this
model in the framework of the Multi-Triangulation, which is described in the
next section, is presented.

Fig. 4. Split sets corresponding to the two types of diamonds generated by recursive
triangle bisection.

The data structures for representing nested meshes produced through tri-
angle bisections either encode the DAG of the vertex dependencies, or they
encode a forest of triangles which describes the nested structure of the meshes.
The DAG of vertex dependencies can be traversed easily to perform selective
refinement while guaranteeing that the result is a conforming mesh [43, 54].

The binary forest of triangles can be traversed to perform selective refine-
ment, but neighbour finding is necessary to guarantee that when a triangle t is
split, also the triangle adjacent to t along its longest edge is split at the same

Data Structures for LOD Models 59

Fig. 5. The hierarchy of vertices, where each node represents both a vertex and its
corresponding diamond (diamonds on the border contain just two triangles).

time. In [53] a mechanism is proposed, which is based on error saturation,
that can extract conforming meshes by a simple traversal of the binary forest,
without neighbour finding.

If vertices are available at all nodes of the supporting regular grid, then
the forest of triangles is complete, and it can be represented implicitly [20, 23].
Each triangle can be assigned a location code, with a mechanism similar to
that adopted for linear encoding of triangle quadtrees [42]. Location codes
are not stored, but they are used for neighbour finding as well as to retrieve
the vertices of a triangle, the value of the field associated with a vertex, etc.
An efficient implementation involving arithmetic manipulation and a few bit
operations allows performing such computations in constant time [23]. On the
contrary, if the grid of vertices, and thus, the binary forest of triangles, are
not complete, then the forest must be represented explicitly, thus resulting in
a more verbose data structure [25].

In [25, 44], out-of-core implementations are proposed, the former oriented
to representing non-complete hierarchies in terrain modelling, the latter tar-
geted at visualisation and view-dependent refinement of large terrain data
sets.

4.4 LOD Data Structures for Irregular Meshes

The data structures for encoding LOD models based on irregular triangle
meshes can be classified into explicit data structures, which represent the tri-
angles in the model, and into implicit data structures, which do not encode
the triangles, but a procedural description of the operations through which

60 Leila De Floriani, Leif Kobbelt and Enrico Puppo

the LOD model is generated, i.e., edge collapse/vertex split, or vertex inser-
tion/vertex removal.

Explicit data structures

The Multi-Triangulation (MT), as proposed in [61], has been conceived as a
general framework for triangle-based LOD models, which is independent of
the specific type of operation used for generating it. For instance, all models
described in the previous sections are special cases of the MT [14].

The general idea is to have a mesh M which is simplified through a se-
quence of generic updates into a base mesh M0, or, conversely, mesh M0 is
refined into M through an inverse sequence of refinement updates. A generic
(refinement) update u is encoded as a pair (u−, u+) of sets of triangles. Ap-
plying an update u to a mesh M ′ consists of deleting the triangles of u− from
M ′ and replacing them with the (larger) set of triangles of u+. The depen-
dency relation is defined among updates as follows: an update u is dependent
on another update w if and only if u deletes some triangle introduced by
w, i.e., w+ ∩ u− �= ∅. This rule imposes a strict partial order on the set of
updates, which can be represented as a DAG. The partial order encodes all
and only those dependencies that are necessary to perform either refinement
or coarsening updates in the same situation in which they were performed
during construction, thus guaranteeing that the result is a conforming mesh.
Selective refinement operations are based on DAG traversal [15].

An implementation of the MT consists of representing the base mesh M0

through an indexed data structure, and the DAG through a set of nodes, in
which each node contains a description of the triangles corresponding to sets
u− and u+. Each triangle is described by the three indices of its vertices.
Selective refinement can be performed very efficiently on such data struc-
ture, without the need for explicitly modifying the currently extracted mesh
through operations involving adjacencies. On the other hand, efficiency in
selective refinement leads to higher storage costs. A relatively compact imple-
mentation of the MT through arrays is described in [15], which requires about
four times the space required by an indexed representation of the mesh M at
full resolution.

An explicit LOD triangle-based data structure has been proposed by Lue-
bke and Erikson [46] for view-dependent rendering. Each triangle t in the
LOD data structure is stored as three references to the vertices of the mesh
at full resolution (reference mesh) from which the vertices of t derive. During
selective refinement, each vertex v of the reference mesh is associated with the
ancestor of v that is the currently extracted mesh. Triangles for which two or
more vertices are associated with the same vertex are degenerate, and thus
they are not rendered.

A special case of an MT for semi-regular meshes, called a hierarchical 4-k
mesh, has been proposed in [68, 69] in the context of subdivision surfaces.
A hierarchical 4-k mesh is based on vertex insertion on an edge and on edge

Data Structures for LOD Models 61

swap, and it is described by a simplified DAG in which each node has exactly
two parents, and either two or four children, as in the case of nested regular
meshes generated through triangle bisection.

Data structures based on edge collapse/vertex split

LOD data structures based on edge collapse/vertex split extend progressive
meshes by allowing extracting variable resolution representations in which the
LOD varies in different parts of the object.

A näıve approach to extracting variable resolution meshes from a PM
would consist in scanning the sequence of vertex splits and performing only
those updates that are necessary to achieve the desired LOD according to
the refinement criterion τ , while skipping all others [33]. However, a vertex
split cannot be performed unless the corresponding vertex actually belongs to
the current mesh. If a split is skipped, this prevents splitting the vertices it
generates (which could be considered for split at a later stage) and all their
descendants. This may lead to an under-refinement of the mesh.

To overcome the above problem, a dependency among vertices, which is
represented through a binary forest of vertices [34, 70], is defined: roots of the
forest are vertices of M0 and the two children of a vertex v are the vertices, v′

and v′′, generated by splitting v. Each node in the forest contains information
necessary to perform a vertex split, together with information that subsumes
the content of its subtree (such as the bounding sphere of the region spanned
by all vertices in the subtree, and the maximum approximation error for such
vertices) that are used to decide whether one split must be performed or not.

In [36] a technique is presented which even allows for re-ordering the vertex
splits arbitrarily while still guaranteeing a proper mesh connectivity which
corresponds to the original PM connectivity whenever a complete prefix of
the vertex splits is executed.

However, this simple data structure does not guarantee that a split will
be performed in the same situation, i.e., the vertex to be split might not have
the same star of triangles as when it was created in the original simplification
sequence. This may cause undesirable fold-overs in the mesh (see Fig. 6). The
solution is to encode further dependencies for a vertex v so that v can be

Fig. 6. Foldover: original sequence of collapses is (a)–(b)–(c) and the reverse se-
quence of splits is correct; if the central vertex is split as in sequence (c)–(d) a
foldover occurs.

62 Leila De Floriani, Leif Kobbelt and Enrico Puppo

safely split: vertex v will depend on a set of vertices which completely define
the triangles incident at v produced by the edge collapse which generated
v in the simplification sequence [34, 70]. In [14], it has been shown that in
some cases such additional dependencies can be either insufficient to prevent
foldovers, or redundant, thus making the data structure quite verbose [70].

In [21], an effective mechanism based on vertex numbering is introduced,
which guarantees that all splits and collapses identified during selective refine-
ment will be performed in the same situation as in the original simplification
sequence, thus avoiding foldovers. Vertices are assigned integer labels during
construction. In order to check whether or not a split [collapse] can be per-
formed, it is sufficient to compare the label of the vertex to be split [extreme
vertices of the edge to collapse] with the labels of its [their] adjacent vertices.
This is also sufficient to propagate necessary splits/collapses through the hier-
archy, in order to support dynamic adjustment of the selectively refined LOD.
The resulting data structure, called a view-dependent tree, is very compact.
Each internal node of the forest corresponds to a vertex created through edge
collapse and contains information necessary to perform the corresponding ver-
tex split, encoded in the same way as in progressive meshes. Three pointers
are then maintained to encode the forest. The mechanism proposed in [21]
is valid for hierarchies built through full-edge collapse (i.e., when vertex v is
different from both v′ and v′′). A new version of the view-dependent tree to
encode models based on half-edge collapse (i.e., where vertex v coincides with
either v′ or v′′) is presented in [13]. An external memory data structure based
on a block partition of the view-dependent tree is described in [22].

A different edge-based LOD data structure, called a FastMesh, has been
proposed in [55], which is specific for LOD meshes generated through half-
edge collapse. In FastMesh, a variant of the half-edge data structure is used to
encode the triangle mesh, and a forest of half-edges is stored, where each node
represents a half-edge collapse operation. The forest of half-edges requires
half the number of nodes compared to a binary forest of vertices. In [18], an
external memory data structure based on a FastMesh has been described.

Data structures based on vertex insertion/removal

Vertex insertion in a mesh M consists of deleting a connected set of triangles
from M , which defines the region of influence of the vertex v to be inserted,
and replacing it with a set of new triangles all incident at v (see Fig. 7a).
The region of influence is defined by the specific mesh refinement algorithm (a
technique often based on incremental Delaunay triangulation). Vertex removal
consists of removing vertex v together with all the triangles in the star of v
and re-triangulating the resulting star-shaped polygon, called the influence
polygon of v (see Fig. 7b).

Encoding a vertex insertion requires storing the vertex v to be inserted as
well as the subdivision of the influence region into triangles. This provides also
an encoding of vertex removal, since we need to know how to re-triangulate

Data Structures for LOD Models 63

(a) (b)

Fig. 7. (a) Vertex insertion; (b) Vertex removal.

the influence polygon after deleting a vertex v and all the triangles in the star
of v.

An implicit encoding for vertex insertion/removal and a compact DAG
encoding are described in [37]. The DAG encoding is based on connecting
the updates, on which a given update u depends on, in a loop containing
u plus all its direct ancestors. Thus, an update u with j direct descendants
belongs to j + 1 loops: the one associated with u plus those associated with
its direct descendants. The total number of links to describe the DAG is equal
to a+ h, where a and h denote the number of arcs and of nodes in the DAG,
respectively.

In [37] a method for encoding the influence region is proposed which con-
sists of storing a table with all the possible triangulations (up to rotations)
of a polygon with s edges (for instance, for s = 10, there are 7147 equiva-
lence classes), and identifying the triangulation of the influence polygon by
specifying an index in the table. The length of the index is equal to 13 bits,
by assuming that there are at most 10 triangles incident at a vertex in any
update. The table with the equivalence classes must be stored as well.

There are several ways for compactly encoding a simple polygon, mainly
developed in the context of mesh compression algorithms. The analysis per-
formed in [11] showed that good performances can be obtained by encoding
the triangulation of the influence polygon through a technique proposed by
Taubin et al. [66]. Such an encoding consists of a bit stream, which is gener-
ated through a recursive procedure that visits the region of influence R and
encodes one triangle t ∈ R at a time by starting with an edge of its bounding
polygon. The average length of the bit stream is equal to 8 bits, since the
number of bits in the bit stream is twice the number of triangles in the re-
gion of influence. In [11], a compact encoding for the initial edge is described,
which requires just 10 bits. The storage cost of the above data structure com-
bined with the compact DAG encoding by Klein and Gumhold requires about

64 Leila De Floriani, Leif Kobbelt and Enrico Puppo

70% of the space required by an indexed representation of the reference mesh,
which becomes 30% when this latter is encoded as an indexed data structure
with adjacencies.

5 Tetrahedron-based Data Structures

In this section, we present data structures developed for models of volume
data sets described by tetrahedral meshes. A volume data set consists of a
set of points in the three-dimensional Euclidean space, and of a collection of
field values associated with the points of V . In Sect. 5.1, we briefly review
data structures for tetrahedral meshes, while in Sect. 5.2, we describe data
structures for progressive models. Sect. 5.3 describes data structures for LOD
models based on regular meshes, while Sect. 5.4 presents data structures for
LOD models based on irregular meshes.

5.1 Data Structures for Tetrahedral Meshes

Data structures for tetrahedral meshes are a direct extension of triangle-based
data structures (see Sect. 4.1) to the three-dimensional case. The indexed data
structure and the indexed data structure with adjacencies [52, 57] are defined
in a completely similar way as in the case of triangle meshes. If n denotes
the number of vertices and nt the number of tetrahedra of a tetrahedral mesh
M , encoding connectivity information in an indexed data structure requires
4nt indexes. Since nt is approximately equal to 6n and we assume the size
of an index to be a unit, the total storage cost of the indexed data structure
is equal to 24n (disregarding geometric and attribute information). Encoding
the connectivity in an indexed data structure with adjacencies requires 8nt

indexes. This leads to a total cost of 48n, that becomes 49n, if, for each vertex
v, we also encode an index to one of its incident tetrahedra.

A tetrahedral mesh can also be represented as a simplified incidence
graph [7]. In such representation, the following information are encoded: for
each vertex v, a pointer to one edge incident at v; for each edge e, the indexes
of the two extreme vertices of e, and of one of the triangles sharing e; for
each triangle t, the indexes of the three edges bounding t, and the indexes of
the two tetrahedra sharing it; for each tetrahedron σ, the indexes of the four
triangles bounding σ. The storage cost is about twice as the cost of the in-
dexed data structure with adjacencies. The advantage of a simplified incidence
graph is representing all cells in a tetrahedral mesh explicitly, which permits
the attachment of attribute information to edges and triangles as well.

Data structures designed for encoding three-dimensional cell complexes
like the Facet-Edge [19] and the Handle-Face data structures [45] could also
be used to encode tetrahedral meshes. Both the Facet-Edge and the Handle-
Face data structures describe the three-dimensional cells in the complex im-
plicitly, by encoding the two-manifold complexes that form the boundary of

Data Structures for LOD Models 65

such cells. The space requirements of the Facet-Edge and the Handle-Face
data structures, when applied to tetrahedral meshes, are equal to nt + 18nf

and 78nt indexes, respectively, where nt is the number of tetrahedral and nf

the number of faces. Thus, they are definitely higher than the requirements
of the indexed data structures r of the simplified incidence graph.

5.2 Progressive Tetrahedral Meshes

Progressive Tetrahedral Meshes (PTMs) encode a coarse mesh plus a linear
sequence of updates that can be applied to the mesh in order to progressively
refine it [24, 29, 56, 60, 67]. These models support the extraction of a mesh
only at those intermediate resolutions that can be obtained by truncating the
sequence of refinements at some point.

A PTM is built from the reference mesh through a sequence of full-edge
collapses, which produces the base mesh, i.e., the coarsest tetrahedral approx-
imation. A full-edge collapse consists of contracting an edge e = (v′, v′′) to a
vertex v which is an internal point of edge e, for instance, its midpoint (see
Fig. 8). Like a PM, a PTM is formed by the base mesh M0 plus the reverse
sequence of full-vertex splits. A full-vertex split expands vertex v into edge
e = (v′, v′′), and partition the tetrahedra in the star of v into tetrahedra
incident on v′ or on v′′ (see Fig. 8).

Fig. 8. Modification of a tetrahedral mesh through a full-edge collapse and a full-
vertex split. On the left, tetrahedra that degenerate into triangles after full-edge
collapse are shaded. On the right, tetrahedra marked with 0 and with 1 result from
the deformation of tetrahedra incident at v′ and at v′′, respectively.

Each full-vertex split is encoded in a PTM [29] by specifying split vertex v
plus the fan of triangles incident at v which will be expanded into tetrahedra
as effect of the split. Such triangles are called cut faces. The split vertex can
be identified using log2(n) bits in a tetrahedral mesh with n vertices, the cut
faces can be identified locally with respect to the split vertex. Since a vertex in
a tetrahedral mesh has about 36 incident faces, the cut faces can be encoded
with roughly 6log2(36) bits.

In [56], a more compact encoding for PTMs is proposed for efficient mesh
compression and transmission. Such compressed format consists of a base

66 Leila De Floriani, Leif Kobbelt and Enrico Puppo

mesh plus a series of batched vertex splits, called implant sprays, that are
performed simultaneously to achieve the next level of detail. The cut faces
are encoded with about 15 bits for each edge collapse. The total cost of the
connectivity encoding of such PTMs has been evaluated to be less then 6
bits for each tetrahedron in the reference mesh, that is, less than 36 bits per
vertex.

5.3 LOD Data Structures for Regular Meshes

In the finite element and computer graphics literature, there has been a burst
of research on nested tetrahedral meshes generated through tetrahedron re-
finement.

The class of red/green triangulation methods subdivide a tetrahedron σ
into eight tetrahedra, four of which are obtained by cutting off the corners of σ
at the edge midpoints and are congruent with the parent. The remaining four
tetrahedral are obtained by splitting the octahedron resulting from cutting
σ [4, 30, 65].There are different ways of splitting such octahedron which may
result in a different number of congruent tetrahedral shapes. A tree of tetra-
hedra is used to describe the nested structure of such meshes. To reduce the
number of congruent shapes generated by the subdivision process, a domain
partition technique into tetrahedra and octahedra has been introduced in [28].
A tetrahedron σ is partitioned into four congruent tetrahedra as before and
into an octahedron, which is in turn subdivided into six octahedra and eight
tetrahedra. Greiner and Grosso [28] show that this refinement rule generates
only two congruent shapes. As in the case of 2D meshes, if selective refinement
is performed, irregular refinement rules for tetrahedra and octahedra must be
introduced In [28], nine types of edge refinement patterns are shown to be
necessary for irregular tetrahedron refinement.

Another common way of generating nested meshes consists of recursively
bisecting tetrahedra along their longest edge [49, 62, 58]. Tetrahedron bisec-
tion consists of replacing a tetrahedron σ with the two tetrahedra obtained
by splitting σ at the middle point of its longest edge and by the plane pass-
ing through such point and the opposite edge in σ [32, 49, 62]. This rule is
applied recursively to an initial decomposition of the cubic domain obtained
by splitting it into six tetrahedra, all sharing one diagonal. This gives rise to
three congruent tetrahedral shapes, that we call 1/2 pyramids, 1/4 pyramids
and 1/8 pyramids, respectively (see Fig. 9).

When we apply a tetrahedron bisection, all tetrahedra that share a com-
mon edge with the tetrahedron being split must be split at the same time to
guarantee that a conforming mesh is generated. The tetrahedra which share
their longest edge and that thus must be split at the same time form a diamond
(sometimes called a cluster) [27, 41, 58]. There are three types of diamonds
generated by the three congruent tetrahedral shapes, which are formed by
1/2, 1/4 and 1/8 pyramids, respectively (see Fig. 10).

Data Structures for LOD Models 67

(a) (b) (c)

Fig. 9. Subdivision of the initial cubic domain into six tetrahedra. Examples of
(a) a 1/2 pyramid, (b) a 1/4 pyramid, and (c) a 1/8 pyramid.

(a) (b) (c)

Fig. 10. (a) Diamond formed by four 1/2 pyramids. (b) Diamond formed by eight
1/4 pyramids. (c) Diamond formed by six 1/8 pyramids.

The data structures for encoding nested regular meshes produced through
tetrahedron bisections encode (implicitly or explicitly) either a binary forest
of tetrahedra, or a DAG of diamonds with their direct dependencies.

In a forest of tetrahedra, the roots correspond to the six tetrahedra in
which the initial cube is subdivided. Any other node describes a tetrahedron
σ and the two children of σ are the two tetrahedra obtained by splitting σ
along its longest edge. Each of the six trees is a full binary tree which can
thus be encoded implicitly. A forest of tetrahedra directly extends the forest of
right triangles used for LOD models based on triangle meshes (see Sect. 4.3).
Note that a forest of tetrahedra does not need to be explicitly encoded unless
approximation errors or other attribute information must be associated with
tetrahedra.

In order to extract conforming meshes from a forest of tetrahedra, error
saturation [26, 71] has been applied, thus implicitly forcing all parents to be
split before their descendants (see also [44] for an effective saturation tech-
nique for terrains). A very efficient alternative consists of assigning to each
tetrahedron a location code, with a mechanism similar to that adopted for
linear encoding of triangle quadtrees [42] or hierarchies of right triangles [23].
Location codes are not stored, but they are computed when extracting a
mesh during selective refinement. In [32] parents, children, and neighbours
of a tetrahedron in a nested tetrahedral mesh are computed in a symbolic
way, but finding neighbours still takes time proportional to the depth in the
hierarchy. A worst-case constant-time implementation of the neighbour find-

68 Leila De Floriani, Leif Kobbelt and Enrico Puppo

ing technique has been first proposed in [41]. The experimental comparisons,
described in [16], performed on the basis of mesh extractions at uniform reso-
lution, have shown that the meshes extracted using error saturation have, on
average, 5% more tetrahedra than those extracted with the neighbour find-
ing algorithm. On the other hand, the computing times for top-down mesh
extraction are the same for the saturated and non-saturated versions.

In [27], a data structure is proposed based on the direct encoding of the
diamonds corresponding to the three classes of tetrahedral shapes generated
by the tetrahedron bisection process. We call this data structure a DAG of
diamonds: it extends the DAG of vertex dependencies discussed in Sect. 4.3.
The root of the DAG is the initial subdivision of the cube (a non-aligned
diamond), any other node is a diamond and the arcs describe the parent-
child relation. Given a diamond D, the parents of D are those diamonds that
must be split to create the tetrahedra of D. The diamonds that are created
when D is split are the children of D. In [27], a compact data structure
for encoding a DAG of diamonds is described in which the DAG structure
does not have to be explicitly recorded. Diamond information as well as error
information is attached to each vertex together with its field value. Only three
bytes per diamond are used to store the pre-computed error information for
the diamond.

5.4 LOD Data Structures for Irregular Meshes

A LOD model based on d-dimensional simplicial meshes, called a Multi-
Tessellation (MT), has been defined, and it is independent of the dimen-
sion of the complex and of the specific strategy through which the model
is built [17]. This model extends the Multi-Triangulation (see Sect. 5.4) to
three and higher dimensions. A data structure implementing the 3D Multi-
Tessellation describes the DAG and represents all the tetrahedra in the 3D
MT as a 4-tuple of vertex indexes [12]. The total cost of the 3D MT data
structure, when built through half-edge collapse, has been shown to be equal
360n bytes, which is about 3.5 times the cost for encoding the reference mesh
as an indexed data structure, and about 1.8 times the cost for encoding the
reference mesh as an extended indexed structure with adjacencies (see [12]).

In [9], a LOD data structure for irregular tetrahedral meshes, called a
Full-Edge Multi-Tessellation (MT), has been developed to encode efficiently
a LOD model generated through full-edge collapse. The direct dependency
relation is encoded through a view-dependent tree [21]. Let us consider a full-
edge collapse, which contracts an edge e = (v′, v′′) to a vertex v which is an
internal point of edge e (see Fig. 8). An internal node of the view-dependent
tree corresponds to a full-edge collapse and to its inverse vertex split and
contains:

• an offset vector, which is used to find the positions of vertices v′ and v′′

from that of v, and vice-versa;

Data Structures for LOD Models 69

• an offset field value, which is used to obtain the field value at v′ and v′′

from that of v, and vice-versa;
• a bit mask, which is used to partition the set of tetrahedra incident at v.

The bit mask contains one bit for each tetrahedron incident at v. The
following rule is applied: tetrahedra marked with 0 must replace v with v′;
tetrahedra marked with 1 must replace v with v′′; each triangular face shared
by two differently marked tetrahedra must be expanded into a tetrahedron
incident at both v′ and v′′ (see Fig. 8).

The total cost of the Full-Edge MT implementation is thus equal to 28n
bytes, which is about 1/3 the cost for encoding the reference mesh as an
indexed data structure, and about 15% the cost for encoding the reference
mesh as an indexed structure with adjacencies [9].

In [10], a compact data structure for encoding a Half-Edge MT, i.e., a
LOD model generated through half-edge collapse, is described. The DAG is
encoded by using the technique proposed by Klein and Gumhold [37]. A half-
edge collapse of an edge (v, w) into a vertex w and its corresponding half-vertex
split are encoded by storing the coordinates of vertex v and the field value at
vertex v; an implicit encoding of vertex w; a compact encoding of the region
of influence of the vertex split (which is a portion of the star of w affected
by inserting vertex v) represented as a bit stream generated by traversing the
region of influence in a breadth-first fashion (see Fig. 11).

Fig. 11. Modification of a tetrahedral mesh through a half-edge collapse and a
half-vertex split.

The total cost of a Half-Edge MT data structure (including the cost of
encoding the direct dependencies) is thus equal to 52n bytes [10], which is
about 1/2 the cost for encoding the reference mesh as an indexed data struc-
ture, and about 1/4 the cost for encoding the reference mesh as an indexed
structure with adjacencies. In [13], we have designed a more space-efficient
data structure for a Half-Edge MT, in which the direct dependency relation
is encoded implicitly through an extension of the view-dependent tree.

70 Leila De Floriani, Leif Kobbelt and Enrico Puppo

6 Concluding Remarks

We have presented a survey of data structures for LOD models of free-form ge-
ometry. As a general observation it turns out that LOD data structures based
on regular meshes are naturally more space efficient than the ones based on
irregular meshes. This is obvious since the regular topology of the mesh as well
as globally uniform refinement operations can be encoded implicitly. Among
the semi-regular LOD models, those generated by triangle or tetrahedron bi-
section or by

√
3 subdivision are very effective for the extraction of adaptively

refined representations because they guarantee conformity.
Most LOD models for irregular meshes are generated through edge col-

lapses and thus the corresponding internal representations encode procedural
descriptions of the coarsening and refinement operations. There are inherent
difficulties when generating a LOD model of a free form surface in a top-
down fashion and performing vertex removal requires special attention in re-
triangulating the resulting “hole” in the mesh. Moreover, there are theoretical
difficulties in refining a representation of a 3D scalar field with a non-convex
domain. Vertex insertion and vertex removal cannot always be performed in
a tetrahedral mesh since the resulting polyhedral “bubble” cannot always be
triangulated without adding auxiliary points.

A problem which has not been solved completely for LOD models is to
deal with very large meshes containing millions to billions of triangles or
tetrahedra. While some out-of-core implementations for regular and irregular
meshes have been proposed, a general strategy for dealing with LOD models
in secondary memory is missing.

Another interesting research direction is to extend the LOD concept be-
yond the use of mere geometric refinement criteria. Similar to the high level
abstraction of non-photo-realistic rendering, one would like to represent an
object’s shape at different levels of abstraction such as sub-component-based
descriptions of a 3D shape or a morphological description of a scalar field.

Acknowledgements

This work has been partially supported by the EC Research Training Network
Multiresolution in Geometric Modelling (MINGLE), under contract HPRN–
CT–1999–00117, by project Algorithmic and Computational Methods for Geo-
metric Object Representation (MACROGeo) funded by the Italian Ministry of
Education, University, and Research (MIUR), and by project Augmented Re-
ality for Teleoperation of Free-Flying Robots (AUREA) funded by the Italian
Space Agency (ASI).

Data Structures for LOD Models 71

References

1. http://www.openmesh.org. 2004.
2. R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data

structures for regular local mesh refinement. In R. Stepleman, M. Carver, R. Pe-
skin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing, IMACS
Transactions on Scientific Computation, volume 1, pages 3–17. North-Holland,
Amsterdam, The Netherlands, 1983.

3. B. G. Baumgart. A polyhedron representation for computer vision. In
Proc. AFIPS National Computer Conference, volume 44, pages 589–596, 1975.

4. J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995.
5. M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh – a generic and

efficient polygon mesh data structure. In Proc. OpenSG Symposium, 2002.
6. M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of

point sampled geometry. In Proc. Eurographics Workshop on Rendering, 2002.
7. E. Bruzzone and L. De Floriani. Two data structures for building tetrahedral-

izations. The Visual Computer, 6(5):266–283, 1990.
8. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges - a scalable rep-

resentation for triangle meshes. ACM Journal of Graphics Tools, 3(4):1–12,
1998.

9. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective
refinement queries for volume visualization of unstructured tetrahedral meshes.
IEEE Transactions on Visualization and Computer Graphics, 10(1):29–45, 2004.

10. E. Danovaro and L. De Floriani. Half-edge multi-tessellation: A compact rep-
resentation for multiresolution tetrahedral meshes. In Proc. 1st International
Symposium on 3D Data Processing Visualization and Transmission, pages 494–
499. IEEE Computer Society, 2002.

11. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Compressing mul-
tiresolution triangle meshes. In C.S. Jensen, M. Schneider, V.J. B. Seeger, and
Tsotras, editors, Advances in Spatial and Temporal Databases, Lecture Notes in
Computer Science, volume 2121, pages 345–364. Springer Verlag, Berlin, July
2001.

12. E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures for
3d multi-tessellations: an overview. In .H.Post, G.P.Bonneau, and G.M.Nielson,
editors, Proc. Dagstuhl Scientific Visualization Seminar. Kluwer Academic Pub-
lishers, 2002.

13. E. Danovaro., L. De Floriani, P. Magillo, and N. Sokolovsky. Data structures
for encoding lod models generated through half-edge collapse. Technical Report
DISI-TR-01-06, Department of Computer and Information Science, University
of Genova, Genova (Italy), 2003.

14. L. De Floriani and P. Magillo. Multiresolution mesh representation: Models and
data structures. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on
Multiresolution in Geometric Modelling, Springer Verlag, Heidelberg (D), 2002.

15. L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-
triangulations. In Proc. IEEE Visualization’98, pages 43–50, Research Triangle
Park, NC (USA), October 1998. IEEE Computer Society.

16. L. De Floriani and M.Lee. Selective refinement in nested tetrahedral meshes.
In G.Brunnett and an H.Mueller B.Hamann, editors, Geometric Modeling for
Scientific Visualization. Springer Verlag, New York, 2003. (to appear).

72 Leila De Floriani, Leif Kobbelt and Enrico Puppo

17. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution
modeling. In R. Klein, W. Straßer, and R. Rau, editors, Geometric Modeling:
Theory and Practice, pages 302–323. Springer Verlag, 1997.

18. C. DeCoro and R. Pajarola. Xfastmesh: Fast view-dependent meshing from
external memory. In Proc. IEEE Visualization 2002, pages 263–270, Boston,
MA, October 2002. IEEE Computer Society.

19. D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional
subdivisions. Algorithmica, 5(4):3–32, 1989.

20. M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.
Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes.
In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization’97, pages 81–88,
Phoenix, AZ, October 1997. IEEE Computer Society.

21. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Com-
puter Graphics Forum, 18(3):C83–C94, 1999.

22. J. El-Sana and Y.Chiang. External memory view-dependent simplification.
Computer Graphics Forum, 19(3):C139–C150, 2000.

23. W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular net-
works. Algorithmica, 30(2):264–286, 2001.

24. P. Gandoin and O. Devillers. Progressive lossless compression of arbitrary sim-
plicial complexes. ACM Transactions on Graphics, 21(3):372–379, July 2002.

25. T. Gerstner. Multiresolution visualization and compression of global topo-
graphic data. GeoInformatica, 7(1):7–32, 2003.

26. T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction
based on tetrahedral bisection. In Proc. 1999 Symposium on Volume Visualiza-
tion. ACM Press, 1999.

27. B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive
view-dependent rendering of large isosurfaces. In Proc. IEEE Visualization 2002,
Boston, MA, October 2002. IEEE Computer Society.

28. G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for
volume visualization. The Visual Computer, 16:357–369, 2000.

29. M.H. Gross and O.G. Staadt. Progressive tetrahedralizations. In Proc. IEEE
Visualization’98, pages 397–402, Research Triangle Park, NC, 1998. IEEE Com-
puter Society.

30. R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for
adaptive mesh optimization and visualization of volume data. In R. Yagel and
H. Hagen, editors, Proc. IEEE Visualization ’97, pages 387–394, Phoenix, AZ,
October 1997.

31. C. Gotsman S. Gumhold and L. Kobbelt. Simplification and compression of 3D
meshes. 2002.

32. D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic
Computation, 17(5):457–472, May 1994.

33. H. Hoppe. Progressive meshes. In Proc. ACM SIGGRAPH, pages 99–108, 1996.
34. H. Hoppe. View-dependent refinement of progressive meshes. In Proc. ACM

SIGGRAPH, pages 189–198, Los Angeles, August 1997.
35. H. Hoppe. Efficient implementation of progressive meshes. Computers & Graph-

ics, 22(1):27–36, 1998.
36. J. Kim and S. Lee. Truly selective refinement of progressive meshes. In Proc.

Graphics Interface 2001, pages 101–110, 2001.
37. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In

Visualization in Scientific Computing ’98, pages 13–24. Springer Verlag, 1998.

Data Structures for LOD Models 73

38. L. Kobbelt.
√

3 subdivision. In Proc. ACM SIGGRAPH, pages 103–112. ACM,
2000.

39. C.L. Lawson. Software for C1 Surface Interpolation. In J.R. Rice, editor, Math-
ematical Software III, pages 161–164. Academic Press, 1977.

40. A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Mul-
tiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH,
1998.

41. M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hierar-
chical tetrahedral meshes. In Proc. International Conference on Shape Modeling
& Applications, pages 286–295, Genova, Italy, May 2001.

42. M. Lee and H. Samet. Navigating through triangle meshes implemented as
linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, April 2000.

43. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner.
Real-time continuous level of detail rendering of height fields. In Proc. ACM
SIGGRAPH, pages 109–118, New Orleans, August 1996.

44. P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general frame-
work for view-dependent out-of-core visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 8(3):239–254, 2002.

45. H. Lopes and G. Tavares. Structural operators for modeling 3-manifolds. In
SMA ’97: Proc. the Fourth Symposium on Solid Modeling and Applications,
pages 10–18. ACM, May 1997.

46. D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal
environments. In Proc. ACM SIGGRAPH, pages 199–207, 1997.

47. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, , and R. Huebner.
Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc., 2003.

48. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.
49. J. M. Maubach. Local bisection refinement for n-simplicial grids generated by

reflection. SIAM Journal on Scientific Computing, 16(1):210–227, January 1995.
50. D.E Mueller and F.P. Preparata. Finding the intersection of two convex poly-

hedra. SIAM Theoretical Computer Science, 7:217–236, 1978.
51. S. Choi N. Amenta and R. Kolluri. The power crust. In Proc. 6th ACM Sym-

posium on Solid Modeling, pages 249–260, Ann Arbor, Michigan, June 2001.
52. G. M. Nielson. Tools for triangulations and tetrahedralizations and constructing

functions defined over them. In G. M. Nielson, H. Hagen, and H. Müller, editors,
Scientific Visualization: Overviews, Methodologies and Techniques, chapter 20,
pages 429–525. IEEE Computer Society, Silver Spring, MD, 1997.

53. M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested
grids. Computing, 56(4):365–385, 1997.

54. R. Pajarola. Large scale terrain visualization using the restricted quadtree tri-
angulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Vi-
sualization’98, pages 19–26, Research Triangle Park, NC, October 1998. IEEE
Computer Society.

55. R. Pajarola. Fastmesh: Efficient view-dependent meshing. In Proc. Pacific
Graphics 2001, pages 22–30. IEEE Computer Society, 2001.

56. R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 6(1):79–93, 2000.

57. A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent
modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–
102, January 1993.

74 Leila De Floriani, Leif Kobbelt and Enrico Puppo

58. V. Pascucci. Slow growing subdivision (SGS) in any dimension: towards remov-
ing the curse of dimensionality. Computer Graphics Forum, 21(3), 2002.

59. M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-sampled
surfaces. In Proc. IEEE Visualization. IEEE Computer Society, October 2002.

60. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM
SIGGRAPH, pages 217–224, 1997.

61. E. Puppo. Variable resolution triangulations. Computational Geometry Theory
and Applications, 11(3-4):219–238, December 1998.

62. M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid
techniques. Communications in Applied Numerical Methods, 8:281–290, 1992.

63. H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley,
Reading, MA, 1990.

64. H. Samet. Foundations of Multi-Dimensional Data Structures. 2003, to appear.
65. S.Zhang. Successive subdivision of tetrahedra and multigrid methods on tetra-

hedral meshes. Houston J. Mathematics, 21:541–556, 1995.
66. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split com-

pression. In Proc. ACM SIGGRAPH, pages 123–132. ACM Press, 1998.
67. I.J. Trotts, B. Hamann, and K.I. Joy. Simplification of tetrahedral meshes with

error bounds. IEEE Transactions on Visualization and Computer Graphics,
5(3):224–237, 1999.

68. L. Velho, L. Henriquez de Figueredo, and J. Gomes. A unified approach for
hierarchical adaptive tessellation of surfaces. ACM Transactions on Graphics,
4(18):329–360, 1999.

69. L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applica-
tions. Computer Graphics Forum, 19(4):195–214, 2000.

70. J.C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based
rendering for polygonal models. IEEE Transactions on Visualization and Com-
puter Graphics, 3(2):171–183, 1997.

71. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for
visualizing regular volume data. In R. Yagel and H. Hagen, editors, Proc. IEEE
Visualization ’97, pages 135–142, Phoenix, AZ, October 1997.

72. M. Zwicker, H. Pfister, J. Baar, and M. Gross. Surface splatting. In Proc. ACM
SIGGRAPH, pages 371–378, 2001.

An Algorithm for Decomposing
Multi-dimensional Non-manifold Objects
into Nearly Manifold Components

M. Mostefa Mesmoudi, Leila De Floriani, Franco Morando, and Enrico
Puppo

Department of Computer Science (DISI), University of Genova, Italy
{mesmoudi|deflo|morando|puppo}@disi.unige.it

Summary. In this paper we address the problem of building valid representations
for non-manifold d-dimensional objects. To this aim, we have developed a combi-
natorial approach based on decomposing a non-manifold d-dimensional object into
an assembly of more regular components, that we call initial quasi-manifolds. We
present a decomposition algorithm, whose complexity is slightly super-linear in the
total number of simplexes. Our approach provides a rigorous basis for designing ef-
ficient dimension-independent data structures for describing non-manifold objects.

1 Introduction

A manifold object [with boundary] is a subset of the Euclidean space for
which the neighbourhood of each point is locally equivalent [either] to an
open ball [or to a closed half-space]. Objects that do not fulfil this property at
one or more points are called non-manifold objects. Non-manifold objects are
usually described through cell complexes with a non-manifold domain, and
with possibly mixed-dimensional elements (see for instance the complexes in
Figs. 1(a) and 6(a)). Since most objects encountered in applications contain a
relatively small number of singularities, it is important to develop representa-
tions that scale well with the degree of “non-manifoldness” of the object. To
this aim, an approach based on decomposing the object into simpler, possibly
manifold, components seems particularly suitable as the basis for an efficient
representation of non-manifolds (see Fig. 1).

In three or higher dimensions, a decomposition into manifold components
may need to introduce artificial cuts through the object. Fig. 6(a) shows an
example of a three-dimensional non-manifold complex of tetrahedra forming
a fan around a singular point p. In order to eliminate such a singularity, we
need to cut the complex along a manifold face (for instance, triangle pqr).
We obtain a complex that is (combinatorially) equivalent to a ball. In six
or higher dimension, a decomposition into manifold parts is not feasible in

76 Mesmoudi, De Floriani, Morando, and Puppo

A

B
C

D

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

a b

Fig. 1. In (a), an example of a non-manifold object made of a basket of four
apples. All contact points between apples are singularities. For each apple, points
like A, B, C and D are singular. In (b), the decomposition of the object in (a) into
manifold parts.

general, since it has been proven that there do not exist algorithms that
recognise the (d− 1)-sphere when d ≥ 6. Thus, for d ≥ 6, d-manifolds are not
recognisable algorithmically [15].

In [3], we have defined a natural decomposition of d-dimensional non-
manifold objects described through simplicial complexes that removes (almost
all) singularities by splitting the object only at non-manifold entities. The
components of the resulting decomposition belong to a class, that we called
initial quasi-manifolds, which admits, for any d ≥ 1, a local characterisation
in terms of combinatorial properties around each vertex. In dimension two,
initial quasi-manifolds coincide with manifolds, and, in higher dimensions,
the class of initial quasi-manifolds forms a superset of that of manifolds. The
decomposition process produces a unique decomposition of the complex that
we called the standard decomposition. The remaining singularities may be
removed by introducing some artificial cuts, as illustrated in Figure 6.

In this paper, we describe an algorithm for generating the standard decom-
position of a simplicial complex through a decomposition process that removes
singularities by splitting the object at non-manifold entities. More details and
proofs can be found in [3, 14]. The remainder of this paper is organised as
follows. In Sect. 2, we review some related work. In Sect. 3, we present some
basic notions in combinatorial topology that we need to develop the material.
In Sect. 4, we describe the construction of our decomposition, while, in Sect. 5,
we introduce an algorithm that computes a standard decomposition and we
discuss its time complexity. Finally, we provide some concluding remarks in
Sect. 6.

2 Related Work

Motivations for developing effective representations for non-manifold objects
have been pointed out by several authors in the solid modelling literature

Decomposing Multi-dimensional Non-manifold Objects 77

[9, 18, 19]. Most contributions are concerned with the representation of non-
manifold surfaces. The first proposal for a topological data structure for
boundary representation of non-manifold objects is the Radial-Edge data
structure [20], which has been extended in [9, 11, 21]. All such data structures
have been developed under the assumption that the object contains several
non-manifold singularities. In [4], a compact data structure for non-manifold,
non-regular two-dimensional simplicial complexes has been presented, which
scales well to the manifold case.

Few approaches consider the problem of handling cell complexes in any ar-
bitrary dimension. Approaches for dimension-independent modelling are usu-
ally quite general and thus can describe an arbitrary non-manifold complex
[6, 16, 18]. Both n-G-maps [12] and Selective Geometric Complexes (SGC)
[18] describe objects by cell complexes whose cells can be open and even not
simply connected. The Winged Representation [16] has been developed to
describe d-dimensional simplicial complexes which can be built by stitching
d-simplexes at (d− 1)-faces.

Some proposals [5, 7, 17] exist that pursue a decomposition of a non-
manifold object into simpler and more manageable parts. However, such pro-
posals are all limited to the two-dimensional boundaries of r-sets. In particular,
the algorithm presented in [17] tries to minimise the number of duplications
introduced by the decomposition process. In [8], the idea of cutting a two-
dimensional non-manifold complex into manifold pieces has been exploited in
order to develop a geometric compression algorithm.

3 Background

In this section, we review some basic notions about simplicial complexes in
arbitrary dimensions, and about some relevant class of such Complexes. We
use abstract simplicial complexes as basic tools to capture the combinatorial
structure of geometric simplicial complexes.

3.1 Abstract Simplicial Complexes

Let V be a finite set of points that we call vertices. An abstract simplicial
complex on V is a subset Ω of the set of (non-empty) parts of V , such that
{v} ∈ Ω for every vertex v ∈ V , and if γ ⊆ V is an element of Ω, then every
non-empty subset of γ is also an element of Ω. Each element of Ω is called an
abstract simplex. Whenever no ambiguity arises, we will use the terms cell or
simplex to denote an abstract simplex. We will also use the term complex to
denote an abstract simplicial complex.

The dimension of a simplex γ ∈ Ω, denoted dim(γ), is defined by
dim(γ) = |γ| − 1, where |γ| is the number of vertices in γ. A cell of dimension
s is called an s-cell. A complex Ω is called d-dimensional, or a d-complex, if
maxγ∈Ω(dim(γ)) = d. Each d-cell of a d-complex Ω is called a maximal cell of

78 Mesmoudi, De Floriani, Morando, and Puppo

Ω. A subset of an abstract simplicial complex Ω that is an abstract simplicial
complex is called a sub-complex of Ω. The boundary ∂γ of a cell γ is defined to
be the set of all proper parts of γ. Cells ξ in ∂γ are called faces of γ. Similarly,
the co-boundary, or star, of a cell γ is defined as 	γ = {ξ ∈ Ω | γ ⊆ ξ}. Cells
ξ in 	γ are called co-faces of γ. The link of a cell γ, denoted by lk(γ), is the
set of all faces of co-faces of γ, that are not incident at γ. Any cell γ such that
	γ = {γ} is called a top cell of Ω.

Two distinct cells are said to be incident if they share a common face.
Otherwise, we say that they are disjoint. Two simplexes are called s-adjacent
if they share an s-face; in particular, two p-simplexes, with p > 0, are said to
be adjacent if they are (p− 1)-adjacent. Two vertices (i.e., 0-cells) are called
adjacent if they are both incident at a common 1-cell.

An h-path is a sequence of simplexes (γi)k
i=0 such that two successive sim-

plexes γi−1 and γi are h-adjacent. Two simplexes γ and γ′ are h-connected,
if and only if there exist an h-path (γi)k

i=0 such that γ is a face of γ0 and
γ′ is a face of γk. A subset Ω′ of a complex Ω is called h-connected if and
only if every pair of its vertices are h-connected. Any maximal h-connected
sub-complex of a complex Ω is called an h-connected component of Ω. The
term connected is used as a shortcut for 0-connected.

3.2 Relevant Classes of Complexes

A d-complex Ω, where all top simplexes are maximal (i.e., of dimension d), is
called regular, or uniformly d-dimensional. All complexes in Fig. 2, with the
exception of the complex in Fig. 2(a), are regular 2-complexes. The (d − 1)-
sub-complex ∂Ω of a regular complex Ω, such that its top simplexes are all
the (d− 1)-simplexes of Ω that have only one incident d-simplex, is called the
boundary of Ω. All simplexes of Ω − ∂Ω are said to be internal.

��
��
��
��

a b c

��
��
��
��

��
��
��
��

��
��
��

��
��
��

d e

Fig. 2. Some complexes illustrating the various classes described in the text. Non-
manifold simplexes are depicted in bold.

A (d−1)-simplex γ in a regular d-complex Ω is said to be a manifold (d−1)-
simplex (in Ω) if and only if there are at most two d-simplexes incident at
γ. Otherwise, γ is called a non-manifold (d − 1)-simplex. Two d-simplexes γ
and γ′ are said to be manifold-connected if and only if there exists a (d −
1)-path such that any two consecutive simplexes in the path are adjacent

Decomposing Multi-dimensional Non-manifold Objects 79

through a manifold (d− 1)-simplex. Such a path is called a manifold path. A
regular complex in which every pair of d-simplexes are manifold connected is
a manifold-connected complex. As in the case of standard connectivity, we can
also define manifold-connected components of a general regular complex. The
complexes in Fig. 2(a), (b) and (c) are not manifold-connected, while those
in Fig. 2(d) and (e) are manifold-connected.

A regular (d − 1)-connected d-complex in which all (d − 1)-simplexes are
manifold is called a combinatorial pseudo-manifold. A pseudo-manifold is also
manifold-connected, while the reverse is not true. For instance, complex (e)
in Fig. 2 is pseudo-manifold, while the remaining complexes are not.

Manifold objects are usually defined in topology through a local character-
isation, which uses the concept of homeomorphism (topological equivalence).
A combinatorial definition of manifolds is based on the similar concept of com-
binatorial equivalence. Its formal definition is not reported here for brevity (see
[10]). Informally we can say that two complexes are combinatorially equiva-
lent if there is a way of subdividing and welding their cells which provides
two isomorphic complexes. Combinatorial equivalence of abstract complexes
guarantees the homeomorphism of their geometrical realisation.

Thus we can define combinatorial balls and spheres. Let ∆d denote a
generic abstract d-simplex. A combinatorial d-ball is any abstract simplicial
complex that is combinatorially equivalent to ∆d. A combinatorial d-sphere is
any simplicial complex that is combinatorially equivalent to ∂∆d+1. From a
combinatorial point of view, any vertex can be seen as a 0-ball. A sequence of
adjacent 1-cells bounded by vertices (vi)k

i=0 is combinatorially equivalent to

• 1-ball if vi �= vj for any integers i �= j between 0 and k,
• and to a 1-sphere if v0 = vk, and vi �= vj for any integers i �= j between 1

and k − 1.

In dimension two, any cone from an external vertex to a 1-sphere or to a 1-ball
is combinatorially equivalent to a 2-ball (i.e., a disk). In dimension three, any
cone from an external vertex to a 2-ball is combinatorially equivalent to a
3-ball. Therefore, the boundary complex formed by all 2-simplexes adjacent
to only one 3-cell is combinatorially equivalent to a 2-sphere. Combinatorial
balls and spheres of higher dimension can be generated by this method.

A vertex v in a regular d-complex Ω is a manifold vertex if and only if its
link is combinatorially equivalent either to a (d− 1)-sphere, if v is an internal
vertex; or to a (d − 1)-ball, if v is a boundary vertex. Vertex v is called a
non-manifold vertex otherwise. A regular d-complex in which all vertices are
manifold is a combinatorial d-manifold. A combinatorial d-manifold is also a
combinatorial d-pseudo-manifold, while the reverse is not true. None of the
examples in Fig. 2 are manifold complexes.

80 Mesmoudi, De Floriani, Morando, and Puppo

4 The Standard Decomposition

In this section, we briefly describe a sound decomposition of non-manifold
complexes in arbitrary dimension into components of a well-understood class,
that we have developed in [3, 14].

Intuitively, a complex Ω′ is a decomposition of another complex Ω when-
ever Ω′ can be obtained from Ω by cutting Ω through some of its faces. If Ω′

is a decomposition of Ω, then any other decomposition of Ω′ will be also a
decomposition for Ω. Since each face is a finite collection of vertices, then any
decomposition can be performed in finite steps via successive atomic splits
where each atomic operation splits one vertex into two copies. This fact in-
duces a partial order, with respect to the degree of decomposition, in the set
of all possible decompositions of a complex. The minimum, with respect to
the partial order, is given by Ω, while the maximum is given by the complex
obtained by decomposing Ω into the collection of its top simplexes. We will
call such a decomposition the totally exploded decomposition of Ω, and denote
it with Ω�. Fig. 3 shows a complex and its totally exploded decomposition.
We will label vertices in Ω with letters. To build the totally exploded version
of a complex, we have to introduce a distinct copy of a vertex v for each top
simplex v belongs to. Therefore we label vertices in Ω� with strings of the
form vn, where v is the original name of the vertex from Ω and n is the label
for the top simplex from Ω. Thus, vn belongs to n� in Ω�.

f

b

e

d

c

a

Ω

a

c

d

e f

a

c

a

a
d

a

b

d

4

2

4

2

4
3

3

3

3

1

12

TΩ

4

2

11

b

Fig. 3. A complex (a) and its totally exploded decomposition (b).

Conversely, in this framework any decomposition of Ω can be seen as
obtained by pasting together simplexes in Ω�. Pasting occurs also through
atomic operations that identify two vertices of the form vn and vm at a time.
In [3], we have modelled pasting through the notion of quotient of complex
Ω� with respect to an equivalence relation between vertices. The set of all
possible decompositions of a complex Ω forms a lattice, see [14]. Two com-
plexes adjacent in the lattice can be transformed into each other through an
atomic split/join involving just a pair of vertices. Fig. 4(a) shows the Hasse
diagram of the first level of the lattice of decompositions for the complex Ω.
The complete decomposition lattice is too large to be shown. For simplicity,

Decomposing Multi-dimensional Non-manifold Objects 81

Ω

Ω

Ω

Τ

ΩV−

a b

Fig. 4. In (a), the Hasse diagram for the decomposition lattice of complex Ω showing
only the first decomposition level involving atomic splits of vertexes. In (b), a sub-
lattice involving only two adjacent vertices splits. The complex labelled ∇Ω in the
dotted frame is highlighted for later reference.

we depict in Fig. 4(b) a sub-lattice involving only two adjacent vertex splits
(which define edge splits).

The standard decomposition of a complex is a specific element of the lat-
tice, which is obtained by discarding a whole set of “non-interesting” decom-
positions, and taking the “most general” of the remaining decompositions.

Usually one perceives non-manifold simplexes as “joints” between mani-
fold parts, and it might seem reasonable to build a decomposition by splitting
the complex just at them. On the other hand, it does not seem desirable to
introduce cuts along non-singular (i.e., manifold) faces. Therefore we consider
decompositions that in some sense are essential since they cut only at singu-
larities. We say that a decomposition Ω′ is an essential decomposition of Ω
if and only if all simplexes of Ω′ that are pasted together in Ω are glued at
some non-manifold faces of Ω. In other words, Ω′ is obtained by splitting Ω
only at non-manifold faces.

In Fig. 5, we sketch a non-manifold complex (a) and four decompositions
of it. The thick vertices and the thick edge in Fig. 5(a) and (b) are non-
manifold simplexes. The decomposition in Fig. 5(b) is essential but it is still a
non-manifold complex. The decompositions in Fig. 5(c) and (e) are essential

���
���
���
���

���
���
���
���

���
���
���

���
���
���

a

��
��
��
��

��
��
��
��

b c d e

Fig. 5. Four decompositions of the complex in (a): decompositions in (b), (c) and
(e) are essential, while decomposition in (d) is not essential.

82 Mesmoudi, De Floriani, Morando, and Puppo

decompositions and form a manifold complex. The decomposition in Fig. 5(d)
is a manifold complex but is not essential because we split along the thick
edge which is a manifold edge.

We define the standard decomposition ∇Ω as the most decomposed of
essential decompositions, thus it has been decomposed at all singularities that
can be eliminated by cutting only through non-manifold faces. Therefore, the
standard decomposition ∇Ω is uniquely determined.

Thus, the standard decomposition ∇Ω is the least upper bound of the
essential decompositions in the lattice of decompositions.

It is easy to see that ∇Ω must be a complex with regular connected com-
ponents. Moreover, all connected components belong to a class, that we call
initial quasi-manifold, which admits the following characterisation:

A regular h-complex Ω is an initial quasi-manifold if and only if the
star of every vertex in Ω is (h− 1)-manifold-connected.

The above property means that we can always traverse the top cells in the star
of each vertex through manifold adjacencies. This fact is relevant in designing
efficient traversal algorithms on the data structure describing an initial quasi-
manifold.

In general, initial quasi-manifolds form a super-class of manifolds. More
specifically, in dimension two, the class of initial quasi-manifold complexes
coincides with that of two-manifolds, while in higher dimensions there are
initial quasi-manifolds that are not manifold. An example is provided by the
“pinched pie” depicted in Fig. 6(a).

The relation between initial quasi-manifolds and pseudo-manifolds is more
involved. Already in dimension 2, there exist pseudo-manifolds that are not
initial quasi-manifolds. An example is provided by the squeezed band de-
picted in Fig. 2 (e). In dimension three or higher, there also exist initial
quasi-manifolds that are not pseudo-manifolds. Examples of such complexes
are not easy to build and definitely hard to realise visually (see [3] for an ex-
ample). However, from functional analysis, we have that two disjoint convex

p

q

r

a

q' q''

r' r''

p

b

Fig. 6. In (a), the pinched pie formed of a fan of tetrahedra, all incident at a singular
vertex p. It is an initial quasi-manifold but non-manifold complex. This complex can
be decomposed into a 3-manifold (b) only by cutting along a face, such as triangle
pqr.

Decomposing Multi-dimensional Non-manifold Objects 83

open sets in the d-dimensional Euclidean space can always be separated by a
hyper-plane (Hann-Banach theorem). Therefore, if an initial quasi-manifold
of dimension d is embedded (realisable) in the d-dimensional Euclidean space,
it must be also a pseudo-manifold (while the reverse is not true). This is
important since in the applications we are most often interested in 3- or 4-
dimensional embedded simplicial complexes.

5 An Algorithm for Computing
the Standard Decomposition

In this section, we present a decomposition algorithm that generates the stan-
dard decomposition ∇Ω by splitting Ω at vertices that violate the condition
for initial quasi-manifold. The algorithm works iteratively on the vertices of
the input complex and recursively on its dimension. The decomposition of ei-
ther a 0-complex or of an empty complex trivially coincides with the complex
itself.

A pseudo-code description of the process generating ∇Ω is given in Al-
gorithm 1. This algorithm defines a recursive procedure DECOMPOSE(Ω, d)
that returns the connected components of the standard decomposition for a
d-complex Ω. This procedure starts by initialising a variable Ωc with a copy
of Ω. Complex Ωc holds the current decomposition of Ω and the algorithm
splits Ωc until it contains ∇Ω. The algorithm considers each vertex v of Ω
and computes recursively the decomposition of the link of v in Ω (not the link
in Ωc). Based on such decomposition, the algorithm decides whether and how
Ωc should be split at v.

The general idea on which this algorithm is based is to test vertices of Ω
for the local property that characterises initial quasi-manifolds (i.e., the star
of each vertex v of an initial quasi-manifold must be manifold-connected) and
to split the complex where a vertex violates this property. We know that the
star of a vertex is manifold-connected if and only if its link (which has a lower
dimension) is manifold-connected. This is true because by adding the vertex v
to all simplices in the link we obtain exactly the simplices in the closed vertex
star. Therefore we want to decompose the link of v into manifold-connected
components. This process induces only all those splits that are necessary to
obtain the standard decomposition. Note that the recursive algorithm actu-
ally decomposes the link of a vertex into initial quasi-manifold components
rather than manifold-connected components. This result is equivalent for our
purposes, because the partition of top simplexes among connected compo-
nents is the same in the two cases. The proof of correctness of Algorithm 1 is
quite involved and omitted here for brevity [14].

Now let us consider the 2-complex Ω in Fig. 7(a), continuing the running
examples of Figs. 3 and 4.

Vertices e and f have the same link in complex Ω, we have lk(e,Ω) =
lk(f,Ω) = ad. The link of vertex b is segment ac and the link of vertex c

84 Mesmoudi, De Floriani, Morando, and Puppo

Algorithm 1 Computes the connected components in ∇Ω for the d-complex Ω

Function DECOMPOSE(Ω,d)
Ωc ← Ω
if d > 0 and Ω �= ∅ then

for all vertices v of Ω do
LK ← lk(v, Ω) {LK is the link of v in Ω}
h ← dim(LK) {h is the dimension of LK}
L ← DECOMPOSE(LK, h) {compute the components of ∇LK}
if (h > 0 and |L| > 1) or (h = 0 and |L| > 2) then {v must be split}

for all Ψ ∈ L do {split v in Ωc}
Create vΨ {a new copy vΨ for v}
Replace v with vΨ in all simplices of star(v, Ωc) incident to Ψ

end for{the decomposition of vertex v has been completed}
end if

end for
end if
{returns the connected components of Ωc}
return CONNECTED COMPONENTS(Ωc)

is a chain of two consecutive segments ba and ad. For all these vertices, the
link is a 1-manifold. Vertices b, c, e and f do not have to be split. The link
of vertex a is a non-manifold 1-complex formed by four edges, dc, de, df and
cb, (see Fig. 7(b)). The link of vertices e and f in complex lk(a,Ω) is the 0-
manifold {d}, the link of c has two 0-manifold components d and b, so we are
in the situation h = 0 and | L |≤ 2. However, the link of vertex d in lk(a,Ω)
has three 0-manifold components {c}, {e} and {f} (h = 0 and | L |> 2, see

d

c

a

b

e f
Ω

(a)

b

a

e

c

d

f
lk(a,)Ω

(b)

e

a

c

d

f

b

lk(d, lk(a,))Ω

(c)

V−

Splitting vertex d

Ωlk(a,)

c

e f

d

d
d a

b
3

1
2

(d)

Decomposing st(a)
fe

b
c

d
d

d

a
1

3
2

(e)

VΩ

Splitting vertex a

−

a

f

d

d

e

a

b

d
a

c

1
2 2

3

1

3

(f)

Fig. 7. Example of the decomposition process for the 2-complex in (a)

Decomposing Multi-dimensional Non-manifold Objects 85

Fig. 7(c)). Hence, vertex d has to be split into three copies d1, d2 and d3.
The new link ∇lk(a,Ω) is a 1-manifold with three connected components
(h > 0 and | L |> 1, see Fig. 7(d)). Therefore vertex a has to be split into
three vertex copies a1, a2 and a3. The resulting complex is a 2-manifold with
three components. The algorithm terminates the decomposition at this step
and considers the last output as the standard decomposition ∇Ω, as shown
in Fig. 7(f). We note that the same result can be obtained if we consider
first vertex d rather than vertex a. Indeed, vertex a is in the link lk(d,Ω)
and has three 0-manifold components in its own link lk(a, lk(d,Ω)). Then,
vertex a has to be split into three copies a1, a2 and a3. Therefore, the new
link ∇lk(d,Ω) is a 1-manifold with three connected components (h > 0 and
| L |> 1). Then vertex d is split into three copies d1, d2 and d3 and the same
standard decomposition ∇Ω, as shown in Fig. 7(f) is produced.

The computation of DECOMPOSE(Ω,d) can be done in O(d!(t log t)),
where t is the number of top simplices in the d-complex Ω. We assume that
vertices and top simplices are encoded as integers and that each top simplex
in complex Ω is described as a tuple of indexes to its vertices. It has been
shown in [14] that all operations, with the exception of the computation of
the connected components and of the decomposition of the link LK, can be
performed in O(dt log t). The subdivision of a complex into connected com-
ponents is performed through a connected component labelling technique in
graph with (d+1)t arcs and t+n nodes, where n is the number of vertices in
∇Ω (note that n ≤ (d+ 1)t). This is known (see [13]) to take Θ(dt+ n) and
thus less than O(dt). If we denote by T d(n, t) the order of time complexity
for the computation of DECOMPOSE(Ω,d) we have that

T d(n, t) = O(dt log t+ n) +
∑
v∈V

T (d−1)(nlk(v), |lk(v)|)

where V is the set of vertices in Ω, and nlk(v) is the number of vertices in lk(v)
and |lk(v)| is the number of top simplices in lk(v). From the above recurrence
relation, we have that T d(n, t) = O(n+ d!(t log t)).

6 Concluding Remarks

We have presented an algorithm that decomposes an arbitrary d-simplicial
complex into simpler components, which belong to a well-understood class
that we called initial quasi-manifolds. This class is a decidable superset of the
d-manifolds for d ≥ 3 and coincides with that of d-manifolds for d ≤ 2. The
decomposition, that we called the standard decomposition, is unique, since it
does not make any arbitrary choice in deciding where the object should be
decomposed. This decomposition removes all singularities that can be removed
without introducing artificial cuts (see Fig. 6). The standard decomposition
is a useful basis for defining a data structure for non-manifold objects in
arbitrary dimensions as described in [1].

86 Mesmoudi, De Floriani, Morando, and Puppo

Further developments of the work presented in this paper include the def-
inition of Level-Of-Detail (LOD) models for d-dimensional objects described
by simplicial complexes, which extend the results in [4] to higher dimensions.
Moreover, since our decomposition operates locally, we can use this approach
to define a measure of “shape complexity” at each non-manifold singular-
ity, and thus to guide a complexity-preserving shape simplification process in
extracting an iconic description for the simplified shape [2].

Acknowledgements

This work has been partially supported by the EC Research Training Network
Multi-resolution in Geometric Modelling (MINGLE), under contract HPRN–
CT–1999–00117, and by project Algorithmic and Computational Methods for
Geometric Object Representation (MACROGeo) funded by the Italian Min-
istry of Education, University, and Research (MIUR).

References

1. De Floriani, L., Morando, F., Puppo, E.: A Representation for Abstract Sim-
plicial Complexes: An Analysis and a Comparison. In: Proc. 11th Int. Conf. on
Discrete Geometry for Computer Imagery (2003).

2. De Floriani, L., Magillo, P., Morando, F., Puppo, E.: Non-manifold Multi-
Tessellation: from meshes to iconic representation of 3D objects. In: Proceed. of
4th Intern. Workshop on Visual Form (IWVF4), C. Arcelli, L.P. Cordella, and
G. Sannitidi Baja, editors, LNCS 2059 page 654, Berlin (2001), Springer-Verlag.

3. De Floriani, L., Mesmoudi, M.M., Morando, F., Puppo, E.: Decomposing Non-
manifold Objects in arbitrary Dimensions. Graphical Models, 65, 2–22 (2003)

4. De Floriani, L., Magillo, P., Puppo, P., Sobrero, D.: A multi-resolution topologi-
cal representation for non-manifold meshes, Computer-Aided Design, 36(2):141-
159.

5. Desaulnier, H., Stewart, N.: An extension of manifold boundary representation
to r-sets. ACM Trans. on Graphics, 11(1), 40–60, (1992)

6. Elter, H., Lienhardt, P.: Different combinatorial models based on the map con-
cept for the representation of sunsets of cellular complexes. In: Proc. IFIP TC
5/WG 5.10 Working Conference on Geometric Modeling in Computer Graphics,
193–212 (1993)

7. Falcidieno, B., Ratto, O.: Two-manifold cell-decomposition of r-sets. In: A. Kil-
gour and L. Kjelldahl, Eds., Proceedings EUROGRAPHICS ’92, 11, 391–404,
September (1992)

8. Gueziec, A., Bossen, F., Lazarus, F., Horn, W.: Converting sets of polygons to
manifold surfaces by cutting and stitching In: Conference abstracts and appli-
cations: SIGGRAPH ’98, July 14–21, (1998)

9. Gursoz, E. L., Choi, Y., Prinz, F. B.: Vertex-based representation of non-
manifold boundaries, In: M. J. Wozny, J. U. Turner, and K. Preiss, Eds., Geo-
metric Modeling for Product Engineering, North Holland, 107–130, (1990)

10. Hudson, J.F.P, : Piecewise Linear Topology. W.A. Benjamin, Inc., New York
(1969)

Decomposing Multi-dimensional Non-manifold Objects 87

11. Lee S.H., Lee K., Partial Entity structure: a fast and compact non-manifold
boundary representation based on partial topological entities, in Proceedings of
the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor,
Michigan, 2001, pp.159-170

12. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Int. Journal of Comp. Geom. and Appl., 4(3), 275–324, (1994)

13. Melhorn, K.: Data Structures and Algorithms. Springer Publishing Company
(1984)

14. Morando, F.: Decomposition and Modeling in the Non-Manifold domain, PhD
Thesis, Department of Computer and Information Science, University of Gen-
ova, Genova (Italy), February 2003

15. Nabutovsky, A.: Geometry of the space of triangulations of a compact manifold.
Comm. Math. Phys., 181, 303–330 (1996)

16. Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent
modeling with simplicial complexes, ACM Transactions on Graphics, 12(1),
56–102, (1993)

17. Rossignac, J., Cardoze, D.: Matchmaker: Manifold BReps for non-manifold r-
sets. In: Willem F. Bronsvoort and David C. Anderson, editors, Proceedings of
the Fifth ACM Symposium on Solid Modeling and Applications, 31–41, ACM,
June (1999)

18. Rossignac, J.R., O’Connor, M.A.: SGC: A dimension-independent model for
point sets with internal structures and incomplete boundaries. In: J.U. Turner,
M. J. Wozny and K. Preiss, Eds., Geometric Modeling for Product Engineering,
North–Holland, 145–180 (1990)

19. Weiler, K.: The Radial Edge structure: A topological representation for non-
manifold geometric boundary modeling. In: M.J. Wozny, H.W. McLauglin, J.L.
Encarnac̃ao (eds), Geometric Modeling for CAD Applications, North-Holland,
1988, 3–36.

20. Weiler, K.: Topological Structures for Geometric Modeling. PhD Thesis, Troy,
NY, August (1986)

21. Yamaguchi, Y., Kimura, F.: Non-manifold topology based on coupling entities.
IEEE Computer Graphics and Applications, 15(1):42–50, (1995)

Encoding Level-of-Detail Tetrahedral Meshes

Neta Sokolovsky1, Emanuele Danovaro2, Leila De Floriani2, and Paola
Magillo2

1 Department of Computer Science, Ben Gurion University of the Negev, Beer
Sheva, Israel
netaso@cs.bgu.ac.il

2 Department of Computer and Information Science (DISI), University of Genova,
Italy
{danovaro|deflo|magillo}@disi.unige.it

Summary. Level-Of-Detail (LOD) techniques can be a valid support to the analysis
and visualisation of volume data sets of large size. In our previous work, we have
defined a general LOD model for d-dimensional simplicial meshes, called a Multi-
Tessellation (MT), which consists of a partially ordered set of mesh updates. Here,
we consider an instance of the MT for tetrahedral meshes, called a Half-Edge MT,
which is built through a common simplification operation, half-edge collapse. We
discuss two compact encodings for a Half-Edge MT, based on alternative ways to
represent the partial order.

1 Introduction

Several applications, including scientific visualisation, medical imaging, and
finite element analysis, deal with increasingly large sets of three-dimensional
data describing scalar fields, called volume data sets. In order to analyse
volume data sets of large size and to accelerate their rendering, Level-Of-
Detail (LOD) mesh-based models can be used. LOD models have been applied
to the description of surfaces and two-dimensional height fields (see [5] for a
survey). They encode the steps performed by a simplification process in a
compact data structure, in such a way that a virtually continuous collection
of simplified meshes at different LODs can be extracted on-line. An extracted
mesh may have a variable resolution (i.e., density of the cells) which is focused
in certain parts of the field domain (e.g., inside a box, or along a cutting
plane), or in the proximity of interesting field values. This will enable a user to
interactively explore large volume data using simplified approximations, and
to inspect specific areas of interest. Fig. 1 shows some isosurfaces computed
from a variable-resolution mesh extracted from a LOD model.

In the computer graphics and finite element literature, several research
efforts have been devoted to nested tetrahedral meshes generated by recur-

90 Sokolovsy, Danovaro, De Floriani, and Magillo

Fig. 1. [Reproduced in colour in Plate 11.] Variable LOD based on field values: the
isosurface with a field value equal to 1.27 (shown in dark grey) is extracted in high
LOD. The second isosurface, with a field value equal to 1.45 (shown in light grey),
illustrates the lower resolution of the mesh.

sive decomposition, which are suitable for regularly distributed data points
(see [9, 8, 13, 14, 15, 19]). LOD models based on unstructured tetrahedral
meshes are desirable when dealing with irregularly-spaced data, since they
are highly adaptive and can capture the shape of the field domain accurately.
Such models are a rather new research issue. There have been proposals for
simplification algorithms for unstructured tetrahedral meshes, based on edge
collapse [1, 10, 18], or on vertex insertion [11, 17], and for LOD models, based
either on a progressive [10, 16] or on a multi-level approach [3].

In [6], we have defined a general LOD model based on d-dimensional sim-
plicial complexes, called a Multi-Tessellation (MT), which is both dimension-
and application-independent. Here, we consider an MT based on unstructured
tetrahedral meshes, and built through an edge-collapse simplification strategy,
that we call a Half-Edge Multi-Tessellation (Half-Edge MT). We describe two
compact data structures for a Half-Edge MT: a DAG-based structure in which
the dependency relation is encoded as a Directed Acyclic Graph (DAG), simi-
lar to approach of Klein and Gumhold [12], and a tree-based Half-Edge MT in
which a partial order is encoded as a tree by extending an approach proposed
by El-Sana and Varshney [7].

2 Background

A volume data set consists of a set S of points spanning a domain D in the
three-dimensional Euclidean space, with a field value f associated with each
of them. A tetrahedral mesh Σ is a connected set of tetrahedra such that the
union of all tetrahedra in Σ covers D. Any two distinct tetrahedra of Σ have
disjoint interiors and the intersection of the boundaries of any two tetrahe-
dra (if the intersection is non-empty) consists of lower dimensional simplexes

Encoding LOD Tetrahedral Meshes 91

which belong to the boundaries of both tetrahedra. Although, theoretically,
the number m of tetrahedra in a mesh Σ can be quadratic in the number n
of vertices of Σ, in practice, we often find m ≈ 6n.

The two most common data structures to encode tetrahedral meshes are
the so called indexed data structure, and the indexed data structure with adja-
cencies. In both data structures, the vertices are stored in an array in which
each entry contains three coordinates, and the field value. Both store, for each
tetrahedron σ, the references to its four vertices of σ. In addition, the indexed
data structure with adjacencies stores, for each tetrahedron σ, the references
to the four tetrahedra sharing a face with σ.

The storage requirement for encoding a mesh with n vertices and m tetra-
hedra in an indexed structure is 8n bytes for vertices (assuming that coordi-
nates and field value are stored in 2 bytes each), and 4m vertex references,
i.e., 16m bytes. The indexed structure with adjacencies requires, in addition,
another 16m bytes for referring to the adjacent tetrahedra. Since m ≈ 6n,
we have 104n bytes for the indexed data structure, and 200n bytes for the
indexed data structure with adjacencies.

Given a volume data set S, an approximated tetrahedral mesh is a mesh
Σ′ having m′ (m′ < m) tetrahedra and vertices at a subset V ′ of the original
data set V , with n′ (n′ < n) points. A scalar field f ′ is defined on Σ′, similarly
to f , with the convention that values of f and f ′ are the same on each vertex
that belongs to both V and V ′. The approximation error associated with Σ′

is the error that we perform in using Σ′ instead of Σ for describing S. The
error associated with each tetrahedron is a combination of the field error and
of the domain error. In the simplification algorithm that we use [1], the field
error at a tetrahedron σ ∈ Σ′ is computed as the maximum of the absolute
value of the difference between the actual field value at the points of V \ V ′

inside σ and the field value at the same points linearly interpolated within σ.
The domain error measures the variation in the domain shape (warping).

Let us say that a point p of the domain is associated with a tetrahedron σ ∈ Σ′

if σ is the nearest tetrahedron to p in Σ′. The domain error at a tetrahedron
σ ∈ Σ′ is computed as the maximum value of the distance from σ among the
points associated with σ. The one-sided Hausdorff distance is used for such
computation.

3 The Half-Edge Multi-Tessellation

The basic ingredients of a LOD model M are a coarse mesh Σb subdividing
the domain, that we call the base mesh, a set of updates U = {u1 . . . uk}, and
a relation ≺ of direct dependency among updates.

An update applied to a mesh Σ consists of a pair of meshes u = (u−, u+),
where u− is a sub-mesh of Σ, and the boundaries of u− and u+ are coincident.
Intuitively, u replaces u− with u+ in Σ. The relation ≺ of direct dependency
is defined as follows: an update u′ depends on an update u′′ (denoted u′′ ≺ u′)

92 Sokolovsy, Danovaro, De Floriani, and Magillo

half−edge collapse

v

ww half−vertex split

Fig. 2. An example of a half-edge collapse and of a half-vertex split.

if and only if u′ removes some tetrahedra introduced by u′′. The transitive
closure of relation ≺ is a partial order. The updates inM will be also called the
nodes of the MT. The mesh at the full resolution, that we term the reference
mesh, can be obtained by applying all updates in U to the base mesh.

We say that a subset U ′ of U is consistent if, for every update u′′ ∈ U ′,
each node u′ such that u′ ≺ u′′ is also in U ′. The updates which form a
consistent subset U ′ can be applied to the base mesh in any total order that
extends the partial order, thus producing a mesh at an intermediate LOD.

A Half-Edge Multi-Tessellation (or Half-Edge MT) is a LOD model based
on a specific update, called a half-edge collapse, applied to an unstructured
tetrahedral mesh. A half-edge collapse consists of contracting an edge e =
(v, w) into one of its extreme vertices, say w. The reverse modification of a
half-edge collapse is a half-vertex split, which expands a vertex w into an edge
e by inserting the other extreme vertex v of e (see Fig. 2).

In [2], we have defined a LOD model based on a full-edge collapse applied
to an unstructured tetrahedral mesh, called a Full-Edge Multi-Tessellation
(or Full-Edge MT). A full-edge collapse consists of contracting an edge e,
with extreme vertices v′ and v′′ , to a new vertex v (often the mid-point of e).
The data structure proposed in [2] is specific for full-edge collapses. A full-
edge collapse has the disadvantage of producing larger updates in comparison
with those generated by a half-edge collapse, which imply less flexibility in
extracting variable-LOD meshes [4].

In order to encode a Half-Edge MT, we need to encode the direct depen-
dency relation, and the updates. The base mesh is stored separately in an
indexed data structure with or without adjacencies. In the following section,
we present two data structures: a DAG-based structure and a tree-based one
which differ in the way they store the direct dependency relation.

4 A DAG-based Data Structure for a Half-Edge MT

The direct dependency relation is described as a Directed Acyclic Graph
(DAG) that we store by using a technique proposed by Klein and Gumhold
[12]. For each node in the DAG, corresponding to an update u, a cyclic linked
list, called a loop, is defined, which contains u followed by all its parents in

Encoding LOD Tetrahedral Meshes 93

the DAG. Thus, an update u appears in its own loop and in all the loops de-
fined by its children. For each node u, we store the number of loops to which
u belongs (1 byte), and, for each loop, a forward pointer implementing the
linked list plus the loop identifier (4 and 1 bytes, respectively).

The number of nodes (updates) is about the number n of vertices in the
reference mesh. The total number of links to describe partial order as a DAG
is equal to n+ a, where a is the number of arcs in the DAG. Experimentally,
we have found that a is equal to 6n on average. Thus, the cost of storing the
DAG is equal to 36n bytes.

The updates are described by storing information sufficient to perform
the half-vertex split and half-edge collapse associated with an update u (i.e.,
replacing u− with u+ and vice-versa) on a current mesh.

To perform a half-edge collapse, we need the vertex v and the vertex w
to which the edge e = (v, w) is contracted. To perform a half-vertex split, we
need the coordinates of the introduced vertex v, the value of the field at v,
and a compact encoding of the topological structure of u−.

We also store an error value, which is used to decide whether to perform
the half-edge collapse / half-vertex split represented by u. The error value
ε(u) provides an estimate of the approximation error associated with u and
is computed as the maximum of the errors associated with the tetrahedra
forming u−. We store the error associated with an update and not with each
tetrahedron to obtain a more economical representation.

The cost of encoding the coordinates, and the field value is equal to 8
bytes, while the error value is encoded on 2 bytes.

Since an update u corresponds to the insertion of a vertex v, updates and
vertices are re-numbered in such a way that a node u and its corresponding
vertex v have the same label. Thus, vertex v is encoded at a null cost.

We describe the topology of u− by encoding a face f of the star-shaped
polyhedron Π bounding u− plus a bit stream which describes a traversal of
the tetrahedral subdivision u− starting at f . The bit stream contains three
bits for each tetrahedron of u− and is constructed as follows. We start from
the tetrahedron that contains the face f and traverse the graph in which the
nodes are tetrahedra of u− and the arcs are faces of such tetrahedra. We label
the faces of the tetrahedra encountered in the traversal in breadth-first order.
A face of a tetrahedron, which is common to another tetrahedron of u− is
labelled 1 and 0 otherwise. If u− contains k tetrahedra, then the bit stream
contains 3k bits. Our experiments have shown that we can safely assume
k = 15, thus, 45 bits for the stream, i.e., 6 bytes.

Vertex w and face f are identified by means of a tetrahedron index plus
an index which identifies vertex w [face f] among the vertices [faces] of such a
tetrahedron. In turn, a tetrahedron index consists of the index of the update
u′ such that u′+ contains it, plus logP bits to discriminate it among the
tetrahedra of u′+ (where P denotes the maximum of tetrahedra created in
a half-vertex split). For the tetrahedron containing f , update u′ is the first
parent of u in the DAG (we sort the loop of u according to this convention),

94 Sokolovsy, Danovaro, De Floriani, and Magillo

and, for the tetrahedron containing w, it is u itself, thus we do not need to
store it. For details, see [4]. Thus, we have 2 logP bits per update to identify
these two tetrahedra, i.e., 10 bits, since the construction algorithm [1] enforces
P to be equal to 32. The indexes of face f and vertex w within such tetrahedra
require 2 bits each.

Summing up all the contributions, the storage cost for the information
associated with a single update turns out to be equal to 18 bytes. The total
cost of this DAG-based data structure is 18n+ 36n = 54n bytes.

4.1 Performing Updates

Now, we explain how the stored information for an update u is used to perform
corresponding half-vertex split and half-edge collapse on a current mesh Σ.

In order to split vertex w into an edge e = (v, w), we start from the
encoded boundary face f , and use the bit stream to retrieve all tetrahedra of
u− by visiting them in the same order as they have been visited when creating
the bit stream. Tetrahedra of u−, found in this way, are updated by replacing
vertex w with vertex v, and new tetrahedra, incident in e, are inserted.

In order to collapse edge e = (v, w) into vertex w, we identify vertex w
among the vertices of u+ in the current mesh, with tetrahedra of u+ being
those incident on v. Such tetrahedra are modified by replacing v with w, and
degenerate tetrahedra resulting from such operation are removed.

5 A Tree-based Data Structure for a Half-Edge MT

The dependency relation is encoded as a tree by extending an approach pro-
posed by El-Sana and Varshney [7] for triangle meshes simplified through
full-edge collapse.

We store a forest of binary trees of vertices. The leaves of the forest cor-
respond to the vertices of the reference mesh. Each internal node represents
the vertex generated by collapsing an edge, and its two children are the end-
points of this edge. Since a half-edge collapse does not create a new vertex, we
rename the surviving endpoint of the edge and consider it as another vertex.
For example, if an edge (v, w) collapses to vertex w, then ŵ is a renamed copy
of vertex w and appears in the binary tree as a parent of vertices v and w.
By convention, vertex w is a left child of ŵ and is called a false child, while
vertex v is a right child of ŵ and called a true child. Accordingly, ŵ is a false
parent of w and a true parent of v (see Fig. 3).

In addition, we use a vertex enumeration mechanism. The n vertices of the
reference mesh are labelled arbitrarily from 1 to n, the remaining vertices are
labelled with consecutive numbers as they are created. In this way the label
of parent ŵ is greater than labels of its children w and v.

We also define a true parent for the vertices that are false children in the
tree. A true parent of v is a true parent of the nearest ancestor v of v, such

Encoding LOD Tetrahedral Meshes 95

V W W

half−edge collapse

half−vertex split

FALSE TRUE

W V

W

(a) (b)

Fig. 3. (a) Half-edge collapse and half-vertex split. Note that ŵ is the same vertex
as w but with a different label. The polygon affected by updates is shadowed. (b)
Binary tree describing the update.

8

71

10

9

5

6

4

2

3
10

5

6

7

1

4

2

3
8

5

6

4

2

9

3
8

Fig. 4. An example of the sequence of half-edge collapses and the corresponding
binary forest (irrelevant trees are omitted).

that v is a true child. The true parent of v may not exist, in this case vertex
v is the result of iterated renaming of a vertex of the base mesh (see Fig. 4).

The forest is implemented as an array in which every node u is stored
at the position corresponding to its label. The entry for u stores an index
pointing to the left child of u (stored only if u is not a leaf), and an index
which points either to the right sibling of u, if u is the left child, or to the
parent of u, if u is the right child (by convention, in this case a negative index
is stored). In addition, each left child has a link to its true parent. The storage
cost for the forest is equal to 4 n + 8 nin + 4 nl � 16n bytes, where n is the
number of vertices of the reference mesh (i.e., of leaves in the forest), nin is
the number of internal nodes (nin � n), and nl is the number of left children
(nl = nin).

Updates are encoded in the same way as in the DAG-based data structure,
except for the encoding of face f and vertex w. Here, the index of the update
u′, such that the tetrahedron containing f in u′+, must be stored explicitly in

96 Sokolovsy, Danovaro, De Floriani, and Magillo

additional 4 bytes, while vertex w is explicitly given in the tree, thus saving
7 bits. Therefore, the storage cost is 21 bytes per update.

The total cost of the tree-based data structure is thus equal to 21n+16n =
37n bytes.

5.1 Correctness of the Dependency Encoding

The tree-based data structure does not store direct dependency links. Never-
theless, it contains sufficient information to retrieve the updates u′ such that
u′ ≺ u, when we are going to apply an update u on a current mesh Σ.

The neighbours of a vertex v are the vertices adjacent to v. We call relevant
neighbours of vertex v the vertices (different from v) of the tetrahedra of u−.

Let the half-vertex split associated with u split ŵ into e = (v, w), and let
the current mesh Σ contain ŵ. Such a split can be performed if all updates
u′, such that u′ ≺ u, have already been performed in Σ. We claim that this
condition is equivalent to the condition that each relevant neighbour of ŵ has
a label lower than ŵ (see Fig. 5 (a)).

1. We prove that, if some update u′, such that u′ ≺ u, has not been per-
formed, then some relevant neighbour of ŵ has a label greater than ŵ.
This is true because, if u′ is not performed and u′ ≺ u, then ŵ′ (the
vertex split by u′) is greater than ŵ. On the other hand, ŵ′ must be a
relevant neighbour of ŵ because u and u′ are related in the partial order.

2. We prove that, if some relevant neighbour v′ of vertex ŵ has a label greater
than ŵ, then there exists update u′, such that u′ ≺ u, and u′ has not been
performed. This is true for the update u′ that splits v′. If fact, since v′ is
a relevant neighbour of ŵ, then u and u′ must be related in the partial
order, therefore u′ ≺ u.

Let the half-edge collapse associated with u collapse e = (v, w) into ŵ,
and let the current mesh Σ contain e. Such collapse can be performed if no
update u′, such that u ≺ u′, has been performed in the current mesh Σ. We
claim that this condition is equivalent to the condition that all neighbours of

v1 < w
v2 < w

v4 < w

v3 < w

W

V

W

tp(v1) > w
tp(v2) > w

tp(v4) > w

tp(v3) > w

(a) (b)

Fig. 5. Conditions for half-vertex split (a) and half-edge collapse (b). Note that
tp(v) denotes the true parent of vertex v.

Encoding LOD Tetrahedral Meshes 97

vertex v (except w) have either true parent with a label greater than ŵ, or no
true parent (see Fig. 5 (b)).

1. We prove that, if some update u′, such that u ≺ u′, has been performed,
then there exist at least one neighbour v′ of v, such that the true parent
of v′ is lower than ŵ. This is true for at least one of the children of the
vertex ŵ′ split in update u′. Since u ≺ u′, then the label of ŵ′ is lower
than ŵ. At least one of the children of w′ is a neighbour, because u and
u′ are related in the partial order.

2. We prove that, if some neighbour v′ of v has a true parent w′ with label
lower than ŵ, then some update u′ has been performed, with u ≺ u′. We
can see that this is true based on the following remarks. Since v′ and v
are neighbours, then updates u and u′ (the update that has split the true
parent of v′) must be related in the partial order. Therefore, u ≺ u′.

6 Comparisons on Storage Costs

Table 1 reports space requirements for the two data structures that we have
presented in term of n (the number of vertices). The last two columns show
the compression ratio with respect to the space required for encoding the
reference mesh as an indexed data structure, and as an indexed data structure
with adjacencies, respectively.

We have built Half-Edge MTs for a number of data sets:

• Fighter (courtesy of NASA): it represents the air flow over a jet Fighter
from a wind tunnel model;

• Small Buckyball (courtesy of AVS Inc.): it represents electron density
around a Carbon 60 molecule;

• Blunt Fin (courtesy of NASA: it represents the air flow over a flat plate
with a blunt fin rising from the plate;

• F117 (courtesy of MIT) represents the flow over a F117 aircraft;
• Plasma (courtesy of Italian National Research Council- Pisa); it represents

three-dimensional Perlin noise.

Table 2 reports the characteristics of these data sets, while Table 3 reports
the sizes of the Half-Edge MTs encoded with both data structures. Columns
real show the space required to store updates and dependencies, while columns
bound give the theoretical estimate.

7 Concluding Remarks

We have proposed data structures for a class of LOD tetrahedral meshes,
called a Half-Edge Multi-Tessellation. These data structures act as a com-
pression mechanism also with respect to storing the original mesh at full

98 Sokolovsy, Danovaro, De Floriani, and Magillo

Table 1. Space required to encode Half-Edge MT with the DAG-based and tree-
based data structures.

Updates Dependency Total Reference Compression
(byte) (byte) (byte) ind ind-adj ind ind-adj

DAG-based 18n 36n 54n 104n 200n 1.9 3.7
Tree-based 21n 16n 37n 104n 200n 2.8 5.4

Table 2. Space required for storing the reference mesh as indexed structure with
and without adjacencies.

Data Set Vertices (k) Tetra (k) Index (kB) Index-Adjacent (kB)

Fighter 13 68 1203 2299
Bucky 35 160 2840 5400
Bluntfin 40 217 3795 7270
F117 47 234 4130 7882
Plasma 268 1280 22625 43105

Table 3. Space required for DAG-based and tree-based data structures.

Data Set DAG-based Compression Tree-based Compression
real bound ind ind-adj real bound ind ind-adj
(kB) (kB) (kB) (kB)

Fighter 586 644 2.1 3.9 432 466 2.8 5.3
Bucky 1700 1894 1.7 3.2 1244 1298 2.3 4.3
Bluntfin 1818 2127 2.1 4.0 1404 1467 2.7 5.2
F117 2093 2512 2.0 3.8 1653 1735 2.5 4.8
Plasma 13072 14481 1.7 3.3 9512 9922 2.4 4.5

resolution. A Half-Edge MT is more selective than a data structure devel-
oped for encoding multi-resolution tetrahedral meshes built through full-edge
collapses, as shown in [4].

The DAG-based data structure has been implemented, while the tree-
based data structure is currently under implementation. We plan to compare
it experimentally with the DAG-based Half-Edge MT. Further development
of the work presented in this paper will be the use of the tree-based data
structure in a client-server application. Using our compact data structure will
enable both a progressive and a selective download of the extracted mesh by
a client and allow for a dynamic selective refinement at each new request from
a client.

Acknowledgements

This work has been partially supported by the Research Training Network EC
Project on Multiresolution in Geometric Modelling (MINGLE), under contract
HPRN–CT–1999–00117, and by two projects funded by the Italian Ministry
of Education, University, and Research (MIUR) on Algorithmic and Computa-

Encoding LOD Tetrahedral Meshes 99

tional Methods for Geometric Object Representation (MACROGeo), Protocol
N. RBAU01MZJ5, and on Representation and Management of Spatial and
Geographical Data in the Web, Protocol N. 2003018941, respectively.

References

1. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno. Simplifica-
tion of tetrahedral volume with accurate error evaluation. In Proceedings IEEE
Visualization 2000, pages 85–92. IEEE Computer Society, 2000.

2. P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective
refinement queries for volume visualization of unstructured tetrahedral meshes.
IEEE Transactions on Visualization and Computer Graphics, 2003.

3. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multi-
resolution modeling and visualization of volume data based on simplicial com-
plexes. In Proceedings 1994 Symposium on Volume Visualization, pages 19–26,
Washington, DC, October 1994.

4. E. Danovaro and L. De Floriani. Half-edge Multi-Tessellation: a compact rep-
resentations for multiresolution tetrahedral meshes. In Proceedings 1st Inter-
national Symposium on 3D Data Processing Visualization Transmission, pages
494–499, 2002.

5. L. De Floriani and P. Magillo. Multiresolution mesh representation: Models
and data structures. In M. Floater, A. Iske, and E. Quak, editors, Tutorials on
Multiresolution in Geometric Modelling, pages 363–418. Springer-Verlag, 2002.

6. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution
modeling. In R. Klein, W. Straßer, and R. Rau, editors, Geometric Modeling:
Theory and Practice, pages 302–323. Springer-Verlag, 1997.

7. J. El-Sana and A. Varshney. Generalized view-dependent simplification. Com-
puter Graphics Forum, 18(3):C83–C94, 1999.

8. B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Interactive
view-dependent rendering of large isosurfaces. In Proceedings IEEE Visualiza-
tion 2002, 2002.

9. G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for
volume visualization. The Visual Computer, 16:357–365, 2000.

10. M. H. Gross and O. G. Staadt. Progressive tetrahedralizations. In Proceedings
IEEE Visualization’98, pages 397–402, Research Triangle Park, NC, 1998. IEEE
Comp. Soc. Press.

11. B. Hamann and J. L. Chen. Data point selection for piecewise trilinear approx-
imation. Computer Aided Geometric Design, 11:477–489, 1994.

12. R. Klein and S. Gumhold. Data compression of multiresolution surfaces. In
Visualization in Scientific Computing ’98, pages 13–24. Springer-Verlag, 1998.

13. M. Lee, L. De Floriani, M., and H. Samet. Constant-time neighbor finding in hi-
erarchical meshes. In Proceedings International Conference on Shape Modeling,
pages 286–295, Genova (Italy), May 7-11 2001.

14. M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolu-
tion scientific visualization. IEEE Transactions on Visualization and Computer
Graphics, 5(1):74–93, 1999.

100 Sokolovsy, Danovaro, De Floriani, and Magillo

15. V. Pascucci and C. L. Bajaj. Time-critical isosurface refinement and smoothing.
In Proceedings 2000 Symposium on Volume Visualization, pages 33–42, October
2000.

16. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM
SIGGRAPH ’97, pages 217–224, 1997.

17. K. J. Renze and J. H. Oliver. Generalized unstructured decimation. IEEE
Computational Geometry & Applications, 16(6):24–32, 1996.

18. I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of tetrahedral meshes with
error bounds. IEEE Transactions on Visualization and Computer Graphics,
5(3):224–237, 1999.

19. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework for
visualizing regular volume data. In Proceedings IEEE Visualization’97, pages
135–142. IEEE Computer Society, 1997.

Multi-Scale Geographic Maps

Raquel Viaña1, Paola Magillo2, and Enrico Puppo2

1 Department of Mathematics, University of Alcala, Spain
raquel.viana@uah.es

2 Department of Computer Science(DISI), University of Genova, Italy
{magillo|puppo}@disi.unige.it

Summary. We consider geographic maps represented as plane graphs, which un-
dergo a process of generalisation performed through sequences of local updates.
Generalisation transforms a highly detailed map into one with fewer details, span-
ning many different scales of representation through the sequence of updates. We
study intrinsic dependency relations among updates in the sequence and, on this ba-
sis, we derive a multi-scale model that supports efficient retrieval of maps at different
scales, possibly variable through the domain.

1 Introduction

We consider geographic maps represented in vector format, i.e., where spatial
entities are represented explicitly as the elements (points, lines, regions) of a
plane graph. Modern Geographic Information Systems (GISs) deal with maps
at different scales, which can ideally span from a global (worldwide) scale to a
very local (single house) scale. In this context, the concept of scale is related
to the amount of information and the level of detail of entities represented
in a map for a given area, rather than to the classical ratio between the
size of objects in a paper map and the size of real entities they represent. A
GIS should be able to relate representations of the same entity at different
scales, and possibly to dynamically generate variable-scale maps, according
to user needs. For instance, a variable-scale map may contain more detail for
a certain class of entities (e.g., rivers, roads, property boundaries, etc.), as
shown in Fig. 1(b), or in a given focus area, as shown in Fig. 1(c).

As far as we know, commercial databases have no consistent combinatorial
treatment of multi-scale maps. Usually, collections of maps at different scales
are maintained, and each map is treated as a whole. Links between a map
and its corresponding maps at higher/lower scales are maintained through
geo-referencing, but no links are present among different representations of
the same spatial entity at several levels of detail. There are several appli-
cations available on the Internet (www.multimap.com, www.mapquest.com,
etc.) which are based on this principle.

102 Raquel Viaña, Paola Magillo, and Enrico Puppo

(a) (b) (c)

Fig. 1. (a) The Iberian peninsula. (b) The level of detail has been increased in one
of the countries, showing its main roads. (c) Detail has been increased in the area
outlined in (b).

Multi-scale representation provides a support for progressive and selective
transmission of vector maps over a network (e.g., to download a map from
the Web). Progressive transmission consists of sending a coarse map first,
followed by details which incrementally improve its level of detail. It can also
be seen as a form of map compression. Selective transmission allows the user
to concentrate the transmission of details in some parts of the map. In [4] a
method is proposed for the progressive transmission of a set of lines on the
basis of the Douglas-Pücker simplification algorithm [6]. This algorithm does
not guarantee, however, the topological consistency of the simplified model.
This problem has been addressed in [2, 8]. Based on such ideas, in [3] a solution
for progressively transmitting geographic maps in vector format is proposed.
It is a hierarchical model maintaining vertical links between representations
of the same entity on two consecutive levels. Its main drawback is that it does
not support selective refinement.

In previous work [8], it has been shown that maps at a small scale (i.e.,
low level of detail) can be generalised to a larger scale (i.e., higher level of
detail) through a restricted set of operators that modify the map. Based on
such representation and set of operators, we develop here a combinatorial
framework to represent multi-scale maps. Such a framework is inspired by the
Multi-Triangulation, proposed in [9], which encompasses a variety of models
developed in the literature to represent surfaces and scalar fields at multiple
levels of detail through meshes of triangles [5]. Multi-scale representation of
maps introduces, however, new issues due to the fact that each element in
a map has its own identity and semantics, whereas the elementary patches
(simplexes) used to describe a surface are just parts of a whole.

The rest of this paper is organised as follows. Sect. 2 introduces basic
definitions, Sect. 3 defines the atomic updates we use to change the scale of
a map, Sect. 4 defines a dependency relation among updates, Sect. 5 defines
a multi-scale model for maps, and, finally, Sect. 6 contains some concluding
remarks and directions for future developments of the work.

Multi-Scale Geographic Maps 103

2 Map Representation Through Plane Graphs

A vector map M can be represented effectively as a plane graph, i.e., a set
of points and a set of lines that are the geometric realisation in the plane
of a graph where no two lines can intersect, except at their endpoints. The
connected components of the plane obtained by removing the points and lines
of M are the regions of M . The boundary of a region is formed by the points
and lines delimiting it, and is classified into proper boundary and features.
The proper boundary of a region is formed by those points and lines which
bound both it, and at least another different region. It is formed by one outer
boundary, and zero or more inner boundaries. The features of a region are
those points and lines bounding the region, and not being on the boundary
of any other region. Irregular situations, such as regions with holes, isolated
points, and feature lines dangling inside regions occur in practice and admit
a representation in this model.

In the remainder, we will use the term entity to denote a point, a line, or
a region of a map. An entity (line or region) and another one (point or line)
bounding it are said to be mutually incident. We refer to [8] for more details
on this representation.

3 Update Operations on a Map

An abstraction update u on a map M is a function between the entities of M
and the entities of another map M ′. Given an entity e in M ′, we call e an
abstracted entity through u if its inverse image contains more than one entity
of M . Update u is said to be atomic it there exists exactly one abstracted
entity e through u in M ′, and every entity in M which does not belong to the
inverse image of e is transformed by u onto the same entity in M ′.

A function which maps the set of entities of a map M onto the set of
entities of another mapM ′ is said to be consistent if it is surjective, monotonic,
and preserves connected sets of entities by inverse image [1]. For a consistent
function to be an abstraction update, the function must also be strictly non-
injective.

In [8], a set of seven functions called atomic abstraction updates were de-
fined, which have been proven in [1] to be necessary and sufficient to generate
all consistent combinatorial transformations between maps. The formal proof
is based on a categorical framework; specifically on the analysis of the cate-
gory formed by all possible combinatorial maps, and all valid morphisms that
generalise such maps. These operators provide a basis for building multi-scale
models which guarantee to preserve the topological consistency of a map.

We are interested in a model in which details are either added or discarded
depending on the user requirements, while maintaining the overall structure
consistent. In order to obtain this, we define the inverse transformation of
each atomic abstraction update, that we call an atomic refinement update.

104 Raquel Viaña, Paola Magillo, and Enrico Puppo

Each atomic abstraction update is a function mapping two or three entities
onto one entity, or, in other words, it deletes two or three entities from a map
containing them, and replaces them with a new entity. Its inverse atomic
refinement update restores the previous situation, by removing one entity and
replacing it with two or three other entities.

We denote an update as u : {a1, a2, . . .}[b1, b2, . . .] → {c1, c2, . . .}, where
{a1, a2, . . .} is the set of entities deleted by u, {c1, c2, . . .} is the set of entities
added to replace them, and [b1, b2, . . .], if existing, are entities which do not
disappear from the map but are needed in order to perform the combinato-
rial changes required to apply u. The seven pairs of mutually inverse atomic
updates are described in the following:

(a) line-to-point ltp : {p, p′, l} → {p0}
point-to-line ptl : {p0}[lp1 , . . . , lpj

; lp′
1
, . . . , lp′

k
; r0] → {p, p′, l}

Let l be a line and let p and p′ (p �= p′) be its endpoints. The application
of update line-to point to a map containing p, p′ and l consists of removing
these three entities, adding p0, and making every line and region incident
on p and/or p′ to become incident on p0 (see Fig. 2 (a)).
In order to restore the original map, which is done by update point-to-line,
it is necessary to know which of the lines incident on p0 become incident
on p (lp1 , . . . , lpj

) and which ones become incident on p′ (lp′
1
, . . . , lp′

k
). In

case l is a feature-line, it is also necessary to know the region incident on
p0 that will contain l, which is called r0.

(b) region-to-point rtp : {p, l, r} → {p0}
point-to-region ptr : {p0}[r0] → {p, l, r}
Let r be a region whose boundary is formed just by line l (which must be a
loop) and point p. The application of region-to-point consists of removing
p, l, and r, adding p0, and making every line and region that was incident
on p to be incident on p0 (see Fig. 2 (b)).
In update point-to-region, r0 is the region, among the ones incident on p0,
that will become incident on line l.
As the only combinatorial difference between p and p0 is that p is incident
on l and r, and p0 is not, from now on points p0 and p are considered to
be the same point.

(c) region-to-line rtl : {l, l′, r} → {l0}
line-to-region ltr : {l0} → {l, l′, r}
Let r be a region whose boundary is formed by two points which are not
equal, and two lines, l and l′ (with l �= l′), each of which is incident on
both points. The application of region-to-line to a map containing l, l′ and
r consists of removing these three entities, adding l0, and making every
entity incident on l or l′ to be incident on l0 (see Fig. 2 (c)).

Multi-Scale Geographic Maps 105

l1 l2l4 l3 ; lp p’
0
p

l
p p’

1l 2l

4l
0
p

1l 2l

4l 3l3l

r
0

r
l

r
0

l

l’
r 0l

r
0

r

l0l

l’

l

p 0
p

p

r’

2
p2

p

1
c

3c

1
c

2c

3c

1
p

0
pp { }},, rrtp:{ l

0
p 0r p ,, l r}[ptr:{] { }

l, l’, r} } 0l{rtl:{

p p’ l
0
pltp:{ , , } { }

}0l l, l’, r} ltr:{ {

l, l’, p} lm:{ { } 0l

2c
1
p

0r }r’r l, , {}rm:{

c 30r 1
p

2
p c 1,}[;rs:{ c 2 r’r l, ,;] { },

rl
0r

2
p

2
p

1
p

1
p

p

r 0r

l0 l, l’, p} {ls:{ }

0r

0r 1
p

2
p , rl }0r p,r}} {fpa:{

0rp,r}fpr: { { }

}[, ; ,] , , } ptl:{ {

(b)

(d) (e)

(c)

(a)

(g)(f)

{, }rl }flr:{

]fla:{ }[, {

Fig. 2. Set of pairs of atomic/refinement updates.

106 Raquel Viaña, Paola Magillo, and Enrico Puppo

(d) line-merge lm : {l, l′, p} → {l0}
line-split ls : {l0} → {l, l′, p}
Let l, l′, with l �= l′, be two lines incident on a common point p which
does not bound any other line. Update line-merge consists of removing l,
l′ and p, adding l0, and making every entity incident on l, l′ or p to be
incident on l0 (see Fig. 2 (d)).

(e) region-merge rm : {r, r′, l} → {r0}
region-split rs : {r0}[p1, p2; cr1 , . . . , crl

; cr′
1
, . . . , cr′

m
] → {r, r′, l}

Let r, r′, with r �= r′, be two regions having a common bounding line
l, with endpoints p1 and p2. The application of region-merge on a map
consists of removing r, r′ and l from it , adding r0 to it, and making every
point and line incident on r or r′ to be incident on r0 (see Fig. 2 (e)).
To perform the inverse update, region-split, we need to know the two
points p1 and p2 that will bound line l, and which of the entities in each
inner boundary or feature of r0 will bound either r (cr1 , . . . , crl

) or r′

(cr′
1
, . . . , cr′

m
), where cri

, 1 ≤ i ≤ l, denotes an inner boundary or feature
of r, and cr′

j
, 1 ≤ j ≤ m, denotes an inner boundary or feature of r′.

(f) feature-point-removal fpr : {p, r} → {r0}
feature-point-addition fpa : {r0} → {p, r}
Let p be an isolated point inside a region r. The application of feature-
point-removal consists of removing both p and r, adding r0, and making
every point and line incident on r to become incident on r0 (see Fig. 2
(f)).
As the only combinatorial difference between r0 and r is that r is inci-
dent on point p and r0 is not, we can consider r to be the same region as r0.

(g) feature-line-removal flr : {l, r} → {r0}
feature-line-addition fla : {r0}[p1, p2] → {l, r}
Let l be a feature-line in region r. The application of feature-line-removal
to a map consists of removing l and r, adding r0, and making every point
and line incident on r to become incident on r0 (see Fig. 2 (g)).
To perform update feature-line-addition, the endpoints of line l, points p1

and p2, must be known.
As the only combinatorial difference between r0 and r is that r is incident
on l and r is not, we consider r0 to be the same region as r.

4 Dependencies in a Sequence
of Atomic Refinement Updates

The sequential application of atomic abstraction (resp. refinement) updates
allows us to build sequences of maps in which the level of detail continually

Multi-Scale Geographic Maps 107

p

p

p p

P

p
p0 1

2

3

4
5

6

0
1

2

3
4

5

l
l

l

l
l

l

(a) (b) (c)

Fig. 3. The sequential application of seven updates, all of which are of type feature-
point-addition, to the map in (a), produces (b). Then, updates of type feature-line-
addition can be applied on the resulting map, producing (c).

decreases (resp. increases). Let us consider the map of Fig. 3 (a). The sequen-
tial application of updates of type feature-point-addition produces the map of
Fig. 3 (b). And the application of updates of type feature-line-addition to this
last map produces the one of Fig. 3 (c).

Let us assume an user provided with map of Fig. 3 (a) needs to increase
the level of detail, so that lines l0, l1, l2 of Fig. 3 (c) are shown. The process
would be more efficient if all the points of Fig. 3 (b) were not added, but
simply points p0, p1, p2 and p3 were created. In general, given a set of updates
which have been performed in a given order, we are interested in performing
just some of the updates, not necessarily consecutive in the sequence. This is
not straightforward, as some updates require before being applied that other
updates have been previously performed. For example, line l0 cannot be added
directly in the map of Fig. 3 (a), unless points p0 and p3 have been previously
added to the map. This fact will be formalised by means of the dependency
concept.

4.1 Sequences of Updates

Let M be a map and (u1, u2, . . . , un) be a collection of updates such that u1 is
an update on M , and every ui, 2 ≤ i ≤ n, is an update on the map obtained
by applying to M all updates preceding ui in the sequence. Then, the pair
S = (M, (u1, u2, . . . , un)) is called a sequence of updates for M .

We consider monotonic sequences, i.e., sequences where updates are ei-
ther all atomic abstraction updates, or all atomic refinement updates. Mono-
tonic sequences of the two types are mutually inverse. We use the fol-
lowing notation: a sequence of atomic abstraction updates is denoted by
S = (M, (u1, u2, . . . , un)), and its inverse sequence of atomic refinement up-
dates is denoted by S = (M, (u1, u2, . . . , un)), where, for 1 ≤ i ≤ n, un−i+1

and ui are mutually inverse updates, and M [M] is the map obtained from
M [M] by applying all modifications of S [S] to it. Fig. 4 shows a sequence
of atomic abstraction updates (from right to left), and its inverse sequence of
atomic refinement updates (from left to right).

108 Raquel Viaña, Paola Magillo, and Enrico Puppo

l0 l0

r1 r1 r1

l
p
1

r1

p
2

l
p
1

l3

u4u3u2u1

u1u2u3u4

l0

l1 l0 p
1

p
2

p
0

l3

p
1

l1 l2 p
0

l2l1 p
2

r1 p
1

l3

l2r1 p
0

p
2

l1

l2

l1

l2

l1

l2

p
0

0p

MM

r

q

r

q q

r r

q

r

q

 { }[] { }ptr: q r q,ll, { }[;] { , , } fla: r q ,r { }[,] { }ls: ptl: l

flr: ,r r { } { }ltp: , ,l { } { }lm: , ,rtp: q,ll, q { } { } { } { }

ll ll ll ll

 { } { , , }

s s s s s

Fig. 4. S = (M, (u1, u2, u3, u4)) is a sequence of atomic abstraction updates and
S = (M, (u1, u2, u3, u4)) is the inverse sequence of atomic refinement updates.

4.2 Näıve Dependency

In the remainder, we focus on refinement sequences. We are interested in
increasing the level of detail of M selectively, by applying to M only a subset
of the sequence of refinement updates. Not all subsets of S, however, make
sense as sequences on M .

Given an update ui, with 1 ≤ i ≤ n, in general ui cannot be applied unless
some other updates in S have been applied previously. For example, in Fig.
4, update u3 needs update u2, because point p0 is necessary to perform u3,
and this point is created in u2.

Given update ui, a sufficient condition to apply ui to a map is that the
map contains every entity affected by ui in the original sequence. For example,
in the upper part of Fig. 5 we have depicted how update u2 can be directly
applied onM . Update u3 can be applied after u2, and update u4 can be applied
after u3. Update u4 is independent of update u1, whereas u4 is dependent on
u3. Fig. 6 (a) shows the dependency links existing among the updates of Fig.
4, based on this convention.

4.3 Refined Dependency

The näıve dependency is too strict, and it tends to create unnecessarily long
sequences of dependent updates. In fact, an update ui may be performed on a
map although not every entity affected by it in the original sequence is present
in the map. It is sufficient that the map contains, for each such entity, an entity
representing it at a possibly different scale. For example, consider update u4

in Fig. 4. We want to apply u4 even if p1 does not exist, but some other point
representing it, for instance point p0, exists. In this view, u4 depends just on
u2, while u3 and u4 are independent, and can be applied in any order, as
we can observe in Fig. 5. The dependency relation in this case is depicted in
Fig. 6 (b).

Multi-Scale Geographic Maps 109

u2 u3 u4

u4u2 u3

l0

l0

l2

p
0

q

r
l1 l3

q

r

l

l l

l

3 1

2

q

r

l

l l

l

3 1

2

l2

p
0

p
1

p
2

p
1

p
2

l1

l2

p
1

p
2

p
0

M

M

q

r

q

r

q

q

r

r

l

l

l1

2
s

s

s

s s

q

r
l1

s s

s

Fig. 5. Examples of feasible subsequences obtained from the sequence in Fig. 4.

Forests

Let a and a′ be two entities of the same type (points, lines or regions), be-
longing to sequence S. We say that a and a′ are mutually representative if
either a ≡ a′, or a′ [a] can be obtained from a [a′] through the application of
updates in the sequence. For instance, in Fig. 4, points p0 and p1 are mutually
representative, and so are points p0 and p2. In order to keep track of repre-
sentatives, we define forests of points, lines and regions, called point-forest,
line-forest, and region-forest, respectively (see Fig. 6 (c)).

In the point-forest, roots are points created in updates of types line-split
or feature-point-addition, and the children of a node, if any, are the two points
created from it in an update of type point-to-line.

The roots of the line-forest are those lines that have been created in any up-
date of type point-to-line, point-to-region, region-split, or feature-line-addition,
and the two children of a line, if existing, are those lines obtained from it
through updates of type line-split or line-to-region. Each branch of such trees
is labelled with the corresponding type of atomic update.

Finally, the roots in the region-forest are those regions obtained in updates
of type point-to-region or line-to-region, and the children of a region, if any,
are the two regions obtained from it by an update of type region-split.

Two entities are mutually representative if they lie on the same path in
the appropriate forest. The most abstract representative of an entity a is the
eldest ancestor of a in the forest. In a more restrictive view, we define a and
b to be mutually representative through a given set of update types if they lie
on a path formed only of updates belonging to types of the given set.

110 Raquel Viaña, Paola Magillo, and Enrico Puppo

u2

u3

u4

p
0

p
1

u1

l1 l2

l0
ls ls

ll l l3

p
1

p
2

u2

u3 u4

p
0

p
0

u1

r r1sq

line−forest

(c)

point−forest region−forest

(a) (b)

p
0

Fig. 6. Dependencies among updates according to the näıve ((a)) and refined ((b))
formulation. An arc from ui to uj means that uj directly depends on ui, and such
arc is labelled with the entity created by ui and either removed or needed by uj (c)
Entity forests corresponding to the sequence in Fig. 4.

Feasible Subsequences

Let ui1 : {a}[b1, . . . , bm] → {c1, c2, c3}, with possibly c3 = ∅, be an update in
sequence S = (M, (u1, . . . , un)). Let us assume that entity a has some repre-
sentative entity a′ in M , and that ui1 is directly applied on M by considering
a′ instead of a. Those entities incident on a′ become incident on some of the
entities already existing in M , or created by ui1 , so that the result of the
application of ui1 on M is a map, denoted by M ⊕ ui1 .

Let us now assume that the process is repeated until a map M⊕ui1 ⊕ . . .⊕
uip

is obtained, with ui1 , . . . , uip
∈ S. We say that subsequence (ui1 , . . . , uip

) is
feasible onM with respect to S if the application onM of updates (u1, . . . , uip

)
produces the same map as the application onM of the updates in (ui1 , . . . , uip

)
followed by those updates in (u1, . . . , uip

) which are not in (ui1 , . . . , uip
), i.e.,

if:

M ⊕ ui1 ⊕ . . .⊕ uip
⊕

ip−1∑
m=1

m �=i1,...,ip

um = M ⊕
ip∑

m=1

um

where the summations are performed by ⊕ operation. Examples of fea-
sible subsequences of the sequence in Fig. 4 are S

′
= (M, (u2, u4, u3)),

and S
′′

= (M, (u2, u3, u4)) (see Fig. 5). On the other hand, for instance,
S
′′′

= (M, (u1, u3, u4)) is not a feasible subsequence.

Multi-Scale Geographic Maps 111

p
0

l4 l5

p
1

l1 l2

r

t

s

p
0

l1 l2

l3r

s

t

l2l1

l4 l5
p
1

p p’
l

s

t

r

p
1

l2l1

l4 l3

l

s

p

r

p’

t

l2l1

l3

l

s

p

r

p’

t

l2l1

p
l

s

r

p’

u2u3 u1

l1 l2

p
0

M M

l1 l2

p
0

M

u1 u3u2

0
p ;l2l1 lptl:{ }[; }] , { p p’,

0
p l30

pptr:{]}[r { , , t }

l3}[{ptr:{]r pp , , t } l3 l4 l5 1
p, , }ls:{ } {

l3 l4 l5 1
p, , }ls:{ } { l1 l2l4 ; lp p’

0
p l5}[, ; ,] , } ptl:{ { ,

(a)

(b)

r

s

r

s

Fig. 7. (a) Sequence of atomic refinement updates (b) Line l3 belongs to the minimal
domain of u3, and as this line has not been created before the application of u3,
subsequence (M, (u3, u1, u2)) is not feasible.

Minimal Domain

We are interested in characterising the set of feasible subsequences which
can be obtained from any sequence S = (M, (u1, . . . , un)). It can be proved
that, given any subset {ui1 , . . . , uij

} of the updates in S, a sufficient condition
for S

′
= (M, (ui1 , . . . , uij

)) being a feasible subsequence of S is that, for each
update uik

in S
′
, some entities have been created previously to the application

of uik
. Such entities form what we call the minimal domain of uik

. The fact
that an entity a has been created means that M ′ must contain either a, or
some representative of a which is a descendant of a in the appropriate entity
tree.

In general, the minimal domain for an atomic refinement update u :
{a}[b1, . . . , bm] → {c1, c2, c3} contains the most abstract representatives,
through the same type of update as u, of entities a, b1, . . . , bm. There are,
however, two exceptions, which are listed below:

(a) If u is of type ptl : {p0}[lp1 , . . . , lpj
; lp′

1
, . . . , lp′

k
; r0] → {p, p′, l}, the mini-

mal domain contains:
– the most abstract representative of point p0

– if l is a feature-line, the most abstract representative of region r0

112 Raquel Viaña, Paola Magillo, and Enrico Puppo

– the line(s), if existing, created in an update of type point-to-region or
line-to-region, such that either such line(s), or some of its (their) de-
scendants in the line-forest, have one endpoint at p and the other one
at p′ in S. In Fig. 7 (a), a sequence of atomic refinement updates is
shown, and (b) illustrates that it is not possible to retrieve map M if
line l3 has not been created before point p0 is expanded to {p, p′, l}.

(b) If u is of type rs : {r0}[p1, p2; cr1 , . . . , crl
; cr′

1
, . . . , cr′

m
] → {r, r′, l}, the

minimal domain consists of:
– the most abstract representatives of r0, p1, p2

– every line which has been created in an update of type feature-line-
addition, and such that, in sequence S, either such line or some of its
representatives belong to the outer boundary of r or r′. As we can
observe in Fig. 8 (b), line l5 must be created before region r0 is split
into two regions, otherwise the insertion of line l6 would not split r0.

Direct Dependency Relation

Given a sequence S = (M, (u1, u2, . . . , un)), we have explained that, for S
′
=

(M, (ui1 , ui2 , . . . , uij
)) being a feasible subsequence, it is necessary that for

each uik
in S

′
, the entities forming its minimal domain have been created in

updates ui(k1) , . . . , ui(km) previous to uik
in the subsequence. We say that uj

directly depends on ui, 1 ≤ i < j ≤ n, if some entity belonging to the minimal
domain of uj has been created in ui.

A sequence S = (M, (u1, u2, . . . , un)) is non-redundant if there are no
two different updates in the sequence, ui : {ai}[bi1, . . . , bim] → {ci1, ci2, ci3}
and uj : {aj}[bj1, . . . , bjp] → {cj1, cj2, cj3}, with 1 ≤ i < j ≤ n, such that
ai �∈ {ci1, ci2, ci3} and ai ∈ {cj1, cj2, cj3}. Intuitively, it means that an entity
that has been removed due to the application of one update in the sequence,
cannot reappear again as one of the entities created by any other posterior
update in the sequence.

Let S = (M, (u1, u2, . . . , un)) be a non-redundant sequence of atomic re-
finement updates. It is easy to see that the transitive closure of the direct
dependency relation is a strict partial order, ≺.

A subsequence of updates from S is called closed with respect to the re-
lation of direct dependency if, for each update u in it, S contains also the
updates u depends on. It can be shown that any closed subsequence is feasi-
ble [7].

5 The Multiresolution Model

In this Section, we define our multi-scale model for maps, which is inspired
by the Multi-Triangulation developed for triangle meshes [5, 9].

We define a Multi-Map as the pair (S,≺), where:

Multi-Scale Geographic Maps 113

u1 u2

p
2

p
1

p
0

l1 l2

l3 l4

l5 l5

l6

0
p

1
p rl50r

p
2

p
1

p
0

l1 l2

l3 l4
p
2

p
1

p
0

l1 l2

l3 l4

0r0r r r’

0r 1
p

2
p; ; r’r l6

M

s

t

],}[fla:{ },{

s

t

s

t

,}[rs:{] , { , }

M

Fig. 8. Line l5 belongs to the minimal domain of update u2, because u2 cannot be
directly applied on M unless line l5 has been previously created.

• S = (M,u1, . . . , un) is a non-redundant sequence of atomic refinement
updates. In practice, S is the reverse of a sequence S = (M,u1, . . . , un)
of abstraction updates that have been performed during a simplification
process.

• M is called the base map and corresponds to the coarsest map available
in the model.

• M , the map obtained by applying all refinement updates to M , is called
the reference map, and corresponds to the most detailed map available in
the model.

• ≺ is the partial order on {u1, . . . , un} defined by direct dependency, as in
the previous section.

A subMulti-Map is the restriction of a Multi-Map to a set of updates closed
with respect to the relation of direct dependency. It follows that the applica-
tion of all the updates in a subMulti-Map to the base map M produces a map.
The map obtained after the application of all the updates in a subMulti-Map
is called an extracted map.

We are now interested in obtaining a map whose scale is variable in space,
according to arbitrary user requirements. We assume that user requirements
are given by means of an external Boolean function τ(), defined over the
updates of a Multi-Map, which decides whether an update is necessary or not
in order to achieve (locally) the level of detail needed by the user/application.
For instance, if all updates acting in a certain focus area are necessary, then
refinement will produce the maximum level of detail inside that area, while
leaving the rest of the map at a lower detail.

The selective refinement will produce the smallest map, extracted from
the Multi-Map, in which all updates necessary according to τ() have been
performed. Such map is generated from the minimal set of updates which
contains all updates verifying τ() and is closed with respect to the relation of
direct dependency.

The general principles underlying the selective refinement algorithm for
maps are similar to those for Multi-Triangulations that we have developed in
our previous work [5, 9], although the specific concepts and details for deciding

114 Raquel Viaña, Paola Magillo, and Enrico Puppo

where to refine, the rules for defining refinement, and the data structures to
encode the model and the map are very different from those used in Multi-
Triangulations.

6 Conclusions and Future Work

We have presented a combinatorial description of a multi-scale model for maps
represented by plane graphs. The model is theoretically sound, it allows for
selective refinement and is promising in terms of flexibility and applicability
to real data. In our current work, we are designing a data structure for en-
coding it, as well as algorithms operating on it. In future work, also geometry
and semantics must be taken into account, and generalisation algorithms and
criteria for building and querying the model on the basis of metrics, topology
and semantics will be developed.

Acknowledgements

The kind help of Leila De Floriani for helpful discussions and a careful read-
ing of this paper is gratefully acknowledged. This work has been partially
supported by the Research Training Network EC Project on Multiresolution
in Geometric Modelling (MINGLE), under contract HPRN–CT–1999–00117,
and by the project funded by the Italian Ministry of Education, University,
and Research (MIUR) on Representation and Management of Spatial and Ge-
ographical Data in the Web, Protocol N. 2003018941.

References

1. M. Bertolotto. Geometric modeling of spatial entities at multiple levels of res-
olution. Ph.D.Thesis, Department of Computer Science, University of Genova,
DISI-TH-1998-01, 1998.

2. M. Bertolotto, L. De Floriani, and E. Puppo. Multiresolution topological maps,
Advanced Geographic Data Modelling – Spatial Data Modelling and Query Lan-
guages for 2D and 3D Applications, M. Molenaar, S. De Hoop (eds.), Publica-
tions on Geodesy – New Series, N. 40, Netherland Geodetic Commission, pp.
179-190, 1994.

3. M. Bertolotto and M. J. Egenhofer. Progressive transmission of vector map data
over the world wide web. GeoInformatica 5(4), pp. 345-373, 2001.

4. B. Buttenfield. Progressive transmission of vector data on the internet: a carto-
graphic solution. Proceedings 19th International Cartographic Conference, Ot-
tawa, Canada, pp.581-590, 1999.

5. L. De Floriani and P. Magillo. Multiresolution mesh representation: models and
data structures, Tutorials on Multiresolution in Geometric Modelling, A. Iske,
E. Quak, M. S. Floater (eds.), Springer-Verlag, pp. 363–418, 2002.

Multi-Scale Geographic Maps 115

6. D. H. Douglas and T. K. Pücker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. The Canadian
Cartographer, 10, 2, pp. 112-122, 1973.

7. P. Magillo, E. Puppo, and R. Viaña. A Multi-Scale Model for Geographic Maps.
Technical Report, DISI-TR03-10, Department of Information and Computer
Sciences, University of Genova, 2003.

8. E. Puppo and G. Dettori. Towards a formal model for multiresolution spatial
maps. Advances in Spatial Databases, M. J. Egenhofer, J. R. Herring (eds.),
LNCS Vol.951, Springer-Verlag, pp.152-169, 1995.

9. E. Puppo. Variable resolution triangulations. Computational Geometry Theory
and Applications 11, pp.219-238, 1998.

Part III

— Modelling

Constrained Multiresolution Geometric
Modelling

Stefanie Hahmann1 and Gershon Elber2

1 Laboratoire LMC-IMAG, Institut National Polytechnique de Grenoble, France
Stefanie.Hahmann@imag.fr

2 Technion, Haifa, Israel
gershon@cs.technion.ac.il

Summary. This paper surveys the state-of-the-art of geometric modelling tech-
niques that integrate constraints, including direct shape manipulation, physics-based
modelling, solid modelling and freeform deformations as well as implicit surface mod-
elling. In particular, it focuses on recent advances of multiresolution modelling of
shapes under constraints.

1 Introduction

Freeform curves, surface and solids are generally represented in the B-spline
basis. Various geometric quantities, such as control points, knots and weights
have to be specified. Controlling the shape of an object under complex de-
formations by manipulating the control points directly is often difficult. The
movement of control points gives an indication of the resulting deformation,
but being extraneous to the object, the control points do not allow for precise
control of the shape. In addition, large deformations of complex objects with
many details to be preserved become nearly impossible without any “higher
level” control mechanisms. User-friendly shape-control tools, therefore, gener-
ally make use of modelling techniques that integrate constraints. The present
paper surveys the state-of-the-art of geometric modelling techniques that in-
tegrate constraints, including direct shape manipulation, physics-based mod-
elling, solid modelling and freeform deformations as well as implicit surface
modelling. In particular, we focus on recent advances of multiresolution mod-
elling of shapes under constraints. Going beyond the limits of traditional mod-
elling techniques, they allow for editing of complex objects while automatically
preserving the details.

120 Stefanie Hahmann and Gershon Elber

2 Interactive Freeform Techniques

Controlling the shape of an object under complex deformations is often dif-
ficult. The traditional approach to interacting with deformable objects is to
manipulate control points since they allow precise control over models. CAGD
textbooks by Farin [35], Hoschek and Lasser [53], and Cohen et al. [22] cover
the complete theory of parametric freeform curve and surface representations
such as NURBS curves and tensor product surfaces, triangular Bézier patches,
n-sided patches, but also Coons and Gregory surfaces. Limited by the exper-
tise and patience of the user, the direct use of control points as the ma-
nipulation handles necessitates an explicit specification of the deformation.
Therefore, large deformations can be extremely difficult to achieve because
they mandate moving a huge number of individual control points by hand,
and the precise modification of the freeform object can be laborious. De-
formation tools based on geometric constraints offer more direct control over
the shape. In this section high-level interactive freeform curve and surface ma-
nipulation techniques are presented. These use either geometric constraints as
direct deformation handles (Sect. 2.1) or as definitions of functional behaviour
via geometric properties (Sect. 2.2). Finally, geometry-driven (freeform) solid
modelling techniques are described (Sect. 2.3).

2.1 Direct Curve and Surface Manipulation

Rather than manipulating control points, Bartels and Beatty show in [2] how
to pick any point on a B-spline curve and change its location, i.e. the curve is
constrained to pass through a user-specified location. The new curve shape is
computed by minimising the control points’ offsets. In [40] Fowler and Bar-
tels control the shape of a B-spline curve by enforcing prescribed geometric
constraints, such as the position of a curve point, tangent direction and mag-
nitude, or curvature magnitude. An extension to tensor product B-spline sur-
faces is given in [39]. This satisfies the user-defined position of surface points,
normal direction, tangent plane rotation (twisting effect), and the first par-
tial derivative’s magnitude (tension effect). Borel and Rappoport [12] deform
B-spline surfaces by determining the displacement and radius of influence
for each constrained surface point. Hsu et al. [54] propose point picking for
freeform deformations. Curve constraints, i.e. forcing the surface to contain a
given curve or to model a character line, have been considered in [18, 46, 73].
Direct shape manipulation techniques are closely related to Variational De-
sign, where the objective of obtaining fair and graceful shapes is achieved by
minimising some energy, see Sect. 4.1. In general, a freeform shape has many
more degrees of freedom than constraints to satisfy. In order to compute a
new shape the remaining degrees of freedom are prescribed by minimising
some energy functional, such as bending. For example, Welch et al. [97] main-
tains the imposed constraints while calculating a surface that is as smooth as
possible. Celniker and Welch [18] derive interactive sculpting techniques for

Constrained Multiresolution Geometric Modelling 121

B-spline surfaces based on energy minimisation, keeping some linear geomet-
ric surface-constrained features unchanged. Celniker and Gossard [17] enforce
linear geometric constraints for shape design of finite elements governed by
some surface energy. While energy minimisation affects the surface globally,
finite element methods allow for local control. Forsey and Bartels [38] later
used the technique of hierarchical B-splines in an attempt to overcome this
drawback for B-spline surfaces.

2.2 Feature Modelling

Constrained geometric modelling also occurs in feature modelling – a quite
different context. Geometric modelling tools are commonly used in various
phases of product development, for example, to generate product images or
NC-code. Many applications, however, require functional information that is
not contained in geometric models. A feature in a product model combines
geometric information with functional information, such as information about
its function for the user in a design application, or its manufacturing process
in a manufacturing application. Features are higher level entities compared to
the underlying geometry and as such are easier to maintain and manipulate
at the user level.

The concept of features has been investigated mainly in mechanical en-
vironments [26, 81]. This is due to the fact that classical mechanical parts
are defined by canonical geometry shapes, which can easily be classified. Con-
straints occur at different stages in feature modelling. In [3], a semantic feature
modelling approach is presented. All properties of features including their ge-
ometric parameters, their boundaries, their interactions, and their dependen-
cies, are declared by means of constraints. Another issue in feature modelling
is feature validation, which concerns the meaning of a feature, given by its in-
formation content [29]. A feature modelling system should ensure that product
modifications by a user are in accordance with the meaning of the features.
Here, constraints are used to specify such feature validity conditions; con-
straint satisfaction techniques are applied to maintain feature validity under
product modifications from multiple views.

More recently, freeform feature modelling approaches have been devel-
oped in [16, 92, 91]. In contrast to the feature-based approach adopted by
CAD systems for classical mechanical design, freeform features are strongly
related to aesthetic or styling aspects when modelling with freeform surfaces.
The Brite-Euram project FIORES (Formalization and Integration of an Op-
timized Reverse Engineering Styling Workflow) focused on the development
of modelling tools for direct shape modifications closer to the stylist’s way
of thinking [25]. Here again, properties of aesthetic features are expressed
in terms of constraints, including convexity, shape-preserving deformations,
eliminations and cuts, and continuity conditions [37].

Surface pasting is a freeform feature modelling technique that composes
surfaces to construct surfaces with varying levels of detail. A feature is placed

122 Stefanie Hahmann and Gershon Elber

on top of an existing surface to provide a region of increased detail. In [1] B-
spline surfaces, called features, are applied to any number of B-spline surfaces,
called base surface, in order to add details on the base surface. Improvements
and further developments of pasting techniques for B-spline surfaces can be
found in [23, 66].

2.3 Solid Modelling

The history of solid modelling goes back to the 1980s when the term “solid
modelling” was introduced; see survey papers [79, 80]. This was also the period
when early advances were motivated primarily by the mechanical engineer-
ing industry. Traditional solid modelling approaches include implicit func-
tions (CSG and blobby models), boundary representations and cell decom-
positions. The use of constraints has mainly been developed from interaction
with freeform solids.

Sederberg and Parry [84] developed a technique for globally deforming
solid models in a free-form manner, called free-form deformation (FFD). The
three-dimensional object to be deformed is embedded in a three-dimensional
parametric space, called the control lattice. The vertices of the object are as-
signed parametric values that depend on their positions inside the parametric
solid (usually a Bézier or B-spline solid). A deformation applied to the solid
via its control points deforms the embedded object in response. FFD lattices
can be patched together to provide local control over the deformation. Coquil-
lart [24] extended FFD to non-parallelepiped lattices, represented by rational
splines. Hsu et al. [54] improved the traditional FFD with a technique that
allows the user to manipulate the embedded object directly. It computes how
the Bézier (or B-spline) control points must move in order to produce the
desired deformation. Shi-Min et al. [85] proposed a similar scheme in which
an FFD function is computed based on the manipulation and translation of
a single point. Complex deformations are then achieved via the composition
of several such single-point FFDs. MacCracken and Joy [64] generalised FFD
by incorporating arbitrary-topology subdivision-based lattices.

Rappoport et al. [76] derived a method for modelling tri-variate Bézier
solids while preserving the volumes. Different solids can be patched together
at their boundaries to create a more complex object. Their algorithm uses an
energy minimisation function whose purpose is to preserve the volume during
sculpting. In addition to the volume-preserving constraint, their system can
satisfy inter-patch continuity constraints, positional constraints, attachment
constraints, and inter-point constraints.

Hirota et al. [51] developed an algorithm for preserving the global volume of
a B-rep solid undergoing a free-form deformation. Following a user-specified
deformation the algorithm computes the new node positions of the defor-
mation lattice, while minimising an energy functional subject to the volume
preservation constraint. During initialisation, each triangle in the surface is
projected onto the x-y plane, and the volume under the triangle is stored.

Constrained Multiresolution Geometric Modelling 123

During the deformation process, this volume is constantly re-computed and
compared to the original. By taking the difference between the volumes of
the original and deformed volume elements, the total change in volume is
computed.

Self-intersection could clearly occur in the FFD function. Local self-
intersection can be identified via the vanishing Jacobian of the FFD, an ap-
proach proposed in [41].

3 Implicit Surfaces

Implicit surfaces have sparked great interest in the computer graphics and
animation community [100, 7, 27, 71, 101], with applications for geometric
modelling and scientific visualisation [62]. Deformations of implicit surfaces
can be obtained intuitively by articulating the skeleton or by changing the
parameters of implicit primitives that hierarchically define the surface [14, 13].
Another, more intricate way to deform implicit models is to change the iso-
surface progressively by modifying the sample field function defining it [98, 28].

Two kinds of constraints are particularly easy to integrate. First, colli-
sion detection can be accelerated, since in-out functions are provided. Second,
implicit surfaces provide a good tool for physics-based animation; see Sect. 4.

The volume of an implicit object is another constraint that it is important
to preserve during deformation [27, 13, 28]. For example, volume constant
deformations in a morphing process can make virtual objects look like real
ones. A more complete overview on implicit surface modelling can be found
in [8].

4 Physics-based Modelling

Physics-based modelling attaches physical properties to geometric structures
in order to achieve better or more fair shapes for design purposes, or in order
to increment realism in computer animations. The constraints are formulated
in terms of energy functionals or kinetic and mass laws that are, in many
cases, non-linear.

4.1 Variational Shape Design

Although it is difficult to exactly define, in mathematic terms, what fairness
of a curve or surface is, it is commonly accepted that smooth and graceful
shapes are obtained by minimising the amount of energy stored in the surface.
The energy functionals originating from elasticity theory are in general non-
linear, such as the bending energy for curves

∫
κ2(t)dt or the thin-plate energy

for surfaces
∫
κ2

1 + κ2
2dA. These and other higher order non-linear energy

functionals have been used in [70, 45].

124 Stefanie Hahmann and Gershon Elber

In order to accelerate computations, linearised versions of these energy
functionals are generally used; see, for example, [17, 18, 97, 44]

E =
∫

σ

(α stretch + β bend)dσ

where α and β are weights on stretching and bending. This produces a sur-
face which tends to minimise its area to avoid folding and to distribute cur-
vature over large regions in order to result in fair shapes. The stretch-and-
bend functionals are typically approximated via the following quadratic terms:
α11X

2
u +α12XuXv +α22X

2
v and β11X

2
uu +β12X

2
uv +β22X

2
vv, respectively, only

to be linearised in the optimisation process.
Historically, use of such energy functionals goes back to early spline and

CAGD literature [69, 78] and has led to a research area, called Variational
Design of smooth curves and surfaces, today [34, 47, 48, 9, 49].

4.2 Dynamic Modelling

Deformations of objects are obtained by externally applying forces. The dy-
namic approach based on well-established laws of physics aims to produce
smooth and natural motions in order to create realistic-looking computer an-
imation. Traditional animation techniques [59] have to be considered as well.
To synthesise convincing motions, the animator must specify the variables at
each instant in time, while also satisfying kinematic constraints.

Terzopoulos et al. [88] introduced freeform deformable models to computer
graphics, pioneering the development of dynamic parametric curves, surfaces
and solids. Animation of implicit surfaces goes back to [100]. Gravitational,
spring, viscous and collision forces applied to the geometric model act as
constraints when deforming objects. Non-linear dynamic behaviour [89] re-
sults from simulating inelastic deformation. Different dynamic behaviour of
deformable objects has been developed by many varying the imposed con-
straints, the numerical solution method or by applying these to different geo-
metric models, including modal dynamics [72], animation of non-rigid articu-
lated objects [99], FEM-based methods [17], D-NURBS [90], implicit surfaces
[27], deformable voxel methods [19] and dynamic subdivision surfaces [75]. In
[74], dynamic parameters are directly evaluated over B-spline curves, while
parameterization of the curve is ignored.

5 Multiresolution Editing

Multiresolution analysis has received considerable attention in recent years in
many fields of computer graphics, geometric modelling and visualisation [86,
94]. It provides a powerful tool for efficiently representing functions at multiple
levels-of-detail with many inherent advantages, including compression, LOD
display, progressive transmission and LOD editing.

Constrained Multiresolution Geometric Modelling 125

In the literature the term multiresolution (MR) is employed in different
contexts, including wavelets, subdivision and hierarchies or multigrids. Mul-
tiresolution representations based on wavelets have been developed for para-
metric curves [20, 61, 36], and can be generalised to tensor-product surfaces,
to surfaces of arbitrary topological type [63], to spherical data [83], and to vol-
ume data [21]. Wavelets provide a rigorous unified framework. Here, a com-
plex function is decomposed into a “coarser” low resolution part, together
with a collection of detail coefficients, necessary to recover the original func-
tion. Other multiresolution representations exist for data defined on irregular
meshes [10, 11], for arbitrary meshes [102, 58, 30, 52], for tensor product
surfaces, known as hierarchical B-splines [38], and for volumetric data sets
represented using tri-variate functions [77].

In the context of geometric modelling, LOD editing is an attractive MR
application because it allows the modification of the overall shape of a ge-
ometric model at any scale while automatically preserving all fine details.
In contrast to classical control-point-based editing methods where complex
detail-preserving deformations need the manipulation of a lot of control points
(see Sect. 2), MR methods can achieve the same effect by manipulating only
a few control points of some low resolution representation; see [36, 86]. How-
ever, there are application areas, including CAGD and computer animation,
where deformations under constraints are needed. As stated in the introduc-
tion, it is obvious that constraints offer an additional and finer control of the
deformation applied to curves and surfaces.

Continuing the previous sections, the present section reports on con-
strained modelling methods using MR representations. Sect. 5.1 presents an
LOD editing method for B-spline curves and surfaces that allows the integra-
tion of linear and non-linear geometric constraints, including fixed position,
symmetry and constant area. Sect. 5.2 presents wavelet-based MR curve edit-
ing methods preserving area and length of curves. Sect. 5.3 is about variational
MR methods, where minimum energy is the constraint to be satisfied. Finally,
Sect. 5.4 describes MR subdivision methods.

5.1 Constrained Multiresolution Control

Multiresolution Editing of Freeform Curves

In [36, 44], a wavelet decomposition for uniform cubic B-splines is presented
toward interactive and intuitive manipulation of freeform shape. In [55], re-
sults from [61] are similarly employed toward the support of non uniform
knot sequences. While local support is considered the major advantage of
the B-spline representation, it is also its Achilles heel. Global changes are
fundamentally difficult to apply to a highly refined shape and a painstaking
laborious manual effort is required to move one control point at a time. The
ability to decompose a given freeform B-spline curve or a surface as offered by
[36, 44, 55] is a large step in the direction that alleviates these difficulties. The

126 Stefanie Hahmann and Gershon Elber

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Multiresolution manipulation of a non uniform quadratic B-spline curve
with 138 control points. In all six images (a)–(f), a single select-and-drag operation
was applied to the top of the ’s’ letter in the upward direction.

user can now modify the shape locally or globally as he/she see fits. In Fig. 1,
a single select-and-drag operation is applied to a non uniform quadratic B-
spline curve at six different resolutions. The outcome clearly shows the power
of multiresolution editing, allowing for both local and global control.

Let C(t) =
∑n−1

i=0 PiBi,τ ,k(t) be a planar non uniform B-spline curve of
order k and n control points. Let the knot sequence of C(t) be

τ = {t0, t1, · · · , tk−1, · · · , tn, · · · tn+k−1} .

C(t) is defined for the domain [tk−1, tn). The knots from tk to tn−1 are denoted
the interior knots and their removal does not affect the domain of C(t).

The knot sequence of τ , together with the order k, define a subspace
Φ of piecewise polynomial functions. This subspace contains all polynomial
functions but also piecewise polynomials with potential discontinuities at each
of the interior knots, depending on the multiplicity of the knot. Let τ 0 = τ
and further let τi+1 ⊂ τi by removing only interior knots from τi. Then:

• The domain spanned by all the τ i is the same and equal to [tk−1, tn), ∀i.
• The subspace Φi+1 induced by τi+1 and k is a strict subspace of Φi. That

is Φi+1 ⊂ Φi.

Clearly C(t) ∈ Φ0. Denote C(t) as C0(t). Let Φ1 be a new subspace
formed out of Φ0, by removing a single knot tj = τ0/τ1. We seek to find
the orthogonal projection, under the L2 norm, of C0(t) onto Φ1. Denote this

Constrained Multiresolution Geometric Modelling 127

Fig. 2. Projections (in thick grey) of the original “multiresolution” curve from
Fig. 1 (in thin line) over different spline subspaces are presented. The top left is the
smallest space (single quadratic polynomials) all the way to the bottom right which
is the original space.

projection by C1(t) ∈ Φ1 and let the difference be D1(t) = C0(t) −C1(t). We
call C1(t) =

∑n−2
i=0 QiBi,τ 1,k(t) a low resolution version of C0(t) and D1(t)

the details. D1(t) is in a new subspace Ψ0 ⊂ Φ0 which means we can express
D1(t) in terms of the basis functions of Ψ0 as

D1(t) =
n−1∑
i=0

diBi,τ 0,k(t).

D1(t) ∈ Ψ1 is orthogonal to the space of Φ1. Hence, the following must
hold,

0 = 〈D1(t), Bm,τ 1,k〉 =
n−1∑
i=0

di 〈Bi,τ 0,k, Bm,τ 1,k〉 . (1)

It turns out that equation (1) completely prescribes the coefficients of
D1(t) up to uniform scaling of the function. This D1(t) is also known as the
B-wavelet function of knot tj in subspace Ψ0. Fig. 2 presents the orthogonal
projection of our “multiresolution” curve onto several subspaces, all the way
to a single Bézier curve.

Unfortunately, the computation of the coefficients of D1(t), following
Equation (1) is expensive, as it necessitates the resolution of products and
integrals of B-spline basis functions,

〈Bi,τ ,k(t), Bj,τ ,k(t)〉 =
∫
Bi,τ ,k(t)Bj,τ ,k(t)dt.

One option is to limit these computations to uniform knot sequences only,
removing half the knots each time, effectively doubling the knot spacing. This
approach was taken by [36, 44] and it allows one to precompute the B-wavelets
once for each order.

128 Stefanie Hahmann and Gershon Elber

(a) (b) (c)

Fig. 3. B-Wavelets of a uniform quadratic (a), a uniform cubic (b), and a non
uniform knot sequence of a cubic curve (c). The third knot from the left in (c) is a
triple knot, resulting in a C1 discontinuity in the B-Wavelet.

For non uniform knot sequences the B-wavelets must be computed every
time and while one can reach interactive rates for curves with dozens of con-
trol points, this computation as already stated is expensive. Fig. 3 presents
few examples of B-wavelets. See [61, 31, 55] for more on the computation
of products and integrals of B-spline basis functions as well as more on this
B-wavelet decomposition. A similar computation is also necessary toward the
computation of Ci+1(t) from Ci(t), given the subspace Φi.

Due to the computational costs, alternatives were sought. One alternative
is to approximate the low resolution projection using a simple least squares
fit [32]. Given Ci(t) ∈ Φi, find a least squares fit Ci+1(t) ∈ Φi+1 to Ci(t)
by sampling Ci(t) at m locations, m >> ni+1, ni+1 the number of coeffi-
cients in Ci+1(t). Nevertheless, for the task in hand of interactive multires-
olution manipulation with constraints, this B-wavelet decomposition is not
really necessary! Consider curve Ci(t) ∈ Φi, Φi ⊂ Φ0. Now consider a change
of a single control point in C0(t) against a change of a single control point
in Ci(t). The latter will clearly affect a larger domain of the original curve
C(t) = C0(t) ∈ Φ0 compared to a change in C0(t). A single control point Pj

is supported along the non zero domain of its basis function Bj(t). The less
interior knots there are, the larger the domain of Bj(t) is.

Then, a modification to the shape using a change in curve Ci(t) ∈ Φ0

could be added to the original curve C0(t) using knot insertion [42], refining
Ci(t) at all the knots of τ 0/τ i. In practice, direct manipulation is preferred
over control point manipulation, hiding the representation (i.e. control points)
from the novice user. If point C(t1) is directly selected and dragged along the
vector V to C(t1) + V, a new ∆i(t) ∈ Φi curve could be constructed as

∆i(t) =
1
σ

ni∑
i=0

Bi,τ i,k(t1)Bi,τ i,k(t),

using the support of the different basis functions at t1 as the weights and

Constrained Multiresolution Geometric Modelling 129

Fig. 4. Multiresolution editing without (a), and with two positional (b), and three
tangential (c) linear constraints.

σ =
ni∑

i=0

(Bi,τ i,k(t1))
2 =

J∑
i=J−k+1

(Bi,τ i,k(t1))
2
, tJ ≤ t1 < tJ+1,

yielding ∆i(t1) = 1.

Linear Constraints

Multiresolution editing has a drawback we already discussed. It can be impre-
cise. We now aim to add support for constraints to our multiresolution editing
capabilities. To begin with, we consider the two simple linear constraints of
position and tangency.

Recall curve C(t) =
∑n

i=0 PiBi,τ ,k(t). A positional constraint could be
prescribed as C(tP) = P . Then, if the original curve satisfies the constraint or
C(tp) = C0(tp) = P , we are now required to have ∆i(tp) = 0, an additional
linear constraint that is easy to satisfy. In practice, two possible simple ap-
proaches could be employed to solve this underconstrained linear system, hav-
ing ∆i(tp) = 0 and ∆i(t1) = 1 as constraints and achieving an L2 minimising
solution elsewhere along the domain. Either the singular value decomposition
(SVD) or the QR factorisation [43] of the linear systems of equations would
do. Interestingly enough, the QR factorisation is also employed by [97] for
similar reasons.

A tangential constraint can be supported in an almost identical way. Here,
C ′(tT) = T and C ′(t), that is expressed in terms of basis functions one degree
lower, is elevated back to the same function space using degree elevation,
resulting again in a linear alternative constraint to satisfy ∆′

i(tT) = 0. Second
order or even higher derivatives constraints can easily be incorporated as well,
in a similar fashion. Fig. 4 shows one example of multiresolution editing with
positional and tangential constraints.

Other linear constraints can also be supported with some more effort. A
planar curve, having the domain of t ∈ [0, 1], is considered x-symmetric if
x(t) = x(1− t) and y(t) = −y(1− t). Analogously, one can define y-symmetry
and even rotational symmetry as x(t) = −x(1 − t) and y(t) = −y(1 − t).
Assuming a symmetric knot sequence, that is τi+1−τi = τk+n−i−1−τk+n−i−2,
0 ≤ i ≤ n/2,

130 Stefanie Hahmann and Gershon Elber

c(1 − t) =
n−1∑
i=0

PiBi(1 − t) =
n−1∑
i=0

PiBn−1−i(t) =
n−1∑
i=0

Pn−1−iBi(t)

due to the symmetry of the basis functions. But now the constraint of x(t) =
x(1 − t) reduces to

n−1∑
i=0

xiBi(t) =
n−1∑
i=0

xn−1−iBi(t), or
n−1∑
i=0

(xi − xn−1−i)Bi(t) = 0.

Hence and because of the independence of the basis functions, the sym-
metry constraint is now reduced to O(n/2) linear constraints of the form

xi = xn−1−i, i = 0, · · · ,
⌊n

2

⌋
− 1,

and
yi = −yn−1−i, i = 0, · · · ,

⌈n
2

⌉
− 1.

Finally, we consider area constraints. The area of a closed curve equals

A =
1
2

∮
−x′(t)y(t) + x(t)y′(t)dt,

=
∮

−
∑

i

xiB
′
i,k(t)

∑
j

yjBj,k(t) +
∑

i

xiBi,k(t)
∑

j

yjB
′
j,k(t)dt

=
∑

i

xi

∑
j

yj

∮
−B′

i,k(t)Bj,k(t) +Bi,k(t)B′
j,k(t)dt.

=
[
x0, x1, · · · , xn−1

]
⎡⎢⎢⎢⎣

ξ0,0 ξ0,1 · · · ξ0,n−1

ξ1,0 ξ1,1 · · · ξ1,n−1

...
...

. . .
...

ξn−1,0 ξn−1,1 · · · ξn−1,n−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y0
y1
...

yn−1

⎤⎥⎥⎥⎦ ,
where

ξi,j =
∮

−B′
i,k(t)Bj,k(t) +Bi,k(t)B′

j,k(t)dt

=
∮

−(k − 1)
(
Bi,k−1(t)
ti+k−1 − ti

− Bi+1,k−1(t)
ti+k − ti+1

)
Bj,k(t)

+ (k − 1)
(

Bj,k−1(t)
tj+k−1 − tj

− Bj+1,k−1(t)
tj+k − tj+1

)
Bi,k(t)dt.

The area constraint is not linear. Nonetheless, it is a bilinear constraint
so one can fix the xi coefficients, resulting in a linear constraint in yi and
then reverse the rôle of xi and yi, in the next iteration. During an interactive
session, when the user selects and drags the curve’s location, we need to

Constrained Multiresolution Geometric Modelling 131

(a) (b)

Fig. 5. Y -symmetry constraint (a) and area constraint (b) are employed in mul-
tiresolution context. These two examples were created in few seconds using direct
curve manipulation under constraints.

solve these constraints at every mouse event or at almost every pixel. This
interleaving process becomes fully transparent to the end user at such low
granularity.

Fig. 5 shows two examples of direct manipulation of freeform curves under
symmetry and area constraints. The curves were directly manipulated in real
time while the symmetry and/or area constraints are fully preserved. More on
the symmetry and area constraints in multiresolution editing as well as the
special case of linear curves and the extension to freeform surfaces could be
found in [33].

5.2 Area and Length Preserving MR Curve Editing

In a wavelet based multiresolution setting complex objects can be edited at
a chosen scale with mainly two effects: First, modifying some low-resolution
control points and add back the details modifies the overall shape of the ob-
ject. Second, modifying a set of fine detail coefficients modifies the character
of the object without affecting its overall shape. In this section a wavelet based
multiresolution editing method is presented, that integrates the constant area
constraint completely into the multiresolution formulation of the deformation.

Wavelet Based MR Curves

Let us briefly sketch the notation of the wavelet based multiresolution analysis
that will be used in this section. For more details see [65, 36, 86]. Suppose

132 Stefanie Hahmann and Gershon Elber

Fig. 6. Area preserving multiresolution deformation. Left: original curve and coarse
control polygon, n = 7, L = 2. Centre: eformed curve without area constraint (in
grey). Right: Deformed area preserving curve (between the other two curves).

we have a certain functional space E and some nested linear approximation
spaces V j ⊂ E with V 0 ⊂ V 1 ⊂ · · · ⊂ V n. Since we are dealing with closed
curves, these spaces have finite dimension. Let V j be spanned by a set of
basis functions ϕj = [ϕj

1, . . . , ϕ
j
m]T , called scaling functions. A space W j being

the complement of V j in V j+1 is called the detail space. Its basis functions
ψj = [ψj

1, . . . , ψ
j
N−m]T are such that together with ϕj they form a basis of

V j+1. The functions ψj
i are called wavelets. The space V n can therefore be

decomposed as follows:

V n = V n−1 ⊕Wn−1 = V n−2
n−1⊕

j=n−2

W j = · · · = V 0
n−1⊕
j=0

W j . (2)

A multiresolution curve is then defined as a planar parametric curve
c(t) = (xn)T (ϕn), element of V n, where xn is a column of control points
xn

0 , . . . , x
n
D2n ∈ IR2. Due to property (2) the same curve can be expressed

in terms of the basis functions of the different decompositions of V n, each
of it corresponding to a certain resolution of the curve. The multiresolution
curve at any level of resolution L ∈ [0, n], i.e. element of V L

⊕n−1
j=L W

j is then
given by some coarse control points xL that form approximations of the initial
control polygon and by the detail coefficients dL, . . . , dn−1 as follows:

c(t) = (xL)T (ϕL) + (dL)T (ψL) + · · · + (dn−1)T (ψn−1), L = 0, . . . , n.

The filter bank algorithm [65, 36] is used to compute the coefficients of all
levels of resolutions from the initial coefficients xn and vice versa.

Area Preserving Deformation of a MR Curve

An advantage of a MR representation of the curve is that LOD editing consists
of simply applying deformations on the coarse control points at some level L,
the overall shape of the curve is therefore modified and the fine details are
preserved, see Fig. 6 (a,b).

However the enclosed area of a (closed) modified curve is generally not
preserved. In [50] is has been shown that the constant area constraint can be

Constrained Multiresolution Geometric Modelling 133

integrated completely into the MR editing process. To this end a MR formula
of the area constraint has been developed that allows one to compute the area
of a curve in terms of the coefficients at any resolution level L.

The area (see Sect. 5.1) of a multiresolution curve can now be evaluated
at any level of resolution L in terms of the bilinear equation

2A = (XL)
[
ML

]
(Y L)T , ∀L ∈ {0, . . . , n},

where XL and Y L are the line vectors of the x- and y-coordinates resp. of all
coarse and wavelet coefficients of the MR representation of the curve, i.e.(

XL

YL

)
= (xL,dL,dL+1, . . . ,dn−1),

and

ML =

⎡⎣ I(ϕL, ϕL) I(ϕL, ψl)n−1
l=L

I(ψk, ϕL)n−1
k=L I(ψk, ψl)n−1

k,l=L

⎤⎦ .
Note that ϕL and ψk are vector notations. Therefore the elements of the
previous area-matrix are in fact block matrices whose elements are of type
I(ϕi, ψj) =

∮
ϕi(t)ψ′

j(t)−ϕ′
i(t)ψj(t)dt and whose sizes vary in function of the

resolution level L. It has been shown in [50] that the area matrices ML can
be computed efficiently by recursively applying the refinement equations.

The area preserving editing process now works as follows: Let Aref be the
reference area to be preserved. After choosing the decomposition level L, the
user modifies one or more coarse control points (Fig. 6(b)), defining the desired
deformation. Let (X0, Y0)

T denote the coefficient vectors of the deformed MR
curve at level L. The algorithm then computes new positions, denoted by
(X,Y)T , of the coarse control points (and possibly the detail coefficients)
such that they are as close as possible to the user defined deformation while
preserving the area Aref , see Fig. 6(c). The last step remains to solve the
following min-max problem:

max
λ

min
X,Y

(|X −X0|2 + |Y − Y0|2) + λ(XMY T − 2Aref).

If only local area preserving deformations are desired, the degrees of freedom
in (X,Y)T can be reduced to a user-defined subset of control points. Fig. 7
shows an example, where the upper left coarse control point has been kept
fixed during deformation and area preservation.

Length preserving deformation of a MR curve

Deformation of curves with constant length is needed typically if one wants to
create wiggles or folding of a curve. Sauvage et al. [82] developed a multireso-
lution approach of length preserving curve deformation for the particular case

134 Stefanie Hahmann and Gershon Elber

Fig. 7. Local area preserving multiresolution deformation. n = 7, L = 2. original
curve (black, big curve), deformed curve at level 2 (grey, small curve), area preserving
deformed curve at level 2 (mid size curve).

of piecewise linear curves using the Lazy wavelets [87]. Let c(t) be a poly-
line of control points cni . Coarse coefficients and wavelet coefficients are then
computed by {

xj
i = xj+1

2i ,

dj
i = xj+1

2i+1 − 1
2 (xj+1

2i + xj+1
2i+2) .

In the case of polylines the length is given by L =
∑N−2

i=0 ||cni+1−cni ||2. One can
either keep the total length constant or preserve the length of each segment.
We choose the second way because of two main reasons:

• It ensures a balance between the lengths of the segments: the control points
do not gather in a small part of the curve.

• It allows the length constraints to be expressed in such a way that com-
putationally inefficient square root evaluations can be avoided.

The length constraint being a non-linear functional has no multiresolution
representation as does the area constraint. However in [82] it is shown that
length preserving MR curve editing offers a direct control of wrinkle genera-
tion. The level of resolution L where the length adaptation is performed has
two advantages. First, wrinkles can be generated locally on a user defined
extent, and magnitude and frequency of the wrinkles can be controlled.

The algorithm works in two steps. Once the user has defined the deforma-
tion by modifying some coarse control points at an arbitrary scale, he fixes
the level of resolution L where he wants the length preserving being done. In
other words, with L he chooses the extent and frequency of wrinkle creation.
Following some geometric rules, the detail coefficients of the deformed curve
belonging to level L+ 1 are then modified in order to make the control poly-
gon at level L + 1 have the same length as the level L + 1 control polygon
of the initial curve. The second step of the algorithm consists then of length
preserving by smoothing via an optimisation method and precisely satisfies
the length constraint.

5.3 Variational MR Curves

The variational modelling paradigm is used in order to find the “best” curve or
surface amongst all solutions that meet the constraints. The constraints may

Constrained Multiresolution Geometric Modelling 135

Fig. 8. Length preserving MR editing: Two successive deformations at different
levels of decomposition are shown. The initial curve (top left) is edited at the coarsest
level. (top right) Its length is adapted at the scale L = 1 resulting in large wrinkles.
(bottom left) and (bottom right) Two neighbouring control points are moved closer
at the scale 3 and length preserving at scale L = 6 creates small wrinkles.

Fig. 9. Wrinkles on the back of the hand by length preserving MR deformation.
The scheme has been applied on several lines of a triangular mesh modelling a hand.
It creates wrinkles at the back of the hand automatically by pinching the skin. The
skin is also stretched around the wrinkles. The model is purely geometric, no time
consuming physical simulation is used.

result from the particular modelling technique used, for example sample point
approximation, or direct curve manipulation (see Sect. 2.1. In the context
of smooth curve and surface design the notion of “best” is formulated by
minimising some energy functional, see Sect. 4.1.

Gortler and Cohen [44] show how the variational constraint, which gener-
alises least squares, can be solved through a MR formulation of a planar curve.
A wavelet based MR curve satisfying some linear constraints and minimising
a linearised bending energy functional may be found by solving the following
linear system [97] [

H̄ ĀT

Ā 0

] [
x̄
λ

]
=
[
0
b

]
,

where Ā is the constraint matrix, H̄ is the Hessian matrix of the basis func-
tions, and λ is the vector of Lagrange multipliers. The bars signify that the
variables are wavelet coefficients. Gortler and Cohen show then how wavelets
accelerate the iterative conjugent-gradient-solving of the variational problem.

136 Stefanie Hahmann and Gershon Elber

5.4 Multiresolution Subdivision Methods with Constraints

Subdivision has become a popular tool in computer graphics. Much litera-
ture derives and analyses new subdivision algorithms for curves, surfaces and
solids. For an overview see the SIGGRAPH 2000 course notes [103] and the
textbook [94]. Subdivision curves and surfaces are intrinsically hierarchical.
Different levels of subdivision of a coarse mesh provide different levels of res-
olution. Constrained modelling techniques can then interact with different
subdivision levels in order to obtain particular local design effects.

MacCracken and Joy [64] developed an extension of Catmull-Clark subdi-
vision surfaces to the volumetric setting, mainly for the purpose of freeform
deformation in 3D space. Qin et al. [75] introduced dynamic Catmull-Clark
subdivision surfaces. McDonnell and Qin [67] simulate volumetric subdivision
objects using a mass-spring model. A generalisation of McDonnell et al. [68]
includes haptic interaction. Capell et al. [15] use the subdivision hierarchies
to construct a hierarchical basis to represent displacements of a solid model
for dynamic deformations. Additionally, some linear constraints, such as point
displacements can be added at any level of subdivision.

Variational subdivision is another modelling technique, where constraints
are combined with classical subdivision. Instead of applying explicit rules
for the new vertices, Kobbelt’s [56] variational subdivision scheme computes
the new vertices such that a fairness functional is minimised. At each step
a linear system has to be solved. The resulting curves have minimal total
curvature. Furthermore, in [57] it is shown how wavelets can be constructed by
using the Lifting Scheme [87] which are appropriate for variational subdivision
curves. Weimer and Warren [93, 95, 96] developed variational subdivision
schemes that satisfy partial differential equations, for instance, fluid or thin-
plate equations.

Multiresolution subdivision surfaces extend subdivision surfaces by intro-
ducing details at each level. Each finer mesh is obtained from a coarse mesh by
using a set of fixed refinement rules, e.g. Loop subdivision or Catmull-Clark
subdivision. Each time a finer mesh is computed, it is obtained by adding
detail offsets to the subdivided coarse mesh. Details are represented in lo-
cal coordinate frames, which are computed from the coarser level. Various
forms of multiresolution subdivision surfaces can be found in [63, 102, 60].
Several constrained modelling techniques have been developed by Zorin, Bier-
mann and co-workers for multiresolution surface. A cut-and-paste editing tech-
nique for multiresolution surfaces has been proposed in [6]. In [5] Biermann et
al.describe a method for creating sharp features and trim regions on multires-
olution subdivision surfaces along a set of user-defined curves. A method for
approximating results of boolean operations (union, intersection, difference)
applied to free-form solids bounded by multiresolution subdivision surfaces
can be found in [4].

Constrained Multiresolution Geometric Modelling 137

6 Conclusion

In this paper geometric modelling techniques have been surveyed that all make
use of constraints of different nature in order to provide high-level user friendly
manipulation tools of geometric objects. Basic research, developing new curve
and surface representation, is going on and new deformation and editing tools
have to be invented. For example, it is still a challenge to develop modelling
tools for subdivision surfaces equivalent to those existing for NURBS surfaces.

Acknowledgements

This work was partially supported by the European Community Fifth frame-
work program, with the Research Training Network MINGLE (Multiresolu-
tion IN Geometric modELling, HPRN–CT–1999–00117) and in part by the
Fund for Promotion of Research at the Technion, IIT, Haifa, Israel.

References

1. Barghiel C., Bartels R., Forsey D.: Pasting Spline Surfaces. In Daehlen M., Ly-
che T., Schumaker L.L. (eds.), Mathematical Methods for Curves and Surfaces,
Ulvik, Vanderbilt University Press, 31-40 (1999).

2. Bartels, R., Beatty, J.: A technique for the direct manipulation of spline curves.
In Graphics Interface Conference Proceedings ’89, 33-39 (1989).

3. Bidarra R., Bronsvoort W.F.: Semantic feature modelling. Computer Aided
Design 32, 201–225 (2000).

4. Biermann H., Kristjansson D., Zorin D.: Approximate Boolean Operations on
Free-form Solids. In Proc. ACM SIGGRAPH. Los Angeles, 185-194 (2001).

5. Biermann H., Martin I.M., Zorin D., Bernardini F.: Sharp Features on Sub-
division Surfaces. In Pacific Graphics Conference Proceedings. Tokyo, Japan
(2001).

6. Biermann H., Martin I.M., Bernardini F., Zorin D.: Cut-and-Paste Editing of
Multiresolution surfaces. In Proc. ACM SIGGRAPH, 187–196 (2002).

7. Bloomenthal J., Shoemake K.: Convolution surfaces. In Proc. ACM SIG-
GRAPH, Las Vegas, Nevada, (1991).

8. Bloomenthal J. (editor): Introduction to Implicit Surfaces. Morgan Kaufmann
(1997).

9. Bonneau G.P., Hagen H.: Variational design of rational Bézier curves and sur-
faces. In Laurent P.J., Le Méhauté A., Schumaker L.L. (eds.) Curves and Sur-
faces II, 51–58 (1994).

10. Bonneau G.-P., Hahmann S., Nielson G.: Blac-wavelets: a multiresolution anal-
ysis with non-nested spaces. In Visualization Conference Proceedings, 43–48
(1996).

11. Bonneau G.-P.: Multiresolution analysis on Irregular Surface Meshes. IEEE
Transactions on Visualization and Computer Graphics, 4, 365-378 (1998).

138 Stefanie Hahmann and Gershon Elber

12. Borel P., Rappoport A.: Simple constrained deformations for geometric mod-
eling and interactive design. ACM Transactions on Graphics, 13(2), 137–155
(1994).

13. Cani-Gascuel M.-P., Desbrun M.: Animation of deformable models using im-
plicit surfaces. IEEE Transactions on Visualization and Computer Graphics
3(1), 39–50 (1997).

14. Cani-Gascuel M.-P.: Layered deformable models with implicit surfaces. In
Graphics Interface Conference Proceedings, Vancouver, Canada (1998).

15. Capell S., Green S., Curless B., Duchamp T., Popovic Z.: A Multiresolution
Framework for Dynamic Deformations. In ACM SIGGRAPH Symposium on
Computer Animation, 41–48 (2002).

16. Cavendish J.C., Marin S.P.: A procedural feature-based approach for design-
ing functional surfaces. In Hagen H. (ed.) Topics in Surface Modeling. SIAM,
Philadelphia (1992).

17. Celniker G., Gossard, D.: Deformable curve and surface finite-elements for
free-form shape design. In Proc. ACM SIGGRAPH, 257-266 (1991).

18. Celniker G., Welch, W.: Linear constraints for deformable b-spline surfaces. In
Symposium on Interactive 3D Graphics, 165-170 (1992).

19. Chen Y., Zhu Q., Kaufman A., Muraki S.: Physically-based animation of volu-
metric objects. In Proceedings of IEEE Computer Animation, 154-160 (1998).

20. Chui C., Quak E.: Wavelets on a bounded interval. In Braess D., Schumaker
L.L. (eds.) Numerical Methods of Approximation Theory. Birkhäuser Verlag,
Basel, 1–24 (1992).

21. Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution Represen-
tation and Visualization of Volume Data. IEEE Trans. on Visualization and
Comp. Graph., 3 (4), 352-369 (1997).

22. Cohen E., Riesenfeld R.F., Elber G.: Geometric Modeling with Splines: An
Introduction. AK Peters (2001).

23. Conrad B., Mann S.: Better Pasting via Quasi-Interpolation. In Laurent P.J.,
Sablonniere P., Schumaker L.L. (eds.), Curve and Surface Design, Saint-Malo,
Vanderbilt University Press, 27-36 (1999).

24. Coquillart S.: Extended free-form deformation: A sculpturing tool for 3D geo-
metric modeling. In Proc. ACM SIGGRAPH, 187–196 (1990).

25. Dankwort C.W., Podehl G.: FIORES - A European Project for a New Workflow
in Aesthetic Design. VDIBerichte Nr. 1398, 177-192 (1998).

26. De Martino T., Falcidieno B., Giannini F., Hassinger S., Ovtcharova J.: Inte-
gration of Design-by-features and Feature Recognition approaches. Computer
Aided Design, 26, 646-653 (1994).

27. Desbrun M., Gascuel M.-P.: Animating soft substances with implicit surfaces.
In Proc. ACM SIGGRAPH, 287–290 (1995).

28. Desbrun M., Cani-Gascuel M.-P.: Active implicit surface for computer anima-
tion. In Graphics Interface Conference Proceedings, Vancouver, Canada (1998).

29. Dohmen M., de Kraker K.J., Bronsvoort W.F.: Feature validation in a multiple-
view modeling system. In Proceedings of the 1996 ASME Design Engineer-
ing Technical Conferences and Computers in Engineering Conference, Irvine
(1996).

30. Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery T., Stuetzle W.: Mul-
tiresolution analysis of arbitrary meshes. In Proc. ACM SIGGRAPH, 173–182
(1995).

Constrained Multiresolution Geometric Modelling 139

31. Elber G.: Free Form Surface Analysis Using A Hybrid of Symbolic and Numer-
ical Computation. PhD thesis, Department of Computer Science, The Univer-
sity of Utah (1992).

32. Elber G., Gotsman G.: Multiresolution Control for Nonuniform Bspline Curve
Editing. In The third Pacific Graphics Conference on Computer Graphics and
Applications, Seoul, Korea, 267-278 (1995).

33. Elber G.: Multiresolution Curve Editing with Linear Constraints. The Journal
of Computing & Information Science in Engineering, 1(4), 347-355 (2001).

34. Farin G., Rein G., Sapidis N., Worsey A.J.: Fairing cubic B-spline curves.
Computer Aided Geometric Design 4, 91–103 (1987).

35. Farin G.: Curves and Surfaces for Computer Aided Geometric Design. Aca-
demic Press, New York, 4th edition (1996).

36. Finkelstein A., Salesin D.H.: Multiresolution curves, In Proc. ACM SIG-
GRAPH, 261–268 (1994).

37. Fontana M., Giannini F., Meirana M.: A Free Form Feature Taxonomy. In
Proceedings of EUROGRAPHICS, Computer Graphics Forum, 18(3), 646-653
(1994).

38. Forsey D., Bartels R.: Hierarchical B-spline refinement. In Proc. ACM SIG-
GRAPH, 205–212 (1988).

39. Fowler B.: Geometric manipulation of tensor product surfaces. In Symposium
on Interactive 3D Graphics, 101–108 (1992).

40. Fowler B., Bartels R.: Constraint-based curve manipulation. IEEE Computer
Graphics and Applications, 13(5), 43–49 (1993).

41. Gain J.E., Dodgson N.A.: Preventing self-intersection under free-form defor-
mation. IEEE Transactions on Visualization and Computer Graphics, 7(4),
289–298 (2001).

42. Goldman R.N., Lyche T. (Eds.): Knot Insertion and Deletion Algorithms for B-
Spline Curves and Surfaces. SIAM, Philadelphia, ISBN 0–89871–306–4 (1993).

43. Golub G.H., Van Loan C.F.: Matrix Computation. The John Hopkins Univer-
sity Press, Baltimore and London, Third Edition (1996).

44. Gortler S., Cohen M.: Hierarchical and variational geometric modeling with
wavelets. In 1995 Symposium on 3D Interactive Graphics, 35–41 (1995).

45. Greiner G.: Variational design and fairing of spline surfaces. In Eurographics
Conference Proceedings, 143–154 (1994).

46. Greiner G., Loos J.: Data dependent thin plate energy and its use in interactive
surface modeling. In Eurographics Conference Proceedings, 176–185 (1996).

47. Hagen H., Schulze G.: Automatic smoothing with geometric surface patches.
Computer Aided Geometric Design, 4, 231–236 (1994).

48. Hagen H., Santarelli P.: Variational design of smooth B-spline surfaces. In Ha-
gen H. (ed.) Topics in geometric modeling. SIAM Philadelphia, 85–94 (1992).

49. Hahmann S.: Shape improvement of surfaces. Computing Suppl., 13, 135-152
(1998).

50. Hahmann S., Bonneau G.-P., Sauvage B.: Area preserving deformation of mul-
tiresolution curves. Reserach Report, IMAG RR-1062-I (2002).

51. Hirota G., Maheshwari R., Lin M.C.: Fast volume-preserving free-form de-
formation using multi-level optimization. In Proceedings of Solid Modeling,
234–245 (1999).

52. Hoppe H.: Progressive meshes. In Proc. ACM SIGGRAPH, 99-108 (1996).
53. Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design.

A.K. Peters (1993).

140 Stefanie Hahmann and Gershon Elber

54. Hsu W.M., Hughes J.F., Kaufman H.: Direct manipulation of free-form defor-
mations. In Proc. ACM SIGGRAPH, 177–184 (1992).

55. Kazinnik R., Elber G.: Orthogonal Decomposition of Non-Uniform Bspline
Spaces using Wavelets. Computer Graphics Forum, 16(3), 27-38 (1997).

56. Kobbelt L.: A variational approach to subdivision. Computer Aided Geometric
Design, 13, 743–761 (1996).

57. Kobbelt L., Schröder P.: A Multiresolution Framework for Variational Subdi-
vision. ACM Trans. on Graph., 17(4), 209-237 (1998).

58. Kobbelt L., Campagna S., Vorsatz J., Seidel HP.: Interactive multiresolution
modeling on arbitrary meshes. In Proc. ACM SIGGRAPH, 105–114 (1998).

59. Lassiter J.: Principles of traditional animation applied to 3D computer anima-
tion. In Proc. ACM SIGGRAPH, 45-44 (1987).

60. Lee A., Moreton H., Hoppe H.: Displaced subdivision surfaces. In Proc. ACM
SIGGRAPH, 85-94 (2000).

61. Lyche T., Morken K.: Spline wavelets of minimal support. In Braess D., Schu-
maker L.L. (eds.) Numerical Methods of Approximation Theory. Birkhäuser
Verlag, Basel, 177–194 (1992).

62. Lorensen W., Cline H.: Marching cubes: a high resolution 3D surface con-
struction algorithm. In Proc. ACM SIGGRAPH, Anaheim California, 163–169
(1987).

63. Lounsbery M., De Rose T., Warren J.: Multiresolution analysis for surfaces of
arbitrary topological type. ACM Transaction on Graphics, 16(1), 34–73 (1997).

64. MacCracken R., Joy K.I.: Free-form deformations with lattices of arbitrary
topology. In Proc. ACM SIGGRAPH, 181–188 (1996).

65. Mallat S.: A theory for multiresolution signal decomposition: the wavelet rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11, 674–693 (1989).

66. Mann S., Yeung T.: Cylindrical Surface Pasting. In Brunnett G., Bieri H.P.,
Farin G. (eds.) Geometric Modeling, Springer-Wien, 233-248 (2001).

67. McDonnell K.T., Qin H.: Dynamic sculpting and animation of free-form sub-
division solids. In Proceedings of IEEE Computer Animation 2000, 126-133
(2000).

68. McDonnell K.T., Qin H., Wlodarczyk R.A.: Virtual clay: A real-time sculpting
system with haptic toolkits. In Proceedings of the 2001 ACM Symposium on
Interactive 3D Graphics, 179-190 (2001).

69. Mehlum E.: Non-linear spline. In Barnhill R.E., Riesenfeld R.F. (eds.) Com-
puter Aided Geometric Design. Academic Press, 173–208 (1974).

70. Moreton H.P., Séquin C.H.: Functional optimisation for fair surface design.
Computer Graphics, 26(2), 167–176 (1992).

71. Pasko A., Adzhiev V., Sourin A., Savchenko V.: Function representation in
geometric modeling: Concepts, implementation and applications. The Visual
Computer, 11(8), 429–446 (1995).

72. Pentland A., Williams J.: Good vibrations: Modal dynamics for graphics and
animation. In Proc. ACM SIGGRAPH, 215-222 (1989).

73. Pernot J.P., Guillet S., Leon J.C., Giannini F., Falcidieno B., Catalano E.: A
Shape Deformation Tool to Model Character Lines in the Early Design Phases.
In Conference Proceedings of Shape Modeling International, Banff, Canada
(2002).

74. Pottmann H., Leopoldseder S., Hofer M.: Approximation with active B-Spline
curves and surfaces. In Pacific Graphics Conference Proceedings, 8-25 (2002).

Constrained Multiresolution Geometric Modelling 141

75. Qin H., Mandal c., Vemuri B.C.: Dynamic Catmull-Clark subdivision surfaces.
IEEE Transactions on Visualization and Computer Graphics, 4(3), 215-229
(1998).

76. Rappoport A., Sheffer A., Bercovier M.: Volume-preserving free-form solids. In
Solid Modeling Conference Proceedings, 361-372 (1995).

77. Raviv A., Elber G.: Three Dimensional Freeform Sculpting Via Zero Sets of
Scalar Trivariate Functions. CAD, 32 (8/9), 513-526 (2000).

78. Reinsch C.H.: Smoothing by spline functions II. Num. Math., 16, 451–454
(1967).

79. Requicha A.A., Voelcker U.B.: Solid modeling: a historical summary and con-
temporary assessment. IEEE Computer Graphics and Applications, 2, 9–23
(1982).

80. Requicha A.A., Rossignac J.R.: Solid modeling and beyond. IEEE Computer
Graphics and Applications, 12, 31-44 (1992).

81. Rossignac J.R.: Issues on feature-based editing and interrogation of solid mod-
els. Comp. Graph. 14(2), 149-172 (1990).

82. Sauvage B., Hahmann S., Bonneau G.-P.: Length preserving multiresolution
editing of curves. preprint (2003).

83. Schröder P., Sweldens W.: Spherical Wavelets: efficiently representing functions
on the sphere. In Proc. ACM SIGGRAPH, 161–172 (1995).

84. Sederberg T.W., Parry S.R.: Free-form deformation of solid geometric models.
In Proc. ACM SIGGRAPH, 151–160 (1986).

85. Shi-Min H., Hui Z., Chiew-LanT., Jia-Guang S.: Direct manipulation of FFD:
Efficient explicit solutions and decomposible multiple point constraints. The
Visual Computer, 17(6), 370–379 (2001).

86. Stollnitz E., DeRose T., Salesin D.: Wavelets for Computer Graphics: Theory
and Applications. Morgan-Kaufmann (1996).

87. Sweldens W.: The lifting scheme: a construction of second generation wavelets.
SIAM J. Math. Anal., 29(2), 511–546 (1997).

88. Terzopoulos D., Platt J., Barr A., Fleischer K.: Elastically deformable models.
In Proc. ACM SIGGRAPH (1987).

89. Terzopoulos D., Fleischer K.: Modeling inelastic deformation: viscoelasticity,
plasticity, fracture. In Proc. ACM SIGGRAPH, 269-278 (1988).

90. Terzopoulos D., Qin H.: Dynamic NURBS with geometric constraints for in-
teractive sculpting. ACM Transactions on Graphics, 13(2), 103-136 (1994).

91. van den Berg E., van der Meiden R., Bronsvoort W.F.: Specification of freeform
features. Proceedings Eighth Symposium on Solid Modeling and Applications
(2003).

92. Vosniakos G.C.: Investigation of feature-based product modelling for mechani-
cal parts with free-form surfaces. International Journal of Advanced Manufac-
turing Technology, 15, 188-199 (1999).

93. Warren J., Weimer H.: Variational subdivision for natural cubic splines. Ap-
proximation Theory IX, 345-352 (1998).

94. Warren J., Weimer H.: Subdivision Methods for Geometric Design: a construc-
tive approach. Morgan Kaufmann Publisher (2001).

95. Weimer H., Warren J.: Subdivision schemes for thin plate splines. In Euro-
graphics Conference Proceedings, 303-313 (1998).

96. Weimer H., Warren J.: Subdivision schemes for fluid flow. In Proc. ACM SIG-
GRAPH, 111-120 (1999).

142 Stefanie Hahmann and Gershon Elber

97. Welch W., Witkin A.: Variational surface modeling. In Proc. ACM SIG-
GRAPH, 157-166 (1992).

98. Whitaker R., Breen D.: Level-set models for the deformation of solid objects. In
Implicit Surfaces ’98, Eurographics and ACM SIGGRAPH Workshop, Seattle,
19-36 (1998).

99. Witkin A., Welch W.: Fast animation and control for non-rigid structures. In
Proc. ACM SIGGRAPH, 243-252 (1990).

100. Wyvill G., McPheeters C., Wyvill B.: Data structure for soft objects. The
Visual Computer, 2(4), 227–234 (1986).

101. Wyvill A., Galin E., Guy A.: Extending the CSG tree warping, blending and
boolean operations in an implicit surface modeling system. In Implicit Surfaces,
Eurographics and ACM SIGGRAPH Workshop, Seattle, 113-122 (1998).

102. Zorin D., Schröder P., Sweldens W.: Interactive Multiresolution Mesh Editing.
In Proc. ACM SIGGRAPH, 259-268 (1997).

103. Zorin D., Schröder P.: Subdivision for Modeling and Animation. In ACM SIG-
GRAPH Course Notes (2000).

Multi-scale and Adaptive CS-RBFs for Shape
Reconstruction from Clouds of Points

Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{ohtake|belyaev|hpseidel}@mpi-sb.mpg.de

Summary. We describe a multi-scale approach for interpolation and approximation
of a point set surface by compactly supported radial basis functions. Given a set
of points scattered over a surface, we first use down-sampling to construct a point
set hierarchy. Then starting from the coarsest level, for each level of the hierarchy,
we use compactly supported RBFs to approximate the set of points at the level
as an offset of the RBF approximation computed at the previous level. A simple
RBF centre reduction scheme combined with the multi-scale approach accelerates
the latter and allows us to achieve high quality approximations using relatively small
number of RBF centres.

We also develop an adaptive RBF fitting procedure for which the RBF centres
are randomly chosen from the set of points of the level. The randomness is controlled
by the density of points and geometric characteristic of the set. The support size of
the RBF we use to approximate the point set at a vicinity of a point depends on
the local density of the set at that point. Thus parts with complex geometry are
approximated by dense RBFs with small supports.

Numerical experiments demonstrate high speed and good performance of the
proposed methods in processing irregularly sampled and/or incomplete data.

1 Introduction

Among various techniques available for 3D scattered data interpolation and
approximation Radial Basis Function (RBF) methods remain to be very at-
tractive for a large variety of applications because of their ability to produce
high quality shapes, process irregularly sampled and noisy data, repair incom-
plete data, and handle shapes of arbitrary topological complexity [19, 20, 8].
In computer graphics, implicit surface modelling with RBFs was first intro-
duced in [16, 19]. The main limitation of early RBF-based techniques consisted
of computational difficulties to handle large point data sets (see, for exam-
ple, [11] and references therein). Recently it was shown that enhancing global
RBFs by fast multipole techniques [5] and using RBFs with compact support

144 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

(CS-RBFs) in a hierarchical manner [6, 9] allows a user to process scattered
data consisting of millions of points [14].

In this paper, we present a further development of our approach to 3D
scattered data fitting with CS-RBFs [14]. In Sect. 2, we describe our multi-
scale approach to 3D scattered data interpolation with CS-RBFs [14] and
enhance it by a centre reduction procedure. In Sect. 3, we propose an adaptive
CS-RBF approximation scheme.

This paper does not contribute to mathematical theory of RBF approx-
imations. The interested reader is referred to [7][Chapter 7] and [4] for a
comprehensive introduction to RBFs. Our approach is engineering oriented.
The experimental results justify that the developed methods deliver fast and
high quality reconstruction of complex shapes from real-world scattered data.

2 Multi-scale CS-RBF Interpolation and Approximation

Let us consider a set of points P = {p1, · · · ,pN} sampled from a surface
and equipped with unit normals N = {n1, · · · ,nN} that indicate the surface
orientation. In practice, these normals are usually estimated from range data
during the shape acquisition phase or by local least-square fitting. Our aim is
to construct a function y = f(x) such that its zero level-set {x ∈ R

3 : f(x) =
0} interpolates/approximates the set of points P.

The implicit surface {x ∈ R
3 : f(x) = 0} separates the space into two

parts: f(x) > 0 and f(x) < 0. Let us assume that the normals N are pointing
into the part of space where f(x) > 0. Thus one can say that f(x) has negative
values outside the surface and positive values inside the surface.

Single-level Interpolation

We construct function y = f(x) interpolating P in the following form sug-
gested in [14]

f(x) =
∑
pi∈P

[gi(x) + λi]φσ(‖x − pi‖),

where φσ(r) = φ(r/σ), φ(r) = (1 − r)4+ (4r + 1), is Wendland’s compactly
supported RBF [21], σ is its support size, and gi(x) and λi are unknown
functions and coefficients to be determined.

For each pi ∈ P we construct gi(x) as a local approximation of P in a
small vicinity of pi. Thus the zero level-set of∑

pi∈P
gi(x)φσ(‖x − pi‖) (1)

approximates P. Now an interpolation of P is achieved by the standard RBF
interpolation procedure:

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction 145∑
pi∈P

λiφσ(‖x − pi‖) = −
∑
pi∈P

gi(x)φσ(‖x − pi‖), x = pj ∈ P, (2)

which leads to a sparse system of linear equations with respect to λi. Since
Wendland’s compactly supported RBFs are strictly positive definite [21], N×
N interpolation matrix {φσ(‖pj − pi‖)} is positive definite if P consists of
pairwise distinct points.

One can notice that (1) has the same zero level-set as a partition of unity
approximation (PU) ∑

pi∈P
gi(x)

φσ(‖x − pi‖)∑
φσ(‖x − pi‖)

. (3)

PU approximations are now very popular in computational mechanics [2, 3]
and can deliver high quality approximations of scattered data [10, 22, 1, 13,
18].

Thus {λi} are small and iterative solving of system of linear equations (2)
can be done quickly if we start from initial guess λi = 0, i = 1, . . . , N . In our
implementation we use the preconditioned biconjugate gradient method [15].

We find local approximations {gi(x)} as follows. For each point pi ∈ P
let us determine a local orthogonal coordinate system (u, v, w) with the origin
of coordinates at pi such that the plane (u, v) is orthogonal to ni and the
positive direction of w coincides with the direction of ni. We approximate P
in a vicinity of pi by a quadric

w = h(u, v) ≡ Au2 + 2Buv + Cv2, (4)

where the coefficients A, B, and C are determined via the following least-
squares minimisation∑

(uj ,vj ,wj)=pj∈P
φσ(‖pj − pi‖)

(
wj − h(uj , vj)

)2 → min . (5)

Finally we set
gi(x) = w − h(u, v). (6)

Thus the zero level-set of gi(x) coincides with the graph of w = h(u, v).
Parameter σ, the support size of φσ(·), is estimated from the density of

P. We start an octree-based subdivision of a bounding box of P and stop the
subdivision if each leaf cell contains no more than eight points of P. Then we
compute the average diagonal of the leaf cells. Finally we set σ equal to three
fourth of that average diagonal.

Multi-level Interpolation

The single-level CS-RBF interpolation procedure described above is quite fast
since it requires solving a sparse system of linear equations. However using

146 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

level 1 level 2 level 3 level 4

Fig. 1. [Reproduced in colour in Plate 12.] Multi-scale interpolation of the Stanford
dragon model. Top row: four first levels of the multi-scale hierarchy of points; the
radii of the spheres at each level of the hierarchy are proportional to the support size
of the RBFs used for the interpolation at that level. Middle row: zero level-sets of the
interpolating functions. Bottom row: cross-sections of the interpolating functions.

compactly supported basis functions implies several essential limitations. It
can produce poor quality shapes when interpolating point data with varying
density, has no ability of repairing incomplete data, and defines the interpo-
lating implicit surface in a small vicinity of the interpolated points [14]. In
order to eliminate these limitations we build a multi-scale hierarchy of point
sets {P1,P2, . . . ,PM = P} and interpolate a point set Pm+1 of the hierarchy
by offsetting the interpolation function used in the previous level to interpo-
late Pm. Fig. 1 demonstrates the main steps of our multi-level interpolation
procedure.

A seminal idea to use RBF fitting in a hierarchical way was proposed in
[6] for bivariate scattered data interpolation. Very recently it was combined
with an adaptive domain decomposition in [9]. Our multi-level RBF fitting
procedure described in this section can be considered as a variant of the
multilevel approximation scheme [9] adapted for interpolating 3D scattered
data.

To construct a multi-scale hierarchy of point sets {P1,P2, · · · ,PM} with
P = PM we first fit P into a parallelepiped and then subdivide it and its parts
recursively into eight equal octants. Point set P is clustered with respect to the

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction 147

cells of the built octree-based subdivision of the parallelepiped. For each cell
we consider the points of P contained in the cell and compute their centroid.
A unit normal assigned to the centroid is obtained by averaging the normals
assigned to the points of P inside the cell and normalising the result. Set P1

corresponds to the subdivision of the bounding parallelepiped into eight equal
octants.

Now our multi-level interpolation procedure proceeds in the coarse-to-fine
way. First we define a base function

f0(x) = −1

and then recursively define the set of interpolating functions

fk(x) = fk−1(x) + ok(x) (k = 1, 2, . . . ,M),

where fk(x) = 0 interpolates Pk. An offsetting function ok

ok(x) =
∑

pk
i ∈Pk

[
gk

i (x) + λk
i

]
φσk(‖x − pk

i ‖).

has the form used in the previous section for the single-level interpolation. In
particular, local approximations gk

i (x) are determined similar to (4),(5), (6)
via least square fitting applied to Pk. The shifting coefficients λk

i are found
by solving the following system of linear equations

fk−1(pk
i) + ok(pk

i) = 0. (7)

The support size σk is defined by

σk+1 = σk/2, σ1 = cL,

where L is the length of a diagonal of the bounding parallelogram and the
parameter c is chosen such that an octant of the bounding box is always
covered by a ball of radius σ1 centred somewhere in the octant. In practice
we use c = 0.75.

Finally, the number of subdivision levels M is determined by σ1 and σ0

where σ0 is the support size for the single-level interpolation. According to
our experience, M = �− log2 (σ0/(2σ1))� produces good results.

According to numerical experiments [14], our multi-scale interpolation
scheme demonstrates a good performance in processing irregularly sampled
and/or incomplete data (Fig. 2 demonstrates reconstruction of missed data)
and works several times faster than the Fast RBF method [5] which employs
globally supported RBFs.

Multi-scale RBF Centre Reduction

If an approximation of scattered data is required instead of an interpolation
there is no need to use all the points as the RBF centres. A greedy RBF centre

148 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

Fig. 2. Reconstruction of incomplete data obtained from range scans of the Stanford
dragon model.

reduction method was proposed in [5]. Below we describe a simple RBF centre
reduction strategy suitable for our multi-scale approach.

Let Pk be approximated by the zero level-set of y = fk(x). We approx-
imate Pk+1 by taking into account only those points of Pk+1 for which the
Taubin distance [17] from

{
x ∈ R

3 : fk(x) = 0
}

is greater then a user-specified
threshold ε.

Fig. 3 shows last five levels of the multiscale CS-RBF fitting done without
(the top row) and with (the bottom row) the centre reduction. Notice how the
proposed centre reduction scheme reduces computational time and memory
usage. Fig. 4 demonstrates presents another example: the St. Matthew model
consisting of more than 3.3 million points is accurately approximated by using
half a million RBF centres.

3 Adaptive CS-RBF Approximation

Adaptive RBF Support Size Selection

Given an RBF centre c, let us define a local approximation error at c as

ε(σ) =

√√√√ 1∑
j φσ(‖pj − c‖)

∑
j

φσ(‖pj − c‖)
(

g(pj)
‖∇g(pj)‖

)2

.

where g(x) is a local quadratic approximation at centre c. We obtain g(x)
from (5) and (6) with

w = h(u, v) ≡ Au2 + 2Buv + Cv2 +Du+ Ev + F

used instead of (4) since we do not need to interpolate c. We want to keep σ
as large as possible while maintaining a user-defined accuracy ε0.

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction 149

level 5 level 6 level 7 level 8 level 9

Fig. 3. Multi-level reconstruction of the Buddha model consisting of 544K points
(nine levels of multi-scale hierarchy are used, computations are performed on 1.6 GHz
Mobile Pentium 4). Top row: no RBF centre reduction is applied; reconstruction time
is 24.5 min; peak RAM is 332 Mb; 901K RBFs are used. Bottom row: RBF centre
reduction with ε = 3× 10−4 accuracy is applied; reconstruction time is 5 min; peak
RAM is 128 Mb; 75K RBFs are used.

It is natural to assume that ε(σ) is monotonically decreasing as σ → 0 and
look for σopt such that

ε(σopt) = ε0. (8)

We use ten iterations of the bisection method to find σopt in interval [L,R].
Initially we set L = 0 and R = 100ε0. If ε(R) < ε0 the search interval is
shifted: Lnew = R and Rnew = 2R.

150 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

original data

approximated with multi-
scale RBF centre reduction

Fig. 4. Multi-level reconstruction of the Michelangelo’s St. Matthew model consist-
ing of 3,376K points. Top: RBF interpolation. Bottom: approximation with multi-
scale RBF centre reduction (507K RBFs, 24 min on 1.6 GHz Mobile Pentium 4).

RBF Centre Selection

As we already noticed before, our RBF-based approximation

f(x) ≈ f̃(x) =
∑
ci∈C

[gi(x) + λi]φσi
(‖x − ci‖), (9)

where C ⊂ P is a set of RBF centres, is close to partition of unity approx-
imation (3). It is clear that a “good” cover is important for a high quality
partition of unity approximation. In our case, the cover consists of domains
suppφσi

(ci). We choose RBF centres {ci} such that {suppφσi
(ci)} covers all

the points of P. Furthermore, we want to generate a minimal cover with an
amount of overlap greater than a certain threshold.

We measure the amount of overlap at pi ∈ P by

vi =
∑

j

wσj
(‖pi − cj‖)

and control overlapping by a user-specified parameter T . We determine RBF
centres {cj} and their corresponding support sizes {σi} according to the fol-
lowing procedure.

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction 151

Fig. 5. [Reproduced in colour in Plate 13.] Adaptive approximation of the Stanford
bunny model with ε0 = 2.5 × 10−4. Right: for T = 1.5 each approximation centre
is visualised by a sphere of radius σk/4; the spheres are coloured according to their
sizes which increases from red to blue. Middle: 8,504 RBF centres (and local approx-
imations) are used if T = 1.5; L2 error = 1.86 × 10−4 and L∞ error = 2.76 × 10−3;
computational time is 7 seconds. Right: 20,813 RBF centres are used if T = 5;
L2 error = 1.72 × 10−4 and L∞ error = 2.57 × 10−3; computational time is 19 sec-
onds.

Step 1. Assign vi = 0 to each point pi ∈ P.
Step 2. Choose randomly m points (in our current implementation, we use

m = 15) with v < T .
Step 3. Select a point with minimum v among the points chosen during the

previous step.
Step 4. Set the point selected at Step 3 to be an RBF centre ck ∈ C. Set

vk = T for ck.
Step 5. Find optimal support size σk = σopt and local polynomial approxi-

mation gk(x) at centre ck determined at the previous step.
Step 6. Update overlapping vi for all pi ∈ P \ C by adding wσk

(‖pi − ck‖).
Step 7. If there remain points pi ∈ P with vi < T , go to Step 2.

Notice that steps 2 and 3 implement a multiple choice technique, a pow-
erful tool for randomised optimisation [12] introduced recently in geometric
modelling [23].

According to our numerical experiments, choosing T = 1.5 produces a
good cover. Bigger values of overlapping rate T lead to wasting computational
power. A comparison of the approximations with T = 1.5 and T = 5 for the
Stanford bunny model is given in Fig. 5.

Least Square Fitting

We use a least square fitting procedure to determine unknown coefficients
{λi} in (9). Let

E (λ1, . . . , λM) =
N∑

i=1

f̃(pi)2.

152 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

Fig. 6. The Stanford dragon model approximated with ε0 = 2.5 × 10−4 (20,146
centres). Left images: only the base approximation is used; fitting time is 63 seconds;
L2 error = 1.50 × 10−4 and L∞ error = 3.88 × 10−3. Right images: local details are
added; total fitting time is 148 seconds; L2 error = 1.10 × 10−4 and L∞ error =
1.66 × 10−3.

Now coefficients λ1, . . . , λM are found by solving the system of linear equations

∂E/∂λi = 0, i = 1, . . . ,M.

Base Approximation and Local Details

Let us rewrite (9) in the form

f(x) ≈
∑
ci∈C

gi(x)φσi
(‖x − ci‖)︸ ︷︷ ︸

base approximation

+
∑
ci∈C

λiφσi
(‖x − ci‖)︸ ︷︷ ︸

local details

(10)

The first term of the right-hand side of (10) can be considered as a base
approximation of f(x) while the second term represents local details. Fig. 6
demonstrates this separation into a base approximation and local details for
the Stanford dragon model. Surprisingly to us, the first term delivers a re-
markably good approximation.

4 Conclusion

In this paper, we have reviewed our multi-scale approach to 3D scattered data
interpolation with CS-RBFs [14], enhanced it by a centre reduction proce-

Multi-scale and Adaptive CS-RBFs for Shape Reconstruction 153

dure, and developed an economical and fast adaptive CS-RBF approximation
scheme.

Surprisingly to us, an adaptive partition of unity approximation, which
we use for initial fitting to scattered data, already delivers a high quality
approximation. This should be the subject of further study.

Acknowledgements

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

We would like to thank the anonymous reviewers of this paper for their
valuable and constructive comments.

The models are courtesy of the Digital Michelangelo Project 3D Model
Repository (Michelangelo’s St. Matthew head model) and the Stanford 3D
Scanning Repository (bunny, dragon, and Buddha models).

References

1. M. Alexa. Hierarchical partition of unity approximation. Technical report, TU
Darmstadt, August 2002.

2. I. Babuška and J. M. Melenk. The partition of unity method. International
Journal of Numerical Methods in Engineering, 40:727–758, 1997.

3. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless
methods: An overview and recent developments. Computer Methods in Applied
Mechanics and Engineering, 139:3–47, 1996.

4. D. Buhmann, M. Radial Basis Functions: Theory and Implementations. Cam-
bridge University Press, 2003.

5. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and representation of 3D objects
with radial basis functions. In Proc. ACM SIGGRAPH, pages 67–76, August
2001.

6. M. S. Floater and A. A. Iske. Multistep scattered data interpolation using
compactly supported radial basis functions. Journal of Comp. Appl. Math.,
73:65–78, 1996.

7. S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing Company, Inc., 1994.

8. A. Iske. Scattered data modelling using radial basis functions. In A. Iske,
E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric
Modelling, pages 205–242. Springer, 2002.

9. A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive
domain decomposition. Technical Report TUM-M0208, Technische Universität
München, July 2002.

10. D. Lazzaro and L. B. Montefusco. Radial basis functions for multivariate in-
terpolation of large scattered data sets. Journal of Computational and Applied
Mathematics, 140:521–536, 2002.

154 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel

11. S. K. Lodha and R. Franke. Scattered data techniques for surfaces. In H. Ha-
gen, G. Nielson, and F. Post, editors, Proceedings of Dagstuhl Conference on
Scientific Visualization, pages 182–222. IEEE Computer Society Press, 1999.

12. M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random
choices: A survey of techniques and results. In Handbook of Randomized Com-
puting, Chapter 9. Kluwer, 2001.

13. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition
of unity implicits. ACM Transactions on Graphics, 22(3):463–470, July 2003.
Proc. ACM SIGGRAPH 2003.

14. Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. A multi-scale approach to 3D
scattered data interpolation with compactly supported basis functions. In Shape
Modeling International 2003, pages 153–161, Seoul, Korea, May 2003.

15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1993.

16. V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. Function rep-
resentation of solids reconstructed from scattered surface points and contours.
Computer Graphics Forum, 14(4):181–188, 1995.

17. G. Taubin. Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmen-
tation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(11):1115–
1138, 1991.

18. I. Tobor, P. Reuter, and C. Schlick. Efficient reconstruction of large scattered
geometric datasets using the partition of unity and radial basis functions. In
The 12-th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG’04), February 2004.

19. G. Turk and J. O’Brien. Shape transformation using variational implicit sur-
faces. In Proc. ACM SIGGRAPH, pages 335–342, August 1999.

20. G. Turk and J. O’Brien. Modelling with implicit surfaces that interpolate. ACM
Transactions on Graphics, 21(4):855–873, October 2002.

21. H. Wendland. Piecewise polynomial, positive definite and compactly supported
radial basis functions of minimal degree. Advances in Computational Mathe-
matics, 4:389–396, 1995.

22. H. Wendland. Fast evaluation of radial basis functions: Methods based on par-
tition of unity. In L. Schumaker and J. Stöckler, editors, Approximation Theory
X: Wavelets, Splines, and Applications, pages 473–483. Vanderbilt University
Press, Nashville, 2002.

23. J. Wu and L. P. Kobbelt. Fast mesh decimation by multiple-choice techniques.
In Vision, Modeling, Visualization 2002 Proceedings, pages 241–248, Erlangen,
Germany, November 2002.

Part IV

— Parameterization

Surface Parameterization: a Tutorial and Survey

Michael S. Floater1 and Kai Hormann2

1 Computer Science Department, Oslo University, Norway
michaelf@ifi.uio.no

2 ISTI, CNR, Pisa, Italy
hormann@isti.cnr.it

Summary. This paper provides a tutorial and survey of methods for parameterizing
surfaces with a view to applications in geometric modelling and computer graphics.
We gather various concepts from differential geometry which are relevant to surface
mapping and use them to understand the strengths and weaknesses of the many
methods for parameterizing piecewise linear surfaces and their relationship to one
another.

1 Introduction

A parameterization of a surface can be viewed as a one-to-one mapping from
the surface to a suitable parameter domain. In general, the parameter domain
itself will be a surface and so constructing a parameterization means mapping
one surface into another. Typically, surfaces that are homeomorphic to a disk
are mapped into the plane. Usually the surfaces are either represented by or
approximated by triangular meshes and the mappings are piecewise linear.

Parameterizations have many applications in various fields of science and
engineering, including scattered data fitting, reparameterization of spline sur-
faces, and repair of CAD models. But the main driving force in the devel-
opment of the first parameterization methods was the application to texture
mapping which is used in computer graphics to enhance the visual quality of
polygonal models. Later, due to the quickly developing 3D scanning technol-
ogy and the resulting demand for efficient compression methods of increasingly
complex triangulations, other applications such as surface approximation and
remeshing have influenced further developments.

Parameterizations almost always introduce distortion in either angles or
areas and a good mapping in applications is one which minimises these distor-
tions in some sense. Many different ways of achieving this have been proposed
in the literature.

The purpose of this paper is to give an overview of the main developments
over recent years. Our survey [20] of 2002 attempted to summarise advances

158 Michael S. Floater and Kai Hormann

in this subject up to 2001. However, a large number of papers have appeared
since then and wherever possible we will focus on these more recent advances.
This paper also differs from [20] in that we build up the discussion from some
classical differential geometry and mapping theory. We further discarded the
classification of methods into linear and non-linear ones and rather distinguish
between their differential geometric properties. We believe that this helps to
clarify the strengths and weakness of the many methods and their relationship
to one another.

2 Historical Background

The Greek astronomer Claudius Ptolemy (100–168 A.D.) was the first known
to produce the data for creating a map showing the inhabited world as it
was known to the Greeks and Romans of about 100–150 A.D. In his work
Geography [89] he explains how to project a sphere onto a flat piece of paper
using a system of grid lines – longitude and latitude.

As we know from peeling oranges and trying to flatten the peels on a table,
the sphere cannot be projected onto the plane without distortions and there-
fore certain compromises must be made. Fig. 1 shows some examples. The
orthographic projection (a), which was known to the Egyptians and Greeks
more than 2000 years ago, modifies both angles and areas, but the directions
from the centre of projection are true. Probably the most widely used pro-
jection is the stereographic projection (b) usually attributed to Hipparchus
(190–120 B.C.). It is a conformal projection, i.e., it preserves angles (at the
expense of areas). It also maps circles to circles, no matter how large (great
circles are mapped into straight lines), but a loxodrome is plotted as a spiral. A
loxodrome is a line of constant bearing and of vital importance in navigation.
In 1569, the Flemish cartographer Gerardus Mercator (1512–1594), whose
goal was to produce a map which sailors could use to determine courses [87],
overcame this drawback with his conformal cylindrical Mercator projection (c)
which draws every loxodrome as a straight line. Neither the stereographic nor
the Mercator projections preserve areas however. Johann Heinrich Lambert

(a) (b) (c) (d)

Fig. 1. (a) orthographic, (b) stereographic, (c) Mercator, and (d) Lambert projec-
tions of the Earth.

Surface Parameterization 159

(1728–1777) found the first equiareal projection (d) in 1772 [86], at the cost
of giving up the preservation of angles.

All these projections can be seen as functions that map a part of the surface
of the sphere to a planar domain and the inverse of this mapping is usually
called a parameterization. Many of the principles of parametric surfaces and
differential geometry were developed by Carl Friedrich Gauß (1777–1855),
mostly in [81].

Conformal projections of general surfaces are of special interest due to
their close connection to complex analytic functions, and the Riemann Map-
ping Theorem. This theorem, due to Bernhard Riemann (1826–1866) in his
dissertation [91] of 1851, states that any simply-connected region of the com-
plex plane can be mapped conformally into any other simply-connected region,
such as the unit disk. It implies, similarly, that any disk-like surface can be
mapped conformally into any simply-connected region of the plane.

3 Differential Geometry Background

We take some basic theory of mappings from Kreyszig [85, Chap. VI]. Suppose
a surface S ⊂ IR3 has the parametric representation

x(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2))

for points (u1, u2) in some domain in IR2. We call such a representation regular
if (i) the functions x1, x2, x3 are smooth, i.e., differentiable as many times as
we need for our discussion, and (ii) the vectors

x1 =
∂x
∂u1

, x2 =
∂x
∂u2

are linearly independent at every point (their cross product x1 × x2 is non-
zero).

Many properties of S are characterised by its first fundamental form, which
is the square of the element of arc of a curve in S, the quadratic form

ds2 = x1 · x1 (du1)
2

+ 2x1 · x2 du
1du2 + x2 · x2 (du2)

2
.

Writing
gαβ = xα · xβ , α = 1, 2, β = 1, 2,

and arranging the coefficients in a symmetric matrix

I =
(
g11 g12
g12 g22

)
we have

ds2 = (du1 du2) I
(
du1

du2

)
.

160 Michael S. Floater and Kai Hormann

x (u1,u2)
=

(u1¤,u2¤)

x¤

f

S
S¤

Fig. 2. The mapping f from S to S∗ and the parameterization x of S induce the
parameterization x∗ = f ◦ x of S∗.

Often, the matrix I is itself referred to as the first fundamental form. Under
the assumption of regularity, this matrix has a strictly positive determinant

g = det I = g11g22 − g2
12,

the discriminant of the quadratic form. In this case, the form is positive defi-
nite. The coefficients gαβ are the components of a covariant tensor of second
order, called the metric tensor, denoted simply by gαβ .

Suppose now that S is a surface with coordinates (u1, u2) and that f is a
mapping from S to a second surface S∗. Then we can define the parameteri-
zation x∗ = f ◦x of S∗, so that the coordinates of any image point f(p) ∈ S∗

are the same as those of the corresponding pre-image point p ∈ S; see Fig. 2.
We say that the mapping f is allowable if the parameterization x∗ is regular.
With this set up we will now consider various kinds of mappings.

3.1 Isometric Mappings

An allowable mapping from S to S∗ is isometric or length-preserving if the
length of any arc on S∗ is the same as that of its pre-image on S. Such a
mapping is called an isometry.

For example, the mapping of a cylinder into the plane that transforms
cylindrical coordinates into cartesian coordinates is isometric.

Theorem 1. An allowable mapping from S to S∗ is isometric if and only if
the coefficients of the first fundamental forms are the same, i.e.,

I = I∗.

Surface Parameterization 161

Two surfaces are said to be isometric if there exists an isometry between them.
Isometric surfaces have the same Gaussian curvature at corresponding pairs
of points (since Gaussian curvature depends only on the first fundamental
form).

3.2 Conformal Mappings

An allowable mapping from S to S∗ is conformal or angle-preserving if the
angle of intersection of every pair of intersecting arcs on S∗ is the same as
that of the corresponding pre-images on S at the corresponding point.

For example, the stereographic and Mercator projections are conformal
maps from the sphere to the plane; see Fig. 1.

Theorem 2. An allowable mapping from S to S∗ is conformal or angle-
preserving if and only if the coefficients of the first fundamental forms are
proportional, i.e.,

I = η(u1, u2) I∗, (1)

for some scalar function η �= 0.

3.3 Equiareal Mappings

An allowable mapping from S to S∗ is equiareal if every part of S is mapped
onto a part of S∗ with the same area.

For example, the Lambert projection is an equiareal mapping from the
sphere to the plane; see Fig. 1.

Theorem 3. An allowable mapping from S to S∗ is equiareal if and only if
the discriminants of the first fundamental forms are equal, i.e.,

g = g∗. (2)

The proofs of the above three results can be found in Kreyszig [85]. It is then
quite easy to see the following (see also Kreyszig).

Theorem 4. Every isometric mapping is conformal and equiareal, and every
conformal and equiareal mapping is isometric, i.e.,

isometric ⇔ conformal + equiareal.

We can thus view an isometric mapping as ideal, in the sense that it preserves
just about everything we could ask for: angles, areas, and lengths. However,
as is well known, isometric mappings only exist in very special cases. When
mapping into the plane, the surface S would have to be developable, such as a
cylinder. Many approaches to surface parameterization therefore attempt to
find a mapping which either

1. is conformal, i.e., has no distortion in angles, or
2. is equiareal, i.e., has no distortion in areas, or
3. minimises some combination of angle distortion and area distortion.

162 Michael S. Floater and Kai Hormann

3.4 Planar Mappings

A special type of mappings that we will consider now and then in the following
are planar mappings f : IR2 → IR2, f(x, y) = (u(x, y), v(x, y)). For these kind
of mappings the first fundamental form can be written as

I = JTJ

where J =
(
ux

vx

uy

vy

)
is the Jacobian of f . It follows that the singular values σ1

and σ2 of J are just the square roots of the eigenvalues λ1 and λ2 of I and it
is then easy to verify

Proposition 1. For a planar mapping f : IR2 → IR2 the following equivalen-
cies hold:

1. f is isometric ⇔ I =
(

1
0

0
1

)
⇔ λ1 = λ2 = 1 ⇔ σ1 = σ2 = 1,

2. f is conformal ⇔ I =
(

η
0

0
η

)
⇔ λ1/λ2 = 1 ⇔ σ1/σ2 = 1,

3. f is equiareal ⇔ det I = 1 ⇔ λ1λ2 = 1 ⇔ σ1σ2 = 1.

4 Conformal and Harmonic Mappings

Conformal mappings have many nice properties, not least of which is their
connection to complex function theory. Consider for the moment the case
of mappings from a planar region S to the plane. Such a mapping can be
viewed as a function of a complex variable, ω = f(z). Locally, a conformal
map is simply any function f which is analytic in a neighbourhood of a point
z and such that f ′(z) �= 0. A conformal mapping f thus satisfies the Cauchy-
Riemann equations, which, with z = x+ iy and ω = u+ iv, are

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (3)

Now notice that by differentiating one of these equations with respect to x
and the other with respect to y, we obtain the two Laplace equations

∆u = 0, ∆v = 0,

where

∆ =
∂2

∂x2
+

∂2

∂y2

is the Laplace operator.
Any mapping (u(x, y), v(x, y)) which satisfies these two Laplace equations

is called a harmonic mapping. Thus a conformal mapping is also harmonic,
and we have the implications

isometric ⇒ conformal ⇒ harmonic.

Surface Parameterization 163

f

S
S¤

Fig. 3. One-to-one harmonic mappings.

Why do we consider harmonic maps? Well, their big advantage over confor-
mal maps is the ease with which they can be computed, at least approximately.
After choosing a suitable boundary mapping (which is equivalent to using a
Dirichlet boundary condition for both u and v), each of the functions u and
v is the solution to a linear elliptic partial differential equation (PDE) which
can be approximated by various methods, such as finite elements or finite dif-
ferences, both of which lead to a linear system of equations. Harmonic maps
are also guaranteed to be one-to-one for convex regions. The following result
was conjectured by Radó [90] and proved independently by Kneser [84] and
Choquet [80].

Theorem 5 (RKC). If f : S → IR2 is harmonic and maps the boundary ∂S
homeomorphically into the boundary ∂S∗ of some convex region S∗ ⊂ IR2,
then f is one-to-one; see Fig. 3.

On the downside, harmonic maps are not in general conformal and do not
preserve angles. For example, it is easy to verify from the Cauchy-Riemann
and Laplace equations that the bilinear mapping f : [0, 1]2 → IR2 defined by

u = x(1 + y), v = y,

is harmonic but not conformal. Indeed the figure below clearly shows that this
harmonic map does not preserve angles.

f

Fig. 4. A harmonic mapping which is not conformal.

Another weakness of harmonic mappings is their “one-sidedness”. The
inverse of a harmonic mapping is not necessarily harmonic. Again, the bilinear
example above provides an example of this. It is easy to check that the inverse

164 Michael S. Floater and Kai Hormann

mapping x = u/(1 + v), y = v is not harmonic as the function x(u, v) does
not satisfy the Laplace equation.

Despite these drawbacks, harmonic mappings do at least minimise defor-
mation in the sense that they minimise the Dirichlet energy

ED(f) =
1
2

∫
S

‖gradf‖2 =
1
2

∫
S

(
‖∇u‖2 + ‖∇v‖2)

.

This property combined with their ease of computation explains their popu-
larity.

When we consider mappings from a general surface S ⊂ IR3 to the plane,
we find that all the above properties of conformal and harmonic mappings
are essentially the same. The equations just become more complicated. Any
mapping f from a given surface S to the plane defines coordinates of S, say
(u1, u2). By Theorem 2, if f is conformal then there is some scalar function
η �= 0 such that

ds2 = η(u1, u2)
(
(du1)

2
+ (du2)

2)
.

Suppose that S has given coordinates (ũ1, ũ2). After some analysis (see
Chap. VI of Kreyszig), one can show that the above equation implies the
two equations

∂u1

∂ũ1
=
g̃11√
g̃

∂u2

∂ũ2
− g̃12√

g̃

∂u2

∂ũ1
,

∂u1

∂ũ2
=

−g̃22√
g̃

∂u2

∂ũ1
+
g̃12√
g̃

∂u2

∂ũ2
, (4)

which are a generalisation of the Cauchy-Riemann equations (3). Indeed, in
the special case that S is planar, we can take

g̃11 = g̃22 = 1, g̃12 = 0, (5)

and we get simply
∂u1

∂ũ1
=
∂u2

∂ũ2
,

∂u1

∂ũ2
= −∂u2

∂ũ1
.

In a similar manner to the planar case, we can differentiate one equation in
(4) with respect to ũ1 and the other with respect to ũ2, and obtain the two
generalisations of Laplace’s equation,

∆Su
1 = 0, ∆Su

2 = 0, (6)

where ∆S is the Laplace-Beltrami operator

∆S =
1√
g̃

(
∂

∂ũ1

(
g̃22√
g̃

∂

∂ũ1
− g̃12√

g̃

∂

∂ũ2

)
+

∂

∂ũ2

(
g̃11√
g̃

∂

∂ũ2
− g̃12√

g̃

∂

∂ũ1

))
.

When this operator is differentiated out, one finds that it is a linear elliptic
operator with respect to the coordinates (ũ1, ũ2) (as noted and exploited by
Greiner [82]). This operator generalises the Laplace operator (as can easily be
checked by taking S to be planar with g̃αβ as in (5)), and is independent of the

Surface Parameterization 165

particular coordinates (in this case (ũ1, ũ2)) used to define it. As explained
by Klingenberg [83], it can also be written simply as

∆S = divS gradS .

In a similar manner to the planar case, a harmonic map can either be viewed
as the solution to equation (6), or as the minimiser of the Dirichlet energy

ED(f) =
1
2

∫
S

‖gradSf‖
2

over the surface S.

5 Equiareal Mappings

As we saw in Sect. 3, there are essentially only two quantities to consider
minimising in a mapping: angle distortion and area distortion.

We know from the Riemann mapping theorem that (surjective) conformal
mappings from a disk-like surface to a fixed planar simply-connected region
not only exist but are also almost unique. For example, consider mapping the
unit disk S into itself (treating S as a subset of the complex plane), and choose
any point z ∈ S and any angle θ, −π < θ ≤ π. According to the theorem,
there is precisely one conformal mapping f : S → S such that f(z) = 0 and
arg f ′(z) = θ. In this sense there are only the three degrees of freedom defined
by the complex number z and the real angle θ in choosing the conformal map.

What we want to do now is to demonstrate that equiareal mappings are
substantially different to conformal ones from the point of view of uniqueness
as there are many more of them. The following example is to our knowledge
novel and nicely illustrates the abundance of equiareal mappings. Consider
again mappings f : S → S, from the unit disk S into itself. Using the polar
coordinates x = r cos θ, y = r sin θ, one easily finds that the determinant of
the Jacobian of any mapping f(x, y) = (u(x, y), v(x, y)) can be expressed as

det J(f) = uxvy − uyvx =
1
r
(urvθ − uθvr).

Consider then the mapping f : S → S defined by

r(cos θ, sin θ) �→ r
(
cos(θ + φ(r)), sin(θ + φ(r))

)
,

for 0 ≤ r ≤ 1 and −π < θ ≤ π, where φ : [0, 1] → IR is an arbitrary function.
This mapping maps each circle of radius r centred at the origin into itself,
rotated by the angle φ(r); see Fig. 5. If φ is differentiable then so is f and
differentiation shows that

urvθ − uθvr = r,

166 Michael S. Floater and Kai Hormann

f

Fig. 5. An equiareal mapping.

independent of the function φ. We conclude that detJ(f) = 1 and therefore,
according to Proposition 1, f is equiareal, irrespective of the chosen univariate
function φ.

It is not difficult to envisage other families of equiareal mappings con-
structed by rotating circles about other centres in S. These families could
also be combined to make further equiareal mappings.

When we consider again the formulations of conformal and equiareal map-
pings in terms of the first fundamental form, the lack of uniqueness of equiareal
mappings becomes less surprising. For, as we saw earlier, the property of con-
formality (1) essentially places two conditions on the three coefficients of the
first fundamental form g∗11, g

∗
12, g

∗
22, while the property of equiarealness (2)

places only one condition on them (the three conditions together of course
completely determine the three coefficients, giving an isometric mapping).

Considering not only the non-uniqueness, but also the rather strange rota-
tional behaviour of the above mappings, we conclude that it is hardly sensible
to try to minimise area deformation alone. In order to find a well-behaved
mapping we surely need to combine area-preservation with some minimisa-
tion of angular distortion.

6 Discrete Harmonic Mappings

Common to almost all surface parameterization methods is to approximate
the underlying smooth surface S by a piecewise linear surface ST , in the form
of a triangular mesh, i.e. the union of a set T = {T1, . . . , TM} of triangles Ti

such that the triangles intersect only at common vertices or edges. Nowadays
in fact, surfaces are frequently simply represented as triangular meshes, and
the smooth underlying surface is often not available. We will denote by V the
set of vertices. If ST has a boundary, then the boundary will be polygonal
and we denote by VB the set of vertices lying on the boundary and by VI the
set of interior vertices.

The most important parameterization task is to map a given disk-like
surface S ⊂ IR3 into the plane. Working with a triangular mesh ST , the goal
is to find a suitable (polygonal) domain S∗ ⊂ IR2 and a suitable piecewise
linear mapping f : ST → S∗ that is linear on each triangle Ti in ST and
continuous; see Fig. 6. Such a mapping is uniquely determined by the images
f(v) ∈ IR2 of the vertices v ∈ V .

Surface Parameterization 167

f
ST S¤

Fig. 6. Piecewise linear mapping of a triangular mesh.

6.1 Finite Element Method

One of the earliest methods for mapping disk-like surfaces into the plane
was to approximate a harmonic map using the finite element method based
on linear elements. This method was introduced to the computer graphics
community by Eck et al. [12] and called simply a discrete harmonic map,
although a similar technique had earlier been used by Pinkall and Polthier for
computing piecewise linear minimal surfaces [56]. The basic method has two
steps.

1. First fix the boundary mapping, i.e. fix f |∂ST = f0, by mapping the
polygonal boundary ∂ST homeomorphically to some polygon in the plane.
This is equivalent to choosing the planar image of each vertex in the mesh
boundary ∂ST and can be done in several ways (see [14] or [33, Sec. 1.2.5]
for details).

2. Find the piecewise linear mapping f : ST → S∗ which minimises the
Dirichlet energy

ED =
1
2

∫
ST

‖gradST f‖
2
,

subject to the Dirichlet boundary condition f |∂ST = f0.

The main advantage of this method over earlier approaches is that this is
a quadratic minimisation problem and reduces to solving a linear system of
equations. Consider one triangle T = [v1, v2, v3] in the surface ST . Referring
to Fig. 7, one can show that

2
∫

T

‖gradT f‖
2 = cot θ3‖f(v1) − f(v2)‖2

+ cot θ2‖f(v1) − f(v3)‖2 + cot θ1‖f(v2) − f(v3)‖2
.

168 Michael S. Floater and Kai Hormann

Fig. 7. Atomic map between a mesh triangle and the corresponding parameter
triangle.

The normal equations for the minimisation problem can therefore be expressed
as the linear system of equations∑

j∈Ni

wij(f(vj) − f(vi)) = 0, vi ∈ VI , (7)

where
wij = cotαij + cotβij (8)

and the angles αij and βij are shown in the figure below. Here we have assumed
that the vertices in V are indexed (in any random order) and that Ni denotes
the set of indexes of the neighbours of the vertex vi (those vertices which
share an edge with vi).

vj

®ij

vi

¯ij
°ij±ij

Fig. 8. Angles for the discrete harmonic map and the mean value coordinates.

The associated matrix is symmetric and positive definite, and so the linear
system is uniquely solvable. The matrix is also sparse and well-conditioned
enough that iterative methods are effective, e.g., conjugate gradients. Note
that the system has to be solved twice, once for the x- and once for the y-
coordinates of the parameter points f(vi), vi ∈ VI . In practice the method
often gives good visual results.

Surface Parameterization 169

6.2 Convex Combination Maps

The theory of finite elements [79] provides a well-established convergence the-
ory for finite element approximations to second order elliptic PDEs. Extrap-
olating this theory, we can argue that the error incurred when discretising a
harmonic map f : S → S∗, S∗ ⊂ IR2, from a smooth surface to the plane,
by a discrete harmonic map over some triangular mesh ST of S, will tend to
zero as the mesh size tends to zero (in an appropriate norm and under certain
conditions on the angles of the triangles).

Due to the RKC Theorem 5, it is therefore reasonable to expect that, with
S∗ convex, a discrete harmonic map f : ST → S∗, like its harmonic cousin,
will be one-to-one, i.e., that for every oriented triangle T = [v1, v2, v3] in the
surface ST , the mapped triangle f(T) = [f(v1), f(v2), f(v3)] would be non-
degenerate and have the same orientation. It turns out that this is guaranteed
to be true if all the weights wij in Equation (7) are positive. To understand
this, note that if we define the normalised weights

λij = wij

/ ∑
k∈Ni

wik,

for each interior vertex vi, we can re-express the system (7) as

f(vi) =
∑
j∈Ni

λijf(vj), vi ∈ VI . (9)

It follows that if all the weights wij are positive then so are the weights λij

and the piecewise linear mapping f demands that each mapped interior vertex
f(vi) will be a convex combination of its neighbours f(vj), and so must lie in
their convex hull. It is reasonable to call any piecewise linear mapping of this
kind a convex combination mapping. The special case in which the weights λij

are uniform, i.e., for each interior vertex vi they are equal to 1/di, where di

is the valency of vertex vi, was called a barycentric mapping by Tutte [92] (in
a more abstract graph-theoretic setting). Each image point f(vi) is forced to
be the barycentre of its neighbours. Tutte showed the following.

Theorem 6 (Tutte). A barycentric mapping of any simple 3-connected pla-
nar graph G is a valid straight line embedding.

It was later observed in [14] that this theorem applies to triangular meshes,
and moreover, that Tutte’s proof could be extended in a simple way to al-
low arbitrary positive weights λij in Equation (9) satisfying

∑
j∈Ni

λij = 1.
Recently, an independent and simpler proof of this result was given in [19].

Theorem 7. If f : ST → S∗ is a convex combination mapping which maps
∂ST homeomorphically into a convex polygon ∂S∗, then f is one-to-one.

170 Michael S. Floater and Kai Hormann

Recalling the weights of Equation (8), notice from trigonometry that

cotαij + cotβij =
sin(αij + βij)
sinαij sinβij

,

and so
wij > 0 ⇐⇒ αij + βij < π.

Therefore, it follows (see again [19]):

Proposition 2. A discrete harmonic map f : ST → S∗ is one-to-one if it
maps ∂ST homeomorphically into a convex polygon ∂S∗ and if the sum of
every pair of opposite angles of quadrilaterals in ST is less than π.

Generally speaking, this opposite-angle condition is fulfilled when the triangles
are “well-shaped”, and holds in particular when all angles of all triangles in
ST are less than π/2.

Conversely, counterexamples have been constructed (a numerical one in
Duchamp et al. [11] and an analytical one in [15]) which show that if the
opposite-angle condition does not hold then the discrete harmonic map may
not be one-to-one: some triangles “flip over”, i.e. have the wrong orientation.

We envisage two possible ways of tackling this problem. The first approach
is to perform some preprocessing operation on the given triangular mesh and
insert new vertices to split triangles and perhaps swap some edges in order to
obtain a new mesh for which the opposite angle condition holds. Of course,
if the mesh is planar, we could simply use the well-known Delaunay swap
criterion, and we would eventually end up with a Delaunay triangulation,
which certainly satisfies the opposite angle condition in every quadrilateral,
provided no four points are co-circular. However, we do not know of any con-
crete swapping procedure in the literature which provides the same guarantee
for a general surface mesh. The other alternative is to design a convex com-
bination map with good properties and if possible to mimic the behaviour of
a harmonic map.

6.3 Mean Value Coordinates

In addition to injectivity, another natural property that we can expect from a
mapping is to be an isometry whenever possible. It is well-known [83, 85] that
such an isometry exists if and only if the surface S is developable. Piecewise
linear surfaces ST are developable if the angles around each interior vertex
sum up to 2π which rarely is the case, unless ST is planar. We therefore
propose that a good piecewise linear mapping should have the following re-
production property : In the case that the surface mesh ST is planar and its
planar polygonal boundary is mapped affinely into the plane, then the whole
mapping should be the same affine mapping.

Surface Parameterization 171

(a) (b) (c) (d) (e)

Fig. 9. Remeshing a triangle mesh with a regular quadrilateral mesh using different
parameterization methods.

Discrete harmonic maps have this reproduction property but are not guar-
anteed to be injective. The shape-preserving method of [14] is a convex combi-
nation mapping (and therefore always one-to-one for convex images), designed
also to have this reproduction property. In many numerical examples, the dis-
crete harmonic map and shape-preserving maps look visually very similar,
especially when the surface is not far from planar. For more complex shapes,
the two methods begin to differ more, with the shape-preserving map being
more robust in the presence of long and thin triangles.

A more recent paper [18] gives an alternative construction of a convex
combination mapping with the reproduction property, which both simplifies
the shape-preserving method of [14] and at the same time directly discretises
a harmonic map. It is based on mean value coordinates and motivated as ex-
plained below. The numerical results are quite similar to the shape-preserving
parameterization. Fig. 9 shows the result of first mapping a triangle mesh
(a) to a square and then mapping a regular rectangular grid back onto the
mesh. The four mappings used are barycentric (b), discrete harmonic (c),
shape-preserving (d), and mean value (e).

The idea in [18] is the observation that harmonic functions (and therefore
also harmonic maps) satisfy the mean value theorem. At every point in its
(planar) domain, the value of a harmonic function is equal to the average
of its values around any circle centred at that point. This suggests finding a
piecewise linear map f : ST → S∗, for a planar triangular mesh ST , which
satisfies the mean value theorem at every interior vertex vi of the mesh. We
let Γi be a circle centred at vi with radius ri > 0 small enough that Γi only
intersects triangles in T which are incident on vi. We then demand that

f(vi) =
1

2πri

∫
Γi

f(v) ds.

Some algebra then shows that independently of ri > 0 (for ri small enough),
the above equation is the same as Equation (7) but with the weights wij

replaced by

172 Michael S. Floater and Kai Hormann

wij =
tan(δij/2) + tan(γij/2)

||vj − vi||
,

with the angles shown in Fig. 8, and where now wij �= wji in general. When
ST is a surface mesh, we simply use the same weights with the angles δij
and γij taken from the mesh triangles. For a recent in-depth comparison
of computational aspects of discrete harmonic maps and mean value maps,
including multilevel solvers, see Aksoylu, Khodakovsky, and Schröder [1].

Energy Minimisation

We have seen that mean value maps discretise harmonic maps in a certain
way, but in contrast to discrete harmonic maps they are not the solution of
a known minimisation problem. This makes them a bit special because all
other parameterization methods in the literature stem from the minimisation
of some energy.

For example, discrete harmonic maps minimise the Dirichlet energy, and
recently Guskov [29] showed that the shape-preserving maps minimise an
energy that is based on second differences. But these are not the only energies
that are minimised by convex combination maps. Greiner and Hormann [25]
showed that any choice of symmetric weights wij = wji in (7) minimises a
spring energy and Desbrun, Meyer, and Alliez [10] proposed the chi energy
that is minimised if the Wachspress coordinates [93, 94, 88] are taken as wij .

An interesting question for future research is whether there also exists a
meaningful energy that is minimised by mean value mappings.

6.4 The Boundary Mapping

The first step in constructing both the discrete harmonic and the convex
combination maps is to choose the boundary mapping f |∂ST . There are two
issues here: (i) choosing the shape of the boundary, and (ii) choosing the
distribution of the points around the boundary.

Choosing the Shape

In many applications, it is sufficient (or even desirable) to map to a rectangle
or a triangle, or even a polygonal approximation to a circle. In all these cases,
the boundary is convex and the methods of the previous section work well.

The convexity restriction may, however, generate big distortions near the
boundary when the boundary of the surface ST does not resemble a convex
shape. One practical solution to avoid such distortions is to build a “virtual”
boundary, i.e., to augment the given mesh with extra triangles around the
boundary so as to construct an extended mesh with a “nice” boundary. This
approach has been successfully used by Lee, Kim, and Lee [43], and Kós and
Várady [40].

Surface Parameterization 173

Choosing the Distribution

Consider first the case of a smooth surface S with a smooth boundary ∂S.
Due to the Riemann Mapping Theorem we know that S can be mapped into
any given simply-connected region S∗ ⊂ IR2 by a conformal map f : S → S∗.
Since any such conformal map defines a boundary mapping f |∂S : ∂S → ∂S∗,
this implies (assuming smooth well-behaved boundaries) that there must ex-
ist some boundary mapping such that the harmonic map it defines is also
conformal. Such a boundary mapping seems like an ideal mapping to aim for.
However, to the best of our knowledge it is not known how to find one.

Thus in the case of piecewise linear mappings, the usual procedure in the
literature is to choose some simple boundary mapping such as chord length
parameterization (for polygons), either around the whole boundary, or along
each side of the boundary when working with triangular or rectangular bound-
aries.

An interesting topic for future research is to search for better ways to
distribute the mapped boundary points around a fixed, chosen boundary (such
as a circle). It seems likely that finding a distribution that maximises the
conformality of the whole mapping will depend at least on the global shape
of the surface mesh boundary and perhaps on the shape of the surface itself.
As far as we know this issue has not yet been addressed in the literature.

7 Discrete Conformal Mappings

In all the parameterization methods described in the previous section, the
boundary mapping f |∂ST had to be fixed in advance and preferably map to
a convex polygon. There are, however, several approaches that maximise the
conformality of the piecewise linear mapping without demanding the mesh
boundary to be mapped onto a fixed shape. Instead, these methods allow the
parameter values of the boundary points to be included into the optimisation
problem and the shape of the parameter domain is determined by the method.

7.1 Most Isometric Parameterizations

The method of Hormann and Greiner [34] is based on measuring the confor-
mality of a (non-degenerate) bivariate linear function g : IR2 → IR2 by the
condition number of its Jacobian J with respect to the Frobenius-norm, which
can be expressed in terms of the singular values σ1 and σ2 of J as follows:

EM (g) = κF (J) = ‖J‖F ‖J−1‖F =
√
σ2

1 + σ2
2

√
1/σ2

1 + 1/σ2
2 =

σ1

σ2
+
σ2

σ1
.

According to Proposition 1 this functional clearly is minimal if and only if g
is conformal. Since each atomic map f |T : T → IR2 can be seen as such a

174 Michael S. Floater and Kai Hormann

bivariate linear function, the conformality of the piecewise linear mapping f
is then defined as

EM (f) =
∑
T∈T

EM (f |T). (10)

This energy is bounded from below by twice the number of triangles in T and
this minimum is obtained if and only if f is conformal. Thus, minimising (10)
gives a parameterization that is as conformal as possible. Note that piecewise
linear functions can only be conformal if the surface ST is developable and
conformality implies isometry in this case. Hence the term “most isometric
parameterisations” (MIPS).

Interestingly, the notion of singular values is also useful to express the
Dirichlet energy of a linear mapping g(x, y) = (u(x, y), v(x, y)). Using the
identity

σ2
1 + σ2

2 = trace (JTJ) = trace (I) = u2
x + u2

y + v2
x + v2

y (11)

we find for any planar region S that

ED(g) =
1
2

∫
S

‖grad g‖2 =
1
2

∫
S

(‖∇u‖2 + ‖∇v‖2) =
1
2
(σ2

1 + σ2
2)A(S),

where A(S) denotes the area of S. Further considering the identity

σ1σ2 = detJ = uxvy − uyvx = A(g(S))/A(S) (12)

reveals a close relation between the MIPS energy of an atomic map and its
Dirichlet energy,

EM (f |T) = 2
ED(f |T)
A(f(T))

.

This underlines the conformality property of the MIPS method since it is well
known that ED(f |T) ≥ A(f(T)) with equality if and only if f is conformal.

It also shows that the MIPS energy in (10) is a sum of quadratic rational
functions in the unknown parameter values f(v) and thus the minimisation
is a non-linear problem. As proposed in [36], this problem can be solved in
the following way. Starting from an initial barycentric mapping, each planar
vertex is repeatedly relocated in order to minimise the functional locally there.
During this iteration, each vertex pi = f(vi) in the current planar mesh lies
in the kernel Ki of the star-shaped polygon formed by its neighbours. Since
the MIPS energy is infinite if any mapped triangle f(T) is degenerate, it is
infinite on the boundary of the kernel Ki. There must therefore be a local
minimum to the local functional somewhere in the interior of Ki. In fact, it
has been shown in [33, Sec. 1.3.2] that the local functional is convex over
the interior of Ki and that the local minimum can be found efficiently using
Newton’s method. By moving pi to this minimum, the method ensures that
the updated planar mesh will not have any folded triangles.

Surface Parameterization 175

7.2 Angle-based Flattening

While the conformality condition used in the previous section is triangle-
based and can be expressed in terms of the parameter values f(v), v ∈ V , the
method of Sheffer and de Sturler [69] minimises a pointwise criterion that is
formulated in terms of the angles of the parameter triangles.

Let us denote by θi the mesh angles in ST and by αi the corresponding
planar angles in S∗ We further define I(v) as the set of indices of the angles
around a vertex v ∈ V and the sum of these angles, θ(v) =

∑
i∈I(v) θi. For

any interior vertex v ∈ VI , the planar angles αi, i ∈ I(v) sum up to 2π, but
the corresponding mesh angles usually do not. This angular deformation is
inevitable for piecewise linear mappings and the best one can hope for is that
the deformation is distributed evenly around the vertex. Sheffer and de Sturler
therefore define for each v ∈ V the optimal angles βi = θis(v), i ∈ I(v) with
a uniform scale factor

s(v) =
{

2π/θ(v), v ∈ VI ,
1, v ∈ VB ,

and determine an optimal set of planar angles by minimising the energy

E(α) =
∑

i

(αi/βi − 1)2. (13)

They finally construct the parameter values f(v) and thus the piecewise linear
mapping f itself from the angles αi.

Though the minimisation problem is linear in the unknowns αi, it becomes
non-linear as a number of constraints (some of which are non-linear) have to
be taken into account to guarantee the validity of the solution. A simplification
of these constraints as well as a discussion of suitable solvers can be found
in [77]. As in the previous section, the energy in (13) is bounded from below
and the minimum is obtained if and only if ST is developable with θ(v) = 2π
at all interior vertices and f is conformal with αi = βi = θi for all i.

7.3 Linear Methods

Lévy et al. [47] and Desbrun et al. [10] both independently developed a third
method to compute discrete conformal mappings which has the advantage
of being linear. For a bivariate linear function g : IR2 → IR2, Lévy et al.
propose measuring the violation of the Cauchy-Riemann equations (3) in a
least squares sense, i.e., with the conformal energy

EC(g) =
1
2
(
(ux − vy)2 + (uy + vx)2

)
.

Based on this they find the optimal piecewise linear mapping f : ST → S∗ by
minimising

176 Michael S. Floater and Kai Hormann

EC(f) =
∑
T∈T

EC(f |T)A(T).

Like the MIPS energy, EC(g) can be expressed in terms of the singular values
of the Jacobian of g and there is a close relation to the Dirichlet energy. Using
(11) and (12) we find

EC(g) =
1
2
(σ1 − σ2)

2

and
EC(g)A(S) = ED(g) −A(g(S))

for any planar region S. Therefore we have

EC(f) = ED(f) −A(f),

which also shows that EC(f) is quadratic in the unknowns f(v) and that the
normal equations for the minimisation problem can therefore be expressed as
a linear system of equations.

Desbrun et al. take a slightly different path to arrive at the same system.
They start with the finite element method (see Sect. 6.1) that yields the
equations

Dp ED(f) = 0

for all parameter points p = f(v) of the interior vertices v ∈ VI ; compare (7).
But instead of fixing the boundary f |∂ST , they impose natural boundary con-
straints,

Dp ED(f) = Dp A(f),

for all p = f(v), v ∈ VB. But as they also show that Dp A(f) = 0 at the
interior vertices, this amounts to solving

gradED = gradA,

and is thus equivalent to minimising EC(f).
However, as EC(f) is clearly minimised by all degenerate mappings f that

map ST to a single point, additional constraints are needed to find a unique
and non-trivial solution. Both papers therefore propose to fix the parameter
values f(v), f(w) of two vertices v, w ∈ V . The solution depends on this choice.
For example, if we parameterize the pyramid in Fig. 10 (a) whose vertices lie
on the corners of a cube, fixing p1 = f(v1) and p2 = f(v2) gives the solution
in (b), while fixing p1 = f(v1) and p3 = f(v3) results in the parameterization
shown in (c).

Note that the x- and y-coordinates of the parameter points f(v) are cou-
pled in this approach since the areas of the parameter triangles are involved.
Thus the size of the system to be solved is roughly twice as large as the one
for discrete harmonic maps (see Sect. 6.1).

We further remark that unlike the MIPS and the angle based flattening
methods, this approach may generate folded triangles and that we do not know
of any sufficient conditions that guarantee the resulting parameterization to
be a one-to-one mapping.

Surface Parameterization 177

v1 v2

v3v4

v5

p1 p2

p5

p3p4

p1 p2

p5

p3p4

(a) (b) (c)

Fig. 10. Example of two different discrete conformal mappings for the same trian-
gulation.

8 Discrete Equiareal Mappings

In view of the high degree of non-uniqueness of equiareal mappings shown in
Sect. 5, it is not surprising that discrete (piecewise linear) equiareal mappings
are also far from unique and also exhibit strange behaviour. For example, an
obvious attempt at an area-preserving mapping f : ST → S∗, S∗ ⊂ IR2, for a
triangular mesh ST ⊂ IR3 is to fix the polygonal region S∗ to have the same
area as that of ST , and then to find f which minimises a functional like

E(f) =
∑
T∈T

(
A(f(T)) −A(T)

)2
.

Unlike the discrete Dirichlet energy, this functional is no longer quadratic in
the coordinates of the image points f(v). Not surprisingly, there exist meshes
for which E has several minima and, moreover, there may be several mappings
f such that E(f) = 0. Fig. 11 shows an example in which the area A(f(T)) of
each image triangle is equal to the area of the corresponding domain triangle
A(T) and thus E(f) = 0. In other words, f is a (discrete) equiareal mapping.

Other examples of minimising the functional E and its variants often pro-
duce long and thin triangles. In some cases triangles flip over. Maillot, Yahia,
and Verroust [52] gave a variant of E in which each term in the sum is divided
by A(T), but few numerical examples are given in their paper. Surazhsky and

Fig. 11. Two planar meshes whose corresponding triangles have the same area.

178 Michael S. Floater and Kai Hormann

Gotsman [76] have found area-equalisation useful for other purposes, specifi-
cally for remeshing.

Recently, Degener et al. [9] extended the MIPS method to find parame-
terizations that mediate between angle and area deformation. They measure
the area deformation of a bivariate linear function g by

EA(g) = detJ +
1

det J
= σ1σ2 +

1
σ1σ2

,

which, according to Proposition 1, clearly is minimal if and only if g is
equiareal. They then minimise the overall energy

E(f) =
∑
T∈T

EM (f |T)EA(f |T)q
A(T),

where q ≥ 0 is a parameter that controls the relative importance of the angle
and the area deformation. Note that the case q = 0 corresponds to minimising
angle deformation alone, but that no value of q gives pure minimisation of
areas.

Sander et al. [62] explore methods based on minimising functionals that
measure the “stretch” of a mapping. These appear to retain some degree of
conformality in addition to reducing area distortion and seem to perform well
in numerical examples. In the notation of Sect. 7.1 they measure the stretch
of a bivariate linear mapping g : IR2 → IR2 by

E2(g) = ‖J‖F =
√
σ2

1 + σ2
2 and E∞(g) = ‖J‖∞ = σ1

and minimise one of the two functionals

E2(f) =

√√√√∑T∈T A(T)E2(f |−1
T)

2∑
T∈T A(T)

, E∞(f) = max
T∈T

E∞(f |−1
T).

Note that both functionals accumulate the stretch of the inverse atomic maps
f |−1

T that map from the parameter to the surface triangle. Sander et al. min-
imise these non-quadratic functionals with an iterative method similar to the
one described in Sect. 7.1. Like the MIPS method, both stretch functionals
always yield a one-to-one mapping. Numerical examples showing comparisons
with discrete harmonic maps are given in [62].

9 Parameterization Methods for Closed Surfaces

9.1 Surfaces with Genus Zero

There has been a lot of interest in spherical parameterization recently and
in this section we will briefly summarise recent work. Many of the methods

Surface Parameterization 179

attempt to mimic conformal (or harmonic) maps and are very similar to those
for mapping disk-like surfaces into the plane, although some of the linear
methods now become non-linear.

An important point is that, according to Gu and Yau [27], harmonic maps
from a closed genus zero surface to the unit sphere are conformal, i.e., har-
monic and conformal maps are the same when we deal with (closed) sphere-like
surfaces. Intuitively, this follows from the fact that the domain and image have
no boundary, and it is exactly the boundary map that makes the difference
between a conformal and a harmonic map in the planar case. According to Gu
and Yau there are essentially only six “degrees of freedom” (the Möbius trans-
formations) in a spherical conformal map, three of which are rotations, the
others involving some kind of area distortion (angles are of course preserved
by definition).

The method of Haker et al. [32] first maps the given sphere-like surface
ST into the plane and then uses stereographic projection (itself a conformal
map) to subsequently map to the sphere. The planar mapping part of this
construction appears to reduce to the usual discrete harmonic map described
in Sect. 6.1. Unfortunately, it is not clear in [32] how the surface is split or
cut to allow for a mapping into the plane and how the boundary condition is
treated.

Gu and Yau [28] have later proposed an iterative method which approxi-
mates a harmonic (and therefore conformal) map and avoids splitting. Specif-
ically, a harmonic map from a closed surface S to the unit sphere S∗ is a map
f : S → S∗ such that at every point p of S, the vector ∆Sf(p) ∈ IR3 is per-
pendicular to the tangent plane of S∗ at f(p). In the discrete case we consider
piecewise linear mappings f : ST → IR3 over an approximative mesh ST with
the property that f(v) lies on the unit sphere S∗ for every vertex v ∈ V of
the mesh ST . Gu and Yau propose approximating a harmonic (conformal)
map in the following way. Let Πvi

(u) denote the perpendicular projection of
any point u on the sphere S∗ onto the tangent plane of S∗ at vi. Then they
consider a map which solves the (non-linear) equations∑

j∈Ni

wij

(
Πvi

(f(vj)) − f(vi)
)

= 0, vi ∈ V,

where, as in the planar case (7), the coefficients wij are the weights of (8).
Gu and Yau [28] give many nice numerical examples based on their method.
However, numerical difficulties apparently arise when some of the weights wij

are negative, and they propose editing the original surface mesh, so that all
weights are positive, though no procedure for doing this is given.

One might expect that a piecewise linear map should be one-to-one if all
the weights are positive. Gotsman, Gu, and Sheffer have dealt with this issue
in [24]. They work with the alternative equations∑

j∈Ni

wijf(vj) = λif(vi), vi ∈ V.

180 Michael S. Floater and Kai Hormann

This equation says that a certain (positive) linear combination of the neigh-
bouring vectors f(vj) must be parallel to the unit vector f(vi), and the factor
λi > 1 is to be determined. Such a mapping is a spherical barycentric (or con-
vex combination) mapping. When the weights wij are constant with respect
to j we get an analogue of Tutte’s barycentric mapping into the plane. A theo-
rem by Colin de Verdière, described in [24], guarantees a valid embedding into
the sphere if certain conditions on the eigenvalues of the matrix formed by the
left hand sides of the equation hold. Unfortunately, it is currently not known
how to guarantee these conditions and examples of simple meshes can be con-
structed for which there are several possible barycentric mappings, some of
which are not one-to-one. However, the paper by Gotsman, Gu, and Sheffer
looks like a good start-point for future work in this direction.

The angle-based method of Sheffer and de Sturler [69] has been generalised
in a straightforward manner to the spherical case by Sheffer, Gotsman, and
Dyn [71] using a combination of angle and area distortion. The stretch metric
approach of Sander et al. [62] has been generalised to the spherical case by
Praun and Hoppe [58].

9.2 Surfaces with Arbitrary Genus

A well-known approach to parameterizing (mesh) surfaces of arbitrary genus
over simpler surfaces of the same genus is to somehow segment the mesh into
disk-like patches and then map each patch into the plane. Usually, triangular-
shaped patches are constructed and each patch is mapped to a triangle of a
so-called base mesh.

The challenge of this approach is to obtain mappings that are smooth
across the patch boundaries and the first methods [12, 42, 59, 30, 21] suffered
indeed from this problem. But recently Khodakovsky, Litke, and Schröder [38]
and Gu and Yau [28] proposed two different methods to compute parameter-
izations that are globally smooth with singularities occurring at only a few
extraordinary vertices.

10 Conclusion

We have summarised, as best we can, both early and recent advances in the
topic of surface parameterization. In addition to the 35 papers we have men-
tioned earlier in the text, we have added to the reference list a further 43
references to papers on surface parameterization, giving a total of 78 papers.

We feel it fair to say that the topic, as we know it now, began with the 1995
paper on the discrete harmonic map by Eck et al. [12], though essentially the
same method was proposed in 1993 by Pinkall and Polthier [56] for computing
minimal surfaces. During the period 1995–2000, we know of 19 published
papers on surface parameterization, many of which we summarised in [20]. In
contrast, we know of 49 papers on this topic which have been published during

Surface Parameterization 181

the period 2001–2003; see Fig. 12. Thus there has clearly been a significant
increase in research activity in this area in the last three years. A strong focus
among these recent papers has been on methods which automatically find the
boundary mapping, and methods for spherical parameterizations and other
topologies. These two latter topics look likely to receive further attention in
the future.

1985 1990 1995 2000

5

10

15

20

Fig. 12. Number of papers on surface parameterization per year (1985–2003).

Acknowledgements

We would like to thank several people for their helpful suggestions and feed-
back, especially Hugues Hoppe, Xianfeng Gu, Alla Sheffer, Craig Gotsman,
Vitaly Surazhsky, and the referees. This work was supported in part by the
European Union research project “Multiresolution in Geometric Modelling
(MINGLE)” under grant HPRN–CT–1999–00117.

References

Papers on Surface Parameterization

1. B. Aksoylu, A. Khodakovsky, and P. Schröder. Multilevel solvers for unstruc-
tured surface meshes. Preprint, 2003.

2. N. Arad and G. Elber. Isometric texture mapping for free-form surfaces. Com-
puter Graphics Forum, 16(5):247–256, 1997.

3. L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture maps. Com-
puter Graphics Forum, 21(3):411–420, 2002. Proceedings of Eurographics 2002.

4. C. Bennis, J.-M. Vézien, and G. Iglésias. Piecewise surface flattening for non-
distorted texture mapping. Proc. ACM SIGGRAPH ’91, 25(4):237–246, 1991.

5. E. Bier and K. Sloan. Two-part texture mappings. IEEE Computer Graphics
and Applications, 6(9):40–53, 1986.

6. M. M. F. Yuen C. C. L. Wang, S. S.-F. Smith. Surface flattening based on
energy model. Computer-Aided Design, 34(11):823–833, 2002.

182 Michael S. Floater and Kai Hormann

7. S. Campagna and H.-P. Seidel. Parameterizing meshes with arbitrary topology.
In Proceedings of Image and Multidimensional Digital Signal Processing ’98,
pages 287–290, 1998.

8. N. Carr and J. Hart. Meshed atlas for real time procedural solid texturing.
ACM Transactions on Graphics, 21(2):106–131, 2002.

9. P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization
method. In Proceedings of the 12th International Meshing Roundtable, pages
227–237, 2003.

10. M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface
meshes. Computer Graphics Forum, 21(3):209–218, 2002. Proceedings of Euro-
graphics 2002.

11. T. Duchamp, A. Certain, T. DeRose, and W. Stuetzle. Hierarchical computation
of PL harmonic embeddings. Technical report, University of Washington, July
1997.

12. M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.
Multiresolution analysis of arbitrary meshes. In Proc. ACM SIGGRAPH ’95,
pages 173–182, 1995.

13. E. Fiume, A. Fournier, and V. Canale. Conformal texture mapping. In Proceed-
ings of Eurographics ’87, pages 53–64, 1987.

14. M. S. Floater. Parameterization and smooth approximation of surface triangu-
lations. Computer Aided Geometric Design, 14(3):231–250, 1997.

15. M. S. Floater. Parametric tilings and scattered data approximation. Interna-
tional Journal of Shape Modeling, 4(3,4):165–182, 1998.

16. M. S. Floater. Meshless parameterization and B-spline surface approximation.
In R. Cipolla and R. Martin (eds.), The Mathematics of Surfaces IX, pages
1–18, London, 2000. Springer.

17. M. S. Floater. Convex combination maps. In J. Levesley, I. J. Anderson, and
J. C. Mason (eds.), Algorithms for Approximation IV, pages 18–23, 2002.

18. M. S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–27, 2003.

19. M. S. Floater. One-to-one piecewise linear mappings over triangulations. Math-
ematics of Computation, 72(242):685–696, 2003.

20. M. S. Floater and K. Hormann. Parameterization of triangulations and unor-
ganized points. In A. Iske, E. Quak, and M. S. Floater (eds.), Tutorials on
Multiresolution in Geometric Modelling, Mathematics and Visualization, pages
287–316. Springer, Berlin, Heidelberg, 2002.

21. M. S. Floater, K. Hormann, and M. Reimers. Parameterization of manifold
triangulations. In C. K. Chui, L. L. Schumaker, and J. Stöckler (eds.), Ap-
proximation Theory X: Abstract and Classical Analysis, Innovations in Applied
Mathematics, pages 197–209. Vanderbilt University Press, Nashville, 2002.

22. M. S. Floater and M. Reimers. Meshless parameterization and surface recon-
struction. Computer Aided Geometric Design, 18(2):77–92, 2001.

23. V. A. Garanzha. Maximum norm optimization of quasi-isometric mappings.
Numerical Linear Algebra with Applications, 9(6,7):493–510, 2002.

24. C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization
for 3D meshes. ACM Transactions on Graphics, 22(3):358–363, 2003. Proc.
ACM SIGGRAPH 2003.

25. G. Greiner and K. Hormann. Interpolating and approximating scattered 3D-
data with hierarchical tensor product B-splines. In A. Le Méhauté, C. Rabut,

Surface Parameterization 183

and L. L. Schumaker (eds.), Surface Fitting and Multiresolution Methods, In-
novations in Applied Mathematics, pages 163–172. Vanderbilt University Press,
Nashville, 1997.

26. X. Gu, S. Gortler, and H. Hoppe. Geometry images. ACM Transactions on
Graphics, 21(3):355–361, 2002. Proc. ACM SIGGRAPH 2002.

27. X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communi-
cations in Information and Systems, 2(2):121–146, 2002.

28. X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proceedings
of the 1st Symposium on Geometry Processing, pages 127–137, 2003.

29. I. Guskov. An anisotropic mesh parameterization scheme. In Proceedings of the
11th International Meshing Roundtable, pages 325–332, 2002.

30. I. Guskov, A. Khodakovsky, P. Schröder, and W. Sweldens. Hybrid meshes:
Multiresolution using regular and irregular refinement. In Proceedings of the
18th Annual Symposium on Computational Geometry, pages 264–272, 2002.

31. I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder. Normal meshes. In Proc.
ACM SIGGRAPH 2000, pages 95–102, 2000.

32. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle.
Conformal surface parameterization for texture mapping. IEEE Transactions
on Visualization and Computer Graphics, 6(2):181–189, 2000.

33. K. Hormann. Theory and Applications of Parameterizing Triangulations. PhD
thesis, Department of Computer Science, University of Erlangen, November
2001.

34. K. Hormann and G. Greiner. MIPS: An efficient global parametrization method.
In P.-J. Laurent, P. Sablonnière, and L. L. Schumaker (eds.), Curve and Surface
Design: Saint-Malo 1999, Innovations in Applied Mathematics, pages 153–162.
Vanderbilt University Press, Nashville, 2000.

35. K. Hormann, G. Greiner, and S. Campagna. Hierarchical parametrization of
triangulated surfaces. In Proceedings of Vision, Modeling, and Visualization
1999, pages 219–226, 1999.

36. K. Hormann, U. Labsik, and G. Greiner. Remeshing triangulated surfaces with
optimal parametrizations. Computer-Aided Design, 33(11):779–788, 2001.

37. K. Hormann and M. Reimers. Triangulating point clouds with spherical topol-
ogy. In T. Lyche, M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface
Design: Saint-Malo 2002, Modern Methods in Applied Mathematics, pages 215–
224. Nashboro Press, Brentwood, 2003.

38. A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations
with low distortion. ACM Transactions on Graphics, 22(3):350–357, 2003. Proc.
ACM SIGGRAPH 2003.

39. S. Kolmanič and N. Guid. The flattening of arbitrary surfaces by approximation
with developable stripes. In U. Cugini and M. J. Wozny (eds.), From geometric
modeling to shape modeling, volume 80 of International Federation for Informa-
tion Processing, pages 35–46. Kluwer Academic Publishers, Boston, 2001.

40. G. Kós and T. Várady. Parameterizing complex triangular meshes. In T. Lyche,
M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-
Malo 2002, Modern Methods in Applied Mathematics, pages 265–274. Nashboro
Press, Brentwood, TN, 2003.

41. V. Kraevoy, A. Sheffer, and C. Gotsman. Matchmaker: constructing constrained
texture maps. ACM Transactions on Graphics, 22(3):326–333, 2003. Proc. ACM
SIGGRAPH 2003.

184 Michael S. Floater and Kai Hormann

42. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Mul-
tiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH
’98, pages 95–104, 1998.

43. Y. Lee, H. S. Kim, and S. Lee. Mesh parameterization with a virtual boundary.
Computers & Graphics, 26(5):677–686, 2002.

44. B. Lévy. Constrained texture mapping for polygonal meshes. In Proc. ACM
SIGGRAPH 2001, pages 417–424, 2001.

45. B. Lévy. Dual domain extrapolation. ACM Transactions on Graphics,
22(3):364–369, 2003. ProcȦCM SIGGRAPH 2003.

46. B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangu-
lated meshes. In ProcȦCM SIGGRAPH ’98, pages 343–352, 1998.

47. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–
371, 2002. ProcȦCM SIGGRAPH 2002.

48. J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert. Preconditioners
for indefinite linear systems arising in surface parameterization. In Proceedings
of the 9th International Meshing Roundtable, pages 71–82, 2001.

49. F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. Smooth geometry images.
In Proceedings of the 1st Symposium on Geometry Processing, pages 138–145,
2003.

50. S. D. Ma and H. Lin. Optimal texture mapping. In Proceedings of Eurograph-
ics ’88, pages 421–428, 1988.

51. W. Ma and J. P. Kruth. Parameterization of randomly measured points for
least squares fitting of B-spline curves and surfaces. Computer-Aided Design,
27(9):663–675, 1995.

52. J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In ProcȦCM
SIGGRAPH ’93, pages 27–34, 1993.

53. J. McCartney, B. K. Hinds, and B. L. Seow. The flattening of triangulated
surfaces incorporating darts and gussets. Computer-Aided Design, 31(4):249–
260, 1999.

54. J. McCartney, B. K. Hinds, and B. L. Seow. On using planar developments to
perform texture mapping on arbitrarily curved surfaces. Computers & Graphics,
24(4):539–554, 2000.

55. L. Parida and S. P. Mudur. Constraint-satisfying planar development of complex
surfaces. Computer-Aided Design, 25(4):225–232, 1993.

56. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2(1):15–36, 1993.

57. E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In ProcȦCM SIG-
GRAPH 2000, pages 465–470, 2000.

58. E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Trans-
actions on Graphics, 22(3):340–349, 2003. ProcȦCM SIGGRAPH 2003.

59. E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations.
In ProcȦCM SIGGRAPH 2001, pages 179–184, 2001.

60. N. Ray and B. Lévy. Hierarchical least squares conformal maps. In Proceedings
of the 11th Pacific Conference on Computer Graphics and Applications, pages
263–270, 2003.

61. P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry
images. In Proceedings of the 1st Symposium on Geometry Processing, pages
138–145, 2003.

Surface Parameterization 185

62. P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping pro-
gressive meshes. In ProcȦCM SIGGRAPH 2001, pages 409–416, 2001.

63. E. L. Schwartz, A. Shaw, and E. Wolfson. Applications of computer graphics
and image processing to 2D and 3D modeling of the functional architecture of
visual cortex. IEEE Computer Graphics and Applications, 8(4):13–23, 1988.

64. E. L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the gen-
eralized mapmaker’s problem: flattening nonconvex polyhedral surfaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(9):1005–1008,
1989.

65. A. Sheffer. Spanning tree seams for reducing parameterization distortion of
triangulated surfaces. In Proceedings of Shape Modeling International, pages
61–66, 2002.

66. A. Sheffer. Non-optimal parameterization and user control. In T. Lyche,
M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-
Malo 2002, Modern Methods in Applied Mathematics, pages 355–364. Nashboro
Press, Brentwood, 2003.

67. A. Sheffer. Skinning 3D meshes. Graphical Models, 65(5):274–285, 2003.
68. A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangu-

lation flattening. In Proceedings of the 9th International Meshing Roundtable,
pages 161–172, 2000.

69. A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing
using angle based flattening. Engineering with Computers, 17(3):326–337, 2001.

70. A. Sheffer and E. de Sturler. Smoothing an overlay grid to minimize linear
distortion in texture mapping. ACM Transactions on Graphics, 21(4):874–890,
2002.

71. A. Sheffer, C. Gotsman, and N. Dyn. Robust spherical parametrization of tri-
angular meshes. In Proceedings of the 4th Israel-Korea Bi-National Conference
on Geometric Modeling and Computer Graphics, pages 94–99, 2003.

72. A. Sheffer and J. Hart. Seamster: inconspicuous low-distortion texture seam
layout. In Proceedings of IEEE Visualization 2002, pages 291–298, 2002.

73. T. Shimada and Y. Tada. Approximate transformation of an arbitrary curved
surface into a plane using dynamic programming. Computer-Aided Design,
23(2):153–159, 1991.

74. C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern mapping. ACM
Transactions on Graphics, 21(3):673–680, 2002. ProcȦCM SIGGRAPH 2002.

75. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion
piecewise mesh parameterization. In Proceedings of IEEE Visualization 2002,
pages 355–362, 2002.

76. V. Surazhsky and C. Gotsman. Explicit surface remeshing. In Proceedings of
the 1st Symposium on Geometry Processing, pages 20–30, 2003.

77. R. Zayer, C. Rössl, and H.-P. Seidel. Variations on angle based flattening. In
N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Advances in Multireso-
lution for Geometric Modelling, Mathematics and Visualization, pages 187–199
(this book), Springer, Berlin, 2004.

78. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flat-
tening via multi-dimensional scaling. IEEE Transactions on Visualization and
Computer Graphics, 8(2):198–207, 2002.

186 Michael S. Floater and Kai Hormann

Other References

79. S. C. Brenner and L. R. Scott. The mathematical theory of finite element meth-
ods, volume 15 of Texts in Applied Mathematics. Springer, second edition, 2002.

80. G. Choquet. Sur un type de transformation analytique généralisant la repré-
sentation conforme et définé au moyen de fonctions harmoniques. Bulletin des
Sciences Mathématiques, 69:156–165, 1945.

81. C. F. Gauß. Disquisitiones generales circa superficies curvas. Commentationes
Societatis Regiæ Scientiarum Gottingensis Recentiores, 6:99–146, 1827.

82. G. Greiner. Variational design and fairing of spline surfaces. Computer Graphics
Forum, 13(3):143–154, 1994. Proceedings of Eurographics ’94.

83. W. Klingenberg. A Course in Differential Geometry. Springer, Berlin, Heidel-
berg, 1978.

84. H. Kneser. Lösung der Aufgabe 41. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 35:123–124, 1926.

85. E. Kreyszig. Differential Geometry. Dover, New York, 1991.
86. J. H. Lambert. Beyträge zum Gebrauche der Mathematik und deren Anwendung,

Band 3. Buchhandlung der Realschule, Berlin, 1772.
87. G. Mercator. Nova et aucta orbis terrae descriptio ad usum navigantium emen-

date accommodata. Duisburg, 1569.
88. M. Meyer, H. Lee, A. H. Barr, and M. Desbrun. Generalized barycentric coor-

dinates for irregular polygons. Journal of Graphics Tools, 7(1):13–22, 2002.
89. C. Ptolemy. The Geography. Dover, 1991. Translated by E. L. Stevenson.
90. T. Radó. Aufgabe 41. Jahresbericht der Deutschen Mathematiker-Vereinigung,

35:49, 1926.
91. B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer

veränderlichen complexen Größe. PhD thesis, Universität Göttingen, 1851.
92. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 13:743–768, 1963.
93. E. L. Wachspress. A Rational Finite Element Basis. Academic Press, New York,

1975.
94. J. Warren. Barycentric coordinates for convex polytopes. Advances in Compu-

tational Mathematics, 6(2):97–108, 1996.

Variations on Angle Based Flattening

Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{zayer|roessl|hpseidel}@mpi-sb.mpg.de

Summary. Angle Based Flattening is a robust parameterization technique allowing
a free boundary. The numerical optimisation associated with the approach yields a
challenging problem. We discuss several approaches to effectively reduce the com-
putational effort involved and propose appropriate numerical solvers. We propose a
simple but effective transformation of the problem which reduces the computational
cost and simplifies the implementation. We also show that fast convergence can be
achieved by finding approximate solutions which yield a low angular distortion.

1 Introduction

Surface parameterization is a fundamental problem in computer graphics. In-
tuitively, we can think of it as the flattening of a surface to a valid planar
configuration, i.e. one without foldovers or self-intersections. More formally,
consider a surface that is homeomorphic to a disk. Then the goal is to find
a bijective mapping from a surface to the parameter domain, that fulfils cer-
tain quality constraints. For a triangulated surface this is a piecewise linear
mapping between the original and an isomorphic planar mesh.

The importance of the problem makes surface parameterization a very
active field of research, see [9] for an extensive recent survey. Numerous ap-
proaches have been proposed so far, inspired by results from different areas
of research. Tutte [23] starts from graph theory and uses barycentric maps
for embedding a planar graph. The shape-preserving weights [6] improve on
the conformality of the mapping while still guaranteeing bijectivity. Most re-
cently, Floater presented the mean value coordinates [8] as an alternative. Eck
et al. [5] use discrete harmonic maps to minimise angular distortion. Sander et
al. [19] introduce a stretch metric to reduce the distortion induced by the pa-
rameterization. All the above methods require a predefined convex boundary
in the parameter domain. Hormann and Greiner construct a most-isometric
parameterization [14] by minimising a non-linear deformation functional with-
out needing to fix the boundary. Desbrun et al. [3] and Levy et al. [15] achieve

188 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

quasi-conformal mappings with an evolving boundary by solving linear sys-
tems based on the Cauchy-Riemann equation and harmonic energy minimi-
sation respectively. Other recent approaches apply multi-dimensional scal-
ing [24] or an iterative algorithm that locally flattens the triangulation until
a prescribed distortion bound is reached [22].

While quasi-conformal parameterizations such as [3, 5, 13, 15, 18] propose
several schemes to minimise angular distortion, it seems natural to formulate
the problem in terms of interior angles of the flat mesh. This leads to the An-
gle Based Flattening (ABF) method introduced by Sheffer and de Sturler [20].
The ABF algorithm constructs such a parameterization by minimising a func-
tional that punishes the angular distortion of the planar mesh with respect to
the angles of the original mesh. A set of linear and non-linear equality con-
straints on the planar angles guarantees the validity of the parameterization.
These constraints however do not prevent the boundary from self-intersection.
Hence a post-processing of the flat mesh is needed to handle edge crossings
at the boundary. Each post-processing step first identifies the nodes causing
intersections in the flat mesh, then it adds constraints on the local configura-
tions in order to avoid intersections. The flat mesh is recomputed as a solution
of the updated nonlinear system. The post-processing algorithm is repeated
until no more intersections are found.

2 Overview

In this paper, we discuss several approaches to effectively reduce the computa-
tional effort involved in Angle Based Flattening and discuss algorithms to effi-
ciently solve the parameterization problem. The complexity of the constrained
optimisation problem raised in the ABF method makes finding a solution in
reasonable time a very challenging problem. Several numerical schemes have
been proposed to speed up the convergence of the original algorithm [20] by
using preconditioning [16] and smoothing [21]. We take a completely different
approach by identifying the main reasons that hinder convergence within the
setting of the constrained problem itself. In fact, the post-processing might
be expensive as it iteratively tries to find intersections and to then solve the
whole non linear system as many times as needed. We take advantage of a
characterisation of convex planar drawings of tri-connected graphs to elimi-
nate boundary intersections in the first place. This way we can steer or even
avoid post-processing. Having this characterisation in hand, it can be used in
association with different objective functions that reflect the criteria we would
like to minimise. Such functions can be described as the angular distortion [20]
or the MIPS energy introduced by Hormann and Greiner [14] as both can be
expressed completely in terms of angles.

The non-linear equations in the ABF method lead to a dense sparsity pat-
tern of the Hessian matrix of the system which increases the computational
cost. We show how the convergence can be improved alternatively by a simple

Variations on Angle Based Flattening 189

yet effective transformation of the problem that relaxes the non-linear equality
constraints. In fact, the Hessian becomes diagonal and its sparsity pattern be-
comes independent of the valences of the vertices of the input mesh. Since the
system of equations is symmetric, we opt for the more appropriate symmetric
numerical solvers instead of the non-symmetric ones proposed in [20, 21, 16].
We propose a practical approach that achieves fast convergence by finding
approximate solutions which yield a low angular distortion.

3 Conventions

Throughout the paper, we try to restrict ourselves to the essential amount of
formalism only, where the following notations are used:

• N is the total number of interior mesh angles.
• α∗

i (i = 1, . . . , N) denote the angles of the original mesh,
• αi are the corresponding angles of the flat mesh. As these are the variables

of the optimisation problem, the more usual notation xi is used alterna-
tively when appropriate.

• v denotes the central vertex in a centred drawing of a wheel, i.e. of its 1-
neighbourhood. d is the number of direct neighbours of v or its valence. αj

(j = 1, . . . , d) refer to the angles at v, while βj and γj denote the opposite
left and right angles of a face with central angle αj , respectively. All faces
are oriented counter-clockwise.

• Variables and functions without subscripts may refer to multivariate vec-
tors as explained by the context.

4 Characterisation of Drawings of Planar Graphs

Sheffer and de Sturler [20] addressed the problem of the validity of the pla-
nar embedding by requiring the following consistency condition on the set of
positive angles of the planar mesh:

• Vertex consistency
For each internal vertex v, with central angles α1, . . . , αd:

d∑
i=1

αi − 2π = 0 (1)

• Triangle consistency
For each triangular face with angles α, β, γ the face consistency:

α+ β + γ − π = 0 (2)

190 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

• Wheel consistency
For each internal vertex v with left angles β1,. . . ,βd and right angles
γ1, . . . , γd:

d∏
i=1

sin(βi)
sin(γi)

= 1 (3)

These conditions guarantee the centred embedding of internal vertices
without overlapping of interior edges. However they do not prevent the
overlapping of boundary edges. This issue is a well-studied problem in
graph theory [4, 11]. Di Battista and Vismara provide a characterisation
of the convex planar straight line drawing of a tri-connected graph for a
given set of positive angles [4]. Their minimal constraints for the planarity
of the graph impose in addition to (1), (2), (3) the following condition:

• Convex external face condition
For each external vertex v, with internal angles α1, . . . , αd:

d∑
i=1

αi ≤ π (4)

Condition (4) guarantees the convexity of the boundary and hence pre-
vents boundary overlapping. Note that the inequality (4) prevents local
and global self-intersection simultaneously. So it does not only prevent ad-
jacent boundary edges from overlapping, but it also guarantees that the
boundary loop as a whole does not cross itself. For the local configuration
it would in fact be sufficient to require the following weakened condition
to hold:

• Adjacent boundary edges consistency
For each external vertex v, with internal angles α1, . . . , αd:

d∑
i=1

αi ≤ 2π. (5)

This prevents adjacent boundary triangles from crossing each other. However,
condition (5) is not strong enough to globally enforce a valid mesh with no
boundary intersections as shown in Fig. 1 (b).

To get a better understanding and better control of the boundary be-
haviour, we propose multiplying the right hand side of (4) by a positive scalar
t, formally

d∑
i=1

αi ≤ tπ. (6)

The scalar t can be interpreted as a boundary control coefficient that steers
the convexity of the boundary. A lower bound for this factor can be derived

Variations on Angle Based Flattening 191

(a) (b) (c) (d)

Fig. 1. [Reproduced in colour in Plate 14.] Flattening an α-shaped model: (a) Origi-
nal mesh. (b) The flattened mesh with boundary control coefficient t = 2, (c) t = 1.1,
(d) t = 1.03. (The views are scaled differently.)

using discrete curvature measure. Consider the angular defect of the flat mesh
which is expressed as

n∑
v=1

(π −Av) = 2π, (7)

where Av is the sum of angles at vertex v and n is the number of boundary
vertices. By a simple calculation, we establish the lower bound

t0 = 1 − 2/n.

The trivial case is a single triangle, its angles cannot be all smaller than π/3.
We experimented with different values of t, and summarise the following

interpretations that can be used as reference for choosing appropriate values
of t:

• t > 2 results in the classic ABF method without preconditioning. No adja-
cent edge overlapping or boundary self crossing is taken into consideration.

• 1 < t ≤ 2 prevents adjacent edges from overlapping, but does not necessar-
ily prevent global self-intersections of the boundary loop. We experienced
such cases only for “boundary-heavy” (w.r.t. the ratio of boundary to inner
vertices, see e.g. Fig. 1) surfaces with non-trivial geometry.

• t = 1 globally prevents the boundary loop from self-intersection for any
valid input mesh, note that this suffices to induce a convex boundary.

• t0 < t < 1 forces the boundary to become concave.

Figs. 1 and 2 illustrate the behaviour of the boundary for different values
of t. We can take advantage of these facts in order to avoid an iterative
post-processing and thus have better control over the convergence of the con-
strained optimisation problem. In the next sections we show how this problem
with the additional inequalities included can be solved efficiently.

192 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

(a) (b) (c)

(d) (e) (f)

Fig. 2. Effect of the boundary control coefficient t on the 3-balls model. Note
that the ABF algorithms preserve the symmetry. (a) Original mesh. (b) Flat mesh
for t ≥ 2 (ABF). (c) t = 1.05, (d) t = 1 (convex boundary ABF), (e) t = 0.98,
(f) t = 0.968.

5 Constrained Optimisation Problem

A general approach to establish a surface parameterization is to minimise
an objective function f(x) that quantifies distortion with respect to certain
quality criteria. As the validity of the flat mesh is guaranteed by the angle
constraints of Sect. 4, a typical choice of such a function would be based on
angles. Examples of such objective functions are the angular distortion [20]

f(x) =
N∑

i=1

wi(xi − ai)2

with the weights wi = 1
a2

i
. The variables ai represent the optimal angles of

the flat mesh, which are

Variations on Angle Based Flattening 193

ai =

{
α∗

i
2π∑d

i=1 α∗
i

around an interior vertex,
α∗

i around a boundary vertex.

We can now formulate the optimisation problem as

minimise f(x) subject to h(x) = 0, g(x) ≤ 0, (8)

where g and h are multivariate functions of the equality (1), (2), (3) and the
inequality constraints (6) respectively. In the next section we will replace (3)
by a modified equation (10).

6 Solving the Optimisation Problem

Large constrained optimisation systems of the form (8) are still open problems
in the field of non-linear optimisation [2]. The adequacy of a minimisation
method depends on the properties of the objective function as well as on the
constraints.

In order to solve the optimisation problem we use the method of Lagrange
multipliers as it guarantees the exact satisfaction of constraints. We handle
the inequality constraints by means of the so called active set approach, a
variant of Newton-like methods. It transforms inequalities to equalities which
are generally easier to handle.

The active set is defined as the set of indices for which the inequality
constraint (4) is active. Formally

A(x, µ) = {i|gi ≥ −µi

c
, i = 1, . . . , r}

where µi is the Lagrange multiplier associated with gi, and c is a fixed positive
scalar.

The active set approach converts inequality constraints to equality con-
straints by altering the Lagrange multipliers associated with them. If a con-
straint does not figure in the active set, its associated multipliers are set to
zero. Otherwise it is treated as an equality constraint. The numerical advan-
tage of this method is that as the iterates get closer to the solution, the active
set becomes more and more stable. A detailed description of the active set
method can be found in [1].

In every Newton iteration the following system is solved⎡⎣∇2
xxL JT

h JT
g

Jh 0 0
Jg 0 0

⎤⎦⎡⎣ ∆x
∆µh

∆µg

⎤⎦ = −

⎡⎣∇xL
h
g

⎤⎦ (9)

where the Lagrangian L is given by

L = f(x) + µT
hh(x) + µT

g g(x) .

194 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

nz = 100044 nz = 47604

(a) (b)

Fig. 3. System matrices of equation (9) generated from the ear model using (a) the
original wheel condition (3), (b) the simplified wheel condition (10). The Diagonal
Hessian brought the number of nonzero elements from 100044 down to 47607.

In the classic ABF algorithm, the computation of the Hessian matrix ∇2
xxL

involves finding the second derivatives of the products involved in condi-
tion (3). The resulting matrix is sparse, but it still contains a considerable
number of non-zero elements (cf. Fig. 3(a)). This number depends largely on
the valences of the input mesh vertices.

Instead, we propose to use a modified wheel condition (10). Since the angles
are strictly positive we can safely rewrite condition (3) as

d∑
i=1

log (sinβi) − log (sin γi) = 0 . (10)

The virtue of this modification resides in the fact that it yields a diagonal
Hessian matrix

∇2
xxL = diag(f ′′(xi) +mi

−1
sin2(xi)

)

where mi is the linear combination of the Lagrange multipliers involved with
xi in condition (10). The amount of computation and effort by the iterative
solvers is hence reduced considerably. The main reason for this is that the
Hessian can be computed efficiently as this reduction also avoids the estima-
tion of complex derivatives (which depend on the valences of vertices) with
all the floating error they may induce. We note that consequently the im-
plementation of the ABF method is simplified quite a bit. Fig. 3 illustrates
the structure of a typical system matrix and the improvement induced by the
modified wheel condition.

Variations on Angle Based Flattening 195

(a) (b) (c) (d)

Fig. 4. [Reproduced in colour in Plate 15.] Comparison of under-determined (a,
c) and minimisation (b, d) solutions. The parameterization of the Ear and the
Mannequin models is visualised by mapping regular textures.

The system matrix is symmetric although not necessarily positive-definite,
with the additional advantage of having a diagonal Hessian. We can ex-
ploit this structure by using adequate iterative solvers such as MINRES or
SYMMLQ both developed by Paige and Saunders [17] for symmetric matri-
ces, instead of the non-symmetric GMRES and BiCGStab that were used
in [20, 16]. The latter solvers have higher cost per iteration and may suffer
from breakdowns or simply stagnate while MINRES and SYMMLQ have rel-
atively cheap cost per iteration, which is just 4 axpys (addition of a scalar
multiple of a vector to a vector) higher than the iteration cost of the con-
jugate gradient method. Another alternative, which is relatively inexpensive,
is the CGNR algorithm introduced by Hestens and Steifel [10]. In our case,
there is no need to transpose the system matrix as it is symmetric. The cost
per iteration is then just one matrix-vector multiplication higher than the cost
of the conjugate gradient method. A comparison of the convergence of these
iterative solvers for typical meshes is given in Sect. 8.

Note that the initial guess for the unknowns x is the set of the optimal
angles {αi|i = 1, . . . , n}. Consequently, at every Newton iteration the solution
stays within the positive domain. In order to guarantee that our algorithm
does not step into the negative domain, we can apply a similar technique as
in [20] that rejects negative iterates and appends increased weights to the
corresponding angles. However, our experiments with different meshes show
that we hardly ever run into this situation.

7 Practical Approach

In general, the method of Lagrange multipliers we use is a local optimisation
method. This means that the provided solution is a local minimum which is
largely dependent on the initial guess given by the user. In other words it is

196 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

(a) (b) (c)

Fig. 5. [Reproduced in colour in Plate 16.] Visualisation of parameterizations from
ABF by texture mapping different models. (a) Clumpy, (b) Large ear, (c) Mechanical
part. Notice the quasi-conformality of the parameterization.

the closest minimum to the initial guess. Since the initial guess is very close to
the solution, only few newton iterations are needed for convergence. Hence, we
can assume that any feasible point that is close to the initial guess mentioned
above gives a good estimate for the solution and would yield a low angular
distortion.

With this consideration in mind, the problem can be restated as how to get
a feasible point. The idea is to have a null objective function, i.e. f = 0. This
means that we reduce the problem to solving the under-determined system
of equality and inequality constraints. The modification leads to considerable
speed-up of convergence as there is no extra load from the objective function.
In the following, we call this solution the under-determined solution and the
one using the angular distortion functional the minimisation solution (strictly
speaking both solutions are just approximate solutions).

In practice, the difference between the minimisation and the under-
determined solution is hardly noticeable. Fig. 4 shows a comparison between
such solutions. Table 2 shows the numerical difference with respect to angular
distortion between the two methods. The latter method seems to outperform
the minimisation method as it converges much faster. Table 1 summarises the
performance of both methods.

Our experiments with several different initial starting guesses indicate that
if we are looking only for a valid mapping of the mesh to the plane, we can get
a very fast feasible solution by setting the initial guess to zero or to π

3 and the
objective function to zero. This solution does not reflect the geometry of the
mesh and hence might not be suited for applications like texture mapping.

Another alternative method for finding a feasible point would be to use
least squares methods for solving under-determined nonlinear problems. How-

Variations on Angle Based Flattening 197

ever, as these methods do not guarantee the exact satisfaction of the con-
straints for large problems, they generally fail to produce valid parameteriza-
tions.

8 Results and Discussion

We applied our algorithm to a set of different triangular meshes (see also
Figs. 2, 4 and 5). Table 1 summarises the numerical results of our method, all
timings were measured on a 1.7 GHz Intel Xeon CPU. The parameterization
time depends on the number of triangles, on the geometry as well as on the
connectivity of the input mesh. For consistency with the original ABF we
use the same metrics as in [21] to measure angular distortion. The numeri-
cal data suggests that the under-determined method in association with the
CGNR algorithm delivers high quality quasi-conformal parameterizations in
very competitive time.

Table 1. Comparison of runtime (in seconds) of the minimisation and under-
determined method using different iterative solvers.

CGNR SYMMLQ MINRES
model #∆ minim. under. minim. under. minim. under.

3 Balls 1032 66 1 21 2 7 2

Ear 1796 159 3 44 9 11 7

Mannequin 5420 > 900 26 292 69 126 56

Mech. part 7938 > 999 86 > 999 245 > 999 192

Large ear 24914 > 999 237 > 999 654 > 999 522

Table 2. Comparison of angular distortion induced by the minimisation and the
under-determined method using different iterative solvers.

CGNR SYMMLQ MINRES
model minim. under. minim. under. minim. under.

3 Balls 0.106 0.137 0.106 0.137 0.106 0.137

Ear 0.001 0.001 0.001 0.001 0.001 0.001

Mannequin 0.002 0.002 0.002 0.002 0.002 0.002

Mech. part 0.002 0.002 0.002 0.002 0.002 0.002

Large ear 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

198 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel

9 Conclusion

We presented and discussed several extensions to angle based flattening. With
additional inequality constraints we can eliminate global and/or local bound-
ary self-intersections. This leads to a nice interpretation of boundary be-
haviour through the introduction of the new boundary control coefficient.
While its use initially targets the avoidance of iterative post-processing, we
see potential use for optimising the parameterization with respect to this co-
efficient variable.

The arising non-linear constrained optimisation problem can be solved
efficiently. With a simple and intuitive transformation we take advantage of a
simply structured symmetric system matrix, enabling the application of robust
iterative solvers. The use of our under-determined system solution leads to a
relatively fast method for generating angle based parameterizations.

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. D.P. Bertsekas. Constrained optimization and lagrange multiplier methods.
Athena Scientific, 1996.

2. R.H. Byrd and J. Nocedal. Active set and interior methods for nonlinear opti-
mization Doc. MATH, Extra Volume ICM III, 1998, pp. 667–676.

3. M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of triangle
meshes. Proc. Eurographics 2002, pp. 209-218.

4. G. Di Battista and L. Vismara. Angles of planar triangular graphs. SIAM
Journal on Discrete Mathematics, 9 (3), 1996, pp. 349–359.

5. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-
zle. Multiresolution analysis of arbitrary meshes. Proc. ACM SIGGRAPH ’95,
pp. 173–182.

6. M. S. Floater. Parametrization and smooth approximation of surface triangu-
lations. Comp. Aided Geom. Design, (14), 3, 1997, pp. 231-250.

7. M. S. Floater and K. Hormann. Parameterization of triangulations and unor-
ganized points. Tutorials on Multiresolution in Geometric Modelling Springer-
Verlag, Heidelberg (2002), pp. 287-315.

8. M. S. Floater. Mean value coordinates. Comp. Aided Geom. Design, (20), 1,
2003, pp. 19–27.

9. M. S. Floater and K. Hormann. Surface parameterization: a tutorial and sur-
vey, Advances in Multiresolution for Geometric Modelling, N. A. Dodgson,
M. S. Floater, and M. A. Sabin (eds.), Springer, 2004, pp. 157–186 (this book).

10. M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Stand. 49:409–436, 1952.

Variations on Angle Based Flattening 199

11. A. Garg. New results on drawing angle graphs. Computational Geometry (9),
(1-2), 1998, pp. 43–82.

12. A. Greenbaum. Iterative Methods for Solving Linear Systems SIAM, Philadel-
phia, 1997.

13. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle.
Conformal surface parameterization for texture mapping. IEEE Transactions
on Visualization and Computer Graphics, 6(2), 2000, pp. 181–189.

14. K. Hormann and G. Greiner. MIPS: an efficient global parametrization method.
Curve and Surface Design: Saint-Malo 1999, 2000, pp. 153–162.

15. B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. Proc. ACM SIGGRAPH 2002, pp. 362–371.

16. J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert. Preconditioners
for indefinite linear systems arising in surface parameterization. Proceedings of
the 10th International Meshing Round Table, 2001, pp. 71–81.

17. C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAM J. Numer. Anal, 12, 1975, pp. 617–629.

18. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2(15), 1993, pp. 15-36.

19. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive
meshes. Proc. ACM SIGGRAPH 2001, pp. 409–416.

20. A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing
using angle based flattening. Engineering with Computers, 17 (3), 2001, pp. 326–
337.

21. A. Sheffer and E. de Sturler. Smoothing an overlay grid to minimize linear
distortion in texture mapping. ACM Transactions on Graphics, 21 (4), 2002.

22. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion
piecewise mesh parameterization. Proc. IEEE Visualization 2002, pp. 355–362.

23. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical
Society, 13 (3), 1963, pp. 743–768.

24. G. Zigelmann, R. Kimmel, and N. Kiryati. Texture mapping using surface
flattening via multi-dimensional scaling. IEEE Transactions on Visualization
and Computer Graphics, 8(2), 2002.

Part V

— Subdivision

Recent Progress in Subdivision: a Survey

Malcolm Sabin

Computer Laboratory, University of Cambridge, UK
and
Numerical Geometry Ltd., Cambridge, UK
mas33@cl.cam.ac.uk

Summary. After briefly establishing the traditional concepts in subdivision sur-
faces, we survey the way in which the literature on this topic has burgeoned in the
last five or six years, picking out new trends, ideas and issues which are becoming
important.

Subdivision surfaces were first described by Catmull and Clark [6] in 1978,
soon, in fact, after the now-ubiquitous NURBS were identified as being a
sensible standard for parametric surface descriptions. For twenty years they
were an interesting generalisation of (a subset of) NURBS, with a paper on
one aspect or another appearing in some relevant journal every year or so.

In the last five or six years the situation has totally changed, as indicated
by the numbers of papers published which relate to subdivision reasonably
directly. These are plotted against date in Fig. 1. Subdivision surfaces are
now one of the methods of choice in Computer Graphics, and some consider
that they might succeed NURBS as the standard in engineering CAD.

1980 1990 2000
0

4

8

12

16

Fig. 1. Number of subdivision papers, plotted by year.

204 Malcolm Sabin

This paper looks at some of the technical changes that have happened in
the last few years which are helping to drive that change in status. The paper
is divided into the following aspects:

• Background – identifying the “classical” knowledge.
• New schemes and a classification.
• New domains and new ranges – a subdivision surface may be thought of as

a map from a bivariate manifold into R
3. We can map from other domains,

and we can map into other ranges.
• New issues – the traditional focus on smoothness has now been joined by

other criteria for judging the quality of a scheme.
• New ideas – it has become clear that linear stationary schemes may not

provide the solution to all our problems, and newer ideas broaden our
horizons.

1 Introduction and Background

The beginnings of the subdivision story can be dated back to the papers of
de Rahm [1], over fifty years ago, but the relevance to the modelling of shape
started with the proposal of Chaikin [2], who devised a method of generating
smooth curves for plotting. This was soon analysed by Forrest [3] and by
Riesenfeld [4] and linked with the burgeoning theory of B-spline curves. It
became clear that uniform B-spline curves of any degree would have such a
subdivision construction.

The extension to surfaces took just a few years, until 1978, when Catmull
and Clark [6] published their descriptions of both quadratic and cubic subdi-
vision surfaces, the exciting new point being that a surface could be described
which was not forced to have a regular rectangular grid in the way that the
tensor product B-spline surfaces were. The definition of a specific surface in
terms of a control mesh could follow the needs of the boundaries and the
curvature of the surface. This was made possible by the extension of the sub-
division rules to allow for ‘extraordinary points’, being either ‘extraordinary
vertices’ where either other than four faces came together at a vertex, or else
‘extraordinary faces’ where a face had other than four sides.

At about the same time Doo [5] and Sabin, who had also been working
on quadratic subdivision, showed a way of analysing the behaviour of these
schemes at the extraordinary points, treating the refinement process in terms
of matrix multiplication, and using eigenanalysis of the spectrum of this ma-
trix [7] . This aspect was followed up by Ball and Storry [9, 12] who made this
analysis process more formal and succeeded in making some improvements
to the coefficients used around the extraordinary points in the Catmull-Clark
scheme, so that radial curves through an extraordinary point matched curva-
tures there at equal distances on opposite sides. In his PhD dissertation [11],
Storry identified that in the limit, the configuration around an extraordinary

Recent Progress in Subdivision 205

point was always an affine transform (dependent on the original polyhedron)
of a point distribution which was completely defined by the eigenvectors of
the subdivision matrix. He called this the natural configuration.

The next two big ideas emerged in 1987. Loop, in his Masters’ thesis [13],
described a subdivision scheme defined over a grid of triangles. This not only
gave a new domain over which subdivisions could be defined, but also showed
that the eigenanalysis could be used explicitly in the original design of a
scheme, in the choice of coefficients which should be used around extraordinary
points.

The other significant publication that year was the description by Dyn,
Levin and Gregory [14] of their four-point curve scheme. This was new in
two ways: it was an interpolating scheme, rather than smoothing, and the
limit curve did not consist of parametric polynomial pieces. The analysis of
its continuity and differentiability therefore required new tools.

The first tool was provided in [14] and tools of a greater generality were
provided in [19] and [20]. The method in the later paper together with the idea
of the symbol of a subdivision scheme, presented in [19], was later expressed
in terms of z-transforms [26], which turn convolution of sequences of numbers
into multiplication of Laurent polynomials. Algebraic manipulation of these
polynomials allows such processes as the taking of differences to be expressed
very simply, and it has turned out that many of the arguments we need to
deploy can be expressed very elegantly in this notation. It also provides suffi-
cient conditions for a scheme to have a certain level of derivative continuity,
whereas the eigenanalysis approach provides only necessary conditions.

The generalisation of the four-point ideas to an interpolating surface
scheme came in 1990, with the description by Dyn, Levin and Gregory [17] of
the butterfly scheme, an interpolating surface scheme defined over a triangular
grid.

In 1995 Reif [34] showed that there was rather more to continuity than
had been dreamt of. He identified that the natural configuration implies a
parametrization of the rings of regular pieces which surround each extraor-
dinary point and that it is essential, in order to obtain a scheme which gen-
erates well-behaved surfaces at the extraordinary points, to ensure that this
parametrization is injective. (Later, Peters and Reif went further, and in [54]
they constructed a scheme (a variant of the quadratic) for which the injectivity
test fails, resulting in severe folding of the limit surface in every ring.)

The following year Reif [35] showed that the attempts to make a C2 variant
of Catmull-Clark were not going to succeed, because a surface C2 at the
extraordinary points would need to have regular pieces at least bi-sextic.

Thus as we passed the mid-1990s, subdivision theory stood like this:

• A surface subdivision scheme takes a manifold mesh of vertices joined by
faces, usually called the polyhedron, and creates a new, finer, polyhedron
by constructing new vertices as linear combinations of the old ones, in

206 Malcolm Sabin

groups defined by the connectivity of the polyhedron, and joining them up
by new faces in a way related to the old connectivity.
The coefficients can be documented in diagrammatic form either in the
mask, a diagram where the coefficients by which a given old vertex influ-
ences the surrounding new ones are laid out in the same pattern as those
new vertices, or in the stencils, a set of diagrams where the coefficients
by which nearby old vertices influence a given new one are laid out in the
same pattern as those old vertices. These are totally equivalent. In the
univariate case, they are the columns and rows, respectively, of the matrix
by which the sequence of old vertices is multiplied to give the sequence of
new ones.

• This refinement can be repeated as often as desired, and there are con-
ditions on the scheme guaranteeing the existence of a well-defined limit
surface to which the sequence of finer and finer polyhedra converges. Dur-
ing the refinement process the number of extraordinary points remains
constant, and they become separated by regular mesh of a kind which is
dependent on the topological rules of the scheme.

• The regular mesh is often well-described by box-spline theory (the butterfly
scheme was almost alone in not being describable in those terms) but the
z-transform analysis can always be applied to determine the smoothness
of the limit surface in the regular regions. The extraordinary points are
surrounded by rings of regular mesh, and close to the extraordinary point
these are just affine transforms of the natural configuration, and can be
parametrized by the characteristic map.

• Because every box-spline has a generating subdivision scheme [10], we had
a way in principle of creating as many different subdivision schemes as
we might want. Each such scheme would have to have its extraordinary
point rules invented, of course, but nobody had bothered to go through the
exercise. We also had a sequence of interpolating curve schemes, generated
by letting an increasing number (2n) of points influence the new vertex
in the middle of each span [16], but this had not led to a sequence of
interpolating triangular surface schemes. In fact Catmull-Clark, Loop and
butterfly were regarded as the significant surface schemes, and the cubic B-
spline subdivision and the 4-point scheme as the significant curve schemes,
any others being only of academic interest.

• The question of the behaviour of the limit surface in the immediate vicinity
of the extraordinary points was still of interest. Indeed, the papers [7, 15,
18] before Reif’s key result [35] on the lower bound of the polynomial
order of patches surrounding an extraordinary point have been more than
balanced by those after [46, 47, 58, 69, 70, 134].

This amount of classical subdivision theory is elaborated at greater length
in the material prepared for the Primus Workshop earlier in the MINGLE
project. Of particular relevance are the four chapters [100, 101, 102, 103].

Recent Progress in Subdivision 207

2 New Schemes and a Classification

2.1 New Schemes

Kobbelt’s 1996 scheme for interpolatory subdivision over quad grids [37] can
be regarded as the last of the classical schemes, being essentially a tensor
product of the four-point scheme with the awkward details sorted out.

The ‘simplest’ scheme, published by Peters and Reif in 1997 [41], however,
had a new flavour to it. It was in fact a box-spline, and we should have been
able to predict it by doing a systematic scan through all the box-splines with
small numbers of shifts. This may be how they found it, but it still felt new,
because the mesh changed orientation at each refinement stage.

This surprising aspect of that scheme is echoed in Kobbelt’s
√

3 scheme [66]
where a triangular grid becomes denser by the insertion of a new point in the
middle of each triangle: the old edges disappear, being replaced by new ones
joining each new point to the corners of its triangle and to the neighbouring
new points. This scheme was not a box spline – its basis function is a fractal –
and its publication led to an upsurge of interest in the analysis of smoothness1

and in the determination of the support2 of a scheme. In fact there is a box-
spline with the same topology but a slightly larger mask. This was observed by
Ron during the Dagstuhl meeting at which Kobbelt described his

√
3 scheme.

As determined by Ron [127], over the regular grid it consists of quartic pieces
and has the high continuity (C3 in this case) expected from a box-spline
scheme with many distinct generator directions. However, the translates of
the basis function are not linearly independent, and so it is not possible to
compute the control points from a set of points, similarly connected, which
are to be interpolated. This topology of refinement of a triangular mesh was
also explored by Guskov [53], who identified a bivariate family of schemes,
one of which is an interpolating scheme.

The same theme led to Velho’s 4-8 scheme [77, 78], a box-spline over the
4-direction grid (the quad grid with diagonals), which appears to have many
nice properties, particularly in terms of being well behaved when there are
diagonal features in the surface being designed. Yet another box-spline over
this grid forms the quad part of Peters’ 4-3 scheme [139].

Alexa [87] showed that the rotation can be even more general, the arity
being described by a pair of integers3. This insight led to the exploration of
skew schemes by Ivrissimtzis [129] and by Dodgson [111]. Direct exploration of

1 the number of continuous derivatives.
2 The support of a scheme is the non zero domain of the basis function of a scheme.

This was analysed fully by Ivrissimtzis [137] who showed exactly when the bound-
ary of the support would follow lines of the grid, and when it would be fractal.

3 Another view [113, 124] is that it is a dilation matrix, a 2×2 matrix with integer
entries and eigenvalues greater than or equal to 1 and its spectral radius is greater
than 1, and with certain symmetries [124] corresponding to those of the topology
of refinement.

208 Malcolm Sabin

ternary univariate schemes by Hassan and Ivrissimtzis [88, 114] was also hap-
pening at about the same time. This thread was later followed by Loop [115],
who explored ternary subdivision of the 3-direction box-spline and found an
appropriate set of coefficients for the extraordinary point case. A ternary trian-
gulation interpolating scheme was explored, so far unsuccessfully, by Dodgson
et al. in [105].

2.2 Classification

We have also been able to see more structure in the set of known surface sub-
division schemes. Whereas before we had half a dozen or so known patterns,
with the tensor product box-splines providing one coherent family, we can
now see a framework into which all the schemes likely to be of interest will
probably fit. In fact there are a few variants on this but they do not differ
greatly, and [128] is a good starting point. Another is [113].

Such a classification has a number of levels, the top level being the plane
tessellation which appears in the regular case. Then whether the scheme is
primal, dual, both or neither, and then the arity.

Once these attributes are defined, the topology of the refinement of the
polyhedron from step to step is fully determined. We then identify the foot-
print, the set of non-zero coefficients in the mask. From this and the arity
the region of support can be determined, and, most important, the question
of whether the scheme gives a fractal limit surface or possibly a piecewise
polynomial. The support boundary [137] gives a first clue to this.

The shapes of the stencils are also determined from the footprint.
The next step is to specify the actual coefficients in the regular grid case,

and finally, schemes can differ by the special rules applied at extraordinary
points, although two schemes, with differences in only this respect, should be
regarded as variants rather than as distinct schemes.

This classification leads to a notation [128] for the description of almost
any uniform linear stationary scheme, in which two letters code the regular
grid type and the primality or duality of the scheme. These are followed by
two integers defining the arity and then a list of lists of independent coeffi-
cients in the mask. This is a formal notation, (although ad hoc rather than
following a more general structure such as L-systems [110]). In principle it
should be possible to compile an implementation of a new scheme from this
notation. The extraordinary point rules are covered by letting the coefficients
be functions of the valency of the extraordinary point.

Curve schemes do not have, or need, quite such a rich classification. A
sufficient analogous categorisation can use the primal/dual aspect as the
first level, then the arity and the mask width, followed by the approximat-
ing/interpolating issue, and finally by the detail of the values in the mask.
The formal notation has the primal/dual letter, the arity, and then a list of
the independent coefficients in the mask. Everything in a linear stationary
scheme is derivable from this information.

Recent Progress in Subdivision 209

3 New Domains and New Ranges

3.1 Trivariate Data

Recently first attempts were made to extend subdivision schemes to volumet-
ric data. The simplest case is that of refining trivariate function values given at
the vertices of a cube-type lattice (hexahedral lattice), which is topologically
equivalent to the integer lattice in R

3, namely to Z
3.

This was explored by Peters and Wittman [44], using a 7-direction box-
spline and by Barthe et al. [89], using the trivariate analogue of Chaikin, as
a convenient way of managing smooth data without excessive grid density
for the definition of implicit free-form surfaces. Weimer and Warren [59] use
a regular trivariate domain for the solution of flow fields. Chang et al. [107]
derived a C5 subdivision scheme based on box-splines, that must be applied
over hybrid tetrahedral/octahedral meshes.

MacCracken and Joy [39] used 3D subdivision as a way of defining dis-
placement fields for free-form deformations. Their scheme is the tensor prod-
uct tri-cubic B-spline scheme over the cube-type lattice, and has an extension
to similar lattices with arbitrary connectivities.

Bajaj et al. [95] proposed an alternative treatment of extraordinary edges
and points to that presented in [39]. Their scheme also generates tri-cubic
B-spline volumes at the regular parts of the lattice. In this tensor-product
setting, an extraordinary edge is essentially just the tensor product of a bi-
variate extraordinary point with the curve associated with the sequence of
extraordinary edges. This brings little new insight except that, because the
subdominant eigenvalue associated with the curve is always 1/2, in order to
keep the aspect ratios reasonable during refinement, that of the extraordinary
point also needs to be 1/2.

The analysis of points where extraordinarities meet is yet to be developed.
Due to the many possible combinations of the valency of the point and the
valencies of the edges meeting at the point, such analysis is expected to be
highly complicated. It appears to be enumerable only if we limit the extraor-
dinary edges to have a valency at most one more or one less than the normal,
when the number of possible interesting configurations (for a hexahedral grid)
is only eight.

In contrast to triangulations in the 2D case, the tessellation of the integer
lattice in 3D by a tetrahedralisation is more complicated, because there are no
regular tetrahedralisations, only semi-regular4, and there is not one obviously
preferable choice. It is common in the Finite Element literature to use two
different types of tetrahedra to cover the lattice.
4 In fact there is only one regular grid in the trivariate case, the ‘hexahedral’ grid

(a trivariate grid topologically equivalent to the regular cubical grid). All ‘regu-
lar’ tetrahedralisations are in fact only semiregular, with the underlying rotation
group of the hexahedral grid.

210 Malcolm Sabin

There is one lattice of similar tetrahedra which tessellates R
3. This is

not a tessellation of Z
3, but of the lattice generated by it together with the

midpoints of the cubes of Z
3 [22], but even this is semiregular in that some

edges are 6-valent while others are 8-valent.
In work in progress, Dyn, Greiner and Duchamp study a subdivision

scheme, based on local averaging steps, which generates C1 functions over
this lattice. This scheme is well defined over an extension of the above lattice
to arbitrary connectivities, but at this stage the analysis of continuity and
smoothness near the extraordinary edges and vertices is not satisfactory. For
example, the situation round an extraordinary edge is not straightforwardly
described in terms of matrices for grids of tetrahedra.

3.2 Higher Dimensions

It is quite clear that direct analogues exist for manifolds of higher dimensions.
However, what problems will emerge as the dimension rises still further is not
yet evident.

3.3 Associated Fields

There is no reason why the subdivision process need be carried out only on
the coordinates of polyhedron points. DeRose [49, 50] uses additional data to
carry coordinates for applying texture to subdivision surfaces, an important
issue in Computer Graphics. Each vertex has two additional values, as well
as the three coordinates, and all five values are refined as if the surface lay in
a space of five dimensions. Such additional values can be used for any other
properties for which we require a field of values to vary smoothly over the limit
surface. All that is necessary is to think of the subdivision as being carried
out in a space of many dimensions.

3.4 Field Analysis

In particular, a subdivision surface or volume can support an analogue of
the finite element method by using the subdivision basis functions instead of
the Lagrange functions conventionally used in stress-analysis elements. Sub-
division is now logically carried out in the space of 3 position coordinates
and 3 components of displacement, although the latter are treated as alge-
braic variables solved for by an energy minimisation process. This gives an
extremely powerful method, because the subdivision process gives adaptive
basis functions, strongly analogous to standard FE practice, but performing
much better, in that they span a space in which the first derivative is contin-
uous everywhere (like the actual field in an elliptic problem such as elastic-
ity), so that freedoms are not wasted on modelling possible discontinuities of
derivative.

Recent Progress in Subdivision 211

This has been described by Cirak, Ortiz and Schröder [57, 91] in the surface
case and by Weimer and Warren [59] in the solid case. A key result for surface
analysis was obtained by Reif and Schröder in [74], which showed that it
was not necessary to have bounded curvature for the bending energy of a
subdivision surface to be well-defined. This meant that easily accessible un-
tuned versions of Loop and Catmull-Clark could be used for this purpose.

The use of subdivision gives both good basis functions, capable of giving
at least one order of magnitude improvement over conventional finite elements
in speed for a given accuracy, and a very convenient h-refinement mechanism.
This means that we can expect to see enormous benefits in systems which
give almost real time stiffness and strength analysis during the interactive
modification of not-too-complicated CAD models.

3.5 Compact Sets

In a series of papers, Dyn and Farkhi investigated spline subdivision schemes,
with compact sets taking the rôle of the control points [71, 82, 86]. They found
that for data consisting of convex, compact sets and with the Minkowski sum
of sets replacing the usual addition of points, the limits generated by spline
subdivision schemes approximate set-valued functions with convex images in a
“shape preserving” way [71]. For set-valued functions with non-convex images
these schemes converge to set-valued functions with convex images [140]. So
no approximation can be expected.

In [82] the authors suggested performing spline subdivision by repeated
averaging and replacing the averaging operation between two control points
by the binary operation between two compact sets, called the “metric av-
erage”. They proved that the resulting subdivision schemes are convergent.
They also showed that any such scheme operating on data sampled from a
Lipschitz continuous set-valued function, generates a limit set-valued function
approximating the sampled set-valued function. The smoothness properties of
the limit set-valued functions have yet to be explored.

3.6 Face-valued Subdivision

It is also possible to associate values with faces rather than with vertices and
to have these values propagated through the refinement process. A natural
quantity to attach to a face is the average of some function f over that face.
In tensor-product schemes averages over the faces in the parametric domain
can be regarded as point values of the primitive function of f , obtained by
integrating f in the two parameters. This was observed by Donoho [27] for
averages of univariate functions. In triangular grids refinement of averages
over the triangles gives rise to new families of schemes.

Cohen et al. [72] present and analyse an “average interpolating” scheme.
In such a scheme each triangle is refined, in the parametric domain, into four

212 Malcolm Sabin

similar ones such that the averages assigned to the refined triangles gener-
ated from triangle T , sum to four times the average assigned to T . Cohen
et al’s scheme generates C0 limit functions and is exact for linear bivariate
polynomials.

A family of “approximating” face-value schemes, which are obtained by
the elementary operation of repeated averaging of the face-values (in analogy
to Box-splines schemes which can be described by simple repeated averaging
of point values) are studied by Dyn et al. [112], where their smoothness is
derived from convolution relations. Such schemes, also called “dual schemes”
on triangulations, are investigated by Oswald and Schröder [122], as a contin-
uation of the work of Zorin and Schröder [83] on alternating quad grids.

4 New Issues

4.1 Compatibility with Existing Parametric Surface Software

A requirement which has come from the move to incorporate subdivision
surfaces into existing major commercial software systems already dealing with
surface geometry held in other forms, is that a method is needed for the
interrogation of these surfaces in a way which is compatible at a low level
with the existing parametric surfaces. This is needed so that the breadth of
functionality of those systems can be maintained without a complete recoding.

A large step in this direction can be taken by allowing a subdivision surface
to be perceived as a collection of a small number of rectangular parametric
surfaces. However, just using the regular regions of the surface and the rings
around extraordinary points is not sufficient, because there are too many rings.

The alternative, developed by Stam [52], is to split the surface so that
extraordinary points appear at corners of rectangular carpets, and have a
special evaluator.

Whenever an evaluation request is received relating to a point in the region
influenced by the extraordinary point, this evaluator does the subdivision to
a sufficient level on the fly and then peeks at the right ring.

Although effective, this is inelegant, because the computation required
depends on the closeness of the requested point to the extraordinary point. It
also has a problem that very close to the extraordinary point, the mapping of
a corner of the parameter square on to one sector of the subdivision surface
has extremely large second derivatives. This means that the calling algorithms
must be extremely robust to work effectively.

Zorin and Kristjansson [98] suggested that instead, in the region influenced
by the extraordinary point, the surface should be examined in terms of the
finite number of eigencomponents and evaluated direct from there.

It could be argued that divide and conquer algorithms, based on enclo-
sures [93], would be a much more robust approach to interrogation, but the

Recent Progress in Subdivision 213

suppliers of commercial software have limited budgets for such complete reim-
plementations, and do have the requirement to be able to support any new
surface type with the full range of functionality of the system. Being able to
plug the new surfaces in at the evaluation level is a very practical way of
achieving this in the short term.

4.2 Artifacts

Until about 2001 the only property of subdivision surfaces that anybody both-
ered with was the level of smoothness at extraordinary points, and at all points
within schemes which did not have the box-spline underpinning which allows
the level of continuity of regular regions to be determined a priori. Once sub-
division surfaces started to be used for real tasks, it became apparent that
there were other aspects equally important or more so.

One problem which was brought to light is that if an extraordinary point
has a very high valency, the polyhedron after a few steps has what appears
to be a cone centred at that point. This appears to be due to the fact that
the subdominant eigenvalues tend to increase with valency, so that the rate
of shrinkage towards such points is much slower than the average over the
surface.

In particular, if the subdominant eigenvalue of an extraordinary point is
significantly greater than 1/2 in a binary scheme, the rings shrink more slowly
towards that point than to normal points. After a few iterations this results
in a ‘polar cap’ of long thin faces.

Because the distance of a control point from its limit position varies
quadratically with the size of the local faces, the extraordinary control point
remains far from the limit surfaces after all the other points have converged
closely, and so if an image is drawn without projection of the vertices to their
limit positions, it appears as if there is a cone-like failure of tangent continuity.

An even more serious problem is that in extremely extraordinary situa-
tions, where a high-valency extraordinary vertex is surrounded by low-valency
ones, the shape of the limit surface can be significantly qualitatively different
from that of the original polyhedron, showing features whose spatial frequen-
cies are as high as the valency of the central extraordinarity. So far we have
identified three possible causes for these:

1. the natural configuration of the high-valency point
2. inequality of the cup- and saddle-eigenvalues
3. plain interaction at the first level of refinement.

This is a high priority target for more understanding.
What is common to these effects is that features appear in the limit surface

which have a spatial frequency too high, relative to the density of the original
mesh, to be corrected by the careful placing of the control points. Once this is
observed, we can identify other effects which also have this aspect in common.

214 Malcolm Sabin

In particular, all of our stationary curve schemes do in fact contain, in
the limit curve, spatial frequencies of twice the Shannon limit. To avoid this
would require that the basis function should be sin(x)/x which would in turn
require a subdivision mask of infinite width. Indeed, the higher the degree,
the smaller this artifact, and the benefit from looking on subdivision as being
made out of sampling and smoothing occurs precisely because the smoothing
reduces high frequencies more than lower.

A more interesting effect is that aliasing effects can also appear in direc-
tions where the original polyhedron has no features. A simple extruded ridge
in the polyhedron can result in a limit surface with a ‘dinosaur back’, with
one hump per original control point.

This is now fully understood. Every scheme misbehaves in this way if the
original polyhedron has its vertices sampled from an extruded surface, except
when the direction of extrusion is one of a small number of special ones –
the directions in which the symbol of the scheme has at least one factor of
(1 − za)/(1 − z). Some schemes, such as Kobbelt’s

√
3 [66] have no such

directions. Catmull-Clark [6] has two, the directions of the edges of the mesh;
Loop [13] has three; the 4-8 [77, 78] and 4-3 [139] schemes, despite being
quad-based, have four, and the Dagstuhl scheme [127] has six. It turns out
that there are also advantages of having more than one (1−za)/(1−z) factor
in a direction, as then a polyhedron formed by linearly varying extrusion will
result in a limit surface with the same property.

The final effect, not strictly an aliasing one, is that the way that edges are
handled in the raw versions of the standard subdivision schemes has a serious
deficiency, in that the local curvature across the boundary is determined not
by the shape of the polyhedron measured across the boundary but by the
curvature along the local boundary. Indeed, in the Catmull-Clark scheme, the
isoparametric lines crossing a boundary have zero curvature where they meet
it.

These effects are described more fully, with their explanations, where they
are known, by Sabin and Barthe in [116].

4.3 Street Wisdom

In the NURBS generation of surface descriptions, there seemed to be rather
little know-how about how to choose control points to define the surface that
you really wanted. Perhaps this was because there was little freedom to choose
the topology and so recourse to just making a dense control polyhedron was
frequently required.

In the subdivision surface case it is possible to use the extraordinary points
to achieve a lot, and the need for ‘street wisdom’ is larger, because the op-
portunity to use it to reduce the density of the original mesh and thus give
smoother surfaces easily is much higher. There seem to be two important
rules.

Recent Progress in Subdivision 215

1. Extraordinary points have two purposes:
a) to allow the mesh to follow features even when those features do not
form a regular grid. ‘Features’ in this context includes the edges of faces,
and so if this principle is followed, the need for trimmed surfaces is signif-
icantly reduced.
b) to match the local total curvatures, and thereby allow the mesh to
remain more or less orthogonal everywhere. An extraordinary point of
valency 3 in a quad grid provides enough positive discrete total curvature
to satisfy an octant of a sphere. One of valency 5 provides the same amount
of negative discrete total curvature.
So the first rule is to choose the topology of the initial polyhedron so that
the only extraordinary vertices are those needed for these purposes.
In both cases the need for extremes of extraordinarity is very unusual. In
almost all cases the variation of valency from the regular case need only
be plus or minus one. Better results will almost always be obtained in a
quad grid by using two separate 5-valent points rather than one 6-valent.

2. The second rule is to keep the mesh as sparse as you can. The filling in
between the extraordinary points is exactly what the subdivision process
does, and initial design can be carried out by providing a mesh with very
few points except the necessary extraordinary ones (each such point being
required either by 1a or by 1b above), carrying out one step at a time of
subdivision and correcting the mesh to suit shorter wavelength features
of the required shape at each step.

These rules are primitive. We hope that significant work will go into refin-
ing them into practical tools for surface designers to apply when using subdi-
vision surfaces. The structures used by Skaria et al. [80], although derived in
a different way, appear to be consistent with these guidelines.

4.4 Compression

Khodakovsky et al. [68] showed that this last idea can be exploited to give an
effective compression of smooth surfaces for transmission over the web. The
coarse mesh is transmitted (possibly coded, although it should be so sparse
that coding does not save many bytes) together with the corrections by which
the control points computed at each refinement level need to be moved so that
the limit surface eventually matches the desired surface.

If the original surface is smooth and the subdivision scheme is a good
one, the corrections drop dramatically in amplitude as refinement proceeds,
so that the total information sent can be a very small fraction of the total
mesh. Indeed it is likely to be independent of the original density of the mesh.

Guskov’s idea of normal subdivision [65], where the corrections are applied
only in a direction perpendicular to the surface, saves a further factor of 3 on
the corrections, although it means that a given tessellation is not necessarily
exactly matched. It was pointed out by a referee that entropy coding would
normally exploit this redundancy almost as effectively as normal subdivision.

216 Malcolm Sabin

4.5 Tuning

The response to the artifacts which are associated with extraordinary points
has to be to try to tune the behaviour round the extraordinary points by
altering the local coefficients. There are two approaches to this: we can either
think of the stencils as the primary representation of the scheme, or else the
masks.

In the stencil-oriented approach we modify the values in those stencils
which contain a reference to an extraordinary point. There are clear stages in
which we can do this. The first stage is to modify only the stencil of the new
extraordinary point itself. This was done in a half-hearted way in the original
Catmull-Clark paper [6] as a response to the Doo-Sabin analysis [7] of the
behaviour at the extraordinary point. It was done properly for the Catmull-
Clark scheme by Ball and Storry [9]. Loop’s scheme was explicitly designed
with exactly this tuning as a design principle [13].

However, this can only control the continuity of cup-like curvatures. In
order to control the saddle-like curvatures it is necessary also to modify the
stencils of the 1-ring of new vertices. This was done for the Catmull-Clark
scheme by Sabin [18], and for the Loop scheme by Holt [40], in a way which
did not alter the footprints of the stencils. No new influences were introduced;
only the already non-zero coefficients were altered.

More recent tunings, by Zorin of the butterfly scheme [38], by Prautzsch
and Umlauf of the Loop and Butterfly schemes [46], by Loop of the Loop
scheme [81, 99], and by Barthe of the Catmull-Clark scheme [133] have taken
the attitude that it is OK to increase the sizes of the stencils if by doing
so other properties, such as positivity, can be maintained as well as the re-
quired eigenratios. The tuning of the 4-3 scheme [139] however, maintains the
footprints of the stencils.

The mask-oriented approach, on the other hand, says that as a first stage
of tuning we will alter only the mask associated with the extraordinary point
itself. The entries in the mask become expressions which depend on the ex-
traordinary valency, and we choose them so that certain desired properties of
the scheme (for example: good subdominant eigenvalue, bounded curvature,
good characteristic maps) are achieved.

When this approach is applied, the stencil of each of the new vertices
covered by the mask of the extraordinary vertex has to be renormalised so
that the entries sum to unity, but this is straightforward, and covers the
situation automatically where there are vertices which lie within the masks of
more than one extraordinary point.

We now see the stages of stencil-oriented tuning appearing again in terms
of which coefficients in the mask vary with valency. The central value controls
the cup-curvature eigencomponent; the 1-ring value controls the ratio of the
saddle-curvature and tangent plane eigencomponents; the rings further out
control the eigenvectors, so that we can choose a neat natural configuration
leading to a well-behaved characteristic map.

Recent Progress in Subdivision 217

This approach is more limited, in that the influences of regular vertices
are always regular, but it does ensure that the footprints of vertices near the
extraordinary vertex remain standard, so that the support analysis remains
valid in that region. It is argued here that this should be the approach of first
resort, and that the larger number of freedoms available through stencil-based
tuning should not be invoked until it is certain that the objectives cannot be
met by mask-based tuning.

Both views bring their own insights and both need to be explored a lot
more in the near future.

5 New Ideas

The theory described above has almost entirely focused on the uniform sta-
tionary case, in which the refinement rules are the same throughout the poly-
hedron and are also the same at every step, but we do not have to be limited
in this way. We can consider non-uniform schemes, in which the rules vary
from place to place, and non-stationary ones in which the rules vary with the
refinement level.

5.1 Non-uniform Schemes

In a non-uniform scheme, the rules do not need to be the same at all parts of
the grid.

Boundaries

In fact we have always had some measure of non-uniformity, in the sense that
any practical scheme needed to have appropriate rules at the boundaries.

As was pointed out above, the boundary rules actually used turn out to
be a little unfortunate, and Levin [55, 56] suggested the use of what he called
“combined schemes” which defined a bounded piece of surface by both a
polyhedron and a set of surface normals to be matched at the boundary. This
effectively gives an analogue of the Bézier edge conditions normally used for
NURBS surfaces.

Nasri and Sabin [109] surveyed and classified the ways in which constraints
on the original polyhedron could be used to achieve interpolation of both
boundaries and internal feature curves, with and without also controlling the
variation of surface normal along those curves. Sabin and Bejancu [126] looked
for an analogue of the “not-a-knot” condition found so valuable in the old days
of interpolating cubic splines, and found that this could be expressed in terms
of fourth differences over the polyhedron for both Catmull-Clark and Loop
schemes.

218 Malcolm Sabin

Unequal-intervals

One of the potential barriers to adoption of subdivision surfaces as a succes-
sor to NURBS in the representation of engineering objects is the problem of
compatibility. The possibility of having unequal spacing of knots in NURBS
is frequently used, while all current subdivision schemes are implicitly the
equivalent of equal interval splines.

Dyn, Gregory and Levin [31] made first steps in this by considering the
quasi-uniform case, where all the intervals on one side of a central point have
one size, all those on the other a different size. After one refinement all intervals
were halved. Within this restricted variability the tools of eigenanalysis can
still be applied, and they showed that all the important properties could be
maintained. This work was continued by Dyn and Levin in [62] to the general
unequal interval case.

The univariate case of B-spline unequal interval subdivision was explored
by Qu and Gregory [24, 36] and by Warren [32], who showed that knot in-
sertion in an unequal interval context could give a corresponding subdivision
scheme, with all the expected properties.

Sederberg et al. [51] explored the possibility of labelling every edge in
a polyhedron with a “knot interval”. A variant of Catmull-Clark was then
used which produced a similarly-labelled refined polyhedron. This scheme
contained all the unequal interval bicubic B-spline surfaces as a particular
case when the grid was completely regular and the labels were equal on oppo-
site edges of every quad. It also contained all Catmull-Clark surfaces as the
particular case when all labels were equal.

It had two disadvantages. The first was the need to specify all the labels:
some preprocess determining labels from some terser specification would be
necessary in practice. The second was that the spectrum at extraordinary
points had the subdominant eigenvalues split, so that proving smoothness was
extremely hard. In fact slightly different rules for the new labellings could have
solved this.

It seems that new work in this direction would be valuable, but it is now
clear that the ambition of having all edges separately labellable is not in fact
necessary to cover the regular non-uniform case. It is also clear that the rules
for defining the new labellings should be derived from some logical argument
about where the new “knots” should be. There is no reason why new knots
should be either rigidly at the middles of old intervals or at wherever some
convenient formula happens to put them.

Mixed Grid Schemes

Where a desired surface has a clear warp and weft, indicated by its very
distinct principal curvatures, a quad grid is the natural choice, avoiding lateral
artifacts by running the flow of the grid along the flow of the surface. However,
for surfaces where there is no such bias, containing bumps, hollows and saddles

Recent Progress in Subdivision 219

(think of mild terrain), the natural way to define a polyhedron is to put a
vertex at each maximum and each minimum and maybe at each saddle as
well. In such a case it makes sense to use either a triangulation, or else a
mixed grid containing both triangles and quads.

The special case of such a mixed grid, consisting of a triangular mesh on
one side of an “extraordinary line” and a quad grid on the other was first
raised by Loop at a Dagstuhl meeting, and he and Stam [118] produced an
initial scheme. This case has been fully analysed by Levin and Levin [123] and
an alternative scheme proposed.

The fuller case where quads and triangles can be mixed as appropriate for
the surface being defined is the subject of a paper by Peters and Shiue [139].
In this case the quad part of the scheme, applied wherever a sufficiently large
piece of the mesh consists entirely of quads is a four-direction box-spline,
rather than Catmull-Clark, while the triangle part is a bounded-curvature
variant of Loop.

The extraordinary line analysis is still an important part of the tool-box
for such schemes, because as refinement proceeds, the interiors of original
triangles become regions of triangle mesh and the interiors of original quads,
quad mesh, with extraordinary lines between them. However, the corners,
which can be of several different kinds, each need their own analysis, which is
addressed by Levin in [121].

5.2 Non-stationary Schemes

In a non-stationary scheme the rules can change from level to level. In the
simplest, uniform, form of non-stationary scheme the rules at each level of
subdivision are the same everywhere.

There is a very interesting family of univariate non-stationary schemes
generating Exponential B-splines (see [8] about this notion), and in particu-
lar trigonometric splines [30]. Any such scheme is similar to a corresponding
B-spline scheme, has the same support of its mask, and its refinement rules
converge to those of the corresponding B-spline scheme as the refinement level
increases. In particular it is possible to construct a univariate scheme generat-
ing circles. (In several ways, the one of smallest support has refinement rules
converging to those of the Chaikin’s scheme). In [23] Dyn and Levin con-
structed the scheme of smallest support, which, when applied to the vertices
of a regular n-gon, generates a circle.

Recently Morin, Warren and Weimer [79] constructed a circle-generating
scheme, with refinement rules converging to the refinement rules of a cubic
B-spline scheme, and then constructed its tensor-product with a stationary
scheme, to obtain a subdivision scheme generating surfaces of revolution.

The analysis of convergence and smoothness of non-stationary scheme can-
not use the analysis tools for stationary schemes. One method for studying
the convergence is by comparison to a convergent stationary scheme [30, 94].
Recently Dyn, Levin and Luzzatto analysed with this method a family of

220 Malcolm Sabin

non-stationary interpolatory schemes reproducing exponential functions [125].
These schemes are applicable to the processing of highly oscillatory signals.

Sabin [141] shows an analogue of the four-point scheme, in which the com-
putation of the new vertices is not expressed in terms of linear combinations,
but as a non-linear geometric construction which guarantees the preservation
of circles. The non-stationarity is present in the non-linearity, but is hidden
under an apparently constant construction.

5.3 Geometry Driven Schemes

This last scheme is non-uniform as well as non-stationary, and so is better
described as a geometry-driven scheme. The rules both ensure that any set
of points which lie in sequence on a circle, whatever their spacing, will give a
circular limit curve, but the spacing also converges towards local uniformity,
so that the results of Dyn and Levin [30] can then be invoked to determine
the smoothness of the scheme.

In that sense it may well indicate a useful direction for other explorations.
We define here the term “geometry-driven” as the name for a class of schemes
in which the new polygon or polyhedron has its local shape determined geo-
metrically from the locality of the old one. It is likely that such schemes will
lose affine-invariance, and the actual value of affine invariance as against in-
variance under solid body, mirror and scaling transforms should be a matter
for debate in the community.

Another example of a family of geometry driven schemes is described by
Marinov [132] elsewhere in this book. It is derived from the “classical” linear
4-point scheme, by allowing a variable tension parameter instead of the fixed
tension parameter. The tension parameter is adapted locally in various ways,
according to the geometry of the control polygon within the 4-point stencil.
With this change the new schemes retain the locality of the 4-point scheme,
and at the same time achieve important shape-preservation properties, such
as artifact elimination and co-convexity preservation. The proposed schemes
are robust and have the special features of “double-knot” edges corresponding
to continuity without smoothness in the limit curves (for artifact elimination),
and inflection edges for co-convexity preservation.

5.4 Hermite Subdivision

In a Hermite scheme, not only point positions, but also derivatives or normals
are carried forward from each stage to the next. This is not a totally new idea,
but there have been significant developments recently.

Hermite schemes were first designed mainly for functional data. Mer-
rien [25, 29] introduced interpolatory Hermite schemes of extremely local
support. His univariate schemes are two-point schemes, namely the values
of the function and a fixed number of its derivatives in the mid-point of an

Recent Progress in Subdivision 221

interval is determined by the values of the function and the same number of
its derivatives at the two boundary points of the interval.

Similarly in his Hermite schemes on triangulations, the values of the func-
tion and its derivatives attached to a mid-point of an edge of a triangle in
the refinement step, depend only on the values of the function and its deriva-
tives attached to the boundary points of that edge. Merrien analysed the
convergence and smoothness of his schemes. Dyn and Levin provided in [63]
analysis tools for univariate interpolatory Hermite subdivision schemes, for
any number of derivatives attached to the grid points and any support size of
the scheme. Dyn and Lyche designed a specific bivariate Hermite subdivision
scheme generating the Powell-Sabin twelve-split quadratic spline [64].

Recently new Hermite-type schemes were developed. Jüttler and Schwa-
necke in [97] represented Hermite schemes for curves corresponding to data
of position and tangent vectors, in terms of spline curves with control points.
They provided an analysis method based on their representation, and designed
new schemes, interpolatory and non-interpolatory. van Damme [42] proposed
several schemes. For bivariate functions he gave proofs for the convergence
and smoothness of the corresponding schemes, while for surfaces he gave only
experimental results. Han et al. [138] defined the notion of non-interpolatory
Hermite subdivision schemes, and designed a family of such schemes for sur-
face generation, whose refinement is done with a dilation matrix. They analyse
the smoothness of their schemes which have certain symmetries of relevance
to geometric modelling.

5.5 Non-linear Schemes for the Functional Case

In analogy to the geometry-driven extensions of the linear 4-point scheme,
new non-linear 4-point schemes for interpolating given equidistant data, sam-
pled from a piecewise smooth function, were designed by Cohen, Dyn and
Matei [136]. This schemes are based on the ENO (essentially non-oscillatory)
interpolation technique, and use a 4-point stencil for the insertion of a new
point, which is either centred relative to the inserted point or moved by one
point to one of the two sides. The choice of the stencil is data dependent
and aims at using data from the smooth pieces of the approximated function.
These schemes converge to Hölder continuous limit functions, and reproduce
cubic polynomials.

5.6 Reverse Subdivision

Reverse subdivision is the process of taking a dense grid and determining a
coarse one which, when refined by subdivision, gives a good approximation to
the original. It is closely related to wavelets and to compression.

Although the idea of looking at subdivision through the insights of wavelet
mathematics can be traced back to [28, 21] or even earlier, Warren [43] pro-
vides a very readable introduction to the idea of applying wavelet techniques

222 Malcolm Sabin

to subdivision schemes, using the cubic B-spline univariate subdivision as a
concrete example throughout.

In [60] and [84], Bartels and Samavati provide a much fuller description
of the links between wavelets, least squares fitting and the reversal of specific
subdivision schemes. Although the tensor product case is covered, the ideas
are essentially univariate, but in [85] and [108] they apply these ideas to
surfaces, reversing Loop and Butterfly, and the original Doo subdivision [5]
respectively.

Hassan and Dodgson [130] show a simpler approach based on Chaikin
subdivision with a purely local determination of the new (coarser) vertices
and the error terms.

Suzuki, Takeuchi and Kanai [61] fit approximate subdivision surfaces by
using an interactively defined initial polyhedron to indicate which parts of
the given dense surface should be converged to from each original vertex, and
then solve the linear system implied by the limit positions of each vertex to
solve for a good set of coarse control points. Ma and Zhou [75] gain their
initial polyhedron from a consideration of the boundary of the given dense
data and carry out a similar operation. Ma et al. [92] derive their coarse
initial polyhedron for Loop subdivision by using strong decimation and re-
triangulation on the grid, and use least squares fitting rather than collocation.
This fitting is done in a single swoop direct from a really coarse mesh, whereas
that of the wavelet-based approaches is done one step at a time. It also has the
effect that subsequent resubdivision will seldom give the same triangulation
connectivity as the original. Taubin [96] observed that loss of the original
connectivity can often be avoided if the original mesh had few extraordinary
vertices, and those vertices are joined by chains of edges passing through
normal vertices without turning. He identified a parallelisable algorithm for
detecting such situations in both triangular and quad meshes.

Surazhsky and Gotsman [119] observe that in general dense triangular
meshes can benefit from a process of remeshing, wherein the number of ex-
traordinary vertices is reduced significantly (and the number of extremely
extraordinary vertices reduced very significantly). Their resulting meshes are
dramatically smoother then the originals, and are likely to provide a better
start for recapturing of a coarse subdivision surface. Within their technology
is a technique for migrating extraordinary vertices within a mesh, so that
extraordinarities of opposite sign can be brought together to annihilate each
other.

Alkalai and Dyn [131] also carry out an optimisation of the connectivity of
a given triangulation, but at the coarse level. This improves the convexity of
the initial polyhedron, minimising the discrete curvature merely by applying
2:2 swaps. The vertex coordinates are not changed.

Recent Progress in Subdivision 223

Acknowledgements

This paper was partially supported by the European Union research project
‘Multiresolution in Geometric Modelling (MINGLE)’ under grant HPRN–CT–
1999–00117. Thanks are also due to Nira Dyn, who provided valuable critical
comment and drafts of some sections of the paper.

References

before 1980

1. G. de Rham. Un peu de mathématique à propos d’une courbe plane Elemente
der Mathematik 2, 73–76, 89–97, 1947.

2. G. Chaikin. An algorithm for high speed curve generation Computer Graphics
& Image Processing 3, 346–349, 1974.

3. A. R. Forrest. Notes on Chaikin’s algorithm. University of East Anglia Com-
putational Geometry Project Memo, CGP74/1, 1974.

4. R. Riesenfeld. On Chaikin’s algorithm. Computer Graphics & Image Processing
4, 304–310, 1975.

5. D. Doo. A subdivision algorithm for smoothing down irregularly shaped poly-
hedrons. Proc. Int’l Conf. on Interactive Techniques in Computer Aided Design,
IEEE Computer Soc., 157–165, 1978.

6. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design 10, 350–355, 1978.

7. D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordi-
nary points. Computer Aided Design 10, 356–360, 1978.

1980–1984

8. L. L. Schumaker. Spline Functions, John Wiley, New York, 1981.
9. A. Ball and D. Storry. Recursively generated B-spline surfaces. Proc. CAD84,

112–119, 1984.
10. W. Dahmen and C. Micchelli. Subdivision algorithms for the generation of

box-spline surfaces. Computer Aided Geometric Design 1, 115–129, 1984.
11. D. Storry. B-spline surfaces over an irregular topology by recursive subdivision.

Ph.D. Thesis, Loughborough University, 1984.

1985–1989

12. A. Ball and D. Storry. A matrix approach to the analysis of recursively gener-
ated B-spline surfaces. Computer Aided Design 18(8), 437–442, 1986.

13. C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, De-
partment of Mathematics, University of Utah, 1987.

14. N. Dyn, D. Levin, and J. A. Gregory. A four-point interpolatory subdivision
scheme for curve design. Computer Aided Geometric Design 4, 257–268, 1987.

15. A. Ball and D. Storry. Conditions for tangent plane continuity over recursively
generated B-spline surfaces. ACM Transactions on Graphics 7(2), 83–108, 1988.

16. G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes Con-
structive Approximation 5, 49–68, 1989.

224 Malcolm Sabin

1990–1994

17. N. Dyn, J. Gregory, and D. Levin. A butterfly subdivision scheme for surface
interpolation with tension control. ACM Transactions on Graphics 9, 160–169,
1990.

18. M. Sabin. Cubic recursive division with bounded curvature. Curves and Sur-
faces, L. L. Schumaker, J.-P. Laurent, and A. Le Méhauté (eds.), Academic
Press, 411–414, 1991.

19. A. Cavaretta, W. Dahmen, and C. Micchelli. Stationary subdivision Memoirs
of the AMS, vol 453, 1991.

20. N. Dyn, J. Gregory, and D. Levin. Analysis of uniform binary subdivision
schemes for curve design Constructive Approximation 7, 127–147, 1991.

21. T. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis for surfaces
of arbitrary topological type. ACM Transactions on Graphics 11, 34–73, 1992.

22. D. Moore. Simplicial mesh generation with applications. Ph.D. thesis, Cornell
University, 1992.

23. N. Dyn and D. Levin. Stationary and non-stationary binary subdivision
schemes. Mathematical Methods in Computer Aided Geometric Design II,
T. Lyche, and L. L. Schumaker (eds.), Academic Press, 209–216, 1992.

24. R. Qu and J. Gregory. A subdivision algorithm for non-uniform B-splines Ap-
proximation Theory, Spline Functions and Applications, Singh (ed.), 423–436,
1992.

25. J.-L. Merrien. A family of Hermite interpolants by bisection algorithms. Nu-
merical Algorithms 2, 187–200, 1992.

26. N. Dyn. Subdivision schemes in computer aided geometric design. Advances in
Numerical Analysis – Volume II, Wavelets, Subdivision Algorithms and Radial
Basis Functions, W. Light (ed) Clarendon Press, Oxford, 36–104, 1992.

27. D. L. Donoho. Smooth wavelet decompositions with blocky coefficient kernels.
Recent Advances in Wavelet Analysis, L. L. Schumaker and G. Webb (eds.),
Academic Press, Boston, 259–308, 1993.

28. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stützle. Piecewise smooth surface reconstruction Proc.
ACM SIGGRAPH ’94, 295–302, 1994.

29. J.-L. Merrien. Dyadic Hermite interpolation on a triangulation. Numerical Al-
gorithms 7, 391–410, 1994.

1995

30. N. Dyn and D. Levin. Analysis of asymptotically equivalent binary subdivision
schemes. Journal of Math.Anal.Appl. 193, 594–621, 1995.

31. N. Dyn, J. Gregory, and D. Levin. Piecewise uniform subdivision schemes.
Mathematical Methods for Curves and Surfaces [33], 111–119, 1995.

32. J. Warren. Binary subdivision schemes for functions of irregular knot se-
quences. Mathematical Methods for Curves and Surfaces [33], 543–562, 1995.

33. M. Daehlen, T. Lyche, and L. Schumaker (eds.). Mathematical Methods for
Curves and Surfaces, Vanderbilt University Press, ISBN 8265-1268-2, 1995.

34. U. Reif. A unified approach to subdivision algorithms near extraordinary ver-
tices. Computer Aided Geometric Design 12,2, 153–174, 1995.

Recent Progress in Subdivision 225

1996

35. U. Reif. A degree estimate for subdivision surfaces of higher regularity. Proc
AMS 124(7), 2167–2174, 1996.

36. J. Gregory and R. Qu. Non-uniform corner cutting. Computer Aided Geometric
Design 13, 763-772, 1996.

37. L. Kobbelt. Interpolatory subdivision on open quadrilateral nets with arbitrary
topology. Computer Graphics Forum 15, 409–420, 1996.

38. D. Zorin, P. Schröder, and W. Sweldens. Interpolatory subdivision for meshes
with arbitrary topology. Proc. ACM SIGGRAPH ’96, 189–192, 1996.

39. R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary
topology Proc. ACM SIGGRAPH ’96, 181–188, 1996.

40. F. Holt. Toward a curvature continuous stationary subdivision algorithm.
ZAMM 1996 S1 (Proc GAMM), 423–424, 1996.

1997

41. J. Peters and U. Reif. The simplest subdivision scheme for smoothing polyhe-
dra. ACM Transactions on Graphics 16, 420–431, 1997.

42. R. van Damme. Bivariate Hermite subdivision. Computer Aided Geometric
Design 14, 847–875, 1997.

43. J. Warren. Sparse filter banks for binary subdivision schemes. Proc. Mathe-
matics of Surfaces VII [45], 427–438, 1997.

44. J. Peters and M. Wittman. Smooth blending of basic surfaces using trivariate
box splines. Proc. Mathematics of Surfaces VII [45], 409–426, 1997.

45. T. Goodman and R. Martin (eds.. Proc. Mathematics of Surfaces VII, Infor-
mation Geometers, ISBN 1-874728-12-7, 1997.

1998

46. H. Prautzsch and G. Umlauf. Improved triangular subdivision schemes. Proc.
Computer Graphics International, 626–632, 1998.

47. H. Prautzsch and G. Umlauf. A G2 subdivision algorithm. Computing Supple-
ments 13, Springer Verlag, 217–224, 1998.

48. H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Adv.
Comput. Math. 9, 377–389, 1998.

49. T. DeRose et al. Texture mapping and other uses of scalar fields on subdivision
surfaces in computer graphics and animation US Patent 6,037,949, 1998.

50. T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character anima-
tion. Proc. ACM SIGGRAPH ’98, 85–94, 1998.

51. T. Sederberg, D. Sewell, and M. Sabin. Non-uniform recursive subdivision sur-
faces. Proc. ACM SIGGRAPH ’98, 387–394, 1998.

52. J. Stam. Exact Evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values. Proc. ACM SIGGRAPH ’98, 395–404, 1998.

53. I. Guskov. Multivariate subdivision schemes and divided differences. Princeton
University preprint, http://www.cs.caltech.edu/~ivguskov/two.ps.gz, 1998.

54. J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision
SIAM J. Numerical Analysis 35, 728–748, 1998.

226 Malcolm Sabin

1999

55. A. Levin. Combined subdivision schemes. Ph.D. thesis, Tel-Aviv University,
1999.

56. A. Levin. Combined subdivision schemes for the design of surfaces satisfying
boundary conditions. Computer Aided Geometric Design 16, 345–354, 1999.

57. F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: A new paradigm for
thin-shell finite element analysis. Technical report
http://www.multires.caltech.edu/pubs/, 1999.

58. K. Qin and H. Wang. Eigenanalysis and continuity of non-uniform Doo-Sabin
surfaces. Proc. Pacific Graphics 99, 179–186, 1999.

59. H. Weimer and J. Warren. Subdivision schemes for fluid flow. Proc. ACM
SIGGRAPH ’99, 111–120, 1999.

60. F. Samavati and R. Bartels. Multiresolution curve and surface representation:
reversing subdivision rules by least-squares data fitting. Computer Graphics
Forum 18, 97–119, 1999.

61. H. Suzuki, S. Takeuchi, and T. Kanai. Subdivision surface fitting to a range of
points. Pacific Graphics 99, 158–167, 1999.

62. N. Dyn. Using Laurent polynomial representation for the analysis of non-
uniform binary subdivision schemes. Adv. Comput. Math. 11, 41–54, 1999.

63. N. Dyn and D. Levin. Analysis of Hermite interpolatory subdivision schemes.
Spline Functions and the Theory of Wavelets, S. Dubuc (ed.), AMS series CRM
Proceedings and Lecture Notes 18, 105–113, 1999.

64. N. Dyn and T. Lyche. Hermite subdivision scheme for the evaluation of
the Powell-Sabin 12-split element. Approximation Theory IX, C. Chui and
L. L. Schumaker (eds.), Vanderbilt University Press, 1–6, 1999.

2000

65. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. Proc.
ACM SIGGRAPH 2000, 95–102, 2000.

66. L. Kobbelt.
√

3 subdivision Proc. ACM SIGGRAPH 2000, 103–112, 2000.
67. H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision surfaces

with normal control Proc. ACM SIGGRAPH 2000, 113–120, 2000.
68. A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry com-

pression. Proc. ACM SIGGRAPH 2000, 271–278, 2000.
69. J. Peters and G. Umlauf. Gaussian and mean curvature of subdivision surfaces.

The Mathematics of Surfaces IX, Cipolla and Martin (eds.), Springer, ISBN
1-85233-358-8, pages 59–69, 2000.

70. H. Prautzsch and G. Umlauf. A G1 and a G2 subdivision scheme for triangular
nets. Journal of Shape Modeling 6, 21–35, 2000.

71. N. Dyn and E. Farkhi. Spline subdivision schemes for convex compact sets.
Journal of Computational and Applied Mathematics 119, 133–144, 2000.

72. A. Cohen, N. Dyn, K. Kaber, and M. Postel. Multiresolution schemes on tri-
angles for scalar conservation laws. Journal of Computational Physics 161,
264–286, 2000.

73. J. Peters. Patching Catmull-Clark meshes. Proc. ACM SIGGRAPH 2000,
pp255-258, 2000.

Recent Progress in Subdivision 227

74. U. Reif and P. Schröder. Curvature integrability of subdivision surfaces. Adv.
Comp. Math. 12, 1–18, 2000.

75. W. Ma and N. Zhao. Catmull-Clark surface fitting for reverse engineering ap-
plications. Proc. Geometric Modeling and Processing 2000, IEEE, 274–283,
2000.

2001

76. A. Nasri, K. van Overfeld, and B. Wyvill. A recursive subdivision algorithm
for piecewise circular spline. Computer Graphics Forum 20(1), 35–45, 2001.

77. L. Velho. Quasi 4-8 subdivision. Computer Aided Geometric Design 18(4),
345–358, 2001.

78. L. Velho and D. Zorin. 4-8 subdivision. Computer Aided Geometric Design
18(5), 397–427, 2001.

79. G. Morin, J. Warren, and H. Weimer. A subdivision scheme for surfaces of
revolution. Computer Aided Geometric Design 18(5), 483–502, 2001.

80. S. Skaria, E. Akleman, and F. Parke. Modeling subdivision control meshes for
creating cartoon faces. Proc. Shape Modeling and Applications 2001, 216–225,
2001.

81. C. Loop. Triangle mesh subdivision with bounded curvature and the convex
hull property. Technical report MSR-TR-2001-24, Microsoft Research, 2001.

82. N. Dyn and E. Farkhi. Spline subdivision schemes for compact sets with met-
ric averages. Trends in Approximation Theory, K. Kopotun, T. Lyche and
M. Neamtu (eds.), Vanderbilt University Press. Nashville, TN, 93–102, 2001.

83. D. Zorin and P. Schröder. A unified framework for primal/dual quadrilateral
subdivision schemes. Computer Aided Geometric Design 18, 429–454, 2001.

84. R. Bartels and F. Samavati. Reversing subdivision rules: local linear conditions
and observations on inner products. J. Comp and Appl.Math., 119,(1–2), 29–
67, 2001.

85. F. Samavati and R. Bartels. Reversing Subdivision using local linear conditions:
generating multiresolutions on regular triangular meshes. preprint,
http://www.cgl.uwaterloo.ca/~rhbartel/Papers/TriMesh.pdf, 2001.

2002

86. N. Dyn and E. Farkhi. Spline subdivision schemes for compact sets – a survey.
Serdica Math. J. Vol.28(4), 349–360, 2002.

87. M. Alexa. Refinement operators for triangle meshes. Computer Aided Geomet-
ric Design 19(4), 169–172, 2002.

88. M. Hassan, I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. An interpolating
4-point C2 ternary stationary subdivision scheme. Computer Aided Geometric
Design 19, 1–18, 2002.

89. L. Barthe, B. More, N. A. Dodgson, and M. A. Sabin. Triquadratic reconstruc-
tion for interactive modelling of potential fields. Proc. Shape Modeling and
Applications 2002, 145–153, 2002.

90. J. Warren and H. Weimer. Subdivision Methods for Geometric design., Morgan
Kaufmann, 2002.

228 Malcolm Sabin

91. F. Cirak, M. Scott, E. Antonsson, M. Ortiz, and P. Schröder. Integrated mod-
eling, finite element analysis and engineering design for thin-shell structures
using subdivision. Computer Aided Design 34, 137–148, 2002.

92. W. Ma, X. Ma, S-K. Tso, and Z. Pan. Subdivision surface fitting from a dense
triangle mesh. Proc. Geometric Modeling and Processing 2002, 94–103, 2002.

93. M. Sabin. Interrogation of subdivision surfaces. Handbook of Computer Aided
Design, Chap. 12, 327–341, 2002.

94. N. Dyn and D. Levin. Subdivision schemes in geometric modelling. Acta Nu-
merica, 73–144, 2002.

95. C. Bajaj, S. Schaefer, J. Warren, and G. Xu. A subdivision scheme for hexa-
hedral meshes. The Visual Computer 18, 343–356, 2002.

96. G. Taubin. Detecting and reconstructing subdivision connectivity. The Visual
Computer 18, 357–367, 2002.

97. B. Jüttler, U. Schwanecke. Analysis and design of Hermite subdivision schemes
The Visual Computer 18, 326–342, 2002.

98. D. Zorin, D. Kristjansson. Evaluation of piecewise smooth subdivision surfaces.
The Visual Computer 18, 299–315, 2002.

99. C. Loop. Bounded curvature triangle mesh subdivision with the convex hull
property. The Visual Computer 18, 316–325, 2002.

100. M. Sabin. Subdivision of box-splines. Tutorials on Multiresolution in Geometric
Modelling [104], 3–23, 2002.

101. N. Dyn. Interpolatory subdivision schemes. Tutorials on Multiresolution in
Geometric Modelling [104], 25–50, 2002.

102. N. Dyn. Analysis of convergence and smoothness by the formalism of Laurent
polynomials. Tutorials on Multiresolution in Geometric Modelling [104], 51–68,
2002.

103. M. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. Tu-
torials on Multiresolution in Geometric Modelling [104], 69–92, 2002.

104. A. Iske, E. Quak, and M. S. Floater (eds. Tutorials on Multiresolution in Ge-
ometric Modelling., Springer, ISBN 3-540-43639-1, 2002.

105. N. A. Dodgson, M. A. Sabin, L. Barthe, and M. F. Hassan. Towards a ternary
interpolating scheme for the triangular mesh. Technical Report UCAM-CL-
TR-539, Computer Laboratory, University of Cambridge, 2002.

106. I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. A generative classification of
mesh refinement rules with lattice transformations. Preprint of [128], Technical
Report UCAM-CL-TR-542, Computer Laboratory, University of Cambridge,
2002.

107. Y. Chang, K. McDonnell, and H. Qin. A new solid subdivision scheme based
on box splines. Proc. of the Seventh ACM Symposium on Solid Modeling and
Applications, 226–233, 2002.

108. F. Samavati, N. Mahdavi-Amiri, and R. Bartels. Multiresolution surfaces hav-
ing arbitrary topologies by a reverse Doo subdivision method. Computer
Graphics Forum 21, 121–136, 2002.

109. A. Nasri and M. Sabin. A taxonomy of interpolation constraints on recursive
subdivision surfaces. The Visual Computer 18, 382–403, 2002.

Recent Progress in Subdivision 229

2003

110. P. Prusinkiewicz, F. Samavati, C. Smith, and R. Karwowski. L-system descrip-
tion of subdivision curves. International Journal of Shape Modeling 9, 41–59,
2003.

111. N. A. Dodgson, I. P. Ivrissimtzis, and M. A. Sabin. Characteristics of dual
triangular

√
3 subdivision. Curve and Surface Fitting: Saint-Malo 2002 [117],

119–128, 2003.
112. N. Dyn, D. Levin, and J. Simoens. Face value subdivision schemes on triangula-

tions by repeated averaging. Curve and Surface Fitting: Saint-Malo 2002 [117],
129–138, 2003.

113. B. Han. Classification and construction of bivariate subdivision schemes. Curve
and Surface Fitting: Saint-Malo 2002 [117], 187–198, 2003.

114. M. F. Hassan and N. A. Dodgson. Ternary and Three-point univariate sub-
division schemes. Curve and Surface Fitting: Saint-Malo 2002 [117], 199–208,
2003.

115. C. Loop. Smooth ternary subdivision of triangle meshes. Curve and Surface
Fitting: Saint-Malo 2002 [117], 295–302, 2003.

116. M. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. Curve and
Surface Fitting: Saint-Malo 2002 [117], 353–362, 2003.

117. A. Cohen, J-L. Merrien, and L. L. Schumaker (eds.). Curve and Surface Fitting:
Saint-Malo 2002, Nashboro Press, Brentwood, TN, ISBN 0-9728482-1-5, 2003.

118. J. Stam and C. Loop. Quad/triangle subdivision. Computer Graphics Forum
22(1), 79–85, 2003.

119. V. Surazhsky and C. Gotsman. Explicit surface remeshing. Eurographics sym-
posium on geometry processing [120], 17–27, 2003.

120. L. Kobbelt, P. Schröder, and H. Hoppe (eds. Eurographics symposium on ge-
ometry processing., Eurographics Association, 2003.

121. A. Levin. Polynomial generation and quasi-interpolation in stationary non-
uniform subdivision Computer Aided Geometric Design 20, 41–60, 2003.

122. P. Oswald and P. Schröder. Composite primal/dual sqrt(3) subdivision schemes
Computer Aided Geometric Design 20, 135–164, 2003.

123. A. Levin and D. Levin. Analysis of quasi-uniform subdivision. Applied and
Computational Harmonic Analysis 15, 18–32, 2003.

124. B. Han. Computing the smoothness exponent of a symmetric multivariate re-
finable function. SIAM Journal on Matrix Analysis and its Applications, 24,
693–714, 2003.

125. N. Dyn, D. Levin, and A. Luzzatto. Non-stationary interpolatory subdivi-
sion schemes reproducing spaces of exponential polynomials. Found. Comput.
Math, 187–206, 2003.

126. M. Sabin and A. Bejancu. Boundary conditions for the 3-direction box-spline
Maths of Surfaces X, Springer, 2003.

127. A. Ron. Private communication, 2003.

230 Malcolm Sabin

2004

128. I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. A generative classification of
mesh refinement rules with lattice transformations. Computer Aided Geometric
Design vol 21(1), 99–109, 2004.

129. I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin.
√

5 Subdivision. Advances
in Multiresolution for Geometric Modelling [135], pages 285–299 (this book),
2004.

130. M. F. Hassan and N. A. Dodgson. Reverse Subdivision. Advances in Multires-
olution for Geometric Modelling [135], pages 271–283 (this book), 2004.

131. N. Alkalai and N. Dyn. Optimizing 3D triangulations for improving the initial
triangulation for the butterfly subdivision scheme. Advances in Multiresolution
for Geometric Modelling [135], pages 231–244 (this book), 2004.

132. N. Dyn, D. Levin, and M. Marinov. Geometrical interpolation shape-preserving
4-point schemes. Advances in Multiresolution for Geometric Modelling [135],
pages 301–315 (this book), 2004.

133. L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of the
eigencomponents of a subdivision matrix in the frequency domain. Advances
in Multiresolution for Geometric Modelling [135], pages 245–257 (this book),
2004.

134. C. Gérot, L. Barthe, N. A. Dodgson, and M. A. Sabin. Subdivision as a se-
quence of sampled Cp surfaces. Advances in Multiresolution for Geometric
Modelling [135], pages 259–270 (this book), 2004.

135. N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.). Advances in Multires-
olution for Geometric Modelling, Springer-Verlag (this book), 2004.

In progress

136. A. Cohen, N. Dyn, and B. Matei. Quasilinear subdivision schemes with appli-
cations to ENO interpolation. Applied and Computational Harmonic Analysis,
to appear.

137. I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. The support of recursive
subdivision surfaces. ACM Transactions on Graphics, to appear.

138. B. Han, T. Yu, and Yong-GangXue. Non-interpolatory Hermite subdivision
schemes. Preprint.

139. J. Peters and L-J. Shiue. 4-3 Directionally Ripple-free Subdivision. Submitted
to ACM Transactions on Graphics.

140. N. Dyn and E. Farkhi. Convexification rates in Minkowski averaging processes.
In preparation.

141. M. Sabin. A circle-preserving interpolatory subdivision scheme. In preparation.

Optimising 3D Triangulations:
Improving the Initial Triangulation
for the Butterfly Subdivision Scheme

Nurit Alkalai and Nira Dyn

School of Mathematical Sciences, Tel Aviv University, Israel
{nalkalai|niradyn}@post.tau.ac.il

Summary. This work is concerned with the construction of a “good” 3D triangu-
lation of a given set of points in 3D, to serve as an initial triangulation for the gen-
eration of a well shaped surface by the butterfly scheme. The optimisation method
is applied to manifold meshes, and conserves the topology of the triangulations. The
constructed triangulation is “optimal” in the sense that it locally minimises a cost
function. The algorithm for obtaining a locally-optimal triangulation is an extension
of Lawson’s Local Optimisation Procedure (LOP) algorithm to 3D, combined with a
priority queue. The first cost function designed in this work measures an approxima-
tion of the discrete curvature of the surface generated by the butterfly scheme, based
on the normals to this surface at the given 3D vertices. These normals can be ex-
pressed explicitly in terms of the vertices and the connectivity between them in the
initial mesh. The second cost function measures the deviations of given normals at
the given vertices from averages of normals to the surface generated by the butterfly
scheme in neighbourhoods of the corresponding vertices. It is observed from numer-
ical simulations that our optimisation procedure leads to good results for vertices
sampled from analytic objects. The first cost function is appropriate for analytic
surfaces with a large proportion of convex vertices. Furthermore, the optimisation
with this cost function improves convex regions in non-convex complex models. The
results of optimisation with respect to the second cost function are satisfactory even
when all the vertices are non-convex, but this requires additional initial information
which is obtainable easily only from analytic surfaces.

1 Introduction

Triangle meshes (triangulations) are commonly used for representing 3D sur-
faces. Given a set of points sampled from a smooth surface, the triangle mesh
with these points as vertices serves as a representation (approximation) of the
sampled surface. This representation depends on the choice of the connections
between the vertices.

232 Nurit Alkalai and Nira Dyn

In this work we investigate how to choose a “good” triangulation for a fixed
set of vertices, to serve as the initial triangulation for the butterfly subdivision
scheme, under the assumption that the sampled surface is smooth.

Our procedure supplies a way to obtain a “good” triangulation of a given
set of vertices from a given triangulation of these vertices. Starting with an
initial manifold triangulation, with no boundaries, whose vertices are the 3D
points, we use an extension of Lawson’s algorithm [10], which is a local swap-
ping algorithm, to improve the triangulation at each edge swap. For example
the top right meshes in Figs. 4 and 5 are improvements on the top left meshes.
A similar approach in the case of 2D triangulations is taken in [8].

The choice is of a locally optimal triangulation relative to a cost func-
tion. We use two cost functions: the first measures a quantity approximating
the curvature of the surface generated by the butterfly scheme (butterfly sur-
face) based on the normals to the butterfly surface. The second cost function
measures the deviations of averages of normals to the butterfly surface near
the given vertices, from given normals at these vertices. The normals to the
butterfly surface can be computed from the set of given vertices and their
triangulation.

Alboul and van Damme, in a series of papers concerned with the generation
of a mesh from a cloud of 3D points, consider a cost function which is a
discrete analog of the L1-norm of the Gaussian curvature over the triangular
mesh [2]. Although this cost function requires heavy computation, it has an
important property. As proved in [2], for data sampled from a convex surface
(convex data), swapping edges with this cost function leads to the unique
global minimum of this cost function which corresponds to the unique convex
triangulation of the convex data up to flat areas.

Dyn et al. [7] introduce three cost functions, which measure different kinds
of discrete curvature. The computation of these cost functions is much sim-
pler as compared with the cost function in [2] and the results obtained are
satisfactory. We use, as in [7], a greedy algorithm of edge swaps, based on a
priority queue, so as to maximally reduce the cost function at each step. This
algorithm terminates at a local minimum.

We have made numerical experiments with the two cost functions de-
scribed in Sect. 3 below. From our simulations we conclude that we have
at hand a tool which improves significantly the visual appearance and also
several quality measurements of the butterfly surface generated from the lo-
cally optimal triangulation. The first cost function is appropriate for analytic
surfaces with a large proportion of convex vertices. Furthermore, the optimi-
sation with this cost function improves convex regions in non-convex complex
models. The results based on the second cost function are satisfactory also
for a surface consisting of non-convex vertices only, but it requires additional
initial information which is easily obtained only from analytic surfaces.

The outline of this paper is as follows: Sect. 2 presents the theoretical
background of our work. In Sect. 3 the cost functions are presented and Sect. 4
summarises our simulations and conclusions.

Optimising 3D Triangulations 233

e

P
k

e,0

P
k

e,1

P
k

e,4

P
k

e,2

P
k

e,6

P
k
e,7

P
k
e,3

P
k

e,5

Fig. 1. The points participating in the butterfly insertion rule given by equation (1).

2 Preliminaries

2.1 The Butterfly Subdivision Scheme

The butterfly scheme is an interpolatory subdivision scheme for general trian-
gulations of control points [6]. On regular triangulations (where every vertex
has valency 6) it generates C1 limit functions/surfaces, and it is the inter-
polatory scheme with smallest support of its mask with this property. The
differential properties of the surfaces produced by this scheme, in the neigh-
bourhood of the vertices of the initial triangulation, depend on the valency of
these vertices.

The butterfly scheme repeatedly refines triangulations, starting from an
initial triangulation T 0 and generating a sequence of ever more refined tri-
angulations {T k}k≥0. Given a set of control points {pk

i } which comprise the
vertices of a triangulation T k, the scheme associates with every edge e ∈ T k

a new point qk
e defined according to the rule

qk
e =

1
2
(pk

e,0 + pk
e,1) + 2w(pk

e,2 + pk
e,3) − w

7∑
j=4

pk
e,j (1)

where the locations of the points pk
e,j relative to the edge e in T k are depicted

in Fig. 1. The parameter w serves as a tension parameter in the sense that
decreasing its value to zero is equivalent to tightening the butterfly surface
towards the piecewise linear surface T 0. The butterfly scheme defines the
control points at stage k + 1 (the vertices of T k+1) as

{pk+1
i } = {pk

i } ∪ {qk
e : e ∈ T k},

234 Nurit Alkalai and Nira Dyn

and the triangulation T k+1 as the collection of edges

{(qk
e ,p

k
e,j), j = 0, 1, (qk

e , q
k
ei,j

), i = 0, 1, j = 2, 3 : e ∈ T k},

where ei,j = (pk
e,i,p

k
e,j). With this construction of T k+1, the number of edges

having pk
i as a vertex in T k+1 is the same as in T k, while each new vertex is

regular, namely a vertex with six edges in T k+1. Therefore, with the exclusion
of the irregular points in T 0, all the vertices of T k are regular.

Necessary conditions for C1 limit subdivision surfaces near an irregular
point are given in [3, 4]. The ranges of the tension parameter w, in which
these conditions hold for butterfly surfaces, are numerically computed in [9].
These ranges are presented in Table 1, for vertices with valency between 4
and 7.

Table 1. Ranges of w where necessary conditions for C1 at an irregular point hold.

valency 4 5 6 7

range of w (0, 0.08] (0, 0.10] (0, 0.12] (0, 0.14]

Remark 1. The value w = 1
16 is included in all four ranges in Table 1. This

value of w is the best in terms of approximation properties of the butterfly
surface [5]. Yet, at irregular points with valency greater than 7, w = 1

16 is not
included in the corresponding ranges.

Sufficient conditions for C1 limit surfaces of a subdivision scheme near an ir-
regular point are given in [11]. These conditions hold for the butterfly scheme,
as is checked numerically in [12]. A modification of the butterfly insertion rule
near an irregular point of valency n is given in [14]. This modification improves
the resulting surface in the neighbourhoods of the irregular points.

The normals of the butterfly surface can be calculated at any vertex of any
triangulation T k k ≥ 0, [12, 13]. The formula for the normal, n(pm;Tm), at a
vertex pm of Tm of valency n, requires n regular adjacent vertices to pm. The
normal at pm depends on the vertices in the first two rings of vertices around
pm. To achieve n regular vertices at the first ring of neighbouring vertices it
is sufficient to perform locally one subdivision step near pm, see Fig. 2. This
step depends only on the first two rings of neighbouring vertices around pm.

2.2 Optimising Triangulations

In this work we search for a “good” triangulation to serve as the initial tri-
angulation for the butterfly subdivision scheme. Optimising triangulations is
a procedure for selecting a “good” triangulation, T ∗, according to a certain
criterion, from the triangulations that have the same set of vertices, V .

Optimising 3D Triangulations 235

m
m

1

2

3

4 m

m

m

1

2

3

4

m

m

qm

qm
rm

3

2

1

m

rm

q

r

q

s

s

s
s

p

Fig. 2. Control points in the neighbourhood of pm after one subdivision step.
{qm

i }n
i=1 are the points of the outer ring that were generated at stage m; {rm

i }n
i=1

are the points of the outer ring that belong to the inner ring of stage m−1; {sm
i }n

i=1

are the points of the inner ring that were generated at stage m. All these points are
regular.

Definition 1. Let V be a set of points in R
3. An optimal triangulation, with

respect to a given cost function (criterion) F (T), is a triangulation T ∗ of V
such that

F (T ∗) ≤ F (T)

for every triangulation T of V .

An optimal triangulation of V always exists since there are finitely many tri-
angulations of V , yet it might be difficult to attain this optimal triangulation
in practice. In most cases, a locally optimal triangulation can be computed
with reasonable effort. Such a triangulation is defined below.

Let T be a triangulation of V , e an internal edge of T , Q(e;T) the four
vertices of the two triangles having e as a common edge, and let es be the
edge connecting the two vertices of Q(e;T) which are not on e. There are two
possible ways to triangulate a non-planar Q(e;T) either by e or by es.

Definition 2. An edge e is called locally optimal if at least one of the following
conditions holds:

1. F (T) ≤ F (T̂), where T̂ is obtained from T by replacing e by es.
2. The edge e emanates from a vertex of valency 3, see Fig. 3(b).
3. Q(e;T) is planar and is not strictly convex, see Fig. 3(a).
4. At least one of the two normals to the two triangles of Q(es;T) has a

different orientation relative to the orientation of the two normals to the
two triangles of Q(e;T).

236 Nurit Alkalai and Nira Dyn

(a) (b)

e e

es

Fig. 3. Geometric situations where an edge e cannot be replaced by es.

Definition 3. A locally optimal triangulation is a triangulation T ∗ in which
all edges of T ∗ are locally optimal.

We use a method for constructing a locally optimal triangulation, which is an
extension of Lawson’s LOP algorithm [10] to 3D manifold meshes. We replace
e by es, if e is not locally optimal. This is called an edge swap.

In view of Definition 2, the locally optimal triangulation obtained by the
extended LOP (ELOP) algorithm is a manifold mesh with the same topology
as the initial triangulation.

The ELOP Algorithm

Given an initial triangulation T 0, which is a manifold mesh without boundary:

1. Set T ← T 0.
2. If T is locally optimal, T ∗ ← T and end the procedure.
3. Let e be an edge of T which is not locally optimal. Replace e by es and

go to step 2.

Each time an edge swap occurs, the resulting triangulation has a strictly
smaller value of the cost function than the previous one. Since the number of
triangulations is finite, ELOP converges, after a finite number of edge swaps,
to a locally optimal triangulation. The locally optimal triangulation obtained
by ELOP depends on the specific order in which edges are swapped.

In two cases LOP attains the global minimum in R
2. These are the De-

launay triangulation and the unique convex triangulation of convex data. In
R

3 an adapted version of LOP [2] attains the tight triangulation of vertices
sampled from a convex surface.

To accelerate the convergence of the ELOP algorithm, at each step we
make that swap which maximally reduces the cost function. For that we em-
ploy a priority queue as in [7].

Optimising 3D Triangulations 237

A Priority Queue of the Edges of a Triangulation.

Let E be the set of edges of a triangulation T and let s(e), the swap value of
an edge e, be defined as the difference between the value of the cost function
before and after swapping e with es. The priority queue P is a permutation
of the set of integers {1, 2, · · · ,#E}, such that s(eP (i)) ≥ s(eP (j)) for all
1 ≤ i < j ≤ #E. The main advantages of using such a priority queue are
that P (1) is the index of the edge with the largest swap value, and that the
condition s(eP (1)) ≤ 0, indicates that the cost function can not be further
reduced by swapping one of the edges. When an edge swap occurs, only a
local neighbourhood of edges of the swapped edge change their swap values.
The locations of these edges in the priority queue have to be updated.

ELOP and the Butterfly Scheme

In this work we restrict the discussion to finding a good initial triangulation
for the butterfly scheme with w = 1

16 . By Remark 1, we allow edge swaps
which generate vertices with valencies 4, 5, 6 and 7 only. If in the initial
triangulation there is a vertex of valency 3 or of valency greater then 7, the
normal to the butterfly surface in such a vertex does not exist, and we use
instead the average of the normals to the triangles that belong to the cell of
the vertex in the triangulation obtained after two iterations of the butterfly
scheme with w = 1

16 .

3 The Cost Functions

The cost functions we employ in the process of optimising the initial trian-
gulation for the butterfly scheme are based on the normals to the butterfly
surface, generated from the initial triangulation.

We introduce two cost functions. The first depends on the set of vertices
and the current triangulation, while the second depends also on given normals
at the vertices {n(v) : v ∈ V }.

To introduce the cost functions we need more notation:

• V is the set of given vertices.
• T = T (V) is a triangulation of V , T (V), consisting of vertices and con-

nectivity.
• Sk(T) is the triangulation after k refinement steps of the butterfly scheme

acting on T .
• C(v;T) is the cell of the vertex v in T , i.e. the set of all triangles in T

sharing v.
• | C(v;T) | is the number of triangles in the cell C(v;T). i.e.| C(v;T) | is

the valency of v in T .
• n(τ) is the normal to the triangle τ .

238 Nurit Alkalai and Nira Dyn

• S∞(T) is the butterfly surface generated from the initial triangulation T .
• n(v;T) is the normal to S∞(T) at the vertex v ∈ T .

With this notation the cost functions are

F1(T) =
∑
v∈V

1
| C(v;T) |

∑
τ∈C(v;S2(T))

‖ n(v;T) − n(τ) ‖2,

F2(T) =
∑
e∈E

∑
v∈Q(e;T)

∥∥∥∥n(v) − 1
| C(v;T) |

∑
u∈C(v;S2(T))

n(u;S2(T))
∥∥∥∥

2

.

The use of two refinement steps of the scheme in both cost functions is
due to the fact that S2(T) is an adequate approximation for our purposes
to S∞(T). In fact, in our simulations we represent the butterfly surface by
S2(T).

Minimising F1(T) flattens the cells of convex vertices, thus generating a
smoother surface in the vicinity of convex vertices. Minimising F2(T) corre-
sponds to approximating the given normals by averages of the normals to
S∞(T) at points in the neighbourhood of the corresponding vertices. For each
edge in the current triangulation, F2(T) measures the deviations between the
given normals in a neighbourhood of the edge and the normals to S∞(T) in
a similar, but refined, neighbourhood.

4 Results

We have tested our optimisation method on several data sets, both small sets
sampled from analytic objects (e.g. torus, sphere) and non-analytic objects
given by triangular meshes. In case of large and fine triangular meshes, we used
a simplification method to get a simplified model, T 0, of the object, regarding
the given fine mesh as the surface to be approximated by the butterfly surface.

4.1 Analytic Models

The first class of data sets we investigated consists of analytic models, convex
and non-convex. Application of F1 and F2 in the optimisation procedure in
the case of a convex model results in a triangulation which is close to the
unique convex triangulation of the set of vertices. Since the unique convex
triangulation is the best among all possible triangulations, our results in this
case are satisfactory.

As an example of an analytic convex surface we take the sphere. Our op-
timisation procedure, with either cost function, yields a well shaped butterfly
surface. Fig. 4 shows the butterfly surface for this example, generated with
F1. The butterfly surface generated with F2 is similar.

Optimising 3D Triangulations 239

Fig. 4. Example 1 – sphere. Top: original meshes; left T 0, right T ∗. Bottom: ap-
proximations to the butterfly surfaces with F1 as a cost function; left S2(T 0), right
S2(T ∗).

The optimisation of non-convex models with F1 as the cost function has
different qualities (see Figs. 5 and 6). While for the torus (Fig. 5), which con-
sists of many convex and few non-convex vertices, the results are satisfactory,
the results for the hyperboloid-like surface (Fig. 6), which consists of non-
convex vertices only, are disappointing. This is due to the fact that F1 is the
sum, over all vertices, of a type of a discrete curvature. For convex vertices
a decrease in this curvature corresponds to an increase in local smoothness.
This is not the case for non-convex vertices. The use of F2 as the cost func-
tion improves the performance of our procedure for Example 3 (compare the
right hand meshes in Figs. 6 and 7). The given normals at the given vertices
supply additional information on the surface to be approximated by the but-
terfly surface. Our procedure with F2 does not perform any edge swaps when
the given triangulation T 0 is well shaped, even if non-convex vertices are in-
volved, as in the case of Example 3. This is in contrast to our procedure with

240 Nurit Alkalai and Nira Dyn

Fig. 5. Example 2 – torus. Top: original meshes; left T 0, right T ∗. Bottom: ap-
proximations to the butterfly surfaces with F1 as a cost function; left S2(T 0), right
S2(T ∗).

Fig. 6. Example 3 – a hyperboloid-like surface. Approximations to the butterfly
surfaces with F1 as a cost function; left S2(T 0), right S2(T ∗).

Optimising 3D Triangulations 241

Fig. 7. In this case, T 0 is a randomly perturbed T 0 of Example 3 (Fig. 6). Ap-
proximations to the butterfly surfaces with F2 as a cost function; left S2(T 0), right
S2(T ∗).

F1 which does not perform any edge swaps only if the triangulation is convex.
To see that our procedure with F2 can improve a “bad” triangulation with
non-convex vertices, we randomly changed about 25% of the edges in the
initial triangulation of Example 3 and applied our procedure with F2. The
resulting butterfly surface is significantly improved away from the artificial
planar boundaries, as shown in Fig. 7.

4.2 Complex Models

We show one example of a complex model, a head-like mesh. With a triangular
mesh of small size as input to our optimisation procedure, we can use only F1

as the cost function, since normals at the given vertices cannot be estimated.
The optimisation procedure succeeds with F1 in convex regions of the model
and fails in non-convex regions, see Fig. 8.

4.3 Measurements

To confirm our observations from the figures, we computed three quantities
which measure the quality either of the initial triangulation or of the trian-
gulation obtained from it by two refinement steps with the butterfly scheme.
We compare T ∗ with T 0 or S2(T ∗) with S2(T 0). The measures are:

• percentage of regular vertices in T 0 and in T ∗;
• Gaussian curvature of S2(T 0) and of S2(T ∗);
• discrete mean curvature of S2(T 0) and of S2(T ∗).

Tables 2–4 show these measures. They support our conclusions derived
from the visual quality of the surfaces.

Table 2 shows the regularity ratio of a triangulation, which is the ratio
between the number of regular vertices and the total number of vertices.

242 Nurit Alkalai and Nira Dyn

Fig. 8. Example 4 – a head-like mesh. Approximations to the butterfly surfaces
with F1 as a cost function; left S2(T 0), right S2(T ∗).

Table 2. The regularity ratio as percentage, for T 0 and T ∗.

F1 F2

Mesh T 0 T ∗ T ∗

Torus 100 100 100
Sphere 36 71 100
Hyperboloid-like 69 32 54
Head-like 10 27 —

This demonstrates that a high regularity ratio is in accordance with the visual
quality.

Table 3 shows the discrete Gaussian curvature of a triangulation. This is
calculated as G(T) =

√∑
v∈V [2π − θ(v)]2, where θ(v) is the sum of all angles

between two adjacent edges emanating from v [2].

Table 3. Discrete Gaussian curvature of the butterfly surfaces.

F1 F2

Mesh S2(T 0) S2(T ∗) S2(T ∗)
Torus 1.7002 0.8330 0.8330
Sphere 1.0096 0.5127 0.5127
Hyperboloid-like 9.8641 4.7348 2.0178
Head-like 4.9720 3.5796 —

Note that our procedure with F1 roughly halves the discrete Gaussian curva-
ture for all analytic surfaces, while F2 reduces it by at least as much. So these
measures are not appropriate for identifying visually pleasing surfaces.

The discrete mean curvature of a triangulation is calculated as H(T) =√∑
v∈V | H̄v

Sv
|2, where H̄v is an approximation of the discrete integral mean

Optimising 3D Triangulations 243

curvature at a vertex, suggested by [2], and Sv is the area of the intersection
of the Voronoi cell of v relative to V (T) with C(v;T), as suggested by [7].
Table 4 shows this for each of the examples.

Table 4. Discrete mean curvature of the butterfly surfaces.

F1 F2

Mesh S2(T 0) S2(T ∗) S2(T ∗)
Torus 23.8434 16.4170 16.4170
Sphere 4.5772 2.0178 2.0178
Hyperboloid-like 222.6325 398.0568 102.8953
Head-like 39.0294 38.7954 —

The discrete mean curvature changes significantly with the initial triangula-
tion and is in accordance with the visual quality.

Remark 2. All three measurements obtained using the second cost function for
Example 3 (the hyperboloid-like surface) are significantly better than those
using the first cost function.

5 Conclusion

T ∗, obtained by the optimisation procedure from T 0, can be regarded as an
improved triangulation of the given vertices relative to T 0. Thus our procedure
generates a “good” 3D triangular mesh of a set of vertices from a given initial
manifold mesh without boundaries.

Acknowledgements

The authors wish to thank David Levin for his help during this research and
the editors for their help in improving the paper. This work was supported in
part by a grant from the Israeli Academy of Sciences (Centre of Excellence
program) and by the European Union research project “Multiresolution in
Geometric Modelling (MINGLE)” under grant HPRN–CT–1999–00117.

References

1. Alkalai, N.: Optimizing 3D Triangulations for improving the initial triangulation
for the butterfly subdivision scheme. M.Sc. thesis, Tel-Aviv University (2002).

2. Alboul, L. and R. van Damme: Polyhedral metrics in surface reconstruction:
tight triangulation. The Mathematics of Surfaces VII, T. Goodman and R. Mar-
tin (eds), Clarendon Press, Oxford (1997), 309–336.

244 Nurit Alkalai and Nira Dyn

3. Ball, A. A. and D. J. T. Storry: Conditions for tangent plane continuity
over recursively generated B-spline surfaces. ACM Transaction on Graphics 7
(1988),82–102.

4. Doo D.and M.Sabin: Behavior of recursive subdivision surfaces near extraordi-
nary points. Computer-Aided Design 10 (1978), 356–360.

5. Dyn N.: Interpolatory subdivision schemes, in Tutorials on Multiresolution in
Geometric Modelling, A. Iske, E. Quak, and M. S. Floater (eds.), Springer-
Verlag, Heidelberg (2000), 25–50.

6. Dyn, N., J. A. Gregory, and D. Levin: A butterfly subdivision scheme for surface
interpolation with tension control. ACM Transactions on Graphics 9 (1990),
160–169.

7. Dyn, N., K. Hormann, S.-J. Kim and D. Levin: Optimizing 3D triangulations us-
ing discrete curvature analysis. Mathematical Methods for Curves and Surfaces,
Oslo 2000 (2001), 135–146. Vanderbilt University Press.

8. Dyn, N., D. Levin and S. Rippa: Data dependent triangulation for piecewise
linear interpolation. IMA J. Numer. Anal. 10 (1990), 137–154.

9. Hed, S.: Analysis of subdivision schemes for surface generation. M.Sc. thesis,
Tel-Aviv University (1992).

10. Lawson, C. L.: Software for C1 interpolation. Mathematical Software III, J. R.
Rice (ed.). Academic Press, New York (1977), 161–194.

11. Reif, U.: A unified approach to subdivision algorithms near extraordinary ver-
tices. Computer Aided Geometric Design 12 (1995), 153–174.

12. Shenkman, P.: Computing normals and offsets of curves and surfaces generated
by subdivision schemes. M.Sc. thesis, Tel-Aviv University, (1996).

13. Shenkman, P., N. Dyn and D. Levin: Normals of the butterfly subdivision scheme
surfaces and their applications. Computational and Applied Mathematics 102
(1999), 157–180.

14. Zorin, D., P. Schröder and W. Sweldens: Interpolating subdivision for meshes
with arbitrary topology. Proc. ACM SIGGRAPH ’96, (1996), 189–192.

Simple Computation of the Eigencomponents
of a Subdivision Matrix in the Fourier Domain

Löıc Barthe1, Cédric Gérot2, Malcolm Sabin3, and Leif Kobbelt4

1 Computer Graphics Group, IRIT/UPS, Toulouse, France
lbarthe@irit.fr

2 Laboratoire des Images et des Signaux, Domaine Universitaire, Grenoble, France
Cedric.Gerot@lis.inpg.fr

3 Numerical Geometry Ltd., Cambridge, UK
malcolm@geometry.demon.co.uk

4 Computer Graphics Group, RWTH Aachen, Germany
kobbelt@cs.rwth-aachen.de

Summary. After demonstrating the necessity and the advantage of decompos-
ing the subdivision matrix in the frequency domain when analysing a subdivision
scheme, we present a general framework based on a method, introduced by Ball and
Storry, which computes the Discrete Fourier Transform of a subdivision matrix. The
efficacy of the technique is illustrated by performing the analysis of Kobbelt’s

√
3

scheme in a very simple manner.

1 Introduction

Subdivision surfaces have become a standard technique for both animation
and freeform shape modelling [21]. After one step of subdivision, a coarse
mesh is refined to a finer one and several iterations generate a sequence of
incrementally refined meshes which converge to a smooth surface. The main
advantage of subdivision surfaces over other freeform representations such as
splines [9] is that they are defined by control meshes with arbitrary connectiv-
ity while generating smooth surfaces with arbitrary manifold topology. One
of the most important stages in subdivision scheme analysis is the evaluation
of the scheme’s smoothness properties. This is done in two steps.

First, one has to study the continuity properties of the scheme in a reg-
ular lattice (composed of valence 6 vertices for triangles meshes and va-
lence 4 vertices for quadrilateral meshes). Often the scheme is derived from
the uniform knot-insertion operator of some Box-spline surface [2] which
leads us to a trivial analysis: by construction the refined meshes converge
to piecewise polynomial surfaces with a known degree of smoothness be-
tween the patches [3, 5, 11]. On the other hand, the scheme can be non-
polynomial [8, 22, 10], i.e. it is not derived from any known surface repre-

246 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

sentation and the continuity of the limit surface is analysed using sufficient
conditions based on z-transforms [6, 10, 7].

As the second step in the analysis, one has to analyse the scheme’s smooth-
ness in the vicinity of extraordinary vertices (EVs). The z-transform is not
applicable at EVs, and even though we can prove C1 continuity for schemes
derived from Box-splines by showing that the characteristic map is regular and
injective [15, 12, 20], the complete analysis is performed using necessary con-
ditions based on the eigenstructure of the subdivision matrix [5, 1, 16]. In fact,
the convergence behaviour of a subdivision scheme at an EV is completely de-
termined by the eigencomponents of its subdivision matrix. The analysis of a
subdivision scheme [5, 11, 19, 14, 10] in the vicinity of such irregularities of the
control mesh hence requires a simple technique for identifying and computing
the various eigencomponents. The standard method exploits the scheme’s ro-
tational symmetries through the use of the Fourier transform. This partitions
the subdivision matrix, whose size varies linearly with the valence of the EV,
into a block diagonal matrix. Although the number of blocks depends on the
valence, the blocks are of fixed size, and so it becomes possible to determine
the eigencomponents for all valencies with a single algebraic computation.

In this paper, we first illustrate by a practical example the importance
of the frequency analysis and we emphasise the necessity of identifying the
eigenvalues with respect to their rotational frequency. We then present the
general form of Ball and Storry’s method [1] which performs fast computation
of the different frequency blocks. This approach is illustrated on Kobbelt’s√

3 scheme [10] and we show how very simple computations performed on
a single subdivision iteration rather than on the square of the subdivision
matrix allow us to deal with the scheme’s rotation property and to find the
specific subdivision rules for the EVs.

Another method for computing the eigencomponents of a subdivision ma-
trix is based on z-transforms and it exploits the circulant structure of the
subdivision matrix’s blocks. This technique also leads to very simple compu-
tations and all details can be found in [12, 18]. Both methods are equivalent
in terms of complexity, however our method computes the eigencomponents
in the Fourier domain while the use of z-transforms provides the eigencompo-
nents in the spatial domain. Depending on the application, one or the other
method may be preferable.

2 Frequency of the Different Eigenvalues

The operator which maps a central EV of valence v and its r-ring neighbour-
hood P to the same topological configuration p after one step of subdivision
is called the subdivision matrix S. The vectors of old vertices P and new ver-
tices p are linked by the relation p = SP. The matrix S is square and each of
its rows contains the coefficients of an affine combination of the old vertices
P which computes one new vertex of p. The convergence behaviour of the

Eigencomponents of a Subdivision Matrix in the Fourier Domain 247

subdivision scheme at the central EV is completely defined by the eigencom-
ponents (eigenvalues and eigenvectors) of the matrix S. The matrix S is then
decomposed into S = M ΛM−1 where Λ is a diagonal matrix of eigenvalues
{λj} and M is a square matrix whose columns are the (right) eigenvectors mj.
This can be well understood if we interpret the eigencomponents as a local
Taylor expansion. Indeed, this interpretation allows us to associate the dif-
ferent geometric configurations (position, tangent plane, curvature) with the
eigencomponents by which they are defined. The smoothness analysis then re-
lies on necessary conditions for the eigencomponents of the different geometric
configurations.

As we will see in Sect. 2.1, given just the eigendecomposition of a sub-
division matrix, we cannot directly deduce which eigenvalue corresponds to
which geometric configuration so that we do not know how to apply the con-
ditions for the scheme’s smoothness analysis. In Sect. 2.2 we show how the
decomposition of the subdivision matrix in the Fourier domain resolves this
problem.

2.1 Geometric Configurations and their Eigencomponents

The Taylor expansion of a function f : R
2 → R can be written as follows:

f(x, y) = f + fx x+ fy y + (fxx + fyy)
(
x2

4
+
y2

4

)
+ (fxx − fyy)

(
x2

4
− y2

4

)
+ fxy xy + · · · , (1)

where each function expression on the right hand side is evaluated at (0, 0).
The point f is a position, the two first order partial derivatives fx and fy

are the coefficients of x and y defining the tangent plane and the three second
order partial derivatives fxx, fyy and fxy are the coefficients of three quadratic
configurations defining the curvature: an elliptic configuration x2 + y2, which
we denote as cup, and two rotationally symmetric hyperbolic configurations
x2 − y2 and x y which we denote as saddle.

On the other hand, the vector of new vertices p is expressed as a local
Taylor expansion when it is computed as p = SP = M ΛM−1 P = M Λ l
with l = M−1P [13]. We then have:

p = m0 λ0 l0+m1 λ1 l1+m2 λ2 l2+m3 λ3 l3+m4 λ4 l4+m5 λ5 l5+ · · · , (2)

where the lj ∈ R
3 are the approximations of the Taylor coefficients, i.e. the

successive partial derivatives (l0 is a position, l1 and l2 approximate the first
order derivatives, etc), the mjs correspond to the polynomials in Eq. (1),
whose function values scale with the factors λj . Eq. (1) and (2) both behave
like local Taylor expansions applied in different contexts. They have identical
geometric interpretation and in Eq. (2), the components mj, λj and lj with

248 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

index j = 0 are responsible for the central EV’s position; components with
indices j = 1, 2 are responsible for the tangent plane; and those with indices
j = 3, 4, 5 are responsible for the curvature: j = 3 for the cup and j = 4, 5 for
the two saddles.

The study of the subdivision scheme’s smoothness at the EV is based on
necessary conditions affecting the different eigencomponents {λj} and {mj}.
For instance, the condition 1 = |λ0| > |λj | for all j > 0 is necessary for
convergence of the scheme, the additional conditions 1 > |λ1|, 1 > |λ2| and
min(|λ1|, |λ2|) > |λj | for j > 2 are necessary for C1 continuity. However, in
practice, useful schemes are images under rotation and therefore we restrict
our analysis to this special case. This yields the additional properties : |λ1| =
|λ2| and |λ4| = |λ5|. Properties like bounded curvature (|λ2|2 ≥ |λ3|, |λ2|2 ≥
|λ4| = |λ5| and min(|λ3|, |λ4|) > |λj | for j > 5) are necessary for C2 continuity.
If |λ2|2 = |λ3| = |λ4| = |λ5|, the scheme has a non-zero bounded curvature (it
has not got a flat spot at the EV) and if |λ2|2 > |λj |, j = 3, 4, 5, the scheme
has zero curvature generating a flat spot at the EV.

A critical point in the analysis after eigendecomposition of the subdivi-
sion matrix is then to identify which index (or configuration) corresponds
to which eigencomponents. Since we know which eigenvalue corresponds to
which eigenvector, the task is reduced to the identification of the different
eigenvalues. This is illustrated by the following example.

Let us consider a variant of Loop’s subdivision scheme [11] having its
n-tuple of eigenvalues (λ0, . . . , λ7) at a valence 7 EV sorted by geometric
configuration (following our Taylor notation (2)) and having their value in
the set: {

1,
1
2
,
1
2
,
1
4
,
1
4
,
1
4
, λj <

1
4

}
(3)

We emphasise that the set of eigenvalues is not sorted from the greatest to
the smallest as it is usually done, but by geometric configuration. The question
is: how can we know which one of the eigenvalues in (3) is λ0, λ1, λ2, . . .?
Indeed, following (2), each order satisfies different properties. For instance,
the eigenvalues can have the following values:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) =
(

1,
1
2
,
1
2
,
1
4
,
1
4
,
1
4
, <

1
4
, <

1
4

)
, (4)

and hence one can deduce that the scheme is certainly C1 and that it has
bounded curvature. If indeed the analysis of the characteristic map proves C1

continuity, the scheme is C1 at the EV and it has bounded curvature without
flat spot (first row in Fig. 1). However if the eigenvalues are actually:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) =
(

1,
1
4
,
1
4
,
1
4
,
1
2
,
1
2
, <

1
4
, <

1
4

)
, (5)

the necessary condition for C1 continuity is not satisfied (|λ2| < |λ4|) so that
the scheme is not C1 and it is not even necessary to analyse the characteristic

Eigencomponents of a Subdivision Matrix in the Fourier Domain 249

Fig. 1. Different versions of Loop’s scheme at a valence 7 EV. The first column
shows the subdivision of a semi-regular planar mesh with the EV in its centre. The
second column shows a subdivided saddle mesh with the EV in its centre and the
third column illustrates the curvature behaviour using reflection lines on the same
saddle mesh. In the first row, the scheme has the eigenspectrum (4) and it is C1

continuous with non-zero bounded curvature (no flat spot). In the second row, it
has the eigenspectrum (5). We clearly see the shrinking factor of λ1 = λ2 = 1

4
at

the EV in the planar configuration and the C1 discontinuity in the saddle mesh. In
the third row it has the eigenspectrum (6) and the scheme is C1 continuous with
bounded curvature (flat spot in the saddle configuration). The misbehaviour of the
curvature is illustrated by the reflection lines in the saddle mesh.

250 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

map (second row in Fig. 1). Finally, the situation where :

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) =
(

1,
1
2
,
1
2
,
1
4
, λ4 <

1
4
, λ5 <

1
4
,
1
4
,
1
4

)
, (6)

is more problematic because if the analysis of the characteristic map proves
that the scheme is C1, one could conclude from the eigenspectrum (3) that
it has also bounded curvature without flat spot at the EV (|λ1|2 = |λ2|2 =
|λ3| = |λ4| = |λ5|) while this is not the case. In the saddle configuration, the
curvature is bounded with a flat spot, and some curvature misbehaviour can
be introduced in the limit surface by the eigenvectors corresponding to the
eigenvalues λ6 and λ7 (third row in Fig. 1).

The decomposition of the subdivision matrix in the Fourier domain will
allow us to determine if we are in the situation (4), (5), (6) or in a situation
where the eigenvalues are sorted in a different manner.

2.2 Identification of the Eigenvalues in the Fourier Domain

The identification of the eigenvalues is based on the decomposition of the sub-
division matrix S in the Fourier domain. The block circulant subdivision ma-
trix S with n blocks Si,j is transformed into a block diagonal matrix S̃ having v
blocks S̃ω which correspond to the rotational frequencies ω = {0, . . . , v−1} or-
dered in frequency in S̃ω (as illustrated in Equation (7)). We define rotational
frequency below. The eigenvalues of the frequency blocks S̃ω are amplitudes of
the eigenvalues of the matrix S [1, 17] hence, if we know which frequency rep-
resents each configuration (position, tangent plane, cup and saddle), we can
identify the eigenvalues from the frequency block in which they are computed.

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0,0 · · · S0,n

...
. . .

...
...

. . .
...

Sn,0 · · · Sn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−→ S̃ =

⎡⎢⎢⎢⎣
[
S̃0

]
0[

S̃1

]
. . .

0
[
S̃v−1

]
⎤⎥⎥⎥⎦ (7)

In the Taylor expansion (1), the constant term refers to a position, the
terms for x and y define the tangent plane and terms in x2 + y2, x2 − y2 and
xy define the different curvature configurations (cup and two saddles). The
expression of these configurations in a cylindrical coordinate system (Eq. (8))
as a periodic function g(θ) = ρ cos(ω θ + ϕ) (where ρ is the amplitude, ω is
the frequency and ϕ is the phase) directly provides the rotational frequency
ω associated to each configuration. For instance, x2 − y2 = r2 cos(2θ) and
hence this saddle configuration has a frequency component ω = 2. Note that,

Eigencomponents of a Subdivision Matrix in the Fourier Domain 251

due to rotational symmetry, S̃ω = S̃v−ω so that it is enough to consider the
frequencies ω = {0, . . . , v

2}.

(x, y, z) → (r, θ, z) with

⎧⎨⎩x = r cos(θ)
y = r sin(θ)
z = z

(8)

This tells us that the position configuration has the frequency ω = 0 and
hence the eigenvalue |λ0| is the dominant eigenvalue of the frequency block S̃0,
the tangent plane configuration has the frequency ω = 1 and |λ1| = |λ2| equals
the dominant eigenvalue µ̃1 of the frequency block S̃1, the cup configuration
has the frequency ω = 0 and |λ3| equals the subdominant eigenvalue µ̃0 of the
frequency block S̃0 and finally the saddle configurations have the frequency
ω = 2 and |λ4| = |λ5| equals the dominant eigenvalue µ̃2 of the frequency block
S̃2. This relation between the different eigencomponents and their rotational
frequencies is presented in [5].

When a scheme is convergent, its eigenvalue λ0 equals 1 (Sect. 2.1) and
since |λ0| is the dominant eigenvalue of the frequency block S̃0, it can be
written as:

S̃0 =
[

1 · · ·
0
[
S̃′

0

]] . (9)

In this paper, we only consider convergent subdivision schemes, and so λ0 = 1
and the cup eigenvalue |λ3| is the dominant eigenvalue µ̃0 of the block S̃′

0.

3 Computation of the Frequency Blocks

In this section, we present a general framework, used in [1] on the Catmull-
Clark scheme [3], which computes the eigencomponents in the frequency do-
main. We present the procedure on a triangular lattice with a 2-ring neigh-
bourhood around the central EV and a standard dyadic refinement (see
Fig. 2(a)). The adaptation to a single 1-ring neighbourhood or to quadrilateral
meshes [1] is straightforward. We notice that this method may not be suitable
for analysing non-rotationally symmetric schemes, however, as pointed out
in [4], these schemes are mainly of theoretical interest and all the schemes
used in practical applications are rotationally symmetric.

The set of old vertices P is defined as follows:

P = {A,B0, . . . , Bv−1, C 1
2
, . . . , Cv− 1

2
, D0, . . . , Dv−1},

where the different letters X = {B,C,D} denote the different sets of rota-
tionally symmetric vertices around the central EV A and the indices give the
rotational position of each vertex: vertex Xj is at an angle of j 2 π

v (where v is
the valence of the EV) from the axis of origin. The set of new vertices p:

p = {a, b0, . . . , bv−1, c 1
2
, . . . , cv− 1

2
, d0, . . . , dv−1},

252 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

(a) (b)

Fig. 2. Subdivision with (a) a dyadic refinement and (b) a
√

3 refinement, of a
2-ring configuration around a central EV A of valence v. Capital letters denote the
set of old vertices P and small letters the set of new vertices p.

represents the same topological configuration, but after one step of subdivision
and around the central EV a. The new vertices of p are computed using affine
combinations gj

k of the old vertices of P:

a = g0(P), bk = g1
k(P), ck+ 1

2
= g2

k(P), dk = g3
k(P), k = 0, . . . , v − 1,

where the affine combinations gj
k are the rows of the subdivision matrix S.

Using the Discrete Fourier Transform (DFT):

x̃ω =
1
v

v−1∑
l=0

xl exp(−2πiωl/n), x = {a, b, c, d}, (10)

we express the rotational frequencies {ãω, b̃ω, c̃ω, d̃ω} of each set of rotationally
symmetric new vertices of p in terms of the rotational frequencies P̃ω =
{Ãω, B̃ω, C̃ω, D̃ω} of the old vertices of P:

ãω = g̃0
ω(P̃ω), b̃ω = g̃1

ω(P̃ω), c̃ω = g̃2
ω(P̃ω), d̃ω = g̃3

ω(P̃ω),

where the affine combinations g̃j
ω are the rows of the frequency blocks S̃ω of

the discrete Fourier transform S̃ of the subdivision matrix S. In vertices A and
a, the only frequency is the zero frequency, hence the terms in exp(−2πiωl/v)
vanish in the expression of ãω and we have: A = Ã0 = Ã, a = ã0 = ã and
∀ω > 0, Ãω = ãω = 0. Furthermore, in order to express the frequency block
S̃0 as in Equation (9), we have to centre the analysis at the central EV so
that:

Eigencomponents of a Subdivision Matrix in the Fourier Domain 253⎡⎢⎢⎣
ã0

b̃0 − ã0

c̃0 − ã0

d̃0 − ã0

⎤⎥⎥⎦ =

⎡⎢⎢⎣ S̃0

⎤⎥⎥⎦
⎡⎢⎢⎣

Ã0

B̃0 − Ã0

C̃0 − Ã0

D̃0 − Ã0

⎤⎥⎥⎦ with
[
S̃0

]
=
[

1 · · ·
0
[
S̃′

0

]] ,
hence ⎡⎣ b̃0 − ã0

c̃0 − ã0

d̃0 − ã0

⎤⎦ =

⎡⎣ S̃′
0

⎤⎦⎡⎣ B̃0 − Ã0

C̃0 − Ã0

D̃0 − Ã0

⎤⎦ ,
and because for ω > 0: Ãω = ãω = 0, ∀ω > 0 we have:⎡⎣ b̃ωc̃ω

d̃ω

⎤⎦ =

⎡⎣ S̃ω

⎤⎦⎡⎣ B̃ω

C̃ω

D̃ω

⎤⎦ .
The size of the frequency blocks is equal to the number of sets of rota-

tionally symmetric vertices in the neighbourhood of the central EV. Hence,
these blocks are of fixed size (here they are 3 × 3 matrices) and they can be
expressed as a function of the valence v of the central EV. The original prob-
lem of computing the eigencomponents of large (3v + 1) × (3v + 1) matrices
(in the spatial domain) for each value of the valence v is reduced to a single
eigendecomposition of small 3×3 matrices (in the Fourier domain), producing
the different eigencomponents expressed in terms of the valence v. Depending
on their complexity, the frequency blocks can be either decomposed by hand
computations or using the symbolic toolbox of any mathematical software.

We note that the right eigenvectors m̃0, m̃1 and m̃2 associated respec-
tively with the eigenvalues µ̃0, µ̃1 and µ̃2, can be interpreted as amplitudes
of the eigenvectors m0, . . . ,m5 of the spatial domain, e.g. the tangent plane
eigenvector m̃1 = [rB , rC , rD] gives the radii rX of vertices Bk, Ck+ 1

2
and Dk

from the central EV A (X ∈ {B,C,D}).

4 Example Using Kobbelt’s
√

3 Scheme

We illustrate our method using the practical example of Kobbelt’s
√

3 sub-
division scheme [10], the application of the general procedure presented in
Sect. 3. This scheme rotates the lattice after one step of subdivision due to
the insertion of new vertices in the middle of the old faces (as we can see in
Fig. 2(b)). If the eigendecomposition is performed on the subdivision matrix
S, we obtain complex eigencomponents generated by the scheme’s rotation
property. To overcome this difficulty in [10] the scheme is analysed after two
steps of subdivision so that the lattice is aligned with the two steps older one
but rotated by one sector. The lattice is then rotated back using a permutation
matrix R, and the matrix studied finally is Ŝ = RS2.

254 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

We first compute the frequency blocks on the 2-ring configuration shown in
Fig. 2(b). The computation is performed on a single subdivision step without
any back-rotation. We then reproduce the results presented in [10] using the
eigencomponents in the Fourier domain. We will see that the computations
are so simple that they can be done quickly and easily by hand.

Kobbelt’s
√

3 scheme is composed of two refinement rules (stencils): one
which displaces an old vertex (Eq. (11)) and one which computes a new ver-
tex in the centre of a triangle (Eq. (12)). They are defined by the following
formulae:

a = (1 − αv)A+
αv

v

v−1∑
j=0

Bj (11)

bk+ 1
2

=
1
3
(A+Bk +Bk+1), (12)

where αv is a parameter which can be used to improve the surface smoothness
at the EV for different valencies v. The new vertices ck are computed using
the regular relaxation rule (valence 6 vertex) and the new vertices dk+ 1

2
using

the insertion rule as follows:

ck =
2
3
Bk +

1
18

(A+Bk−1 +Bk+1 + Ck− 1
2

+ Ck+ 1
2

+Dk)

dk+ 1
2

=
1
3
(Bk +Bk+1 + Ck+ 1

2
).

The DFT (Eq. (10)) is then used to derive the rotational frequencies of
the different sets of rotationally symmetric vertices:

ã0 = 1.
0∑

j=0

a e0 = (1 − αv)A+
αv

v

v∑
j=0

Bj using the DFT and Eq. (11)

= (1 − αv)Ã0 + αvB̃0 because the only frequency in a is ω = 0

Eigencomponents of a Subdivision Matrix in the Fourier Domain 255

b̃ω =
1
v

v−1∑
j=0

bj e
−2πiωj/v DFT

=
1
v

v−1∑
j=0

[
1
3
(A+Bj− 1

2
+Bj+ 1

2
)
]
e−2πiωj/v using Eq. (12)

=
1
3
A+

1
3v

v− 3
2∑

l=− 1
2

Bl e
−2πiω(l+ 1

2)/v +
1
3v

v− 1
2∑

l= 1
2

Bl e
−2πiω(l− 1

2)/v

=
1
3
A+

1
3v
e−2πiω/2v

v− 3
2∑

l=− 1
2

Bl e
−2πiωl/v +

1
3v
e2πiω/2v

v− 1
2∑

l= 1
2

Bl e
−2πiωl/v

=
1
3
Ã0 +

1
3

(
e−πiω/v + eπiω/v

)
B̃ω

=
1
3
Ã0 +

2
3
kωB̃ω with kω = cos

(πω
v

)
and because e−iθ + eiθ = 2 cos θ

hence ⎧⎪⎨⎪⎩
b̃0 − ã0 =

(
2
3 − αv

) (
B̃0 − Ã0

)
if ω = 0

b̃ω = 2
3kωB̃ω otherwise.

Using similar computations, we obtain:⎧⎪⎨⎪⎩
c̃0 − ã0 =

(
7
9 − αv

) (
B̃0 − Ã0

)
+ 1

9

(
C̃0 − Ã0

)
+ 1

18

(
D̃0 − Ã0

)
if ω = 0

c̃ω =
(

2
3 + 1

9k2ω

)
B̃ω + 1

9kωC̃ω + 1
18D̃ω otherwise⎧⎪⎨⎪⎩

d̃0 − ã0 =
(

2
3 − αv

) (
B̃0 − Ã0

)
+ 1

3

(
C̃0 − Ã0

)
if ω = 0

d̃ω = 2
3kωB̃ω + 1

3 C̃ω otherwise.

From these expressions, we directly deduce the frequency blocks:

S̃′
0 =

⎡⎢⎢⎣
2
3 − αv 0 0
7
9 − αv

1
9

1
18

2
3 − αv

1
3 0

⎤⎥⎥⎦ and if ω > 0 S̃ω =

⎡⎢⎢⎣
2
3kω 0 0

2
3 + 1

9k2ω
1
9kω

1
18

2
3kω

1
3 0

⎤⎥⎥⎦ .
Since the only non-zero coefficient of the first rows of the matrices S̃′

0

and S̃ω is the one in the left-hand corner, we directly obtain the dominant
eigenvalues µ̃0, µ̃1 and µ̃2 as:

µ̃0 =
2
3
− αv, µ̃1 =

2
3
k1, µ̃2 =

2
3
k2. (13)

256 Löıc Barthe, Cédric Gérot, Malcolm Sabin, and Leif Kobbelt

As we see, the free parameter αv only appears in the cup eigenvalue, hence
the scheme’s behaviour is improved at the EV by bounding the curvature in
the cup configuration using the condition: µ̃0 = µ̃2

1. The value of parameter
αv in Eq. (11) is then derived as follows:

µ̃0 = µ̃2
1 ⇐⇒ 2

3
− αv =

(
2
3
k1

)2

⇐⇒ αv =
2
9

(
2 − cos

(
2π
v

))
.

The eigenvalues µ̃i (i = 1, 2, 3) could have been computed in an even
simpler manner by only considering a 1-ring neighbourhood around the cen-
tral EV. However, the choice of a 2-ring neighbourhood is based on our wish
of giving an example allowing a more complete analysis based on a larger
neighbourhood. It also allows us to check that more of the eigenvalues are ad-
equately sorted (see the necessary conditions on the eigenvalues in Sect. 2.1).

5 Conclusion

In this paper, we have emphasised the importance of the analysis of the subdi-
vision matrix in the Fourier domain: the analysis of large matrices in the spa-
tial domain is reduced to the analysis of small matrices in the Fourier domain
so that it becomes easier to compute the different eigencomponents. Moreover,
we can determine which geometric configuration is defined by which eigencom-
ponents. We have presented a general framework computing the subdivision
matrix in the frequency domain and it has been illustrated on the practi-
cal example of Kobbelt’s

√
3 scheme. We have shown how this computation

technique allows us to analyse the scheme in a very simple manner.
There are limitations for this computation technique when the rotational

position of a set of rotationally symmetric vertices with respect to the axis
of origin is unknown. More investigations have to be carried out to solve this
problem while keeping the computations as simple as possible. As we have
demonstrated however, this approach performs well on 2-ring neighbourhood
configurations and hence it is very well suited to analyse all of the standard
subdivision schemes or any new rotationally symmetric scheme.

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. Ball, A.A., Storry, D.J.T.: Conditions for tangent plane continuity over recur-
siveley generated B-spline surfaces. ACM Trans. Graphics, 7(2):83–102 (1988)

Eigencomponents of a Subdivision Matrix in the Fourier Domain 257

2. de Boor, C., Hollig, D., Riemenschneider, S.: Box Splines. Springer-Verlag, New
York (1994).

3. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350–355 (1978)

4. Dodgson N.A., Ivrissimtzis, I.P., Sabin, M.A.: Characteristics of dual triangular√
3 subdivision. Curve and Surface Fitting: Saint-Malo 2002, Nashboro Press,

Brentwood, 119–128 (2003)
5. Doo, D., Sabin, M.A.: Analysis of the behaviour of recursive subdivision surfaces

near extraordinary points. Computer Aided Design, 10(6):356–360 (1978)
6. Dyn, N.: Subdivision schemes in Computer-Aided Geometric Design. Advances

in Numerical Analysis II: Wavelets, Subdivision Algorithms and Radial Basis
Functions, W. Light (ed.), Clarendon Press, Oxford, 36–104 (1992)

7. Dyn, N.: Analysis of convergence and smoothness by the formalism of Laurent
polynomials. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E.
Quak and M. Floater (eds.), Springer, 51–68 (2002)

8. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface
interpolation with tension control. ACM Trans. Graphics, 9(2):160–169 (1990)

9. Farin, G.: Curves and Surfaces for CAGD. 5th Edition, Academic Press (2002)
10. Kobbelt, L.:

√
3-Subdivision. Proc. ACM SIGGRAPH 2000, 103–112 (2000)

11. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, Uni-
versity of Utah (1987)

12. Peters, J., Reif, U.: Analysis of algorithms generalizing B-spline subdivision.
SIAM Journal of Num. Anal., 35(2):728–748 (1998)

13. Prautzsch, H.: Analysis of Ck-Subdivision surfaces at extraordinary points.
Technical Report 98/4, Fakultät für Informatik, University of Karlsruhe, Ger-
many (1998)

14. Prautzsch, H., Umlauf, G.: A G2-subdivision algorithm. Geometric Modelling,
Dagstuhl 1996, Computing supplement 13, Springer-Verlag, 217–224 (1998)

15. Reif, U.: A unified approach to subdivision algorithms near extraordinary ver-
tices. Computer Aided Design, 12:153–174 (1995)

16. Sabin, M.A.: Eigenanalysis and artifacts of subdivision curves and surfaces.
Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak and M.
Floater (ed.), Springer, 69–97 (2002)

17. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values. Proc. ACM SIGGRAPH ’98, 395–404 (1998)

18. Warren, J., Weimer, H.: Subdivision methods for geometric design: A construc-
tive approach. San Francisco: Morgan Kaufman, (2002)

19. Zorin, D.: Stationary subdivision and multiresolution surface representations.
PhD thesis, Caltech, Pasadena, California (1997)

20. Zorin, D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM
Journal of Num. Anal., 35(5):1677–1708 (2000)

21. Zorin, D., Schröder, P: Subdivision for modeling and animation. SIGGRAPH
2000 Course Notes. (2000)

22. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with
arbitrary topology. Proc. ACM SIGGRAPH ’97, 189–192 (1996)

Subdivision as a Sequence
of Sampled Cp Surfaces

Cédric Gérot1, Löıc Barthe2, Neil A. Dodgson3, and Malcolm Sabin4

1 Laboratoire des Images et des Signaux, Domaine Universitaire, Grenoble, France
Cedric.Gerot@lis.inpg.fr

2 Computer Graphics Group, IRIT/UPS, Toulouse, France
lbarthe@irit.fr

3 Computer Laboratory, University of Cambridge, UK
nad@cl.cam.ac.uk

4 Numerical Geometry Ltd., Cambridge, UK
malcolm@geometry.demon.co.uk

Summary. This article deals with practical conditions for tuning a subdivision
scheme in order to control its artifacts in the vicinity of a mark point. To do so, we
look for good behaviour of the limit vertices rather than good mathematical prop-
erties of the limit surface. The good behaviour of the limit vertices is characterised
with the definition of C2-convergence of a scheme. We propose necessary explicit
conditions for C2-convergence of a scheme in the vicinity of any mark point being a
vertex of valency greater or equal to three.

1 Introduction

A bivariate subdivision scheme defines a sequence of polygonal meshes each
of whose vertices is a linear combination of vertices belonging to the previous
mesh in the sequence. Such a scheme is interesting if the sequence converges to
a surface which is as regular as possible. Tuning is the choosing of coefficients
for the linear combinations used in constructing new points. This article deals
with conditions which may be used for tuning a scheme in order to get such
a sequence.

Some schemes (Loop [7], Catmull-Clark [4], Doo-Sabin [5],. . .) are defined
so that each polygonal mesh is the control polyhedron of a Box-Spline sur-
face which is the limit surface of the sequence. In this case the convergence
and regularity problems are solved by definition, except around extraordi-
nary vertices. An extraordinary vertex is a vertex of the mesh whose valency
is not equal to six if the mesh faces are triangles, or not equal to four if the
mesh faces are quadrilaterals. For extraordinary vertices in a Box-Spline based
scheme and for all vertices in other schemes, the convergence of the scheme
and the regularity of its limit surface in the vicinity of a vertex need to be

260 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

analysed. This analysis may lead to a tuning of the scheme. In most cases,
the coefficients of the linear combinations depend only on the local topology
of the mesh, and not on its geometry. Moreover, we assume the scheme to be
stationary: the coefficients remain the same through the sequence of polygonal
meshes.

The first analysis of the behaviour of the limit surface around an extraor-
dinary vertex was by Doo and Sabin [5]. They give necessary conditions for
a scheme being convergent towards a C2-continuous limit surface. These con-
ditions are derived from estimates of its first and second derivatives around
the extraordinary vertex. Subsequently, most researchers have interpreted this
question as follows: the mesh around but excluding the extraordinary vertex
is the control polyhedron of continuous patches. At each subdivision step, a
new ring of such patches fills in a part of the n-sided hole created by the
virtual removal of the extraordinary vertex. The researchers analyse how this
iterative insertion of new rings converges and completely fills in this hole. Ball
and Storry [1] give sufficient conditions for the surface being tangent plane
continuous. Reif [11] remarks that, in terms of differential geometry, a surface
is Cp-continuous if there exists a Cp function which parameterizes it. If the
limit surface is tangent plane continuous, the surface can be parameterized
over a characteristic map of this tangent plane around the extraordinary ver-
tex. Reif gives necessary and sufficient conditions for any stationary scheme to
be convergent towards a C1-continuous surface. Independently, Prautzsch [9]
and Zorin [16] proposed in the late 90’s necessary and sufficient conditions
for a scheme to be convergent towards a Cp-continuous surface. They both
use more or less the parameterization over the characteristic map proposed
by Reif.

Most of the prior work on tuning subdivision schemes alters local coef-
ficients in order to fulfil the aforementioned necessary and sufficient condi-
tions [13]. But mathematical Cp-continuity of the limit surface is perhaps
not the best target to aim for. We may look for good behaviour of the limit
vertices rather than good mathematical properties of the limit surface. Good
behaviour of the limit vertices may mean fewer artifacts on the limit sur-
face [14]. For instance, Prautzsch and Umlauf tuned the Loop and Butterfly
schemes in order to make them C1 and C2-continuous around an extraordi-
nary vertex by creating a flat spot [10]; but a flat spot may be considered
as an artifact. Furthermore, the necessary and sufficient conditions for C2-
continuity of the limit surface are not explicit if the scheme is not Box-Spline
based.

In this paper, we characterise the good behaviour of the limit vertices
with the definition of C2-convergence of a scheme. This definition is based
on the interpretation proposed implicitly by Doo and Sabin [5]. Each control
mesh is viewed not as the control polyhedron of a Box-Spline surface but
as the sampling of a continuous surface. Thus the sequence of meshes are
samplings of a sequence of continuous surfaces which converges uniformly
towards the limit surface. Naturally, C2-convergence of a scheme is related

Subdivision as a Sequence of Sampled Cp Surfaces 261

to the C2-continuity of the limit surface: it is a sufficient condition for it.
And because the definition of C2-convergence of a scheme is theoretical and
formal, we propose in this paper explicit but only necessary conditions for
C2-convergence.

In the following section, we present the theoretical tools we use in Sect. 3
to establish the necessary conditions for a scheme to C2-converge.

2 Theoretical Tools

We first describe our notation and then we propose the definition for the Cp-
convergence of a scheme. From this definition, we derive a description of the
limit points. Finally the eigenanalysis of the Fourier transformed subdivision
matrix gives a description of the limit frequencies.

2.1 Notation

We study the convergence of a subdivision scheme towards a regular surface
in the vicinity of a vertex which is a mark point. A mark point is a point of
a mesh whose vicinity keeps the same topology throughout subdivision. For
instance, mesh vertices are mark points in the case of Loop or Catmull-Clark
subdivision schemes, and face centres but not mesh vertices are mark points
in the case of Doo-Sabin refinement. As a consequence, our analysis does not
apply to Doo-Sabin nor to other schemes where the vertices are not mark
points. The generalisation of this analysis to any mark point being a vertex
or a face centre can be found in a technical report by the same authors [6]
which also contains detailed proofs of the results presented here.

Let A be the mark point, and n its valency (number of outgoing edges from
A). We assume that the vicinity of A is made up of ordinary vertices. This
hypothesis is relevant because after a subdivision step, the vertices of the mesh
map to vertices with the same valency, and new vertices are created which are
all ordinary. Thus, after several subdivision steps, every extraordinary vertex
is surrounded by a sea of ordinary vertices. As a consequence, the vicinity of
A may be divided into n topologically equivalent sectors. In the jth sector, let
Bj , Cj , Dj . . . be an infinite number of vertices sorted from the topologically
nearest vertex from A to the farthest. If there exist two vertices in one sector
on the same ring which are in complementary positions then they are labelled
with the same letter, but with a prime put on the vertex which is further
anticlockwise from the positive x-axis. An example is E and E′ in Fig. 1.
However, if the points are not in complementary positions, then they are
given distinct letters.

Let A(k) be the mark point and {B(k)
j , C

(k)
j , D

(k)
j . . .}j∈1...n its vicinity

after k subdivision steps. All these vertices are put into an infinite vector

P(k) :=
[
A(k)B

(k)
1 · · ·B(k)

n C
(k)
1 · · ·C(k)

n D
(k)
1 · · ·D(k)

n · · ·
]T

262 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

C
1

Cn−1

E’ F

E

D
B

1 1

1

D
E

F

E’

C

B

2

2

2

D

B

3

3

D

E

F

E’

n−1

B

D

C
E’

FE

n

1

1

n−1

n−1

n−1

nn

2

n

n

n

2

2

A
n−1

B

Fig. 1. Labelling of the vicinity of a mark point

Finally, a surface is Cp-continuous if there exists a Cp-diffeomorphic param-
eterization of it from a subset of R

2. We define a parameterization domain
by projecting onto R

2 without folding the polygonal mesh around the mark
point. A(k) is projected onto (0, 0), and ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},
X

(k)
j is projected onto (x(k)

j , y
(k)
j). For simplicity, we ask (x(k)

j , y
(k)
j) to lie on

the same circle for given k and X, and to lie on the same radial axis for given
j and X:

(x(k)
j , y

(k)
j) := (�(k)

X cos(θ(X,j)), �
(k)
X sin(θ(X,j)) ,

where
θ(X,j) :=

2π
n

(j + αX) ,

Furthermore, because the vertices X(k)
j converge to the limit mark point if

the scheme converges [11], we ask that limk→∞(�(k)
X) = 0. The choice of the

phases αX and the radii �(k)
X remains free. These degrees of freedom will be

used in the characterisation of C1-convergence in Sect. 3.

2.2 Cp-Convergence and Behaviour of the Limit Points

We propose the following definition for the Cp-convergence of a scheme. The
scheme Cp-converges in the vicinity of A if

• for every X in the infinite vicinity {B,C,D, . . .} of A, there exist phases
αX and, for all j in {1, . . . , n}, for every k, radii �(k)

X and a Cp-continuous
function F (k)(x, y) such that

A(k) = F (k)(0, 0) ,

X
(k)
j = F (k)(�(k)

X cos(θ(X,j)), �
(k)
X sin(θ(X,j))) .

Subdivision as a Sequence of Sampled Cp Surfaces 263

• Furthermore, the sequence of pth differentials
(
dpF (k)

)
k

converges uni-
formly onto dpF which is the pth differential of a Cp-continuous param-
eterization F(x, y) of the limit surface in the vicinity of the limit mark
point.

• Finally, for all q ∈ 0, . . . , p−1, the sequence
(
dqF (k)(0, 0)

)
k

converges onto
dqF(0, 0).

In this definition, an infinite vicinity {B,C,D, . . .} is taken into account. In
any practical application, we will consider only a finite number of vertices.
More precisely, we choose the set of vertices which will influence the limit
position of the mark point and its neighbourhood. This practical restriction
is not inconsistent with finding only necessary conditions for Cp-convergence.
From the definition, we see that if the scheme Cp-converges in the vicinity
of A, then the sequence of meshes converges towards a Cp-continuous sur-
face around the limit mark point. But the converse is not true: a scheme,
which converges towards a Cp-continuous surface is not necessarily Cp-
convergent. Note also that the definition domain of F (k) shrinks as k grows
since limk→∞(�(k)

X) = 0 from Sect. 2.1.
In Sect. 3 we will consider the necessary conditions for C2-convergence.

Therefore, consider a scheme which C2-converges in the vicinity of the mark
point A. The parameterization F(x, y) is C2-continuous. From its Taylor ex-
pansion around (0, 0), we may describe the behaviour of the limit points in the
vicinity of A. In the following lines, we detail this behaviour with derivatives of
the limit function and according to the regularity of the scheme convergence.
If the scheme C0-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(A(k)) = F(0, 0) , and lim
k→∞

(X(k)
j) = F(0, 0) . (1)

If the scheme C1-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(
X

(k)
j −F (k)(0, 0)

�
(k)
X

)
= cos(θ(X,j))

∂F
∂x

(0, 0) + sin(θ(X,j))
∂F
∂y

(0, 0) . (2)

If the scheme C2-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

⎛⎝∆(k)
X,j

�
(k)
X

2

⎞⎠ =
(
∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)
)

1
4

+
∂2F
∂x∂y

(0, 0)
sin(2θ(X,j))

2

+
(
∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0)
)

cos(2θ(X,j))
4

. (3)

with

∆
(k)
X,j := X

(k)
j −F (k)(0, 0)−�(k)

X (cos(θ(X,j))
∂F (k)

∂x
(0, 0)+sin(θ(X,j))

∂F (k)

∂y
(0, 0))

264 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

2.3 Eigenanalysis of the Transformed Subdivision Matrix

Consideration of the relationship between the spatial and frequency domains
allows us to produce necessary conditions for C2-convergence. In this section
we introduce the necessary notation for the subdivision matrix transformed
into the frequency domain. We may write the discrete rotational frequencies
X̃(k)(ω) of each set of vertices {X(k)

j }j∈1...n by applying a Discrete Fourier
Transform. It is well-known [1] that there exists a matrix M̃(ω) such that for
all ω in

{
−�n−1

2 , . . . , �n
2
}
,

P̃(k+1)(ω) = M̃(ω)P̃(k)(ω)

where, if ω �= 0,

P̃(k)(ω) :=
[
B̃(k)(ω)C̃(k)(ω)D̃(k)(ω) · · ·

]T
and otherwise

P̃(k)(0) :=
[
Ã(k)(0)B̃(k)(0)C̃(k)(0)D̃(k)(0) · · ·

]T
.

For every discrete rotational frequency ω, the matrix M̃(ω) is supposed to
be non defective (otherwise we should use the canonical Jordan form)

M̃(ω) = Ṽ(ω)−1Λ̃(ω)Ṽ(ω)

where the columns ṽl(ω) of Ṽ(ω)−1 are the right eigenvectors of M̃(ω), the
rows ũT

l (ω) of Ṽ(ω) are the left eigenvectors of M̃(ω), and Λ̃(ω) is diagonal
whose diagonal components λ̃l(ω) are the eigenvalues of M̃(ω), with l ≥ 1. Let
L−

l (ω), Ll(ω), and L+
l (ω) be sets of indices such that

if q ∈ L−
l (ω) then

∣∣∣λ̃q(ω)
∣∣∣ < ∣∣∣λ̃l(ω)

∣∣∣ ,
if q ∈ Ll(ω) then

∣∣∣λ̃q(ω)
∣∣∣ = ∣∣∣λ̃l(ω)

∣∣∣ ,
if q ∈ L+

l (ω) then
∣∣∣λ̃q(ω)

∣∣∣ > ∣∣∣λ̃l(ω)
∣∣∣ ,

where
∣∣∣λ̃∣∣∣ is the modulus of the complex number λ̃. Then, with P(q, ω) =

ũq(ω)T
P̃ (0)(ω), we get for every l,

P̃(k)(ω) −
∑

q∈L+
l (ω)

λ̃q(ω)
kP(q, ω)ṽq(ω) (4)

= λ̃l(ω)
k

⎛⎝ ∑
q∈Ll(ω)

P(q, ω)ṽq(ω) +
∑

q∈L−
l (ω)

(
λ̃q(ω)
λ̃l(ω)

)k

P(q, ω)ṽq(ω)

⎞⎠ .

Subdivision as a Sequence of Sampled Cp Surfaces 265

Thus, as k grows to infinity,

λ̃l(ω)
k ∑

q∈Ll(ω)

P(q, ω)ṽq(ω)

is a good estimate of the frequency

P̃(k)(ω) −
∑

q∈L+
l (ω)

λ̃q(ω)
kP(q, ω)ṽq(ω)

in the same way that ∑
a+b=l

xayb

l!
∂lF

∂xa∂yb
(0, 0)

is a good estimate of the function

F(x, y) −
∑

a+b<l

xayb

l!
∂lF

∂xa∂yb
(0, 0)

as (x, y) converges to (0, 0).

3 Necessary Conditions for C2-Convergence
and Derivatives of the Limit Surface

Equations (1), (2) and (3) describe the behaviour of the limit points. Apply-
ing the Discrete Fourier Transform on these equations gives a description of
the limit frequencies. The consistency between this description and the one
given by equation (4) implies necessary conditions for the C2-convergence of
the scheme. It also gives the partial derivatives of the limit surface in the
mark point. As a notation, if X̃(k)(ω) is the mth component of P̃(k)(ω), then
(ṽl(ω))X is the mth component of ṽl(ω). We assume also without any restric-
tion that for every fixed ω, λ̃2(ω) is the eigenvalue of M̃(ω) with the greatest
modulus after λ̃1(ω) and any other eigenvalues with same modulus as λ̃1(ω):
for all ω, L1(ω) = L+

2 (ω).

3.1 C0-Convergence

If the scheme C0-converges, then{
λ̃1(0) = 1 ,∣∣∣λ̃1(ω)

∣∣∣ < 1 if ω �= 0,

and if L1(0) = {1},
(ṽ1(0))X = ν0

266 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

with ν0 being a constant, and

F(0, 0) =
P(1, 0)
n

(ṽ1(0))X .

Not only do we get necessary conditions on eigenvalues and eigenvectors of
M̃(ω), but we get also the value of F(0, 0), that is the limit mark point.

3.2 C1-Convergence

If the scheme C1-converges and the mark point is a vertex, then∣∣∣λ̃2(0)
∣∣∣ < ∣∣∣λ̃1(±1)

∣∣∣ and
∣∣∣λ̃1(ω)

∣∣∣ < ∣∣∣λ̃1(±1)
∣∣∣ ,

with ω �∈ {−1, 0, 1}.
Furthermore, when k is large, if L1(1) = L1(−1) = {1}, the moduli of the

eigencomponents |(ṽ1(1))X | and |(ṽ1(−1))X | are sorted like the radii, �X , of
the rings.

If the scheme is rotationally invariant, the modulus of the eigenvalue∣∣∣λ̃1(1)
∣∣∣ =
∣∣∣λ̃1(−1)

∣∣∣ gives the speed of the parameters’ shrinkage during the

subdivision process. The freedom we had in the choice of the parameters �(k)
X

and the phase αk is restricted. But there remains enough freedom to write
things quite simply. For simplicity, we can define the radii �(k)

X as follows:

�
(k)
X =

∣∣∣λ̃1(1)
∣∣∣k |(ṽ1(1))X | =

∣∣∣λ̃1(−1)
∣∣∣k |(ṽ1(−1))X | .

Furthermore, if we define αX as

αX =
n

2π
ϕ(ṽ1(−1))X

with ϕ(ṽ1(−1))X
being the phase of (ṽ1(−1))X , and if

∂F
∂x

(0, 0) ± i
∂F
∂y

(0, 0) �= 0 ,

then {
∂F
∂x (0, 0) = 2

n ! (P(1, 1)) = 2
n ! (P(1,−1)) ,

∂F
∂y (0, 0) = 2

n " (P(1, 1)) = − 2
n " (P(1,−1)) ,

with ! (P(1, 1)) and " (P(1, 1)) being respectively the real and the imaginary
parts of P(1, 1).

In conclusion, the necessary conditions for C1-convergence are dominance
of the main eigenvalues M̃(1) and M̃(−1), after the main eigenvalue from M̃(0),
and a configuration of the elements of the associated eigenvectors which defines
the vertices’ coordinates in an injective parametric space. Furthermore, these
conditions give us the values of ∂F

∂x (0, 0) and ∂F
∂y (0, 0).

Subdivision as a Sequence of Sampled Cp Surfaces 267

3.3 C2-Convergence

If the scheme C2-converges and the mark point is a vertex, then

λ̃2(0) =
∣∣∣λ̃1(±2)

∣∣∣ = ∣∣∣λ̃1(±1)
∣∣∣2 , and

∣∣∣λ̃1(ω)
∣∣∣ < ∣∣∣λ̃1(±1)

∣∣∣2 ,

with ω �∈ {−2,−1, 0, 1, 2}. Furthermore,∣∣∣λ̃2(±1)
∣∣∣ < ∣∣∣λ̃1(±1)

∣∣∣2
if and only if

lim
k→∞

⎛⎜⎝
∣∣∣∂F(k)

∂x (0, 0) ∓ i∂F(k)

∂y (0, 0)
∣∣∣− ∣∣∣∂F∂x (0, 0) ∓ i∂F

∂y (0, 0)
∣∣∣∣∣∣λ̃1(±1)

∣∣∣k
⎞⎟⎠ = 0 .

Furthermore, if L2(0) = {2}, then

(ṽ2(0))X − (ṽ2(0))A

|(ṽ1(1))X |2
and

(ṽ2(0))X − (ṽ2(0))A

|(ṽ1(−1))X |2

depend neither on X nor on k, and if L1(2) = L1(−2) = {1}, then the ratios

|(ṽ1(2))X |
|(ṽ1(1))X |2

,
|(ṽ1(2))X |

|(ṽ1(−1))X |2
,

|(ṽ1(−2))X |
|(ṽ1(1))X |2

,
|(ṽ1(−2))X |
|(ṽ1(−1))X |2

and the differences

ϕ(ṽ1(2))X
− ϕ(ṽ1(1))X

and ϕ(ṽ1(−2))X
− ϕ(ṽ1(−1))X

do not depend on X.
Furthermore, if we define �(k)

X and αX as proposed in Sect. 3.2 for a rota-
tionally invariant scheme, then we can scale the eigenvectors such that

(ṽ1(2))X = (ṽ1(1))2X , (ṽ1(−2))X = (ṽ1(−1))2X ,

and, if
∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0) ∓ 2i
∂2F
∂x∂y

(0, 0) �= 0 ,

then

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0) = 4
P(2, 0)
n

,

∂2F
∂x2

(0, 0) − ∂2F
∂y2

(0, 0) =
8
n
! (P(1, 2)) =

8
n
! (P(1,−2)) ,

∂2F
∂x∂y

(0, 0) = − 4
n
" (P(1, 2)) =

4
n
" (P(1,−2)) .

268 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

In conclusion, the necessary condition for C2-convergence is that among all
the eigenvalues of all M̃(ω), the global subsubdominant eigenvalues are the
subdominant eigenvalues of M̃(0) and the dominant eigenvalue of M̃(2) and
M̃(−2). These global subsubdominant eigenvalues are equal to the square of∣∣∣λ̃1(±1)

∣∣∣, the global subdominant eigenvalues. Furthermore, the elements of
the associated eigenvectors are in a quadratic configuration. These conditions
have been already proposed by Sabin [12] as a condition related to the C2-
continuity of the limit surface. They also let us get the values of the partial
derivatives ∂2F

∂x2 (0, 0), ∂2F
∂y2 (0, 0) and ∂2F

∂x∂y (0, 0). See Barthe et al. [2] (pp. 245–
257 of this book) for a further discussion of the rôle of the eigenvalues.

4 Discussion

Many authors interpret a subdivision scheme as a linear map between patches
which progressively fill in an n-sided hole around an extraordinary point.
Prautzsch [9] and Zorin [16] proposed necessary and sufficient conditions for
Cp-regularity of the limit surface, on the eigenvalues and eigenbasis functions
of this linear map. In contrast, we interpret a subdivision scheme as a lin-
ear map between samplings of two successive surfaces from a sequence of Cp

surfaces. If this sequence converges with sufficient regularity (Cp-converges)
these samplings may be used to approximate the derivatives of the limit sur-
face. We propose necessary conditions for the C2-convergence of a scheme,
which is itself a sufficient condition for the C2-continuity of the limit surface,
on the eigenvalues and eigenvectors of the transformed subdivision matrix. As
already stated, a scheme which converges toward a C2-continuous limit sur-
face does not necessarily C2-converge. But it is interesting to understand the
difference between our necessary conditions for Cp-convergence, and the con-
dition for the Cp-regularity of the limit surface proposed by Reif, Prautzsch
and Zorin.

C0-regularity. We find the same conditions.
C1-regularity. Because we ask the subdominant eigenvalues to come from

M̃(1) and M̃(−1), we ensure the orthoradial injectivity of Reif’s charac-
teristic map as described in [8]; and because we ask the components of the
associated eigenvectors to be sorted like the parameters �(k)

X , we ensure
good conditions for the radial injectivity of this map.

C2-regularity. Reif’s characteristic map [11] is given by the subdominant
eigenbasis functions. If the scheme is Box-Spline based, the eigenbasis
functions are Box-Splines with our eigenvectors as control points (more
precisely, our eigenvectors provide their radial coordinate). One of the con-
ditions proposed by Prautzsch [9] and Zorin [16] for C2-regularity, is that
the eigenbasis functions z associated to the subsubdominant eigenvalue
should belong to span

{
xiyj ; i+ j = 2

}
where x and y are the eigenba-

sis functions associated to the subdominant eigenvalue. Our condition is

Subdivision as a Sequence of Sampled Cp Surfaces 269

the same, but with the eigenvectors instead of the eigenbasis functions.
And the eigenvectors provide the altitude over the characteristic map of
the control points of z. Around an ordinary vertex, we have checked that
the quadratic configuration of the eigenvectors is fulfilled for Loop and
Catmull-Clark schemes. Stam does so for the quadratic configuration of
eigenbasis functions [15]. The possibility to get quadratic configuration of
both eigenvectors and eigenbasis functions around an extraordinary vertex
remains to be investigated.

5 Conclusion

We have proposed practical conditions for tuning a scheme in order to con-
trol its artifacts in the vicinity of a mark point. To do so, we look for good
behaviour of the limit vertices rather than good mathematical properties of
the limit surface. The good behaviour of the limit vertices is characterised
with the definition of C2-convergence of a scheme. We propose necessary ex-
plicit conditions for C2-convergence of a scheme in the vicinity of any mark
point being a vertex of valency greater or equal to three. We cast some light
on the relationship between these conditions and the classical necessary and
sufficient conditions for the C2-continuity of the limit surface. Even though
the differences between them are not large, we stress the fact that our condi-
tions are designed for tuning a scheme leading to fewer artifacts on the limit
surface [3] rather than for tuning a scheme leading to a C2-continuous limit
surface.

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over re-
cursively generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–
102, 1988.

2. L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of
the eigencomponents of a subdivision matrix in the fourier domain. In N. A.
Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution
for Geometric Modelling, pages 245–257 (this book). Springer-Verlag, 2004.

3. L. Barthe and L. Kobbelt. Subdivision scheme tuning around extraordinary
vertices. Submitted.

4. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350–355, 1978.

270 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

5. D. Doo and M. A. Sabin. Behaviour of recursive division surface near extraor-
dinary points. Computer Aided Design, 10(6):356–360, 1978.

6. C. Gérot, L. Barthe, N. A. Dodgson, and M. A. Sabin. Subdivision as se-
quence of sampled Cp-surfaces and conditions for tuning schemes. Techni-
cal Report 583, University of Cambridge Computer Laboratory, Mar 2004.
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-583.pdf.

7. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, 1987.

8. J. Peters and U. Reif. Analysis of algorithms generalizing B-spline subdivision.
SIAM J. Numer. Anal., 35(2):728–748, 1998.

9. H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Adv.
Comput. Math, 9:377–389, 1998.

10. H. Prautzsch and G. Umlauf. Improved triangular subdivision schemes. In Proc.
Computer Graphics International, pages 626–632, 1998.

11. U. Reif. A unified approach to subdivision algorithm near extraordinary vertices.
Computer Geometric Aided Design, 12:153–174, 1995.

12. M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In
A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in
Geometric Modelling, pages 69–97. Springer-Verlag, 2002.

13. M. A. Sabin. Recent progress in subdivision – a survey. In N. A. Dodgson, M. S.
Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric
Modelling, pages 203–230 (this book). Springer-Verlag, 2004.

14. M. A. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. In
A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fit-
ting: Saint-Malo 2002, pages 353–362. Nashboro Press, 2003.

15. J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values. Proc. ACM SIGGRAPH ’98, pages 395–404, 1998.

16. D. Zorin. Stationary subdivision and multiresolution surface representations.
PhD thesis, California Institute of Technology, 1997.

Reverse Subdivision

Mohamed F. Hassan and Neil A. Dodgson

Computer Laboratory, University of Cambridge, UK
{mfh20|nad}@cl.cam.ac.uk

Summary. We present a reverse Chaikin algorithm which generates a multiresolu-
tion representation of any line chain. It has applications in multiresolution editing
and compression. We also sketch how this might be extended to the bivariate Loop
subdivision algorithm.

1 Introduction

Subdivision methods for curves were introduced and mathematically analysed
for the first time by de Rham in 1947. Their re-invention in 1974 by Chaikin
made them available to the computer graphics community. Chaikin used them
to derive a simple algorithm for the high-speed generation of curves. He first
proposed the binary 2-point approximating scheme in [1], which was shown
to produce the quadratic B-spline in the limit [6].

Here we present an algorithm, based on Chaikin’s algorithm, to decimate
a polygonal curve so that, when the uniform subdivision scheme is applied to
the decimated curve, a good approximation to the original curve is achieved.
The errors between the reconstructed and original polygons are stored so that
we can reconstruct the original polygon exactly. By continuing this process,
we can construct a hierarchy giving a multiresolution representation of the
original curve. Samavati and Bartels have previous explored reverse Chaikin
[7]. Also B-spline wavelets [9] solve the same problem but require the con-
struction of the high-frequency synthesis filter matrix, Q, and the solving
of a sparse linear system to perform the reverse subdivision. Our approach is
much simpler. The applications for this include lossy and lossless compression,
multiresolution editing, and animation.

In Sects. 2–6 we present the Reverse Chaikin method; in Sect. 7 we show
how this can be extended to the bivariate case, using Loop [5] as our subdi-
vision scheme.

272 Mohamed F. Hassan and Neil A. Dodgson

Fig. 1. Left: Chaikin’s scheme – the large circles are points of the original polygon
and the small circles are the points after one subdivision step. Right: Reverse Chaikin
– the small circles are the original points and the large circle is the point after one
reverse subdivision step. The filled circles are the two candidate points using the
two different pairs of original points.

2 Reverse Chaikin

Chaikin’s scheme can be defined formally by

pn+1
2i−1 = 3

4p
n
i + 1

4p
n
i+1,

pn+1
2i = 1

4p
n
i + 3

4p
n
i+1,

(1)

where pn
m is the position in R

3 of point m after n subdivision steps (see
Fig. 1(left)).

We would like to reverse this process. Now, solving (1) for pn
i gives

pn
i =

3
2
pn+1
2i−1 − 1

2
pn+1
2i . (2)

However, solving (1) for pn
i+1 and re-indexing gives

pn
i =

3
2
pn+1
2i−2 − 1

2
pn+1
2i−3. (3)

Geometrically, this means that there are two sets of pairs of points in the
subdivided polygon that can be used to calculate the position of a single point
in the original. If Chaikin’s scheme was used to produce the refined polygon
there is no problem, as the two positions will coincide. However, this cannot
be guaranteed in the general case. Our solution is to take the average of the
two positions and store the error vectors (see Fig. 1(right)).

Formally this gives

pn
i = −1

4
pn+1
2i−3 +

3
4
pn+1
2i−2 +

3
4
pn+1
2i−1 − 1

4
pn+1
2i , (4)

en
i =

1
4
pn+1
2i−3 − 3

4
pn+1
2i−2 +

3
4
pn+1
2i−1 − 1

4
pn+1
2i . (5)

The forward Chaikin step then becomes:

pn+1
2i−1 = 3

4 (pn
i + en

i) + 1
4 (pn

i+1 − en
i+1),

pn+1
2i = 1

4 (pn
i + en

i) + 3
4 (pn

i+1 − en
i+1).

(6)

Reverse Subdivision 273

2.1 Wavelet Formulation

At first sight the formulation above may appear not to be a wavelet transfor-
mation because the errors, en

i , are added to the points, pn
i , before the subdivi-

sion step rather than after, as would be the case with a wavelet transformation.
However, some straightforward algebraic manipulation converts it to a wavelet
formulation.

If we write pn−1 = Anpn and en−1 = Bnpn, where pn = [pn
0 pn

1 pn
2 . . .]

T

(and similarly for en), then, from (4) and (5), the wavelet analysis filters, An

and Bn are:

An =
1
4

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
−1 +3 +3 −1

−1 +3 +3 −1
−1 +3 +3 −1

. . .

⎤⎥⎥⎥⎥⎥⎥⎦

Bn =
1
4

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
+1 −3 +3 −1

+1 −3 +3 −1
+1 −3 +3 −1

. . .

⎤⎥⎥⎥⎥⎥⎥⎦
Similarly, if we write the synthesis step as pn = Pnpn−1 + Qnen−1 then

the wavelet synthesis filters, Pn and Qn are derived from (6) as:

Pn =
1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...
3 1
1 3

3 1
1 3

3 1
1 3

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Qn =

1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

+3 −1
+1 −3

+3 −1
+1 −3

+3 −1
+1 −3

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The advantage of this reverse Chaikin method over many wavelet methods

is computation speed: both the analysis and the synthesis filters are sparse,
whereas in many wavelet methods (e.g. the B-spline wavelets [9]) the analysis
filters, An and Bn, are dense, thus requiring quadratic rather than linear time
to perform the analysis (reverse subdivision) step näıvely, or else requiring the
solution of a linear system [9].

In addition, there are a number of subtleties in the practical implementa-
tion of reverse subdivision which make the wavelet formulation difficult, but
which can be handled in the algorithmic formulation by simple modifications
to the algorithm, as described in the following section.

274 Mohamed F. Hassan and Neil A. Dodgson

Fig. 2. Local spherical coordinate frame. The local cartesian frame for the error at
V1 is defined by the reverse subdivided points V0, V1, and V2: The x basis vector
is parallel to V2 − V0. The z basis vector is perpendicular to the plane defined by
{V0, V1, V2}, and the y basis vector is given by z × x. r and θ are the standard
spherical coordinates, φ is angle from the xy-plane.

3 Subtleties

3.1 Local Coordinate Frame for Errors

If the error vectors are stored näıvely, one of the primary uses of this algorithm
is lost. The reason for this is that for editing purposes we would like to edit
the reverse subdivided curve and have the changes manifest in the detailed
curve, without changing the error vectors. We can see immediately that if
we apply a similarity transformation to the reverse subdivided curve, we will
have to apply the same transformation to the error vectors in order to get the
transformed version of the original curve, which is undesirable. Our solution
to this problem is to use a local coordinate frame for the error vectors (see
Fig. 2).

The local cartesian frame for the error at a reverse subdivided point is
defined by that point and its immediate neighbours. The x unit basis vector
is chosen to be parallel to the vector between the two neighbouring points. The
z unit basis vector is perpendicular to the plane defined by these three points,
and the y basis vector is given by z × x. r and θ are the standard spherical
coordinates, φ is the angle from the xy-plane. The x vector and the definition
for φ were chosen such that θ and φ would be close to 0. Finally r can be
stored as a fraction of the magnitude of the vector between the neighbouring
points. A similar co-ordinate system is used by Stollnitz et al. [9].

Now, if we apply a similarity transformation to the reverse subdivided
points and subdivide them using the same stored errors, we will get the same
transformation of the original polygon. An example is shown in Fig. 3.

3.2 Odd Vertex Number

There is another subtlety. Suppose we have n vertices. After one Chaikin
subdivision step we will have either 2n vertices, for closed loops, or 2n− 2 for

Reverse Subdivision 275

Fig. 3. An example of a similarity transformation. (a) The original outline. (b) The
reverse subdivision of (a). (c) A similarity transformation of (b). The subdivision
of (c) using the same errors as the original reverse subdivision. The circles indicate
the position of the vertices. To perform reverse subdivision the centre vertex on the
left hand side of (a) must be duplicated to give an even number.

Fig. 4. One step of reverse Chaikin can produce two possible solutions. In this
example, a six-vertex polygon (solid line) is reduced to two alternative triangles
(heavy dashed line). The solid circles are the original vertices; the positions of the
computed vertices are open squares, these are averaged to give the final position,
which is shown by a solid square.

open line chains. This means that Reverse Chaikin has a problem if we have
an odd number of vertices. This problem is simply overcome by duplicating
the last vertex and tagging that we have done so in the error file. See Fig. 3,
where the central vertex on the left hand side is duplicated.

3.3 Alternative Configurations

A problem, which is best illustrated on closed loops, is that there are multiple
possible simplifications. Fig. 4 shows an example of a closed loop of six vertices
and the two possible three-vertex polygons which can be produced by the
reverse Chaikin algorithm. A choice between the two alternatives must be
made at each level of reverse subdivision, leading to 2k possible decimated
line chains after k steps of reverse subdivision. This is not ideal, but it cannot
be avoided. This is handled by generating both possible decimated line chains
at each step of reverse subdivision, and then picking the one with the smallest
error vectors. This is especially important for line chains which were originally

276 Mohamed F. Hassan and Neil A. Dodgson

generated by Chaikin subdivision, as the correct version will have zero error
vectors, while the alternative version will, in general, have non-zero error
vectors.

This problem can also manifest in an open chain with an odd number of
vertices, as either end can be considered to be the start of the chain, with the
other end having the duplicated vertex mentioned in Sect. 3.2.

This problem is specific to the univariate case. In the bivariate case, the ex-
traordinary vertices fix the topology of the reverse subdivided mesh, although
they bring in their own problems, described in Sect. 8.

4 Examples

An example of a similarity transformation is given in Fig. 3. The original
line chain is reverse subdivided, transformed, and then subdivided using the
same errors as the original reverse subdivision. We can see that, after this
procedure, the final line chain is the similarity transformation of the original.

An example of local editing can be seen in Fig. 5. The left side, top to bot-
tom, is the reverse subdivided outline of England (585 vertices to 37 vertices).
The right side, bottom to top, is the modified outline, subdivided using the
same errors as the left side. We can see that we achieve a local editing of the
original curve without loss of detail.

5 Examining Stability

It is important to examine the behaviour of the algorithm when applied mul-
tiple times; as the algorithm relies on local extrapolation, errors could tend
to be magnified. Hence the distance to the original curve may grow rapidly
causing it to become unstable.

To examine the stability of our algorithm qualitatively, we perform the
following experiment: we construct a subdivision curve from a coarse line
chain by applying Chaikin’s scheme. After a fixed number of subdivisions we
add white noise to each vertex. Then we smooth the curve by removing the
error coefficients at the finest levels.

The results of the noise-removal experiment can be seen in Fig. 6. We see
that the algorithm slowly reduces the amplitude of the noise over a number
of smoothing steps and hence is stable for practical applications. This also
means that the algorithm can be used for lossy compression as described in
the next section.

6 Storage and Compression

The reverse Chaikin algorithm presented in Sect. 2 is suitable for multiresolu-
tion editing, provided that the error vectors are stored in the format described

Reverse Subdivision 277

Fig. 5. Example: Local editing. The left side, top to bottom, is the reverse sub-
divided outline of England (585 vertices to 37 vertices). The right side, bottom to
top, is the modified outline, reconstructed using the same errors as the left side. The
circle indicates the modified vertex.

278 Mohamed F. Hassan and Neil A. Dodgson

Base

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0Noise

Fig. 6. Noise-removal experiment: Top-left shows the base curve. Middle-left shows
the base curve subdivided 6 times (384 vertices). Bottom-left shows the curve with
added noise – the average magnitude of the noise is 3 times the average distance
between vertices. Middle and right show the results after the error coefficients at n
and above steps have been set to zero.

in Sect. 3. The assumption is that vertex coordinates and error vectors are
stored to the floating-point precision of the computer. The reverse Chaikin
representation thus uses the same amount of storage space as the original set
of vertices. Indeed, it can be seen as a simple wavelet transform (Sect. 2.1):
transforming one set of floating-point coordinates into another, both sets con-
taining the same number of values.

For lossless compression, it is necessary to store the reverse Chaikin error
vectors in less space than is required to store vertex coordinates. The local
coordinate system introduced in Sect. 3 allows us to compress error vectors
more efficiently than vertex coordinates because we can expect the r, θ, and φ
coordinate values to be close to zero with high probability. Such a distribution
of coordinate values allows for efficient coding, as shorter codes can be used
for the more likely values. In particular, we note that φ should be very close
to zero in most cases, because we can expect vertices at level (n + 1) to lie
very close to the plane through the three nearest vertices at level n. By similar
reasoning θ should be close to zero.

Lossy compression can be achieved in two complementary ways. Firstly, the
quantisation of vertex coordinates and error vectors can be made increasingly
coarse. There is obviously some loss of resolution in the position of vertices,
but the more important disadvantage is that errors in position will accumulate
as coarsely-quantised error vectors are added to intermediate-level vertices

Reverse Subdivision 279

which have themselves been calculated using error vectors: the absolute error
in position increasing as the subdivision level increases.

The second way of achieving lossy compression is simply to throw away
error vectors. For example, throwing away the error vectors at just the highest
subdivision level will remove (almost) half of the data. This means that the
highest level is now approximated by the uncorrected Chaikin subdivision of
the next highest level. If the original line chain is of sufficiently high reso-
lution, then a reasonable approximation to the original may be achieved by
the uncorrected Chaikin subdivision generated from several levels of reverse
Chaikin without any error vectors being stored. This significantly reduces the
storage required for the line chain. A related compression technique for line
chains, with similar motivation, is the Douglas–Pücker algorithm [2], which
replaces a line chain by a coarser line chain which approximates the original
to some tolerance but which does not allow for multiresolution editing.

7 Theory of the Bivariate Case

This section provides the theory to extend these ideas to the bivariate case.
Samavati et al. [8] have produced an algorithm to generate multiresolution sur-
faces by a reverse Doo subdivision method using a local least-squares method.
Khodakovsky et al. [4] use a wavelet transform based on Loop subdivision [5]
for geometry compression. As with all wavelet methods a high-pass recon-
struction filter Q must be constructed, and also there is no theory for wavelet
constructions around irregular vertices so this is done ad hoc. Finally comput-
ing the forward wavelet transform requires solving linear systems. Our method
is simpler and is also based on Loop subdivision.

First, we have to define the constraints of the starting mesh. Here we
present an algorithm which works on triangular meshes with binary subdi-
vision connectivity. This is not such a heavy constraint as there are many
algorithms that will transform an arbitrary mesh to one with subdivision con-
nectivity (e.g. [10]). Our algorithm naturally splits into two parts.

The first part is to detect whether the given mesh has subdivision connec-
tivity and construct the connectivity of the coarse level mesh. Two algorithms
achieve this. Taubin’s algorithm [11] is based on the concept of the covering
surface in algebraic topology. The algorithm proposed by Hormann in [3] is
simpler and uses the observation that most of the vertices of a mesh with
subdivision connectivity are regular and all irregular vertices are guaranteed
to be vertices of the coarse level mesh. Both these algorithms give a set of
candidate vertices for the coarse level to which we can apply the next stage
of the algorithm.

The next stage uses the inverse of the subdivision matrix of the given
uniform scheme in order to construct the geometry of the coarse level vertices.
There are a number of practical considerations in the implementation. One
interesting issue is that the extraordinary vertices must be preserved between

280 Mohamed F. Hassan and Neil A. Dodgson

Fig. 7. Stencils for the Loop subdivision scheme for regular vertices. The square
indicates the vertex being calculated.

Fig. 8. Coefficients for the reverse subdivision scheme for regular vertices. Left: the
stencil for one set of points: calculating the position of the central vertex. Right:
the stencil for an alternative set of points: calculating the position of one of the
non-central vertices. In both cases, the square indicates the vertex being calculated.

subdivision levels. This limits the form of a reverse subdivided mesh and may
mean that, in some cases, there is no possible valid mesh which can be created
at a coarser level. There are various potential solutions to this, including
splitting the mesh into sub-meshes, which are then stitched together in some
way.

7.1 Geometry of Regular Vertices

Fig. 7 shows the stencil for the standard Loop subdivision scheme in the
regular case. We use this to form the subdivision matrix around a vertex.
The inverse of this matrix gives us the coefficients for the reverse subdivision
scheme (shown in Fig. 8(left)).

However the inverse subdivision matrix also shows that we can use other
points to define the same vertex (see Fig. 8(right)). This is analogous to the
univariate case. In this case there are seven candidate vertices (see Fig. 9),
rather than the two in the univariate case. So now we take the Loop subdi-
vision of the seven cases to be our actual vertex and store the errors. Again,

Reverse Subdivision 281

Fig. 9. Each dashed hexagon represents a set of vertices that can be used to calculate
the central reverse subdivided vertex (indicated by the square). At left are three (out
of the seven) sets of vertices and at right all seven are shown.

and for the same reasons, we use a local coordinate frame similar to that used
in the univariate scheme.

7.2 Geometry of Extraordinary Vertices

Fig. 10(a) shows the Loop subdivision scheme for n-valent vertices. This time
we cannot simply take the inverse of the subdivision matrix to calculate the
coefficients of the reverse subdivision scheme as the values and size of the
matrix are dependent on n, the valency. Instead we formulate the linear system
as follows:

p′0 = (1 − an)p0 +
n∑

i=1

an

n
pi (7)

p′i =
3
8

(p0 + pi) +
1
8
(
pi−1(n) + pi+1(n)

)
(8)

where p0 is the extraordinary vertex and {pi|i = 1, . . . , n} are its immediate
neighbours.

Solving this system for p0 gives

p0 = (1 − bn)p′0 +
n∑

i=1

bn
n
p′i (9)

where
bn = 1 +

5
8an − 5

(10)

This is independent of the actual an used. Hence the reverse subdivided
scheme is given by Fig. 10(b).

As with the regular case, these points can also be used to calculate the
neighbouring points (see Fig. 10(c)). The coefficients are given by {cin|i =
0, . . . , n}, where n is the valency. Unfortunately we have not found a closed

282 Mohamed F. Hassan and Neil A. Dodgson

Fig. 10. Extraordinary vertices. (a) shows the standard Loop subdivision at ex-

traordinary vertices, where usually an = 1
64

(
40 − (3 + 2 cos 2π

n

)2)
. (b) shows the

reverse Loop subdivision at extraordinary vertices, where bn = 1 + 5
8an−5

(inde-
pendent of the expression for an). (c) shows the alternative stencil for the general
n-valent vertex. (d) shows the alternative stencil for a 5-valent vertex. The square
indicates the vertex being calculated.

form for the {cin} so the inverse subdivision matrix has to be calculated for
each valency.

However, we find that c0n = 3
8an−5 for all n and we can see by symmetry

that cn−i
n = ci+2

n , i = 0, . . . , n − 2. The same mechanism is used as in the
regular case to handle the candidate vertices.

8 Future Work

We have yet to implement and test the bivariate algorithm given in the pre-
vious section, and this is the obvious next step. We will use Hormann’s al-
gorithm [3] as the basis for the topology step. We expect the bivariate case
to find uses in the same applications as the univariate case: multiresolution
editing and compression.

Reverse Subdivision 283

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. G.M. Chaikin. An algorithm for high-speed curve generation. Computer Graph-
ics and Image Processing, 3:346–349, 1974.

2. D. Douglas and T. Pücker. Algorithms for the reduction of the number of
points required to represent a digitised line or its caricature. The Canadian
Cartographer, 10:112–122, 1973.

3. K. Hormann. An easy way of detecting subdivision connectivity in a triangle
mesh. Technical Report 3, Department of Computer Science 9, University of
Erlangen, May 2002.

4. Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. Progressive geometry
compression. In Proc. ACM SIGGRAPH 2000, pages 271–278, 2000.

5. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Department of Mathematics, 1987.

6. R. F. Riesenfeld. On Chaikin’s algorithm. Computer Graphics and Image Pro-
cessing, 4:304–310, 1975.

7. F. Samavati and R. Bartels. Multiresolution curve and surface representation by
reversing subdivision rules. Computer Graphics Forum, 18(2):97–119, 6 1999.

8. F. Samavati, N. Mahdavi-Amiri, and R. Bartels. Multiresolution surfaces having
arbitrary topologies by a reverse Doo subdivision method. Computer Graphics
Forum, 21(2):97–119, 6 2002.

9. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. Wavelets for computer graphics.
San Francisco; Morgan Kaufmann Publishers, 1996.

10. Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Proc.
Eurographics Symposium on Geometry Processing, pages 17–28, June 2003.

11. G. Taubin. Detecting and reconstructing subdivision connectivity. Visual Com-
puter, 2002.

√
5-subdivision

Ioannis P. Ivrissimtzis1, Neil A. Dodgson2, and Malcolm Sabin3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
ivrissim@mpi-sb.mpg.de

2 Computer Laboratory, University of Cambridge, UK
nad@cl.cam.ac.uk

3 Numerical Geometry Ltd., Cambridge, UK
malcolm@geometry.demon.co.uk

Summary. Most established subdivision schemes have the refined grid at each stage
aligned with the previous one. The

√
3 and

√
2 schemes alternate orientations. This

paper is one of the first detailed studies of a skew scheme in which the axis directions
after refinement do not either lie along or bisect those before. It raises the issue of
how the analysis techniques can be applied in this new context and provides an
example of how they may be thus applied.

1 Introduction

The possibility of a
√

5 scheme for subdivision surfaces was first discussed
in [12]. There, two

√
5 mesh refinement rules for regular quadrilateral meshes

were proposed, classified as QP (2, 1) and QP (1, 2), respectively. These two
regular refinement rules, shown in Fig. 1(left), like the well-known

√
3 re-

finement rule for triangle meshes [17], induce a rotation of the initial mesh.
In particular, the QP (2, 1) refinement induces an anti-clockwise rotation
by arctan(1

2), or equivalently a clockwise rotation by arctan(2), while the
QP (1, 2) induces an anti-clockwise rotation by arctan(2), or equivalently a
clockwise rotation by arctan(1

2).

1.1 Related Work

Skew subdivision schemes, inducing a rotation of the grid at each iteration,
were first introduced as a general class of subdivision schemes in [1].

√
5 refine-

ment was proposed in [23] as a hierarchical sampling method over a regular
grid. In [22], a single step of the

√
5 refinement rule is described as a popular

sampling method for numerical integration of two-dimensional periodic func-
tions. In both applications the nice properties of the

√
5 sampling are due to

fact that the five points corresponding to a square of the old grid (one old
point and four new) all have different x and y coordinates, see Fig. 1(right).

286 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

0.4

0.6

0.8

10.80.60.40.2

0.2

1

0

Fig. 1. Left: QP (2, 1) and QP (1, 2) refinement. Right: The five points correspond-
ing to the same old quad have distinct x and y coordinates.

1.2 Overview

We propose a new subdivision scheme for quadrilateral meshes, based on the√
5 refinement of a regular grid. In Sect. 2 we extend the refinement rule into

irregular meshes, introducing the idea of using half-edges as the main primitive
in the description of a subdivision scheme. In Sect. 3 we study the smoothness
properties the

√
5 subdivision, tune its coefficients, and briefly discuss its

support. We conclude by showing several examples of
√

5 subdivision surfaces.

2
√

5-refinement for Irregular Meshes.

To define a
√

5 subdivision scheme, first, we need an extension of the regular
refinement rules shown in Fig. 1 to cover the irregular case. Despite the fact
that the regular case is already relatively complicated, it turns out that there
is a very simple such extension, based in the correspondence between the
vertices of the new mesh and the vertices and half-edges of the old.

Fig. 2 (left) shows the correspondence between the newly introduced ver-
tices and the half-edges of the old mesh. As, at every step of the process, we
retain the old vertices, we have a correspondence between the vertices of the
new mesh and the vertices and half-edges of the old. A new vertex will be
called vertex-vertex or halfedge-vertex according to this correspondence.

Under the same correspondence, the faces of the new mesh can be described
as 4-tuples of vertices and half-edges of the old mesh. As Fig. 2 (right) shows,
there are two kind of faces on the new mesh. Those corresponding to the faces
of the old mesh, and those corresponding to the half-edges of the old mesh.
Fig. 3 describes the new faces in terms of the old vertices and half-edges.

Notice that descriptions of subdivision processes using half-edges as the
main primitive are not common in the literature. Probably, one reason is that
half-edges, lacking a direct physical interpretation, are considered an unnat-
ural choice, and a second reason is that subdivision schemes requiring the
half-edge description, like the

√
5 scheme proposed here, have not been stud-

ied extensively. Nevertheless, the implementation of a scheme usually involves

√
5-subdivision 287

Fig. 2. Left: Every new vertex corresponds to an old half-edge. A solid and a
dashed line connect the new vertex with the beginning and the end, respectively,
of the corresponding old half-edge. Right: The shaded new faces correspond to old
faces, the white new faces correspond to old half-edges.

1

4

3 2 2

3

4

1

Fig. 3. Left: A new face corresponding to an old half-edge described as a 4-tuple
(1,2,3,4) of old vertices and half-edges. Right: A new face corresponding to an old
face described as a 4-tuple of old half-edges.

an implicit half-edge description, given that the most common computer rep-
resentation for meshes is the Half-Edge structure. A generalisation of this idea
is presented in the Appendix at the end of the paper.

3 Stencils for the
√

5-scheme.

The next step towards a definition of a subdivision scheme is to determine
the point-sets of the stencils, that is, the set of old vertices that will be used
for the calculation of the position of the new. A larger point-set, after correct
tuning of the coefficients, gives smoother subdivision surfaces, while a smaller
point set gives smaller support with the influence of each initial vertex better

288 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

c

c c

c

3 2

0 1

β/nβ/n

β/n β/n

β/n

nγ/nγ/

nγ/ nγ/

nγ/

1−nβ−nγ

Q P Q

P0P

0

0

Q 0
PQ 11

2

2 3 3

1

1

2

2

3

3

Q’

P’

Q’

P’

Q’

P’

Q’

P’

O,O’

Fig. 4. Left: The stencil of the half-edge vertices. Middle: The stencil for the
vertex vertices. Right: The transformation of the 1-ring of the vertex O.

localised. Here, we opt for small stencils and we use the vertices of the face of
a half-edge for the stencil of the corresponding halfedge-vertex. For a vertex-
vertex we use the corresponding old vertex and the members of its 1-ring
neighbourhood, see Fig. 4.

Next we tune the coefficients in the stencils so that the resulting subdivi-
sion surfaces are as smooth as possible.

3.1 Background

Traditionally, there are two major tools for analysing the smoothness prop-
erties of a subdivision surface. The generating functions [9], and the spectral
analysis of the subdivision matrix [8, 3, 20]. Here we use a version of spectral
analysis with a more geometric flavor in the form of eigenpolygons [14, 16].
Although our analysis is elementary it is worth going into some detail, espe-
cially because the study of schemes with complex subdominant eigenvalues is
scattered in the literature of subdivision.

Recall from [7] that the eigenvalues of the n-dimensional circulant matrix

C = circ(c0, c1, . . . , cn−1) =

⎛⎜⎜⎜⎜⎝
c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1 . . . cn−3 cn−2

. . .
c2 c3 c4 . . . c0 c1
c1 c2 c3 . . . cn−1 c0

⎞⎟⎟⎟⎟⎠ (1)

are the values of the generating polynomial

λt = p(ωt), p(z) = c0 + c1z + c2z
2 + · · · + cn−1z

n−1, ω = e
2πi
n (2)

for t = 0, 1, . . . , n − 1. The corresponding eigenvectors are given by the rows
of the matrix

√
5-subdivision 289

1,2,3,4
3

4

2

1
2,4 1,3

3

4

1

2

1,2,3,4,5

5

23

4 1 1 1 1

2

3

4

5

2

3

4 5

2

3

4

5

Fig. 5. The four eigenquadrilaterals and the five eigenpentagons.

F =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

⎞⎟⎟⎟⎟⎟⎠ = (w0,w1,w2, . . . ,wn−1)T . (3)

These eigenvectors can also be seen as vertices of planar regular polygons,
allowing multiple vertices and self-intersections. Fig. 5 shows these eigenpoly-
gons for the cases n = 4, 5, while a detailed study of them can be found in [2].

Every planar polygon, thought of here as an n-tuple of coplanar points,
or equivalently, an n-dimensional complex vector, can be uniquely written
as a linear combination of the n eigenpolygons. A non-planar polygon can
be written as a linear combination of the eigenpolygons, with the additional
property that any two eigenpolygons corresponding to conjugate eigenvalues,
i.e.

wk,wn−k, k = 1, 2, . . . ,
⌊n

2

⌋
(4)

lie on the same plane. The planes where the pairs of eigenpolygons lie can be
computed by solving a linear system, see [5] for the details.

3.2 Analysis Around a Centreface

A very distinct property of the
√

5 scheme is that it is both primal and
dual [12]. That is, one iteration of the subdivision process maps faces to faces
and vertices to vertices. This also means that we have to study the behaviour
of the scheme both around centrefaces and around vertices.

In the study of the behaviour of the scheme around a centreface we as-
sume that all the faces are quadrilateral and thus, at each step, they are

290 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

−i

i

−1 1−1 1

−i

i

Fig. 6. The two convex eigenquads after one iteration of the QP (2, 1) subdivision.
The result can be described as multiplication by 2

5
+ i 1

5
and 2

5
− i 1

5
, respectively.

transformed by a circulant matrix of dimension n = 4. By evaluating the
generating polynomial at 1,i,−1,−i we get the system

c0 + c1 + c2 + c3 = 1
c0 + ic1 − c2 − ic3 = λ1

c0 − c1 + c2 − c3 = λ2

c0 − ic1 − c2 + ic3 = λ3 (5)

To find the exact values of λ1, λ3 we notice that the transformation of
the eigenpolygon w1 by one step of the subdivision scheme corresponds to a
multiplication by

z = reiθ =
2
5

+ i
1
5

(6)

where r is the scaling and θ the rotation induced by the scheme. Similarly,
the transformation on w3, which is a copy of w1 with opposite orientation,
corresponds to a multiplication by

z̄ = re−iθ =
2
5
− i

1
5
. (7)

But as w1,w3 are eigenpolygons their transformation is also equal to a mul-
tiplication by the corresponding eigenvalue. Thus, we have λ1 = 2

5 + i15 and
λ3 = 2

5 − i15 (see Fig. 6).
In subdivision, the standard requirement for the fourth, fifth, and sixth

eigenvalues is to depend quadratically on the two subdominant eigenval-
ues [21]. Indeed, as the two subdominant eigenvalues represent the trans-
formation within the tangent plane, for nice curvature behaviour we would
expect the dominant eigencomponents outside the tangent plane to shrink
with a speed depending quadratically on the shrinkage of the tangent plane.

√
5-subdivision 291

Thus, in our case, a natural choice for the fourth eigenvalue, which by the
third equation of the system (5) is real, would be λ2 = |λ1|2 = |λ3|2 = 1

5 .
That leads to the coefficients

c0 =
5
10

c1 =
3
10

c2 =
1
10

c3 =
1
10

(8)

Notice that, with the above coefficients, points at different distances from the
new point have the same influence on it.

Although in the rest of the paper we use the above coefficients, we have
also examined other possibilities. The coefficients 12

25 ,
8
25 ,

2
25 ,

3
25 , were obtained

as Wachspress coordinates of the point (2
5 ,

1
5) with respect to the unit square,

see for example [11]. Another alternative is to use the coefficients 9
20 ,

7
20 ,

1
20 ,

3
20 ,

which give λ2 = 0 meaning that any new face corresponding to an old face
is planar, because the only eigencomponent which possibly lies outside the
tangent plane becomes 0. Finally, the coefficients 2

5 ,
2
5 , 0,

1
5 , give λ2 = − 1

5 .
Experimentally, we found that for λ2 = 3

25 we get visual results similar
to those for λ2 = 1

5 . For λ2 = 0 the visual quality deteriorates slightly, while
for λ2 = − 1

5 it is significantly worse, see Fig. 7. The latter shows that the
behaviour of the scheme depends on the actual eigenvalues and not on their
absolute values.

3.3 Analysis Around a Vertex

To study the smoothness properties of a surface around a vertex of valence n
we consider the subdivision matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − β − γ β
n

γ
n

β
n

γ
n

β
n

γ
n . . . β

n
γ
n

c0 c1 c2 c3 0 0 0 . . . 0 0
c1 c2 c3 c0 0 0 0 . . . 0 0
c0 0 0 c1 c2 c3 0 . . . 0 0
c1 0 0 c2 c3 c0 0 . . . 0 0

c0 c3 0 0 0 0 0 . . . c1 c2
c1 c0 0 0 0 0 0 . . . c2 c3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

acting on the vector

V = (O,P0, Q0, P1, Q1, . . . , Pn−1, Qn−1)T (10)

with O,Pi, Qi as shown in Fig. 4 (right). As the ci’s are given by (8) we have
to optimise for β and γ.

To streamline the computations we calculate the two eigenvalues corre-
sponding to each frequency separately, see [4]. Apart from the obvious eigen-
value 1, we will call elliptic the two eigenvalues corresponding to frequency 0

292 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

Fig. 7. Top left: λ2 = 1
5
, top right: λ2 = 3

25
, bottom left: λ2 = 0, bottom right:

λ2 = − 1
5
.

because they are responsible for the elliptic properties of the scheme, and the
remaining 2n− 2 eigenvalues non-elliptic.

We notice that β, γ seen here as variables, affect only the two elliptic
eigenvalues, see for example [16]. Using this observation we prove in two stages
that our scheme gives C1 surfaces for generic input meshes. First we show that
the largest eigenvalues λ1, λn−1 correspond to frequencies 1 and n − 1, and
all the other non-elliptic eigenvalues have smaller norm. Secondly we compute
β, γ such that the elliptic eigenvalues are equal to |λ1|2 and 0.

The Non-elliptic Eigenvalues

The two non-elliptic eigenvalues corresponding to frequency j are given by
the eigenvalues of the matrix (

λp
j c2
λq

j c3

)
(11)

where λp
j , λ

q
j are the jth eigenvalues of

√
5-subdivision 293

Cp = circ(c1, c3, 0, . . . , 0) = circ

(
3
10
,

1
10
, 0, . . . , 0

)
(12)

and

Cq = circ(c2, c0, 0, . . . , 0) = circ

(
1
10
,

5
10
, 0, . . . , 0

)
(13)

respectively. For a geometric interpretation of the above we use a special
decomposition of the two n-gons

P = (P0, P1, . . . , Pn−1), Q = (Q0, Q1, . . . , Qn−1) (14)

as linear combinations of eigenpolygons, coming in pairs Pj,Qj of parallel
polygons with the same frequency j. Then, excluding the influence of O on
them (which is a similarity), the subdivision process transforms them by(

P′
j

Q′
j

)
=
(
λp

j c2
λq

j c3

)(
Pj

Qj

)
(15)

For the details on constructing such a decomposition see [16].
Substituting c2, c3 from (8) and using (2) to calculate λp

j , λ
q
j we find the

characteristic polynomial of (11)∣∣∣∣ 3
10 + 1

10ω
j − x 1

10
1
10 + 5

10ω
j 1

10 − x

∣∣∣∣ = 2
100

− 4
100

ωj − (
4
10

+
1
10
ωj)x+ x2 (16)

with roots

λj =
4
10 + 1

10ω
j ±
√

8
100 + 24

100ω
j + 1

100ω
2j

2
(17)

From this we can verify that for every n, the eigenvalues with the largest
norms correspond to j = 1, n− 1.

For the regular case n = 4 in particular, we find that the two subdomi-
nant eigenvalues are 2

5 ± i15 as expected. The fourth and fifth eigenvalues are
3
20 ± i

√
15

20 which means that, even in the regular case, the scheme is not C2.
Nevertheless, as their norm is near to the square of the norm of the subdom-
inant eigenvalues, the quadratic properties of the scheme are acceptable in
practice.

Tuning the Elliptic Eigenvalues

The elliptic eigenvalues of the scheme can be found from the 3 × 3 matrix⎛⎜⎝1 − β − γ β γ

c0 c1 + c3 c2

c1 c0 + c3 c2

⎞⎟⎠ =

⎛⎜⎝1 − β − γ β γ
5
10

4
10

1
10

3
10

6
10

1
10

⎞⎟⎠ (18)

294 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

see [4]. After adding the second and third columns to the first, and then
subtracting the first row from the second and third, we find the characteristic
polynomial to be

(1 − x)
∣∣∣∣ 4

10 − β − x 1
10 − γ

6
10 − β 1

10 − γ − x

∣∣∣∣ (19)

and the two elliptic eigenvalues are

β + γ − 1
2 ±
√

(β + γ − 1
2)2 + 8

100 − 8
10γ

2
(20)

We notice that even after putting the largest elliptic eigenvalue equal to |λ1|2
we still have a degree of freedom left. We use this extra freedom to make the
smallest elliptic eigenvalue equal to zero. This is a good strategy because the
tuning of the eigenvalues is done for the limit after infinitely many subdivision
steps, and by making zero the eigenvalues with no rôle in the limit, we avoid
unwanted artifacts in the intermediate steps. Solving the system we find

β =
2
5
− |λ1|2 γ =

1
10

(21)

For example, for n = 4 we have |λ1|2 = 1
5 giving β = 1

5 . Notice that β = 1
5

is not optimal for every n, because |λ1| is not equal to 1
5 for every n. Fig. 8

shows the results of smoothing a valence 3 vertex with β = 1
5 instead of the

correct β � 0.2518. The difference is small but noticeable.

Fig. 8. Left: β = 0.2 for the valence 3 vertices. Right: β = 0.2518 for the valence
3 vertices.

√
5-subdivision 295

3.4 The Support

After defining the stencils, the support of any
√

5 subdivision scheme depends
only on the direction of the rotation of the grid at each step, that is, on the
combination of steps of QP (2, 1) and QP (1, 2) we use. In the case we always
keep the same direction for the rotation then the grid never aligns with the
original grid and the support is fractal.

On the other hand, if we alternate the direction of the rotation at each
step, then the grid aligns with the original every even number of iterations. In
this case the arity of the double step is 5. Fig. 9 (left) shows the footprint of
a double step, that is, the non-zero points of the basis function after a double
step, and following [13] we can see that the support is again fractal. The
same Figure also shows a polygonal subset of the support calculated with the
method in [13]. Fig. 9 (right) shows an approximation of the support based
on four iterations of the scheme.

Fig. 9. Left: The footprint of the
√

5 scheme and a polygonal inner bound for
the support, calculated using the method in [13]. Right: An approximation to the
support based on four iterations of the scheme.

4 Results

We implemented the
√

5 scheme for quadrilateral meshes without boundaries.
Due to the direct interpretation of the subdivision process in terms of half-
edges, the code was less than three hundred lines, including the implementa-
tion of a half-edge structure. Fig. 10 shows some results.

296 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

Fig. 10. First row: The basis function. Second row: A torus. Third row: A cube.

5 Conclusion – Future Work

We have presented a new
√

5 subdivision scheme for quad meshes. The most
interesting aspects of this scheme are:

• The new points have unique x and y coordinates with respect to the old
faces, giving room for fine-tuning with relatively small stencils.

• There is a natural correspondence between the new vertices and the old
half-edges. That makes the implementation almost trivial, and leads to a
general approach to subdivision as an averaging process with the half-edges
as the main primitive.

The rotation of the grid at each subdivision step raises many questions on
subdivision matrices with complex subdominant eigenvalues and, as we saw,
the reduction of the problem to the case of real eigenvalues through norms,
does not give satisfactory answers. In the future we plan a more systematic
study of the fourth, fifth and sixth eigenvalues of a subdivision matrix when
the second and the third eigenvalues are complex.

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

√
5-subdivision 297

Appendix

The way we calculate a halfedge-vertex in the
√

5-scheme suggests a general
averaging operator which can be used for a general description of subdivision.
Let

(P0, P1, . . . , Pn−1)T (22)

be a face of the mesh consisting of n vertices, written here as a n× 1 vector,
and let

c0P0 + c1P1 + · · · + cn−1Pn−1 (23)

be a new point corresponding to the half-edge P0P1. Then, by the rotational
symmetry of the connectivity of the face, all the new points corresponding to
its half-edges are given by

C × (P0, P1, . . . , Pn−1)T (24)

where C is a circulant matrix.

(a) (b) (c) (d)

Fig. 11. (a) The circulant averaging operator C. The small dots, each one cor-
responding to a half-edge of the face, are the new vertices (half-edge vertices).
(b),(c),(d) The mean average of the halfedge-vertices corresponding to an old edge,
vertex, or face, is used as a second operator.

Thus, the calculation of new points corresponding to old half-edges can
be seen as the action on the mesh of a circulant averaging operator C. Inter-
estingly, many major approximating subdivision schemes can be described as
the combination of C with the mean averaging of the halfedge-vertices corre-
sponding to the same old edge, vertex, or face, see Fig. 11.

Below we give examples of well-known schemes described in this way:

• Doo-Sabin: Traditionally, the Doo-Sabin scheme is not described with
the use of half-edges. However it has a trivial description in terms of the
operator C = circ(9

16 ,
3
16 ,

1
16 ,

3
16).

• Loop: To describe the Loop [18] scheme for triangle meshes we use
C = circ(3

8 ,
1
4 ,

3
8). Then we calculate a vertex-vertex as a linear combi-

nation of the corresponding old vertex and the mean average of the points

298 Ioannis P. Ivrissimtzis, Neil A. Dodgson, and Malcolm Sabin

corresponding to the half-edges starting from it, see Fig. 11(c). To find
a mid-edge vertex we average the two points corresponding to the two
half-edges of that edge, see Fig. 11(b).

• Catmull-Clark: Similarly, for the Catmull-Clark scheme we use C =
circ(1

8 ,
1
8 ,

1
8 ,

5
8). We notice that for any vertex, averaging around all the

faces adjacent to it gives six times as much weight to the vertices directly
connected to it than to the vertex opposite to it, thus leading to the orig-
inal coefficients proposed in [6].

1/41/4

3/8

3/83/8

3/8

1/8

1/8 5/8

5/8 1/8

1/81/8

1/8

Fig. 12. Left: In the Loop scheme C acts with coefficients (3
8
, 1

4
, 3

8
). Right: In the

Catmull-Clark scheme C acts with coefficients (1
8
, 5

8
, 1

8
, 1

8
).

The mean averaging operator has been extensively studied in the context
of subdivision [10, 19, 15], and shown to have nice smoothness properties.
But it also has serious limitations in describing the existing schemes with
their usual stencils. Several extensions of the mean averaging operator have
been proposed in [19], but, to the best of our knowledge the circulant averaging
operator C has not been studied in full generality in the context of subdivision.

References

1. M. Alexa. Split operators for triangular refinement. Computer Aided Geometric
Design, 19(3):169–172, 2002.

2. F. Bachmann and E. Schmidt. n-Ecke. B.I.-Hochschultaschenbücher, 1970.
3. A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over re-

cursively generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–
102, 1988.

4. L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of
the eigencomponents of a subdivision matrix in the Fourier domain. In N. A.
Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution
for Geometric Modelling, pages 245–257 (this book). Springer, 2004.

5. E. R. Berlekamp, E. N. Gilbert, and F. W. Sinden. A polygon problem. Am.
Math. Mon., 72:233–241, 1965.

6. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-Aided Design, 10:350–355, 1978.

√
5-subdivision 299

7. P. J. Davis. Circulant matrices. Chichester: Wiley, New York, 1979.
8. D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordi-

nary points. Computer-Aided Design, 10:356–360, 1978.
9. N. Dyn. Subdivision schemes in computer-aided geometric design. In W. Light,

editor, Advances in Numerical Analysis, volume 2, pages 36–104. Clarendon
Press, 1992.

10. N. Dyn, D. Levin, and J. Simoens. Face value subdivision schemes on triangula-
tions by repeated averaging. In A. Cohen, J.-L. Merrien, and L. L. Schumaker,
editors, Curve and Surface Fitting: Saint-Malo 2002, pages 129–138. Nashboro
Press, 2003.

11. M. S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–28, 2003.

12. I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. A generative classification of
mesh refinement rules with lattice transformations. Computer Aided Geometric
Design, 21(1):99–109, 2004.

13. I. P. Ivrissimtzis, M. A. Sabin, and N. A. Dodgson. On the support of recursive
subdivision. ACM Transactions on Graphics. To appear.

14. I. P. Ivrissimtzis and H.-P. Seidel. Evolutions of polygons in the study of sub-
division surfaces. Computing. To appear.

15. I. P. Ivrissimtzis, K. Shrivastava, and H.-P. Seidel. Subdivision rules for general
meshes. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and
Surface Fitting: Saint-Malo 2002, pages 229–238. Nashboro Press, 2003.

16. I. P. Ivrissimtzis, R. Zayer, and H.-P. Seidel. Polygonal decomposition of the
1-ring neighborhood of the Catmull-Clark scheme. In Proc. Shape Modeling
International, 2004. To appear.

17. L. Kobbelt.
√

3 subdivision. In Proc. ACM SIGGRAPH 2000, pages 103–112,
2000.

18. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Department of Mathematics, 1987.

19. P. Oswald and P. Schröder. Composite primal/dual sqrt(3)-subdivision schemes.
Computer Aided Geometric Design, 20(3):135–164, 2003.

20. U. Reif. A unified approach to subdivision algorithms near extraordinary ver-
tices. Computer Aided Geometric Design, 12(2):153–174, 1995.

21. M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In
A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in
Geometric Modelling, pages 69–92. Springer, 2002.

22. I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science
Publications. Oxford: Clarendon Press., 1994.

23. M. Stamminger and G. Drettakis. Interactive sampling and rendering for com-
plex and procedural geometry. In Proc. Eurographics Workshop on Rendering,
pages 151–162, 2001.

Geometrically Controlled 4-Point Interpolatory
Schemes

Martin Marinov1, Nira Dyn2, and David Levin2

1 Computer Graphics Group, RWTH Aachen, Germany
marinov@cs.rwth-aachen.de

2 School of Mathematical Sciences, Tel-Aviv University, Israel
{niradyn|levin}@math.tau.ac.il

Summary. We present several non-linear 4-point interpolatory schemes, derived
from the “classical” linear 4-point scheme. These new schemes have variable ten-
sion parameter instead of the fixed tension parameter in the linear 4-point scheme.
The tension parameter is adapted locally according to the geometry of the control
polygon within the 4-point stencil. This allows the schemes to remain local and
in the same time to achieve two important shape-preserving properties - artifact
elimination and convexity-preservation. The proposed schemes are robust and have
special features such as “double-knot” edges corresponding to continuity without
geometrical smoothness and inflection edges support for convexity-preservation. A
convergence proof is given and experimental smoothness analysis is done in detail,
which indicates that the limit curves are C1.

1 Introduction

1.1 An Overview of the 4-point Scheme

We explore the 4-point subdivision scheme [2] defined by the following mask:

pk+1
2i = pk

i , (1)
pk+1
2i+1 = (pk

i + pk
i+1)(w + 1/2) − w(pk

i−1 + pk
i+2), (2)

where
{
pk

i

}
i
is a given control point sequence and w is a tension parameter. It

is known that the 4-point scheme is C1 for 0 < w < 1
8 . The tension parameter

plays a crucial rôle in the geometrically controlled schemes, so now we take a
closer look at it. For the trivial value of w = 0 the 4-point scheme generates
the piecewise linear interpolant to the initial control polygon. For the value
w = 1

16 the limit curve of the 4-point scheme has the best possible Hölder
regularity RH = 2 − ε, i.e., it is almost C2. Also, only for this value of w,
the scheme reproduces polynomials of degree up to 3 [2]. For 0 < w < 1/16,

302 Martin Marinov, Nira Dyn, and David Levin

Fig. 1. Hölder regularity of the 4-point scheme for w ∈ [0, 1
8
].

RH is monotone in w, 1 ≤ RH < 2 − ε (Fig. 1). So for the value w = 1
16 the

4-point scheme has the best regularity and approximation properties.
Fig. 2(upper left) demonstrates the visual effect when changing the tension

parameter from 0 to 1
16 : for smaller w the generated curves are closer to

the initial control polygon. With w = 1
16 , the smoothest curve is produced.

However, w = 1
16 may cause unpleasant problems as shown in Fig. 2(upper

right). Lowering the tension parameter to w = 0.01 (Fig. 2(lower left)) solves
these problems, but now the curve, which is still C1, is hardly recognisable
visually from the initial control polygon. So we conclude that an appropriate
choice of one tension parameter for an entire control polygon is not always
possible.

Fig. 2. (Upper left) the effect of w on the shape of the limit curve, (upper right)
problems with the visual quality caused by w = 1

16
, (lower left) visually non-smooth

curve caused by w = 0.01, (lower right) specific wk
i for each edge of the control

polygon alleviates the artifacts and keeps the visual appearance of the curve smooth
enough.

1.2 Adaptive Tension Parameter

The idea of using different tension parameters for the edges of a given control
polygon at each refinement step was initially investigated in [6]. While it was
proved that the non-uniform 4-point scheme in the form

Geometrically Controlled 4-Point Interpolatory Schemes 303

pk+1
2i = pk

i , (3)
pek

i
= pk+1

2i+1 = (pk
i + pk

i+1)(w
k
i + 1/2) − wk

i (pk
i−1 + pk

i+2), (4)

produces C1 limit functions if wk
i is always chosen in [ε . . . 1

8 − ε] with ε > 0,
one still needs to find a procedure for prescribing an appropriate wk

i for every
subdivision step. In this paper, we present several such procedures, where
the choice of the tension parameter depends on the geometry of the control
polygon. We call them geometrically controlled 4-point schemes or shortly
geometrically controlled schemes.

For a given sequence of control points at refinement level k, P k =
{
pk

i

}
i
,

where pk
i ∈ R

2 or pk
i ∈ R

3, we define ek
i = pk

i+1 − pk
i . The subdivision rule (2)

is then expressed as

pek
i

= (pk
i + pk

i+1)(w+
1
2
) −w(pk

i−1 + pk
i+2) = pk

i +
ek

i

2
+w(ek

i−1 − ek
i+1) . (5)

This gives an interesting geometrical interpretation of the insertion rule of
the 4-point scheme: the position of pek

i
is actually a displacement vector dk

i

from the middle point of the edge ek
i , which depends on the difference between

the neighbouring edges, scaled by w. We extend its definition to the case of
variable tension parameter:

dk
i = wk

i (ek
i−1 − ek

i+1) . (6)

2 Displacement-safe Geometrically Controlled Schemes

2.1 Definition and Basic Properties

The first class of geometrically controlled schemes which we present here is
aimed at solving problems in the shape of the limit curves such as those in
the example in Fig. 2(upper right). There are two main questions which have
to be answered in order to create such an artifact-free scheme:

1. How to detect possible locations in a given control polygon which create
artifacts in the limit curve?

2. What subdivision rules to apply in such locations in order to avoid arti-
facts and at the same time to preserve the limit curve continuity and, if
possible, its smoothness?

Our approach for selecting the tension parameter wk
i = ω(i, k) tries to answer

these two questions, by the composition of two functions wk
i = f(g(i, k)):

1. a characterising function g : Ik → [0 . . . c]. Here Ik is the set of all edge
indices in a given refinement level k. g(i, k) characterises the regularity of
ek

i in P k.

304 Martin Marinov, Nira Dyn, and David Levin

2. a selecting function f : [0 . . . c] → [0 . . .W]. f(x) maps the range of g(i, k)
into the range of the available tension parameters.

We restrict our choice to functions which satisfy the following conditions:

1. g(i, k) depends only on pk
i−1, p

k
i , pk

i+1, p
k
i+2, which ensures that our non-

linear schemes have the same support as the original 4-point scheme.
2. g(i, k) is invariant under similitudes.
3. g(i, k) = 0 ⇔

∣∣ek
i

∣∣ = 0 and f(x) = 0 ⇔ x = 0, i.e., wk
i = 0 ⇔

∣∣ek
i

∣∣ = 0, i.e.,
we use the average operation for zero-length edges, thus creating corners.
In the vicinity of such edges the limit curve is not G1 anymore. We choose
this behaviour for the following reasons:
a) To prevent the loops (see Fig. 8, row 3, column 1).
b) To mimic the behaviour of NURBS curves - while we keep the uniform

parametrization, we allow corners to be defined by repeated control
points in the geometry.

4. g(i, k) > 0 ⇔
∣∣ek

i

∣∣ > 0 and 0 < f(x) < W ⇔ x > 0, where W is some
predefined value for the tension parameter, corresponding to the regular
edges. We usually take W = 1

16 .
5. f(1) = W . g(i, k) = 1 characterises the regular edges of P k, i.e., ar-

eas where we can safely use subdivision rules which generate curves with
maximum smoothness without creating artifacts.

We found out experimentally that the linear 4-point scheme produces visually-
pleasing curves when the edges included in the insertion rule (5) are equidis-
tant. Based on that observation we propose the following two possible combi-
nations of characterising/selecting functions:

g(i, k) =
3
∣∣ek

i

∣∣∣∣ek
i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ , f(x) =
{

Wx , 0 ≤ x ≤ 1,
W (3−x)

2 , 1 < x ≤ 3,
(7)

g(i, k) =
3
∣∣ek

i

∣∣∣∣ek
i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ , f(x) =
{
Wx , 0 ≤ x ≤ 1,
W , 1 < x ≤ 3. (8)

We define g(i, k) = 0 if
∣∣ek

i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ = 0.
Furthermore, the geometrically controlled schemes should not introduce

new corners during the subdivision process by multiplying consequent control
points, i.e., creating zero-length edges. Therefore we introduce the notions:

Definition 1. A geometrically controlled 4-point scheme is safe if for every
(i, k), such that

∣∣ek
i

∣∣ > 0, the newly inserted control point pek
i

= pk+1
2i+1 satisfies

pek
i
�= pk+1

2i and pek
i
�= pk+1

2i+2.

Definition 2. A geometrically controlled 4-point scheme is displacement-safe,
if there exist 0 < C < 1

2 , such that for every (i, k) such that
∣∣ek

i

∣∣ �= 0,
∣∣dk

i

∣∣ ≤
C
∣∣ek

i

∣∣.

Geometrically Controlled 4-Point Interpolatory Schemes 305

Lemma 1. If a given geometrically controlled 4-point scheme is displacement-
safe, then it is safe.

Lemma 2. If 0 < W < 1
8 , then the geometrically controlled schemes defined

by (7) or (8) are displacement-safe.

Proof. Suppose that g(i, k) ≤ 1. Then we have

∣∣dk
i

∣∣ = 3W
∣∣ek

i

∣∣∣∣ek
i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ ∣∣ek
i−1 − ek

i+1

∣∣ < 3
8

∣∣ek
i

∣∣ (∣∣ek
i+1

∣∣+ ∣∣ek
i−1

∣∣)∣∣ek
i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ ≤ 3
8

∣∣ek
i

∣∣ .
If g(i, k) > 1, then

3
∣∣ek

i

∣∣∣∣ek
i−1

∣∣+ ∣∣ek
i

∣∣+ ∣∣ek
i+1

∣∣ ≥ 1 ⇔ 2
∣∣ek

i

∣∣ ≥ ∣∣ek
i−1

∣∣+ ∣∣ek
i+1

∣∣ ,
Hence, if g(i, k) > 1,

∣∣ek
i+1 − ek

i−1

∣∣ ≤
∣∣ek

i+1

∣∣ + ∣∣ek
i−1

∣∣ < 2
∣∣ek

i

∣∣. Since W >
W (3−x)

2 when x > 1 then

∣∣dk
i

∣∣ ≤ W
∣∣ek

i+1 − ek
i−1

∣∣ < 2W
∣∣ek

i

∣∣ < 1
4

∣∣ek
i

∣∣ .
Corollary 1. The two proposed geometrically controlled schemes are safe.

An important consequence of the displacement-safe condition is that pk+1
2i+1

will be close to the the subdivided edge ek
i even if the neighbouring points

pk
i−1 and pk

i+2 are very far away. A similar property is not true for the original
4-point scheme and our experiments show that it is the major reason for
the appearance of artifacts in the generated limit curves. It also leads us to
the idea of proposing a geometrical scheme based on the displacement-safe
definition:

g(i, k) = C
W

|ek
i |

|ek
i+1−ek

i−1| , f(x) = min(Wx,W) (9)

where 0 < C < 1
2 , 0 < W < 1

8 and g(i, k) = 0 ⇔
∣∣ek

i+1 − ek
i−1

∣∣ = 0. (9) per-
forms on par with the two other proposed schemes in terms of visual quality,
while having an additional global parameter C affecting its behaviour.

2.2 Convergence and Smoothness

We cite relevant results from [6].

Theorem 1. If for every (i, k), wk
i ∈

[
0 : 1

8 − ε
]

for some ε > 0 then the
non-uniform 4-point scheme (3), (4) produces C0 limit functions. If for every
(i, k), wk

i ∈
[
ε : 1

8 − ε
]

for some ε > 0 then the scheme (3), (4) generates C1

limit functions.

306 Martin Marinov, Nira Dyn, and David Levin

Corollary 2. The proposed geometrically controlled displacement-safe schemes
produce C0 limit functions.

Proof. By construction wk
i ∈ [0 : W], where W ∈

[
ε : 1

8 − ε
]

and we apply
component-wise Theorem 1.

Remark 1. C1 continuity of the limit curves of the displacement-safe schemes
is not guaranteed since the tension parameters are not bounded away from
zero. It can be achieved by the following modification. First we perform several
unmodified subdivision steps; then, in every step, we select the new tension
parameters so that they will not be smaller than those used in the previous
step. Here are two possible strategies to achieve this:

wk+1
2i = max(w̃k+1

2i , wk
i), wk+1

2i+1 = max(w̃k+1
2i+1, w

k
i) or

wk+1
2i = max(w̃k+1

2i ,min(wk
i , w

k
i−1)), wk+1

2i+1 = max(w̃k+1
2i+1,min(wk

i , w
k
i+1)) ,

where w̃k+1
2i , w̃k+1

2i+1 are computed as in the unmodified scheme. Since wk
i > 0

away from the corner control points (which correspond to repeated vertices in
the initial control polygon), and no new corner points are introduced during
the subdivision, we can define ε = mini{wK

i | wK
i > 0} for the last refinement

step K used with the unmodified rules. Then in view of Theorem 1 this suffices
for proving C1 away from the predefined corners.

Although by applying these modified methods the displacement-safe con-
dition is broken, the visual appearance of the limit curves is similar to the
unmodified schemes limit curves, mainly because most of the artifacts are in-
troduced in the first few steps. As in the unmodified schemes, the modified
schemes do not increase the support of the 4-point scheme. The cost of using
the modification is the additional memory required for keeping the values of
the tension parameters used at the previous step.

3 Convexity-preserving Geometrically Controlled
Scheme

An important shape-preserving property is convexity-preservation. A con-
siderable amount of research related to subdivision schemes and convexity-
preservation was conducted in [3, 4, 5]. The scheme proposed in [4] is the only
one which works in the geometrical case, while the schemes investigated in [5]
preserve convexity only in the functional case. The method presented in [3]
chooses a global w depending on the initial convex functional data, such that
the limit function of the 4-point scheme is convex.

Here we define a geometrically controlled scheme which preserves convexity
in the geometrical case. The scheme handles correctly not only closed convex
polygons (Fig. 3(left)), but also open convex polygons (Fig. 3(middle)) and
other interesting cases (Fig. 3(right)).

We examine the 4-point scheme stencil for a given ek
i and distinguish three

configurations (Fig. 4):

Geometrically Controlled 4-Point Interpolatory Schemes 307

Fig. 3. Convex polygons – (left) closed, (middle) open, (right) self-intersecting.

Definition 3. pk
i−1, p

k
i , p

k
i+1, p

k
i+2 form a convex stencil if pk

i−1, p
k
i+2 lie in a

common half-plane with respect to the line defined by pk
i , p

k
i+1. If at least one

of pk
i−1, p

k
i+2 lies on the line through pk

i , p
k
i+1, then the points form a straight

stencil. Otherwise they form an inflection stencil.

Definition 4. ek
i is a convex edge if pk

i−1, p
k
i , p

k
i+1, p

k
i+2 form a convex sten-

cil. It is a straight edge if the control points form a straight stencil. Otherwise
it is an inflection edge.

Fig. 4. Stencils – (left) convex, (middle) straight, (right) inflection.

Remark 2. Our definition for a convex stencil/edge is independent of the con-
vexity of the edge with respect to the entire control polygon. So under convex
we term both convex and concave stencils/edges in a given control polygon.
However, in Sect. 4 we employ a special treatment to inflection edges and
obtain co-convexity-preservation.

Definition 5. The polygon P k is strictly convex if every ek
i in P k is convex.

Definition 6. The polygon P k is convex if every ek
i in P k is either convex

or straight.

Definition 7. A line tki passing through pk
i is a convex tangent if the points

pk
i−1, p

k
i+1 lie in a common half-plane with respect to tki . If pk

i−1 or pk
i+1 lies

on tki , it is a straight tangent. Otherwise tki is an inflection tangent.

308 Martin Marinov, Nira Dyn, and David Levin

Suppose we have defined a convex tangent ∀pk
i ∈ P k. ∀ek

i we define the points

Mk
i = pk

i +pk
i+1

2 , Lk
i = tki ∩ (Mk

i + λk
i d̃

k
i), Nk

i = tki+1 ∩ (Mk
i + νk

i d̃
k
i), d̃k

i =
ek

i−1 − ek
i+1, λ

k
i , ν

k
i ∈ R (Fig. 5). We use the values λk

i , ν
k
i as bounds on wk

i .
In case λk

i , ν
k
i > 0 we take 0 < wk

i < min(λk
i , ν

k
i) in order to guarantee that

if P k is strictly convex, so is P k+1. To see that this is necessary, assume that
wk

i = vk
i and wk

i+1 = λk
i+1. Then pk+1

2i+1 = Nk
i and pk+1

2i+3 = Lk
i+1, and since

Nk
i ∈ tki+1 and Lk

i+1 ∈ tki+1, the points pk+1
2i+1, p

k+1
2i+2 = pk

i+1, p
k+1
2i+3 lie on tki+1

and P k+1 fails to be strictly convex. So we define µk
i = C ·min(λk

i , ν
k
i), where

0 < C < 1 is a user defined constant. We bound wk
i in the range of values

which guarantees convergence: wk
i = min(W,µk

i), where 0 < W < 1
8 .

Remark 3. It is possible that λk
i < 0 or that νk

i < 0. Negative bounds on wk
i

are ignored. We simply substitute λk
i = W

C if λk
i < 0 and νk

i = W
C if νk

i < 0.

Fig. 5. Convexity-preserving scheme – inserting rule.

To prove that the resulting scheme is convexity-preserving and convergent
we use the following notation, illustrated in Fig. 6:

• Every convex tangent tki divides the plane in two half-planes: ηk
i and ξk

i

such that pk
i−1, p

k
i+1 ∈ ηk

i .

• Every inflection tangent t̂ki divides the plane into two half-planes: η̂k
i and

ξ̂k
i such that pk

i−1 ∈ η̂k
i and pk

i+1 ∈ ξ̂k
i .

• Every edge ek
i defines a line lki , which divides the plane in two half-planes:

τk
i and σk

i .
• If ek

i is convex, then pk
i−1, p

k
i+2 ∈ τk

i .
• If ek

i is inflection, then pk
i−1 ∈ τk

i and pk
i+2 ∈ σk

i .
• If ek

i is straight, then either pk
i+2 ∈ lki and pk

i−1 ∈ τk
i , or pk

i−1 ∈ lki and
pk

i+2 ∈ σk
i .

Geometrically Controlled 4-Point Interpolatory Schemes 309

Fig. 6. Convexity-preserving scheme – illustration of the proof of Lemma 3.

Lemma 3. If ek
i and ek

i−1 belonging to an arbitrary P k are convex, then ek+1
2i

and ek+1
2i−1 constructed by the convexity-preserving scheme are convex.

Proof. Let us examine ek+1
2i . The lines tki and lki , which cross at pk

i , divide
the plane into four quadrants Q0 = ξk

i ∩ σk
i , Q1 = ξk

i ∩ τk
i , Q2 = ηk

i ∩ τk
i

and Q3 = ηk
i ∩ σk

i (Fig. 6). Since ek+1
i and ek

i−1 are convex edges and tki
is a convex tangent then by construction pk+1

2i+1 ∈ Q3 and pk+1
2i−1 ∈ Q2. By

definition, pk+1
2i+2 = pk

i+1 ∈ Q3 ∩ Q2. Thus, the line lk+1
2i containing ek+1

2i is in
the interior of the cone Q3 ∪Q1, and the points pk+1

2i−1, p
k+1
2i+2 are in the same

half-plane relative to ek+1
2i . This proves that ek+1

2i is convex. The proof of the
convexity of ek+1

2i−1 is similar.

Remark 4. The requirement that ek
i−1 is convex is necessary for the convexity

of ek+1
2i , since in case ek

i−1 is an inflection edge and ek
i is convex, it is possible

to construct P k such that ek+1
2i is an inflection edge.

Remark 5. In the case that P k is open, we treat the boundary edges ek
0 , e

k
N−1 ∈

P k as convex, by adding “boundary points” pk
−1, p

k
N+1 such that ek+1

1 and
ek+1
2N−2 are also convex. We do this is by taking pk

−1 = pk
0 and pk

N+1 = pk
N and

t0 ⊥ e0 and tN ⊥ eN−1. Any other choice of pk
−1 and pk

N+1 such that ek
0 and

ek
N−1 are convex, generates convex boundary edges ek+1

1 , ek+1
2N−2.

Corollary 3. Given a strictly convex P k, the refined control polygon P k+1

produced by the convexity-preserving scheme is also strictly convex.

Proof. We apply Lemma 3 for every inner edge ek+1
i ∈ P k+1, and Remark 5

for the boundary edges.

The proposed scheme can handle correctly convex control polygons as well. If
pk

i−1, p
k
i , pk

i+1 lie on the same line then a convex tangent tki does not exist, and
we take tki to be a straight tangent. Application of the scheme with a straight

310 Martin Marinov, Nira Dyn, and David Levin

tki obviously leads to µk
i−1 = µk

i = 0, i.e., wk
i−1 = wk

i = 0. Thus ek+1
2i−2, e

k+1
2i−1,

ek+1
2i , ek+1

2i+1 are straight. Furthermore if ek
i is convex, but ek

i−1 is straight, then
ek+1
2i is also convex, since pk+1

2i−1 ∈ ek
i−1 and the proof of Lemma 3 still applies.

This proves the following claim:

Corollary 4. Given a convex P k, the refined control polygon P k+1 produced
by the proposed scheme is also convex, so that for every convex ek

i ∈ P k the
edges ek+1

2i , ek+1
2i+1 ∈ P k+1 are convex and for every straight ek

i ∈ P k the edges
ek+1
2i , ek+1

2i+1 ∈ P k+1 are straight.

Lemma 4. Given an initial convex control polygon P 0, the convexity-preser-
ving scheme produces convex C0 limit curve, which is a linear segment between
the boundary points of each straight edge of P 0 and is a strictly convex curve
between the boundary points of each strictly convex sub-polygon of P 0.

Proof. By construction wk
i ∈ [0 : W], where W ∈

[
ε : 1

8 − ε
]
. Applying

component-wise Theorem 1, we conclude that the scheme is convergent and
that the limit curve is continuous.

Since all the edges between the boundary points of a straight edge in P 0

lie on that straight edge in every P k, the limit curve is a line segment between
these two boundary points. To see that the limit curve between the boundary
points of a strictly convex sub-polygon of P 0 is strictly convex, assume that
part of such a segment of the limit curve is a line segment s. Then for k large
enough there are three points pk

i−1, p
k
i , pk

i+1 on s. This contradicts Corollary
4, since all edges in P k between the boundary points of a convex edge in P 0

are convex and the strictly convex sub-polygon consists only of convex edges.

We propose the following ways to approximate the tangents tki :

1. tki = pk
i+1 − pk

i−1

2. tki ⊥ bki , where bki is the bisector of the angle defined by pk
i−1, p

k
i , pk

i+1

3. tki is the tangent at pk
i of the the circle passing through pk

i−1, p
k
i , pk

i+1

The first method is the simplest and most natural. The tangent coincides with
the tangent of the quadratic function passing through pk

i−1, p
k
i , pk

i+1, it is easy
and fast to compute and it gives the best results in visual quality. Certainly
other choices are also possible.

4 Co-convex Geometrically Controlled Scheme

While convexity-preservation is a very useful property it is still not enough
to handle a lot of “real world” situations. Artists and engineers which employ
CAD systems often desire to have the freedom to define curves which consist
of convex and concave parts, joined smoothly. Here we present an extension of
the scheme defined in Sect. 3 that produces curves which preserve convexity

Geometrically Controlled 4-Point Interpolatory Schemes 311

and concavity according to the convexity/concavity of the edges of the initial
control polygon. We call it the co-convex geometrically controlled 4-point
scheme.

As we mentioned in Remark 4, in case ek
i−1 is an inflection edge, it is not

enough that ek
i is convex for ek+1

2i to be convex. To guarantee that ek+1
2i is

convex when ek
i is convex, we have to ensure that pk+1

2i−1 ∈ τk+1
2i . We define

additional inflection tangents t̂ki , t̂ki+1 for the boundary points pk
i , pk

i+1 of an

inflection edge ek
i and compute L̂k

i = t̂ki ∩ (Mk
i + λ̂k

i d̃
k
i), N̂k

i = t̂ki+1 ∩ (Mk
i +

ν̂k
i d̃

k
i), λ̂k

i , ν̂
k
i ∈ R (Fig. 7(left)). We replace the negative values among λk

i , νk
i ,

λ̂k
i , ν̂k

i with W
C and select wk

i for ek
i as:

µk
i = C · min

(
λk

i , ν
k
i , ν̂

k
i , λ̂

k
i

)
, wk

i = min(W,µk
i), 0 < W <

1
8

We define the inflection tangents t̂ki as the bisector of the angle defined by
pk

i−1, p
k
i , pk

i+1. Any other line dividing this angle can also be used. For k > 0
we do not employ convexity-preserving rules when subdividing edges which
are descendants of the inflection edges in the refinement hierarchy of P 0 - we
use the original 4-point scheme for them (Fig. 7(right)). To see why, examine
the following 4-point stencil: p0

i−1 = (0,−1), p0
i = (0, 0), p0

i+1 = (1, 0), p0
i+2 =

(1, 1). Regardless of the used tangents the inserted point is p1
2i+1 = (0, 0.5).

Therefore the configuration p1
2i, p

1
2i+1, p

1
2i+2 is straight and if we apply the

convexity-preserving rule, it will lead to a line segment on the limit curve
between p0

i and p0
i+1. Still this is probably not the intention of the designer,

who can add an additional point on the edge e0i in order to create a straight
segment in the curve.

Fig. 7. Co-convex scheme – (left) insertion rule for an inflection edge, (right) co-
convex limit curve with the computed convex tangents. Note the segments corre-
sponding to the inflection edges where the linear 4-point scheme is used.

312 Martin Marinov, Nira Dyn, and David Levin

Lemma 5. If the edge ek
i ∈ P k is convex, then the edges ek+1

2i and ek+1
2i+1

constructed by the proposed co-convex scheme are convex.

Proof. Let us examine ek+1
2i . In case ek

i−1 is convex, we apply Lemma 3. If

ek
i−1 is an inflection edge, then pk

i ∈ ξ̂k
i with respect to the tangent t̂ki and by

construction pk+1
2i−1 ∈

(
ηk

i ∩ η̂k
i

)
⊂ Q2, which implies the convexity of ek+1

2i .

The proof for ek+1
2i+1 is analogous.

Remark 6. If the subdivided edge ek
i defines a corner, i.e.,

∣∣ek
i

∣∣ = 0, then
similar to the schemes defined in Sect. 2 we prevent loops by using wk

i = 0. If∣∣ek
i

∣∣ = 0, but
∣∣ek

i−1

∣∣ > 0 we threat ek
i−1 as convex edge and define the tangent

tki ⊥ ei−1. By symmetry if
∣∣ek

i+1

∣∣ > 0, we define the tangent tki+1 ⊥ ei+1.

Finally we are able to define a robust co-convex scheme with the following
properties:

Lemma 6. Given an arbitrary control polygon P 0 the proposed co-convex
scheme produces a C0 limit curve with the following properties: (a) For every
convex sub-polygon of P 0 the corresponding curve segment is strictly convex.
(b) For every straight edge e0i the corresponding curve segment is a line seg-
ment. (c) All inflection points on the curve are contained in segments of the
curve corresponding to inflection edges in P 0.

Remark 7. A corner point or a control point p0
i in P 0 joining two consecutive

straight edges e0i−1 and e0i can also be inflection points in the limit curve.

Remark 8. The convexity-preserving and co-convex schemes which we propose
can be easily applied to 3D control points. Given a tangent line, we define a
tangent plane T k

i = {P : P = λot
k
i +λ1(ek

i−1×ek
i)+pk

i }. Then all intersections
are performed using the tangent plane. If ek

i−1 × ek
i = ∅, then either ek

i = ∅ or
ek

i−1 = ∅, or ek
i and ek

i−1 are on the same line. The first two cases are corner
cases and we can define T k

i to be perpendicular to the non-zero edge. The
third one is a straight configuration and every tangent plane passing through
the line defined by ek

i can be used.

Remark 9. One could also combine the co-convex scheme with a displacement-
safe scheme in order to get rid of artifacts. This is done easily by taking the
minimum of the tension parameters determined by the two schemes. The
resulting tension parameter satisfies both conditions and thus the limit curve
is artifact-free and co-convex.

5 Experimental Analysis of Smoothness and Examples

For non-linear schemes the conventional tools for checking smoothness are not
applicable. An experimental method for analysing these schemes is employed

Geometrically Controlled 4-Point Interpolatory Schemes 313

Fig. 8. Examples: left column – the original 4-point scheme with w = 1/16, mid-
dle column – the displacement-safe scheme (9) with C = 0.2, right column – the
convexity-preserving scheme with C = 0.9.

in [1, 5] by checking numerically the Hölder regularity of several computed
limit curves. Since the parametrization we use is uniform, we can employ the
algorithm proposed in [5], which is related to the following definitions:

Definition 8. An l times differentiable function f : Ω ⊂ R → R is said to
have Hölder regularity RH = l + α, if there exist C < ∞ such that:∣∣∣∣∂lf(x1)

∂xl
1

− ∂lf(x2)
∂xl

2

∣∣∣∣ ≤ C |x1 − x2|α , ∀x1, x2 ∈ Ω .

Definition 9. An interpolatory subdivision scheme is said to have Hölder reg-
ularity RH = l + αl, if there exist C < ∞ and h > 0 such that:

314 Martin Marinov, Nira Dyn, and David Levin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Curves generated by
the Displacement-Safe
scheme (7)
Curves generated by
the Displacement-Safe
scheme (8)
Curves generated by
the Co-Convex
scheme

Hölder regularity

N
um

be
r o

f c
ur

ve
s

Fig. 9. Experimental Hölder regularity of the limit curves generated by the
displacement-safe schemes (7), (8) and the co-convex scheme with C = 0.9 applied
to 219436 randomly generated control polygons, W = 1

16
. The scheme (9) was not

included in the experiment, since its parameter C is a trade off between analytical
smoothness and visual quality and therefore can not be determined automatically.

lim
k→∞

l!2kl
∣∣(∆lfk)i+1 − (∆lfk)i

∣∣ ≤ C(2−kh)αl

where (∆fk)i = fk
i+1 − fk

i and ∆l is defined recursively as ∆∆lf = ∆l+1f .

We define ρk
l = l!2kl maxi

∣∣(∆lfk)i+1 − (∆lfk)i

∣∣ and under the assumption
that ρk

l ≈ C(2−kh)αl , one can define the contraction factor λl and compute
an estimate of αl:

λl :=
ρk+1

l

ρk
l

≈ C(2−(k+1)h)αl

C(2−kh)αl
= 2−αl , αl := −log2

(
ρk+1

l

ρk
l

)
.

Computing αl makes sense only if αj ≈ 1 for j = 0, 1, . . . , l − 1. The
proposed method is verified by applying it to schemes for which RH has been
determined analytically - for example the 4-point scheme with w = 1

16 is
proved to have RH = 2 − ε, and the above method obtains numerically the
values α1 ≈ 1 and α2 ≈ 0. Our implementation checks αl of the geometrically
controlled schemes component-wise, i.e., for fi = xi we compute αx

l , for fi =
yi we compute αy

l , and for fi = zi we compute αz
e . αl then is defined as

αl = min(αx
l , α

y
l , α

z
l).

Since RH of the original 4-point scheme depends on the tension parame-
ter, not surprisingly the geometrically controlled schemes have different RH

depending on the initial geometry. We tested the proposed schemes on the
examples given in the paper and we also applied the schemes (7), (8) and the
co-convex scheme on about 220K randomly generated control polygons (Fig.
9). All of the curves generated by the schemes (7), (8) after 18 subdivision

Geometrically Controlled 4-Point Interpolatory Schemes 315

steps were C1, i.e., α0 ≈ 1 and α1 > 0, while only 0.019% of the curves
generated by the co-convex scheme were not C1. This leads us to the conclu-
sion that the proposed displacement-safe schemes are most probably C1, and
the co-convex scheme is also C1 away from corners and straight edges. It is
clear also, that the co-convex scheme sacrifices regularity in order to achieve
convexity-preservation in some cases (Fig. 9).

Acknowledgement

This work was supported by the European Union research project “Multires-
olution in Geometric Modelling (MINGLE)” under grant HPRN–CT–1999–
00117.

References

1. Aspert, N., Ebrahimi, T., Vandergheynst, P.: Non-linear subdivision using local
spherical coordinates. Computer Aided Geometric Design, 20, 165–187 (2003).

2. Dyn, N., Gregory, J., Levin., D.: A 4-point interpolatory subdivision scheme for
curve design. Computer Aided Geometric Design, 4, 257–268 (1987).

3. Dyn, N., Kuijt, F., Levin, D., van Damme, R. M. J.: Convexity preservation
of the four-point interpolatory subdivision scheme. Computer Aided Geometric
Design, 16, 789–792 (1999).

4. Dyn, N., Levin, D., Liu, D.: Interpolatory convexity-preserving subdivision
schemes for curves and surfaces. Computer Aided Geometric Design, 24, 211–
216 (1992).

5. Kuijt, F.: Convexity Preserving Interpolation - Stationary Nonlinear Subdivision
and Splines. PhD thesis, University of Twenty, Faculty of Mathematical Sciences,
(1998).

6. Levin, D.: Using Laurent polynomial representation for the analysis of the non-
uniform binary subdivision schemes. Advances in Computational Mathematics,
11, 41–54 (1999).

Part VI

— Thinning

Adaptive Thinning for Terrain Modelling
and Image Compression

Laurent Demaret1, Nira Dyn2, Michael S. Floater3, and Armin Iske1

1 Zentrum Mathematik, Technische Universität München, Munich, Germany
{demaret|iske}@ma.tum.de

2 School of Mathematical Sciences, Tel-Aviv University, Israel
niradyn@post.tau.ac.il

3 Computer Science Department, Oslo University, Norway
michaelf@ifi.uio.no

Summary. Adaptive thinning algorithms are greedy point removal schemes for
bivariate scattered data sets with corresponding function values, where the points
are recursively removed according to some data-dependent criterion. Each subset of
points, together with its function values, defines a linear spline over its Delaunay
triangulation. The basic criterion for the removal of the next point is to minimise
the error between the resulting linear spline at the bivariate data points and the
original function values. This leads to a hierarchy of linear splines of coarser and
coarser resolutions.

This paper surveys the various removal strategies developed in our earlier papers,
and the application of adaptive thinning to terrain modelling and to image compres-
sion. In our image test examples, we found that our thinning scheme, adapted to
diminish the least squares error, combined with a post-processing least squares op-
timisation and a customised coding scheme, often gives better or comparable results
to the wavelet-based scheme SPIHT.

1 Introduction

This paper concerns the construction of multiresolution approximations to
bivariate functions from irregular point samples. These approximations are
linear splines over decremental Delaunay triangulations, generated by adap-
tive thinning algorithms.

A thinning algorithm is a scheme which recursively removes points from
a set of scattered data, according to some specific criterion. By recursively
removing points, one at a time, a thinning algorithm yields an ordering of the
points, which in turn yields a data hierarchy of the input point set.

In adaptive thinning algorithms, the criterion for the removal of points
depends on both the locations of the given points and the sampled function
values at the points. This is in contrast to non-adaptive thinning, where the

320 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

criterion for removal depends only on the geometry of the given planar point
set [10].

Linear splines over Delaunay triangulations are used in order to com-
pute multiresolution approximations to the sampled function. Each subset
of points defines a unique Delaunay triangulation (up to co-circularity) and a
corresponding linear spline function. The resulting sequence of linear splines
constitutes the multiresolution approximations of the sampled function.

For every point in the current subset, we maintain an anticipated error
which provides a local estimate for the true error incurred by its removal. The
error is the deviation of the spline function at the 2D data points from the
given function values, measured in some specific norm. The point with min-
imal anticipated error is considered to be the least significant in the current
situation, and is removed. In order to obtain good multiresolution approxima-
tions to the sampled function, the choice of removal criterion requires care.
We customise our removal strategies according to the application.

The idea of thinning scattered data is closely related to mesh simplifica-
tion methods. Indeed, thinning combined with linear splines over Delaunay
triangulations is only one of several mesh simplification methods. One of the
earliest methods for mesh simplification is the incremental algorithm of Fowler
and Little [11]. An early survey paper is that of Lee [16]. De Floriani, Puppo,
and co-workers have proposed several algorithms for mesh simplification and
developed good data structures for hierarchical triangulations, see [4] and the
references therein. Heckbert and Garland [13] give an extensive survey of sim-
plification methods both for terrain models (triangulated scattered data in
the plane) and free form models (manifold surfaces represented by 3D tri-
angle meshes). Specific mesh simplification algorithms include techniques like
edge-collapse, half-edge collapse, and vertex collapse. For a more recent survey
paper on these methods, see the tutorial [12].

Adaptive thinning algorithms are useful for both model simplification and
data compression, and have been applied to hierarchical terrain modelling
and to image compression. This paper starts with a generic introduction to
adaptive thinning algorithms, before going on to various application-specific
measures of anticipated errors, and ends with numerical examples of the al-
gorithms applied to terrain modelling and image compression.

In the image compression application, adaptive thinning constructs a hier-
archy of most significant pixel positions in a digital image. We use a thinning
scheme, whose anticipated error is measured in the �2-norm, combined with
a post-processing step which optimises the luminance at the most significant
pixels. The positions of the pixels in the set of most significant pixels, along
with their optimised luminance values, are then converted into a bit-stream,
using a customised coding scheme for scattered data, developed in our pre-
vious paper [5]. At the decoder, the transmitted data is used for the image
reconstruction, by evaluating the linear spline over the Delaunay triangulation
of the transmitted pixels, interpolating the optimised luminance values at the
vertices.

Adaptive Thinning 321

The result is a novel image compression scheme, AT∗
2, which, in our nu-

merical examples, often gives better or comparable compression rates to the
well-established wavelet-based compression method SPIHT (Set Partitioning
Into Hierarchical Trees).

2 Generic Formulation of Thinning

This section provides a generic introduction to the basic features and concepts
of adaptive thinning algorithms. Let X = {x1, . . . , xN} ⊂ R

2 denote a finite
scattered point set in R

2, and let fX = (f(x1), . . . , f(xN))T ∈ R
N denote a

corresponding data vector containing point samples taken from an unknown
function f : R

2 → R at the points of X.
Thinning is a recursive point removal scheme for bivariate scattered data,

whose generic formulation is given by the following algorithm, where n is the
number of removals.

Algorithm 1 (Thinning).

(1) Let XN = X;
(2) FOR k = 1, . . . , n

(2a) Locate a removable point x ∈ XN−k+1;
(2b) Let XN−k = XN−k+1 \ x;

Note that thinning constructs, for given data (X, fX), a nested sequence

XN−n ⊂ · · · ⊂ XN−1 ⊂ XN = X (1)

of subsets ofX, where the size |Xk| of any subsetXk in (1) is k,N−n ≤ k ≤ N .
Two consecutive subsets in (1) differ only by one point.

In order to select a specific thinning strategy, it remains to give a def-
inition for a removable point in step (2a) above. Before we propose several
different preferred removal strategies, let us first discuss our motivation for the
construction of the data hierarchy in (1). Our intention is to use the data hi-
erarchy (1) in order to create a multiresolution approximation of the sampled
function f from the given data fX .

The multiresolution approximation of f combines the data hierarchy (1)
with linear splines. Recall that a linear spline is a continuous function, which
is piecewise linear over a partitioning of its domain Ω ⊂ R

2. In the setting
of this paper, we let the domain Ω coincide with the convex hull [X] of the
input point set X. This makes sense, if the convex hull [Y] of any subset
Y ⊂ X, constructed by thinning, coincides with the convex hull of X. We
ensure this by not removing extremal points from X. A convenient choice for
the partitioning of Ω is the Delaunay triangulation D(Y) of Y . Although we
assume that the reader is familiar with Delaunay triangulation methods, let us
recall some of their basic properties, which are relevant to the construction of
adaptive thinning algorithms. For a comprehensive discussion of triangulation

322 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

methods, in particular Delaunay triangulations, we refer to the textbook [17]
and the paper [19].

Firstly, we remark that a Delaunay triangulation D(Y) of a finite planar
point set Y is one, such that for any triangle in D(Y) its corresponding cir-
cumcircle does not contain any point from Y in its interior. This property
is termed the Delaunay property. Moreover, there is a unique triangulation
of Y with the Delaunay property, provided that no four points in Y are co-
circular [17]. We assume this condition on the given set X in order to avoid
lengthy but immaterial discussions concerning the non-uniqueness of D(Y),
for Y ⊂ X.

Secondly, note that the removal of one point y from Y requires an update
of D(Y) in order to obtain the Delaunay triangulation D(Y \ y). Due to
the Delaunay property, this update of D(Y) is local. Indeed, the required
retriangulation, incurred by the removal of the vertex y in D(Y), can be
performed by the retriangulation of its cell C(y). Recall that the cell C(y)
of y is the union of all triangles in D(Y) which contain y as a vertex. Fig. 1
shows, for a vertex y in a Delaunay triangulation, the retriangulation of its
cell C(y).

y

(a) (b)

Fig. 1. Removal of the vertex y, and retriangulation of its cell. The five triangles
of the cell in (a) are replaced by the three triangles in (b).

For any Y ⊂ X let

SY =
{
s : s ∈ C([Y]) and s

∣∣
T

linear for all T ∈ D(Y)
}
,

be the spline space containing all continuous functions over [Y] whose restric-
tion to any triangle in D(Y) is linear. Any element in SY is referred to as a
linear spline over D(Y). For given function values fY , there is a unique linear
spline L(Y ; f) ∈ SY which interpolates f at the points of Y ,

L(Y ; f)(y) = f(y), for all y ∈ Y.

Adaptive Thinning 323

3 Adaptive Anticipated Error Measures

The aim of adaptive thinning is to construct a data hierarchy of the form (1)
from the given data (X, fX), such that for any subset Y = Xk ⊂ X in (1) the
interpolatory linear spline L(Y ; f) ∈ SY , is close at X to the given function
values fX ∈ R

N .
In order to establish this, we require that, for some norm ‖ · ‖ on R

N , the
approximation error

η(Y ;X) = ‖L(Y ; f)
∣∣
X

− fX‖ (2)

is small. Note that η(Y ;X) in (2) depends also on the input values fX , but
for notational simplicity we omit this.

For the discrete �∞-norm, the approximation error η(Y ;X) becomes

η∞(Y ;X) = max
x∈X

|L(Y ; f)(x) − f(x)|, (3)

whereas for the discrete �2-norm, we obtain

η2(Y ;X) =
√∑

x∈X

|L(Y ; f)(x) − f(x)|2. (4)

Ideally, for any k, N −n < k < N , we would like to locate a subset Y ⊂ X
which minimises the error in (2) among all subsets of X of equal size |Y | = k.
We remark, however, that the problem of finding an algorithm which outputs
for any possible input (X, fX , k), N − n < k < |X|, such an optimal subset
Y ∗ of size |Y ∗| = k satisfying

η(Y ∗;X) = min
Y ⊂X
|Y |=k

η(Y ;X) (5)

is closely related to the NP-hard k-centre problem. For a comprehensive dis-
cussion on the k-centre problem we refer to the textbook [14, Section 9.4.1]
and the survey [20]. To overcome this difficulty, thinning algorithms are based
on a greedy removal strategy. The application of greedy algorithms to the
k-centre problem is developed in [15].

Greedy algorithms are in general known as efficient and effective methods
of dynamic programming for solving optimisation problems approximately.
Greedy algorithms typically go through a sequence of steps, where for each
step a choice is made that looks best at the moment. For a general introduction
to greedy algorithms we recommend the textbook [2, Chapter 16].

For the thinning Algorithm 1, the most natural removal criterion in
step (2a) for approximately solving (5) by a greedy algorithm is

Definition 1. (Removal Criterion AT)
For Y ⊂ X, a point y∗ ∈ Y is said to be removable from Y , if and only if it
satisfies

η(Y \ y∗;X) = min
y∈Y

η(Y \ y;X).

324 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

We refer to the adaptive thinning algorithm, resulting from this removal
criterion in Algorithm 1, as AT.

Let us make a few remarks on the idea of this particular definition of a
removable point. When using the above removal criterion AT, we assign to
each current point y ∈ Y an anticipated error

e(y) = η(Y \ y;X),

which is incurred by the removal of y. Moreover, we interpret the value e(y)
as the significance of the point y in the current subset Y . In this sense, a point
y∗ whose removal gives the least anticipated error e(y∗) is considered as least
significant in the current situation, and so it is removed from Y .

For the implementation of the thinning algorithm, we use a priority queue
of the points, according to their significances. This priority queue has a least
significant point at its head, and is updated after each removal of its head.
For more details concerning the efficient maintenance of the priority queue of
the scattered points, we refer to our paper [8].

In the remainder of this section, we propose different removal criteria,
which are adapted to terrain modelling and to image compression. Let us
briefly explain the differences between these two applications. In terrain mod-
elling, it is of primary importance to keep the maximal deviation η∞(Y ;X)
between the linear spline interpolant L(f ;Y) and the given point samples fX

as small as possible. This is in contrast to applications in image compression,
where the quality measure relies on the mean square error

η̄2
2(Y ;X) = η2

2(Y ;X)/N. (6)

We develop two classes of customised adaptive thinning criteria. Those for
terrain modelling work with the error measure η∞ in (3), whereas the an-
ticipated error measures for image compression rely on the discrete �2-error
η2
2 in (4). Accordingly, we denote by AT∞ the adaptive thinning algorithm

AT which works with the �∞-norm, whereas AT2 is the algorithm AT for
the choice of the �2-norm. The removal criterion for AT∞ cannot be com-
puted locally, but alternative local removal criteria are suggested in the next
subsection.

3.1 Anticipated Errors for Terrain Modelling

In this subsection, we propose three locally computable, alternative removal
criteria, AT1, AT2 and AT3, which reduce the computational costs of the
resulting thinning algorithm, in comparison with AT∞. The removal criteria
AT1 and AT2 require the retriangulation of Y \ y for the computation of
the anticipated error of any y in Y . Due to the Delaunay property, only the
retriangulation of the cell C(y) is required. The removal criterion AT3 does
not require the retriangulation of the cell C(y) for the computation of the
anticipated error of y in Y .

Adaptive Thinning 325

The first alternative, AT1, measures the anticipated error of a point y
only in its cell C(y),

e1(y) = η∞(Y \ y;X ∩ C(y)).

Definition 2. (Removal Criterion AT1)
For Y ⊂ X, a point y∗ ∈ Y is said to be removable from Y , if and only if it
satisfies

e1(y∗) = min
y∈Y

e1(y).

We remark that the adaptive thinning algorithm AT∞ is not equivalent
to AT1. This is confirmed by the following counter-example.

Example 1. (AT∞ �= AT1)
Consider the eight data points, X = {x1, . . . , x8} and the values fX given as
follows.

i 1 2 3 4 5 6 7 8
xi (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (7, 0) (1, 1)

f(xi) 5 −1 0 −3 0 −1.1 2.5 0

In this case, the extremal points of X are x1, x7 and x8, so that only the five
points xi, i = 2, . . . , 6, can be removed. It is easy to see that both AT∞ and
AT1 remove the point x3 = (3, 0) first, and then they remove x5 = (5, 0). In
the third step, however, the algorithm AT1 removes x6 = (6, 0), whereas the
algorithm AT∞ removes x4 = (4, 0).

Now let us turn to the adaptive thinning algorithm AT2, being a simplifi-
cation of the previous AT1. In order to further reduce the required computa-
tional costs, the removal criterion AT2 depends only on the sample values fY

of the points in the current subset Y ⊂ X. This is in contrast to both AT∞
and AT1, which depend on points in X which were removed in previous steps.

The anticipated error of AT2 is, for any y ∈ Y , given by

e2(y) = η∞(Y \ y;Y).

Note that this expression can be rewritten as

e2(y) = |L(Y \ y; f)(y) − f(y)|.

Definition 3. (Removal Criterion AT2)
For Y ⊂ X, a point y∗ ∈ Y is said to be removable from Y , if and only if it
satisfies

e2(y∗) = min
y∈Y

e2(y).

326 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

We have also explored an adaptive thinning algorithm, AT3, which is
faster than AT2. The algorithm AT3 does not only ignore the points already
removed but also computes an anticipated error for each point without needing
to temporarily retriangulate its cell.

The basic idea behind AT3 is to define this anticipated error e3(y) as
the maximum of the directional anticipated errors at y in a certain sample of
directions. For each neighbouring vertex z of y in D(Y) we consider the unique
point p lying at the intersection of the boundary of C(y) and the straight line
passing through z and y (other than z itself). Such a point exists, since C(y)
is a star-shaped polygon.

The point p is either a vertex of the cell’s boundary ∂C(y) or a point on
one of its sides. In either case, p lies on at least one edge of ∂C(y). Let us
denote such an edge by [z2, z3]; see Fig. 2. Then the triangle Tz = [z, z2, z3],
with vertices in Y \ y, contains y. We call Tz a directional triangle of y. We
then let

ez
3(y) = |L(Tz; f)(y) − f(y)|

be the (unique) directional anticipated error of y in the direction z− y, where
L(Tz; f) is the linear function which interpolates f at the vertices of Tz. Now,
we let

e3(y) = max
z∈Vy

ez
3(y)

for the anticipated error of the adaptive thinning algorithm AT3, where Vy

is the set of all neighbouring vertices of y in D(Y).

Fig. 2. Directional triangle of y.

Definition 4. (Removal Criterion AT3)
For Y ⊂ X, a point y∗ ∈ Y is said to be removable from Y , if and only if it
satisfies

e3(y∗) = min
y∈Y

e3(y).

y z

z
3

z
2

p

Adaptive Thinning 327

A detailed analysis of the complexity of the adaptive thinning algo-
rithms AT∞, AT1, AT2, and AT3 can be found in [8]. It is shown in [8]
that the asymptotic computational costs of any of these three algorithms is
O(N log(N)), but with different constants. For further illustration, we refer
to the numerical examples in Sect. 4, where these algorithms are applied to
one selected test case from terrain modelling.

3.2 Anticipated Errors for Image Compression

In this subsection, we propose one customised removal criterion for image
compression. In this application, the quality of image compression schemes is
usually measured in Peak Signal to Noise Ratio (PSNR) (7), see the discussion
in Sect. 5. It is sufficient for the moment to say that PSNR is an equivalent
measure to the reciprocal of the mean square error η2

2(Y ;X) in (6).
The aim of adaptive thinning, when applied to image compression, is to

keep the mean square error as small as possible. This is accomplished by using
adaptive thinning algorithms, which generate subsets Y ⊂ X in (1), whose
square error η2

2(Y ;X) is, among subsets of equal size, small. Therefore, we
work with the discrete �2-norm η2 in (4).

Let us now discuss the adaptive thinning algorithm AT2, whose antici-
pated error is given by

e(y) = η2
2(Y \ y;X), for y ∈ Y.

By the additivity of η2
2 and by the observations X = (X \ C(y))∪(X ∩ C(y)),

and η2
2(Y \ y;X \ C(y)) = η2

2(Y ;X \ C(y)), for any y ∈ Y , we get

η2
2(Y \ y;X) = η2

2(Y \ y;X \ C(y)) + η2
2(Y \ y;X ∩ C(y))

= η2
2(Y ;X \ C(y)) + η2

2(Y \ y;X ∩ C(y))
= η2

2(Y ;X) + η2
2(Y \ y;X ∩ C(y)) − η2

2(Y ;X ∩ C(y)).

Hence, for any Y ⊂ X, the minimisation of η2
2(Y \ y;X) is equivalent to

minimising the difference

eδ(y) = η2
2(Y \ y;X ∩ C(y)) − η2

2(Y ;X ∩ C(y)), for y ∈ Y,

where C(y) is the cell of y in D(Y).

Definition 5. (Removal Criterion AT2)
For Y ⊂ X, a point y∗ ∈ Y is said to be removable from Y , if and only if it
satisfies

eδ(y∗) = min
y∈Y

eδ(y).

We remark that we can establish the complexity O(N log(N)) for the adap-
tive thinning algorithm AT2, by following along the lines of the analysis in [8].
This, however, is beyond the scope of this survey.

328 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

4 Adaptive Thinning in Terrain Modelling

We have implemented the thinning algorithms AT1, AT2, and AT3, together
with one non-adaptive thinning algorithm, called NAT [8]. The algorithm
NAT, proposed in [10], ignores the given samples fX , and favours evenly
distributed subsets of points Y ⊂ X. We refrained from implementing the
algorithm AT∞, since it requires significantly more computations [8], and
due to our experience in the univariate setting [7], we do not expect AT∞ to
be significantly better than AT1.

In this section, we compare the performance of the four algorithms AT1,
AT2, AT3, and NAT in terms of both approximation quality and computa-
tional cost on one specific example from terrain modelling. The corresponding
data set, Hurrungane, contains 23092 data points. Each data point is of the
form (x, f(x)), where f(x) denotes the terrain’s height value sampled at the
location x ∈ R

2. This data set is displayed in Fig. 3 (a) (2D view) and in
Fig. 3 (b) (3D view).

(a) (b)

Fig. 3. Hurrungane: (a) 2D view and (b) 3D view.

For all four thinning algorithms, we have recorded both the required sec-
onds of CPU time (without considering the computational costs required
for building the initial data structures, such as the Delaunay triangulation)
and the sequence of approximation errors η∞(Y ;X) after the removal of
n = 1000, 2000, . . . , 22000 points from X.

Not surprisingly, we found that NAT is the fastest method but also the
worst one in terms of its approximation error. For example, for n = 22000
the algorithm AT1 takes 247.53 seconds of CPU time, whereas NAT takes
only 11.37 seconds. On the other hand, we obtain in this particular example
η∞(Y ;X) = 278.61 for NAT, but only η∞(Y ;X) = 30.09 when using AT1.
The two corresponding triangulations D(Y) output by NAT and AT1 are
displayed in Fig. 4 (a) and (b) (2D view), and in Fig. 5 (a) and (b) (3D view).

Adaptive Thinning 329

(a) (b)

Fig. 4. Thinned Hurrungane with 1092 points, 2D view. (a) NAT and (b) AT1.

(a) (b)

Fig. 5. Thinned Hurrungane with 1092 points, 3D view. (a) NAT and (b) AT1.

In Fig. 6 (a) and in Fig. 7 (a) the approximation error η∞(Y ;X) as a
function of the number of removed points is plotted for the four different
thinning algorithms. In Fig. 6 (b) and in Fig. 7 (b) the corresponding seconds
of CPU time are displayed.

The graphs show that, with respect to approximation error, the three adap-
tive thinning algorithms AT1, AT2, and AT3 are much better than NAT.
Among the three adaptive thinning algorithms, AT1 is the best, followed by
AT3, and AT2 is the worst. Note that by definition AT3 can only be inferior
to AT2 after one removal. In the numerical example, AT3 has continued to
be inferior for about 50 removal steps, after which its approximation error is
smaller than that of AT2.

As to the computational costs for the adaptive thinning algorithms, AT3 is
the fastest, and AT1 the slowest, see Fig. 6 (b) and Fig. 7 (b). Our conclusion
is that AT1 is our recommended thinning algorithm. But if computational
time is a critical issue, AT3 is a good alternative.

330 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

300

NAT

AT2
AT3

AT1

n

η ∞
(Y

;X
)

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

NAT

AT3

AT2AT1

n

C
P

U
 s

ec
on

ds

(a) (b)

Fig. 6. Hurrungane: comparison between NAT (dash-dot line), AT1 (solid), AT2
(dashed), and AT3 (dotted), (a) approximation error and (b) seconds of CPU time.

0 0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

AT2

AT3

AT1

n

η ∞
(Y

;X
)

0 0.5 1 1.5 2 2.5

x 10
4

60

80

100

120

140

160

180

200

220

240

260

AT3

AT2

AT1

n

C
P

U
 s

ec
on

ds

(a) (b)

Fig. 7. Hurrungane: comparison between AT1 (solid line), AT2 (dashed), and AT3
(dotted), (a) approximation error and (b) seconds of CPU time.

5 Adaptive Thinning in Image Compression

This section reviews our recent research on the application of adaptive thin-
ning to image compression. The information reduction and efficient coding of
digital images are essential for fast transmission across an information channel,
such as the Internet. For a comprehensive introduction to image compression
and coding, we recommend the textbook [22].

Many of the well-established techniques in image compression, including
JPEG2000 [22], are based on wavelets and related techniques, see [3] for a
recent survey on wavelet-based image coding. When working with wavelets,
digital images are represented by using rectangular grids of wavelet coeffi-
cients. This is in contrast to adaptive thinning, which works with scattered
data.

Adaptive Thinning 331

Adaptive thinning constructs a hierarchy of sets of most significant pixels,
where for each set the image is approximated by the linear spline over the
Delaunay triangulation of the pixels in the set. The idea to approximate an
image by first identifying significant pixels is not new (see e.g. [9]). In this
section we go further and so obtain a competitive compression scheme, based
on adaptive thinning.

Any compression scheme is mainly concerned with the following sequence
of tasks.

(1) data reduction;
(2) encoding of the reduced data at the sender;
(3) transmission of the encoded data from the sender to the receiver;
(4) decoding of the transmitted data at the receiver;
(5) data reconstruction.

Adaptive thinning is mainly used in the above step (1), the data reduction.
In the following discussion, we first explain how adaptive thinning works in
image data reduction, before we show how the reconstruction step (5) is ac-
complished. For a discussion of scattered data coding, required in steps (2)
and (4), we refer to our paper [5].

Before we explain any details on our compression scheme, we wish to make
a few preliminary remarks concerning our image model. Note that many im-
ages contain discontinuities. It might therefore seem like a good idea to ap-
proximate such images by discontinuous functions over triangulations, instead
of keeping to the continuous piecewise linear functions of Algorithm 1.

One possibility would be to use piecewise constant functions over triangula-
tions. This, however, reduces the approximation quality of the model, because
piecewise constants have only O(h) approximation order, rather than O(h2)
for piecewise linear functions. Another possibility would be to use piecewise
linear functions that are not necessarily globally continuous. This, however,
requires assigning several height values to each vertex, and so in this approach
there is significantly more data attached to each triangulation, which leads to
higher coding costs.

Unless one works with a very sophisticated coding scheme, which makes
fundamental use of the statistical correlation of the data around the image’s
discontinuities, either of these two discontinuous models leads, in our expe-
rience, to inferior compression ratios. Therefore, we prefer to work with a
continuous image model, such as the one using continuous piecewise linear
functions in Algorithm 1.

5.1 Adaptive Thinning and Image Reduction and Reconstruction

A digital image is a rectangular grid of pixels. Each pixel bears a colour value
or greyscale luminance. For the sake of simplicity, we restrict the following
discussion to greyscale images. The image can be viewed as a matrix F =
(f(i, j))i,j , whose entries f(i, j) are the luminance values at the pixels. The

332 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

pixel positions (i, j) ∈ X are pairs of non-negative integers i and j, whose
range is often of the form [0 . . . 2p−1]× [0 . . . 2q −1], for some positive integers
p, q, where we let [0 . . . n] = [0, n] ∩ Z for any non-negative integer n ∈ Z. In
this case, the size of the pixel set X is 2p × 2q. Likewise, the entries f(i, j)
in F are non-negative integers whose range is typically [0 . . . 2r − 1], for some
positive integer r. In the examples of the test images below, we work with 256
greyscale luminances in [0 . . . 255], so that in this case r = 8.

A well-known quality measure for the evaluation of image compression
schemes is the Peak Signal to Noise Ratio (PSNR),

PSNR = 10 ∗ log10

(
2r × 2r

η̄2
2(Y ;X)

)
, (7)

which is an equivalent measure to the reciprocal of the mean square error
η̄2
2(Y ;X) in (6). The PSNR is expressed in dB (decibels). Good image com-

pressions typically have PSNR values of 30 dB or more [22] for the recon-
structed image. The popularity of PSNR as a measure of image distortion
derives partly from the ease with which it may be calculated, and partly
from the tractability of linear optimisation problems involving squared error
metrics. More appropriate measures of visual distortion are discussed in [22].

Adaptive thinning, when applied to digital images, recursively deletes pix-
els using the thinning Algorithm 1, in combination with the adaptive removal
criterion AT2 of Sect. 3. In other words, the pixel positions form the initial
point set X on which the adaptive thinning algorithm is applied. At any step
of the algorithm, a removable pixel (point) is removed from the image. The
output of adaptive thinning is a set Y ⊂ X of pixels combined with their
corresponding luminances FY .

However, due to the regular distribution of pixel positions, the Delaunay
triangulations of X, and of its subsets Y ⊂ X, might be non-unique. To avoid
this ambiguity, we apply a small perturbation to the pixels X and apply the
thinning algorithm to the perturbed pixels.

As a post-process to the thinning, we further minimise the mean square
error by least squares approximation [1]. More precisely, we compute from the
output set Y and the values F the unique best �2-approximation L∗(Y ;F) ∈
SY satisfying∑

(i,j)∈X

|L∗(Y ;F)(i, j) − f(i, j)|2 = min
s∈SY

∑
(i,j)∈X

|s(i, j) − f(i, j)|2. (8)

Such a unique solution exists since Y ⊂ X. The compressed information to
be transferred consists of the output set Y and the corresponding optimised
luminances {f∗(i, j) = L∗(Y ;F)(i, j) : (i, j) ∈ Y }.

Following along the lines of our papers [5, 6], we apply a uniform quan-
tisation to these optimised luminances. This yields the quantised symbols
{Q(f∗(i, j)) : (i, j) ∈ Y }, corresponding to the quantised luminance values
{f̃(i, j) : (i, j) ∈ Y }, where f̃(i, j) ≈ f∗(i, j) for (i, j) ∈ Y . The elements

Adaptive Thinning 333

of the set {(i, j,Q(f∗(i, j))) : (i, j) ∈ Y } are coded by using the customised
scattered data coding scheme of [5].

At the receiver, the reconstruction of the image F (step (5)) is then
accomplished as follows. The unique Delaunay triangulation D(Y) of the
pixel positions Y is computed at the decoder, using the same perturbation
rules applied previously at the encoder. This defines, in combination with
the decoded luminance values F̃Y = {f̃(i, j) : (i, j) ∈ Y }, the unique
linear spline L̃(Y ; F̃Y) ∈ SY satisfying L̃(Y ; F̃Y)(i, j) = f̃(i, j) for every
(i, j) ∈ Y . Finally, the reconstruction of the image is given by the image
matrix F̃ = (L̃(Y ; F̃Y)(i, j))(i,j)∈X .

We denote the novel image compression scheme, presented in this subsec-
tion, by AT∗

2.

5.2 Comparison between AT∗
2 and SPIHT

In this subsection we compare the performance of our compression scheme
AT∗

2 with that of the wavelet-based compression scheme Set Partitioning Into
Hierarchical Trees (SPIHT) [18] on two test images. We work with greyscale
values of the luminances f(i, j) in [0 . . . 255], i.e., r = 8. In the test examples
below, we use the range [0 . . . 31] for the quantised symbols Q(f∗(i, j)), with
(i, j) ∈ Y . In each test case, the compression rate, measured in bits per pixel
(bpp), is fixed. The quality of the resulting reconstructions is then evaluated
by the comparison of the differences in PSNR, and in visual quality.

We remark that the good compression rate of SPIHT is, at low bit rates,
comparable with that of the powerful method EBCOT [21], which is the basis
algorithm of the standard JPEG2000 [22].

A Geometric Test Image

We first consider one artificial test image, Reflex, of small size 128 × 128
(p = q = 7). This geometric test image is displayed in Fig. 11 (a). The purpose
of this test case is to demonstrate the good performance of our compression
scheme AT∗

2 on texture-free images with sharp edges.
In this test case, we fix the compression rate to 0.251 bpp. The result-

ing reconstructions corresponding to AT∗
2 and to SPIHT are displayed in

Fig. 11 (b),(d). Our compression scheme AT∗
2 yields the PSNR value 41.73 dB,

whereas SPIHT provides the inferior PSNR value 30.42 dB. Hence, with re-
spect to this quality measure, our compression method AT∗

2 is much better.
Moreover, the reconstruction by AT∗

2 provides also a superior visual quality
to that of the reconstructed image by SPIHT, see Figs. 11 (b),(d). Indeed,
our compression scheme AT∗

2 manages to localise the sharp edges of the test
image Reflex. Moreover, it avoids undesired oscillations around the edges,
unlike SPIHT. This is due to the well-adapted distribution of the 384 most
significant pixels, output by the adaptive thinning algorithm AT2, whose De-
launay triangulation is displayed in Fig. 11 (c).

334 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

Fig. 8. Fruits. Original image of size 512 × 512.

(a) (b)

Fig. 9. Fruits. (a) 4044 most significant pixels output by AT2 and (b) their
Delaunay triangulation.

Adaptive Thinning 335

(a)

(b)

Fig. 10. Fruits. Compression at 0.185 bpp and reconstruction by (a) SPIHT with
PSNR 32.33 db and (b) AT∗

2 with PSNR 31.85 db.

336 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

(a) (b)

(c) (d)

Fig. 11. Reflex. (a) Original image of size 128×128. Compression at 0.251 bpp and
reconstruction by (b) SPIHT with PSNR 30.42 db, (d) AT∗

2 with PSNR 41.73 db.
(c) The Delaunay triangulation of the 384 most significant pixels output by AT2.

We have recorded the results of this example, along with those of the
following test case, in Table 1.

A Popular Test Case of a Real Image

We considered also applying our compression scheme AT∗
2 to one popular test

case of a real image, called Fruits, which is also used as a standard test case
in the textbook [22]. The original image Fruits, of size 512×512, is displayed
in Fig. 8.

It is remarkable that our compression scheme AT∗
2 is, at low bit-rates,

quite competitive with SPIHT. This is confirmed by the following comparison
between SPIHT and AT∗

2 at the bit-rate 0.185 bpp. The different PSNR values
are shown in the second row of Table 1. Note that the PSNR obtained by AT∗

2

is only slightly smaller than that obtained by SPIHT.

Adaptive Thinning 337

Now let us turn to the visual quality of the reconstructions. The recon-
struction by SPIHT is shown in Fig. 10 (a), whereas Fig. 10 (b) shows the
reconstruction by AT∗

2.
The set Y of most significant pixel positions obtained by AT2, along with

its Delaunay triangulation D(Y), are displayed in Fig. 9. Note that by the
distribution of the most significant pixels, the main features of the image,
such as sharp edges and silhouettes, are captured very well. Moreover, our
compression scheme AT∗

2 manages to denoise the test image Fruits quite
successfully, in contrast to SPIHT.

On balance, in terms of the visual quality of the two reconstructions of
Fruits, we feel that our compression scheme AT∗

2 is at least as good as
SPIHT.

Table 1. Comparison between the compression schemes SPIHT and AT∗
2.

Peak Signal to Noise Ratio (PSNR)
Test Case bpp SPIHT AT∗

2

Reflex 0.251 30.42 41.73
Fruits 0.185 32.33 31.85

Acknowledgements

The assistance of Konstantinos Panagiotou, Bertolt Meier, Eugene Rudoy,
Georgi Todorov and Rumen Traykov with the implementation of the compres-
sion schemes and the preparation of the numerical examples is gratefully ap-
preciated. The authors were partly supported by the European Union within
the project MINGLE (Multiresolution in Geometric Modelling), HPRN–CT–
1999–00117.

References

1. Å. Björck. Numerical Methods for Least Squares Problems, SIAM, Philadelphia,
1996.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd edition. MIT Press, Cambridge, Massachusetts, 2001.

3. G. M. Davis and A. Nosratinia. Wavelet-based image coding: an overview, Appl.
Comp. Control, Signal & Circuits, B. N. Datta (ed), Birkhauser, 205–269, 1999.

4. L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at
variable resolution. Proceedings of IEEE Visualization 97:103–110, 1997.

5. L. Demaret and A. Iske. Scattered data coding in digital image compression.
Curve and Surface Fitting: Saint-Malo 2002, A. Cohen, J.-L. Merrien, and
L. L. Schumaker (eds.), Nashboro Press, Brentwood, 107–117, 2003.

338 Laurent Demaret, Nira Dyn, Michael S. Floater, and Armin Iske

6. L. Demaret and A. Iske. Advances in digital image compression by adaptive
thinning. To appear in the MCFA Annals, Volume III, 2004.

7. N. Dyn, M. S. Floater, and A. Iske. Univariate adaptive thinning. Mathematical
Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L. L. Schumaker
(eds.), Vanderbilt University Press, Nashville, 123–134, 2001.

8. N. Dyn, M. S. Floater, and A. Iske. Adaptive thinning for bivariate scattered
data. J. Comput. Appl. Math. 145(2):505–517, 2002.

9. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point
strategy for progressive image sampling. IEEE Transactions on Image Process-
ing 6(9):1305–1315, Sep 1997.

10. M. S. Floater and A. Iske. Thinning algorithms for scattered data interpolation.
BIT 38:705–720, 1998.

11. R. J. Fowler and J. J. Little. Automatic extraction of irregular network digital
terrain models. Computer Graphics 13:199–207, 1979.

12. C. Gotsman, S. Gumhold, and L. Kobbelt. Simplification and Compression of 3D
Meshes. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak,
and M. S. Floater (eds.), Springer-Verlag, Heidelberg, 319–361, 2002.

13. P. S. Heckbert and M. Garland. Survey of surface simplification algorithms.
Technical Report, Computer Science Dept., Carnegie Mellon University, 1997.

14. D. S. Hochbaum (ed.). Approximation algorithms for NP-hard problems. PWS
Publishing Company, Boston, 1997.

15. A. Iske. Progressive scattered data filtering.
J. Comput. Appl. Math. 158(2):297–316, 2003.

16. J. Lee. Comparison of existing methods for building triangular irregular net-
work models of terrain from grid digital elevation models. Int. J. of Geographical
Information Systems 5(3):267–285, 1991.

17. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer, New
York, 1988.

18. A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set
partitioning in hierarchical trees, IEEE Trans. Circuits and Systems for Video
Technology 6:243–250, 1996.

19. L. L. Schumaker. Triangulation methods. Topics in Multivariate Approximation,
C. K. Chui, L. L. Schumaker, and F. Utreras (eds.), Academic Press, New York,
219–232, 1987.

20. D. B. Shmoys. Computing near-optimal solutions to combinatorial optimization
problems. DIMACS, Ser. Discrete Math. Theor. Comput. Sci. 20:355–397, 1995.

21. D. Taubman. High performance scalable image compression with EBCOT, IEEE
Trans. on Image Processing, July 2000, 1158–1170, 2000.

22. D. Taubman and M. W. Marcellin. JPEG2000: Image Compression Fundamen-
tals, Standards and Practice, Kluwer, Boston, 2002.

Simplification of Topologically Complex
Assemblies

Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

Department of Computer Science, Universitat Politècnica de Catalunya,
Barcelona, Spain
andujar@lsi.upc.es

Summary. In this paper we present a new simplification approach intended for
scenes containing a huge number of simple objects forming a topologically complex
assembly. Our method combines appearance preservation and topology reduction
by converting a 3D model to and from an intermediate octree representation. Dur-
ing the conversion of the input mesh into an octree, appearance attributes such as
colour are stored in the octree nodes. Unlike related approaches, the inside/outside
values at octree vertices are computed according to neighbourhood configuration
rather than by direct sampling. This allows the reconstructed surface to span only a
reduced subset of the terminal nodes of the octree (those which are classified as bor-
der nodes), thus avoiding small cracks and removing internal structures not visible
from the outside. The reconstruction step of our method succeeds in preserving the
appearance of most of the scene objects while drastically simplifying the geometry
and topology.

1 Introduction

Over the last few years, many different approaches for surface simplification
have been proposed. Most simplification methods seem to be optimised for
simplifying a single densely-tessellated surface. Scenes containing a huge num-
ber of objects forming a complex assembly pose a serious problem in most sur-
face simplification methods, which are unable to modify the topology of the
model. Some methods attempt topological simplification (reviewed in Sect. 2)
but they are based on error metrics defined on the boundary surface of the
objects thus limiting the amount of topology reduction. Volume-based mod-
els [8, 2] provide a convenient framework for controlled topology reduction.
However, these methods do not address the problem of preserving surface-
appearance attributes such as colour and orientation.

In this paper we present a new simplification method specifically designed
for scenes containing millions of simple objects forming a topologically com-
plex assembly (see Fig. 6). Our method combines appearance preservation

340 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

and topology reduction by converting a 3D model to and from an interme-
diate octree representation. The algorithm extends the framework proposed
in [2] with two significant contributions: improved surface fitting and colour
preservation.

Our simplification algorithm proceeds through three major steps. First,
during the discretisation step, the input model is converted into an octree.
Then, a polygonal surface is extracted from the octree using a corrected Dis-
cretized Marching Cubes [14] algorithm which only depends on the octree
nodes. Finally, the topology-reduced surface is further simplified by the iter-
ative application of edge collapses driven by a quadric error metric [6]. The
discretisation and reconstruction steps have been designed to preserve colour
information and the orientation of important faces.

A key aspect of our method is that, unlike related approaches, the in-
side/outside values at octree vertices are computed according to neighbour-
hood configuration rather than by direct sampling. This allows the recon-
structed surface to extend across a reduced subset of the terminal nodes of
the octree (those which are classified as border nodes), thus aggregating dis-
connected components and removing internal structures which are not visible
from the outside.

Our method is intended to be used in combination with classic surface sim-
plification methods: the leaf nodes of the scene graph containing single objects
are simplified using existing surface-based simplification methods, whereas
intermediate nodes containing complex assemblies are simplified using our
method.

The remainder of this paper is organised as follows: Sect. 2 surveys
some previous work on the subject focusing on topology-reducing methods,
appearance-preservation and feature-sensitive surface extraction. Sect. 3 out-
lines volume-based simplification and presents an overview of the algorithm.
Octree reconstruction and appearance preservation are explained respectively
in Sects. 4 and 5. In Sect. 6 some results are discussed and compared with
alternative methods. Finally, Sect. 7 provides concluding remarks and plans
for future work.

2 Previous Work

Many automatic simplification algorithms have been published in recent years,
and detailed discussion of them is beyond the scope of this paper. The inter-
ested reader is referred to [13] for a survey.

Surface simplification literature has focused mainly on simplification al-
gorithms tuned for highly-tessellated, topologically-simple surfaces, which are
frequently modelled as triangular meshes. Most methods follow a top-down
strategy, performing face reduction directly on the mesh by the iterative ap-
plication of reduction operators. In the rest of this section, we concentrate

Simplification of Assemblies 341

on topology simplification algorithms and feature-preserving reconstruction
using volume data.

Vertex clustering methods [17, 12] group nearby vertices into clusters, and
then replace all vertices inside a cluster by a single vertex. Pair contraction
methods proceed by the iterative elimination of geometric entities through
a local transformation consisting in joining a pair of vertices not necessar-
ily connected by an edge. These methods differ basically in the decimation
criteria adopted [6, 16, 4, 18, 11]. All these pair-contraction methods allow
topological changes in regions with nearby vertices, but they do not identify
and remove triangles that become internal after genus reductions. El-Sana
and Varshney [3] proposed a controlled topology simplification scheme based
on the notion of alpha-hulls. Alpha prisms are constructed in regions with
holes and cavities, and their union is performed by computing their pairwise
intersections. This method reduces the genus, removes protuberances and fills
cracks, although it does not aggregate unconnected components.

Volume-based methods achieve topology simplification by converting a 3D
model to and from a volumetric representation. Andujar et al. [1] proposed a
simplification algorithm that worked by using an octree as the intermediate
model. A two-manifold surface was computed from the octree by a discretized,
orthogonal version of Marching Cubes, and the final surface was obtained by
a further decimation of the reconstructed surface. He et al. [8] proposed a
similar topology reduction strategy, based on the discretisation into volume
rasters followed by isosurface extraction. Andujar et al. [2] extended their ini-
tial method to general models by a further decimation of the reconstructed
surface, and they proposed a general framework for volume-based simplifica-
tion.

Another group of algorithms can perform feature-preserving reconstruc-
tion and simplification. They use intermediate volume representations (or re-
quire volume input data), and they have evolved from the Marching Cubes
algorithm, trying to obtain more compact final representations. Montani et
al. [14] proposed the Discretized Marching Cubes (DMC) algorithm to com-
pact the resulting Marching Cubes isosurface. Using a very small set of planes
to approximate the isosurface, a very compact surface is obtained. In [10]
and [15] two different approaches are proposed to obtain high quality isosur-
face approximations while maintaining sharp features. The algorithm in [15]
is based on a mesh evolution process where three different filters are combined
to control the smoothness of the extracted surface. The approach by Kobbelt
et al. [10] maintains the original simple structure of the Marching Cubes algo-
rithm (using a vector distance field evaluated at the mesh points). It identifies
the cells that contain sharp edges of the original surfaces and additional sam-
ple points lying on the features are computed and inserted into the mesh. A
similar dual approach is presented in [9].

342 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

3 Algorithm Overview

We aim to produce level-of-detail simplifications suitable for accelerating nav-
igation through complex scenes containing hundreds of objects. These scenes
are common in many application areas such as ship building and chemical
plant design. Given such a scene, we want to precompute level-of-detail rep-
resentations both for single objects and for groups of objects forming an as-
sembly. Approximations at intermediate levels of the scene graph make sense
because such approximations can be cheaper owing to topology changes (e.g.
aggregation, genus reduction) and removal of internal structures (e.g. double
walls, cavities and even full parts enclosed by other objects and therefore not
visible from the outside). Current approaches do not address these problems.

Our method starts by building a new hierarchy of objects. CAD models
often exhibit hierarchies based on semantics rather than geometric proximity
criteria. Since this grouping is not suitable for LOD generation, we build a
new hierarchy using a simplified version of [7], keeping the original graph only
for selection and interrogation purposes. Note that in industrial applications,
such as ship design, having a good spatial hierarchy and hierarchical levels of
detail is mandatory. Object grouping is discussed in more detail in Sect. 5.

The next step is to compute LOD representations at several levels of the
new visualisation-friendly scene-graph. LOD representations at the leaves are
computed using existing surface simplification methods. At this level volume-
based techniques are not suitable because not many topology changes are
likely to happen and, for a small error threshold, surface-based approaches
are efficient and provide high-quality approximations. Our current implemen-
tation uses a sequence of edge collapses driven by a quadric error metric [5]
for simplifying single objects.

On the other hand, LOD representations at intermediate levels (i.e. for
groups of objects or assemblies) are produced using our method. Each assem-
bly has to be simplified so that its face count is less than the sum of faces of its
sons. This way LOD switch management is straightforward because switching
to a higher level never increases the face count.

Assembly simplification proceeds through three major steps: discretisation,
reconstruction and face reduction. First, during the discretisation step, the
input model is converted into an octree having its terminal nodes labelled
as black, white or terminal grey. Black and white nodes correspond to cubic
regions completely inside (resp. outside) the input model, and terminal grey
nodes correspond to cubic regions traversed by the boundary of the input
model. From now on terminal grey nodes will be referred to as TG nodes. All
TG nodes occur at the same user-provided maximum subdivision level.

The next step is the conversion of the octree back to a polyhedral surface.
We compute a triangle mesh by first computing a 3D grid and then applying
Marching Cubes over it. The reconstruction starts with a traversal of the
octree looking for border terminal grey (BTG) nodes. A TG node is said to be
border if it has at least one 26-neighbour labelled as white (see Fig. 1). The

Simplification of Assemblies 343

(a) (b) (c)

Fig. 1. Terminal grey node classification: (a) input model (three objects); (b) inte-
rior of the octree showing node classification; (c) reconstruction (one component).

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 2. Patterns for non-ambiguous configurations from (top) Discrete Marching
Cubes and (bottom) Orthogonal Reconstruction.

grid definition, above, implies that only a reduced subset of the TG nodes
are reconstructed and this is the key to achieving aggregation of disconnected
point sets [2] (see Fig. 1).

Regarding the reconstruction from the octree, our two main contributions
are related to appearance preservation. The first one deals with colour preser-
vation and it is discussed in Sect. 5. The second one is related to geometry
fitting. The main idea is to use the original geometry for reconstructing BTG
nodes whenever possible, using an approach similar to Extended Marching
Cubes [10]. Details are given in Sect. 4. At this point the two-sided Haus-
dorff distance between the interior points of the original solid and the interior
points of the extracted solids is guaranteed to be less than the length of the
main diagonal of terminal octree nodes.

At this point the original surface has been converted into a new, error-
bounded, two-manifold mesh. The last step is a simplification process through
a sequence of edge collapses again driven by quadric error metrics. Note that
since the input of this simplification stage is guaranteed to be a two-manifold
without boundary, there is no need to use boundary preservation planes for
weighting the quadrics. An important difference with respect to volume-based

344 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

Fig. 3. Connectivity on a BTG face. A BTG face subdivided into eight octants and
the surface traversing it (top); schematic view of the edges being intersected by the
surface (middle); connectivity graph (bottom). Note that the surface might intersect
the BTG face while not intersecting any BTG edge; this is represented in the graph
as a face node (right).

methods [2] is that during the simplification process, the surface is not re-
stricted to lie inside the set of BTG nodes. That means that the error bound
provided by the octree depth no longer applies. However, our experiments
show that omitting this restriction at this stage allows for better approxima-
tions and shorter running times.

Before simplifying an assembly we filter its open surfaces. These will be
simplified separately as single objects because our method would produce an
approximation for both sides of the open surface. After filtering, each assembly
is converted into an octree. Colour preservation at this stage is discussed in
Sect. 5. Note that, as a by-product of the octree construction, we have available
the list of input faces passing through each BTG node.

4 Feature-preserving Reconstruction

The input to the reconstruction process is an octree corresponding to a group
of objects from the scene being simplified. We aim to compute a new poly-
hedral surface from the octree which tries to simplify the topology while pre-
serving, as far as possible, the main features of the original model.

A key concept is the distinction between feasible and infeasible BTG nodes.
This distinction is based on comparing the original surface S traversing a BTG
node (which is available as a by-product of the octree construction) and the
new surface S′ that will be produced by Marching Cubes over its octants. A

Simplification of Assemblies 345

// identify feasible nodes
for each BTG n

if connectivityMC(n) == connectivityOrig(n) then
computeVertexPositionsAndNormals() // exact intersection
// at this point loops are completely determined
connectLoopsIntoSheets() // uses MC lookup table
if featureNode(n) then addVertices() endif
triangulateLoops() // triangle fan for each sheet

endif
end for

// identify infeasible nodes
for each BTG n

if connectivityMC(n) != connectivityOrig(n) then
completeLoops() // midpoint selection
connectLoopsIntoSheets() // uses MC lookup table
if featureNode(n) then addVertices() endif
triangulateLoops() // triangle fan for each sheet

endif
end for

Fig. 4. Reconstruction algorithm.

BTG node is said to be feasible if S and S′ intersect the BTG faces with the
same connectivity. This connectivity can be encoded by the following graph,
G = (V,E) (see Fig. 3): each node ofG is assigned to an edge of the BTG node,
and there is a link between two nodes in V if and only if the two corresponding
edges are intersected by a connected component of S (resp. S′).

The reconstruction algorithm is shown in Fig. 4. The algorithm performs
two similar traversals of BTG nodes (the only octree nodes that will generate
geometry), the former only processing feasible BTG nodes and the later pro-
cessing infeasible BTG nodes. Triangles inside each BTG node are created as
the algorithm processes them.

The first traversal proceeds as follows. First, feasible BTG nodes are de-
tected by comparing the connectivity of the surface that will be produced by
a MC reconstruction with the connectivity of the original surface. This com-
parison can be done quickly by comparing the connectivity graph for the six
faces of the BTG node (Fig. 3). In our current implementation we extend each
entry of the MC look-up table with the connectivity graph of the six faces to
speed-up the comparison process. If the node is identified as feasible, then we
compute the exact vertex position and vertex normals by intersecting the orig-
inal surface inside the node with the edges of the BTG node. Recall that the
original surface inside the node is available as a by-product of the octree con-
struction. At this point the loops (the intersection of the output surface with
BTG faces) have been completely determined: the topology is given by the
MC look-up table, and the vertex positions and normals have been computed

346 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

by exact intersection rather than by linear interpolation. Before connecting
the loops to form triangles, we check whether the node includes a feature. We
use a detection method similar to [10] using the exact vertex normals com-
puted at the vertices. The triangles are finally created by triangulating the
loops including the sampled vertices.

The second step performs an almost identical traversal, but this time only
infeasible BTG nodes are processed and exact intersections are replaced by
midpoint selection.

Maximum deviation and topology reduction are controlled through the
maximum subdivision levels. Two originally disconnected point sets A and B
will be aggregated in those regions where nodes in BTG(A) are 6-adjacent to
nodes in BTG(B). A tunnel is closed in those regions where its TG nodes form
a single 6-connected component (i.e. when terminal nodes are large enough to
keep white nodes from appearing inside the hole).

There is a drawback of trying to preserve the original geometry on the
reconstruction step: unlike [2], the output of our method is no longer inde-
pendent of the way the input surface is tessellated. However, this is a minor
drawback which in practice simply keeps exact edges from appearing when
using small subdivision levels.

5 Colour Preservation

This section presents our approach for preserving colour during the different
steps of our simplification process. We also provide two alternative methods
which are compared in Sect. 6.

Preserving colour in our approach implies keeping track of colour infor-
mation during the discretisation, reconstruction and face reduction processes.
During discretisation we assign to each BTG node a colour which depends
on the input faces traversing it. This colour will be referred to as the BTG
colour. Our current implementation simply selects the colour of the largest face
traversing the node. Our experiments show that this choice provides better
colour uniformity than averaging colours. During reconstruction, a colour is
assigned to each new vertex created inside a BTG node. If the vertex belongs
to a feature node, it simply inherits the colour of the corresponding input
face; otherwise, it inherits the BTG colour. Note that neighbour BTG nodes
can assign the same vertex with a different colour because vertices are shared
by up to four BTG nodes. In this case we consider these vertices separately,
although referring to the same point. Before entering the face reduction stage,
we group triangles into groups of similar colour before doing edge collapses.
At this point colour differences can be computed in any appropriate colour
space (RGB, CIE,. . .). We simply measure RGB difference because our target
CAD models use a small colour palette. Therefore our current implementation
simply partitions the extracted mesh into face sets with homogeneous colour.
This is possible due to the largest-face colour choice discussed above. Finally,

Simplification of Assemblies 347

each group of faces with similar colour is simplified using the quadric error
metric presented in [5].

We now present two alternative approaches for managing colour preserva-
tion. The first alternative consists in omitting the colour segmentation prior
to the face reduction step. In this case, colour preservation is left completely
to the metric which drives the edge collapses [5]. Our experiments show that
our approach provides better approximations in models containing a reduced
subset of colours such as the CAD models targeted by our method. The sec-
ond alternative consists in performing the colour segmentation right at the
beginning of our approach, i.e. before discretisation. More precisely, we group
objects in the input scene first by colour and then by geometric proximity.
As we show in Sect. 6, this alternative requires longer computation times and
does not result in better approximations.

6 Results and Discussion

Our simplification algorithm has been implemented and tested on three CAD
models. The engine model includes 1,976 objects comprising engine parts,
piping and diverse equipment. The oil tanker model includes 4,096 objects
comprising also the hull, bulkheads, pillars and covers. The taxi model includes
21 disconnected shells.

Fig. 5 shows our results on the engine model. The model features 92,876
triangles, although from the selected viewpoint only 45,659 of them are visible.
Fig. 5(b) shows the output of our simplification method. More precisely, the
image corresponds to the eight LOD representations created at the fourth
level of the scene graph. The resulting number of triangles is 6,947 (about
an 84% reduction on the original); note that the overall appearance has been
preserved. Fig. 5(c) shows the output produced by the alternative method
consisting in taking into account colour during hierarchy creation. As we can
see, overall appearance has also been preserved quite well but the running
times for generating these simplifications are much more expensive (around 3
times greater in this example – see Table 1). Fig. 5(d) has been generated by
omitting the colour separation process. Notice that some polygons exhibit a
noticeable colour degradation. Fig. 6 shows our results on the oil tanker The
oil tanker model has 235,088 triangles, although from the selected viewpoint
only 115,103 of them are visible.

Fig. 7 shows our results on the taxi model and compares them with QS-
lim [6]. The original model has 37,380 triangles. The simplifications on the top
have 2,332 (QSlim) and 2,130 triangles (our approach). Our method guaran-
tees a two-manifold result even when the original model is not. Note how the
frontal part of the car, which had many shells, has been aggregated with our
method into a single connected component.

Running times for the test models on a Pentium III at 800MHz are sum-
marised in Table 1. These times include all the steps, from hierarchy creation

348 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

(a) Original model (b) Simplified with our method

(c) With colour separation at the be-
ginning

(d) Without colour separation

Fig. 5. [Reproduced in colour in Plates 17 and 18.] Results on the engine model.

to face reduction. We would like to point out that our code has not been
particularly optimised.

Note that our method might slightly enlarge some objects, but no object
disappears unless aggregated with a nearby object. This behaviour contrasts
with most surface-based methods which tend to collapse and remove small dis-
connected objects. We think that in some applications, such as design reviews
of CAD models, it is more suitable to avoid this latter behaviour.

Simplification of Assemblies 349

(a) Original image

(b) Simplified with our method

Fig. 6. [Reproduced in colour in Plate 19.] Results on the oil tanker model.

350 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results on the taxi model compared to QSlim [6]. Original model (left);
Simplification generated by QSlim (middle) and simplification generated by our
algorithm (right).

Table 1. Running times for the test models in Figs. 5 and 6.

Faces reduction % CPU time

Fig. 5(a) 45,659

Fig. 5(b) 6,947 84.8% 4 min 9 s

Fig. 5(c) 6,945 84.8% 15 min 18 s

Fig. 5(d) 6,979 84.7% 4 min 14 s

Fig. 6(a) 115,103

Fig. 6(b) 57,984 49.7% 9 min 4 s

7 Conclusions and Future Work

We have presented a new simplification approach intended for generating
LOD-representations of scenes containing hundreds of simple objects. Our
method is intended to be used in combination with other surface simplifica-
tion methods: the leaf nodes of the scene graph containing single objects are
simplified using existing surface-based simplification methods, whereas inter-
mediate nodes containing complex assemblies are simplified using our method.

Simplification of Assemblies 351

Our method combines appearance preservation and topology reduction.
Unlike other volume-based approaches, the inside/outside values at octree ver-
tices are computed according to neighbourhood configuration rather than by
direct sampling. This allows the reconstructed surface to span only a reduced
subset of the terminal nodes of the octree, thus enabling topology changes
such as removal of internal structures not visible from the outside.

Due to the adopted colour definition scheme, the approximations produced
by our method extend across the set of BTG nodes and completely enclose
interior TG nodes. Surfaces inside interior TG nodes are not reconstructed be-
cause during visualisation they would be occluded by the new boundary. Since
internal structures, which are not visible from the outside, are automatically
removed, our method can be seen as a combination of surface simplification
and view-independent occlusion culling.

We plan to experiment with other strategies for assigning octree nodes
with vertex colours; particularly, we want to explore the use of normal vectors
for limiting the number of faces that are considered when selecting the largest
face inside a node.

Through simple octree operations, our approach provides a convenient
framework for non-penetrating simplification, i.e. approximations completely
bounding or completely enclosed inside the input solid. We plan to study
the use of bounding approximations along with sampled texture maps using
RGBA colour where alpha values are used to clip the approximation to the
original silhouette.

Acknowledgements

This work has been partially funded by the projects TIC2000–1009 and
TIC2001–2226–C02–01 from the Spanish government. We would like to thank
Sener, Ingenieŕıa y Sistemas for providing the ship models and Amazing 3D
Graphics for the taxi model.

References

1. C. Andújar, D. Ayala, P. Brunet, R. Joan-Arinyo, and J. Solé. Automatic
generation of multiresolution boundary representations. Computer Graphics
Forum, 15(3), 1996.

2. C. Andújar, P. Brunet, and D. Ayala. Topology-reducing surface simplification
using a discrete solid representation. ACM Transactions on Graphics, 21(2):88–
105, 2002.

3. J. El-Sana and A. Varshney. Topology simplification for polygonal virtual envi-
ronments. IEEE Transactions on Visualization and Computer Graphics, 4(2),
April–June 1998. ISSN 1077-2626.

4. J. El-Sana and A. Varshney. Generalized view-dependent simplification.
18(3):83–94, 1999.

352 Carlos Andújar, Marta Fairén, Pere Brunet, and Vı́ctor Cebollada

5. M. Garland and P. Heckbert. Simplifying surfaces with color and texture using
quadric error metrics. In IEEE Visualization ’98, pages 263–269. IEEE, 1998.

6. M. Garland and P. S. Heckbert. Surface simplification using quadric error met-
rics. In Proc. ACM SIGGRAPH ’97, pages 209–216. Addison Wesley, August
1997.

7. G. Müller and S. Schäfer and D. Fellner. A rapid clustering algorithm for efficient
rendering. In Eurographics Conference, short paper, 1999.

8. T. He, L. Hong, A. Varshney, and S. W. Wang. Controlled topology simplifi-
cation. IEEE Transactions on Visualization and Computer Graphics, 2(2):171–
184, 1996.

9. T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.
In Proc. ACM SIGGRAPH 2002, pages 339–346, 2002.

10. L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive
surface extraction from volume data. In Proc. ACM SIGGRAPH 2001, pages
57–66, 2001.

11. P. Lindstrom and C. Silva. A memory insensitive technique for large model
simplification. In Proc. IEEE Visualization 2001, pages 121–126, 2001.

12. K.-L. Low and T.-S. Tan. Model simplification using vertex-clustering. In Proc.
Symposium on Interactive 3D Graphics, New York, 1997. ACM Press.

13. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of Detail for 3D Graphics. Morgan Kaufmann publishers, 2003.

14. C. Montani, R. Scateni, and R. Scopigno. Discretized Marching Cubes. In
Visualization’94, pages 281–287. IEEE Computer Society Press, 1994.

15. Y. Ohtake and A. Belyaev. Mesh optimization for polygonized isosurfaces. Com-
puter Graphics Forum, 20(3), 2001.

16. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. ACM
SIGGRAPH ’97, pages 217–224, August 1997.

17. J. Rossignac and P. Borrel. Multiresolution 3D approximations for rendering
complex scenes. In Modeling in Computer Graphics. Springer-Verlag, 1993.

18. W. J. Schroeder. A topology modifying progressive decimation algorithm. In
IEEE Visualization ’97, pages 205–212. IEEE, November 1997.

Topology Preserving Thinning of Vector Fields
on Triangular Meshes

Holger Theisel, Christian Rössl, and Hans-Peter Seidel

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{theisel|roessl|hpseidel}@mpi-sb.mpg.de

Summary. We consider the topology of piecewise linear vector fields whose domain
is a piecewise linear 2-manifold, i.e. a triangular mesh. Such vector fields can de-
scribe simulated 2-dimensional flows, or they may reflect geometric properties of the
underlying mesh. We introduce a thinning technique which preserves the complete
topology of the vector field, i.e. the critical points and separatrices. As the theo-
retical foundation, we have shown in an earlier paper that for local modifications
of a vector field, it is possible to decide entirely by a local analysis whether or not
the global topology is preserved. This result is applied in a number of compression
algorithms which are based on a repeated local modification of the vector field –
namely a repeated edge-collapse of the underlying piecewise linear domain.

1 Introduction

Topological methods have had become a standard tool for visualising 2D vec-
tor fields because they give the opportunity to represent even complex flow
structures by only a small number of graphical primitives. Since the intro-
duction of topological methods as a visualisation tool in [11], a number of ex-
tensions and modifications of topological concepts have been introduced. The
original work [11] considered only first order critical points, i.e. critical points
with a non-vanishing Jacobian matrix. Based on an eigenvector/eigenvalue
analysis, these critical points were classified into sources, sinks and saddles.
Then separatrices starting from the saddle points in the direction of the eigen-
vectors of the Jacobian matrix were integrated. In addition, separatrices from
detachment and attachment points at no-slip boundaries were considered. [14]
treats higher order critical points while [19] considers critical points at infin-
ity. In [3], separatrices starting from boundary switch points are considered
to separate regions of different inflow/outflow behaviour across the boundary
of the flow. [21] considers closed separatrices in the flow. Attachment and sep-
aration lines are treated in [12] as additional topological features. In [2] and
[5], the topology of scalar fields is treated for visualisation purposes. Initial
approaches for visualising 3D topological skeletons are presented in [9].

354 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

Flow data sets to be visually analysed are increasingly large and increas-
ingly complex. To deal with this problem, two general approaches have been
developed which make use of topological concepts: topological simplification
and topology preserving compression of vector fields.

Topology simplification methods are motivated by the assumption that not
all topological features of a vector field have the same importance. This hap-
pens when some of the critical points and separatrices result from noise in the
vector field. The simplest way to solve this problem is to apply a smoothing of
the vector field before extracting the topology [4]. More involved techniques
start with the original topological skeleton and repeatedly apply local modi-
fications of the skeleton and/or the underlying vector field in order to remove
unimportant critical points. They are based on the index theorem for vector
fields which ensures that the sum of the indices of the critical points remains
constant in the modified area. (See [7] or another textbook on vector analysis
for an introduction to the index of critical points and the index theorem.) [3]
uses an area metric to denote unimportant critical points. These points are
repeatedly collapsed to more important critical points in the neighbourhood.
[4] collapses pairs of first order critical points of opposite index (i.e. a sad-
dle is collapsed with a source, sink, or centre). [18] uses a similar approach
but provides a way of consistently updating the underlying vector field. [17]
merges clusters of critical points to a higher order critical point. [20] analyses
the curvature normal of certain time surfaces to obtain a topology-preserving
smoothing of a vector field. The simplification of the topology of scalar fields
(which can be considered as a special case of vector field topology) is treated
in [6] and [1].

Topology preserving compression techniques can be considered as a con-
trasting approach to topology preserving simplification techniques. Here, the
complete topological skeleton is considered to be important, and compres-
sion techniques for the vector field are sought which preserve this topological
skeleton completely. [13] is the first approach at an algorithm to compress a
vector field under the consideration of preserving the characteristics of critical
points. In [15] a method is introduced which preserves not only the critical
points but also the behaviour of the separatrices. Unfortunately, this approach
gives reasonable compression ratios only for vector fields with a rather poor
topology. An approach which gives good compression ratios even for complex
topologies (under consideration of both critical points and separatrices) was
recently presented in [16]. This approach is based on a theorem which shows
that – although the topology of a vector field is a global feature – it can be
decided entirely by a local analysis whether a local modification of the vector
field is going to change the topology. Based on this, repeated local modifica-
tions of the vector field are applied which compress the data set but preserve
its topology.

The vector fields we consider in this paper are piecewise linear: in the 2D
domain there is a finite number of sample points in which a velocity vector
is measured or simulated. To get a vector field, the sample points are trian-

Topology Preserving Thinning of Vector Fields on Triangular Meshes 355

gulated, and a linear interpolation is applied inside each triangle. This way, a
piecewise linear vector field can be considered as a 2D triangular mesh with
velocity information in each vertex. Furthermore, compression approaches for
such vector fields are highly related to thinning approaches for triangular
meshes. Thinning approaches reduce the number of triangles in a mesh by
applying local collapsing operations. This process is steered by minimising
certain error functions between the original and the thinned mesh.

The main approach of this paper is repeatedly to apply half-edge collapses
to piecewise linear vector fields (i.e. a triangular mesh) in such a way that
the topology of the vector field is preserved. This approach is based on the
observation that the topology reflects important properties of the vector field.

The rest of the paper is organised as follows: Sect. 2 gives a short intro-
duction to the topology of 2D vector fields. Sect. 3 introduces a number of
topology based equivalence concepts for vector fields. Based on this, Sect. 4
describes three topology preserving thinning algorithms. One of them was al-
ready presented in [16], the other two are new approaches. Sect. 5 shows the
results while Sect. 6 draws some conclusions.

2 The Topology of 2D Vector Fields

The application of topological methods to a 2D vector field v aims to separate
regions of different flow behaviour in the domain of v. To do so, the topological
skeleton of v has to be extracted. Here we consider the following features for
constructing this skeleton:

• Critical points [11] are isolated points with a vanishing velocity. Based on
an eigenvector/eigenvalue analysis of the Jacobian of v, we distinguish
between sources, sinks, and saddles1.

• Boundary switch points [3] separate outflow regions and inflow regions
across the boundary of the domain of v. (See Fig. 1a for an example.)

• Separatrices [11] are particular stream lines starting either from the saddle
points in the direction of the eigenvectors or from the boundary switch
points in both forward and backward directions.

Fig. 1b shows an example of a topological skeleton.
This system of points and lines separates the domain of v into regions of

similar flow behaviour: considering two points x2 and x3 in the same sector
of the topological skeleton of v, the stream lines passing through x2 and
x3 originate in the same source or inflow region, and terminate in the same
sink or outflow region. Fig. 1c and 1d give an illustration. In this paper we
restrict ourselves to the topological features mentioned above. In particular
1 There are also centre critical points, i.e. focus points of a circular flow. They are

not considered in this paper because they are structurally unstable: adding some
noise to a vector field, a centre becomes a source or a sink.

356 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

a) c)

x2

x1

d)

x3

x2

x1

b)

x3

Fig. 1. (a) Vector field with 2 inflow areas (dotted lines) and 2 outflow areas (solid
lines) across the boundary of the domain; these areas are separated by boundary
switch points (white points); (b) topological skeleton of a vector field consisting of 2
boundary switch points (white points), one boundary outflow region (solid grey line),
one boundary inflow region (dotted grey line), one saddle point (white diamond),
one source (black point), one sink (black point), and the separatrices (black lines);
(c) x2 and x3 are in the same sector of the topological skeleton while x1 is located
in a different one; (d) the stream lines through x2 and x3 start in the same inflow
region and end in the same outflow region while the stream line through x1 shows
a different behaviour: it originates at a source within the domain.

we assume that no higher order critical points [14], closed stream lines [21] or
no-slip boundaries [11] appear in the flow.

3 Topologically Equivalent Vector Fields

In order to evaluate a thinning algorithm on piecewise linear vector fields, we
have to compare the topological skeleton of the original and the compressed
vector field. To do so, a number of topology based equivalence concepts are
possible:

1. Two topological skeletons are equivalent if both their critical points and
separatrices are identical.

2. Two topological skeletons are equivalent if they have the same critical
points (both location and Jacobian matrices), and the corresponding sep-
aratrices end in the same critical points or inflow/outflow regions.

3. The topological skeletons of v1 and v2 are equivalent if there is a one-
to-one map between the critical points of v1 and v2, such that saddles
are mapped to saddles, sources to sources, and sinks to sinks, and corre-
sponding separatrices of v1 and v2 end in corresponding critical points or
inflow/outflow regions.

Note that the equivalence concept 1 is a rather strong one: v1 and v2 are
supposed to have the same critical points (including the Jacobian matrices)
and the same separatrices. Concept 2 relaxes this by allowing that correspond-
ing separatrices have different paths (as long as they end in the same critical
point or inflow/outflow region). In concept 3 we further relax this by allow-
ing the critical points to move, so long as they do not merge or change their
classification.

Topology Preserving Thinning of Vector Fields on Triangular Meshes 357

p0 p1

p2

p3

p4

p5

p6

t1

t2
t3

t4

t5

t6

a)

p1

p2

p3

p4

p5

p6

t2
t3

t4
t5

b)

Fig. 2. Configuration for half-edge collapse p0 → p1; (a) triangles t1, . . . , t6;
(b) new triangles t́2, . . . , t́5.

4 Thinning the Mesh

In this section we discuss three thinning methods each preserving one of the
equivalence concepts mentioned above. All these methods are based on a con-
trolled half-edge collapse of the underlying triangular mesh. This means that
a half-edge collapse is only carried out if it is guaranteed to keep the topology
unchanged (using one of the equivalence concepts from Sect. 3). The whole
process is a greedy optimisation driven by a priority queue. In a 3D setup the
priority of a collapse would be some kind of quality measure, such as distance
to the original surface. In the 2D case we have an additional degree of free-
dom. A natural choice would be to locally apply some difference measure for
flow fields [8, 10]. In our current implementation we merely assign priorities
proportional to edge lengths, preferring short edges for collapse.

The core of this thinning algorithm is therefore an algorithm which decides
if a particular half-edge collapse changes the topology of the whole vector field.

Consider a one-ring around a vertex p0 consisting of the triangles t1, . . . , tn

and the vertices p1, . . . ,pn (see Fig. 2a). We describe three algorithms which
decide if a half-edge collapse p0 → p1 (see Figs. 2a and 2b) changes the
topology of v in the sense of one of the equivalence concepts introduced in
Sect. 3.

A thinning algorithm which preserves equivalence concept 1 can easily be
formulated as

Algorithm 1 (check whether a half-edge collapse p0 → p1 changes the topol-
ogy in the sense of concept 1):

1. If one of the triangles t1, . . . , tn contains a critical point or a part of a
separatrix, stop and prohibit the half-edge collapse.

2. Simulate the half-edge collapse p0 → p1.
3. If one of the new triangles t́2, . . . , ´tn−1 contains a critical point, stop and

prohibit the half-edge collapse.
4. Allow the half-edge collapse and stop.

This algorithm is justified by the fact that any local modification is going
to change the location of a critical point or a separatrix. Hence, a half-edge
collapse can only be allowed in regions without any topological features.

358 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

A thinning algorithm which preserves equivalence concept 2 was intro-
duced in [16]. There it was shown that it can be decided entirely by a local
analysis of the area to be modified, whether or not a local modification (i.e.
a half-edge collapse) preserves the topology. This property is remarkable be-
cause the topology of a vector field is a global feature: a local modification
of a vector field might change the topology at a completely different location.
In [16] it was also shown that to check whether a local modification changes
the topology, a number of points on the boundary of the modified area has
to be collected, and their cyclic order before and after the collapse has to be
compared. This gives the following algorithm:

Algorithm 2 (check whether a half-edge collapse p0 → p1 changes the topol-
ogy in the sense of concept 2):

1. Check if there are critical points inside D′ = (t1, . . . , tn). If so, prohibit
the half-edge collapse and stop.

2. Collect all separatrices which pass through D′. For each separatrix, store
the entry point and exit point of D′ in a cyclic list L1 which is ordered
in the same cyclic order as the points on the closed polygon ((p1,p2),. . . ,
(pn−1,pn), (pn,p1)).

3. If a separatrix enters D′ more than once, prohibit the half-edge collapse2

and stop.
4. Compute the boundary switch points of the vector field on the polygon

((p1,p2),. . . , (pn−1,pn), (pn,p1)), insert these points into L1.
5. Simulate the half-edge collapse p0 → p1 while storing the original config-

uration (to allow an undo of the half-edge collapse).
6. Apply linear interpolation of the vector field inside the new triangles

(p1,p2,p3), (p1,p3,p4), . . . , (p1,pn−1,pn)). Check whether there are crit-
ical points inside one of the new triangles. If so, prohibit half-edge collapse
and stop.

7. Construct a new cyclic ordered list L2 of points on the polygon ((p1,p2),
. . . , (pn−1,pn), (pn,p1)) consisting of the following points:
a) all boundary switch points from step 4 of the algorithm
b) the entry points to D′ of all separatrices
c) the exit points, from D′. These are compute by integrating the stream

lines starting from all points of step 7b of this algorithm inside D′

until they reach the boundary again.
8. Compare the cyclic order of the points in L1 and L2. If the corresponding

points do not have the same cyclic order in L1and L2, prohibit the half-
edge collapse and stop.

9. Allow the half-edge collapse and stop.
2 This is necessary to fulfil the theorem in [16] on which this algorithm is based

upon. In fact, the algorithm is based on the assumption that a local modification
of the vector field does not change the entry points of the separatrices into the
area to be modified. This does not hold any more for re-entering stream lines.

Topology Preserving Thinning of Vector Fields on Triangular Meshes 359

a) d) e)b) c) f)

Fig. 3. Example of algorithm 2; (a) three separatrices passing through D′, and 2
boundary switch points (white circles) are present; the empty boxes are the entry
points of the separatrices into D′ (in integration direction), the solid boxes are
the exit points; (b) cyclic list L1 (grey arrows) after step 2; (c) L1 after step 4;
(d) collecting points of new list L2 after half-edge collapse: after step 7a and 7b;
(e) integrate new stream lines (step 7c); (f) cyclic list L2 after step 7c; half-edge
collapse is allowed, since the corresponding points in L1 and L2 (shown in (c) and
(f)) are in the same order.

a) b) c) d)

Fig. 4. (a) Another example of algorithm 2; (a) three separatrices passing through
D′, and 2 boundary switch points (white circles) are present: L1 consists of the
marked points on the boundary; (b) points of L2 after step 7b; (c) points of L2

after step 7c; edge collapse is not allowed, since the corresponding points in L1 and
L2 (shown in (a) and (c)) are in a different order; (d) example of separatrices which
tend to be very close to each other.

Fig. 3 illustrates an example of this algorithm where an edge collapse is al-
lowed. Figs. 4a – 4c show an example where the algorithm prohibits a half-edge
collapse.

Now we want to modify algorithm 22 to handle equivalence concept 3.
To do so, we have to compare the critical points in D′ before and after the
half-edge collapse if some of the critical points collapsed. We get the following

Algorithm 3 (check whether a half-edge collapse p0 → p1 changes the topol-
ogy in the sense of concept 3):

1. Extract and store the critical points inside D′ = (t1, . . . , tn). If there
is more than one saddle, or if there is more than one source/sink, then
prohibit the half-edge collapse and stop.

2. as in algorithm 2.
3. as in algorithm 2.
4. as in algorithm 2.
5. as in algorithm 2.
6. Apply linear interpolation of the vector field inside the new triangles

(p1,p2,p3), (p1,p3,p4), . . . , (p1,pn−1,pn)). Check the new triangles for

360 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

c) d) e)
a) b)

Fig. 5. (a) 1-ring containing one saddle (white diamond) and one source (black
circle); 3 of the 4 separatrices created by the saddle leave the 1-ring while one ends
in the source; in addition, two separatrices enter the region from outside (hollow
boxes): one ends in the source, the other leaves the region; (b) simulated half-edge
collapse removes the critical points: half-edge collapse is not allowed; (c) another
example of a 1-ring containing one saddle (white diamond) and one source (black
circle); (d) simulated half-edge collapse gives two new critical points: one saddle
and one sink; (e) cyclic list L2 after step 7 of algorithm 3; the half-edge collapse is
allowed.

critical points. If the number of saddles or the number of sources/sinks
does not coincide with the numbers found in step 1, prohibit the half-edge
collapse and stop. If there is one saddle, integrate its 4 separatrices until
they leave D′. Store the 4 exit points into a new cyclic list L2 of points
on the polygon ((p1,p2), . . . , (pn−1,pn), (pn,p1)).

7. Insert the following points into L2:
a) as in algorithm 2.
b) as in algorithm 2.
c) as in algorithm 2.

8. as in algorithm 2.
9. as in algorithm 2.

Figs. 5a and 5b illustrate an example of algorithm 3 where the half-edge
collapse is not allowed. Figs. 5c – 5e show an example with an allowed half-
edge collapse.

An analysis of the algorithm in [16], especially on the skin friction data
set (described in the next section), had shown that this data set tends to
have many separatrices very close to each other (see Fig. 4d for an example).
This can be explained with the presence of attachment and separation lines
[12]. For these cases the algorithm in [16] may forbid a half-edge collapse
due to numerical instabilities. To solve this, we collected the entry points of
separatrices at the 1-ring of a vertex to clusters: entry points of separatrices
which are very close to each other3 are set to the same entry point and thus
have the same exit point as well.
3 We used 1/1000 of the length of the boundary edge.

Topology Preserving Thinning of Vector Fields on Triangular Meshes 361

a) b)

c)
d)

Fig. 6. Test data set 1 (flow in a bay area near Greifswald); (a) piecewise triangular
domain of the original data set; (b) domain of the compressed data set (algorithm 1);
(c) domain of the compressed data set (algorithm 2); (d) domain of the compressed
data set (algorithm 3).

5 Results

We applied our thinning algorithms to two test data sets. The first data set
describes (the perpendicular of) the flow of a bay area of the Baltic Sea
near Greifswald in Germany. The data set was created by the Department
of Mathematics, University of Rostock. The data is given as an incomplete
flow data set on a regular 115 x 103 grid. Triangulating the defined cells, we
have a piecewise linear vector field consisting of 14,086 triangles (see Fig. 6a).
Fig. 7a shows the topological skeleton of the vector field. This flow data set

consists of 71 critical points, 44 boundary switch points, and 168 separatri-
ces. Fig. 6b shows the resulting triangular grid after applying algorithm 1.
This grid consists of 4,944 triangles. We can clearly see that areas containing
separatrices or critical points are left untouched by the algorithm. Fig. 7b
shows the topological skeleton after algorithm 1 (which by definition has to
be identical to Fig. 7a).

362 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

a) b)

c) d)

Fig. 7. Test data set 1; (a) topological skeleton of original data set; (b) topological
skeleton of compressed data set (algorithm 1); (c) topological skeleton of compressed
data set (algorithm 2); (d) topological skeleton of compressed data set (algorithm
3).

Applying algorithm 2, we obtained a new piecewise linear vector field which
consists of 660 triangles. Fig. 6c shows the piecewise triangular domain of the
compressed vector field. Fig. 7c shows the topological skeleton of the com-
pressed vector field. The compression ratio is 95.3%. The complete compres-
sion algorithm took 280 seconds on an Intel Xeon 1.7 GHz processor. Figs. 6d
and 7d show the same results for algorithm 3. Here, the number of triangles
was reduced to 374. Fig. 6d shows the resulting triangular grid while Fig. 7d
shows the new topological skeleton.

The second test data set describes the skin friction on a face of a cylinder
which was obtained by a numerical simulation of a flow around a square cylin-
der. The data set was generated by Verstappen and Veldman of the University
of Groningen. This data set is also analysed in [3],[13] and [16]. The data is
given on a rectangular 102 x 64 grid with varying grid size. To get a piecewise
linear vector field, we divided each grid cell into two triangles which gives a
piecewise triangular domain consisting of 12,726 triangles. Fig. 8a shows the

Topology Preserving Thinning of Vector Fields on Triangular Meshes 363

a)

b)

c)

d)

Fig. 8. Test data set 2 (skin friction); (a) piecewise triangular domain of the
original data set; (b) domain of the compressed data set (algorithm 1); (c) domain
of the compressed data set (algorithm 2); (d) domain of the compressed data set
(algorithm 3).

piecewise triangular domain of the vector field. As we can see in this picture,
all triangles there tend to be long and thin. Fig. 9a shows the topological
skeleton of the vector field. This vector field consists of 338 critical points, 34
boundary switch points, and 714 separatrices. Therefore, it can be considered
as a vector field of complex topology. Fig. 8b shows the resulting grid after ap-
plying algorithm 1. This grid consists of 10,680 triangles. As we can see, almost
no thinning took place because the separatrices of this vector field are rather
dense. Fig. 9b shows the topological skeleton after algorithm 1 (identical to

364 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

a)

b)

c)

d)

Fig. 9. Test data set 2 (skin friction); (a) topological skeleton of original data
set; (b) topological skeleton of compressed data set (algorithm 1); (c) topological
skeleton of compressed data set (algorithm 2); (d) topological skeleton of compressed
data set (algorithm 3).

Fig. 9a). By applying our compression algorithm 2, we obtained a vector field
with the piecewise triangular domain shown in Fig. 8c. This domain consists
of 2,153 triangles which gives a compression ratio of 83.1%. Fig. 9c shows the
topological skeleton. The complete compression algorithm took 299 seconds
on an Intel Xeon 1.7 GHz processor. Fig. 8d shows the underlying grid result-
ing from algorithm 3 consisting of 1071 triangles. The topological skeleton of
this vector field is shown in Fig. 9d.

Topology Preserving Thinning of Vector Fields on Triangular Meshes 365

6 Conclusions

We have introduced and compared a number of new topology preserving thin-
ning algorithms for piecewise linear vector fields which are based on one of
the topology based equivalence concepts of Sect. 3. We applied the algorithms
to two test data sets of moderate and complex topology respectively.

Equivalence concept 1 (and its thinning algorithm) gives very poor com-
pression ratios for topologically complex data. This is due to the fact that
the appearance of a critical point or separatrix in a triangle prevents it from
being collapsed.

Equivalence concept 2 gives significant compression ratios even for topolog-
ically complex data sets. Applying this algorithm guarantees that the topo-
logical skeleton of the original and the thinned vector field coincide in the
critical points and the connectivity of the separatrices.

In comparison to equivalence concept 2, concept 3 gives a further reduction
of the number of triangles in the thinned mesh by a factor of approximately
50%. This was achieved for both test data sets. The visualisation of the topo-
logical skeleton shows that the critical points change their locations, but the
change tends to be limited to the neighbourhood of the original critical point.

Acknowledgements

The authors thank Wim de Leeuw for providing the second test data set.
This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. C. Bajaj and D. Schikore. Topology-preserving data simplification with error
bounds. Comput. & Graphics, 22(1):3–12, 1998.

2. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology
for structural enhancement. In Proc. IEEE Visualization ’98, pages 51–58, 1998.

3. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In
Proc. IEEE Visualization ’99, 1999.

4. W. de Leeuw and R. van Liere. Visualization of global flow structures using
multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages
45–52, 1999.

5. T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology preserving
edge contraction. Publ. Inst. Math (Beograd), 66(1999):23–45, 1999.

6. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes
for piecewise linear 2-manifolds. In Proc. 17th Sympos. Comput. Geom. 2001,
2001.

7. P. A. Firby and C. F. Gardiner. Surface Topology, chapter 7, pages 115–135.
Ellis Horwood Ltd., 1982. Vector Fields on Surfaces.

366 Holger Theisel, Christian Rössl, and Hans-Peter Seidel

8. H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikardt, and J. van Wijk.
A continuous clustering method for vector fields. In T. Ertl, B. Hamann, and
A. Varshney, editors, Proc. IEEE Visualization 2000, pages 351–358, 2000.

9. A. Globus and C. Levit. A tool for visualizing of three-dimensional vector fields.
In Proc. IEEE Visualization ’91, pages 33–40. IEEE Computer Society Press,
1991.

10. B. Heckel, G.H. Weber, B. Hamann, and K.I.Joy. Construction of vector field
hierarchies. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visu-
alization ’99, pages 19–26, Los Alamitos, 1999.

11. J. Helman and L. Hesselink. Representation and display of vector field topology
in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.

12. D. N. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and
attachment lines. IEEE Transactions on Visualization and Computer Graphics,
5(2):135–144, 1999.

13. S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology preserving compression
of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.

14. G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing non-
linear vector field topology. IEEE Transactions on Visualization and Computer
Grapics, 4(2):109–116, 1998.

15. H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics
Forum (Eurographics 2002), 21(3):595–604, 2002.

16. H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D vector fields under
guaranteed topology preservation. Computer Graphics Forum (Eurographics
2003), 22(3):333–342, 2003.

17. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method
for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359–366, 2000.

18. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification
of planar vector fields. In Proc. Visualization 01, pages 159 – 166, 2001.

19. I. Trotts, D. Kenwright, and R. Haimes. Critical points at infinity: a missing
link in vector field topology. In Proc. NSF/DoE Lake Tahoe Workshop on Hi-
erarchical Approximation and Geometrical Methods for Scientific Visualization,
2000.

20. R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of
vector fields. IEEE Transactions on Visualization and Computer Graphics,
7(3):222–229, 2001.

21. T. Wischgoll and G. Scheuermann. Detection and visualization of closed stream-
lines in planar flows. IEEE Transactions on Visualization and Computer Graph-
ics, 7(2):165–172, 2001.

Part VII

— Wavelets

Periodic and Spline Multiresolution Analysis
and the Lifting Scheme

Jürgen Prestin1 and Ewald Quak2

1 Institute of Mathematics, University of Lübeck, Germany
prestin@math.uni-luebeck.de

2 Department of Applied Mathematics, SINTEF ICT, Oslo, Norway
Ewald.Quak@sintef.no

Summary. The lifting scheme is a well-known general framework for the construc-
tion of wavelets, especially in finite-dimensional settings. After a short introduction
about the basics of lifting, we discuss how wavelet constructions, in two specific finite
settings, can be related to the lifting approach. These examples concern, on the one
hand, polynomial splines and, on the other, the Fourier approach for translation-
invariant spaces of periodic functions.

1 Introduction

The goal of this contribution is to address how two types of multiresolution
analysis that have been subject to research activities within the MINGLE
project are related to a well-known general framework for the construction
of wavelets, namely the lifting scheme, as introduced by Sweldens [19], see
also Sweldens & Schröder [18], Daubechies & Sweldens [7] and the references
therein. In the original paper [19] the approach is formulated for the whole real
axis, but it can also be used to generate various sorts of “second-generation
wavelets” in finite settings or to describe decomposition and reconstruction
algorithms without ever explicitly working with basis functions. In our paper,
we describe a general finite setting with basis functions and related matrices
that nicely fits the specific types of multiresolution we are most interested
in, namely polynomial splines and periodic functions, yet we do not aim to
address the topic in the full generality given by the concept of stable com-
pletions as described by Carnicer, Dahmen & Pena [1]. Thus we also do not
address in any detail the construction of biorthogonal wavelets on the inter-
val as addressed for example in [10], [6], [16] and [4]. The lifting framework
we want to relate to is the topic of Sect. 2, spline examples are presented in
Sect. 3, and the Fourier approach for periodic functions is covered in Sect. 4.

370 Jürgen Prestin and Ewald Quak

2 Basics of the Lifting Scheme

2.1 Decomposition of a Finite-dimensional Space

We will be dealing with real-valued square-integrable univariate functions de-
fined over a compact interval and we use for simplicity always the standard
inner product 〈·, ·〉. Our setting is strictly finite-dimensional, meaning that a
linear space of functions U of dimension n + m is represented as the direct
sum of two spaces, namely V 0 of dimension n and W 0 of dimension m, i.e.

U = V 0 +W 0. (1)

Let a basis of U be given by functions ϑ0, . . . , ϑn+m−1, a basis of V 0 by
functions ϕ0

0, . . . , ϕ
0
n−1 and a basis of W 0 by functions ψ0

0 , . . . , ψ
0
m−1. For

ease of notation we use column vectors of functions as

ϑ = (ϑ0, . . . , ϑn+m−1)
T
,ϕ0 =

(
ϕ0

0, . . . , ϕ
0
n−1

)T
and ψ0 =

(
ψ0

0 , . . . , ψ
0
m−1

)T
.

Due to (1), there exist matrices P0 of dimension (n+m) × n and Q0 of
dimension (n+m) ×m, such that(

ϕ0

ψ0

)T

= ϑT
(
P0,Q0

)
= ϑT M0. (2)

As the functions are chosen as bases of their respective spaces, the two-scale

matrix M0 is nonsingular and we write
(
M0
)−1 =

(
P̃0, Q̃0

)T

, again with

matrices P̃0 of dimension (n+m) × n and Q̃0 of dimension (n+m) × m,
yielding

ϑT =
(

ϕ0

ψ0

)T (
P̃0, Q̃0

)T

.

Proposition 1. The fact that the matrices M0 and
(
M0
)−1are inverses is

reflected in the matrix relations(
P̃0T

P0 , P̃0T

Q0

Q̃0T

P0 , Q̃0T

Q0

)
=
(

In 0n×m

0m×n Im

)
(3)

and
P0P̃0T

+ Q0Q̃0T

= In+m. (4)

An element h ∈ U can be written as h = f+g, where f ∈ V 0 and g ∈ W 0,
and in the respective basis representations as

ϑT h = ϕ0T

f0 + ψ0T

g0

with coefficient vectors f0, g0 and h of length n,m and n + m, respectively.
We can derive from (3) and (4)

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 371

Proposition 2. Decomposition of the coefficient vector h into the coefficient
vectors of its components is achieved by

f0 = P̃0T

h and g0 = Q̃0T

h,

while reconstruction of the coefficient vector h from the coefficient vectors of
its components is carried out by

h = P0f0 + Q0g0.

In the lazy wavelet approach, the spaces V 0 and W 0 are generated by just
dividing the basis functions into two disjoint groups, typically by separating
the even-index ones from the odd-index ones. For the coefficients this means
that decomposition is even and odd subsampling, and the two-scale matrices
M0 and

(
M0
)−1 are simply permutation matrices.

A different strategy is a hierarchical basis approach. If U and V 0 are given
together with basis functions that are somehow linked to a coarse knot se-
quence τ for V 0 and a refinement t of τ as the knot sequence for U , then it
is natural to define a complement W 0 as the span of those basis functions in
the large space U that can be associated with the newly added knots in t \ τ .
With the matrix P 0 fixed by the choice of basis functions in U and V 0, the
columns of the two-scale matrix Q0 are then some unit vectors in R

n+m, as
determined by the positioning of the new knots with respect to the old ones.

Given once more U and V 0 together with their basis functions, the semi-
orthogonal approach uses the uniquely determined relative orthogonal com-
plement W⊥ of V 0 with respect to U . The term semi indicates that there is
orthogonality between spaces, but each basis need not be an orthogonal basis
of the corresponding space.

Taking the point of view of filtering discrete data, one is more interested
in the properties of the matrices used for decomposition and reconstruction
according to Propositions 1 and 2 than in the actual underlying spaces of func-
tions. A general investigation of the matrix relations (3) and (4) concerning
banded matrices can be found in [5].

2.2 Change of Basis

We now want to replace the direct sum in (1) by another one, where we still
keep the dimensions of the subspaces, such that

U = V +W (5)

with new bases

ϕ = (ϕ0, . . . , ϕn−1)
T and ψ = (ψ0, . . . , ψm−1)

T

372 Jürgen Prestin and Ewald Quak

for V and W , respectively. Note that we leave the basis of U unchanged. Let
a nonsingular change-of-basis or transfer matrix be given by(

ϕ
ψ

)T

=
(

ϕ0

ψ0

)T (
An Bn×m

Cm×n Dm

)
. (6)

Lemma 1. The two-scale matrix in(
ϕ
ψ

)T

= ϑT (P,Q) = ϑT M

and the one in (2) are connected by the same change-of-basis matrix as for
the basis functions in (6), in the sense that

(P,Q) =
(
P0,Q0

)(An Bn×m

Cm×n Dm

)
.

Condition (3) implies(
P̃, Q̃
)T

=
(

An Bn×m

Cm×n Dm

)−1 (
P̃0, Q̃

0
)T

.

Special cases for transfer matrices are of course(
An Bn×m

0m×n Dm

)
and

(
An 0n×m

Cm×n Dm

)
. (7)

The first one leaves the space V 0 intact, and just changes its basis, while the
basis ψ0 is changed so that the complement space W 0 changes to (in general
a different) W . Analogously, the second one leaves the complement space W 0

intact with a change of basis, and replaces ϕ0 and thus the space V 0 by V .
Choosing for the first matrix in addition An as the identity In, leaves also
the basis of the space V 0 unchanged, and analogously the choice of Dm = Im

preserves the basis of the complement space W 0 in the second case.
For what is called lifting, the transfer matrix is even further specialised,

as both blocks on the diagonals in (7) are chosen as identities.

Definition 1. A basis ψ for a new complement space W in the decomposition
(5) is generated from the old basis ψ0 of the old complement space W 0 in (1)
by a lifting step if the change-of-basis matrix has the form(

In Sn×m

0m×n Im

)
.

Analogously a basis ϕ for the new space V in the decomposition (5) is gener-
ated from the old basis ϕ0 of the old space V 0 in (1) by a dual lifting step if
the change-of-basis matrix has the form(

In 0n×m

Sm×n Im

)
.

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 373

The intention of lifting is to change one of the subspaces in (1) by replacing
its given and typically “simpler” basis by a new, in some sense “better” basis
in a straightforward manner, namely by a suitable choice of the free param-
eters which are represented by the coefficients in the matrix S. A significant
advantage of a basis created by a lifting step is that the inverse of its transfer
matrix is very straightforward, namely(

In Sn×m

0m×n Im

)−1

=
(

In −Sn×m

0m×n Im

)
.

Using Lemma 1 this implies

Lemma 2. A lifting step changes the decomposition (1) to U = V 0 + W by
performing the change of basis(

ϕ
ψ

)
=
(

ϕ0

ψ0+ST
n×mϕ0

)
,

and the change in two-scale matrices given by

(P,Q) =
(
P0,Q0+P0Sn×m

)
,(

P̃, Q̃
)T

=
(
P̃0−Q̃

0
ST

n×m, Q̃
0
)T

.

A dual lifting step changes the decomposition (1) to U = V +W 0 through the
change of basis (

ϕ
ψ

)
=
(

ϕ0+ST
m×nψ0

ψ0

)
,

and the change of matrices

(P,Q) =
(
P0+Q0Sm×n,Q0

)
,(

P̃, Q̃
)T

=
(
P̃0, Q̃

0−P̃
0
ST

m×n

)T

.

In terms of Proposition 2 this means that if the original decomposition
matrices P̃0 and Q̃0 are sparse and the matrix Sn×m used to satisfy additional
properties is sparse as well, the lifting scheme produces a better basis that
still allows efficient computations.

2.3 The Biorthogonal Setting

So far we have only considered one decomposition (1). Since there are two
pairs of matrices (P,Q) and

(
P̃, Q̃
)

associated with this decomposition, it is
natural to consider a second related decomposition as well. So we will now be
looking at two sets of decompositions that are dual to each other. Let

374 Jürgen Prestin and Ewald Quak

U = V 0 +W 0,

Ũ = Ṽ 0 + W̃ 0,

with bases for U, V 0,W 0,

ϑ = (ϑ0, . . . , ϑn+m−1)
T
, ϕ0 =

(
ϕ0

0, . . . , ϕ
0
n−1

)T
and ψ0 =

(
ψ0

0 , . . . , ψ
0
m−1

)T
,

and for Ũ , Ṽ 0, W̃ 0,

ϑ̃ =
(
ϑ̃0, . . . , ϑ̃n+m−1

)T

, ϕ̃0 =
(
ϕ̃0

0, . . . , ϕ̃
0
n−1

)T
and ψ̃

0
=
(
ψ̃0

0 , . . . , ψ̃
0
m−1

)T

,

with the corresponding matrices P0,Q0, P̃0 and Q̃0 given by(
ϕ0

ψ0

)T

= ϑT
(
P0,Q0

)
and

(
ϕ̃0

ψ̃
0

)T

= ϑ̃
T
(
P̃0, Q̃

0
)
. (8)

Note that the decomposition Ũ = Ṽ 0 + W̃ 0 typically involves completely
different types of functions from those of the decomposition U = V 0 + W 0.
Only the dimensions of the corresponding spaces are supposed to be the same.
If in this setting the bases in the large spaces U and Ũ are related by biorthog-
onality, and the two-scale matrices are inverse transposes, then the bases of
the component spaces are dual, as formulated in the following result.

Lemma 3. Let the bases of the large spaces U and Ũ be biorthogonal, i.e.〈
ϑ, ϑ̃
〉

=
(〈
ϑi, ϑ̃ı̃

〉)n+m

i,̃ı=1
= In+m, (9)

and let the two-scale matrices be related by(
P0 Q0

) (
P̃0 Q̃0

)T
= In+m. (10)

Then the bases for the subspaces are biorthogonal or dual in the sense that〈(
ϕ0

ψ0

)
,

(
ϕ̃0

ψ̃
0

)〉
=

⎛⎝〈ϕ0, ϕ̃0
〉 〈

ϕ0, ψ̃
0
〉

〈
ψ0, ϕ̃0

〉 〈
ψ0, ψ̃

0
〉
⎞⎠ =

(
In 0n×m

0m×n Im

)
. (11)

In this biorthogonal setting the investigation of a change of bases in the
first decomposition must address how the change of bases in the dual spaces
must be performed to keep the duality of (11) intact.

Lemma 4. For a nonsingular change-of-basis matrix with(
ϕ
ψ

)T

=
(

ϕ0

ψ0

)T (
An Bn×m

Cm×n Dm

)
,

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 375

the change-of-basis matrix for the dual decomposition must be the inverse
transpose to keep the duality intact, i.e. the equation(

ϕ̃

ψ̃

)T

=

(
ϕ̃0

ψ̃
0

)T (
An Bn×m

Cm×n Dm

)−T

results in new, but still dual, decompositions

U = V +W,

Ũ = Ṽ + W̃ ,

where the new bases also satisfy⎛⎝ 〈ϕ, ϕ̃〉
〈
ϕ, ψ̃
〉

〈ψ, ϕ̃〉
〈
ψ, ψ̃
〉
⎞⎠ =

(
In 0n×m

0m×n Im

)
.

In the dual setting the simplicity of a lifting step as a change of basis is
especially significant. Given that for a lifting step the change-of-basis matrix
is (

In Sn×m

0m×n Im

)
,

its inverse transpose is (
In 0n×m

− (Sn×m)T Im

)
,

meaning that a dual lifting step is performed on the dual decomposition,
explaining why the term dual is used in Definition 1.

Corollary 1. A lifting step in U = V 0 + W 0 with Sn×m and a dual lifting
step with − (Sn×m)T in Ũ = Ṽ 0 + W̃ 0 result in the dual decompositions

U = V 0 +W,

Ũ = Ṽ + W̃ 0,

with a new pair of dual bases(
ϕ
ψ

)
=
(

ϕ0

ψ0+ST
n×mϕ0

)
and
(

ϕ̃

ψ̃

)
=

(
ϕ̃0−Sn×mψ̃

0

ψ̃
0

)
,

and matrices

(P,Q) =
(
P0,Q0+P0Sn×m

)
,(

P̃, Q̃
)T

=
(
P̃0−Q̃

0
ST

n×m, Q̃
0
)T

.

376 Jürgen Prestin and Ewald Quak

Corollary 2. A dual lifting step in U = V 0 + W 0 with Sm×n and a lifting
step with − (Sm×n)T in Ũ = Ṽ 0 + W̃ 0 generate

U = V +W 0,

Ũ = Ṽ 0 + W̃ ,

with a pair of new dual bases(
ϕ
ψ

)
=
(

ϕ0+ST
m×nψ0

ψ0

)
and
(

ϕ̃

ψ̃

)
=

(
ϕ̃0

ψ̃
0−Sm×nϕ̃0

)
, (12)

and matrices

(P,Q) =
(
P0+Q0Sm×n,Q0

)
,(

P̃, Q̃
)T

=
(
P̃0, Q̃

0−P̃
0
ST

m×n

)T

.

2.4 Beyond the Original Spaces

So far we have not left the spaces U and Ũ , only changed subspaces and
their bases. A major point in the real axis setting is that given a biorthogonal
setting with finite filters, all other possible pairs with finite filters that are bi-
orthogonal to the original pair can be characterised completely (see Lemma 5
of [19]). Such a characterisation is of course impossible in a finite setting.
According to the lemma below we can, however, say the following. Let U∗

be another, possibly completely different, large space of functions U∗ of the
correct dimension n+m, such that it possesses a basis which is biorthogonal
to the basis of U . Now we can actually generate a decomposition V ∗ +W ∗ of
U∗ by using the two-scale matrices of Ũ to define the basis functions for the
subspaces V ∗ and W ∗. These new basis functions are then still dual to the
ones given by the decomposition of U .

Lemma 5. Given decompositions U = V +W and Ũ = Ṽ + W̃ , with biortho-
gonal bases ϑ and ϑ̃ of U and Ũ , respectively, let the two-scale matrices be
related by (

P Q
) (

P̃ Q̃
)T

= In+m, (13)

so that by Lemma 3,⎛⎝ 〈ϕ, ϕ̃〉
〈
ϕ, ψ̃
〉

〈ψ, ϕ̃〉
〈
ψ, ψ̃
〉
⎞⎠ =

(
In 0n×m

0m×n Im

)
.

Assume that a space U∗ is spanned by ϑ∗ =
(
ϑ∗0, . . . , ϑ

∗
n+m−1

)T , where the
basis ϑ∗ is still biorthogonal to ϑ, i.e. 〈ϑ,ϑ∗〉 = In+m, and introduce a de-
composition U∗ = V ∗ +W ∗ by defining

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 377(
ϕ∗

ψ∗

)T

:= ϑ∗T
(
P̃, Q̃
)
,

with V ∗ and W ∗ spanned by ϕ∗ and ψ∗, respectively. Then the systems ϕ∗

and ψ∗ are also biorthogonal to ϕ and ψ in the sense that(
〈ϕ,ϕ∗〉 〈ϕ,ψ∗〉
〈ψ,ϕ∗〉 〈ψ,ψ∗〉

)
=
(

In 0n×m

0m×n Im

)
.

The two-scale matrices for U∗ = V ∗ +W ∗ remain the same as in (13).

Note that in the classical real axis setting, the basis functions are not just
linked within each space by translation, but also the ones in U and V are
strongly linked, namely by dilation. In this whole section we have never used
such relationships. In the following section, however, we give a short example
explaining how one can go beyond the initial spaces in the real axis setting
by using the fact that the functions in U and V , and Ũ and Ṽ , respectively,
are linked by dilation.

3 Polynomial Splines

3.1 Piecewise Constants

We will start by looking at piecewise constant functions, not so much because
they are typically used as an example, but because they allow us in fact to
investigate a finite setting without too many boundary effects, so that we
can go back to an infinite setting of functions on the whole real axis – as we
would like to do at the end of this subsection – without too many technical
difficulties.

Example 1. Let the interval [0, 1] be partitioned by the knots τj = j/4, j =
0, . . . , 4. This partition is then uniformly refined to ti = i/8, i = 0, . . . , 8. The
space U is the space of piecewise constant functions on the intervals [ti, ti+1)
and the space V 0 is the space of piecewise constant functions on the intervals
[τj , τj+1). Denoting by χ[a,b) the characteristic function of the interval [a, b),
the elementary basis functions of U are ϑi = χ[ti,ti+1), i = 0, . . . , 7, and for
V = V 0 they are ϕj = χ[τj ,τj+1), j = 0, . . . , 3. This fixes the matrix P0 as
given in (14).

A hierarchical complement space W 0 is described by choosing its basis
functions to complement the ϕj ’s with those elements from U that correspond
exactly to the newly added knots, namely ψ0

k = ϑ2k+1, k = 0, . . . , 3, so that

(
P0
)T

=

⎛⎜⎜⎝
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎠ and
(
Q0
)T

=

⎛⎜⎜⎝
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎠ , (14)

378 Jürgen Prestin and Ewald Quak

inducing

(
P̃0
)T

=

⎛⎜⎜⎝
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞⎟⎟⎠ and
(
Q̃0
)T

=

⎛⎜⎜⎝
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1

⎞⎟⎟⎠ .
(15)

According to Definition 1, a general lifting step matrix in this setting is(
I4 S4×4

04×4 I4

)
,

where the entries sk,j of S4×4 can still be chosen freely. The old “wavelets”
ψ0

k are characteristic functions and thus possess no vanishing moments. We
now demand that the new basis functions ψk at least have one vanishing
moment (their integrals be zero). This is reflected by the four conditions that
〈ψk, 1〉 = 0 for all k. With a total of 16 coefficients in S4×4, that leaves us with
a good deal of free parameters. As we want S4×4 to be as sparse as possible,
it turns out that a diagonal matrix is sufficient, namely

S4×4 =

⎛⎜⎜⎝
− 1

2 0 0 0
0 − 1

2 0 0
0 0 − 1

2 0
0 0 0 − 1

2

⎞⎟⎟⎠ .
Lemma 2 gives us the new matrices as

QT =

⎛⎜⎜⎝
− 1

2
1
2 0 0 0 0 0 0

0 0 − 1
2

1
2 0 0 0 0

0 0 0 0 − 1
2

1
2 0 0

0 0 0 0 0 0 − 1
2

1
2

⎞⎟⎟⎠ and P̃T =

⎛⎜⎜⎝
1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

⎞⎟⎟⎠ , (16)

while P0 remains as in (14) and Q̃0 as in (15).
Consequently in this very special case a lifting step has not just created

a new basis (and corresponding complement space) with basis functions that
now all possess one vanishing moment, the new functions are in fact the Haar
wavelets and the new complement space W is in fact the orthogonal com-
plement W⊥, as S4×4 is actually the unique solution to the 16 equations〈
ψk,ϕ

0
j

〉
= 0 for all k, j. That of course is really a special case only valid for

piecewise constants, as we will see in the next subsection.

Example 2. In the setting of Example 1, the functions ϑi form an orthogonal,
but not orthonormal system. It is straightforward to choose a biorthogonal
system as ϑ̃i = 8ϑi for all i, so that Ũ = U . As matrices we choose P0 from
(14), Q̃0 from (15) and as P̃0 and Q0 the matrices from (16), as they satisfy
the condition (10). Then (8) allows it to compute ϕ0

j as used in Example 1,
and their duals are ϕ̃0

j = 4ϕ0
j , with ψ0

k = 1
2ϑ2k+1− 1

2ϑ2k and ψ̃0
k = ϑ̃2k+1−ϑ̃2k.

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 379

In this setting we want to perform a dual lifting step with a matrix S4×4.
Let us say that we want to create new dual wavelets ψ̃k that have three
vanishing moments, as the ψ̃0

k’s have only one according to their construction
above. For k = 1, 2 there are three free parameters, which we can fix by the
conditions for three vanishing moments, i.e. for ei (x) = xi, i = 0, 1, 2, we
demand that

〈
ψ̃k, ei

〉
= 0 for k = 1, 2. A direct computation establishes

S4×4 =

⎛⎜⎜⎝
s0,0 s0,1 s0,2 0
− 1

32 0 1
32 0

0 − 1
32 0 1

32
0 s3,1 s3,2 s3,3

⎞⎟⎟⎠ . (17)

Note here the boundary effect. If we want the boundary wavelets ψ̃k, k = 0, 3,
to have three vanishing moments as well, we have to use all three parameters,
which results in a matrix that is not tridiagonal in the corresponding two
corners. If we want a tridiagonal matrix, the boundary functions can only
have two vanishing moments at most.

As indicated at the end of the previous section, let us now have a quick
look, indicating how the lifting scheme on the real axis actually works to define
new spaces and new types of functions. To this end choose the matrix in (17)
such that we get two diagonals with constant entries, i.e.

Sb
4×4 =

⎛⎜⎜⎝
− 1

32
1
32 0 0

− 1
32 0 1

32 0
0 − 1

32 0 1
32

0 0 − 1
32

1
32

⎞⎟⎟⎠ .
That way the boundary dual wavelets only have one vanishing moment, but
that is not so important. The main point, however, is the expression we can
derive from (12) for the new inner scaling functions, which is in this case
completely free of boundary effects. We obtain for i = 1 (for i = 2 this works
just as well),

ϕ1 = ϕ0
1 − 1

32
ψ0

0 +
1
32
ψ0

2 .

In terms of the fine basis of U that means

ϕ1 = − 1
32

(
1
2
ϑ1 − 1

2
ϑ2

)
+ ϑ3 + ϑ4 +

1
32

(
1
2
ϑ5 − 1

2
ϑ6

)
. (18)

Now recall that in the real axis setting the fine functions are linked to the
coarse ones through dilation. Thus (18) can be re-interpreted as a refinement
equation in the sense that

ϕ (x) = − 1
32

(
1
2
ϕ (2x+ 2) − 1

2
ϕ (2x+ 1)

)
+ ϕ (2x) + ϕ (2x− 1)

+
1
32

(
1
2
ϕ (2x− 2) − 1

2
ϕ (2x− 3)

)
,

380 Jürgen Prestin and Ewald Quak

which defines a completely new scaling function which is, of course, no longer
piecewise constant. The corresponding new wavelet is given by

ψ (x) = −1
2
ϕ (2x) +

1
2
ϕ (2x− 1) .

According to the construction, the functions are biorthogonal to the basis pair
corresponding on the real axis to ϕ̃ = ϕ̃0 and ψ̃ = ψ̃0−S4×4ϕ̃

0, which are still
piecewise constant. As ψ̃ was constructed to have three vanishing moments,
the new function ϕ reproduces polynomials of order three.

The functions ϕ and ψ are of course well-known. The lifting scheme pro-
duced here the biorthogonal pairs originally constructed by Cohen, Daubechies
and Feauveau [3]. In fact a general result of Daubechies and Sweldens [7] shows
how on the real axis any biorthogonal pairs with finite filters (finitely many
two-scale coefficients) can be factored into lifting steps.

3.2 Piecewise Linear Splines

Given the space constraints of this paper, we outline quickly, just using piece-
wise linear splines, how higher order splines behave differently to the simple
piecewise constants of the previous subsection.

Example 3. We investigate the same knot sequences as in Example 2. This
time, however, we consider all piecewise linear functions with respect to the
knots ti as forming the space U , and all piecewise linear functions with respect
to the knots τj as forming the subspace V . As basis functions of these spaces
we consider the “hat” functions (piecewise linear B-splines), that are 1 in
one knot and 0 in all others. We denote by Λti

, i = 0, . . . , 8, the fine hats
for the knots ti, and by λτj

, j = 0, . . . , 4, the coarse hats for the knots τj .
Thus ϑi = Λti

and ϕj = λτj
. Again a hierarchical choice for a basis of a

complement space W 0 is fairly obvious: the fine hat functions corresponding
to the newly inserted knots. So we set ψ0

k = ϑ2k+1 = Λt2k+1 , k = 0, . . . , 3. This
is also called the Faber decomposition, see the tutorial [15]. The matrices P0

and Q0 are also given explicitly there.

In this case the lifting matrix assumes the form(
I5 S5×4

04×5 I4

)
,

where the entries sk,j of S5×4 can still be chosen freely.
The basis elements of W 0 have no vanishing moments at all. So again

we can use the free parameters that are provided through S5×4 to generate
a new basis ψ1

k for a new complement W 1, so that the new functions have
vanishing moments. For piecewise linear functions we thus try

〈
ψ1

k, e0
〉

=〈
ψ1

k, e1
〉

= 0 for all k. On the other hand we would like to have only a few
non-zero coefficients. It turns out that it is possible to satisfy the conditions

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 381

by only involving the two coarse hats neighbouring the fine hat ψ0
k. In fact

the resulting inner functions ψ1
k are symmetric, namely

ST
5×4 =

⎛⎜⎜⎝
− 3

4 − 1
8 0 0 0

0 − 1
4 − 1

4 0 0
0 0 − 1

4 − 1
4 0

0 0 0 − 1
8 − 3

4

⎞⎟⎟⎠ . (19)

Also for linear (and higher order) splines it is then possible to pursue lifting
in a biorthogonal setting, producing Cohen-Daubechies-Feauveau pairs on the
real axis, but we will not pursue that any further here.

Instead we would like to see how a new basis ψ⊥
k spanning the orthogonal

complement W⊥ of V relative to U can be found by performing a lifting of the
Faber basis. Recall that in Example 2, this was already achieved by simply
satisfying the condition of one vanishing moment. The analogous matrix (19),
however, is not sufficient. The condition of orthogonality of V and W⊥ leads
to 20 conditions

〈
ψ⊥

k , ϕ
0
j

〉
= 0, which determine uniquely that

(
S⊥

5×4

)T
=

1
224

⎛⎜⎜⎝
−142 −52 14 −4 2
38 −76 −70 20 −10
−10 20 −70 −76 38
2 −4 14 −52 −142

⎞⎟⎟⎠ .
Consequently, the matrix Q = Q0+P0S⊥

5×4 is dense (see again [15]). We con-
clude that the basis ψ⊥ of the orthogonal complement space generated by
lifting the Faber basis is the one obtained by solving the normal equations for
the fine hats Λt2k+1 (similar results hold for higher order splines).

Thus the following question arises: what is then the change-of-basis matrix
that produces the minimally supported B-wavelet basis ([15], Lyche, Mørken,
Quak [9]) for W⊥ from the hierarchical basis of the Faber decomposition? It
is (

I5 B5×4

04×5 D4

)
,

where

BT
5×4 =

⎛⎜⎜⎝
−12 −6 0 0 0
0 −6 −6 0 0
0 0 −6 −6 0
0 0 0 −6 −12

⎞⎟⎟⎠ and D4 =

⎛⎜⎜⎝
20 4 0 0
4 16 4 0
0 4 16 4
0 0 4 20

⎞⎟⎟⎠ ,
which is not the matrix of a lifting step, since D4 is not the identity. Again
similar results using banded matrices, but involving a larger number of bands,
hold also for higher order spline B-wavelets. Note finally that the B-wavelets
resulting from this change of basis have the same support as the functions
obtained through lifting with (19).

As a concluding remark let us emphasise that in this short treatment of
some spline examples, we have obviously downplayed the effect of boundaries

382 Jürgen Prestin and Ewald Quak

and nonuniform knot sequences. A look at [9] clearly shows that the con-
struction of semi-orthogonal B-wavelets for nonuniform knots involves signifi-
cant technical effort. The boundary effects when restricting to an interval the
biorthogonal pairs of Cohen, Daubechies and Feauveau, where one component
consists of splines over uniform dyadic knots, require also a really substantial
treatment, as given by Dahmen, Kunoth and Urban in [4], based on the stable
completions of [1].

4 Periodic Functions

As a further example we study translation-invariant spaces of 2π-periodic
functions. We are again interested in the change of basis algorithms as de-
scribed in Sect. 2. Contrary to Sect. 3, where the transformation matrices
in space domain were discussed, it is advantageous in this case to go to the
Fourier domain.

Basic results for this approach are studied by Chui & Mhaskar [2], Koh,
Lee & Tan [8], Plonka & Tasche [12],[13], Narcowich & Ward [11] and Selig
[17]. Concerning notations and basic results we follow mainly [17]. A matrix
formulation of algorithms can also be found in [14].
To begin with let the Fourier matrix F of dimension N ×N be defined as

F = FN =
1√
N

(
e−

2πikl
N

)N−1

k,l=0
.

The discrete Fourier transform of length N maps a vector a = (ak)N−1
k=0 ∈ C

N

to a vector â = (âl)N−1
l=0 by

âl =
N−1∑
k=0

ake−
2πikl

N , l = 0, . . . , N − 1,

which can be rewritten as â =
√
NFa. From the unitarity and symmetry of

the Fourier matrix F−1 = F̄T = F̄ one concludes

a =
1√
N

F̄â.

Strongly related to the Fourier matrix F is the decomposition of an arbitrary
circulant matrix

circ a =
(
a(s−r) mod N

)N−1

r,s=0

given by a vector a ∈ C
N , and we have

circ a = F diag â F̄,

where âl, l = 0, . . . , N − 1, turn out to be the eigenvalues of the circulant
matrix circ a. To introduce the particular function space we have in mind we

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 383

recall the definition of L2
2π, the Hilbert space of 2π-periodic functions with

inner product

< ϕ,ψ >=
1
2π

2π∫
0

ϕ(t)ψ(t)dt

and finite norm ‖ϕ‖2 =< ϕ,ϕ >. Every function ϕ ∈ L2
2π can be written as

its Fourier series
ϕ(t) =

∑
k∈Z

ck(ϕ)eikt

with Fourier coefficients

ck(ϕ) =< ϕ, eik· >=
1
2π

2π∫
0

ϕ(t)e−iktdt.

Here we will exploit extensively the relationship to the Hilbert space �2(Z) of
all sequences a = (ak)k∈Z

with

‖a‖�2 =

(∑
k∈Z

|ak|2
)1/2

and
< a,b >�2=

∑
k∈Z

akbk.

The isomorphism between L2
2π and �2(Z) is represented by Parseval’s equation

‖ϕ‖2 =
∑
k∈Z

|ck(ϕ)|2 for all ϕ ∈ L2
2π

and more generally

< ϕ,ψ >=
∑
k∈Z

ck(ϕ)ck(ψ) for all ϕ,ψ ∈ L2
2π.

Since we are interested in finite-dimensional translation-invariant subspaces
we define for arbitrary sets of functions {ϕk : k = 0, . . . , N − 1}, ϕk ∈ L2

2π,
the Gram matrix

G = G(ϕ) = (< ϕk, ϕl >)N−1
k,l=0 .

Here and in the following we use the notation ϕ for the vector of functions

ϕ = (ϕk)N−1
k=0 .

We recall for a = (ak)N−1
k=0 ∈ C

N the simple fact

384 Jürgen Prestin and Ewald Quak

āT Ga =
N−1∑
k=0

N−1∑
l=0

āk < ϕk, ϕl > al =

∥∥∥∥∥
N−1∑
k=0

ākϕk

∥∥∥∥∥
2

≥ 0.

Hence, it follows that G is regular if and only if the functions ϕk are lin-
early independent. Moreover, if G = I = IN is the identity matrix, then the
functions ϕk are orthonormal. If G is regular, then

V = span {ϕk : k = 0, . . . , N − 1} ⊂ L2
2π

is a space of dimension N with basis {ϕk : k = 0, . . . , N − 1}. It is now a
simple observation that for the basis {ϕk} there exists a unique biorthogonal
basis {ϕ̃k : k = 0, . . . , N − 1} for the space V , i.e.,

(< ϕk, ϕ̃l >)N−1
k,l=0 = I (20)

is the identity matrix, and furthermore,

ϕ̃ = G−1ϕ.

More generally, every vector of functions ϕ̃ = (ϕ̃l)N−1
l=0 satisfying (20), but not

necessarily in V will be called a biorthogonal vector for ϕ = (ϕk)N−1
k=0 .

From now on we restrict ourselves to finite-dimensional translation-invariant
spaces

V = span
{
ϕ

(
· − 2πk

N

)
: k = 0, . . . , N − 1

}
⊂ L2

2π

generated by a function ϕ ∈ L2
2π.

To understand the structure of bases of these spaces we take into account
so-called orthogonal splines (cf. [8])∑

p∈Z

ck+Np(ϕ)ei(k+Np)·, k = 0, . . . , N − 1.

These orthogonal splines generated from ϕ ∈ L2
2π are related to the translation-

invariant space V by the following result.

Lemma 6. For ϕ ∈ L2
2π,

span
{
ϕ

(
· − 2πk

N

)
: k = 0, . . . , N − 1

}

= span

⎧⎨⎩∑
p∈Z

ck+Np(ϕ)ei(k+Np)· : k = 0, . . . , N − 1

⎫⎬⎭ .

Proof. To show this equality we simply remark that

ϕ =
√
N F

⎛⎝∑
p∈Z

ck+Np(ϕ)ei(k+Np)·

⎞⎠N−1

k=0

, (21)

which can be verified by direct calculation. &'

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 385

As an immediate consequence of this equality we can compute the dimension of
the space V from the sequence of Fourier coefficients (ck(ϕ)) of its generating
function ϕ.

Corollary 3. Let ϕ ∈ L2
2π. The dimension d of

V = span
{
ϕ

(
· − 2πk

N

)
: k = 0, . . . , N − 1

}
is given by the number of integers k, 0 ≤ k ≤ N − 1, such that there exists
some p ∈ Z with ck+Np(ϕ) �= 0.
In other words

d = !

⎧⎨⎩k :
∑
p∈Z

|ck+Np(ϕ)|2 > 0 , k = 0, . . . , N − 1

⎫⎬⎭ .

In particular, the space V has maximal dimension N if and only if for all k
the orthogonal splines are not the zero function.

Proof. By Parseval’s equation the non-zero orthogonal splines are linearly
independent. Then the assertion follows immediately from (21). &'

In the next lemma we discuss under which conditions a function ψ ∈ L2
2π

is an element of the subspace V .

Lemma 7. The function ψ ∈ L2
2π is an element of V = span

{
ϕ
(
· − 2kπ

N

)
:

k = 0, . . . , N − 1} if and only if there exists a vector a = (as)N−1
s=0 such that

ck+Np(ψ) = âkck+Np(ϕ) for all k = 0, . . . , N − 1 and p ∈ Z. (22)

Then

ψ =
N−1∑
s=0

asϕ

(
· − 2sπ

N

)
.

Proof. If (22) is satisfied, then ψ ∈ L2
2π can be written as

ψ(t) =
N−1∑
k=0

âk

∑
p∈Z

ck+Np(ϕ)ei(k+Np)t

=
N−1∑
k=0

N−1∑
s=0

ase−
2πiks

N

∑
p∈Z

ck+Np(ϕ)ei(k+Np)t

=
N−1∑
s=0

asϕ

(
t− 2πs

N

)
.

The reverse direction follows in the same way. &'

386 Jürgen Prestin and Ewald Quak

From now on we consider different translation-invariant spaces. The first result
describes the direct sum property.

Lemma 8. Let ϕ,ψ ∈ L2
2π be given and let

V = span
{
ϕ

(
· − 2kπ

N

)
, k = 0, . . . , N − 1

}
, (23)

W = span
{
ψ

(
· − 2kπ

N

)
, k = 0, . . . , N − 1

}
. (24)

Then the following two propositions are equivalent:

I. The sum V +W is a direct one, i.e.

dimV + dimW = dim(V +W).

II. If there exist (âk)N−1
k=0 , (b̂k)N−1

k=0 ∈ C
N such that

âkck+Np(ϕ) = b̂kck+Np(ψ) for all k = 0, . . . , N − 1, p ∈ Z, (25)

then (âk) = (b̂k) = 0.

Proof. We follow the same lines as in the proof of Lemma 7. Writing

N−1∑
s=0

asϕ

(
· − 2sπ

N

)
− bsψ

(
· − 2sπ

N

)
= 0

in terms of Fourier coefficients gives equivalently

N−1∑
s=0

ase−
2πi�s

N c�(ϕ) − bse−
2πi�s

N c�(ψ) = 0 for all � ∈ Z,

which can be easily reformulated as (25). &'

The next step is to discuss orthogonality and biorthogonality.

Lemma 9. Let ϕ,ψ ∈ L2
2π be given and let V and W be as in Lemma 8. Then

a) V⊥W if and only if∑
p∈Z

cq+Np(ϕ)cq+Np(ψ) = 0 for all q = 0, . . . , N − 1.

b) The vector of translates ψ = (ψ(· − 2kπ
N))N−1

k=0 is a biorthogonal vector for
ϕ = (ϕ(· − 2kπ

N))N−1
k=0 if and only if∑

p∈Z

cq+Np(ϕ)cq+Np(ψ) =
1
N

for all q = 0, . . . , N − 1.

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 387

Proof. Computing for all 0 ≤ k, l ≤ N − 1 the inner product between the
translates of ϕ and ψ we obtain

0
δk,l

}
=
〈
ϕ

(
· − 2kπ

N

)
, ψ

(
· − 2lπ

N

)〉
=
∑
s∈Z

cs(ϕ)cs(ψ)e
2πis(k−l)

N

=
N−1∑
q=0

∑
p∈Z

cq+Np(ϕ)cq+Np(ψ)e
2πiq(k−l)

N .

Applying the inverse discrete Fourier transform of length N gives the desired
results. &'

Now we are interested in the reverse direction. Let a function ϑ ∈ L2
2π and

a space U be given as

U = span
{
ϑ

(
· − kπ

N

)
: k = 0, . . . , 2N − 1

}
.

Furthermore, we assume dimU = 2N which means that none of the 2N
orthogonal splines generated by ϑ is the zero function. Now we want to de-
compose U into the direct sum of translation-invariant spaces V and W of
the form (23–24), i.e.

U = V +W with dimV = dimW = N.

Hence,

ϕ =
2N−1∑
s=0

αsϑ
(
· − sπ

N

)
, ψ =

2N−1∑
s=0

βsϑ
(
· − sπ

N

)
. (26)

Under these assumptions one verifies that

α̂kβ̂k+N �= α̂k+N β̂k for all k = 0, . . . , N − 1,

where (α̂k)2N−1
k=0 , (β̂k)2N−1

k=0 are the discrete Fourier transforms of length 2N
of the vectors (αs)2N−1

s=0 and (βs)2N−1
s=0 , respectively. Note that one can prove

the existence of such functions ϕ,ψ starting from an arbitrary ϑ ∈ L2
2π with

dimU = 2N . Note on the other hand that the converse of this statement is
not true in general (cf. [17], where an example of two orthogonal translation-
invariant spaces V,W is given for which U = V + W is not a translation-
invariant space). Furthermore, in [17] it is studied how one can describe the
basis transformation algorithms in case of V ⊥ W . Here we generalise to the
case of a direct sum V +W .

Theorem 1. Let the spaces V and W be defined as in Lemma 8. Moreover,
let dimV +W = 2N . Then, the basis transformation between

388 Jürgen Prestin and Ewald Quak

ϑ =
(
ϑ
(
· − sπ

N

))2N−1

s=0
and

(
ϕ

ψ

)
=

⎛⎝(ϕ (· − 2sπ
N

))N−1

s=0(
ψ
(
· − 2sπ

N

))N−1

s=0

⎞⎠
can be described easily in the Fourier domain as

(
F̄Nϕ

F̄Nψ

)
=

1√
2

⎛⎜⎝diag(α̂k)N−1
k=0 diag(α̂k+N)N−1

k=0

diag(β̂k)N−1
k=0 diag(β̂k+N)N−1

k=0

⎞⎟⎠ F̄2Nϑ.

The inverse formula reads as

F̄2Nϑ =
√

2

⎛⎜⎜⎜⎝
diag
(

β̂k+N

α̂kβ̂k+N−α̂k+N β̂k

)N−1

k=0
diag
(

−α̂k+N

α̂kβ̂k+N−α̂k+N β̂k

)N−1

k=0

diag
(

−β̂k

α̂kβ̂k+N−α̂k+N β̂k

)N−1

k=0
diag
(

α̂k

α̂kβ̂k+N−α̂k+N β̂k

)N−1

k=0

⎞⎟⎟⎟⎠

×
(

F̄Nϕ

F̄Nψ

)
.

Proof. With (26) we conclude that(
ϕ

ψ

)
=

(
(αs−2k)N−1,2N−1

k=0,s=0

(βs−2k)N−1,2N−1
k=0,s=0

)
ϑ, (27)

where we extended the vectors (αk) and (βk) to be 2N -periodic. Multiplying
from the left by the block matrix(

F̄N 0
0 F̄N

)
and using F̄NFN = I, we rewrite the right hand side of (27) as(

F̄N 0
0 F̄N

)((αs−2k)N−1,2N−1
k=0,s=0

(βs−2k)N−1,2N−1
k=0,s=0

)
F2N F̄2Nϑ

which is simply

1√
2N

(
F̄N 0
0 F̄N

)((α̂�e−2πi�k/N)N−1,2N−1
k=0,s=0

(β̂�e−2πi�k/N)N−1,2N−1
k=0,�=0

)
F̄2Nϑ

=
1√
2

⎛⎜⎝diag(α̂k)N−1
k=0 diag(α̂k+N)N−1

k=0

diag(β̂k)N−1
k=0 diag(β̂k+N)N−1

k=0

⎞⎟⎠ F̄2Nϑ. (28)

&'

Periodic and Spline Multiresolution Analysis and the Lifting Scheme 389

Defining the circulant matrices

A = FNdiag(α̂k)N−1
k=0 F̄N , B = FNdiag(α̂k)2N−1

k=N F̄N ,

C = FNdiag(β̂k)N−1
k=0 F̄N and D = FNdiag(β̂k)2N−1

k=N F̄N ,

and using (28) we can rewrite the basis transformation from Theorem 1 as(
ϕ

ψ

)
=

1√
2

(
A B
C D

)(
FN 0
0 FN

)
F̄2Nϑ.

Having expressed the transformations as in Theorem 1 it is now straight-
forward to apply a lifting step or a dual lifting step as described in Definition 1.
So one can change directly from arbitrary bases to orthogonal or interpolatory
bases. In case of orthogonal bases for W one would change ψ into ψ⊥ given
by

ck(ψ⊥) =
ck(ψ)√

N
∑
p∈Z

|ck+Np(ψ)|2
for all k ∈ Z,

and for interpolatory bases with the additional condition∑
p∈Z

ck+Np(ψ) �= 0 for all k = 0, . . . , N − 1,

one could change to

ck(ψL) =
ck(ψ)

N
∑
p∈Z

ck+Np(ψ)
for all k ∈ Z,

obtaining bases with ψL
(

2kπ
N

)
= δk,0 for k = 0, . . . , N − 1. To achieve, for

example, orthogonality of the translates of ψ we can choose A = I, B = 0
and we have to replace diag(β̂k)N−1

k=0 and diag(β̂k)2N−1
k=N by

diag

⎛⎜⎝ β̂k∑
p∈Z

β̂k+Npϑ̂k+Np

⎞⎟⎠
N−1

k=0

and diag

⎛⎜⎝ β̂k+N∑
p∈Z

β̂k+Npϑ̂k+Np

⎞⎟⎠
N−1

k=0

,

respectively.

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

390 Jürgen Prestin and Ewald Quak

References

1. Carnicer, J.M., Dahmen, W., Pena, J.M.: Local decomposition of refinable
spaces and wavelets. Appl. Comput. Harmon. Anal., 3, 127–153 (1996).

2. Chui, C.K., Mhaskar, H.N.: On trigonometric wavelets. Constr. Approx., 9,
167–190 (1993).

3. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly
supported wavelets. Commun. Pure Appl. Math., 45, 485–560 (1992).

4. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the in-
terval – stability and moment conditions. Appl. Comput. Harmon. Anal., 6,
132–196 (1999).

5. Dahmen, W., Micchelli, C.A.: Banded matrices with banded inverses. II: Locally
finite decomposition of spline spaces. Constr. Approx., 9, 263–281 (1993).

6. Dahmen, W., Schneider, R.: Wavelets on manifolds. I: Construction and domain
decomposition. SIAM J. Math. Anal., 31, 184–230 (1999).

7. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J.
Fourier Anal. Appl., 4, 247–269 (1998).

8. Koh, Y.W., Lee, S.L., Tan, H.H. Periodic orthogonal splines and wavelets. Appl.
Comput. Harmonic Anal., 2, 201–218 (1995).

9. Lyche, T., Mørken, K., Quak, E.: Theory and algorithms for nonuniform spline
wavelets. In: Dyn, N., Leviatan, D., Levin, D., and Pinkus, A., (eds.), Multi-
variate approximation and applications, Cambridge University Press, 152–187
(2001).

10. Masson, R.: Biorthogonal spline wavelets on the interval for the resolution of
boundary problems. Math. Models Methods Appl. Sci., 6, 749–791 (1996).

11. Narcowich, F.J., Ward, J.D.: Wavelets associated with periodic basis functions.
Appl. Comput. Harmon. Anal., 3, 40–56 (1996).

12. Plonka, G., Tasche, M.: A unified approach to periodic wavelets. In: Chui, C.K.,
Montefusco, L., and Puccio, L. (eds.), Wavelets: Theory, Algorithms, and Ap-
plications, Academic Press, New York, 137–151 (1994).

13. Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl.
Comput. Harmon. Anal., 2, 1–14 (1995).

14. Prestin, J., Quak, E.: Trigonometric interpolation and wavelet decompositions.
Num. Alg., 9, 293–317 (1995).

15. Quak, E.: Nonuniform B-splines and B-wavelets. In: Iske, A., Quak, E., Floater
M. S., (eds.), Tutorials on Multiresolution in Geometric Modelling, Springer,
101–146 (2002).

16. Schneider, R.: Multiskalen- und Wavelet-Matrixkompression. Analysisbasierte
Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. Ad-
vances in Numerical Mathematics. B. G. Teubner Stuttgart (1998).

17. Selig, K.: Periodische Wavelet-Packets und eine gradoptimale Schauderbasis.
PhD thesis, Universität Rostock, Germany, Shaker Verlag, Aachen (1998).

18. Sweldens, W., Schröder, P.: Building your own wavelets at home. Wavelets in
Computer Graphics, ACM SIGGRAPH Course Notes (1996).

19. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal
wavelets. Appl. Comput. Harmon. Anal., 3, 186–200 (1996).

Nonstationary Sibling Wavelet Frames
on Bounded Intervals: the Duality Relation

Laura Beutel

Institute of Applied Mathematics, University of Dortmund, Germany
laura.beutel@math.uni-dortmund.de

and
SINTEF Applied Mathematics, Oslo, Norway
laura.beutel@sintef.no

Summary. This note presents the setting of sibling frames on a compact interval
together with a discussion on the duality relation.

1 Introduction

Hilbert frames are overcomplete and stable families of functions in a Hilbert
space which provide (not necessarily unique) series representations for each
element of the space. Frames play an important rôle in signal processing and
other areas of applied mathematics and they can be considered to be a natural
generalisation of Riesz bases. The overcompleteness of the system incorporates
redundant information in the frame coefficients, such that the loss of some of
them does not necessarily imply loss of information.

A sequence of functions {fi}i∈IN from a separable Hilbert space H (usually
chosen as L2) is called a Bessel sequence if there exists a constant B (0 < B <
∞) such that for every f ∈ H

∞∑
i=1

| < f, fi > |2 ≤ B · ‖f‖2
H. (1)

A Bessel sequence with Bessel bound B is called a frame if, in addition, there
exists a constant A (0 < A ≤ B < ∞) such that for every f ∈ H one has

A · ‖f‖2
H ≤

∞∑
i=1

| < f, fi > |2. (2)

A and B are the lower and upper frame bound, respectively, and the inequal-
ities (1) and (2) together are called the frame condition and they express the
(numerical) stability of the function family.

392 Laura Beutel

If one can choose equal frame bounds then the frame is called tight. A
tight frame can always be normalised, such that A = B = 1. The tight frames
generalise the orthonormal wavelets. For basic theory on Hilbert frames see
for example [10, 5].

Two frames {fi}i∈IN and {gi}i∈IN from the same separable Hilbert space
H are dual to each other if for all f, g ∈ H we have the identity

< f, g >=
∞∑

i=1

< f, fi >< gi, g > . (3)

Every frame has a dual, which is usually not unique. The tight frames form a
very important subclass of frames, because the canonical dual of a tight frame
is very easy to determine, for example the dual of a normalised tight frame is
the frame itself. In the MRA setting a frame together with a dual, where both
fi and gi are elements of the same spline-like space, are called sibling frames.

We are interested in a general construction scheme for locally supported
frames (“wavelet frames”) and corresponding sibling duals, which are defined
from a nonstationary MRA, where both irregular “shifts” on the same re-
finement level and nonuniform refinement between levels are allowed. In this
paper we discuss one part of this construction scheme. We focus on the du-
ality relation. Our construction yields analytical formulations of the frame
elements and enables us to choose frame elements with local support and
vanishing moments, features which are important in applications.

The generic example of this construction is that of tight spline frames
on a bounded interval I (see [3, 4]), where the MRA of L2(I) is generated
from nested knot sequences, whose maximal knot distances converge to zero.
Only methods from spline theory (such as knot insertion) and linear algebra
are needed in order to develop the theory; there is no need for any Fourier
techniques. This allows arbitrary nested knot sequences with multiple knots
instead of uniformly refined ones. In the sibling case, the spline frame will
have a spline dual, a property which cannot be achieved in the orthonormal
wavelet case, but which is desirable for applications.

2 Preliminaries

2.1 Equivalent Matrices and Invariant Properties

We recall first the classical definition of the equivalence between two matrices
and afterwards we propose an extension of this concept. We use this gener-
alised equivalence of matrices when we list some propositions and remarks
which, to some extent, have been used implicitly in [3] in the process of char-
acterising wavelet tight frames. This subsection – as well as the next one – is
meant to supplement Sect. 2 in [3].

In Am and Am×n the subindices denote the dimensions of the (square,
respectively rectangular) matrix A.

Sibling Frames: the Duality Relation 393

Definition 1. Two rectangular (complex) matrices Am×n and Bm×n are
called equivalent, if there exist two nonsingular matrices Sm and Tn such
that A and B are related by the transformation Bm×n = SmAm×nTn. In par-
ticular, two equivalent matrices Am and Bm are called

a) similar, if Tm = S−1
m ,

b) congruent, if Tm = ST
m, and

c) conjunctive, if Tm = S∗
m.

Here, and also further in this paper, S∗ denotes the Hermitian conjugate of S
(i.e. S∗ := ST).

For a square matrix A and a non-singular matrix S the following properties
are well known. SAST is symmetric if and only if A is symmetric. SAS∗

is Hermitian if and only if A is Hermitian. Similar matrices have identical
spectra. For further purposes we wish to have a more relaxed definition of
the equivalence in the sense that it is applicable to rectangular matrices of
different dimensions. To this end we extend Definition 1 in a natural way
as follows: two rectangular (complex) matrices Am×n and Bp×q are called
equivalent, if there exist two matrices Sp×m and Tn×q of maximal rank such
that A and B are related by the transformation Bp×q = Sp×mAm×nTn×q.

For this extended concept we are still able to formulate two of the three
aforementioned cases, namely: two equivalent square matrices Am and Bp are
called

d) congruent, if Tm×p = ST
p×m, and

e) conjunctive, if Tm×p = S∗
p×m.

We are interested in finding properties which remain invariant with respect
to the presented transformations. The following two results are proved by
standard techniques from linear algebra. Note that Proposition 1 is a special
case of Proposition 2.

Proposition 1. Symmetry, skew-symmetry, positive semi-definiteness and
negative semi-definiteness are properties which remain invariant under the
congruence transformations described in d).

Proposition 2. Hermiticity, skew-Hermiticity, positive semi-definiteness and
negative semi-definiteness are properties which remain invariant under the
conjunctivity transformations given in e).

We want to emphasise at this point that, in the setting of Proposition 2,
from the positive definiteness of A we could only infer that B is positive
semi-definite. Thus, in general, the (positive or negative) definiteness is not
invariant under the conjunctivity transformation.

Next we consider a special recurrence relation, (4), between some matrices
which arises naturally and is fundamental in the study of the duality condition
of sibling frames. Particular instances of it can be encountered in the tight

394 Laura Beutel

frame case (when Qj = Q̃j , see [3]) as well as in the orthonormal wavelet
case (when, along with some stability conditions, Qj = Q̃j and Sj+1, Sj are
identity matrices, see [8]).

Proposition 3. Let S0 be a square matrix of dimension M0 and let {Qj}j≥0,
{Q̃j}j≥0 and {Pj}j≥0 be families of nonzero real rectangular matrices with
dimQj = dim Q̃j = Mj+1 × Nj and dimPj = Mj+1 ×Mj. Furthermore let
the square matrices Sj of dimension Mj, j > 0, be defined by the recurrence

Sj+1 := PjSjP
T
j +QjQ̃

T
j , j ≥ 0. (4)

Then the following statements hold.

a) If S0 is symmetric positive semi-definite and for every j ≥ 0 the matrix
QjQ̃

T
j is symmetric positive semi-definite (respectively, symmetric positive

definite), then all the matrices Sj are symmetric positive semi-definite
(respectively, symmetric positive definite).

b) If in a) the term “positive” is exchanged with “negative”, the new statement
holds as well.

The proof is based on Proposition 1. In condensed form Proposition 3
states that a sequence of matrices {Sj}j≥0 with the recurrence structure
described by (4) inherits the (semi)definiteness property of the sequence
{QjQ̃

T
j }j≥0. The first matrix S0 cannot be arbitrary. It is important for the

first step that it also has some definiteness property, but this it not enough for
the recurrence in (4) to produce a whole sequence of matrices {Sj}j≥0 with
the same property.

In the particular case, where the sequences {Qj}j≥0 and {Q̃j}j≥0 are iden-
tical, the request that QjQ̃

T
j should be symmetric positive semi-definite for all

j ≥ 0 is automatically satisfied and we get for arbitrary {Qj}j≥0 and arbitrary
{Pj}j≥0 a sequence {Sj}j≥0 of symmetric positive semi-definite matrices. This
is exactly the tight frame case presented in [3].

In the setting of Proposition 3 if the sequences {Sj}j≥0 and {Pj}j≥0 are
given, then in order to ensure that all the matrices QjQ̃

T
j be symmetric pos-

itive semi-definite, one has (obviously) to demand (or to test) that the differ-
ences Sj+1 − PjSjP

T
j are symmetric positive semi-definite for every j ≥ 0.

In the following we use row vector notation. To condense the notation, we
introduce IMj := {1, 2, · · · ,Mj}, INj := {1, 2, · · · , Nj} and for the function
family Φj = {φj,k}k∈IMj

we will set < f,Φj >:= [< f, φj,k >]k∈IMj
.

2.2 Bilinear Forms and Kernels

In this subsection, for a finite function family and a real matrix, we introduce
two entities: a bilinear form and a kernel. They will be our tools in charac-
terising sibling frames. In [3] the authors use, for the characterisation of tight

Sibling Frames: the Duality Relation 395

frames, the same kernel as we do and the quadratic form associated to the
bilinear form from below.

Let I = [a, b] be a compact interval on the real axis. For a finite family
Φj = [φj,k]k∈IMj

from L2(I) with cardinality Mj (j ≥ 0) and a real matrix
Sj = [s(j)k,l]k,l∈IMj

we consider:

a) the bilinear form

Tj(f, g) := [< f, φj,k >]k∈IMj
· Sj · [< g, φj,k >]Tk∈IMj

(5)

=: < f,Φj > ·Sj · < g,Φj >
T , f, g ∈ L2(I),

b) the kernel

KSj
(x, y) := Φj(x) · Sj · ΦT

j (y) (6)

=
∑

k,l∈IMj

φj,k(x) · s(j)k,l · φj,l(y), x, y ∈ I.

Tj(f, g) and KSj
(x, y) inherit the symmetry and definiteness properties of the

matrix Sj . Furthermore, they are related by

Tj(f, g) =
∫

I

f(x)
∫

I

g(y) ·KSj
(x, y) dydx, f, g ∈ L2(I).

The following theorem is the first main result we present in this paper. It
describes inheritance properties of Tj and KSj

.

Theorem 1. Let Φj, j ≥ 0, be finite families from L2(I), Φj with cardinality
Mj, such that a refinement relation of the form Φj = Φj+1 · Pj exists for all
j ≥ 0, where the Pj’s are real matrices of dimensions Mj+1 ×Mj.

Furthermore let the families Ψ = {Ψj}j≥0 and Ψ̃ = {Ψ̃j}j≥0 have the
structure

Ψj := Φj+1 ·Qj =: [ψj,k]k∈INj
, j ≥ 0,

Ψ̃j := Φj+1 · Q̃j =: [ψ̃j,k]k∈INj
, j ≥ 0,

where Qj and Q̃j are (typically sparse, or even banded) real matrices of di-
mensions Mj+1 ×Nj.

If there exists a sequence of real matrices (Sj)j≥0 which are related by the
recurrence

Sj+1 = PjSjP
T
j +QjQ̃

T
j , j ≥ 0,

then the following statements hold.

a) The associated bilinear forms TJ on L2(I)2 w.r.t. {ΦJ}J≥0 inherit this
structure. They satisfy the recurrence relation

396 Laura Beutel

TJ+1(f, g) = TJ(f, g) +
∑

l∈INJ

< f,ψJ,l >< g, ψ̃J,l >

and the representation formula

TJ+1(f, g) = T0(f, g) +
J∑

j=0

∑
l∈INj

< f,ψj,l >< g, ψ̃j,l > (7)

for all f, g ∈ L2(I) and all J ≥ 0.
b) The associated kernels KSj

w.r.t. {Φj}j≥0 inherit this structure, i.e. there
holds the recurrence

KSJ+1(x, y) = KSJ
(x, y) +

∑
k∈INJ

ψJ,k(x) · ψ̃J,k(y),

and further we get the representation formula

KSJ+1(x, y) = KS0(x, y) +
J∑

j=0

∑
k∈INj

ψj,k(x) · ψ̃j,k(y),

both being valid for all x, y ∈ I and any J ≥ 0.

Proof. We have

TJ+1(f, g) = < f,ΦJ+1 > ·SJ+1· < g,ΦJ+1 >
T

= (< f,ΦJ+1 > ·PJ) · SJ · (< g,ΦJ+1 > ·PJ)T

+ (< f,ΦJ+1 > ·QJ) ·
(
< g,ΦJ+1 > ·Q̃J

)T

= < f,ΦJ+1·PJ > ·SJ · < g,ΦJ+1·PJ >
T

+ < f,ΦJ+1·QJ > · < g,ΦJ+1·Q̃J >
T

= < f,ΦJ > ·SJ · < g,ΦJ >
T + < f,ΨJ > · < g, Ψ̃J >

T

= TJ(f, g) +
∑

l∈INJ

< f,ψJ,l >< g, ψ̃J,l >, ∀J ≥ 0,

= T0(f, g) +
J∑

j=0

∑
l∈INj

< f,ψj,l >< g, ψ̃j,l >, ∀J ≥ 0,

Sibling Frames: the Duality Relation 397

and KSJ+1(x, y) = ΦJ+1(x) · SJ+1 · ΦT
J+1(y)

= (ΦJ+1(x) · PJ) · SJ · (ΦJ+1(y) · PJ)T

+ (ΦJ+1(x) ·QJ)
(
ΦJ+1(y) · Q̃J

)T

= ΦJ(x) · SJ · ΦT
J (y) + ΨJ(x) · Ψ̃T

J (y)

= KSJ
(x, y) +

∑
k∈INJ

ψJ,k(x) · ψ̃J,k(y), ∀J ≥ 0,

= KS0(x, y) +
J∑

j=0

∑
k∈INj

ψj,k(x) · ψ̃j,k(y), ∀J ≥ 0. &'

We want to emphasise here, that – in order to get the above recurrence rela-
tions for Tj and KSj

– we do not have to assume any special properties of the
matrices in use; the relation between the matrices is the crucial point.

3 MRA Framework and Definition of Sibling Frames

This section presents the nonstationary MRA setting under which we will
work and gives a definition of (nonstationary MRA) sibling frames of L2(I)
associated with the locally supported and finite refinable function vectors Φj

and with the ground level characterised by a matrix S0.
The notion of affine sibling frames of L2(IR) was introduced for the first

time in [2, Definition 1] in order to achieve more flexibility and thus additional
properties for the frame elements such as symmetry (or anti-symmetry), small
support, high order of vanishing moments, approximate shift-invariance and
inter-orthogonality. A parallel and independent development of some similar
and overlapping results is presented in [6]. Chui et al. [3] present a general
construction scheme as well as practical procedures for (non-affine, nonsta-
tionary) tight wavelet frames with maximal number of vanishing moments
and minimal support on a compact interval of the real line.

We present here a more general (i.e. non-affine, nonstationary, non-tight)
approach for sibling frames of L2(I), where I is a compact interval of IR. To
our knowledge this approach has not been studied so far.

Let I = [a, b] be a bounded interval on the real axis IR and let V0 ⊂ V1 ⊂
· · · ⊂ Vn ⊂ · · · be a sequence of nested finite dimensional subspaces of L2(I)
which are dense in the space, i.e. closL2 (∪j≥0Vj) = L2(I). Giving up the affine
structure we will assume more generally that each Vj is spanned by a finite
system Φj = [φj,k; 1 ≤ k ≤ Mj], where Mj ≥ dimVj . The refinement relation
of Vj ⊂ Vj+1 will be described by a real matrix Pj = [p(j)

k,l] of dimensions
Mj+1 ×Mj which reads as follows: Φj = Φj+1 · Pj .

Note that we do not require any conditions of uniform refinement (neither
shift invariance nor dilation invariance). Nonstationarity refers here to both
irregular “shifts” on the same level and nonuniform refinement from one level

398 Laura Beutel

to the next one which are allowed in the described MRA. This general frame-
work is also used in [3] and the special case of the spline MRA generated by
a sequence of nested knot sequences which are dense in I can be encountered,
for example in [3, 8]. For the frame elements to be useful in applications,
we will require in the sequel the same localisation property of the refinable
function vectors Φj as in [3].

Definition 2. A function family Φ = {Φj}j≥0 = {[φj,k; 1 ≤ k ≤ Mj]}j≥0 is
said to be locally supported, if the sequence of the maximal support length on
each level

h(Φj) := max
k∈IMj

length(supp φj,k)

converges to zero.

Definition 3. Assume that Φ = {Φj}j≥0 is a locally supported family, where
Φj has cardinality Mj, and adjacent families are related by the refinement
relation Φj = Φj+1 · Pj. Let S0 be the matrix that defines the bilinear form
T0 (i.e. the ground level component).

Then the families Ψ and Ψ̃ determined by the sequences of matrices
{Qj}j≥0 and {Q̃j}j≥0 (dimQj = dim Q̃j = Mj+1 ×Nj) through the relations

Ψ = {Ψj}j≥0 = {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0 (8)

and

Ψ̃ = {Ψ̃j}j≥0 = {Φj+1 · Q̃j}j≥0 = {[ψ̃j,k]k∈INj
}j≥0 (9)

constitute sibling frames of L2(I) w.r.t. T0, if the following conditions are
satisfied.

a) They are Bessel families, i.e. there exist constants B and B̃ with 0 <
B, B̃ < ∞ such that
i)

T0(f, f) +
∑
j≥0

∑
k∈INj

| < f,ψj,k > |2 ≤ B · ‖f‖2
2 (10)

and
ii)

T0(f, f) +
∑
j≥0

∑
k∈INj

| < f, ψ̃j,k > |2 ≤ B̃ · ‖f‖2
2 (11)

for all f ∈ L2(I).
b) They are dual, i.e. for all f, g ∈ L2(I) we have the identity

T0(f, g) +
∑
j≥0

∑
k∈INj

< f,ψj,k >< ψ̃j,k, g >=< f, g > . (12)

Sibling Frames: the Duality Relation 399

Note that in this case both families Ψ and Ψ̃ are indeed frames of L2(I).
Using the duality relation one can prove that the lower frame bound of Ψ
is B̃−1 and that of Ψ̃ is B−1. The numbers Nj of frame elements on the
corresponding levels j (j ≥ 0) are free parameters in the construction of
sibling frames and they govern the redundancy degree of the frame system.

The assumption that Ψ and Ψ̃ are Bessel families is not needed for tight
frames. For this special case the boundedness is contained in the duality rela-
tion (i.e. all three conditions in the above definition collapse to one identity).
Unlike this, in the (non-tight) sibling frame case one has to find suitable (nec-
essary and) sufficient conditions for the boundedness. We have successfully ex-
tended Meyer’s “vaguelettes” collection (see [9, p. 270]) to the non-stationary
setting presented in the above. Furthermore, we have proven that if such a
family possesses a suitable “overlapping constant”, then it is a Bessel family
and we have obtained a concrete Bessel bound. These results are very tech-
nical, their detailed presentation goes beyond the scope of this note and will
be presented elsewhere.

For the remainder of this section let Φ = {Φj}j≥0 be a locally supported
family with #Φj = Mj and Φj = Φj+1 ·Pj . The matrix S0 defines the bilinear
form T0. Further let Ψ and Ψ̃ be function families as defined by (8) and (9)
and satisfying the Bessel conditions (10) and (11). Using identity (7) and
applying the Cauchy-Schwarz inequality we get

Proposition 4. If the matrix S0 is symmetric positive definite, then the bi-
linear forms TJ (J ≥ 1) are bounded from above as follows:

|TJ(f, g)| ≤ |T0(f, g)| +
√
BB̃ · ‖f‖ · ‖g‖, f, g ∈ L2(I). (13)

If, in addition, Φ0 is a Bessel family with Bessel bound B0, then the TJ ’s are
uniformly bounded, i.e. the following relation holds.

|TJ(f, g)| ≤
(
B0 · ‖S0‖2 +

√
BB̃
)
· ‖f‖ · ‖g‖, f, g ∈ L2(I), (14)

where by ‖S0‖2 we denote the spectral norm of S0.

The monotonicity of the sequence of bilinear forms (TJ)J is not ensured in
the general case, but we can state

Proposition 5. If all the matrices QJQ̃
T
J are symmetric positive (negative)

semi-definite, then the sequence of quadratic forms (TJ)J is monotonically
increasing (decreasing, respectively). Obviously, if the matrices are definite
then we get strict monotonicity.

4 Characterisation of the Duality Relation

In this section we present and discuss necessary and sufficient conditions for
the existence of the duality relation (12). Our next main result generalises

400 Laura Beutel

Theorem 1 in [3] and gives a precise characterisation of the duality of two
Bessel families.

Theorem 2. Let Φ = {Φj}j≥0 be a locally supported family with #Φj = Mj

and Φj = Φj+1 · Pj. The matrix S0 defines the ground level component T0.
Furthermore, let Ψ and Ψ̃ be function families as defined by (8) and (9) and
satisfying the Bessel conditions (10) and (11).

Ψ and Ψ̃ are dual (and thus sibling frames w.r.t. T0), if and only if there
exists a sequence of matrices (Sj)j≥1, dimSj = Mj, such that

a) the bilinear forms Tj satisfy

lim
j→∞

Tj(f, g) =< f, g >, f, g ∈ L2(I), (15)

and
b) for every j ≥ 0 we have

Sj+1 − PjSjP
T
j = QjQ̃

T
j . (16)

Proof. Let f and g be two arbitrarily fixed functions from L2(I).
Sufficiency. According to Theorem 1, property b) implies identity (7) which,
combined with a), gives the desired duality relation.
Necessity. S0 is given and for j ≥ 1 we define the matrices recursively by
Sj+1 := PjSjP

T
j + QjQ̃

T
j . Thus condition (16) is satisfied. Equation (7) fol-

lows by an application of Theorem 1. Thus the duality relation implies the
convergence of the sequence (TJ(f, g))J and, therefore, the desired limit (15).
&'

Note that identity (16) describes the relation of all the matrices involved in
the definition of sibling frames and thus it points out their interplay in the
construction process.

Next we want to find some special cases where the limit (15) exists. For this
purpose we consider the kernels introduced in (6) and we follow a classical and
well studied approach from Approximation Theory (see [1, 7]) which seems to
be very useful in our Hilbert frame setting. First of all we recall the definition
of an approximate identity.

Definition 4. A sequence of kernels Kn : I2 → IR, n ∈ IN , is called an
approximate identity if the functions Kn are continuous and satisfy

a) Normalisation:
∫

I
Kn(x, t) dt → 1 uniformly in x ∈ I when n → ∞;

b) Uniform boundedness w.r.t. n: for every x ∈ I there exists M(x) > 0
such that

∫
I
|Kn(x, t)| dt ≤ M(x) for all n ∈ IN ;

c) Localisation: for every δ ∈ (0, |I|] we have
∫
|x−t|≥δ

|Kn(x, t)| dt → 0
uniformly in x for n → ∞.

If the boundedness constant M(x) does not depend on the variable x, then we
call {Kn}n a uniformly bounded approximate identity.

Sibling Frames: the Duality Relation 401

A fundamental result from the approximation theory literature (see e.g. [7,
Theorem 2.1, p. 5]) states that for an approximate identity (Kn)n∈IN , for
every continuous function f : I → IR and every x ∈ I we have the following
convergence: ∫

I

Kn(x, t) · f(t) dt → f(x) for n → ∞. (17)

Furthermore, this convergence is uniform in x if the approximate identity is
uniformly bounded. This powerful result will be the main ingredient in the
proof of Theorem 3. Now we present some sufficient conditions on the kernels
in order to satisfy (15). These demands can be verified in practical situations
more easily than (15).

Theorem 3. If the kernels (KSj
)j≥0 form a uniformly bounded approximate

identity, then the forms (Tj)j≥0 form a bilinear approximation method of the
scalar product operator on L2(I2), i.e. identity (15) holds.

Proof. Let f and g be real continuous functions on I. Without loss of gener-
ality we assume that f �≡ 0. By using the aforementioned fundamental result
for uniformly bounded approximate identities, for each ε > 0, there exists
Nε ∈ IN such that for all j ≥ Nε there holds

|Tj(f, g)− < f, g > | =
∣∣∣∣∫

I

f(x)
[∫

I

g(y) ·KSj
(x, y)dy − g(x)

]
dx

∣∣∣∣
≤
∫

I

|f(x)| ·
∣∣∣∣∫

I

g(y) ·KSj
(x, y)dy − g(x)

∣∣∣∣ dx
<

∫
I

|f(x)| · ε

‖f‖1
dx = ε.

Applying a density argument we get the desired limit for all functions in the
space L2(I). &'

Proposition 4 and Theorem 3 generalise Theorem 9 in [3]. Note further that the
kernels KSj

are continuous if we choose families Φj of continuous functions.
Condition c) in Definition 4 is satisfied if all the matrices Sj have a fixed
maximal bandwidth and the function family Φ = {Φj}j≥0 is locally supported
in the sense of Definition 2. Namely, in this case the integral appearing in
condition c) of Definition 4 is equal to zero for indices j which are large
enough.

In the spline setting mentioned in Sect. 3, one usually chooses Φj to be
the (suitably normalised) B-spline basis of Vj . Furthermore, if the matrices Sj

are chosen as in [3] (i.e. constructed directly and only from the knot sequences
tj), then it follows immediately that {KSj

}j are continuous and local. The
uniform boundedness of the kernels KSj

(x, y) with respect to both j and x,
as well as their normalisation, is given by Theorem 8 in [3]. Thus, in this case,

402 Laura Beutel

all the hypotheses of Theorem 3 are fulfilled. In order to obtain sibling frames
we have to factorise the matrices Sj+1 − PjSjP

T
j appropriately into Qj · Q̃T

j ,
i.e. such that the Bessel conditions are satisfied. We are currently studying
possible factorisations. In order to give the reader an idea of our approach,
we present an example of a Bessel family, which is our frame candidate. We
consider a MRA generated by the dense sequence of finite knot vectors t0 ⊂
· · · ⊂ tj ⊂ tj+1 ⊂ · · · ⊂ [a, b]. Each tj has int(j) inner knots of multiplicity
at most m and stacked boundary knots of maximal multiplicity m. The L2-
normalised B-splines over the knot sequence tj are denoted by {NB

tj ;m,k : k =
−m+ 1, . . . , int(j)} and weighted knot differences are defined by

dtj ;m,k :=
t
(j)
m+k − t

(j)
k

m
.

The family

∪j≥0{NB
tj ;m,k : k = −m+ 1, . . . , int(j)}

is locally supported, due to the density of the nested knot sequences in [a, b]
and the refinement matrices Ptj ,tj+1;m are given by the Oslo algorithm. The
sequence of maximal support length {h(Φj)}j≥0 is in this case monotonically
decreasing; this is a positive aspect for applications.

At present, frame candidates with one vanishing moment are given by

ψj,k(x) := normj,k ·
(
NB

tj ;m+1,k

)′
(x), k ∈ {−m+1, . . . , int(j)−1}, j ≥ 0,

with normalisation

normj,k := min{dtj ;m,k; dtj ;m,k+1} ·
min{dtj ;m−1,k; dtj ;m−1,k+1; dtj ;m−1,k+2}

dtj ;m+1,k
.

We have proven that, under additional geometrical assumptions on the re-
finement of the knot vectors, this is a Bessel family by using our extension of
Meyer’s results.

5 Conclusions

We have presented results concerning the duality relation which describe nec-
essary conditions for the bilinear forms Tj , the kernels KSj

and the matrices
Sj to verify a matrix factorisation technique for the construction of sibling
frames.

In the future, our goal is to give a general construction scheme for sibling
frames on a bounded interval and to construct such frames in the special
spline MRA setting generated by a sequence of nested knot sequences which
are dense in I.

Sibling Frames: the Duality Relation 403

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. P. L. Butzer and R. J. Nessel. Fourier Analysis and Approximation. Birkhäuser,
Basel und Stuttgart, 1971.

2. C. K. Chui, W. He, and J. Stöckler. Compactly supported tight and sibling
frames with maximum vanishing moments. Applied Comput. Harmonic Anal.
13:224–262, 2002.

3. C. K. Chui, W. He, and J. Stöckler. Nonstationary tight wavelet frames on
bounded intervals, submitted. Preprint available as: Universität Dortmund,
Ergebnisberichte Angewandte Mathematik Nr. 230, April 2003.

4. C. K. Chui and J. Stöckler. Recent development of spline wavelet frames with
compact support. To appear in Beyond wavelets, G. V. Welland (ed.). Academic
Press, San Diego et al., 2003.

5. I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, Pa., 1992.
6. I. Daubechies, B. Han, A. Ron, and Z. Shen. Framelets: MRA-based construc-

tions of wavelet frames. Applied Comput. Harmonic Anal. 14:1–46, 2003.
7. R. A. DeVore and G. G. Lorentz. Constructive Approximation. Springer, Berlin,

1993.
8. T. Lyche, K. Mørken, and E. Quak. Theory and algorithms for nonuniform

spline wavelets. In “Multivariate Approximation and Applications”, N. Dyn, D.
Leviatan, D. Levin and A. Pinkus (eds.), Cambridge University Press, pages
152–187, 2001.

9. Y. Meyer. Ondelettes et Opérateurs: II. Opérateurs de Calderón Zygmund. Her-
mann et Cie, Paris, 1990.

10. R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press,
San Diego, 2001.

Haar Wavelets on Spherical Triangulations

Daniela Roşca

Institute of Mathematics, University of Lübeck, Germany
and
Department of Mathematics, Technical University of Cluj-Napoca, Romania
Daniela.Catinas@math.utcluj.ro

Summary. We construct piecewise constant wavelets on spherical triangulations,
which are orthogonal with respect to a scalar product on L2(S2). Our classes of
wavelets include certain wavelets obtained by Bonneau and by Nielson et al. We
also prove the Riesz stability and show some numerical experiments.

1 Introduction

In [1] and [2] some “nearly orthogonal” piecewise constant wavelets defined on
arbitrary triangulations of the sphere S

2 of R
3 are presented. In [2] a spherical

wavelet basis is said to be nearly orthogonal if it becomes orthogonal when
the subdivision depth increases (i.e. when the spherical triangles are “near”
planar). Actually, the orthogonality occurs if, at each level of the multiresolu-
tion, the areas of the spherical triangles are approximated by the areas of the
corresponding planar triangles. Some numerical examples show that this idea
works well in practice, but no mathematical arguments were given to assure
that it works in practice all the time.

In this paper we use a scalar product 〈·, ·〉∗ on L2
(
S

2
)
, defined in [3],

which induces a norm ‖·‖∗ equivalent to the usual 2-norm of L2
(
S

2
)
. Then

we construct piecewise constant wavelets which are orthogonal with respect to
this scalar product. The equivalence of the norms ‖·‖∗ and the usual 2-norm
of L2

(
S

2
)

will help us to prove the Riesz stability in L2
(
S

2
)

of our wavelets.

2 Preliminaries

Consider the unit sphere S
2 of R

3 with centre O and Π a convex polyhedron
having triangular faces1 and the vertices situated on the sphere. Also we have
1 The polyhedron could also have faces which are not triangles. In that case we

triangulate each of these faces and consider it as having triangular faces, with
some of the faces coplanar.

406 Daniela Roşca

to suppose that no face contains the origin O and O is situated inside the
polyhedron. We denote by T 0 = {T1, T2, . . . , Tn} the set of the faces of Π and
by Ω the surface (the “cover”) of Π. Then we consider the radial projection
onto S

2, p : Ω → S
2,

p (x, y, z) =
1√

x2 + y2 + z2
(x, y, z) , (x, y, z) ∈ Ω, (1)

and its inverse p−1 : S
2 → Ω,

p−1 (η1, η2, η3) =
−d

aη1 + bη2 + cη3
(η1, η2, η3) , (η1, η2, η3) ∈ S

2,

where ax + by + cz + d = 0 is the equation of the face of Π onto which the
point (η1, η2, η3) ∈ S

2 projects. In case this projection is situated on an edge,
then one of the two faces containing that edge is taken.

Being given Ω, we can say that T = T 0 is a triangulation of Ω. Next we
wish to consider its uniform refinement T 1. For a given triangle [M1M2M3]
in T 0, let A1, A2, A3 denote the midpoints of the edges M2M3,M3M1 and
M1M2, respectively. Then we consider the set

T 1 =
⋃

[M1M2M3]∈T 0

{[M1A2A3], [A1M2A3], [A1A2M3], [A1A2A3]} ,

which is also a triangulation of Ω. Continuing the refinement process in the
same manner, we can obtain a triangulation T j of Ω, for j ∈ N. The pro-
jection of T j onto the sphere will be U j =

{
p
(
T j
)
, T j ∈ T j

}
, which is a

triangulation of S
2. The number of triangles in Uj will be

∣∣U j
∣∣ = n · 4j .

Let 〈·, ·〉Ω be the following inner product, based on the initial coarsest
triangulation T 0 :

〈f, g〉Ω =
∑

T∈T 0

1
a (T)

∫
T

f (x) g (x) dx, for f, g ∈ C (T) ∀T ∈ T 0.

Here a (T) denotes the area of the triangle T. Also, we consider the induced
norm

‖f‖Ω = 〈f, f〉1/2
Ω .

For L2−integrable functions F and G defined on S
2, the following scalar prod-

uct associated to the given polyhedron Π was defined in [3]:

〈F,G〉∗ = 〈F ◦ p,G ◦ p〉Ω . (2)

There it was proved that, in the space L2
(
S

2
)
, the norm ‖·‖∗ induced by this

scalar product is equivalent to the usual norm ‖·‖L2(S2) of L2
(
S

2
)

and

m ‖F‖2
L2(S2) ≤ ‖F‖2

∗ ≤ M ‖F‖2
L2(S2) , (3)

Haar Wavelets on Spherical Triangulations 407

with

m =
1
4

min
T∈T 0

d2
T

a (T)3
, M = 2 max

T∈T 0

1
|dT | , dT =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ ,
for each triangle T having the vertices Bi (xi, yi, zi) , i = 1, 2, 3. If we use the
relation |dT | = 2a (T) dist (O, T), with dist (O, T) representing the distance
from the origin to the plane of the triangle T , then the values m and M
become

m = min
T∈T 0

dist2 (O, T)
a (T)

,

M = max
T∈T 0

1
a (T) dist (O, T)

.

In the following we construct a multiresolution on S
2 consisting of piecewise

constant functions on the triangles of Uj =
{
U j

1 , U
j
2 , . . . , U

j
n·4j

}
, j ∈ N.

By definition, a multiresolution of L2
(
S

2
)

is a sequence of subspaces{
V j : j ≥ 0

}
of L2

(
S

2
)

which satisfies the following properties:
1. V j ⊆ V j+1 for all j ∈ N.

2. closL2(S2)

∞⋃
j=0

V j = L2
(
S

2
)
.

3. There are index sets Kj ⊆ Kj+1 such that for every level j there

exists a Riesz basis
{
ϕj

t , t ∈ Kj

}
of the space V j . This means that there exist

constants 0 < c < C < ∞, independent of the level j, such that

c2−j

∥∥∥∥{cjt}
t∈Kj

∥∥∥∥
l2(Kj)

≤
∥∥∥∥∥∑

t∈Kj

cjtϕ
j
t

∥∥∥∥∥
L2(S2)

≤ C2−j

∥∥∥∥{cjt}
t∈Kj

∥∥∥∥
l2(Kj)

.

3 The Spaces V j and W j

For a fixed j ∈ N, to each triangle U j
k ∈ Uj , k = 1, 2, . . . , n · 4j , we associate

the function ϕUj
k

: S
2 → R,

ϕUj
k

(η) =

⎧⎨⎩1, inside the triangle U j
k ,

1/2, on the edges of U j
k ,

0, elsewhere.

Then we define the spaces of functions V j = span
{
ϕUj

k
, k = 1, 2, . . . , n · 4j

}
,

consisting of piecewise constant functions on the triangles of Uj .

It follows immediately that the set
{
ϕUj

k
, k = 1, 2, . . . , n · 4j

}
is a basis

for V j , so
∣∣V j
∣∣ = n · 4j . We must establish the relation between the spaces

408 Daniela Roşca

V j and V j+1. Let U j ∈ Uj and U j+1
k = p

(
T j+1

k

)
, k = 1, 2, 3, 4, the refined

triangles obtained from U j , as in Fig. 1. We have

ϕUj = ϕUj+1
1

+ ϕUj+1
2

+ ϕUj+1
3

+ ϕUj+1
4

,

which holds in L2
(
S

2
)
. Thus, V j ⊆ V j+1 for all j ∈ N. With respect to the

scalar product 〈·, ·〉∗ , the spaces V j and V j+1 become Hilbert spaces, with
the corresponding norm ‖·‖∗ = 〈·, ·〉1/2

.
Next we define the space W j as the orthogonal complement, with respect

to the scalar product 〈·, ·〉∗ , of the coarse space V j in the fine space V j+1 :

V j+1 = V j
⊕

W j .

The spaces W j are called the wavelet spaces. The dimension of W j is
∣∣W j
∣∣ =∣∣V j+1

∣∣−∣∣V j
∣∣ = 3n ·4j . In the following we will construct a basis of W j . Let us

take the triangle U j and its refinements U j+1
1 , U j+1

2 , U j+1
3 , U j+1

4 and denote
F 1

Uj , F 2
Uj , F 3

Uj the projections onto S
2 of the mid-points of the edges of the

plane triangle p−1
(
U j
)
, as in Fig. 1. Note that, except for the case j = 0,

U
j

U 2

j+1

U
1

j+1

U
4

j+1
U

3

j+1

F
1

U
j

F
U

j
2

F
U

j
3

Fig. 1. The triangle U j and its refined triangles U j+1
k , k = 1, 2, 3, 4.

the points F l
Uj , l = 1, 2, 3, are not in general mid-points of the edges of the

spherical triangle U j . To each of these points F l
Uj a wavelet will be associated

in the following way

ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
+ βϕUj+1

2
+ γϕUj+1

4
,

ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
+ βϕUj+1

2
+ γϕUj+1

3
, (4)

ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
+ βϕUj+1

2
+ γϕUj+1

1
,

with α1, α2, β, γ ∈ R. Let us mention that supp ΨF k
j+1,Uj = U j for k = 1, 2, 3.

Next we will find conditions on the coefficients α1, α2, β, γ, which assure
that the set

Haar Wavelets on Spherical Triangulations 409{
ΨF k

j+1,Uj , k = 1, 2, 3, U j ∈ Uj
}

is an orthonormal basis of W j with respect to the scalar product defined in
(2) . First we must have 〈

ΨF k
j+1,Uj , ϕSj

〉
∗

= 0, (5)

for k = 1, 2, 3 and U j , Sj ∈ Uj . If U j �= Sj , then the equality is immediate
since supp ΨF k

j+1,Uj = supp ϕUj and supp ϕSj ∩ supp ϕUj is either the empty
set or an edge, whose measure is zero. For U j = Sj , evaluating the scalar
product (5) we obtain〈

ΨF 1
j+1,Uj , ϕSj

〉
∗

=
α1Aj+1

1 + α2Aj+1
3 + βAj+1

2 + γAj+1
4

a (p−1 (U))
,

U being the triangle of the initial triangulation U0 which includes the triangle
U j and Aj+1

k = a
(
p−1
(
U j+1

k

))
. Since

Aj+1
k

a (p−1 (U))
= 4−(j+1) for k = 1, 2, 3, 4,

the orthogonality conditions (5) reduce to

α1 + α2 + β + γ = 0. (6)

Now we have to find conditions on the parameters α1, α2, β, γ such that
the functions

{
ΨF k

j+1,Uj , k = 1, 2, 3, U j ∈ Uj
}

are linearly independent. Let

λF 1,Uj , λF 2,Uj , λF 3,Uj ∈ R for U j ∈ Uj . Taking the linear combination

3∑
k=1

∑
Uj∈Uj

λF k,UjΨF k
j+1,Uj = 0,

it follows that for each U j ∈ Uj we must have

3∑
k=1

λF k,UjΨF k
j+1,Uj = 0. (7)

In order to simplify the writing we let λk = λF k,Uj . Linear independence
occurs if each relation (7) implies λ1 = λ2 = λ3 = 0. Using the definitions (4)
we obtain

λ1α1 + λ2α2 + λ3γ = 0,
λ1β + λ2β + λ3β = 0,

λ1α2 + λ2γ + λ3α1 = 0,
λ1γ + λ2α1 + λ3α2 = 0.

410 Daniela Roşca

Taking into account the condition (6) , we can deduce that this system of four
equations in three unknowns has only the zero solution if and only if

α3
1 + α3

2 + γ3 − 3α1α2γ �= 0. (8)

So, if this condition is satisfied, then a basis in W j is constructed.
Now we want to look for an orthogonal basis. Each of the orthogonality

conditions 〈
ΨF k

j+1,Uj , ΨF l
j+1,Uj

〉
∗

= 0

for l, k ∈ {1, 2, 3} , l �= k and U j ∈ Uj is equivalent to

α1α2 + (α1 + α2) γ + β2 = 0. (9)

Solving the system consisting of the equations (6) and (9) we get

β2 − (α1 + α2)β −
(
α2

1 + α1α2 + α2
2

)
= 0. (10)

We wish to have orthonormal bases, so we impose the condition∥∥∥2j · ΨF l
j+1,Uj

∥∥∥
∗

= 1 for l = 1, 2, 3.

Using the relations (6) and (10) we obtain, for l = 1, 2, 3,∥∥∥2j · ΨF l
j+1, Uj

∥∥∥
∗

= α2
1 + α2

2 + β2 + γ2 = 4β2.

Hence, β = ± 1
2 . For β = 1

2 condition (10) reduces to

4
(
α2

1 + α1α2 + α2
2

)
+ 2 (α1 + α2) − 1 = 0,

and condition (8) reduces to

2
(
α2

1 + α1α2 + α2
2

)
+ (α1 + α2) �= 0.

The small ellipse, having the equation 2
(
α2

1 + α1α2 + α2
2

)
+ (α1 + α2) = 0,

contains the points (α1, α2) for which the wavelets become linearly dependent.
In conclusion, there exist orthogonal wavelets for all (α1, α2) situated on the
big ellipse plotted in Fig. 2. These wavelets have the expression

1ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
+

1
2
ϕUj+1

2
−
(

1
2

+ α1 + α2

)
ϕUj+1

4
,

1ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
+

1
2
ϕUj+1

2
−
(

1
2

+ α1 + α2

)
ϕUj+1

3
,

1ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
+

1
2
ϕUj+1

2
−
(

1
2

+ α1 + α2

)
ϕUj+1

1
.

Haar Wavelets on Spherical Triangulations 411

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Fig. 2. The graph of the curve 4
(
α2

1 + α1α2 + α2
2

)
+ 2 (α1 + α2) − 1 = 0 (the big

ellipse), resp. 2
(
α2

1 + α1α2 + α2
2

)
+ (α1 + α2) = 0 (the small ellipse).

−0.5 0 0.5 1
−0.5

0

0.5

1

Fig. 3. The graph of the curve 4
(
α2

1 + α1α2 + α2
2

) − 2 (α1 + α2) − 1 = 0 (the big
ellipse), resp. 2

(
α2

1 + α1α2 + α2
2

) − (α1 + α2) = 0 (the small ellipse).

For β = − 1
2 condition (10) reduces to

4
(
α2

1 + α1α2 + α2
2

)
− 2 (α1 + α2) − 1 = 0,

while condition (8) reduces to

2
(
α2

1 + α1α2 + α2
2

)
− (α1 + α2) �= 0.

Again, there exist orthogonal wavelets for all (α1, α2) situated on the big
ellipse plotted in Fig. 3. These wavelets have the expression

2ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
− 1

2
ϕUj+1

2
+
(

1
2
− α1 − α2

)
ϕUj+1

4
,

2ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
− 1

2
ϕUj+1

2
+
(

1
2
− α1 − α2

)
ϕUj+1

3
,

2ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
− 1

2
ϕUj+1

2
+
(

1
2
− α1 − α2

)
ϕUj+1

1
.

We note that if we choose α1 = α2 = α, then we obtain the families of
wavelets

{
1Ψ1

F l
j+1,Uj

}
,
{

1Ψ2
F l

j+1,Uj

}
,
{

2Ψ1
F l

j+1,Uj

}
and
{

2Ψ2
F l

j+1,Uj

}
, given by

412 Daniela Roşca

1Ψ1
F l

j+1, Uj = −1
2

(
ϕUj+1

1
+ ϕUj+1

3
− ϕUj+1

2
− ϕUj+1

4

)
,

1Ψ2
F l

j+1, Uj =
1
6

(
ϕUj+1

1
+ ϕUj+1

3
+ 3ϕUj+1

2
− 5ϕUj+1

4

)
,

2Ψ1
F l

j+1, Uj =
1
2

(
ϕUj+1

1
+ ϕUj+1

3
− ϕUj+1

2
− ϕUj+1

4

)
,

2Ψ2
F l

j+1, Uj = −1
6

(
ϕUj+1

1
+ ϕUj+1

3
+ 3ϕUj+1

2
− 5ϕUj+1

4

)
,

for l = 1 and similarly for l = 2, 3. These wavelets are exactly the wavelets
obtained in [2], in the case when the spherical areas are approximated with
the plane areas.

4 The Stability of the Bases

To be useful in practice, the wavelets must satisfy the Riesz stability condi-
tions. Next we prove the Riesz stability of the bases that we have constructed
in V j and W j , for arbitrary j ∈ N.

First we check Condition 3 of the definition of multiresolution. The basis{
2jϕUj

k
, k = 1, 2, . . . , n · 4j

}
of V j is orthonormal since

∥∥∥2jϕUj
k

∥∥∥2
∗

= 4j
〈
ϕUj

k
, ϕUj

k

〉
∗

= 4j ·
a
(
p−1
(
U j

k

))
a (p−1 (U))

= 1

and
〈
2jϕUj

k
, 2jϕUj

l

〉
∗

= 0 for k �= l because the intersection of their supports
is either empty or an edge, which has measure zero.

Being an orthonormal basis with respect to the inner product 〈·, ·〉∗ , the
following equality holds∥∥∥∥∥ ∑

Uj∈Uj

cjU2jϕUj

∥∥∥∥∥
∗

=
∥∥∥∥{cjU}

U∈Uj

∥∥∥∥
l2
.

Using now the equality (3) , which expresses the equivalence of the norms ‖·‖∗
and ‖·‖L2(S2) , we get

1
M

∥∥∥∥{cjU}U∈Uj

∥∥∥∥2
l2

≤
∥∥∥∥∥ ∑

Uj∈Uj

cjU2jϕUj

∥∥∥∥∥
2

L2(S2)

≤ 1
m

∥∥∥∥{cjU}U∈Uj

∥∥∥∥2
l2
,

which is exactly Condition 3 of the definition of a multiresolution. Using the
same arguments for the wavelets bases{

2j iΨk
F l

j+1,Uj

}
l=1,2,3, Uj∈Uj

, i = 1, 2, k = 1, 2,

Haar Wavelets on Spherical Triangulations 413

Fig. 4. The initial data set pol5.

we can prove that

1
M

(
3∑

l=1

∑
U∈Uj

dl,Uj

)2

≤
∥∥∥∥∥ ∑

Uj∈Uj

dl,Uj 2j iΨk
F l

j+1,Uj

∥∥∥∥∥
2

L2(S2)

≤ 1
m

(
3∑

l=1

∑
U∈Uj

dl,Uj

)2

.

Some evaluations of the number κ =
√
M/m for some particular polyhe-

dra show that κ is 33/2 = 5.19615 . . . for the regular tetrahedron, 33/4 =
2.27951 . . . for the cube and regular octahedron and

(
15/(5 + 2

√
5)
)3/4

=
1.41167 . . . for the regular dodecahedron and regular icosahedron. However,
the number κ is not significant for the performance of the wavelets, since the
the matrices involved in the decomposition and reconstruction algorithms are
orthogonal.

5 Numerical Tests

In order to illustrate our prewavelets, we took as the initial polyhedron Π an
octahedron with six vertices and we performed five levels of decomposition.
At level five, the total number of triangles is 8196. Then we considered a
particular data set pol5 from texture analysis of crystals (cf. [4]) and we
represented it as shown in Fig. 4. It consists of 36 × 72 measurements on
the sphere at the points

414 Daniela Roşca

Fig. 5. The function f5 ∈ V5, approximation of pol5 at level 5.

{Pij (cos θj sin ρi, sin θj sin ρi, cos ρi)} ,

with θj = πj
36 − π

72 , j = 1, . . . , 72, ρi = πi
36 − π

72 , i = 1, . . . 36. Its main
characteristic is that the values over the whole sphere are constant, except
for some peaks. First we have approximated this data with the function f5 ∈
V 5(see Fig. 5), considering pol5 as a piecewise constant function on the set

{p(Qij), i = 1, . . . 36, j = 1, . . . 72} ,

where p is the projection defined in (1) and Qij are quadrants with centres at
Pij and edge π/72. The approximation error

e =
1

36 · 72

36∑
i=1

72∑
j=1

∣∣f5(i, j) − pol5(i, j)
∣∣

was 1.0984. Since the set
{
ϕj

t

}
t∈Uj

is a basis for V j , for j = 0, 1, 2, . . . , we
can write

f5 (η) =
∑
t∈U5

f5
t ϕ

5
t (η) , η ∈ S

2. (11)

The vector f5 =
(
f5

t

)
t∈U5 associated with the function f5 was then decom-

posed into f0 and g0, g1, g2, g3, g4, using the wavelet with coefficients
(α1, α2, β, γ) =

(
1
6 ,

1
6 ,

3
6 ,−

5
6

)
. The detail coefficients gj , j = 0, . . . , 4, were

Haar Wavelets on Spherical Triangulations 415

Fig. 6. The reconstructed function f̂5 for the compression rate 0.05.

thresholded to obtain a specific compression rate. More precisely, their com-
ponents

(
gj

k

)
k=1,...,3n·4j

were replaced by the values
(
ĝj

k

)
k=1,...,3n·4j

according

to a strategy known as hard thresholding. This consists of choosing a threshold
ε > 0 and then setting

ĝj
k =

{
gj

k, if
∣∣∣gj

k

∣∣∣ ≥ ε,

0, otherwise.

The ratio of the number of subsequent non-zero coefficients to the total num-
ber,

4∑
j=0

∣∣∣{k : ĝj
k �= 0

}∣∣∣
3n · 4j

,

will be referred to as the compression rate.
After the compression we performed the reconstruction, yielding an ap-

proximation with error e5, e5 = f5 − f̂5, where f̂5 =
(
f̂5

t

)
t∈U5

is the vector

associated with the reconstructed function f̂5. We have measured this error
in several ways:

• the maximum error given by∥∥e5
∥∥
∞ = max

η∈S2

∣∣e5 (η)
∣∣ = max

t∈U5

∣∣e5
t

∣∣ ;

416 Daniela Roşca

Fig. 7. The reconstructed function f̂5 for the compression rate 0.5.

Fig. 8. The reconstructed function f̂5 for the compression rate 0.75.

Haar Wavelets on Spherical Triangulations 417

• the 2-norm ∥∥e5
∥∥

2
=

(∑
t∈U5

∣∣∣f5
t − f̂5

t

∣∣∣2)1/2

;

• the mean absolute error over the triangles

mean
(
e5
)

=
1

n · 4j

∑
t∈U5

∣∣e5
t

∣∣ .
Figs. 6, 7 and 8 show the reconstructed functions f̂5 for different compression
rates, and the errors are tabulated in Table 1.

Table 1. Reconstruction errors for some compression rates, with the wavelet
1
6
[1, 1, 3,−5].

comp. no. of
rate zero coeff.

∥∥e5
∥∥
∞

∥∥e5
∥∥

2
mean

(
e5
)

0.05 7775 165.75 3122.10 29.40
0.1 7366 114.48 2715.90 25.13
0.25 6139 78.41 1855.40 15.48
0.5 4099 35.17 764.91 6.40
0.75 2047 19.24 242.26 1.53
0.8 1637 4.11 88.99 0.55
0.84 1228 0 0 0

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. Bonneau, G-P.: Optimal Triangular Haar Bases for Spherical Data. In: IEEE
Visualization ’99, San Francisco, USA (1999).

2. Nielson, G., Jung, I., Sung, J.: Haar Wavelets over Triangular Domains with
Applications to Multiresolution Models for Flow over a Sphere. In: IEEE Visu-
alization ’97, 143-150 (1997).

3. Roşca, D.: Locally Supported Rational Spline Wavelets on the Sphere, submitted.
4. Schaeben, H., Potts, D., Prestin, J.: Spherical Wavelets with Application in Pre-

ferred Crystallographic Orientation, IAMG ’2001, Cancun (2001).

Author Index

Alkalai 231
Alliez 3
Andujar 339
Barthe 245, 259
Belyaev 143
Beutel 391
Brunet 339
Cebollada 339
Danovaro 89
De Floriani 49, 75, 89
Demaret 319
Dodgson 259, 271, 285
Dyn 231, 301, 319
Elber 119
Fairen 339
Floater 157, 319
Gérot 245, 259
Gotsman 3
Hahmann 119
Hassan 271
Hoppe 27
Hormann 157

Iske 319
Ivrissimtzis 285
Kobbelt 49, 245
Levin 301
Magillo 89, 101
Marinov 301
Mesmoudi 75
Morando 75
Ohtake 143
Praun 27
Prestin 369
Puppo 49, 75, 101
Quak 369
Rössl 187, 353
Roşca 405
Sabin 203, 245, 259, 285
Seidel 143, 187, 353
Sokolovsky 89
Theisel 353
Viaña 101
Zayer 187

Colour Plates

Colour Plates 421

Plate 1. [Fig. 3 on p. 10.] The delta-coordinate quantisation to 5 bits/coordinate
(left) introduces low-frequency errors to the geometry, whereas Cartesian coordinate
quantisation to 11 bits/coordinate (right) introduces noticeable high-frequency er-
rors. The upper rows shows the quantised model and the bottom figures use colour
to visualise corresponding quantisation errors. Data courtesy O. Sorkine.

422 Colour Plates

Plate 2. [Fig. 4 on p. 13.] Piecewise regular remeshing (data courtesy A. Szymczak).

Plate 3. [Fig. 6 on p. 15.] Geometry image (data courtesy X. Gu).

Colour Plates 423

Plate 4. [Fig. 7 on p. 17.] Intermediate stages during the decoding of a mesh using
a single-rate (top) or a progressive technique (bottom).

Plate 5. [Fig. 9 on p. 21.] Adaptive normal mesh for the skull model (data courtesy
A.Khodakovsky).

424 Colour Plates

Map of original mesh onto sphere, octahedron domain, and image.

Illustration of the same map using image grid samples.

Map of original mesh onto sphere, flat octahedron domain, and image.

Illustration of the same map using image grid samples.

Plate 6. [Fig. 1 on p. 30.] Illustration of remeshing onto octahedron and flat octa-
hedron domains.

Colour Plates 425

1,445 bytes (61.6 dB) 2,949 bytes (67.0 dB) 11,958 bytes (75.7 dB)
Compression using spherical wavelets.

1,357 bytes (60.8 dB) 2,879 bytes (66.5 dB) 11,908 bytes (77.6 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Plate 7. [Fig. 9 on p. 40.] Compression results on Venus model.

426 Colour Plates

1,444 bytes (59.6 dB) 2,951 bytes (65.5 dB) 11,959 bytes (76.1 dB)
Compression using spherical wavelets.

1,367 bytes (60.5 dB) 2,889 bytes (66.2 dB) 11,915 bytes (77.5 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Normal mesh [2002]

Plate 8. [Fig. 10 on p. 41.] Compression results on skull model.

Colour Plates 427

1,447 bytes (64.0 dB) 2,950 bytes (69.5 dB) 11,958 bytes (79.8 dB)
Compression using spherical wavelets.

1,364 bytes (63.2 dB) 2,881 bytes (70.2 dB) 11,906 bytes (81.9 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Plate 9. [Fig. 11 on p. 42.] Compression results on rabbit model.

428 Colour Plates

1,456 bytes (55.7 dB) 2,961 bytes (57.6 dB) 11,968 bytes (69.7 dB)
Compression using spherical wavelets.

1,376 bytes (54.2 dB) 2,900 bytes (60.6 dB) 11,932 bytes (73.1 dB)
Compression using image wavelets.

45

50

55

60

65

70

75

80

85

90

100 1000 10000 100000
File Size (bytes)

PSNR

Spherical wavelets

Image wavelets

Globally smooth [2003]

Normal mesh [2002]

PGC [2000]

TG [1998]

Plate 10. [Fig. 12 on p. 43.] Compression results on horse model.

Colour Plates 429

Plate 11. [Fig. 1 on p. 90.] Variable LOD based on field values: the isosurface with
a field value equal to 1.27 (shown in blue) is extracted in high LOD. The second
isosurface, with a field value equal to 1.45 (shown in green), illustrates the lower
resolution of the mesh.

430 Colour Plates

level 1 level 2 level 3 level 4

Plate 12. [Fig. 1 on p. 146.] Multi-scale interpolation of the Stanford dragon model.
Top row: four first levels of the multi-scale hierarchy of points; the radii of the spheres
at each level of the hierarchy are proportional to the support size of the RBFs used
for the interpolation at that level. Middle row: zero level-sets of the interpolating
functions. Bottom row: cross-sections of the interpolating functions.

Plate 13. [Fig. 5 on p. 151.] Adaptive approximation of the Stanford bunny model
with ε0 = 2.5 × 10−4. Right: for T = 1.5 each approximation centre is visualised
by a sphere of radius σk/4; the spheres are coloured according to their sizes which
increases from red to blue. Middle: 8,504 RBF centres (and local approximations) are
used if T = 1.5; L2 error = 1.86 × 10−4 and L∞ error = 2.76 × 10−3; computational
time is 7 seconds. Right: 20,813 RBF centres are used if T = 5; L2 error = 1.72×10−4

and L∞ error = 2.57 × 10−3; computational time is 19 seconds.

Colour Plates 431

(a) (b)

(c) (d)

Plate 14. [Fig. 1 on p. 191.] Flattening an α-shaped model: (a) Original mesh.
(b) The flattened mesh with boundary control coefficient t = 2, (c) t = 1.1, (d) t =
1.03. (The views are scaled differently.)

432 Colour Plates

(a) (b)

(c) (d)

Plate 15. [Fig. 4 on p. 195.] Comparison of under-determined (a, c) and minimisa-
tion (b, d) solutions. The parameterization of the Ear and the Mannequin models
is visualised by mapping regular textures.

Colour Plates 433

(a) (b)

(c)

Plate 16. [Fig. 5 on p. 196.] Visualisation of parameterizations from ABF by texture
mapping different models. (a) Clumpy, (b) Large ear, (c) Mechanical part. Notice
the quasi-conformality of the parameterization.

434 Colour Plates

(a) Original model

(b) Simplified with our method

Plate 17. [Figs. 5(a) and (b) on p. 348.] Results on the engine model.

Colour Plates 435

(a) With colour separation at the beginning

(b) Without colour separation

Plate 18. [Figs. 5(c) and (d) on p. 348.] Results on the engine model. N.B. (a) in
this plate is Fig. 5(c), (b) in this plate is Fig. 5(d) on p. 348.

436 Colour Plates

(a) Original image

(b) Simplified with our method

Plate 19. [Fig. 6 on p. 349.] Results on the oil tanker model.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

