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Preface 

Continuous optimization is the study of problems in which we wish to opti
mize (either maximize or minimize) a continuous function (usually of several 
variables) often subject to a collection of restrictions on these variables. It has 
its foundation in the development of calculus by Newton and Leibniz in the 
17*^ century. Nowadys, continuous optimization problems are widespread in 
the mathematical modelling of real world systems for a very broad range of 
applications. 

Solution methods for large multivariable constrained continuous optimiza
tion problems using computers began with the work of Dantzig in the late 
1940s on the simplex method for linear programming problems. Recent re
search in continuous optimization has produced a variety of theoretical devel
opments, solution methods and new areas of applications. It is impossible to 
give a full account of the current trends and modern applications of contin
uous optimization. It is our intention to present a number of topics in order 
to show the spectrum of current research activities and the development of 
numerical methods and applications. 

The collection of 16 refereed papers in this book covers a diverse number 
of topics and provides a good picture of recent research in continuous opti
mization. The first part of the book presents substantive survey articles in 
a number of important topic areas of continuous optimization. Most of the 
papers in the second part present results on the theoretical aspects as well as 
numerical methods of continuous optimization. The papers in the third part 
are mainly concerned with applications of continuous optimization. 

We feel that this book will be an additional valuable source of informa
tion to faculty, students, and researchers who use continuous optimization to 
model and solve problems. We would like to take the opportunity to thank 
the authors of the papers, the anonymous referees and the colleagues who 
have made direct or indirect contributions in the process of writing this book. 
Finally, we wish to thank Fusheng Bai for preparing the camera-ready version 
of this book and John Martindale and Robert Saley for their assistance in 
producing this book. 

Sydney and Ballarat Vaithilingam Jeyakumar 
April 2005 Alexander Rubinov 
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Part I 

Surveys 



Linear Semi-infinite Optimization: Recent 
Advances 

Miguel A. Goberna 

Dep. de Estadistica e Investigacion Operativa 
Universidad de Alicante 
Spain 
mgobernaQua.es 

Summary. Linear semi-infinite optimization (LSIO) deals with linear optimization 
problems in which either the dimension of the decision space or the number of con
straints (but not both) is infinite. This paper overviews the works on LSIO published 
after 2000 with the purpose of identifying the most active research fields, the main 
trends in applications, and the more challenging open problems. After a brief in
troduction to the basic concepts in LSIO, the paper surveys LSIO models arising 
in mathematical economics, game theory, probability and statistics. It also reviews 
outstanding real applications of LSIO in semidefinite programming, telecommunica
tions and control problems, in which numerical experiments are reported. In almost 
all these applications, the LSIO problems have been solved by means of ad hoc 
numerical methods, and this suggests that either the standard LSIO numerical ap
proaches are not well-known or they do not satisfy the users' requirements. From the 
theoretical point of view, the research during this period has been mainly focused on 
the stability analysis of different objects associated with the primal problem (only 
the feasible set in the case of the dual). Sensitivity analysis in LSIO remains an open 
problem. 

2000 M R S u b j e c t Class i f icat ion. Pr imary: 90C34, 90C05; Secondary: 
15A39, 49K40. 

K e y words : semi-infinite optimization, linear inequality systems 

1 Introduction 

Linear semi-infinite optimization (LSIO) deals with linear optimization prob
lems such tha t either the set of variables or the set of constraints (but not 
both) is infinite. In particular, LSIO deals with problems of the form 

(P) Inf dx s.t. o!^x > hu for all t € T, 
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where T is an infinite index set, ceW^,a\T \—> R"", and 6 : T i—> R, which 
are called primal The Haar^s dual problem of (P) is 

{D) Sup ^ A t ^ t , s.t. ^ A t a t ^ c , A G R f \ 
teT tsT 

where R^ ^ denotes the positive cone in the space of generalized finite se
quences R̂ -̂ ^ (the linear space of all the functions A : T H-> R such that Â  = 0 
for alH G T except maybe for a finite number of indices). Other dual LSIO 
problems can be associated with (P) in particular cases, e.g., if T is a compact 
Hausdorff topological space and a and h are continuous functions, then the 
continuous dual problem of (P) is 

(Do) Sup I bt^i {dt) s.t. / atiJi (dt) = c, fi e C'^ (T), 
JT JT 

where C!̂  (T) represents the cone of nonnegative regular Borel measures on T 

(R^̂  ' can be seen as the subset of C .̂ (T) formed by the nonnegative atomic 
measures). The value of all these dual problems is less or equal to the value 
of (P) and the equality holds under certain conditions involving either the 
properties of the constraints system a = {a[x > 6t, t G T} or some relationship 
between c and a. Replacing the linear functions in (P) by convex functions we 
obtain a convex semi-infinite optimization (CSIO) problem. Many results and 
methods for ordinary linear optimization (LO) have been extended to LSIO, 
usually assuming that the linear semi-infinite system (LSIS) a satisfies certain 
properties. In the same way, LSIO theory and methods have been extended 
to CSIO and even to nonlinear semi-infinite optimization (NLSIO). 

We denote by P , P* and v[P) the feasible set, the optimal set and the value 
of (P), respectively (the same notation will be used for NLSIO problems). The 
boundary and the set of extreme points of P will be denoted by B and P , 
respectively. We also represent with yl, yl* and v{D) the corresponding objects 
of [D). We also denote by P the solution set of a. For the convex analysis 
concepts we adopt a standard notation (as in [GL98]). 

At least three reasons justify the interest of the optimization community 
in LSIO. First, for its many real life and modeling applications. Second, for 
providing nontrivial but still tractable optimization problems on which it is 
possible to check more general theories and methods. Finally, LSIO can be 
seen as a theoretical model for large scale LO problems. 

Section 2 deals with LSISs theory, i.e., with existence theorems (i.e., char
acterizations of P 7̂  0) and the properties of the main families of LSISs in the 
LSIO context. The main purpose of this section is to establish a theoretical 
frame for the next sections. 

Section 3 surveys recent applications of LSIO in a variety of fields. In fact, 
LSIO models arise naturally in difi'erent contexts, providing theoretical tools 
for a better understanding of scientific and social phenomena. On the other 
hand, LSIO methods can be a useful tool for the numerical solution of difficult 
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problems. We shall consider, in particular, the connection between LSIO and 
semidefinite programming (SDP). 

Section 4 reviews the last contributions to LSIO numerical methods. We 
shall also mention some CSIO methods as far as they can be applied, in 
particular, to hnear problems. 

Finally, Section 5 deals with the perturbation analysis of LSIO problems. 
In fact, in many applications, due to either measurement errors or rounding er
rors occurring during the computation process, the nominal data (represented 
by the triple (a, 6, c)) are replaced in practice by approximate data. Stability 
results allow to check whether small perturbations of the data preserve desir
able properties of the main objects (as the nonemptiness of F , F*, A and A*, 
or the boundedness of v{P) and v{D)) and, in the affirmative case, allow to 
know whether small perturbations provoke small variations of these objects. 
Sensitivity results inform about the variation of the value of the perturbed 
primal and dual problems. Sections 1.2 and 1.5 can be seen as updating the 
last survey paper on LSIO theory ([GL02]) although for the sake of brevity 
certain topics are not considered here, e.g., excess of information phenomena 
in LSIO ([GJROl, GJM03, GJM05]), duality in LSIO ([KZOl, ShaOl, Sha04]), 
inexact LSIO ([GBA05]), etc. 

2 Linear semi-infinite systems 

Most of the information on a is captured by its characteristic cone, 

J. = c„„e{(;;).,eT;(!",)}. 

The reference cone of cr, cli^, characterizes the consistency of a (by the 

condition I Ĵ  J ^ c\K) as well as the halfspaces containing its solution set, 

F (if it is nonempty): a^x > 6 is a consequence of a if and only if ( i I ^ cl/f 

(nonhomogeneous Farkas Lemma). Thus, if Fi and F2 {Ki and K2) are the 
solution sets (the characteristic cones, respectively) of the consistent systems 
(7i and (72, then Fi C F2 if and only if CIK2 C cli^i (this characterization of 
set containment is useful in large scale knowledge-based data classification, 
see [Jey03] and [GJD05]). All these results have been extended from LSISs to 
linear systems containing strict inequalities ([GJR03, GR05]) and to convex 
systems possibly containing strict inequalities ([GJD05]). On the other hand, 
since Fi = F2 if and only if cli^2 = cl/fi, there exists a one-to-one corre
spondence between closed convex sets in R^ and closed convex cones in W^'^^ 

containing I ^ j (the reference cone of their corresponding linear represen

tations). Thus many families of closed convex sets have been characterized by 



6 M.A. Goberna 

means of the corresponding properties of their corresponding reference cones 
([GJR02]). If the index set in a depends on the variable x, as it happens in 
generaHzed semi-infinite optimization (GSIO), F may be nonclosed and even 
nonconnected ([RSOl]). 

Let us recall the definition of the main classes of consistent LSIS (which 
are analyzed in Chapter 5 of [GL98]). 

a is said to be continuous {analytic, polynomial) if T is a compact Haus-
dorff space (a compact interval, respectively) and the coefficients are contin
uous (analytic, polynomial, respectively) on T. Obviously, 

a polynomial —> a analytic -^ a continuous. 

In order to define the remaining three classes of LSISs we associate with 
X E F two convex cones. The cone of feasible directions at x is 

D (F; x) = {d eW \39 > 0,x + ed e F} 

and the active cone at x is 

A (x) := cone {at \ a[x = bt, t E T} 

(less restrictive definitions of active cone are discussed in [GLT03b] and 
[GLT03c]). 

a is Farkas-Minkowsky (FM) if every consequence of a is consequence of a 
finite subsystem (i.e., K is closed), a is locally polyhedral (LOP) if D (F; x) = 
A {x) for all x E F. Finally, a is locally Farkas-Minkowsky (LFM) if every 
consequence of a binding at a certain point of F is consequence of a finite 
subsystem (i.e., D (F; x) ~ A (x) for all x e F). We have 

a continuous & Slater c.q. -> a FM —» a LFM ^ a LOP. 

The statement of two basic theorems and the sketch of the main numerical 
approaches will show the crucial role played by the above families of LSISs, as 
constraint qualifications, in LSIO theory and methods (see [GL98] for more 
details). 

Duality theorem: if a is FM and F ^̂^ 0 ^̂  yl, then v{D) = v{P) and (D) 
is solvable. 

Optimality theorem: if x G F satisfies the KKT condition c G A{x), 
then X G F*, and the converse is true if a is LFM. 

Discretization methods generate sequences of points in R^ converging 
to a point of F* by solving suitable LO problems, e.g., sequences of optimal 
solutions of the subproblems of (P) which are obtained by replacing T with 
a sequence of grids. The classical cutting plane approach consists of replacing 
in (P) the index set T with a finite subset which is formed from the previous 
one according to certain aggregation and elimination rules. The central cutting 
plane methods start each step with a polytope containing a sublevel set of (P), 
calculate a certain "centre" of this polytope by solving a suitable LO problem 



Linear Semi-infinite Optimization: Recent Advances 7 

and then the polytope is updated by aggregating to its defining system either 
a feasibhty cut (if the center is unfeasible) or an objective cut (otherwise). In 
order to prove the convergence of any discretization method it is necessary 
to assume the continuity of a. The main difficulties with these methods are 
undesirable jamming (unless (P) has a strongly unique optimal solution) and 
the increasing size of the auxiliary LO problems (unless efficient elimination 
rules are implemented). 

Reduction methods replace (P) with a nonlinear system of equations 
(and possibly some inequalities) to be solved by means of a quasi-Newton 
method. The optimality theorem is the basis of such an approach, so that it 
requires a to be LFM. Moreover, some smoothness conditions are required, 
e.g., a to be analytic. These methods have a good local behavior provided 
they start sufficiently close to an optimal solution. 

Two-phase methods combine a discretization method (1st phase) and 
a reduction method (2nd phase). No theoretical result supports the decision 
to go from phase 1 to phase 2. 

Feasible directions (or descent) methods generate a feasible direction 
at the current iterate by solving a certain LO problem, the next iterate being 
the result of performing a linear search in this direction. The auxiliary LO 
problem is well defined assuming that a is smooth enough, e.g., it is analytic. 

Purification methods provide finite sequences of feasible points with 
decreasing values of the objective functional and the dimension of the corre
sponding smallest faces containing them, in such a way that the last iterate 
is an extreme point of either F or yl (but not necessarily an optimal solu
tion). This approach can only be applied to (P) if the extreme points of F 
are characterized, i.e., if a is analytic or LOP. 

Hybrid methods (improperly called LSIO simplex method in [AL89]) 
alternate purification steps (when the current iterate is not an extreme point 
of P) and descent steps (otherwise). 

Simplex methods can be defined for both problems, (P) and (-D), and 
they generate sequences of linked edges of the corresponding feasible set (ei
ther F or A) in such a way that the objective functional improves on the 
successive edges under a nondegeneracy assumption. The starting extreme 
point can be calculated by means of a purification method. Until 2001 the 
only available simplex method for LSIO problems was conceived for (D) and 
its convergence status is dubious (recall that the simplex method in [GG83] 
can be seen as an extension of the classical exchange method for polynomial 
approximation problems, proposed by Remes in 1934). 

Now let us consider the following question: which is the family of solution 
sets for each class of LSISs? 

The answer is almost trivial for continuous, FM and LFM systems. In fact, 
if 

Ti := I r J j G R^ I a'x > 6Vx G P 

T 2 : = { ^ G T I | | | ^ | | < 1 } , 
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and 

:= < a'x > 6, eTi 1,2, 

it is easy to show that ai and a2 are FM (and so LFM) and continuous 
representations of F , respectively. It is also known that F admits LOP repre
sentation if and only if F is quasipolyhedral (i.e., the non-empty intersections 
of F with polytopes are polytopes). 

The problem remains open for analytic and polynomial LSISs. In fact, all 
we know is that the two families of closed convex sets are different ([GHT05b]) 
and a list of necessary (sufficient) conditions for F to admit analytic (polyno
mial) representations. More in detail, it has been shown ([JP04]) that F does 
not admit analytic representation if either F is a quasi-polyhedral nonpolyhe-
dral set or F C M"̂ , with n > 3, is smooth (i.e., there exists a unique support
ing halfspace at each boundary point of F) and the dimension of the lineality 
space of F is less than n — 4 (e.g., the closed balls in R", n > 3). Between the 
sets which admit polynomial representation, let us mention the polyhedral 
convex sets and the plane conic sections, for which it is possible to determine 
degF, defined as the minimum of dega := max{deg6;degai,i == l,. . . . ,n} 
(where â  denotes the ith component of a) for all a polynomial representation 
o f F ([GHT05a]): 

1 ^ 
{x G R^ 1 c'^x > di,i = l,...,p} (minimal) 

convex hull of an ellipse 
convex hull of a parabola 

convex hull of a branch of hyperbola 

1 degF [ 
max {0,2p - 3} 

4 
4 
2 

3 Applications 

As the classical applications of LSIO described in Chapters 1 and 2 of [GL98] 
and in [GusOlb], the new applications could be classified following different 
criteria as the kind of LSIO problem to be analized or solved ((P), (i^), 
(Do), etc.), the class of constraint system of (P) (continuous, FM, etc.) or the 
presentation or not of numerical experiments (real or modeling applications, 
respectively). 

Economics 
During the 80s different authors formulated and solved risk decision prob

lems as primal LSIO problems without using this name (in fact they solved 
some examples by means of naive numerical approaches). In the same vein 
[KMOl], instead of using the classical stochastic processes approach to finan
cial mathematics, reformulates and solves dynamic interest rate models as 
primal LSIO problems where a is analytical and FM. The chosen numerical 
approach is two-phase. 
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Two recent applications in economic theory involve LSIO models where 
the FM property plays a crucial role. The continuous assignment problem of 
mathematical economics has been formulated in [GOZ02] as a linear optimiza
tion problem over locally convex topological spaces. The discussion involves a 
certain dual pair of LSIO problems. On the other hand, informational asym
metries generate adverse selection and moral hazard problems. The characteri
zation of economies under asymmetric information (e.g., competitive markets) 
is a challenging problem. [Jer03] has characterized efficient allocations in this 
environment by means of LSIO duality theory. 

Game Theory 
Semi-infinite games arise in those situations (quite frequent in economy) in 

which one of the players has infinitely many pure strategies whereas the other 
one only has finitely many alternatives. None of the three reviewed papers 
reports numerical experiments. 

[MM03] deals with transferable utility games, which play a central role in 
cooperative game theory. The calculus of the linear core is formulated as a 
primal LSIO problem. 

A semi-infinite transportation problem consists of maximizing the profit 
from the transportation of a certain good from a finite number of suppliers to 
an infinite number of customers. [SLTTOl] uses LSIO duality theory in order 
to show that the underlying optimization problems have no duality gap and 
that the core of the game is nonempty. The same authors have considered, in 
[TTLSOl], linear production situations with an infinite number of production 
techniques. In this context, a LSIO problem arises giving rise to primal and 
dual games. 

Geometry 
Different geometrical problems can be formulated and solved with LSIO 

theory and methods. For instance, the separation and the strong separation of 
pairs of subsets of a normed space is formulated this way in [GLWOl], whereas 
[JSOO] provides a characterization of the minimal shell of a convex body based 
upon LSIO duality theory (let us recall that the spherical shell of a convex 
body C with center x G C is the difference between the smallest closed ball 
centered at x containing C and the interior of the greatest closed ball centered 
at X contained in C). 

Probability and Statistics 
[DalOl] has analyzed the connections between subjective probability the

ory, maximum likelihood estimation and risk theory with LSIO duality theory 
and methods. Nevertheless the most promising application field in statistics is 
Bayesian robustness. Two central problems in this field consist of optimizing 
posterior functional over a generalized moment class and calculating mini-
max decision rules under generalized moment conditions. The first problem 
has been reformulated as a dual LSIO problem in [BGOO]. Concerning the sec
ond problem, the corresponding decision rules are obtained by minimizing the 
maximum of the integrals of the risk function with respect to a given family of 
distributions on a certain space of parameters. Assuming the compactness of 
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this space, [NSOl] proposes a convergence test consisting of solving a certain 
LSIO problem with continuous constraint system. The authors use duality 
theory and a discretization algorithm. 

Machine Learning 
A central problem in machine learning consists of generating a sequence of 

functions (hypotheses) from a given set of functions which are producible by 
a base learning algorithm. When this set is infinite, the mentioned problem 
has been reformulated in [RDB02] as a LSIO one. Certain data classification 
problems are solved by formulating the problems as linear SDP problems 
([JOW05]), so that they can be reformulated and solved as LSIO problems. 

Data envelopment analysis 
Data Envelopment Analysis (DEA) deals with the comparison of the ef

ficiency of a set of decision making units (e.g., firms, factories, branches or 
schools) or technologies in order to obtain certain outputs from the available 
inputs. In the case of a finite set of items to be compared, the efficiency ratios 
are usually calculated by solving suitable LO problems. In the case of chemi
cal processes which are controlled by means of certain parameters (pressure, 
temperature, concentrations, etc.) which range on given intervals, the cor
responding models can formulated as either LSIO or as bilevel optimization 
problems. Both approaches are compared in [JJNSOl], where a numerical ex
ample is provided. 

Telecommunication networks 
At least three of the techniques for optimizing the capacity of telecommu

nication systems require the solution of suitable LSIO problems. 
In [NNCNOl] the capacity of mobile networks is improved by filtering the 

signal through a beamforming structure. The optimal design of this structure 
is formulated as an analytic LSIO problem. Numerical results are obtained by 
means of a hybrid method. The same numerical approach is used in [DCNNOl] 
for the design of narrow-band antennas. Finally, [SAPOO] proposes to increase 
the capacity of cellular systems by means of cell sectorization. A certain techni
cal difficulty arising in this approach can be overcome by solving an associated 
LSIO problem with continuous a. Numerical results are provided by means of 
a discretization procedure. 

Control problems 
Certain optimal control problems have been formulated as continuous dual 

LSIO problems. This was done in [RubOOa] for an optimal boundary con
trol problem corresponding to a certain nonlinear diff'usion equation with a 
"rough" initial condition, and in [RubOOb] with two kinds of optimal control 
problems with unbounded control sets. 

On the other hand, in [SIFOl] the robust control of certain nonlinear sys
tems with uncertain parameters is obtained by solving a set of continuous 
primal LSIO problems. Numerical experiments with a discretization proce
dure are reported. 

Optimization under uncertainty 
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LSIO models arise naturally in inexact LO, when feasibility under any 
possible perturbation of the nominal problem is required. Thus, the robust 
counterpart of min^; c'x subject to Ax > 6, where (c, A^b) eU CW^ x W^'^ x 
M^, is formulated in [BN02] as the LSIO problem mint,^^ subject to t > 
c'x, Ax > b\/ (c, A^ b) G U; the computational tractability of this problem is 
discussed (in Section 2) for different uncertainty sets U in a, real application 
(the antenna design problem). On the other hand, [AGOl] provides strong 
duahty theorems for inexact LO problems of the form min^; maxcec c'x subject 
to Ax e B yA G A and x e R!J:, where C and B are given nonempty convex 
sets and ^ is a given family of matrices. If Ax G B can be expressed as 
A{t)x = b{t), t G T, then this problem admits a continuous dual LSIO 
formulation. 

LSIO also applies to fuzzy systems and optimization. The continuous LSIO 
(and NLSIO) problems arising in [HFOO] are solved with a cutting-plane 
method. In all the numerical examples reported in [LVOla], the constraint 
system of the LSIO reformulation is the union of analytic systems (with or 
without box constraints); all the numerical examples are solved with a hybrid 
method. 

Semidefinite p rogramming 
Many authors have analyzed the connections between LSIO and semidef

inite programming (see [VB98, Fay02], and references therein, some of them 
solving SDP problems by means of the standard LSIO methods). In [KZOl] 
the LSIO duality theory has been used in order to obtain duality theorems 
for SDP problems. [KKOO] and [KGUY02] show that a special class of dual 
SDP problems can be solved efficiently by means of its reformulation as a 
continuous LSIO problem which is solved by a cutting-plane discretization 
method. This idea is also the basis of [KM03], where it is shown that, if the 
LSIO reformulation of the dual SDP problem has finite value and a FM con
straint system, then there exists a low size discretization with the same value. 
Numerical experiments show that large scale SDP problems which cannot be 
handled by means of the typical interior point methods (e.g., with more than 
3000 dual variables) can be solved applying an ad hoc discretization method 
which exploits the structure of the problem. 

4 Numerical methods 

In the previous section we have seen that most of the LSIO problems arising 
in practical applications in the last years have been solved by means of new 
methods (usually variations of other already known). Two possible reasons 
for this phenomenon are the lack of available codes for large classes of LSIO 
problems (commercial or not) and the computational inefficiency of the known 
methods (which could fail to exploit the structure of the particular problems). 
Now we review the specific literature on LSIO methods. 
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[Bet04] and [WFLOl] propose two new central cutting plane methods, tak
ing as center of the current polytope the center of the greatest ball inscribed in 
the polytope and its analytic center, respectively. [FLWOl] proposes a cutting-
plane method for solving LSIO and quadratic CSIO problems (an extension 
of this method to infinite dimensional LSIO can be found in [WFLOl]). Sev
eral relaxation techniques and their combinations are proposed and discussed. 
The method in [Bet04], which reports numerical experiments, is an accelerated 
version of the cutting-plane (Elzinga-Moore) Algorithm 11.4.2 in [GL98] for 
LSIO problems with continuous a whereas [WFLOl] requires the analiticity 
of a. A Kelley cutting-plane algorithm has been proposed in [KGUY02] for a 
particular class of LSIO problems (the reformulations of dual SDP problems); 
an extension of this method to SIO problems with nonlinear objective and 
linear constraints has been proposed in [KKT03]. 

A reduction approach for LSIO (and CSIO) problems has been proposed 
in [ILTOO], where a is assumed to be continuous and FM. The idea is to 
reduce the Wolfe's dual problem to a small number of ordinary non linear 
optimization problems. The method performs well on a famous test example. 
This method has been extended to quadratic SIO in [LTW04]. 

[AGLOl] proposes a simplex method (and a reduced gradient method) for 
LSIO problems such that a is LOP. These methods are the unique which could 
be applied to LSIO problems with a countable set of constraints. The proof 
of the convergence is an open problem. 

[LSVOO] proposes two hybrid methods to LSIO problems such that cr is a 
finite union of analytic systems with box constraints. Numerical experiments 
are reported. 

[KM02] considers LSIO problems in which a is continuous, satisfies the 
Slater condition and the components of â  G C (T) are linearly inpendent. 
Such kind of problems are reformulated as a linear approximation problem, 
and then they are solved by means of a classical method of Polya. Convergence 
proofs are given. 

[KosOl] provides a conceptual path-following algorithm for the parametric 
LSIO problem arising in optimal control consisting of replacing T in (P) with 
an interval T (r) := [0, r ] , where r ranges on a certain interval. The constraints 
system of the parametric problem are assumed to be continuous and FM for 
each r . An illustrative example is given. 

Finally, let us observe that LSIO problems could also be solved by means 
of numerical methods initially conceived for more general models, as CSIO 
([AbbOl, TKVB02, ZNFOO]), NLSIO ([ZR03, VFG03, GPOl, GusOla]) and 
GSIO ([StiOl, SS03, Web03] and references therein). The comparison of the 
particular versions for LSIO problems of these methods with the specific LSIO 
methods is still to be made. 



Linear Semi-infinite Optimization: Recent Advances 13 

5 Perturbation analysis 

In this section we consider possible any arbitrary perturbation of the nominal 
data TT = (a^b^c) which preserve n and T (the constraint system of TT is a). 
TT is bounded if v (P) 7̂ ^—00 and it has bounded data if a and b are bounded 
functions. The parameter space is 11 := (R^ x R) x R"̂ , endowed with the 
pseudometric of the uniform convergence: 

(i(7ri, TT) := max < ||c^ — c||, sup^^^^ ii)-i:)\\Y 
where TTI = (c^, a^, 6 )̂ denotes a perturbed data set. The associated problems 
are (Pi) and (^1). The sets of consistent (bounded, solvable) perturbed prob
lems are denoted by 77c (^6, -^s, respectively). Obviously, Us C Ub C lie C 

n. 
Prom the primal side, we consider the following set-valued mappings: 

^ (TTI ) := Fi , i3(7ri) := Bi, f (TTI) := Ei and ^* (TTI) := Ff, where Fi , 
Bi, El and Ff denote the feasible set of TTI , its boundary, its set of extreme 
points and the optimal set of TTI , respectively. The upper and lower semiconti-
nuity (use and Isc) of these mappings are implicitly understood in the sense of 
Berge (almost no stability analysis has been made with other semicontinuity 
concepts). The value function is '^(TTI) := v{Pi). Similar mappings can be 
considered for the dual problem. Some results in this section are new even for 
LO (i.e., | r | < 00). 

Stability of the feasible set 
It is easy to prove that !F is closed everywhere whereas the Isc and the use 

properties are satisfied or not at a given n e lie depending on the data a and 
b. 

Chapter 6 of [GL98] provides many conditions which are equivalent to the 
Isc property of ^ at TT € ilc, e.g., n G intilc, existence of a strong Slater point 
X (i.e., a[x > bt-\- e ioi all t G T , with e > 0), or 

On+i ^ clconv {(:)•'-} 
(a useful condition involving the data). 

The characterization of the use property of ^ at TT G ilc in [CLP02a] 
requires some additional notation. Let K^ be the characteristic cone of 

< . -={a 'x>6 . ( ; ) . ( co„v{(»<) , , . r } ) J , 

where XQO := {hniA; Ijik^^ \ {x^} C X, {/x^} i O}. If F is bounded, then J^ is 
use at TT. Otherwise two cases are possible: 

If F contains at least one line, then !F is use at TT if and only if K^ ~ clK. 
Otherwise, if w is the sum of a certain basis of R^ contained in {a^, t G T}, 

then J^ is use at TT if and only if there exists /? G R such that 
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cone ( K - U { ( ; ) } ) = C O „ ( C , K U { ( ; ) } ) . 

The stability of the feasible set has been analyzed from the point of view 
of the dual problem ([GLTOl]), for the primal problem with equations and 
constraint set ([AG05]) and for the primal problem in CSIO ([LVOlb] and 
[GLT02]). 

Stability of the boundary of the feasible set 
Given n e lie such that F ^W^, then we have ([GLV03], [GLT05]): 

!F Isc at TT <—> B Isc at TT 

B closed at TT 

T use at TT <— B use at TT 

Remarks: (1) the converse holds if d imF = n; (2) the converse statement 
holds if F is bounded. 

Stability of the extreme points set 
The following concept is the key of the analysis carried out in [GLV05]: TT 

is nondegenerate if |{^ G T | a[x = ht]\ < n for all x G B\E. 
Let 7TH = (a,0,c). If \T\ > n, ^ 7̂  0, and |F | > 1 (the most difficult 

case), then we have: 

J^ Isc at TT <—> £ Isc at TT 

(4) 

£ closed at TT —> TT nondeg. 
(2) I I (3) 

(5) 

£ use at TT —> TT & TT/f uondcg. 

Remarks: (1) if F is strictly convex; (2) if F is bounded; (3) if {at^t G T} 
is bounded; (4) if ^ is Isc at TT; the converse holds if \T\ < 00; (5) the converse 
statement holds if |T| < 00. 

Stability of the optimal set 
In Chapter 10 of [GL98] it is proved that, if TT G ils, then the following 

statements hold: 
• ^ * is closed at IT <—> either J^ is Isc at TT or F = F*. 
• ^* is Isc at TT <—> T is Isc at TT and |F*| — 1 (uniqueness). 
• If ^* is use at TT, then ^* is closed at TT (and the converse is true if F* is 

bounded). 
The following generic result on Us has been proved in [GLTOSa]: almost 

every (in a topological sense) solvable LSIO problem with bounded data has a 
strongly unique solution. Results on the stability of Ĵ * in CSIO can be found 
in [GLV03] and [GLT02]. 
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Stability of the value and well-posedness 
The following definition of well-posedness is orientated towards the sta

bility of 19. {x^} C E^ is an asymptotically minimazing sequence for n € 
IJc associated with {TT .̂} C lib if ^^ ^ Fr for all r, lim^ TTr == TT, and 
liuir [{c^y x'^ — v{Pr)] = 0. In particular, TT e Us is Hadamard well-posed 
(Hwp) if for every x* G F* and for every {iTr} C lib such that liuirTTr = TT 
there exists an asymptotically minimazing sequence converging to x*. The 
following statements are proved in Chapter 10 of [GL98]: 

• If F* 7̂^ 0 and bounded, then i) is Isc at TT. The converse statement holds 
if TT G lib. 

• I? is use at TT <—> T is Isc at TT. 

• If TT is Hwp, then -^1^^ is continuous. 
• If F* is bounded, TT is Hwp <—> either ^ is Isc at TT or |F | = 1. 
• If F* is unbounded and TT is Hwp, then T is Isc at TT. 
A similar analysis has been made in [CLPTOl] with other Hwp concepts. 

Extensions to CSIO can be found in [GLV03]. A generic result on Hwp prob
lems in quadratic SIO can be found [ILROl]. The connection between gener-
icity and Hwp properties is discussed in [PenOl]. 

Distance to ill-posedness 
There exist different concepts of ill-posedness in LSIO: bdTJc is the set of 

ill-posed problems in the feasibility sense, hdllgi (where Ilsi denotes the set of 
problems which have a finite inconsistent subproblem) is the set of generalized 
ill-posed problems in the feasibility sense, and bdil^ = bdil^ is the set of ill-
posed problems in the optimality sense. The following formulae ([CLPT04]) 
replace the calculus of distances in 77 with the calculus of distances in R^+^ 
involving the so-called hypographic set 

H : - conv ihA^teA-^ cone ((^\),tGT\. 

• If TT G iTc, then 

diTTMHsi) = d(On+lMH) . 

• If TT G (clils) n (intilc) and Z~ := conv{at,^ G T; - c } , then 

d{TT, hdUs) = min{(i(On+i, bdi7), d{On, bdZ")} . 

• If TT G (clTT )̂ n (bdJTc) and Z+ := convja^, t G T; c}, then 

diTTMHs) > min{d(On+i,bdif),d(On,bdZ+)}. 

Error bounds 
The residual function of TT is 

r (x, TT) :— sup {bt — a[x) , 
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where a+ := max{a,0}. Obviously, x G F ^^ r {x^n) = 0. 0 < P < +oo is a 
global error bound for TT E ilc if 

^ ^ ^ < /? Vx G R^\F, 
r (x,7r) 

If there exists such a /?, then the condition number of TT is 

d(x F) 
0 < T (TT) :=: sup ) ' , < +00. 

xeR^\F r{x,7r) 

The following statements hold for any TT with bounded data ([HuOO]): 
• Assume that F is bounded and TT G int/Zc , and let /?, x^ and 5 > 0 such 

that ||x|| < p Vx G F and a[x^ > bt + e yt e T. Let 0 <-f < 1, Then, if 

we have 

• Assume that F is unbounded and TTH G intilc, and let u and rj > 0 such 
that a'tU >r]\/teT, \\u\\ = 1. Let 0 < 5 < n-^r}. Then, if (i(7ri,7r) < 5, we 
have 

c/(7ri,7r) < 

r ( 7 r i ) < 2 p 5 " ^ 

£771 2 

1 + 7 
( 1 - 7 ) ' 

T (TTI ) < (7/ — (^n 2 j 

Improved error bounds for arbitrary TT can be found in [CLPT04]. There 
exist extensions to CSIO ([GugOO]) and to abstract LSIO ([NY02]). 

Sensitivity analysis 
The basic problem in sensitivity analysis is to evaluate the impact on the 

primal and the dual value functions of small perturbations of the data. In the 
case of perturbations of c, an approximate answer can be obtained from the 
subdifferentials of these functions (see Chapter 8 in [GL98]). [GGGT05] ex
tends from LO to LSIO the exact formulae in [GauOl] for both value functions 
under perturbations of c and b (separately). This is done determining neigh
borhoods of c (6), or at least segments emanating from c {b, respectively), 
on which the corresponding value function is linear (i.e., finite, convex and 
concave). 

Other perspectives 
In the parametric setting the perturbed data depend on a certain parame

ter ^ G 0 (space of parameters), i.e., are expressed as TT (0) = (a (6) ,b(9) ,c{6)), 
with T fixed or not, and the nominal problem is TT {6). The stability of J^ in 
this context has been studied in [MMOO, CLP05], where the stability of d 
and !F* has been also analyzed. Results on the stability of !F in CSIO in a 
parametric setting can be found in [CLP02b, CLOP03]. 

For more information on perturbation analysis in more general contexts 
the reader is referred to [KH98, BSOO] and references therein. 
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Summary . The paper contains new results as well as surveys on recent devel
opments on the constrained best interpolation problem, and in particular on the 
convex best interpolation problem. Issues addressed include theoretical reduction of 
the problem to a system of nonsmooth equations, nonsmooth analysis of those equa
tions and development of Newton's method, convergence analysis and globalization. 
We frequently use the convex best interpolation to illustrate the seemingly com
plex theory. Important techniques such as splitting are introduced and interesting 
links between approaches from approximation and optimization are also established. 
Open problems related to polyhedral constraints and strips may be tackled by the 
tools introduced and developed in this paper. 

2000 M R S u b j e c t Class i f icat ion. 49M45, 90C25, 90C33 

I Introduction 

The convex best interpolation problem is defined as follows: 

minimize | | / ' ' | |2 (1) 

subject to f{ti)=yi, i = 1,2, • • • , n + 2, 

/ is convex on [a, 6], / G H^^'^[a, 6], 

where a = t i < 2̂ < • • • < ^n+2 = b and ^/i, i = 1 , . . . , n + 2 are given numbers, 
II • II2 is the Lebesgue L'^[a, b] norm, and M^^'^[a, b] denotes the Sobolev space of 
functions with absolutely continuous first derivatives and second derivatives 
in L'^[a^b], and equipped with the norm being the sum of the L'^[a,b] norms 
of the function, its first, and its second derivatives. 

Using an integration by parts technique, Favard [Fav40] and, more gener
ally, de Boor [deB78] showed tha t this problem has an equivalent reformulation 
as follows: 
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min {||i |̂|| u G L^[a,6], w > 0, {u^x'^) = di, i = : l , . . . , n } , (2) 

where the functions x̂  G L'^[a,b] and the numbers di can be expressed in 
terms of the original data {ti^yi} (in fact, x* = Bi{t), the jB-sphne of order 
2 defined by the given data and {di} are the second divided differences of 
{( î? yi)}^=i)' Under the assumption d ^ > 0 , i = l , . . . , n the optimal solution 
u* of (2) has the form 

u*it) = (J2KBim (3) 

where r-(- :== max{0, r} and {A*} satisfy the following interpolation condition: 

/ (Z]'^^^^W) Bi{t)dt = du i = l,...,n. (4) 

Once we have the solution u*, the function required by (1) can be obtained by 
f" = u. This representation result was obtained first by Hornung [HorSO] and 
subsequently extended to a much broader circle of problems in [AE87, DK89, 
IP84, IMS86, MSSW85, MU88]. We briefly discuss below both theoretically 
and numerically important progresses on those problems. 

Theoretically, prior to [MU88] by Micchelli and Utreras, most of research 
is mainly centered on the problem (1) and its slight relaxations such as f^' 
is bounded below or above, see [IP84, MSSW85, IMS86, AE87, DK89]. After 
[MU88] the main focus is on to what degree the solution characterization like 
(3) and (4) can be extended to a more general problem proposed in Hilbert 
spaces: 

min<^ - | | a : - x ° | | ^ | xeC and Ax=^h\ (5) 

where C C X is a closed convex set in a Hilbert space X^ A \ X \-^ IR^ is a 
bounded linear operator, h G IR^. It is easy to see that if we let 

X = L'^[a,h], C ={xeX\x>0}, Ax = {{Bux},... ,{Bn,x)), x^ = 0, b = d 
(6) 

then (5) becomes (2). The abstract interpolation problem (5), initially studied 
in [MU88], was extensively studied in a series of papers by Chui, Deutsch, and 
Ward [CDW90, CDW92], Deutsch, Ubhaya, Ward, and Xu [DUWX96], and 
Deutsch, Li, and Ward [DLW97]. For the complete treatment on this problem 
in the spirit of those papers, see the recent book by Deutsch [DeuOl]. 

Among the major developments in those papers is an important concept 
called the strong CHIP [DLW97], which is the refinement of the property 
CHIP [CDW90] (Conical Hull Intersection Property). More studies on the 
strong CHIP, CHIP and other properties can be found in the two recent 
papers [BBL99, BBTOO]. Roughly speaking, the importance of the strong 
CHIP is with the following characterization result: The strong CHIP holds 
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for the constraints in (5) if and only the unique solution x* has the following 
representation: 

x* = P c ( x V ^ * A * ) , (7) 

where Pc denotes the projection to the closed convex set C (the closeness and 
convexity guarantees the existence of Pc)^ and ^* is the adjoint of A^ and 
A* G IR^ satisfies the following nonlinear nonsmooth equation: 

APc{x^ ^A'X) = h, (8) 

To see (7) and (8) recover (3) and (4) it is enough to use the fact: 

Pc = x^ where C =^ {x e L^[a,6]|x > 0}. 

If the strong CHIP does not hold we still have similar characterization in 
which Pc is replaced by Pcb, where Ch is an extremal face of C satisfying 
some properties [DeuOl]. However, it is often hard to get enough information 
to make the calculation of Pc^ possible, unless in some particular cases. Hence, 
we mainly focus on the case where the strong CHIP holds. We will see that the 
assumption rf^ > 0, i = 1 , . . . , n for problem (1) is a sufficient condition for the 
strong CHIP, and much more than that, it ensures the quadratic convergence 
of Newton's method. 

Numerically, problem (1) has been well studied [IP84, IMS86, AE87, 
MU88, DK89, DQQOl, DQQ03]. As demonstrated in [IMS86] and verified 
in several other occasions [AE87, DK89], the Newton method is the most effi
cient compared to many other global methods for solving the equation (4). We 
delay the description of the Newton method to the end of Section 3, instead 
we list some difficulties in designing algorithms for (4) and (8). First of all, the 
equation (4) is generally nonsmooth. The nonsmoothness was a major barrier 
for Andersson and Elfving [AE87] to establish the convergence of Newton's 
method (they have to assume that the equation is smooth near the solution 
(the simple case) in order that the classical convergence result of Newton's 
method appHes). Second, as having been both noticed in [IMS86, AE87], in the 
simple (i.e., smooth) case, the method presented in [IMS86, AE87] becomes 
the classical Newton method. More justification is needed to consolidate the 
name and the use of Newton's method when the equation is nonsmooth. To 
do this, we appeal to the theory of the generalized Newton method developed 
by Kummer [Kum88] and Qi and Sun [QS93] for nonsmooth equations. This 
was done in [DQQOl, DQQ03]. We will review this theory in Section 3. Third, 
Newton's method is only developed for the conical case, i.e., C is a cone. It is 
yet to know in what form the Newton method appears even for the polyhedral 
case (i.e., C is intersection of finitely many halfspaces). We will tackle those 
difficulties against the problem (5). 

The problem (5) can also be studied via a very different approach devel
oped by Borwein and Lewis [BL92] for partially finite convex programming 
problems: 
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mi{f{x)\Axeb^Q, xeC}, (9) 

where C G X is a closed convex set, X is a topological vector space, A : X ^-^ 
JR^ is a bounded linear operator, 6 G IR^, Q is a polyhedral set in IR^, and 
/ : X i-> (-00,00] is convex. If f{x) = \\x^ — x p and Q = {0}, then (9) 
becomes (5). Under the constraint qualification that there is a feasible point 
which is in the quasi-relative interior of C, the problem (9) can be solved 
by its Fenchel-Rockafellar dual problem. We will see in the next section that 
this approach also leads to the solution characterization (7) and (8). See, e.g., 
[GT90, Jey92, JW92] for further development of Borwein-Lewis approach. 

An interesting aspect of (9) is when Q = IR!J:, the nonnegative orthant of 
IR'̂ . This yields the following approximation problem: 

i i n | - | | x ° -x | | Ax>b, xeC\. (10) 

This problem was systematically studied by Deutsch, Li and Ward in [DLW97], 
proving that the strong CHIP again plays an important role but the sufficient 
condition ensuring the strong CHIP takes a very different form from that (i.e., 
6 G ri AC) for (5). We will prove in Section 2 that the constraint qualification 
of Borwein and Lewis also implies the strong CHIP. Nonlinear convex and 
nonconvex extension of (10) can be found in [LJ02, LN02, LN03]. 

The paper is organized as follows: The next section contains some nec
essary background materials. In particular, we review the approach initiated 
by Micchelli and Utreras [MU88] and all the way to the advent of the strong 
CHIP and its consequences. We then review the approach of Borwein and 
Lewis [BL92] and state its implications by establishing the fact that the non-
emptiness of the quasi-relative interior of the feasible set implies the strong 
CHIP. In section 3, we review the theory of Newton's method for nonsmooth 
equations, laying down the basis for the analysis of the Newton method for 
(5), which is conducted in Section 4. In the last section, we discuss some ex
tensions to other problems such as interpolation in a strip. Throughout the 
paper we use the convex best interpolation problem (1) and (4) as an example 
to illustrate the seemingly complex theory. 

2 Constrained Interpolation in Hilbert Space 

Since X is a Hilbert space, the bounded Hnear operator A : X \-^ H^ has the 
following representation: there exist x i , . . . ,Xn G X such that 

Ax = ( (x i ,x ) , . . . ,(xn,x)), Vx G X. 

Defining 
Hi := {x G X\ {xi,x) =bi} , z = 1,. . . , n 

the interpolation problem (5) has the following appearance 
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jill^o _^||2| ^ g ̂  := cn {n]^,Hj)Y (11) 

Recall that for any convex set D C X^ the (negative) polar of D, denoted by 
D°, is defined by 

D° :={yeX\ {y,x) < 0 , V X G L > } . 

The well-know strong CHIP is now defined as follows. 

Definition 1. [DeuOl, Definition 10.2] A collection of closed convex sets 
{Ci,C2, . . . ,Cm} in X, which has a nonempty intersection, is said to have 
the strong conical hull intersection property, or the strong CHIP, if 

m 

{r\fCi - xf - Y^^Ci - xf Vx G n^Q. 
1 

The concept of the strong CHIP is a refinement of CHIP [DLW97], which 
requires 

~rn 

(n ra - xf = Y,(Ci - xY \Jx e n^Cu (12) 
1 

where C denotes the closure of C It is worth mentioning that one direction 
of (12) is automatic, that is 

{n'pCi - x)° D J2{Ci ~ x)° Vx G nTCi, 
1 

Hence, the strong CHIP is actually assuming the other direction. The impor
tance of the strong CHIP is with the following solution characterization of the 
problem (11). 

Theorem 1. [DLW97, Theorem 3.2] and [DeuOl, Theorem 10.13] The set 
{C.,r\^Hj} has the strong CHIP if and only if for every x^ e. X there exists 
A* G IR" such that the optimal solution x* = PK{X^) has the representation: 

X* =Pc{x^ + A*X*) 

and A* satisfies the interpolation equation 

APc{x^ + A'^X) = b. 

We remark that in general the strong CHIP of the sets {C, i J i , . . . , ifn} 
implies the strong CHIP of the sets {C, nyifj}. The following lemma gives a 
condition that ensures their equivalence. 

Lemma 1. ]Deu01, Lemma 10.11] Suppose that X is a Hilbert space and 
{Co, Ci, . . . , Cm} 'is a collection of closed convex subsets such that { C i , . . . , Cm} 
has the strong CHIP. Then the following statements are equivalent: 
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(i) {Co, C i , . . . , Cm} has the strong CHIP. 
(iiJiCo^n'pCj} has the strong CHIP. 

Since each Hj is a hyperplane, {Hi,..., Hn} has the strong CHIP [DeuOl, 
Example 10.9]. It follows from Lemma 1 that the strong CHIP of { C , H i , . . . , 
Hn} is equivalent to that of {C, A~^{b)}. However, it is often difficult to know 
if {C,A~^{b)} has the strong CHIP. Fortunately, there are available easy-
to-be-verified sufficient conditions for this property. Given a convex subset 
D C IR'̂ , let ri D denote the relative of D. Note that ri D ^̂  0 if D 7̂  0. 

Theorem 2. [DeuOl, Theorem 10.32] and [DLW97, Theorem 3.12] If h e 
ri AC, then {C,A~^{h)} has the strong CHIP. 

Theorem 2 also follows from the approach of Borwein and Lewis [BL92]. 
The concept of quasi-relative interior of convex sets plays an important role in 
this approach. We assume temporarily that X be a locally convex topological 
vector space. Let X* denote the dual space of X (if Xis a Hilbert space then 
X* = X) and Nc{x) C X* denote the normal cone to C at x G C, i.e., 

Nc{x):={yeX''\{y,x-x)<{), Vx G C}. 

The most useful properties of the quasi-relative interiors are contained in 
the following 

Proposition 1. [BL92] Suppose C C X is convex, then 

(i) If X is finite-dimensional then qri C = ri C. 
(ii)Let X G C then x E qri C if and only if Nc{x) is a subspace of X*. 
(Hi)Let A : X \-^ IR^ be a bounded linear map. If qri C ^ ^ then A{qri C) = 

riAC. 

We note that (ii) serves a definition for the quasi-relative interior of convex 
sets. One can find several other interesting properties of the quasi-relative 
interior in [BL92]. Although in finite-dimensional case quasi-relative interior 
becomes classical relative interior, it is a genuine new concept in infinite-
dimensional cases. To see this, let X = I'̂ fO, 1], (p > 1), C := {x G X\x > 
0 a.e.}. Since C reproduces X (i.e., X = C — C), ri C = ^, however, qri C = 
{x G X\x > 0 a.e.}. One of the basic results in [BL92] is 

Theorem 3. [BL92, Corollary 4-8] Let the assumptions on problem (9) hold. 
Consider its dual problem 

m a x { - ( / + (5(.|C))*(A*A) + 6^A| A G Q+} . (13) 

/ / the following constraint qualification is satisfied 

there exists an x G qri C which is feasible for (9), (14) 

then the value of (9) and (13) are equal with attainment in (13). Suppose 
further that (/+5(-|C)) is closed. IfX* is optimal for the dual and {f-\-6{'\C)y 
is differentiable at A*X* with Gateaux derivative x* G X, then x* is optimal 
for (9) and furthermore the unique optimal solution. 
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In (13), Q+ := {y G X*| {y,x) > 0, V x G Q}. We now apply Theorem 3 
to problem (11), i.e., we let 

f{x) - i | |x^ - xf, Q = {0} so that g + = IR^. 

Obviously, in this case (9) has a unique solution since f{x) is strongly convex. 
For y G X* we calculate 

(/ + S{-\C)riy) = sup {{y,x) - /(x) - 5(x|C)} 
xex 

= supl^{x,y + x')-l\\xf-\\\xY] 

/ i | | u + a;0||2_iiiy , „ o _ | | 2 _ 1 | | oipl 
= sup 

= l\\y + Af-l\\y + ̂ °-Pciy + x')f-\\\xY-ii5) 

It is well known (see, e.g., [MU88, Theorem 3.2]) that the right side of (15) is 
Gateaux differentiable with 

^if + 5i-\C)r{y) = Pc{y + x'). 

Returning to (13), which is an unconstrained convex optimization problem, 
we know that the optimal solution A* to (13) satisfies 

APc{x^ + A''X)=:b 

and the optimal solution to (9) is 

x' = Pc{x^ + A'X'). 

Following Theorem 1 we see that the sets {C, A~^{b)} has the strong CHIP. In 
fact, the qualification (14) is exactly the condition 6 G ri (AC) by Proposition 
1, except that (14) needs a priori assumption qri C 7̂  0. 

However, for the problem (10), where 

K = Cn{x\Ax>b}, 

the condition 6 G ri AC is not suitable as it might happen that b ^ AC. It 
turns out that the strong CHIP again plays an essential role in this case. Let 

Hj :={x\{aj,x) >bj}. 
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Theorem 4. [DLW99, Theorem 3.2] The sets {C, H^Wj} has the strong CHIP 
if and only if the optimal solution of (10) x* = PK{X^) has the following 
representation: 

X* =Pc(:^*+^*A*), (16) 

where A* is any solution of the nonlinear complementarity problem: 

A > 0, w:= APc{x^ + ^*A) - 6 > 0, \^w = 0. (17) 

The following question was raised in [DLW99] that if the constraint qual
ification (14) is a sufficient condition for the strong CHIP of {C.D^Hj}. We 
give an affirmative answer in the next result. 

Theorem 5. If it holds 

qriCn{ninj)^iD, (18) 
then the sets {C^DiTij} has the strong CHIP. 

Proof Suppose (18) is in place, it follows from Theorem 3 with f{x) = h\\^~ 
x^W^ that there exists an optimal solution A* to the problem (13). (15) says 
that 

if + Si-\C)riy) = l\\y + xY-\\\y + x°-Pciy + x')f-\\\xY 

and it is Gateaux differentiable and convex [MU88, Lemma 3.1]. Then (13) 
becomes 

mm I i p * A + x ^ f - i||A*A + x° - Pc(^*A + x ° ) f ~ 6^A| A > o | . 

It is a finite-dimensional convex optimization problem and the optimal solu
tion is attained. Hence, the optimal solution A* is exactly a solution of (17) 
and the optimal solution of (10) is x* = Pc{x^ + ^*A). It then follows from 
the characterization in Theorem 4 that the sets {C, fl^Wj} has the strong 
CHIP. D 

Illustration to problem (2). We recall the problem (2) and the setting in 
(6). Prom the fact [BL92, Lemma 7.17] 

Bixdt j I X > 0 a.e. x e L^[a,b] i ^ {r G IR""! r̂  > 0,z = 1 , . . . ,n} 

and the fact qri C = {x G L'^[a,b]\ x > 0 a.e.}, we have 

Aqri C = ri ^ C = int ^ C - {r G IR̂ Î n > 0,2 - 1 , . . . , n}. 

It follows from Theorem 2 or Theorem 3 that the solution to (2) is given by 
(3) and (4), under the assumption that di > 0 for all i. Moreover, we will see 
that this assumption implies the uniqueness of the solution A*, and eventually 
guarantees the quadratic convergence of the Newton method. 



Newton's Method for Constrained Best Interpolation 31 

3 Nonsmooth Functions and Equations 

As is well known, if F : IR^ H-> IR"^ is smooth the classical Newton method for 
finding a solution x* of the equation F{x) = 0 takes the following form: 

^^+1 ^ ^^ _ {F\x^))~^ F{x^) (19) 

where F ' is the Jacobian of F. If F'(a;*) is nonsingular then (19) is well defined 
near the solution x* and is quadratically convergent. However, as we see from 
the previous sections we are encountered with nonsmooth equations. There is 
need to develop Newton's method for nonsmooth equation, which is presented 
below. 

Now we suppose that F : IR'̂  y-^ IR^ is only locally Lipschitz and we want 
to find a solution of the equation 

F{x) = 0. (20) 

Since F is differentiable almost everywhere according to Redemacher's the
orem, the Bouligand diff'erential of F at x, denoted by dBF{x)^ is defined 
by 

DBF^X) := \V\ V = lim F\x'), F is difi^erentiable at x'\ . 
[ re*—>x J 

In other words, dBF{x) is the set of all limits of any sequence {F\x'^)] where 
F' exists at x'^ and x'^ —̂  x. The generalized Jacobian of Clark [Cla83] is then 
the convex hull of 9j3F(x), i.e., 

dF{x) =codBF{x). 

The basic properties of OF are included in the following result. 

Proposition 2. [Cla83, Proposition 2.6.2] 

(a)dF is a nonempty convex compact subset ofJR^^'^. 
(h) dF is closed at x; that is, if x'^ -^ x, Mi e dF{x^), Mi —> M, then 

M edF{x). 
(c) dF is upper semicontinuous at x. 

Having the object of 9F , the nonsmooth version of Newton's method for 
the solution of (20) can be described as follows (see, e.g., [Kum88, QS93]). 

x^+i =x^ - V^^F{x^), Vk e dF{x^). (21) 

We note that different choice of Vk results in different sequence of {x^}. Hence, 
it is more accurate to say that (21) defines a class of Newton-type methods 
rather than a single method. It is always arguable which element in dF{x^) 
is the most suitable in defining (21). We will say more about the choice with 
regard to the convex best interpolation problem. We also note that there 
are other ways in defining nonsmooth Newton's method, essentially using 
different definitions 9F(x), but servicing the same objective as 9F , see, e.g., 
[JL98, Xu99, KK02]. 
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Definition 2. We say that F is regular at x if each element in dF{x) is 
nonsingular. 

If F is regular at x* it follows from the upper semicontinuity of F at x* 
(Prop. 2) that F is regular near a:*, and consequently, (21) is well defined 
near x*. Contrasted to the smooth case, the regularity at x* only is no long a 
sufficient condition for the convergence of the method (21). It turns out that 
its convergence also relies on another important property of F , named the 
semismoothness. 

Definition 3. [QS93] We say that F is semismooth at a;* if the following 
conditions hold: 

(i) F is directionally differentiahle at x, and 
(a) it holds 

F{x + /i) - F{x) -Vh = o{\\h\\) \/V e dF{x + h) and h G K^. (22) 

Furthermore, if 

F{x + /i) - F{x) -Vh = 0{\\hf) yV e dF{x + h) and h e IR^, (23) 

F is said strongly semismooth at x. If F is (strongly) semismooth everywhere, 
we simply say that F is (strongly) semismooth. 

The property of semismoothness, as introduced by Mifflin [Mif77] for func-
tionals and scalar-valued functions and further extended by Qi and Sun [QS93] 
for vector-valued functions, is of particular interest due to the key role it plays 
in the super linear convergence of the nonsmooth Newton method (21). It is 
worth mentioning that in a largely ignored paper [Kum88] by Kummer, the 
relation (22), being put in a very general form in [Kum88], has been revealed 
to be essential for the convergence of a class of Newton type methods, which 
is essentially the same as (21). Nevertheless, Qi and Sun's work [QS93] makes 
it more accessible to and much easier to use by many researchers (see, e.g., the 
book [FP03] by Facchinei and Pang). The importance of the semismoothness 
can be seen from the following convergence result for (21). 

Theorem 6. [QS93, Theorem 3.2] Let x* he a solution of the equation 
F{x) — 0 and let F he a locally Lipschitz function which is semismooth at 
X*. Assume that F is regular at x*. Then every sequence generated hy the 
method (21) is superlinearly convergent to x* provided that the starting point 
x° is sufficiently close to x*. Furthermore, if F is strongly semismooth at x*, 
then the convergence rate is quadratic. 

The use of Theorem 6 relies on the availability of the following three ele
ments: (a) availability of an element in dF{x) near the solution x*, (b) regu
larity of F at X* and, (c) (strong) semismoothness of F at x*. We illustrate 
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how the first can be easily calculated below for the convex best interpolation 
problem and leave the other two tasks to the next section. 
Illustration to the convex best interpolation problem. It follow from 
(3) and (4) that the solution of the convex best interpolation problem can be 
obtained by solving the following equation: 

F(A) = d, (24) 

where d= ( d i , . . . , d„)-^ and each component of F is given by 

FJW= f Ifl^eBe] Bjit)dt, j = l,...,n. (25) ,(A) = / E 

Irvine, Marin, and Smith [IMS86] developed Newton's method for (24): 

X+ = X-(M{X)r'{F{X)-d), (26) 

where A and A+ denote respectively the old and the new iterate, and M(A) G 
jf^nxn |g giygn by 

(M(A)),̂ . = J' (f;^ XeBA B,{t)Bi {t)dt, 

and 
0 _ f l i f r > 0 

^^^+ ~ \ 0 if r < 0. 
Let e denote the element of all ones in IR^, then it is easy to see that the 
directional derivative of F at A along the direction e is 

F'{\e)=M{\)e. 

Moreover, if F is differentiable at A then F'{X) = M(A). Due to those reasons, 
the iteration (26) was then called Newton's method, and based on extensive 
numerical experiments, was observed quadratically convergent in [IMS86]. In
dependent of [IMS86], partial theoretical results on the convergence of (26) was 
estabhshed by Andersson and Elfving [AE87]. Complete convergence analysis 
was established by Dontchev, Qi, and Qi [DQQOl, DQQ03] by casting (26) 
as a particular instance of (21). The convergence analysis procedure verifies 
exactly the availability of the three elements discussed above, in particular, 
M(A) G dF{\). We will present in the next section the procedure on the 
constrained interpolation problem in Hilbert space. 

4 Newton's Method and Convergence Analysis 

4.1 Nev^ton's Method 

We first note that all results in Section 2 assume no other requirements for the 
set C except being convex and closed. Consequently, we are able to develop 
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(conceptual, at least) Newton's method for the nonsmooth equation (8). How
ever, efficient implementation of Newton's method relies on the assumption 
that there is an efficient way to calculate the generalized Jacobian of APc{x). 
The most interesting case due to this consideration is when C is a closed con
vex cone (i.e., the conical case [BL92]), which covers many problems including 
(1). We recall our setting below 

X = L^[a,b], C = {xeX\x>0},Ax = {{ai,x),.,.,{an,x)), belR"^ 

where â  G X, £ = 1 , . . . , n (in fact we may assume that X = L^[a, 6], in this 
case a£ G L^[a, b] where l/p-\-l/q = 1). This setting simplifies our description. 

We want to develop Newton's method for the equation: 

APc{x^ + A''X) = b. 

Taking into account of the fact Pc{x) = x-^^ we let 

F(A) ~b = 0 (27) 

where each component of F : IR^ i-̂  R^ is given by 

n 

F,(A):=(a,-,(xO + ^ a , A ^ ) + ) . (28) 

We propose a nonsmooth Newton method (in the spirit of Section 3) for 
nonsmooth equation (27) as follows: 

F(A)(A+ - A) = 6 - F(A), V{X) e dF{X). (29) 

One of several difficulties with the Newton method (29) is to select an ap
propriate matrix V̂ (A) from 9F(A), which is well defined as F is Lipschitz 
continuous under Assumption 1 stated later. We will also see the following 
choice satisfies all the requirements. 

(^(A)),, 

We note that for p eW 

.. := I ix^ + Y1A^^^ ) (^i(^jdi' (30) 

/3^y(A)/3= / (xO + f ^ A , a , ) Ij^Peae] dt>0. (31) 

That is, V{\) is positive semidefinite for arbitrary choice A G IR^. We need 
an assumption to make it positive definite. Let the support of ae be 

supp(a^) := {t G [a,b]\ae{t) ^ 0}. 
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Assumption 1. Each ae is continuous, and any subset of functions 

{a£,£ Gl C { 1 , . . . , n}\supp{ai) D supp(aj) ^ 0 for any pair i,j e 1} , 

are linearly independent on U££xsupp{ai). Moreover, 

Ul^isupp{ai) = [a, 6]. 

This assumption is not restrictive. Typical choices of ae are {a^ = f^} or 
{ai = Bi}. With Assumption 1 we have the following result. 

Lemma 2. Suppose Assumption 1 holds. V{X) is positive definite if and only 
if {x^ + Yl7=i ^e(^£)-\- does not vanish identically on the supporting set of each 
ae, £ = l,...,n. 

Proof Suppose that {x^ + Yl^=i ^^^^)+ is nonzero on each supp(a£). Due 
to the continuity of (x^ + Yll=i ^^^^) ^^^ ^e^ there exists a Borel set i?^ C 
supp(a^) such that (x^ -{- Y^^^i A^a^)^ = 1 for all t E Qe and the measure of 
Qi is not zero. Let 

I{f2e) : - 01 supp(a^) D f2e ̂  0}. 

Since {aj\j G Z(i?^)} are linearly independent, (3^V{X)I3 = 0 implies (Sj = 0 
for all j GX{Qi). We also note that 

UF=iJ(/2,) = { l , . . . , n } . 

We see that pj = 0 for all j - 1 , . . . ,n if P^V{X)(3 = 0. Hence, (31) yields 
the positive definiteness of V{X). The converse follows from the observation 
that if {x^ + Y^l=:i Â <̂ )̂+ ^ 0 on supp(a^) for some £ then /?^y(A)/3 = 0 for 
/3 G R^ with pe = 1 and pj = 0 for j ^ £. D 

Due to the special structure of F(A), Newton's method (29) can be sim
plified by noticing that 

Fj(A) - / (^° + X] ̂ ^̂ )̂ '̂̂ ^ 

n \^ / ^ \ 

v^ + yjA^a^ I I x^ + 2_\A^a^ 1 Ojdt 
e=i / + V ^=1 / + 

n b / "^ \ ^ 

= ^ Xe{V{X))je + f f ^° + X^ Xeae ] ajxH{t). 

J a 

Thus we have 

F(A)-T/(A)A + ^I ( x V ^ A . a ^ l xM . 
^=1 
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Recalling (29) we have 

0 

T / ( A ) A + - 6 - A x^ + ^ A ^ a J x° . (32) 
£=1 + 

A very interesting case is when x^ = 0, which implies that no function eval
uations are required to implement Newton's method, i.e, (32) takes the form 
V{X)X+ = b. 

Other choices of V{X) are also possible as dF{X) usually contains infinitely 
many elements. For example, 

( ^ A ) ) . . : = y ((a:° + f ^ A , a , j aia^dt, and ( r ) ^ : = | j 
1 if r > 0 

if r < 0. 

It is easy to see that P^V{X)P > P'^V{X)p for any P G IR"'. This means 
that V{X) "increases the positivity" of ^(A) in the sense that V̂ (A) — V{X) is 
positive semidefinite. The argument leading to (32) also applies to V{X). We 
will show below that both V̂ (A) and V'(A) are contained in dF{X). 

4.2 Splitting and Regularity 

We now introduce a splitting technique that decomposes the (nonsmooth) 
function F into two parts, namely F'^ and F ~ , satisfying that F+ is con
tinuously differentiable at the given point and F~ is necessarily nonsmooth 
nearby. This technique facihtates our arguments that lead to the conclusion 
that V{X) belongs to dF{X) and pave the ways to study the regularity of F 
at the solution. For the moment, we let A be our reference point. Let 

n 

T{\) := {t e [a,b]\ x° + ^Xeae = 0}, f (A) := [a,b]\T{X). 

Due to Assumption (1), r(A) contains closed intervals in \a,b], possibly iso
lated points. For j •= 1 , . . . , n, define 

^ / W - = / (a;° + V A f o J ajdt, 
JTOO \ ^ ) ^ 

^r(^)'-= [ la^° + y^A«Of) ajdt, 

and 

F+(A) := (F+(A), . . . , F:iX)f, F-(A) := (Ff (A), . . . , F-(X)f. 
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It is easy to see that 
F ( A ) - F + ( A ) + F - ( A ) . 

It is elementary to see that the vector-valued function F"^ is continuous dif-
ferentiable in a neighborhood M(X) of A. Then from the definition of the 
generalized Jacobian we obtain that for any A G A/'(A), 

dF{X) = VF+(A) + 9F-(A), (33) 

where VF'^(A) denotes the usual Jacobian of F+ at A. More precisely, 

(VF+(A)) . .= / Ix^ + y^XaA aiajdt. (34) 

'' Jnx)\ ^ J^ 
Since 

x° + ^ A a ^ - 0 for all teT(X), 

(34) can be written as 

( V F + ( A ) ) . . - ^ U ^ + f ^ A a , J aiajdt = V{X)^ (35) 

Regarding to F ~ we need following assumption: 

Assumption 2. There exists a sequence of {A^} in JR^ converging to zero 
such that the sum J2^=i ^e^^ ^̂  negative on [a^b] for all A .̂ 

This assumption also holds if each of ae is nonnegative or nonpositive. 

Lemma 3. For any X G IR"" every element in dF~{X) is positive semidefinite. 
Moreover, if Assumption 2 holds then the zero matrix belongs to dF~{X). 

Proof. We denote 

y:= I x^ + ^ A ^ a H XT(A)' 

where XT{\) ^̂  the characteristic function of the set T{X). In terms of y, F~ 
can be written as F~{X) — Ay. Since T(A) consists of only closed intervals, 
without loss of generality we assume T(A) is a closed interval. Let 

C'.= {xeL'^{T{X))\x>0}. 

Then we have L'^[a,b] C L 2 ( T ( A ) ) since (T(A)) C [a,6]. Define 

e{X):= [ L^' + yXeaA dt ^ j ( P c ( ^ v f ] A ^ a ^ ) ) d̂ . 
JT{X)\ ^ ) ^ JTi\)\ ^^1 ) 
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According to [MU88, Lemma 2.1], ^(A) is continuously Gateaux differentiable 
and convex. Moreover, 

Ve{X)=Ay = F-{X). 
Therefore, any matrix in the generaUzed Jacobian of the gradient mapping 
(which is required to be Lipschitz continuous) of a convex function must be 
positive semidefinite, see, for example, [JQ95, Proposition 2.3]. Now we prove 
the second part. Suppose Assumption 2 holds for the sequence {A^} which 
converges to zero. Then F~{X + A^) is differentiable because 

n 

Hence, 

(A + X^)eae < 0 for all t G r(A) and r > 0. 

lim VF-(A + A )̂ = 0 G 9F-(A). 
/c—>oo 

D 

We then have 

Corollary 1. For any X G IR^, F(A) G dF{X). 

Proof. It follows from Lemma 3 that 0 G 9F_-(A) andfrom (35)_that ^(A) = 
VF+(A). The relation (33) then implies V{X) G dF{X). Since A is arbitrary 
we are done. D 

We need another assumption for our regularity result. 

Assumption 3, be ^ 0 for all i = 1 , . . . , n. 

Lemma 4. Suppose Assumptions (1), (2) and (3) hold and let A* he the so
lution of (27). then every element o/9F(A*) is positive definite. 

Proof. We have proved that 

dF{X*) = aF-(A*) + VF+(A*) - (9F-(A*) + F(A*) 

and every element in dF~(X*) is positive semidefinite. It is enough to prove 
VF"^(A*) is positive definite. We recall that at the solution 

= Fi{Xn = J | x ^ + X^A,*a,j a, dt, Vz = 1, 

The assumption (3) implies that (x^ + Yll,=\ '^^^^)_L ^oes not vanish identi
cally at the support of each a .̂ Then Lemma 2 implies that VF"^(A*) = V{X*) 
is positive definite. D 

Illustration to problem (2). An essential assumption for problem (2) is that 
the second divided difference is positive, i.e., d̂  > 0 for alH — 1 , . . . , n. Hence, 
Assumption (3) is automatically valid. It is easy to see that Assumptions (1) 
and (2) are also satisfied for ^-splines. It follows from the above argument 
that the Newton method (26) is well defined near the solution. However, to 
prove its convergence we need the semismoothness property of F , which is 
addressed below. 
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4.3 Semismoothness 

As we see from Theorem 6 that the property of semismoothness plays an 
important role in convergence analysis of nonsmooth Newton's method (21). 
In our application it involves functions of following type: 

^(A) := / ^{X,t)dt (36) 

where cj) : IR'̂  x [a, 6] H^ IR is a locally Lipschitz mapping. The following 
development is due to D. Ralph [Ral02] and relies on a characterization of 
semismoothness using the Clarke generalized directional derivative. 

Definition 4. fClaSS] Suppose ip : IR"" \-> JR is locally Lipschitz. The gener
alized directional derivative of ip which, when evaluated at A in the direction 
h, is given by 

ip [X] h) := limsup . 

SiO 

The different quotient when upper limit is being taken is bounded above 
in light of Lipschitz condition. So ip^{X; h) is well defined finite quantity. An 
important property of ijj^ is that for any h, 

^^(A;/i) - max{(e,/i)| i G dilj{X)]. (37) 

We now have the following characterization of semismoothness. 

Lemma 5. [Ral02] A locally Lipschitz function ip : IR^ i-̂  IR Z5 semismooth 
at X if and only if ip is directionally differentiate and 

xP{X) + r (A; A - A) - V'(A) < o(||A - A||), and 
^(A) - V°(A; -A + A) - ^(A) > o(||A - A||). "̂"̂ ^ 

The equivalence remains valid if the inequalities are replaced by equalities. 

Proof. Noticing that (37) implies —'0°(A, —/i) = min^^^^(;^)/i^^, the condi
tions in (38) are equivalent to 

^P{X) + l-nX; -X + A), V °̂(A; A - A)] - V̂ (A) = o{\\X - A||). 

Combining with the directional differentiability of ip, this set-valued equation 
clearly implies the semismoothness of i/; at A because for any <̂  G dip{X), we 
have 

^^(A - A) € [-^°(A; -A + A), V°(A; A - A)]. 

Conversely, if -0 is semismooth at A then for any A we take an element ^ G 
dip{X) (respectively) to obtain 

V °̂(A, A - A) - ^^(A - A) (respectively - V °̂(A; -A + A) = ^^(-A + A)). 

The existence of such ^ follows from compactness of 9-0(A). Then the required 
inequalities follows from the semismoothness of T/̂  at A. D 
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Now we have our major result concerning the function in (36). 

Proposition 3. fRal02] Let (f):W x [0,1] H^ H . Suppose for every t G [0,1] 
(/)(•, t) is semismooth at X e M^. Then ^ defined in (36) is also semismooth 
at A. 

Proof. The directional differentiability of ^ follows from the first part of 
[DQQOl, Proposition 3.1]. Now we use Lemma 5 to prove the semismoothness 
of ^. To this purpose it is enough to establish the following relation: 

/ 
(0(A, t) + (/)°((A, t); (A - A, 0)) - 0(A, t)) dt = o(||A - A||). (39) 

/o 

This implies 
^(A) - ^°(A; A - A) - ^(A) < o(||A - A||) 

because the first principles give 

^ ° ( A ; A - A ) < / (t)mX,t);{X-X,0))dt. 
Jo 

If in (39) we replace 0°((A,it); (A-A,0)) by -(/)''{{X,t); (-A4-A,0)) and follow 
an argument that is almost identical to the subsequent development, we obtain 
the counter condition 

^(A) - ^°(A; -A + A) - ^(A) > a(||A - A||) 

and the proof is sealed in Lemma 5. 
Now let U be the closed unit ball in IR'̂  and 

e{'.y) = 0(z/) + 0°(2/; • - y ) -</>(•), yeiR^x [o,i]. 

Let e > 0 we will find S > 0 such that if X eX + SU then 

/ e((A,0,(A,0)^^<^l|A-A||. 

Since e can be made arbitrarily small, verifying existence of S is equivalent to 
verifying (39). 

For any (5 > 0 let 

A{S) := {t € [0,1]| e((A,0, {X,t)) < | | |A - A||, V A G A + <5t/} . 

For each A S IR" the mapping 11-> e((A, t), (A, t)) is measurable, hence the set 

{ t | e ( ( A , i ) , ( A , i ) ) < | | | A - A | | } . 

is also measurable. Thus, A{5), the interior of measurable sets, is itself mea
surable. Obviously, A{5) C A{S') ii 5 > 5\ And for fixed t G [0,1], semi-
smoothness gives, via Lemma 5, that 
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e((A,t),(A,0) 
l|A-A| 

0 a s 0 7 ^ A - A - > 0 , 

i.e., for all small enough S > 0^ t £ A(S), 
Let f2{5) := [0,1] \ A{S). The properties of A{6) yields (a) measurability 

of i?(5), (b) Q{S) 2 f2{S^) ii 5 > S\ and (c) for each t and all small enough 
S > 0, t ^ f2{S). In particular, n5>o^(^) == 0 and it follows that the measure 
of i7(5), meas(i7((5)), converges to 0 as J —> 0-|-. 

Let L be the Lipschitz constant of (/> in a neighborhood of (A,0), so that 
for each A near A, 

ei{X,t),{>^,t))<\<f>{X,t)-4>CX,t)\ + \4>°{X,t);{X-X,0))\ 

<2L| | (A-A,0) | | = 2L||A-A|| 

using the 2-norm. To sum up, 

/ e((A, 0, (A, t))dt =1 f + / ) e((A, t), (A, t))dt 
Jo \Jai5) JA{5)J 

< (2L||A - A||)meas(i7((5)) + (||A - A||e/2)meas(Z\((5)) 

< ||A - A||(2Lmeas(J7((5)) + e/2). 

Choose 5 > 0 small enough such that meas(i7(5)) < e/(4L), and we are done. 
D 

Corollary 2. Under Assumption 1, the functions Fj defined in (28) are each 
semismooth. 

Proof. For each t e [a^b]^ the mapping (/)j : IR^ H-> IR by 

n 

£=1 

is piecewise linear with respect to A, and hence is semismooth. Then Propo
sition 3 implies that each Fj defined in (28) is semismooth since Fj(X) = 
jl<Pj{X,t)dt. D 

Now we are ready to use Theorem 6 of Qi and Sun [QS93] to establish the 
super linear convergence of the Newton method (29) for the equation (27). 

Theorem 7. Suppose that Assumptions (1), (2) and (3) hold. Then Newton's 
method (29) for (27) is superlinearly convergent provided that the initial point 
A° is close enough to the unique solution A*. 

Proof. Three major elements for the use of Theorem 6 have been established: 
(i) V{X) e dF{X) for any A G IR'' (see, corollary 1), (ii) F is regular at A* 
(see. Lemma 4), and (iii) F is semismooth since each Fj is semismooth (see, 
Corollary 2). The result follows the direct appHcation of Theorem 6 to the 
equation (27). D 
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Illustration to (26). The superlinear convergence of the method (26) is a 
direct consequence of Theorem 7 because all the assumptions for Theorem 
7 are satisfied for the convex best interpolation problem (1). This recovers 
the main result in [DQQOl]. Refinement of some results in [DQQOl] by tak
ing into account of special structures of the 5-splines leads to the quadratic 
convergence analysis conducted in [DQQ03]. 

4.4 Application to Inequality Constraints 

Now we consider the approximation problem given by inequality constraints: 

K = Cn{x\Ax<b}. 

Under the strong CHIP assumption, we have solution characterization (16) 
and (17), which we restate below for easy reference. 

X>0, w:= APc{x^ + A* A) - 6 > 0, X^w = 0. (40) 

Again for computational consideration we assume that C is the cone of positive 
functions so that Pc{x) = x+. Below we design Newton's method for (40) and 
study when it is superlinearly convergent. To do this, we use the well-known 
Fischer-Burmeister NCP function, widely studied in nonlinear complemen
tarity problems [Fis92, SQ99], to reformulate (40) as a system (semismooth) 
equations. 

Recall the Fischer-Burmeister function is given by 

(t>FB{ci, b) := a-hb — y a^ H- 6 .̂ 

Two important properties of (f)FB are 

(f)FB{a, b)=0 <=^ a > 0, 6 > 0, ab = 0 

and the square ^'^^ is continuously differentiable, though (f)FB is not differ-
entiable. Define 

( ^Fs(Ai,'w;i)' 

; 

(f>FB{Xni'^n) , 
and 

Then it is easy to see that (40) is equivalent to the nonsmooth equation 

Since W is locally Lipschitz, direct calculation gives 
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dW(Xw)c(( ^ W - ^ \,V{X)GdFiX) 1 
ovv(A,w) ^ <j^|^£,(;^^^) E{X,w)J ' D{X,w),E{X,w) satisfy (42) and (43 ) / " 

(41) 
J9(A, li;) and E{X, w) are diagonal matrices whose £th diagonal element is given 
by 

D,{X,w):^l- . , . / ' .,,, E , ( A , i / ; ) : - l - — ^ ^ (42) 

if (A^,i(;^) 7̂  0 and by 

De{X,w) = l-^e, Ee{X,w) = 1 - pe, V(e ,̂/>^) e JR^ such that \m,pe)\\ < 1 
(43) 

if {Xe.we) == 0. 

Lemma 6. Suppose every element V{X) in dF{X) is positive definite. Then 
every element of dW{X^ w) is nonsingular. 

Proof. Let M(A, w) be an element of the right side set in (41) and let (2/, z) G 
IR2n be such that M{y,z) = 0. Then there exist V{X) G dF{X) and i:)(A,'w;) 
and E{X, w) satisfying (42) and (43) such that 

V{X)y~z = 0 and D{X,w)y-^ E{X,w)z = 0. 

Since V{X) is nonsingular, it yields that 

{DV-'^-}-E)z = 0. 

It is well known from the NCP theory [DFK96, Theorem 21] that the matrix 
{DV~^ + E) is nonsingular because V~^ is positive definite according to the 
assumption. Hence, z = 0, implying y = 0. This establishes the nonsingularity 
of all elements in dW{X, w). D 

Newton's method for (40) can be developed as follows 

{X-^,w^)-{X,w) = -M-^W{X,w), MedW(X,w). (44) 

We have proved that each Fj is semismooth (Corollary 2). Using the fact that 
composite of semismooth functions is semismooth and the Fischer-Burmeister 
function is strongly semismooth, we know that W is semismooth function. 
Suppose (A*,tt;*) is a solution of (40). 

Assumption 4. Each be > 0 for i = 1 , . . . , n. 

Lemma 7. Suppose Assumption (1), (2) and (4) hold. Then every element 
in 9W(A*,it;*) is nonsingular. 

Proof. We note that at the solution it holds 

APc(a;°+^*A*) = 6 + ^*. 

Since w^^ > 0, we see that be -]- w} > 0. Following the proof of Lemma 4 we 
can prove that each element V in 9F(A*) is positive definite, and hence each 
element of dW{X*,w*) is nonsingular by Lemma 7. D 
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All preparation is ready for the use of Theorem 6 to state the superlinear 
convergence of the method (44). The proof is similar to Theorem 7. 

Theorem 8. Suppose Assumptions (1), (2) and (4) hold. Then the Newton 
method (44) ^s superlinearly convergent provided that the initial point (X^^w^) 
is sufficiently close to {X*^w*). 

We remark that the quadratic convergence is also possible if we could 
establish the strong semismoothness of W at (A*,tt;*). A sufficient condition 
for this property is that each Fj is strongly semismooth since the Fischer-
Burmeister function is automatically strongly semismooth. 

4.5 Globalization 

In the previous subsections, Newton's method is developed for nonsmooth 
equations arising from constrained interpolation and approximation problems. 
It is locally superlinearly convergent under reasonable conditions. It is also 
worth of mentioning it globalization scheme that makes the Newton method 
globally convergent. 

The first issue to be resolved is that we need an objective function for 
the respective problems. Natural choices for objective functions are briefly 
described below with outline of an algorithmic scheme, but without global 
convergence analysis. It is easy to see (following discussion in [MU88, DQQOl]) 
that the function / given by 

pb / n \ 2 n 

/ ( A ) : = / x^ + ^ A . a , dt-^X^be 
*̂ " V £=1 / + e=i 

severs this purpose because 

V/(A) = F{X) - b. 

Since / is convex, ||V/(A)|| = ll-P'(A) — 6|| can be used to monitor the conver
gence of global methods. We present below a global method, which globalizes 
the method (29) and has been shown extremely efficient for the convex best 
interpolation problem (1). 

Algorithm 1. (Damped Newton method) 

(5.0) (Initialization) Choose A° G R' ' , p G (0,1), a G (0,1/2), and tolerance 
tol > 0. A: := 0. 

(5.1) (Termination criterion) If Ck = \\F{X^) — d\\ < tol then stop. Otherwise, 
go to (S.2). 

(5.2) (Direction generation) Let s^ be a solution of the following linear system 

{V{X'')+ekI)s = -Vf{X''). (45) 
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(5.3) (Line search) Choose rrik as the smallest nonnegative integer m satis
fying 

/(A^ + p'^s^) - /(A^) < ap'^VfiX^fsK (46) 

(5.4) (Update) Set A^+i = Â  + p ^ ^ 5 ^ A: : - A; + 1, return to step (S.l). 

Since V{X) is positive semidefinite, the matrix {V{X) + cl) is positive defi
nite for e > 0. Hence the linear equation (45) is well defined and the direction 
s^ is a descent direction for the objective function / . The global convergence 
anafysis for Algorithm 1 is standard and can be found in [DQQ03]. 

Globalized version for the method (44) can be developed as well, but with 
some notable differences. To this case, the objective function f{X,w) is given 
by 

fiX,w):= f (x° + ^\eae] dt-J2\e(b + w) + \\^FB(X, 

-'" V e=i / + e=i 
w)f 

This function is also continuously differentiable, but not convex because 
||^Fs(A, w)\\'^ is not convex although continuously differentiable. We also note 
that the gradient of /(A, w) is not W{X, w) any more. A global method based 
on / can be developed by following the scheme in [DFK96]. 

5 Open Problems 

It is obvious from Section 2 and Section 4 that there is a big gap between 
theoretical results and Newton-type algorithms for constrained interpolation 
problems. For example, the solution characterizations appeared in Theorems 
1, 3, and 4 are for general convex sets (i.e., C is a closed convex set), however, 
the Newton method well-developed so far is only on the particular case yet 
the most important case that C is the cone of positive functions. This is 
due to the fact that the projection is an essential ingredient when solving 
the interpolation problem, and that the projection on the cone of positive 
functions is easy to calculate. 

There are many problems that are associated to the projections onto other 
convex sets including cones. We only discuss two of them which we think are 
most interesting and likely to be (at least partly) solved by the techniques 
developed in this paper. The first one is the case that C is a closed polyhedral 
set in X, i.e., 

C := {x e X\ {ci,x) <ri^ i = 1 , . . . ,m} 

where Ci G X and r̂  G IR. We note that cones are not necessarily polyhe
dral. It follows from [DeuOl, Examples 10.7 and 10.9] that the sets {C.nHj} 
and {C^nHj} both have strong CHIP. Hence the solution characterization 
theorems are applicable to the polyhedral case. Questions related to Pc in
clude diff'erentiability, directional differentiability, generalized Jacobian and 
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semismoothness of the mapping APc, and most importantly how to design 
Newton's method for this case. 

The second is the problem of interpolating a finite set of points with a 
curve constrained to lie between two piecewise linear splines (with knots at 
the abscissae of the given points). The objective is to minimize the 2-norm of 
the second derivative of the interpolant. Let {ti^yi) be given data points in 
IR2 with 

to <ti < ,,. Ktn-, (l>{ti) <yi < i^iU) for i = 1 , . . . , n. 

Hence 0 and ip are given piecewise hnear functions (or more generally lower 
and upper semicontinuous functions, respectively) such that 

inf Mt) - m) > 0. 

The constraint is 

C:={xe W^^'^[toM\ Ht) < ^{t) < ̂ W} 

and 
H :={xe W'^^'^[to,tn]\ x{ti) = y^,i = 1 , . . . , n} . 

This problem can be reformulated as a constrained interpolation problem from 
a convex set in certain Hilbert space [Don93, AE95]. Questions similar to that 
for the first problem remain unsolved for this interpolation problem from a 
strip. 
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Summary. In many Direct and Inverse Scattering problems one has to use a 
parameter-fitting procedure, because analytical inversion procedures are often not 
available. In this paper a variety of such methods is presented with a discussion of 
theoretical and computational issues. 

The problem of finding small subsurface inclusions from surface scattering data 
is stated and investigated. This Inverse Scattering problem is reduced to an opti
mization problem, and solved by the Hybrid Stochastic-Deterministic minimization 
algorithm. A similar approach is used to determine layers in a particle from the 
scattering data. 

The Inverse potential scattering problem is described and its solution based on 
a parameter fitting procedure is presented for the case of spherically symmetric 
potentials and fixed-energy phase shifts as the scattering data. The central feature 
of the minimization algorithm here is the Stability Index Method. This general 
approach estimates the size of the minimizing sets, and gives a practically useful 
stopping criterion for global minimization algorithms. 

The 3D inverse scattering problem with fixed-energy data is discussed. Its so
lution by the Ramm's method is described. The cases of exact and noisy discrete 
data are considered. Error estimates for the inversion algorithm are given in both 
cases of exact and noisy data. Comparison of the Ramm's inversion method with 
the inversion based on the Dirichlet-to-Neumann map is given and it is shown that 
there are many more numerical difficulties in the latter method than in the Ramm's 
method. 

An Obstacle Direct Scattering problem is treated by a novel Modified Rayleigh 
Conjecture (MRC) method. MRC's performance is compared favorably to the well 
known Boundary Integral Equation Method, based on the properties of the single 
and double-layer potentials. A special minimization procedure allows one to inex
pensively compute scattered fields for 2D and 3D obstacles having smooth as well 
as nonsmooth surfaces. 

A new Support Function Method (SFM) is used for Inverse Obstacle Scattering 
problems. The SFM can work with limited data. It can also be used for Inverse 
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scattering problems with unknown scattering conditions on its boundary (e.g. soft, 
or hard scattering). Another method for Inverse scattering problems, the Linear 
Sampling Method (LSM), is analyzed. Theoretical and computational difficulties in 
using this method are pointed out. 

1 Introduction 

Suppose that an acoustic or electromagnetic wave encounters an inhomo-
geneity and, as a consequence, gets scattered. The problem of finding the 
scattered wave assuming the knowledge of the inhomogeneity (penetrable or 
not) is the Direct Scattering problem. An impenetrable inhomogeneity is also 
called an obstacle. On the other hand, if the scattered wave is known at 
some points outside an inhomogeneity, then we are faced with the Inverse 
Scattering problem, the goal of which is to identify this inhomogeneity, see 
[CCMOO, CK92, Ram86, Ram92b, Ram94a, Ram05a, Ram05b] 

Among a variety of methods available to handle such problems few pro
vide a mathematically justified algorithm. In many cases one has to use a 
parameter-fitting procedure, especially for inverse scattering problems, be
cause the analytical inversion procedures are often not available. An impor
tant part of such a procedure is an efficient global optimization method, see 
[FloOO, FPOl, HPT95, HT93, PRTOO, RubOO]. 

The general scheme for parameter-fitting procedures is simple: one has a 
relation B{q) = A, where B is some operator, q is an unknown function, and A 
is the data. In inverse scattering problems q is an unknown potential, and A is 
the known scattering amplitude. If q is sought in a finite-parametric family of 
functions, then q = q{x^p), where p = (pi, ....,Pn) is a parameter. The parame
ter is found by solving a global minimization problem: ^[B{q{x,p))—A] = min, 
where ^ is some positive functional, and q E Q^ where Q is an admissible set 
oi q. In practice the above problem often has many local minimizers, and the 
global minimizer is not necessarily unique. In [Ram92b, Ram94b] some func
t ional ^ are constructed which have unique global minimizer, namely, the 
solution to inverse scattering problem, and the global minimum is zero. 

Moreover, as a rule, the data A is known with some error. Thus As is 
known, such that \\A — As\\ < S. There are no stability estimates which would 
show how the global minimizer q{x^Popt) is perturbed when the data A are 
replaced by the perturbed data A5. In fact, one can easily construct examples 
showing that there is no stability of the global minimizer with respect to small 
errors in the data, in general. 

For these reasons there is no guarantee that the parameter-fitting proce
dures would yield a solution to the inverse problem with a guaranteed accu
racy. However, overwhelming majority of practitioners are using parameter-
fitting procedures. In dozens of published papers the results obtained by vari
ous parameter-fitting procedures look quite good. The explanation, in most of 
the cases is simple: the authors know the answer beforehand, and it is usually 
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not difficult to parametrize the unknown function so that the exact solution is 
well approximated by a function from a finite-parametric family, and since the 
authors know a priori the exact answer, they may choose numerically the val
ues of the parameters which yield a good approximation of the exact solution. 
When can one rely on the results obtained by parameter-fitting procedures? 
Unfortunately, there is no rigorous and complete answer to this question, but 
some recommendations are given in Section 4-

In this paper the authors present their recent results which are based on 
specially designed parameter-fitting procedures. Before describing them, let us 
mention that usually in a numerical solution of an inverse scattering problem 
one uses a regularization procedure, e.g. a variational regularization, spectral 
cut-ofi", iterative regularization, DSM (the dynamical systems method), quasi-
solutions, etc, see e.g. [Ram04a, Ram05a]. This general theoretical framework 
is well established in the theory of ill-posed problems, of which the inverse 
scattering problems represent an important class. This framework is needed 
to achieve a stable method for assigning a solution to an ill-posed problem, 
usually set in an infinite dimensional space. The goal of this paper is to present 
optimization algorithms already in a finite dimensional setting of a Direct or 
Inverse scattering problem. 

In Section 2 the problem of finding small subsurface inclusions from sur
face scattering data is investigated ([Ram97, RamOOa, Ram05a, Ram05b]). 
This (geophysical) Inverse Scattering problem is reduced to an optimization 
problem. This problem is solved by the Hybrid Stochastic-Deterministic min
imization algorithm ([GROO]). It is based on a genetic minimization algorithm 
ideas for its random (stochastic) part, and a deterministic minimization with
out derivatives used for the local minimization part. 

In Section 3 a similar approach is used to determine layers in a particle 
subjected to acoustic or electromagnetic waves. The global minimization al
gorithm uses Rinnooy Kan and Timmer's Multilevel Single-Linkage Method 
for its stochastic part. 

In Section 4 we discuss an Inverse potential scattering problem appear
ing in a quantum mechanical description of particle scattering experiments. 
The central feature of the minimization algorithm here is the Stability Index 
Method ([GRS02]). This general approach estimates the size of the minimizing 
sets, and gives a practically useful stopping criterion for global minimization 
algorithms. 

In Section 5 Ramm's method for solving 3D inverse scattering problem 
with fixed-energy data is presented following [Ram04d], see also [Ram02a, 
Ram05a]. The cases of exact and noisy discrete data are considered. Error 
estimates for the inversion algorithm are given in both cases of exact and 
noisy data. Comparison of the Ramm's inversion method with the inversion 
based on the Dirichlet-to-Neumann map is given and it is shown that there 
are many more numerical difficulties in the latter method than in Ramm's 
method. 
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In Section 6 an Obstacle Direct Scattering problem is treated by a novel 
Modified Rayleigh Conjecture (MRC) method. It was introduced in [Ram02b] 
and applied in [GR02b, GR05, Ram04c, Ram05b]. MRC's performance is 
compared favorably to the well known Boundary Integral Equation Method, 
based on the properties of the single and double-layer potentials. A special 
minimization procedure allows us to inexpensivly compute scattered fields for 
several 2D and 3D obstacles having smooth as well as nonsmooth surfaces. 

In Section 7 a new Support Function Method (SFM) is used to determine 
the location of an obstacle (cf [GR03, RamTO, Ram86]). Unlike other methods, 
the SFM can work with limited data. It can also be used for Inverse scattering 
problems with unknown scattering conditions on its boundary (e.g. soft or hard 
obstacles). 

Finally, in Section 8, we present an analysis of another popular method for 
Inverse scattering problems, the Linear Sampling Method (LSM), and show 
that both theoretically and computationally the method fails in many aspects. 
This section is based on the paper [RG05]. 

2 Identification of small subsurface inclusions 

2.1 Problem description 

In many applications it is desirable to find small inhomogeneities from surface 
scattering data. For example, such a problem arises in ultrasound mammogra
phy, where small inhomogeneities are cancer cells. Other examples include the 
problem of finding small holes and cracks in metals and other materials, or the 
mine detection. The scattering theory for small scatterers originated in the 
classical works of Lord Rayleigh (1871). Rayleigh understood that the basic 
contribution to the scattered field in the far-field zone comes from the dipole 
radiation, but did not give methods for calculating this radiation. Analytical 
formulas for calculating the polarizability tensors for homogeneous bodies of 
arbitrary shapes were derived in [Ram86] (see also references therein). These 
formulas allow one to calculate the 5-matrix for scattering of acoustic and 
electromagnetic waves by small bodies of arbitrary shapes with arbitrary ac
curacy. Inverse scattering problems for small bodies are considered in [Ram82] 
and [Ram94a]. In [Ram97] and [RamOOa] the problem of identification of small 
subsurface inhomogeneities from surface data was posed and its possible ap
plications were discussed. 

In the context of a geophysical problem, let ^ G R^ be a point source of 
monochromatic acoustic waves on the surface of the earth. Let u{x,y, k) be 
the acoustic pressure at a point x G M ,̂ and A: > 0 be the wavenumber. The 
governing equation for the acoustic wave propagation is: 

[V^ + fc^ -h k^v{x)] u = -S{x - y) in R^ (1) 
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where x = (a:i,X2,X3), v{x) is the inhomogeneity in the velocity profile, and 
u{x^ y, k) satisfies the radiation condition at infinity, i.e. it decays sufficiently 
fast as \x\ —̂  oo. 

Let us assume that v{x) is a bounded function vanishing outside of the 
domain D — \j!^^^Dm which is the union of M small nonintersecting domains 
Dmi all of them are located in the lower half-space R^ = {x : X3 < 0}. Small-
ness is understood in the sense /cp <C 1, where p '•= \ maxi<^<M{diamZ)^}, 
and diam D is the diameter of the domain D. Practically kp <^ 1 means that 
kp < 0.1. In some cases kp < 0.2 is sufficient for obtaining acceptable numer
ical results. The background velocity in (1) equals to 1, but we can consider 
the case of fairly general background velocity [Ram94a]. 

Denote Zm and Vm the position of the center of gravity of Dm, and the 
total intensity of the m-th inhomogeneity Vm '-— J£, v{x)dx. Assume that 
Vm 7̂  0. Let P be the equation of the surface of the earth: 

P := {x = {xuX2,X3) G M^ : X3 = 0}. (2) 

The inverse problem to be solved is: 
I P : Given u{x,y,k) for all source-detector pairs {x,y) on P at a fixed 

A: > 0; find the number M of small inhomogeneities, the positions Zm of the 
inhomogeneities, and their intensities Vm-

Practically, one assumes that a fixed wavenumber A: > 0, and J source-
detector pairs {xj,yj),j ~ 1,2,..., J, on P are known together with the 
acoustic pressure measurements u{xj,yj,k). Let 

expiiklx — y\) ^ 

Gj{z):^G{xj,yj,z)\-= g{xj,z,k)g{yj,z,k), Xj.yj e P, z G R?., (4) 

n ._ u{xj,yj,k)-g{xj,yj,k) 
Jo '- p ' y^) 

and 
J 

^ ( 2 1 , . . . , 2 : M , VI,...,VM) '= Y^ 

M 

fj- Yl^o(^rn)Vn 
m=l 

(6) 

The proposed method for solving the (IP) consists of finding the global 
minimizer of function (6). This minimizer ( ^ 1 , . . . , ZM, ^I> • • • ? VM) gives the 
estimates of the positions Zm of the small inhomogeneities and their intensities 
Vm- See [Ram97] and [RamOOa] for a justification of this approach. 

The function ^ depends on M unknown points 2;̂ ^ G R i , and M unknown 
parameters Vm, I < m < M. The number M of the small inhomogeneities is 
also unknown, and its determination is a part of the minimization problem. 
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2.2 Hybrid Stochastic-Deterministic Method(HSD) 

Let the inhomogeneities be located within the box 

B = {(xi, X2, X3) : —a < xi < a, —b<X2<b, 0 < X3 < c} , (7) 

and their intensities satisfy 

max ' (8) 

The box is located above the earth surface for a computational convenience. 
Then, given the location of the points 2:1, ̂ 2 , . . . , ZM^ the minimum of <P 

with respect to the intensities t;i,t'2, • • • ^VM can be found by minimizing the 
resulting quadratic function in (6) over the region satisfying (8). This can be 
done using normal equations for (6) and projecting the resulting point back 
onto the region defined by (8). Denote the result of this minimization by ĉ , 
that is 

^(2:1,^2,. • . , Z M ) = min{^(^ i ,2 :2 , . . . ,ZM,VI,V2, - • -,VM) ' 

0 <Vm < Vmax , 1 < m < M} 
(9) 

Now the original minimization problem for ^(^1,^2, • • • 5 ZM^VIIV2^ .. •, VM) 
is reduced to the 3M-dimensional constrained minimization for ^(2:1,2^2,..., ZM) 

3{zi, Z2,..., ZM) =rnm, Zm ^ B , 1 < m < M. (10) 

Note, that the dependency of 3 on its 3M variables (the coordinates of the 
points Zm) is highly nonlinear. In particular, this dependency is complicated by 
the computation of the minimum in (9) and the consequent projection onto the 
admissible set B. Thus, an analytical computation of the gradient of 3 is not 
computationally efficient. Accordingly, the Powell's quadratic minimization 
method was used to find local minima. This method uses a special procedure 
to numerically approximate the gradient, and it can be shown to exhibit the 
same type of quadratic convergence as conjugate gradient type methods (see 
[Bre73]). 

In addition, the exact number of the original inhomogeneities MoHg is 
unknown, and its estimate is a part of the inverse problem. In the HSD algo
rithm described below this task is accomplished by taking the initial number 
M sufficiently large, so that 

Morig<M, (11) 

which, presumably, can be estimated from physical considerations. After all, 
our goal is to find only the strongest inclusions, since the weak ones cannot be 
distinguished from background noise. The Reduction Procedure (see below) 
allows the algorithm to seek the minimum of ^ in a lower dimensional subsets 
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Fig. 1. Objective function ^{zr,Z2,Z3^Z4^Z5,ZQ), —2 < r < 2 

of the admissible set B^ thus finding the estimated number of inclusions M. 
Still another difficulty in the minimization is a large number of local minima 
of 3. This phenomenon is well known for objective functions arising in various 
inverse problems, and we illustrate this point in Figure 1. 

For example, let Morig = 6, and the coordinates of the inclusions, and 
their intensities {zi,... ,ze,vij >.. yVe) be as in Table 1. Figure 1 shows the 
values of the function ^{zr, Z2, zs, Z4, zs^ ZQ), where 

and 

Zr = (r,0,0.520), - 2 < r < 2 

Z2 = (-1,0.3,0.580), 

The plot shows multiple local minima and almost flat regions. 
A direct application of a gradient type method to such a function would 

result in finding a local minimum, which may or may not be the sought global 
one. In the example above, such a method would usually be trapped in a lo
cal minimum located at r = —2, r = —1.4, r = —0.6, r = 0.2 or r = 0.9, 
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and the desired global minimum at r = 1.6 would be found only for a suffi
ciently close initial guess 1.4 < r < 1.9. Various global minimization methods 
are known (see below), but we found that an efficient way to accomplish 
the minimization task for this Inverse Problem was to design a new method 
(HSD) combining both the stochastic and the deterministic approach to the 
global minimization. Deterministic minimization algorithms with or without 
the gradient computation, such as the conjugate gradient methods, are known 
to be efficient (see [Bre73, DS83, Jac77, Pol71]), and [RubOO]. However, the 
initial guess should be chosen sufficiently close to the sought minimum. Also 
such algorithms tend to be trapped at a local minimum, which is not nec
essarily close to a global one. A new deterministic method is proposed in 
[BP96] and [BPR97], which is quite efficient according to [BPR97]. On the 
other hand, various stochastic minimization algorithms, e.g. the simulated 
annealing method [KGV83, Kir84], are more likely to find a global minimum, 
but their convergence can be very slow. We have tried a variety of minimiza
tion algorithms to find an acceptable minimum of 3. Among them were the 
Levenberg-Marquardt Method, Conjugate Gradients, Downhill Simplex, and 
Simulated Annealing Method. None of them produced consistent satisfactory 
results. 

Among minimization methods combining random and deterministic searches 
we mention Deep's method [DE94] and a variety of clustering methods 
[RT87a], [RT87b]. An application of these methods to the particle identifi
cation using light scattering is described in [ZUB98]. The clustering methods 
are quite robust (that is, they consistently find global extrema) but, usually, 
require a significant computational eff'ort. One such method is described in 
the next section on the identification of layers in a multilayer particle. The 
HSD method is a combination of a reduced sample random search method 
with certain ideas from Genetic Algorithms (see e.g. [HH98]). It is very effi
cient and seems especially well suited for low dimensional global minimization. 
Further research is envisioned to study its properties in more detail, and its 
applicability to other problems. 

The steps of the Hybrid Stochastic-Deterministic (HSD) method are 
outlined below. Let us call a collection of M points ( inclusion's centers) 
{ZI,Z2,>.'-,ZM}^ Zi e B a, configuration Z. Then the minimization problem 
(10) is the minimization of the objective function ^ over the set of all config
urations. 

For clarity, let PQ = 1, ê  = 0.5, ê  = 0.25, Cd = 0.1, be the same values 
as the ones used in numerical computations in the next section. 

Generate a random configuration Z. Compute the best fit intensities Vi 
corresponding to this configuration. If Vi > Vmaxi then let Vi :== Vmax- If 
Vi < 0, then let Vi :== 0. If <P(Z) < PQCS, then this configuration is a preliminary 
candidate for the initial guess of a deterministic minimization method (Step 

!)• 
Drop the points Zi e Z such that Vi < Vmax^i- That is, the inclusions with 

small intensities are eliminated (Step 2). 
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If two points Zky Zj G Z are too close to each other, then replace them with 
one point of a combined intensity (Step 3). 

After completing steps 2 and 3 we would be left with N < M points 
zi,Z2^'.",Z]s[ (after a re-indexing) of the original configuration Z. Use this re
duced configuration Zred as the starting point for the deterministic restraint 
minimization in the 3N dimensional space (Step 4). Let the resulting mini-
mizer be Zred = (^i, ••-, ^iv)- If the value of the objective function 3{Zred) < e, 
then we are done: Zred is the sought configuration containing N inclusions. If 
^(Zred) ^ e, then the iterations should continue. 

To continue the iteration, randomly generate M — N points in B (Step 
5). Add them to the reduced configuration Zred- Now we have a new full 
configuration Z, and the iteration process can continue (Step 1). 

This entire iterative process is repeated Umax times, and the best config
uration is declared to represent the sought inclusions. 

2.3 Description of the HSD Method 

Let PQ, Tmax^ '^max', ŝ? ^ii ^di and € be positive numbers. Let a positive 
integer M be larger than the expected number of inclusions. Let N = 0. 

1. Randomly generate M — N additional points ZN-^I, . • •, ^M ^ B to obtain 
a full configuration Z = ( z i , . . . , ZM)- Find the best fit intensities Vi, i = 
1,2, . . . ,M. If Vi> Vmax, then let Vi := Vmax- If Vi < 0, then let Vi := 0. 
Compute Ps = 3{zi,Z2 . . . , ^M)- If ^5 < ^0^5 then go to step 2, otherwise 
repeat step 1. 

2. Drop all the points with the intensities Vi satisfying vi < VmaxU- Now 
only N < M points zi^Z2. > ^ -^ZN (re-indexed) remain in the configuration 
Z, 

3. If any two points Zm, Zn in the above configuration satisfy \zm — Zn\ < e^D, 
where D = diam{B), then eliminate point Zn? change the intensity of point 
Zm to Vm-^^n^ and assign N := N—1. This step is repeated until no further 
reduction in N is possible. Call the resulting reduced configuration with 
N points by Zred-

4. Run a constrained deterministic minimization of ^ in 3A^ variables, with 
the initial guess Zred- Let the minimizer be Zred = (^1, • • •, ^̂ AT). If i^ == 
^ ( ^ 1 , . . . , ZN) < e, then save this configuration, and go to step 6, otherwise 
let PQ = P, and proceed to the next step 5. 

5. Keep intact N points zi^... ,ZN- If the number of random configurations 
has exceeded Tmax (the maximum number of random tries), then save the 
configuration and go to step 6, otherwise go to step 1, and use these Â  
points there. 

6. Repeat steps 1 through 5 Umax times. 
7. Find the configuration among the above Umax ones, which gives the small

est value to ^. This is the best fit. 
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The Powell's minimization method (see [Bre73] for a detailed description) 
was used for the deterministic part, since this method does not need gradient 
computations, and it converges quadratically near quadratically shaped min
ima. Also, in step 1, an idea from the Genetic Algorithm's approach [HH98] is 
implemented by keeping only the strongest representatives of the population, 
and allowing a mutation for the rest. 

2.4 Numerical results 

The algorithm was tested on a variety of configurations. Here we present the 
results of just two typical numerical experiments illustrating the performance 
of the method. In both experiments the box B is taken to be 

B — {(xi, 0:2,3:3) : —a < xi < a, —b<X2<b^ 0 < X3 < c} , 

with a = 2, 6 = 1 , c~l. The wavenumber fc = 5, and the effective intensities 
Vm are in the range from 0 to 2. The values of the parameters were chosen as 
follows 

Po-l.Trr 1000, e.s 0.5, Ci = 0.25, ê  = 0 .1 , e= 10 — i n - 5 

In both cases we searched for the same 6 inhomogeneities with the coordinates 
xi,X2,X3 and the intensities v shown in Table 1. 

Table 1. Actual inclusions. 

Inclusions 
1 
2 
3 
4 
5 
6 

Xl 

1.640 
-1.430 
1.220 
1.410 
-0.220 
-1.410 

X2 

-0.510 
-0.500 
0.570 
0.230 
0.470 
0.230 

X3 

0.520 
0.580 
0.370 
0.740 
0.270 
0.174 

V 

1.200 
0.500 
0.700 
0.610 
0.7001 
0.600 

Parameter M was set to 16, thus the only information on the number 
of inhomogeneities given to the algorithm was that their number does not 
exceed 16. This number was chosen to keep the computational time within 
reasonable limits. Still another consideration for the number M is the aim of 
the algorithm to find the presence of the most influential inclusions, rather 
then all inclusions, which is usually impossible in the presence of noise and 
with the limited amount of data. 

Experiment 1. In this case we used 12 sources and 21 detectors, all on 
the surface xs = 0. The sources were positioned at {(—1.667 -f 0.667i, —0.5 + 
l.Oj, 0), i = 0 , 1 , . . . , 5, j = 0,1}, that is 6 each along two lines X2 = —0.5 and 
X2 = 0.5. The detectors were positioned at {(—2 + 0.667z, —1.0+ l.Oj, 0), i = 
0 ,1 , . . . , 6 , J = 0,1,2}, that is seven detectors along each of the three lines 
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X2 = —1^X2 = 0 and ^2 = 1- This corresponds to a mammography search, 
where the detectors and the sources are placed above the search area. The 
results for noise level 5 = 0.00 are shown in Figure 2 and Table 2. The results 
for noise level 5 = 0.05 are shown in Table 3. 

Table 2. Experiment 1. Identified inclusions, no noise, S = 0.00. 

Xl 

1.640 
-1.430 
1.220 
1.410 
-0.220 
-1.410 

X2 

-0.510 
-0.500 
0.570 
0.230 
0.470 
0.230 

X3 

0.520 
0.580 
0.370 
0.740 
0.270 
0.174 

V 

1.20000 
0.50000 
0.70000 
0.61000 
0.70000 
0.60000 

Table 3. Experiment 1. Identified inclusions, <5 = 0.05. 

Xl 

1.645 
1.215 
-0.216 
-1.395 

X2 

-0.507 
0.609 
0.465 
0.248 

X3 

0.525 
0.376 
0.275 
0.177 

V 

1.24243 
0.67626 
0.69180 
0.60747 

Experiment 2. In this case we used 8 sources and 22 detectors, all on 
the surface xs = 0. The sources were positioned at {(—1.75 -f 0.5i, 1.5,0), i = 
0 , 1 , . . . , 7, j = 0,1}, that is all 8 along the line X2 = 1.5. The detectors were 
positioned at {(-2-h0.4z, 1.0+l.Oj, 0), z -= 0 , 1 , . . . , 10, j = 0,1}, that is eleven 
detectors along each of the two Hues X2 = 1 and ^2 = 2. This corresponds to 
a mine search, where the detectors and the sources must be placed outside of 
the searched ground. The results of the identification for noise level 5 = 0.00 
in the data are shown in Figure 3 and Table 4. The results for noise level 
J = 0.05 are shown in Table 5. 

Table 4. Experiment 2. Identified inclusions, no noise, S = 0.00. 

Xl 

1.656 
-1.476 
1.209 
-0.225 
-1.406 

X2 

-0.409 
-0.475 
0.605 
0.469 
0.228 

X3 

0.857 
0.620 
0.382 
0.266 
0.159 

V 

1.75451 
0.48823 
0.60886 
0.69805 
0.59372 
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• Sources 
• Detectors 
O Inclusions 
X Identified Objects 

Fig. 2. Inclusions and Identified objects for subsurface particle identification, Ex
periment I, S — 0.00. X3 coordinate is not shown. 

In general, the execution times were less than 2 minutes on a 333MHz 
PC. As it can be seen from the results, the method achieves a perfect iden
tification in the Experiment # 1 when no noise is present. The identification 
deteriorates in the presence of noise, as well as if the sources and detectors 
are not located directly above the search area. Still the inclusions with the 
highest intensity and the closest ones to the surface are identified, while the 
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Table 5. Experiment 2. Identified inclusions, (5 = 0.05. 

63 

Xi 

1.575 
-1.628 
1.197 
-0.221 

X2 

-0.523 
-0.447 
0.785 
0.460 

X3 

0.735 
0.229 
0.578 
0.231 

V 

1.40827 
1.46256 
0.53266 
0.67803 

deepest and the weakest are lost. This can be expected, since their influence 
on the cost functional is becoming comparable with the background noise in 
the data. 

In summary, the proposed method for the identification of small inclusions 
can be used in geophysics, medicine and technology. It can be useful in the 
development of new approaches to ultrasound mammography. It can also be 
used for localization of holes and cracks in metals and other materials, as 
well as for finding mines from surface measurements of acoustic pressure and 
possibly in other problems of interest in various applications. 

The HSD minimization method is a specially designed low-dimensional 
minimization method, which is well suited for many inverse type problems. 
The problems do not necessarily have to be within the range of applicability 
of the Born approximation. It is highly desirable to apply HSD method to 
practical problems and to compare its performance with other methods. 

3 Identification of layers in multilayer particles. 

3.1 Problem Description 

Many practical problems require an identification of the internal structure of 
an object given some measurements on its surface. In this section we study 
such an identification for a multilayered particle illuminated by acoustic or 
electromagnetic plane waves. Thus the problem discussed here is an inverse 
scattering problem. A similar problem for the particle identification from the 
light scattering data is studied in [ZUB98]. Our approach is to reduce the 
inverse problem to the best fit to data multidimensional minimization. 

Let j9 C M̂  be the circle of a radius R> 0, 

Dm = {xe Wn _i < |x| < r ^ , m ^ 1,2,...,AT} (12) 

and S'm = {x G M : |x| — r ^ } for 0 = ro < ri < • • • < rjv < i?. Suppose that 
a multilayered scatterer in D has a constant refractive index Um in the region 
Dm , m = 1,2,.. . , AT. If the scatterer is illuminated by a plane harmonic 
wave then, after the time dependency is eliminated, the total field u{x) — 
uo{x) + Us{x) satisfies the Helmholtz equation 

Au + k^u = 0 , \x\ > rjsf (13) 
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• Sources 
• Detectors 
O Inclusions 
X Identified Objects 

Fig. 3. Inclusions and Identified objects for for subsurface particle identification, 
Experiment 2, ^ = 0.00. xs coordinate is not shown. 

where uo{x) = e'^^^^'^ is the incident field and a is the unit vector in the direc
tion of propagation. The scattered field Us is required to satisfy the radiation 
condition at infinity, see [Ram86]. 

Let fc^ = fco^m- We consider the following transmission problem 

AUm + k'Lum =0 X e Dn (14) 
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under the assumption that the fields Um and their normal derivatives are 
continuous across the boundaries Sm , m = l ,2, . . . ,A^. 

In fact, the choice of the boundary conditions on the boundaries Sm de
pends on the physical model under the consideration. The above model may 
or may not be adequate for an electromagnetic or acoustic scattering, since 
the model may require additional parameters (such as the mass density and 
the compressibility) to be accounted for. However, the basic computational 
approach remains the same. For more details on transmission problems, in
cluding the questions on the existence and the uniqueness of the solutions, see 
[ARS98, EJP57, RPYOO]. 

The Inverse Problem to be solved is: 
IPS: Given u{x) for all x E S = {x : \x\ = R) at a fixed ko > 0, find the 

number N of the layers, the location of the layers, and their refractive indices 
Um, m=^ 1,2,,.. ,N in (14). 

Here the IPS stands for a Single frequency Inverse Problem. Numerical ex
perience shows that there are some practical difficulties in the successful res
olution of the IPS even when no noise is present, see [GutOl]. While there are 
some results on the uniqueness for the IPS (see [ARS98, RPYOO]), assuming 
that the refractive indices are known, and only the layers are to be identified, 
the stability estimates are few, see [Ram94c, Ram94d, Ram02a]. The identi
fication is successful, however, if the scatterer is subjected to a probe with 
plane waves of several frequencies. Thus we state the Multifrequency Inverse 
Problem: 

IPM: Given U'P{X) for all x E S = {x : \x\ = R) at a finite number P of 
wave numbers k^ > 0, find the number N of the layers, the location of the 
layers, and their refractive indices Um , m = 1,2,... ,N in (14). 

3.2 Best Fit Profiles and Local Minimization Methods 

If the refractive indices riyyi are sufficiently close to 1, then we say that the 
scattering is weak. In this case the scattering is described by the Born ap
proximation, and there are methods for the solution of the above Inverse 
Problems. See [CM90], [Ram86] and [Ram94a] for further details. In particu
lar, the Born inversion is an ill-posed problem even if the Born approximation 
is very accurate, see [Ram90], or [Ram92b]. When the assumption of the Born 
approximation is not appropriate, one matches the given observations to a set 
of solutions for the Direct Problem. Since our interest is in the solution of the 
IPS and IPM in the non-Born region of scattering, we choose to follow the 
best fit to data approach. This approach is used widely in a variety of applied 
problems, see e. g. [Bie97]. 

Note, that, by the assumption, the scatterer has the rotational symmetry. 
Thus we only need to know the data for one direction of the incident plane 
wave. For this reason we fix a = (1,0) in (13) and define the (complex) 
functions 

9^^\e), 0 < ^ < 2 ^ , p = l,2,...,P, (15) 
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to be the observations measured on the surface S of the ball D for a finite set 
of free space wave numbers fcg . 

Fix a positive integer M. Given a configuration 

Q = ( r i , r 2 , . . . , rM,n i , n2 , . . . , nM) (16) 

we solve the Direct Problem (13)-(14) (for each free space wave number k^) 
with the layers Dm = {x G M."^ : Vm-i < \x\ < Vm , m = 1,2,.. . , M} , and 
the corresponding refractive indices n^ , where TQ = 0, Let 

w(''HO) = u^''\x)l^g. (17) 

Fix a set of angles 0 = (^i, ^2, • • • ? ^L) and let 

M2=d2^'{0i))'/'. (18) 
1=1 

Define 

^ ( r i , r 2 , . . . , r M , n i , n 2 , . . . , n M ) == p 2 ^ IIQ^PH^ ' ^^^^ 
1 - | |^(P)_^(.) | |2 

where the same set 0 is used for g^^^ as for it;^^^ 
We solve the IPM by minimizing the above best fit to data functional ^ 

over an appropriate set of admissible parameters Aadm C M^^. 
It is reasonable to assume that the underlying physical problem gives some 

estimate for the bounds niow â d̂ Uhigh of the refractive indices Ti-jji a s well as 
for the bound M of the expected number of layers A .̂ Thus, 

^adm C { ( r i , r2 , . . . , rM,n i ,n2 , . . . , nM) •' 0 < u < R, niow < nm < rihigh]-
(20) 

Note, that the admissible configurations must also satisfy 

ri < r 2 < r 3 < - - - < r M . (21) 

It is well known that a multidimensional minimization is a difficult prob
lem, unless the objective function is "well behaved". The most important 
quality of such a cooperative function is the presence of just a few local min
ima. Unfortunately, this is, decidedly, not the case in many applied problems, 
and, in particular, for the problem under the consideration. 

To illustrate this point further, let P be the set of three free space wave 
numbers k^ chosen to be 

P - { 3 . 0 , 6.5, 10.0}. (22) 
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0.00 

Fig. 4. Best fit profile for the configurations qt', Multiple frequencies P 
{3.0, 6.5, 10.0}. 

Figure 4 shows the profile of the functional ^ as a function of the variable 
^ , 0 . 1 < f < 0 . 6 i n the configurations qt with 

n{x) 
0.49 0 < |x| < ^ 

9.0 t<\x\< 0.6 

1.0 0 . 6 < b | < 1 . 0 

Thus the objective function ^ has many local minima even along this 
arbitrarily chosen one dimensional cross-section of the admissible set. There 
are sharp peaks and large gradients. Consequently, the gradient based methods 
(see [Bre73, DS83, FleSl, Hes80, Jac77, Pol71]), would not be successful for 
a significant portion of this region. It is also appropriate to notice that the 
dependency of ^ on its arguments is highly nonlinear. Thus, the gradient 
computations have to be done numerically, which makes them computationally 
expensive. More importantly, the gradient based minimization methods (as 
expected) perform poorly for these problems. 

These complications are avoided by considering conjugate gradient type 
algorithms which do not require the knowledge of the derivatives at all, for 
example the Powell's method. Further refinements in the deterministic phase 
of the minimization algorithm are needed to achieve more consistent per-
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formance. They include special line minimization, and Reduction procedures 
similar to the ones discussed in a previous section on the identification of 
underground inclusions. We skip the details and refer the reader to [GutOl]. 

In summary, the entire Local Minimization Method (LMM) consists of 
the following: 

Local Minimization Method (LMM) 

1. Let your starting configuration be Qo = (^i,^2, • • •,^M, ^ i , ^2 , • • •, ^ M ) -
2. Apply the Reduction Procedure to Qo? and obtain a reduced configuration 

QQ containing M^ layers. 
3. Apply the Basic Minimization Method in Aadm 

flM^^" with the starting 
point QQ, and obtain a configuration Qi. 

4. Apply the Reduction Procedure to Qi, and obtain a final reduced config
uration Qi. 

3.3 Global Minimization Methods 

Given an initial configuration Qo a local minimization method finds a lo
cal minimum near QQ. On the other hand, global minimization methods ex
plore the entire admissible set to find a global minimum of the objective 
function. While the local minimization is, usually, deterministic, the ma
jority of the global methods are probabilistic in their nature. There is a 
great interest and activity in the development of efficient global minimization 
methods, see e.g. [Bie97],[Bom97]. Among them are the simulated anneal
ing method ([KGV83],[Kir84]), various genetic algorithms [HH98], interval 
method, TRUST method ([BP96],[BPR97]), etc. As we have already men
tioned before, the best fit to data functional ^ has many narrow local min
ima. In this situation it is exceedingly unhkely to get the minima points by 
chance alone. Thus our special interest is for the minimization methods, which 
combine a global search with a local minimization. In [GROO] we developed 
such a method (the Hybrid Stochastic-Deterministic Method), and applied it 
for the identification of small subsurface particles, provided a set of surface 
measurements, see Sections 2.2-2.4. The HSD method could be classified as 
a variation of a genetic algorithm with a local search with reduction. In this 
paper we consider the performance of two algorithms: Deep's Method, and 
Rinnooy Kan and Timmer's Multilevel Single-Linkage Method. Both combine 
a global and a local search to determine a global minimum. Recently these 
methods have been applied to a similar problem of the identification of par
ticles from their light scattering characteristics in [ZUB98]. Unlike [ZUB98], 
our experience shows that Deep's method has failed consistently for the type 
of problems we are considering. See [DE94] and [ZUB98] for more details on 
Deep's Method. 
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Multilevel Single-Linkage Method (MSLM) 

Rinnooy Kan and Timmer in [RT87a, RT87b] give a detailed description of 
this algorithm. Zakovic et. al. in [ZUB98] describe in detail an experience of its 
application to an inverse light scattering problem. They also discuss different 
stopping criteria for the MSLM. Thus, we only give here a shortened and an 
informal description of this method and of its algorithm. 

In a pure Random Search method a batch H oiL trial points is generated 
in Aadm using a uniformly distributed random variable. Then a local search is 
started from each of these L points. A local minimum with the smallest value 
of ^ is declared to be the global one. 

A refinement of the Random Search is the Reduced Sample Random 
Search method. Here we use only a certain fixed fraction 7 < 1 of the original 
batch of L points to proceed with the local searches. This reduced sample Hred 
of 7L points is chosen to contain the points with the smallest 7L values of ^ 
among the original batch. The local searches are started from the points in 
this reduced sample. 

Since the local searches dominate the computational costs, we would like 
to initiate them only when it is truly necessary. Given a critical distance d 
we define a cluster to be a group of points located within the distance d of 
each other. Intuitively, a local search started from the points within a cluster 
should result in the same local minimum, and, therefore, should be initiated 
only once in each cluster. 

Having tried all the points in the reduced sample we have an information 
on the number of local searches performed and the number of local minima 
found. This information and the critical distance d can be used to determine 
a statistical level of confidence, that all the local minima have been found. 
The algorithm is terminated (a stopping criterion is satisfied) if an a priori 
level of confidence is reached. 

If, however, the stopping criterion is not satisfied, we perform another 
iteration of the MSLM by generating another batch of L trial points. Then 
it is combined with the previously generated batches to obtain an enlarged 
batch H^ oi jL points (at iteration j ) , which leads to a reduced sample H^^^ 
of jjL points. According to MSLM the critical distance d is reduced to dj, 
(note that dj —> 0 as j -^ 00, since we want to find a minimizer), a local 
minimization is attempted once within each cluster, the information on the 
number of local minimizations performed and the local minima found is used 
to determine if the algorithm should be terminated, etc. 

The following is an adaptation of the MSLM method to the inverse scat
tering problem presented in Section 3.L The LMM local minimization method 
introduced in the previous Section is used here to perform local searches. 

MSLM 

(at iteration j). 
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1. Generate another batch of L trial points (configurations) from a random 
uniform distribution in Aadm- Combine it with the previously generated 
batches to obtain an enlarged batch H^ of jL points. 

2. Reduce H^ to the reduced sample H^^^ of 7JL points, by selecting the 
points with the smallest jjL values of ^ in H^. 

3. Calculate the critical distance dj by 

dj = ^{d)? + (dJ) 'n\2 

4. Order the sample points in H^^^ so that ^{Qi) < ^(Q^+i), 2 = 1 , . . . , jjL. 
For each value of z, start the local minimization from Q ,̂ unless there 
exists an index A: < i, such that \\Qk — Qi\\ < dj. Ascertain if the result is 
a known local minimum. 

5. Let K be the number of local minimizations performed, and W be the 
number of different local minima found. Let 

K-W-2 

The algorithm is terminated if 

Wtot<W + 0.5. (23) 

Here F is the gamma function, and cr is a fixed constant. 
A related algorithm (the Mode Analysis) is based on a subdivision of 

the admissible set into smaller volumes associated with local minima. This 
algorithm is also discussed in [RT87a, RT87b]. Prom the numerical studies 
presented there, the authors deduce their preference for the MSLM. 

The presented MSLM algorithm was successful in the identification of 
various 2D layered particles, see [GutOl] for details. 

4 Potential scattering and the Stability Index method. 

4.1 Problem description 

Potential scattering problems are important in quantum mechanics, where 
they appear in the context of scattering of particles bombarding an atom 
nucleus. One is interested in reconstructing the scattering potential from the 
results of a scattering experiment. The examples in Section 4 deal with finding 
a spherically symmetric {q = q{r), r = \x\) potential from the fixed-energy 
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scattering data, which in this case consist of the fixed-energy phase shifts. In 
[Ram96, Ram02a, Ram04d, Ram05a] the three-dimensional inverse scattering 
problem with fixed-energy data is treated. 

Let q{x)^ X G M ,̂ be a real-valued potential with compact support. Let 
i? > 0 be a number such that q{x) = 0 iov \x\ > R. We also assume that 
q e L'^{BR) , BR = {x : \x\ < R,x e M^}. Let 5^ be the unit sphere, and 
a e S"^. For a given energy A; > 0 the scattering solution '0(x,a) is defined as 
the solution of 

A^ + A: V - g(^)^ == 0, xeR^ (24) 

satisfying the following asymptotic condition at infinity: 

^ = ^0 + ^, ^o :=e^^^•^ aeS\ (25) 

Um / 
dv . ' 
— ikv 
or 

ds = 0. (26) 

It can be shown, that 

^ikr / 2 \ 
'^(x, a) = T/̂O + A(a', a, k) f- o I - , as r 

r \r J 

oo, — = a' r := \x\. 
r 

(27) 
The function A{a',a,k) is called the scattering amplitude, a and a' are 

the directions of the incident and scattered waves, and /ĉ  is the energy, see 
[New82, Ram94a]. 

For spherically symmetric scatterers q{x) — q{r) the scattering amplitude 
satisfies A{a'^a^k) = A{a^ • a,k). The converse is established in [Ram91]. 
Following [RS99], the scattering amplitude for q = q{r) can be written as 

oo I 

A{a',a,k) = Y1 E Mk)Yim{a')YU^, (28) 
1=0 m=-l 

where Yim are the spherical harmonics, normalized in L^(5^), and the bar 
denotes the complex conjugate. 

The fixed-energy phase shifts —TT < 5i < n {6i = 5(/,A:), k > Ois fixed) are 
related to Ai{k) (see e.g., [RS99]) by the formula: 

Ai{k) = ^e'^^smi5i). (29) 

Several parameter-fitting procedures were proposed for calculating the 
potentials from the fixed-energy phase shifts, (by Fiedeldey, Lipperheide, 
Hooshyar and Razavy, loannides and Mackintosh, Newton, Sabatier, May 
and Scheid, Ramm and others). These works are referenced and their results 
are described in [CS89, New82]. Recent works [GutOO, GutOl, GROO, GR02a] 
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and [RGOl, RS99, RSOO], present new numerical methods for solving this 
problem. In [Ram02d] (also see [Ram04b, Ram05a]) it is proved that the 
R.Newton-P.Sabatier method for solving inverse scattering problem the fixed-
energy phase shifts as the data (see [CS89, New82] ) is fundamentally wrong 
in the sense that its foundation is wrong. In [Ram02c] a counterexample is 
given to a uniqueness theorem claimed in a modification of the R.Newton's 
inversion scheme. 

Phase shifts for a spherically symmetric potential can be computed by a 
variety of methods, e.g. by a variable phase method described in [Cal67]. The 
computation involves solving a nonlinear ODE for each phase shift. However, 
if the potential is compactly supported and piecewise-const ant, then a much 
simpler method described in [ARS99] and [GRS02] can be used. We refer the 
reader to these papers for details. 

Let ^o(^) be a spherically symmetric piecewise-constant potential, {6{k, Ol / l i 
be the set of its phase shifts for a fixed k > 0 and a sufficiently large A .̂ Let 
q{r) be another potential, and let {<5(A;,/)}^^ be the set of its phase shifts. 

The best fit to data function ^(g, k) is defined by 

*(,,,) = E £ 4 M H M ! ! , (30, 

The phase shifts are known to decay rapidly with /, see [RAI98]. Thus, for 
sufficiently large A/", the function ^ is practically the same as the one which 
would use all the shifts in (30). The inverse problem of the reconstruction of 
the potential from its fixed-energy phase shifts is reduced to the minimization 
of the objective function ^ over an appropriate admissible set. 

4.2 Stability Index Minimization Method 

Let the minimization problem be 

min{^(^) : q e Aadm} (31) 

Let qo be its global minimizer. Typically, the structure of the objective 
function ^ is quite complicated: this function may have many local minima. 
Moreover, the objective function in a neighborhood of minima can be nearly 
fiat resulting in large minimizing sets defined by 

Se^{qe Aadm '• ^{Q) < ^{QO) + e} (32) 

for an e > 0. 
Given an e > 0, let D^ be the diameter of the minimizing set S^, which we 

call the Stability Index De of the minimization problem (31), 
Its usage is explained below. 
One would expect to obtain stable identification for minimization prob

lems with small (relative to the admissible set) stability indices. Minimization 
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problems with large stability indices have distinct minimizers with practi
cally the same values of the objective function. If no additional information 
is known, one has an uncertainty of the minimizer's choice. The stability in
dex provides a quantitative measure of this uncertainty or instability of the 
minimization. 

If Dc < ry, where r/ is an a priori chosen treshold, then one can solve the 
global minimization problem stably. In the above general scheme it is not 
discussed in detail what are possible algorithms for computing the Stability 
Index. 

One idea to construct such an algorithm is to iteratively estimate stabil
ity indices of the minimization problem, and, based on this information, to 
conclude if the method has achieved a stable minimum. 

One such algorithm is an Iterative Reduced Random Search (IRRS) 
method, which uses the Stability Index for its stopping criterion. Let a batch 
H of L trial points be randomly generated in the admissible set Aadm- Let 
7 be a certain fixed fraction, e.g., 7 = 0.01. Let Smin be the subset of H 
containing points {pi} with the smallest 7L values of the objective function 
^ in if. We call Smin the minimizing set. If all the minimizers in Smin are 
close to each other, then the objective function ^ is not fiat near the global 
minimum. That is, the method identifies the minimum consistently. Let || • || 
be a norm in the admissible set. 

Let 
e= max ^(pj) - min ^{pj) 

and 
De = diam{Smin) = max{||p^ - pj\\ : pi.pj e Smin} - (33) 

Then D^ can be considered an estimate for the Stability Index D^ of 
the minimization problem. The Stability Index reflects the size of the mini
mizing sets. Accordingly, it is used as a self-contained stopping criterion for 
an iterative minimization procedure. The identification is considered to be 
stable if the Stability Index D^ < rj, for an a priori chosen rj > 0. Otherwise, 
another batch of L trial points is generated, and the process is repeated. We 
used /3 — 1.1 as described below in the stopping criterion to determine if 
subsequent iterations do not produce a meaningful reduction of the objective 
function. 

More precisely 

Iterative Reduced Random Search (IRRS) 

(at the j—th iteration). 
Fix 0 < 7 < 1, /? > 1, 7/ > 0 and Nmax-

1. Generate another batch H^ of L trial points in Aadm using a random 
distribution. 
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2. Reduce H^ to the reduced sample H^^^ of 7L points by selecting the 
points in H^ with the smallest 7L values of ^. 

3. Combine H^^^ with H^^ obtained at the previous iteration. Let S^^^ 
be the set of jL points from H^^^^ U H^^ with the smallest values of ^. 
( U s e F ^ , „ f o r j = l ) . 

4. Compute the Stability Index (diameter) D^ of 5^^^ by D-̂  = max{||pi — 
Pk\\ ' PuPk ^ Smin} ' 

5. Stopping criterion. 
Let p G S^^^ be the point with the smallest value of ^ in S^^^ (the global 
minimizer). 
If D^ < 77, then stop. The global minimizer is p. The minimization is 
stable. 
If D^ > Tj and ^{q) < /3^(p) : q G 5'^^^, then stop. The minimization is 
unstable. The Stability Index D^ is the measure of the instability of the 
minimization. 
Otherwise, return to step 1 and do another iteration, unless the maximum 
number of iterations Nmax is exceeded. 

One can make the stopping criterion more meaningful by computing a 
normalized stability index. This can be achieved by dividing D^ by a fixed 
normalization constant, such as the diameter of the entire admissible set Aadm-
To improve the performance of the algorithm in specific problems we found it 
useful to modify (IRRS) by combining the stochastic (global) search with a de
terministic local minimization. Such Hybrid Stochastic-Deterministic (HSD) 
approach has proved to be successful for a variety of problems in inverse quan
tum scattering (see [GutOl, GRS02, RGOl]) as well as in other applications 
(see [GutOO, GROO]). A somewhat difi'erent implementation of the Stability 
Index Method is described in [GR02a]. 

We seek the potentials q{r) in the class of piecewise-constant, spherically 
symmetric real-valued functions. Let the admissible set be 

Adm C {(r i , r2 , . . . , rM,gi ,^2 , . . . ,gM) : 0 < n < R, qiow < Qm < qhigh} , 
(34) 

where the bounds qiow and qhigh for the potentials, as well as the bound 
M on the expected number of layers are assumed to be known. 

A configuration (ri, r 2 , . . . , VM^qi 1Q21' - - ^qn) corresponds to the potential 

Q{r) = qm 1 for r ^ - i , < r < Vm , l < m < M , (35) 

where TQ = 0 and q{r) = 0 for r >rM — R-
Note, that the admissible configurations must also satisfy 

ri < r2 < rs < • • • < TM . (36) 

We used /? = 1.1, e = 0.02 and jmax = 30. The choice of these and other 
parameters (L = 5000, 7 = 0.01, v = 0.16 ) is dictated by their meaning in the 
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algorithm and the comparative performance of the program at their different 
values. As usual, some adjustment of the parameters, stopping criteria, etc., is 
needed to achieve the optimal performance of the algorithm. The deterministic 
part of the IRRs algorithm was based on the Powell's minimization method, 
one-dimensional minimization, and a Reduction procedure similar to ones 
described in the previous section 3, see [GRS02] for details. 

4.3 Numerical Results 

We studied the performance of the algorithm for 3 different potentials Q'̂ (r), i = 
1,2,3 chosen from the physical considerations. 

The potential qsir) = - 10 for 0 < r < 8.0 and qs = 0 for r > 8.0 
and a wave number k = 1 constitute a typical example for elastic scattering 
of neutral particles in nuclear and atomic physics. In nuclear physics one 
measures the length in units of fm = 10"^^m, the quantity qs in units of 1/fm^, 
and the wave number in units of 1/fm. The physical potential and incident 
energy are given by V{r) = f-^3(^) and E = \ ^ , respectively, here ^'•= ^^ 
h = 6.62510-2'^ erg-s is the Planck constant. He = 197.32 MeV-fm, c = 3 • 10^ 
m/sec is the velocity of light, and fi is the mass of a neutron. By choosing the 
mass /J, to be equal to the mass of a neutron // = 939.6 MeV/c^, the potential 
and energy have the values of V{r) = -207.2 MeV for 0 < r < 8.0 fm and 
E{k = l / fm ) = 20.72 MeV. In atomic physics one uses atomic units with the 
Bohr radius ao = 0.529 • 10~^°m as the unit of length. Here, r. A: and qs are 
measured in units of ao, 1/ao and l/ag, respectively. By assuming a scattering 
of an electron with mass mo = 0.511 MeV/c^, we obtain the potential and 
energy as follows: V{r) = -136 eV for 0 < r < 8ao = 4.23 • 10"^°m and 
E{k = 1/ao) = 13.6 eV. These numbers give motivation for the choice of 
examples applicable in nuclear and atomic physics. 

The method used here deals with finite-range (compactly supported) po
tentials. One can use this method for potentials with the Coulomb tail or 
other potentials of interest in physics, which are not of finite range. This is 
done by using the phase shifts transformation method which allows one to 
transform the phase shifts corresponding to a potential, not of finite range, 
whose behavior is known for r > a, where a is some radius, into the phase 
shifts corresponding to a potential of finite range a (see [Apa97], p.156). 

In practice differential cross section is measured at various angles, and from 
it the fixed-energy phase shifts are calculated by a parameter-fitting proce
dure. Therefore, we plan in the future work to generalize the stability index 
method to the case when the original data are the values of the differential 
cross section, rather than the phase shifts. 

For the physical reasons discussed above, we choose the following three 
potentials: 

[ - 2 / 3 0 < r <8.0 

^ ^ lo.O r >8 .0 
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f -4 .0 0 < r <8 .0 

^ ^ ^ ^ ) ^ \ 0 . 0 r > 8 . 0 

f-10.0 0 < r <8 .0 

^^^^)=^|o.O r > 8 . 0 

In each case the following values of the parameters have been used. The 
radius R of the support of each Qi was chosen to be i? = 10.0. The admissible 
set Aadm (34) was defined with M = 2. The Reduced Random Search para
meters: L = 5000, 7 = 0.01, u = 0.16, e = 0.02, /? = 1.10 Jmax = 30. The 
value er = 0.1 was used in the Reduction Procedure during the local min
imization phase. The initial configurations were generated using a random 
number generator with seeds determined by the system time. A typical run 
time was about 10 minutes on a 333 MHz PC, depending on the number of 
iterations in IRRS. The number N of the shifts used in (30) for the formation 
of the objective function ^{q) was 31 for all the wave numbers. It can be seen 
that the shifts for the potential qs decay rapidly for A: = 1, but they remain 
large for k = 4. The upper and lower bounds for the potentials qiow = —20.0 
and qhigh =0 .0 used in the definition of the admissible set Aadm were chosen 
to reflect a priori information about the potentials. 

The identification was attempted with 3 diff'erent noise levels h. The levels 
are ft = 0.00 (no noise), ft == 0.01 and ft = 0.1. More precisely, the noisy phase 
shifts 5/i(fc, /) were obtained from the exact phase shifts 5(/c, /) by the formula 

5h{kJ) = 5{kJ){l-^{0.5-z)'h), 

where z is the uniformly distributed on [0,1] random variable. 
The distance d{pi{r)^p2{r)) for potentials in step 5 of the IRRS algorithm 

was computed as 

d{pi{r),P2{r)) = \\pi{r) -P2(r ) | | 

where the norm is the L2-norm in R^. 
The results of the identification algorithm (the Stability Indices) for dif

ferent iterations of the IRRS algorithm are shown in Tables 6-8. 
For example, Table 8 shows that for A: = 2.5, h = 0.00 the Stability Index 

has reached the value 0.013621 after 2 iteration. According to the Stopping 
criterion for IRRS, the program has been terminated with the conclusion 
that the identification was stable. In this case the potential identified by the 
program was 

f-10.000024 0 < r < 7.999994 
pir) = < 
"^^ ̂  [0.0 r > 7.999994 

which is very close to the original potential 
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Table 6. Stability Indices for qi{r) identification at different noise levels h. 

k Iteration h = 0.00 h = Q.Ql h = 0.10 
1.00 1 1.256985 0.592597 1.953778 

2 0.538440 0.133685 0.799142 
3 0.538253 0.007360 0.596742 
4 0.014616 0.123247 
5 0.015899 

2.00 
2.50 
3.00 
4.00 

1 0.000000 0.020204 0.009607 
1 0.000000 0.014553 0.046275 
1 0.000000 0.000501 0.096444 
1 0.000000 0.022935 0.027214 

, , f -10.0 0 < r <8 .0 

''^'^ = jo.O r > 8.0 

On the other hand, when the phase shifts of qsir) were corrupted by a 
10% noise {k = 2.5, h = 0.10), the program was terminated (according to 
the Stopping criterion) after 4 iterations with the Stability Index at 0.079241. 
Since the Stability Index is greater than the a priori chosen threshold of e = 
0.02 the conclusion is that the identification is unstable. A closer look into this 
situation reveals that the values of the objective function ^{pi), pi G Smin 
(there are 8 elements in Smin) ^^^ between 0.0992806 and 0.100320. Since we 
chose /? = 1.1 the values are within the required 10% of each other. The actual 
potentials for which the normalized distance is equal to the Stability Index 
0.079241 are 

Pi{r) 

-9.997164 0 < r < 7.932678 

-7.487082 7.932678 <r< 8.025500 

0.0 r > 8.025500 

and 

P2{r) == < 
-9.999565 0 < r < 7.987208 

-1.236253 7.987208 < r < 8.102628 

0.0 r > 8.102628 

with ^{pi) = 0.0992806 and ^(^2) = 0.0997561. One may conclude from this 
example that the threshold e = 0.02 is too tight and can be relaxed, if the 
above uncertainty is acceptable. 

Finally, we studied the dependency of the Stabihty Index from the dimen
sion of the admissible set Aadm^ see (34). This dimension is equal to 2M , where 
M is the assumed number of layers in the potential. More precisely, M = 3, 
for example, means that the search is conducted in the class of potentials 
having 3 or less layers. The experiments were conducted for the identification 
of the original potential g2(^) with k = 2.0 and no noise present in the data. 
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Table 7. Stability Indices for q2{r) identification at different noise levels h. 

k Iteration h = 0.00 h = 0.01 h = 0.10 
1.00 1 0.774376 0.598471 0.108902 

2 0.773718 1.027345 0.023206 
3 0.026492 0.025593 0.023206 
4 0.020522 0.029533 0.024081 
5 0.020524 0.029533 0.024081 
6 0.000745 0.029533 
7 
8 
9 
10 
11 
12 
13 
14 

0.029533 
0.029533 
0.029533 
0.029533 
0.029619 
0.025816 
0.025816 
0.008901 

2.00 1 0.863796 0.799356 0.981239 
2 0.861842 0.799356 0.029445 
3 0.008653 0.000993 0.029445 
4 0.029445 
5 0.026513 
6 0.026513 
7 0.024881 

2.50 1 1.848910 1.632298 0.894087 
2 1.197131 1.632298 0.507953 
3 0.580361 1.183455 0.025454 
4 0.030516 0.528979 
5 0.016195 0.032661 

3.00 1 1.844702 1.849016 1.708201 
2 1.649700 1.782775 1.512821 
3 1.456026 1.782775 1.412345 
4 1.410253 1.457020 1.156964 
5 0.624358 0.961263 1.156964 
6 0.692080 0.961263 0.902681 
7 0.692080 0.961263 0.902681 
8 0.345804 0.291611 0.902474 
9 0.345804 0.286390 0.159221 
10 0.345804 0.260693 0.154829 
11 0.043845 0.260693 0.154829 
12 0.043845 0.260693 0.135537 
13 0.043845 0.260693 0.135537 
14 0.043845 0.260693 0.135537 
15 0.042080 0.157024 0.107548 
16 0.042080 0.157024 
17 0.042080 0.157024 
18 0.000429 0.157024 
19 0.022988 

4.00 1 0.000000 0.000674 0.050705 
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Table 8. Stability Indices for qsir) identification at different noise levels h. 

k Iteration h = 0.00 h = 0.01 h = 0.10 
1.00 

2.00 

1 0.564168 0.594314 0.764340 
2 0.024441 0.028558 0.081888 
3 0.024441 0.014468 0.050755 
4 0.024684 
5 0.024684 
6 0.005800 
1 0.684053 1.450148 0.485783 
2 0.423283 0.792431 0.078716 
3 0.006291 0.457650 0.078716 
4 0.023157 0.078716 
5 0.078716 
6 0.078716 
7 0.078716 
8 0.078716 
9 0.078716 
10 0.078716 
11 0.078716 

2.50 1 0.126528 0.993192 0.996519 
2 0.013621 0.105537 0.855049 
3 0.033694 0.849123 
4 0.026811 0.079241 

3.00 1 0.962483 1.541714 0.731315 
2 0.222880 0.164744 0.731315 
3 0.158809 0.021775 0.072009 
4 0.021366 
5 0.021366 
6 0.001416 

4.00 1 1.714951 1.413549 0.788434 
2 0.033024 0.075503 0.024482 
3 0.018250 0.029385 
4 0.029421 
5 0.029421 
6 0.015946 

The results are shown in Table 9. Since the potential q2 consists of only one 
layer, the smallest Stability Indices are obtained for M = 1. They gradually 
increase with M. Note, that the algorithm conducts the global search using 
random variables, so the actual values of the indices are different in every 
run. Still the results show the successful identification (in this case) for the 
entire range of the a priori chosen parameter M. This agrees with the theoret
ical consideration according to which the Stability Index corresponding to an 
ill-posed problem in an infinite-dimensional space should be large. Reducing 
the original ill-posed problem to a one in a space of much lower dimension 
regularizes the original problem. 
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Table 9. Stability Indices for (72 (r) identification for different values of M. 

Iteration M =1 M = 2 M = 3 M = 4 
1 0.472661 1.068993 1.139720 1.453076 
2 0.000000 0.400304 0.733490 1.453076 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.000426 0.125855 0.899401 
0.125855 0.846117 
0.033173 0.941282 
0.033173 0.655669 
0.033123 0.655669 
0.000324 0.948816 

0.025433 
0.025433 
0.012586 

5 Inverse scattering problem with fixed-energy data. 

5.1 Problem description 

In this Section we continue a discussion of the Inverse potential scattering 
with a presentation of Ramm's method for solving inverse scattering problem 
with fixed-energy data, see [Ram04d]. The method is applicable to both exact 
and noisy data. Error estimates for this method are also given. An inversion 
method using the Dirichlet-to-Neumann (DN) map is discussed, the difficul
ties of its numerical implementation are pointed out and compared with the 
difficulties of the implementation of the Ramm's inversion method. See the 
previous Section on the potential scattering for the problem set up. 

5.2 Ramm's inversion method for exact data 

The results we describe in this Section are taken from [Ram94a] and [Ram02a]. 
Assume q e Q := Qa H L'^{R^), where Qa := {q : q{x) = q{x), q{x) G 
L'^{Ba), q{x) =: 0 if \x\ > a}, Ba '.= {x : \x\ < a). Let A{a'^a) be the cor
responding scattering amplitude at a fixed energy A;̂ , A; = 1 is taken without 
loss of generality. One has: 

A{. 
00 « 

a', a) - ^ A,(a)F^(aO, A^{a) := / A{a\a)Y^)da\ (37) 
e=o '^^^ 

where 5^ is the unit sphere in R^, Yeiot') = y^,m(<^Oj~^ < m < £, are the 
normalized spherical harmonics, summation over m is understood in (37) and 
in (44) below. Define the following algebraic variety: 

3 

M : = {l9 : 6> G C ^ 6>. 6> = 1 } , 6> • it; : = ^ Ojivj. (38) 
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This variety is non-compact, intersects R^ over 5^, and, given any ^ G R'̂ , 
there exist (many) 9,9' G M such that 

9^-9 = ^, \9\ -^ oo, 9,9' G M. (39) 

In particular, if one chooses the coordinate system in which ^ = tes, ^ > 0, 63 
is the unit vector along the xs-axis, then the vectors 

t t t^ 
0' = -es + C2e2 + Ciei, 9 = - - 6 3 + (262 + Ci^i, Ci + Cl ^ 1 - ^^ (40) 

satisfy (39) for any complex numbers (i and C2 satisfying the last equa
tion (40) and such that |CiP + IC2P —> 00. There are infinitely many 
such C15C2 ^ C. Consider a subset M' C M consisting of the vectors 
9 = (sin-i? cos (̂ , sin 1? sin (̂ , cos-i?), where ^9 and (p run through the whole com
plex plane. Clearly 9 E M, but M ' is a proper subset of M. Indeed, any 
9 e M with 93 ^ ±1 is an element of M\ If 93 = ±1, then cos^ = ± 1 , 
so sin 7? = 0 and one gets 9 = (0,0, ±1) G M'. However, there are vectors 
9 = (^1,^2,1) ^ M which do not belong to M'. Such vectors one obtains 
choosing ^1,^2 ^ C such that ^f -f ^2 — 0. There are infinitely many such 
vectors. The same is true for vectors (^1,^2?—!)• Note that in (39) one can 
replace M by M ' for any ^ G M ,̂ ^ 7̂  2e3. 

Let us state two estimates proved in [Ram94a]: 

j,^|^,(a)|<c(2)*(|f', (41) 

where c > 0 is a constant depending on the norm ||9||L2(Ba)5 ^^^ 

1 grl/m^l 
\Ye{9)\< r . . . . . . . V r > 0 , 9 e M', (42) 

V47r \j£[r)\ 

where 

1 1 fer\^ 
Mr) : - {^yJe^iir) - ^ ^ ( | ) [1 + o(l)] as ^ - 00, (43) 

and Ji{r) is the Bessel function regular at r = 0. Note that 1^(0;')) defined 
above, admits a natural analytic continuation from S'̂  to M by taking 1} and 
(p to be arbitrary complex numbers. The resulting 9' G M' C M. 

The series (37) converges absolutely and uniformly on the sets 5^ x Mc, 
where Mc is any compact subset of M. 

Fix any numbers ai and 6, such that a < ai < b. Let || • || denote the 
L'^icii ^ l̂ :] < 6)-norm. If |x| > a, then the scattering solution is given 
analytically: 

u{x,a) = e^ '̂̂  + ^ ^ ( a ) n ( a O / i K O . r : - |x| > a, a ' := - , (44) 
£=0 
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where A£{a) and ^^(a') are defined above, 

/ . , ( r ) : = e ^ f ( ^ + ^ ) y ^ < , ( r ) , 

H^ \r) is the Hankel function, and the normalizing factor is chosen so that 

heir) = -^[1 + 0(1)] as r -^ 00. Define 

p{x) := p{x] u) := e-^^'^ / u{x, a)u{a, e)da - 1, ve L^{S^). (45) 

Consider the minimization problem 

IIPII = inf := d{e), (46) 

where the infimum is taken over all ly e L^(S'^), and (39) holds. 
It is proved in [Ram94a] that 

d{e) <c\e\-^ if(9GM, \e\ > i . (47) 

The symbol \9\ ̂  1 means that \9\ is sufficiently large. The constant c > 0 in 
(47) depends on the norm ||^||z,2(5^) but not on the potential q{x) itself. 

An algorithm for computing a function z/(a, 6), which can be used for inver
sion of the exact, fixed-energy, three-dimensional scattering data, is as follows: 

a) Find an approximate solution to (46) in the sense 

\\pix,iy)\\<2d{e), (48) 

where in place of the factor 2 in (48) one could put any fixed constant greater 
than 1. 

b) Any such i^ia, 9) generates an estimate of q{^) with the error O ( 4 | 1, 

1̂1 -^ 00. This estimate is calculated by the formula 

5^:=:_47r/ A{9',a)v{a,9)da, (49) 

where i^(a, ^) G L'^{S'^) is any function satisfying (48). 
Our basic result is: 

Theorem 1. Let (39) and (48) hold. Then 

snv\q-qm<^.. I^H oo, (50) 

The constant c > 0 in (50) depends on a norm of q, but not on a particular 
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The norm of q in the above Theorem can be any norm such that the set 
{q\ \\q\\ < const) is a compact set in L^{Ba)' 

In [Ram94a, Ram02a] an inversion algorithm is formulated also for noisy 
data, and the error estimate for this algorithm is obtained. Let us describe 
these results. 

Assume that the scattering data are given with some error: a function 
As{a'^a) is given such that 

sup \A{a',a)-A5{a',a)\<5. (51) 

We emphasize that ^5(a ' , a) is not necessarily a scattering amplitude cor
responding to some potential, it is an arbitrary function in L^{S'^ x 5^) satis
fying (51). It is assumed that the unknown function A(a\a) is the scattering 
amplitude corresponding to a g E Q-

The problem is: Find an algorithm for calculating qs such that 

sup \q6 - m\ < Vi5), 7/(5) - . 0 as 5 ^ 0, (52) 
CGM3 

and estimate the rate at which r]{6) tends to zero. 
An algorithm for inversion of noisy data will now be described. 
Let 

[ln\lnS\_ 

where [x] is the integer nearest to a; > 0, 

N{S) :- (53) 

N{5) 

As{e\a) := Y^ Ase{a)Ye{e^), Ase{a) : - / As{a',a)Ye{a^)da', (54) 

N{d) 

us{x, a) : - ê -̂̂  + ^ A5e{a)Ye{a')he{r), (55) 

ps{x; u) := e~'^"^ / U5{x, a)u{a)da - 1, 9 e M, (56) 
0/52 

fi{S) : - e--^^^^^ 7 - In — > 0, (57) 
a 

a{u) := ||z/||^2(52), K := \ImO\. (58) 

Consider the variational problem with constraints: 

\e\ = sup : - ^(5), (59) 

1̂1 [WPSMW + a{u)e^'fi{5)] < c, 9 e M, \e\ = sup := i9((5), (60) 
the norm is defined above (44), and it is assumed that (39) holds, where 
^ G M^ is an arbitrary fixed vector, c > 0 is a sufficiently large constant, and 
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the supremum is taken over 6 e M and u G LP'{S'^) under the constraint (60). 
By c we denote various positive constants. 

Given ^ G M^ one can always find 9 and 0' such that (39) holds. We prove 
that 'd{5) —> GO, more precisely: 

Let the pair 6{5) and i/<5(a, 0) be any approximate solution to problem 
(59)-(60) in the sense that 

\0m > ^ . (62) 

Calculate 

qs := -47r / A5{e\a)u8{a,e)da. (63) 

Theorem 2. / / (39) and (62) hold, then 

sup \qs - m\ < ^ ^ ^ T ^ as 5^0, (64) 
e€]R3 | l n d | 

where c > 0 is a constant depending on a norm of q. 

In [Ram94a] estimates (50) and (64) were formulated with the supremum 
taken over an arbitrary large but fixed ball of radius ^o- Here these estimates 
are improved: ^o = oo- The key point is: the constant c > 0 in the estimate 
(47) does not depend on 6. 

Remark. In [Ram96] (see also [Ram92a, Ram02a]) an analysis of the 
approach to ISP, based on the recovery of the DN (Dirichle-to-Neumann) 
map from the fixed-energy scattering data, is given. This approach is discussed 
below. 

The basic numerical difficulty of the approach described in Theorems 1 and 
2 comes from solving problems (46) for exact data, and problem (59)-(60) for 
noisy data. Solving (46) amounts to finding a global minimizer of a quadratic 
form of the variables Q , if one takes u in (45) as a linear combination of the 

spherical harmonics: u = J^^^Q ^^^^(^)- ^^ ^^^ ^^^^ ^^^ necessary condition 
for a minimizer of a quadratic form, that is, a linear system, then the matrix 
of this system is ill-conditioned for large L, This causes the main difficulty 
in the numerical solution of (46). On the other hand, there are methods for 
global minimization of the quadratic functionals, based on the gradient de
scent, which may be more efficient than using the above necessary condition. 

5.3 Discussion of the inversion method w^hich uses the D N map 

In [Ram96] the following inversion method is discussed: 
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q{^) = lim / exp(-z(9' 's){A- Ao)i>ds, (65) 
\e\-^ooJs 

where (39) is assumed, A is the Dirichlet-to-Neumann (DN) map, V̂  is found 
from the equation: 

^(s) = 7/̂ 0(5) - I G{s- t)Bijdt, B:=A- ylo, ^^0(5) := e^^•^ (66) 
Js 

and G is defined by the formula: 

The DN map is constructed from the fixed-energy scattering data A{a\ a) by 
the method of [Ram96] (see also [Ram94a]). 

Namely, given A{a\a) for all a\a G 5^, one finds A using the following 
steps. 

Let / G H^^'^{S) be given, 5 is a sphere of radius a centered at the origin, 
fe are its Fourier coefficients in the basis of the spherical harmonics, 

0 0 
^ _ . ..^..^o^hl{r) ^^^ ^^ _x 

X : / / l l ( x « ) ; ^ , r>a, x^:=^, r := \x\. (68) 

Let 

w= g{x,s)a{s)ds, (69) 

where a is some function, which we find below, and g is the Green func
tion (resolvent kernel) of the Schroedinger operator, satisfying the radiation 
condition at infinity. Then 

wj^ =w]^ + a, (70) 

where Â  is the outer normal to 5, so Â  is directed along the radius-vector. 
We require w = f on S. Then w is given by (68) in the exterior of 5, and 

By formulas (70) and (71), finding A is equivalent to finding a. By (69), 
asymptotics of K; as r := \x\ —̂  00, x/\x\ := x^, is (cf [Ram94a], p.67): 

r An r 

where u is the scattering solution, 

00 

u{y, -x") = e-'-°-y + J2 Aei-x^)Yeiy°)he{\y\). (73) 
i=0 



86 A.G. Ramm, S. Gutman 

Prom (68), (72) and (73) one gets an equation for finding a ([Ram96], eq. 
(23), see also [Ram94a], p. 199): 

JL. = 1.J^ dsa{s) {u{s, -f3), Yim^.^s^^ ^ (74) 

which can be written as a Hnear system: 

i ^ = a\-iyTM'^^i'jM)Sw+Ainhv{a% (75) 

for the Fourier coefficients a^ of cr. The coefficients 

are the Fourier coefficients of the scattering ampHtude. Problems (74) and 
(75) are very ill-posed (see [Ram96] for details). 

This approach faces many difficulties: 
1) The construction of the DN map from the scattering data is a very 

ill-posed problem, 
2) The construction of the potential from the DN map is a very difficult 

problem numerically, because one has to solve a Predholm-type integral equa
tion ( equation (66) ) whose kernel contains G, defined in (67). This G is a 
tempered distribution, and it is very difficult to compute it, 

3) One has to calculate a limit of an integral whose integrand grows ex
ponentially to infinity if a factor in the integrand is not known exactly. The 
solution of equation (66) is one of the factors in the integrand. It cannot be 
known exactly in practice because it cannot be calculated with arbitrary ac
curacy even if the scattering data are known exactly. Therefore the limit in 
formula (65) cannot be calculated accurately. 

No error estimates are obtained for this approach. 
In contrast, in Ramm's method, there is no need to compute G, to solve 

equation (66), to calculate the DN map from the scattering data, and to 
compute the limit (65). The basic difficulty in Ramm's inversion method for 
exact data is to minimize the quadratic form (46), and for noisy data to 
solve optimization problem (59)-(60). The error estimates are obtained for 
the Ramm's method. 

6 Obstacle scattering by the Modified Rayleigh 
Conjecture (MRC) method. 

6.1 Problem description 

In this section we present a novel numerical method for Direct Obstacle Scat
tering Problems based on the Modified Rayleigh Conjecture (MRC). The basic 
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theoretical foundation of the method was developed in [Ram02b]. The MRC 
has the appeal of an easy implementation for obstacles of complicated geome
try, e.g. having edges and corners. A special version of the MRC method was 
used in [GR05] to compute the scattered field for 3D obstacles. In our numer
ical experiments the method has shown itself to be a competitive alternative 
to the BIEM (boundary integral equations method), see [GR02b]. Also, unlike 
the BIEM, one can apply the algorithm to different obstacles with very little 
additional effort. 

We formulate the obstacle scattering problem in a 3D setting with the 
Dirichlet boundary condition, but the discussed method can also be used for 
the Neumann and Robin boundary conditions. 

Consider a bounded domain D cR^, with a boundary S which is assumed 
to be Lipschitz continuous. Denote the exterior domain by D^ = R^\i^. Let 
a, a ' G 5^ be unit vectors, and 5^ be the unit sphere in R^. 

The acoustic wave scattering problem by a soft obstacle D consists in 
finding the (unique) solution to the problem (76)-(77): 

(V^ -{-k^)u = 0 in D\ u - 0 on 5, (76) 

^ikr / 2 \ ^ 
u = uo-\-A(a\ a) h o - , r :== b l - ^ oo, a':=-. (77) 

r \r J r 
Here UQ := e'^^^'^ is the incident field, v :— U—UQ is the scattered field, A{a', a) 
is called the scattering amplitude, its k-dependence is not shown, k > 0 is the 
wavenumber. Denote 

Ae{a):= [ A{a', a)Ye{^da\ (78) 

where Y£{a) are the orthonormal spherical harmonics. Ye = Yim^ —i<m<£. 
Let h£{r) be the spherical Hankel functions, normalized so that /i^(r) ~ ^-^ 
as r —> +00. 

Informally, the Random Multi-point MRC algorithm can be described as 
follows. 

Fix a J > 0. Let Xj^j = 1,2,..., J be a batch of points randomly chosen 
inside the obstacle D. For x e D\ let 

V^̂ (x, Xj) = Ye{a')he{k\x - Xj|). (79) 

Let g{x) = uo{x)^ x E 5, and minimize the discrepancy 

J L 

^(C) - ||p(x) + ^ ^ Q j ^ , ( x , X , ) | U 2 ( 5 ) , (80) 
3=1 ^=0 

over c G C^, where c = {Q, J} - That is, the total field u — g{x) + 1 ' is desired 
to be as close to zero as possible at the boundary 5, to satisfy the required 

\X — Xnl 
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condition for the soft scattering. If the resulting residual r"̂ ^^ = min^ is 
smaller than the prescribed tolerance e, than the procedure is finished, and 
the sought scattered field is 

J L 

j=\ e=o 

(see Lemma 1 below). 
If, on the other hand, the residual r^'^'^ > e, then we continue by trying to 

improve on the already obtained fit in (80). Adjust the field on the boundary 
by letting g{x) := g{x) + Ve{x), x e S, Create another batch of J points 
randomly chosen in the interior of D, and minimize (80) with this new g{x). 
Continue with the iterations until the required tolerance e on the boundary 
S is attained, at the same time keeping the track of the changing field Ve-

Note, that the minimization in (80) is always done over the same number 
of points J, However, the points X j are sought to be different in each iteration 
to assure that the minimal values of ^ are decreasing in consequent itera
tions. Thus, computationally, the size of the minimization problem remains 
the same. This is the new feature of the Random multi-point MRC method, 
which allows it to solve scattering problems untreatable by previously devel
oped MRC methods, see [GR02b]. 

Here is the precise description of the algorithm. 
Random Multi-point MRC. 
For Xj G D, and ^ > 0 functions ipe{x^Xj) are defined as in (79). 

1. Initialization. Fix e > 0, L > 0, J > 0, Nmax > 0. Let n = 0, v^ = 0 
and g{x) — uo{x), x e S. 

2. Iteration. 
a) Let n := n + 1. Randomly choose J points Xj G J9, j = 1, 2 , . . . , J. 
b) Minimize 

J L 

3 = 1 ^=0 

over c G C"^, where c = { Q J } -
Let the minimal value of ^ be r^^'^. 

c) Let 
J L 

Ve{x) := Ve{x) + ^ ^ Q j ' 0 ^ ( x , X^), X G D\ 
j=i e=o 

3. Stopping criterion. 
a) If r"^^^ < e, then stop. 
b) If r^^^ > e, and n y^ Nmax, let 

J L 

g{x) := g{x) + Y^Y^cejiJi{x,Xj), x e S 
j=l£=0 
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and repeat the iterative step (2). 
c) If r"̂ ^^ > e, and n = Nmax^ then the procedure failed. 

6.2 Direct scattering problems and the Rayleigh conjecture. 

Let a ball BR := {x : \x\ < R} contain the obstacle D. In the region r > R 
the solution to (76)-(77) is: 

X 

r 
u{x, a) - e^^«-̂  + Yl Mc^)i^e. ^e -= yi{a')he{kr), r > R, a' = 

£=0 

(81) 
where the sum includes the summation with respect to m, —̂  < m < £, and 
A^{a) are defined in (78). 

The Rayleigh conjecture (RC) is: the series (81) converges up to the bound
ary S (originally RC dealt with periodic structures, gratings). This conjecture 
is false for many obstacles, but is true for some ([Bar71, Mil73, Ram86]). For 
example, if n = 2 and D is an ellipse, then the series analogous to (81) con
verges in the region r > a^ where 2a is the distance between the foci of the 
ellipse [Bar71]. In the engineering literature there are numerical algorithms, 
based on the Rayleigh conjecture. Our aim is to give a formulation of a Mod
ified Rayleigh Conjecture (MRC) which holds for any Lipschitz obstacle and 
can be used in numerical solution of the direct and inverse scattering problems 
(see [Ram02b]). We discuss the Dirichlet condition but similar argument is 
applicable to the Neumann boundary condition, corresponding to acoustically 
hard obstacles. 

Fix e > 0, an arbitrary small number. 

Lemma 1. There exist L = L{e) and C£ — Ci{e) such that 

L(e) 

||iXo + X]Q(e)V^€||L2(5) < e . (82) 

/ / (82) and the boundary condition (76) hold, then 

Lie) 

\\ve ~ V\\L^S) < e, Ve '-= ^ ce{e)i)i. (83) 

Lemma 2. / / (83) holds then 

\\\ve-v\\\ = 0{e), e ->0 , (84) 

where \\\ • ||| := || • ||i^-^(D') + II • ||L2(D';(i+|a:|)-7); 1 > I, m > {) is an 
arbitrary integer, H^ is the Sobolev space, and v^^v in (84) are functions 
defined in D'. 

In particular, (84) implies 
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\\Ve-v\\L2iSa)-0{e), 6 - ^ 0 , (85) 

where SR is the sphere centered at the origin with radius R. 

Lemma 3. One has: 

ce{e)-^ Ae{a), Vf, e-^ 0. (86) 

The Modified Rayleigh Conjecture (MRC) is formulated as a theorem, 
which follows from the above three lemmas: 

Theorem 3. For an arbitrary small e > 0 there exist L(e) and Q(e), 0 < £ < 
L{e), such that (82), (84) and (86) hold. 

See [Ram02b] for a proof of the above statements. 
The diff'erence between RC and MRC is: (83) does not hold if one replaces 

'̂ e t)y Yle=o^^{^)'^^^ ^̂ <̂  l̂ ^s L ^ 00 (instead of letting e —̂  0). Indeed, 
the series lC?lo^^(^)'^^ diverges at some points of the boundary for many 
obstacles. Note also that the coefficients in (83) depend on e, so (83) is not a 
partial sum of a series. 

For the Neumann boundary condition one minimizes 

dN 
LHS) 

with respect to Q . Analogs of Lemmas 1-3 are valid and their proofs are 
essentially the same. 

See [Ram04c] for an extension of these results to scattering by periodic 
structures. 

6.3 Numerical Experiments. 

In this section we desribe numerical results obtained by the Random Multi
point MRC method for 2D and 3D obstacles. We also compare the 2D re
sults to the ones obtained by our earher method introduced in [GR02b]. The 
method that we used previously can be described as a Multi-point MRC. Its 
difference from the Random Multi-point MRC method is twofold: It is just the 
first iteration of the Random method, and the interior points Xj, j = 1,2,..., J 
were chosen deterministically, by an ad hoc method according to the geome
try of the obstacle D. The number of points J was Hmited by the size of the 
resulting numerical minimization problem, so the accuracy of the scattering 
solution (i.e. the residual r'^'^'^) could not be made small for many obstacles. 
The method was not capable of treating 3D obstacles. These limitations were 
removed by using the Random Multi-point MRC method. As we mentioned 
previously, [GR02b] contains a favorable comparison of the Multi-point MRC 



Optimization Methods in Direct and Inverse Scattering 91 

method with the BIEM, inspite in spite of the fact that the numerical imple
mentation of the MRC method in [GR02b] is considerably less efficient than 
the one presented in this paper. 

A numerical implementation of the Random Multi-point MRC method 
follows the same outline as for the Multi-point MRC, which was described in 
[GR02b]. Of course, in a 2D case, instead of (79) one has 

iPi{x,Xj) = Hl'\k\x-Xj\)e'^^^, 

where {x — Xj)/\x — Xj\ = e^^K 
For a numerical implementation choose M nodes {tm} on the surface S of 

the obstacle D. After the interior points Xj, j = 1,2,..., J are chosen, form Â  
vectors 

n = 1,2,. . . , AT of length M. Note that A' = (2L + 1) J for a 2D case, and 
N = {L -{-1)^ J for a 3D case. It is convenient to normahze the norm in R ^ 
by 

1 ^ 
11*̂11'= M E l^-l'' b = (61,62, ...,6M). 

Then \\uo\\ = 1. 
Now let b = {9{tm)}m=i^ i^ ^^^ Random Multi-point MRC (see section 

1), and minimize 
^ ( c ) - | | b + ylc||, (87) 

for c e C^ , where A is the matrix containing vectors a^^\ n= : 1,2,...,A" as 
its columns. 

We used the Singular Value Decomposition (SVD) method (see e.g. 
[PTVF92]) to minimize (87). Small singular values Sn < Wmin of the ma
trix A are used to identify and delete linearly dependent or almost linearly 
dependent combinations of vectors a^^ .̂ This spectral cut-off makes the min
imization process stable, see the details in [GR02b]. 

l^^lrprnin ^̂  ^̂ g residud, i.e. the minimal value of^{c) attained after Nmax 
iterations of the Random Multi-point MRC method (or when it is stopped). 
For a comparison, let r'^^ be the residual obtained in [GR02b] by an earlier 
method. 

We conducted 2D numerical experiments for four obstacles: two ellipses 
of different eccentricity, a kite, and a triangle. The M=720 nodes tm were 
uniformly distributed on the interval [0,27r], used to parametrize the boundary 
S. Each case was tested for wave numbers fc = 1.0 and k = 5.0. Each obstacle 
was subjected to incident waves corresponding to a — (1.0,0.0) and a = 
(0.0,1.0). 

The results for the Random Multi-point MRC with J = 1 are shown in 
Table 10, in the last column r"̂ "̂̂ . In every experiment the target residual 
e — 0.0001 was obtained in under 6000 iterations, in about 2 minutes run 
time on a 2.8 MHz PC. 
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In [GR02b], we conducted numerical experiments for the same four 2D 
obstacles by a Multi-point MRC, as described in the beginning of this section. 
The interior points Xj were chosen differently in each experiment. Their choice 
is indicated in the description of each 2D experiment. The column J shows 
the number of these interior points. Values L = b and M = 720 were used in 
all the experiments. These results are shown in Table 10, column r^X-

Thus, the Random Multi-point MRC method achieved a significant im
provement over the earlier Multi-point MRC. 

Table 10. Normalized residuals attained in the numerical experiments for 2D ob
stacles, ||uo|| = 1. 

Experiment J k a 
I 4 1.0 (1.0,0.0) 0.000201 0.0001 

4 1.0 (0.0,1.0) 0.000357 0.0001 
4 5.0 (1.0,0.0) 0.001309 0.0001 
4 5.0 (0.0,1.0) 0.007228 0.0001 

II 16 1.0 (1.0,0.0) 0.003555 0.0001 
16 1.0 (0.0,1.0) 0.002169 0.0001 
16 5.0 (1.0,0.0) 0.009673 0.0001 
16 5.0 (0.0,1.0) 0.007291 0.0001 

III 16 1.0 (1.0,0.0) 0.008281 0.0001 
16 1.0 (0.0,1.0) 0.007523 0.0001 
16 5.0 (1.0,0.0) 0.021571 0.0001 
16 5.0 (0.0,1.0) 0.024360 0.0001 

IV 32 1.0 (1.0,0.0) 0.006610 0.0001 
32 1.0 (0.0,1.0) 0.006785 0.0001 
32 5.0 (1.0,0.0) 0.034027 0.0001 
32 5.0 (0.0,1.0) 0.040129 0.0001 

Exper iment 2D-I. The boundary S is an ellipse described by 

r{t) = {2.0cost, s'lnt), 0 < ^ < 27r. (88) 

The Multi-point MRC used J = 4 interior points Xj = 0.7r(^^^^^), j = 
1 , . . . , 4. Run time was 2 seconds. 

Exper iment 2D-II . The kite-shaped boundary S (see [CK92], Section 
3.5) is described by 

r(t) = (-0.65 +cos^-f 0.65 cos2^, 1.5 sini^), 0<?^<27r. (89) 

The Multi-point MRC used J = 16 interior points Xj = 0.9r(^^^^^), j = 
1 , . . . , 16. Run time was 33 seconds. 

Exper iment 2D-III . The boundary S is the triangle with vertices 
(-1.0,0.0) and (1.0, ±1.0). The Multi-point MRC used the interior points 
Xj = Q.9r(̂ -̂̂ g" ^), j = 1 , . . . , 16. Run time was about 30 seconds. 
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Experiment 2D-IV. The boundary S is an ellipse described by 

r(^) = (0.1 cos^, sint), 0 < t < 27r. (90) 

The Multi-point MRC used J = 32 interior points Xj = 0.95r(^^i(=^), j -
1 , . . . , 32. Run time was about 140 seconds. 

The 3D numerical experiments were conducted for 3 obstacles: a sphere, 
a cube, and an ellipsoid. We used the Random Multi-point MRC with L = 
0, Wmin = 10~^^, and J = 80. The number M of the points on the boundary 
S is indicated in the description of the obstacles. The scattered field for each 
obstacle was computed for two incoming directions ai — {O.cj)), i = 1,2, 
where (j) was the polar angle. The first unit vector a i is denoted by (1) in 
Table 11, a i = (0.0,7r/2). The second one is denoted by (2), a2 = (7r/2,7r/4). 
A typical number of iterations Nuer and the run time on a 2.8 MHz PC are 
also shown in Table 11. For example, in experiment I with k — 5.0 it took 
about 700 iterations of the Random Multi-point MRC method to achieve the 
target residual r^^^ = 0.001 in 7 minutes. 

Exper iment 3D-I. The boundary S is the sphere of radius 1, with M ~ 
450. 

Exper iment 3D-II. The boundary S is the surface of the cube [—1,1]^ 
with M = 1350. 

Experiment 3D-III. The boundary S is the surface of the ellipsoid 
x V l 6 -f y2 -I- ^2 ^ 1 with M - 450. 

Table 11. Normalized residuals attained in the numerical experiments for 3D ob
stacles, ||uo|| = 1. 

Experiment k ai r^*^ Nuer run time 
I To 00002 i 1 sec 

5.0 0.001 700 7min 
II 1.0 (1) 0.001 800 16 min 

1.0 (2) 0.001 200 4 min 
5.0 (1) 0.0035 2000 40 min 
5.0 (2) 0.002 2000 40 min 

III 1.0 (1) 0.001 3600 37 min 
1.0 (2) 0.001 3000 31 min 
5.0 (1) 0.0026 5000 53 min 
5.0 (2) 0.001 5000 53 min 

In the last experiment the run time could be reduced by taking a smaller 
value for J . For example, the choice of J == 8 reduced the running time to 
about 6-10 minutes. 

Numerical experiments show that the minimization results depend on the 
choice of such parameters as J, Wmin, and L. They also depend on the choice 
of the interior points Xj. It is possible that further versions of the MRC could 
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be made more efficient by finding a more efiicient rule for their placement. 
Numerical experiments in [GR02b] showed that the efficiency of the minimiza
tion greatly depended on the deterministic placement of the interior points, 
with better results obtained for these points placed sufficiently close to the 
boundary S of the obstacle D, but not very close to it. The current choice 
of a random placement of the interior points Xj reduced the variance in the 
obtained results, and efiminated the need to provide a justified algorithm for 
their placement. The random choice of these points distributes them in the 
entire interior of the obstacle, rather than in a subset of it. 

6.4 Conclusions. 

For 3D obstacle Rayleigh's hypothesis (conjecture) says that the acoustic field 
u in the exterior of the obstacle D is given by the series convergent up to the 
boundary of D: 

oo 

u{x, a) = e^^ -̂̂  + Yl Mc^)i^i. i^e - Ye{a')he{kr), a' = -. (91) 

While this conjecture (RC) is false for many obstacles, it has been modified 
in [Ram02b] to obtain a valid representation for the solution of (76)-(77). 
This representation (Theorem 3) is called the Modified Rayleigh Conjecture 
(MRC), and is, in fact, not a conjecture, but a Theorem. 

Can one use this approach to obtain solutions to various scattering prob
lems? A straightforward numerical implementation of the MRC may fail, but, 
as we show here, it can be efficiently implemented and allows one to obtain 
accurate numerical solutions to obstacle scattering problems. 

The Random Multi-point MRC algorithm was successfully applied to var
ious 2D and 3D obstacle scattering problems. This algorithm is a significant 
improvement over previous MRC implementation described in [GR02b]. The 
improvement is achieved by allowing the required minimizations to be done 
iteratively, while the previous methods were limited by the problem size con
straints. In [GR02b], such MRC method was presented, and it favorably com
pared to the Boundary Integral Equation Method. 

The Random Multi-point MRC has an additional attractive feature, that it 
can easily treat obstacles with complicated geometry (e.g. edges and corners). 
Unlike the BIEM; it is easily modified to treat different obstacle shapes. 

Further research on MRC algorithms is conducted. It is hoped that the 
MRC in its various implementation can emerge as a valuable and efficient 
alternative to more established methods. 
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7 Support Function Method for inverse obstacle 
scattering problems. 

7.1 Support Function Method (SFM) 

The Inverse Scattering Problem consists of finding the obstacle D from the 
Scattering Amplitude, or similarly observed data. The Support Function 
Method (SFM) was originally developed in a 3-D setting in [RamTO], see 
also [Ram86, pp. 94-99]. It is used to approximately locate the obstacle D. 
The method is derived using a high-frequency approximation to the scattered 
field for smooth, strictly convex obstacles. It turns out that this inexpensive 
method also provides a good localization of obstacles in the resonance region 
of frequencies. If the obstacle is not convex, then the SFM yields its convex 
hull. 

One can restate the SFM in a 2-D setting as follows (see [GR03]). Let 
D C M̂  be a smooth and strictly convex obstacle with the boundary F. Let 
z/(y) be the unique outward unit normal vector to JT at y G i"". Fix an incident 
direction a ^ S^. Then the boundary F can be decomposed into the following 
two parts: 

r + = {y G r : z/(y) • a < 0} , and r_ - {y G T : v{y) • a > 0} , (92) 

which are, correspondingly, the illuminated and the shadowed parts of the 
boundary for the chosen incident direction a. 

Given a £ S^^ its specular point so(a) G /If. is defined from the condi
tion: 

So (a) • a = min s • a (93) 

Note that the equation of the tangent line to F^ at SQ is 

< xi^X2> ' a = so(a) • a , (94) 

and 
z/(so(a)) = - a . (95) 

The Support function d[a) is defined by 

d{a) = So(a) • a. (96) 

Thus \d{a)\ is the distance from the origin to the unique tangent hne to 
/If perpendicular to the incident vector a. Since the obstacle D is assumed 
to be convex 

^ = naG5i{xGM^ : x - a > d ( a ) } . (97) 

The boundary T of -D is smooth, hence so is the Support Function. The 
knowledge of this function allows one to reconstruct the boundary F using 
the following procedure. 
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Parametrize unit vectors 1 E 5^ by l(^) = (cos t, sin t), 0 < t < 27r and 
define 

p{t) = d{l{t)), 0 < ^ < 2 7 r . (98) 

Equation (94) and the definition of the Support Function give 

xi cost + X2smt =^ p{t). (99) 

Since F is the envelope of its tangent hues, its equation can be found from 
(99) and 

—xi sin t-i-X2 cos t = p'{t). (100) 

Therefore the parametric equations of the boundary F are 

xi{t) — p{t)cost ~ p'{t)smt^ X2{t) = p{t)sYnt-\-p'{t)cost. (101) 

So, the question is how to construct the Support function d(l), 1 G 5^ from 
the knowledge of the Scattering Amplitude. In 2-D the Scattering Amplitude 
is related to the total field u = UQ-^V hy 

•̂ <°'°> = - ^ X a ^ ' " " " ' ' ' ' ^ w - (102) 

In the case of the "soft" boundary condition (i.e. the pressure field satis
fies the Dirichlet boundary condition u = &) the Kirchhoff (high frequency) 
approximation gives 

on the illuminated part F^ of the boundary T, and 

| H . O (.04) 

on the shadowed part F-. Therefore, in this approximation, 

A{ol, a) = _ ! ^ / a . z/(y) e^'^^^-^')-^ ds{y). (105) 
V^nk Jr+ 

Let L be the length of /T^, and y = y(C)? 0 < C :̂  -̂  be its arc length 
parametrization. Then 

iy/k e* 

V27r 70 
(106) 

Let Co E [0,1/] be such that SQ = y(Co) is the specular point of the unit 
vector 1, where 

\a — a'\ 

Then i/(so) = - 1 , and c/(l) = y(Co) • 1. Let 
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^(C) = ( a - a ' ) - y ( C ) . 

Then (p{() = 1 • y(C)|ct — a'\. Since z (̂so) and y'(Co) are orthogonal, one has 

¥''(Co) = l - y ' ( C o ) | a - a ' | = 0 . 

Therefore, due to the strict convexity of D, Co is also the unique non-
degenerate stationary point of (/?(C) on the interval [0,L], that is ^'{Co) — 0, 
and ( '̂'(Co) ^ 0. 

According to the Stationary Phase method 

/ /(C)e '̂='̂ «)rfC = /(Co)exp 
Jo 

ik(p{Co) + 
4 |<^"(Co)| 

27r 

A:|v"(Co)| 
(108) 

as fc -^ DO. 
By the definition of the curvature A (̂CO) = iŷ 'CCo)!- Therefore, from the 

collinearity of y'XCo) and 1, |<^"(Co)| = \oc — a'\K{C,o), Finally, the strict con
vexity of J9, and the definition of <^{C,)-, imply that Co is the unique point of 
minimum of (f on [0, L], and 

V'"(Co) 
= 1 

l^"(Co)| 

Using (108)-(109), expression (106) becomes: 

(109) 

A{a',a) 
l a 

^J\a^^^''a%{^ 
ifc(a-a')-y(Co) l + O , fc-^oc. (110) 

At the specular point one has 1 • a ' = —1 • a. By the definition a — a' = 
\\a — a'\. Hence 1 • (a — a') = |a — a' | and 21- a =^\a — a'\. These equalities 
and d{\) = y(Co) • 1 give 

Thus, the approximation 

l + O k —> oo. 

A{a',a) 
1 / la —a' 

«(Co) 
„ife|a-c«'|d(l) 

(111) 

(112) 

can be used for an approximate recovery of the curvature and the support 
function (modulo 27T/k\a — a'|) of the obstacle, provided one knows that the 
total field satisfies the Dirichlet boundary condition. The uncertainty in the 
support function determination can be remedied by using difi'erent combina
tions of vectors a and a' as described in the numerical results section. 
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Since it is also of interest to localize the obstacle in the case when the 
boundary condition is not a priori known, one can modify the SFM as shown 
in [RG04], and obtain 

where 

and 

2 V /̂ (Co) 

7o = arctan —, 
a 

— + hu = 0 
on 

along the boundary F of the sought obstacle. 
Now one can recover the Support Function d{l) from (113), and the loca

tion of the obstacle. 

7.2 Numerical results for the Support Function Method. 

In the first numerical experiment the obstacle is the circle 

D = {{xi,X2)eR^ : (xi - 6 ) 2 + ( X 2 - 2 ) 2 = 1 } . (114) 

It is reconstructed using the Support Function Method for two frequencies 
in the resonance region: k = 1.0, and k = 5.0. Table 12 shows how well 
the approximation (112) is satisfied for various pairs of vectors a and a' all 
representing the same vector 1 = (1.0,0.0) according to (107). The Table 
shows the ratios of the approximate Scattering Amplitude Aa{a',a) defined 
as the right hand side of the equation (112) to the exact Scattering Amplitude 
A(a\ a). Note, that for a sphere of radius a, centered at XQ G M^^ one has 

where a' = x / |x | = e^ ,̂ and a = e^ .̂ Vectors a and a' are defined by their 
polar angles shown in Table 12. 

Table 12 shows that only vectors a close to the vector 1 are suitable for the 
Scattering Amplitude approximation. This shows the practical importance of 
the backscattering data. Any single combination of vectors a and a' repre
senting 1 is not sufficient to uniquely determine the Support Function d{l) 
from (112) because of the phase uncertainty. However, one can remedy this 
by using more than one pair of vectors a and a' as follows. 

Let 1 G 5^ be fixed. Let 

Ril) = {aeS^ : \a-l\>l/V2}. 
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Table 12. Ratios of the approximate and the exact Scattering Amphtudes 
Aa{a',a)/A{a\a) for 1 = (1.0,0.0). 

/c = 1.0 /c - 5.0 

TT 0 0.88473 - 0.17487i 0.98859 - 0.05846z 

237r/24 7r/24 0.88272 - 0.17696i 0.98739 - 0.06006z 

227r/24 27r/24 0.87602 - 0.18422z 0.98446 - 0.06459i 

2l7r/24 37r/24 0.86182 - 0.19927i 0.97977 - 0.07432z 

207r/24 47r/24 0.83290 - 0.2241 H 0.96701 - 0.08873i 

197r/24 57r/24 0.77723 - 0.25410z 0.95311 - 0.1032H 

187r/24 67r/24 0.68675 - 0.27130z 0.92330 - 0.14195i 

177r/24 77r/24 0.57311-0.253602 0.86457-0.149592 

167r/24 87r/24 0.46201 - 0.19894z 0.81794 - 0.22900i 

157r/24 97r/24 0.36677 - 0.12600i 0.61444 - 0.19014z 

147r/24 107r/24 0.28169 - 0.054492 0.57681 - 0.310752 

137r/24 ll7r/24 0.19019 + 0.000752 0.14989 - 0.094792 

127r/24 127r/24 0.00000 4- O.OOOOO2 0.00000 + O.OOOOO2 

Define "̂  : K -> K+ by 

nt) = 1 ̂ K ' " ) ,Jk\a-a'\t\ 

ll^K«)r 1 

|2 

\LHR(\)) 

where a' = a'{a) is defined by 1 and a according to (107), and the integration 
is done over a £ i?(l). 

If the approximation (112) were exact for any a G -R(l), then the value 
of ^{d{\)) would be zero. This justifies the use of the minimizer ^0 ^ I^ of 
the function ^(t) as an approximate value of the Support Function d{\). If 
the Support Function is known for sufficiently many directions 1 G 5^, the 
obstacle can be localized using (97) or (101). The results of such a localization 
for fc = 1.0 together with the original obstacle D is shown on Figure 5. For 
fc = 5.0 the identified obstacle is not shown, since it is practically the same 
as D. The only a priori assumption on D was tha t it was located inside the 
circle of radius 20 with the center in the origin. The Support Function was 
computed for 16 uniformly distributed in S^ vectors 1. The program run takes 
about 80 seconds on a 333 MHz P C . 

In another numerical experiment we used A: = 1.0 and a kite-shaped ob
stacle. Its boundary is described by 

r( t ) = (5.35 + c o s t + 0.65cos2t, 2.0 + 1.5sint), 0 < t < 2 7 r . (116) 
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y 
6 

2 4 6 8 
Fig. 5. Identified (dotted line), and the original (solid line) obstacle D for /c = 1.0. 

Numerical experiments using the boundary integral equation method (BIEM) 
for the direct scattering problem for this obstacle centered in the origin are 
described in [CK92, Section 3.5]. Again, the Dirichlet boundary conditions 
were assumed. We computed the scattering amplitude for 120 directions a 
using the MRC method with about 25% performance improvement over the 
BIEM, see [GR02b]. 

The Support Function Method (SFM) was used to identify the obstacle D 
from the synthetic scattering amplitude with no noise added. The only a priori 
assumption on D was that it was located inside the circle of radius 20 with 
the center in the origin. The Support Function was computed for 40 uniformly 
distributed \u S^ vectors 1 in about 10 seconds on a 333 MHz PC. The results 
of the identification are shown in Figure 6. The original obstacle is the solid 
line. The points were identified according to (101). As expected, the method 
recovers the convex part of the boundary JT, and fails for the concave part. 
The same experiment but with fc = 5.0 achieves a perfect identification of the 
convex part of the boundary. In each case the convex part of the obstacle was 
successfully localized. Further improvements in the obstacle localization using 
the MRC method are suggested in [Ram02b], and in the next section. 

For the identification of obstacles with unknown boundary conditions let 

A{t) =^ A{Q!,a) ^\A(t)\e iiPit) 
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2 4 6 8 

Fig. 6. Identified points and the original obstacle D (solid line); k = 1.0. 

where, given t^ the vectors a and a' are chosen as above, and the phase 
function '^(t), \/2 < t < 2 is continuous. Similarly, let Aa{t), ipa{t) be the 
approximate scattering amplitude and its phase defined by formula (113). 

If the approximation (113) were exact for any a G i?(l), then the value of 

\^a{t) - ktd{l) + 2-fo - 7r\ 

would be a multiple of 27r. 
This justifies the following algorithm for the determination of the Support 

Function d{\): 
Use a linear regression to find the approximation 

ij{t) « Cit + C2 

on the interval y/2 <t<2. Then 

d(l) = ^ . (117) 

Also 

2 
However, the formula for h did not work well numerically. It could only deter
mine if the boundary conditions were or were not of the Dirichlet type. Table 
13 shows that the algorithm based on (117) was successful in the identification 
of the circle of radius 1.0 centered in the origin for various values of h with no 
a priori assumptions on the boundary conditions. For this circle the Support 
Function d{l) — —1.0 for any direction I. 
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Table 13. Identified values of the Support Function for the circle of radius 1.0 at 
k = 3.0. 

h Identified d(\) Actual d(l) 
0.01 
0.10 
0.50 
1.00 
2.00 
5.00 

10.00 
100.00 

-0.9006 
-0.9191 
-1.0072 
-1.0730 
-0.9305 
-1.3479 
-1.1693 
-1.0801 

-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 
-1.00 

8 Analysis of a Linear Sampling method. 

During the last decade many papers were published, in which the obstacle 
identification methods were based on a numerical verification of the inclusion 
of some function / := / ( a , z), z G R^, a G 5^, in the range R{B) of a cer
tain operator B. Examples of such methods include [CCMOO, CK96, Kir98]. 
However, one can show that the methods proposed in the above papers have 
essential diflSculties, see [RG05]. Although it is true that / 0 R{B) when 
z ^ D, it turns out that in any neighborhood of / there are elements from 
R{B). Also, although / G R{B) when z £ D, there are elements in every 
neighborhood of / which do not belong to R{B) even if 2; G D. Therefore it is 
quite difficult to construct a stable numerical method for the identification of 
D based on the verification of the inclusions / ^ R{B), and / G R{B). Some 
published numerical results were intended to show that the method based on 
the above idea works practically, but it is not clear how these conclusions were 
obtained. 

Let us introduce some notations : A''(^) and R{B) are, respectively, the 
null-space and the range of a linear operator B, D eR^ is a, bounded domain 
(obstacle) with a smooth boundary S, D^ = R^\ D, UQ = e*^^'^, k = const > 
0, a G 5^ is a unit vector, N is the unit normal to S pointing into D^ 
9 = 9{x,y,k) := g{\x - y\) := f̂ ,̂ !̂ ,, / : - e"^^^''^, where 2: G M^ and 

a ' G 5^, a' := xr~^, r — |x|, u = w(x,a, k) is the scattering solution: 

{A-^k'^)u = 0 in D\u\s = 0, (118) 

u = uo-i-v, V = A{a\a,k)e'^^'^r~^ -\-o{r~^), as r - ^ 00, (119) 

where A := ^(a ' ,a ,fc) is called the scattering amplitude, corresponding to 
the obstacle D and the Dirichlet boundary condition. Let G = G{x^y^k) be 
the resolvent kernel of the Dirichlet Laplacian in D'\ 

{A-\-e)G = -5{x-y) in D',G\s = ^, (120) 

and G satisfies the outgoing radiation condition. 
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If 
{A + k^)w = 0 in D',w\s = K (121) 

and w satisfies the radiation condition, then ([Ram86]) one has 

w{x) = [ GN{X, s)h{s)ds, w = A{a', k)e'^W-^ -f o(r-^), (122) 
Js 

as r —> GO, and xr~^ = a'. We write A{a') for A{a'^ k), and 

A{a') := Bh:=^ [ UN{S, -a')h{s)ds, (123) 
^^ Js 

as follows from Ramm's lemma: 
Lemma 1. ([Ram86, p. 46]) One has: 

G{x,y,k) = g{r)u{y^—a\k) + o{r~^)^ as r = |a:| —> oo, xr~^ = a\ 
(124) 

where u is the scattering solution of (118)-(119). 
One can write the scattering amplitude as: 

A{a',a,k) = - - ^ I UN{s,-a')e'^''-'ds. (125) 

The following claim follows easily from the results in [Ram86], [Ram92b] (cf 
[Kir98]): 

Claim: f := e'^^^''^ G R{B) if and only if z e D. 

Proof. If e"^^"'-^ = Bh, then Lemma 1 and (12.6) imply 

g{y,z) = / GN{s,y)hds for \y\ > \z\. 

Thus z E D^ because otherwise one gets a contradiction: lim^-,^ g{y^ z) = oo if 
z e D^ ^ while lim^^^ fs GN{S^ y)hds < oo'iiz ^ D'. Conversely, if ^ G Z>, then 
Green's formula yields g{y,z) = fgGp^{s,y)g{s,z)ds. Taking \y\ -^ oo, A = 

a\ and using Lemma 1, one gets e~^^" '̂  = Bh, where h = g{s^ z). The claim 
is proved. D 

Consider B : L^{S) -^ L^(S^), and A : L^{S^) -^ 1^(3^), where B is 
defined in (123) and Aq := /^2 A{a\a)q{a)da. Then one proves (see [RG05]): 

Theorem 1. The ranges R{B) and R{A) are dense in L^(5^). 
Remark 1. In [CK96] the 2D inverse obstacle scattering problem is con

sidered. It is proposed to solve the equation (1.9) in [CK96]: 

/ A{a,p)jdp = e-'^'''', (126) 

where A is the scattering amplitude at a fixed A: > 0, 5^ is the unit circle, 
a e S^^ and z is a point on R^. If 7 = 7(/?, z) is found, the boundary S of the 
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obstacle is to be found by finding those z for which ||7|| := ||7(y5,2:)||/,2(5i) is 
maximal. Assuming that k^ is not a Dirichlet or Neumann eigenvalue of the 
Laplacian in D^ that J9 is a smooth, bounded, simply connected domain, the 
authors state Theorem 2.1 [CK96, p. 386], which says that for every e > 0 
there exists a function 7 G L^(5^), such that 

Jim||7(/3,^)|| = oo, (127) 

and (see [CK96, p. 386]), 

A{a,^)jd0 - e-»'="-^|| < €. (128) 7. 51 

There are several questions concerning the proposed method. 
First, equation (126), in general, is not solvable. The authors propose to 

solve it approximately, by a regularization method. The regularization method 
applies for stable solution of solvable ill-posed equations (with exact or noisy 
data). If equation (126) is not solvable, it is not clear what numerical "solu
tion" one seeks by a regularization method. 

Secondly, since the kernel of the integral operator in (126) is smooth, one 
can always find, for any ^ G R^, infinitely many 7 with arbitrary large ||7||, 
such that (128) holds. Therefore it is not clear how and why, using (127), one 
can find S numerically by the proposed method. 

A numerical implementation of the Linear SampUng Method (LSM) sug
gested in [CK96] consists of solving a discretized version of (126) 

Fg = f, (129) 

where F = {Aai,Pj}, i = 1,...,A^, j = 1,...,A^ be a square matrix formed 
by the measurements of the scattering amplitude for N incoming, and Â  
outgoing directions. In 2-D the vector f is formed by 

fn = - i ^ e - ^ ^ - - ^ n - l , . . . , A r , 

see [BLWOl] for details. 
Denote the Singular Value Decomposition of the far field operator by F == 

USV^. Let Sn be the singular values of F , p = C/^f, and 11 = V^f. Then the 
norm of the sought function g is given by 

ll7f = E ^ - (130) 

n=l *" 

A different LSM is suggested by A. Kirsch in [Kir98]. In it one solves 

(/?*i^)l/4g = f (131) 
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instead of (129). The corresponding expression for the norm of 7 is 

N , 12 

ll7f = E ^ - (132) 
n = l 

A detailed numerical comparison of the two LSMs and the linearized tomo
graphic inverse scattering is given in [BLWOl]. 

The conclusions of [BLWOl], as well as of our own numerical experiments 
are that the method of Kirsch (131) gives a better, but a comparable iden
tification, than (129). The identification is significantly deteriorating if the 
scattering amplitude is available only for a limited aperture, or the data are 
corrupted by noise. Also, the points with the smallest values of the ||7|| are 
the best in locating the inclusion, and not the largest one, as required by 
the theory in [CK96, Kir98]. In Figures 7 and 8 the implementation of the 
Colton-Kirsch LSM (130) is denoted by gnck, and of the Kirsch method (132) 
by gnk. The Figures show a contour plot of the logarithm of the ||7||. In all the 
cases the original obstacle was the circle of radius 1.0 centered at the point 
(10.0, 15.0). A similar circular obstacle that was identified by the Support 
Function Method (SFM) is discussed in Section 10. Note that the actual ra
dius of the circle is 1.0, but it cannot be seen from the LSM identification. 
The LSM does not require any knowledge of the boundary conditions on the 
obstacle. The use of the SFM for unknown boundary conditions is discussed in 
the previous section. The LSM identification was performed for the scattering 
amplitude of the circle computed analytically with no noise added. In all the 
experiments the value for the parameter N was chosen to be 128. 
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Suinmary. The main focus of this paper is in a discussion of complexity of stochas
tic programming problems. We argue that two-stage (linear) stochastic programming 
problems with recourse can be solved with a reasonable accuracy by using Monte 
Carlo sampling techniques, while multi-stage stochastic programs, in general, are 
intractable. We also discuss complexity of chance constrained problems and multi
stage stochastic programs with linear decision rules. 
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1 Introduction 

In real life we constantly have to make decisions under uncertainty and, more
over, we would like to make such decisions in a reasonably optimal way. Then 
for a specified objective function F ( x , ^ ) , depending on decision vector x G M^ 
and vector ^ E M^ of uncertain parameters , we are faced with the problem of 
optimizing (say minimizing) F ( x , ^) over x varying in a permissible (feasible) 
set X C M'^. Of course, such an optimization problem is not well defined since 
our objective depends on an unknown value of ^. A way of dealing with this is 
to optimize the objective on average. Tha t is, it is assumed tha t ^ is a random 
vector^, with known probability distribution P having support S' C R^, and 
the following optimization problem is formulated 

^ Sometimes, in the sequel, ^ denotes a random vector and sometimes its particular 
reahzation (numerical value). Which one of these two meanings is used will be 
clear from the context. 
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mn{f{x):=Ep[Fix,^)]}. (1) 

We assume throughout the paper that considered expectations are well de
fined, e.g., F(x, •) is measurable and P-integrable. 

In particular, the above formulation can be applied to two-stage stochastic 
programming problem with recourse, pioneered by Beale [Bea55] and Dantzig 
[Dan55]. That is, an optimization problem is divided into two stages. At the 
first stage one has to make a decision on the basis of some available informa
tion. At the second stage, after a realization of the uncertain data becomes 
known, an optimal second stage decision is made. Such stochastic program
ming problem can be written in the form (1) with F(x,^) being the optimal 
value of the second stage problem. 

It should be noted that in the formulation (1) all uncertainties are con
centrated in the objective function while the feasible set X is supposed to 
be known (deterministic). Quite often the feasible set itself is defined by con
straints which depend on uncertain parameters. In some cases one can rea
sonably formulate such problems in the form (1) by introducing penalties for 
possible infeasibilities. Alternatively one can try to optimize the objective sub
ject to satisfying constraints for all values of unknown parameters in a chosen 
(uncertain) region. This is the approach of robust optimization (cf., Ben-Tal 
and Nemirovski [BNOl]). Satisfying the constraints for all possible realizations 
of random data may be too conservative and, more reasonably, one may try 
to satisfy the constraints with a high (close to one) probability. This leads to 
the chance, or probabilistic, constraints formulation which is going back to 
Charnes and Cooper [CC59]. 

There are several natural questions which arise with respect to formulation 

(i) How do we know the probability distribution P? In some cases one has his
torical data which can be used to obtain a reasonably accurate estimate 
of the corresponding probability distribution. However, this happens in 
rather specific situations and often the probability distribution either can
not be accurately estimated or changes with time. Even worse, in many 
cases one deals with scenarios (i.e., possible realizations of the random 
data) with the associated probabilities assigned by a subjective judgment. 

(ii) Why, at the first stage, do we optimize the expected value of the second 
stage optimization problem? If the optimization procedure is repeated 
many times, with the same probability distribution of the data, then it 
could be argued by employing the Law of Large Numbers that this gives 
an optimal decision on average. However, if in the process, because of the 
variability of the data one looses all its capital, it does not help that the 
decisions were optimal on average. 

(iii)How difficult is it to solve the stochastic programming problem (1)? Eval
uation of the expected value function f{x) involves calculation of the cor
responding multivariate integrals. Only in rather specific cases it can be 
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done analytically. Therefore, typically, one employs a finite discretization 
of the random data which allows to write the expectation in a form of 
summation. Note, however, that if random vector ^ has d elements each 
with just 3 possible realizations independent of each other, then the total 
number of scenarios is 3^, i.e., the number of scenarios grows exponentially 
fast with dimension d of the data vector. 

(iv)Finally, what can be said about multi-stage stochastic programming, when 
decisions are made in several stages based on available information at the 
time of making the sequential decisions? 

It turns out that there is a close relation between questions (i) and (ii). 
As far as question (i) is concerned, one can approach it from the following 
point of view. Suppose that a plausible family ^ of probability distributions, 
of the random data vector ^, can be identified. Consequently, the "worst-case-
distribution" minimax problem 

Min 
xex 

\f{x):=snpEp[F{x,0]] (2) 

is formulated. The worst-case approach to decision analysis, of course, is not 
new. It was also discussed extensively in the stochastic programming literature 
(e.g., [Dup79, Dup87, EGN85, Gai91, SKOO, Zac66]). 

Again we are facing the question of how to choose the set ^ of possible 
distributions. Traditionally this problem is approached by assuming knowl
edge of certain moments of the involved random parameters. This leads to 
the so-called Problem of Moments, where the set ^ is formed by probability 
measures P satisfying moment constraints Ep['0i(^)] = bi, i = l , . . . ,m (see, 
e.g., [Lan87]). In that case the extreme (worst case) distributions are measures 
with a finite support of at most m + 1 points. 

On the other hand, it often happens in applications that one is given a 
deterministic value /i of the uncertain data vector ^ and does not have an idea 
what a corresponding distribution may be. For example, ^ could represent an 
uncertain demand and /i is viewed as its mean vector given by a forecast. It is 
well recognized now that solving a corresponding optimization problem for the 
deterministic value ^ = /i may give a poor solution from a robustness point of 
view. It is natural then to introduce random perturbations to the deterministic 
vector /i and to solve the obtained stochastic program. For instance, one can 
assume that components ^i of the uncertain data vector are independent and 
have a certain type (say, log-normal if ^i should be nonnegative) distribution 
with means j^i and standard deviations â  which are defined within a certain 
percentage of /x ,̂ i = l,...,d. Often this quickly stabilizes optimal solutions 
of the corresponding stochastic programs irrespective of the underlying dis
tribution (cf., [SAGS05]). Furthermore, we can approach this setup from the 
minimax point of view by considering a worst distribution supported on, say, 
a box region around vector /i. If, moreover, we consider unimodal type families 
of distributions, then the worst case distribution is uniform (cf., [Sha04]). For a 
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given X, even unimodal distributions and F(x, •) := —ls{')^ where ts{') is the 
indicator function of a symmetric convex set 5, this result was first estabhshed 
by Barmish and Lagoa [BL97], where it was called the "Uniformity Principle". 

Question (ii) has also a long history. One can optimize a weighted sum 
of the expected value and a term representing variability of the second stage 
objective function. For example, we can try to minimize 

fix) := E[F{x, 0] + cVar[F(rr, ^)], (3) 

where c > 0 is a chosen constant. This approach goes back to Markowitz 
[Mar52]. The additional (variance) term in (3) can be viewed as a risk measure 
of the second stage (optimal) outcome. It could be noted, however, that adding 
the variance term may destroy convexity of the function /(•) even if F(-,^) 
is convex for all realizations of ^ (cf., [TA04]). An axiomatic approach to 
a mathematical theory of risk measures was suggested recently by Artzner 
et al. [ADEH99]. That is, value of a random variable Z is measured by a 
function p{Z) satisfying certain axioms. An example of such function p{Z), 
called coherent risk measure, is the mean-semideviation 

P{Z):=E[Z]+C{E[[Z-E[Z]]1)} 
1/2 

where c G [0,1]. 
It turns out that p{Z) is a coherent risk measure if and only if it can be 

represented in the form p{Z) = supp^fpEp[Z], where ^ is a set of probabil
ity measures. In different frameworks this dual representation was derived in 
[ADEH99, FS02, RUZ02, RS04a]. Therefore, the min-max problem (2) and 
the problem of minimization of a coherent risk measure, of F{x, ^), in fact are 
equivalent. We may refer to [ADEHK03, ER05, RieOS, RS04b] for extensions 
of this approach to a multi-stage setting. 

2 Complexity of two-stage stochastic programs 

In this section we discuss question (iii) mentioned in the introduction, that 
is, how difficult is to solve a stochastic program. Problem (1) is a problem of 
minimizing a deterministic implicitly given objective f{x). We should expect 
that this problem is at least as difficult as minimizing / (x) , x G X, in the case 
where f(x) is given explicitly, say by a "closed form analytic expression", or, 
more general, by an "oracle" capable to compute the values and the derivatives 
of f{x) at every given point. As far as problems of minimization of / (x) , x G 
X, with explicitly given objective, are concerned, the "solvable case" is known, 
this is the Convex Programming case. That is, X is a closed convex set and 
/ : X -^ R is a convex function. It is known that generic Convex Programming 
problems satisfying mild computability and boundedness assumptions can be 
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solved in polynomial time. In contrast to this, typical nonconvex problems 
turn out to be NP-hard"*. It follows that when speaking about conditions 
under which the stochastic program (1) is efficiently solvable, it makes sense 
to assume that X is a closed convex set, and /(•) is convex on X. We gain 
from a technical point (and do not lose much from practical viewpoint) by 
assuming X to be bounded. These assumptions, plus mild technical conditions, 
would be sufficient to make (1) easy, if f{x) were given explicitly. However, in 
Stochastic Programming it makes no sense to assume that we can compute 
efficiently the expectation in (1), thus arriving at an explicit representation 
of f{x). Would it be the case, there would be no necessity to treat (1) as a 
stochastic program. 

We argue now that stochastic programming problems of the form (1) can 
be solved reasonably efficiently by using Monte Carlo sampling techniques 
provided that the probability distribution of the random data is not "too bad" 
and certain general conditions are met. In this respect we should explain what 
do we mean by "solving" stochastic programming problems. Let us consider, 
for example, two-stage linear stochastic programming problems with recourse. 
Such problems can be written in the form (1) with^ 

X := {x: Ax-=^b, x>0} and F ( x , ^ := (c,x) + Q{x,i), 

where (5(x,^) is the optimal value of the second stage problem: 

Min (g, y) subject to Tx + Wy > h. (4) 

Here T and W are matrices of an appropriate order and ^ G R^ is a vector 
whose elements are composed from elements of vectors q and h and matri
ces T and W which, in a considered problem, are assumed to be random. If 
we assume that the random data vector has a finite number of realizations 
(scenarios) ^k = {(Ik-, Wk^Tk^ hk) with respective probabilities p^, k = 1,...,X, 
then the obtained two-stage problem can be written as one large linear pro
gramming problem: 

s.t Ax=:b,TkX-\-Wkyk>hk,k = l,,..,K, (5) 
x>0,yk>0, k = l,...,K. 

It is beyond the scope of this paper to give a detailed explanation of what "polyno
mial time solvability" and "NP-hardness" mean. Informally speaking, the former 
property of a problem P means that P is "easy to solve" - it admits a compu
tationally efficient solution algorithm. NP-hardness of P means that no efficient 
solution algorithms for P are known, and there are strong theoretical reasons to 
believe that they do not exist. For formal treatment of these issues in Continuous 
Optimization, see, e.g. [BNOl, Chapter 5]. 

We should also stress that a claim "such and such problem is difficult" relates 
to a generic problem in question and does not imply that the problem has no 
solvable particular cases. 
By (x^y) we denote the standard scalar product of two vectors x^y E R^. 
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If the number of scenarios K is not "too large", then the above linear pro
gramming problem (5) can be solved accurately in a reasonable time. However, 
even a crude discretization of the probability distribution of ^ typically results 
in an exponential growth of the number of scenarios with increase of the num
ber d of random parameters. Suppose, for example, that components of the 
random vector ^ are mutually independently distributed each having a small 
number r of possible realizations. Then the size of the corresponding input 
data grows linearly in d (and r) while the number of scenarios K — r^ grows 
exponentially. Yet in some cases problem (5) can be solved numerically in a 
reasonable time. For example, suppose that matrices T and W are constant 
(deterministic) and only h is random and, moreover, Q{x,^) decomposes into 
the sum (3(x,^) = Qi{xi,hi) + ... + Qn{xn, ^n)- This happens in the case of 
the so-called simple recourse with 

Qi{xi,hi) = qt[xi -hiU +Q^[hi ~ Xi]^, i = l , . . . ,n, 

where q^ and q~ are some positive numbers. Then E[Q{x,^)] =E[Qi{xi,hi)]-\-
... +E[Qn{xn, hn)]^ i.e., calculation of the multidimensional expectation is re
duced to calculations of one dimensional expectations. Of course, the above 
is a rather specific case and in a general situation there is no hope to solve 
problem (5) accurately (say with machine precision) even for moderate values 
of r andd (cf., [DS03]). 

It should be said at this point that from a practical point of view, typically, 
it does not make sense to try to solve a stochastic programming problem with 
a high precision. A numerical error resulting from an inaccurate estimation of 
the involved probability distributions, modeling errors, etc., can be far bigger 
than such an optimization error. We argue now that two-stage stochastic 
problems can be solved efficiently with a reasonable accuracy provided that 
the following conditions are met: 

(a) The feasible set X is fixed (deterministic). 
(b) For all X G X and ^ E S the objective function F(x, ^) is real valued. 
(c) The considered stochastic programming problem can be solved efficiently 

(by a deterministic algorithm) if the number of scenarios is not "too large". 

When applied to two-stage stochastic programming, the above conditions 
(a) and (b) mean that the recourse is relatively complete^ and the second stage 
problem is bounded from below. The above condition (c) certainly holds in 
the case of two-stage linear stochastic programming with recourse. 

In order to proceed let us consider the following Monte Carlo sampling 
approach. Suppose that we can generate an iid (independent identically dis
tributed) random sample ^^,..., ^^ of Â  realizations of the considered random 
vector. Then we can estimate the expected value function f{x) by the sample 

^ It is said that the recourse is relatively complete if for every x ^ X and every 
possible realization of random data, the second stage problem is feasible. 
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average'^ 

/;v(x):=^f^F(x,CO. (6) 

Consequently, we approximate the true problem (1) by the problem: 

Min/^(a;). (7) 
xex 

We refer to (7) as the Sample Average Approximation (SAA) problem. The 
optimal value VN and the set SN of optimal solutions of the SAA problem 
(7) provide estimates of their true counterparts of problem (1). It should 
be noted that once the sample is generated, /iv(x) becomes a deterministic 
function and problem (7) becomes a stochastic programming problem with 
N scenarios ^^,...,C^ taken with equal probabilities 1/A .̂ It also should be 
mentioned that the SAA method is not an algorithm. One still has to solve the 
obtained problem (7) by employing an appropriate (deterministic) algorithm. 

By the Law of Large Numbers we have that /iv(^) converges (pointwise 
in x) w.p.l to f{x) as Â  tends to infinity. Therefore it is reasonable to ex
pect for VN and SN to converge to their counterparts of the true problem 
(1) with probability one (w.p.l) as Â  tends to infinity. And, indeed, such 
convergence can be proved under mild regularity conditions. However, for a 
fixed X G X, convergence of /Ar(x) to f{x) is notoriously slow. By the Central 
Limit Theorem it is of order Op{N~^^'^). The rate of convergence can be im
proved, sometimes significantly, by variance reduction methods. However, by 
using Monte Carlo (Quasi-Monte Carlo) techniques one cannot evaluate the 
expected value f{x) very accurately. 

The following analysis is based on exponential bounds of the Large Devi
ations (LD) theory (see, e.g., [DZ98] for a general discussion of LD theory). 
Denote by S^ and Sf^ the sets of ^-optimal solutions of the true and SAA prob
lems, respectively, i.e., x e S^ iS x E X and f{x) < infxex / (^ ) + -̂ Choose 
accuracy constants e > 0 and 0 < 6 < e^ and significance level a G (0,1). 
Suppose for the moment that the set X is finite although its cardinahty \X\ 
can be very large. Then by using Cramer's LD theorem it is not difficult to 
show that the sample size 

guarantees that probability of the event {Sf^ C S^} is at least 1 — a (see 
[KSH01],[Sha03b, section 3.1]). That is, for any Â  bigger than the right hand 
side of (8) we are guaranteed that any (^-optimal solution of the corresponding 
SAA problem provides an ^-optimal solution of the true problem with proba
bility at least 1 — a, in other words, solving the SAA problem with accuracy 5 

^ In order to simplify notation we only write in the subscript the sample size Â  while 
actually /Ar(-) depends on the generated sample, and in that sense is random. 
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guarantees solving the true problem with accuracy e with probability at least 
1 - a . 

The number rj{€,6) in the estimate (8) is defined as follows. Consider a 
mapping u : X \ S^ -^ X such that f{u{x)) < f{x) — e hi all x e X \ S^. 
Such mappings do exist, although not unique. For example, any mapping 
u : X \ S^ -^ S satisfies this condition. Choice of such a mapping gives a 
certain flexibility to the corresponding estimate of the sample size. For x E X^ 
consider random variable 

Y,:=F{uix),0-F{x,^), 

its moment generating function Mx{t) :— E [e*^^] and the LD rate function^ 

4 ( z ) :=s\XY>{tz-logM:,{t)]. 

Note that, by construction of mapping u{x)^ the inequality 

/ i , := E [Yx] - f{u[x)) - fix) < -e (9) 

holds for all X e X\S^. Finally, we define 

vie, 5):= Mn 7,M). (10) 

Because of (9) and since 5 < e, the number Ix{—5) is positive provided that 
the probability distribution of Yx is not "too bad". Specifically, if we assume 
that the moment generating function Mx(t), of Yx, is finite valued for all t 
in a neighborhood of 0, then the random variable Yx has finite moments and 
Ixil^x) = I'{l^x) = 0, and r\lJix) = ^/^x where a^ := Var [Yx]. Consequently, 
J^x{—S) can be approximated, by using second order Taylor expansion, as 
follows 

^^^-^^ —2^r~ - ^ ^ -
This suggests that one can expect the constant r}{e,5) to be of order of (e—5)^. 
And, indeed, this can be ensured by various conditions. Consider the following 
condition. 

(Al) There exists constant cr > 0 such that for any x' ,x G X, the moment 
generating function M*(^) of F{x', ^ - F(x, ^)-E[F{x\ ^) - F(x, 0 ] sat
isfies: 

M * ( t ) < e x p ( ^ a V ) , \/teR, (11) 

Note that random variable F ( x ' , 0 - ^^(^,0 - E [F{x\^) - F{x,^)] has 
zero mean. Moreover, if it has a normal distribution, with variance a'^, then 

^ That is, /a;(-) is the conjugate of the function logMa;(-) in the sense of convex 
analysis. 



On Complexity of Stochastic Programming Problems 119 

its moment generating function is equal to the right hand side of (11). Con
dition (11) means that tail probabilities Prob(|F(a:',^) — F{x,^)\ > t) are 

bounded from above^ by 0 ( l ) exp ( — ^ ) . This condition certainly holds if 

the distribution of the considered random variable has a bounded support. 
For x' = u{x), random variable F{x\^) — F{x,^) coincides with Y ,̂ and 

hence (11) implies that Mx{t) < exp{fixt + a^t^/2). It follows that 

I,{z) > sup {zt - ^xt - aH^l2) = ^^~/f ^ (12) 

and hence for any e > 0 and b G [0, e)\ 

ri{e,5)>^^^^>^^. (13) 

It follows that, under assumption (Al), the estimate (8) can be written as 

2^ 
^ > 7 r ^ l o g ( ^ ) . (14) 

Remark 1. Condition (11) can be replaced by a more general condition 

M*(t) <exp(V^(t)), V t G R , (15) 

where ilj(t) is a convex even function with -0(0) = 0. Then \ogMx{t) < jJix^ + 
il){t) and hence Ix{z) >i)*{z — jix)^ where i/̂ * is the conjugate of the function 
ip. It follows then that 

7/(5, S) > r{-5 - ^x) > ^{e - 5). (16) 

For example, instead of assuming that the bound (11) holds for all t G R, 
we can assume that it holds for all t in a finite interval [—a,a], where a > 
0 is a given constant. That is, we can take ilj{t) := ^a'^t if |^| < a, and 
'0(t) := +00 otherwise. In that case ip*{z) = z'^/{2a'^) for \z\ < aa"^^ and 
'0*(2:) = a\z\ - \O?'CT'^ for \z\ > aa'^. 

Now let X be a bounded, not necessary finite, subset of R^ of diameter 

D :=sup^,^^^;^| |x '-x| | . 

Then for r > 0 we can construct a set Xr C X such that for any x G X 
there is x' G Xr satisfying \\x — x^\\ < r , and \Xr\ = 0 (1) (D/r )^ . Suppose 
that condition (Al) holds. Then by (14), for e' > 5, we can estimate the 
corresponding sample size required to solve the reduced optimization problem, 
obtained by replacing X with Xr, as 

By 0(1) we denote generic absolute constants. 
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2^2 
N> (s'-S)^ [ n ( l o g J ? - l o g r ) + l o g ( 0 ( l ) / a ) ] . (17) 

Suppose, further, that there exists a (measurable) function K : S -^ R4. and 
7 > 0 such that 

\F{x\o~nx.^)\<<m^'-^r m 
holds for all x',x eX and all ^G S.lt follows by (18) that 

N 

\fN{x') - fN{x)\ < N-' ^ | F ( x ^ e ) - F{x,e^-)| < kN\W - ^ i r , (19) 

where KN '-= N~^ ^j=i f^H^)-
Let us assume, further, the following: 

(A2j?he moment generating function M^{t) := E [e*'̂ ^̂ ]̂ of K{^) is finite valued 
for all t in a neighborhood of 0. 

It follows then that the expectation L :— E[/̂ ((̂ )] is finite, and moreover, by 
Cramer's LD Theorem that for any L' > L there exists a positive constant 
p -= f3{L') such that 

P[kN>L')<e~^^. (20) 

Let XN be a (5-optimal solution of the SAA problem and xjsi G Xr be a 
point such that ||xiv — ^A^H < r. Let us take N > P~^ log(2/a), so that by 
(20) we have that 

Prob(/^iV > L') <a/2. (21) 

Then with probability at least 1 — a/2, the point XN is a ((̂  + LV^)-optimal 
solution of the reduced SAA problem. Setting 

r:=[{e-6)/i2L')f-', 

we obtain that with probability at least 1 — a/2 , the point XN is an ^'-optimal 
solution of the reduced SAA problem with e' := {s + S)/2. Moreover, by taking 
a sample size satisfying (17), we obtain that xj\/ is an ^'-optimal solution of the 
reduced expected value problem with probabihty at least 1 — a/2 . It follows 
that XN is an ^''-optimal solution of the SAA problem (1) with probability at 
least 1 — a and e" = e^ -\- Lr^ < e. We obtain the following estimate 

{e-5y 
n ( l o g i ? + 7 - ' l o g ^ ) + l o g ( ^ ) V [/?-Mog(2/a)] 

(22) 
for the sample size (cf., [ShaOSb, section 3.2]). 

The above result is quite general and does not involve the assumption of 
convexity. Estimate (22) of the sample size contains various constants and 
is too conservative for practical applications. However, in a sense, it gives 
an estimate of complexity of two-stage stochastic programming problems. We 
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will discuss this in the next section. In typical applications (e.g., in the convex 
case) the constant 7 = 1, in which case condition (18) means that -F(-,0 is 
Lipschitz continuous on X with constant /^(O- However, there are also some 
applications where 7 could be less than 1 (cf., [Sha05a]). 

We obtain the following basic positive result. 

Theorem 1. Suppose that assumptions (Al) and (A2) hold and X has a finite 
diameter D. Then for e>0,0<S<e and sample size N satisfying (22), we 
are guaranteed that any 6-optimal solution of the SAA problem is an e-optimal 
solution of the true problem with probability at least 1 — a. 

Let us also consider the following simplified variant of Theorem 1. Suppose 
that: 

(A3) There is a positive constant C such that \F{x\^) — F{x,^)\ < C for all 
x', X G X and ^ ^ S. 

Under assumption (A3) we have that for any a > 0 and S G [0,6:]: 

Ix{-S) > 0(1)''^ ~P , for all X G X \ 5 ^ ^ G S, (23) 

and hence rj{e,5) > 0{l){e — (5)^/C^. Consequently, the bound (8) for the 
sample size which is required to solve the true problem with accuracy e > 0 
and probability at least 1 — a, by solving the SAA problem with accuracy 
6 := e/2, takes the form 

„>Om(£)\o,(l^). (24, 

The estimate (24) can be also derived by using Hoeffding's inequality^^ instead 
of Cramer's LD bound. 

In particular, if we assume that 7 = 1 and K{^) = L for all ^ e S, i.e., 
F(-,^) is Lipschitz continuous on X with constant L independent of ̂  G ̂ , 
then we can take C — DL and remove the term P~^ log(2/a) in the right hand 
side of (22). By taking, further, S := e/2 we obtain in that case the following 
estimate of the sample size 

„,oa)(^)'[„,„.(5i).,o.(ffi)) 

We can write the following simplified version of Theorem 1. 

(25) 

°̂ Recall that Hoeffding's inequality states that if Zi,..., ZN is an iid random sample 
from a distribution supported on a bounded interval [a, 6], then for any t > 0, 

where Z is the sample average and fi = E[Zi]. 
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Theorem 2. Suppose that X has a finite diameter D and condition (18) holds 
with 7 = 1 and K{£) = L for all ^ G S. Then with sample size N satisfying 
(25) we are guaranteed that every {e/2)-optimal solution of the SAA problem 
is an e-optimal solution of the true problem with probability at least 1 — a. 

In the next section we compare complexity estimates implied by the bound 
(25) with complexity of "deterministic" convex programming. 

3 What is easy and what is difficult in stochastic 
programming? 

Since, generically, nonconvex problems are difficult already in the determin
istic case, when discussing the question of what is easy and what is not in 
Stochastic Programming, it makes sense to restrict ourselves with convex 
problems (1). Thus, in the sequel it is assumed by default that X is a closed 
and bounded convex set, and f : X -^ R is convex. These assumptions, plus 
mild technical conditions, would be sufficient to make (1) easy, provided that 
f{x) were given explicitly, but the latter is not what we assume in SP. What 
we usually (and everywhere below) do assume in SP is that: 

(i) The function F(x, ^) is given explicitly, so that we can compute efficiently 
its value (and perhaps the derivatives in x) at every given pair (x,^) G 
X xS. 

(ii) We have access to a mechanism which is capable of sampling from the 
distribution P , that is, we can generate a sample ^^, ^'^,... of independent 
realizations of ^. 

For the sake of discussion to follow we assume in this section that we are 
under the premise of Theorem 2 and that problem (1) is convex. To proceed, 
let us compare the complexity bound given by Theorem 2 with a typical 
result on the "black box" complexity of the usual (deterministic) Convex 
Programming. 

Theorem 3. Consider a convex problem 

mnfix), (CP) 

where X C W^ is a closed convex set which is contained in a centered at the 
origin ball of diameter D and contains a ball of given diameter d > 0, and that 
f : X —^ R is convex Lipschitz continuous, with constant L. Assume that X 
is given by a Separation Oracle which, given on input a point x G W^, reports 
whether x E X, and if it is not the case, returns e G R'̂  which separates x 
and X: such that (e,x) > max2y£x(e,2/). Assume, further, that f is given by a 
First Order oracle which, given on input x E X, returns on output the value 
f{x) and a subgradient Vf{x), ||V/(x)||2 < L, of f at x. 
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In this framework, for every e > 0 one can find an e-solution to (CP) by 
an algorithm which requires at most 

M = 0{l)n'^ log(^)+log(f (26) 

calls to the Separation and First Order oracles, with a call accompanied by 
0{n^) arithmetic operations to process oracle^s answer. 

In our context, the role of Theorem 3 is twofold. First, it can be viewed as 
a necessary follow-up to Theorem 2 which reduces solving (1) to solving the 
corresponding SAA problem and says nothing on how difficult is the latter 
task. This question is answered by Theorem 3 in the convex case^^. However, 
the main role of Theorem 3 in our context is the one of a benchmark for the 
SP complexity results. Let us use this benchmark to evaluate the result stated 
in Theorem 2. 

Observation 1. In contrast to Theorem 3, Theorem 2 provides us with no 
more than probabilistic quality guarantees. That is, the random approximate 
solution to (1) implied by the outlined SAA approach, being ^-solution to (1) 
with probability 1 — a, can be very bad with the remaining probability a. In 
our "black box" informational environment (the distribution of ^ is not given 
in advance, all we have is an access to a black box generating independent 
realizations of (̂ ), this "shortcoming" is unavoidable. Note, however, that the 
sample size N as given by (22) is "nearly independent" of a, i.e., to reduce 
unreliability from 10~^tolO~^^ requires at most 6-fold increase in the sample 
size. Note that unreliability as small as 10~^^ is, for all practical purposes, 
the same as 100% reliability. 

Observation 2. To proceed with our comparison, it makes sense to measure 
the complexity of the SAA method merely by the number of scenarios Â  
required to get an e-solution with probability at least 1 — a, and to measure 
the complexity of deterministic convex optimization as presented in Theorem 
3 by the number M of oracle calls required to get an e-solution. The rationale 
behind is that "very large" Â  definitely makes the SAA method impractical, 
while with a "moderate" A/", the method becomes practical, provided that 
F(-, •) and X are not too complicated, and similarly for M in the context of 
Theorem 3. 

When comparing bounds (25) and (26), our first observation is that both 
of them depend polynomially on the design dimension n of the problem, which 
is nice. What does make diff"erence between these bounds, is their dependence 

^̂  In our context, Theorem 3 allows to handle the most general "black box" situation 
- no assumptions on F(-, ̂ ) and X except for convexity and computability. When 
-^(•)0 possesses appropriate analytic structure, the complexity of solving the 
SAA problem can be reduced by using a solver adjusted to this structure. 
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on the required accuracy e, or, better to say, on the relative accuracy^^ v := 
e/{DL). In contrast to bound (26) which is polynomial in log(l/i/), bound (25) 
is polynomial (specifically, quadratic) in l/u. In reality this means that the 
SAA method could solve in a reasonable time to a moderate relative accuracy, 
hke u = 10% or even u = 1%^ stochastic problems involving an astronomically 
large, or even infinite, number of scenarios. This was verified in a number of 
numerical experiments (e.g., [LSW05, MMW99, SAGS05, VAKNS03]). On 
the other hand, in general, the SAA method does not allow to solve, even 
simply-looking, problems to high relative accuracy^^: according to (25), the 
estimated sample size N required to achieve ly = 10~^ {ly = 10"^) is at least 
of order of millions (respectively, tens of billions). In sharp contrast to this, 
bound (26) says that in the deterministic case, relative accuracy u = 10~^ is 
just by factor 5 "more costly" than i/ = 0.1. 

It should be stressed that in our general setting the outlined phenomenon 
is not a shortcoming of the SAA method - it is unavoidable. Indeed, given 
positive constants L,D and e such that u = e/{LD) < 0.1, consider the pair 
of stochastic problems: 

Min {/;,(a:):=EpJx^]} (SP,) 
a:G[u,l/J 

indexed by x = =tl, and with distribution P-̂  of ^ supported on the two-point 
set {—L;L} on the axis. Specifically, Pi assigns the mass 1/2 — 4^ to the 
point —L and the mass 1/2 + 4z/ to the point L, while P_i assigns to the 
same points —L^L the masses 1/2 + 4i/, 1/2 — 4z>', respectively. Of course, 
/ i(x) = 4ejD~^x, / - i ( x ) = ~4:eD~^x^ the solution to (SPi) is x\ — 0, while 
the solution to (SP_i) is a;_i = D. Note, however, that the situation is that 
trivial only when we know in advance what is the distribution P^ we deal 
with. If it is not the case and all we can see is a sample of Â  independent 
realizations of ^, the situation changes dramatically: an algorithm capable of 
solving with accuracy s and reliability 1 — a = 0.9 every one of the problems 
(SP±i) using sample of size N^ would, as a byproduct, imply a procedure 
which, given the sample, decides, with the same reliability, which one of the 
two possible distributions P±i underlies the sample. The laws of Statistics say 
that such a reliable identification of the underlying distribution is possible only 
when Â  > 0{l)^^t (compare with bound (25)). Note that both stochastic 
problems in question satisfy all the assumptions in Theorem 2, so that in the 

Recall that, under assumptions of Theorem 2, DL gives an upper bound on the 
variation of the objective on the feasible domain. While using bound (22) we can 
take u := e/a. Passing from £ to i/, means quantifying inaccuracies as fractions 
of the variation, which is quite natural. 
It is possible to solve true problem (1) by the SAA method with high (machine) 
accuracy in some specific situations, for example, in some cases of linear two-stage 
stochastic programming with a finite (although very large) number of scenarios, 
see [SHOO, SHK02]. 
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situation considered in this statement the bound (25) is the best possible (up 
to logarithmic term) as far as the dependence on D,L and e is concerned. 

To make our presentation self-contained, we explain here what are 
the "laws of Statistics" which underlie the above conclusions. First, 
an algorithm A capable of solving within accuracy e and reliability 0.9 
every one of the problems (SP±i), given an A/'-element sample drawn 
from the corresponding distribution, indeed implies a "0.9-reliable" 
procedure which decides, based on the same sample, what is the dis
tribution; this procedure accepts hypothesis I stating that the sample 
is drawn from distribution Pi if and only if the approximate solu
tion generated by A is in [0, D/2]; if it is not the case, the procedure 
accepts hypothesis II "the sample is drawn from P_i". Note that if 
the first of the hypotheses is true and the outlined procedure accepts 
the second one, the approximate solution produced by A is not and 
e-solution to (SPi), so that the probability p^ to accept the second hy
pothesis when the first is true is < 1 — 0.9 == 0.1. Similarly, probability 
p^^ for the procedure to accept the first hypothesis when the second 
is true is < 0.1. The announced lower bound on Â  is given by the 
following observation: Consider a decision rule which, given on input 
a sequence ^^ of N independent reahzations of ^ known in advance 
to be drawn either from the distribution Pi, or from the distribution 
P-i, decides which one of these two options takes place, and let p^, 
p^^ be the associated probabilities of wrong decisions. Then 

max{p^p"} < 0.1 implies that N > 0 ( l ) i /~^ (27) 

where 0(1) is a positive absolute constant. 
Indeed, a candidate decision rule can be identified with a subset S 
of C^', this set is comprised of all realizations ^^ resulting, via the 
decision rule in question, in acceptance of hypothesis I. Let P/^, P^i 
be the distributions of ^^ corresponding to hypotheses I, II. We clearly 
have 

Now consider the Kullback distance from P(^ to P^^i: 

the function p l o g | of two positive variables p,q is jointly convex; 
denoting by S the complement of S in C^ and by |^ | the cardinality 
of a finite set A, it follows that 
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whence 

4^es 

yNfcNW / ^I 
E'o.(^)p."«'')..-.o. 1 - p " 

and similarly 

whence 

For every p G (0,1/2), the minimum of the left hand side in the latter 
inequality in p^p^^ G (0,j9] is achieved when p^ — p^^ = p and is equal 
to plog ^ + (1 - p) log i ^ > 4(p - 1/2)2. Thus, 

p := max[p\p"] < 1/2 implies that K>{2p- if, (28) 

On the other hand, taking into account the product structure of P±i^ 
we have 

/C = i v [ P i ( - L ) l o g ^ i ^ + P i ( L ) l o g ^ ] 

The concluding quantity is < 0{l)Nu'^, provided that z/ < 0.1. Com
bining this observation and (28), we arrive at (27). 

Observat ion 3. One can argue that the phenomenon discussed in Observa
tion 2 is not too dangerous from the practical viewpoint. In reality, especially 
in an "uncertain one", treated in stochastic models, relative accuracy like 1% 
or 5% is more than satisfactory. This indeed is true in numerous applications, 
which, in our opinion, is the intrinsic reason for Stochastic Programming to 
be of significant practical value. At the same time, there are some unpleasant 
exceptions; the most disturbing, from applied viewpoint, is the one related 
to problems without relatively complete recourse. This is the issue we are 
consider next. 
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The above analysis, summarized in Theorem 2, implicitly depends on the 
assumptions (i) and (ii) formulated in the beginning of this section (which are 
parallel to the assumptions (a)-(c) specified in the previous section). When 
applied to two-stage stochastic programming with recourse these assumptions 
imply that the recourse is relatively complete, i.e., for every x G X and every 
possible realization of ^, the second stage problem is feasible. If, on the other 
hand, for some x £ X and ^ G S' the second stage problem is infeasible, we can 
formally set the value F(x, <f) of the second stage problem to be +00. In order 
to avoid such infinite penalizations and to restore the appHcabihty of Theorem 
2 one can introduce a finite penalty for infeasibility. In some cases this can 
reasonably solve the problem. However, in some situations the infeasibility 
may result in a catastrophic event. In that case the penalty could be huge. 
Translated into the sample size bounds considered in the previous section, this 
means huge variances in the estimate (22) or huge Lipschitz constant in (25), 
which makes these estimates useless. In a sense, in such situation "nothing 
works". 

It is NP-hard even to check whether a given first-stage decision x £ X 
leads to feasible, with probability 1, second-stage problem, and even in the 
case when the second-stage problem is as simple as 

Min(^, y) subject to Tx + Wy> h, (29) 
y 

with only the second-stage right hand side vector h = h{^) being random. 

To see that a generic problem of checking whether (29) is feasible for a 
given X is NP-hard, consider the case when the constraints Tx-\-Wy > 
h{^) read y < 0, y -\- x > h{^), where x, ?/ G R, 

Q = [Qij] is a given d x d symmetric matrix, and ^ = (^i,...,^d) 
is uniformly distributed in [—1,1]^. Here x results in feasible, with 
probability 1, second stage problem if and only ii x > p{Q)^ where 

p ( Q ) : = m a x { ( e , Q O : e e [ - l , l ] ' ' } . 

It is well-known that given x and Q, it is NP-hard to distinguish be
tween the cases of x < p{Q) and x > 1.01 p(Q). This NP-hard prob
lem is, of course, not more difficult than to decide whether x > p{Q). 
Note that replacing in the above example the uniform distribution on 
[—1,1]^ with the uniform distribution on the discrete set, of cardinal
ity 2^, of d-dimensional vectors with entries ± 1 , we end up with an 
equally difficult problem. 

Thus, if a two-stage (linear) problem has no relatively complete recourse 
(which in many applications is a rule rather than an exception), it is, in gen
eral, NP-hard just to find a feasible first-stage solution x (one which results 
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in finite / (x)) , not speaking about minimizing over these x's. As it was men
tioned above, the standard way to avoid, to some extent, this difficulty is to 
pass to a penahzed problem. For example, we can replace the second stage 
problem (4) with the penalized version: 

Min {q, y) + rz subject to Tx + Wy > h - ze, (30) 
2/>0, z>Q 

where e is vector of ones and r > > 1 plays the role of the penalty coefficient. 
With this penalization, the second stage problem becomes always feasible. At 
the same time, one can hope that with large enough penalty coefficient r, the 
first-stage optimal solution will lead to "nearly always nearly feasible" second-
stage problems, provided that the original problem is feasible. Unfortunately, 
in the situation where one cannot tolerate arising, with probability bigger 
than a, a second-stage infeasibility z bigger than r (here a and r are given 
thresholds), the penalty parameter r should be of order of {ar)~^. In the 
"high reliability" case a < < 1 we end up with problem (30) which contains 
large coefficients, which can lead to large value of the Lipschitz constant L^ of 
the optimal value function Fr{'^^) of the penalized second stage problem. As 
a result, quite moderate accuracy requirements (like e being of order of 5% of 
the optimal value of the true problem) can result in the necessity to solve (30) 
within a pretty high relative accuracy u = e/{DLr) like 10~^ or less, with all 
unpleasant consequences of this necessity. 

3.1 What is difficult in the tv^o-stage case? 

We already know partial answer to this question: generically, under the 
premise of Theorem 2 it is difficult to solve problem (1) (even a convex one) 
to a high relative accuracy v = e/{DL), Note, however, that the statistical 
arguments demonstrating that this difficulty lies in the nature of the prob
lem work only for the black-box setting of (1) considered so far, that is, only 
in the case when the distribution P of ^ is not known in advance, and all 
we have in our disposal is a black box generating realizations of ^. With a 
"good description" of P available, the results could be quite difi'erent, as it 
is clear when looking at problems (SP±i) - with the underlying distributions 
given in advance, the problems become trivial. Note that in reality stochastic 
models are usually equipped with known in advance and easy-to-describe dis
tributions, like Gaussian, or Bernoulli, or uniform on [—1,1]^. Thus, it might 
happen that our conclusion "it is difficult to solve (1) to high accuracy" is an 
artifact coming from the black-box model we used, and we could overcome 
this difficulty by using more advanced solution techniques based on utilizing 
a given in advance and "simple" description of P. Unfortunately, this virtual 
possibility does not exist in reality Specifically, it is shown in [DS03] that in
deed it is difficult to solve to high accuracy already two-stage linear stochastic 
programs with complete recourse and easy-to-describe discrete distributions. 
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Another difficulty, which we have already discussed, is the case of two-
stage linear problems without complete recourse or, more generally, convex 
problems (1) with only partially defined integrand F{x,^). As we have seen, 
this difficulty arises already when looking for feasible first-stage solutions with 
known in advance simple distribution P. 

3.2 Complexity of multi-stage stochastic problems 

In a multi-stage stochastic programming setting random data ^ is partitioned 
into T > 2 blocks ^t, t = 1^ ...,T^ i.e., ^t is viewed as a (discrete time) random 
process, and the decisions are made at time instants 0,1, ...,T. At time t the 
decision maker already knows the realizations ^r? T" ^ -̂5 of the process up to 
time t, while realizations of the "future" blocks are still unknown. The goal is 
to find the first-stage decisions x (which should not depend on ^) and decision 
rules yt = yt{^[t]) which are functions of ^[t] '•= ( 6 , •••,6)5 ^ = 1, •••,^, which 
satisfy a given set of constraints 

9i{£,,x,yi,...,yT) < 0, i = 1,. . . , / , (31) 

and minimize under these restrictions the expected value of a given cost func
tion /(x,2/i, ...,yT)- Note that even in the case when the functions gi do not 
depend of ^, the left hand sides of the constraints (31) are functions of ^, 
since all yt are so, and that the interpretation of (31) is that these functional 
constraints should be satisfied with probability one. 

In the sequel, we focus on the case of linear multi-stage problems 

Min Ep {{co,x) + Er=i(ct(^[tl), J/t(^[tl))} 

s.t. Alx>b° (Co) 
Aj(C[i])x + ^}(^[i])j/i(^[i]) > 6Heiii) (Ci) 
Al{^^2])x + A?(^[2,)yi(^[i]) + ^i(e[2])2/2(C[2]) > '̂'(^[21) {C2) 

Al{(,^T])x + Aj{^yr])yx{^[i]) + - + ^?(?m)j/r(^(Ti) > 6^(^[T)) {CT) 

(32) 
where y(-) = {yi{'), ....yri')) and the constraints (Ci),..., (CT) should be sat
isfied with probability one. Problems (32) are called problems with complete 
recourse, if for every instant t and whatever decisions x, yi,...yt-i made at 
preceding instants, the system of constraints (Ct) (treated as a system of 
linear inequalities in variable yt) is feasible for almost all realizations of ^. 
The major focus of theoretical research is on multi-stage problems even sim
pler than (32), specifically, on problems with Bxed recourse where matrices 
Al = ^J(^[i]), ^ = 1, ...,T, are assumed to be deterministic (independent of ^). 

We argue that multi-stage problems, even linear of the form (32) with 
complete recourse, generically are computationally intractable already when 
medium-accuracy solutions are sought. (Of course, this does not mean 
that some specific cases of multi-stage stochastic programming 
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problems cannot be solved efficiently.) Note that this claim is rather a 
belief than a statement which we can rigorously prove. It is even not a formal 
statement which can be true or wrong since, in particular, we do not specify 
what does "medium accuracy" mean^^. What we are trying to say is that we 
believe that in the multi-stage case (with T treated as varying parameter, and 
not as a once for ever fixed entity), even "moderately positive" results like the 
one stated in Theorem 2 are impossible. We are about to explain what are 
the reasons for our belief. 

Often practitioners do not pay attention to a dramatic difference between 
two-stage and multi-stage case. It is argued that in both cases the problem 
of interest can be written in the form of (1), with appropriately defined inte
grand F. Specifically, in case of the linear two-stage problem, with relatively 
complete recourse, we have that F(x,^) = (c, x) + (5(x,^), where Q{x,^) is 
the optimal value of the second stage problem (4). In the case of problem (32) 
with complete recourse, F{x,^) is given by a recurrence as follows. We start 
with setting 

FT{X, 2/1,..., yr, ^[T]) — (co, x) + (ci(^[1]), yi) + ... + (CT-I(CfT-ij), y r - i ) 

+ (CT(?[TI),2/T) 

and specifying the conditional, given ^[T-I]? expected cost of the last-stage 
problem: 

FT-i(x,yi,...,2/T-i,<?[T-i]) :==E|^j^_^^Min|FT(x,i/i,...,2/T-i,yT,^[ri) • 

Aoi^[T])x + Al{^[T])yi + . . . + A^{^^T])yT 

>&^(?[T])}, 

where Ei^^^jj is the conditional, given C[T-I]? expectation. Observe that (32) 
is equivalent to the (T — l)-stage problem: 

Min EpT-i {FT-i{x,yi,...,yT-i,^iT-i])} 
,̂{2/t(.)}r=Y ( P T - I ) 

s.t. x,yi(.),..., yr-ii') satisfy (Co), (Ci),..., (CT-I) w.p.l, 

where P^~^ is the distribution of ^[7^_i]. Now we can iterate this construction, 
ending up with the problem 

Min[Fo(a;)]. 

It can be easily seen that under the assumption of complete recourse, plus 
mild boundedness assumptions, all functions F^(x,2/i, -..,2/^,^^]) ^^^ Lipschitz 
continuous in the x, y-arguments. 

^̂  To the best of our knowledge, the complexity status of problem (32), even in 
the case of complete and fixed recourse and known in advance easy-to-describe 
distribution P, remains unknown (cf., [DS03]), 
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The "common wisdom" says that since both, two-stage and multi-stage, 
problems are of the same generic form (1), with the integrand convex in x, and 
both are processed numerically by generating a sample of scenarios and solving 
the resulting "scenario counterpart" of the problem of interest, there should be 
no much difference between the two and the multi-stage case, provided that in 
both cases one uses the same number of scenarios. This "reasoning", however, 
completely ignores a crucial point as follows: in order to solve generated SAA 
problems efficiently, the integrand F should be efficiently computable at every 
pair (x, ^). This is indeed the case for a two-stage problem, since there F(x, ^) 
is the optimal value in an explicit Linear Programming problem and as such 
can be computed in polynomial time. In contrast to this, the integrand F 
produced by the outlined scheme, as applied to a multi-stage problem, is 
not easy to compute. For example, in 3-stage problem this integrand is the 
optimal value in a 2-stage stochastic problem, so that its computation at a 
point is a much more computationally involving task than similar task in the 
two-stage case. Moreover, in order to get just consistent estimates in an SAA 
type procedure (not talking about rate of convergence) one needs to employ a 
conditional sampling which typically results in an exponential growth of the 
number of generated scenarios with increase of the number T of stages (cf., 
[ShaOSa]). 

Analysis demonstrates that for an algorithm of the SAA type, the total 
number of scenarios needed to solve T-stage problem (32), with complete 
recourse, would grow, as e diminishes, as £:~^^, so that the computational 
effort blows up exponentially as the number of stages grows^^ (cf., [Sha05b]). 
Equivalently, for a sampling-based algorithms with a given number of sce
narios, existing theoretical quality guarantees deteriorate dramatically as the 
number of stages grows. Of course, nobody told us that sampling-type algo
rithms are the only way to handle stochastic problems, so that the outlined 
reasoning does not pretend to justify "severe computational intractability" of 
multi-stage problems. Our goal is more modest, we only argue that the fact 
that when solving a particular stochastic program a sample of 10^ scenar
ios was used does not say much about the quality of the resulting solution: 
in the two-stage case, there are good reasons to believe that this quality is 
reasonable, while in the 5-stage the quality may be disastrously bad. 

We have described one source of severe difficulty arising when solving 
multi-stage stochastic problems - dramatic growth, with increase of the num
ber of stages, in the complexity of evaluating the integrand F in representation 
(1) of the problem. We are about to demonstrate that even when this difficulty 
does not arise, a multi-stage problem still may be very difficult. To this end, 
consider the following story: at time t = 0, one has $ 1, and should decide how 
to distribute this money between stocks and a bank account. When investing 
amount of money x into stocks, the value Ut of the portfolio at time t will be 

^̂  Note that in the considered framework, T = 1 corresponds to two-stage program
ming, T = 2 corresponds to 3-stage programming, and so on. 
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given by chain of t relations 

where the returns pt{^[t]) = pti^ii "•'>^t) ^ 0 are known functions of the 
underlying random parameters. Amount of money 1 — x put to bank account 
reach at time t the value Vt = p^{l — x), where p > 0 is a given constant. The 
goal is to maximize the total expected wealth E[UT + VT] at a given time T. 
The problem can be written as a simple-looking T-stage stochastic problem 
of the form (32): 

M i n E p [ ^ T ( H + ^ T ( e ^ ) ] 

s.t. 0 < X < 1 (Co) 
Mi[i]) = pii^ii])^^ M^m) = ^(1 - x) (Ci) 
^2(^[2]) = P2(^[2j)^i(^[i)), '̂ 2(C[2]) = pM^m) (C2) 

y'Ti^lT]) = PT-li^lT-lj^T-liClT-l]), ^^ri^lT]) = pVT-l{^[T-l]) {CT), 
(33) 

rp 

where y(-) = ('^t(')''^*(•))*=!• ^ ^ ^ let us specify the structure and the distri
bution of ^ as follows: a realization of ^ is a permutation ^ = (^1,..., ^7-) of T 
elements 1,..., T, and P is the uniform distribution on the set of all T! possible 
permutations. Further, let us specify the returns as follows: the returns are 
given by a T X T matrix A with 0-1 elements, and 

/>t(6,...,6):-/^A6. /^:=(T!)^/^ 

(Note that by Stirling's formula n = (T/e)(l + o(l)) as T -> 00.) We end up 
with a simple-looking instance of (32) with complete recourse and given in 
advance "easy-to-describe" discrete distribution P; when represented in the 
form of (1), our problem becomes 

T 

Min {/(x) :=EpF(x,0}, F{x,£) = p^{I - x)-^ xT\{KAt^,), (34) 
arG[0,lJ ^-^ 

so that F indeed is easy to compute. Thus, problem (33) looks nice - complete 
recourse, simple and known in advance distribution, no large data entries, 
easy-to-compute F in representation (1). At the same time the problem is 
disastrously difficult. Indeed, from (34) it is clear that f{x) = p^{l — x) -\-
xper(A), where per (A) is the permanent of A\ 

T 

per(^) = ^][[^*^-
e t=i 

(the summation is taken over all permutations of T elements 1, ...,T). Now, 
the solution to (34) is either a; = 1 or x = 0, depending on whether or not 
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per(^) > p^. Thus, our simple-looking T-stage problem is, essentially, the 
problem of computing the permanent of a T x T matrix with 0-1 entries. The 
latter problem is known to be really difficult. First of all, it is NP-hard, [Val79]. 
Further, there are strong theoretical reasons to doubt that the permanent can 
be efficiently approximated within a given relative accuracy 5, provided that 
£ > 0 can be arbitrarily small, [DLMV88]. The best known to us algorithm 
capable to compute permanent of a T x T 0-1 matrix within relative accuracy e 
has running time as large as£-2exp{0(l)Ti/2log^(T)} (cf., [JV96]), while the 
best known to us efficient algorithm for approximating permanent has relative 
error as large as c^ with certain fixed c > 1, see [LSWOO]. Thus, simple-looking 
multi-stage stochastic problems can indeed be extremely difficult... 

A reader could argue that in fact we deal with a two-stage problem (34) 
rather than with a multi-stage one, so that the outlined difficulties have noth
ing to do with our initial multi-stage setting. Our counter-argument is that 
the two-stage problem (34) honestly says about itself that it is very difficult: 
with moderate p and T, the data in (34) can be astronomically large (look at 
the coefficient p^ of (1 — x) or at the products Y\t=i{i^At^^) which can be as 
large as K^ = T!), and so is the Lipschitz constant of F. In contrast to this, 
the structure and the data in (33) look completely normal. Of course, it is 
immediate to recognize that this "nice image" is just a disguise, and in fact 
we are dealing with a disastrously difficult problem. Imagine, however, that 
we add to (33) a number of redundant variables and constraints; how could 
your favorite algorithm (or you, for that matter) recognize in the resulting 
messy problem that solving it numerically is, at least at the present level of 
our knowledge, a completely hopeless endeavor? 

4 Some novel approaches 

Here we outline some novel approaches to treating uncertainty which per
haps can cope, to some extent, with intrinsic difficulties arising in two-stage 
problems without complete recourse and in multi-stage problems. 

4.1 Tractable approximations of chance constraints 

As it was already mentioned, a natural way to handle two-stage stochastic 
problems without complete recourse is to impose chance constraints. That is, 
to require that a probability of insolvability of the second-stage problem is at 
most e « 1 instead of being 0. The rationale behind this idea is twofold: first, 
from the practical viewpoint, "highly unlikely" events are not too dangerous: 
why should we bother about a marginal chance, like 10~^, for the second stage 
to be infeasible, given that the level of various inaccuracies in our model, es
pecially in its probabilistic data, usually is by orders of magnitude larger than 
10"^? Not speaking of the fact that 5 days a week we take worse chances in 
the morning traffic. Second, while it might be very difficult to check whether 
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a given first-stage solution results in a feasible, with probability 1, second-
stage problem, it seems to be possible to check whether this probability is at 
least 1 — <s by applying Monte-Carlo simulation. Note tha t chance constraints 
arise naturally not only in the context of two-stage problems without com
plete recourse, but in a much more general situation of solving a constrained 
optimization problem with the da ta aflFected by stochastic uncertainty. Thus, 
it makes sense to pose a question how could one process numerically a chance 
constraint 

(t>{x) := Prob{^(x , 0 < 0} > 1 - ^. (35) 

where x is the decision vector, ^ is the random disturbance with, say, known 
distribution, and e < < 1 is a given tolerance. 

The concept of chance constraints originates from [CC59] and is one of the 
oldest concepts in Operations Research. Unfortunately, in its nearly 50 year 
old age, this concept still cannot be t reated as practical. The first reason is 
t ha t typically it is extremely difficult to verify exactly whether this constraint 
is satisfied at a given point. This problem is difficult already in the case of a 
single linear constraint g{x,() := (a* + ^,x) with perturbat ions ^ uniformly 
distributed in a box. Another severe problem is tha t usually constraint (35), 
even with very simple, say bi-affine in x and in ^, function g{x, ^) and simple-
looking distribution of ^ (like uniform in a box) defines a nonconvex feasible 
set in the space of decision variables, which makes problematic subsequent 
optimization over this set of even pret ty simple - jus t linear - objectives. 

The difficulty we have just outlined rules out the idea to approximate (35) 
by a "sample version" of this constraint, that is, by 

1 
^N{X) := T7 ^ h9ix,^n<o} >^-0e, (36) 

where ^^, ...,^^ is a sample of N independent realizations of ^, ^{g{x,^J)<o} 
is the indicator function^^ of the event {g{x^^^) < 0}, and ^ < 1 is fixed 
(say, 9 — 0.99). When A'' > > £ ~ \ the validity of (36) at a point x implies, 
with probability close to 1, the validity of (35), so that (36) can be thought 
of as a "computable approximation" of (35). Unfortunately, the left hand 
side in (35) is, generically, a nonconvex (and even discontinuous) function 
of x, so that we have no way to optimize under this constraint. 

To the best of our knowledge, the only generic case where both these severe 
difficulties disappear is the case of linear constraint (a* + ^, x) < 0 with 
normally distributed da ta ^ ~ A/'(0, E). In this case, (35) is equivalent to the 
convex deterministic constraint 

(a*, x) -h f2{e) A / ( X , UX) < 0, (37) 

where the "safety parameter" f2{e) = A/21og(l /e)( l + o( l ) ) , £ —> 0, is readily 
given by e (which we assume to be < 1/2). 

16 HA =̂  1 if the event A happens, and 1A = 0 otherwise 
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There is another generic case when the feasible set given by a chance 
constraint is convex. This is the case when the constraint can be rep
resented in the form (x, ̂ ) G Q, where Q is a closed and convex set, 
and the distribution P of the random vector ^ G M^ is logarithmically 
quasi-concave^ meaning that 

P{XA + (1 - X)B) > max [P{A), P{B)] 

for all closed and convex sets A^B dW^ (cf., Prekopa [Pre95]). Ex
amples include uniform distributions on closed and bounded convex 
domains, normal distribution and every distribution on R^ with den
sity /(^) with respect to the Lebesgue measure such that the function 
/~^^^(0 is convex. The related result (due to Prekopa [Pre95]) is that 
in the situation in question, the set {x : P{{i : (x,^) G Q]) > a} is 
closed and convex for every a. This result can be applied, e.g., to 
two-stage stochastic programs with chance constraints of the form 

Min(c, x) s.t. Prob{32/ eY:Tx + Wy>^}>l-e, 
XEX 

where X, Y are closed convex sets and T, W are fixed matrices. Here 
the chance constraint indeed is of the form Prob{(x, ^) e Q} >l — e, 
where 

Q = {{x,0 '^y eV :Tx ^Wy > 0. 
The set Q clearly is convex; under mild additional assumptions, it is 
also closed. Thus, the feasible set of the chance constraint in question 
is convex, provided that the distribution of ^ is logarithmically quasi-
concave. 
Note that the outlined convexity results are applicable only to the 
chance constraints coming from scalar or vector inequalities where 
the only term affected by uncertainty is the right hand side, not the 
coefficients at the variables. For example, nothing similar is known for 
the chance constraint 

Prob{(a*+^,x) < 0} > 1 - e, 

except for the already mentioned case of normally distributed vector 

Aside of few special cases we have mentioned, chance constraint (35) "as it 
is" seems to be too difficult for efficient numerical processing, and what we 
can try to do is to replace it with its "tractable approximation". For the 
time being, there exist two approaches to building such an approximation: 
"deterministic" and "scenario". 

Tractable deterministic approximations of chance constraints, 

With this approach, one replaces (35) with a properly chosen deterministic 
constraint 
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V^s(^)<0, (38) 

which is a "safe computationally tractable" approximation of (35), with the 
latter notion defined as follows: 

1. "Safety" means that the validity of (38) is a sufRcient condition for the 
vahdity of (35); 

2. "Tractability" means that (38) is an explicitly given convex constraint. 

Just to give an example, consider a randomly perturbed linear constraint, that 
is, assume that 

where the deterministic vector a* is the "nominal data", M is a given deter
ministic matrix and ^ — (^i, ...,^ci) is a tuple of d independent scalar random 
variables with zero mean and "of order of 1": 

IE[exp(e,')] <exp{ l} , i - l , . . , d , 

e.g., ^i can have a distribution supported on the interval [—1,1], or ^i can have 
normal distribution A/'(0, 2~^/^), = l,...,o!. In this case, applying standard 
results on probabilities of large deviations for sums of "light tail" independent 
random variables with zero means, one can easily verify that when e E (0,1) 
and f2{£) = 0 ( l ) ^ log ( l / £ ) with properly chosen absolute constant 0 ( l ) , then 
the validity of the convex constraint 

(a*, x) + i?(£) ̂ J{x, MM^x) < 0 (39) 

is a sufficient condition for the validity of (35). (Note that under our assump
tions MM^ is an upper bound on the covariance matrix of ^, and compare 
with (37).) 

The simple result we have just described is rather attractive. First, it does 
not require a detailed knowledge of the distribution of ^. Second, the approx
imation, although being more complicated than a linear constraint we start 
with, still is pretty simple; modern convex optimization techniques can process 
routinely to high accuracy problems with thousands of decision variables and 
thousands of constraints of the form (39). Third, the approximation is "not 
too conservative" - the safety parameter Q{e) grows pretty slowly as 5 -^ 0 
and is only by a moderate constant factor larger than the safety parameter 
in the case of Gaussian noise, where our approximation is not conservative at 
all. 

Recently, "not too conservative" computationally tractable safe approxi
mations were built (see [Nem03]) for chance versions of well-structured non-
linear convex constraints with nice analytic structure, specifically, for affinely 
perturbed least squares constraints 

[A, + J2 ^^^i]^ -[^- + J2 ̂ i^i] 2 
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and Linear Matrix Inequality constraints 

m 

K + E ^̂ °̂] + E î K + E ^^^ ^ 0 
i j=l i 

{A^ are symmetric matrices, A>zO means that A is symmetric positive semi-
definite). In both cases, ^i are independent scalar disturbances with zero mean 
and "of order of 1". However, the outUned approach, whatever promising we 
beheve it is, seemingly works for a very restricted family of "well-structured" 
functions ^(x,^), and even in these cases requires a lot of highly nontrivial 
"tailoring" to a particular structure in question. Consider, for example, the 
case of chance constraint associated with two-stage linear stochastic problem: 

gix, 0 := Min {z : T{Ox + W{Oy > HO -ze,z>0}, (40) 
z,y 

where e is vector of ones. Note that here g{x,0 is convex in x, and g{x,0 ^ ^ 
if and only if the second-stage problem 

Mm(q{0,y) s.t. T{0x + W{0y>h{0 
y 

is feasible (cf., (30)). Thus, the chance constraint requires from x to result in 
a feasible, with probability at least 1 — e, second stage problem. Even in the 
case of simple recourse (T, W are independent of ^) the chance constraint in 
question seems to be by far too difficult to admit a safe tractable deterministic 
approximation. 

Scenario approximation. 

In contrast to the "highly specialized and heavily restricted" approach we 
have just considered, the scenario-based approach is completely universal. We 
just generate a sample ^^, ...,^^ oi N "scenarios" - independent realizations 
of the random disturbance ^ - and approximate (35) by the random system 
of inequalities 

^ (x , ^^ )<0 , j = l,...,iV. (41) 

Extremely nice features of this approach are its generality and computational 
tractability - whenever g{x,0 is convex in x and efficiently computable (as it 
is the case, e.g., with the function (40)), (41) becomes a system of explicitly 
given convex constraints and as such can be efficiently processed numerically, 
provided that the number of scenarios N is not prohibitively large. The ques
tion, of course, is how large should be the sample in order to ensure, with 
reliability close to 1, that every feasible solution to (41) satisfies the chance 
constraint (35). This question is by far not easy, and we do not intend to 
discuss relevant nice and deep results known from the literature, since in fact 
we are more interested in a slightly different question, namely, as follows: 
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{Q)Assume we are given a convex optimization problem 

Min fix) s.t.g{x,O<0 (42) 

(all f, g are convex in x) with ^ being a random vector with a known 
distribution, and, given tolerance e > 0, replace this problem with its 
^'scenario counterpart^^ 

Mm fix) s . t . p ( x , e ) < 0 , j = l,...,iV. (43) 

How large should be the sample size N in order for the optimal solution 
XN of (43) to be feasible for (42) with probability at least 1 — e? 

The difference between the latter question and the former one is that now we 
do not require from all points feasible for (41) to satisfy (35), we require this 
property to be possessed by a specific point, XN, we are interested in. 

As it was discovered in [CC05, CC04], question (Q) admits a nice "uni
versal" answer. Namely, under extremely mild assumptions it turns out that 
whenever e,5 G (0,1/2) and 

iV>^,„,(H) + ?,„,0)+2„, (44) 

the probability of "bad sampling" which results in XN not satisfying (35) is less 
than or equal to 6. Note that this result, which heavily utilizes the convexity of 
(42), is completely "distribution-free" - it is independent of any assumptions 
on the distribution of ^ and requires no knowledge of this distribution. 

All this being said, there is a serious problem with the scenario approach 
as presented so far - it becomes impractical when the required value of e 
is really small, like 10~^ or 10~^. Indeed, for those e relation (44) results in 
unrealistically large samples. Note that pretty small values oie are completely 
reasonable when speaking about a "hard" constraint gix,^) < 0, that is, such 
that its violation has very severe or even catastrophic consequences, like heavy 
jam in a communication network, a blackout caused by malfunctioning of a 
power supply network, not speaking about exploding nuclear power plants or 
airliners falling from the sky. In a sense, in the context of chance constraints 
hard restrictions and implied pretty small values of e seem to be a rule rather 
than exception. Indeed, "soft" constraints - those with e like 1% or 0.1% -
can be eliminated altogether by augmenting the objective with appropriate 
penalties^^. 

^̂  It should be added that the outlined "crude" scenario approach is not completely 
satisfactory even when e is not too small. Indeed, assume that your problem has 
n = 100 variables and you are ready to take 10% chances (e == ^ = 0.1). To this 
end, you use the scenario approach with the smallest N allowed by (44), that is, 
N = 9835. What should be the actual probability e' for a fixed point x to violate 
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One could be surprised by the fact that we treat as acceptable the SAA 
method with the complexity proportional to e"^, e being the required tol
erance in terms of the objective, and are dissatisfied with the scenario ap
proach where the sample size is merely inverse proportional to the tolerance 
e. To explain our point, think whether you will agree (a) to use a portfolio 
management policy with the average profit by at most 0.5% less than the 
"ideal" - the optimal - one, and (b) to board an airliner which may crash 
during the flight with probability 0.5% (or 0.05%). 

When handling hard chance constraints - those with really small e, like 10~^ 
or less - we would like to have sample sizes polynomial in both log(l/6:) and 
\og{l/5) ra ther than to be polynomial in {l/e) and \og{l/5). We are about to 
explain t ha t under favorable circumstances, such a possibility does exist; it is 
given by combining scenario approach with a kind of importance sampling. To 
proceed, assume tha t the constraint g{x^ 0 —^ underlying (35) is of a specific 
s t ructure as follows: there exists a closed convex set K C R"^ and an afl&ne 
mapping x i—> ^[^Jx + &[̂ ] : M^ -^ M"̂  depending on ^ as on a parameter such 
tha t 

gix,0<O^A[^]x + b[^]eK, (45) 

Moreover, let us assume tha t the affine mapping in question is affinely para
meterized by ^, t ha t is, both A[^] and b[^] depend affinely on ^. Finally, we 
may assume without loss of generality tha t ^ has zero mean. 

As an instructive example, consider the feasibility constraint associated with 
the second-stage problem, that is, the constraint g{x,$,) < 0 with g{x,^) 
given by (40). Assuming fixed recourse,,that is, W{$,) = W being indepen
dent of ^, let us set 

K := {u : 3y such that u < Wy}. 

Note that X is a convex polyhedral (and thus closed) set. Now, it is clear 
from (40) that g(x,^) < 0 if and only if h(0 - T{^)x e K. It follows that 
when passing from uncertain parameter ^ to the new uncertain parameter 
^= [h{i),T{^)]-'K{[h[i),T{i)]} and updating accordingly the underlying 
distribution, we arrive at the situation described in (45). 

Under our assumptions, the vector A[^]x + h[^] is afEne in ^, and thus can be 
represented as a[x]^ + /^N? where a[x], f3[x\ are affine in x. It follows tha t 

g{x, 0 < 0 <^ A[^]x + h[^] eK<^^eK:,:={u : a[x]u + /3[x] G K}. (46) 

Note t ha t the set Kx is closed and convex along with K. Now, numer
ous important distributions IT on R^ with zero mean (multivariate normal, 

the constraint g{x,^) < 0 in order to be feasible for (43) with probability 0.9? 
The answer is: e' should be as small as 10~^. Thus, when applied with small e, 
the crude scenario approach becomes impractical, while in the case of "large" e 
it seems to be too conservative. 
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uniform on a multidimensional box, etc.) possess a kind of "concentration 
property" as follows: if Q is a closed convex set in R^ and 11 {Q) > c, 
where c < 1 is a characteristic constant of / I , then the probability of the 
event Q~^r} £ Q, rj r.^ P, rapidly approaches 1 as i? > 1 grows, namely, 
n{{r}: i7~^7/ ^ Q}) < C~^ exp{—Ci?^}, where C is another characteristic 
constant of 77. For example, in the case of multivariate normal distribution 
IT with zero mean, then n{Q) > 0.8 implies, for a closed convex set Q, that 
n{{rj : rj/Q ^ Q}) < exp{-r2V3}. 

Now assume that we are in the situation of (46) and that the distribution 
of ^ possesses the outlined concentration property. Let us choose somehow a 
safety parameter i? > 1, and consider the scenario counterpart of (35), where 
the disturbances are drawn from the distribution of Q^ rather than from the 
distribution of^: 

g{x,f2e)<0,t = l,..„N 
t (47) 

where *̂ ~ P are independent. Specifying Â  as 

0 ( l ) ( l - c ) - M o g ( l / 5 ) (48) 

with appropriate absolute constant 0(1), observe that if a fixed x satisfies 
(47), then it is "highly likely" that Vroh{g{x,Q£) < 0} > c; specifically, in 
the case of Prob{^(x, i?^) < 0} < c, the probability to get a realization of Â  
disturbances (with N given by (48)) which results in (47) is at most 5. Thus, 
when a given x turns out to satisfy (47), then, up to probability of "bad 
sampling" as small as 5, we have Prob{p(x, i?^) < 0} = Prob{i7^ G Kx] > 
c. In the latter case, due to the concentration property of the distribution 
17 of rj = Q^ (induced by similar property of the distribution P of ^), we 
have Prob{^(x,C) > 0} = Prob{C ^ K^} < C " ! exp{-Ci?2}. When i? = 
\/C~^ log(C~%"~^), the latter probability is < e, that is, x satisfies the chance 
constraint (35). For example, in the case when P is a multivariate normal 
distribution with zero mean and e in (35) is as small as 10~^^, the above rule 
results in i? = 9.1. Thus, when ^ ~ A/'(0, T), Â  is given by (48) and r? = 9.1, 
a fixed point x which satisfies (47) is, up to probability of "bad sampling" at 
most 5, feasible for the chance constraint (35) with e = 10~^^. 

The outlined idea - to apply the scenario approach with moderately am
plified disturbances rather than with "true ones" - under favorable circum
stances allows to approximate chance constraints via samples of size Â  which 
is polynomial in the "sizes" of the problem (the dimensions of x, ^ and K) 
and logarithms of 1/e, 1/5, and thus allows to handle efficiently constraints 
(35) with really small tolerances e. For detailed presentation and analysis of 
this approach, see [NS05]. 

4.2 Multistage Stochastic Programming in linear decision rules 

Consider a linear multi-stage stochastic program 
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T T 

t=l t=l 

with fixed recourse, where the cost coefficients Cf and the matrices At, t > 1, 
are not affected by uncertainty, as reflected in the notation. Besides this, 
in what follows we assume that the data affected by the uncertainty (that 
is, co(0, ^ o ( 0 ' HO) ^^^ diffine functions of ^; as we remember from the 
previous section, this "assumption" is in fact a convention on how we use 
words: nobody forbids us to treat as the actual "random parameter" the 
collection (c(<^),^o(05^(0) I'ather than ^ itself. 

As we have explained, a multistage problem (even much better struc
tured than (49)) is, generically, "severely computationally intractable". We 
are about to propose a radical way to reduce the complexity of the problem, 
specifically, to pass from arbitrary decision rules yt{') to afRne ones: 

ytiO =x"t+ XtQti, (50) 

where x^^Xt are our new - deterministic! - variables (a vector and a matrix 
of appropriate sizes), and Qt£,, Qt being a given deterministic matrix, is the 
"portion" of uncertainty which is revealed at time t and thus can be used to 
make the decision yt^^. 

Now let us look at the problem we end up with. When substituting linear 
decision rules (50) into the constraint of (49), the constraint takes the form 

Prob J A^{Ox + ^ [Atx'l + AtXtQti] - KO > 0 I - 1. 

The left hand side of the system of inequalities in the latter Prob {•} is affine 
in ^, thus, the constraint in question says exactly that the system should be 
satisfied for all ^ from the support S of the distribution P of ^. Since the left 
hand side of the system is affine in ^, the latter requirement is equivalent to 
the system to be valid for all ^ G Z, where Z is the closed convex hull of E, 
Thus, the constraint of (49) is nothing but the semi-infinite system of linear 
inequalities 

T 

A^{i)x + Y.['^tx'l + AtXtQt(\~h{0>^ V ^ G Z (51) 
t=\ 

in variables w = {x, {x^ ,Xt}^ i} . Besides this, the coefficients of the semi-
infinite inequalities in (51) depend affinely on ^. Now let us use the following 
known fact (see [BN98]): 

(!) Assume that Z is a polyhedral set 

In the notation of (32), Qtf = f[t] = (6 , •••̂ Ct)-
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Z - {̂  : 3 77 such that M^ + Nrj-i-p > 0}, 

given by the data M,N,p. Then the semi-infinite system (51) is equiv
alent to a finite system S of linear inequalities: 

w satisfies (51) <^ 3u : Aw -\- Bu-]- q>0. 

The sizes of S (that is, the row and the column sizes of A, B) are 
polynomial in the sizes of the matrices AQ, AI,...,AT, M, N, and the 
data A,B,q of S are readily given by the data of (51) and M, N, p 
(that is, given the latter data, one can build S in polynomial time). 
In fact, [BN98] asserts much more than stated by (!), namely, that (51) is 
computationally tractable whenever Z is so. We, however, intend to stay 
within the grasp of Linear Programming, and to this end (!) is exactly what 
we need. 
Example: interval uncertainty. Assume that Z is a box; without loss 
of generality, we may assume that Z = {̂  : —1 < ^̂  < 1, i == 1,..., d}. 
Since ^o(0> KO ^^^ affine in ^, (51) can be rewritten equivalently as 
the semi-infinite problem 

d 

4W + E^'[^]^^ <0\/^GZJ = 1,..., J, (52) 

where X stands for the collection {x, {x^, Xt}Jl=i} ^^ design variables 
in (51), and sl[X] are afline functions of X readily given by the data 
of (51). With our Z, the semi-infinite system (52) is clearly equivalent 
to the system of constraints 

4[X] + J2\Si[X]\<0,j = l,...,J, 

that is, to an explicit system of convex constraints (which can be 
further straightforwardly converted to a system of linear inequalities). 

By the outlined analysis, when restricted to affine decision rules, (49) becomes 
an explicit deterministic linear program 

^^^w={x,{xlXt}M {(c, w) :Aw-^Bu + q>0}, 

{c,w)^E{{co{0,x)+Eti{cu[xUXtPt^])}- ^^^' 

in variables w = {x, {x^, Xt}J^i}. 
Several remarks are in order. 

Remark 2. The only reason for restricting ourselves with afiine decision rules 
stems from the desire to end up with a computationally tractable problem. 
We do not pretend that affine decision rules approximate well the optimal 
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ones - whether it is so or not, it depends on the problem, and we usually have 
no possibility to understand how good in this respect is a particular problem 
we should solve. The rationale behind restricting to afRne decision rules is the 
belief tha t in actual applications it is better to pose a modest and achievable 
goal rather than an ambitious goal which we do not know how to achieve^^ 

Remark 3. To some extent, what is affine and what is not is a mat ter of how 
we use words. Assume, e.g., t ha t one wants to pass from affine decision rules 
to quadrat ic ones. This is exactly the same as to keep the rules afRne and to 
add to the entries of ^ their pairwise products, and similarly for more com
plicated families of decision rules. Statement (!) explains what are the "limits 
of sophistication in the decision rules" we can achieve: representing a sophis
ticated decision rule as an afRne one, the uncertainty vector ^ being properly 
extended, we need the convex hull of the support of this extended vector to 
be computationally tractable. In principle, this might be not the case already 
for "genuinely afRne" decision rules; however, in typical applications distrib
ution P of the "actual" uncertainty ^ is simple enough, so t ha t Conv(suppP) 
is computationally tractable. However, with P as simple as a uniform distri
bution on a box, the "quadratic extension" ^ H-> (,̂ , {ii^j}i,j) of ^ results in 
random vector with a distribution too complicated, as far as our needs are 
concerned. Thus, the limitations of afRne decision rules are in fact limitations 
of our possibility to describe efRciently convex hulls of supports of nonlinear 
transformations of ^. 

Remark 4- One could bet tha t the idea of multi-stage decision making under 
uncertainty via linear decision rules is as old as the corresponding optimization 
model. It seems, however, t ha t this idea remained completely forgotten for a 
long time; at least, we do not know who should be credited with it. Linear 
decision rules in optimization under uncertainty were recently "resurrected" in 
[BGGN04] in the framework of Robust Optimization. Our exposition follows 
the methodology developed in [BGGN04], with the only minor exception tha t 
in Robust Optimization one is aimed at minimizing the worst-case value of an 
uncertainty-affected objective under the restriction tha t a candidate solution 
remains feasible whatever be a realization of uncertainty-affected constraints, 
while here we intend to optimize, under the same restriction, the expected 
value of the objective. 

Remark 5. We have assumed tha t (49) has a fixed recourse; the role of this 
assumption was to ensure affinity of the constraints in (51) in ^, which in tu rn 

•̂^ In this respect, it is very instructive to look at Control, where the idea of linear 
feedback dominates theoretical research, and, to some extent, applications. Aside 
of a handful of simple particular cases, there are no reasons to believe that "the 
abilities" of linear feedback are as good as those of a general nonlinear feedback. 
However, Control community realized long ago that a bird in the hand is worth 
two in the bush - it is much better to restrict ourselves with something which 
we indeed can analyze and process numerically. We believe this is an instructive 
example for the optimization community. 
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made it possible to use (1) in order to end up with t ractable reformulation 
(53) of the problem of interest. In the case when the recourse is not fixed, 
t ha t is, the matrices At^ t > 1, in (49) depend affinely on ^, the situation 
becomes much more complicated - the left hand sides of the inequalities in (51) 
become quadrat ic in ^, which makes (!) inapplicable^^. It turns out, however, 
t ha t under not too restrictive assumptions the problem of optimizing under 
the constraints (51), although NP-hard, admits t ractable approximations of 
reasonable quality [BGGN04]. 

Remark 6. Passing from arbitrary decision rules to affine ones seems to reduce 
dramatically the flexibility of our decision-making and thus - the expected 
results. Note, however, t ha t the numerical results for inventory management 
models reported in [BGGN04, BGNV04] demonstrate tha t aflfinity may well be 
not as a severe restriction as one could expect it to be. In any case, we believe 
tha t when processing multi-stage problems, affine decision rules make a good 
and easy-to-implement start ing point, and tha t it hardly makes sense to look 
for more sophisticated (and by far more computationally demanding) decision 
policies, unless there exists a clear indication of "severe tion-optimality" of the 
affine rules. 
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Summary. We present a review of several professional software products that serve 
to analyze and solve nonlinear (global and local) optimization problems across a va
riety of hardware and software environments. The product versions discussed have 
been implemented for compiler platforms, spreadsheets, algebraic (optimization) 
modeling languages, and for integrated scientific-technical computing systems. The 
discussion highlights some of the key advantages of these implementations. Test ex
amples, well-known numerical challenges and client applications illustrate the usage 
of the current software versions. 

K e y words : nonlinear (convex and global) optimization; LGO solver suite 
and its implementations; compiler platforms, spreadsheets, optimization mod
eling languages, scientific-technical computing systems; illustrative applica
tions and case studies. 

2 0 0 0 M R S u b j e c t Class i f icat ion. 65K30, 90C05, 90C31. 

1 Introduction 

Nonlinearity is literally ubiquitous in the development of natural objects, for
mations and processes, including also living organisms of all scales. Conse
quently, nonlinear descriptive models - and modeling paradigms even beyond 
a straightforward (analytical) function-based description - are of relevance in 
many areas of the sciences, engineering, and economics. For example, [BM68, 
Ric73, EW75, Man83, Mur83, Cas90, HJ91 , Sch91, BSS93, Ste95, Gro96, 
PSX96, Pin96a, Ari99, Ber99, Ger99, LafOO, PWOO, CZOl, EHLOl, JacOl, 
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Sch02, TS02, W0IO2, Diw03, Zab03, Neu04b, HL05, KP05, Pin05a, Pin05b] -
as well as many other authors - present discussions and an extensive repertoire 
of examples to illustrate this point. 

Decision-making (optimization) models that incorporate such a nonlinear 
system description frequently lead to complex models that (may or prov-
ably do) have multiple - local and global - optima. The objective of global 
optimization (GO) is to find the "absolutely best solution of nonlinear opti
mization (NLO) models under such circumstances. 

The most important (currently available) GO model types and solution 
approaches are discussed in the Handbook of Global Optimization volumes, 
edited by Horst and Pardalos [HP95], and by Pardalos and Romeijn [PR02]. 
As of 2004, over a hundred textbooks and a growing number of informative 
web sites are devoted to this emerging subject. 

We shall consider a general GO model form defined by the following in
gredients: 

• X decision vector, an element of the real Euclidean n-space R^\ 
• f{x) continuous objective function, f \ R^ —^ R^\ 
• D non-empty set of admissible decisions, a proper subset of R^. 

The feasible set D is defined by 

• l^ u explicit, finite vector bounds of x (a "box" in R^)\ 
• g{x) m-vector of continuous constraint functions, g : R^ —^ R^, 

Applying the notation introduced above, the continuous global optimiza
tion (CGO) model is stated as 

min/(x) s.t. X belongs to (1) 

D = {x:l<x< u,g{x) < 0}. (2) 

Note that in (2) all vector inequalities are meant component-wise (/, u, 
are n-vectors and the zero denotes an m-vector). Let us also remark that the 
set of the additional constraints g could be empty, thereby leading to - of
ten much simpler, although still potentially multi-extremal - box-constrained 
models. Finally, note that formally more general optimization models (that 
include also = and > constraint relations and/or explicit lower bounds on 
the constraint function values) can be simply reduced to the canonical model 
form (l)-(2). The canonical model itself is already very general: in fact, it triv
ially includes linear programming and convex nonlinear programming models 
(under corresponding additional specifications). Furthermore, it also includes 
the entire class of pure and mixed integer programming problems, since all 
(bounded) integer variables can be represented by a corresponding set of bi
nary variables; and every binary variable y G {0,1} can be equivalently rep
resented by its continuous extension y G [0,1] and the non-convex constraint 
y ( l — ^ ) < 0 . Of course, we do not claim that the above approach is best - or 
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even suitable - for "all" optimization models: however, it certainly shows the 
generality of the CGO modeling framework. 

Let us observe next that the above stated "minimal" analytical assump
tions already guarantee that the optimal solution set X* in the CGO model 
is non-empty. This key existence result directly follows by the classical theo
rem of Weierstrass (that states the existence of the minimizer point (set) of a 
continuous function over a non-empty compact set). For reasons of numerical 
tract ability, the following additional requirements are also often postulated: 

• D is a, full-dimensional subset ("body") in R^\ 
• the set of globally optimal solutions to (l)-(2) is at most countable; 
• / and g (the latter component-wise) are Lipschitz-continuous functions on 

[l,u]-

Note that the first two of these requirements support the development and 
(easier) implementation of globally convergent algorithmic search procedures. 
Specifically, the first assumption - i.e., the fact that D is the closure of its 
non-empty interior - makes algorithmic search possible within the set D. 
This requirement also imphes that e.g., nonhnear equality constraints need to 
be directly incorporated into the objective function as discussed in [Pin96a], 
Chapter 4.1. 

With respect to the second assumption, let us note that in most well-
posed practical problems the set of global optimizers consists only of a single 
point, or at most of several points. However, in full generality, GO models may 
have even manifold solution sets: in such cases, software implementations will 
typically find a single solution, or several of them. (There are theoretically 
straightforward iterative ways to provide a sequence of global solutions.) 

The third assumption is a sufficient condition for estimating /* on the basis 
of a finite set of feasible search points. (Recall that the real-valued function 
h is Lipschitz-continuous on its domain of definition D C R^, if \h{xi) — 
h{x2)\ < L\\xi — X2II holds for all pairs xi G D^X2 G D; here L = L{D,h) is 
a suitable Lipschitz-constant of h on the set D\ the inequality above directly 
supports lower bound estimates on sets of finite size.) We emphasize that 
the factual knowledge of the smallest suitable Lipschitz-constant - for each 
model function - is not required, and in practice such information is typically 
unavailable indeed. 

Let us remark here that e.g., models defined by continuously diff"erentiable 
functions / and g certainly belong to the CGO or even to the Lipschitz model 
class. In fact, even such "minimal" smooth structure is not essential: since 
e.g., "saw-tooth" like functions are also Lipschitz-continuous. This comment 
also implies that CGO indeed covers a very general class of optimization 
models. As a consequence of this generality, the CGO model class includes also 
many extremely diflficult instances. To perceive this difficulty, one can think of 
model-instances that would require "the finding of the lowest valley across a 
range of islands" (since the feasible set may well be disconnected), based on an 
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intelligent (adaptive, automatic), but otherwise completely "blind" sampling 
procedure... 

For illustration, a merely one-dimensional, box-constrained model is shown 
in Fig. 1. This is a frequently used classical GO test problem, due to Shubert: 
it is defined as 

min Y^ k sm(k -\-(k + l)x) 10 < x < 10. 
;c=i, . . . ,5 

Fig. 1. One-dimensional, box-constrained CGO model 

Model complexity may - and frequently will - increase dramatically, al
ready in (very) low dimensions. For example, both the amplitude and the 
frequency of the trigonometric components in the model of Figure 1 could be 
increased arbitrarily, leading to more and more difficult problems. 

Furthermore, increasing dimensionality per se can lead to a tremendous 
- theoretically exponential - increase of model complexity (e.g., in terms 
of the number of local/global solutions, for a given type of multi-extremal 
models). To illustrate this point, consider the - merely two-dimensional, box-
constrained, yet visibly challenging - objective function shown in Fig. 2 below. 
The model is based on Problem 4 of the Hundred-Dollar, Hundred-Digit Chal
lenge Problems [Tre02], and it is stated as 

min -̂̂  + exp(sin(50x)) - sin(10(x + y)) + sin(60 exp(y)) 

+ sin(70 sin(a;)) + sin(sin(802/)) 

- 3 < x < 3 - 3 < y < 3 . 
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Fig. 2. Two-dimensional, box-constrained CGO model 

'vif. f.v#; I f • / 

/ 

Needless to say, not all - and especially not all practically motivated - CGO 
models are as difficult as indicated by Figures 1 and 2. At the same time, we do 
not always have the possibility to directly inspect and estimate the difficulty of 
an optimization model, and perhaps unexpected complexity can be met under 
such circumstances. An important case in point is when the software user 
(client) has a confidential or otherwise visibly complex model that needs to 
be analyzed and solved. The model itself can be presented to the solver engine 
as an object code, dynamic fink hbrary (dll), or even as an executable program: 
in such situations, direct model inspection is simply not an option. In many 
other cases, the evaluation of the optimization model functions may require 
the numerical solution of a system of differential equations, the evaluation of 
special functions or integrals, the execution of a complex system of program 
code, stochastic simulation, even some physical experiments, and so on. 

Traditional numerical optimization methods - discussed in most topical 
textbooks such as e.g. [BSS93, Ber99, CZOl] - search only for local optima. 
This approach is based on the tacit assumption that a "sufficiently good" ini
tial solution (that is located in the region of attraction of the "true" solution) 
is immediately available. Both Fig. 1 and Fig. 2 suggest that this may not al
ways be a realistic assumption . . . Models with less "dramatic" difficulty, but 
in (perhaps much) higher dimensions also imply the need for global optimiza
tion. For instance, in advanced engineering design, models with hundreds or 
thousands of variables and constraints are analyzed. In similar cases to those 
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mentioned above, even an approximately completed, but genuine global (ex
haustive) search strategy may - and typically will - yield better results than 
the most sophisticated local search approach when "started from the wrong 
valley"... 

2 A solver suite approach to practical global 
optimization 

The general development philosophy followed by the software implementa
tions discussed here is based on the seamless combination of rigorous (i.e., 
theoretically convergent) global and efficient local search strategies. 

As it is well-known ([HT96, Pin96a]), the existence of vahd overestimates 
of the actual (smallest possible) Lipschitz-constants, for / and for each compo
nent of ^ in the model (l)-(2), is sufficient to guarantee the global convergence 
of suitably defined adaptive partition algorithms. In other words, the applica
tion of a proper branch-and-bound search strategy (that exploits the Lipschitz 
information referred to above) generates a sequence of sample points that con
verges exactly to the (unique) global solution x* = {-̂ *} of the model instance 
considered. If the model has a finite or countable number of global solutions, 
then - theoretically, and under very general conditions - sub-sequences of 
search points are generated that respectively converge to the points of X*. 
For further details related to the theoretical background, including also a de
tailed discussion of algorithm implementation aspects, consult [Pin96a] and 
references therein. 

In numerical practice, deterministically guaranteed global convergence 
means that after a finite number of search steps - i.e., sample points and 
corresponding function evaluations - one has an incumbent solution (with a 
corresponding upper bound of the typically unknown optimum value), as well 
as a verified lower bound estimate. Furthermore, the "gap" between these es
timates converges to zero, as the number of generated search points tends to 
infinity. For instance, interval arithmetic based approaches follow this avenue: 
consult, e.g., [RR95, Kea96, Neu04b]; [CK99] review a number of successful 
applications of rigorous search methods. 

The essential difficulty of applying such rigorous approaches to "all" GO 
models is that their computational demand typically grows at an exponential 
pace with the size of the models considered. For example, the Lipschitz infor
mation referred to above is often not precise enough: "carefree" overestimates 
of the best possible (smallest) Lipschitz-constant lead to a search procedure 
that will, in effect, be close in efficiency to a passive uniform grid search. For 
this reason, in a practical GO context, other search strategies also need to be 
considered. 

It is also well-known that properly constructed stochastic search algo
rithms also possess general theoretical global convergence properties (with 
probability 1): consult, for instance, the review of [BR95], or [Pin96a]. For a 
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very simple example that illustrates this point, one can think of a pure ran
dom search mechanism applied in the interval l<x<u to solve the CGO model: 
this will eventually converge, if the "basin of attraction" of the (say, unique) 
global optimizer x* has a positive volume. In addition, stochastic sampling 
methods can also be directly combined with search steps of other - various 
global and efficient local - search strategies, and the overall global convergence 
of such strategies will be still maintained. The theoretical background of sto
chastic "hybrid" algorithms is discussed by [Pin96a]. The underlying general 
convergence theory of such combined methods allows for a broad range of im
plementations. In particular, a hybrid optimization program system supports 
the flexible usage of a selection of component solvers: one can execute a fully 
automatic global or local search based optimization run, can combine solvers, 
and can also design various interactive runs. 

Obviously, there remains a significant issue regarding the (typically un
foreseeable best) "switching point" from strategy to strategy: this is however, 
unavoidable, when choosing between theoretical rigor and numerical efficiency. 
(Even local nonlinear solvers would need, in theory, an infinite iterative pro
cedure to converge, except in idealized special cases.) For example, in the 
stochastic search framework outlined above, it would suffice to find just one 
sample point in the "region of attraction" of the (unique) global solution x*, 
and then that solution estimate could be refined by a suitably robust and 
efficient local solver. Of course, the region of attraction of x* (e.g., its shape 
and relative size) is rarely known, and one needs to rely on computationally 
expensive estimates of the model structure (again, the reader is referred, e.g., 
to the review of [BR95]). Another important numerical aspect is that one loses 
the deterministic (lower) bound guarantees when applying a stochastic search 
procedure: instead, suitable statistical estimation methods can be applied, 
consult [Pin96a] and topical references therein. Again, the implementation of 
such methodology is far from trivial. 

To summarize the discussion, there are good reasons to apply various 
search methods and heuristic global-to-local search "switching points" with a 
reasonable expectation of numerical success. Namely, 

• one needs to apply proper global search methods to generate an initial 
good "coverage" of the search space; 

• it is also advantageous to apply quality local search that enables the fast 
improvement of solution estimates generated by a preceding global search 
phase; 

• using several - global or local - search methods based on different theoret
ical strategies, one has a better chance to find quality solutions in difficult 
models (or ideally, confirm the solution by comparing the results of several 
solver runs); 

• one can always place more or less emphasis on rigorous search vs. efficiency, 
by selecting the appropriate solver combination, and by allocating search 
effort (time, function evaluations); 
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• we often have a priori knowledge regarding good quality solutions, based on 
practical, model-specific knowledge (for example, one can think of solving 
systems of equations: here a global solution that "nearly" satisfies the 
system can be deemed as a sufficiently good point from which local search 
can be directly started); 

• practical circumstance and resource limitations may (will) dictate the use 
of additional numerical stopping and switching rules that can be flexibly 
built into the software implementation. 

Based on the design philosophy outlined - that has been further confirmed 
and dictated by practical user demands - we have been developing for over 
a decade nonlinear optimization software implementations that are based on 
global and local solver combinations. The currently available software prod
ucts will be briefly discussed below with illustrative examples; further related 
work is in progress. 

3 Modeling systems and user demands 

Due to advances in modeling, optimization methods and computer technol
ogy, there has been a rapidly growing interest towards modeling languages 
and environments. Consult, for example, the topical Annals of Operations Re
search volumes [MM95, MMS97, VMMOO, CFOOl], and the volume [Kal04]. 
Additional useful information can be found, for example, at the web sites 
[Fou04, MS04, Neu04a]. 

Prominent examples of widely used modeling systems that are focused on 
optimization include AIMMS ([PDT04]), AMPL ([FGK93]), GAMS ([BKM88]), 
the Excel Premium Solver Platform ([FSOl]), ILOG ([104]), the LINDO Solver 
Suite ([LS96]), MPL ([MS02]), and TOMLAB ([TO04]). (Please note that the 
literature references cited may not always reflect the current status of the 
modeling systems listed: for the latest information, contact the developers 
and/or visit their website.) 

In addition, there exists also a large variety of core compiler platform-
based solver systems with some built-in model development functionality: in 
principle, these all can be linked to the modeling languages listed above. At 
the other end of the spectrum, there is also signiflcant development related 
to fully integrated scientific and technical computing (ISTC) systems such as 
Maple ([M04a]), Mathematica ([WR04]), and MATLAB ([TM04]). The ISTCs 
also incorporate a growing range of optimization-related functionality, supple
mented by application products. 

The modeling environments listed above are aimed at meeting the needs 
and demands of a broad range of clients. Major client groups include educa
tional users (instructors and students); research scientists, engineers, econo
mists, and consultants (possibly, but not necessarily equipped with an in-
depth optimization related background); optimization experts, vertical appli
cation developers, and other "power users". Obviously, the user categories 
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listed above are not necessarily disjoint: e.g., someone can be an expert re
searcher and software developer in a certain professional area, with a perhaps 
more modest optimization expertise. The pros and cons of the individual 
software products - in terms of ease of model prototyping, detailed code de
velopment and maintenance, optimization model processing tools, availability 
of solvers and other auxiliary tools, program execution speed, overall level of 
system integration, quality of related documentation and support - make such 
systems more or less attractive for the user groups listed. 

It is also worth mentioning at this point that - especially in the context 
of nonlinear modeling and optimization - it can be a salient idea to tackle 
challenging problems by making use of several modeling systems and solver 
tools, if available. In general, dense NLO model formulations are far less easy 
to "standardize" than linear or even mixed integer linear models, since one 
typically needs an explicit, specific formula to describe a particular model 
function. Such formulae are relatively straightforward to transfer from one 
modehng system into another: some of the systems hsted above even have such 
built-in converter capabilities, and their syntaxes are typically quite similar 
(whether it is x**2 or x^, sin(x) or Sin[x], bernouni(n,x) or BernoulliB[n,x], 
and so on). 

In subsequent sections we shall summarize the principal features of sev
eral current nonlinear optimization software implementations that have been 
developed with quite diverse user groups in mind. The range of products re
viewed in this work includes the following: 

• LGO Solver System with a Text I/O Interface 
• LGO Integrated Development Environment 
• LGO Solver Engine for Excel 
• MathOptimizer Professional (LGO Solver Engine for Mathematica) 
• Maple Global Optimization Toolbox (LGO Solver Engine for Maple). 

We will also present relatively small, but non-trivial test problems to il
lustrate some of the key functionality of these implementations. 

Note that all software products discussed are professionally developed and 
supported, and that they are commercially available. For this reason - and 
also in line with the objectives of this paper - some of the algorithmic tech
nical details are only briefly mentioned. Additional technical information is 
available upon request; please consult also the publicly available references, 
including the software documentation and topical web sites. 

In order to keep the length of this article within reasonable bounds, further 
product implementations not discussed here are 

• LGO Solver Engine for GAMS 
• LGO Solver Engine for MPL 
• TOMLAB/LGO for MATLAB 
• MathOptimizer for Mathematica. 
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With respect to these products, consult e.g. the references [Pin02a, PK03, 
KP04b, KP05, PHGE04, PK05]. 

4 Software implementat ion examples 

4.1 LGO solver system with a text I /O interface 

The Lipschitz Global Optimizer (LGO) software has been developed and used 
for more than a decade (as of 2004). Detailed technical descriptions and user 
documentation have appeared elsewhere: consult, for instance, [Pin96a, Pin97, 
PinOla, Pin04], and the software review [BSOO]. Let us also remark here that 
LGO was chosen to illustrate global optimization software (in connection with 
a demo version of the MPL modeling language) in the well-received textbook 
[HL05]. 

Since LGO serves as the core of most current implementations (with the 
exception of one product), we will provide its somewhat more detailed de
scription, followed by concise summaries of the other platform-specific imple
mentations. 

In accordance with the approach advocated in Section 2, LGO is based on 
a seamless combination of a suite of global and local scope nonlinear solvers. 
Currently, LGO includes the following solver options: 

• adaptive partition and search (branch-and-bound) based global search 
(BB) 

• adaptive global random search (single-start) (GARS) 
• adaptive global random search (multi-start) (MS) 
• constrained local search (generalized reduced gradient method) (LS). 

The global search methodology was discussed briefly in Section 2; the well-
known GRG method is discussed in numerous textbooks, consult e.g. [EHLOl]. 
Note that in all three global search modes the model functions are aggregated 
by an exact penalty function. By contrast, in the local search phase all model 
functions are considered and treated individually Note also that the global 
search phases are equipped with stochastic sampling procedures that support 
the usage of statistical bound estimation methods. 

All LGO search algorithms are derivative-free: specifically, in the local 
search phase central differences are used to approximate gradients. This choice 
reflects again our objective to handle (also) models with merely computable, 
continuous functions, including "black box" systems. 

The compiler-based LGO solver suite is used as an option linked to various 
modeling environments. In its core text I/O based version, the application-
specific LGO executable program (that includes a driver file and the model 
function file) reads an input text file that contains all remaining application 
information (model name, variable and constraint names, variable bounds 
and nominal values, and constraint types), as well as a few key solver options 
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(global solver type, precision settings, resource and time limits). Upon com
pleting the LGO run, a summary and a detailed report file are available. As 
can be expected, this LGO version has the lowest demands for hardware, it 
also runs fastest, and it can be directly embedded into vertical and proprietary 
user applications. 

4.2 LGO integrated development environment 

LGO can be also equipped - as a readily available implementation option -
with a simple, but functional and user-friendly MS Windows interface. This 
enhanced version is referred to as the LGO Integrated Development Environ
ment (IDE). The LGO IDE provides a menu that supports model develop
ment, compilation, linking, execution, and the inspection of results. To this 
end, a text editor is used that can be chosen optionally such as e.g. the freely 
downloadable ConTEXT and PFE editors, or others. Note here that even the 
simple Notebook Windows accessory - or the more sophisticated and still free 
Metapad text editor - would do. The IDE also includes external program call 
options and two concise help files: the latter discuss global optimization basics 
and the main application development steps when using LGO. 

As already noted, this LGO implementation is compiler-based: user models 
can be connected to LGO using one of several programming languages on 
personal computers and workstations. Currently supported platforms include 
essentially all professional Fortran 77/90/95 and C compilers and some others: 
prominent examples are Borland C /C++ and Delphi, Compaq/Digital Visual 
Fortran; Lahey Fortran 77/90/95; Microsoft Visual Basic and C/C++; and 
Salford Fortran 77/95. Other customized versions can also be made available 
upon request, especially since the vendors of development environments often 
expand the list of compatible platforms. 

This LGO software implementation (in both versions discussed above) 
fully supports communication with sophisticated user models, including en
tirely closed or confidential "black box" systems. These LGO versions are 
particularly advantageous in application areas, where program execution (so
lution) speed is a major concern: in the GO context, many projects fall into 
this category. The added features of the LGO IDE can also greatly assist in 
educational and research (prototyping) projects. 

LGO deliveries are accompanied by an approximately 60-page User Guide. 
In addition to installation and technical notes, this document provides a brief 
introduction to GO; describes LGO and its solvers; discusses the model de
velopment procedure, including modeling and solution tips; and reviews a list 
of applications. The appendices provide examples of the user (main, model, 
and input parameter) files, as well as of the resulting output files; connectivity 
issues and workstation implementations are also discussed. 

For a simple illustration, we display below the LGO model function file 
(in C format), and the input parameter file that correspond to a small, but 
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not quite trivial GO model (this is a constrained extension of Shubert's model 
discussed earlier): 

min 2_] ^ sm{k + (/c + l)x) 
/c=l , . . . ,5 

s.t. x^ + 3x + sin(x) < 6, 10 < x < 10. 

Both files are slightly edited for the present purposes. Note also that in the 
simplest usage mode, the driver file contains only a single statement that calls 
LGO: therefore we skip the display of that file. (Additional pre- and post-
solver manipulations can also be inserted in the driver file: this can be useful 
in various customized applications.) 

Model function file 

#include <s td l ib .h> 
#include <stdio.h> 
#include<math.h> 

_ s t d c a l l USER _FCT( double x[] , double f o x [ l ] , double gox[]) 
{ 
fox[0] = s i n ( l . + 2.*x[0]) + 2 .* s in (2 . + 3.*x[0]) + 3 . * s i n ( 3 . 

+ 4 .*x[0]) + 4 . * s i n ( 4 . + 5.*x[0]) + 5 .* s in (5 . + 6 .*x[0 ] ) ; 
gox[0]=-6.+ pow(x[0],2.) -f s in (x [0 ] ) + 3 .*x[0 ] ; 
r e t u r n 0; 
} 

Input parameter file 

Model Descriptors 
LGO Model 

1 

1 

Variable names 

ModelName 

Number of Variables 

Number of Constraints 

Lower Bounds Nomimal Values Upper Bounds 

X -10. 0. 10. 

ObjFct ! Objective Function Name 

Constraint Names and Constraint Types (0 for ==, -1 for <=) 

Constraint1 -1 

! SOLVER OPTIONS AND PARAMETERS — 

1 ! Operational modes 0: LS; 1: BB+LS; 2: GARS 

! +LS; 3: MS+LS 

2000 ! Maximal no. of fct evals in global search 

! phase 

400 ! Maximal no. of fct evals in global search 

! w/o improvement 
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-1000000. 

-1000000. 

0.000001 

0.000001 

0.000001 

0 

300 

Constraint penalty multiplier 

Target objective fimction value in global 

search phase 

Target objective function value in local 

search phase 

Merit function precision improvement 

threshold in local search phase 

Constraint violation tolerance in local 

search phase 

Kuhn-Tucker local optimality conditions 

tolercince in local search phase 

Built-in random number generator seed value 

Program execution time limit (seconds) 

997 

-14.8379500257 

-1.1140996879 

Summary result file 

LGO Solver Results Summary 
Model name: LGO Model 

Total number of function evaluations 

Objective function: ObjFct 

Solution vector components 

1 X 

C o n s t r a i n t f u n c t i o n v a l u e s a t optimum e s t i m a t e 
1 C o n s t r a i n t 1 -8 .9985950759 
S o l v e r s t a t u s i n d i c a t o r v a l u e 4 TERMINATED BY 

SOLVER 
Model s t a t u s i n d i c a t o r v a l u e 1 GLOBALLY OPTIMAL 

SOLUTION FOUND 
LGO s o l v e r sys tem e x e c u t i o n t i m e ( s e c o n d s ) 0 . 0 1 
For a d d i t i o n a l r u n t i m e i n f o r m a t i o n , p l e a s e c o n s u l t t h e 
LGO.OUT f i l e . 

LGO a p p l i c a t i o n run comple t ed . 

4 .3 L G O so lve r e n g i n e for E x c e l u s e r s 

The LGO global solver engine for Microsoft Excel has been developed in 
cooperation with Frontline Systems [FSOl]. For details on the Excel Solver 
and the currently available advanced engine options visit Frontline's web site 
(www.solver.com). The site contains useful information, including for instance, 
tutorial material , modeling tips, and various spreadsheet examples. The User 
Guide provides a brief introduction to all current solver engines; discusses the 
diagnosis of solver results, solver options and reports; and it also contains 
a section on Solver VBA functions. Note t ha t this information can also be 
invoked through Excel's on-line help system. In this implementation, LGO 
is a field-installable Solver Engine tha t seamlessly connects to the Premium 
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Solver Platform: the latter is fully compatible with the standard Excel Solver, 
but it has enhanced algorithmic capabilities and features. 

LGO for Excel, in addition to continuous global and local capabilities, 
also provides basic support for handling integer variables: this feature has 
been implemented - as a generic option for all advanced solver engines - by 
Frontline Systems. 

The LGO solver options available are essentially based on the stand-alone 
"silent" version of the software, with some modifications and added features. 
The LGO Solver Options dialog, shown by Fig. 3, allows the user to control 
solver choices and several other settings. 

Fig. 3. Excel/ LGO solver engine: solver options and parameters dialog 
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To illustrate the usage of the Excel/LGO implementation, we shall present 
and solve the Electrical Circuit Design (ECD) test problem. The ECD model 
has been extensively studied in the global optimization literature, as a well-
known computational challenge: see, e.g., [RR93], with detailed historical 
notes and further references. 

In the ECD problem, a bipolar transistor is modeled by an electrical cir
cuit: this model leads to the following square system of nonlinear equations 

ak{x) = 0 A: = 1,...,4; bk{x) = 0 A: = 1,...,4; c{x) = 0. 

The individual equations are defined as follows: 

ak{x) = {1- xiX2)x3{exp[x5{gik - gskXj - QbkXs)] - 1} - 9bk + 9AkX2, 

bk{x) = {l- xiX2)a;4{exp[x6(pifc - g2k - gskx? + gAkXg)] - 1} - 95kXi + g^k 

fc = l , . . . , 4 ; 

c{x) = X1X3 — X2X4. 

By assumption, the vector variable x belongs to the box region [0,10] . The 
numerical values of the constants p /̂e,f = l, . . . ,5,A: = l , . . . , 4 are listed in the 
paper of Ratschek and Rokne [RR93], and will not be repeated here. (Note 
that, in order to make the model functions more readable, several constants 
are simply aggregated in the above formulae, when compared to that paper.) 

To solve the ECD model rigorously, Ratschek and Rokne applied a com
bination of interval arithmetic, subdivision and branch-and-bound strategies. 
They concluded that the rigorous solution was extremely costly (billions of 
model function evaluations were needed), in order to arrive at a guaranteed 
interval (i.e., embedding box) estimate that is component-wise within at least 
10-4 precision of the postulated approximate solution: 

X* = (0.9,0.45,1.0,2.0,8.0,8.0,5.0,1.0,2.0). 

Obviously, by taking e.g. the Euclidean norm of the overall error in the 
model equations, the problem of finding the solution can be formulated as a 
global optimization problem. This model has been set up in a demo spread
sheet, and then solved by the Excel LGO solver engine. The numerical solution 
found by LGO - directly imported from the answer report - is shown below: 

Microsoft Excel 10.0 Answer Report 
Worksheet: [CircuitDesign_9^9.XLS] Model 
Report Created: 12/16/2004 
12:39:29 AM 
Result: Solver found a solution. All constraints and 

optimality conditions are satisfied. 
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Engine: LGO Global Solver 

Target Gel] 
Cell 

$B$21 

Adjustable 

Cell 

$D$10 

$D$11 

$D$12 

$D$13 
$D$14 

$D$15 

$D$16 

$D$17 

$D$18 

. (Min) 
Name 

objective 

Cells 

Name 

x_l 
x_2 
x_3 
x_4 
x^5 
x_6 
x_7 
x_8 
x_9 

Original Value Final Value 

767671534.2 

Original 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Value 

9.02001E-11 

Final Value 

0.900000409 
0.450000021 

1.000000331 

2.000001476 

7.999999956 

7.999998226 
4.999999941 

1.000000001 
1.999999812 

The error of the solution found is within 10"^ to the verified solution, for 
each component. The numerical solution of the ECD model in Excel takes less 
than 5 seconds on a personal computer (Intel Pentium 4, 2.4 GHz processor, 
512 Mb RAM). Let us note that we have solved this model also using core 
LGO implementations with various C and Fortran compilers, with essentially 
identical success (in about a second or less). Although this finding should not 
lead per se to overly optimistic claims, it certainly shows the robustness and 
efiiciency of LGO in solving this particular (non-trivial) example. 

4.4 MathOptimizer Professional 

Mathematica is an integrated environment for scientific and technical com
puting. This ISTC system supports functional, rule-based and procedural 
programming styles. Mathematica also offers advanced multimedia (graphics, 
image processing, animation, sound generation) tools, and it can be used to 
produce publication-quality documentation. For further information, consult 
the key reference [WolOS]; the website www.wolfram.com provides detailed 
information regarding also the range of other products and services related to 
Mathematica. 

MathOptimizer Professional ([PK03]), combines the model development 
power of Mathematica with the robust performance and efficiency of the LGO 
solver suite. To this end, the general-purpose interface MathLink is used that 
supports communication between Mathematica and external programs. The 
functionality of MathOptimizer Professional is summarized by the following 
stages (note that all steps are fully automatic, except - obviously - the first 
one): 

• model formulation in Mathematica 
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• translation of the Mathematica optimization model into C or Fortran code, 
to generate the LGO model function file 

• generation of the LGO input parameter file 
• compilation of the C or Fortran model code into object code or dynamic 

link library (dll): this step makes use of a corresponding compiler 
• call to the LGO solver engine: the latter is typically provided as object 

code or an executable program that is now linked together with the model 
function object or dll file 

• numerical solution and report generation by LGO 
• report of LGO results back to the calUng Mathematica notebook. 

A "side-benefit" of using MathOptimizer Professional is that the Math
ematica models formulated are automatically translated into C or Fortran 
format: this feature can be put to good use in a variety of contexts. (For ex
ample, the LGO model function and input parameter file examples shown in 
Section 4.2 were generated automatically.) 

Let us also remark that the approach outlined supports "only" the solu
tion of models defined in Mathematica that can be directly converted into C 
or Fortran program code. Of course, this model category still allows the han
dling of a broad range of optimization problems. The approximately 150-page 
MathOptimizer Professional manual is a "live" (notebook) document that can 
be directly invoked through Mathematica''s on-line help system. In addition 
to basic usage description, the User Guide also discusses a large number of 
simple and more challenging test problems, and several realistic application 
examples in detail. 

As an illustrative example, we will present the solution of a new - and 
rather difficult - object packing model: we wish to find (numerically) the 
"best" non-overlapping arrangement of a set of non-uniform size circles in 
an embedding circle. Notice that this is not a standard model type (unlike 
uniform circle packings that have been studied for decades, yet still only spe
cial cases are solved to guaranteed optimality). Our approach can be directly 
generalized to find essentially arbitrary object arrangements. 

The best packing is defined here by a combination of two criteria: the 
radius of the circumscribed circle, and the average pair-wise distance between 
the centers of the embedded circles. The relative weight of the two objective 
function components can be selected as a model-instance parameter. 

Detailed numerical results are reported in [KP04a], for circles defined by 
the sequence of radii ri — i'^'^.i = 1 , . . . , A/", up to A/" == 40-circle con
figurations. Observe that the required (pair-wise) non-overlapping arrange
ment leads to ^ 2~ non-convex constraints, in addition to 2N + 1 bound 
constraints on the circle center and circumscribed radius decision variables. 
Hence, in the 40-circle example, LGO solves this model with nearly 780 non-
convex constraints: the corresponding runtime is about 3.5 hours on a P4 1.6 
GHz personal computer. 
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As an illustration, the configuration found for the case of Â  = 20 circles 
is displayed in Fig. 4. In this example, equal consideration (weight) is given 
to minimizing the radius of the circumscribed circle and the average distance 
between the circle centers. As the picture shows, the circumscribed radius 
is about 2.2: in fact, the numerical value found is ~2.1874712123. Detailed 
results appeared and will appear in [KP04a] and [KP05], respectively. 

Fig. 4. An illustrative non-uniform circle packing result for N = 20 circles with 
radii ri \i=l,...,N 

Let us also remark that we have attempted to solve instances of the same 
circle packing problem applying the built-in Mathematica function NMinimize 
for nonhnear (global) optimization, but - using it in all of its default solver 
modes - it could not find a solution of acceptable quality already for the 
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case N = 5. Again, this is just a numerical observation, as opposed to an 
"all-purpose" conclusion, to illustrate the quality of the LGO solver suite. We 
have also conducted detailed numerical studies that provide a more systematic 
comparison of global solvers available for use with Mathematica: these results 
will appear in [KP05]. 

Finally, let us mention that MathOptimizer Professional is included in a 
recent peer review of optimization capabilities using Mathematica ([Cog03]). 

4.5 Maple Global Optimization Toolbox 

The integrated computing environment Maple [M04a] enables the develop
ment of sophisticated interactive documents that seamlessly combine technical 
description, calculations, simple and advanced computing, and visualization. 
Maple includes an extensive mathematical library: its more than 3,500 built-in 
functions cover virtually all research areas in the scientific and technical dis
ciplines. Maple also incorporates numerous supporting features and enhance
ments such as e.g. detailed on-line documentation, a built-in mathematical 
dictionary with definitions for more than 5000 mathematical terms, debug
ging tools, automated (ANSI C, Fortran 77, Java, Visual Basic and MATLAB) 
code generation, and document production (including HTML, MathML, TeX, 
and RTF converters). All these capabilities accelerate and expand the scope 
of optimization model development and solution. 

To emphasize the key features pertaining to advanced systems modeling 
and optimization, a concise listing of these capabilities is provided below. 
Maple 

• supports rapid prototyping and model development 
• performance scales well to modeling large, complex problems 
• offers context-specific "point and click" (essentially syntax-free) opera

tions, including various "Assistants" (these are windows and dialogs that 
help to execute various tasks) 

• has an extensive set of built-in mathematical and computational functions 
• has comprehensive symbolic calculation capabilities 
• supports advanced computations with arbitrary numeric precision 
• is fully programmable, thus extendable by adding new functionality 
• has sophisticated visualization and animation tools 
• supports the development of GUIs (by using "Maplets") 
• supports advanced technical documentation, desktop publishing, and pre

sentation 
• provides links to external software products. 

Maple is portable across all major hardware platforms and operating sys
tems (Windows, Macintosh, Linux, and Unix versions). Without going into 
further details that are outside of the scope of the present discussion, we refer 
to the web site www.maplesoft.com that provides a wealth of further topical 
information and product demos. 
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The core of the recently released Global Optimization Toolbox (GOT) is 
a customized implementation of the LGO solver suite for Maple [M04b]. To 
this end, LGO was auto-translated into C code, and then fully integrated 
with Maple. The advantage of this approach is that, in principle, the GOT 
can handle all (thousands) of functions that are defined in Maple, including 
their further extensions. 

As an illustrative example, let us revisit Problem 4 posted by Trefethen 
[Tre02]; recall Fig. 2 from Section 1. We can easily set up this model in Maple: 

> f := exp(s in(50*xl))+sin(60*exp(x2))+sin(70*sin(xl)) 

+sin(s in(80*x2))-s in(10*(xl+x2)) + (xl^2+x2'^2)/4; 

/ : = exp(sin(50xl)) + sin(60exp(x2)) + sin(70sin(xl)) + sin(sin(80x2)) 

- sin(10xl + 10x2) + - x l ^ + -x2'^ 

Now using the bounds [—3,3] for both variables, and applying the Global 
Optimization Toolbox we receive the numerical solution: 

> GlobalSolveCf, x l = - 3 . . 3 , x 2 = - 3 . . 3 , evaluationlimit=100000, 
noimprovementlimit=100000); 

[-3.30686864747523535, [xl = -0.0244030794174338178, 

x2 - 0.210612427162285371]] 

We can compare the optimum estimate found to the corresponding 40-digit 
precision value as stated at the website http://web.comlab.ox.ac.uk/oucl/work 
/nick.trefethen/hundred.html (of Trefethen). The website provides the 40-
digit numerical optimum value 

-3.306868647 4752372800 7611377089 8515657166... 

Hence, the solution found by the Maple GOT (using default precision settings) 
is accurate to 15 digits. 

It is probably just as noteworthy that one can find a reasonably good 
solution even in a much larger variable range, with the same solution eff'ort: 

> GlobalSolveCf, x l=-100. .100, x2=-100..100, eva lua t ion l imi t 
=100000, noimprovementlimit=100000); 

[-3.06433688275856530, [xl - -0.233457978266705634e- 1, 

x2 = .774154819772443825]] 

A partial explanation is that the shape of the objective function f is close 
to quadratic, at least "from a distance". Note at the same time that the built-
in Maple local solver produces much inferior results on the larger region (and 
it also misses the global optimum when using the variable bounds [—3,3], as 
can be expected): 
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> Minimize(f, x l=-100. .100, x2=-100..100); 

[-.713074709310511201, [xl = -0.223022309405313465e- 1, 

x2 = -0.472762143202519123e- 2]] 

The corresponding GOT runtimes are a little more than one second in 
both cases. (Note that all such runtimes are approximate, and may vary a 
bit even between consecutive test runs, depending on the machine's actual 
runtime environment). 

One of the advantages of using ISTCs that one can visuahze models and 
verify their perceived difficulty. Fig. 5 is based on using the Maple Optimiza
tion Plotter dialog, a feature that can be used in conjunction with the GOT: 
it shows the box-constrained Trefethen model [Tre02] in the range [-3,3]^; 
observe also the location of the optimal solution (green dot). 

Fig. 5. Problem 4 in [Tre02] solved and visualized using the Maple GOT 
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5 Further Applications 

For over a decade, LGO has been applied in a variety of professional, as well as 
academic research and educational contexts (in some 20 countries, as of 2004). 
In recent years, LGO has been used to solve models in up to a few thousand 
variables and constraints. The software seems to be particularly well-suited 
to analyze and solve complex, sophisticated applications in advanced engi
neering, biotechnology, econometrics, financial modeling, process industries, 
medical studies, and in various other areas of scientific modeling. 

Without aiming at completeness, let us refer to some recent (published) 
applications and case studies that are related to the following areas: 

• model calibration ([PinOSa]) 
• potential energy models in computational chemistry ([PinOO, PinOlb]), 

([SSPOl]) 
• laser design ([IPC03]) 
• cancer therapy planning ([TKLPL03]) 
• combined finite element modeling and optimization in sonar equipment 

design ([PP03]) 
• Configuration analysis and design ([KP04b]). 

Note additionally that some of the LGO software users develop other 
advanced (but confidential) applications. Articles and numerical examples, 
specifically related to various LGO implementations are available from the 
author upon request. The forthcoming volumes ([KP05]; [Pin05a, Pin05b]) 
also discuss a large variety of GO applications, with extensive further refer
ences. 

6 Conclusions 

In this paper, a review of several nonlinear optimization software products 
has been presented. Following the introduction of the LGO solver suite, we 
have provided a brief review of several currently available implementations for 
use with compiler platforms, spreadsheets, optimization modeling languages, 
and ISTCs. It is our objective to add customized functionality to the existing 
products, and to develop further implementations, in order to meet the needs 
of a broad range of users. 

Global optimization is and will remain a field of extreme numerical diffi
culty, not only when considering "all possible" GO models, but also in prac
tical attempts to handle complex, sizeable problems in an acceptable time
frame. Therefore the discussion advocates a practically motivated approach 
that combines rigorous global optimization strategies with efficient local search 
methodology, in integrated, flexible solver suites. The illustrative - yet non-
trivial - application examples and the numerical results show the practical 
merits of such an approach. 
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We are interested to learn suggestions regarding future development direc
tions. Test problems and challenges - as well as prospective application areas 
- are welcome. 
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Summary. The problem of discriminating between the elements of two finite sets 
of points in n-dimensional space is a fundamental in supervised data classification. 
In practice, it is unlikely for the two sets to be linearly separable. In this paper we 
consider the problem of separating of two finite sets of points by means of piece-
wise linear functions. We prove that if these two sets are disjoint then they can be 
separated by a piecewise linear function and formulate the problem of finding the 
latter function as an optimization problem with an objective function containing 
max-min of linear functions. The diff'erential properties of the objective function are 
studied and an algorithm for its minimization is developed. We present the results 
of numerical experiments with real world data sets. These results demonstrate the 
eflPectiveness of the proposed algorithm for separating two finite sets of points. They 
also demonstrate the effectiveness of an algorithm based on the concept of max-min 
separability for solving supervised data classification problems. 

K e y words: Supervised da ta classification, separability, nonconvex optimiza
tion, nonsmooth optimization. 

1 Introduction 

Supervised da ta classification is an important area in da ta mining. It has 
many applications in science, engineering, medicine etc. The aim of super
vised da ta classification is to establish rules for the classification of some 
observations assuming tha t the classes of da ta are known. To find these 
rules, known training subsets of the given classes are used. During the 
last decades many algorithms have been proposed and studied to solve su
pervised da ta classification problems. One of the promising approaches to 
these problems is based on mathematical programming techniques. This ap
proach has gained a great deal of at tention over last years, see, for exam
ple, [AG02, Bag05, BRSYOl, BRYOO, BRY02, BB97, BB96, BM92, BMOO, 
BFM99, Bur98, CM95, Man94, Man97, Tho02, Vap95]. 
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There are different approaches for solving supervised data classification 
problems based on mathematical programming techniques. In one of them the 
use of mathematical programming techniques is carried out by reducing the 
classification problem to the problem of separation of two finite sets of points 
A and B in n-dimensional space. If co ̂  p | co 5 = 0 then these two sets are 
linearly separable and there exists a hyper plane which separates these two sets. 
Linear programming techniques can be used to construct such a hyper plane. 
If the convex hulls of A and B intersect then linear programming techniques 
can be applied to obtain a hyperplane which minimizes some misclassification 
measure. Algorithms based on such an approach are developed in [BB96, 
BM92, CM95, Man94]. 

The paper [BM93] develops the concept of bihnear separability, where two 
sets are separated using two hyperplanes. The problem of finding of these 
hyperplanes is reduced to a certain bilinear programming problem. The paper 
[BM93] presents an algorithm for solving the latter problem. 

In the paper [AG02] the concept of polyhedral separability was introduced. 
In this paper the case when co A f]B = 0 was considered. The set A is ap
proximated by a polyhedral set. It is proved that the sets A and B are h-
polyhedrally separable for some h < \B\, where |-B| is the cardinality of the 
set B, Thus in this case the sets A and B can be separated by a certain 
piecewise linear function. The authors introduce an error function which is 
nonconvex piecewise linear function. An algorithm for minimizing this func
tion is proposed. The problem of the calculation of the descent direction in 
this algorithm is reduced to a certain linear programming problem. 

The paper [Bag05] introduces the notion of max-min separability where 
two sets are separated by a piecewise linear function. Since any piecewise 
linear function can be represented as a max-min of linear functions we call it 
max-min separability. This approach can be considered as a generalization of 
the linear, bilinear and polyhedral separabilities. 

The problem of max-min separability is reduced to a certain nonsmooth, 
nonconvex optimization problem. The objective function in this problem is 
represented as a sum of functions containing max-min of linear functions and 
it is a locally Lipschitz continuous. However this function is not Clarke regular 
and the calculation of its subgradient is a difficult task. Therefore methods of 
nonsmooth optimization based on subgradient information are not appropri
ate for solving max-min separability problems. 

In this paper we develop an algorithm for solving max-min separability 
problems which uses only values of the objective function. This algorithm cal
culates a descent direction by evaluating the so-called discrete gradient of the 
objective function. The form of the objective function allows to significantly 
reduce the number of its evaluations during the computation of the discrete 
gradient. This is very important because each evaluations of the objective 
function for large data sets is expensive. 

We carried out some numerical experiments using large scale data sets. 
We present their results and discuss them, 
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The structure of this paper is as follows. Section 2 provides some prelim
inaries. In Section 3 the definition and some results related to the max-min 
separability are given. An algorithm for solving max-min separability prob
lems is discussed in Section 4. Results of numerical experiments are presented 
in Section 5. Section 6 concludes the paper. 

2 Preliminaries 

In this section we present a brief review of the concepts of linear, bilinear and 
polyhedral separability. 

2.1 Linear separability 

Let A and B be given sets containing m and p n-dimensional vectors, respec
tively: 

^ = { a \ . . . , a ^ } , a'eW, 2 - l , . . . , m , 

B = {b\..,,b^}, 6^GIR", J = l , . . . , p . 

The sets A and B are linearly separable if there exists a hyperplane {x, ?/}, 
with X G IR"", y eJR^ such that 

1) for any j = 1 , . . . ,m 
(x,a-^) - 2 / < 0, 

2) for any /c = 1 , . . . ,p 
{x,b^)-y>0. 

The sets A and B are linearly separable if and only if co Apjco-B == 0. 
In practice, it is unlikely for the two sets to be linearly separable. Therefore 

it is important to find a hyperplane which minimizes some misclassification 
cost. In the paper [BM92] the problem of finding this hyperplane is formulated 
as the following optimization problem: 

minimize f{x,y) subject to (x,y) G H"'"*"̂  (1) 

where 

^ m ^ p 

f{x,y) = ~ V m a x (O, (x,a^) - y + l) + - V^max (O, -{x,V) + y + l) 
i=l ^ 3~l 

is an error function. Here (•, •) stands for the scalar product in IR"̂ . The authors 
describe an algorithm for solving problem (1). They show that the problem 
(1) is equivalent to the following linear program: 

1 ^ ^ 1 ^ 
minimize 
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subject to 

ti > (x, a') - y H- 1, i = 1 , . . . , m, 

Zj >-{x,V)-{-y-{-l, j = l,...,p, 

t>0, z>0, 
where ti is nonnegative and represents the error for the point a'^ e A and Zj 
is nonnegative and represents the error for the point b^ e B. 

The sets A and B are hnearly separable if and only if /* = /(x*,^*) = 0 
where (x*,y*) is the solution to the problem (1). It is proved that the trivial 
solution X = 0 cannot occur. 

2.2 Bilinear separability 

The concept of bilinear separabihty was introduced in [BM93]. In this ap
proach two sets are separated using two hyperplanes. We again assume that 
A and B are given sets containing m and p n-dimensional vectors, respectively. 

Definition 1. (see [BM93]). The sets A and B are bilinear separable if and 
only if there exist two hyperplanes {x^,yi) and (x^,2/2) such that at least one 
of the following conditions holds: 

1. For any j = 1 , . . . , m 

( x ^ a ^ • ) - y i < 0 , / - l , 2 

and for any fc = 1 , . . . ,p there exists I G {1,2} such that 

{x',b^)-yi>0, 

2. For any A; = 1 , . . . , p 

{x\b^)-yi<0, 1 = 1,2 

and for any j = 1 , . . . , m there exists / G {1,2} such that 

{x\a^)-yi > 0 . 

3. For any j = 1 , . . . , m either 

{x\a^)-yi<0, / = l ,2 

or 
( -x^a^• )^-y /<0 , / = 1,2 

and for any A: — 1 , . . . , p either 

{x\b^)-yi<0, {-x^,b'')+y2<0 

or 

{-x\b'')+yi<0, {a:^&'=)-2/2>0. 
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We reformulate Definition 1 using max and min statements. 

Definition 2. The sets A andB are bilinear separable if and only if there exist 
two hyperplanes (x^^yi) and (0:̂ ,2/2) such that at least one of the following 
conditions holds: 

1. For any j == 1 , . . . ,m 

max{(x^,a-^) — yi} < 0 

and for any k = 1,... ^p 

max{(x^6^) - yi} > 0. 

2. For any fc = 1 , . . . ,p 
max{{x\b'')-yi}<0 

and for any j = 1 , . . . , m 

max{(x^,a"^) — yi} > 0. 

3. For any j — 1 , . . . ,m, 

max[min{(x\a-^) -yi,-{x^,a^) + y2},niin{-(x\a^) + y 1, (x^,a-^) -7/2}] 

< 0 

and for any /c = 1 , . . . ,p, 

max [min{(x\ 6 )̂ - 2/1,-(x^ 6 )̂ + 2/2},min{-{x\ 6 )̂ + yi, (x^ 6 )̂ - ^2}] 
> 0 . 

The problem of bilinear separability is reduced to a certain bilinear pro
gramming problem and the paper [BM93] presents an algorithm for its solu
tion. 

2.3 Polyhedral separability 

The concept of /i-polyhedral separability was developed in [AG02]. The sets 
A and B are /i-polyhedrally separable if there exists a set of h hyperplanes 
{x\yi}, with 

x' eWC, yi G I R \ i = l , . . . , / i 

such that 

1) for any j = 1 , . . . , m and i = 1 , . . . , /i 

{x\a^)-yi < 0 , 
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2) for any A; = 1 , . . . ,p there exists at least one i G { 1 , . . . , /i} such that 

{x\b^)-yi>0, 

It is proved in [AG02] that the sets A and B are /i-polyhedrally separable, for 
some h < p ii and only if 

co^Pl^-0. 
Figure 1 presents one example of polyhedral separability. 
The problem of polyhedral separability of the sets A and B is reduced to 

the following problem: 

minimize f{x,y) subject to (x,2/) G IR^"'^^^''^ (2) 

where 
^ 771 

max 
m . 

0, max {{x\a^) -yi + l} 
l<i<h + 

1 " p 

max 0 min {-{x\b^)^yi + l} 

is an error function. Note that this function is a nonconvex piecewise linear 
function. It is proved that x* = 0, i = 1,... ,h cannot be the optimal solution. 
Let {x^ 5^}, f = 1 , . . . , /i be a global solution to the problem (2). The sets A 
and B are /i-polyhedrally separable if and only if / (x , y) == 0. If there exists a 
nonempty set 7 C { 1 , . . . , /i} such that x^ = 0, i e I, then the sets A and B are 
{h — |J|)-polyhedrally separable. In [AG02] an algorithm for solving problem 
(2) is developed. The calculation of the descent direction at each iteration of 
this algorithm is reduced to a certain linear programming problem. 

The advantage of this technique is that it does not restrict the search 
to only a convex polyhedron, and thus allows both the sets A and B to be 
nonconvex. One disadvantage, however, is that it only considers the sets sep
arately. 

3 Max-min separability 

In many practical applications two sets are not linearly, bilinearly or poly-
hedrally separable. Figure 2 presents one such case. In this case two sets are 
separable with more complicated piecewise linear function. 

In this section we describe the concept of max-min separability and introduce 
an error function (see [Bag05]). 
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Fig. 1. Polyhedral separability. 

Fig. 2. The sets A and B are separated by a piecewise linear function. 

3.1 Def in i t ion and proper t i e s 

Let H = {hi,..., hi}, where hj = {x^ ,yj}, j = 1,... J with x^ G IR^, Vj G 
I R \ be a finite set of hyperplanes. Let J = {1 , / } . Consider any parti t ion 
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of this set J^ = {Ji^ •'' iJr} such that 

J ; t^0 , A: - l , . . . , r , Jkf]jj=^, \JJk = J^ 
k=i 

Let / == { l , . . . , r } . A particular partition J'^ = { J i , . . . , J ^ } of the set J 
defines the following max-min-type function: 

(p{z) — max min [{r?,z) — Vj} , z G IR^. (3) 

In Figure 3 two sets are max-min separable. 

Let A,B (ZM^ be given disjoint sets, that is ^ f| 5 = 0. 

Definition 3. The sets A and B are max-min separable if there exist a finite 
number of hyperplanes {x^^yj} with x^ G IR'̂ , yj G I R \ j G J = {1 , . . . , / } 
and a partition J^ = {Ji^... ,Jr} of the set J such that 

1) for all i e I and a E A 

min {{x^ ,a) — yA < 0; 

2) for any b e B there exists at least one i e I such that 

min {{x^ ^b) —yj] > 0. 

Remark 1, It follows from Definition 3 that if the sets A and B are max-min 
separable then (p{a) < 0 for any a E A and (p{b) > 0 for any b e B^ where the 
function (p is defined by (3). Thus the sets A and B can be separated by a 
function represented as a max-min of linear functions. Therefore this kind of 
separability is called a max-min separability. 

Remark 2. Linear and polyhedral separability can be considered as particular 
cases of the max-min separability. If / = {1} and Ji = {1} then we have the 
linear separability and if / = { 1 , . . . , /i} and Ji = {i}, i E I we obtain the 
/i-polyhedral separability. 

Remark 3. Bilinear separability can also be considered as particular case of the 
max-min separability. It follows from Definition 2 that the bilinear separability 
of two sets A and B coincides with one of the following cases: 

1. The sets A and B are 2-polyhedrally separable and co^Q-B — 0; 
2. The sets A and B are 2-polyhedrally separable and c o 5 Q ^ = 0; 
3. The sets A and B are max-min separable with the following hyperplanes: 

{ (x \ 2/i), ( - x \ - y i ) , (x^, 2/2), {-x^, - ^ 2 } . 

In this case / = {1,2} and Ji = {1,4}, J2 ^ {2,3}. Thus the bilinear 
separable sets are also max-min separable. 
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Fig. 3. Max-min separability. 

Proposition 1. (see [Bag05]). The sets A and B are max-min separable if 
and only if there exists a set of hyperplanes {x^^yj} with x^ G IR'̂ , yj G 
IR^, j E J and a partition J'^ = {Ji^..., Jr} of the set J such that 

1) for any i E I and a e A 

min{(x^a) - yj} < - 1 ; 

2) for any b G B there exists at least one i E I such that 

min {{x^,b)-yj} > 1. 

Proof Sufficiency is straightforward. 
Necessity. Since A and B are max-min separable there exists a set of hyper
planes {x^,yj} with x^ G IR"̂ , yj G I R \ j G J, a partition J^ of the set J and 
numbers (Ji > 0, S2 > 0 such that 

maxmaxmin Ux^,a) — Vn] = —Si 

and 
minmaxmin {{x^^b) — yj\ = S2. 

We put 6 — min{5i, (̂ 2} > 0. Then we have 

max min I (̂ -̂ , a) —yA < —5, Va G A, (4) 
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maxmin {(x-^, 6) - yj} > S, \/b e B. (5) 

We consider the new set of hyper planes {x^ ,yj} with x^ G IR^, yj G IR , j G 
J, defined as follows: 

x^ — x^ /S, j G J, 

y^ =y^/5, j G J. 

Then it follows from (4) and (5) that 

max min {(x- ,̂ a) — T/J } < — 1, Va e A, 

max min {{x^ ,b) — y^} > 1, Mb ^ B^ 
iei jeJi 

which completes the proof. D 

Proposition 2. (see [Bag05]). The sets A and B are max-min separable if 
and only if there exists a piecewise linear function separating them. 

Proof Since max-min of linear functions is piecewise linear function the ne
cessity is straightforward. 
Sufficiency. It is known that any piecewise Hnear function can be represented 
as a max-min of linear functions of the form (3) (see [BKS95]). Then we get 
that there exists max-min of linear functions that separates the sets A and B 
which in its turn means that these sets are max-min separable. D 

Remark 4- It follows from Proposition (2) that the notions of max-min and 
piecewise linear separability are equivalent. 

Proposition 3. (see [Bag05]). Assume that the set A can be represented as 
a union of sets Ai, i = 1,... ,q : 

A=\jAi 
i=l 

and for any i = 1,... ^q 

^p|co^^-0. (6) 

Then the sets A and B are max-min separable. 

Proof It follows from (6) that b ^ coAi for all b e B and i G { l , . . . , g } . 
Then, for each b e B and i G { 1 , . . . , g} there exists a hyperplane {x'^{b),yi{b)} 
separating b from the set co Ai, that is 

{x'{b),b)-yi{b)>0, 
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{x\b),a) -yi(b) < 0, Va 6 coA^, i = 1 , . . . ,g. 

Then we have 
min {{x\h),b)-yi{b)]>^ 

1=1,...,q 

and 
min {(x'(6),a)-?/i(6)} < 0, "ia e A. 

i=l,...,q ^ 

Thus we obtain that for any b^ G JB, j = 1 , . . . ,p there exists a set of q 
hyperplanes {x'^{b^),yi{b^)}, i = 1,,.. ,q such that 

min {{x\b^),b^)-yi{b^)}>0 (7) 
1=1,.. . ,g 

and 
min {{x\V),a)-yi{V)} <0, Va G A (8) 

i=l,...,q 

Consequently we have pq hyperplanes 

{x\b^),yi{b^)} , i - l , . . . , g , j = l , . . . , p . 

The set of these hyperplanes can be rewritten as follows: 

H = {hi,..., / i j , /ii+o-i)g = {x\b^),yi{b^)} , 

i = l,..,,q, j = l,..,,p, l=pq. 

Let J = { 1 , . . . , / } , / = {!,... ,p} and 

^i+O-i). ^ ^^(5.•)^ y^+0-1), - ?/i(6^), i - 1,...,g, j - 1 , . . . ,p. 

Consider the following partition of the set J: 

J ^ - { J i , . . . , J p } , Jk = {{k-l)q + l,,,,,kq}, k = l,...,p. 

It follows from (7) and (8) that for all A: G / and a e A 

min {{x^,a) — yj] < 0 

and for any b ̂  B there exists at least one A: G / such that 

min {{x^ ,b) — yA > 0 

which means that the sets A and B are max-min separable. D 

Corollary 1. (see [Bag05]). The sets A and B are max-min separable if and 
only if they are disjoint: ^ p | B = 0. 

Proof. Necessity is straightforward. 
Sufficiency. The set A can be represented as a union of its own points. Since 
the sets A and B are disjoint the condition (6) is satisfied. Then the proof of 
the corollary follows from Proposition 3. D 
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In the next proposition we show that in most cases the number of hyper-
lanes necessary for the max-min separation of the sets A and B is hmited. 

Proposition 4. (see [Bag05]). Assume that the set A can be represented as a 
union of sets Ai, i = 1^... ,q and the set B as a union of sets Bj, j = 1 , . . . , rf 
such that 

q d 

A=\jAu B=[JB^ 
i=i j=\ 

and 
coAiC\coBj=^ for alH = 1,...,g, j = 1,...,ci. (9) 

Then the number of hyperplanes necessary for the separation of the sets A and 
B is at most q • d. 

Proof Let i G { l , . . . , g } and j G { l , . . . , ( i} be any fixed indices. Since 
CO Ai PI CO Bj = 0 there exists a hyperplane {x̂ -̂ , y^j} with x'^^ G IR^, yij G IR^ 
such that 

(x'- '̂, a) - yij < 0 Va G CO ^ i 

and 
{x'^,b)-yij>0 ybe CO Bj. 

Consequently for any j G {1,... ,d} there exists a set of hyperplanes {x'^^, yij}^ 
i — 1^.., ,q such that 

. min {x'^,b) - yij > 0, V6 G Bj (10) 
i—l,...,q 

and 
min (x'-^",a) - yij < 0, Va G A. (11) 

Thus we get a system oil — dq hyperplanes: 

H = {h^,...M} 

where /i^+Q_i)g = {x'^ ,yij] , z = l , . . . , g , j -- 1 , . . . ,Gf. Let J = { 1 , . . . , / } , 
/ = { 1 , . . . , 6/} and 

Consider the following partition of the set J: 

J ^ - { J i , . . . , J 4 , Jk = {{k-l)q-^l,..,M}. k = l,..,,d. 

It follows from (10) and (11) that for all /c G / and a e A 

min I(x^,a) — Vj] < 0 
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and for any b e B there exists at least one k e I such that 

min{(x^6) - yj} > 0, 

that is the sets A and B are max-min separable with at most ^-rf hyper planes. 
D 

Remark 5. The only cases where the number of hyperplanes necessary is large 
are when the sets Ai and Bj contain a very small number of points. This 
situation appears only in the particular case where the distribution of the 
points is like a " chessboard". 

3.2 Error function 

Given any set of hyperplanes {x^ ,yj}, j e J = {1^... J} with x^ G IR^, yj G 
IR^ and a partition J^ = {^i, • • •, Jr} of the set J, we say that a point a G A 
is well separated from the set B if the following condition is satisfied: 

max min {{x^, a) — ?/j } + 1 < 0. 
it-/ J^Ji 

Then we can define the separation error for a point a G ̂  as follows: 

max 0, max min {{x^, a) — yj + 1} (12) 

Analogously, a point h £ B \s said to be well separated from the set A if 
the following condition is satisfied: 

minmax{ —(a;-̂ ,6) -\-yj] + 1 < 0. 

Then the separation error for a point h G B can be written as 

p , m i n m a x { - ( x ^ 6 ) + t / j + 1} . (13) max 

Thus, an averaged error function can be defined as 

f{x,y) = ( l / m ) y ^ m a x 0,maxmin {{x^,a^) — yj + l } 

+(Vp)X^max 
t=i 

0, min max { — {x^, 6*) + yj + 1} (14) 

where X ^ ( x \ . . . , x O G IR^ "̂", y = (yi , . . . ,y / ) G IR^ It is clear t ha t / (x ,y ) > 
Ixn Ofor allxGlR^' ' ' ' and y G IR\ 
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Proposition 5. (see [Bag05]). The sets A and B are max-min separable if 
and only if there exists a set of hyperplanes {x^ ^yj},j G J = {1 , . . . , / } and a 
partition J^ = { J i , . . . , Jr} of the set J such that f{x,y) = 0. 

Proof Necessity. Assume that the sets A and B are max-min separable. Then 
it follows from Proposition 1 that there exists a set of hyperplanes {x^,yj},j G 
J and a partition J^ = {Ji^ - • - ,Jr} of the set J such that 

min{(x^a) - yA < - 1 , Va G A, i G / = { 1 , . . . , r} (15) 

and for any b e B there exists at least one t E I such that 

xmn{{x^b}-yj}>l. (16) 
J&Jt 

Consequently we have 

maxmin{(x-^,a) — y.- + 1} < 0, \fa E A, 
iel jGJi 

minmax{-(x-^',6)+2;j+ 1} < 0, MbeB, 
iei jeJi 

Then from the definition of the error function we obtain that f{x,y) = 0. 

Sufficiency. Assume that there exist a set of hyperplanes {x^,yj},j E J — 
{ 1 , . . . , /} and a partition J'^ — { J i , . . . , Jr} of the set J such that / (x , y) = 0. 
Then from the definition of the error function / we immediately get that the 
inequalities (15) and (16) are satisfied, that is the sets A and B are max-min 
separable. D 

Proposition 6. (see [Bag05]). Assume that the sets A and B are max-min 
separable with a set of hyperplanes {x-̂ , y^}, j G J = { 1 , . . . , /} and a partition 
J^ — {Ji^ • • • ? Jr] of the set J. Then 

1) x^ ==0, j E J cannot be an optimal solution; 
2) if 

(a) for any t e I there exists at least one b e B such that 

max{ —(x-̂ ,6) +yj + 1} = minmax{ — (x-^,6) + yj + l } , (17) 

(b) there exists J = {Ji, • . . , Jr} such that Jt C Jt, Vt G / , Jt is nonempty 
at least for one t E I and x^ = 0 for any j E Jt^ t E I, 

Then the sets A and B are max-min separable with a set of hyperplanes 
{x^,yj},j G J^ and a partition J = { J i , . . . , Jr} of the set J^ where 

r 

Jt = Jt\Jt, tGl and J° = U Ji. 
i=l 



Supervised Data Classification via Max-min Separability 189 

Proof. 1) Since the sets A and B are max-min separable we get from Propo
sition 5 t ha t f{x,y) = 0. If x^ = 0, j e J then it follows from (14) tha t for 
any y elR^ 

f{0,y) = ( l / m ) ^ m a x 

k=i 

0,maxmin{—yj + 1} 
iei jeJi 

-(i/p)E max 
t=i 

0,minmax{v7 + 1} 
iei jeJi ^^ ^ 

We denote 

Then we have 

Thus 

It is clear tha t 

R = maxminj—Vi). 
iei jeJi -^^ 

m i n m a x v i — — max mini—V7} — —R. 
iei jeJi -^ iei jeJi -^^ 

/ (O, y) = max [0, i^ + 1] + max [0, -R+l\. 

max [0, i? + 1] + max [0, - i ? + 1] = < 

-R+l \{R<-1, 

2 if - 1 < J R < 1 , 

R+l i f i ? > l . 

Thus for any y eM^ 
/ ( 0 , y ) > 2 . 

On the other side f{x,y) = 0 for the optimal solution (a:,y), t ha t is x^ 
0, j G J cannot be the optimal solution. 

2) Consider the following sets: 

I^ = {ieI:Jiy^ 0}, 

It is clear tha t Ji == 0 for any i e I^ \I^ and J^ = 0 for any i e P \ P. 
It follows from the definition of the error function tha t 

0 = f{x,y) = — y ^ m a x p , m a x m i n {(x-^,a^) — yj -\-1} 
Tit I iei jeJi 

k=i 

1 ^ 
max 

t=i 

0, min max { — (x-^, h^) + T/̂  + 1} 
%ei- jej% 

Since the function / is nonnegative we obtain 
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maxmin{(x-^,a) - yj + l } < 0, ^a e A, (18) 
iei jeJi 

minmax{- (a ;^6 )+y j + l } < 0, \/beB, (19) 

It follows from (17) and (19) that for any i e P there exists a point b e B 
such that 

m a x { - ( x ^ 6 ) + y ^ - f l } < 0. (20) 

Hi e P C P then we have 

0 > max { —(x-̂ , 6) + ŷ  + l } = max < max { — {x^, 6) + ?/j + 1} , max {yj + 1} > 

which means that 
m a _ x { - ( x ^ 6 ) + % - f l } < 0 (21) 

and 
max{2/j+1} < 0. (22) 
jeJi 

Ifi e P\P then from (20) we obtain 

0 > max{ —(x-̂ , &) H-^j + 1} = maxjy^ + 1} . 

Thus we get that for all i e P the inequality (22) is true. (22) can be rewritten 
as follows: 

msixyj < - 1 , Vi e P. (23) 
jeJi 

Consequently for any i E P 

min {-yj + 1} = - max^/j -h 1 > 2. (24) 
jeJi jGJi 

It follows from (18) that for any i e I and a e A 

min{(x^a) -2/j + l } < 0. (25) 

Then for any i e P we have 

0 > min {{x^, a) — ŷ  + 1} = min < min {{x^, a) — ŷ  + 1} , min {—yj + l}> . 
J^'Ji [jeJi jeJi J 

Taking into account (24) we get that for any i G P and a e A 

min{(x^a) - yj + l} < 0. (26) 
jeJi 

liieP\P then it follows from (25) that 
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mm{-yj + l} < 0 
jeJi 

which contradicts (24). Thus we obtain that P\I^ ^^ cannot occur, P C P 
and P = P. It is clear that Ji = Ji for any i e P \P. Then it follows from 
(18) that for any i e P\P and a e A 

min{(x^a) - % + l} < 0. (27) 

Prom (26) and (27) we can conclude that for any i E I and a E A 

mm{{x^,a)-yj + l} < 0. (28) 
jeJi 

It follows from (19) that for any b G B there exists at least one i E I 

mdix{-{x^,b) +yj + l } < 0. 

Then from expression 

Lax { — {x^ J &) + 2/j + 1} = max < max { — {x^, &) + ŷ  + 1} , max {yj + 1} ^ 

we get that for any b e B there exists at least one i e I such that 

ma_x{-(x^6)+?/jH-l} < 0. (29) 
jeJi 

Thus it follows from (28) and (29) that the sets A and B are max-min sepa
rable with the set of hyperplanes {x-̂ , y^}, j G P and a partition J of the set 
P, D 

Remark 6. In most cases, if a given set of hyperplanes with a particular par
tition separates the sets A and JB, then there are other sets of hyperplanes 
with the same partition which will also separate the sets A and B (see Figure 
4). The error function (14) is nonconvex and if the sets A and B are max-min 
separable, then the global minimum of this function f{x*,y^) — 0 and the 
global minimizer is not unique. 

4 Minimization of the error function 

In this section we discuss an algorithm for minimization of the error function. 

max < 
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. .o'< 0̂  
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Fig. 4. Max-min separability. 

4.1 Statement of problem 

The problem of the max-min separability is reduced to the following mathe
matical programming problem: 

minimize f{x,y) subject to (x,y) G K '̂'"^^^^^ 

where the objective function / has the following form: 

f{x,y) = fi{x,y)-\-f2{x,y) 

and 
^ m r 

/ i {x, y) = — / max 0, max min {{x^, a^) — y. + 1} 
m k=l 

p 1 1 
f2(x.y) = - > max O.min max { — (x^.b^) -\-yj -\-l\ 

(30) 

(31) 

(32) 

The problem (30) is a global optimization problem. However, the number 
of variables in this problem is large and the global optimization methods 
cannot be directly applied to solve it. Therefore we will discuss algorithms for 
finding local minima of the function / . 
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The function / i contains the follov^ing max-min functions: 

y^ik{x,y) = mdiX min {{x^,a^)-yj+ l] , fc = l , . . . , m 

and the function /2 contains the following min-max functions: 

(P2t{x,y) =min max{-(x^6*) + y^-+ 1} , t = l,...,p. 

4.2 Differential properties of the objective function 

Both functions / i and /2 are nonsmooth, nonconvex piecewise linear. These 
functions contain some max-min-type functions. The functions / i and /2 and 
consequently, the function / are locally Lipschitz continuous. We will recall 
some definitions from nonsmooth analysis. 

We consider a locally Lipschitz function ip defined on IR". This function 
is diff"erentiable almost everywhere and one can define for it a Clarke subdif-
ferential (see [Cla83]), by 

d(p{x) 

= co{v eJRJ^ : 3{x^ e D{ip),x^ —> x,k —> +oo) :v= lim V(^(x^)}, 
k >-j-oo 

here D{(p) denotes the set where (p is diff'erentiable, co denotes the convex 
hull of a set. 

The function cp is differentiable at the point x G IR^ with respect to the 
direction g G IR" if the limit 

LD (x, q) = l im - ^ —^ 

exists. The number ^'{x^g) is said to be the derivative of the function (p with 
respect to the direction g G IR^ at the point x, 

The Clarke upper derivative cp^{x,g) of the function (p at the point x with 
respect to the direction g G IR^ is defined as follows: 

^^x,g)= limsup ^(y + ^9)-^{y)_ 

The following is true (see [Cla83]) 

(p^{x,g) = m^x{{v,g) : v G d(p{x)}. 

It should be noted that the Clarke upper derivative always exists for locally 
Lipschitz continuous functions. The function (p is said to be Clarke regular at 
the point x G IR"" if 

(p'{x,g) =(p^{x,g) 
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for all g G IR^. For Clarke regular functions there exists a calculus (see [Cla83, 
DR95]). However in general for non-regular functions such a calculus does not 
exist. 

The function C/P is called semismooth at x G H^, if it is locally Lipschitz 
continuous at x and for every g G IR'̂ , the limit 

lim {v,g) 
ved^(x-htg'),g'-^g,t~^+0 

exists (see [Mif77]). 
Let us return to the objective function / of problem (30). Since this func

tion is locally Lipschitz continuous it is Clarke subdifferentiable. 

Proposition 7. The function f is semismooth. 

Proof. The sum, the maximum and the minimum of semismooth functions are 
semismooth (see [Mif77]). A linear function, as a smooth function, is semi-
smooth. Thus the function / which is the sum of functions represented as the 
maximum of 0 and max-min of linear functions, is semismooth. D 

The properties of max-min type functions were studied, for example, in 
[DDM02, Pol97]. Max-min-type functions in general are not Clarke regular. 

Example 1. Consider the function 

(^{x) = max {min{3a;i + X2, 2xi + 3a;2}, min{xi + 2^2, ^xi + 4x2}} • 

The Clarke subdifferential of this function at the point x = (0,0) is 

9^(x)=co{(3 , l ) , (2 ,3) , ( l ,2 ) , (4 ,4)} . 

Then the Clarke upper derivative (p^{x,g^) of the function (f at the point 
X = (0,0) with respect to the direction g^ — (0,1) is 

(^°(x,^°) - max{(^,^o^ : v G d^{x)} = 4. 

However, the directional derivative of this function with respect to the direc
tion g^ = (0,1) is ip\x^g) = 2 that is (p^x^g^) < cp^{x^g^). Thus the function 
(p is not Clarke regular. 

Since the function / contains max-min of linear functions this function is 
not Clarke regular apart from linear separability. Therefore, subgradients of 
the function / cannot be calculated using subgradients of the involved max-
min-type functions. We can conclude that the calculation of the subgradients 
of the function / is a very difficult task and therefore the application of meth
ods of nonsmooth optimization requiring a subgradient evaluation at each 
iteration, including bundle method and its variations([HL93, Kiw85, MN92]), 
cannot be effective. 
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In the paper [KP98] optimization problems with twice continuously dif-
ferentiable objective functions and max-min constraints were considered and 
these problems were converted to problems with smooth objective and con
straint functions. However, this approach cannot be applied to the problem 
(30), because the function / contains not only max-min-type functions but 
also min-max-type functions. 

Since the evaluation of subgradients of the function / is difficult, direct 
search methods of optimization seem to be the best option for solving problem 
(30). Among such methods we mention here two widely used methods: Pow
ell's method (see [Pow02]) which is based on a quadratic approximation of the 
objective function and Nelder-Mead's simplex method [NM65]. As was men
tioned in [Pow02] Powell's method performs well when the number of variables 
is less than 20. For the simplex method this number is even smaller. Moreover, 
both methods are effective when the objective function is smooth. However, in 
the max-min separabiHty problem the number of variables is riy = {n-\-l) x I 
where n is the dimension of the sets A and B (ranging from 5 to thousands in 
real world datasets), and / is the number of separating hyperplanes. In many 
cases the number riy is greater than 20. Furthermore, the objective function 
in this problem is a quite complicated nonsmooth function. 

In this paper we use the discrete gradient method to solve the problem 
(30). The description of this method can be found in [Bag99a, Bag99b] (see, 
also, [Bag02]). The discrete gradient method can be considered as a version 
of the bundle method ([HL93, Kiw85, MN92]), where subgradients of the 
objective function are replaced by its discrete gradients. 

The discrete gradient method uses only values of the objective function. 
It should be noted that the calculation of the objective function in the prob
lem (30) can be expensive. We will show that the use of the discrete gradient 
method allow to significantly reduce the number of objective function evalu
ations. 

4.3 Discrete gradient method 

In this subsection we will briefly describe the discrete gradient method. We 
start with the definition of the discrete gradient. 

Definition of the discrete gradient 

Let / be a locally Lipschitz continuous function defined on IR^. Let 

S, = {geJR'': \\g\\ = 1}, 

G = {e^JR"^ : e= ( e i , . . . ,en), le l̂ = 1, j == l , . . . , n } , 

P = {z{X) : z{X) G M\ Z{X) > 0, A > 0, X'^iX) -^ 0, A -^ 0}, 

/ ( ^ , a ) - {i G { l , . . . , n } : \gi\>a}, 

where a G (0,n~^/^] is a fixed number. 
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Here ^i is the unit sphere, G is the set of vertices of the unit hyper cube 
in H^ and P is the set of univariate positive infinitesimal functions. 

We define operators Hi : IR'̂  -^ IR^ for z = 1 , . . . , n, j = 0 , . . . , n by the 
formula 

^ , ^ [ ( . . . . . , , , , 0 . . ,0) i f , < i , (33^ 

[(^i , . . . ,^i_i ,0,^i+i , . . . ,5f^- ,0, . . . ,0) if J > I. 

We can see that 

' ' \ 0 i f j = i 

Let e{f3) = {/3ei,p'^e2,... ,/?''en), where /? G (0,1]. For xemJ'we consider 
vectors 

xi = xi(g,e,z,X,0) = x + Xg - ^(A)/?/e(/?), (35) 

where g E Si, e e G, i e I{g, a) , z e P, A > 0, j = 0 , . . . , n, j y^ i. 
It follows from (34) that 

^j-i _^j ^ f(0, . . . ,0,2(A)e,(/?) ,0, . . . ,0) if j - l , . . . , n , j V ^ , /3gx 
^' ^' [ 0 ifi = ̂ . 

It is clear that H^g = 0 and x^{g, e, z, A, /?) = x + A^ for all i G / (^ , a) . 

Definition 4. (̂ see [BG95]) The discrete gradient of the function f at the 
point X G IR"" is the vector r\x,g,e,z,X,(3) = ( r / , . . . , r ^ ) G IR"",^ G 5 i , i G 
I{g,a), with the following coordinates: 

r ; = [ziX)ejm-' [f{xi-\g,e,z,X,(3)) - f{xi{g,e,z,X,P)) 

j = l,...,n,j ^i, 

rt = (Xgi l - l f(x^ig,e,z,X,(3))-f{x)- ^ qiXgj - ziX)ejm 

A more detailed description of the discrete gradient and examples can be 
found in [Bag99b]. 

Remark 7. It follows from Definition 4 that for the calculation of the discrete 
gradient /"^(x, ̂ , e, z, A, /?), z G I{g,a) we define a sequence of points 

0 i~l i-\-l n 

For the calculation of the discrete gradient it is sufficient to evaluate the 
function / at each point of this sequence. 
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Remark 8. The discrete gradient is defined with respect to a given direction 
g ^ Si. We can see that for the calculation of one discrete gradient we have 
to calculate (n + 1) values of the function / : at the point x and at the points 
x](^, e, 2;, A, /?), j = 0 , . . . , n, j j^ i. For the calculation of the next discrete 
gradient at the same point with respect to any other direction g^ e Si we 
have to calculate this function n times, because we have already calculated / 
at the point x. 

Calculation of the discrete gradients of the objective function (30) 

Now let us return to the objective function / of the problem (30). This function 
depends on (n + 1)/ variables where / is the number of hyperplanes. The 
function / i contains max-min functions (pik 

(pik{x,y) =m^x mm^ijk{x,y), k = l,...,m 
iei jeJi 

where 
i^ijk{x,y) = (x^a^) -Vj + 1, j G Ji, i e I. 

We can see that for every A: = 1 , . . . , m, each pair of variables {x^^Vj} appears 
in only one function ipijk-

For a given i = 1 , . . . , (n + 1)/ we set 

Qi = 
i-1 
n + l 

+ 1, di==i-{qi-l){n + l) 

where [u\ stands for the floor of a number u. We define by X the vector of 
all variables {x-^,T/J}, j = 1 , . . . , /: 

X = (Xi, X2, . . . , X(^ri-\-l)l) 

where 
^_ ^ ix% if 1 < d, < n, 

[Vg. if di = n-\-l. 

We use the vector of variables X to define a sequence 

as in Remark 7. It follows from (36) that the points Xl~^ and XI diSei by one 
coordinate only. This coordinate appears in only one linear function ipiq^k- It 
follows from the definition of the operator H^ that X | = X*~^ and thus this 
observation is also true for X^'^^. Then we get 

Moreover the function ipiq^k can be calculated at the point X^ using the value 
i-
t of this function at the point XI ,̂ i > 1: 
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, .yi^ /V'i<,.fc(^r')-^(A)aS,e,(/3) if 1 < d̂  < n, 
^uM^t) - | ^ ^ ^ ^ , ( x ; - i ) + z{X)e,{P) if d, = n + 1 ^"^ 

In order to calculate the function / i at the point XI ^ i > 1 first we have 
to calculate the values of the functions i^iq^k for all a'̂  G A^k = l , . . . , m 
using (37). Then we update / i using these values and the values of all other 
hnear functions at the point Xl~^ according to (31). Thus we have to apply 
a full calculation of the function / i using the formula(31) only at the point 
X^^X + Xg. 

Since the function /2 has a similar structure as / i we can calculate it in 
the same manner using a formula similar to (37). 

Thus for the calculation of each discrete gradient we have to apply a full 
calculation of the objective function / only at the point X^ = X-hXg and this 
function can be updated at the points XI^ i > I using a simplified scheme. 

We can conclude that for the calculation of the discrete gradient at a point 
X with respect to the direction g^ G Si we calculate the function / at two 
points: X and X^ = X -\- Xg^. For the calculation of another discrete gradient 
at the same point X with respect to any other direction g^ e Si we calculate 
the function / only at the point: X -\- Xg^. 

Since the number of variables {n -\- 1)1 in the problem (30) can be large 
this algorithm allows to significantly reduce the number of objective function 
evaluations during the calculation of a discrete gradient. 

On the other hand the function / i contains max-min-type functions and 
their computation can be simplified using an algorithm proposed in [Evt72]. 
The function /2 contains min-max-type functions and a similar algorithm can 
be used for their calculation. 

Results of numerical experiments show that the use of these algorithms 
allows one to significantly accelerate the computation of the objective function 
/ and its discrete gradients. 

Discrete gradient method 

We consider the following unconstrained minimization problem: 

minimize (p{x) subject to x G IR'̂  (38) 

where the function (p is assumed to be semismooth. We consider the following 
algorithm for solving this problem. An important step in this algorithm is 
the calculation of a descent direction of the objective function (p. So first, we 
describe an algorithm for the computation of this descent direction. 

Let 2: G P, A > 0,/? G (0,1], the number c G (0,1) and a small enough 
number 5 > 0 be given. 

Algorithm 1. An algorithm for the computation of the descent direction. 
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Step 1. Choose any g^ e Si,e e G,i e I{g^,a) and compute a discrete 
gradient v^ = r'^{x,g^,e,z,X,p). Set Di{x) — {v^} and k = 1. 

Step 2. Calculate the vector ||tx;'̂ || = min{||K;|| : w G Dk{x)}. If 

\\w^\\<S, (39) 

then stop. Otherwise go to Step 3. 

Step 3. Calculate the search direction by g^'^^ = —\\w^\\~'^w^. 
Step 4. If 

ip{x + A/+1) - ip{x) < -cA||ti;^||, (40) 

then stop. Otherwise go to Step 5. 

Step 5. Calculate a discrete gradient 

v'^+^ = rix,g>'+\e,z,X,P), i G Hg'^Kcx), 

construct the set Dk-^i{x) = co{Dk{x)[j{v^^^}}, set k = k -\- 1 and go to 
Step 2. 

Algorithm 1 contains some steps which deserve some explanations. In Step 
1 we calculate the first discrete gradient. The distance between the convex hull 
of all calculated discrete gradients and the origin is calculated in Step 2. If 
this distance is less than the tolerance 6 > 0 then we accept the point x 
as an approximate stationary point (Step 2), otherwise we calculate another 
search direction in Step 3. In Step 4 we check whether this direction is a 
descent direction. If it is we stop and the descent direction has been calculated, 
otherwise we calculate another discrete gradient with respect to this direction 
in Step 5 and add it to the set D^. 

It is proved that Algorithm 1 is terminating (see [Bag99a, Bag99b]). 

Let numbers ci G (0,1),C2 G (0,ci] be given. 

Algorithm 2. Discrete gradient method 

Step 1. Choose any starting point x^ G IR^ and set fc = 0. 

Step 2. Set 5 = 0 and x^^ = x^. 

Step 3. Apply Algorithm 1 for the calculation of the descent direction at 
x = x^,6 = Sk^z = Zk^X = Xk^P = Pk^c — c\. This algorithm terminates 
after a finite number of iterations m > 0. As a result we get the set ^^(Xg) 
and an element f J such that 

|K^ | |=mm{| | t ; | | : «e :D„(x^)} . 

Furthermore either ||t'J|| < (J/, or for the search direction ^^ — —^v^sV'^'^^s 
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^{x'l + Xkg'l) - V{x1) < -c^\k\\v% (41) 

Step 4. If 
Ibfll < h (42) 

then set x^+^ = x^.k = k + 1 and go to Step 2. Otherwise go to Step 5. 

Step 5. Construct the following iteration x^^^ =" Xs~^(^s9s) where as is defined 
as follows 

as = arg maxjo" > 0 : ip{x^, + ag^) - (^(x^) < -C2a||^,^||}. 

Step 6. Set 5 == s + 1 and go to Step 3. 

For the point x^ e JR^ we consider the set M{x^) = {x G IR'̂  : (p{x) < 

Theorem 1. Assume that the set M{x^) is bounded for starting points x^ G 
IR'̂ . Then every accumulation point of {x^} belongs to the set X^ — {x £ 
WC ',Oedip{x)}. 

Since the objective function in problem (30) is semismooth the discrete 
gradient method can be applied to solve it. Discrete gradients in Step 5 of 
Algorithm 1 can be calculated using the simplified scheme described above. 

5 Results of numerical experiments 

We applied the max-min separation to solve supervised data classification 
problems on some real-world datasets. In this section we present results of 
numerical experiments. Our algorithm has been implemented in Lahey Fortran 
95 on a Pentium 4 1.7 GHz. 

5.1 Supervised da t a classification via m£ix-inin separabil i ty 

We are given a dataset A containing a finite number of points in IR^. This 
dataset contains d disjoint subsets Ai^... ,Ad where Ai represents a training 
set for the class i. The aim of supervised data classification is to establish rules 
for the classification of some new observations using these training subsets of 
the classes. This problem is reduced to d set separation problems. 

Each of these problems consists in separating one class from the rest of 
the dataset. To separate the class i from all others, we separate sets Ai and 
[jj=iLi ^ji with a piecewise linear function by solving problem (30). 

One of the important question in supervised data classification is the esti
mation of performance measure. Different performance measures are discussed 
in [Tho02]. When the dataset contains two classes the classification problem 
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can be reduced to only one separation problem, therefore the classification 
rules are straightforward. We consider that the separation function obtained 
from the training set, separates the two classes. 

When the dataset contains more than two classes we have more than one 
separation function. In our case for each class i of the dataset A we have one 
piecewise linear function (pi separating the training set Ai from all other train
ing points [jj-^iAj. We approximate the training set Ai using the following 
set 

Ai = {aelR'' : (pi{a) < 0}. 

Thus we get the sets ^ i , . . . , A^ which approximate the training sets A i , . . . , ^d, 
respectively. Then for each i G {1,... ,d} we can consider the following two 
sets: 

d 

These two sets define the following four sets (see Figure 5): 

1. Aon(iR"\^°) 
2. (IR"\ylO)ni? 

4̂  (IR"\AO)n(IR"\^?) 
If a new observation a belongs to the first set we classify it in class i, if it 
belongs to the second set we classify it not to be in class i. If this point belongs 
to the third or fourth set in this case if ^i{a) < minj=i^...,(ij^i(/?j(a) then we 
classify it in class i, otherwise we classify it not to be in class i. 

In order to evaluate the classification algorithm we use two performance 
measures. First we present the average accuracy (a2c in Tables 3 and 4) for 
well-classified points in two classes classification (when one particular class is 
separated from all others) and the multi-class classification accuracy {amc in 
Tables 3 and 4) as described above. First accuracy is an indication of sepa
ration quality and the second one is an indication of multi-class classification 
quality. 

5.2 Results on small and middle size datasets 

In this subsection we present results of numerical experiments with some 
small and middle size datasets in order to demonstrate the separation ability 
of the proposed algorithm. The datasets used are the Wisconsin Breast Can
cer Diagnosis (WBCD), the Wisconsin Breast Cancer Prognosis (WBCP), 
the Cleveland Heart Disease (Heart), the Pima Indians Diabetes (Diabetes), 
the BUPA Liver Disorders (Liver), the United States Congressional Voting 
Records (Votes) and the Ionosphere. All datasets contain 2 classes. The de
scription of these datasets can be found in [MA92]. 

We take entire datasets and check their polyhedral or max-min separability 
considering various number of hyper planes. Results of numerical experiments 
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Fig. 5. Multi-class classification by a max-min separation 

are presented in Table 1. We use the following notation: m - is the number 
of instances in the first class, p - is the number of instances in the second 
class, n - number of attributes, h number of hyperplanes used for polyhedral 
separability, r is the cardinality of the set / and j is the cardinality of the sets 
Ji, i e I in the max-min separability. The sets Ji contain the same number 
of indices for alH G / . In our experiments we restrict r to 15 and j to 5. The 
accuracy is defined as the ratio between the number of well-classified points 
of both A and B and the total number of points in the dataset. 

Table 1. Results of numerical experiments with small and middle size datasets 

Database m/p/n Linear Polyhedral Max-min 
h accuracy r x j accuracy 

WBCD 
Heart 

Ionosphere 
Votes 

WBCP 
Diabetes 

Liver 

239/444/9 
137/160/13 
126/225/34 
168/267/16 
46/148/32 
268/500/8 
145/200/6 

97.36 
84.19 
93.73 
96.80 
76.80 
76.95 
68.41 

7 
10 
4 
5 
4 
12 
12 

98.98 
100 

97.44 
100 
100 

80.60 
74.20 

5 x 2 
2 x 5 
2 x 2 
2 x 3 
3 x 2 
1 5 x 2 
6 x 5 

100 
100 
100 
100 
100 

90.10 
89.86 

Prom the results presented in Table 1 we can conclude that in none of 
the datasets classes are linearly separable. Classes in heart, votes and WBCP 
are polyhedrally separable and in WBCD they are "almost" polyhedrally sep-
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arable. We considered different values for h in diabetes and liver datasets 
and present best results. These results show that classes in these datasets are 
unlikely to be polyhedrally separable. Classes in WBCD, heart, ionosphere, 
votes and WBCP are max-min separable with a presented number of hyper-
planes whereas classes in diabetes and liver datasets are likely to be max-min 
separable with quite large number of hyperplanes. On the other side results 
for these datasets show that the use of max-min separability allows one to 
achieve significantly better separation. 

5.3 Results on larger datasets 

Datasets 

The datasets used are the Shuttle control , the Letter recognition, the Land-
sat satellite image, the Pen-based recognition of handwritten and the Page 
blocks classification databases. Table 2 presents some characteristics of these 
databases. More detailed information can be found in [MA92]. It should be 
noted that all attributes in these datasets are continuous. 

Table 2. Large datasets 

Database 

Shuttle control 
Letter recognition 

Landsat satellite image 
Pen-based recognition of 

handwritten 
Page blocks 

(train,test) 

(43500,14500) 
(15000,5000) 
(4435,2000) 

(7494,3498) 
(4000,1473) 

No. of No. of 
attributes classes 

9 7 
16 26 
36 6 

16 10 
10 5 

Results and discussion 

We took X^ = 0 e IR̂ "̂̂ ^̂ ^ as a starting point for solving each separation 
problem (30). At each iteration of the discrete gradient method the line search 
is carried out by approximation of the objective function using univariate 
piecewise linear function (see [Bag99a]). In each separation problem (30) all 
Ji, i e I have the same cardinality. 

Results of numerical experiments are presented in Tables 3 and 4. In these 
tables fct eval, DG eval and CPU time show respectively the average number 
of objective function evaluations, discrete gradient evaluations and CPU time 
required to solve an optimization problem. CPU time is presented in seconds. 

Prom the results presented in these tables we can see that the use of 
the max-min separability algorithm allows to achieve a high classification 
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accuracy for both training and test phases. Results on training sets show 
that this algorithm provides a high quality of separation between two sets. In 
our experiments we used only large-scale datasets. Results on these datasets 
show that a few hyperplanes are sufficient to separate efficiently sets with large 
numbers of points. Since we use a derivative-free method to solve problem (30) 
the number of objective function evaluations is a significant characteristic for 
estimation of the complexity of the max-min separability algorithm. Results 
presented in Tables 3 and 4 confirm that the proposed algorithm is effective 
for solving classification problems on large-scale databases. 

Table 3. Results of numerical experiments with Shuttle control, Letter recognition 
and Landsat satellite image datasets 

m \Ji\ 

1 
2 
3 
4 
2 
3 
4 

1 
2 
3 
4 
2 
3 
3 

1 
2 
3 
4 
2 
3 
4 

1 
1 
1 
1 
2 
2 
2 

1 
1 
1 
1 
2 
2 
3 

1 
1 
1 
1 
2 
2 
2 

Training Test 
1 CL2c CLmc Q^2c 0,mc • fct eval DG eval CPU time 

Shuttle control dataset 
94.63 87.84 94.66 87.86 
97.26 97.58 97.08 97.49 
97.04 99.36 96.87 99.21 
97.35 99.50 97.19 99.35 
99.86 99.57 99.86 99.39 
99.48 99.92 99.43 99.86 
99.84 99.76 99.82 99.70 

265 
396 
379 
402 
391 
636 
447 

Letter recognition dataset 
92.51 66.89 92.32 66.00 
96.83 79.86 95.24 79.36 
98.34 85.73 95.94 84.82 
99.08 89.32 96.36 86.86 
98.12 86.89 96.20 84.56 
98.97 91.46 96.32 89.12 
99.52 93.73 96.16 90.32 
Landsat satellite image 

93.12 86.00 91.30 83.45 
96.73 88.12 94.40 85.65 
97.54 89.80 94.80 87.00 
97.81 91.14 94.35 87.45 
97.56 90.85 94.25 87.10 
98.02 90.98 94.60 86.70 
98.47 93.33 94.80 86.70 

280 
568 
573 
665 
683 
634 
511 

dataset 
298 
549 
618 
656 
606 
712 
533 

268 
399 
379 
405 
394 
639 
450 

284 
572 
575 
667 
686 
635 
511 

301 
552 
621 
659 
609 
715 
536 

54.44 
145.12 
211.23 
310.54 
281.92 
825.99 
810.58 

17.57 
60.98 
93.72 
158.29 
143.07 
366.16 
436.37 

4.62 
19.12 
37.37 
61.64 
48.83 
116.86 
137.07 

6 Conclusions and further work 

In this paper we have developed the concept of the max-min separability. If 
finite point sets A and B are disjoint then they can be separated by a certain 
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Table 4. Results of numerical experiments with Pen-based recognition of handwrit
ten and Page blocks datasets 

Ml Mil 

1 
2 
3 
4 
2 
3 
4 

1 
2 
3 
4 
2 
3 
4 

1 
1 
1 
1 
2 
2 
2 

1 
1 
1 
1 
2 
2 
2 

Training Test 
tt2c CLmc Ci2c O'mc fct eval. ' DG. eval. CPU time 

Pen-based recognition of handwritten dataset 
97.54 94.93 93.68 89.94 
99.45 98.91 96.05 95.37 
99.91 99.65 96.51 96.54 
99.97 99.79 96.23 97.11 
99.91 99.69 96.68 96.31 
99.97 99.88 97.37 97.40 
99.99 99.89 97.06 97.28 

385 
582 
865 
841 
888 
727 
733 

Page blocks dataset 
93.48 92.60 81.87 82.48 
93.88 93.48 80.52 85.61 
95.38 94.20 87.24 86.69 
95.68 94.88 85.81 87.44 
95.55 94.33 88.53 86.97 
96.55 95.68 89.34 88.46 
96.45 95.40 87.71 86.08 

623 
369 
550 
822 
505 
779 
682 

388 
585 
868 
844 
890 
730 
736 

626 
372 
553 
825 
508 
782 
685 

6.97 
19.71 
48.19 
70.21 
63.94 
124.91 
191.71 

2.93 
3.59 
9.65 

22.09 
11.51 
40.71 
54.60 

piecewise linear function presented as a max-min of linear functions. We have 
proposed an algorithm to find this piecewise linear function by minimizing an 
error function. 

This algorithm has been applied to solve data classification problems in 
some large-scale datasets. Results from numerical experiment show the eflPec-
tiveness of this algorithm. 

However the number of hyperplanes needed to separate the two sets has 
to be known. In further research some methods to find automatically this 
number will be introduced. Problem (30) is a global optimization problem on 
which we use a local optimization method. Therefore it is very crucial to find 
a good initial point in order to reduce computational cost and to improve the 
solution. These questions are the subject of our further research. 
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Summary. The theory of abstract convexity provides us with the necessary tools 
for building accurate one-sided approximations of functions. Cutting angle methods 
have recently emerged as a tool for global optimization of families of abstract convex 
functions. Their applicability have been subsequently extended to other problems, 
such as scattered data interpolation. This paper reviews three different applications 
of cutting angle methods, namely global optimization, generation of nonuniform 
random variates and multivatiate interpolation. 

Key words: Global optimization, Abstract convexity, Cutting angle method, 
Random variate generation, Uniform approximation. 

1 Introduction 

The theory of abstract convexity [RubOO] provides the necessary tools for 
building accurate lower and upper approximations of various classes of func
tions. Such approximations arise from a generalization of the following clas
sical result: each convex function is the upper envelop of its affine minor ants 
[Roc70]. In abstract convex analysis the requirement of linearity of the mino-
rants is dropped, and abstract convex functions are represented as the upper 
envelops of some simple minor ants, or support functions, which are not nec
essarily affine. Depending on the choice of the support functions, one obtains 
different flavours of abstract convex analysis. 

By using a subset of support functions, one obtains an approximation 
of an abstract convex function from below. Such one-sided approximation, 
or underestimate, can be very useful in various applications. For instance, 
in optimization, the global minimum of the underestimate provides a lower 
bound on the global minimum of the objective function. One can find the 
global minimum of the objective function as the limiting point of the sequence 
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of global minima of underestimates. This is the principle of the cutting angle 
method of global optimization [ARG99, BROO, RubOO], reviewed in section 3. 

This paper discusses two other applications of one-sided approximations. 
The second application is generation of random variates from a given dis
tribution using acceptance/rejection approach. Non-uniform random variates 
generation is an important task in statistical sumulation. The method of ac
ceptance/ rejection consists in approximating the required probability density 
from above, using a simpler function, called the hat function. Then the ran
dom variates are generated using a multiple of the hat function as the density, 
and these random variates are either accepted or rejected based on the value 
of an independent uniform random number. In section 4 we discuss this ap
proach in detail, and show how one-sided approximation (from above) can be 
used to build suitable hat functions. 

The last application comes from the field of scattered data interpolation. 
Here we combine the upper and lower approximations of the function known 
to us through a set of its values, and obtain an accurate interpolant, which as 
we show, solves the best uniform approximation problem. 

2 Support functions and lower approximations 

2.1 Basic definitions 

We will use the following notations. 

K^ denotes the cone of vectors with non-negative components 
{ x G i i ^ :xi > 0 , i = l , . . . , n } ; 

- R^^ denotes the cone of vectors with strictly positive components 
{x e R"^ : Xi > 0,i = 1,... ,n}; 
i?4.oo denotes (—oo,+oo]; 
S denotes the unit simplex S = {x e R^ : Xi >0^ Z^ILi ^i — 1}5 

- riS is the relative interior of 5, riS = {x e R^ : Xi > 0^ YH=I ^i ~ -^}' 
- Index set / = {1 ,2 , . . . , n}; 
- x = ( a : i , X 2 , . . . , X n ) € R^] 

x^ G S denotes the fc-th vector of some sequence {x^}^^i] 
Vector inequality x >y denotes dominance Xi >yi,'ii e I. 

Definition 1. The function f : X -^ R is called Lipschitz-continuous in X, if 
there exists a number M: Vx^y G X : \f{x) — f{y)\ < M\\x — y\\. The smallest 
such number is called the Lipschitz constant of f in the norm \\ • ||. 

Definition 2. A function f : R^ —^Ris called IPH (Increasing positively 
homogeneous functions of degree one) if 
yx.yeR^, x>y=> f{x) > f{y);\/x G i^?,VA G i?++ : /(Ax) = A/(x). 

Let X be some set, and let iJ be a nonempty set of functions 
h : X —^ V C [—oo,+oo]. We have the following definitions [RubOO]. 
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Definition 3. A function f is abstract convex with respect to the set of func
tions H (or H-convex) if there exists U C H: 

f{x) = sup{h{x) : /i G f/},Vx G X. 

Definition 4. The set U of H-minorants of f is called the support set of f 
with respect to the set of functions H: 

suppif, H) = {he H, h{x) < f{x) \/x G X}. 

Definition 5. H-subgradient of f at x is a function 

heH: f{y) > h{y) - {h{x) - f{x))yy € X. 

The set of all H-subgradients of f at x is called H-subdifferential 

dnfix) = {hGH:\/yeX, f{y) > h{y) - {h{x) - fix))}. 

Definition 6. The set dfjf{x) at x is defined as 

d*Hf{x) = {h& supp{f,H) : hix) = fix)}. 

Proposition 1. [RubOO], p. 10. If the set H is closed under vertical shifts, ie., 
{h e H,ce R) implies h — c e H, then 9^ / (x) = dnfix). 

Definition 7. Polyhedral distance, 
Let P be a finite convex polyhedron in R^ defined by the intersection of r 

half spaces, containing the origin in its interior (example 7.2 from [DR95J) 

r 

P=f]{x'.X'hi<l}, (1) 
i=l 

where hi G R^ are the directional vectors. The polyhedral distance is 

dp{x^ y) = max{(x — y) - hi : 1 <i <r}. 

As a special case consider the distance defined by a simplex centered at 0. 

Definition 8. Simplicial distance. 
Let P be a simplex defined as the intersection of n -\- 1 halfspaces (1), 

defined by the vectors 

hi = {-vi,0,0,...), 

/i2 = ( 0 , - ^ 2 , 0 , . . . ) , 

hm-}-! = {Vm+1, • ' ' ,Vm+l), (2) 

i;̂  > 0. The simplicial distance is 

n 

dp{x,y) = max{ max Vi{yi - Xi),Vn+i yZ(^^ ~ ^^)}- (^) 
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Let us now for the purposes of convenience introduce a slack variable 
Xn+i = I — Yl7=i^'^' With the help of the new coordinate, and using 
I]^_i(x^ -yi) = l - J];^^j yi-{l- EILi ^i) = Vn+i - ^n+i, we Can write (3) 
in a more symmetric form 

dp{x, y) = max Vi{yi - Xi). (4) 
t = l , . . . , n + l 

2.2 Choices of support functions 

We start with the classical case of afRne support functions [Roc70, RubOO]. 

Example 1. Let the set H denote the set of all affine functions 

H = {h: h{x) =a-x-\-b, x,ae K^.be R}. 

A function / : R^ -^ R-^oo is i7-convex if and only if / a is lower semicontin-
uous convex function. 

As a consequence of this result, we can approximate convex lower semi-
continuous functions from below using a finite subset of functions from 
supp{f,H). For instance, suppose know a number of values of function / 
at points x^^k — 1,... ^K. Then the pointwise maximum of the support func
tions h^ 

H^ix) = ^ max^ h'ix) = ^maxjfix") + A'f{x - x")) (5) 

is a lower approximation, or underestimate of / . A^ denotes a subgradient of 
f Sit x^. The function H^ is a piecewise linear convex function, illustrated on 
Fig.l. 

Example 2. [RubOO]. Let the set H be the set of min-type functions 

H = {h: h(x) = mmaiXi.a G Rl,x G Rl], 

A function / : R^ -^ R^ is if-convex if and only if / is IPH. 

As a consequence, we can approximate IPH functions from below using 
pointwise maxima of subsets of its support functions, 

H^(x) = max h^(x) = max rain a^Xi, (6) 

where af = ^^r^ if x^ > 0 and 0 otherwise. 

Further, it is shown in [RubOO] that IHP functions are closely related to 
Lipschitz functions, in the sense that every Lipschitz function g defined on 
the unit simplex S can be transformed to a restriction of an IPH f to S using 
an additive constant: f = g -\- C, where C > — min^(x) + 2M, where M is 
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Fig. 1. The graph of the function H^ in (5). 

I / / / / / 

Fig. 2. Saw-tooth underestimate of / in CAM using functions (6). 

the Lipschitz constant of g in Zi-norm. Thus the underestimate (6) can also 
be used to approximate Lipschitz functions on the unit simplex. 

Function (6) has a very irregular shape illustrated on Figs. 2,3, the reason 
why it is often called the saw-tooth underestimate (or saw-tooth cover) of / . 

Example 3. [RubOO]. Let the set H be the set of functions of the form 

H = {h: h{x) =a- C\\x -h\\,x,h e BJ'.a e R,C e R+] 
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Fig. 3. The hypograph of the function H^ in (6). 

Then / : RJ^ —^ R-\-oo is H-convex if and only if / is a lower semicontinuous 
function. The i/-subdifferential of / is not empty if / is Lipschitz. 

As a consequence, we can approximate Lipschitz functions from below 
using underestimates of the form 

H^{x)= max /i^(x) - max (f(x^)-C\\x-x^\\), (7) 

where C > M^ and M is the Lipschitz constant of / in the norm || • ||. 

Example 4- [Bel05]. Let dp be a simplicial distance function, and let the set 
H be the set of functions of the form 

H = {h: h{x) =a- Cdp{x, h), x,b e BJ'.a e R,C £ R^} 

Then f : R^ -^ R-\-oo is if-convex if and only if / is a lower semicontinuous 
function. The iJ-subdifferential of / is not empty if / is Lipschitz. 

Since dp can also be written as (4), we can use the following underestimate 
of a Lipschitz / 

H^{x) = max (/(x^) - Cdp{x,x^)) = max min(/(x' ') - Ci{x^ - x^)), 

(8) 
where Ci = Cvi^ and C satisfies Cdp{x,y) > M\\x — y\\, where M is the 
Lipschitz constant of / in the norm || • || [Bel05]. We remind that here we use 
a slack variable, as in (4), and the components of x G R^'^^ are restricted by 
Y^Xi — 1. The shape of H^ is illustrated on Figs. 4,5, and it is also called 
the saw-tooth underestimate. 
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Fig. 4. Univariate saw-tooth underestimate of / using functions (8). 

Fig. 5. The hypograph of the function H^ in (8) in the case of two variables. 

2.3 Relation to Voronoi diagrams 

Consider a set of points {x^}k=i^^^ ^ ^^^ called sites. 

Definition 9. The set 

Vor{x^) = {xeR'' \ | |x-x^ | | < | | X - X ^ ' | | , V J V ^ } 

is called the Voronoi cell of x^. 

One can choose any norm, or in fact any distance function dp in this 
definition. The collection of Voronoi cells for all sites x^,A: = 1,...,K is 
called the Voronoi diagram of the data set. Voronoi diagram is one of the 
most fundamental data structures of a data set with a long history [Aur91, 
OBSCOO, BSTY98]. An example is presented on Fig.6. 
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Fig. 6. The Voronoi diagram of a set of sites, and its dual Delaunay triangulation. 

There are multiple extensions of the Voronoi diagram, notably those based 
on the generalization of the distance function [OBSCOO, BSTY98]. One such 
generalization is called additively weighted Voronoi diagram, in which case 
each site has an associated weight Wk-

Definition 10. Let {x^}j^=i^x^ ^ R^ be the set of sites, and w G R^ be the 
vector of weights. The set 

Vor{x\w) = {xeR'' : Wk + \\x - x^\\ < wj + \\x - x^'||,Vj / k}, 

is called Additively Weighted Voronoi cell. The collection of such cells is called 
Additively Weighted Voronoi diagram. 

Voronoi diagrams and their duals, Delaunay (pre-)triangulations, are very 
popular in multivariate scattered data interpolation, e.g., Sibson's natural 
neighbour interpolation [SibSl]. 

Let us show how Voronoi diagrams are related to underestimates (7),(8). 
First consider the special case f = I. For the function H^ in (7), and for each 
k = 1,... ,K define the set 

S^ = {xeR'': h^x) > h^{x),\fj ^ k). 

It is easy to show that sets S^ coincide with Voronoi cells Vor{x^). In
deed, h^{x) > h^{x) implies 1 — C\\x — x^\\ > 1 — C\\x — x^\\, and then 
\\x — x^W < \\x — x^\. Furthermore, if we now take H^ in (8), the sets S^ 
coincide with Voronoi cells in distance dp. 

Let us now take an arbitrary Lipschitz / and (7). Consider an additively 

weighted Voronoi diagram with weights Wk given as Wk -
difficult to show that Voronoi cells Vor{x^^w) can be written as 

Vor{x^,w) = {xeR'' : h^{x) > h^{x),Wj ^ k}. 

The last equation is also valid for other distance functions, and in particular 
dp and h^ in (8). 

^ ^ . It is not 
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This interesting relation of saw-tooth underestimates and Voronoi dia
grams has two implications. Firstly, we can use existing results on compu
tational complexity of Voronoi diagrams to estimate the number of "teeth" 
of the saw-tooth underestimate, i.e., the number of local minimizers 
These miminizers correspond to the vertices of the Voronoi diagram. It is 
known that the number of vertices of Voronoi diagram grows as 0{K^^'^) 
in any simplicial distance function or /oo-metric [BSTY98]. \a] denotes the 
smallest integer greater or equal to a. Thus we obtain an estimate on the 
number of local minimizers 

Secondly, we can apply methods of enumerating local minima of H^ dis
cussed in the next section as a tool for building Voronoi diagrams, and in 
particular weighted Voronoi diagrams, as well as their dual Delaunay trian-
gulations. 

3 Optimization: the Cutting Angle method 

3.1 Problem formulation 

We consider the following global optimization problem. Let / be an i7-convex 
function on some compact set D C R^. We solve 

min/(x) (9) 

s.t. X e D. 

Depending on the set H we obtain different classes of abstract convex 
functions. Consider the following instances of Problem (9). In the case of 
H being the set of afRne functions, / is convex and possesses the unique 
local minimum. While there are many alternative efficient methods of local 
minimization, we consider below the cutting plane method of Kelley [Kel60], 
as other instances of Problem (9) essentially rely on the same approach. 

If H is the set of min-functions as in Example 2, / is IPH. The class of 
IPH functions is quite broad, and includes the following functions on R^ or 

1. f{x) = a^x^ai > 0; 
2. f{x) = \\x\\p,p>0; 

3. f{x) = l[x'j\JcI={l,.,,,n},tj>0,^ tj = l', 
jeJ ^ 

4. f{x) = y/[Ax,x], where A is a matrix with nonnegative entries 

and [•, •] is the usual inner product in R^. 
In addition, since Lipschitz functions on 5, modified with a suitable con

stant, can be seen as restrictions of IPH functions, we can effectively solve 
Lipschitz optimization problems on S or its subsets. 
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If the set H is chosen as in Examples 3 and 4, / is lower semicontinuous, 
and if we require the subdifferential to be non-empty, then / is Lipschitz. 
Lipschitz functions appear very frequently in applications [HP95, HPTOO, 
HJ95, HPTOO, Neu97, Pin96]. The difficulty of the optimization problem in 
this case is that the objective function / may possess a huge number of local 
minimizers (in some instances 10^° — 10^° [FloOO, LS02], which are impossible 
to enumerate (and hence find the global minimum) using local optimization 
methods. 

Lipschitz properties of / allow one to put accurate bounds on the value of 
the global minimum on D and also on parts of D. Those parts of the domain on 
which the lower bound is too high are automatically excluded, the technique 
known as fathoming. This way a largely reduced subset of D will eventually 
be searched for the global minimum, and the majority of local minima of / 
can be avoided. 

3.2 The Cutting Angle algorithm 

Below we present the generalized cutting plane method, of which cutting angle 
method (CAM) is a particular instance, following [RubOO, ARG99, BROO]. The 
principle of this method is to replace the original global optimization problem 
with a sequence of relaxed problems 

uiinH^ix) (10) 

s.t. X e D, 

K = 1,2, The sequence of solutions to the relaxed problems converges to 
the global minimum of / under very mild assumptions [RubOO]. 

Generalized Cutting Plane Algorithm 
Step 0. (Initialisation) 

0.1 Set X = 0. 

0.2 Choose an arbitrary initial point x^ G D. 

Step 1. (Calculate H-subdifferential) 

1.1 Calculate h^ G d%f{x^). 
1.2 Define H^{x) = maxfc=o,...,/r h^{x), for all x e D. 
Step 2. (Minimize H^) 

2.1 Solve Problem (10). Let x* be its solution. 
2.2Set i^ = i^-f l , x ^ =x\ 

Step 3. (Stopping criterion) 

3.1 UK < Kmax and fbest - H^ix"") > e go to Step 1. 
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The relaxed problems (10) are required at every iteration of the algorithm, 
and as such their solution must be efficient. In the case of convex / we obtain 
Kelley's cutting plane method. In this case the relaxed problem can be solved 
using linear programming techniques. 

For Lipschitz and IPH functions, the relaxed problems are very challeng
ing. In the univariate case, the above algorithm is known as Pijavski-Shubert 
method [HJ95, Pij72, Shu72, SSOO], and many its variations are available. 
However its multivariate generalizations, like Mladineo's method [Mla86], did 
not succeed for more than 2-3 variables because of significant computational 
challenges [HP95, HPTOO]. 

To solve the relaxed Problem (10) with H^ given by (6),(7) or (8), one 
has to enumerate all local minimizers of the saw-tooth underestimate. The 
number of these minimizers grows exponentially with the dimension n, and 
until recently this task was impractical. Below we review a new method for 
enumerating local minimizers of i J ^ , as published in the series of papers 
[BROO, BROl, BB02, Bel03]. 

3.3 Enumeration of local minima 

We are concerned with enumerating all local minimizers of the function H^ 
(6) on 5 or D C 5, where D is a polytope. This function is illustrated on 
Figs.2,3, For convenience, let us introduce the support vectors /^ G R^ U oo 

l^ = ^ ^ - ^ , if x^ > 0, or oo otherwise. (11) 

At the K-th iteration of the algoritm we have K support vectors. Consider 
ordered combinations of n support vectors, L = {l^'^J^^,... , / ^ ^ } , which we 
can visualize as n x n matrix whose rows are given by the participating support 
vectors 

fix' ' 2 ^ - - - e \ 
jk2 //C2 7k2 
n 2̂ • • • n̂ 

L = (12) 

v^/^.../^/ 
The following result is proven in [BROO]: every local minimizer x* of H^ in 
ri S corresponds to a combination L satisfying two conditions 

( I ) V i , i e / , f 9 ^ i : / ^ > Z ^ 
(II) yvefC\L ,3i€l:l'l' <Vi 

where K, = {l^,P,..., l^} is the set of all support vectors. Further, the actual 
local minima are found from L using 

d = H'^{x*)=Trace{L)-\ (13) 

x*{L) = ddiag{L). 



220 G. Beliakov 

Condition (I) implies that the diagonal elements dominate their respective 
columns, and condition (II) implies that the diagonal of L does not dominate 
any other support vector v. Thus we obtain a combinatorial problem of enu
merating all combinations L that satisfy conditions (I) and (II). 

It is infeasible to enumerate all such combinations directly for large K. 
Fortunately there is no need to do so. It was shown in [BB02, Bel03, Bel04] 
that the required combinations can be put into a tree structure. The leaves of 
the tree correspond to the local minimizers of H^, whereas the intermediate 
nodes correspond to the minimizers of H'^^ H^'^^,..., H^~^. Such a tree is 
illustrated on Fig.7. The use of the tree structure makes the algorithm very 
efficient numerically (as processing of queries using trees requires logarithmic 
time of the number of nodes). 

/ ' = (0.0,1) 

•*mi» ^419 > 419 ' 419-

{^ =(L i î  

/ ' = (0.04) 

~7K -VK 

/ 6 _ / -7 9 21-\ 

^mt. = (n53'nm'T555) 

7T^ 

Fig. 7. The tree of combinations of support vectors L that satisfy conditions (I) 
and (II) and define local minima of H^. 

To enumerate local minimizers in a polytope D C. S one proceeds as 
follows. Using the enumeration technique from [BB02, Bel03], find all local 
minimizers on ri S. Each such minimizer has an associated set A{L) on which 
it is unique. The set A{L) is characterized by [Bel03, Bel04] 
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(0,1.0) 

local minimum of H*̂  

(0,0,1) (1,0,0) 

Fig. 8. Sets A{L) on which the saw-tooth underestimate has unique local minimum. 
Two such sets are shown. Black circles denote points x'^. 

3 ^ 3 ' ' /'~ T ' ^^ ' 

XiXj' > XjX^\ ij e lyi < j . (14) 

The sets A{L) form a nonintersecting partition of S. They are illustrated on 
Fig.8. 

For each local minimizer x* on ri S we can have three situations: a) x* G D, 
in which case we just record it, h) x* ^ D and A{L) fl -D = 0, in which case 
we discard x*, and c) A{L) Pi i^ ŷ  0, in which case we look for a constrained 
minimum on the boundary of D. This can be done by solving an optimization 
problem 

min max L * Xi 
iei ' 

s.t. X e A{L)nD, 

(15) 

which is subsequently transformed into a linear programming problem. To do 
this, introduce an auxiliary variable a = max^^/ l^^Xi, and write (15) as 

min a 

s.t. \/i e I: a- l^'xi > 0, 

X e A{L)nD, 

(16) 

and recall that the set A{L) is an intersection of halfspaces (14) and D is a, 
polytope. The details are given in [Bel04]. 

Consider now functions (8), illustrated on Figs.4,5. In this case we can use 
a similar enumeration technique. Define the support vectors 
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if = ^ - 4 . (17) 

Form ordered combinations of n + 1 support vectors L (12). We have the 
following result [Bel05]: every local minimizer of H^ corresponds to a combi
nation L that satisfies conditions (I) and (II) above, and the actual minima 
are found from 

^^jjK^^.^^Trace^>±l^ (18) 
G 

where C " = E i e / ^ • 
The sets A{L), on which each local minimum is unique, are characterized 

by 
Vi, j e {1 , . . . , n + 1 } , i i ^ j : Cj{x* - x'/) < Qix* - x ^ ) . (19) 

3.4 Numerical experiments 

We performed extensive testing of various versions of CAM on test and real life 
problems [BB02, Bel03, Bel04, BTMRB03, LBB03, LBB03]. In this section, 
to indicate the performance of the algorithm, we present a selection of results 
of numerical experiments. We took the following test optimization problems. 

Test Problem 1 (Six-hump camel back function) 

fix) =U- 2,\x\ + ^ " J x? + xiX2 + 4(x2 - \)xl 

-2<Xi<2,i = 1,2. 

Test Problem 2 ([HPT00],p.261) 

10 

0<Xi<10,i = 1,2. 

Parameters a* and d are given in [HPT00],p,262. 
Test Problem 3 [HJ95] 

f{x) = sin(xi)sin(xiX2)sin(xiX2X3) 

0<Xi<A, 

10 ^ 

Test Problem 4 (Griewanks function) 

4000, 

- 50 <Xi< 50. 
i=l i=l \ V / 
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In Table 1 we compare the performance of CAM which uses underestimate 
(6) and Extended CAM (ECAM), which uses underestimate (8). For functions 
1-3, EC AM was able to compute the same lower bound on the global minimum 
using less function evaluations (and significantly less time) than CAM. For 
function 4, we ran both CAM and EC AM algorithms the same number of 
iterations (function evaluations), and compared the values of the lower bound 
on the global minimum. It appears from Table 1 that EC AM consistently 
produces better results than CAM. This is not surprising, as all test problems 
involve Lipschitz functions. Approximation (6) used in CAM is more suitable 
for IPH functions, and the conversion of Lipschitz objective functions to IPH 
functions resulted in somewhat less efficient algorithm than EC AM. 

3.5 Applications 

Various versions of CAM have been applied to solving real life practical prob
lems. In [BRYOl, BRY02] the authors successfully used CAM in problems of 
supervised classification. In particular they applied CAM for automatic clas
sification of medical diagnosis. In [BRS03] the same authors extended the use 
of CAM for unsupervised classification problems. 

CAM has been applied as a tool to find parameters of a function in uni
variate and multivariate nonlinear approximation. [Bel03] applies CAM to op
timize position of knots in univariate spline approximation, whereas in [Bel02] 
CAM was used to fit aggregation operators to empirical data. 

Recently we applied CAM to the molecular structure prediction problem 
[Neu97, FloOO, LBB03]. This is a very challenging problem in computational 
chemistry, which consists in predicting the geometry of a molecule by mini
mizing its potential energy as a function of atomic coordinates. We chose the 
benchmark problem of unsolvated met-enkephalin [FloOO, LBB03]. As inde
pendent variables we used the 24 dihedral angles of this pentapeptide, and 
following [FloOO], 10 of the dihedral angles (the backbone) were used as global 
variables in ECAM, while the rest were treated as local variables (i.e., each 
function evaluation involved a local optimization problem with respect to the 
dihedral angles treated as local variables). This objective function (the po
tential energy) involves in the order of 10^^ local minima. The problem is 
very challenging because of the existence of several strong local minima which 
trap local descent algorithms. For instance all reported multistart local search 
algorithms failed to identify the global minimum [FloOO]. 

Previously we reported that a combination of CAM with local search al
gorithms allowed us to locate the global minimum of the potential energy 
function in 120,000 iterations of CAM, which took 4740 seconds (79 min) on 
a cluster of 36 DEC Alpha workstations (1 MHz processors) [LBB03, LBB03]. 
Using ECAM and the same hardware and software configuration the global 
minimum was found in 80,000 iterations, which took 50 min on the cluster of 
36 DEC Alpha workstations. 
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It is worth noting that CAM can be efficiently parallehzed to take ad
vantage of the distributed memory architecture of computer clusters. Various 
branches of the tree of local minima are stored on different processors, and 
are processed independently of each other. It allows one to use the combined 
RAM of many processors. Our experiments with parallelization of CAM are 
described in [BTMRB03, BTMOl]. 

Table 1. Comparison of performance of CAM and Extended CAM on a set of test 
problems. CPU is measured on Pentium 4 1.2GHz PC with 512 MB RAM, under 
Windows XP. The algorithms were implemented in C-f + language (Visual C++ 6 
compiler). The values in the last column are the global minima of the functions, 
found by a local descent algorithm starting from the approximate minimum found 
by CAM/ECAM. 

[Problem 

1 (CAM) 
1 (ECAM) 
2 (CAM) 
2 (ECAM) 
3 (CAM) 
3 (ECAM) 
4 (CAM) 
4 (ECAM) 
4 (CAM) 
4 (ECAM) 
4 (CAM) 
4 (ECAM) 
4 (CAM) 
4 (ECAM) 

m 

2 
2 
2 
2 
3 
3 
2 
2 
3 
3 
4 
4 
5 
5 

Iterations 

30000 
10000 
10000 
10000 
40000 
10000 
10000 
10000 
40000 
40000 
60000 
60000 
90000 
90000 

CPU 
(sec) 
3.12 
1.31 
1.10 
1.03 
21.5 
2.7 

0.99 
1.30 
21.1 
17.2 
380 
231 
523 
460 

upper 
bound fbest 

-1.0302 
-1.0316 
-2.1452 
-2.1452 
-0.999 

-0.9998 
0.0022 

0.000012 
0.0071 
0.0058 

0.00 
0.00 
0.00 
0.00 

lower 
bound 
-1.07 
-1.07 

-2.152 
-2.148 
-1.09 
-1.10 
-0.61 
-0.06 
-0.41 

-0.138 
-1.02 
-0.91 
-1.18 
-0.51 

Solution improved 
by local method 

-1.03163 
-1.03163 
-2.14520 
-2.14520 

-1 
-1 
0 
0 
0 
0 
0 
0 
0 

0 

4 Random variate generation: acceptance/ rejection 

4.1 Problem formulation 

Efficient non-uniform random number generators are important in many ap
plications, such as Markov Chain sampling. Many specialized algorithms for a 
variety of standard distributions are available; however more recently so-called 
black box methods have attracted substantial attention [HLD04]. These meth
ods are applicable to a large class of distributions, but require a setup stage 
and are generally less efficient than the specialized methods. The monographs 
[DagSS, Dev86, HLD04] present a wide range of methods used in this area. 
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There are two main approaches for generating random numbers from ar
bitrary distributions. The inversion method relies on knowledge of the inverse 
of the cumulative distribution P(x), P~^{y). If this inverse is given explicitly, 
then one generates uniformly distributed random numbers Z and transforms 
them to X using X = P~^{Z). This approach is very useful when distrib
utions are simple enough to find P~^ analytically, however, in case of more 
complicated distributions, P~^ may not available, and one has to invert P 
numerically by solving the equation Z = P{X) for X, e.g., using bisection or 
Newton's method. Given the slowness of numerical solution, this method be
comes very inefficient. This method cannot be used for multivariate densities. 

The second approach, so-called acceptance/ rejection method^ relies on effi
cient generation of random numbers from another distribution, whose density 
h{x) multiplied by a suitable positive constant, dominates the density p{x) of 
the required distribution, Vx G Dom[p] : p{x) < g{x) = ch{x). The function 
g{x) is often called the hat function of the distribution with density p. In this 
case we need two independent random variates, a random number X with 
density h(x) and a uniform random number Z on [0,1]. If Zg{X) < p{X), 
then X is accepted (and returned by the generator), otherwise X is rejected, 
and the process repeats until some X is accepted. 

The acceptance/rejection approach does not rely on the analytic form of 
the distribution or its inversion. However, its effectiveness depends on how 
accurate p is approximated from above by the hat function. The less accurate 
is the approximation, the greater is the chance of rejection (and hence ineffi
ciency of the algorithm). A number of important inequalities relating densities 
of various distributions are presented in [Dev86]. These inequalities allow one 
to choose an appropriate hat function for a given p. 

The acceptance/rejection approach generalizes well for multivariate distri
butions. In fact, this method does not change at all if X is a random vector 
rather than a random number. The challenge lies in efficient construction 
of the hat function for a multivariate density p{x), and finding an efficient 
way to sample from the distribution defined by this hat function. With the 
increasing dimension, the need for tight upper approximation to p becomes 
more important, as the number of wasted calculations in case of X rejected 
increases. 

Subdivision of the domain of p is frequently used in universal random 
number generators [Hor95, LH98, LHOl]. If little information about p is avail
able (i.e., no analj^ical form), a piecewise constant (or piecewise linear) hat 
function can be used. It is constructed by taking values of p at a number of 
points (Fig.9). For instance, some methods use concavity of p to guarantee 
that such an approximation overestimates p, whereas in [Hor95, LH98, LHOl] 
the log-concavity or T-concavity is exploited. A function is called log-concave 
(or T-concave for a monotone continuous function T), if the transformed den
sity p = ln{p) (or p = T{p)) is concave. In [ES98] the authors rely on detecting 
the inflection points of p in their construction of the hat function. 
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Fig. 9. A piecewise constant upper semicontinuous hat function (thick soHd hne) 
that approximates a monotone density p. 

However, regardless of the way the hat function is obtained at this pre
processing step, the random numbers are always generated in a similar fash
ion. First the interval is chosen using a universal discrete generator (e.g., using 
alias method [Dev86, Wal74]). Then a random variate X is generated that has 
a multiple of the hat function on this interval as its density. Then X is ei
ther accepted or rejected (according to whether Zg{X) < p{X) for a uniform 
random variate Z on [0,1]). In case of rejection we have to restart from the 
first step. The intervals are chosen with probabilities proportional to the area 
under g on each interval. 

It is clear that the form of the hat function g on each interval of the 
subdivision needs not be the same. While constant or linear functions can be 
used for some intervals, on intervals where p is has a vertical asymptote, or 
on infinite intervals (for the tails of the distributions) other forms are more 
appropriate (e.g., multiples of Pareto or Cauchy tails). It is also clear that 
the multivariate case can be treated in exactly the same way, by partitioning 
the domain into small regions. For T-concave distributions such method is 
described in [LH98]. 

Hence, efficient universal generators of non-uniform random numbers or 
random vectors can be built in a standardized fashion, by partitioning the 
domain of p, and constructing a piecewise continuous hat function. The prob
lem is how to build an accurate upper approximation that can serve as a hat 
function. In this section we review the methods of building the hat functions 
based on one-sided approximations discussed earlier in this paper. 

4.2 Log-concave densities 

The use of envelop representation of convex functions, and one-sided approx
imation of type (5) has been used to construct the hat function of univariate 
log-concave densities for some time [Dev86, HLD04]. In [LH98] the authors de-
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scribed the transformed density rejection approach applicable to multivariate 
T-concave distributions. Consider a continuous strictly increasing function T. 
A density p is called T-concave if the transformed density p — T{p) is concave. 
A typical example is T := In, in which case p is called log-concave. 

Let us define a convex function / = —T{p). We shall build an underesti
mate of / using Eq.(5), and then change its sign to obtain the overestimate 
g^ = —H^. After this, the hat function of p is computed as ^ = T~^{g^). 

In the univariate case, generation of random numbers using a multiple of 
the hat function g — T~^{g^) as the density is quite simple. Firstly, one calcu
lates the intersections of linear segments of functions 
H^ = maxfc(/(x^) + A^(x — x^)), which gives a partition of the domain 
of p into subintervals. H^ is linear on each subinterval, and since T is given, 
generation of random numbers on each subinterval using g as the hat function 
is easily achieved by inversion [Dev86, HLD04]. The choice of the subinterval 
is performed using a discrete randon mumber generator. 

The multivariate case proceeds in a similar fasion, but with a more com
plicated generation step. The authors of [LH98] use piecewise linear function 
H^ (5) to build the hat function g = T-^{-H^). Then they determine the 
partition of the domain of p into the set of convex polyhedra (bounded or 
unbounded), so than on each polyhedron H^ is linear. Then the authors use 
the sweep-plane algorithm to generate random vectors on each polyhedron. 
As earlier, the choice of the polyhedron is performed using a discrete randon 
mumber generator. The programming library UNURAN implements several uni
versal random variate generation algorithms for T-concave densities [HLD04]. 

4.3 Univariate Lipschitz densities 

In this section we consider univariate Lipschitz-continuous densities p on a 
compact set. As we mentioned earlier, the infinite domains can be treated by 
splitting them into a compact and semi-infinite interval (say, [0, a], [a, oo)). 
The hat function of the tail of the distribution on [a, oo) can be the multiple 
of Pareto heavy tail distribution g{x) — cjx^^^, and will not be treated here. 
We are interested in the compact subdomain [0,a] (or [a, 6] for generality). 

Let us subdivide the interval [a, h\ into a finite number of subintervals 
fx^x^+M 

\aM= U [̂ ''̂ ' 
k=\,...,K-\ 

whose interiors do not intersect {x^^x^^^) fi {x^,x^^^) — 0, if j ^ k. 
Lipschitz continuity can be exploited in order to put upper and lower 

bounds on the values of p on any subinterval [x^, x'̂ "^^], given its values at the 
ends pk = p{x^),pk-\.i = p{x^'^^), namely 
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rmix{pk - M\x^ -x\,pk-\-i - M\x^~^^ - x\} < p{x) 

< min {pk + M\x^ - x|,p^+i + M\x^^^ - x\} , 

X e [x^,x^+^]. 

As earlier M denotes the Lipschitz constant of p. By having K values of 
p on [a, 6] we can build the saw-tooth overestimate of p, which we can use as 
the hat function 

g'<{x)=mm(pk + M\x''-x\). (20) 

One can recognize Eq.(7), in which we use / = —p and H^ = —g^, as we are 
interested in the upper, rather than lower approximation. 

The use of saw-tooth overestimates as hat functions in the acceptance/ 
rejection approach was described in [Dev86], p.348. The process of building the 
saw-tooth overestimate of p can be organized very efficiently (in O(i^logi^) 
operations), and the points x^ can be chosen either randomly on [a, 6], or, 
which is more efficient, by choosing one of the schemata described in [HJ95, 
SSOO]. For example, in Pijavski-Shubert algorithm [Pij72], given a set of K 
function values pk, k = 1,... ,K, one chooses the K + 1-st value at the global 
maximum of the function g^{x) in (20). The global maximum of (20) is found 
by sorting out all local maxima (the teeth of the saw-tooth cover). This way 
the saw-tooth overestimate tends to be closer to p, which reduces the chance 
of rejection. 

There are two ways to proceed with building the hat function after the saw
tooth overestimate is built. Firstly, we can use a constant hat function g{x) = 
max^^(x) ,x G [x^,x^'^^] on every subinterval [x^,a;^+-^], A: = l , . . . , i ^ — 1. 
Secondly, we can use the saw-tooth overestimate itself as the hat function, 
g{x) = g^{x), in which case we need to divide [a, 6] into as twice as many 
subintervals [x^, ^^] , [^^^x^'^^],k = 1 , . . . , ii' — 1, where ^^ is the local maxi-
mizer oi g^, ^^ = argmax^^ ĵ̂ -fc .̂ fc+ij g^{x). On each subinterval the hat func
tion is linear, and the random variate X with (a multiple of) such density, 
as required by the acceptance/ rejection method, is generated using inversion 
(Fig.lO). 

It is worth noting that the described approach is applicable to multimodal 
distributions (as opposed to T-concave distributions in [Hor95, LHOl]). How
ever, this method requires knowledge of the Lipschitz constant of p, M, which 
is a crucial piece of information. If unknown, the Lipschitz constant can be 
safely overestimated, at the price of less accurate upper approximation. In 
references [WZ96, SL97, SSOO, Ser03] various methods of estimating Lipschitz 
constants are developed. These methods are based only on the ability to com
pute the values of p, not on its analytic formula. On the other hand, the value 
of M can sometimes follow from theoretical considerations. 

Using saw-tooth overestimates as hat functions requires more function 
values K than methods applicable to T-concave distributions, which translates 
into a longer pre-processing step (building saw-tooth overestimate and tables 
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random X 

Fig. 10. A piecewise linear hat function g built using the saw-tooth overestimate 
in the univariate case. 

y,Pix'^ 

Fig. 11. A piecewise constant hat function g built using the saw-tooth overestimate 
in the univariate case. The value gk is chosen as the absolute maximum of the 
saw-tooth overestimate on each Dk-

for the alias method) and longer tables in the alias method, but not in longer 
generation time once preprocessing has been finalized. 

One variation of this method is to use shorter tables (i.e., less subintervals), 
but to improve the lower overestimate of the maximum of p on each subinter-
val. Previously we assumed that such lower overestimate is the maximum of 
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g^ on [x^^x^'^^]. It is possible to improve this value by performing subdivision 
of these subintervals in search for the global maximum of p on them, without 
recording the finer partition. This can be done by applying Pijavski-Shubert 
algorithm on each [x^,x^"^^], and then taking as the hat function the piece-
wise constant function g^ whose values are given by the lower overestimates 
of the global maximum of p on each [x ,̂a;^"^^] (Fig.11). 

4.4 Lipschitz densities in BP^ 

Consider generation of random vectors X with density p on a compact subset 
A ^ R^ using acceptance/ rejection approach. We shall use the unit simplex 
S as the set A, but it is not difficult to modify this method for subsets of 5, 
like polytopes D C S. 

We consider a Lipschitz continuous density p on S. Treatment of the tails 
is outside the scope of this paper. Our goal is to build a partition of S into 
simple polytopes (e.g., simplices) on which we shall (narrowly) overestimate 
p with a constant function. This piecewise constant upper approximation will 
be our hat function in the acceptance/ rejection approach. 

Because Lipschitz functions on S can be seen as restrictions of a suitable 
IPH function (see discussion after Example 2), we will use the underestimate 
(6) in our computations. Let us define an auxilirary IPH function / = —p-\-C, 
with C > maxxes p{x) + 2M. Using the values of / at x^, fc = 1 , . . . , i ^ , 
build the underestimate H^ (6). At this stage, we can take the function 
g^ = —H^ + C as the overestimate of p, and use it in the acceptance/ 
rejection algorithm. However this is extremely inconvenient, because it is hard 
to build a random variate generator which uses such a complicated g^ as the 
density. 

Instead, we will use a simpler piecewise constant hat function. We know 
that function H^ is piecewise linear, and possesses a number of local min
ima, which can be identified from combinations of support vectors (12) using 
Eq.(13). We further know that on sets A{L) characterized by (14), each local 
minimum is unique, and these sets form a partition of S. Define the following 
piecewise constant underestimate of / 

H{x) = d{L), i f x G ^ ( L ) , 

where L is the combination of support vectors which identifies the minimizer 
X*, and A{L) is the set (14) on which it is unique. Now we take g = —H + C 
as the hat function. 

We now need an efficient method of generating random variates with a 
multiple of the hat function as the density. In our case the hat function is 
piecewise constant, which means that we can generate random variates in two 
steps: 1) randomly choose an element of the partition A{L), with probability 
proportional to the volume of A{L) times d{L); 2) generate X uniformly 
distributed on A{L). The first step requires an efficient discrete random variate 
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generator. We can use the alias method [Dev86, Wal74] for this purpose. The 
second step requires additional processing, as generation of random variates 
on a polytope requires its triangulation. 

Generation of random variates uniformly distributed in a simplex is rela
tively easy using sorting or uniform spacings [Dev86],p.214. The way to gen
erate uniform random variates on a general polytope A{L) is to subdivide 
it into simplices, the procedure known as triangulation. Further, it is easy 
to compute the volume of a polytope given its triangulation. Hence we will 
triangulate every polytope A{L) as part of the preprocessing. 

For our purposes any triangulation of the polytope is suitable, and we 
used the revised Cohen and Hickey triangulation as described in [BEFOO]. 
This triangulation method requires the vertex representation of the polytope 
A(L), whereas it is given as the set of inequalities (14). The calculation of ver
tex representation of A{L) can be done using the Double Description method 
[FP96, MRT53]. The software package CDD, which implements the Double 
Description method is available from [Fuk05]. The software package Vinci, 
available from [Eng05] can be used for the revised Cohen and Hickey triangu
lation. 

Once the triangulation of the sets A{L) is done, the volume of each simplex 
needs to be computed and multiplied by the value of the hat function g on 
it. The volume computation is performed by taking the determinant of an 
n X n-matrix of vertex coordinates [BEFOO]. The vertices and volumes (times 
the value of g) of the simplices that partition the domain of p are stored for 
the random vector generator. 

Summarizing this section, given an arbitrary Lipschitz density p on 5, we 
can find an underestimate H^ of an auxiliary function / = —p -f C, and a 
partition of S into polytopes A{L), such that on each A(L), the local minimum 
of i J ^ , d(L) in (13), is the greatest lower bound on / . This lower bound is 
tight, i.e., one can find such a Lipschitz function, that min^^^(£,)/(x) = d, 
for instance / = H^ itself. Based on H^, we define the hat function as 
g = —H + C, where H{x) = o!, if x G A[L), Then we subdivide each polytope 
A{L) into simplices to facilitate generation of random variates, and compute 
the volume of each simplex for the discrete random variate generator. 

4.5 Description of the algorithm 

Let us now detail some of the steps required to build a universal random 
vector generator using the hat function described in the previous section. The 
algorithm consists of two parts, preprocessing and generation. First, given 
the set of values p{x^), k = 1 , . . . , iC, we build the saw-tooth underestimate 
of an IPH function / = —p-\-C. Points x^ can be given a priori, or can be 
determined by the algorithm itself, for instance each x^^k = n + 1 , . . . can 
be chosen as a global minimizer of the function H^~^, i.e., at the teeth of 
the saw-tooth underestimate at the current iteration. The first n points are 
always chosen as the vertices of 5. 
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We build the saw-tooth underestimate (6) by enumerating its local min-
imizers using the combinatorial technique presented in section 3.3. Based 
on these local minimizers, we partition the domain S into polytopes A{L)^ 
and then further into simphces. On each A{L) the hat function is defined by 
g = —d-\- C. We complete the preprocessing part by computing the volumes 
of each simplex Si in the partition. 

The generation part now works as usual: 1) randomly choose a simplex Si 
of the partition of S according to the probability, which is proportional to the 
volume of Si times the value of g on it; for this we use the alias method. 2) 
generate a random vector X uniformly distributed in the chosen simplex, see 
[Dev86]. 3) generate an independent random number Z, uniformly distributed 
in [0,1]; if Zg{X) < p{X) then accept X, otherwise reject X and return to 
step 1). 

The overall algorithm to generate random vectors with density p follows. 

Acceptance/rejection Algorithm for Lipschitz densities 
Requires: density p (not necessarily an analytic expression), its Lipschitz con
stant M in /i-norm (or its overestimate) and Pmax — niax^^5/?(a:). 
The number of points jFf as a control parameter. 

Preprocessing 

1 Choose constant C > pmax + 2M 
2 Build the saw-tooth underestimate H^ of the function / = ~p + C using 

K points x^ within the domain of p, by using the algorithm from [BB02, 
Bel03]. Except for the first n points, x^ are chosen automatically by the 
algorithm. 

3 For each local minimum of H^ compute the polytope A{L) using (14). 
4 Convert each A{L) to the vertex representation using the Double Descrip

tion method from [FP96, MRT53] and find its triangulation. 
5 For each simplex Si from the triangulation of A{L) find its volume and 

multiply it by P{Si) = C- d{L). 
6 Store the list of all simplices as the list of vertices and computed values P 

and VP[Si) = Volume[Si) x P{Si). 
7 Create two tables for the alias method using the values VP as the vector 

of probabilities. 

Random vector generation 

1 Using the alias method randomly choose simplex Si. 
2 Generate random vector R uniformly distributed in the unit simplex S 

([Dev86], p.214, via either sorting or uniform spacings). 
3 Compute vector X — Y^^=i Rj^i, where S] is the j - t h vertex of the chosen 

simplex Si ([Dev86], p.568). 
4 Generate an independent uniform random number Z in [0,1] 
5 If ZP{S) < p(X) then return X otherwise go to Step 1. 
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Generation step clearly requires n + 1 random numbers (either uniform 
or exponential, see [Dev86], p.214), and calculations take 0{n'^) operations, 
because of computing the n components of X in the sum. Bucket sort is 
assumed to take on average 0{n) operations ([Dev86], p.216). Probability of 
rejection depends on how accurate is the computed upper approximation to p, 
which in turn depends on its Lipschitz constant and the number of points K. 
The latter value is the control parameter for the algorithm: the more points 
are used, the better is the approximation, but the longer is preprocessing step, 
dominated by building the saw-tooth underestimate and triangulation. 

The number of simplices in the partition of the domain of p is difficult to 
calculate a priori, but Table 2 provides some indicative values. 

Fig. 12. Multimodal density p used to generate random vectors in R^. p in this 
example is a mixture of five normal distributions. The algorithm uses exclusively 
numerical values of p and its Lipschitz constant. 

4.6 Numerical experiments 

We tested the acceptance/rejection method for Lipschitz densities on some 
multivariate multimodal distributions, such as a mixture of several normal 
distributions with different weights a ,̂ p and covariance matrices. One such 
distribution is plotted on Fig. 12 for the case of two variables. Of course, one 
can easily generate random variates from such a mixture using alternative 
methods (e.g., composition method, if the parameters ai,p,U are known). 
However, none of this information was available to the algorithm, which relies 
only on the ability to compute the value of p at a given point (plus its Lip
schitz properties). Figs. 13,14 depict graphs of other densities used for testing. 
Sampling from these non-standard densities is a much more challenging prob
lem than sampling from a mixture of normal distributions, yet the described 
algorithm easily accomplishes this task with the same efficiency. 
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Fig. 13. Density p used to generate random vectors in B?^ given by p{x^y) 

kexp{—{y — x^Y ~ ^ V^ )• This density is not log-concave. 

Fig. 14. Density p used to generate random vectors in B? is given by p(r) 

(|r| - \f X e x p ( - l ^ ^ ± | ^ ) , where r = {x,y). 
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Table 3 presents timing of preprocessing and generation steps for various 
n and K for one such /9, taken as 

5 

p = ^ aiNorm{iJ.i, Ui). 
i=l 

Covariance matrices were all diagonal. For the reference, the time to gener
ate one uniform random number was 0.271 x 10~^ sec. The Ranlux lagged 
Fibonacci generator with the period 10^^^ was used for uniform random num
bers [Lue94]. 

Table 2. The number of local minima of H^. Function / 
calculations. 

1 was used in the 

K 
1000 
'2000 
4000 
8000 
15000 
20000 
25000 
30000 

n = 1 
999 
1999 
3999 
7999 
14999 
19999 
24999 
29999 

n = 3 
4699 
9631 
20435 
42031 
81301 
109587 
137770 
167251 

n — 5 
13495 
28210 
104117 
270328 
532387 
738888 
993812 
1234810 

n = 7 
24810 
50526 
177358 
527995 
1093040 
1605995 
3861070 
6340898 

n = 9 
31217 
74132 
187973 
886249 
1956075 
2661807 
6175083 
10521070 

Table 3 clearly shows that as K increases, the upper approximation be
comes more tight, and the acceptance ratio improves. However, this is at the 
cost of a rapidly growing number of simplices in the subdivision of the domain 
of p, and thus at the cost of increased preprocessing time, especially for n > 3. 

5 Scattered data interpolation: Lipschitz approximation 

5.1 Problem formulation 

Multivariate data interpolation and approximation is a very common problem 
in many branches of science. Sometimes this problem is referred to as regres
sion, estimation, data fitting, learning of functions and other names. There is 
a great number of techniques developed for various instances of this problem, 
such as polynomial regression, spline interpolation and smoothing, wavelets, 
nearest neighbour search, Sibson interpolation, MARS (multivariate adaptive 
regression splines), machine learning techniques (e.g., decision trees), neural 
networks, radial basis functions, etc. For an overview the reader is referred to 
[Alf89]. 

Shape preserving approximation refers to the approximation problem in 
which in addition to the data, other information about the function in question 
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Table 3. Performance of the acceptance/rejection method as a function of dimension 
n and the number of points K. Preprocessing step includes building the saw-tooth 
underestimate and triangulation. Generation time is the average time to generate 
one random n-vector. Acceptance ratio is the criterion of efficiency. 

n 

2 

3 

'4 

5 

K 

300 
1000 
2000 
4000 
8000 

16000 
300 

1000 
2000 
4000 
8000 
300 

1000 
2000 

50 
100 
200 

Number of 
simplices 

1276 
4424 
8972 

18078 
36369 
73208 
16166 
60080 

124300 
259428 
530237 
333522 

1399372 
3087003 

509560 
1904996 
5378880 

Time to build 
saw-tooth under

estimate (s) 
0.05 
0.18 
0.33 
0.56 
1.11 
2.29 
0.39 
1.08 
1.98 
3.74 
7.24 
3.18 

11.06 
22.51 

1.39 
4.80 
14.4 

Time for 
triangu

lation (s) 
0.27 
0.73 
1.39 
2.82 
5.78 

11.70 
2.20 
8.38 

17.32 
35.22 
69.28 
30.58 
116.6 
268.6 
41.12 
102.3 
370.8 

Generation 
time 

(sxlO-^) 
9.28 
6.11 
5.24 
4.82 
4.31 
4.08 
23.8 
18.0 
15.3 
12.9 
11.2 
63.5 
58.2 
50.1 

29950 
27130 
21411 

j Accep
tance 
ratio 
0.241 
0.36 
0.44 
0.53 
0.61 
0.69 
0.13 
0.18 
0.21 
0.26 
0.31 
0.06 
0.09 
0.11 

0.00012 
0.0002 

0.000281 

is available. For instance, it may be known a priori that the function must 
be monotone, convex, positive, symmetric, unimodal, etc. These conditions 
determine additional constraints on the approximant, which may find explicit 
representation in terms of the parameters that are fitted to the data. In spline 
approximation, this problem has been thoroughly studied (see [Die95, KM97, 
KvaOO, BelOO]), and such constraints as monotonicity or convexity usually 
translate into restrictions on spline coefficients. 

More recently, the concept of shape preserving interpolation and approxi
mation has been extended to include other known a priori restrictions on the 
approximant, such as generalized convexity, unimodality, possessing peaks or 
discontinuities, Lipschitz property, associativity [KM97, Bel03]. These restric
tions require new problem formulations leading to new specific methods of 
approximation. 

In this section we consider interpolation of scattered multivariate data 
which restricts the Lipschitz constant of the interpolant. Lipschitz condition 
ensures reasonable bounds on the interpolated values of the function, which is 
sometimes hard to achieve in nonlinear interpolation. As we shall see, preserva
tion of the Lipschitz condition implies strict bounds on the difference between 
the interpolant and the function it models in the Chebyshev max-norm, so 
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that Lipschitz interpolation guarantees the performance of the interpolant 
in the worst case scenario, whereas other methods target the average perfor
mance. In this sense, Lipschitz approximation translates into reliable learning 
of functions [Coo95]. 

As the interpolant, we will use a combination of the lower and upper ap
proximations of Lipschitz / defined by (7) or (8). We will show that such an 
interpolant is not a matter of arbitrary choice, but arises as the solution to 
the best uniform approximation problem, as formulated in the next section. 
On the other hand, the obtained solution is a piecewise continuous function 
(piecewise Unear in case of (8), i.e., a linear spline). Sphnes possess many 
desirable features, such as stability and speed of evaluation, local behaviour, 
ability to model functions of virtually any shape, and so on [Die95]. We also 
obtain continuous dependence of the interpolant on the data, which is fre
quently hard to achieve [Alf89]. 

5.2 Best uniform approximation 

Assume that we are given a data set {{x^,y^)}^=i, x^ G EP'.y^ G R. We also 
assume that y^ are the values of some function f{x^) = y^, which is unknown 
to us and which we want to approximate with g, g ^ f- Thus we look for an 
interpolant g : R^ -^ R, such that 

g{x')==y',k = l,...,K. 

It is known (e.g., see [GW59]) that it is impossible to give finite bounds 
on the values / (x) , x ^ x^,k = 1 , . . . , X in terms of the data set, if the only 
additional information is that / is the element of a linear space V, no matter 
how restricted the space V is in terms of conditions of continuity, smoothness, 
analyticity, etc. Therefore it is meaningless to speak about the goodness of 
approximation without a reference to some nonlinear constraint on V. 

We shall work in the space of continuous functions with the supremum 
norm, i.e., V = C{X),X C R^, We shall assume that / is bounded and 
Lipschitz continuous, with the Lipschitz constant M in the norm || • ||. We 
denote the class of functions whose smallest Lipschitz constant is equal or 
smaller than M by Lip{M). We can use any norm, or any distance function 
dp. Our goal is to find an interpolant g that approximates / well at the 
points X distinct from the data, given that / G Lip{M). That is, we solve the 
following problem. 

Given the data set as above, find an optimal interpolating function gM -
R"" -^R, 

gM = ^Tg ^^^ inf . ^ ^ ^ I | | / - ^ | | c m } (21) 

such that 
gix'') = fix') = y\k = l,...,K. 
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Golomb and Weinberger [GW59] have considered the problem of approxi
mation in Hnear spaces subject to finite bounds on some nonlinear functional 
in a very general setting. Let V be a linear vector space, u is an element of 
V, and F{u)^ Fi( i^) , . . . , FK{U) are linear functionals on this space. Given the 
values of functionals Fk{u),k = 1,,.. ,K, the goal is to approximate F{u), 
subject to u being restricted to some subset 5 C V. The subset S is defined 
by means of a non-negative nonlinear positively homogeneous and continuous 
functional p{u): S = {u G V : p{u) < r}. Thus the unknown function u is 
known to lie in the intersection of the set S and the plane v e V, defined by 
Fk{v) = fk,k = l,...,K. 

Consider the set a of values the functional F{v) assumes as v ranges over 
this intersection. Under certain conditions on p (namely, the triangular in
equality), cr is a closed interval, and the best approximation problem has a 
solution u that corresponds to the midpoint of this interval, while the error 
bounds on F{u) are easily computed as half-length of a. 

In our case, V is the space of continuous functions C(X), the functionals 
F^Fk^k = 1,...,J^ are defined as the values u{x),u{x^)^ and p{u) is the 
Lipschitz seminorm (i.e., 

\/veV : p{v) - : i n f { M : \v{x) - v{z)\ < M||x - z||, Vx,z}). 

For every x G X, denote the interval a by [i7^^^^'"(a:),F^^P^^(x)], where 
jjiower^jjupper ^^^ respectively the lower and the upper bounds on u. Then 
the solution to the best uniform approximation problem (21) is given by 

u{x) = ^[iJ^^^^^(x) + iJ^^^^^(x)]. 

To build a constructive interpolation algorithm, we need a suitable repre
sentation for functions H^ower^ j^upper ̂  rpĵ jg representation is given by Eqs. 
(7) or (8), and involves only the values of f{x^) and its Lipschitz constant M. 
We already used this representation to build both the lower and the upper 
approximations of / . We now combine the two approximations. 

5.3 Description of the algorithm 

First we describe Lipschitz approximation algorithm in the univariate case for 
the purposes of illustration, and then we proceed to the general multivariate 
case. Given the dataset {{x^,y^)}^=i, x^,y^ G i?, and the Lipschitz constant 
of / , M, define the lower and upper approximations 

ffiowerf^^>^ = m a x ( / - M\x - x^l), H^'P^^^x) = mm(y^ + M\x - x^\). 
k k 

The lower approximation directly follows from (7), whereas the upper ap
proximation is built from the lower approximation of an auxiliary function 
/ = - / , c f . Eq. (20). 
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H^^^^^Cx) 

Fig. 15. The lower and upper approximations of a Lipschitz function / , and the 
best uniform approximation g. 

Both approximations are piecewise linear functions, illustrated on Fig. 
15. Their calculation for any x can be performed very efficiently in O(logi^) 
operations by locating the interval x G [x'̂ , x^+^), assuming that x^ are sorted 
in increasing order. Under our assumption that / G Lip{M), 

yxex : /f̂ ^^^^x) < fix) < iĴ pp̂ (̂x), 

and the bounds are tight. The optimal interpolant is then 

g{x) = - (j^^^^"^(x) + i7^^^^^(x)) . 

Such an interpolant was considered in [Coo95, ZKS02]; the authors used it 
as a tool for reliable learning of Lipschitz functions. It possesses a number of 
desirable features listed below. 

(1) ^ is a piecewise linear continuous function. 
(2) ^ has Lipschitz constant M, i.e., g G Lip{M). 
(3) g reproduces constant and linear functions. 
(4) g preserves the range of the data min{y^} < g < max{y^}. 
(5) g preserves monotonicity of the data, if for all k: x^ < x^'^^ implies y^ < 

2/^"^\ then g{x) < g(z) Vx, z : x < z. 
(6) g continuously depends on x^ and y^. 
(7) The tight bound on the largest error of approximation is computed 

as C = Mmaxa^min^fc \x - x^\. That is V/ G Lip{M),f{x^) = y^, 
maxa; \f{x) — g{x)\ < C, and this bound is achieved, e.g., when / = H^^^^^ 
or / = ff upper ̂  

(8) ^ is a minimum of the functional F{g) = J^ \g\x)\dx. 

Now consider the multivariate case. We use the underestimate (7) (and 
the respective overestimate) as the functions iJ^^^^^, ^upper^ ^ ^ ^^^ ^g^ ^^y. 
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norm in (7). However the method based on the simplicial distance (8) is very 
efficient numerically. In this case we can represent H^^^^'^ through the list 
of its local minimizers. We have an efficient method of enumerating local 
minimizers of (8), described in Section 3.3. This representation is useful when 
a value of H^^'^^'^ is needed for an arbitrary x G X. It allows one to compute the 
maximum in (8) using only a limited subset of {1 ,2 , . . . , K}^ which makes the 
algorithm competitive with alternative methods (like Sibson's interpolation 
[Sib81]). 

To obtain the overestimate H'^PP^'^ we proceed as earlier: define an auxil
iary function / = —/, for which we build the underestimate (8), then we take 
TTupper __ 77"^ 

Like its univariate counterpart, the multivariate interpolant 

also possesses a number of desirable features. It provides uniform approxi
mation to / , preserves its range, preserves the Lipschitz constant of / , and 
provides local approximation scheme (i.e., values of g depend only on the 
nearest data points). Furthermore, g depends continuously on the data. The 
latter property is very desirable [Alf89], but only a few multivariate inter-
polants possess this property. For instance, none of the schemata based on 
triangulation of the domain of / has this property. 

However, the most important feature of the interpolant g is that it provides 
the best approximation of / in the worst case scenario: no matter how "bad" 
was the Lipschitz function / that generated the input data, or how inconve
niently these data are distributed, g is the best approximation of / based on 
the available data. Thus our method translates into reliable approximation of 
/ : even in the worst case the error bounds are guaranteed. 

5.4 Numerical experiments 

To illustrate the performance of the interpolant g we approximate the follow
ing Lipschitz functions. 

Test function 1 

f{x) = sinxi sinx2 + 0.05(sin5xi sin6x2)^,x e [0,1]^. 

Test function 2 

f{x) = sin 5x1 sin2x2 + 0.2(sin20xi sin 20x2)^, x G [0,3]^. 

Test function 3 

f{x) = f[sin2xuxe [0,3]^. 
i=l 
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Table 4. Performance of the algorithm for test function 1 as a function of the 
number of data points. 

K 

10000 
20000 
40000 
80000 

preprocessing 
time(s) 

1.021 
2.393 
5.578 

12.878 

evaluation 
time (s xlO~^) 

0.293 
0.28 
0.39 
0.45 

max error 

0.173 
0.116 

0.0923 
0.069 

root mean 
squared error 

0.025 
0.018 
0.013 

0.0090 

Table 5. Performance of the algorithm for test function 2 as a function of the 
number of data points. 

K 

10000 
20000 
40000 
80000 

preprocessing 
time(s) 

1.021 
2.43 
5.83 
12.9 

evaluation 
time (s xlO~^) 

0.25 
0.28 
0.34 
0.40 

max error 

0.34 
0.18 
0.15 

0.021 

root mean 
squared error 

0.045 
0.031 
0.021 
0.013 

Table 6. Performance of the algorithm for test function 3 as a function of the 
number of data points and dimension. 

n 

3 

4 

5 

K 

1000 
10000 
20000 
40000 
80000 
1000 
5000 
10000 
20000 
40000 
1000 
5000 
10000 

preprocessing 
time(s) 

0.17 
2.8 

6.67 
15.69 
35.57 
0.78 
7.29 
18.2 
45.3 

110.0 
4.66 

54.08 
211.8 

evaluation 
time (s xlO~^) 

0.72 
1.43 
1.66 
1.85 
2.09 
4.42 
8.91 
11.0 
20.8 
15.7 

29.84 
69.06 
98.40 

max error 

0.63 
0.32 
0.27 
0.18 
0.17 
1.01 
0.72 
0.61 
0.33 
0.29 
1.04 
0.83 
0.62 

root mean 
squared error 

0.14 
0.063 
0.050 
0.038 
0.031 

0.19 
0.13 

0.113 
0.08 

0.076 
0.19 
0.14 
0.121 

The approximations of test functions 1 and 2 are plotted on Figs, 16-19. 
Tables 4-6 provide quantitative information about the quality of fit and the 
speed of evaluation. 

There are tMro steps of the algorithm that need benchmarking. The first 
step of building the interpolant g is called preprocessing, and the second step 
is the evaluation of g for an arbitrary x. Evaluation step was performed Â  = 
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Fig. 16. Test function 1 

Fig. 17, Uniform approximation of the test function 1 using 20000 data points. 
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Fig. 18. Test function 2 

Fig. 19. Uniform approximation of the test function 2 using 80000 data points. 
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100000 times at random points to gather statistics, and the average time 
is reported. Further, the maximum and mean errors of approximation are 
reported. The root mean squared error is computed as 

where Â  is the number of test points x̂  not used in the construction of the 
interpolant. All computations were performed on a Pentium-IV PC, 1.2 GHz, 
512 MB Ram, Visual C + + (version 6) compiler. 

6 Conclusion 

The theory of abstract convexity provides us with the necessary tools for build
ing guaranteed tight one-sided approximations of various classes of functions. 
Such approximations find applications in many areas, such as global opti
mization, statistical simulation and approximation. In this paper we reviewed 
methods of building lower (upper) approximations of convex, log-convex, IPH 
and Lipschitz functions, which commonly arise in practice. 

We presented an overview of three important applications of one-sided ap
proximations: global optimization, random variate generation and scattered 
data interpolation. In all three applications we used essentially the same con
struction, in which the lower (or upper) approximation was represented by 
means of the list of its local minima (maxima). We also described a fast com
binatorial algorithm for identification of these local minima. Each of the pre
sented applications also requires a number of specific techniques to make use 
of this general construction. This paper addresses this issue and presents the 
details of the algorithms used in each case, and also illustrates the performance 
of the algorithms using numerical experiments, and practical applications. 
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Summary. Concave programming problems constitute one of the most important 
and fundamental classes of problems in global optimization. Concave minimization 
problems have a diverse range of direct and indirect applications. Moreover, concave 
minimization problems are well known to be NP-hard. In this paper, we present 
three algorithms which are similar to each other for concave minimization problems. 
In each iteration of the algorithms, linear programming problems with the same 
constraints as the initial problem are required to solve and a local search method 
is required to use. Furthermore, the convergence result is given. From the result, 
we see that the local search method is not necessarily required but we require that 
some conditions must hold on the constraint. 

K e y words: Approximation set; Trivial Approximation Set; Improved Ap
proximation Set; General Orthogonal Approximation Set; Level Set; Concave 
Programming; Quasiconcave Function; Global Optimization 

1 Introduction 

Concave minimization techniques play an important role in other fields of 
global optimization. Large classes of optimization problems can be t rans
formed into equivalent concave minimization problems. Concave minimization 
can be applied in the large number of fields. For instance, many problems 
from such fields as economics, telecommunications, t ransportat ion, computer 
design and finance can be formulated as concave minimization problems. More 
applications of concave minimization can be found in [HT93, PR87]. Concave 
minimization problems are NP-hard, even in most special cases. For instance, 
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[PS88] has shown that minimizing a concave quadratic function over a very 
simple polyhedron such as a hypercube is an NP-hard problem. More com
plete surveys of the complexity of these and other problems can be found in 
[Par93]. General concave minimization problem can be written as follows: 

min f{x) 

s.t. X e D^ 

where / is a concave function and D is a convex set. Concave minimization 
problems generally possess many local solutions that are not global. More
over, we know that the global minimum of the above problem is attained at 
a vertex of D when JD is a polytope. Many deterministic and stochastic ap
proaches have been proposed for the local and global solutions to the concave 
minimization problem. There are three fundamental algorithmic approaches. 
The first approach is the enumerative method and it can be used only when 
JD is a polyhedron. The other two approaches are the successive approxima
tion approach and the branch and bound approach. These approaches can be 
found in most global optimization books [HT93, HP95, HPTOl]. 

In this paper, we present a numerical method to solve the concave mini
mization problem with specific constraints. Basic idea of the method is to find 
an approximate solution to the problem solving linear programming prob
lems with the same constraints as the initial problem. The paper is organized 
as follows: In Section 2, an optimality condition for the quasiconcave min
imization problem is presented. In Section 3, the concept of approximation 
techniques and an approximation set, which are helpful to construct the al
gorithms, are introduced. In Section 4, three global optimization algorithms, 
which are based on the global optimality condition for the concave quadratic 
problem, are presented and their convergence properties are established. 

2 Global Optimality Condition 

Consider the quasiconcave minimization problem 

min f{x) (1) 

s.t. X e D, 

where / : R'̂  —> R is a quasiconcave and different!able function and D 
is a convex set in R^. Then the following theorem generalizes the result in 
Strekalovsky [Str98, SE90] . 

Theorem 1. Let z is a solution of Problem (1), and let 

EM) = {2/ e R" I fiy) = c}. 

Then 
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{x - yfVfiy) > 0 for all y e Ef^,^{f) and x e D, (2) 

//; in addition, Vf{y) ^ 0 holds for all y G Ef(^z){f)) then condition (2) is 
sufficient for z e D being a solution to Problem (1). 

Proof. Necessity. Suppose that ^ is a global minimizer of problem (1) and let 
y G Ef(^z){f) ^^d X E D. Then we have f{x) > f{y). Since the function / is a 
quasiconcave, it follows that 

fiax + (1 - a)y) > mm{f{x), f{y)} = f{y) for all a € [0,1]. 

By Taylor's formula, there is a neighborhood of the point y on which: 

f{y + aix - y)) - f(y) = a ({x - yfVf{y) + ^ i ^ ^ Z ^ M ^ > o, a > 0. 

Note that lira "̂ "H"̂ "̂ "̂  = 0. This implies that (x - yYVfiy) > 0. 

Sufficiency. Conversely, suppose that z is not a solution to problem (1); i.e., 
there exists bXiu £ D such that f{u) < f{z). By the definition of quasiconcave 
function, Uf(^z){f) = {x eW^ \ f{x) > f{z)} is a closed and convex set. Note 
that int Uf(^z){f) ¥" 0 according to the assumption in the theorem. Denote the 
projection of u on Uf(^z){f) by y. It satisfies 

\\y-u\\ = min \\x~u\\. 

Clearly, 
\\y-u\\>0 (3) 

holds because u ^ Uf(^z){f)- Moreover, this y can be considered as a solution 
of the following convex minimization problem: 

min g{x) = -\\x - uf 

s.t. xeUf^z){f)' 

Since Uf(^z){f) ¥" 0 ^^^ ^^is set is convex, the Slater's constraint qualification 
condition holds. Under this condition, y is a solution to the above problem if 
and only if there exists Lagrange multiplier A such that (y. A) is a solution to 
the following mixed nonlinear complementary problem : 

ygiy) - AV/(y) = 0 
\{fiz)-f{y)) = 0 (4) 
fiz) - f{y) < 0, A > 0 

If A = 0, then we have Vg{y) =y — u = 0, which contradicts (3). Thus, A > 0 
in (4). Then we obtain 

y - u - AV/(2/) = 0, A > 0 , 

fiv) = m-
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Prom this we conclude that {u—y)^Vf{y) < 0, which contradicts (2). This last 
contradiction implies that the assumption that z is not a solution of Problem 
(1) must be false. This completes the proof. D 

This theorem tells us that we need to find a pair x,y eW^ such that 

( x - y r V / ( 2 / ) < 0 , f{y) = f{z'), xeD 

in order to conclude that the point z' e D is not a solution to Problem (1). 
The following example illustrate the use of this property. 

Example 1. 

mm j{x) — 
1 - x i - X2 

s.t. 0.6 < xi < 7, 

0.6 < 0:2 < 2. 

We can easily show that / is a quasiconcave function over the constraint set. 
The gradient of the function is found as follows. 

J.. . __ {x'2 — 2x1X2 - xf + 2xi x\ — 2xiX2 - x\-\- 2x2 
( 1 - X i - X 2 ) ^ ' ( 1 - X i - X 2 ) ^ 

Now we want to check whether a feasible point x^ = (0.6,0.6)-^,which is clearly 
local minimizer to the problem, is global minimizer or not. Then consider a 
pair u = (5,2)^ and y = (3,3)^ satisfying f{y) = / (x°) = -3.6. We have 
{u — yY'Vf{y) = — if < 0 and it follows that x° is not a global solution. In 
fact, we can show that the global solution is x* = (7,0.6)-^. 

3 Approximation Techniques of the Level Set 

For further discussion, we will consider only the concave case of the Problem 
(1), which is 

min / (x) (5) 

s.t. X G D, 

where / is a concave and differentiable function and D is a convex compact 
set in R^. 

Definition 1. The set Ef^z)U) defined by 

% . ) ( / ) = {?/eR" I/(y) = /(2)} 

is called the level set of f at z. 
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Note that the optimality condition (2) for Problem (5) requires to check 
the linear programming problem 

min (x - y)^Vf{y) 

s.t. X e D 

for every y G Ef(^z){f)- This is a hard problem. Thus, we need to find an ap
propriate approximation set so that one could check the optimality condition 
at a finite number of points. 

The following lemmas show that finding a point at the level set of f{x) is 
theoretically possible. 

Lemma 1. Let h GR^, Z e D which is not a global maximizer of f{x) over 
M^ and let x* be an optimal solution of the problem 

max f{x) 

s.t. X G M"", 

and let the set of all optimal solutions of this problem be bounded. Then there 
exists a unique positive number a such that x* + a/i G Ef(^z){f)' 

Proof We will prove that there exists a positive number a such that x*-\-ah e 
^f{z)if) ^^ fii'st. Suppose conversely that there is no number which satisfies 
the above condition; i.e., f{x* + ah) > f{z) holds for all a > 0. Note that 
hyp{f) — {(^>^) ^ M "̂̂ ^ : r < f{x)} is a convex set since / is a concave 
function. For a > 0, we obtain (x* + ah^ f{z)) G hyp{f). Next we show that 
(/i,0) is a direction of hyp{f). Suppose conversely that there exist a vector 
y ^ hyp{f) and a positive scalar /? such that y^f3{h^ 0) G W^^\hyp{f). Since 
W^^^\hyp{f) is an open set, there exists a scalar ji that satisfies the following 
conditions: 

ti{x\ f{z)) + (1 - ^x){y + pih, 0)) e W+\hyp{f) , 0 < M < 1 (6) 

On the other hand, we can show that //(x*,/(2;)) + (1 — /j>){y-{-P{h,0)) lies on 
the line segment joining some two points of hyp{f). For the points (x*, /(2;)) + 

iT (^'Q) ^^^ y^ ^^^ following equation holds. 

^i{{x*,f{z)) + i i : i i^( / i ,0)) + {l~^i)y = Mx*,f{z)) + (1 - ^i)iy + (3ih,0)) 

By convexity of hyp{f), we have iJ.{x*J{z)) + (1 - //)(2/ + P{h, 0)) G hyp{f). 
This contradicts (6), hence, (/i, 0) is a direction of hyp{f). Since (x*, /(x*)) G 
hyp{f), the following statement is true. 

(x*,/(x*)) + a(/i,0) G hyp{f) for all a > 0 

We can conclude that x* + a/i is also a global maximizer of / for all a > 0 
because x* is a global maximizer of / over R^. This contradicts the assumption 
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in the lemma. Now, we prove the uniqueness property. Assume that there are 
two positive scalars ai and a2 such that x*+aih G Ef(^z)if)^ z = 1,2. Without 
loss of generahty, we can assume that 0 < a i < a2. By concavity of / , we 
have 

f{z) = fix* + aih) =f((l-^)x'^ + ^ ( x * + a2h) 

V a2 / a2 
= fl-^)/(x*) + ^/(.)>/(z) 

\ Oi2j 0C2 

This inequality is valid only if a i = a2 • 

Under some condition, it is possible to compute a point on the level set. 
This is shown by the following statement. 

Lemma 2. Let a point z E D and a vector /i G R^ satisfy h^Vf{z) < 0 and 
let X* be global maximizer of f over D. Then there exists a unique positive 
number a such that x* + a/i G Ef(^z){f)-

Proof Suppose conversely that 

f{z) < fix"" + ah) for all a > 0. 

Note that f{x*) > f{z) for any z £ D.By convexity of / , we have 

(x* - z)^Vf{z) > 0. 

Prom the last inequality and assumption h^Vf{z) < 0, we can conclude that 

h^vm -
Since / is a concave function, for all a > 0, we have 

0 < /(x* + ah) - f{z) < (x* +ah- z)^Vf{z) 

= {x''-z)^Wf{z) + ah^Vf{z). 

Fora = - i ^ ^ ^ , ^ g P > 0 , w e g e t 

0<f{x*+ah)-f{z)<0, 

This gives contradiction. D 

Example 2. Consider the quadratic concave minimization problem 

min f{x) == -x^Cx + d^x (7) 

s.t. X e D 
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where D is a convex set in E^, d G R^ and C is a symmetric negative definite 
n X n matrix. 
Since C is negative definite, we have 

h^Ch < 0 

for all /i 7̂  0. Let us solve the equation f{x* + ah) = f{z) with respect to a. 

i (x* + a/i)^C(x* + ahf + c/^(x* + ah) = f{z) 

or 

fix') + ah^iCx' + c/) + ^a^h'^Ch = f{z) 

Note that x* satisfies Cx* + d = 0. Using this fact, we have 

/ 2 ( / ( z ) - / ( x * ) ) - ' 

V h^Ch 

Constructing Points on the Level Set 

As we have seen in Example 2, the number a can be found analytically for the 

quadratic case. In a general case, this analytical formula is not always avail
able but Lemmas 1 and 2 give us an opportunity to find a point on the level 
set using numerical methods. For this purpose, let us introduce the following 
function of one variable in R"*". 

m = fix*+th)-fiz). (8) 

The above lemmas state that this function has a unique root in R+. Our goal 
is to find the root of the function and , now, we can use numerical methods 
for this problem such as the Fixed point method, the Newton's method, the 
Bracketing methods and so on . We could use the following method to find 
initial guesses a and b such that ip{a) > 0 and ip{b) < 0 for the Bracketing 
methods as follows: 

1. Choose a step size p > 0. 
2. Determine ip{qp), g- = 1, 2 , . . . , ô 
3. a= {qo - l)p , b = qop 

where go is the smallest positive integer number such that ip{qop) < 0. More
over the Bisection method can be stated in the following form. 

1. Determine ip at the midpoint ^ ^ of the interval [a, 6]. 
2. If ip{^) > 0, then the root is in the interval [ ^ , 6 ] . Otherwise, the root 

is in the interval [a, ^J^] . The length of the interval containing the root 
is reduced by a factor of ^. 

3. Repeat the procedure until a prescribed precision is attained. 
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Finally, we choose a number a as an approximate root of the function '0(t) 
such that 

'0(a) < 0 (9) 

i.e., a lies on the right hand side of the exact root. We will see that this selec
tion helps us when we construct algorithms for Problem (1) in the next section. 

In order to check the optimality condition at a finite number of points of 

the level set, it is necessary to introduce a notion of an approximation set. 

Definition 2. The set A^ defined for a given integer m by 

AT = {y\y\...,y"'\f€Ef^,){f), i = l , 2 , . . . , m } (10) 

is called an approximation set to the level set Ef(^z){f) ^^ ̂ ' 

Since we can construct a point on the level set, an approximation set can 
be constructed in same way. Assume that A^ is given. Then for each y'^ G 
A^, i — 1,2,. . . ,m , solve the auxiliary problem 

min x^Vf{y') (11) 

s.t. X e D, 

Let 'u% i = 1,2,.. . , m, be the solutions of those problems, which always exist 
due to the compactness of D\ 

v^^Vf{y')^mmx^Vf{y') (12) 

Let us define 6m as follows: 

em= . min {u'-yyVf{y') (13) 
z=l ,2 , . . . ,m 

There are some properties of A^ and Om-

Lemma 3. If there is a point y'^ e A^ for z £ D such that {u^ — y'^)^Vf{y'^) < 

0; where u^ e D satisfies u^ Vf{y'^) = minx^V/(y^), then 
XED 

f{u') < f{z) 

holds. 

Proof. By the definition of u^^ we have 

mm(x - 2/*)^V/(y*) = {u' - vYVfiy') 
x£D 

Since / is concave, 
f{u)-f{v)<{u-vf\/fiv) 

holds for all u^v G M^. Therefore, the assumption in the lemma implies that 

/ (« ' ) - f{z) = f{u') - f{y') < {u' - vYVfiy') < 0. 

n 
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Trivial Approximation Set 

Consider the following set of vectors : 

^ f = {2/1,2/2,..., j / 2 " | y ^ = x * + a , F € % , ) ( / ) , j = 1,2,... ,2n}, (14) 

where a^'s are positive numbers, P's are orthogonal vectors such that P = 
—/̂ +-̂  for j = 1 , . . . , n and x* is a solution to the problem 

max f{x) 

s.t. X e W. 

Without loss of generality we can assume that P is the j ^ ^ unit (coordinate) 
vector and there exists some aj such that y^ G Ef(^z)if) (if this number does 
not exist, we just eliminate y^ from the set), therefore A^^ is an approximation 
set to the level set Ef(^z){f) t̂t the point z. When z is not a global maximizer 
of / over R^^ clearly, A^^ is a nonempty set and it contains at least n points. 

Definition 3. The approximation set constructed according to (I4) is called 
the trivial approximation set. 

Second order Approximation Set 

In order to improve the approximation set, it is helpful to define another 

approximation set based on the previous approximation set. Assume that we 
have an approximation set A^. We can construct another approximation set 
B^ based on the approximation set as follows. 

BT = {y\y^...,y'^lf = ^* + ^i{u' ~ x*) G ̂ / ( . ) ( / ) , i - i , 2 , . . . , m } , 
(15) 

where x* is a solution to the problem 

max f{x) 

s.t. X G R"". 

and u'^ is a solution to the problem 

min x^Wfiy') 
s.t. X G D. 

The use of x* is justified by the relationship between A^ and B^ in the 
following lemma. 

Lemma 4. Let f{z) 7̂  /(x*). If 6m < 0 then there exists a j G {1 ,2 , . . . , m} 
andv e D such that y^ G B^ satisfies {v - y^)^Vf{y^) < 0. 
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Proof. According to (13), there exists a j G {1,2,. . . , m } such that 

0m = (u^ - y^fVfiy^) = . min {u' - yY^f{y') < 0, 
^=l,2,...,77^ 

where u^ satisfies u^ ^f{y^) = vamx^Vf{y'^). 

0 > {u^ - y^)Vf{y^) = {u^ - y^ + x* - x*)V/(y^) 

- {u^ - x*)V/(y^) + (x* - y^)Vf{y^) 

or 
[u^ ~x^)Vf{y')<{y^ -x')Vf{y^), 

Using the concavity of / , we can show that the right hand side of the last 
inequahty is negative as follows 

{yi-x*)Vf{yi)<f{yi)-f{x*)<0. 

Since {u^ —x*)Vf{y^) < 0 from the last two inequalities, according to Lemma 
2, there exists a unique positive number aj such that y^ = x* + aj{u^ — x*) G 
Ef(^yj){f) = Ef^^){f). Clearly y^ G Bf. Now, we will show that a^ <l. 
Conversely, suppose that a-̂  > 1 or 0 < ^ < 1. As we have seen in Lemma 
3, we can write 

f{u^) < f{z). 
Since x* is the global maximizer of / over R^, we have 

f{u^) < f(z) = fix'+ajiu^-x*)) < /(x*). 

On the other hand, by concavity of / 

^f {x* + ajiu^ - X*)) + (l-l-)f (x*) 

< / (^-^^{x* + ajiu^ - X*)) + ( l - ^ ) ^*) = n^')-

This contradicts the previous inequality. Thus 0 < a-̂  < 1. Now we are ready 
to prove the lemma. 
Consider the point y^ — x* + 6LJ {U^ — X*) in B^. Prom the concavity of / and 
the above observations, it follows that 

{u^ - ffVf{y^) = (1 - aj){u^ - x*)^V/(x* + aj{u^ - x*)) 

- i - ^ a , ( w ^ ' - x*)^V/(x* + aj{u^ - x*)) 
aj 

= i ^ ( x * + aj{u^ - X*) - x*)^V/(x* + aj{u^ - x*)) 
aj 

< ^-ir^ifix* + aj{u^ - X*)) - fix*)) < 0. 
aj 
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Now, if we take a point v = u^ e D, then we have {v — y-^)^V/(y-^) < 0, and 
the assertion is proven. D 

Remark 1, Note that ^m ^ 0 does not always imply 

min min {u' - ff^fif) > 0-

Remark 2. If we use Selection (14), it is easy to see that the lemma is still 
true when aj and aj are approximate roots to the functions ipi{t) = f{x* + 
W) - f{z) and V^2(4 == / ( ^* + ^(^^ " ^*)) " / ( ^ ) . respectively. 

In analogy with 6m for A^^ introduce 9m for the set B'^ as follows. 

9m = . min (v'-ff^fif), 
Z = 1 , 2 , . . . , 7 7 1 

where v'^ is defined by v^ ^f{y^) — mina;-^V/(y^) 

Definition 4. The approximation set constructed according to (15) is called 
the second order approximation set to the level set Ef(^z){f) ^^ point z. 

Orthogonal Approximation Set 

Another way to construct an approximation set is extracting an approxima
tion set from the trivial approximation set using the rotation. Consider the 
coordinate vectors P, j = 1 , . . . , n, l'^'^^ such that P"̂ -̂  = —P, j = 1 , . . . , n and 
a rotation matrix R. Let us define the following vectors and a set of vectors. 

C f = {y\f,..., f^ I yi =x*+Piq\ i = 1,2,.. . , 2n}, (16) 

where x* is a solution to the problem 

max f{x) 

s.t. X G W". 

and q^ = RP, j = 1 , . . . , 2n. 
Without loss of generality, we can assume that there exist positive numbers 
Pj such that X* -f pjq^ G ^f{z)f ^^^5 therefore, C'^'^ is an approximation set 
to the level set Ef(^z){f) ^t point z. Also we can introduce 9m as follows: 

Om = . min K - yY^fiy% 
2=1,2, . . . ,m 

where w^ is defined by w'^ V/(y^) = minx^V/(i/^). 
xeD 

Definition 5. The approximation set constructed according to (16) is called 
the orthogonal approximation set to the level set Ef(^z){f)' 
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4 Algorithms and their Convergence 

In this section, we discuss three algorithms based on observations discussed in 
Section 3 to solve Problem (5). We begin by explaining the main idea of our 
methods for the problem. The idea of the algorithms is to check whether 6m, 
which is defined in (13), is negative or nonnegative solving linear programming 
problems. Therefore, if it is negative, a new improved solution can be found 
according to Lemma 3; otherwise, terminate the algorithm. When the new 
improved solution is found, we will use one of the existing local search methods 
to get faster convergence. Also, we assume here that Problem (5) has finite 
stationary points on the constraint set D in order to ensure convergence of 
the algorithms. The first algorithm uses only the trivial approximation set 
and the second algorithm uses a combination of the trivial and the second 
order approximation sets, finally, the last algorithm uses a combination of the 
three approximation sets defined in Section 3. The basic algorithm can be 
summarized as follows: 

Algorithm 1. INPUT : A concave differentiable function / , a convex compact set 
D and x*, a global maximizer of / . 

OUTPUT : A global solution x to Problem (5). 
Step 1. Choose a point x^ e D. Set /c — 0. 
Step 2. Find a local minimizer z^ £ D using one of the existing methods starting 

with an initial approximation point x^. 
Step 3. Construct the trivial approximation set ^^J at z^. 
Step 4. For each y'' G A^^, i = 1,2,..., 2n, solve the problem 

min x^Vf{y^) 

s.t. X e D 

to obtain a solution ix% i.e., 

Step 5. Find the number j G {1,2,. . . , 2n} such that 

1=1,2,...,2n 

Step 6. If 6>2n < 0 then x̂ "*"̂  := u^, k := k-{-1 and return to Step 2. Otherwise, z^ 
is an approximate global minimizer and terminate. 

The convergence of Algorithm 1 is given by the following statement. 

Theorem 2. The sequence {z^, k = 0,1,...} generated by Algorithm 1 con
verges to a solution of Problem (5) in a finite number of steps or finds an 
approximate solution as a local solution to the problem. 
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Proof. We show that if ^2n < ^ holds for all k, then z^ converges to a global 
minimizer of Problem (5) in a finite number of steps. In fact, take a j G 
{1 ,2 , . . . , 2n} such that y^ G A^^ and u^ G D satisfy 

According to Lemma 3, we have 

We show that this inequality holds even when aj is an approximate root of 
the function ip{t) = /(x* + W) — f{z^). From Selection (9), we can conclude 
that 

fiy^) < fiz"). 
Then it follows that 

f{ui) - f{z'') < f{u^) - f{yi) < {u^ - y^)Vf{yn < 0. 

Since u^ is a starting point for finding a local solution 2;̂ "̂ ,̂ finally, it can be 
deduced that 

f{z^-^^) < f{z^) for all /c - 0 ,1 ,2 , . . . . 

By the assumption, the number of local minimizers z^ is finite, and this se
quence reaches a global minimizer in a finite number of steps or stops at an 
approximate local solution. This completes the proof. D 

Remark 3. When J9 is a polytope, we can use Algorithm 1 without a local 
search method since every auxiliary problem finds a vertex of the set D and 
number of the vertices is finite. 

Example 3. [HPTOl]. To illustrate Algorithm 1, let us consider the following 
example. 

min f{x) = -x^Cx + dFx 

s.t. Ax <h 

x > 0 , 

where 

Iteration 1. 
An initial feasible solution is x\ = (0,0)"^. Note that this vertex is a local 
solution to the problem. In this case, a local search method cannot affect 
the current approximate solution. The current best objective function value 
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is 0. There does not exist a global maximizer of the function f(x) over R^. 
Thus, we consider a global maximizer of the function over the constraint set; 
therefore, it can be used for constructing an approximation set. The maximizer 
is xl = (2.555,1.444)^. The trivial approximation set can be constructed 
easily solving quadratic equations. 

yl = (7.432,1.444)^, yf = (2.555,3.452)^, 

yf = (0.345,1.444)^, yf = (2.555,0.102)^. 

Solving linear programming problems, we find the following vectors. 

ul = (3.0,0.5)^, ul = (0.75,2.0)^, ul = (0.75,2.0)^, uf - (1.0,0,0)^ 

Moreover, 6l — —0.563 and the initial feasible point to the next iteration is 
^f = (0.75,2.0)^. 

Iteration 2. 
New feasible solution is XQ = (0.75,2.0)-^. The local search method cannot 
improve this solution. The current objective function value is —1.0625. The 
trivial approximation set to the level set £'-i.0625(/) is 

yl = (7.579,1.444)^, y | - (2.555,3.530)^, 

yl = (0.199,1.444)'^, y^ = (2.555,0.025)^. 

Solving linear programming problems, we have 

ul = (3.0,0.5)^, ul = (0.75,2.0)^, 

ul = (0.75,2.0)^, u^ = (1.0,0.0)^ 

which is the same as we find at Iteration 1. Therefore, O^ = 0.313 at the vertex 
ul = (0.75,2.0)^. The algorithm terminates at this iteration and the global 
approximate solution is (0.75,2.0)^. Note that this is a global solution to the 
problem. 

Unfortunately, Algorithm 1 cannot always guarantee for a global optimal 
solution. In this case, we can extend Algorithm 1 using the improved approx
imation set and present an outline of the next algorithms as follows : 

Algorithm 2. INPUT : A concave differentiable function / , a convex com
pact set D and x*, a global maximizer of / . 

OUTPUT : A global solution x to Problem (5). 
Step 1. Choose a point x^ € D. Set A; = 0. 
Step 2. Find a local minimizer z^ e D using one of the existing methods 

starting with an initial approximation point x^. 
Step 3. Construct a trivial approximation set A^]^ at z^. 
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Step 4. For each y'^ G A^]^, i = 1, 2 , . . . , 2n, solve the problem 

min x^Vfiy') 
s.t. X e D 

to obtain a solution î % i.e., 

u'^'vfiy') =mmx^V f{y') 

Step 5. Find the number j E {1 ,2 , . . . , 2n} such that 

z=l ,2 , . , . ,2n 

Step 6. If ^2n < 0 then x^'^'^ := u^, k \=k-\-l and return to Step 2. Otherwise 
go to the next step. 

Step 7. Construct a second order approximation set -B^^ at z^ by (15). 
Step 8. For each y'^ G 5^1^, i = 1,2,.. . , 2n, solve the problem 

min x^Vf{y') 

s.t. X G D 

to obtain a solution t;\ i.e., 

Step 9. Find the number s G {1 ,2 , . . . , 2n} such that 

C = K - r)^v/(r) =. min K - r)̂ v/(̂ o 
1=1,2,. . . ,2n 

Step 10. If (9̂ ^ < 0 then x^-^^ := ^;^ k := k + 1 and return to Step 2. Other
wise, 2;̂  is an approximate global minimizer and terminate the algorithm. 
The convergence of this algorithm is the same as in Theorem 2. 

Theorem 3. The sequence {2:̂ , k = 0,1,...} generated by Algorithm 2 con
verges to a solution of problem (5) in a finite number of steps or finds an 
approximate solution as a local solution to the problem. 

Remark 4- When JD is a polytope. Algorithm 2 can be used without a local 
search method. 

Example 4- To illustrate Algorithm 2, let us consider the following concave 
quadratic programming problem. 

min f{x) = -x^Cx 

s.t. Ax <b 

x>0, 



C = { - ' - ' f ) , Ar= ' t ' ] , 6- = (20,19,3). 
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where 

^~~ ^-0.5 - 4 y ' "" ~ \^1 2 1 

Since the constraint set D is a polytope, we can use the algorithm without a 
local search method. 

Iteration 1. 
Let us choose x^ = (1.0,0.0)^ as an initial feasible solution. The current ob
jective function value is —2.0. The global maximizer of the function f{x) over 
R^ is X* = (0.0,0.0)-^. The trivial approximation set can be computed as we 
have seen in Example 2, and the vectors are 

yl = (1.0,0.0f, yj = (0.0,1.0f, yf = (-1.0,0.0f, yf = (0 .0 , - l .Of . 

Solving linear programming problems, the following vertices of the polytope 
are found. 

u\ = (4.0,0.0)^, uj - (3.25,3.0)^, ul = (0.0,0.0)^, uj = (0.0,0.0)^ 

Therefore, Ol = -12 at the vertex u\ = (4.0,0.0)^. 

Iteration 2. 
The current best feasible solution is x^ = (4.0,0.0)^ and the objective function 
value is —32. The trivial approximation set to the level set E-s2{f) is 

yl = (4.0,0.0f, yl = (0.0,4.0)^, yl = (-4.0,0.0)^, y^ = (0.0,-4.0)^. 

The 1̂2 vectors are 

ul = (4.0,0.0)^, ul = (3.25,3.0)^, ul = (0.0,0.0)^, ui - (0.0,0.0)^ 

which is same as we find at Iteration 1. Nevertheless, ^4 = 0 at the vertex 
u\ = (4.0,0.0)-^; i.e., in this case, the trivial approximation set does not work. 
Next, we construct the improved approximation set, which is derived from the 
last two sets of vectors according to (15). 

yl = (4.0,0.0)^, yl - (2.772,2.558)^, yl = (-4.0,0.0)^, y | = (-2.772,-2.558)^. 

Solving linear programming problems, we have 

vl - (4.0,0.0)^, vl = (3.25,3.0)^, vl = (0.0,0.0)^, v^ = (0.0,0.0)^. 

Therefore, Sj = -11.047 at the vertex vl = (3.25,3.0)^. 

Iteration 3. 
The current approximate feasible solution is x^ = (3.25,3.0)-^ and the objec
tive function value at this point is —44. The trivial approximation set to the 
level set E-44(f) is 
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yl - (4.69,0.0)^, yj = (0.0,4.69)^, y | - (-4.69,0.0)^, yl = (0.0,-4.69)^. 

The vectors Ug's are same as the vectors 1x3's. Therefore, 6^ = 12.953 at 
the vertex u^ = (4.0,0.0)-^. Thus, the current approximate solution did not 
change. Also, for the improved approximation set to the level set E'_44(/), 
the following sets can be found: 

yl = (4.69,0.0)^, yl = (3.25,3.0)^, y | = (-4.69,0.0)^, yl = ( -3.25,-3.0)^. 

and 

vl = (4.0,0.0)^, vj = (3.25,3.0)^, v^ = (0.0,0.0)^, v^ = (0.0,0.0)^. 

Therefore, 9^ =0 .0 at the vertex V2 = (3.25,3.0)^. The algorithm terminates 
at this iteration. Hence, the algorithm terminates at this iteration, and the 
global approximate solution is (3.25,3.0)-^. 

Note that this approximate solution is the global optimal solution and 
(4.0,0.0)^ is the local solution to the problem. 

Algorithm 3. INPUT : A concave differentiable function / , a convex com
pact set D and x*, a global maximizer of / . 

OUTPUT : A global solution x to Problem (5). 
Step 1. Choose a point x^ G D. Set k = 0. 
Step 2. Find a local minimizer z^ e D using one of the existing methods 

starting with an initial approximation point x^. 
Step 3. Construct a trivial approximation set A^]^ at z^. 
Step 4. For each y^ e A^^, z = 1,2,.. . , 2n, solve the problem 

min x^Vf{y'^) 

s.t. X e D 

to obtain a solution it% i.e., 

Step 5. Find the number j G {1 ,2 , . . . , 2n} such that 

^=l,2, . . . ,2n 

Step 6. If ^2n *̂  0 then x^'^^ := u^, k := k-\-l and return to Step 2. Otherwise 
go to the next step. 

Step 7. Construct a second order approximation set B'^J^ at z^ by (15). 
Step 8. For each y* G B^^, i = 1,2,.. . , 2n, solve the problem 

min x^Vf{y^) 

s.t. X e D 

to obtain a solution v^^ i.e., 

XED 
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Step 9. Find the number s G {1 ,2 , . . . , 2n} such that 

OL = iv' - ff'^fif) = . min {v' - ffVfif) 
z=l ,2 , . . . ,2n 

Step 10. He^^ < 0 then x^""^ := v^ k := fc+l and return to Step 2. Otherwise 
go to the next step. 

Step 11. Construct an orthogonal approximation set C^^ at z^ by (16). 
Step 12. For each y^ G C^?, i = 1,2,.. . , 2n, solve the problem 

min x'^Vfif) 
s.t. X e D 

to obtain a solution w'^, i.e., 

xeD 

Step 12. Find the number s E {1 ,2 , . . . , 2n} such that 

OL = iw' - ff^fm = . min ̂  [w' - yYVf{f) 
z=l ,2 , . . . ,2n 

Step 13. If ^2n < 01^^^^ ^ "̂̂ ^ := 1^ ,̂ A: := fc+1 and return to Step 2. Otherwise 
z^ is an approximate global minimizer and terminate the algorithm. 

The convergence of the algorithm is given by the following theorem and 
the proof is similar to the proof of Theorem 2. 

Theorem 4. The sequence {z^, fc = 0,1, . . .} generated by Algorithm 3 con
verges to a solution of Problem (5) in a finite number of steps or finds an 
approximate solution as a local solution to the problem. 

Remark 5. When i^ is a polytope, we can use Algorithm 3 without a local 
search method. 

Example 5, Consider the following problem to illustrate Algorithm 3. 

min f{x) = —||x||^ 

s.t. Ax < 6, 

where 

^ ^ = ( : l " f - 1 9 o L ^ l ' 5 ) ' ^^ = (4,90,102,121,192,270). 

Since the constraint set D is a polytope, we can use the algorithm without a 
local search method. 

Iteration 1. 
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An initial feasible solution is x^ = (1.0,0.0)^. The current objective func
tion value is —1.0. The global maximizer of the function f{x) over R^ is 
X* = (0.0,0.0)^. 9l = - 3 8 at the vertex u\ = (20.0,2.0)^. Therefore, this 
vertex is the initial point of the next iteration. 

Iteration 2. 
x'^ = (20.0,2.0)-^. The current objective function value is —404.0. In this 
case, the approach of the trivial approximation set cannot improve the cur
rent approximate solution, i.e., 6l = 4.01 at the vertex u^ — (20.0,2.0)^. 
Introducing the improved approximation set, we get d\ = —4.00 at the vertex 
v\ = (19.5,8.0)^. 

Iteration 3. 
The current objective function value is —444.25 at x^ — (19.5,8.0)-^. Con
structing the trivial and the improved approximation sets cannot improve the 
current approximate solution, i.e., d\ — 45.41 at the vertex u\ = (20.0,2.0)-^ 
and §1 = 37.01 at the vertex v^ = (19.5,8.0)-^. Next, we introduce the rotation 
matrix 

Using this rotation matrix, the following new orthogonal approximation set is 
found. 

yl - (15.508,-15.508)^, y^ = (15.508,15.508)^, 

yl = (-15.508,15.508)^, y^ = (-15.508, -15.508)^. 

The solutions of the corresponding linear programming problems are 

wl = (20.0,2.0)^, wl - (15.0,16.0)^, 

wi = (0.0,18.0)^, w^ = (-2.0, -2 .0)^ 

Since 9l — —35.54 at the vertex w^ = (15.0,16.0)^, according to Lemma 3, 
new approximate solution is (15.0,16.0)^. 

Iteration 4. 
The current approximate solution is x^ = (15.0,16.0)-^. The objective func
tion value at this point is —481. We can check that the algorithm stops at 
this iteration. Thus, (15.0,16.0)^ is the approximate global optimal solution 
to the problem. 

Note that this solution is the global optimal solution to the problem. The 
points x^ = (20.0,2.0)^ and x^ = (19.5,8.0)^ which we found during the 
algorithm are local solutions to the problem. 
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5 Numerical Examples 

In this section, we present four examples which are implemented by the pro
posed algorithms. 

Problem 1. 

min f{x) = - ^{xi + i)' 

s.t. 1 — i < Xi < 2i , i = 

(17) 

1,2, 

The global solutions to these problems are obtained by Algorithm 1 and the 
computational results are shown in Table 1. 

Table 1. Computational results for Problem (17) and Problem (20). 

Problems 

(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(20) 
(20) 
(20) 
(20) 
(20) 
(20) 

Dimension of 
the problems 

To 
50 
100 
200 
500 
1000 

10 
50 
100 
200 
500 
1000 

Initial Value 

l̂o 
-50 

-100 
-200 
-500 

-1000 
-10 
-50 

-100 
-200 
-500 

-1000 

Global Value 

^3465 
-386325 

-3045150 
-24180300 

-376125750 
-3004501500 

-1540 
-171700 

-1353400 
-10746800 

-167167000 
-1335334000 

Computational 
time (sec.) 

0.090 
1.542 
3.565 

25.447 
158.989 
694.889 

0.731 
17.315 
45.470 
143.707 
826.769 
3253.549 

Next, we consider the two test problems given in [Tho94]. 

Problem 2. Consider the following concave minimization problem 

min 

s.t. 
fix) = -
Ax<b 
Xi > - 1 

-(a^x)2 

, i - 1 , 2 , 

(18) 

where ^ is an n x n matrix with positive entries, a and b are n vectors 
with positive entries. Let u^ and u^ be the optimal solutions to the linear 

programming problems min{a^x : Ax < b , Xi > —1, i = 1,2,... ,n} and 
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max{a-^x : Ax < 6 , Xi>—1, i = l , 2 , . . . , n } , respectively. Then the above 
problem has a global solution u G {u^.u'^} [Tho94]. Algorithm 1 finds a global 
solution to the problem for various dimensions without a local search method, 
and results are shown in Table 2. 

Problem 3 

mi-n -P f nr'\ — 

1 -h a — {oP^xY 
min f{x) - , "" ~ ^^ ? , , + ln(l + a - {a^xf) (19) 

s.t. Ax <h 

x^ > —1 , i = 1,2,... ,n 

where ^ is an n x n matrix with positive entries, a and h are n vectors with 
positive entries, and a is a real number such that a — (a^x)'^ > 0 for the 
all feasible points of the problem. Consider the following concave quadratic 
programming problem. 

min g{x) — —{a^x)'^ 

s.t. Ax <b 

Xi> —1 ̂  i = 1,2,... ,n 

Let t; be an n vector which its all entries are equal to —1. Then, whenever the 
linear programming problem maxja-^x : Ax < b , Xi > —1, z = 1,2,... ,n} 
has an optimal solution w, the concave quadratic minimization problem has 
a global solution u G {v^w}. Moreover, u is also a global solution of Problem 
(19) [Tho94]. This solution can be found using Algorithm 1 without a local 
search method for Problem (19) and the computational results are shown in 
Table 2. 

Problem 4. 

min f{x) = -"^{xi-i)^ (20) 

S.t. —i<Xi<i~l, i = 1 ,2 , . . . , n 

Algorithm 2 can be used for the above problem without a local search method. 
Table 1 shows the computational results for the problem. 

The numerical experiments were conducted using MATLAB 6.1 on a PC with 
an Intel Pentium 4 CPU 2.20GHz processor and memory equal to 512 MB. The 
primal-dual interior-point method [Meh92] and the active set method [Dan55], 
which is a variation of the simplex method, were implemented by calling 
subroutines linprog.m from Matlab 6.1 regarding the size of the problem. For 
Problem (17), the subspace trust region-method [CL96] based on the interior-
reflective Newton method and the active set method [GMW81], which is a 
projection method, were implemented as local search methods by calling the 
subroutine quadprog.m from Matlab 6.1. 
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Table 2. 

Problems 

(18) 
(18) 
(18) 
(18) 
(19) 
(19) 
(19) 
(19) 

Computational results for Problem (18) and Problem (19). 

Constraint type 

random generated 
random generated 
random generated 
random generated 
random generated 
random generated 
random generated 
random generated 

Dimension of 
the problems 

10 
50 
100 
200 
10 
50 
100 
200 

Computational time (sec.) 

0551 
16.283 

126.502 
1571.760 

0.432 
17.185 

140.642 
1906.512 

6 Conclusions 

In this paper, we developed three algorithms for concave programming prob
lems based on a global optimality condition. Under some condition, the con
vergence of the algorithms have been established. For the implementation 
purpose, three kinds of approximation sets are introduced and it is shown 
tha t some numerical methods are available to construct the approximation 
sets. At each iteration, it is required to solve 2n linear programming problems 
with the same constraints as the initial problem. Some existing test problems 
were solved by the proposed algorithms and the computational results have 
shown tha t the algorithms are efficient and easy in computing a solution. 
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S u m m a r y . Monotone maximization is a global optimization problem that max
imizes an increasing function subject to increasing constraints. Due to the often 
existence of multiple local optimal solutions, finding a global optimal solution of 
such a problem is computationally difficult. In this survey paper, we summarize 
global solution methods for the monotone optimization problem. In particular, we 
propose a unified framework for the recent progress on convexification methods for 
the monotone optimization problem. Suggestions for further research are also pre
sented. 

1 Introduction 

Global optimization has been one of the important yet challenging research 
areas in optimization. It appears very difficult, if not impossible, to design an 
efficient method in finding global optimal solutions for general global optimiza
tion problems. Over the last four decades, much at tention has been drawn to 
the investigation of specially structured global optimization problems. In par
ticular, concave minimization problems have been studied extensively. Various 
algorithms including extreme point ranking methods, cutt ing plane methods 
and outer approximation methods have been developed for concave minimiza
tion problems (see e.g. [Ben96, HT93, RP87] and a bibliographical survey in 
[PR86]). Monotone optimization problems, as an important class of specially 
structured global optimization problems, have been also studied in recent 
years by many researchers (see e.g. [LSBGOl, RTMOl, SMLOl, TuyOO, TLOO]). 

The monotone optimization problem can be posted in the following form: 
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(P) max f{x) 

s.t. gi{x) <bi, z = l , . . . , m , 

X G X = {x \ Ij < Xj < Uj, j = 1 , . . . , n}, 

where / and all ^^s are increasing functions on [/,u] with / = (^i, ^2, • • • > ^n)"̂  
and u = {ui,U2,... ^Un)^- Note that functions / and ^^s are not necessarily 
convex or separable. Due to the monotonicity of / and ^^s, optimal solutions 
of (P) always locate on the boundary of the feasible region. It is easy to see 
that the problem of maximizing a decreasing function subject to decreasing 
constraints can be reduced to problem (P). Since there may exist multiple lo
cal optimal solutions on the boundary, problem (P) is of a specially structured 
global optimization problem. In real-world applications, the monotonicity of
ten arises naturally from certain inherent structure of the problem under con
sideration. For example, in resource allocation problems ([IK88]), the profit or 
return is increasing as the assigned amount of resource increases. In reliabil
ity networks, the overall reliability of the system and the weight, volume and 
cost are increasing as the reliability in subsystems increases ([TzaSO]). Partial 
or total monotone properties are also encountered in globally optimal design 
problems ([HJL89]). 

The purpose of this survey paper is to summarize the recent progress on 
convexification methods for monotone optimization problems. In Section 2, we 
discuss the convexification schemes for monotone functions. In Section 3 we 
first establish the equivalence between problem (P) and its convexified prob
lem. Outer approximation method for the transformed convex maximization 
problem is then described. Polyblock outer approximation method is presented 
in Section 4. In Section 5, a hybrid method that combines partition, convexi
fication and local search is described. Finally, concluding remarks with some 
suggestions for further studies are given in Section 6. 

2 Monotonicity and convexity 

Monotonicity and convexity are two closely related yet different properties of 
a real function in classical convex analysis. One of the interesting questions 
is whether or not a nonconvex monotone function can be transformed into 
a convex function via certain variable transformations. Since linear transfor
mation does not change the convexity of a real function, we have to appeal 
to nonlinear transformation for converting a monotone function into a convex 
function. 

To motivate the convexification method for general monotone functions, 
let us consider a univariate function f{x). Suppose that f{x) is a strictly 
increasing function and t{x) is a strictly monotone and convex function. Define 
a composite function g{x) = f{t{x)). If / is twice differentiable, then g'{x) — 
f{t{x))t\x) and 
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g"{x) = f"{tix))\t'{x)]' + f'{t{x))t"{x). 

Thus, g{x) is a convex function if and only if 

Inequality (1) characterizes the condition for a nonlinear transformation t 
to convexify a univariate twice differentiable increasing function via a variable 
transformation or domain transformation. We now turn to derive conditions 
for convexifying a multivariate monotone function. A function / : i9 —> R is 
said to be increasing (decreasing) on D C W^ if / (x) > f{y) {f{x) < f{y)) 
for any two vectors x, y E D whenever x > y. li the strict inequality holds, 
then / is said to be strictly increasing (decreasing) on D cW^. 

Let a, PeR'' with 0 < a < p. Denote [a,p] = {x eW \ a < x < p}. Let 
t : M^ K-» R^ be a one-to-one mapping. Define 

My) = my)). (2) 
The domain of ft is y* = r ^(X). Define 

a = xam{(fV^f{x)d | a; € [a,/?], ||rf||2 = 1}, (3) 

/ i - m i n j — I X e [a,/?], j - l , . . . , n } . (4) 

We have the following theorem on convexification. 

Theorem 1. ([LSM05]) Assume that f is a twice differentiable and strictly in
creasing function on [a, /3] and ii> 0. Suppose that t{y) =^ (^1(2/1),..., tn{yn)) 
is a separable mapping, and each ti is twice differentiable and strictly monotonic. 
If t satisfies the following condition: 

j ^ ^ > - ^ , iovyjGY}=tj\laj,/3j]), j = l,...,n, (5) 

then ft{y) is a convex function on any convex subset ofY^. 

Similarly, a strictly decreasing function can also be converted into a convex 
function via a variable transformation satisfying: 

Jljy^ < - - , for yj e YJ, j = l,...,n. 

There are many specific mappings that satisfy condition (5). In particular, 
consider the following two functions: 

tj{yj) = -\n{l--), p>0, j = l,...,n, (6) 
P Vj 

tjiVj) = 2/7' ' P>0, j = l,...,n. (7) 
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Corollary 1. Let pi = max{0, —o-f/j,} andp2 = max{0, —{Pa)/fi — 1}, where 
P = xmiii<j<n 0j' Then, the mapping t with tj defined by (6) satisfies con
dition (5) when p > Pi, and the mapping t with tj defined by (7) satisfies 
condition (5) when p > P2' 

For illustration, let us consider a one-dimensional function: 

f{x) = {x-2f + 2x, xeX = [1,3]. 

Note that f{x) is a nonconvex and strictly increasing function. The plot of 
f{x) is shown in Figure 1. We have f{x) - 3(x - 2)^ + 2 > 2 and f'{x) -
6 ( x - 2 ) > - 6 f o r x G [1,3]. Take t(y) - ( l /p) ln(l - ^) in (2). By Corollary 1, 
pi = —(—6)/2 = 3. So, any p > 3 guarantees the convexity of ft{y) on 
Y* = [—l/(e^ — 1),—l/(e^^ — 1)]. Figure 2 shows the convexified function 
ft{y) with p == 3. In practice, p can be chosen much smaller than the bound 
defined in Corollary 1. 

Fig. 1. The plot of/(a;). 

f(x) 

Range transformation can be also incorporated into the convexification 
formulation (2) to enhance the convexification efl̂ ect. Let T be a strictly in
creasing and convex function on R. Define 

fTAy) = nf{t{y)). (8) 

Certain conditions [SMLOl] can be derived for fr.tiy) to be a convex function 
on Y^. Typical range transformation functions are T{z) = e'^^ and T{z) = z^^ 
where r > 0 and p > 0 are positive parameters. One advantage to use both 
range and domain transformations is to reduce possible ill conditions caused 
by the convexification process. 
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ft(y) 

Fig. 2. The plot of/t(t/). 

-0.05 -0.03 -0.01 

Theorem 1 was generahzed in [SLL04] to convexify a class of nonsmooth 
functions. Let df{x) denote the set of Clarke's generalized gradient of / at x 
and dyjf{x) the set of Clarke's generalized gradient in direction w. Denote by 
f'^{x,v,w) Chaney's second-order derivative of / at x (cf. [Cha85]). 

Theorem 2. ([SLL04]) Assume in (2) that 
(i) / is semismooth and regular on X. 
(ii) f is a strictly increasing function on X and 

inf min {̂ i | C 
i = l , . . . , n 

( 6 , . . . , ^ n f e 9 / ( x ) , x G X } > e > 0 , (9) 

(J — m.i{f'^{x^v,'w) I X G X, ||it;||2 = 1, t' G dwf{x)} > —oo. (10) 

(iii) t{y) = {ti{yi),... ytn{yn)) andtj^ j = 1,... ,n, are twice differentiate 
and strictly monotone convex functions satisfying 

> Vj&YL j = \,.. .,n. (11) 

Then ft{y) defined in (2) is a convex function on any convex subset ofY^. 

Note that convex functions, C^ functions, and pointwise maximum or min
imum of C^ functions are semismooth. Furthermore, certain composite semi-
smooth functions are also semismooth (see [Muf77]). 

The idea of convexifying a nonconvex function via both domain transfor
mation and range transformation can be traced back to 1950s. Convex (or 
concave) transformable functions were introduced in [Fen51]. Let / be de
fined on a convex subset C C R^. / i s said to be convex range transformable 
or F-convex if there exists a continuous strictly increasing function F such 
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that F{f{x)) is convex. The concept of domain transformation for general 
nonconvex functions was introduced in [Ben77]. / is said to be h-convex if 
a continuous one-to-one mapping h exists such that f{h~^{y)) is convex on 
domain h{C). f is said to be (/i, F)-convex if f{h~^{y)) is F-convex on h{C). 
A special class of h-convex functions is the posynomial function defined as 

q n 

with Ci > 0, aij G M and q positive integer. A simple convexification trans
formation is readily obtained by taking Xj = e^^, j — l , . . . , n . Previous 
research work on convexification has led to results on transforming a noncon
vex programming problem into a convex programming problem. In particular, 
geometric programming and fractional programming are two classes of non-
convex optimization problems that can be convexified. A survey of applica
tions of F-convexity and /i-convexity and convex approximation in nonlinear 
programming was given in [Hor84]. 

Convexifying monotone functions was inspired by a success of convexifying 
a perturbation function in nonconvex optimization. Li [Li95] first introduced 
a p-th power method for convexifying the perturbation function of a noncon
vex optimization problem (see also [LSOl]). In [Li96], the p-th power method 
was applied to convexify the noninferior frontier in multi-objective program
ming. Two p-th power transformation schemes were proposed in [LSBGOl] for 
convexifying monotone functions: 

fl{y) = -\f{y"'')]-'', p > o , (12) 

fliv) = [f{y"nY, p > 0. (13) 

It is shown in [LSBGOl] that if f{x) is a strictly increasing function, then 
/p(y) is a concave function for sufficiently large j9, and if f{x) is a strictly 
decreasing function, then /^(y) is a convex function for sufficiently large p. 
Another class of convexification transformations is defined as follows: 

fp{y) = T{pfC-t{y))), p>0, (14) 

where ^ is a one-to-one mapping without parameter. Conditions for convex
ifying / via transformation (14) were derived in [SMLOl]. Obviously, (14) is 
a special case of the general formulation (8). A more general transformation 
that includes (12), (13) and (14) as special cases was proposed in [WBZ05]. 
Convexification method was used in [LWLYZ05] to identify a class of hidden 
convex optimization problems. 
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3 Monotone optimization and concave minimization 

3.1 Equivalence to concave minimization 

Given a mapping t: R^ -^ R^. We now consider the following transformed 
problem of (P): 

max (l){y) - f{t{y)) 

s.t. ipiiy) = gi{t{y)) <bi, 2 = 1 , . . . , m, (15) 

yeY\ 

where t : y* ^ X is an onto mapping with X = t{Y^). Denote by S and St 
the feasible region of problem (P) and problem (15), respectively, i.e. 

S={xeX\ gi{x) <hu i - 1 , . . . , m}, (16) 

St^{y£Y'\ i;i{y) < 6,, i = 1 , . . . , m}. (17) 

The following theorem establishes the equivalence between the monotone op
timization problem (P) and the transformed problem (15). 

Theorem 3. ([SMLOl]) 
(i) t/* G Y* is a global optimal solution to problem (15) if and only if 

X* = t{y*) is a global optimal solution to problem (P). 
(ii) Ift~^ exists and botht andt~^ are continuous mappings, theny* G Y^ 

is a local optimal solution to problem (15) if and only if x* = t{y'^) is a local 
optimal solution to problem (P). 

Combining Theorem 3 with Theorems 1-2 implies that if t in (15) is a 
one-to-one mapping satisfying the conditions in Theorems 1 or 2, then the 
monotone optimization (P) is equivalent to the convex maximization (or con
cave minimization) problem (15). Especially, when ti takes the form of (6) 
or (7) and the parameter p is greater than certain threshold value, then the 
transformed problem (15) is a concave minimization problem. 

3.2 Outer approximation algorithm for concave minimization 
problems 

Concave minimization is a class of global optimization problems studied inten
sively in the literature. It is well-known that a convex function always achieves 
its maximum over a bounded polyhedron at one of its vertices. Ranking the 
function values at all vertices of the polyhedron gives an optimal solution. 
For a convex maximization (or concave minimization) problem with a general 
convex feasible set, Hoffman [HofSl] proposed an outer approximation algo
rithm. The convex objective function is successively maximized on a sequence 
of polyhedra that enclose the feasible region. At each iteration the current 
enclosing polyhedron is refined by adding a cutting plane tangential to the 
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feasible region at a boundary point. The algorithm generates a nonincreasing 
sequence of upper bounds for the optimal value of problem (15) and termi
nates when the current feasible solution is within a given tolerance of the 
optimal solution. 

An outer approximation procedure for problem (15) can be described 
briefly as follows: 

Algorithm 1 ( Polyhedral Outer Approximation Method). 

Step 1. Choose an initial polyhedron PQ that contains St with vertex set VQ 
and set k = 0. 

Step 2. Compute v^ and 0^ such that (f)^ — 0(t'^) = max-i;̂ Vfc 4^{y)^ 1-̂ ., v^ is 
the best vertex in the current enclosing polyhedron. 

Step 3. Find a feasible point y^ on the boundary of St- Let i be such that 
ipi{y^) ~ hi. Form a new polyhedron P/c+i by adding a cutting plane 
inequality: ^^{y — y^) < 0^ where ^k is a subgradient of the binding con
straint ipi at y^. 

Step 4. Calculate the vertex set T4+i of P/^+i. Set A; := A: + 1, return to Step 
2. 

It was shown in [HofSl] that the above method converges to a global 
optimal solution to problem (15). In implementation, the above procedure 
can be terminated when (p^ — (j){y^) < e, where e > 0 is a given tolerance. 
There are many ways to generate the feasible point y^ in Step 3. A simple 
method proposed in [HofSl] is to find the (relative) boundary point of St on 
the line connecting v^ and a fixed (relative) interior point of 5t. Horst and Tuy 
[HT93] suggested projecting v^ onto the boundary of St and choosing y^ to 
be the projected point. Finding vertices of P^+i is the major computational 
burden in the outer approximation method. After adding a cutting plane 
{y I i^{y ~ y^) — O}, the new vertices can be generated by computing the 
intersection point of each edge of Pk with the cutting plane. Techniques of 
computing new vertices resulted from an intersection of a polyhedron with a 
cutting plane are discussed in [CHJ91, HV88]. 

Let us consider a small example to illustrate the convexification and outer 
approximation method. 

Example 1. 

max f{x) = 4.5(1 - 0.40^i-^)(l - 0.40"^^-^) + 0.2 exp(xi + X2 - 7) 

s.t. gi{x) = bx\X2 — 4xi — 4.5x2 < 32, 

xeX =-{x\2<xi< 6.2, 2 < X2 < 6}. 

It is clear that / and gi are strictly increasing functions on X. The problem 
has three local optimal solutions: x}^^ = (2.2692,6)^ with / (x/^J = 3.7735, 
xf̂ ^ = (3.4528,3.5890)^ with /(xf^J = 3.857736 and xf̂ , - (6.2,2.1434)^ 
with f{xf^^) = 3.6631. Figure 3 shows the feasible region of the example. 
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It is clear that the global optimal solution xf^^ is not on the boundary of 
the convex hull of the nonconvex feasible region 5. Take t to be the con
vexification transformation (6) with p = 2. The convexified feasible region is 
shown in Figure 4. Set e = 10""*. The outer approximation procedure finds 
an approximate global optimal solution 2/* — (—0.21642,-0.19934) of (15) 
after 17 iterations and generating 36 vertices. The point y* corresponds to 
X* = (3.45290,3.58899), an approximate optimal solution to Example 1 with 
/(x*) = 3.857736887. 

7 

6 

5 

X, 4 

3 

2 

1 
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. 3. Feasible region of Example 1. 
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4 Polyblock outer approximation method 

Polyblock approximation methods for monotone optimization were proposed 
in [RTMOl, TuyOO, TLOO]. A polyblock is a union of a finite number of boxes 
[a, z], where point a is called the lower corner point and point z eV is called 
a vertex of the polyblock, with V being a finite set in R^. The polyblock outer 
approximation method is based on the following two key observations: (i) the 
feasible region S of (P) can be approximated from outside by a polyblock, 
no matter S is convex or nonconvex, and (ii) any increasing function achieves 
its maximum on a polyblock at one of its vertices. These two properties are 
analogous to those of the polyhedral outer approximation in concave mini
mization. Recall that a convex set can be approximated from outside by a 
polyhedron and any convex function achieves its maximum on a polyhedron 
at one of its vertices. 
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Fig. 4. Convexified feasible region with p = 2. 
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A polyblock outer approximation method can be developed for monotone 
optimization by successively constructing polyblock that covers the feasible 
region S. The algorithm first uses [l,u] as the initial polyblock. At the fc-th 
iteration, let z^ he the vertex with the maximum objective function value 
among all the vertices of the enclosing polyblock. A boundary point x^ of S 
on the line connecting / and z^ is calculated. The polyblock approximation is 
refined by cutting the box (x^, z^] from [I, z^], A set of n new vertices is then 
generated by alternatively setting one of the components equal to that of x^ 
and the other components equal to those of z^. The iteration process repeats 
until the difference between the upper bound (the maximum objective value 
of the vertices) and the lower bound (the objective value of the current best 
boundary point) is within a given tolerance. A vertex z is called improper if 
there exists another vertex w of the polyblock such that z < w with at least 
one component satisfying Zi < Wi. By the monotonicity of the problem, any 
improper vertex generated during the polyblock approximation process can 
be deleted. 

Let Se = 5 n [/-f ee, u], where e > 0 and e = ( 1 , . . . , 1)^. A feasible solution 
X* is said to be an e-optimal solution to (P) if x* G argmax{/(x) | x e Se}. 
A feasible solution x* is said to be an (e, 77)-optimal solution to (P) if /(x*) > 
/* — 77, where /* is the global maximum of / (x) over Se. It is easy to see that 
both e-optimal and (e, r7)-optimal solutions can be regarded as approximate 
optimal solutions to (P). 

Algorithm 2 (Polyblock Approximation Algorithm). 

Step 0 (Initialization). Choose tolerance parameters e > 0 and 77 > 0. If / i s 
infeasible then (P) has no feasible solution. If u is feasible then u is the 
optimal solution to (P), stop. Otherwise, set x^ = l,Vi — {u} and fc = 1. 
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Step 1. Compute 

z^ G argmax{/(2;) \ z eVk, z>l + ee}. 

If z^ G 5, stop and z^ is an e-optimal solution to (P). 
Step 2. Compute a boundary point x^ of S on the line linking / and z^. Set 

x^ = argmax{/(x^~-^),/(x^)}. If f(x^) > f{z^) — ^, stop and x^ is an 
(e, 77)-approximate solution to problem (P). 

Step 3. Compute the n new vertices of the box [x^^z^] that are adjacent to 
z^: 

z^^'= z^ - {z^ - x^)e\ i - l , . . . , n , 

where ê  is the z-th unit vector of R^. Set 

Vk+i = {Vk\{z'^})U{z'''\...,z'''"}. 

Let T4+1 be the set of the remaining vertices after removing all improper 
vertices in 14+1-

Step 4' Set k := k -\-l, return to Step 1. 

Remark 1. We note that in Algorithm 2 at most n new vertices are added 
to the vertex set Vk at each iteration. However, the number of vertices accu
mulated during the iteration process could be so large such that storing all 
vertices is prohibitive from the computational point of view. In order to avoid 
such a storage problem, restarting strategy can be adopted. Specifically, Step 
4 can be replaced by the following two steps: 

Step ^. If 1141 < AT" (AT is the critical size of the vertex set), then set fc := /c + l 
and return to Step 1. Otherwise go to Step 5. 

Step 5. Redefine Vk^i = {u— [ui — x^)e% i — 1 , . . . , n} . Set k \— k + 1 and 
return to Step 1. 

It was shown that Algorithm 2 either stops at an e-optimal solution in Step 
1 or stops at an (e, r7)-approximate solution after finite number of iterations 
(see [RTMOl]). 

Figure 5 illustrates the first 3 iterations of the polyblock approximation 
for Example 1. Using the same accuracy e = 10~^ as in Example 1, the 
method finds an e-approximate global solution x\yest = (3.4526,3.5890)-^ with 
fi^best) = 3.857736 after 359 iterations and generating 718 vertices. 

Algorithm 2 can be extended to deal with monotone optimization problems 
with an additional reverse monotone constraint h{x) > c, where h{x) is an 
increasing function (see [TuyOO, TLOO]). Various applications of monotone 
optimization can be found in [TuyOO]. 
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Fig. 5. Polyblock approximation for Example 1. 

5 A hybrid method 

Despite its relatively easy implementation, the polyblock approximation me
thod may suffer from its slow convergence due to the poor quality of upper 
bounds, as witnessed from illustrative examples and computational exper
iments. The convexification method discussed in Sections 2 and 3, on the 
other hand, is essentially a polyhedral approximation method for solving the 
transformed concave minimization problem. Therefore, it may suffer from the 
rapid (exponentially) increase of the number of polyhedral vertices generated 
by the outer approximation, as is the case for any polyhedral outer approx
imation methods for concave minimization (see [Ben96, HT93]). Moreover, 
it is difficult to determine a suitable convexification parameter that controls 
the degree of the convexity of the functions on a large size domain. A large 
parameter may cause an ill-conditional transformed problem. 

To overcome the computational difficulties of the convexification method, a 
hybrid method was developed in [SL04] to incorporate three basic strategies: 
partition, convexification and local search, into a branch-and-bound frame
work. The partition scheme is used to decompose the domain X into a union 
of subboxes. The union of these subboxes forms a generalized polyblock that 
covers the boundary of the feasible region. Figure 6 illustrates the partition 
process for Example 1. To obtain a better upper bound on each subbox, 
convexification method is used to construct polyhedral outer approximation, 
thus enabling more efficient node fathoming and speeding up the convergence 
of the branch-and-bound process. A local search procedure is employed to 
improve the lower bound of the optimal value. Since only an approximate 
solution is needed in the upper bounding procedure, the number of polyhe-
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dral vertices can be limited and controlled. Moreover, as the domain shrinks 
during the branch-and-bound process, the convexity can be achieved with a 
smaller parameter, thus avoiding the ill-conditional effect for the transformed 
subproblems. 

Fig. 6. Partition process for Example 1. 

Consider a subproblem of (P) by replacing X = [l,u] with a subbox 
[a , /? ]CX: 

{SP) max f{x) 

s.t. gi{x) <bi, i 

xe [a,/?]. 
,m, 

Let Xb be the boundary point of S on the hne connecting a and /?. By the 
monotonicity of / and ^^s, there are no better feasible points than Xb in 
[a,Xb) and there are no feasible points in (x^,/?]. Therefore, the two boxes 
[a^Xb) and (x^,/?] can be removed from [a,P] without missing any optimal 
solution of {SP) (cf. Figure 6). The following lemma shows that the set of the 
points left in [a,/?] after removing [a,Xb) and (x^,/?] can be partitioned into 
at most 2n — 2 subboxes. 

Lemma 1. ([SL04]) Let a < (3. Denote A=[a,l3], B= [a, 7) and C -
Then A\{B UC) can be partitioned into 2n — 2 subboxes. 

A\{BUC) = {U?^2 (^fc lK,7fc] X buPi] X n^=i+i[ak,Pk])} 
U{Ut2 {nrJibk,/3k] X [ai,7i] X iTfc"^i+i[afc,/3fe])}. 

(7,/?]. 

(18) 
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Let J = { 1 , . . . , n} . The hybrid algorithm can be formally described as 
follows. 

Algorithm 3 (Hybrid Algorithm for Monotone Optimization). 

Step 0 (Initialization). Choose tolerance parameters e > 0 and r/ > 0. If / is 
infeasible then problem (P) has no feasible solution. If î  is feasible then u is 
the optimal solution to (P), stop. Otherwise, set x^est = U fbest = f{xbest)^ 
fl = f{u),a' ==l,P'= u,X' = {[a\(3']}. Set k = 1. 

Step 1 (Box Selection). Select the subbox [a^,f3^] G X^ with maximum upper 
bound ft Let I^ = {j e J \ (3^ - a^ < rj} and Q^ = J \ / ^ If Q^ = 0, 
stop, X = a^ is an //-optimal solution to problem (P). 

Step 2 (Boundary Point). Set X^ := X^ \ [a^,/?^]. Find a boundary point x^ 
of S on the line connecting a^ and /3^. 

Step 3 (Local Search). Starting from x^, apply a local search procedure to find 
a local solution xf̂ ^ of the subproblem on [a^,/?^]. If f{xf^^) > fbest^ set 

Xbest = ^loc'> J best = Jx^loc)' 

Step 4 (Partition). Partition the set i?^ - [a^,/?^] \ ([a^,x^) U (x^,/?^]) into 
2\Q^\ — 2 new subboxes using formulation (18). Let X^'^^ be the set of 
subboxes after adding the new subboxes to X'^. Removing all sub-boxes 
[j,5] in X^^'with f{5) <hest-

Step 5 (Upper Bounding). For each subbox [a,/?] in X^~^^, apply the convex-
ification and outer approximation (Algorithm 1) to find an upper bound 
UB^oc^p^ of the objective function. 

Step ^(Fathoming). Removing all subboxes [a,/?] in X^'^^ with UB^f^^pj < 
fbest' Let /-̂ "̂ ^ be the maximum upper bound of all the subboxes. If 
fu^^—fbest < e, then stop, Xbest is an e-optimal solution to (P). Otherwise, 
set A; := /c + 1, goto Step 1. 

In the implementation of Step 5, the outer approximation iteration can be 
terminated upon finding a new vertex whose objective function value is less 
than or equal to the lower bound fbest- It was shown that Algorithm 3 either 
stops at an ry-optimal solution in Step 1 or stops at an e-optimal solution in 
Step 6 within finite number of iterations (see [SL04]). Details of computational 
considerations and extensive numerical results of Algorithm 3 were given in 
[SL04]. 

6 Conclusions 

We have summarized in this paper basic ideas and results on convexification 
methods for monotone optimization. Applying convexification to a monotone 
optimization problem results in a concave minimization problem that can be 
solved by the polyhedral outer approximation method. The polyblock approx
imation method can also be viewed as an outer approximation method where 
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polyblocks are used to approximate the feasible region and upper bounds are 
computed by ranking the extreme points of the polyblock. Integrating the 
promising features of convexification schemes and the polyblock approxima
tion method, the newly proposed branch-and-bound framework that combines 
partition, convexification and local search is promising from the computational 
point of view. 

Among many interesting topics for the future research, we mention the 
following three areas: 

(i) D.I. functions (difference of two increasing functions) constitute a large 
class of nonconvex functions in global optimization (e.g., polynomials). Di
rect application of the convexification method to problem with D.I. functions 
involved gives rise to a D.C. (difference of convex functions) optimization 
problem ([HT99]). It is of a great interest to study efficient convexification 
methods for different types of D.I. programming problems and develop effi
cient global optimization methods for the transformed D.C. problems. 

(ii) Many real-world optimization models may only have partial monotonic-
ity. For example, the function is monotone with respect to some variables and 
nonmonotone with respect to other variables, or the function is a sum of a 
monotone function and a nonmonotone function. In global optimal design 
problems ([HJL89]), partial monotonicity properties are often inherent in ob
jective and constraint functions. How to exploit the partial monotonicity by 
certain convexification scheme is an interesting topic for future study. 

(iii) Many computational issues of the outer approximation method still 
need to be further investigated. The major computation burden in the outer 
approximation method is the computation and storage of the vertices of the 
polyhedron containing the feasible region. Vertex elimination technique could 
be a possible remedy for preventing a rapid increase of the number of vertices 
of the outer approximation polyhedron. 
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1 Introduction and Preliminaries 

We consider the following mathematical programming problem (P): 
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min f{x) 

subject to X e C, gi{x) < 0, i = 1,2, • • • , m. 

where f,gi : X —> RU{oo} , i G / := {1,2, • • • ,m} , X is a real Banach space 
and C is a closed convex subset of X. 

In the case where the directional derivatives of the functions / and Qi, i = 
1,2, • • • , m exist but are not convex functions of the directions, the standard 
necessary condition for a feasible point XQ to be a solution of (P) stating that 
there exist Â  > 0, i — 0 ,1 ,2 , . . . , m such that 

m 

Ao/'(^o, r-) + Y^ Xigl{xo,r) > 0, Vr G cone(C - XQ), (1) 
i=l 

Kgii^o) = 0, for alH = 1,2,.. . , m (2) 

fails to hold (see [CraOO, DT03], and Examples 1 and 3). For this class of prob
lems, an optimality condition based on directional derivatives (an extended 
version of (l)-(2)) with Lagrange multipliers are functions of directions was 
introduced recently by B.D. Craven in [CraOO]. Such type of conditions were 
also established in [DT03] for quasidifferentiable problems. 

In this paper we introduce a more general approach which can apply to 
larger classes of directionally differentiable problems. Concretely, we are deal
ing with a class of problems where the functions involved are directionally 
differ entiable and possess upper approximates in each direction. A necessary 
condition for optimality of Kuhn-Tucker form where Lagrange multipliers are 
functions of directions is established. This condition is also sufficient under 
invex type hypothesis. It is shown that for various concrete classes of problems 
(including classes of convex problems, locally Lipschitz problems, composite 
nonsmooth problems), generalized Lagrange multipliers collapse to the stan
dard ones (i.e., Lagrange multipliers are constants). As an application, opti
mality conditions for quasidifferentiable problems are derived from the main 
results. Optimality conditions for a class of problems in which all the functions 
possess upper DSL-approximates (see [Sha86, MW90]) are also derived from 
the framework. 

In Section 2, a necessary condition of Kuhn-Tucker type (called "direc
tional Kuhn-Tucker condition") based on directional derivatives is estabhshed. 
Here the Lagrange multiplier A is a map of the directions, A : cone(C —xo) —> 
M!p. It is called "generalized Lagrange multiplier". Under some generalized 
convexity condition, the condition is also sufficient for optimality. Also, nec
essary optimality conditions (Pritz-John and Kuhn-Tucker type conditions) 
associated with upper approximates of the objective and the constrained func
tions are given. In Section 3 we examine some special cases where the gener
alized Lagrange multipliers collapse to constants as usual. As applications, in 
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this section optimality conditions for a class of composite nonsmooth prob
lems with Gateaux differentiability and also for quasidifferentiable problems 
are given. For the class of quasidifferentiable problems, it is shown that the "di
rectional Kuhn-Tucker condition" is weaker than the well-known Kuhn-Tucker 
condition in the set inclusion form established earlier in [War91, LRW91]. It 
should be noted that for this class of problems the optimality conditions ob
tained in this section are based on the directional derivatives only and hence, 
do not depend on any specific choice of quasidifferentials of the functions in
volved. This is one of the special interest aspects of this class of problems 
(see [LRW91, War91]). An example is given at the end of this section to show 
that for quasidifferentiable problems, in general, the Lagrange multipliers can 
not be a constants. Furthermore, it is shown by this example that the candi
dates for minimizers can be sorted out by using the directional Kuhn-Tucker 
condition. In the last section. Section 4, we show the ability of applying the 
framework introduced in Section 2 to some larger class of problems. Con
cretely, it is shown that the framework is applicable to the class of problems 
for which the functions involved possess upper DSL-approximates in the sense 
of [Sha86, MW90] (that is, upper approximates can be represented as a differ
ence of two sublinear functions). A necessary condition parallel to those given 
in [Sha86, MW90] and a sufficient condition are proved. A relation between 
these conditions and the one in [MW90, Sha86] is also established. 

We close this section by recalling the notions of directional differentiability 
and recession functions of extended real-valued functions. 

Let X be a real Banach space and / : X —> R U {+oo}. For XQ, /i G X, if 
the limit 

/ (xo, / . ) :=^l im^ 

exists and is finite then / ' (XQ, h) is called the directional derivative of / at XQ 

in the direction h. The function / is called directionally differentiable at XQ if 
/ ' (XO, h) exists and is finite for any direction h e X. 

Note that if / is directionally differentiable at XQ then the directional 
derivative / ' (XQ, •) is positive homogeneous but in general it is not convex. 

Let g : X —> MU{+oo} be directionally differentiable at XQ. The recession 
function of g' at XQ is defined by 

{9')'^{xo,y) '= sup[g\xo,d + y)-g\xo,d)]. 
dex 

The notion of recession function was widely used (see [War91, MW90] 
and the references therein). It is worth noting that {g')^{xQ^ •) is a sublinear 
function and p'(xo,-) < (^')°°(xo, •)• Concerning the recession function, the 
following lemma [MW90, Corollary 3.5] will be used in the next section. 
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Lemma 1. [MW90] Suppose that g is directionally differentiable at XQ and 
g'{xQ^.) is lower semicontinuous (Is.c.) on X. Ifp{.) is an upper approximate 
of g at XQ, then there exists an upper approximate h of g at XQ such that 

h{x) < mm{p{x), {g')'^{xo,x)} for all x e X, 

It is worth noting that the conclusion of Lemma 1 still holds without the 
assumption on the lower semicontinuity of p'(xo, •) if X is finite dimensional. 
This was established in [War91, Lemma 2.6]. 

2 Generalized Lagrange Multipliers 

In this section we will concern the Problem (P) where f^giiX —> MU{+cx)}, 
i G / := {1,2, • • • , m}. Let S be the feasible set of (P), that is, S := C n{x G 
^ I 9i{^) < 0, i = 1,2, • • • , m}. Let also XQ e S and I{xo) := {i e I \ gi{xo) = 
0}. We assume in the following that all the functions / and gi, i G / are 
directionally differentiable at XQ. It is not assumed that the functions / ' (XQ, •) 
and g[{xQ^ ')-> i ^ ^(^o), are convex. 

2,1 Necessary conditions for optimality 

We begin with the necessary condition of Fritz-John type whose the proof is 
quite elementary. Note that no extra assumptions are needed here but the 
directional differentiability of / , p^, and the continuity of gi (at XQ) with 
i ^ I{xo). The same condition (holds for feasible directions from XQ and 
X = M'̂ ) was recently proved in [CraOO]. 

Theorem 1. Suppose that f and gi, i G I{xo) are directionally differentiable 
at XQ and gi with i ^ I{xo) are continuous at XQ.IfxoESisa local minimizer 
of (P) then for each r G cone{C — XQ), there exists X = (AQ, AI, • • • , A^) G 
M!!?"̂ ;̂ X ^ 0 such that the following conditions hold: 

Aof(xo,r) + ^ A , ^ K ^ o , r ) > 0 , (3) 
i = l 

Xigi{xo) — 0,/or a/H = 1,2, • • • ,m. (4) 
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Proof. We first note that the conditions (3)-(4) are equivalent to 

Aof(xo , r )+ Yl A,^i(^o,r)>0 

and Xi = 0 iox i ^ I{xo). 
Suppose that xo G 5 is a local minimizer of (P). Assume on the contrary 

that there exists f G cone{C — XQ) such that for any A G R!^^^°^' , A T̂^ 0 one 
has 

Aof(xo, f )+ Yl ^idli^o.f) < 0 . (5) 
ieI{xo) 

Then by the arbitrariness of A G R!^^^°^'"^ we get from (5) that 

/ ( x o , f ) < 0 , ^, ' (xo,f)<0, ieI{xo). 

It follows from the definition of directional derivatives and the continuity of 
Qi^ i ^ /(xo) that for sufficiently small /x > 0, 

xo-\-fxf e C, f{xo + jLLf) < /(xo), gi{xo + fif) < 0, Vi G / . 

This contradicts the fact that XQ is a minimizer of (P). D 

It is worth noting that the multiplier A = (AQ, AI, • • • , Am) G R!}?"̂ ,̂ A j^ 
0 that exists in Theorem 1 depends on the direction r G cone (C — XQ). 
Precisely, the Lagrange multiplier A is a map of direction r G cone (C — XQ). 
The conclusion of Theorem 1 can be expressed as follows: 

There exists a map A(.) : cone{C — XQ) —> R^'^'^, A — (AQ, Ai, • • • , A^) 
with nonzero values, satisfying 

m 

Ao(r)/'(xo, r) + ^ Ai(r)^-(xo, r) > 0, Vr G cone(C - XQ), 
i=l 

Xi{r)gi{xo) = 0, for alH = 1,2,.. . , m and r G cone(C — XQ). 

The map A(.) : cone(C — xo) —> R++^ is then called a generalized La
grange multiplier (of Fritz-John type). It is shown in the next section that in 
many cases (e.g., differentiable, convex, Lipschitz problems) A can be taken 
to be a constant (constant map) as usual. 

It is easy to see that if for some r G cone(C — xo), g[{xQ^r) < 0 for all 
i G I{XQ) then Ao(r) ^ 0. So if we want to have a condition of Kuhn-Tucker 
type (which is of the most interest), such condition have to be satisfied for all 
r ^ X. But it seems that this is quite strong in comparision with the well-
known ones (see [Man94]). In the following we will search for some weaker 
ones that imply Ao(r) ^ 0 for all r G cone(C — xo). Such conditions are often 
known as regularity conditions . 

Let g : X —> R U {+00} be directionally diflFerentiable at XQ E X. 
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Definition 1. A lower semicontinuous sublinear function cj) : X —> R is 
called an upper approximate of g at XQ if 

g'{xo,x) < 0(x), for all x e X. 

If this condition satisfies for all x G D where D is a cone in X then we say 
that (j) is an upper approximate of g at XQ on D. 

An upper approximate of a function g, if it exists, may not be unique. So in 
general it may not give "good enough" information about the function g near 
XQ. We introduce another kind of upper approximates. 

Definition 2. Let ̂  be a point ofX.A function (j): X —> R is called an upper 
approximate of g at XQ in the direction ^ e X if (p is an upper approximate of 
g at XQ and 

Note that if ^ is a proper convex function on X then g'{xo,.) is an upper 
approximate of g dit XQ. Moreover, in this case g'{xo^.) is also an upper ap
proximate of ̂  at XQ in any direction ^ G X. If further, g is locally Lipschitz at 
XQ then g^{xQ,.) (the Clarke generalized derivative at XQ) is an upper approx
imate of ^ at XQ. g^ixQ^.) is an upper approximate of g at XQ in the direction 
^ G X if and only if g^{xQ,i) = g'{xo, ^). 

A function g which possesses upper approximates at XQ in every direction 
^ G X means that there exists a family of upper approximates {(f)^{.))^^x of 
g at xo such that ^^(C) = g'i^o.Oy ^^^ every ^ E X. Such classes of functions 
contain, for example, the class of convex functions, differentiable functions, 
locally Lipschitz and regular functions (in the sense of Clarke), and the class 
of quasidifferentiable functions in the sense of Demyanov and Rubinov (see 
Section 3). 

We now introduce a regularity condition for (P), which is of Slater type 
constraint qualifications and involves upper approximates. Suppose that gi , 
i G /(xo), possesses upper approximates at XQ in any direction ^ G X. 

Definition 3. The Problem (P) is called (CQl) regular at XQ if there exists 
X G cone{C — xo) such that for any direction ^ G X there are upper approxi
mates ^f (.) of gi, i G I{xo), at XQ in the direction ^ satisfying 

^^(x) < 0 for all i G I{xo). 

Definition 4. [MW90] The Problem (P) is called (CQ2) regular atxo if there 
exists X G cone{C — XQ) such that 

(gD'^ixo.x) < 0 for all i G /(XQ). 
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We are now able to establish a necessary optimality condition of Kuhn-
Tucker type for (P). 

Theorem 2. (Directional Kuhn-Tucker condition) Suppose that f.gi, i G / ; 
are directionally differentiable at XQ and possess upper approximates at XQ in 
any direction ^ G X; gi is continuous at XQ for all i ^ / (XQ). If XQ is a local 
minimizer of (P) and if one of the following holds 

(a) (P) is (CQl) regular at XQ; 
(h) dim X < -f GO and (P) is (CQ2) regular at X{), 
(c) (P) is (CQ2) regular at XQ and g[(xQ, •) is l.s,c. for all i G /(XQ) 

then the following directional Kuhn- Tucker condition (DKT) holds 
(DKT) For each r G cone{C — XQ), there exists A = {Xi)iQi G R!p such 

that 
/ ' (xo,r) + ^A^^ ; (xo , r ) > 0 , Xigi{xo)=0, \/i e L 

iei 

A point XQ G S that satisfies (DKT) is called a directional Kuhn-Tucker 
point of (P). 

Proof Suppose that XQ is a minimizer of (P). It follows from Theorem 1 that 
for each r G cone{C — XQ), there exists A(r) == (Ao(r), Ai(r), • • • , A^(r)) ^ 0, 
Ai(r) > 0 for all z G / such that 

Ao(r)f(xo,r) + ^ A , ( r ) ^ , ' ( x o , r ) > 0 , A,(r).^,(xo) - 0, Vz G/ . (6) 
iei 

It suffices to prove that for each r G cone{C — XQ), Ao(r) 7̂  0. Assume on the 
contrary that there is f G cone{C — XQ) with Ao(f) = 0. We will prove that in 
this case it is possible to replace the multiplier A(f) by some other A(f) with 
Ao(f) 7̂  0 such that (6) holds at r == f with A(f) instead of A(f). 

Since XQ is a local minimizer of (P), the following system of variable ^ G X 
is inconsistent: 

^ G c o n e ( C - x o ) , / ' ( x o , e ) < 0 , p - ( ^ o , 0 < 0 , Vi G/(XQ). (7) 

(i) Suppose that (c) holds, i.e., (P) is (CQ2) regular and ^ ' (XQ,.) is l.s.c. 
for all i G /(XQ). Let ^'^(.), ^[(.) be upper approximates of / and gi, i E /(xo) 
at Xo in the direction f, respectively. By Lemma 1 there exist h,hi, upper 
approximates of / , ^ ,̂ i G /(XQ) at XQ (respectively), satisfying for all x G X, 

r h{x) < m i n { r (x), ( f )^(xo, x)}, 
\ hi{x) < mm{^l{x), ( P O ^ ( X O , X ) } , Vi G /(XQ). 

Since (7) is inconsistent, the following system of convex functions is inconsis
tent: 

^ G cone{C — XQ), h{x) < 0, hi{x) < 0, i G /(XQ). 
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By Gordan's alternative theorem (see [Man94, HK82]), there exist AQ > 0, 
Â  > 0, 2 G I{xo)^ not all zero, such that 

Xoh{x) + ^ Xihi{x) > 0, Vx G cone{X - XQ). (8) 

Therefore, if AQ = 0 then 

y ^ Xihi{x) > 0, Vx G cone{C - XQ). (9) 
iEl{xo) 

By (CQ2) regularity condition, there is :r G cone(C—XQ) such that (^^)°°(xo, x) < 
0 for all i G I{xo). This implies that (note that Â  > 0 for all i G /(XQ) and 
not all zero) 

iel(xo) iGlixo) 

which contradicts (9). Hence, AQ 7̂  0 (and we can take AQ = 1). With x = f, 
(8) gives 

Hr)-^ Yl Xihi{f)>0. 
ieI{xo) 

Since h{f) < ^^(f) = f'{xo,f), hi{f) < ^[(f) = g'i{xo,f), and Â  > 0 for all 
i € I{xo), we arrive at 

f'ixo,f)+ ^ Xig'iixo,f)>0. 
iei{xQ) 

Take Xi{f) — Xi for i G /(XQ) and A^(f) = 0 for all i ^ /(XQ) and A(f) = 
(A^(f))^e/• It is obvious that A(f) satisfies the condition (DKT) at r = f. The 
proof is complete in this case. 

(ii) The proof for the case where (b) holds is the same as in the previ
ous case, using Lemma 2.6 in [War91] instead of Lemma 1 (see the remark 
following Lemma 1). 

(iii) The proof for the case where (a) holds is quite similar to that of (c). 
Take ^^, ^ [ to be the upper approximates of / and pi, i G /(XQ) (respectively) 
at xo in the direction f that exist by (CQl). The inconsistency (7) implies the 
inconsistency of the following system: 

X G cone(C - XQ), ^ ^ ( X ) < 0, ^j^(x) < 0, i G /(XQ). 

Then we get (8) with h is replaced by #^ and hi is replaced by ^ [ , i G /(XQ). 

If Ao = 0 then 
y] Xi^lix) > 0, Vx G cone{C - XQ). 

i€l{xo) 

This is impossible since by (CQl), ^[(x) < 0 for all i G /(XQ) and Â  > 0, 
{i G /(xo)) not all zero. Hence AQ J^ 0. The rest is the same as in (i). The 
proof is complete. D 



Generalized Lagrange Multipliers 301 

The relation between (CQl), (CQ2) and the other regularity conditions, 
as well as the relation between (DKT) and some other Kuhn-Tucker condition 
will be discussed at the end of Section 3 in the context of quasidifferentiable 
programs. 

2.2 Sufficient condition for optimality 

We now prove that the directional Kuhn-Tucker condition (in Theorem 2) is 
also sufficient for optimality under an assumption on the invexity of (P). This 
notion of generalized convexity has been widely used in smooth as well as 
nonsmooth optimization problems (see [BRS83, CraSl, Cra86, CraOO, HanSl, 
SacOO, SKLOO, SLK03, YS93], . . . )• Our definition of invexity is slightly dif
ferent from the others. 

Definition 5. Suppose that (/>(•) , ^i{'), i G /(XQ) are positively homogenous 
functions defined on X such that 

f{xo,x)<(t){x), V X G X , 
gii^o.x) < (f)i{x), V X G X, \fie I{xo). 

The Problem (P) is called invex atxo on S with respect to (/>(•), (/){{'), i G I{xo) 
if there exists a function rj : S —> cone{C — XQ) such that the following holds: 

f{x)-f{xo)>ct>{v{x))^ V X G 5 , 
9i{x) - Qiixo) > ^i{rj{x)), Vx G 5, \/i e I{XQ), 

If (P) is invex (at XQ on S) with recpect to / ' (XQ, •),^^(XO, -), i G I{XQ) then 
it is called simply invex (the most important case). 

Note that if / , gi are differentiable at XQ then the invexity of (P) (with respect 
to f'{xo, •), g[{xo^ ')^ i G H^o)) ŝ exactly the one which appeared in [HanSl, 
CraSl]. In Definition 5, if in addition, f,gi are locally Lipschitz at XQ and 
if we take 0(-) = f^{xo,')^ (j)i{') = ^^(XQ,*)? ^ ^ -^(^o) then we come back 
to the definition of invexity appearing in [YS93, BRS83]. This also relates to 
the cone-invexity for locally Lipschitz functions, which was defined in [Cra86]. 
The following result was established in [CraOO] concerning feasible directions 
and for X = R^. Its proof is almost the same as in [CraOO, DT03] and so it 
will be omitted. 

Theorem 3. (Sufficient condition for optimality) Let f,gi,i£lbe direc-
tionally differentiable at XQ , If XQ is a directional Kuhn- Tucker point of (P) 
and if (P) is invex at XQ on S then XQ is a global minimizer of (P). 

In view of Theorems 2 and 3, it is easy to obtain the following necessary 
and sufficient optimaity conditions with upper approximates: 
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Corollary 1. For the problem (P), let XQ is a feasible point and let cj), (pi 
be upper approximates of f, gi, i G / at XQ, respectively. Suppose that gi is 
continuous at XQ for all i ^ /(xo). 

(i) If XQ is a local minimizer of (P) then there exist AQ > 0, Â  > 0̂  i G / ; 
not all zero, such that 

Xo(t){x) + ^ XiCpiix) > 0, Vx G cone{C - XQ); Xigi{xo) = 0, Vz G / . 
iei 

Moreover, if there exists x G 5 such that (j)i{x) < 0 for all i G I{xo) then XQ ^ 
0 (and hence, one can take AQ = \)> That is, there exists X = {Xi)i^i G M!f? 
such that 

^ W + ^ K(t>i{^) > 0̂  Vx G cone{C - XQ); Xigi{xo) =0, Vi G / . (10) 
iei 

(a) Conversely, if XQ satisfies (10) (for some upper approximates (j), (pi of 
f, gi on cone {C — XQ), respectively, and some X G W^) and if (P) is invex 
at xo on 5 := C n {x G X\gi[x) < 0, i = 1,2, • • • ,m} with respect to (p, cpi, 
i G /(xo) then XQ is a global minimizer of (P). 

Proof (i) Since XQ is a solution of (P) the following system of variable ^ G X: 

C G cone (C - XQ), / ' ( X O , 0 < 0, g[{xo,0 < 0, i G /(XQ) 

is inconsistent. By the definition of upper approximates, the following system 
of convex functions is inconsistent. 

<̂  G cone (C - XQ), p{x) < 0, (pi{x) < 0, z G /(XQ). (11) 

The rest of the proof is similar to those of Theorems 2 and 3. D 

It is worth noting that the conclusion of Corollary 1 still holds if in the 
definition of upper approximate (Definition 1) one replaces directional deriva
tives g'{xo, d) by the upper Dini derivative ^"^(xo, d) of g at XQ in the direction 
d e X which is defined by 

+ / rx V g{xo i-Xd) - g{xo) 
g^{xo,d) := l imsup-^ -̂  ^—-. 

A^o+ A 
This can be seen by replacing (11) by the following: 

^G cone ( C - x o ) , / + ( x o , 0 < 0 . ^^^ (^o ,0<0 . i e I{xo). 

The Lagrange multipliers that exist in Corollary 1 are constants (indepen
dent from the directions). The price for this is that (10) is just based on the 
upper approximates of / and gi at XQ instead of / ' (^o, •)' dii^o^ •)? ^ ̂  -^(^o) as 
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in the previous subsection (Theorem 2). However, for smooth problems (i.e., 
/ , gi are differentiable), or convex, or locally Lipschitz problems, condition 
(10) collapses to the standard optimaUty conditions. For instant, if / and gi 
are convex then / ' (XQ, •)? Qii^o, •)? ^ ̂  -^(^o) are convex and hence, by taking 
(/>(•) = / ' (xo, ' ) , 0i(-) = giixo, •), i e I{xo), (10) is none other than 

f{xo,x) + ^ Xig[{xo,x) > 0, Vx G cone (C - XQ) 

(provided that there is x G cone {C — XQ) satisfying g[{xQ^x) < 0 for all 
i e I{xo)), Note also that by separation theorem, this inequality is equivalent 
to 

Oedf(xo)+ Y^ Xidgi(xo) + Nc{xo) 
i€lixo) 

where Nc{xo) stands for the normal con of C at XQ in the sense of convex 
analysis. 

Example 1. Consider the following problem (PI) 

min f{x) 

subject to g{x) < 0, x = (xi,X2) G C 

where 
C = : c o { ( 0 , 0 ) , ( - l , - l ) , ( - l , l ) } 

and the functions f^g-.R"^ —> R are defined by 

f{x) ^ -X2 + ylxf - x | | , g{x) = I |x i |+X2| . 

Observe that 

5 - C n {x G R^ : ̂ (x) < 0} = CO {(0,0), ( - 1 , - 1 )} C cone C. 

Let xo = (0,0). It is easy to see that / (XQ) = g{xo) = 0, f'{xo^r) = f{r) 
and g'{xQ,r) = g{r) for all r = (ri,r2) G R^. 

Set, for r = (ri,r2) G cone (C — XQ), 

0 if - r 2 + V | r 2 - r i | > 0 , 
fir) 
9(r) ^^'^''" \ - ^ ^i -r2 + v / R ^ ^ < 0 

(note that when —r2 + \ / k i — 2̂1 < 0' ^(^) ¥" 0)- Then the following holds: 

/ ' (xo, r) + A(r)^'(xo, r) > 0, We cone (C - XQ). 

This means that XQ = (0,0) is a directional Kuhn-Tucker point of (PI). 
On the other hand, it is clear that for each x G 5 (feasible set), 

/ ( x ) - / ( x o ) = / ' (xo,x), 
g{x) -g{xo) =g'{xo,x), 

which proves that (PI) is invex at XQ (with 77: S —> cone (C—XQ), ry(x) — x). 
Thus, Xo is a minimizer of (PI). 
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3 Special Cases and Applications 

In this section we will show that for some special classes of problems such as 
composite nonsmooth problems with Gateaux differentiablity or for problems 
where the directional derivatives are generalized subconvexlike, the general
ized Lagrange multipliers can be chosen to be constants. The last part of this 
section is left for an application to a class of quasidifferentiable problems. 
Some examples are given to illustrate the significant of the results. 

3.1 Problems with convexlike directional derivatives 

Let i^ be a subset of X. Let ^ = (0i,</>2, • • • Am) '- D —> W^. Recall that 
the map ^ is called convexlike {subconvexlike^ resp.) if ^{D) + M!p is convex 
(^(D) + intR!p is convex, resp.). It is called gerneralized subconvexlike if 
cone^(D) + intR!p is convex (see [HK82, Jey85, Sac02]). 

It is well-known that the Gordan's alternative theorem still holds with con
vexlike, subconvexlike, generalized subconvexlike functions instead of convex 
ones (see [Jey85, Sac02] for more extensions). Namely, if ^ = (</>i, 02, ' ' ' -, 4>m) -
D —> M"̂  is generalized subconvexlike (convexlike, subconvexlike) on D then 
exactly one of the following assertions holds: 

(i) 3x e D such that ^^(x) < 0, z = 1,2, • • • , m, 
(ii) 3X - (Al, A2, • • • , Xm) G R!p, A 7̂  0 such that YlT=i >'iMx) > 0, Vx G 

D, 

Theorem 4. Suppose that f and gi, i £ H^o) ^^^ directionally differentiable 
at xo and that gi with i ^ /(XQ) are continuous at XQ. Suppose further that the 
map ^ : cone {C - XQ) —> RI^(^O)|+I defined by ^ ( 0 = {f'{xQ,^),g[{xQ,^)), 
i G I[XQ) is generalized subconvexlike. If XQ e S is a local minimizer of (P) 
then there exists A = (AQ, AI, . . . , Am) G RIP"^ ,̂ A 7̂  0 such that the following 
conditions hold. 

m 

cone (C — Xo), 

^i9i{xo) = 0, for a// z = 1,2, • • • , m. 

Moreover, if there exists x G cone {C — XQ) such that g[[xQ^x) < 0 for all 
i G I{xo) then Ao 7̂  0 (and hence, one can take XQ = I). 

Proof It is easy to see that the optimality of XQ implies the inconsistency of 
the following system of variable ^ G X: 

CGcone ( C - x o ) , f ( x o , O < 0 , p - ( ^ o , 0 < 0 . i e I{xo). 

The existence of AQ > 0, Â  > 0, z G /(xo), not all zero, satisfying the 
conclusion of the theorem now follows from Gordan's theorem for generalized 
subconvexlike systems (setting Â  = 0 for i ^ / (XQ)) . The rest is obvious. D 
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Let XQ be a feasible point of (P) and let D be the set of all feasible directions 
of (P) from XQ. Set 

M := {(r(a:o,c^),(^K^o,rf)W(xo)) \deD}. 

We now apply Corollary 1 to derive an optimality condition (with constant 
Lagrange multipliers) for (P), which was established recently in [CraOO]. 

Corollary 2. [CraOO] Let U be a closed convex cone contained in M. De
note q := {fA9i)iGi{xo))' Assume that some d* satisfies q'{xo,d*) G U and 
g[{xQ^d*) < 0 for all i G I{XQ). Then there exists A = {\)iei{xQ) ^ M!^ ^̂  , 
dependent on U but not on d G D, such that for each d E D := {d E D \ 3rj E 
E,q'{xQ,d) = r}}, 

f'{xo,d)-{- Y, Xigi{xo,d)>0. 
i€iI{xQ) 

Proof By definition, for each d G D, q'{xo,d) G U . Define 

Then ^(D) = E is a closed convex cone and hence, ^ is convexlike. The 
conclusion follows from Theorem 4 with D playing the role of cone(C — XQ). 

U 

3.2 Composite nonsmooth programming with Gateaux 
differentiability 

Let X, Y be Banach space and C be a closed convex subset of X. Consider 
the composite problem (CP): 

(CP) Minimize /o(Fo(^)) 

subject to X G C^ fi{Fi{x)) < 0, z = 1,2, • • • , m, 

where Fi : X —^ Y is Gateaux differentiable with Gateaux derivative F/(-) 
and fi :Y -^R is locally Lipschitz, i = 0,1, • • • , m. 

Note that the Gateaux differentiability of a map F : X ^ F at a does 
not necessarily imply the continuity of F at a. The following simple example 
[IT79, p. 24] shows this. Let f{x,y) = 1 if x == T/̂  and y ^ 0, f{x,y) = 0 
otherwise. Then / is Gateaux differentiable at (0,0) and / ' (0,0) = 0 while / 
is not continuous at 0. 

Now let xo G C n {x G X I fi{Fi{x)) < 0, i = 1,2, • • • , m}, / -
{1, . • • ,m} , Jo = {0} U / and let I{xo) = {j e I \ fj{Fj{xo)) = 0}, XQ G C. 
We shall use the notation (/ o F)+(a, d) to indicate the upper Dini derivative 
of / o F at a in the direction c(, which is defined by 
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/ . X.X + / n . fiF(a + Xd))-f(F(a)) 

The following lemma is crucial for establishing optimality conditions for 
(CP). 

Lemma 2. Let a E X. If F : X —^ Y is continuous and Gateaux differentiable 
at a and f : Y —^ R is locally Lipschitz at F{a) then for any d £ X, there 
exists V G df{F{a)) such that 

{foF)+ia,d) = {v, F'{a)d). 

Proof By the definition of upper Dini derivative, there exists (An) C M-f, An —> 
0 such that 

ifoF)Ha,d) = lim nFia + Xnd))-fiFia))_ ^^^^ 
n—»oo An 

Assume that / is Lipschitz of rank X on a convex open neighborhood U of 
F{a). Note that / is also locally Lipschitz at any point of U with the same 
rank K. Since F is continuous at a, without loss of generality, we can assume 
that for all n, F{a + And) G U. 

It follows from the mean-value theorem of Lebourg [Cla83, Theorem 2.3.7, 
p. 41], for each n G N, there exist tn G (0,1), Vn G df{zn) such that 

f{F{a + And)) - f{F{a)) = K , F{a + Kd) - F{a)) (13) 

where Zn := F{a) + f{F{a + And) - F{a)) G U. 
Note that Vn G Y* and \\vn\\ ^ ^ - Hence we can assume {vn)n weak* 

converges to v. Note also that when n -^ oo, we have Zn -^ ^"{0) and it 
follows from the weak* - closedness of the 9 / , we get v G df{F{a)), It now 
follows from (12) and (13) that 

( / o F ) + ( a , d ) = (^,F'(a)d>. 

D 

Following Lemma 2, if we set 

vedfiFia)) 

then iẐ  : X —> R is a l.s.c. subUnear function (finite valued). Moreover, 

( / o F ) + ( a , d ) < ^ ( d ) for all deX. 

This means that ^ is an upper approximate of / o F at a (see the remark that 
follows Corollary 1). 

We are now in a position to give a necessary condition for optimality for 
(CP). 
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Theorem 5. Assume that Fi is continuous and Gateaux differentiable at a 
feasible point XQ of (CP) and fi is locally Lipschitz at F^(xo), i = 0,l ,--- ,m. 
If XQ is a solution of (CP) then there exist Ao, Ai, • • • , A^ > 0, not all zero, 
Vi e dfi{Fi{xo)), i e /o such that 

m 

[XoF^ixoTvo + ^XiFl{xorvi]ix - XQ) > 0, VX G C, 

Xifi{Fi{xo)) - 0, Vi G / , 

where F/(xo)* is the adjoint operators o/F/(xo). 

Proof We first notice that if XQ is solution of (CP) then the following system 
has no solution d G X: 

d e cone{C - XQ), {fi o Fi)^{xo, d) <0, ie I{xo) U {0}. 

Let ^i{d) : - max {vi,Fl{xo)d). Then {fi o Fi)^{xo,d) < %{d) for all 
Vi^dfi{Fi{xQ)) 

d e cone{C — XQ). It follows from Corollary 1 that there exist Ao, Â  > 0, z G 
I{xo), not all zero, such that 

\o%{d) + J2 ^i'^M) > 0, Vd G cone {C - XQ). (14) 
iel{a) 

Since XQ G C, 0 G cone{C — XQ), the above inequality means that 0 is a 
minimizer of the convex problem 

Minimize [Xo%{d) + ^ Xi^i{d)] 
iel(xo) 

subject to d e cone{C — XQ). 

This is equivalent to 

OGAO9^O(0)+ Y1 ^idHO) + Nc{xo). (15) 

Note that for each d e X, i e I{xo) U {0}, 

Md) = ^inax {F[{xoYv,d) = max {w,d) = asM 

where Bi := F/(xo)*[9/i(F^(xo))] and (7^. is the support function of Bi. It 
follows from [Cla83, proposition 2.1.4, p. 29] that the set Fl{xoy[dfi{Fi{xo))] 
is weak*-compact and we have 

d^iiO) = FlixonOMFiixo))]. 

It follows from the last equahty and (15) that there exist Vi G dfi{Fi{xo)), i G 
/ U {0} such that 
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771 

XoF^ixoTvo + J2^i^iM"^i]i^ - ^o) > 0, Vx G C. 
i=l 

The conclusion follows by setting Â  = 0 if i ^ H^o)^ i T̂  0. D 

We now give a necessary condition for (CP) in Kuhn-Tucker form. 

Theorem 6. Assume that all the conditions in Theorem 5 hold. Assume fur
ther that the regularity condition that there is do G cone{C — XQ) satisfying 
^i{do) < 0; for all i G I{xo) holds. If XQ is a solution of (CP) then there exist 
Ai > 0, i G / , Vi e dfi{Fi{xo)), i G /o such that 

m 

[F^{xo)*vo + ^XiF'{xoyvi]{x - xo) >0,\/xe C, 

XiMFiixo)) = o,\/ie I. 

Proof The proof is the same as that of Theorem 5. Note that if the regularity 
condition in the statement of the theorem holds then Ao 7̂  0 in (14). D 

It is worth noting that the same conditions as in Theorems 5-6 were es
tablished in [Jey91] under the additional assumption that the maps Fi, i E IQ 
are locally Lipschitz. 

The following example illustrates the significance of Theorems 5, 6. 

Example 2. Consider the following problem (P2) 

Minimize f{F{x, y)) 

subject to g{G{x, y)) < 0, (x, y) G R^ 

where / : R -^ R, ^ : R -> R, F : R^ -^ R, G : R^ -> R are the functions 
defined by 

f{z) = z, g{z) = z, G{x,y) = x, 

x^ if y = ^, 
n ^ . 2 / ) = | 0 if 2 / ^ 0 . 

Note that F is continuous at XQ = (0,0), Gateaux differentiable at this point 
and F'ixo) = (0,0) but F is not locally Lipschitz XQ = (0,0). It is easy to see 
that Xo = (0,0) is a solution of (P2), and the necessary condition in Theorem 
6 holds with AQ == 1, Ai = 0 (note also that for (P2) the regularity condition 
in Theorem 6 holds). 
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3.3 Quasidifferentiable problems 

Quasidifferentiable functions are those of which the directional derivatives 
can be represented as a difference of two sublinear functions. The class of 
these functions covers all classes of differentiable functions, convex functions, 
DC-functions, • • •. It was introduced by V.F. Demyanov and A.M. Rubinov 
([DR80]) in 1980. Since then optimization problems with quasidifferentiable 
data have been widely investigated and developed by many authors (see [D J97, 
DV81, DT03, EL87, GaoOO, 0192, LRW91, MW90, Sha84, Sha86, War91], . . . 
. See also [DPR86] for a discussion on the place and the role of quasidifferen
tiable functions in nonsmooth optimization). Many optimality conditions were 
introduced. Most of them are conditions that base on the subdifferentials and 
super differentials of the quasidifferentiable functions involved. 

In this section we will apply the results obtained in Section 2 to quasi
differentiable programs. The relation between the directional Kuhn-Tucker 
condition and some other type of Kuhn-Tucker conditions that appeared in 
the literature is established. It is shown (by an example) that for quasidifferen
tiable problems (even in the finite dimensional case) the generalized Lagrange 
multipliers can not be constants. 

Let X be a real Banach space and xo G X. A function / : X —> RU{+oc} 
is called quasidifferentiable at XQ if / is directionally differentiable at XQ and 
if there are two weak* compact subsets df{xo), df{xo) of the topological dual 
X* of X such that 

f\xo,d)= max ( d , 0 + mm (rf,0, VrfGX. (16) 
Cedfixo) ^edfixo) 

The pair of sets Df{xo) := [df{xo), df(xo)] is called the quasidifferential of / 
at XQ and df{xo), df{xo) are called the subdifferential and superdifferential 
of / at xo, respectively. Note that the quasidifferential Df{xo) of / at XQ is 
not uniquely defined (see [LRW91]). Note also that (16) can be written in the 
form 

f(xo,d)= max {d,0 - max {d.^.^deX (17) 
Cea/(a;o) ^e-a/ (a:o) 

and hence, f'{xo,.) can be represented as a difference of two sublinear func
tions. In general, f'{xo,.) is not convex. 

Throughout this subsection, the following lemma plays a key role. 

Lemma 3. / / / is quasidifferentiable at XQ then for any direction ^ ^ X, there 
is an upper approximate of f at XQ in the direction ^. 

Proof Let ^ e X. Since df{xo) is weak* compact, there exists v G df{xo) 
such that 

{^,v)= min {^,v), 
vedf{xo) 
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Let 
^^(x) := max {x,v) + {x,v), (18) 

ved_f{xQ) 

It is easy to see that ^^(.) is sublinear, l.s.c, f\xQ^x) < # ( x ) for all x G X, 
and f'{xo,^) = ^^(0? which proves ^^(.) to be an upper approximate of / in 
the direction ^. D 

Consider the problem (P) defined in Section 1. Let S be the feasible set of 
(P) and XQ e S. We are now ready to get necessary and sufficient optimality 
conditions for (P). 

Theorem 7. (Necessary condition) For the problem (P), assume that f, gi, 
i G / == {1, 2, 3, • • • ,m} are quasidifferentiable at XQ and gi is continuous at 
XQ for all i ^ I{XQ). If XQ is a minimizer of (P) then 

Vr G cone(C - XQ), 3 (Ao, Ai, • • • , A^) G R^"^^ \ {0} satisfying 
Xof\xo,r) + J2iei ^i9i{^o, r) > 0, Xigi{xo) = 0, Vi G / . 

Moreover, if one of the following conditions holds 
(i) dim X < +CXD and (P) is (CQ2) regular at XQ, 
(a) (P) is (CQ2) regular at XQ and g'i{xQ^.) is l.s.c. for all i G I{XQ) 

then Ao 7̂  0 and hence we can take Ao = 1 (i.e., XQ is a directional Kuhn-
Tucker point of (P)). 

Proof. It follows from Lemma 3 that the functions/ and gi possess upper 
approximates at XQ in any direction ^ G X. The conclusion now follows from 
Theorem 2. D 

The following theorem is a direct consequence of Theorem 3 in Section 2. 

Theorem 8. (Sufficient condition) For the problem (P), assume that f, gi, 
z G / = = { l , 2 , 3 , - - - , m} are quasidifferentiable at XQ and gi is continuous at XQ 
for all i ^ I{XQ). Assume further that XQ is a directional Kuhn-Tucker point 
of (P). If (P) is invex at XQ on the feasible set S then XQ is a global solution 
of(P)-

It should be noted that both the necessary and sufficient optimality con
ditions for (P) established in Theorems 7, 8 do not depend on any specific 
choice of quasidiflPerentials of / and gi, i E I{XQ). 

The regularity conditions are of special interest in quasidifferentiable opti
mization. The above (CQ2) condition was introduced in [MW90]. It is prefered 
much since it does not depend on any specific choice of the quasidiff'erentials 
(see [LRW91]). In order to make some relation between our results and the 
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others, we take a quick look at some other regularity conditions that ap
peared in the literature and for the sake of simplicity we consider the case 
where C = X. 

(CQ3) iG / (xo ) , V̂ ^ e % ( x o ) , 0 ^ CO U (^^(^o) + ^^). 
ieI{xo) 

(RC) There exists x e X such that 

max (x^Vi) -f max {x,Wi)<0^ Vz G/(XQ). 
Viedgiixo) Wiedgi(xo) 

The (CQ3) condition was used in [SacOO] and [LRW91] while (RC) was 
introduced in [War91], both for the case where X = W^. 

It was proved in [DT03] that in the finite dimensional case (CQ3) is equiv
alent to (RC). By Lemma 3, it is clear that (RC) implies (CQl). 

On the other hand, it was proved in [LRW91] that (RC) imphes (CQ2) 
when X = E^. However, the proof (given in [LRW91]) goes through without 
any change for the case where X is a real Banach space. Briefly, the following 
scheme holds for quasidifferentiable problems: 

(CQ3) ^=>ix=Rr.) (RC) = ^ (CQ2) 

(CQl) 

The conclusion in Theorem 7 (also Theorem 8) was established in [DT03] 
for quasidiff'erentiable Problem (P) when C = X = W^ and under the (CQ3) 
(or the same, (RC)). 

Due to the previous observation. Theorems 7 still holds if (RC) is assumed 
instead of (i) or (ii). 

As mentioned above, the quasidifferentiable problems with inequality con
straints of the form (P) have been studied by many authors. Various types of 
Kuhn-Tucker conditions were proposed to be necessary optimality conditions 
for (P) (under various assumptions and regularity conditions). A typical such 
condition is as follows: 

cone {dgi{xo) + Wi)]. (19) 
wiedgi(^xo) ieI{xo) 

i^I{xo) 

A point XQ satisfies (19) is called a Kuhn-Tucker point of (P) (see [War91, 
LRW91]). The ondition (19) was established in [War91] as a necessary condi
tion for a point XQ G 5 to be a minimizer for (P) when C = X = W^ (under 
some reagularity condition). It was proved in [DT03] for C = X = R^ that 
if XQ is a Kuhn-Tucker point of (P) then it is also a directional Kuhn-Tucker 
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point of (P). This conclusion still holds (without any change in the proof) 
when X is a Banach space. 

The following example shows that the two notions of the Kuhn-Tucker 
point and the directional Kuhn-Tucker point are not coincide, and that even 
for a simple nonconvex problem the generahzed Lagrange multiplier can not be 
chosen to be a constant function. It also shows that one can use the directional 
Kuhn-Tucker condition to search for a minimizer. 

Example 3. Consider the following problem (P3) 

min f{x) 

subject to g{x) < 0, x == (xi,X2) G C C B?, 

where f^g\B? —> R are functions defined by 

f{x) \=X2, 

9{x) := I 

Let xo = (0,0) G R 2 . 

xi-\-(xj+xl)^ - X2 if X2 > 0, 
xi + {xj -f xl)^ if X2 < 0. 

(a) Consider first the case where C := co {(0,0), (0,1), (1, —1)}. 
(i) It is clear that 5 = C H {x G R^ | g{x) < 0} = co {(0,0), (0,1)} C 

cone {C — XQ) = cone C, where S is the feasible set of (P3). It is also easy 
to check that XQ is a directional Kuhn-Tucker point of (P3). The generalized 
Lagrange multipher A : cone C —> R+ can be chosen as follows (r = (ri, r2) G 
cone C): 

Equivalently, the following inequality holds for all r = (^1,^2) G cone C: 

r ( x o , r ) + A(r)^ ' (xo,r)>0. (21) 

On the other hand, since / ' (xo,r) = r2, g'{xo,r) = g{r), / (XQ) = g{xo) = 
0, it is easy to see that (P3) is invex at XQ with rj : S —> cone C, rj{x) = x. 
Consequently, XQ is a minimizer of (P3) due to Theorem 3. 

(ii) For (P3), the generalized Lagrange multiplier A : cone C —> R4. can 
not be chosen to be a constant function. In fact, (21) is equivalent to 

r2 + X{r)g{r) > 0. (22) 

This shows that for r = (ri,r2) G cone C with r2 < 0 (then g{r) > 0), A(r) 
satisfies (22) if and only if A(r) G [—-^5+00). So the multilipier A(r) = ~~^ 
which is chosen in (20) is the smallest possible number such that (22) holds. 
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We now take a sequence of directions {rn)n C cone C with Tn — (rin,^2n)? 
^2n = — 1, for all n E N and rin -^ —oo as n —> +00. Then 

r2n 1 
= = y 1 + rj^ - Tin -^ +00 as n -^ +00. 
In 9{rn) Tin + x/1 + rl 

(h) The case where C = M .̂ The Problem (P3) with C = B? was con
sidered in [War91, Example 3.2], [LRW91, Example 3] and [DT03, Example 
3.9]. It was proved in [LRW91] that xo is not a Kuhn-Tucker point of (P3). 
But it is shown in [DT03] that XQ is a directional Kuhn-Tucker point of (P3). 
Moreover, similar observations as in the case (a) ((i) and (ii)) still hold. We 
now show another feature of the directional Kuhn-Tucker condition. 

It is possible to search for the candidates for minimizers of (P3) by using 
the directional Kuhn-Tucker condition. Note that a point a: is a directional 
Kuhn-Tucker point of (P3) if and only if for each r = (ri,r2) G M̂  the 
following system (linear in variable A) has at least one solution A: 

f ( x , r ) + A ^ ' ( x , r ) > 0 , 
A > 0, (23) 
Xg{x) = 0. 

Note also that g{x) = 0 iff Xi = 0, X2 > 0 or xi < 0, X2 = 0. We consider 
various possibilities. 

(a) If X = (xi,X2) G R^ such that g{x) ^ 0 then A must be zero and 
the first inequality in (23) becomes r2 > 0 (A = 0). This is impossible for all 
r = (ri,r2) G R^. 

(/?) If X = (xi,X2) e R^ with xi = 0, X2 > 0 then ^(x) = 0. Some 
elementary calculation gives g'{x,r) = r i , f'{x^r) = r2- The system (23) 
becomes 

/ r 2 + Ari > 0 , 
\ A > 0 , 

which has no solution A when ri < 0 and r2 < 0. 
(7) If X = (xi,X2) G R^ with xi < 0, X2 = 0 then ^(x) =• 0. Take 

r = (ri,r2) G R^, r2 < 0 then we get f'{x,r) = r2 and g'{x,r) = 0. In this 
case, (23) is equivalent to 

rr2 + A 0 > 0 , 
IA>0, 

which has no solution. 
Therefore, every point x G R^ \ {(0,0)} fails to be a directional Kuhn-

Tucker point of (P3). As it is already known that XQ = (0,0) is a directional 
Kuhn-Tucker point of (P3) and so it is a minimizer of (P3). 

It is worth noting that in this case (C = R^), XQ is not the unique solution 
of (P3). In fact, all points of the form (x,0) where x < 0 are solutions of (P3). 
However, these points, except XQ = (0,0), are not directional Kuhn-Tucker 
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points of (P3). This happens since (P3) does not satisfy regularity conditions 
stated in Theorem 2. This means that even for non-regular problems the 
directional Kuhn-Tucker condition can be used to find out solutions satisfying 
this condition (if any). 

4 Directionally DifFerentiable Problems with 
DSL-approximates 

In this section we will give some extension of the framework to some larger 
classes of problems. Namely, the class of problems for which the objective 
function and the functions appeared in the inequality constraints possess some 
upper DSL-approximates (in the sense introduced in [Sha86], [MW90]) at the 
minimum point. Let X be a Banach space. 

Definition 6. [Sha86] A function h : X —> M is called a DSL-function if h 
is a difference of two sublinear functions. That is, there exist p,q : X —> R 
which are sublinear and such that h{x) = p{x) — q{x) for all x E X. 

Note that a DSL-function can be represented in the form 

h{x) = max(x, a) + min(x, 6), Vx G X. (24) 
aeA b£B 

where A,B are convex, compact subsets of X. Obviously, h is quasidifferen-
tiable at 0 (the origin in X) and one can take Dh{0) := [9/i(0), dh{0)] = [A^ B] 
(see the definition of Dh{0) in section 3.3, and note that Dh{0) is not uniquely 
defined). 

Definition 7. [Sha86] Let g : X —^ M be directionally differentiable at XQ. A 
function 4> : X —> M is said to be an upper DSL-approximate of g at XQ if (j) 
is a DSL-function and if 

g\xo,x) <0 (x ) , yxeX. (25) 

Suppose now that X is a real Banach space and g : X —> R U {+00} is 
directionally differentiable at XQ. 

Consider the Problem (P) in Section 1 with C = X. As usual, let S be the 
feasible set of (P). Assume that f^gi^iel are directionally differentiable at 
xo G S. Moreover, let / and gi possess upper DSL-approximates (p, (pi, i e I, 
at Xo, respectively. 

Note that each 0, (pi has the form (24) and hence, for each ^ G X, we can 
construct the functions ^^, ^^, i G / , as in (18) (with A, B in (24) playing the 
role of 9/(xo), df{xo)). These functions are upper approximates of / and gi, 
respectively. Moreover, 
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MO = ^fiO; Mx) < ^f(^). Vx ex,\/i€ I. 
<A(0 = <?«(0; 0(3̂ ) < ^«(fc), Vx e X ^^e) 

Theorem 9. Assume that (P) is (CQ2) regular. If XQ is a minimizer of (P) 
then 

Vr G X 3 (Ai, •.. , A^) G R!p satisfying , . 

Theorem 10. If XQ G 5 satisfies (27) for some upper DSL-approximates (j), 
(f>i of f and gi (at XQ) and if (P) is invex with respect to (j), (j)i, z G I{XQ) then 
XQ is a global minimizer of (P). 

The proof of Theorem 10 is the same as that of Theorem 3 with 0, (j)i playing 
the role of / ' (XQ, .)» ^^(^o, O? '^ ^ ^(^o), respectively. 

Proof. ( for Theorem 9.) We follow almost the same argument as in the proof 
of Theorem 2 under the assumption (b). 

Fix r ^ X. Since XQ is a minimizer of (P), the following system of variable 
^ G X is inconsistent: 

/ ' ( ^ o , 0 < 0 , ^ • ( x o , 0 < 0 , V2G/(a;o). (28) 

Take ^^ ^ ̂ [ , i G /(XQ) to be the functions with the property (26) and with 
£, = r. Lemma 1 then ensures the existence of h and hi which are upper 
approximates of / and gi, i E I{xo), respectively, such that for all x G X, 

/ i ( x )<min{^ - (x ) , ( r ) - ( xo ,x )} , 
hi{x) < min{^K^). (ginxo^x)}, W G /(XQ). ^^^^ 

It follows from the inconsistency of (28) and the definition of upper apprixi-
mate functions that 

h{x) < 0, hi{x) < 0, i G /(xo) 

is inconsistent. In turn, Gordan's theorem leads to the existence of AQ > 0, 
Ai > 0, i G /(xo), not all zero, such that 

Xoh{x) + J2 A^̂ (̂̂ ) > 0, Vx G X. (30) 
iel(xo) 

If Ao = 0 then by (30), X]iG/(xo) ^i^i{x) ^ 0, for all x G X. This is impossible 
because of (CQ2), (29) and the fact that A ,̂ i G /(XQ) are nonnegative, not 
all zero. Therefore, AQ 7̂  0 (take AQ == 1). We get from (30) for x = r, 

Kr) + ^ \hi{r) > 0. 
iEl(xo) 
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Combining this, (29), and (26), we get 

iGl(xo) 

Then (27) follows by setting Â  = 0 with i ^ I{XQ). D 

We now show the relation between our results and the results in [Sha86]. 
In [Sha86] the author considered a problem with equality and inequality con
straints but here we ignore the equality constraints. In [Sha86], the author 
considered the Problem (P) with C = X = W^^ f and gi^ i E I are locally 
Lipschitz at point XQ G S {S is the feasible set of (P)). The upper Dini dirc-
tional derivative of a (locally Lipschitz) function g at XQ^ denoted by ^+(xo, .)• 
The upper DSL-approximate of a locally Lipschitz g was defined as in Defini
tion 7 with g'{xQ^x) was replaced by p"^(xo, x) in (25). Suppose that (/>, (/)i are 
upper DSL-approximates of/, gi, i G I (respectively) at XQ. It was established 
in [Sha86] that under the so-called "nondegeneracy condition^' (regularity con
dition) with respect to 0^, i G I{XQ)\ 

cl {y I (t^i{y) < 0,Vz G /(xo)} = {y \ Mv) < 0,Vi G /(XQ)}, 

the following is necessary for XQ to be a local minimizer of (P): 

-^(/>(0) C U [^0(0) + cone | J (0^0)+ Wi)]. (31) 
WiedcPiiO) ieI{xo) 

ieI{xo) 

Note that in (31) the inclusion holds for the quasidifferentials of upper 
DSL-approximates of / and gi instead of those of / and gi themselves as in 
(19). Note also that (31) can be found in [MW90] (as a special case) where it 
was proved under (CQ2) regular condition. The relation between the necessary 
optimaity conditions (31) and (27) is established below. 

Theorem 11. (31) implies (27). 

Proof. We first note that 

cone [J {d(l)i{0) +Wi) = ^ cone [d(t)i{0) -\-Wi). 
ieI{xo) ieI{xo) 

Hence, (26) can be rewritten in the form 

~d(t){0) C ( J [MO)+ Yl <^one{d(l)i{0)^Wi)]. (32) 
wied(f>i{0) iei{xo) 
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Suppose (32) holds and r is an arbitrary point of X. Take 

V e argmin^^^^(o)(r,0, Vi e argmin^.^^^.(o)(r,^^), i G I{xo). (33) 

Then (32) implies that 

Oed(l){0)-\-v+ Y^ cone {d^i (0) + ^^). 

This ensures the existence of a G d(f){0), bi G 90t(O), and Â  > 0, i G I{xo) 
such that 

0 = a + v+ ^ A^(6i+^i). 
iG/(a;o) 

Combining this and (33) we get 

0(r) + y ^ \(j)^(r) z=z max (r , i ; )+ min (r,it;) 
ie/^o) "^-^^"^ "^^^(°) 

+ y ^ A j max ( r ,^ i )+ min (r,r/i)l 

= max (r, t') + (r, v) 
v£d(f)(xo) 

+ I Z A,[ max (r,e,) + (r,TJ,)] 
i£l{xo) 

> (r, a) + (r, tJ) + ^ Â  [(r, &») + (r, zJi)] 
^€/(a:o) 

> ( r , a + t ;+ ^ Xi{bi-{-Vi)) 
iel(xo) 

> 0 . 

Set Ai = 0 for z ^ I{xo)' Then (28) holds since r G X is arbitrary. D 
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S u m m a r y . In this note we provide various conditions under which the slice con
vergence of fv -^ f and Qv —^ 9 implies that of fv+Qv to /H-p, where {fv}^^y^ and 
{9'^}vew ^̂ ® parametrized families of closed, proper, convex function in a general 
Banach space X. This 'sum theorem' complements a result found in [EWOO] for 
the epidistance convergence of sums. It also provides an alternative approach to the 
derivation of some of the results recently proved in [Zal03] for slice convergence in 
the case when the spaces are Banach spaces. We apply these results to the problem 
of convergence of saddle points associated with Fenchel duality of slice convergent 
families of functions. 
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1 Introduction 

In this paper we provide alternative proofs of some recent results of Zalinescu 
[Zal03]. Some hold for the case when the underlying spaces are general Banach 
spaces and others only require the spaces to be normed linear. The paper 
[Zal03] was originally motivated by [WE99] and extended the results of this 
paper to the context of normed space and to the convergence of marginal or 
per turbat ion functions (rather than jus t sums of convex functions). In this 
paper we clarify to what degree we are able to deduce such results from the 
work of [EWOO, WE99] by either modifications of the proofs of [WE99] or 
short deduction using the methods of [EWOO, WE99]. 
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The first results give conditions under which slice convergence of a sum 
{fv + 9v}vew follows from the slice convergence of the two parametrized fam-
ihes {fv}yew ^^^ {9v}veW' "^^^^ result has a counterpart for epi-distance 
convergence which was proved by the authors in [EWOO] and we refer to such 
results as sum theorems. We show that in the particular case of Banach spaces 
the corresponding result for slice convergence follows easily from the work in 
[WE99] and moreover so do the corresponding results for the so-called mar
ginal or perturbation functions used to study duality of convex optimization 
problems which are studied in [Zal03]. Such results only hold under certain 
conditions which we will refer to as qualification assumptions due to their sim
ilarity (and connections) to constraint qualifications in convex optimization 
problems. The approach here is more aligned with that of [AR96] were the 
sum theorem is the primary point of departure. 

The marginal or perturbation function is given by h{y) := inf̂ rGX F{x,y) 
from which the primal (convex) problem corresponds to /i(0) and the dual 
problem corresponds to —/i**(0) = inf^^^y* F*(0,y*) — inf^^^y*/i*(y*). 
This leads to the consideration of the dual perturbation function k{x*) := 
infy*^Y* F*{x'',y*) (see [Roc74, ET99]) and the consideration of the closed-
ness and properness of /i(y) at y == 0. Letting F, Fi e F {X xY) {i G I) then 
as a framework for the study of stability of optimization problem one may 
study the variational convergence of {Fi{',0)}^^j to F(-,0) and {F/(0, OI^G/ 
to F*(0, •) (see for example [AR96, Zal03]). Clearly this analysis is greatly 
facilitated when the variational convergence under consideration is generated 
by a topology for which the Fenchel conjugate is bi-continuous. Thus typically 
the so-called slice and epi-distance topologies are usually considered as we 
will also do in this paper. Once this is enforced the generality of this formula
tion allows one to obtain the sum theorem alluded to in the beginning of this 
introduction as well as many other stability results with respect to other op
erations on convex functions and sets (which preserve convexity). In this way 
the study of perturbation functions appears to be more general than the study 
of any one single operation (say, addition) of convex functions. Indeed this is 
only partly true in that when all spaces considered are Banach and the con
straint qualification is imposed on the primal functions we will show that the 
slice stability of the perturbation function follows easily from sum theorems. 
When the qualification assumption is placed on the dual function we are able 
to deduce the main result in this direction of [Zal03] in a straightforward man
ner when all spaces are only normed (possibly not complete) linear spaces. It 
is also possible to treat the upper and lower slice (respectively, epi-distance) 
convergences separately as is done in [Zal03, Pen93, Pen02] and in part in 
[WE99]. There is an economy of statement gained by avoiding this and it will 
also avoid us reworking results in previously published papers. Consequently 
we will not do so in this paper. 

Convex-concave bivariate functions are related to convex bivariate func
tions through partial conjugation (i.e. conjugation with respect to one of the 
variables). In this context we are led to the introduction of equivalence classes 
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of saddle-functions which are uniquely associated with concave or convex par
ents (depending on the which variable is partially conjugated). Two bivariate 
functions are said to belong to the same equivalence class if they have the 
same convex and concave parents. Such members of the same equivalence 
class not only have the same saddle-point but so do all linear perturbations 
of these two functions. Thus when discussing the variational convergence of 
saddle-functions one is necessarily led to the study of the convergence of the 
equivalence class. We investigate saddle-point convergence of the associated 
saddle function. This allows one to investigate the convergence of approximate 
solutions of the perturbed Fenchel primal and dual optimization problems to 
solutions of the limiting problem. It may be shown that one can quite gener
ally deduce the existence of an accumulation point of the approximating dual 
solutions. 

2 Preliminaries 

In this section we draw together a number of results and definitions. This is 
done to make the development self-contained. A reader conversant with set-
convergence notions and the infimal convolution need only read the first part 
of this section, only returning to consult results and definitions as needed. A 
useful reference for much of the material of this section is [Bee93]. 

We will let C{X) stand for the class of all nonempty closed convex subsets 
of a normed space X and CB{X) the closed bounded convex sets. Place 
d{a, B) = inf{ \\a -b\\\b e B}, and Bp = {x e X \ \\x\\ < p}. Corresponding 
balls in the dual space X* will be denoted B^. The indicator function of a set A 
will be denoted 5^, and S{A^ •) shall denote the support function. We will use 
u.s.c.to denote upper-semicontinuity and l.s.c.to denote lower-semicontinuity. 
Recall that a function / : X —> R is called closed, proper convex on X if and 
only if / is convex, l.s.c, is never — oo, and not identically +oo. The class 
of all closed proper convex functions on X is denoted by r ( X ) , and r*(X*) 
denotes the class of all weak* closed proper convex functions on X*. We shall 
use the notation A for the closure of a set A in a topological space (Z, r) and, 
to emphasise the topology, we may write A . For x e Z, Afr(x) denotes the 
collection of all r-neighborhoods of x. For a function / : Z -^ R, the epigraph 
of / , denoted epi / , is the set {(x^a) G Z x R | f{x) < a } , and the strict 
epigraph epi^/ is the set {(x,a) G Z x R | f{x) < a}. The domain, denoted 
d o m / is the set {x e Z \ f{x) < +oo}. The (sub-)level set {x e Z \ f{x) < a} 
(where a > iniz f) will be given the abbreviation {/ < a}. Any product 
X X y of normed spaces will always be understood to be endowed with the 
box norm ||(a;,2/)|| = max{||a;||, ||2/||}; any balls in such product spaces will 
always be with respect to the box norm. The natural projections from X xY 
to X or F will be denoted by Px and Py respectively. We also will assume the 
following convention for products Z x R where (Z, r ) is topological: We assume 
the product topology, where R has the usual topology, and for any subset 
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C C Z X R, its closure in this topology is written as C . If / : (Z, r) —> R, its r-
l.s.c. hull, denoted / , is defined by / (x) = liminf^,jr^^ / (^ ' ) - The (extended) 
lower closure cl^/ is defined to coincide with / if the latter does not take the 
value — oo anywhere, and to be identically — oo otherwise. 

Definition 1. Let F:W -^2^ he a multifunction from topological spaces W 
toX. 

1. l imsup^^^ F{v) = Hvemw) U G V ^(^)-

2, liminf^^^ F{v) = f]{BCW\weB} U G B ^(^)-
3. F{') is lowersemicontinuous at w iff F{w) C lim iniy-^yj F{v), 

Remark i. It is easily seen that this notion of lower-semicontinuity is equiv
alent to the classical formulation—namely: For any open set U intersecting 
F{w) there is a neighborhood F of it; for which F{v) nU is nonempty for 
every !» in F . 

Remark 2. For metrizable X, the above definitions can be shown to have the 
equivalent forms: 

1. 

l imsupF(f) 
v—^w 

= {x E X \3 a. net vp -^ w and xp G F{vp) with X/5 ^ x } 

= {x G X I \immfd{x,F{v)) = 0} 

liminf F(t') 

= {x e X \\/ nets Vjs —^ w^ Bxjs -^ x with xp G F{vf3) eventually } 

= {x e X \ limsupc/(x,F('i;)) = 0} 

with obvious analogs for nets of sets. 

Definition 2. Let A be a convex set in a topological vector space and x G ^4. 
Then cone^l := UxyoXA (the smallest convex cone containing A). 

The infimal convolution plays a central role in our development. 

Definition 3. Let f and g be closed convex functions on X into the extended 
reals. Then 

ifOgXx) := mi(fiy)+9{x-y)) 

is called the inf-convolution. 
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It is well known that the strict epigraph of the inf-convolution is equal to 
the set-addition of the strict epigraphs of the individual functions: 

episif^g) = epi^/ + epi^^. 

Also dom {fDg) = dom / + dom g; epi fDg 2 epi / + epi g, and 

ifngr = r+g* 

where /*(x*) = sup^^j^((x,x*) — f{x)) is the Young-Fenchel conjugate of / . 
Lower semi-continuity of the epi-graphical multi-function v H^ epi5(/-i;n^^) 

may be deduced from that of its components using the following lemma, a 
proof of which may be found in [WE99]. 

Lemma 1. If Fi{') and F2(-) are multi-functions Ls.c. at w then F{v) := 
Fi{v) -\- F2(v) is ls.c. at w. 

We conclude this section with a summary of variational limit notions used 
in this paper. Let X and W be topological spaces, then iov x E X, w e W, 
and {fv}vew a collection of R-valued functions on X, define the lower and 
upper epi-limits by: 

{e-\iy-,^fy){x) := sup sup inf inf /^(y) , 
ueM{x) veH{w) '^^v v^u 

{e-lsy-,yjfy){x) := sup inf sup inf fy{y). 
U£M{x) y^^J^M vev y^^ 

It is well known [RW84] that these limits correspond to the Kuratowski(-
Painleve) limit of the epi-graph multifunction in the sense that 

epi (e-ls^_^^/^) = liminf epi fy , 

epi (e-li^_^^/^;) = limsup epi fy . (1) 

These definitions and relations have natural counterparts for nets {/^j^^/ of 
functions. 

Definition 4. Let {fy}y^w be a family of functions and r a topology on X. 
We say that {fy}yew '^s r-epi-u.s.c. at w eW if for all x we have 

{r-e-lSy^yjfy){x) < fyj{x) 

and r-epi-l.s.c. if for all x 

fv){x) 

where the epi-limits are taken with respect to the underlying topology r. 
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We will say that {fv}vew is strongly epi-u.s.c. when r corresponds to the 
strong (norm) topology on X. In this case we will drop the reference to r. Thus 
for an epi-u.s.c. family the epi-graphs of fy are lower Kuratowski-convergent 
to epi fw in the (strong) norm topology. 

Definition 5. A family of functions {fv}vew ^^ R is epi-convergent to a 
function fw (as v -^ w) if it is both epi-u.s.c. and epi-l.s.c. at w. 

Since e-liy^^fv < ^-^^v^wfv on X, the relation defining epi-convergence 
is in fact an equality. 

Definition 6. Let {fv}vew ^^ a family of functions on X and {fy}vew the 
family of conjugate functions on X* (for a normed space X). We denote the 
bounded-weak* upper epi-limit (as v -^ w) of {fy}yew by 

6ti;*-limsup epi /* := {(x*,a) E X* x R | 3 nets v^ -^ w; (y*,o;^) ^ ^P^fv 
V—>W ^ 

such that a^ -^ a; y* norm bounded] y* —> x*}. 

The above closely resembles the limit-superior of epigraphs, relative to the 
bounded-weak* topology on X* (hence the terminology). The bounded-weak* 
topology is described in, for example, [Hol75]. For a family of sets {F{v)}y^\Y 
we will also say that it is 6i(;*-upper-semicontinuous (at w) whenever F{w) D 
bw*-Urn supy_^ F{v) 

Definition 7. [Bee92, Bee93] We say {fv}yew i"^ ^{^) ^s upper slice con
vergent to f E r[X) (as V —^ w) if whenever Va ^^ w is a convergent 
net and {x^} a bounded net in X we have for each {y*^rj) G epig/* that 
fy^{xa) > {xocy'') — rj eventually. If we also have that fw > e-\syfy, then fy 
is said to slice converge to fw 

A dual slice convergence on r'*(X*) may be defined, which ensures the 
bicontinuity of Fenchel conjugation. For our purposes, we work with an equiv
alent definition of dual sHce convergence, as contained in the proposition to 
follow. 

Again, analogous definitions follow for nets of functions. The following 
characterization of slice convergence is essentially contained in [WE99, Cor. 
3.6]. 

Proposition 1. For functions fy G F{X), fy slice-converges to fw if and 
only if 

bw*-Urn sup epi fy C ep i /^ C 5*-liminf epi /^ , 

where s* denotes the norm topology on X*. 

Note that this result gives a characterisation of dual slice convergence for the 
conjugate functions in r*(X*). 
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Prom [H0I75] we have the following. Recall that a set A in a topological 
linear space X is ideally convex if for any bounded sequence {xn} C A and 
{An} of nonnegative numbers with Y^^=\ -̂ n = 1? the series Yll^=i ^n^n either 
converges to an element of ^ , or else does not converge at all. Open or closed 
convex sets are ideally convex, as is any finite-dimensional convex set. In 
particular, if X is Banach, then such series always converge, and the definition 
of ideal convexity only requires that Yl^=i ^n^n be in A. Prom [Hol75, Section 
17E] we have 

Proposition 2, For a Banach space X, 

1' If C C X is closed convex, it is ideally convex. 
2. For ideally convex C, intC — intC. 
S, If A and B are ideally convex subsets of X, one of which is bounded, then 

A — Bis ideally convex. 

Proof. We prove the last assertion only; the rest can be found in the cited 
reference. Let {an ~ bn} Q A — B he a, bounded sequence, let A^ > 0 be 
such that Yl^=i An = 1. Then {an} £ A and {bn} Q B are both bounded, so 
X ] ^ i Anttn e A and X ^ ^ i An^n ^ B (both convergent). Thus X l ^ i Kidn -

3 A Sum Theorem for Slice Convergence 

We will now discuss the passage of slice convergence through addition. Such 
theorems will hereafter be referred to as sum theorems. In [WE99] was proved 
a sum theorem for slice convergence of fn + Qn {^01 convergent /n, Qn) under 
the rather restrictive condition that the conjugates ^* have domains uniformly 
contained in a weak* locally compact cone. (This hypothesis arose from an 
attempt to derive a sufficient condition that acts on only one of the sum-
mands, whereas most such conditions are symmetric in both fn and ^n-) In 
the normed-space context, [Zal03, Prop. 25 or Prop. 13] yields an extension 
of the results of [WE99], using a constraint-qualification more in the spirit of 
those usually appearing in sum theorems for variational convergences (for in
stance, in [AP90, Pen93, EWOO]). In this Section, we show that in the Banach 
space context, the cited results of [Zal03] may also be derived using a slight 
modification of arguments appearing in [WE99]. 

Definition 8. Following [Att86], define for K EH, and for functions fy, Qy 
(v G W), 

HK{X\V) := {(x*,2/*) G X* X X* I /^(x*) + ^:(2/*) <K, ||x* +y*| | < K} . 

We shall also need the related object in Xy := span(dom/^ — dom^^) given 
by 
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Definition 9. 

H,ix:,v) := {(.*, ,*). x: X x: I ^^ '̂̂ "̂ ^^P/Ĵ '̂̂ îl̂ *̂  -''' 
L I IK r i/ l|A* r:̂  ^^ 

where the conjugate functions are computed relative to the subspace Xy. 

The following lemma from [WE99] provides a criterion for the inf-convolu-
tion of conjugate functionals to be weak* lower semicontinuous. 

Lemma 2. ([WE99, Lem. 4-^]) Let fy and gy be in r{X) for a Banach space 
X, such that i7/s:(X*, v) is bounded for each K ell. Then f*Bg* e r*(X*) . 

The next lemma is elementary, and its proof will be omitted. 

Lemma 3. Let fy be in r{X), with fy slice converging to f^, and Xy -^ Xyj 
in norm, as v —^ w. Then fy(xy + •) slice converges to fwi^w + *)• 

The following three lemmas provide bounds that will be of use in the next 
theorem. 

Lemma 4. Let fy and gy be proper closed convex H-valued functions with 
domfy C Xy and dom gy C Xy for all v in some set V. If, additionally, for 
some positive p, S, 

(yv ev) BsnXyC {/̂  <p}nBp- {gy <p]r\Bp (2) 

then for each K > 0, 

sup{||(x*,2/*)||x;xx; I {x*,y*) e HK{X:,V), veV}<+oo. 

Proof. For v £ V, and {x*,y*) € Hii{X*,v), the Fenchel Inequality gives 
(since fy\x,, fg\x^ are in r{X)) 

K > (MxSix*) + (QvlxSi^n > {x*,^} + {y\y) - fv{x) - g^y) 

for any x G dom fy^ y G dom^-i; (C Xy). 
Let ^ G XyHBs. From (2), ^ = x-y where x,y e Bp, fy{x) < p, gy{y) < p 

whence (noting that x and y are in Xy also) 

since ||x* + y*\\x* < K and y G dom^-^ C Xy with ||y|| < p. This yields 
that ||x*||x* < 1 (^ (1 + p)'+ 2/o), from arbitrariness of ^ G ^5 fl Xy. Also, 
||y*IU* < \\y* +x*\\x* + lk*IU* < K -\- ||x*||x* thus giving a uniform bound 
on HK{X*,V) for all v. D 



Slice Convergence of Sums of Convex Functions 329 

Lemma 5. ([WE99, Lem 4-2]) Let {fv}vew be a family of proper closed 
convex extended-real-valued functions on a normed space X. Suppose that 
fw ^ ^-^Sy-^u)fv on X. Then for each M > Q, 

{W e M{w)){3^i e R){yv e V^O(V|k*|| < M)(/;(x*) > /i). (3) 

Lemma 6. Let fy, Qy he proper closed convex functions in r{X) (v G W). 
Suppose that fyj > e-\sy-^yjfv on X. Then for any fixed K > 0 and j > 0, 
there is a neighborhood V of w and a positive p for which 

{Mv G V){^{x\,xl) G HK{X\v)r\B;){g:{xl) < p). 

Proof Supposing the contrary, there are nets vp —> w, {xl , xX ) G HK^X""^vp) 
nBj with limi3g* (x2^) = +oo. It then follows that lim/j fy^{x\^) = —oo, and 
since \\x\ || < 7 for all ^, we have contradicted the statement of Lemma 5. D 

Before proving the first of our main theorems we make the following im
portant observation for latter reference. 

Lemma 7. Let X he a Banach space and fy and gy (v G W) he in r{X). 
Assume that there exist 5 > 0, /? > 0, F a neighborhood of w such that for all 
V eV (v ^w) 

BsnXy C {/̂  < p}nB, - {gy <p}nBp (4) 

where Xy \= span (dom/-i; — dom.gy). Then for v ^w inV we have 

0 G i n t ^ ( { / , <p]nBp- {gy < p] r\ B,) . (5) 

Proof. Prom the assumptions follows that dom fy H dom gy is nonempty, and 

CmtBs) nXyCBsDXyC {fy <p}r\Bp- {gy <p}nBp 

= {{fv <p}nBp- Xy) - {{gy <p}nBp- Xy) 

where Xy is any member of dom fy fi dom gy. Both {fy < p} f) Bp — Xy and 
{QV ^ p}f^Bp — Xy are bounded, ideally convex [Hol75] subsets of the Banach 
space Xy. Hence, by Proposition 2, {fy < p} H Bp — {gy < p} D Bp is also 
ideally convex in Xy and has the same interior (in Xy) as does its X-^-closure. 
Thus we obtain (5). D 

Theo rem 1. Let X he a Banach space, let fy and gy (v G W) he in r{X), 
with the slice convergence fy -^ f^ and gv -^ Qw Assume that there exist 
(5 > 0, /9 > 0, y a neighborhood of w such that for all v E V (v y^ w) (4) 
holds. Also, assume that f^Ug^^ is proper and weak^ lower-semicontinuous. 
Then fy + gv slice converges to fyj -\- gw 
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Proof. We use as template the proof of [WE99, Thm. 4.3]. We temporar
ily append the condition that Xy contain both dom/-y and dom gy for v 
in V (and shall remove this later). Observe immediately from (5) that 
cone (dom fy —dom gy) coincides with the closed subspace Xy so that fyOg* € 
r*(X*) by [Att86, Thm. 1.1] (for v ^ w). Again, via the characterization 
given by Proposition 1 we seek to prove that fy^gy converges in the dual 
slice topology to f^Dg^. It is straightforward to deduce that v H-̂  epi/JD^* 
is strongly lower-semicontinuous a,t v = w (see the opening paragraph of the 
proof of [WE99, Thm. 4.3]). To complete the proof, we require that 

bw''-limsupepif^Bg* C epi f^Bg^ . 
v—>w 

Let (x*,a) G btt'*-limsup^_^^ epi/^D^*. Then there are nets vp -^ w, 
{x*^,ap) ^ ^ * (x*,a), and /C > 0 with {x^^.ap) e JB|^ Hepi^/^^D^*^ for all /?. 
For such /?, there is y^ G X* for which K > ap > fy0{y0)+gt0{xp-yp)' Place 

^ip '•= yp\xv0 ) a norm-preserving extension of y^|x,^ G X*^ (obtained, say, by 
the Hahn-Banach Theorem). Also, define x^,^ := x*^ —^L- Then \\x\ +^2^ || = 
\\x}\\ <K, and 

K > ap>f:^{yl)+g:^{xl-yl) 
= / : , ( ^ t , ) + ^ : , K ) (so (xl^x^^) e HK{X\VP)) 

= ifvp \X., Ti^l, \X., ) + {9vp \X., )*(^2^ \X., ) 

(since Xy contains dom fy and dom^^, and on Xy^ we have xl = y^ and 
^2, = xp -y})' Thus {x\^,xl^) e HK{X\VP) and {xl^\x,^.xl^\x,^) G 
HK{X*^,VP), the latter since \\x\^\x,^ + ^ 2 j x . ^ ||x*^ < \\x\^ + x ^ J | < K. It 
now follows from Lemma 4 that \\x\^ \xy \\ < Y eventually in /? for some 7' > 
0. Since x^^ G X* is a norm-preserving extension of xj^ \xy = yp\xy ^ X*^, 
we have \\xlj = | | x | Jx , J |x*^ < f for all ^ so ||x^J| < ||a:^|| + \\xlj < 

K ^ i \= 7. Thus, 

{x},ap) = {x\^,ap - gl^{xl^)) -Y- {xl^,gl^{xl^)) 

G epif:^ n {Bf X R) +epi^:^ n {B^* x R) 

for all (3. We need some uniform bound on the ^^^(^L)- These follow from 
Lemma 5 (lower bounds) and Lemma 6 (upper bounds), the latter since 
{x\^,xl^) G HKiX^'.vp) OB* and vp -> w. Thus, the Qy^ix"^^) are eventually 
uniformly bounded in /?, and 

{x*p,ap) = (xl^^ai^) + {X2^,ai^) G epif*^+epig* 
V0 

with the Xi , X2 , cxip, 0^2^ all uniformly bounded in /?. 
We may now argue as in the final paragraph of the proof of [WE99, Thm. 

4.3] to conclude that 
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(x*,a) = w*-lim{x*p,af3) (on passing to subnets) 

= w*- lim(xt^ ,0^1^)+ w*- lim(x;^, a2^) 

G 6it;*- lim sup epi /* + bw*- lim sup epi ̂ * 

C epi / ^ + epi^;!;, (from the slice convergence fv -^ fw, 9v -^ Qw) 

C Q^iflUgl. 

This completes the proof for the case where Xy D domfy U dom^^ for all v. 
For the general case, let p > infx fw Then, v \-^ {fw < p} is norm-l.s.c. 

at w since (see [Bee93]) {/̂  < p} shce converges to {fy; < p} diS v —> w. 
Thus on choosing some x^ € {/t̂  < /9}, we have some Xy £ {fy < p} with 
Xy strongly convergent to Xy, dbS v ^ w. Place fy := fv{xy + •) and Qy :~ 
9v{xv -^ ')' By Lemma 3, fy and Qy shce converge to /-u; and Qy^ respectively. 
Also, 0 G dom/^y, whence X^ contains both dom/^, and dom^- ;̂, with Xy ~ 
span (dom /-i; — dom^^). The form of the conditions in the theorem statement 
are not altered by passing from fy, Qy to fy, Qy, the only change being an 
increase in the value of p in the interiority condition. Thus we obtain the slice 
convergence fy-\-gy -^ fw+9w Translating the sum by —x .̂ Lemma 3 yields 
the convergence 

Jv I 9v ^^ \Jv ~^ 9v)v '^vj ^ \Jw "r 9w)\' ^w) ^^ Jw ~r 9w • 

D 

It is well known (see, for instance, [AR96]) that results for sums, such as 
Theorem 1, imply convergence results for restrictions F(-, 0) of bivariate func
tions on product spaces X xY (just apply a sum theorem to the combination 
F -{- 5xx{o}) 2tnd that such results may be used to extend sum theorems to 
include an operator, that is, yield convergence of functions of the form f+goT 
where T : X -^ Y is a, bounded hnear operator. As discussed in [Zal03], con
vergence theorems for F(-,0) may be used to derive theorems not only for 
sums, but also for other combinations of functions, such as max(/, ^ o T ) , and 
so, in a sense, results for sums are equivalent to results for sums with operator 
and equivalent to results on restrictions of bivariate functions. Thus, it is a 
matter of taste, or the intended application, that will dictate the choice of 
primary form to be considered. 

We now use Theorem 1 to obtain a convergence theorem for restrictions of 
functions on product (Banach) spaces, (cf. [Zal03, Prop. 13] for the normed-
space version) 

Corollary 1. Let X and Y be Banach spaces, let Fy (v G W) be in r{X x Y) 
with Fy slice convergent to F^. Assume that 0 G Py (dom F^) for all v, and, 
moreover, that there are 5 > 0, p > 0 and neighborhood V of w such that for 
all V eV (with V ^ w) 
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Bj n n C Py{{F, < p} n 5 ^ ^ ^ ) , 

where Yy := span (Py (domF^)) C Y, and that /i : X* -^ R given by 
— —w* 

/i(x*) = infy^-^Y* F^{x*,y*) satisfies h = h . Then Fy{',0) -> Fyj{',0) in 

nx). 
Proof. Note that since h* = Fyj{',0) G r ( X ) , it follows that /i**, and therefore 
TT , is in r*(X*). Place Gy = G := 5xx{o} ^ ^{^ x y)^ where Sxx{o} 
denotes indicator function of X x {0}. We shall apply Theorem 1 to Fy and 
Gy, so we check its hypotheses. 

Since {Gy <p} = Xx{0} for any/9 > 0, we have {Fy < p}nB^''^-{Gy < 
p} = X X PriiFy <p}n Bf""^) and domF^ - domG^ =X x Py(domF^), 
whence Zy := span {dom Fy ~ domG^;) = X xYy^ implying 

5 f x ^ n z , = Bf X {BjnYy) c xx (BjnYy) 
CXxPY{{Fy<p}nB^''^) 

= {Fy<p}nB^^''-{Gy<p} 

for all V e V\{w}. Moreover, since (F^nG^)(x*,y*) = /i(x*) for x* G X*, 

y* G y*, we see that properness oih — h implies that F^HGl^ = F^DG^^ 
and is proper. Thus, the conditions of Theorem 1 hold, from which follows 
the slice convergence of Fy + Sxx{o} to Fyj + ^xx{o} iii F{X x Y), which in 
turn implies that F^(-,0) -> F^(-,0) in r{X). D 

We can use Corollary 1 to obtain a version of Theorem 1 "with an opera
tor" . We start with an elementary lemma whose proof will be omitted. (This 
lemma is also a consequence of Lemmas 19,20 of [Zal03].) 

Lemma 8. Let fy -^ fy, and gy —> g^j be slice convergent in r{X) and r{Y) 
respectively, and let Ty —^Tyjbea norm-convergent family of continuous 
linear operators mapping X into Y. Place Fy{x, y) = fv{x) + gy{TyX + y) for 
(x^y) e X xY. Then Fy slice converges to F^ in r{X x Y). 

The next result now extends Theorem 1. 

Corollary 2. Let X and Y be Banach spaces. Let fy —^ fyj and gy —> gy, 
under slice convergence in r{X) and r{Y) respectively, and letTy-.X-^Y 
be continuous linear operators with Ty —̂  T^ in operator norm. Assume that 
there exist a neighborhood V of w, and S > 0, p > 0 such that 

yV G V\{W} BsnYyC Ty{{fy < ^j H Pp) " {̂ ^ < />} (6) 

where Yy = span (domp-y — Ty dom fy). Assume further that h : X* —> R 

defined by h{x*) := mfy*eY*{f^{x* - T^y"") + ^^(y*)) satisfies h = T 
Then fv+gv^ Tv slice converges to fw + g 

T^ 
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Proof. Place Fy{x,y) := fv{x) + QviTyX + y). Then Fy slice converges to F^ 
by Lemma 8. It is easily seen that Yy = span(PydomFt,). U y e Bs H Yy, 
then y = yi- TyX with gy{yi) < p, \\yi\\ < p' (for some p' > p), fy{x) < p, 
\\x\\ <p, so ||(x,y)|| < p^p', Fy{x,y) = fv{x) -{-gy{yi) < p + />', thus yielding 
that y e PviiFy < p + p'} H B^^^). Thus, there is a /O > 0 such that 
B5r\Yy <Z PviiFy < p}n Bf""^) for all v e V\{w}. We may then apply 
Corollary 1 to obtain fy+gyoTy = Fy{',0) -^ Fyj{-,0) == fw+ 9w^Tyj. D 

Remark 3. The condition 0 G sqri (T^ dom/-„; — dom^^) can be shown to 
be equivalent to assuming the condition in (6) to hold dX v = w. If this 
is assumed, then there follows, by a standard Fenchel duality result, that 

— —w* 

h = {fw -\- gw ^ Tyj^ so h is weak*-closed and hence h = h . Indeed, 

hix*) = - sup [ - ( / - xri-T*y*) - g*iy*)] 
y 

= -inf(/ -x*+goT){x)= sup [{x,x*) - {f + g oT)(x)] 
^ X 

^if + goTrix*). 

Alternately, we may deduce the above by using [Zal03, Lemmas 15, 16] with 
F{x, y) := fy, (x) + gw {Ty,x + y) 

In [Zal03] a number of qualification conditions are framed in the dual 
spaces. We consider some related results next. 

Propos i t ion 3. Let X he normed and linear {fy}y£w «^^ {gv}vew be slice 
convergent families in r{X) convergent to fyj andg^, respectively, with fyDgy 
proper for all v. Suppose in addition that for Fy{x, y) := fy{y) -\- gv{x — v) '^e 
have 

\/p > 0, 3p> 0, 3Vp e Af{w), yveVp\/s<p', 

[jmy <s}nBpC Px{{Fy <s}n{Xx Bp)). (7) 

Then {fv^gv}v£W 5̂ slice convergent to fw^gw as v —^ w. 

Proof It is straightforward to deduce that v H-> epifyDgy is strongly lower-
semicontinuous 3,1 v = w (see the opening paragraph of the proof of [WE99, 
Thm. 4.3]). For the upper slice convergence take 

V > iUOg^T {x*) = m^*)+9l{xl (so {x\0,ii) G e p i . K ) (8) 

and Va -^ w. Let {xa} be bounded. Place p — sup^{||x*||||xa|| — r/, | |xa||}. If 
fy^ Dgy^ {xa) > p we immediately have 

fvc^dvai^a) > {x*,Xoc) -rj, 

whence, without losing generality we may assume fy^ngy^{xa) < P- By re
defining the index set for the above net if necessary, we may assert the exis
tence of a net ê ^ > 0 tending to zero, such that 5^ := fyJI]gy^{xoc) -\-€a < P-
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Then we have Xa G {fyJ^Qvc, < ^a} H Bp, implying (by (7)) the existence of 
Iball < P with Fy{xoc^ya) < ^a- As noted earher we always have {Fy}y^w 
slice convergent to F^. Also note that a simple calculation shows 

Thus (8) and the (upper) shce convergence of {Fy}y^w (recalhng that 
F^(x*,0) < T]) implies 

Since e^ -^ 0 we arrive at the desired conclusion. D 

Now consider fyOg^ in the dual space X*. We use the projection PX*XR : 
(x*,y*,/3)^(x*,/3). 

Lemma 9. Let X and Y be normed linear spaces and {Fy}y^w ^ F{X x Y), 
with 0 e Py domF^ for allv . Place hy{x*) = inf̂ ^^^y* F*{x*^y*) and assume 
that {Fy}y^w slice converges to F^ along with 

V/9 > 0, 3p> 0, 3Vp e N{w), "iveVp: 

e p i , C * n B; C P X ^ X R (ep i .F ; H (X* x B^ x R)) (9) 

and also that the norm- and weak""-closures of hy, coincide. Then hy (dual) 

slice converges to hyj = hw and {Fy{',0)}y^w slice converges to Fyj{',0). 

Proof First we show that the multi-function v H-̂  epi hy is bounded-
weak* upper-semicontinuous. Let Va —^ w he taken so that {xl^,py^) G 
epi/i** weak* converge to (x*,/3) and ||(^j;^,/?i;«)|| is bounded. Then we have 
{xl^^Py^ + €a) G epi5/1** for any positive net €a —> 0. 

Then take p = mdiKa{\\{xl^,Py^ + €a)\\} and apply (9) to deduce the ex
istence of y*^ G y* such that \\y*J < p and (x*^, y*^,/?t;« + ^a) ^ ^pi sFy^ . 
Take a weak* convergent subnet if necessary (and on reparametrizing) we 
may assume that {xl^,yl^,l3y^ + ^a) -^ (^*,y*5/?)- Since {Fy}y^w is slice 
convergent so is {F*}y^w and hence {epiF^*}^^^^ is bounded weak* up
per semi-continuous. Hence we have (x*,y*,y9) G epiF^ implying (x*,/3) G 
Px*xR(epiF^)Cepi/z;*. 

The slice convergence of {Fy}y^w has been observed to follow from 
that of {Fy}y^\Y' Thus v 1—> epiF^* is strongly lower semi-continuous. Next 
note that for any open set O C X* x R we have i^x*xR(^) = O x y* 
and so Px*xR(epiF; n (O x F*)) = Px*xR(epiF;) H O. Hence {v e W \ 
Px^xK (epiF;) n O ^ 0} = {̂  G W I Px*xR (epiF; n (O x y*)) ^ 0} which 
clearly coincides with the open set {f G VT | epi Fy H {O x Y*) ^ 0} implying 
strong lower semi-continuity. 

Finally note that h** = (F^;(-,0))* and hence slice convergence of 

{Fy{',0)}yeW 

follows from the bicontinuity of Fenchel conjugation. D 
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This last result could be used to deduce the next result but instead we 
prefer to use a direct argument along the lines of argument in Theorem 1. 

Theorem 2. Let X he a normed linear space, let fy and Qy (v G W) be 
in r{X), with the slice convergence fy -^ fw cind Qy —> g^ and domfy H 
dom^-y ^ 0 for all v . Also, assume that f^^g^ is proper and weak* lower-
semicontinuous, Fy{x^y) := fv{^) + gv{'^ + v) Ci^^d 

Vp > 0, 3p> 0, 3Vp G Af{w), yv eVp,\Js<p'. 

{/*n̂ * <s}nB;cp*^{{F;<s}r^{x^xBp)) . (lo) 
Then fy + gy slice converges to fw+gw 

Proof As noted earlier, the strong lower-semicontinuity of i; i-> epi/*n^* 
at V = w follows straightforwardly. For the other half of the convergence, let 

(x*,a) G 6t/;*-limsupepi/^n^* 
v—^w 

Then there are nets vp —> w, (x^, ap) —^'^ (x*, a) , and p > 0 with (x^, ap) G 

^ ; n e p i sf*,Ogt, for all p. By use of (10) we obtain a bounded net \\yp\\ < p 
such that ap > F*^{xl^,yl^) = f:,^{xl^ - Vl^) + dv^iVv^) and we may now 
argue as in the final part of the proof of [WE99, Theorem 4.3] to deduce that 
(x*,a) Gepi/;^n^:,. D 

We note that one could have framed a qualification assumption based on 
iij* 

the assumption that fyClg* — fy^gy for eiil v eW and the assumption of 
10 without the weak star closure on the right hand side. A similar proof as 
above then obtains essentially [Zal03, Prop. 28]. 

We close this section with the observation that the argument of Corollary 1 
also permits the deduction of epi-distance convergence results for perturbation 
functions from those for sums. (See, for example, [EWOO] for detail on epi-
distance convergence.) 

Proposition 4. Let X and Y be Banach, and Fn, F in r{X x Y) with 
Fji —^ F in epi-distance. Assume that 0 G sqri (Py domF), and that YQ := 
span(Py domF) has closed algebraic complement YQ for which YQ CiYn = {0} 
eventually (where Yn := span(Py domF^) / Then Fn{',0) epi-distance con
verges to F(-,0). 

Proof As 0 G sqri (Py domF) we have cone (Py domP) = span(Py domP). 
Place Gn^G := 5xx{o}' We apply [EWOO, Thm 4.9] to Fn, P , Gn, G, 

Place Zn = span (domP^ — dom Gn) and ZQ = span (domP — domG). Since 
domP - domG = X x Py domP, we have ZQ = X x YQ and Zn = X x Yn, 
with 

cone (dom P — dom G) = cone {X x Py dom F) = X XYQ 
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therefore being closed inXxY. Also ZQ has closed complement ZQ := {0} xFQ? 
and 

'z;;xZo = {XxYn)n m x Y^) = {o} x (y, n yj) = {o} • 
Hence the hypotheses of [EWOO, Thm 4.9] are satisfied, yielding 

or equivalently, Fn(-,0) -> F(., 0). • 

4 Saddle-point Convergence in Fenchel Duality 

When discussing saddle point convergence we are necessarily lead to the 
study of equivalence classes of saddle-functions which are uniquely associ
ated with concave or convex parents (depending on the which variable is par
tially conjugated). We direct the reader to the excellent texts of Rockafellar 
[Roc70, Roc74] for a detailed treatment of this phenomenon. The following is 
taken from [AAW88] from which we adapt results and proofs. 

Definition 10. Suppose that (X, r ) and {¥, a) are two topological spaces and 
{K^ : X X y ^ R, n G N} is a sequence of hi-variate functions. Define: 

Cr/ha-ls K'^{x,y) ~ sup inf limsupi^^(a:n,2/n) 

ha/er-li K'^{x,y) = inf sup liminf i^"'(xn,2/n) • 

Definition 11. Suppose that (X, r) and {Y,a) are two topological spaces and 
{K^ : X X y -^ R, n G N} is a sequence of hivariate functions. 

1. We say that they epi/hypo-converge in the extended sense to a function 
K :X xY -^Rif 

clx{er/ha~ls K'')<K< c[y{h^/er-li K"") 

where cl x denotes the extended lower closure with respect to x (and there
fore w. r. t. T) for fixed y and cl ̂  denotes the extended upper closure with 
respect to y (and therefore w.r.t. a) for fixed x. Note that by definition, 
d / : = - d ( - / ) . 

2. A point (x, y) is a saddle-point of a hivariate function K : X xY —^K if 
for all (x,y) G X X y we have K{x,y) < K{x,y) < K{x^y). 

The interest in this kind of convergence stems from the following result 
(see [AAW88, Thm 2.4]). 
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Proposition 5. Let us assume that {K^,K : {X,r) x {Y,cr) ^ R, n G N} 
are such that they epi/hypo-converge in the extended sense. Assume also that 
{xk,yl) are saddle points of K"^^ for all k and {uk} is an increasing sequence 
of integers, such that Xn^ —^ x and y*^ —> y*. Then {x,y*) is a saddle point 
of K and 

k—^oo 

The next result from [AAW88] uses sequential forms of the epi-limit func
tions, as per the following 

Definition 12. [AAW88, p 541] Let {X,r) be topological, /n : X -> R. Then 

(r-seq-e-ls„_^^/n)(x) := inf lim sup/n(xn) 

(r-seq-e-li^^^/n)(x) \= inf liminf/n(xn) 

It can be shown that these reduce to the usual (topologically defined) forms 
if (X, r) is first-countable, and that the above infima are achieved. We will 
need these alternate forms, for generally weak topologies on normed spaces 
are not first-countable. 

Definition 13. Let {X,r) and (X*,r*) be topological vector spaces. We shall 
say they are paired if there is a bilinear map {-,') : X x X* -^ H such that 
the maps x* i—> (^x*) and x \-^ (x, •) are (algebraic) isomorphisms such that 
X* ^ (X,r)* and X ^ (X*,r*)* respectively. 

It is readily checked that if (X,r) and (X*,r*) are paired, and so are 
(F,o-) and ( r* ,a*) , then {X xY,r xa) is paired with (X* x y*,r* x a*), 
with the pairing 

((x,y),(x*,y*)) = (x,x*) + (y,y*), 

and similarly for other combinations of product spaces. 
For any convex-concave saddle function K : X x Y* —> H^ that is, where 

K is convex in the first argument and concave in the second, we may associate 
a convex and concave parent. These play a fundamental role in convex duality 
(see [Roc74]). These are defined respectively as: 

F{x,y) = supy.^yA^i^^y*) + (y^y*)] 
Gix^y'^) = mf,ex[K{x,y*) - (x,x*)]. 

Subject to suitable closure properties on AT, it follows that G = —F*, 
and that K is a saddle function for the dual pair of optimization problems 
infx F('^O) and supj5̂ * G(-, 0). One may also proceed in reverse, and show that 
for any closed convex function F : X x Y -^ K, if G := —F* relative to the 
natural pairing of X x y with X* x y*, (these yielding the primal objective 
F( ' , 0) and dual objective G(0, •)), we have an interval of saddle functions, all 
equivalent in the sense that they possess the same saddle points, given by 
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[K^'K] :={K :XxY'' -^U\K convex-concave, I£<K <T< onXx F*} , 

where 

^ (x ,y*) = sup,.^;,.[G(x*,2/*) + (x,x*)] 

i^(x ,^*)= miy^y[F{x,y)-{y,y^)], 

Our focus will be on the Fenchel duality, where given the primal prob
lem infx f + 9J ^^ form F{x,y) := f{x) + g{x + y)^ so that G{x*,y*) = 
—/*(a:*—y*)—5'*(2/*) and the Fenchel dual takes the form sup^*^x* G (̂0)2/*) = 
suPy*ex* - /*(-?/*) -P*(y*) (cf. (12) below). Also, any K e [K,'K] is a suit
able saddle function for the Fenchel primal/dual pair and we shall use K := K 
in what follows. 

The following result is taken from [AAW88] and requires no additional 
assumption. 

Proposition 6. Let (X, r ) , ( X * , T * ) and (F, a), (y*,cr*) be paired topological 
vector spaces, with the pairings sequentially continuous; let {F^, F : X xY —> 
R, n G N} be a family of bivariate (r x a)-closed convex functions. Then, 
if K^, K are members of the corresponding equivalence classes of bivariate 
convex-concave saddle functions, 

1. 

(r X cr)-seq-e-lSn^oo-^^ ^ F on X xY 

implies clx{er/ha*-ls K ) < K_. i 

2, 

(r* X (7*)-seq-e-lsn-.oo(i^'')* < {Ff on X* x F* 

implies K < c^\h^^/er-li K"") . 

Proposition 7. Suppose that X is a Banach space and 

{/n,/}^=:i and {gn.9}^=i 

be two families of proper closed, convex extended-real-valued functions slice-
convergent to f and g, respectively. Then 

K"ix,y*) = mi\U{x) + g^ix + y) - (y,y*)\ 

epi/hypo-converges (in the extended sense) to 

K{x, y*) = inf [/(x) + g{x + y)- {y, y*)] 
yeX 

with respect to the strong topology on X and the weak* topology on X*. 
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Proof. Prom the slice convergence of fn and gn it is elementary exercise to 
show that Fn{x,y) := fn{x) + gn{x + y) is slice-convergent to F{x,y) = 
f{x) + g{x + y). Prom the bicontinuity of conjugation with respect to sHce 
convergence, follows the dual sHce convergence of F^ —> F*. Prom the resulting 
strong epi-upper-semicontinuity for the Fn and F^ on X x X and X* x X* 
respectively, 

F >{s X s)-e-\^n-^ooF^ = {s X s)-seq-e-ls^^^F'^ and 

F* > (5* X s*)-e-lsn-.oo(i^^)* - (5* X s*)-seq-e-ls^_^(F^)* 

> ( ^ * x ^ * ) - s e q - e - K _ ^ ( F - ) * , 

where s and 5* stand for the respective norm topologies on X and X*. Now 
apply Proposition 6. • 

We note the following for later reference. Por u E X, write 

V{u) := inUfixJ+gix + u)} = (fOdKu), (11) 

and similarly for 99 ,̂ where for any function 7/;, ij{x) := '0(—x). Note that 
douiip = dom^ — d o m / and similarly for (fn- The operation ip \-^ "ip com
mutes with conjugation and with slice limits, the verification of this being an 
elementary exercise. Prom [Roc74] we have the following: Calling infx( / + ^) 
the primal problem, and infx(/n +5'n) the approximate problems, then —cp* 
and —(/:?* are the associated dual objective functionals, and: 

(x, y*) is a saddle-point of K iff 

¥'(0) = (/ + gm = inf(/ + g) = sup -cp* = - ^ * ( r ) , 
X X* 

and similarly for cpn and the saddle-points {xn^y^) of K^. On taking conju
gates of ^n we obtain 

<p*„ = (/;:n^)* = if*7^*) = 7*+9: 

and so the dual problem becomes 

sup - < = - if*ng*J (0) = - mf if*{-y*) + g*^{y*)) • (12) 
X* y*eX* 

The next result tackles the problem of finding convergent sequences of dual 
variables. (Note that Proposition 5 makes no claim about such existence). 

Corollary 3. Suppose that X is a separable Banach space and {fn^f}^=i 
and {gn',9}^=i be two families of proper closed, convex extended-real-valued 
functions slice-convergent to f and g respectively. Let K^, K he the associated 
saddle-functions as in Proposition 7. Assume also the following: 
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1. 36 > 0, p > 0 such that for all large n eN, 

BsnMnC {/^ <p}nBp- {gn <p}nBp 

where Mn := span (dom fn — dom^n) 
2, f*ng* is proper w*-Isc. 

Then if {xniVn) ^'^^ saddle-points of K^ for each n and the Xn has a strong 
limit X, and the saddle-values are hounded below, then K has a saddle-point 

{x,y*) that is a {s X w*)-limit of saddlepoints (x^, {yn)\Mn) ^f ^ subsequence 
of the K'^, with K{x^y*) the limit of the corresponding saddle-function values. 

(Here 's^ stands for the norm topology on X and (y^)|Mn denotes any norm-
preserving extension (via Hahn-Banach Theorem, for example) to X* of the 
restriction of ^* to Mn ) . 

Proof The proof follows from Propositions 7 and 5, on showing that the 

{yn)\Mn ^^^ norm-bounded in X*, so that weak*-convergent subsequences 
are available and and are the required dual variables. 

Since the sublevel-sets of fn are themselves slice convergent [Bee93], there 
are Xn G dom/n converging to some x G dom/ . Place /n(-) '-= fn{xn + Ô  
9ni') '= 9n{xn H" ') ' ^i th aualogous definitions for / and g as translates by x. 
Then 0 G dom/n, implying that dom/^ H dom^^ C Mn-

Let (fn be the value function corresponding to fn and gn via (11). Simi
larly, denote the corresponding saddle function by K'^, Then we immediately 
observe that ip'^ =^ (p^, from which follows that 

{xn^Vn) ^^ ̂  saddlepoint of K^ iff {xn — Xn^Vn) ŝ ^ saddlepoint of K^ , 

since (x^, 5*) are an optimal pair for the primal and dual problems if and only 
if {xn — Xni yn) ^^^ Optimal for the problems based on the translated functions 
fn, 9n' Evidently the optimal values are not affected by this translation, so we 
also obtain that K'^{xn — Xn^Vn) — ^^i^n^yn)- Hence the saddle-values of 
K^ are also bounded below. As Mn contains both dom/^ and dom^n (recall 
this follows from 0 G dom/n), we obtain 

K'^iXn -Xn^yl) =k''{Xn-Xn,y^\Mn)^ 

w h i c J l ^ l o W S f rom (^ ; (^*) = fni-Vn) "^ 9niyn) ^ / n ( - ^ ; ^ | M J + ^ ^ ( y * | M J = 

f^niVnlMn)^ since Mn contains the domains of fn and gn- Letting — a G R be 
a lower bound for the saddle-values of K'^ (and hence of K'^), we have for all 
n large, that (—^nlMn?5nlMn) G Ha{M*,n) (where the latter set is defined 
relative to the translated functions /n, gn), since 

{fn\MS{-yn\Mn) + {9n\Mr^y {VnlMj = fni-Vn) + 9n{yn) 

= -k'^{xn-Xn,yl) <a. 
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By Lemma 4, the ||5^|Mnll ^^^ norm-bounded in M* for all large n. Then 

the sequence of norm-preserving extensions z^ '-= VnlMn ^ ^* is also n o r m -
bounded and hence has a weakly* convergent subsequence ^* —> ^*. For each 
^? (^n ~ ^n^^n) ^ saddlepoint for K^^ so (xn,^^) is one for K'^. By Propo
sitions 7 and 5, (x^z*) is a saddlepoint for K, with value the limit of the 
saddle-values along the sequence. D 
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1 Introduction 

A function / : IR'̂  —> JR^ is called topical if this function is increasing 
{x > y = ^ f{x) > f{y)) and plus-homogeneous {f{x + Al) = f{x) + Al 
for all X e IR^ and all A G IR), where 1 is the vector of the corresponding 
dimension with all coordinates equal to one. These functions are studied in 
[GG98, Gun98, Gun99, GK95, RSOl, Sin02] and they have many appHcations 
in various par ts of applied mathematics (see [Gun98, Gun99]). 

In this paper we study topical functions / : X —> IR defined on an 
ordered Banach space X. We show tha t the topical functions / : X —> IR 
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are characterized by the fact that the Fenchel-Moreau conjugate function and 
the conjugate function of type Lau admits a very simple expHcit description. 
Most of these results have been obtained by A. Rubinov and I. Singer in finite 
dimensional case (see [RSOl, Sin02]). In this paper, we obtain these results in 
ordered Banach spaces without using the concepts of lattice theory. 

The structure of the paper is as follows. In Section 2, we recall main defin
itions and prove some results related to downward sets and topical functions. 
We also show that a topical function is abstract convex. Characterizations of 
plus-weak Pareto points for a closed downward set are investegated in Sec
tion 3. In Section 4, we study the subdifferential of a topical function and we 
present the characterizations of plus-weak Pareto points of a closed downward 
set in terms of separation from outside points. In Section 5, we give chara-
terizations of a topical function in terms of its Fenchel-Moreau conjugate and 
biconjugate with respect to a certain set of elementary functions. In section 
6, we first give characterizations of topical functions in terms of the conjugate 
of type Lau. Next, we show that for topical functions, the conjugate of type 
Lau and the Fenchel-Moreau conjugate coincide. 

2 Preliminaries 

Let X be a Banach space with the norm ||.|| and let C be a closed convex cone 
in X such that Cfl (—C) = {0} and int C 7̂  0. We assume that X is equipped 
with the order relation > generated hy C : x > y \i and only if x — y £ C 
(x, y e. X). Moreover, we assume that C is a normal cone. Recall that a cone 
C is called normal if there exists a constant m > 0 such that \\x\\ < m\\y\\^ 
whenever 0 < x < y, and x, y E X. Let 1 G int C and let 

B = {xeX :~l<x<l}. (1) 

It is well known and easy to check that B can be considered as the unit 
ball of a certain norm ||.| |i, which is equivalent to the initial norm ||.||. Assume 
without loss of generality that ||.|{ = | |.| |i. 

We study in this paper topical functions and downward sets. Recall (see 
[Sin87]) that a subset VF of X is said to be downward, ifweW and x G X with 
X < w, then x e W. A function / : X —> IR := [—00, +00] is called topical if 
this function is increasing {x > y ==^ f{x) > f{y)) and plus-homogeneous 
(/(x +Al) = / (x) + A for all X G X and all A G IR). The definition of a topical 
function in finite dimensional case can be found in [RSOl]. 

For any subset W of X, we shall denote by int W, cl W, and bd W the 
interior, the closure and the boundary of VF, respectively. 

For a non-empty subset W of X and x G X, define 

d{x,W) = inf ||x —tt;||. 
wew 
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Recall (see [Sin74]) that a point WQ E W is called a best approximation for 
xeX ii 

\\x — wo\\ = d{x,W). 

Let W C X. For x E X, denote by Piy (x) the set of all best approximations 
oi X inW : 

Pw{x) =={w eW :\\x- w\\ = d{x, W)}. 

It is well-known that Pw{^) is a closed and bounded subset oi X. U x ^ W 
then Pw{x) is located in the boundary of W. 

For X e X and r > 0, by (1), we have 

B{x,r) :={y e X :\\x-y\\<r} = {y e X :x-rl < y < x - f r l } . (2) 

Let (p : X X X —> IR be a function defined by 

(f{x, y) := sup{A elR : XI < x-\-y} W x, y e X. (3) 

It follows from (1) that the set {A G IR : Al < x -\- y} is non-empty and 
bounded from above (by ||x + y||). Clearly this set is closed. It follows from 
the definition of (p that the function (p enjoys the following properties: 

—oo < cp{x,y) < \\x + y\\ for each x,y e X (4) 

(p{x, y)l < X + y for all X, y £ X (5) 

(p{x,y) = ^{y,x) for all x, y G X; (6) 

ip[x, -x) = sup{A G IR : Al < X - X - 0} = 0 for all a: G X. (7) 

For each y G X, define the function (fy : X —> IR by 

(py{x) :=(p{x,y) \/xeX. (8) 

The function (py defined by (8) is topical (see [MR05]). 
Let 5 be a set and L = {h : S —^ M, : h is a function} be a set of 

functions. We recall (see [RubOO, Sin87]) that a function / : S —> IR is called 
abstract convex with respect to L, or, briefly, L-convex^ if there exists a subset 
Lo of L such that 

f{s) = sup h{s) {s G S). 
heLo, h<f 

Proposition 1. Let f : X —> IR be a topical function. Then f is Lipschitz 
continuous. 

Proof. Let x, y E X he arbitrary. Since by (2) we have 

- | | x - y | | l <x-y < | | x - y | | l , 

it follows that 
y--\\x- y\\l < X < y + ||x - y | | l . 
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Since by hypothesis / is topical, we get 

f{y) - \\x - y\\ < f{x) < f{y) + \\x - y\\, 

and hence 
\fix)-f{y)\<\\x~y\\. (9) 

Thus, / is Lipschitz continuous. D 

Corollary 1. The function (py defined by (8) is Lipschitz continuous. 

Proof. It follows from Proposition 1. D 

Corollary 2. The function (p defined by (3) is continuous. 

Proof. It follows from (9). D 

Proposition 2. Let f : X —> Bl be a topical function. Then the following 
assertions are true: 
1) If there exists x Q X such that / (x) = +oo, then / = +oo. 
2) If there exists x E X such that f{x) = —oo, then f = —oo. 

Proof. 1) Suppose that there exists x € X such that f{x) = +oo, and let 
y e X he arbitrary. Let A = (/?(—x,y), where cp is the function defined by (3). 
Then by (4) we have A G IR. In view of (5), it follows that Al < y — x^ and so 
X -i- XI < y. Since / is a topical function, we conclude that f{x) + A < f{y). 
This implies that f{y) = +oo. 
2) Assume that there exists x e X such that f{x) — — oo, and let y £ X 
be arbitrary. Let A = ip{x^ —y), where ^ is the function defined by (3). Then 
by (4) we have A G IR. In view of (5), it follows that Al < x — y, and so 
y + Al < X. Since / is a topical function, we conclude that f{y) < f{x) — A. 
This implies that f{y) — — oo, which completes the proof. D 

It follows from Proposition 2, for any topical function / : X —> IR, either 
we have d o m / = X oi f = +oo, where d o m / := {x e X : f{x) < +oo}. 

In the following we denote by X^p the set of all functions (pi (I G X) defined 
by (8). That is: 

X^ = {ipi:=ip{.J):leX}. (10) 

Theorem 1. Let cp be the function defined by (3). Then for a function f : 
X —> M the following assertions are equivalent: 
1) f is a topical function. 
2) For each y G X there exists ly E X such that 

^iy{x) < f{x) y xeX, and cpi^iy) = f{y). 

3) f is X^p-convex, where X^p is defined by (10). 
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Proof. 1) = > 2). Suppose that / is a topical function and let y G X be 
arbitrary. Define 

ly-fiy)l~yeX. (11) 

Now, let X G X be arbitrary and A := (p{x^ —y). Then by (5) we have Al < 
X — y, and so y + Al < x. Using (11) and that (^(x,.) and / are topical 
functions, we obtain 

f{x) > f{y + Al) = f{y) + A = f{y) + ^(x, -y) 

= ^ (^ , / ( y ) i -y) = ^{x^ ly) = ^ly W-

Also, by using (7) we have 

^iy{y) = ^{y. fiyn ~y) = sup{A G IR : A1 < y + f{y)l - y) 

- sup{A G IR : Al < f{y)l} = sup{a + f{y) G IR : a l < 0} 

= sup{a G IR : a l < 0} + f{y) - 0 + f[y) = f{y). 

Hence, we have 2). 
2) = ^ 3). Assume that 2) holds. Then we have 

/ (x) = sup(^/ (x) (x G X ) , 
y£X 

and hence / is X^^-convex. 
3) = > 1). Assume that 3) holds. First, note that it is easy to check that every 
supremum of topical functions defined on X is a topical function. Since every 
function ipi {I G X) defined by (8) is topical, it follows from the hypothesis 
that / is a topical function, which completes the proof. D 

Corollary 3. Every topical function f : X —> 5l is lower semi-continuous. 

3 Plus-Minkowski gauge and plus-weak Pareto point for 
a downward set 

We start with the following definition, which is given in [MRS02], [RSOl] for 
the finite dimensional case. 

Definition 1. Let W be a downward subset of X. The function pw • X —^ Bl 
defined by 

Pw{x) = M{XeIR\xe\i^W} (XGX) 
is called the plus-Minkowski gauge of the set W. 

The following proposition has been proved in finite dimensional case (see 
[RSOl]). However, the same proof is valid in the case under consideration. 
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Proposition 3. Let W he a downward subset of X, Then pw is a topical 
function. 

In the sequel, we give a definition of plus-weak Pareto points. 

Definition 2. Let W be a closed downward subset of X. A point w e W is 
called a plus-weak Pareto point of W if (Al + w)^W for all 0 < X e M. 

Lemma 1. Let W be a closed downward subset of X and w EW be arbitrary. 
Then w is a plus-weak Pareto point ofW if and only if pwi'w) = 0. 

Proof. Let 
Dy, = {\eM:w£\l^W] {weW). 

Then we have 

w is a plus — weak Pareto point of W 4==̂  (Al -\-w)^W V A > 0 

w^-\l + W V A > 0 

4=^ -X^D^ V A > 0 

^=^ X^D^ V A < 0 

<=^ Xe D^ V A > 0 

pwi'w) = inf-D t̂; == 0. 

D 

Lemma 2. Let W be a closed downward subset of X andw eW be arbitrary. 
Then the following assertions are equivalent: 
1) w is a plus-weak Pareto point of W. 
2)wehdW. 

Proof. 1) = ^ 2). Assume 1) holds and if possible that w ^ bdVF. Then, 
w G int W. It follows that there exists ^ > 0 such that 

V '.= {xeX'. \\x-w\\ <e}cW. 

This implies, by (2), that w -\- el ^ W. Hence w is not a plus-weak Pareto 
point of W. This is a contradiction. 
2) =^ 1). Suppose that 2) holds. We claim that Xl^w ^W ior all A > 0. 
Assume if possible that there exists Ao > 0 such that XQ1-\-W^W. Let 

V = {xeX: \\x-w\\ < Ao} 

be a neighbourhood of w. It follows from (2) that 

V = {x eX \w -XQKX <w + XQI). 

Since VF is a downward set and AQI + it̂  G W, we conclude that V CW. 
Hence, w G int W. This is a contradiction. Thus, the claim is true, and so w 
is a plus-weak Pareto ponit of VF, which completes the proof. D 
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Propos i t ion 4. Let 0 ^ x e X and R — {a l + x : a > 0}. Let W be a closed 
downward subset of X. Then \Rr\hdW\ < 1, where \A\ denotes the cardinality 
of the set A. 

Proof li RnhdW = ^, then |i^ ft bd Ŵ l - 0 < 1. Now, suppose that R H 
bd VF 7̂  0. We may assume that x G i?nbd W. Thus, x ehdW C.W.lt follows 
from Lemma 2 that x is a plus-weak Pareto point of W^ and so Al + x ^ Ŵ  
for all A > 0. 

On the other hand, assume if possible that there exists AQ < 0 such that 
AQI + X G bd lyi Then, by Lemma 2, AQI + x is a plus-weak Pareto point of 
W. Hence for -AQ > 0, we have [ -AQI + (AQI + x)] ^ W. That is, x^W. This 
is a contradiction. It follows that Al + x G VK only for A = 0. Consequently, 
Rf^hdW = {x}, and hence \R^hdW\ = l. U 

4 X(^-subdifFerential of a topical function 

Definition 3. Let f : X —> Si be a topical function and (p be the function 
defined by (3). Define the X^-subdifferential dx^f{x) of f at a point y e X 
by 

dxjiy) = {leX: ^i{x) < fix) V X G X, and ^i{y) = f{y)}, (12) 

where X^p is defined by (10). 

Lemma 3. Let f : X —> IR be a topical function and let y E X. Then 

dxJiy) ^{leX: <piiy) > f{y), and f{~l) = 0}. 

Hence, in particular, {f{y)l ~ y) e dx^f{y)-

Proof Let 
D^{leX: ipi{y) > f{y), and f{-l) - 0} 

and let I G dx^f{y) be arbitrary. Then, by (12), we have ^i{y) > fiy)- This 
implies, by (5), that y + / > ^i{y)l > /(2/)l, and so y > f{y)l — L Since / is 
a topical function, it follows that f{y) > f{y) + f{—l). Thus, /(—/) < 0. 

On the other hand, by (7), we have /(—/) > ^i{—l) '•= ^{—h 0 — 0- Hence, 
/(—/) = 0. Therefore, I E D. Conversely, assume I G D and if possible that 
there exists x £ X such that (pi{x) > / (x ) . This implies that there exists 
A > 0 such that (pi{x) > f{x) + A, and so by (5) we get x > (/(x) + A)l — /. 
Since / is a topical function and that /(—/) = 0, it follows that 

f{x) > fix) + A + fi-l) = fix) + A. 

This is a contradiction. Thus we conclude that (pi{x) < / (x) for all x G X, 
and hence, in particular, we have (pi(y) < fiy)- Consequently, since I e D,we 
obtain (pi{y) = f{y), and so / G dx^f{y). 
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Finally, let IQ — f{y)l — y. Since (p{y,.) is a topical function and (7) holds, 
it follows that 

^loiy) = ^{y^ ô) = ^{y^ f{y)i -y) = f{y) + ^(y, -y) = f{y)-

Also, we have / ( - / o ) = f{y) - f{y) = 0. We conclude that IQ e D = dx^f{y), 
which completes the proof. D 

Remark i. If VF is a downward subset of X and pw is its plus-Minkowski 
gauge function, then 

{xeX : pw{x) <0} CW C {xeX : pw{x) < 0}. 

Indeed, if x e {x G X : pw{x) < 0}, then there exists A < 0 such that 
X e XI + W. Since x < x — Al, x — XI e W and W is a, downward set, it 
follows that X G W. Also, note that if VK is a closed downward subset of X, 
then 

W = {xeX : pw{x) < 0}. 

Lemma 4. Let W be a proper closed downward subset ofX^wGWbea plus-
weak Pareto ponit of W and I G X. Assume that (p is the function defined by 
(3). Then the following assertions are equivalent: 
1) I e dx^pw{w). 
2) sup^̂ vT^ if{y, I) <0 = (p{w, I). 

Proof Since t6̂  is a plus-weak Pareto point of W, it follows from Lemma 3.1 
that pwi"^) = 0. 
1) =^ 2). Suppose that 1) holds. Then, by Definition 3 and Remark 1, we 
have 

^{yJ)<Pw{y)<0 yyeW 

and (p{w, I) = (pi{w) — pwi'^) = 0. Hence, sup^^^ (p{y, I) < 0 = (p{w, I). 
2) = > 1). Assume that 2) holds. Let y G X and x — y — pwiy)'^- Since, by 
Proposition 3, pw is a topical function, it follows that pw{x) = 0. In view of 
Remark 1, we have x G W. Thus, by hypothesis, (p{x,l) < 0. This implies that 
^i{y) < Pw{y) for all y e X, Also, we have (pi{w) := ^{wj) = 0 == pwiw). 
Hence, by Definition 3, / G dx^Pwi'i^)^ which completes the proof. D 

Theorem 2. Let W be a closed downward subset of X^ XQ E X \W^ WQ G W 

and ro ~ 11̂ 0 — î oll- ^/ there exists I G X such that 

(p{wj) <0<(p{y,l) \/weW, yeB{xo,ro), 

Then WQ is a plus-weak Pareto point of W. 

Proof. Since ro = ||xo — tt;o||, then WQ G i5(xo,ro). Also, we have WQ G W. 
It follows by hypothesis that (p{woyl) = 0. Now, assume if possible that WQ 
is not a plus-weak Pareto point of W. Then there exists AQ > 0 such that 
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AQI -i- WO E W^ and hence by hypothesis, (p{Xol + WQJ) < 0. This impHes, 
since (p{.J) is a topical function, that 

0 > <ŷ (Aol + Wo, I) = Xo + ^{wo, /) = Ao + 0 = AQ. 

This is a contradiction. D 

Remark 2. If T^ is a closed downward subset of X and xo € X, then the least 
element go = xo — rl of the set Pw{xo) exists (see [MR05], Proposition 3.2), 
where r = d{xo, W). 

Theorem 3. Let W he a closed downward subset of X, Xo G X \W and 
9o = Xo — rol be the least element of the set Pw{xo)^ where ro — c/(xo, VF). 
Then the following assertions are equivalent: 
1) go is a plus-weak Pareto point of W. 
2) There exists I G X such that 

(p{wj) <0<(p{yj) \/weW,yeB{xo,ro). 

Proof 1) = ^ 2). Suppose that 1) holds. Let I = —go and y G B{xo,ro) be 
arbitrary. Since ^o = ^o — ^ol^ it follows that go is also the least element of 
B{xo,ro). Hence, go < y, and so by (7) and that (p{.,l) is a topical function, 
we have 

0 = ^{go.l)<^{yJ) \/yeBixo,ro). (13) 

On the other had, by hypothesis go is a plus-weak Pareto point of W. 
In view of Lemma 1, we have pw{9o) = 0. It follows from Lemma 3 that 
I = -^0 = pwigo)'^ - 90 ̂  dx^pw{9o)' Thus, by Lemma 4, we have 

(f{w,l) <0 yweW, (14) 

Therefore, (13) and (14) imply 2). 
2) = > 1). Assume that 2) holds. Since go G Pw{xo) and ro = d{xo,W), it 
follows that ro = Ĥ ô — '̂oH- Therefore, In view of Theorem 2, we have ^o is a 
plus-weak Pareto point of W, which completes the proof. D 

Corollary 4. Let W be a closed downward subset of X, xo E X \W and 
9o = Xo — rol be the least element of the set Pw{xo)^ where ro = d{xo, W). 
Then there exists I G X such that 

ip{w,l) <0<(p{yj) ^weW,yeB{xo,ro). 

Proof Since go G Pw{xo) and Pw{xo) C bdl^, then ^o G hdW, and so by 
Lemma 2, po is a plus-weak Pareto point of W. Hence, by Theorem 3, there 
exists / G X such that 

ip{wj) <0<ip{y,l) "^weW^yeBixo.ro), 

and the proof is complete. D 
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The following example shows that every plus-weak Pareto point of a closed 
downward set W need not separate W and ball B{xo,ro). 

Example 1. Let X = JR^ with the maximum norm ||x|| = maxi<^<2 \xi\ and 

C = {(xi,X2) G IR^ : xi > 0, X2 > 0}. 

Let 
W = {{wi,W2) G H^ : mm{wi,W2} < 1}, 

XQ = (2,2) e X \W and WQ = (1,3). It is clear that C is a closed convex 
normal cone in X, Ŵ  is a closed downward subset of X and WQ G bd W. 
Also, we have 1 = (1,1) G i n t C We have d{xo, W) = 1 = ||xo — go\\^ where 
^0 = (1,1) is the least element of the set Pw{xo). Since WQ G bd W, it follows 
from Lemma 2 that WQ is a plus-weak Pareto point of VF, and we have also 
^0 '= \\xo - 'u;o|| = 1 = d{xo, W). 

Now, let / = —WQ and w = {wiyW2) GW he arbitrary. Then we have 

(p{w, I) = (p{w, —WQ) = sup{A G IR : Al < If — WQ} 

= sup{A G IR : A < mm{wi -1,W2- 3}} < 0, (15) 

and 

(p{xo, I) = (p{xo, —WQ) = sup{A G R : Al < xo - WQ} 

- sup{A G IR : A < - 1 } = - 1 < 0. (16) 

Therefore, (15) and (16) show that —WQ does not separate W and B{xo,ro). 

Theorem 4. Let W be a closed downward subset of X, XQ e X \W, WQ E W 
and VQ = \\xo — wo\\. If there exists I G X such that 

ifi{wj)<0<^{yj) \/weW,yeB{xo,ro). (17) 

Then, WQ G PW{XQ). Moreover, if (17) holds with I = —WQ^ then, WQ — 
minPvK(^o) '.= XQ — rl^ where r = d{xQ,W). 

Proof. Let go = XQ—rl be the least element of the set Pw{xo). It is clear that 
9o < XO' Now, assume if possible that WQ ^ Pw{xo). Then, r < TQ. Choose 
A G IR such that 1 — ror~^ < A < 0, and let w = XXQ + (1 — X)go. Since 
9o ^ ^0, it follows that w — go = X{xo — go) < 0, and so w < go- Since VF" is a 
downward set and go G W, we conclude that w eW. Also, we have 

||xo - 1̂1 = ||xo - Axo - (1 - A)^o|| == (1 - A)||xo - ^o|| = (1 - A)r < ro, 

and hence w G B{xo,ro). This implies by hypothesis that (p{w,l) = 0. But, 
on the other hand, since (/?(.,/) is a topical function, we have 

^{w, I) = (p{go + A(xo - ^o), 0 = ^(90 + rAl, I) 
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= V (̂̂ o, l)+rX<0 + rX = rX<0. 

This is a contradiction. Hence, WQ G Pwi^o). 
Finally, Suppose that (17) holds with I = —WQ. Then by the above WQ G 

Pwi^o), and so r = TQ. Thus, we have go e B{XQ^ TQ), and hence 0 < ^{goi 0 — 
(^(^0, —'̂ o)- In view of (5), we get 0 < ^{QQ, —WQ)1 < go ~ wo- This implies 
that Wo < go- Since go is the least element of the set Pw{xo), it follows that 
'^0 = 9o^ which completes the proof. D 

Theorem 5. Let W be a closed downward subset of X, xo G X \W, wo G W 
and To = \\xo — wo\\. Then the following assertions are equivalent: 
1) wo e Pw{xo)' 
2) There exists I G X such that 

^{wj)<0<y:>{yj) yweW,yeB{xo,ro). (18) 

Proof 1) = ^ 2). Suppose that 1) holds and r := d{xo,W). Then r = ro-
Since, by Lemma 2, go = XQ — rol the least element of the set Pw{xo) is 
a plus-weak Pareto point of W, it follows from Theorem 3 that there exists 
/ G X such that 

(p{wj) <0<ip{yj) \fweW,yeB{xo,ro). 

The implication 2) = > 1) follows from Theorem 4. D 

5 Fenchel-Moreau conjugates with respect to cp 

Recall (see [RubOO, Sin87]) that if V and W are sets and 9 : V x W —> JR 
is a coupling function, then for a function / : V —> K the Fenchel-Moreau 
conjugate function of f with respect to 9 is the function /̂ ^^^ : W —> IR 
defined by 

f'^^Hw) : - sup{9{v,w) - f{v)} {w G W). (19) 
vev 

We point out that (-cx))^^^) = -f oo and (+00)^^^^ = -00 . 
Also, we recall that the dual of any mapping u : IR —> IR is the 

mapping u' : IR —> IR defined by 

h'''{v)= inf / ( / iGlR^) , (20) 

where for any mapping u : IR —> IR and any / G IR we write / ^ instead 
of u{f), and for a set ^ , IR denotes the set of all functions g : A —> JR. 

In the sequel, we define the couphng function ip : X x X —> IR by 

^p{x,y):=mf{\eJR:x + y<Xl} \/x, y e X. (21) 
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It follows from (1) that the s e t { A G l R : x + 2 / < A l } i s non-empty and 
bounded from below (by — ||x + 2/||). Clearly this set is closed. It follows from 
the definition of ip that it enjoys the following properties: 

— ||x + 2/|| ^ '0(^?^) < +00 for each x^y G X (22) 

x + y < '0(x, y) l for all x, y e X (23) 

'ipix.y) =- ip{y,x) for all x, y G X; (24) 

'0(x, -x) = inf{A E IR : 0 = X - rr < Al} - 0 for all a; G X. (25) 

For each y E X, define the function ipy : X —> IR by 

i;y{x):=ij{x,y) \/x G X, (26) 

It is not difficult to show that the function ipy is topical and Lipschitz 
continuous and consequently, ip is continuous (see Proposition 1 and its corol
laries). 

Definition 4. Let W be a non-empty subset of X and 9 : X x X —> IR be a 
coupling function. We define the plus-polar set of W by 

W^ixeX :9{x,w)<0, yweW}, 

and the plus-bipolar set of W by 

Clearly, X^ = 0, and by definition, 0^ = X. 

Theorem 6. Let (p be the function defined by (3). Then for a function f : 
X —> M, the following assertions are equivalent: 
1) f is topical. 
2) We have 

fcM^a:) = -f{-x) (xeX). 

Proof 1) = » 2). Assume that / is a topical function. Let x, y e X be 
arbitrary. It follows from (5) that (p{x^y)l <x-\-y^ and hence x > (^(x,y)l—y. 
Since / is a topical function, we conclude that 

^{x^y) - fix) < -f{-y) {x, y e X), 

and so 
r^'^^(y) = sup {cpix, y) - f{x)} < -/(-y) (y € X). (27) 

Also, by definition of the Fenchel-Moreau conjugate function of / and (7), 
we have 
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f<'^\y) = sup{^(a;,y) - f{x)} > ^{-y,y) - f{-y) = - / ( - y ) {y € X). 
xex 

(28) 
Hence (27) and (28) imply 2). 
2) = ^ 1). Suppose that 2) holds. Then we have 

/(or) = - r ( ^ ) ( - a ; ) {x & X). 

It is not difficult to show that for any function / : X —> IR, /̂ "̂̂ ^ is a topical 
function, and hence we conclude that / is a topical function, which completes 
the proof. D 

The proof of the following theorem is similar to that in finite dimensional 
case (see [RSOl]). 

Theorem 7. Let f : X —> M be a plus-homogeneous function and 8 : X x 
X —> M be a coupling function such that 6{.,y) {y E X) is a topical function. 
Then 

f<'\y)= sup 9{x,y)= sup e{x,y) {y e X). 
xGX, f{x)=0 xeSoif) 

Corollary 5. Let f : X —> M be a plus-homogeneous function and 6 : X x 
X —> IR be a coupling function such that 9{., y) {y G X) is a topical function. 
Then 

5o(rW) = Soif)". 
Proof The proof follows from Definition 4 and Theorem 7. D 

Remark 3. We recall (see [RubOO]) that if X is a set and 9 \ X x X —> IR is 
a coupling function such that 

9{x,y) = 9{y,x) (x, y e X), 

that is, 9 is symmetric. Then the Fenchel-Moreau conjugate mapping c(9) : 

IR^ —> IR^ of (19), is self-dual. That is, c(9) = c{9y. 

We recall (see [RubOO]) that if V and W are sets and 9 : V x W —> JR 
is a coupling function, then for a function / : V —> IR the Fenchel-Moreau 
biconjugate function of f with respect to 9, is the function /^(^)^(^) : V —> IR 
defined by 

/^W^W'(t;) := (/cW)^W'(t;) (veV). 

For the proof of the following theorem see [RSOl] in finite dimensional 
case. The same proof is valid in the case under consideration. 

Theorem 8. Let cp be the function defined by (3). Then for a function f : 
X —> M^ the following assertions are equivalent: 
1) f is topical. 
2) We have 
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Proposition 5. Let ip and ip be the functions defined by (3) and (21), respec
tively. Let f : X —> M be a plus-homogeneous function. Then the following 
assertions are true: 
1) We have 

f<^)^W{x)= sup V^(x,2/)-r^^^"^^^'W (xeX). 
yesoif)" 

2) We have 

f<^)<^y{x)= sup ^(x,y) = rW"(^) ' (x) {xeX). 
yesoifr 

3) We have 

Proof. 1). It is easy to check that /^('^) and f^^"^^ are topical functions. Since 
ij) and if are symmetric coupling functions, It follows from Remark 3 that 
c('0) = c{ipy and c{(p) = c{^y. Therefore, by Theorem 7 and Corollary 5, we 
conclude that 

= sup i){x,y)= sup ip{x,y) {x e X), 

and 

= sup i){x,y)= sup ip{x,y) {x e X), 
yeSoif^^^")) xe<So(/)« 

which proves 1). The proof of statement 2) is similar to the proof of statement 

1). 
3). We apply Corollary 5 to the functions /'=('^), /< (̂'̂ ) and / , it follows that 

and 

By a similar proof, we have 

which completes the proof. D 
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6 Conjugate of type Lau with respect to ^ 

Recall (see [Sin87]) that if V and W are sets and A : 2^ —> 2 ^ is any 
duality, then for a function / : V —> IR the conjugate of type Lau of f with 
respect to A, is the function f^^^^ : W —> IR defined by 

fL(A)^^y_^_ ini f{v) {WGW). (29) 
vev, wew\A({v}) 

li 9 : V xW —> IR is a coupling function, then for the conjugate of type Lau 
fL(Ae) ^i^h respect to the l9-duality A^ : 2^ —> 2^ defined by 

A ^ ( G ) : = { ^ G W ; % , t x ; ) < 0 , V ^ G G} (G C F) , 

which will be also called the conjugate of type Lau with respect to 9, and 
denoted by f^^^\ we have 

/ ^ W ( ^ ) = /^(^^)(^^) = _ inf f{v) {f:V—^% w^W), (30) 

Remark 4- We recall (see [Sin87]) that if V and W are sets, then for any 
duality A : 2^ —> 2 ^ and any function / : V —> IR, the lower level set 
Sxif^^^^) (A G IR) has the following form: 

5 A ( / ^ ( ^ ^ ) - n , ^ v , ; ( , ) < _ A A ( M ) . 

Remark 5. Note that since C is a closed convex normal cone in X and 1 G 
int C, it is not difficult to show that 

(p{x, y) >0 <=^ X + 2/ G int C (x, y G X), 

where (p is the function defined by (3). 

Therefore, for the coupling function if : X x X —> IR defined by (3) and 
a function / : X —> IR, it follows from (30) and Remark 5 that 

/^(^)(y) = - inf /(a;) = - ini fix) (ye X). (31) 
xex,ip{x,y)>o xex.x-i-yemtc 

Propos i t ion 6. Let 9 : X x X —> IR he a coupling function such that 9{x,.) 
{x £ X) is an increasing and lower semi-continuous function. Then for any 
function f : X —> ffi, the conjugate of type Lau f^^^^ : X —> M is an 
increasing and lower semi-continuous function. 

Proof. Let y, z E X and y < z. Since ^(x,.) (x G X) is an increasing function, 
it follows that 

A:={xeX : 9{x,y) > 0} C B := {x e X : 9{x,z) > 0}. 

This implies, by (31), that 
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f^^'\y) = - inf / (x) < - mi fix) = f^^'^z). 
xeA xeB 

Hence, f^^^^ is an increasing function. 
Finally, it follows from Remark 4 that 

Sxif"-^^^) - n^ex, f{x)<-x{y e X : e{x, y)<0} = n ,ex , / (X)<-A^X (A G IR), 

where E^ := {y e X : 9{x,y) < 0} (x G X). Since (9(x,.) (x G X) is lower 
semi-continuous, we have Ex is a closed set in X, and hence Sx{f^^^^) is closed 
for each A G IR. Thus, /^^^^ is lower semi-continuous, which completes the 
proof. D 

Lemma 5. Let 9 : X x X —> IR be a coupling function such that 9{x^.) 
{x G X) is an increasing and lower semi-continuous function. Let f : X —> M 
he any function such that 

f^^'Hx) =-fi-x) (xex). 

Then f is increasing and upper semi-continuous. 

Proof This is an immediate consequence of Proposition 6 and that the func
tion h{x) := —f{—x) {x G X) is topical, whenever / is a topical function. D 

Corollary 6. Let ^ and ip be the functions defined by (3) and (21), respec
tively. Let f : X —> M be any function such that 

f^i^\x) =-fi-x) (xex), 

or 
fLW(a:) = -f{-x) ixeX). 

Then f is increasing and upper semi-continuous. 

Theorem 9. Let (p be the function defined by (3). Then for a function f : 
X —> Si, the following assertions are equivalent: 
1) We have 

fL('p){x) = -f{-x) (xeX). 

2) f is increasing and upper semi-continuous. 

Proof. The implication 1) = > 2) follows from Corollary 6. 
2) => 1). Assume that 2) holds. By (31) and that cl(intC) = C, we have 

f^^^Hx) = - inf f{y) = - inf f{y) (x G X). (32) 
yex, x-\-yemt c v^^^ x-vyec 

Now, let X G X be fixed and y G X be such that x -^ y ^ C. Then y > —x. 
Since / is increasing, we have f{y) > /(—x), and so —f{y) < —/(—x). In 
view of (32), we get 
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/i-(<P)(^) = _ inf / ( y ) = sup ( - / ( ? / ) ) < - / ( - x ) . (33) 
yeX, x+yeC y^x, x+yeC 

We also have / is upper semi-continuous. It follows that —/is lower semi-
continuous, and hence by (32), we obtain 

yex, x-hyec 

= sup ( - / ( y ) ) = sup {-f{y))>-f{-x). (34) 
yGX, x-j-yeC yeX, y>-x 

Therefore, (33) and (34) imply 1), which completes the proof. D 

We recall (see [Sin02, Lemma 3.3]) that if F is a set and 9 :VxV —> IR is 
a symmetric coupling function, then the conjugate of type Lau L{6) : IR —> 
IR^ of (29) is self-dual, that is, 1(9) = L{ey. Also, if V and W are sets 
and A : 2^ —> 2 ^ is any duality, then the biconjugate of type Lau of a 
function f : V —> M with respect to A, is the function /^(^)^(^) ' :V —>M 
defined by / ^ ( A ) ^ ( A ) ' .= (yL(A))L(A)' (g^^ [Sin87]). In particular, for the 
function (p defined by (3) and the (/^-duality Aĉ  : 2^ —> 2^ of (30), we have 
fLi^)L{^y ^ ^fLM>jL{<py^ ^j^g^g f .X —> IR is a function. 

Theorem 10. Let (p be the function defined by (3). Then for a function f : 
X —> M the following assertions are equivalent: 
1) We have 

2) f is increasing and lower semi-continuous. 

Proof 1) = > 2). Suppose that 1) holds. Since v? is a symmetric coupling 
function, we have L{(p) = L{ipy, and so / = f^M^M' = ^fL{^))L{^)^ it 
follows from Proposition 6 with 6 =• if that / is increasing and lower semi-
continuous. 
2) =^ 1). Assume that 2) holds. Since L[(f) = L{(f)', by (31) and that 
cl (int C) = C, we have 

jL{^)L{^y ^y,^ = {f^^^^)^^^\y) = - inf f^^'^Hx) 
xex, x-^yeintc 

sup ( - / i ( ^ ) ( x ) ) = sup (-/^(^'(:c)) 
x€X,x+yemtC x€X,x+yeC 

= sup (-/^(^)(x)) (yeX). (35) 
XEX, x>—y 

Now, let y G X be fixed and x E X he such that x > —y. Since by Proposition 
6, /^(^^ is an increasing function, it follows that -f^^'^\x) < -f^^'^H-y), 
and so in view of (35) and (31) and that cl (int C) = C, we get 
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f''^''^''^^^'{y) < -f'-^^H-y) = inf . fix) 

xex, x-yGintc 

= inf ^^f{x)= Ani f{x)<f{y) {y G X). (36) 
XGX, x—yGC xeX, x>y 

On the other hand, by (35) and (31) and tha t / is increasing and lower 
semi-continuous, we obtain 

XEX^ x'>—y 

= sup inf f(z) = sup inf f{z) 
xex, x>-yzex, z+xGintc xex, x>-y^^^^ z+xec 

= sup inf f{z)> sup f{-x)>f{y) (y e X). (37) 
xeX, x>-y ^ ^ ^ ' z>-x j,^x, x>-y 

Hence the result follows from (36) and (37), which completes the proof. D 

The proof of the following theorem is similar to t ha t in finite dimensional 
case (see [Sin02]). 

T h e o r e m 1 1 . Let (p be the function defined by (3). Then for any topical func
tion f : X —> M, we have 

/^(^)(x) = r(^)(x) (xex). 
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Summary. In this paper we describe a new method for modelling dynamical sys
tems assuming that the information about the system is presented in the form of 
a data set. The main idea is to describe the relationships between two variables as 
influences of the changes of one variable on another. The approach introduced was 
examined in data classification and global optimization problems. 

Key words: Dynamical systems, elasticity, data classification, global opti
mization. 

1 Introduction 

In [Mam94] a new approach for mathematical modeling of dynamical systems 
was introduced. This approach was further developed in [Mam01a]-[MYA04] 
and has been applied to solving many problems, including data classifica
tion and global optimization. This paper gives a systematic survey to this 
approach. 

The approach is based on non-functional relationship between two vari
ables which describes the influences of the change (increase or decrease) of 
one variable on the change of the other variable. It can be considered as a 
certain analog of elasticity used in the literature (see, for example, [IntTl]). 
We shall refer to this relationship between variables as relational elasticity 
{fuzzy derivative, in [Mam94, MamOlb, MYOl]). 

In [MM02] the notion of influence (of one state on another state) as a 
measure of the non-local contribution of a state to the value function at other 
states was defined. Conditional probability functions were used in this defini
tion, but the idea behind this notion is close to the notion of influence used in 
[Mam94]. The calculations undertaken have shown that ([MamOla, MYOl]) 
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this definition of the influence provides better results than if we use conditional 
probability. 

As mentioned in [MM02] the notion of influence is also closely related to 
dual variables (or shadow prices in economics) for some problems (see, for 
example, [Gor99]). 

We now describe some situations, where the notion of relational elasticity 
can be applied. Classical mathematical analysis, which is based on the no
tion of functional dependance, is suitable for examination of many situations, 
where influence of one variable on another can be explicitly described. The 
theory of probabilities is used in the situation, where such a dependance is 
not clear. However, this theory does not include many real-world situations. 
Indeed, probability can be used for examination of situations, which repeat 
(or can be repeated) many times. The attempts to use probability theory in 
uncertain situations, which can not be repeated many times, may lead to great 
errors. 

We consider here only real-valued variables (some generalizations to vector-
valued variables are also possible, however we do not consider them in the cur
rent paper). One of the main properties of a real-valued variable is monotonic-
ity. We define the notion of infiuence by the increase or decrease of one variable 
on the increase or decrease of the other. We can consider the change of a vari
able as a result of activity of some unknown forces. In many instances our 
approach can be used for finding resulting state without explicit description 
of forces. Although the forces are unknown, this approach allows us to predict 
their action and as a result, to predict the behavior of the system and/or give 
a correct forecast. In this paper we undertake an attempt to give some descrip
tion of forces acting on the system through the influences between variables 
and to describe dynamical systems generated by these forces. 

The suggested approach of description of relationships between variables 
has been successfully applied to data classification problems (see [MamOla]-
[MYOl], and references therein). In this paper we will only concentrate on 
some applications of dynamical systems, generated by this approach, and tra
jectories to these systems. 

In Section 5, we examine the dynamical systems approach to data clas
sification by introducing a simple classification algorithm. Using dynamical 
system ideas (trajectories) makes results, obtained by such a simple algo
rithm, comparable with the results obtained by other algorithms, designed 
for the purpose of data classification. The main idea behind this algorithm is 
close to some methods used in Nonlinear Support Vector Machines (see, for 
example, [Bur98]) where the domain is mapped to another space using some 
nonlinear (mainly, quadratic) mappings. In our case the transformation of the 
domain is made using the forces acting at each point of the domain. 

The main application of this dynamical systems approach is to global opti
mization problems. In Section 6, we describe a global optimization algorithm 
based on this approach. The algorithm uses a new global search mechanism 
based on dynamical systems generated by the given objective function. The 
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results, obtained for many test examples and some difficult practical problems 
([Mam04, MYA04]), have shown the efficiency of this global search mechanism. 

2 Relationship between two variables: relational 
elasticity 

Let us consider two objects and assume that the states of these objects can 
be described by the scalar variables x and y. Increases and decreases of these 
variables indicates changes in the objects. The relationship between x and y 
will be defined by changes in both directions: increase and decrease. 

We define the influence of y on x as follows: consider for instance the 
following event: y increases. As a result of this event x may either increase 
or decrease. To determine the influence we have to define the degree of these 
events. So we need to have the following expressions: 

1) the degree of the increase of x when y increases; 
2) the degree of the decrease of x when y increases. 
Obviously, the expressions increase and decrease should be precisely de

fined in applications. For example if we say that y increases then we should 
determine: a) by how much? and b) during what time? These factors mainly 
depend on the problem under consideration and the nature of variables. For 
example, if we consider an economic system and y stands for the National 
Product, then we can take one year (or a month, etc) as the time interval, 
and for the increase we can take the relative increase of y. In some applica
tions we do not need to determine the time. We denote the events y increases 
and y decreases hy y ] and y | , respectively. 

The key point in expressions 1) and 2) is the degree. Of course the degree 
of these events depends on the initial state (point) {x,y). For example, we 
can describe it by fuzzy sets on the plane (x, y); that is, at every initial point 
{x,y) the degree can be defined as a number in the interval [0,1]. In general, 
we will assume that the degree is a function oi (x^y) with non-negative values. 

We denote the degrees corresponding to 1) and 2) by d{y T ^ T) ^^^ 
d{y t X I), or by ^i(x,?/) and ^2(^,2/)? respectively. We assume that the case 
^i{x,y) = 0 corresponds to the lowest influence. 

Similarly we can define the degree of decrease and increase of x when y 
decreases. They will be described by functions ^3(0:, y) and ^4(x, y): ^s — d{y j 
X i), U =d{y Ix T). 

Note that in applications the functions ^i{x,y) can be computed in quite 
different ways. For example, assume that there is a functional relation y = 
f{x) and the directional derivative f\.{x) exists at the point x. In this case, we 
can define ^\{x,y) -=• / | ( x ) and ^2(^,2/) = 0 if f'^[x) > 0, and ^i{x,y) = 0 
and ^2(^5 y) = —f\.{x) if f'^{x) < 0. However, if the relation between variables 
is presented in the form of some finite set of observations (for example, in terms 
of applications to global optimization, it might be a set of some local minimum 
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points found so far) we need to develop special techniques for computing the 
functions ^^(x,y) (see Section 3) 

Therefore, the functions ^^,i = 1,2,3,4 completely describe the influence 
of the variable y on x in terms of changes. We will call it the relational elasticity 
between the two variables and denote it by dx/dy. 

Let £,{x,y) = {^i{x,y), 6(^>^), 6(^,2/), ^4{x,y)). So we have dx/dy = 
^(x,y), where ^i(x,y), ^2{x,y), ^six.y) and ^4{x,y) are non-negative valued 
functions. 

By analogy we define dy/dx as an influence of x on y. Let dy/dx = rj{x, y), 
where r] = (771,7/2,773,774), and 771 = d{x "[ y t ) , 772 = d{x "[ y i ) , Vs = d{x i y i 
), 7/4 = d{x iy T). 

Thus, the relationship between variables x and y will be described in the 
following form: 

dx/dy = ^(x, y), dy/dx = rj{x, y). (1) 

The examples of relationships presented below show that the system (1) 
covers quite a large range of relations including those that can not be described 
by some functions (or even set-valued mappings). 

1. A homotone relationship. Assume that ^i(x,y) > ^2(^,2/), ^?>{x^y) 
:>U{x^y) and 771(0;, 2/) > 772( ,̂2/), 773(0:, y) >774(x,t/). 

This case can be considered as a homotone relationship, because the in
fluence of the increase (or decrease) of one variable on another is, mainly, 
directed in the same direction: increase (or decrease). 

2. An antitone relationship. Assume that ^i(x,y) <^ ^2(^52/), ^si^.y) 
< Ui^^y) and 771 (x,y) <C mi^^v)^ V^i^^v) < V4{x,y). 

This case can be considered as an antitone relationship, because the in
fluence of the increase (or decrease) of one variable on another is, mainly, 
directed in the inverse direction: decrease (or increase). 

3. Assume that the influence of y on x such that dx/dy = {a, a, a, a), 
where a > 0. In this case the variable x may increase or decrease with the 
same degree and these changes do not depend on y. We can say that the 
influence of y on x is quite indefinite. 

4. Let dx/dy = (a, 0,0, a), (a > 0). In contrast to case 3, in this case the 
influence of y on x is quite definite; every change in y increases x. 

5. Let dx/dy — (a, 0,6,0), where a, 6 > 0 and a^ b. This is a special case 
(known as hysteresis) of a homotone relationship considered above, where as 
y increases x increases strongly and when y decreases then x decreases not as 
strongly. If such a relationship is valid at all points (x, y) then the dependence 
between these variables can not be described by some mappings, like y = y{x) 
or X = x(y). 

More complicated relationships arise when all the components in dx/dy 
are not zero. This is the case that we have when dealing with real problems 
where the information about the systems is given in the form of some datasets. 
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3 Some examples for calculating relational elasticities 

In this section we give some examples to demonstrate the calculation of rela
tional elasticities. Note that we can suggest quite different methods according 
to the problem under consideration. In this paper, we examine the introduced 
notions in the context of global optimization and data classification problems. 
Accordingly, we consider the case when the relationship between variables x 
and y is given in the form of a dataset and we present some formulae to cal
culate relational elasticities which will be used in the applications below. 

M . l . Consider data {(x"^,y'^), m = 1,...,M }. To calculate relational 
elasticities first we have to define the events "increase" and "decrease". Here 
we suggest two techniques. For the sake of definiteness, we consider only the 
variable x. 

Let x^ be the initial point. 
Global approach. If x^ > x^ ( x'^ < x^, respectively) we say that for 

the observation m the variable x increases (decreases, respectively). 
Remark 3.1. In some cases it might be useful to define the increase 

(decrease, respectively) of x for the observation m by x'^ > x^-{-5 {x^ < x^—6^ 
respectively), where 6 > 0. 

Local approach. Take any number e > 0. li x^ e {x^,x^ + e) {x'^ 6 
{x^ — €,x^), respectively) we say that for the observation m the variable x 
increases (decreases, respectively). 

Note that in the second case we follow the notion of the derivative in 
classical mathematics as a local notion. 

Now we give two methods, related to the global and local approaches, for 
calculating a relational elasticity dy/dx = (771,7̂ 2,̂ 3? ̂ 4) at the initial point 
(x^2/0). Weset 

771 - Mi i / (Mi + 1), 772 = Mi2/(Mi + 1), 
rjs = Mi3/(M2 + 1), 7/4 = Mi4/(M2 + 1). ^̂ ^ 

For the global approach the numbers Mi, M n , M12, M2, M13, M14 stand for 
the number of points (x^,y"^), satisfying x^ > x^, x'^ > x^ and y'^ > y^, 
x"^ > x^ and y"^ < y^, x^ < x°, x"^ < x^ and y"^ < y^, x ^ < x^ and 
y'^ > y^, respectively. In the local approach we use x^ G (x^,x^ + e) and 
x^ e{x^ -e,x^) instead of x ^ > x° and x"^ < x°. 

Note that according to Remark 3.1 we could define the changes of the 
variable y by taking any small number S > 0. For instance, we could take 
ym y yO _^^ instead of y"^ > y^. 

M.2. Now we present a method for calculating relational elasticities which 
will be used in the applications to global optimization. 

Consider an objective function f{x): R^ -^ R and assume that 
the values of the function have been calculated at some points; that is, 
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fm ^ / ( x f , x^ , . . . , x ; ^ ) , m = 1,...,M. Therefore, we have data A = 
{(xj^,X2^, ...,xj^,/"^) : m = l , . . . ,Af}. We can refer to these points as "local" 
minimum points found so far. Let x^ = (x5,X2, ...,^n) t)e the "best" point 
among these; that is, f^ = f{x^) > f^ for all m. 

We will consider the relations between / and each particular variable, 
say Xi, at the initial point x^. Clearly, in data A the event / j (that is, / 
decreases) will not occur. Therefore, we set d{xi hfi)=0, d{xi j , / i) = 0, 
d{f i , Xi t) = 0, d{f i , Xi I) = 0. We need to calculate the values d{xi T? / 1)̂  
d{xiiJ]), d(f txi^),^nd d{f t^i i). 

We denote by || • || the Euchdian distance and let Z\x^ = x ^ — x^, 
Af^ = / ( x ^ ) - /(x^), m = 1,..., M. Then we set: 

1 Afm 1 Afm 

where X+ - {m; zixf^ > 0}; X++ = {m; Z\x7^ > 0, Z \ / ^ > 0}; 
X~ — {m; zix^ < 0}; 
i - + = {m; Axf < 0, Af^ > 0}; i^+ = {m; Z \ / ^ > 0 > 0}; 
i;̂ ++ = {m; Af^ > 0, Z\x7^ > 0}; i^+- = {m; Af^ > 0, Zix^^ < 0}. 

The coefficients af̂  = (|zAxf^|/||x"^ — x^|| )^ are used to indicate the contri
bution of the coordinate i in the change ||x"^ —x^||. Clearly, a5i" + ... + a ^ = 1 
for all m. 

4 Dynamical systems 

In this section we present some notions introduced in [Mam94] which have 
been used for studying the changes in the system. 

Consider a system which consists of two variables x and y, and assume that 
at every point (x, y) the relationship between them is presented by relational 
elasticities (1); that is: 

dx/dy = C(x, y), dy/dx = rj{x, y), 

In this case we say that a Dynamical System is given. Here we study the 
changes of these variables using only the information obtained from relational 
elasticities. In this way the notion of forces introduced below will play an 
important role. 

Definition 1. At given point (x, y) : the quantities F{x | ) — 771̂ 1 + 772C4 ^^^ 
F{x I) — rjs^s + 774̂ 2 CLre called the forces acting from y on the increase and 
decrease of x, respectively; the quantity F{x) = F{x t) + F{x j) is called the 
force acting from y on x. By analogy, the forces F{y),F{y ])^F{y | ) acting 
from X on y are defined: F{y) = Fly t) + F{y j ) , F{y t) = 6 m + 6^4, 
F{y i) = 6 ^ 3 + 6 ^ 2 . 
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The main sense of this definition, for example for F{x t ) , becomes clear from 
the expression 

Fix T) = dixU T)% Ul) + dixU i)d{y i X T). 

Prom Definition 1 we obtain 

Proposition 1. At every point (x,y) the forces F{x) and F{y) are equal: 

Fix) = Fiv). 

This proposition states that, the size of the force on x equals the size of the 
force on y. It can be considered as a generalization of Newton's Third Law of 
Motion. To explain this statement, and, also, the reasonableness of Definition 
1, we consider one example from Mechanics. 

Assume that there are two particles, placed on a line, and x, y are their 
coordinates. Let x < y. Then, in terms of gravitational influences, we would 
have 

dx/dy= (6,0,0,(^4), dy/dx = (0,772,773,0); 

where ^1,̂ 4,772,773 > 0. Then, from Definition 1 it follows that 

F{x i) = 0, F{y T) - 0, and F{x ]) = F{y j) = 772̂ 4 = d{x U i) d{y [ x ]). 

This is the Newton's Third Law of Motion. 
Now, we assume that the influences d{x ] y [) and d{y [ x ]) are propor

tional to the masses mi and 7722 of the particles, and are inverse-proportional 
to the distance r = \x ~ y\ between them; that is, d{x ] y [) — Ciirii/r and 
d{y i X ^) = C2m2/r. Then, from Definition 1 we have 

Fix^) = Fiyi) = CrC,.^. 

This is consistent with the Newton's Law of Gravity. 
The main characteristic of non-mechanical systems is that, all values 

F{x I), F{x I), F{y I) and F{y | ) may be non-zero. This might be, in 
particular, as a result of outside influences (say, some other variable z has 
an influence on x and y). This is the main factor that complicates the de
scription (modelling) relationships between variables and makes it difficult to 
study the changes in the system. 

Let the inequality F{x t) > F{x | ) hold at the point (x,y). In this case 
we can say that there are superfluous forces acting for the increase of variable 
X. If F{x "l) = F{x I) then these forces are balanced. So we can introduce 

Definition 2. The point {x,y) is called a stationary point if 

Fix T) = Fix i), Fiy T) = Fiv i); 

and an absolutely stationary point if 
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F{x T) = F{x i) = F{y 1) = F{y i) = 0. 

Proposition 2. Assume that relational elasticities at the point {x,y) are 
calculated such that 

6 + 6 = 6 + 6 - 1 , (3) 

^1+^2 = V3-^V4 = 1. (4) 

Then the point (x, y) is an absolutely stationary point if and only if one of the 
following conditions holds: 

II. 

dx/dy= {1,0,1,0), dy/dx = {0,l,0,iy, 

dx/dy= {0,1,0,1), dy/dx = {1,0,1,0). 

(5) 

(6) 

Proof Prom conditions F{x t) = F{x j.) = F{y t) = F{y | ) == 0 we have 

^ i 6 = 0 

^36 = 0 

V2U = 0 

7746 = 0 

Consider two cases. 
1). Let 6 — 0- I^ this case we have 

6 = 1 
(3) 

(10) 

m 0 (i) . 3 ^ 1 ^^ 

6 = 0 ^ 6 = 1 
2). Let ?7i = 0. In this case we have 

(4)-

^2 = 1 => 6 0 

771-1 -^ (6). 

(8) 

r73 = 0 d) (10) (3) 
774 = 1 ^^^ 6 = 0 ^ 6 = 1 -> (5). 

(7) 

(8) 

(9) 

(10) 

D 

This proposition shows that if {x,y) is an absolutely stationary point then 
the influences x on y and y on x are inverse. In this case, the state {x, y) can 
not be changed without outside forces (say the change can be generated as an 
influence of some other variable ^ on x and y). 

It is not difficult to prove the following propositions. 
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Proposition 3. Assume that at the point {x^y) there is a homotone relation
ship between x and y and 

dx/dy = ( 6 {x, y), 0, ̂ ^{x, y), 0), dy/dx = {rji (x, y), 0,773(2;, y), 0). 

U ^i{Xiy)Vi{xiy) =^3{x^y)'n3{x^y) then {x,y) is a stationary point 

Proposition 4. Assume that at the point (x,y) there is an antitone relation
ship between x and y and 

dx/dy = (0,C2(^,2/),0,^4(x,y)), dy/dx= (0,772(2:, y),0,774 (x,y)). 

/ / £^2{x^y)'n4^{x^y) = £,/^{x^y)r]2{x^y) then {x,y) is a stationary point. 

In this case we can say that there are no internal forces creating the changes 
in the system. Changes in the system may arise only as a result of outside 
forces. 

4.1 Trajectories of the system (1) 

In this section we study trajectories of the system (1). We define a trajectory 
(xt.yt), (t = 0,1,2,...), of the system (1) using the notion of forces acting 
between x and y. At every point (x,y) the forces F{x j ) , F{x j ) , F{y | ) , 
F{y I) are defined as in Definition 1. 

Diff'erent methods can be used for calculation of trajectories. We present 
here two methods which will be used in the applications below. 

Consider a variable ^ and let A^(t) = F{{{t) T) - F{^{t) j ) . In the first 
method we define a trajectory as follows: 

at + l)=at)+a-Sign{A^{t)y, (11) 

where 

{ 1 i f a > 0 ; 
0 i f a = 0; 

- 1 if a < 0. 

In the second method we set 

at+i)=m+c^-mt). (12) 
The difference between these formulae is that, in (12) the variables are 

changed with different steps along the direction /\^(t), whilst, in (11) all 
the variables are changed with the same step a > 0. 

Consider an example. 

Example 1. Consider a domain D = {{dib) : a G [0,10],6 G [1,10]}. Assume 
that the field of forces in the domain D is defined by the data {(x,y)} pre
sented in Table 1. Using this data, we can calculate forces acting at each 
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Table 1. Data used in Example 4.1 

X 

y\ 
1|1|2|2|2|3|3|4|4|5|5|6|6|7 

2I4I3I4I5I3I4I2I4I2I5I3I4I4 

point (x^y) G D and, then, we can calculate trajectories to system (1). First 
we calculate the values of relational elasticities dy/dx and dx/dy by the local 
approach taking 5 = 1.1 (see Section 3). Then, we generate trajectories taking 
a = (0.5)^ and different initial points. We consider two cases /c = 0 and k > 1. 

1. Let fc = 0. Consider a trajectory {x{t)^y{t)) starting from the initial 
point (x(0), 2/(0)) = (2,2). We have (a;(l), y(l)) = (3,3) and (x(2m), ^(2m)) -
(4,4), (x(2m + l),2/(2m + 1)) = (5,3) for m > 1. Therefore, the set 
Pi = {(4,4), (5,3)} is a limit cycle of the trajectory {x{t),y{t)). Now con
sider other trajectories starting from different initial points (a, 6), a,b G 
{0,1,. . . , 10}. Each trajectory has one of the following three limit cycles: Pi, 
P2 = {(2,3), (3,4)}, Ps = {(5,4), (4,3)}. Thus, the domain D is divided 
into 3 parts so that all trajectories, starting from one of these parts, have the 
same limit cycle. 

2. Let k > 1. In this case we observe that each trajectory has one of the 
following limit cycles: 

Pf = {(4,4), ( 4 - ( 0 . 5 ) ^ 4 - (0.5)'=)}, P^ = {(3,4), (3 - (0.5)^4 - (0.5)'=)}. 

Therefore, in this case, the domain D can divided into two parts, as well 
as data presented in Table 1. Clearly, if A: ^ oo then P^ —> {(4,4)}, P2 ^^ 
{(3,4)} in the Hausdorff metric. 

We observe that there are three sets Pi^P2^P^ for k = 0 and two sets 
Pi^P2 for A: > 1, which are the limit cycles for all trajectories. This means 
that the turnpike property is true for this example (see [MR73]). Thus, the 
idea of describing dynamical systems in the form of (1) and the study of 
trajectories to this system can be used in different problems. In the next 
section, we check this approach in data classification problems. As a domain 
D we take the heart disease and liver disorder databases. 

5 Classification Algori thm based on a dynamical systems 
approach 

Consider a database A d BP^^ which consists of two classes: A^ and A^. We 
denote by J = {1,2,..., n} the set of features. 

The first stage of the data classification is the scaling phase. In this phase 
the data is considered to be measured on an m level scale. We did not use 
any of the known methods (for example, [DKS95]) for discretizing continuous 
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attributes. Here we treat all the attributes uniformly i.e. we simply considered 
m levels for each attribute. Intervals related to these levels are defined only 
by using the training set and, therefore, the scaled values of the features of 
the observation depends on the training set. 

Scaling. Take any number m G {1,2,...}. First for every feature j ^ J 
we calculate the maximum and minimum quantities among all points of the 
set A = A^ U A^. Let a^ and a^ be the maximum and minimum quantities, 
respectively. Then any observation x = (xi,...,Xn) is transformed into y — 
(yi, ...,yn) by the formula 

{ 1 if Xj < a'j; 

p if Xj e [a| + aj{p - 1), a^ + ajp) , ;? = 1 , . . . , m; 
m if Xj > a ] , 

where aj — [a^j — a^)/m. 
As a result, ail the observation x = (xi,..., x^) are transformed into vectors 

y = (yi,...,yn)? with coordinates t/j G {1,2,3, . . . ,m}. Every new observation 
(test example) will also be scaled by this formula. After this scaling the data
base A is transformed into a set, which will be denoted by A. The set A 
consists of two scaled classes A^ and A'^ which are the transformation of the 
classes A^ and A^, respectively. 

This scaling is not linear and so the structure of the sets can essentially 
be changed after this scaling. This is why we use different numbers m in the 
classification. Note that for small numbers m the classes A^ and A"^ may not 
be disjoint even if the sets B and D are disjoint. The minimal number m for 
which these classes are disjoint is m—19 for the liver-disorder database and is 
m=4: for the heart disease database. 

Therefore, we have a scaled (with m subdivisions) database A C R^ which 
consists of two classes A^ and ^^. By a* = (a^, a2,..., a^) (i = 1,2) we denote 
the centroid of the class A\ Let x*̂  be a test point. 

For classification we use a very simple method which consists of two or
dered rules. The point x*̂  is predicted to belong to the class A^ if: 

First Rule: 7^i(x*^) = A^; that is, x*̂  ^ a for some a e A^ and x*̂  ^ b 
for all b e A^,j y^ i; otherwise go to the second rule. 

Second Rule: 7^2(x*^) = A'; that is, ||x*^ - a'\\ < \\x^' - a '̂||, j ^ i. 
Here we use the Euclidean norm || • || in R^. The notations x*̂  « a and 

x*̂  7̂  b are used in the following sense: 
max |x*^ — %| < V ^^d max \xY — bj\ > rj; 

where ry > 0 is a given tolerance. Since the set A consists of the vectors with 
integer coordinates we take rj = 1/3 in the calculations below. 

Clearly we can not expect a good performance from such a simple al
gorithm (see the results presented in Table 2 for T == 0), but considering 
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trajectories starting from test points, we can increase the accuracy of classifi
cation. The results obtained in this way are even comparable with the results 
obtained by other classification algorithms (see Table 3). 

We define the field of forces in R^ using the set A which contains all 
training examples from both classes. At a given point x = (xi,...,Xn) the 
relational elasticities are calculated for each pair of features (z, j ) by the global 
approach (see Section 3). Let F{xj -^ Xi | ) and F{xj -^ Xi j) be the forces 
acting from the feature j to decrease and increase, respectively, the feature i 
at the point x. Then the resulting forces on the feature i is defined as a sum 
of all these forces; that is, 

Xi T). (13) 

Then, given new (test) point x* ,̂ we calculate (as in Example 1) a trajec
tory X (t) {t = 0,1,2, ...,T) started from this point. We use a step a = 0.25. 
To decrease the influence of circulating effects on the transform the trajectory 
X (t) to x{t) by taking middle points of each of the last 5 steps; that is, 

( ^ ( 0 ) - f x ( l ) + . . .x(t) .r . ^ A. 

I x(t-4) + x(t-3) + ...x(t) If ^ > 4̂  
^ 5 — 

Table 2. Accuracy for test set for the heart disease and liver-disorder databases 
with 10-fold cross validation obtained by Algorithm F 

T 
Heart 
Liver 

T 
Heart 
Liver 

0 
80.0 
60.6 

22 
82.1 
70.3 

2 
80.0 
60.3 

24 
82.4 
70.9 

4 
80.3 
63.8 

26 
82.8 
70.9 

6 
80.7 
63.8 

28 
82.4 
70.6 

8 
81.0 
67.1 

30 
82.4 
70.3 

10 
81.4 
67.6 

32 
82.4 
70.0 

12 
81.4 
68.5 

34 
82.1 
70.0 

14 
81.7 
69.7 

36 
82.8 
71.8 

16 
81.7 
69.7 

38 
82.4 
71.2 

18 
81.7 
69.4 

40 
83.1 
70.6 

20 
82.1 
70.9 

42 
83.1 
70.6 

Classification Algorithm (F). 
Step 1. Set ^ = 0. 
Step 2. If lZi{x (t)) = A^ then the example x^^ is predicted to belong to 

the class A^. Otherwise we set t = t -h 1. If t < T go to Step 2, otherwise go 
to Step 3. 

Step 3. If lZ2{x{T)) = A^ then the example x^^ is predicted to belong 
to the class A'^. Otherwise the program terminates and the test point x^^ is 
unclassified. 

We apply this algorithm to the heart disease and liver disorder databases 
taking the consecutive scaling numbers m = 20,21, ...40. We use 10-fold cross 
validation. 
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Table 3. Results for the heart disease and liver-disorder databases with 10-fold 
cross validation obtained by other methods 

Algorithm 

HMM 
PMM 
RLP 

S V M II • 111 
S V M II . Iloo 
S V M II . 11̂  

Heart 
Ptr 

87.5 
91.4 
84.5 
85.3 
85.8 
84.7 

Pts 

82.8 
82.2 
83.5 
84.6 
82.5 
75.9 

Liver 
Ptr 

72.2 
74.9 
69.0 
67.8 
68.7 
60.2 

Pts 

66.6 
68.4 
66.9 
64.0 
64.6 
61.0 

Note that in this application the choice of a combination of features is 
very important. The combination of features should form, in some sense, a 
minimal closed system in which the influences of the features on each other 
contain complete information about the process under consideration (disease 
in our case). For example, using two "similar" features can contribute noise 
because of summing (13). In this paper we did not try to find an optimal 
combination of features. Our aim is to find some combination of features for 
which the summing (13) does not create so much noise. For the heart disease 
database we use all 13 features, for the liver disorder database good results 
are obtained when we take just three features - the third, fourth and fifth. The 
result obtained for the test set for different time periods T are presented in 
Table 2. The accuracy for the training set is stable: 100.0 for the heart disease 
database and 99.7 for the liver disorder database and, so we did not present 
them in Table 2. The results show that when T increases, more test points 
become closer to the centroid of their own class. As a result, the accuracy 
of classification becomes sufficiently high. To have some idea about the level 
of accuracy that could be achieved in these domains, in Table 3, we present 
results obtained by other methods: HMM - Hybrid misclassification minimiza
tion ([CM95]), PMM - Parametric misclassification minimization ([Man94]), 
RLP - Robust linear programming ([BM92]), SVM || • jji, SVM || • ||oo, SVM 
II • II2 - Support vector machines algorithms with 1-norm, 00-norm and 2-norm 
([BM98]). 

6 Algori thm for global optimization 

In this section we apply the approach described above to global optimization 
problems. More detailed information about this application can be found in 
[Mam04]. 

We consider the following unconstrained continuous optimization problem 

minimize f{x) (14) 
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s.t. X e R^^ ai < Xi < bi^ i = I,..., n. (15) 

For the convenience, we will use the symbols LocDD, LineSearch and 
LocOpt defined below. 

LocDD. Given point x, we denote by / = (^i,--.,^n) == LocDD{x) a 
local descent direction from this point. It can be calculated in different ways. 
In the calculations below, it is calculated as follows, let £ > 0 be a given 
small number. Take any coordinate i G {1, . . . ,n}, and calculate the values of 
the objective function / ; let ao = / ( x i , ...,Xn), ai = /(xi,. . . ,Xi — e, ...,Xn), 
^2 = f{xi,.>.-,Xi + 6:, ...,Xn). Then we set li = 0 if ai > ao and a2 > ao; 
li = ao ~ a2 if tti > ao and a2 < ao; U = ao — ai if ai < ao and a2 > ao. 
If ai < ao and a2 < ao then we set li = ao — a2 if ao — a2 > ao — ai; and 
li = ao — ai if ao — a2 < ao — ai. 

LineSearch. Given point x and direction /, we denote by LineSearch (1) 
the best point on the hne x + tl, t > 0. In the calculations below, we apply 
inexact line search, taking t = 7717, (m = 0,1,...), where 7 > 0 is a some small 
step. 

LocOpt. For the local minimization we could use different methods. In 
this paper we apply a direct search method called local variations. This is an 
efficient local optimization technique that does not explicitly use derivatives 
and can be applied to non-smooth functions. A good survey of direct search 
methods can be found in [KLT03]. 

The algorithm contains the following steps. 
Step 1. Let L be a given integer, and k G {0,1,2,..., L — 1}. For each k 

we define the box 

Bk^ixGR"", a^ <Xi<b^, i = l , . . . ,n} ; 

where 5i = (hi — ai)/2L and a^ = ai + kSi, b^ = bi — kSi. 
Step 2. For each box Bk^ we find a minima x^, /c = 1,2,..., L — 1. 
Step 3. Let x* = argmin{/(x'^), A: = 1,2, ...,L — 1}. We refine the point 

X* by local optimization and get the global solution Xmin — LocOpt (x*). 

Now, given box Bk, we describe the procedure of finding a good solution 

1. To apply the methods of dynamical systems, described above, we need 
to have a corresponding dataset. In other words, we need to generate some 
initial points and calculate values of the objective function at these points. 
Different methods can be used for the choice of initial points. In the algorithm 
described here, we generate initial points from the vertices of boxes Bk> 

Let A = {x^, ...,x"^} be the set of initial points. 

2. Given point x we find x* = LocOpt{LineSearch{LocDD{x))) which 
means that 
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- we calculate the local descent direction I = LocDD{x) at the point x; 
- then we find the best point y = LineSearch{l) on the line /; 
- and, finally, we refine the point y by local optimization and get the point 

X* = LocOpt{y). 
We apply this procedure for each initial point from the set A and obtain 

the set ^(0) = {x* ' \ . . . ,x* '^} , where 

X*'* = LocOpt{LineSearch{LocDirection{x^))), i = I, ...,m, 

Let 
x*(0) = argmin{/(x) : x G ^(0)} . 

3. The set ^(0) together with the values of the objective function allows 
us to generate a dynamical system. Our aim in this step is to find some "good" 
point x*(l) and add it to the set ̂ (0). 

Let t = 0 and the point x*(^) be the "best" point in the set A{t). 
The main part of the algorithm is to determine a direction, say F{t), at 

the point x*(^), which can provide a better solution x*{t-\-l). We can consider 
F{t) as a global descent direction. For this aim, using the set A{t), we calculate 
the forces acting on / | at the point x*(t) from each variable i G {l , . . . ,n} . 
We set F{t) = {Fi{t), ,..,Fn{t)) where the components Fi{t) = F{i -^ f f) 
are calculated at the point x*{t) (see Definition 1). Then we define a point 
x{t + 1) by formula (12); that is, we consider the vector — F{t) as a descent 
direction and set 

x{t + 1) = x*(t) - a*{t)F{t) (16) 

where the step a*{t) is calculated as 

a*{t) = arg min {/(x*(t) - aF{t)) : (17) 

a G {(ai , . . . ,an) : a^ = — (6̂  - a^), / == 1, . . . ,M}}. (18) 

Clearly x(t + l) ^ x*(t). Then we calculate x°(^ + l) := LocOpt{x{t + l)), 
and set A{t + l) = A{t) [J {x^{t-\-1)]. The next "good" point :z;*(̂  + 1) is 
defined as the best point in the set A{t-\-l)\ that is, x*(t + l) = x°(t + l) , if 
our search was successful ( /(x^(t + 1)) < f{x*{t)) ), and a:*(t + 1) = x*(t), 
if it was not. 

We continue this procedure and obtain a trajectory x*(t), t = 1,2,...., 
starting from initial point x*(0). The process is terminated at the point 
x*(T), if either F{T) = 0 or T > T*, where T* is a priori given number. We 
note that F{t) = 0 means that x*(^) is a stationary point. 

Therefore, x^ — x*{T) is a minimum point for the box Bk. 
In the calculations below we take L = 10 ,M==100 and T* — 20. It is 

clear that, the results obtained can be refined by choosing larger L, M, T*. 
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We call this algorithm AGOP ([Mam04]). For the calculation of direction 
F{t)^ we need to determine the influences d(xi T? / T)? d{xi j , / t ) , d{f T, ^i T) 
and d{f | ,x^ j ) . For this aim, we use the methods introduced in Section 3. 
Therefore, we will consider two versions of the algorithm AGOP; the version 
AGOP(F) which uses the method M . l described in Section 3 and the version 
AGOP(D) which uses the method M.2. 

There are many different methods and algorithms developed for global op
timization problems (see, for example, [MPVOl, PR02, Pin95] and references 
therein). Here, we mention some of them and note some aspects. 

The algorithm AGOP takes into account some relatively "poor" points for 
further consideration. This is what many other methods do, such as Simulated 
Annealing ([Glo97, Loc02], Genetic Algorithms ([Smi02]) and Taboo Search 
([CK02, Glo97]). The choice of a descent (good) direction is the main part 
of each algorithm. Instead of using a stochastic search (as in the algorithms 
mentioned), AGOP uses the formula (16), where the direction F{t) is defined 
by relational elasticities. 

Note that the algorithm AGOP has quite different settings and motiva
tions compared with the methods that use so called "dynamical search" (see 
[PWZ02] and references therein). Our method of a search has some ideas in 
common with the heuristic method which attempts to estimate the "overall" 
convexity characteristics of the objective function ([DPR97]). This method 
does not work well when the postulated quadratic model is unsuitable. The 
advantage of our approach is that we do not use any approximate underesti-
mations (including convex underestimations). 

The methods that we use in this paper, are quite different from the homo-
topy and trajectory methods ([Die95, For95]), which attempt to visit (enu
merate) all stationary points (local optimas) of the objective function, and, 
therefore, cannot be fast for high dimensional problems. The algorithm AGOP 
attempts to jump over local minimum points trying to find "deeper" points 
that do not need to be a local minima. 

7 Results of numerical experiments 

Numerical experiments have been carried out on a Pentium III PC with 800 
MHz main processor. We use the following notations: 

n - is the number of variables; 
fmin - is the minimum value obtained; 
fbest - is the global minimum or the best known result; 
t (sec) - is the CPU time in seconds; 
Nf - is the number of function evaluation. 
We used 24 well known test problems (the list of test problems can be found 

at [Mam04]). The results obtained by algorithms AGOP(F) and AGOP(D) 
are presented in Table 4. We observe that the version AGOP(F) is more stable 
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in finding global minima in all cases, meanwhile the version AGOP(D) has 
failed in two cases (for the Rastrigin function). In Table 5, we present the 
elapsed times and the number of function evaluations for functions with large 
number of variables obtained by AGOP(F). 

The results obtained have shown the efficiency of the algorithm. For in
stance, for some of the test examples (where the number of variables could be 
chosen arbitrarily), the number of variables is increased up to 3000, and the 
time of processing was between 2 (for Rastrigin and Ackley's functions) and 12 
(for Michalewicz function) minutes. We could not find comparable results in 
the literature. For instance, in [LL05] (Genetic Algorithms), the problems for 
Rastrigin, Griewank and Ackley's functions are solved for up to 1000 variables 
only, with the number of function evaluations [337570, 574561], 563350 and 
[548306, 686614], respectively (3 digit accuracy was the goal to be achieved). 
In our case, we have the number of function evaluations 174176, 174124 and 
185904, respectively (see Table 4), with the complete global search. 

8 Conclusions and future work 

In this paper we developed a method to describe a relationship between two 
variables based on the notion of relational elasticities. Some methods for cal
culation of the relational elasticities are presented. We defined dynamical sys
tems by using the relational elasticities and made some brief analysis of tra
jectories of such dynamical systems with applications to data classification 
and global optimization problems. The results obtained show that the rela
tional elasticities can be considered a sound mathematical method to describe 
a relationship between two variables. 

One of the main problems of our future investigation is to study a re
lationship between more than two variables. In this paper we simply used 
either formula (13), where the forces acting on some variable are summed, or 
the method described in M.2, Section 3. It will be very useful to define the 
infiuence of a combination of variables on some other variable. 

We introduced a global optimization algorithm that can be used to han
dle functions with a large number of variables for solving continuous uncon
strained optimization problems. The algorithm can be developed for solving 
continuous constrained optimization problems where special penalty functions 
and non-linear Lagrange-type functions (see [RY03]) are involved. In fact, the 
methodology that we use can be adapted for discrete optimization, because 
the determination of forces does not need a continuous state space. There
fore, the development of algorithms for solving discrete (unconstrained and 
constrained) optimization problems will be our future work. 



382 M.A. Mammadov et al. 

Table 4. The results obtained by AGOP for non-convex continuously differentiable 
functions 

1 Function 

1 Ackleys 
1 Ackleys 
1 Ackleys 
1 Bohachevsky 1 
1 Bohachevsky 2 
1 Bohachevsky 3 
1 Branin 
1 Camel 
1 Easom 
1 Golds, and Price 
1 Griewank 
1 Griewank 
1 Griewank 
1 Hansen 
1 Hart man 
1 Hart man 
1 Levy Nr.l 
1 Levy Nr.l 
1 Levy Nr.l 

Levy Nr.2 
Levy Nr.2 

1 Levy Nr.2 
1 Levy Nr.3 

Levy Nr.3 
1 Levy Nr.3 
1 Michalewicz 
1 Michalewicz 
1 Michalewicz 
1 Michalewicz 
1 Michalewicz 
1 Rastrigin | 
1 Rastrigin | 

Rastrigin | 
SchafferNr.l 
Schaffer Nr.2 

Shekel-5 
Shekel-7 

ShekeHO 
Shubert Nr.l 
Shubert Nr.2 

n 

2 
1000 
3000 

2 
2 
2 
2 
2 
2 
2 
2 

1000 
3000 

2 
3 
6 
2 

1000 
3000 

2 
1000 
3000 

4 
1000 
3000 

2 
5 
10 

1000 
3000 

2 
1000 
3000 

2 
2 
4 
4 
4 
2 
2 

Shubert Nr.3 | 2 | 

1 foLMin 
0 
0 
0 
0 
0 
0 
0 

-1.03163 
-1 
3 
0 
0 
0 

-176.5417 
-3.86278 
-3.32237 

0 
0 
0 
0 
0 
0 

-11.5044 
-11.5044 
-11.5044 
-1.8013 
-4.687 
-9.660 
N/A 
N/A 

0 
0 
0 
0 
0 

-10.15320 
-10.40294 
-10.53641 
-186.7309 
-186.7309 
-24.0625o| 

LAGOP(F) 
1 0.000048 

0.000459 
0.000516 

0 
0 

5.5753-10-' 
1.544510"' 
-1.03162842 
-0.9999998 
3.00000037 
7.38ao-« 

4.248-10"^ 
4.43110"^ 
-176.54179 

-3.86278 
-3.322368 
1.309-10-^ 
1.433-10-^ 
3.875-10"^ 
6.618-10-^ 
1.43410"'* 
1.29210-^ 
-11.5044 
-11.395 
-11.395 
-1.8013 

-4.6876581 
-9.6601482 
-957.0770 
-2859.124 
1.016-10-^ 
1.440-10-'* 
2.159-10-^ 

0 
4.845-10-'* 
-10.15319 
-10.40294 

-10.5364045 
-186.7309 
-186.7309 

-24.062498 

1 AGOP(D) 
0.000048 
0.000241 
0.000495 

0 
0 

3.1066-10-'' 
1.5445-10"' 
-1.03162844 
-0.9999999 
3.00000037 
7.83-10-^* 

3.784-10-'' 
9.917-10"^ 
-176.54179 

-3.86278 
-3.3223678 
1.309-10"'' 
1.433-10"^ 
3.875-10"^ 
6.618-10"'^ 
1.434-10"'* 
1.292-10"'* 
-11.5044 
-11.395 

-11.5044 
-1.8013 

-4.6876577 
-9.6601481 
-964.1458 
-2859.124 
2.525-10"'^ 

323.362 
1546.17 

0 
4.845-10"'* 
-10.15319 
-10.40294 

-10.5364045 
-186.7309 
-186.3406 

-24.062498 | 
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Table 5. Elapsed times and the number of function evaluations for AGOP(F) 

1 Function 

1 Ackleys 
1 Ackleys 
1 Griewank 
1 Griewank 
1 Levy Nr.l 

Levy Nr.l 
Levy Nr.2 
Levy Nr.2 
Levy Nr.3 
Levy Nr.3 

Michalewicz 
Michalewicz 

Rastrigin 
Rastrigin 

n 

lUUU 
300U 
lUUU 
3000 
1000 
3000 
1000 
3000 
1000 
3000 
1000 
3000 
1000 
3000 

JBest 

0 
0 
0 
0 
0 
0 
0 
0 

-11.5044 
-11.5044 

N/A 
N/A 

0 
0 

Jmin 

0.000459 
0.000516 

4.248-10"^ 
4.43M0~^ 
1.433-10-'^ 
3.875-10"^ 
1.434-10-^, 
1.292-10"^ 

-11.395 
-11.395 

-957.0770 
-2859.124 
1.440-10-H 
2.159-10-^ 1 

\t (sec) 

1 21.23 
145.67 
42.74 

367.09 
22.07 

201.06 
46.75 

380.01 
24.68 
174.62 
68.08 
715.60 
20.69 
162.07 

Nj 

185904 
530154 
174124 
555123 
163724 
463924 
165724 
463724 
182522 
573514 
257265 
955907 
174176 
5091251 
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Summary. In this paper we introduce an impulsive control model for a sequence of 
rumour processes evolving in a given population. Each rumour process begins with a 
broadcast, the recipients of which begin to spread that rumour. The recipients of the 
first broadcast are termed the subscribers. The second and subsequent broadcasts 
are either to the subscribers (Scenario 1) or to all individuals who have at any 
time to date been spreaders (Scenario 2). The objective is to time the second and 
subsequent broadcasts so as to minimise the final proportion of ignorants. It is shown 
that with either scenario the optimal time for each broadcast after the first is when 
the proportion of spreaders in the rumour process begun by the previous broadcast 
reaches zero. Results are presented concerning dependence on initial conditions, as 
well as graphical illustration of the controlled rumour processes under each scenario. 

K e y words : rumours, information spread, impulsive optimal control 
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1 Introduction 

Stochastic rumour models were introduced by Daley and Kendall [DK65], who 
considered a single initial spreader introducing a rumour into a closed pop
ulation. Initially the remainder of the population do not know the rumour 
and as such are termed ignorants. The members of the population meet one 
another with uniform mixing. A spreader-ignorant interaction converts the 
ignorant into a spreader. When two spreaders interact, they stop spreading 



388 C. Pearce et al. 

the rumour and become stifiers. A spreader-stifler interaction results in the 
spreader becoming a stifler. Otherwise interactions leave the roles of individu
als unchanged. With a change of time scale, this model may be converted into 
one in which those interactions effecting a change do so only with probability 
p {0 <p<l), 

Daley and Kendall reported a striking result later refined as follows: with 
one initial spreader, the proportion of the population never to hear the rumour 
converges almost surely to ^ 0.2031878 of the population size as the latter 
tends to infinity. The constant is the solution of a certain transcendental 
equation. The same constant arises with a variant stochastic model of Maki 
and Thompson [MT73]. With both models the number of spreaders eventually 
becomes zero and the process stops. 

A rigorous treatment of this result requires surprisingly delicate analysis, 
and much of the ensueing literature has been involved with technical questions 
arising from this. See, for example, [Bar72, GanOO, Pit90, Sud85, Wat87]. 

Rumour models can be used to describe a number of phenomena, such 
as the dissemination of information, disinformation or memes, and changes in 
political persuasion and the stock market. They are therefore of some practical 
significance. It is difficult to dispute that rumours have an important impact 
on stock prices. A stochastic model of the so-called pervasive rumour phe
nomenon in the stock markets can be found in [Bom03]. Reference [DMCOl] 
studies the customer behaviour and marketing implications of urban legends 
and rumours. There have also been studies of rumour models over ordered net
works [FPRU90, ZanOl]. References [AH98, DP03, OT77] deal with processes 
with more than one rumour at any given time. 

Many broad questions pertaining to stochastic rumours have still to be ad
dressed, partly because the technical questions tend to be rather more difficult 
than those for the related stochastic epidemic. It is remarkable that while the 
time-dependent behaviour of the general stochastic epidemic was determined 
in the 1960s, that of the Daley-Kendall and Maki-Thompson rumour models 
was not elucidated until 2000 [PeaOO]. The effect of varying from unity the 
initial number of spreaders has also been investigated only recently (Belen and 
Pearce [BP04]). The perhaps surprising result was discovered that even when 
the proportion of the initial population who are spreaders tends to unity, the 
proportion of the initial ignorants who never hear the rumour does not tend 
to zero. 

In an age of mass communication, it is natural to consider the initiation of 
a rumour by means of television, radio or the internet (Frost [ProOO]). We may 
use the term broadcast to refer to such an initiation. In a companion paper 
[BKP05] a model with two broadcasts is envisaged. A control ingredient is 
incorporated, the timing of the second broadcast. 

This paper presents a generalisation of this model to a general number 
n > 1 of broadcasts, with the intention of reducing the final proportion of 
the population never hearing the rumour. The rumour process is started by a 
broadcast to a subpopulation, the subscribers, who commence spreading the 
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rumour. We wish to determine when to effect subsequent broadcasts 2 , 3 , . . . , n 
so as to minimise the final proportion of ignorants in the population. 

Two basic scenarios are considered. In the first, the recipients of each 
broadcast are the fixed group of subscribers: a subscriber who had become a 
stifler becomes activated again as a subscriber spreader. In the second, the 
recipients of any subsequent broadcast are those individuals who have been 
spreaders at any time during the rumour initiated by the immediately previous 
broadcast. 

To obtain some results without becoming too enmeshed in probabilistic 
technicalities, we follow Daley and Kendall and, after an initial discrete de
scription of the population, describe the process in the continuum limit cor
responding to a total population tending to infinity. Exactly the same formu
lation occurs in the continuum limit if one starts with the Maki-Thompson 
formulation. The resultant differential equations with each scenario can be 
expressed in state-space form, with the upward jump in spreaders at each 
broadcast epoch constituting an impulsive control input. Since we are deal
ing with an optimal control problem, a natural approach would be to employ 
a Pontryagin-like maximum principle furnishing necessary conditions for an 
extremum of an impulsive control system (see, for example, Blaquiere [Bla85] 
and Rempala and Zapcyk [RZ88]). However, because of the tract ability of the 
dynamical system equations, we are able to solve the given impulsive control 
problem without resorting to this theory. 

In Section 2 we review the Daley-Kendall model and related results and 
introduce two useful preliminary results. In Section 3 we solve the control 
problem with Scenario 1 and in Sections 4 and 5 treat first- and second-order 
monotonicity properties associated with the solution. In Section 6 we solve 
the control problem for the somewhat more complicated Scenario 2. Also we 
perform a corresponding analysis of the first-order monotonicity properties 
for Scenario 2. Finally, in Section 7, we compare the two scenarios. 

2 Single-Rumour Process and Preliminaries 

The Daley-Kendall model considers a population of n individuals with three 
subpopulations, ignorants, spreaders and stiflers. Denote the respective sizes 
of these subpopulations by i, s and r. There are three kinds of interactions 
which result in a change in the sizes of the subpopulations. The transitions 
arising from these interactions along with their associated probabilities are as 
tabulated. The other interactions do not result in any changes to the subpop
ulations. 

We now adopt a continuum formulation appropriate for n —> oo. Let z(r), 
5(r), r{T) denote respectively the proportions of ignorants, spreaders and 
stifiers in the population at time r > 0. The evolution of the limiting form of 
the model is prescribed by the deterministic dynamic equations 
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Interaction Transition Probability 
i^s (z,5,r)i—>> (i — l,s + l,r) isdr-\-o{dT) 
s^ s (i, s, r) I—^ (i, s - 2, r + 2) s{s - l)/2 dr + o{dT) 
s^r (i,5,r)i—)" (i,5 — l,r + 1) srdr + o{dT) 

di 

- = - s ( l - 2 0 . 

ith initial conditions 

i(0) = a > 0, s(0) = /? > 0 and r(0) = 7 > 0 satisfying a + /? + 7 = 1. 

(1) 

(2) 

(3) 

(4) 

The dynamics and asymptotics of the continuum rumour process are 
treated by Belen and Pearce [BP04]. Under (4) z is a strictly decreasing func
tion of time during the course of a rumour and we may reparametrise and re
gard % as the independent variable. Define the limiting value C '-= hmr^oo ^{j)-
For our present purpose, the pertinent discussion of [BP04] may be sum
marised as follows. 

Theorem 1. In the rumour process prescribed by (l)-(4), 
(a) i is strictly decreasing with time with limiting value ^ satisfying 

0 < C < 1/2; 

(b) C is the smallest positive solution to the transcendental equation 

i e2(«-C) = e-0; (5) 

(c) s is ultimately strictly decreasing to limit 0. 

The limiting case a —> 1, /? —> 0, 7 = 0 is the classical situation treated 
by Daley and Kendall. In this case (5) becomes 

This is the equation used by Daley and Kendall to determine that in their 
classical case ( ^ 0.2031878. 

It is interesting to look at the case when a —> 0, in other words when 
there are almost no initial ignorants in the population. For this purpose we 
introduce a new variable 

a 
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the ratio of the proportion of ignorants at time r to the initial proportion. 
Note that ^(0) = 1. We define also rj := (/a^ the Hmiting value of ^ for r —» oo. 
Then (5) reads as 

For a —> 0, this becomes 

rje^-(^-^)=e-

rj^e-^ 

If p —> 0 too, that is, when there are almost no initial spreaders in the popu
lation, we get 77 = 1, that is, the proportion of the initial ignorant population 
remains unchanged. However if f3 —> 1, then 

rj = l/e^ 0.368 . 

Thus even when there is a small initial proportion of ignorants and a large 
initial proportion of spreaders, about 36.8% of the ignorant population never 
hear the rumour. This result is given in [BP04]. 

We shall make repeated use of the following theorem, which plays the role 
of a basis result for subsequent inductive arguments. Here we are examining 
the variation of ( with respect to one of a, /?, 7 subject to (4), with another 
of a, /?, 7 being fixed. 

Theorem 2. Suppose (4) holds in a single-rumour process. Then we have the 
following. 
(a) For /? fixed, ( is strictly increasing in a for a < 1/2. 
(b) For (3 fixed, ( is strictly decreasing in a for a > 1/2. 
(c) For 7 fixed, C ^̂  strictly increasing in a. 
(d) For a fixed, C, is strictly increasing in p. 

This is [BP04, Theorem 3], except that the statements there corresponding 
to (a) and (b) are for a < 1/2 and a > 1/2 respectively. The extensions to 
include a == 1/2 follow trivially from the continuity of C as a function of a. 

It is also convenient to articulate the following lemma, the proof of which 
is immediate. 

Lemma 1. For x G [0,1/2]^ the map x 1-̂  xe~'^^ is strictly increasing. 

3 Scenario 1 

We now address a compound rumour process in which n > 1 broadcasts 
are made under Scenario 1. We shall show that the final proportion of the 
population never hearing a rumour is minimised when and only when the 
second and subsequent broadcasts are made at the successive epochs at which 
5 = 0 occurs. We refer to this procedure as control policy S. It is convenient to 
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consider separately the cases 0 < a < 1/2 and a > 1/2. Throughout this and 
the following two sections, ^ denotes the final proportion of the population 
hearing none of the sequence of rumours. 

Theorem 3. Suppose (4) holds with 0 < a < 1/2, that Scenario 1 applies 
and n > 1 broadcasts are made. Then 
(a) ^ is minimised if and only if the control process S is adopted; 
(h) for (3 fixed, ^ is a strictly increasing function of a under control policy S. 

Proof Let T be an optimal control policy, with successive broadcasts occur
ring at times TI < r2 < . . . < Tn- We denote the proportion of ignorants in 
the population at Tk hy ik (A: = 1 , . . . ,n), so that ii — a. Since i is strictly 
decreasing during the course of each rumour and is continuous at a broadcast 
epoch, we have from applying Theorem 1 to each broadcast in turn that 

Zl > 22 > . . . > in > C > 0, (6) 

all the inequalities being strict unless two consecutive broadcasts are simul
taneous. 

Suppose if possible that s > 0 at time Tn — 0. Imagine the broadcast about 
to be made at this epoch were postponed and s allowed to decrease to zero 
before that broadcast is made. Denote by ^' the corresponding final proportion 
of ignorants in the population. Since i decreases strictly with time, the final 
broadcast would then occur when the proportion of ignorants had a value 

in < ^n. (7) 

In both the original and modified systems we have that s = /? at r^ + 0. 
By Theorem 2(a), (7) imphes ^' < ^, contradicting the optimality of poHcy 
T. Hence we must have s = 0 at r^ — 0 and so by Theorem 1 that 

2 > n̂ > e . 

Applying Theorem 2(a) again, to the last two broadcasts, gives that in is 
a strictly increasing function of in-i and that ^ is strictly increasing in in. 
Hence ^ is strictly increasing in in-i-

If n == 2, we have nothing left to prove, so suppose n > 2. We shall derive 
the desired results by backward induction on the broadcast labels. We suppose 
that for some k with 2 < fc < n we have 

(i) 3 = 0 at time TJ — 0 for j = /c, fc + 1 , . . . , n; 
(ii) ^ is a strictly increasing function of ik-i-

To establish the inductive step, we need to show that 5 = 0 at Tk-i — 0 
and that ^ is a strictly increasing function of i/c-2- The previous paragraph 
provides a basis A: — n for the backward induction. 

If 5 > 0 at Tfc-i — 0, then we may envisage again modifying the system, 
allowing s to reduce to zero before making broadcast k — 1. This entails that, 
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if there is a proportion i^_2 of ignorants in the population at the epoch of 
that broadcast, then 

0 < 4 _ i < ik-i . 

By (ii) this gives ^' < C ^^^ hence contradicts the optimality of T, so we 
must have s = 0 at Tk-i — 0. Theorem 2(a) now yields that ik-i is a strictly 
increasing function of i/c-2> so that by (ii) O s a strictly increasing function 
of iA;-2- Thus we have the inductive step and the theorem is proved. D 

For the counterpart result for a > 1/2, it will be convenient to extend the 
notation of Theorem 2 and use ({i) to denote the final proportion of ignorants 
when a single rumour beginning with state (z, /?, 1 — i — /?) has run its course. 

Theorem 4. Suppose (4) holds with a > 1/2^ that Scenario 1 applies and 
n> 1 broadcasts are made. Then 
(a) ^ is minimised if and only if the control process S is adopted; 
(h) for fixed P, ^ is a strictly decreasing function of a under control policy S. 

Proof First suppose that in > 1/2. By Theorem 1 and (6), this necessitates 
that 5 > 0 at time T2 — 0. If we withheld broadcast 2 until 5 = 0 occurred, 
the proportion 23 of ignorants at that epoch would then satisfy 

i'2=^C{ii) <C{in)= ^<l/2. 

The relations between consecutive pairs of terms in this continued inequality 
are given by the definition of C, Theorem 2(b), the definition of C again, and 
Theorem 1 applied to broadcast n. 

Hence policy S would give rise to ^' satisfying 

r < 4 < ̂ 2 < e, 
contradicting the optimality of T. Thus we must have i^ < 1/2 and so 

i i > 22 > • • • > ifc > 1/2 > ik+i >"'>in>^ 

for some k with 1 < k < n. 
Suppose if possible A: > 1. Then arguing as above gives 

2̂ = C(n) < Ciik) < ik+i < 1/2 . 

The second inequality will be strict unless 5 = 0 at time rj^+i — 0. This leads 
to 

i3 = C{i2)<C{h+i)<ik^2<l/2, 

and proceeding recursively we obtain 

4-fe+l <^n< 1/2 

and so 
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Thus we have ^' < ^, again contradicting the optimahty of T. Hence we must 
have k = 1, and so 

ii > 1/2 > 12 > is >'"> in > ^ ' 

Consider an optimally controlled rumour starting from state (^2,/?, 1 — 
i2 — P)' By Theorem 3(b), ^ is a strictly increasing function of ^2- For T 
to be optimal, we thus require that 22 be determined by letting the initial 
rumour run its full course, that is, that 5 = 0 at r2 — 0. This yields Part (a). 
Since a > 1/2, Theorem 2(b) gives that, with control policy 5 , 22 is a strictly 
decreasing function of a. Part (b) now follows from the fact that ^ is a strictly 
increasing function of 22. • 

Remark 1. For an optimal sequence of n broadcasts under Scenario 1, Theo
rems 1, 3 and 4 provide 

(8) 

(9) 

and 

Multiplying 

whicl I may 

ik-1 

these relations together 

a 

be rewritten as 

^e-2« = 

: e - ^ 

n-0 = 

yields 

for 

e-^. 

-n0 

a+n(3) 

1 < k< n 

(10) 

By Lemma 1, the left-hand side is a strictly increasing function of ^ for ^ G 
[0,1/2]. Hence (10) determines (^ uniquely. 

Remark 2. Equations (8), (9) may be recast as 

ikc-'^'^ = ik-ie~^^-^'^'^-'^ for 2<k<n (11) 

and 
^e-2« = ifce-(''+2i.) _ (12) 

Consider the limiting case /? —> 0 and 7 -^ 0, which gives the classical Daley-
Kendall limit of a rumour started by a single individual. Since ik < 1/2 for 
2 < k < n and ^ <l/2, we have by Lemma 1 that in fact 

ik = ^ for 2 < k < n. 

If a < 1/2, then the above equality actually holds for 1 < k < n. This is also 
clear intuitively: in the limit P —^ 0 the reactivation taking place at the second 
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and subsequent broadcast epochs does not change the system physically. This 
cannot occur for P > 0, which shows that when the initial broadcast is to a 
perceptible proportion of the population, as with the mass media, the effects are 
qualitatively different from those in the situation of a single initial spreader. 

The behaviour oi ik with n = 5 broadcasts is depicted in Figure 1(a) with 
the traditional choice 7 = 0. In generating the graphs, Equation 11 has been 
solved with initial conditions P = 0,0.2,0.4,0.6,0.8,1. The figure illustrates 
Remark 2. 

4 Monotonicity of ^ 

In this section we examine the dependence of ^ on the initial conditions for 
Scenario 1. Equation (10) can be expressed as 

n/? + 2 (a - 0 + In ^ - In a = 0. (13) 

A single broadcast may be regarded as an instantiation of Scenario 1 with 
n = 1. The outcome is independent of the control policy. This enables us to 
derive the following extension of Theorem 2 to n > 1 broadcasts, ^ taking 
the role of C- We examine the variation of ^ with respect to one of a, /?, 7 
subject to and one of a, /?, 7 being fixed. For example, if /? is fixed then we 
can consider the variation of ^ with respect to a subject to the constraint 
a + 7 = I — P supplied by (4). For clarity we adopt the notation {d^/da)f3 for 
the derivative of ^ with respect to a for fixed P subject toa-{-j = l—p. We 
use corresponding notation for the other possibilities arising with permutation 
of a, /?, 7. 

Theorem 5. Suppose (4) holds with n > 1. Then under Scenario 1 we have 
the following. 

(a) For P fixed, ^ is strictly increasing in a for a < 1/2 and strictly decreasing 
in a for a > 1/2. 

(b) For a fixed, ^ is strictly decreasing in p. 
(c) For 7 fixed, ^ is strictly increasing in a. 

Proof. The case n = 1 is covered by Theorem 2, so we may assume that n > 2. 
Also Part (a) is simply a restatement of Theorem 3(b) and Theorem 4(b). 

For parts (b) and (c), we use the fact that ^ < 1/2. Implicit differentiation 
of (13) yields 

and 
'dC\ _ O + (n - 2)a 

^da)^ a l - 2 e 

for any n > 1, which yield (b) and (c) respectively. D 
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Fig. 1. An illustration of Scenario 1 with a-\-P — 1 and five broadcasts. In successive 
simulations 0 is incremented by 0.2. For visual convenience, linear interpolation has 
been made between values of ik (resp. &k) for integral values of k. 
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The following result provides an extension to Corollary 4 of [BP04] to 
n > 1. 

Corollary 1. For any n > 1, we have ^ := sup^ = 1/2. This occurs in the 
limiting case a — 'j —^ 1/2 with /? —» 0. 

Proof. Prom Theorem 5(c) we have for fixed 7 > 0 that ^ is approached in 
the limit a = 1 — 7 with /? = 0. By Theorem 5(a), we have in the limit /? = 0 
that ^ arises from a = 1/2. This gives the second part of the corollary. 

Prom (13), J satisfies 

1 - 2x + ln(2x) = 0. 

It is shown in Corollary 4 of [BP04] that this equation has the unique positive 
solution X = 1/2. The first part follows. D 

Figure 1(a) provides a graphical illustration of Theorem 5(c) for 7 - ^ 0 . 
Por 7 = 0, the initial state is given by a single parameter a = ii = 1 — p. 

Define 0k = ik/o^ ^or 1 < k < n and rj = ©n+i = ^/<^- Then 0 i = 1 and 

Ok+ie-'^''^'+' = e-(2a+/c^) ^ 1 < A: < n - 1 , (14) 

rye-2"^ = e-(2«+n/?) . (I5) 

Remark 3. Put w = —2^. Then (15) gives 

^ e ^ = -2ae-(2a+n^) ^ 

the solution of which is given by the so-called Lambert w function ([CHJK96, 
BPO4J)' A direct application of the Lagrange series expression given in [BPO4] 
provides 

W 

Remark 4- I'n the case a —> 0 of a vanishing small proportion of initial igno-
rants, we have by (15) that 

rj = e-^^ . (16) 

Thus the ratio of the final proportion of ignorants to those at the beginning de
cays exponentially at a rate equal to the product of the number n of broadcasts 
and the proportion (3 of initial spreaders. Two subcases are of interest. 

(i) The case (3 —> 0 represents a finite number of spreaders in an infinite 
population. Almost all of the initial population consists of stiflers, that is, 
7 —> 1, and we have rj = 1. No matter how many broadcasts are made, 
the proportion of ignorants remains unchanged. 

(ii)In the case of (3 —> 1 almost all of the initial population consists of 
spreaders, and we obtain rj = e~^. 
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Consider Equation (16) again. For 0 < /3 < 1, as well as for (3 —> I, we have 
that T] —> 0 as n —> oo. 

The behaviour of 0k for the standard case 7 = 0 is illustrated in Fig
ure 1(b), for which we solve (14) with various initial conditions for 5 broad
casts. This brings out the variation with /? more dramatically. The graph 
illustrates in particular Remark 4(ii). The curves pass through (1,1), since 
ii = a implies ©i = 1. 

Remark 5. Given initial proportions a of ignorants and (3 of subscribers, with 
0 < /? < 1 or with (3 —> 1, the required number n of broadcasts to achieve a 
target proportion rj or less of ignorants can be obtained through (15) as 

k -~[ln{rj) + 2a{l-rj)] 

For example, consider the conventional case of ^ = 0. Given 20% initial 
spreaders ((3 = 0.2j in the infinite population, in order to reduce the initial 
number of ignorants by 90% (that is, to reduce to a level where rj < 0.1) at least 
five broadcasts are needed (see also Figure 1(b)). The same target is achieved 
in three broadcasts if the initial spreaders comprise 60% of the population 
((3 = o.e;. 

For n > 1, Equation (15) can be rewritten as 

n/3 + 2a(l-77)4-In77 = 0 . (17) 

Theorem 6. Suppose n > 1 and (4) applies. Then under Scenario 1: 

(a) for (3 fixed, rj is strictly decreasing in a; 
(b) for a fixed, rj is strictly decreasing in (3; 
(c) for 7 fixed, rj is strictly decreasing in a for n — 1 and strictly increasing 

in a for n>2. 

Proof. We use the facts that 77 < 1/2 and ^ = arj < 1/2. Implicit differentia
tion of (17) gives 

'drA 2rj{l-v) ^^^ 
^dajp 1 — 2arj 

dr]\ nr) 
' ^ - ' < 0 , ^d(3j^ l-2arj 

which furnish (a) and (b) respectively. 
Similarly 

'drj\ 7/(2 - n - 2rj) 
,da)^ l-2ari 

For n = 1 the numerator on the right is positive and so (drj/da)^ < 0. For 
7̂  > 2 the numerator is negative and {drj/da)^ > 0. This completes the proof. 

D 
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A graphical illustration of Theorem 6(c) for 7 == 0 is given in Figure 1(b). 
Theorem 6(c) can be re-expressed as saying that, for fixed 7, r/ = ©n+i is 
increasing in /? for n = 1 and decreasing for n > 1. This is reflected in the 
graphs almost having a point of concurrence between k = 2 and A: = 3. 

We may interpolate between integer values of k by extending (13) to define 
^ for nonintegral n > 1, rather than by employing linear interpolation. Doing 
this yields exact concurrence of the interpolated curves. To see this, suppose 
we write (13) as 

n(l - a - 7) + 2a(l - 0n+i) + In ©n+i = 0. (18) 

For 7 > 0 given, if this curve passes through a point (n+1,0n+i ) independent 
of a we must have 

2a(l — 0n+i) — na= constant . 

This necessitates 
n = 2{l-en+i) (19) 

and so from (18) that 
n ( l - 7 ) + l n 0 n + i - O . (20) 

Clearly (19) and (20) are together also sufficient for there to be a point of 
concurrence. 

Elimination of n between (19) and (20) provides 

2(1 - 0n+i)( l - 7) + In0n+i = 0. (21) 

Denote by r/o the value of C, for a (single) rumour in the limit y5 ^ 0 and the 
same fixed value of 7 as in the repeated rumour. We have 

2 ( l - 7 ) ( l - 7 7 o ) + lnryo-0 . (22) 

Prom (21) and (22) we can identify 0n+i = ^0 and (19) then yields n = 
2(1 — r]o). We thus have a common point of intersection (3 — 2rjo,rjo). In 
particular, for the traditional choice 7 — 0, we have 770 ~ 0.203 and the 
common point is approximately (2.594, 0.203), a point very close to the cluster 
of points in Figure 1(b). 

5 Convexity of ^ 

We now address second-order monotonicity properties of ^ as a function of 
a, /3, 7 in Scenario 1. The properties derived are new for n = 1 as well as 
for n > 2. First we establish two results, of some interest in their own right, 
which will be useful in the sequel. 
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Theorem 7. Suppose (4) holds with n > 1 and Scenario 1 applies. For 0 < 
X <1 and u; > 0 define 

h{x, cj) := a; + 2(2x - 1) + ln(l - x) - In x. 

Then 

(a)h{x,iu) = 0 defines a unique 

x = (l>{uj)e (1/2,1); 

(b) h is strictly increasing in u; 
(c)i>l-a ^̂ => a > </)(n/?) and ^ < l - a 4=^ a<(j){np). 

Proof, We have 
dh _ {l-2xf ^^^ 
dx x{l — x) ~ ' 

with equahty if and only \i x = 1/2, so h{-,uj) is strictly decreasing on (0,1). 
Also h{l/2,(jo) = uj > 0 and h{x,uj) —^ —oo as x —> 1—. Part (a) follows. 

The relation h{x,uj) — 0 may be written as 

-u; = 2(2x - 1) + ln(l - x) - Inx. 

Part (b) is an immediate consequence, since the right-hand side is a strictly 
decreasing function of a; on (0,1). 

Since h is strictly decreasing in x, we deduce from (a) that 

/ i (x ,u;)>0 for x < ^{^) and / i (x,cj)<0 for x>(\)[uS), (23) 

For 2/G (0,1) put 

g{a,u,y) := uj-i-2{a - y)+ lny - In a. 

We have readily that dg/dy is positive for y <l/2 and negative for ?/ > 1/2, so 
g is strictly increasing in y for y < 1/2 and strictly decreasing in y for y > 1/2. 
Also p ^ a ; > O a s y — ^ a and g -^ —oo as y ^ 0, whence g{a,n(3,^) = 0 
defines a unique ^ G (0, a A 1/2). We have 

^ ^ 1 — a according as g{a, n(3,1 — a) ^ 0. 

But ^(a,n/3,1 -- a) = h{a,np). Part (c) now follows immediately from (23). 
D 

Corollary 2. Under the conditions of the preceding theorem with n = 1, 

^ ^ a /2 according as 7 ^ 1 — In 2. 

Proof The argument of the theorem gives that 

^ ^ a/2 according as g{a, /?, a/2) ^ 0, 

that is, 
^ ^ a/2 according as /̂  + a — In 2 ^ 0. 

The stated result follows from a + /3 + 7 = l. • 
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Theorem 8. Suppose (4) holds with n > 1 and Scenario 1 applies. Then 

(a) for a fixed, ^ is strictly convex in (3; 
(h) for p fixed, ^ is strictly concave in a for a G (0,4>{nP)) and strictly convex 

forae[ct>{n(5)A); 
(c) for 7 fixed, ^ is strictly convex in a if n>2 or n = 1 and 7 > 1 — In 2; 
(d) for 7 fixed, ^ is strictly concave in a ifn = l and 7 < 1 — In 2. 

Proof Implicit differentiation of 13 twice with respect to /? yields 

2 

a-)(0^Mii>»' 
which yields (a). Similarly 

2 
1 - 2a . 1_ 

c? I V 1 - 2^ 

The expression in brackets has the same sign as 

that is, the opposite sign to 1 — (a + ^). By Theorem 7(c), the expression in 
brackets is thus negative if a < 4>{nP) and positive if a > (t){nP)^ whence part 
(b). 

Also by implicit differentiation of (13) twice with respect to a, 

(24) U VU^V^ e\da, 
and a single differentiation gives 

my^—H 

1,0? 

(25) 

By Theorem 5(c), the right-hand side of (25) is positive for n > 2, so the 
right-hand side of (24 must be positive and therefore so also the left-hand 
side, whence we have the first part of (c). 

To complete the proof, we wish to show that for n = 1 the right-hand side 
of (25) is positive for 7 > 1 — In 2 and negative for 7 < 1 — In 2. Since 

^daj^ a ( l - 2 0 ' 

the desired result is established by Corollary 2, completing the proof. D 
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6 Scenario 2 

Theorem 9. Suppose (4) holds and n > 1 broadcasts are made under Sce
nario 2. Then 
(a) ^ is minimised if and only if control policy S is adopted; 
(h) for fixed y, ^ is a strictly increasing function of a under control policy S. 

Proof The argument closely parallels that of Theorem 3. The proof follows 
verbatim down to (7). We continue by noting that in either the original or 
modified system r == 7 at time r^ -f- 0. By Theorem 2(c), (7) implies ^' < ̂ , 
contradicting the optimality of control policy T. Hence we must have 5 = 0 
at time r^ — 0. The rest of the proof follows the corresponding argument in 
Theorem 3 but with Theorem 2(c) invoked in place of Theorem 2(a). D 

Remark 6. The determination of ^ under Scenario 2 with control policy S is 
more involved than that under Scenario 1. For 1 < k < n, set (3k = <5(rfc + 0). 
Then ik -^ Pk = ̂  — 1 = (^ + P, so that Theorem 1 yields 

Ik 
e 2{ik-i-ik) = g-(a+/3-ifc_i) y.̂ ^ 1 < A; < n + 1, 

u - 1 

where we set 2̂ 4-1 := C- We may recast this relation as 

ij^ e-^'^ = ik-i g-(a+/3+u_i) j ^ ^ 1 < A: < n + 1. (26) 

Since ik,^ ^ (0,1/2) for 1 < k < n, Lemma 1 yields that (26) determines 
^ uniquely and sequentially from ii = a. 

Figure 2(a), obtained by solving (26), depicts the behaviour of ik with 
n = 5 for the standard case of 7 = 0. The initial values /? = 0,0.2,0.4,0.6,0.8,1 
have been used to generate the graphs. 

As with Scenario 1, we examine the dependence of ̂  on the initial condi
tions. Equation (26) can be rewritten as 

p + a + ik-i -2ik-^\nik-lnik-i - 0 , 1< A; < n + 1 . (27) 

We now give the following result as a companion to Theorem 5. As before, 
a single broadcast may be regarded as an instantiation of Scenario 2 with 
n = l. 

Theorem 10. Suppose (4) holds and Scenario 2 applies with n > 1. Then we 
have the following. 

(a) For a fixed, ^ is strictly decreasing in (3. 
(b) For 7 fixed, ^ is strictly increasing in a, 
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o.sl 
o.yi 

o.el 

ik 0.5 [ 

0.4 

o.si 

0.2 

0.11 

p—1 , 

1 1 1 1 

P—0 ^ ^ ^ 1 

1 1 g M a M M — 1 

3 4 
k 

(a) 

Fig. 2. An illustration of Scenario 2 with a+P = 1 and five broadcasts. In successive 
simulations P is incremented by 0.2. For visual convenience, linear interpolation has 
been made between values of ik (resp. 0k) for integral values of k. 
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Proof. The case n = 1 is covered by Theorem 2, so we may assume tha t n > 2. 
Pa r t (b) is simply a restatement of Theorem 9(b). 

To derive (a), we use an inductive proof to show tha t 

dik 
< 0 for 2<k<n + l. 

Imphcit differentiation of (27) for A: — 2 provides 

'3X2 

dfiJAi2 .̂ - 1 , 

supplying a basis. Implicit differentiation for general k gives 

dik 
dp 

1 - 2 
^k 

dik-] 
dp 

1 
- 1 

^k-l 

from which we derive the inductive step and complete the proof. D 

The following result provides an extension to Corollary 4 of [BP04] to 
n > 1 for the context of Scenario 2. 

Corol lary 3 . For any n > 1, we have ^ := s u p ^ ==1/2. This occurs in the 
limiting case a = 7 —> 1/2 with /? ^ 0. 

Proof. Wi th the limiting values of a , /? and 7, (27) reads as 

- -{-ik-i -"^ik +^^ik -^^ik-i =0 for l < A : < n + l . 

We may now show by induction tha t ik = 1/2 ioi 1 < fc < n + 1. The basis is 
provided by a = 1/2 and the inductive step by the uniqueness result cited in 
the second par t of the proof of Corollary 1. since ^ < 1/2, this completes the 
proof. D 

Using the notat ion introduced for Scenario 1, the recursive equation 26 
can be rewritten as 

^ g - 2 a r , _ 0 ^ g - ( a + ^ + 0 . ) ^ (28) 

eke-^""^^ = Ok-1 e-^^+^+^'^-i) , 1 < /c < n, (29) 

where ©i = 1. 

Remark 7. In the case of almost no initial ignorants in the population, that is, 
when a —> 0, Equations (28), (29) reduce to 

rj = One 

which in turn give 

7] — e 

ek = Ok-ie-^ 

-n/3 

This equation is the same as that obtained in Remark 4 made for Scenario 1. 
The rest of the discussion given in Remark 4 O'lso holds for Scenario 2. 
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Figure 2(b) illustrates the above remark for a+13 -^ 1. As with Figure 1(b), 
Figure 2(b) shows more dramatically the dependence on /?: for a given initial 
value a, we have for each A: > 1 that Ok increases with /?, the relative and 
absolute effects being both less marked with increasing k. 

Remark 8. The required number n of broadcasts necessary to achieve a tar
get proportion e or less of ignorants may be evaluated by solving (28)-(29) 
recursively to obtain the smallest positive integer n for which rj < e. 

7 Comparison of Scenarios 

We now compare the eventual proportions ^ and ^* respectively of the pop
ulation never hearing a rumour when n broadcasts are made under control 
policy S with Scenarios 1 and 2. For clarity we use the superscript * to distin
guish quantities pertaining to Scenario 2 from the corresponding quantities 
for Scenario 1. 

Theorem 11. Suppose (4) holds and that a sequence of n broadcasts is made 
under control policy S. Then 
(a) if n> 2, we have 

il < ik for 2 <k <n\ 

(b) if n>2, we have 

Proof. From (11), (12) (under Scenario 1) and (26) (under Scenario 2), ^ may 
be regarded as i^+i and ^* as ijl^+i, so it suffices to establish Part (a). This 
we do by forward induction on k, 

Suppose that for some A: > 2 we have 

il-i<ik-i^ (30) 

A basis is provided by the trivial relation 23 ~ i^- We have the defining 
relations 

ile-^^l ^ il_^e~^^+f^^'k-i) (31) 

and 
ikc-^''^ = ik-ie-^^^^'^-^^ . (32) 

The inequality 
il_i < a 

may be rewritten as 
/3 + 2 i ^ _ i < a + /3 + i^_i, 
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so tha t 

Hence we have using (31) t ha t 

Lemma 1 and (30) thus provide 

By (32) and a second appHcation of Lemma 1 we deduce tha t i^ < ik, the 
desired inductive step. This completes the proof. D 

Theorem 11 can be verified for the case of 7 = 0 by comparing the graphs 
in Figures 1(a) and 2(a). 
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Summary. We study functions that can be represented as the sum of minima of 
convex functions. Minimization of such functions can be used for approximation of 
finite sets and their clustering. We suggest to use the local discrete gradient (DG) 
method [Bag99] and the hybrid method between the cutting angle method and 
the discrete gradient method (DG+CAM) [BRZ05b] for the minimization of these 
functions. We report and analyze the results of numerical experiments. 

K e y words: sum-min function, cluster function, skeleton, discrete gradi
ent method, cutt ing angle method 

1 Introduction 

In this paper we introduce and s tudy a class of sum-min functions. This class 
T consists of functions of the form 

F ( x i , . . . , XA:) = ^ min((^i(a;i, a) , (/?2(3:2, a ) , . . . ^},{x},,a)), 

where ^ is a finite subset of a finite dimensional space and the function 
X 1-̂  (pi{x,a) is convex for each i and a G ^ . In particular, the cluster func
tion (see, for example, [BRY02]) and Bradley-Mangasarian function [BMOO] 
belong to J^. We also introduce the notion of a skeleton of the set A, which 
is a version of Bradley-Mangasarian approximation of a finite set. The search 
for skeletons can be carried out by a constrained minimization of a certain 
function belonging to J^. 

We point out some properties of functions F e J^. In particular we show 
tha t these functions are DC (diff'erence of convex) functions. 

Functions F e J^ are nonsmooth and nonconvex. If the set A is large 
enough then these functions have a large number of shallow local minima. 
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Some functions F G ̂  (in particular, cluster functions) have a saw-tooth form. 
The minimization of these functions is a challenging problem. We consider 
both local and global minimization of functions F ^ T. We suggest to use the 
derivative-free discrete gradient (DG) method [Bag99] for local minimization 
of these functions. For global minimization we use the hybrid method between 
DG and the cutting angle method (DG+CAM)[BRZ05a, BRZ05b] and the 
commercial software GAMS (LGO solver), see [GAM05, LGO05] for more 
information. 

These methods were applied to the minimization of two types of functions 
from T\ cluster functions C^ (generalized cluster functions C^) and skeleton 
functions L^ (generalized skeleton functions Z^). These functions are used for 
finding clusters in datasets (unsupervised classification). 

The notion of clustering is relatively fiexible (see [JMF99, BRSY03] for 
more information). The goal of clustering is to group points in a dataset in 
a way that representatives of the same group (the same cluster) are similar 
to each other. There are difi'erent notions of similarity. Very often it is as
sumed that similar points have similar coordinates because each coordinate 
represents measurements of the same characteristic. The functions Ck^Ck^ Lk^ 
Lk can be used to represent the dissimilarity of obtained systems of clusters. 
Therefore, a clustering system which gives a minimum of a chosen dissimilar
ity function is considered as a desired clustering system. Different dissimilarity 
functions lead to difi'erent approaches to clustering, therefore difi'erent clus
tering results can be obtained by the minimization of functions F ^ T. 

We report results of numerical experiments and analyze these results. 

2 A class of sum-min functions 

2.1 Functions represented as the sum of minima of convex 
functions 

Consider finite dimensional vector space IR^ and IR" .̂ Let A C IR^ be a finite 
set and let A: be a positive integer. Consider a function F defined on (IR"^)^ 
by 

F ( x i , . . . , XA;) = ^ min((^i(xi, a), (^2(^2, a ) , . . . ^k{x],,a)), (1) 

where x v-^ (pi{x,a) is a convex function defined on IR"̂  (i = l , . . . , fc , a G 
A). We do not assume that this function is smooth. We denote the class of 
functions of the form (1) by ^ . 

The search for some geometric characteristics of a finite set can be accom
plished by minimization (either unconstrained or constrained) of functions 
from ^ , (see, for example [BRY02, BMOO]). Location problems (see, for ex
ample, [BLM02]) also can be reduced to the minimization of functions from 
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The minimization of function F G ̂  is a min-sum-min problem. We also 
can consider min-max-min problems with the objective function 

F{xi, ...,Xk)= msixmm{(pi{xi,a),(p2{x2,a),.. .(pk{xk,a)). 
aeA 

Using sum-min function F we take into account the contribution of each 
point a G ^ to a characteristic of the set A, which is described by means of 
functions (pi{x,a). This is not true if we consider F. From this point of view, 
the minimization of sum-min functions is preferable for examination of many 
characteristics of finite sets. 

2.2 Some properties of functions belonging to !F. 

Let F eJ^, that is 

F{xi,...,Xk) = Yl ™ ^ , (pi{xi,a), 
aeA 

where x H-> (pi{xi^a) is a convex function. Then F enjoys the following prop
erties: 

1. F is quasidifferentiable ([DR95]). Moreover, F is DC (the difference of 
convex functions). Indeed, we have (see for example [DR95], p. 108): 

F{x) = fi{x) - f2{x), x = (xi,...,Xk), 

where 

aEAi=l 

M^) == X^ .i^ax^^(^^(x^,a). 
aeA jy^i 

Both / i and /2 are convex functions. The pair DF{x) = (9/i(x), —df2{x)) is 
a quasidifferential [DR95] of F at a point x. Here df stands for the convex 
subdifferential of a convex function / . 

2. Since F is DC, it follows that this function is locally Lipschitz. 

3. Since F is DC it follows that this function is semi-smooth. 

We can use quasidifferentials of a function F G /* for a local approximation 
of this function near a point x. Clarke subdifferential also can be used for local 
approximation of F , since F is locally Lipschitz. 

3 Examples 

We now give some examples of functions belonging to class T. In all the 
examples, datasets are denoted as finite sets A C IR^, that is as sets of n-
dimensional points (also denoted observations). 
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3.1 Cluster functions and generalized cluster functions 

Assume that a finite set A C IR'̂  consists of k clusters. Let X = {xi,..., x^} C 
(IR"')^. Consider the distance d{X,a) = min{||xi — a| | , . . . \\xk — a\\) between 
the set X and a point [observation) a e A. (It is assumed that IR"̂  is equipped 
with a norm || • ||.) The deviation of X from A is the quantity d{X,A) = 
"^aeA ^{-^i ^)- -̂ ^̂  ̂  — {^1' • • • ^fc} be a solution to the problem: 

"^Kj^n Y^ n^MIki - «lh • • • W^k - a\\}. 
aeA 

Then x i , . . . ,Xfc can be considered as the centres of required clusters. (It is 
implicitly assumed that these are point-centred clusters.) If the cluster centres 
are known each point is assigned to the cluster with the nearest centre. Assume 
that N is the cardinahty of set A. The function 

Ck{xu...,Xk) = ~d{X,A) = — ^ m i n ( | | x i - a | | , . . . , ||x/c - a||) (2) 
aeA 

is called a cluster function. This function has the form (1) with ipi{x,a) = 
11 a: — o II for each aeA and i = 1 , . . . , fc. The cluster function was examined 
in [BRY02]. Some numerical methods for its minimization were suggested in 
[BRY02]. 

The cluster function has a saw-tooth form and the number of teeth dras
tically increases as the number of addends in (2) increases. This leads to the 
increase of the number of shallow local minima and saddle points. If the norm 
II • II is a polyhedral one, say || • || = || • ||i, then the cluster function is piece-wise 
linear with a very large number of different linear pieces. The restriction of 
the cluster function to a one-dimensional line has the form of a saw with a 
huge amount of teeth of different size but of the same slope. 

Let {ma)aeA be a family of positive numbers. Function 

Ck{xi,...,Xk) = — ^ ma min(||xi - a | | , . . . , ||xfc - a | | ) (3) 
aeA 

is called a generalized cluster function. Clearly Ck has the form (1). The 
structure of this function is similar to the structure of cluster function, however 
different teeth of generalized cluster function can have different slopes. 

Clusters constructed according to centres, obtained as a result of the clus
ter function minimization are called centre-based clusters. 

3.2 Bradley-Mangasarian approximation of a finite set 

If a finite set A consists of flat parts it can be approximated by a collection 
of hyperplanes. Such kind of approximation was suggested by P.S. Bradley 
and O.L. Mangasarian [BMOO]. Assume that we are looking for a collection 
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of k hyperplanes Hi = {x : [k^x] = Ci} approximating the set A. (Here [l,x] 
stands for the inner product of vectors / and x.) The following optimization 
problem was considered in [BMOO]: 

minimize 7 min ([/i,a] — c^)^ subject to ||/i||2 = 1, 2 = l , . . . , fc . (4) 
aeA 

Here mini=i,...,A;([^i, a] — c^)^ is the square of 2-norm distance between a point 
a and the nearest hyperplane from the given collection. Function 

G((/i,ci),...,(/fc,CA;)) = Y ] min {[li,a]-Cif 
'̂ —' i=l,...,k 
aGA 

can be represented in the form (1): 

G{{li,ci),,.,,{lk,Ck)) = V min (p{{li,Ci),a), 
'—^ 1=1....k 
a£A 

where ip{{l,c),a) = {[I, a] — c)^. 

3.3 Skeleton of a finite set of points 

We now consider a version of Bradley-Mangasarian definition, where the dis
tances to hyperplanes are used instead of the squares of these distances. As
sume that IR'̂  is equipped with a norm || • ||. Let A be a finite set of points. 
Consider vectors / i , . . . , / ^ with ||/^||* = max||a.||=,i[/,x] = 1 and numbers Q 
{i = 1 , . . , , /e). Let Hi = {x : [k^x] = Ci} and H = UiHi. Then the distance 
between the set Hi and a point a is d{a^Hi) — \[li^a] — Ci\ and the distance 
between the set H and a is 

d{a,H) = min I[/̂ , a] - Q | . (5) 
i 

The deviation of X from A is 

^Y2,d{a,H) = ^ m i n | [ / ^ , a ] - Ci\. 
aEA aGA 

The function 

Lk{{li,ci),...,{lk,Ck)) = y 'm in | [ / i , a ] - Ci\ (6) 
aeA 

is of the form (1). Consider the following constrained min-sum-min problem 

min V^ min \[li, a] — Ci\ subject to | | / j | | = 1, ĉ  G IR (j = 1 , . . . , k) (7) 
' '^ i 
aeA 

A solution of this problem will be called a k-skeleton of the set A. The function 
in (7) is called the skeleton function. 
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More precisely, /c-skeleton is the union of k hyperplanes {x : [k^x] — Q } , 
where ( ( / i , c i ) , . . . , (//c^Cjt)) is a solution of (7). / / the skeletons are known, 
each point is assigned to the cluster with the nearest skeleton. It is difficult 
to find a global minimizer of (7), so sometimes we can consider the union of 
hyperplanes that is formed by a local solution of (7) as a skeleton. 

Clusters constructed according to skeletons, obtained as a result of the 
skeleton function minimization are called skeleton-based clusters. 

The concept of shape of a finite set of points was introduced and studied 
in [SU05]. By definition, the shape is a minimal (in a certain sense) ellipsoid, 
which contains the given set. A technique to find an ellipsoidal shape is then 
proposed in the same paper. In many instances the geometric characterization 
of a set A can be viewed as the intersection between its shape, describing its 
external boundary, and its skeleton, describing its internal aspect. 

A comparative study of Bradley-Mangasarian approximation and skele
tons was undertaken in [GRZ05]. It was shown there that skeletons are quite 
different from Bradley-Mangasarian approximation, even for simple sets. 

3.4 Illustrative examples 

We now give two illustrative examples. 

Example 1. Consider the set depicted in Fig. 1 

Fig. 1. Clusters based on centres 

• * _•.• 

•''VI •* • • m ^ m if^ ' • • I * • • • ^ * 

* • • 

Clearly this set consists of two clusters, the centers of these clusters (points 
xi and X2) can be found by the minimization of the cluster function. The 
skeleton of this set hardly depends on the number k of hyperplanes (straight 
lines). For each k this skeleton cannot give a clear presentation on the structure 
of the set. 
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Fig. 2. Clusters based on skeletons 

Example 2. Consider now the set depicted in Fig. 2. 
It is difficult to say how many point-centred clusters has this set. Its de

scription by means of such clusters cannot clarify its structure. At the same 
time this structure can be described by the intersection of its skeleton consist
ing on three straight lines and its shape. It does not make sense to consider 
A:-skeletons of the given set with k > 3. 

4 Minimization of sum-min functions belonging to class 
T 

Consider function F defined by (1): 

F{xi,..,,Xk) = — ^mm{(pi(xi,a),(p2(x2,a),..,(pk{xk,a)), 
aeA 

Xi e IR"", 2 == l , . . . , fc . 

where A C IR^ is a finite set. This function depends on n x k variables. In 
real-world applications n x A; is a large enough number and the set A contains 
some hundreds or thousands points. In such a case function F has a huge 
amount of shallow local minimizers that are very close to each other. The 
minimization of such functions is a challenging problem. 

In this paper we consider both local and global minimization of sum-min 
functions from J^. First we discuss possible local techniques for the minimiza
tion. 

The calculation of even one of the Clarke subgradients and/or a quasidiffer-
ential of function (1) is a difficult task, so methods of nonsmooth optimization 
based on subgradient information (quasidifferential information) at each iter
ation are not effective for the minimization of F . It seems that derivative-free 
methods are more effective for this purpose. 
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For the local minimization of functions (1) we propose to use the so-called 
discrete gradient (DG) method, which was introduced and studied by Adil 
Bagirov (see for example, [Bag99]). A discrete gradient is a certain finite dif
ference approximated the Clarke subgradient or a quasidifferential. In contrast 
with many other finite differences, the discrete gradient is defined with respect 
to a given direction. This leads to a good enough approximation of Clarke sub-
gradients (quasidifferentials). DG calculates discrete gradients step-by-step; if 
a current point in hands is not an approximate stationary point then af
ter a finite number of iterations the algorithm calculates a descent direction. 
Armijo's method is used in DG for a line search. 

The calculation of discrete gradients is much easier if the number of ad
dends in (1) is not very large. The decrease of the number of addends leads 
also to a drastic diminishing of the number of shallow local minima. Since 
the number of addends is equal to the number of points in the dataset, we 
conclude that the results of the application of DG for minimization of (1) 
significantly depend on the size of the set A. 

The discrete gradient method is a local method, which may terminate in 
a local minimum. In order to ascertain the quality of the solution reached, it 
is necessary to apply global methods. Here we call global method a method 
that does not get trapped on stationary points, and can leave local minima 
to a better solution. 

Various combinations between local and global techniques have recently 
been studied (see, for example [HF02, YLT04]). 

We use a combination of the DG and the cutting angle method (DG+CAM) 
in our experiments. We call this method the hybrid global method. 

These two techniques (DG and DG+CAM) have been included in a new 
optimization software (CIAO-GO) created recently at the Centre for Infor
matics and Applied Optimization (CIAO) at the University of Ballarat, see 
[CIA05] for more information. This version of the CIAO-GO software (Centre 
for Informatics and Applied Optimization-Global Optimization) allows one to 
use four different solvers 

1. DG, 
2. DG multi start, 
3. DG+CAM, 
4. DG+CAM multi start. 

Working with this software users have to input 

• an objective function (for minimization), 
• an initial point for optimization, 
• upper and lower bounds for variables, 
• constraints and a penalty constant (in the case of constrained optimiza

tion), constraints can be represented as equalities and inequalities, 
• maximal running time, 
• maximal number of iterations. 
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"Multi start" option in CIAO-GO means that the program starts from the 
initial point chosen by a user and also generates 4 additional random initial 
points. The final result is the best obtained result. The additional initial points 
are generated by CIAO-GO from the corresponding feasible region (or close 
to the feasible region). 

As a global optimization technique we use the General Algebraic Mod
eling System (GAMS), see [GAM05] for more information. We use the Lip-
schitz global optimizer (LGO) solver [LGO05] from Pinter Consulting Services 
[Pin05]. 

5 Minimization of generalized cluster function 

In this section we discuss applications DG, DG-fCAM and the LGO solver for 
minimization of generalized cluster functions. We propose several approaches 
for selecting initial points. 

5.1 Construction of generalized cluster functions 

Consider a set ^ c IR^ that contains N points. Choose e > 0. Then choose 
a random vector b^ G A and consider subset A^ji = {a G A : ||a — 6^|| < e} 
of the set A. Take randomly a point b"^ e Ai = A\ Ai^i. Let ^52 = {a e Ai : 

a — 6̂ 11 < e} and ^2 = ^1 \ ^62- If the set Aj-i is known, take randomly 
b^ G Aj-iy define set Ai^j as {a G Aj-i : ||a — 6 |̂| < e} and define set A 
as Aj-i \ Aijj. The result of the described procedure is the set B = {b^}^^^, 
which is a subset of the original dataset A. The vector b^ is a representative 
for the whole group of vectors, removed on the step j . 

If rrij is the cardinality of Af^j then the generalized cluster function corre
sponding to B 

Ckix\...,x') = ^'£mjunn{\\x'-V\\,...,\\x''-b^\\) 
3 

can be used for finding centers of clusters of the set A. 
The size of the dataset B obtained as the result of the described pro

cedure is the most important parameter, so we shall use this parameter for 
characterization of B. 

It can be proved (see [BRSY03]) that this function does not differ by more 
than e from the original cluster function. 

Remark 1. We can use the same idea to construct the generalized skeleton 
function. 

Remark 2. Unfortunately, it is very difficult to know a priori the value for 
€ which allows one to remove a certain proportion of observations. In our 
experiments we had to try several values for e before we found suitable ones. 
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5.2 Initial points 

Most methods of local optimization are very sensitive to the choice of an initial 
point. In this section we suggest a choice of initial points which can be used 
for the minimization of cluster functions and generaUzed cluster functions. 

Consider a set 1̂ C IR^ that contains N points. Assume that we want to 
find k clusters in A. In this case an initial point is a vector x G IR^^^. The 
structure of the problem under consideration leads to different approaches to 
the choice of initial points. We suggest the following four approaches. 

fc-meansLi initial point The fc-meansLi method is a version of the well-
known fc-means method (see, for example, [MST94]), where || • ||i is used 
instead of || • ||2. (We use || • ||i in numerical experiments, this is the reason 
for consideration of /c-meansLi instead of /c-means.) We use the following 
procedure in order to sort N observations into k clusters: 

1. Take any k observations as the centres of the first k clusters. 
2. Assign the remaining N — k observations to one of the k clusters on the 

basis of the shortest distance (in the sense of || • ||i norm) between an 
observation and the mean of the cluster. 

3. After each observation has been assigned to one of the k clusters, the 
means are recomputed (updated). 

Stopping criterion: there is no observation, which moves from one cluster to 
another. 

Note that results of this procedure depend on the choice of an initial 
observation. 

We apply this algorithm for original dataset A and then the result point 
X G IR^^'^ is considered as an initial point for minimization of generalized 
cluster function generated by the dataset B. 

Uniform initial point The appHcation of optimization methods to clustering 
requires a certain data processing. In particular, a scaling procedure should 
be applied. In our experiments we convert a given dataset to a dataset with 
the mean-value 1 for each feature (coordinate). In such a case we can choose 
the point x = (1 ,1 , . . . ,1) G IR"^'^ as initial one. We shall call it the uniform 
initial point. 

Ordered initial point Recall that rrij indicates the cardinality of the set 
of points A^j G A, which are represented by a point IP G 5 . It is natural 
to consider the collection of the heaviest k points as an initial vector for the 
minimization of generalized cluster function C. To formalize this, we rearrange 
the points so that the numbers mj, j = 1, •. •, NB decrease and take the first 
k points from this rearranged dataset. Thus, in order to construct an initial 
point we choose the k observations with the largest values for weights ruj from 
the dataset B. 



Minimization of the Sum of Minima of Convex Functions 419 

Uniform-ordered initial point This initial point is a hybrid between the 
Uniform and the Ordered initial points. It contains the heaviest k — 1 obser
vations and the barycentre (each coordinate is 1). 

6 Numerical experiments with generalized cluster 
function 

For numerical experiments we use two types of datasets, namely the original 
dataset A and a small dataset B obtained by the procedure described in 
Subsection 5.1. We compare results obtained for B with the results obtained 
for the entire original dataset A. 

6.1 Datasets 

We carried out numerical experiments with two well-known test datasets (see 
[MST94]): 

• Letters dataset (20000 observations, 26 classes, 16 features). This dataset 
consists of samples of 26 capital letters, printed in different fonts; 20 differ
ent fonts were considered and the location of the samples was distributed 
randomly within the dataset. 

• Pendigits dataset (10992 observations, 10 classes, 16 features). This dataset 
was created by collecting 250 samples from 44 writers. These writers are 
asked to write 250 digits in random order inside boxes of 500 by 500 tablet 
pixel resolution. 

Both Letters and Pendigit datasets have been used for testing different 
methods of supervised classification (see [MST94] for details). Since we use 
these datasets only for construction of generalized cluster function, we consider 
them as datasets with unknown classes. 

6.2 Numerical experiments: description 

We are looking for three and four clusters in both Letters and Pendigits 
datasets. Dimension of optimization problems is equal to 48 in the case of 3 
clusters and 64 in the case of 4 clusters. We consider two small sub-databases 
of the Letters dataset (Letl, 353 points, approximately 2% of the original 
dataset; and Let2, 810 points, approximately 4% of the original dataset) and 
two small sub-sets of the Pendigits dataset (Penl, 216 points, approximately 
2% of the original dataset; and Pen2, 426 points, approximately 4% of the 
original dataset). 

We apply local techniques (discrete gradient method) and global tech
niques (a combination between discrete gradient and cutting angle method 
and LGO solver) to minimize the generalized cluster function. Then we need 
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to estimate the results obtained. We can use different approaches for this es
timation. One of them is based on comparison of values of cluster function 
Ck constructed with respect to the centers obtained in the original dataset 
A and with respect to the centers obtained in its small sub-dataset B. We 
compare the cluster function values, started from different initial points in 
original datasets and their approximations. 

We use the following procedure. 
Let A be an original dataset and B be its small sub-dataset. First, the 

centres of clusters in B should be found by an optimization technique. Then 
we evaluate the cluster function values in A using the obtained points as the 
centers of clusters in A. Using this approach we can find out how the results 
of the minimization depend on initial points and how far we can go in the 
process of dataset reduction. 

In our research we use 4 types of initial points, described in section 5.2. 
These initial points have been carefully chosen and the results obtained start
ing from these initial points are better than the results obtained starting from 
random initial points. Therefore, we present the results obtained for these 4 
types of initial points rather than the results obtained starting from random 
initial points generated, for example, by "multi start" option. 

6.3 Results of numerical experiments 

Local optimization 

First of all we have to point out that we have two groups of initial points 

• Group 1: Uniform initial point and A:-meansLi initial point, 
• Group 2: Ordered initial point and Uniform-ordered initial point. 

Initial points from Group 1 are the same for an original dataset and for all 
its reduced versions. Initial points from Group 2 are constructed according 
to their weights. Points in original datasets have the same weights which are 
equal to L 

Remark 3. Because the weights can vary for different reductions of the dataset, 
the Ordered initial points for Letl and Let2 do not necessarily coincide. The 
same is true for the Uniform-ordered initial points. The same observation 
appUes to the Pendigits dataset and its reduced versions Penl and Pen2. 

Our next step is to compare results obtained starting from different initial 
points in the original datasets and in their approximations. In our experi
ments we use two different kinds of function: the cluster function and the 
generalized cluster function. Values for the cluster function and the general
ized cluster function are the same for original datasets because each point has 
the same weight which is equal to 1. In the case of reduced datasets we pro
duce our numerical experiments in corresponding approximations of original 
datasets and calculate two different value: the cluster function value and the 



Minimization of the Sum of Minima of Convex Functions 421 

generalized function value. The cluster function value is the value of the 
cluster function calculated in the corresponding original dataset according to 
the centres found in the reduced dataset. The generalized cluster function 
value is the value of the generalized cluster function calculated in the reduced 
dataset according to the centres found in the same reduced dataset. Normally 
a cluster function value (calculated according to the centres found reduced 
datasets) is larger than a generalized cluster function value calculated accord
ing to the same centres and the corresponding weights, because optimization 
techniques have been actually applied to minimize the generalized cluster in 
the corresponding reduced dataset. In Tables 1-2 we present the results of 
our numerical experiments obtained for DG and DG+CA starting from the 
Uniform initial point. 

It is also very important to remember that a better result in a reduced 
dataset is not necessarily better for the original one. For example, in the case of 
the Penl dataset, 3 clusters, the Uniform initial point the generalized function 
value is lower for DG+CAM than for DG, however the cluster function value 
is lower for DG than for DG+CAM. We observe the same situation in some 
other examples. 

Table 
point 

1. Cluster function and generalized cluster function: DG, Uniform initial 

Dataset 

Penl 
Pen2 

Pendigits 
Letl 
Let2 

Letters 

Size 

216 
426 

10992 
353 
810 

20000 

^, , Generalized 
Cluster , ^ 
p ,. cluster 
function „ 

, ninction 
value , 

value 
3 clusters 

6.4225 5.5547 
6.3844 5.8132 
6.3426 6.3426 
4.3059 3.3859 
4.2826 3.7065 
4.2494 4.2494 

^, , Generalized 
Cluster , ^ 
p ,. cluster 
function „ 

, mnction 
value 

value 
4 clusters 

5.7962 4.8362 
5.7725 5.0931 
5.7218 5.7218 
4.1200 3.1611 
4.0906 3.5040 
4.0695 4.0695 

Our actual goal is to find clusters in the original datasets, therefore it is 
important to compare cluster function values calculated in original datasets 
according to obtained centres. Centres can be obtained from our numerical ex
periments with both types of datasets: original datasets and reduced datasets. 
It is one of the possible ways to test the efficiency of the proposed approach: 
substitution of original datasets by their smaller approximations. 

Tables 3-8 represent cluster function values obtained in our numerical ex
periments starting from the fc-meansLi, Ordered and Uniform-ordered initial 
point. We do not present the obtained generalized function values because 
this function can not be used as a measure of the quality of clustering. 
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Table 2. Cluster function and generalized cluster function: DG+CAM, Uniform 
initial point 

Dataset 

Penl 
Pen2 

Pendigits 
Letl 
Let2 

Letters 

Size 

216 
426 

10992 
353 
810 

20000 

^, , Generalized 
Cluster , ^ 
. ^. cluster 
lunction ^ 

, function 
value , 

value 
3 clusters 

6.4254 5.5546 
6.3843 5.8131 
6.3426 6.3426 
4.3059 3.3859 
4.2828 3.7061 
4.2494 4.2494 

^, , Generalized 
Cluster , ^ 
r ,. cluster 
function p 

, function 
value , 

value 
4 clusters 

5.7943 4.8353 
5.7718 5.0931 
5.7218 5.7218 
4.1208 3.1600 
4.0909 3.5020 
4.0695 4.0695 

Recall that reduced datasets are approximations of corresponding original 
datasets. Decreasing the number of observations we reduce the complexity of 
our optimization problems but obtain less precise approximations. Therefore, 
our goal is to find some balance between the reduction of the complexity of op
timization problems and the quality of obtained results. In some cases (mostly 
initial point from Group 2, see Remark 3 for more information) the results 
obtained on larger approximations of original datasets (more precise approx
imations) are worse than the results obtained on smaller approximations of 
original datasets (less precise approximations). For example, Penl and Pen2 
for initial point from Group 2 (3 and 4 clusters). 

Table 3. Cluster function: DG, /c-meansLi initial point 

Dataset 

Penl 
Pen2 

Pendigits 
Letl 
Let2 

Letters 

Size 

216 
426 

10992 
353 
810 

20000 

Cluster function value 
3 clusters 

6.4272 
6.3840 
6.3409 
4.3087 
4.2816 
4.2495 

Cluster function value 
4 clusters 

5.8063 
5.7704 
5.7217 
4.1241 
4.1013 
4.0726 

Remark 4- In the original datasets, it is not relevant to consider the Ordered 
and Uniform-ordered initial points, because all the points have the same 
weight. 

Summarizing the results of the numerical experiments (cluster function, 
local and hybrid global techniques, 4 special kinds of initial points) we can 
draw out the following conclusions: 
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Table 4. Cluster function: DG+CAM, /c-meansLi initial point 

Dataset 

Penl 
Pen2 

Pendigits 
Letl 
Let2 

Letters 

Size 

216 
426 

10992 
353 
810 

20000 

Cluster function value 
3 clusters 

6.4278 
6.3841 
6.3409 
4.3087 
4.2824 
4.2495 

Cluster function value 
4 clusters 

5.8063 
5.7723 
5.7217 
4.1262 
4.1014 
4.0726 

Table 5. Cluster function: DC, Ordered initial point 

Dataset 

Penl 
Pen2 
Letl 
Let2 

Size 

216 
426 
353 
810 

Cluster function value 
3 clusters 

6.4188 
6.6534 
4.3228 
4.3843 

Cluster function value 
4 clusters 

5.8226 
5.9047 
4.2049 
4.1112 

Table 6. Cluster function: DG+CAM, Ordered initial point 

Dataset 

Penl 
Pen2 
Letl 
Let2 

Size 

216 
426 
353 
810 

Cluster function value 
3 clusters 

6.4171 
6.6536 
4.3228 
4.3843 

Cluster function value 
4 clusters 

5.8201 
5.9047 
4.2045 
4.1107 

Table 7. Cluster function: DC, Uniform-ordered initial point 

Dataset 

Penl 
Pen2 
Letl 
Let2 

Size 

216 
426 
353 
810 

Cluster function value 
3 clusters 

6.4188 
6.6514 
4.2910 
4.2828 

Cluster function value 
4 clusters 

5.7921 
5.8718 
4.1225 
4.1129 

DC and DG+CAM applied to the same datasets produce almost identical 
results if initial points are the same, 
DG and DG+CAM applied to the same datasets starting from different 
initial points (4 proposed initial points) produce very similar results in 
most of the examples, 
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Table 8. Cluster function: DG+CAM, Uniform-ordered initial point 

Dataset 

Penl 
Pen2 
Letl 
Let2 

Size 

216 
426 
353 
810 

Cluster function value 
3 clusters 

6.4171 
6.6492 
4.2905 
4.2828 

Cluster function value 
4 clusters 

5.7945 
5.8715 
4.1233 
4.1130 

3. in some cases the results obtained on smaller approximations of original 
datasets are better than the results obtained on larger approximations of 
original datasets. 

Global optimization: LGO solver 

First we present the results obtained by the LGO solver (global optimization). 
We use the Uniform initial point. The results are in Table 9. 

In almost all the cases (except Pendigits 3 clusters) the results for reduced 
datasets are better than for original datasets. It means that the cluster func
tion is too complicate for the solver as an objective function and it is more 
efficient to use generalized cluster functions generated on reduced datasets. It 
is beneficial to use reduced datasets in the case of the LGO solver from two 
points of view 

1. computations with reduced datasets allow one to reach a better minimizer; 
2. computational time is significantly less for reduced datasets than for orig

inal datasets. 

It is also obvious that the software failed to reach a global minimum. We sug
gest that the LGO solver has been developed for a broad class of optimization 
problems. However, the solvers included in CIAO-GO are more efiicient for 
minimization of the sum of minima of convex functions, especially if the num
ber of components in sums is large. 

Remark 5. The LGO solver was not used in the experiments on skeletons. 

7 Skeletons 

7.1 Introduction 

The problem of grouping (clustering) points by means of skeletons is not so 
widely studied as it is in the case of cluster function based models. There
fore, we would like to start with some examples produced in not very large 
datasets (no more than 1000 observations). In this subsection we formulate 
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Table 9. Cluster function: LGO solver 
Dataset 

Penl 
Pen2 

Pendigits 
Letl 
Let2 

Letters 

Size 

216 
426 

10992 
353 
810 

20000 

Cluster function value 
3 clusters 

6.4370 
6.4122 
6.3426 
4.3076 
4.2829 
5.8638 

Cluster function value 
4 clusters 

5.8029 
5.7800 
7.1859 1 
4.1426 
4.1191 
4.2064 

the problems of finding skeletons mathematically, discuss applications of DG 
and DG+SA to finding skeletons with respect to || • ||i and and give graph
ical implementation to obtained results (for examples with no more than 3 
features). 

The search for skeletons can be done by solving constrained minimization 
problem (7). 

Both algorithms are designed for unconstrained problems so we use a 
penalty function in order to convert problem (7) to the unconstrained mini
mization. The corresponding unconstrained problem has the form: 

mm ^ ^ ^ ^ m i n | [ / , , a ^ ] - 6 , | + i ? ^ ^ | | | / , | | i - l | , (8) 
qeQ * i=l 

where Rp is a penalty parameter. 
Finally, the algorithms were applied starting from 3 different initial points, 

and the best solution found was selected. The 3 different points used in the 
example are: 

Pi = 

Ps 
T ( O , I . . . , I ) 

The problem has been solved for different sets of points, selected from 3 dif
ferent well known datasets: the Heart disease database (13 features, 2 classes: 
160 observations are from the first class and 197 observations are from the 
second class), the Diabetes database (8 features, 2 classes: 500 observations 
are from the first class and 268 observations are from the second class) and 
the Australian credit cards database (14 features, 2 classes: 383 observations 
are from the first class and 307 observations are from the second class), see 
also [MST94] and references therein. Each of these datasets was submitted 
first to the feature selection method described in [BRY02]. 
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The value of the objective function was considerably decreased by both 
methods. However, the discrete gradient method often gives a local solution 
which is very close to the initial point, while the hybrid gives a solution which 
is further and better. In the tables the distance considered is the Euclidean 
distance between the solution obtained and the initial solution, and the value 
considered is the value of the objective function at this solution. 

Table 10. Australian credit card database with 2 hyperplanes skeletons 

Class 1 

Class 2 

Initial point 
1 
2 
3 
1 
2 
3 

computation time 

DG method 
value 

22.9804 
25.5102 
6.10334 

0.473317 
3.029 

6.87897 

distance 
10.668 

2.81543 
4.40741 
5.00549 
2.14784 
6.06736 

54 sec 

hybrid method 
value 

6.11298 
13.2263 
6.10334 
0.473317 
0.222154 
4.73828 

distance 
7.98738 
5.91397 
4.40741 
5.00549 
2.13944 
6.74424 

664 sec 

Table 11. Diabetes database with 3 hyperplanes skeletons 

Class 1 

Class 2 

Initial point 
1 
2 
3 
1 
2 
3 

computation time 

DG method 
value 

28.5856 
39.3925 
33.2006 
22.2806 
30.346 
23.0529 

distance 
6.78624 
11.4668 
3.09434 
2.3755 

56.7222 
1.61649 

212 sec 

hybrid method 
value 

28.1024 
28.2417 
31.4624 
22.2806 
19.5574 
22.9495 

distance 
6.79326 
11.7711 
2.31922 
2.3755 

8.76914 
1.76052 

1521 sec 

The different examples show that although sometimes the hybrid method 
does not improve the result obtained with the discrete gradient method, in 
some other cases the result obtained is much better than when the discrete 
gradient method is used. However the computations times it induces are much 
greater than the simple use of the discrete gradient method. The diabetes 
dataset has 3 features, after feature selection (see [BRY02]). This allows us to 
plot graphically some of the results obtained during the computations. 

We can observe that the hybrid method does not necessarily give an opti
mal solution. Even with the hybrid method the initial point is very important. 
Figure 3 however, confirms that the solutions obtained are usually very good, 
and represent correctly the set of points. The set of points studied here is 
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Fig. 3. 2^^ class for the diabetes database, with 2 hyperplanes 

# %k . • 
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m • 

@ « » HI rf^«^ © ^̂  
• a 

constituted by a big mass of points, and some other points spread around. It 
is interesting to remark that the hyperplanes intersect around the same place 
- where the big mass is situated - and take different directions, to be the closer 
possible to the spread points. 

Figure 4 shows the complexity of the diabetes dataset. 

7.2 Numerical experiments: description 

We are looking for three and four clusters in both Letters and Pendigits 
datasets. Dimension of optimization problems is equal to 51 in the case of 
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Fig. 4. Diabetes database, with 1 hyperplane per class 

3 skeletons and 68 in the case of 4 skeletons. We use the same sub-datasets 
as in section 6 (Penl, Pen2, Letl, Let2). 

We apply local techniques (DG and DG+CAM) for minimization of the 
generalized skeleton function. Then we use a procedure which is similar to the 
one we use for the cluster function to estimate the obtained results. First, we 
find skeletons in original datasets (or in reduced datasets). Then we evaluate 
the skeleton function values in original datasets using the obtained skeletons. 

For the skeleton function the problem of constructing a good initial point 
has not been studied yet. Therefore, in our numerical experiments as an initial 
point we choose a feasible point. We also use "multi start" option to compare 
results obtained starting from different initial points. 
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7.3 Numerical experiments: results 

In this subsection we present the results obtained for the skeleton function. 
Our goal is to find the centres in original datasets, therefore we do not present 
the generalized skeleton function values. Table 12 and Table 13 present the 
values of the skeleton function evaluated in the corresponding original datasets 
(Pendigits and Letters respectively) according to the skeletons obtained as 
optimization results reached in datasets from the first column of the tables. We 
use two different optimization methods: DG and DG+CAM and two different 
types of initial points: "single start" (DG or DG+CAM) and "multi start" 
(DGMULT or DG+CAMMULT). 

Table 12. Skeleton function: Pendigits 

Number of 
seletons 

3 

4 

Dataset 

Penl 
Pen2 

Pendigits 
Penl 
Pen2 

Pendigits 

Size 

216 
426 

10992 
216 
426 

10992 

Skeleton function values 
DG 

2137.00 
735.00 
567.20 
1223.16 
1360.16 
905.56 

DGMULT 
1287.58 
735.47 
567.20 
1315.68 
946.74 
905.56 

DG+CAM 
1832.97 
735.47 
567.20 
1194.65 
1322.46 
905.56 

DG+CAMMULT 
1320.00 
735.47 
566.55 
1180.79 
946.74 
661.84 

Table 13. Skeleton function: Letters 
Number of 

seletons 

3 

4 

Dataset 

Letl 
Let2 

Letters 
Letl 
Let2 

Letters 

Size 

353 
810 

20000 
353 
810 

20000 

Skeleton function values 
DG 

1548.30 
2201.75 
1904.71 
1566.69 
2030.20 
964.37 

DGMULT 
1548.30 
1475.77 
1904.71 
1566.69 
2030.20 
850.14 

DG+CAM 
1545.58 
2171.01 
1904.71 
1531.99 
1892.31 
850.14 

DG+CAMMULT 
1545.58 
1608.14 
964.37 
1531.99 
1892.31 
850.14 

The most important conclusion to the results is that in the case of the 
skeleton function the best optimization results (the lowest value of the skeleton 
function) have been reached in the experiments with the original datasets. It 
means that the proposed cleaning procedure is not as efficient in the case of 
skeleton function as it is in the case of the clustering function. However, in the 
case of the clustering function the initial points for the optimization methods 
have been chosen after some preliminary study. It can happen that an efficient 
choice of initial points leads to better optimization results for both kinds of 
datasets: original and reduced. 
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Recall that (7) is a constrained optimization problem with equality con
straints. This problem is equivalent to the following constrained optimization 
problem with inequality constraints 

min ^ min |[/i, a] — QJ subject to | | / j | | > 1, Cj 6 IR (j = 1 , . . . , k). (9) 

In our numerical experiments we use both formulations (7) and (9). In 
most of the experiments the results obtained for (7) are better than for (9) but 
computational time is much higher for (7) than for (9). It is recommended, 
however, to use the formulation (9) if, for example, experiments with (7) 
produce empty skeletons. 

7.4 Other experiments 

Another set of numerical experiments has been carried out on the both ob
jective functions. Although of little interest from the point of view of the 
optimization itself, to the authors' opinion it may bring some more light on 
the clustering part. 

The objective functions (2) and (7) has been minimized using two different 
methods: the discrete gradient method described above, and a hybrid method 
between the DG method and the well known simulated annealing method. 
This command is described with details in [BZ03]. 

The basic idea of the hybrid method is to alternate the descent method 
to obtain a local minima and the simulated annealing method to escape this 
minimum. This reduces drastically the dependency of the local method on an 
initial point, and ensures that the method reaches a "good" minimum. 

Numerical experiments were carried out on the Pendigit and Letters 
datasets for the generalized cluster function using different size dataset ap
proximations. The results have shown that the hybrid method reached a sen
sibly comparable value as the other methods, although the algorithm had to 
leave up to 50 local minima. This can be explained by the large number of 
local minima in the objective function, each close to one another. 

The skeleton function was minimized for the Heart Disease and the Dia
betes datasets. The same behaviour can be observed. As the results of these 
experiments were not drawing any major conclusion, they are not shown here. 

Numerical experiments have shown that while considerably faster than the 
simulated annealing method, the hybrid method is still fairly slow to converge. 

8 Conclusions 

8.1 Optimization 

In this paper, a particular type of optimization problems has been presented. 
The objective function of these problems is the sum of mins of convex func-
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tions. This type of problems appears quite often in the area of data analysis, 
and two examples have been solved. 

The generalized cluster function has been minimized for two datasets, us
ing three different methods: the LGO global optimization software included in 
GAMS, the discrete gradient method and a combination between this method 
and the cutting angle method. 

The last two methods have been started from carefully selected initial 
points and from a random initial point. 

The LGO software failed most of the time to reach even a good solution. 
This is due to the fact that the objective function has a very complex structure. 
This method was limited in time, and may have reached the global solution, 
had it been given a limitless amount of time. 

Similarly, the local methods failed to reach the solution when started from 
a random point. The reason is the large amount of local minima in the objec
tive function which prevent local methods to reach a good solution. 

However the discrete gradient method, for all the examples, reached a good 
solution for at least one of the initial point. The combination reached a good 
solution for all of the initial points. 

This shows that for such types of functions, presenting a complex structure 
and many local minima, most global methods will fail. However, well chosen 
initial points will lead to a deep local minimum. Because the local methods 
are much faster than global ones, it is more advantageous to start the local 
method from a set of carefully chosen initial points to reach a global minimum. 

The application of the combination between the discrete gradient and the 
cutting angle methods appears to be a good alternative, as it is not very 
dependant on the initial point, while reaching a good solution in a limited 
time. 

The second set of experiments was carried out over the hyperplanes func
tion. This function having been less studied in the literature, it is harder to 
draw definite conclusions. However, the experiments show very clearly that the 
local methods once again strongly depend on the initial point. Unfortunately 
it is harder to devise a good initial point for this objective function. 

8.2 Clustering 

Prom the clustering point of view, two different similarity functions have been 
minimized. The first one is a variation of the widely studied cluster function, 
where the points are weighted. The second one is a variation of the Bradley-
Mangasarian function, where distances from the hyperplanes are taken instead 
of their square. 

A method for reducing the size of the dataset, e-cleaning, has been devised 
and applied. Different values for epsilon lead to different sizes of datasets. 
Numerical experiments have been carried out for different values of epsilon, 
leading to very small (2% and 4%) datasets. 
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For the generalized cluster function, this method proves to be very suc
cessful: even for very small datasets, the function value obtained is very sat
isfactory. When the method was solved using the global method LGO, the 
results obtained for the reduced dataset were almost always better than those 
obtained for the original dataset. The reason is that the larger the dataset, the 
larger number of local minima for the objective function. When the dataset is 
reduced, what is lost in measurement quality is gained by the strong simplifi
cation of the function. Because each point in the reduced dataset acts already 
as a centre for its neighbourhood, minimizing the generalized cluster function 
is equivalent to group these "mini" clusters into larger clusters. 

It has to be noted that there is not a monotone correspondence between 
the value of the generalized cluster function for the reduced and the original 
dataset. It may happen that a given solution is better than another one for 
the reduced dataset, and worse for the original. Thus we cannot conclude that 
the solution can be reached for the reduced dataset. However, the experiments 
show that the solution found for the reduced dataset is always good. 

For the skeletons function, however, this method is not so successful. Al
though this has to be taken with precautions, as the initial points for this 
function could not be devised so carefully as for the cluster function, one can 
expect such behavior: the reduced dataset is actually a set of cluster cen
tres. The skeleton approach is based on the assumption that the clusters in 
the dataset can be represented by hyperplanes, while the cluster approach 
assumes that the clusters are represented by centres. 

The experiments show the significance of the choice of the initial point to 
reach good clusters. While random points did not allow any method to reach 
a good solution, all initial points selected upon the structure of the dataset 
lead the combination DG-CAM to the solution. 

Since for the cluster function we are able to provide some good initial 
points, but not for the skeleton function, unless the structure of the dataset 
is known to correspond to some skeletons, we would recommend to use the 
centre approach. 

Finally the comparison between the results obtained by the two different 
methods has to be relativized: experiments having shown the importance of 
initial points, it is difficult to draw definitive conclusions fi:om the results 
obtained for the skeleton approach. 

However, there seems to be a relationship between the classes and the 
clusters obtained by both approaches, some classes being almost absent from 
certain clusters. Further investigations should be carried out in this direction, 
and classification processes based on these approaches could be proposed. 

Acknowledgements 

The authors are very thankful to Dr. Adil Bagirov for his valuable comments. 



Minimization of the Sum of Minima of Convex Functions 433 

References 

[Bag99] Bagirov, A.M.: Derivative-free methods for unconstrained nonsmooth op
timization and its numerical analysis. Investigacao Operacional, 19, 75-93 
(1999) 

[BRSY03] Bagirov, A.M., Rubinov, A.M., Soukhoroukova, N., Yearwood, J.: Unsu
pervised and Supervised Data Classification Via Nonsmooth and Global 
Optimization. Sociedad de Estadistica e Investigacion Operativa, Top, 11 , 
1-93 (2003) 

[BRY02] Bagirov, A.M., Rubinov, A.M., Yearwood, J.: A global optimization ap
proach to classification. Optimization and Engineering, 3, 129-155 (2002) 

[BRZ05a] Bagirov, A., Rubinov, A., Zhang, J.: Local optimization 
method with global multidimensional search for descent. Jour
nal of Global Optimization (accepted) (http://www.optimization-
online.org/DB_FILE/2004/01/808.pdf) 

[BRZ05b] Bagirov, A., Rubinov, A., Zhang, J.: A new multidimensional descent 
method for global optimization. Computational Optimization and Appli
cations (Submitted) (2005) 

[BZ03] Bagirov, A.M., Zhang, J.: Hybrid simulating anneaUng method and dis
crete gradient method for global optimization. In: Proceedings of Indus
trial Mathematics Symposium, Perth (2003) 

[BBM03] Beliakov, G., Bagirov, A., Monsalve, J.E.: Parallelization of the discrete 
gradient method of non-smooth optimization and its applications. In: Pro
ceedings of the 3rd International Conference on Computational Science. 
Springer-Verlag, Heidelberg, 3, 592-601 (2003) 

[BMOO] Bradley, P.S., Mangasarian, O.L.: /c-Plane clustering. Journal of Global 
Optimization, 16, 23-32 (2000) 

[BLM02] Brimberg, J., Love, R.F., Mehrez, A.: Location/Allocation of queuing fa
cilities in continuous space using minsum and minmax criteria. In: Parda-
los. P., Migdalas, A., Burkard, R. (eds) Combinatorial and Global Opti
mization. World Scientific (2002) 

[DR95] Demyanov, V., Rubinov, A.: Constructive Nonsmooth Analysis. Peter 
Lang (1995) 

[GRZ05] Ghosh, R., Rubinov, A.M., Zhang, J.: Optimisation approach for cluster
ing datasets with weights. Optimization Methods and Software, 20 (2005) 

[HF02] Hedar, A.-R., Fukushima, M.: Hybrid simulated annealing and direct 
search method for nonlinear unconstrained global optimization. Optimiza
tion Methods and Software, 17, 891-912 (2002) 

[JMF99] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM 
Computing Surveys, 31 , 264-323 (1999) 

[Kel99] Kelly, C.T.: Detection and remediatio of stagnation in the Nelder-Mead 
algorithm using a sufficient decreasing condition. SI AM J. Optimization, 
10, 43-55 (1999) 

[MST94] Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds): Machine Learning, 
Neural and Statistical Classification. Ellis Horwood Series in Artificial 
Intelligence, London (1994) 

[SU05] Soukhoroukova, N., Ugon, J.: A new algorithm to find a shape of a finite 
set of points. Proceedings of Conference on Industrial Optimization, Perth, 
Australia (Submitted) (2005) 



434 A. Rubinov et al. 

[YLT04] Yiu, K.F.C., Liu, Y., Teo, K.L.: A hybrid descent method for global opti
mization. Journal of Global Optimization, 28, 229-238 (2004) 

[GAM05] http://www.gams.com/ 
[LGO05] http://www.gams.com/solvers/lgo.pdf 
[Pin05] http://www.dal.ca/ jdpinter/ 
[CIA05] http://www.ciao-go.com.au/index.php 



Analysis of a Practical Control Policy for 
Water Storage in Two Connected Dams 

Phil Hewlett^, Julia Piantadosi^, and Charles Pearce^ 

^ Centre for Industrial and Applied Mathematics 
University of South Australia 
Mawson Lakes, SA 5095, Australia 
phi l .howlet tQunisa. edu. au, ju l ia .p ian tados iQunisa . edu. au 

^ School of Mathematics 
University of Adelaide 
Adelaide, SA 5005, Austraha 
cpearceQmaths. adelaide. edu. au 

S u m m a r y . We consider the management of water storage in two connected dams. 
The first dam is designed to capture stormwater generated by rainfall. Water is 
pumped from the first dam to the second dam and is subsequently supplied to users. 
There is no direct intake of stormwater to the second dam. We assume random 
generation of rainfall according to a known probability distribution and wish to 
find practical pumping policies from the capture dam to the supply dam in order to 
minimise overflow. Within certain practical policy classes each specific policy defines 
a large sparse transition matrix. We use matrix reduction methods to calculate the 
invariant state probability vector and the expected overflow for each policy. We 
explain why the problem is more difficult when the inflow probabilities are time 
dependent and suggest an alternative procedure. 

1 Introduction 

The mathematical l i terature on storage dams, now half a century old, devel
oped largely from the seminal work of Moran [Mor54, Mor59] and his school 
(see, for example, [Gan69, Yeo74, Yeo75]). Moran was motivated by specific 
practical problems faced by the Snowy Mountain Authori ty in Australia in the 
1950s. Our present s tudy is likewise motivated by a specific practical problem 
at Mawson Lakes in South Australia relating to a pair of dams in tandem. 

The mathematical analysis of dams has proved technically more difficult 
than tha t of their discrete counterpart , queues. In order to deal with the 
complexity of a tandem system, we t reat a discretised version of the prob
lem and adopt the matr ix-analyt ic methodology of Neuts and his school 
(see [LR99, Neu89] for a modern exposition). The Neuts ' methodology is well 
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suited for handling processes with a bivariate state space, here the contents 
of the two dams. 

A further new feature in this study is the incorporation of control. For 
recent work on control in the context of a dam, see [Abd03] and the references 
therein. The present article is prehminary and raises issues of both practical 
and theoretical interest. 

In Section 2 we formulate the problem in matrix-analytic terms and in 
Section 3 provide an heuristic for the determination of an invariant probability 
measure for the process. This depends on the existence of certain matrix 
inverses. Section 4 sketches a purely algebraic procedure for establishing the 
existence of these inverses. In Section 5 we show how this can be simplified and 
systematised using a probabilistic analysis based on modern machinery of the 
matrix-analytic approach. In Section 6 we describe briefly how these results 
enable us to determine expected long-term overflow, which is needed for the 
analysis of control procedures. We conclude in Section 7 with a discussion of 
extensions of the ideas presented in the earlier sections. 

2 Problem formulation 

We assume a discrete state model and let the first and second components of 

z = z{t) e [0,/i] X [0,A:] C Z^ 

denote respectively the number of units of water in the first and second dams 
at time t. We assume a stochastic intake to the capture dam where pr denotes 
the probability that r units of water will enter the dam on any given day 
and a regular demand from the supply dam of 1 unit per day. To begin we 
assume that pr > 0 for all r = 0 ,1 ,2 , . . . and we will also assume that these 
probabilities do not depend on time. The first assumption is a reasonable 
assumption in practice but the latter assumption is certainly not reasonable 
over an extended period of time. We revise these assumptions later in the 
paper. 

We consider a class of practical pumping policies where the pumping deci
sion depends only on the contents of the first dam. Choose an integer me [1, /i] 
and pump m units from the capture dam to the supply dam each day when 
the capture dam contains at least m units. For an intake r there are two basic 
transition patterns 

• (^i,o)^(Ci,o) 
• {Z1,Z2) -^ ( C l , ^ 2 - 1) 

where (i = min{[2;i -\-r],h} for zi < m, and two basic transition patterns 

. (^i,0)^(Cr,m) 

. (^i,^2)-(cr,C2) 
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where Q = min{[2;i — m -\- r], h} and where Q = min{[2:2 — 1 -f m], k}, for 
zi > m. These transit ions have probability Pr- The variable m is the control 
variable for a class of practical control policies but in this paper we assume 
m is fixed and suppress any notational dependence on m. 

We now set up a suitable Markov chain to describe the process. In terms 
of matr ix-analyt ic machinery, it turns out to be more convenient to use the 
ordered pair {z2^zi) for the s ta te of the process rather than the seemingly 
more natural {zi^Z2). This we do for the remainder of the article. We now 
order the states as 

( 0 , 0 ) , . . . , ( 0 , / i ) , ( l , 0 ) , . . . , ( l , / i ) , . . . , ( f c , 0 ) , . . . , ( f c , / i ) . 

The first component ( that is, the content of dam 2) we refer to as the level of 
the process and the second component (the content of dam 1) as the phase. 

The one-s tep transit ion matr ix 

P e M ( ^ + I ) ( ^ + I ) X ( ^ + I ) ( ^ + I ) 

then has a simple block structure 

P = 

0 1 ' ' m k 

A 0 • • B 0 0 0 0 
^ 0 - J 5 0 0 0 0 
0 A ' ' 0 B 0 0 0 

0 0 - A 0 0 0 0 
0 0 ' ' 0 A 0 0 0 

0 0 - - 0 0 BOO 
0 0 - - 0 0 0 B 0 
0 0 - - 0 0 0 0 J 3 

0 0 - 0 0 A 0 B 
O O ' - O O 0 A B 

where 

A and B e x(h+l) 

On the one hand we have 

An Ai2 
0 0 

where 
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^ 1 1 = 

P o P i • 
0 po-

0 0 • 
0 0 -

and 

An = 

Pm Pm+1 

Pm—1 Pm 

Pm-2 Pm-l 

Pm-3 Pm-2 

Po Pi 

0 PO 

Ph-1 Ph 

Ph-2 Ph-1 

Pi P2 " 

where we have defined p^ == Pr + Pr+i + 

Ph-m Ph-m+l. 

•' and on the other hand 

where 

and 

B 
0 0 

B21 B22 

-^21 

B22 

PoPi 
0 Po 

0 0 
0 0 
0 0 

0 0 

Pm Pm+1 

Pm.—1 Pm, 

Po Pi 

0 PO 

L 0 0 '" Pm-

Pm-2 Pm-l 

Pm-3 Pm-2 

Po Pi 

0 PO 
0 0 

0 0 

Ph-1 Ph 

Ph-2 Ph-1 

Ph-m-1 Ph-m 

Ph-m-2Ph-m-l 

3 Intuitive calculation of the invariant probability 

We consider an intuitive calculation of the invariant probability measure TT. If 
we write 

then the equation TT = nP can be rewritten as a linear system 
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TTo = TTQA + TTIA (1) 

TTi = TTi^iA (1 < i < m ) (2) 

T^m = TTQB + TTiB + TTm+lA (3) 

TTi = TTi-m+lB + TTi^iA {TU < i < k) (4) 

TTk =" TTk-m-^lB H + TTkB. (5) 

We wish to know if this system has a unique solution. In a formal sense we 
observe that the sequence of non-negative vectors 

satisfy the recurrence relations 

7ri=7ri^iVi {0<i<k) (6) 

where the sequence of matrices 

is defined as follows. Let 

Vo = A{I-A)-' (7) 

Vi = A, (0 < i < m) (8) 

Vm = A[l-A'"-\l-A)-^By' (9) 

Vi = A[I-Wi-i,i-.m+iBr' {m<i<k) (10) 

where 

Wi,e:=ViVi+i...Ve (i > £) (11) 

provided the required inverse matrices exist and let 

r m—i 
B. (12) 

The vector TT̂  is a scalar multiple of the invariant probability measure for the 
transition matrix Vk- We conclude that the invariant probability measure n 
for the transition matrix P is unique if and only if the associated invariant 
probability measure 

^k '= ^k/iTTk ' 1) 

for the transition matrix Vk is uniquely defined. We have established the 
following rudimentary result. 

Theorem 1. If the sequence of matrices 

is well defined by the formulae (7)-(12) then there exists an invariant measure 
n for the transition matrix P. The measure is not necessarily unique. 
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4 Existence of the inverse matrices 

Provided pr > 0 for all r < /i the matrix An is strictly sub-stochastic with 

^11 • 1 = 

pf j 

< i . 

It follows that (7 — All) ^ is well defined and hence 

{I - An)-'Au{I - An)-' 
0 / 

is also well defined. It is necessary to begin with an elementary but important 
result. This result, and other later results in this section, have already been 
established by Piantadosi [Pia04] but for convenience we present details of the 
more elementary proofs to indicate our general method of argument. 

Lemma 1. If pr > 0 for a// r = 0 , 1 , . . . then 

{I-A)-'B'1 = 1 and A'^-'il - A)-'B -1 < A"^''-1 

and the matrix Vm — A[I — A^~^{I — A)~^B]~^ is well defined. 

Proof Note that A'l-{- B -1 = 1 implies B - 1 = {I - A) - 1 and hence 

{I-A)-'B'1 = 1. 

Now 

A^-\I-A)-'B'1 = A'^-' -1 

0 0 

ATf'lAn-l+A 
0 

Am-2 

0 

12 • 1] 

< 1. 

Hence Vm = A[I - A ^ - i ( / - A)-^B]-'^ is well defined D 

To establish the existence of the remaining inverse matrices it is necessary 
to establish some important identities. 

Lemma 2. The (JP) identities 

771—1 

Ê ^ i-l, i-e 
i=l 

B'l = l 

are valid for i = m + l,. . . ,A: — 1 and hence the matrix Vi = A[I — 
Wi-i^ i-rn+iB]~^ is well defined. 
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Proof. For details of the rather long and difRcult proof we refer the reader to 
Piantadosi [Pia04] where the notation dictates that the identities are described 
and established in two parts as the (JP) identities of the first and second kind. 
The complexity of these identities is masked in the current paper by notational 
sophistication. D 

5 Probabilistic analysis 

In practice the matrix P can be expected to be irreducible. First we establish 
the following simple sufficient condition for this to be the case. 

Theorem 2. Suppose A, B have the forms displayed above and that k > m. 

If 
(i) m > 1 and 
(ii) po,pi,...,ph-i,p^ > 0, 
then the matrix P is irreducible. 

Proof. We use the notation P(ij)^(r,s) to refer to the element in the matrix 
P describing the transition from state {i,j) to state (r, s) and we write A = 
[aj^s] and B = [bj^s] to denote the individual elements of A and B. To prove 
irreducibility, it suffices to show that, for any state (i , j) , there is a path of 
positive probability from state (fc, /i) to state (k^h) and a path of positive 
probability from state (i, j ) to state {k,h). 

The former may be seen as follows. For i = k with h — m < j < h^ 

P(k,h),(kj) = bhj > 0 

by (ii), so there is a path consisting of a single step. For i = k with 0 < j < 
h — m^ there exists a positive integer £ such that h — m < j -\- £{m -\-1) < h. 
One path of positive probability from (fc, h) to (/c, j ) consists of the consecutive 
steps 

(/c, h) -^ {kj + e{m + 1)) ^ (fc, j + {£- l)(m + 1)) -^ . . . ^ (fc, j ) . 

Finally, for i < k, one such path is obtained by passing from {k,h) to (A:,0) 
as above and then proceeding 

(fc,0) ^ (fc - 1,0) -^ . . . ^ (z + 1,0) ^ {ij). 

We now consider passage from (i, j ) to (fc, h). For j = 0, (i, j ) has one-step 
access to (0, h) (if i = 0) or to (i — 1, h) (if i > 0), while for j > 0, (i, j ) has 
one-step access to (z + m, /i) (if i — 0), to (i + m — 1, /i) (if 0 < i < /c — m + 1) 
or to {k,h) (if fc — m + 1 < i <k). Putting these results together shows that 
each state (i, j ) has a path of positive probability to {k, h). 

By the results of the two previous paragraphs, the chain is irreducible. D 
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Next we derive invertibility results for some key (/i + 1) x (/i+ 1) matrices. 
While this can be effected purely in terms of matrix arguments, a shorter 
derivation is available employing probabilistic arguments, based on successive 
censorings of a Markov chain. 

Theorem 3. Suppose conditions (i) and (ii) of Theorem 2 apply. Then there 
exists a sequence {Vi}o<i<k of {h-\-1) x {h-\-1) matrices defined by equations 
(7), (8), (9), (10), (11) and (12). The matrices Fo, . . . ,T4- i are invertible, 

Proof It suffices to show that the formulae (7), (8), (9) hold and that for 
k > m-f 1 the formula (10) is vahd. Let Co be a Markov chain of the same form 
as P but with k replaced by K > 2k. By Theorem 2, Co is irreducible and 
finite and so positive recurrent. Denote by Ci {1 < i < k) the Markov chain 
formed by censoring out levels 0, 1, ... , i — 1, that is, observing Co only when 
it is in the levels i,i + l , . . . , K . The chain Ci must also be irreducible and 
positive recurrent. For 0 < i < fc, denote by Pi the one-step transition matrix 
of Ci and by Qi its leading block. Then Qi is the sub-stochastic one-step 
transition matrix of a Markov chain Vi whose states form level i of CQ. Since 
Ci is recurrent, the states of T>i must all be transient and so X^^o Q? *̂  ^^• 
Hence I — Qi is invertible foi 0 < i < k. 

We shall show that the matrices 

Vi-A{I-Qi)-' {0<i<k) 

satisfy the conditions of the enunciation. Nonnegativity of Vi is inherited from 
that of Qi. We have (7) and (8) immediately, since Qo = A and we have easily 
that (5z = 0 for 0 < i < m. We now address (9) and (10). 

One-step transitions in Vm arise from paths of two types. In the first, the 
process passes in sequence through levels m,m — 1,... ,0. These give rise to 
a one-step transition matrix A^~^B. Paths of the second type are the same 
except that they spend one or more time points in level 0 between occupying 
levels 1 and m. These give rise to a one-step transition matrix 

oo 

n=0 

Thus enumerating all paths yields 

Qm = A'^-^B -h ^ ^ ( / - A)-^B - A'^-^I - A)-^B, 

which provides (9). Prom similar enumerations of paths, the leading row of 
Pn may be derived to be 

Qm A'^-'^B A'^-^B ...AB BO ...0. 

The other rows of Pm are given by rows m + l ,m + 2 , . . . , i ^ o f P o restricted 
to columns m,m + l , . . . , J^ . The first two rows of Pm are then 
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Qm A'^-^B A'^-^B ,..ABBO...O 
A 0 0 . . . 0 0 5 . . . 0 , 

from which we derive 

Qm+l =A[I- Qm]'' A^-^B = VmVm-l • • • V̂2 

and that the leading row of Pm+i is 

Qm^i VmA'^-^B VmA^-^B . . . VmAB VmB B 0 ... 0. 

Using the notation in equation (11) we can write 

Qm+l = Wm,2B 

and the leading row of Pm+i may be expressed as 

Qm+l Wm^sB WmAB . . . Wm^mB J5 0 . . . 0. 

We may use this as a basis (z = m + 1) for an inductive proof that for 
m < i < k 

Qi = Wi-i^i-m-j-lB 

and the leading row of Pi is 

Qi Wi-i^i-m^iB Wi-.i,i-.m+2B . . . 1^^-1,^-15 5 0 . . . 0. 

Suppose these hold for some i satisfying m < i < k. Since the two leading 
rows of Pi are 

Qi Wi-i,i-m+2B Wi-i^i-m+sB . . . Wi-i^i-iB B 0 ... 0 
A 0 0 . . . 0 0 5 . . . 0 , 

we have 

Qi+l = A[I — Qi] Wi-i^i-m-\-2B = ViWi-i^i-m-\-2B = Wi,i_m+25 

and, since VtWi-i^e = Wi/, that the leading row of Pi-^i is 

Qi^i Wi,i-m^iB Wi^i-m+2B ... Wi^i-iB Wi^iB J3 0 . . . 0, 

providing the inductive step. D 

Under assumptions (i) and (ii) of Theorem 2, we may now proceed to 
the determination of the invariant measure TT = (TTQ, TTI, . . . , TT/C) of the block-
entry discrete-time Markov chain P. The relation TT = TTP yields the block 
component equations (1), (2, (3), (4) and (5). The evaluation of TT may be 
effected by the following. 
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Theorem 4. Suppose that conditions (i) and (ii) of Theorem 2 apply. Then 
the probability vectors TTI satisfy the recurrence relations (6) and ixk is the 
invariant measure of the matrix Vk defined by (12). The measure TT is unique. 

Proof For i = 0, (6) follows from (1) and (7). For 0 < i < m, (6) is 
immediate from (2) and (8). These two parts combine to provide 

TTo = iTmA'^il - A)-^ and ^i = 7 r ^ ^ ^ - \ 

so that (3) may be cast as 

TTm [I - A^-\I - A)-'B] - TT^+iA. 

Equation (6) for i = m follows from (9). 
We have now shown that (6) holds for 0 < i < m, from which 

7r2 =" TTm+l V m K n - l . • • V2. 

Hence (4) with i = m + 1 yields 

TTm+l [I - Vm+l • • • V3B] = 7rm-\-2A. 

By (11), this is (6) for i = m + 1, which supplies a basis for a derivation 
of the remainder of the theorem by induction. For the inductive step, suppose 
that (6) holds for i = m + 1 , . . . , Q' for some q with m < q < k. Then from (4), 

TTq+l = TTq^iVqVq-i . . . Vq-m-\-2B + 7rg+2^-

By (11), this is simply (6) with i = g + 1, and so we have established the 
inductive step. 

As a direct consequence we have 

TTi = TTkVk-l ...Vi= TTkWk-l, i 

ioi 0 <i < k SO that (5) implies 

^k = TT/c 

k-1 

i=k—m-\-l 

B = 7^kVk, 

by definition. Hence TT/C is an invariant measure of Vk- Any invariant measure 
TT/c of Vk induces via (6) a distinct invariant measure TT for P. Since the irre-
ducibility of P guarantees it has a unique invariant measure (to a scale factor), 
TTfc is unique invariant up to a scale factor. This completes the proof. D 
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6 The expected long-term overflow 

Using the invariant probability measure TT we can calculate the expected over
flow of water from the system. Let (i,j) G [0, A;] x [0, ft] denote the collection 
of all possible states. The expected overflow is calculated by 

^ = EE 
i=0 j=o lr=0 

E/[(i,i)Hpr-

where TT̂ J is the invariant probability of state (z, j ) at level i and phase j and 
f[{i,j)\r] is the overflow from state (i, j ) when r units of stormwater enter the 
system. Note that we have ignored pumping cost and other costs which are 
likely to be factors in a real system. 

7 Extension of the fundamental ideas 

The assumption that pr > 0 for all r = 0 , 1 , . . . is convenient and is usually 
true in practice but many of the general results remain true with weaker 
assumptions. Let us suppose that the system is balanced. That is we assume 
that the expected daily supply is equal to the daily demand. Thus we assume 
that 

0 • po + 1 • pi + 2 • p2 4-• • • = L 

Since 

it follows that the condition po — 0 would imply that pi = 1 and p^ = 0 for 
all r > 2. This condition is not particularly interesting and suggests that the 
assumption po > 0 is a reasonable assumption. If we assume also that po < 1 
then it is clear that there is some r > 1 such that Pr > 0. 

By using a purely algebraic approach Piantadosi [Pia04] effectively estab
lished the following result. 

Theorem 5,IfpQ>0 and p^ > 0 then there is at least one finite cycle with 
non-zero invariant probability that includes all levels 0 , 1 , . . . , A: of the second 
dam. All states have access to this cycle in finite time with finite probability 
and hence are either transient with invariant probability zero or else are part 
of a single maximal cycle. 

Proof (Outhne) In this paper we have tried to look beyond a simply alge
braic view. For this reason we suggest an alternative proof. Let po = ^ > 0. 
If p+ > 0 then there is some r > m with p^ = e > 0. Our argument here 
assumes r > m. Choose p so that 0 < h — pm < m and choose s so that 
{s + l ) r — (p + s)m > 0 and s{m — 1) + 1 > fc and t so that t > p + k and 
consider the elementary cycle 



446 P. Hewlett et al. 

(0, h — pm) —> (0, /i — pm + r) —> (m, h — {p+ l)m + 2r) -^ 

(2m - 1, /i - (p + 2)m + 3r) -> > (fc, /i) -> > {k,h) -^ {k,h - m) -^ 

• • • —> (fc, /i — pm) —> (A: — 1, /i — pm) ^ • • • —̂  (0, /i — pm) —> 

• • • —> (0, /i — pm) 

for the state (i, j ) of the system. We have 5 + 1 consecutive inputs of r 
units followed by t consecutive inputs of 0 units. The cycle has probability 
Pr^'^^Po^ = e^'^^S^. It is obvious that the state (/c, h) is accessible in finite time 
with finite probability from any initial state (i, j ) . It follows that all states 
are either transient or are part of a unique irreducible cycle. Of course the 
irreducible cycle must include the elementary cycle. Hence there is a unique 
invariant probability 

where the invariant probability TT̂  for level i is non-zero for all i = 0 , . . . , A;. All 
transient states have zero probability and all states in the cycle have non-zero 
probability. D 

Observe that by adding together the separate equations (1), (2), (3), (4) 
and (5) for the vectors TTQ, . . . , TT̂  we obtain the equation 

(TTO + • • • + 7rk)iA + 5 ) =. (TTO + • • • + TTk). 

Therefore 
p — TTo H h TTfc 

is an invariant probability for the stochastic matrix 

S = A + B. 

Indeed a little thought shows us that S is the transition matrix for the phase 
j of the state vector. By analysing these transitions we can shed some light 
on the structure of the full irreducible cycle for the original system. 

We have another interesting result. 

Theorem 6. Ifpo = 5 > 0 andpr = e > 0 for some r > m and z/gcd(m, r) = 
1 then for every phase j ~ 0, l , 2 , . . . , / i we can find non-negative integers 
P — P{j) ^^^ Q = QU) ^^c/i that 

pr — qm = j 

and the chain with transition matrix S = A-^ B is irreducible. 

Proof (Outline) We suppose only that po > 0 and Pr > 0 for some r > m. 
In the following phase transition diagram we suppose that 

r — m < m, 2r — 3m < m, 
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and note that the following phase transitions are possible for j with non-zero 
probability. 

0 -> [0 U r] 

r —̂  [(r — m) U (2r — m)] 

{r — m) ^ [{r — m) U (2r — m)] 

(2r - m) -^ [(2r - 2m) U (3r - 2m)] 

(2r - 2m) ^ [(2r - 3m) U (3r - 3m)] 

(3r - 2m) -^ [(3r - 3m) U (4r - 3m)] 

(2r - 3m) -^ [(2r - 3m) U (3r - 3m)] 

If gcd(m, r) = 1 then it is clear by extending the above transition table that 
every phase j G [0, h] is accessible in finite time with finite probability. D 

This result means that the unique irreducible cycle for the (i,j) chain 
generated by P which already includes all possible levels i G [0, /c] also includes 
all possible phases j G [0, h] although not necessarily all states ( i , i ) . 

In practice the input probabilities are likely to depend on time. Because 
there is a natural yearly cycle for rainfall we have used the notation [t] = 
{t - 1) mod 365 -h 1 and Pr = Pr{[t]) for all r = 0,1, 2 , . . . and all t G N. The 
transition from day t to day ^+1 is described by a matrix P = P{[t]) with the 
same block structure as before but with elements that vary from day to day 
throughout the year. The transition from day t to day t + 365 is described by 

x{t + 365) = x{t)R{[t]) 

where the matrix R{[t]) is defined by 

R{[t]) = P{\t]).-.P{l)P{365)-..P{\t + l]). 

In principle we can calculate an invariant probability 7r{[t]) for each matrix 
R{[t]) and it is easy to show that successive invariant probabilities are related 
by the equation 

ni[t + l])^ni[t])Pi[t]). 

However, although all P{[t]) have the same block structure this structure is 
not preserved in the product matrix R{[t]) and it is not clear that matrix 
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reduction methods can be used in the calculation of 7r([t]). It is obvious that 
the invariant probabilities for the phase j on day [t] can be calculated from 

p{[t])=p{[t])Sm"'S{l)S{365)^-^S{[t]^l) 

where S{[t]) = A{[t]) + B{[t]). Unfortunately knowledge of p{[t]) does not 
help us directly to calculate 7r([t]). In general terms the existence of a unique 
invariant probability is associated with the idea of a contraction mapping. 
Define 

T={xeW \x = {xo,...,Xk) > 0 where x̂ - G R "̂̂ ^ andxo-l+-• •+XA;-1 = 1}. 

For each ^ = 1,2,... we suppose that the mapping ip[t] : T i—> T is defined by 

<fi[t]{x) = xP{[t]) 

for each x G T. We have the following conjecture. 

Conjecture 1. For each f == 1, 2 , . . . let po(W) > 0 and suppose that for some 
r = T[[t]) > m with gcd(r, m) = 1 we have Pr(M) > 0. Then 

[^^,]f-\T)Cint(T) 

and there is a unique invariant measure 7r([t]) with 

< [̂t]WW)) = 4W)-

If this conjecture is true then the iteration given by 

with 

^(t+i) ^ x(*)p([i]) 
for each i = 1,2,... should satisfy 

xW -^ x{[t]) 
as ^ —> oo. Because the contraction operates in the same structural way for 
every value of [t] we expect that convergence will occur quite seamlessly. This 
is demonstrated in the following simple example. There is no reason to expect 
the convergence to be slower in the case where we have a product of a larger 
number of matrices. 
Example 1. Let [t] = {t - 1) mod 2 + 1 with R{1) = P(1)P(2) and R{2) = 
P(2)P([3]) = P(2)P(1) where 

Pilt]) 

Am 0 B{{t]) 0 
Ai[t]) 0 Bi[t]) 0 

0 A{[t]) 0 Bm 
0 0 A{[t])Bi{t]) 
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for each [t] = 1,2 and 

0.5 0.25 0.125 0.125 
0 0.5 0.25 0.25 
0 0 0 0 
0 0 0 0 

and B(l) = 

and 

A{2) = 

0.45 0.27 0.13 0.15 
0 0.45 0.27 0.28 
0 0 0 0 
0 0 0 0 

and B{2) = 

0 0 0 0 
0 0 0 0 

0.5 0.25 0.125 0.125 
0 0.5 0.25 0.25 

0 0 0 0 
0 0 0 0 

0.45 0.27 0.13 0.15 
0 0.45 0.27 0.28 

Using MATLAB we calculate 

p(l)-(0.2,0.4,0.2,0.2) 

and so we set 

1 
x^'^ = -(p{l),pil),p{l),p{l)) 

= (.0500, .1000, .0500, .0500, .0500, .1000, .0500, .0500, 

.0500, .1000, .0500, .0500, .0500, .1000, .0500, .0500) 

and calculate 

x(2̂  = (.0500, .1250, .0625, .0625, .0250, .0625, .0312, .0312 

.0750, .1375, .0687, .0687, .0500, .0750, .0375, .0375) 

x(3) -. (.0338, .1046, .0604, .0638, .0338, .0821, .0469, .0498 

.0647, .1148, .0643, .0688, .0478, .0765, .0425, .0457) 

x^^^ - (.0338, .1103, .0551, .0551, .0323, .0735, .0368, .0368 

.0775, .1338, .0669, .0669, .0534, .0839, .0420, .0420) 

x(i3) = (.0291, .0994, .0576, .0607, .0343, .0801, .0456, .0485 

.0660, .1199, .0672, .0719, .0494, .0791, .0439, .0472) 

x̂ ^̂ ) = (.0317, .1056, .0528, .0528, .0330, .0764, .0382, .0382 

.0763, .1323, .0661, .0661, .0556, .0874, .0437, .0437) 

Thus we have 

x{l) ^ (.0291, .0994, .0576, .0607, .0343, .0801, .0456, .0485 

.0660, .1199, .0672, .0719, .0494, .0791, .0439, .0472) 

x{2) ^ (.0317, .1056, .0528, .0528, .0330, .0764, .0382, .0382 

.0763, .1323, .0661, .0661, .0556, .0874, .0437, .0437). 



450 P. Hewlett et al. 

References 

[Abd03] Abdel-Hameed, M.: Optimal control of dams using Pjf^ policies and 
penalty cost. Mathematical and Computer Modelling, 38, 1119-1123 
(2003) 

[Gan69] Gani, J.: Recent advances in storage and flooding theory. Advanced Ap
plied Probability, 1, 90-110 (1969) 

[KT65] Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Wiley 
and Sons, New York (1965) 

[LR99] Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods 
in Stochastic Modeling. SI AM (1999) 

[Mor54] Moran, P.A.P.: A probability theory of dams and storage systems. Journal 
of Applied Science, 5, 116-124 (1954) 

[Mor59] Moran, P.A.P.: The Theory of Storage. Wiley and Sons, New York (1959) 
[Neu89] Neuts, M.F.: Structured Stochastic Matrices of M/G/1 type and Their 

AppHcations. Marcel Dekker, Inc. (1989) 
[Pia04] Piantadosi, J.: Optimal Pohcies for Management of Urban Stormwater, 

PhD Thesis, University of South Australia (2004) 
[Yeo74] Yeo, G.F.: A finite dam with exponential variable release. Journal of Ap

plied Probability, 11, 122-133 (1974) 
[Yeo75] Yeo, G.F.: A finite dam with variable release rate. Journal of Applied 

Probability, 12, 205-211 (1975) 




