


Lecture Notes in Computer Science 3470
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Peter M.A. Sloot Alfons G. Hoekstra
Thierry Priol Alexander Reinefeld
Marian Bubak (Eds.)

Advances in
Grid Computing –
EGC 2005

European Grid Conference
Amsterdam, The Netherlands, February 14-16, 2005
Revised Selected Papers

13



Volume Editors

Peter M.A. Sloot
Alfons G. Hoekstra
University of Amsterdam, Institute for Informatics, Section Computational Science
Laboratory for Computing, Systems Architecture and Programming
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
E-mail: {sloot, alfons}@science.uva.nl

Thierry Priol
IRISA/INRIA, Campus de Beaulieu
35042 Rennes Cedex, France
E-mail: thierry.priol@irisa.fr

Alexander Reinefeld
Zuse Institute Berlin (ZIB)
Takustr. 7, 14195 Berlin, Germany
E-mail: ar@zib.de

Marian Bubak
AGH University of Science and Technology
Institute of Computer Science and Academic Computer Centre CYFRONET
al. Mickiewicza 30, 30-059 Krakow, Poland
E-mail: bubak@uci.agh.edu.pl

Library of Congress Control Number: 2005928161

CR Subject Classification (1998): C.2.4, D.1.3, D.2.7, D.2.12, D.4, F.2.2, G.2.1

ISSN 0302-9743
ISBN-10 3-540-26918-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26918-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11508380 06/3142 5 4 3 2 1 0



Preface

“When the network is as fast as the computer’s internal links, the ma-
chine disintegrates across the net into a set of special purpose appli-
ances.” (George Gilder)

We are proud to present to you the proceedings of the European Grid Con-
ference 2005, held at the Science Park Amsterdam during February 14–16.

The aim of the European Grid Conference was to be the premier event on
Grid computing in Europe in 2005, focusing on all aspects of Grid computing
and bringing together participants from research and industry. EGC 2005 was
a follow-up of the Across Grids Conferences held in Santiago de Compostela,
Spain (2003) and in Nicosia, Cyprus (2004).

We decided to have three main tracks during this conference: one with peer-
reviewed scientific contributions, one with presentations from business and in-
dustry, and one event track with presentations from European and national Grid
projects.

In order to guarantee high-quality proceedings, we put extensive effort into
reviewing the scientific papers and processing the proceedings. We received over
180 papers from which, after peer review by 2–3 reviewers each, we selected 70
for oral presentations and 52 for poster presentations during the scientific tracks.
In this book you find the final versions of these accepted papers.

After the conference opening by the Dean of the Faculty of Science of the Uni-
versity of Amsterdam, Prof. Dr. K.J.F Gaemers, we enjoyed a series of inspiring
keynote lectures and two parallel scientific tracks over three days.

The keynote addresses were given by:

– Domenico Laforenza “Towards a Next Generation Grid: Learning from the
Past, Looking into the Future”

– Bob Hertzberger “e-Science and Grid”
– Wolfgang Boch “Moving Grids from Science into Industry and Business –

Challenges of EU Grid Research”
– Peter Coveney “Real Science on Computational Grids”
– Thierry Priol “Objects, Components, Services for Grid Middleware: Pros

and Cons”
– Malcom Atkinson “Lessons Learned Building OGSA-DAI — Middleware for

Distributed Data Access”
– Carol Goble “Semantic(Grid services)+(Semantic Grid)Services”
– Carl Kesselman “Managing Work Across Virtual Organizations:

The GriPhyN Virtual Data System”

We would like to express our sincere thanks to the invited speakers who
delivered such high-quality lectures at EGC 2005.



VI Preface

The scientific programme of the conference was organized along the following
tracks:

– Applications
– Architecture and Infrastructure
– Resource Brokers and Management
– Grid Services and Monitoring
– Performance
– Security
– Workflow
– Data and Information Management
– Scheduling Fault-Tolerance and Mapping

This conference would not have been possible without the support of many
people and organizations that helped in various ways to make it a success.

First of all we would like to thank the authors who took the effort to submit
so many high-quality papers. We thank the Programme Committee for their
excellent job in reviewing the submissions and thus guaranteeing the quality of
the conference and the proceedings. We thank Lodewijk Bos and his staff for
their practical assistance and support. Many thanks go to Coco van der Hoeven
for her secretarial work. Dick van Albada, Berry Vermolen, Dennis Kaarsemaker
and Derek Groen are acknowledged for their punctuality in preparing the pro-
ceedings.

We thank our sponsors for their financial support: the Board of the University
of Amsterdam, the Science Faculty and the Institute for Informatics. Finally we
thank the Dutch Science Foundation NWO, Section Exact Sciences.

February 2005

P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld and M. Bubak



Organization

Overall Event Chair

– Prof. Dr. P.M.A. Sloot, University of Amsterdam, The Netherlands

Scientific Committee

– Dr. A.G. Hoekstra (chair), University of Amsterdam, The Netherlands
– Dr. M. Bubak, AGH, Cracow, Poland
– Dr. Th. Priol, IRISA, Paris, France

Industrial and Business Board

– Drs. A. Emmen (chair), Genias Benelux, The Netherlands
– Dr. A. Osseyran, Sara Computing and Networking Services, Amsterdam,

The Netherlands
– Dr. W. Boch, European Commission, Brussels
– Dr. A. Reuver, IBM, The Netherlands

Special Events Board

– Drs. L. Bos (chair), MC-Consultancy, The Netherlands
– Prof. Dr. L.O. Hertzberger, University of Amsterdam, The Netherlands
– Prof. Dr. M. Turala, Institute of Nuclear Physics, Cracow, Poland
– Dr. K. Baxevanidis, European Commission, Brussels

Local Steering Committee

– Prof. Dr. W. Hoogland, Dean of the Faculty of Science, University of
Amsterdam

– Prof. Dr. B. Noordam, Director of the FOM Institute for Atomic and
Molecular Physics AMOLF, Amsterdam, The Netherlands

– Prof. Dr. J.K. Lenstra, Director of the Center for Mathematics and Computer
Science, Amsterdam, The Netherlands

– Prof. Dr. K. Gaemers, Director of the National Institute for Nuclear Physics
and High Energy Physics, Amsterdam, The Netherlands

– Prof. Dr. E. P.J. van de Heuvel, Director of the Astronomical Institute
“Anton Pannekoek”, University of Amsterdam, The Netherlands

Programme Committee

– Albada, G.D. van — University of Amsterdam, The Netherlands
– Abramson, D. — Monash University, Australia
– Andrzejak, A. — ZIB Berlin, Germany



VIII Organization

– Badia, R. — Technical University of Catalonia, Spain
– Baker, M. — University of Portsmouth, UK
– Bal, H. — Free University Amsterdam, The Netherlands
– Baraglia, R. — ISTI-CNR, Italy
– Beco, S. — DATAMAT S.p.A., Italy
– Benkner, S. — University of Vienna, Austria
– Bilas, A. — ICS-FORTH, Greece
– Breton, V. — Laboratoire de Physique Corpusculaire de Clermont-Ferrand,

France
– Brezany, P. — University of Vienna, Austria
– Bubak, M. — Inst. of Comp. Sci., and Cyfronet, Poland
– Buyya, R. — University of Melbourne, Australia
– Chun-Hsi Huang — University of Connecticut, USA
– Corbalan, J. — Technical University of Catalonia, Spain
– Cunha, J. — New University of Lisbon, Portugal
– Danelutto, M. — University of Pisa, Italy
– Deelman, E. — ISI, Univ. of Southern California, USA
– Dikaiakos, M. — Univ. of Cyprus, Cyprus
– DiMartino, B. — Second University of Naples, Italy
– Epema, D. — Delft University of Technology, The Netherlands
– Erwin, D. — Forschungszentrum Jülich GmbH, Germany
– Fisher, S. — RAL, UK
– Foster, I. — Argonne National Laboratory
– Fox, G. — Univ. of Indiana, USA
– Fusco, L. — ESA, Italy
– Gomez, A. — CESGA, Spain
– Gorlatch, S. — University of Muenster, Germany
– Guisset, P. — CETIC, Belgium
– Hluchy, L. — Slovak Academy of Science, Slovakia
– Hoekstra, A. — Univ. of Amsterdam, The Netherlands
– Houstis, E. — University of Thessaly, Greece
– Jones, R. — CERN, Switzerland
– Kesselman, C. — USC/Information Sciences Institute, USA
– Kielmann, Th. — Free University Amsterdam, The Netherlands
– Kornmayer, H. — KZK, Germany
– Kranzlmüller, D. — Johannes Kepler University Linz, Austria
– Kunszt, P. — CERN, Switzerland
– Laat, C. de — University of Amsterdam, The Netherlands
– Laforenza, D. — ISTI-CNR, Italy
– Marco, J. — CSIC, Santander, Spain
– Markatos, E. — ICS-FORTH, Greece
– Marten, H. — Forschungszentrum Karlsruhe GmbH, Germany
– Matyska, L. — Masary University, Czech Republic
– Meyer, N. — Poznan Supercomputing Center, Poland
– Moreau, L. — Univ. of Southampton, UK
– Morin, C. — IRISA/INRIA, France



Organization IX

– Nemeth, Z. — MTA SZTAKI Computer and Automation Research Institute,
Hungary

– Novotny, J. — MPI für Gravitationsphysik, Germany
– Orlando, S. — University of Venice, Italy
– Pazat, J.-L. — IRISA, France
– Perez, C. — INRIA, France
– Perrott, R. — Queen’s University Belfast, UK
– Pflug, G. — University of Vienna, Austria
– Priol, T. — INRIA/IRISA, France
– Rana, O. — Cardiff University, UK
– Reinefeld, A. — ZIB Berlin, Germany
– Rodero, I. — Technical University of Catalonia, Spain
– Romberg, M. — Forschungszentrum Jülich GmbH, Germany
– Sakellariou, R. — Univ. of Manchester, UK
– Senar, M. — Univ. Autònoma de Barcelona, Spain
– Sloot, P. — Univ. of Amsterdam, The Netherlands
– Szymanski, B. — Rensselaer Polytechnic Institute, USA
– Talia, D. — Università della Calabria
– Trancoso, P. — Univ. of Cyprus, Cyprus
– Turner, S.J. — Nanyang Technological University, Singapore
– Wismüller, R. — TU München, Germany
– Ziegler, W. — Fraunhofer Institute for Algorithms and Scientific Computing,

Germany

Sponsoring Organizations

– University of Amsterdam, The Netherlands
– Dutch Science Foundation NWO, Section Exact Sciences,

The Netherlands
– SciencePark Amsterdam, The Netherlands

Local Organizing Committee

– Coco van der Hoeven (University of Amsterdam, The Netherlands)
– Dick van Albada (University of Amsterdam, The Netherlands)
– Berry Vermolen (University of Amsterdam, The Netherlands)
– Derek Groen (University of Amsterdam, The Netherlands)
– Dennis Kaarsemaker (University of Amsterdam, The Netherlands)
– Lodewijk Bos (MC-Consultancy, The Netherlands)



Table of Contents

Telemedical Applications and Grid Technology
Georgi Graschew, Theo A. Roelofs, Stefan Rakowsky,
Peter M. Schlag, Sahin Albayrak, Silvan Kaiser . . . . . . . . . . . . . . . . . . . . 1

Statistical Modeling and Segmentation in Cardiac MRI Using a Grid
Computing Approach

Sebastian Ordas, Hans C. van Assen, Loic Boisrobert,
Marco Laucelli, Jesús Puente, Boudewijn P.F. Lelieveldt,
Alejandro F. Frangi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A Grid Molecular Simulator for E-Science
Osvaldo Gervasi, Cristian Dittamo, Antonio Laganà . . . . . . . . . . . . . . . 16

Application Driven Grid Developments in the OpenMolGRID Project
Bernd Schuller, Mathilde Romberg, Lidia Kirtchakova . . . . . . . . . . . . . . 23

ATLAS Data Challenge 2: A Massive Monte Carlo Production on the
Grid

Santiago González de la Hoz, Javier Sánchez, Julio Lozano,
Jose Salt, Farida Fassi, Luis March, D.L. Adams, Gilbert Poulard,
Luc Goossens, DC2 Production TEAM (ATLAS Experiment) . . . . . . . . 30

High Throughput Computing for Spatial Information Processing
(HIT-SIP) System on Grid Platform

Yong Xue, Yanguang Wang, Jianqin Wang, Ying Luo, Yincui Hu,
Shaobo Zhong, Jiakui Tang, Guoyin Cai, Yanning Guan . . . . . . . . . . . . 40

The University of Virginia Campus Grid: Integrating Grid Technologies
with the Campus Information Infrastructure

Marty Humphrey, Glenn Wasson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

M-Grid: Using Ubiquitous Web Technologies to Create a Computational
Grid

Robert John Walters, Stephen Crouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive
Environments

Chris A. Mattmann, Sam Malek, Nels Beckman, Marija Mikic-Rakic,
Nenad Medvidovic, Daniel J. Crichton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

HotGrid: Graduated Access to Grid-Based Science Gateways
Roy Williams, Conrad Steenberg, Julian Bunn . . . . . . . . . . . . . . . . . . . . . 78



XII Table of Contents

Principles of Transactional Grid Deployment
Brian Coghlan, John Walsh, Geoff Quigley, David O’Callaghan,
Stephen Childs, Eamonn Kenny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Experience with the International Testbed in the CrossGrid Project
J. Gomes, M. David, J. Martins, L. Bernardo, A. Garćıa, M. Hardt,
H. Kornmayer, J. Marco, R. Marco, D. Rodŕıguez, I. Diaz, D. Cano,
J. Salt, S. Gonzalez, J. Sánchez, F. Fassi, V. Lara, P. Nyczyk,
P. Lason, A. Ozieblo, P. Wolniewicz, M. Bluj, K. Nawrocki,
A. Padee, W. Wislicki, C. Fernández, J. Fontán, Y. Cotronis,
E. Floros, G. Tsouloupas, W. Xing, M. Dikaiakos, J. Astalos,
B. Coghlan, E. Heymann, M. Senar, C. Kanellopoulos, A. Ramos,
D. Groen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

eNANOS Grid Resource Broker
Ivan Rodero, Julita Corbalán, Rosa M. Badia, Jesús Labarta . . . . . . . . 111

GridARM: Askalon’s Grid Resource Management System
Mumtaz Siddiqui, Thomas Fahringer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Super-Peer Model for Building Resource Discovery Services in Grids:
Design and Simulation Analysis

Carlo Mastroianni, Domenico Talia, Oreste Verta . . . . . . . . . . . . . . . . . . 132

Ontology-Based Grid Index Service for Advanced Resource Discovery
and Monitoring

Said Mirza Pahlevi, Isao Kojima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Grid Service Based Collaboration for VL-e: Requirements, Analysis
and Design

A. de Ridder, A.S.Z. Belloum, L.O. Hertzberger . . . . . . . . . . . . . . . . . . . 154

A Fully Decentralized Approach to Grid Service Discovery Using
Self-organized Overlay Networks

Qi Xia, Weinong Wang, Ruijun Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Dynamic Parallelization of Grid–Enabled Web Services
Manfred Wurz, Heiko Schuldt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Automatic Composition and Selection of Semantic Web Services
Tor Arne Kvaløy, Erik Rongen, Alfredo Tirado-Ramos,
Peter M.A. Sloot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Grid Application Monitoring and Debugging Using the Mercury
Monitoring System

Gábor Gombás, Csaba Attila Marosi, Zoltán Balaton . . . . . . . . . . . . . . . 193



Table of Contents XIII

Interactive Visualization of Grid Monitoring Data on Multiple Client
Platforms

Lea Skorin-Kapov, Igor Pandžić, Maja Matijašević,
Hrvoje Komerički, Miran Mošmondor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

GridBench: A Workbench for Grid Benchmarking
George Tsouloupas, Marios D. Dikaiakos . . . . . . . . . . . . . . . . . . . . . . . . . 211

A Method for Estimating the Execution Time of a Parallel Task on a
Grid Node

Panu Phinjaroenphan, Savitri Bevinakoppa, Panlop Zeephongsekul . . . 226

Performance of a Parallel Astrophysical N-Body Solver on
Pan-European Computational Grids

Alfredo Tirado-Ramos, Alessia Gualandris, Simon Portegies Zwart . . . 237

Introducing Grid Speedup Γ : A Scalability Metric for Parallel
Applications on the Grid

Alfons G. Hoekstra, Peter M.A. Sloot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A Dynamic Key Infrastructure for Grid

H.W. Lim, M.J.B. Robshaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Experiences of Applying Advanced Grid Authorisation Infrastructures
R.O. Sinnott, A.J. Stell, D.W. Chadwick, O. Otenko . . . . . . . . . . . . . . . 265

Towards a Grid-wide Intrusion Detection System
Stuart Kenny, Brian Coghlan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

International Grid CA Interworking, Peer Review and Policy
Management Through the European DataGrid Certification Authority
Coordination Group

J. Astalos, R. Cecchini, B. Coghlan, R. Cowles, U. Epting,
T. Genovese, J. Gomes, D. Groep, M. Gug, A. Hanushevsky,
M. Helm, J. Jensen, C. Kanellopoulos, D. Kelsey, R. Marco,
I. Neilson, S. Nicoud, D. O’Callaghan, D. Quesnel, I. Schaeffner,
L. Shamardin, D. Skow, M. Sova, A. Wäänänen, P. Wolniewicz,
W. Xing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Grid Enabled Optimization
Hee-Khiang Ng, Yew-Soon Ong, Terence Hung, Bu-Sung Lee . . . . . . . . 296

Towards a Coordination Model for Parallel Cooperative P2P
Multi-objective Optimization

M. Mezmaz, N. Melab, E.-G. Talbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



XIV Table of Contents

A Grid-Oriented Genetic Algorithm
J. Herrera, E. Huedo, R.S. Montero, I.M. Llorente . . . . . . . . . . . . . . . . . 315

A Probabilistic Approach for Task and Result Certification of
Large-Scale Distributed Applications in Hostile Environments

Axel Krings, Jean-Louis Roch, Samir Jafar, Sébastien Varrette . . . . . . 323

A Service Oriented Architecture for Decision Making in Engineering
Design

Alex Shenfield, Peter J. Fleming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

A Grid Architecture for Comfortable Robot Control
Stéphane Vialle, Amelia De Vivo, Fabrice Sabatier . . . . . . . . . . . . . . . . . 344

The Grid-Ireland Deployment Architecture
Brian Coghlan, John Walsh, David O’Callaghan . . . . . . . . . . . . . . . . . . . 354

UNICORE as Uniform Grid Environment for Life Sciences
Krzysztof Benedyczak, Micha�l Wroński, Aleksander Nowiński,
Krzysztof S. Nowiński, Jaros�law Wypychowski, Piotr Ba�la . . . . . . . . . . 364

MyGridFTP: A Zero-Deployment GridFTP Client Using the .NET
Framework

Arumugam Paventhan, Kenji Takeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

On Using Jini and JXTA in Lightweight Grids
Kurt Vanmechelen, Jan Broeckhove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Ticket-Based Grid Services Architecture for Dynamic Virtual
Organizations

Byung Joon Kim, Kyong Hoon Kim, Sung Je Hong, Jong Kim . . . . . . 394

Heterogeneity of Computing Nodes for Grid Computing
Eamonn Kenny, Brian Coghlan, John Walsh, Stephen Childs,
David O’Callaghan, Geoff Quigley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Effective Job Management in the Virtual Laboratory
Marcin Lawenda, Norbert Meyer, Maciej Stroiński, Tomasz Rajtar,
Marcin Okoń, Dominik Stok�losa, Damian Kaliszan . . . . . . . . . . . . . . . . . 414

Workflow Management in the CrossGrid Project
Anna Morajko, Enol Fernández, Alvaro Fernández, Elisa Heymann,
Miquel Ángel Senar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Workflow-Oriented Collaborative Grid Portals
Gergely Sipos, Gareth J. Lewis, Péter Kacsuk, Vassil N. Alexandrov . . 434



Table of Contents XV

Contextualised Workflow Execution in MyGrid
M. Nedim Alpdemir, Arijit Mukherjee, Norman W. Paton,
Alvaro A.A. Fernandes, Paul Watson, Kevin Glover,
Chris Greenhalgh, Tom Oinn, Hannah Tipney . . . . . . . . . . . . . . . . . . . . . 444

Real World Workflow Applications in the Askalon Grid
Environment

Rubing Duan, Thomas Fahringer, Radu Prodan, Jun Qin,
Alex Villazón, Marek Wieczorek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

OpenMolGRID: Using Automated Workflows in GRID Computing
Environment

Sulev Sild, Uko Maran, Mathilde Romberg, Bernd Schuller,
Emilio Benfenati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Implementation of Replication Methods in the Grid Environment
Renata S�lota, Darin Nikolow, �Lukasz Skita�l, Jacek Kitowski . . . . . . . . . 474

A Secure Wrapper for OGSA-DAI
David Power, Mark Slaymaker, Eugenia Politou,
Andrew Simpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

XDTM: The XML Data Type and Mapping for Specifying Datasets
Luc Moreau, Yong Zhao, Ian Foster, Jens Voeckler,
Michael Wilde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

iGrid, a Novel Grid Information Service
Giovanni Aloisio, Massimo Cafaro, Italo Epicoco, Sandro Fiore,
Daniele Lezzi, Maria Mirto, Silvia Mocavero . . . . . . . . . . . . . . . . . . . . . . 506

A Grid-Enabled Digital Library System for Natural Disaster
Metadata

Wei Xing, Marios D. Dikaiakos, Hua Yang, Angelos Sphyris, George
Eftichidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Optimising Parallel Applications on the Grid Using Irregular Array
Distributions

Radu Prodan, Thomas Fahringer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Dynamic Adaptation for Grid Computing
Jérémy Buisson, Françoise André, Jean-Louis Pazat . . . . . . . . . . . . . . . 538

Improving Multilevel Approach for Optimizing Collective
Communications in Computational Grids

Boro Jakimovski, Marjan Gusev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548



XVI Table of Contents

Rough Set Based Computation Times Estimation on Knowledge Grid
Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun Chen . . . . . . . . . . . . . . . . . . 557

A Behavior Characteristics-Based Reputation Evaluation Method for
Grid Entities

Xiangli Qu, Xuejun Yang, Yuhua Tang, Haifang Zhou . . . . . . . . . . . . . . 567

Dynamic Policy Management Framework for Partial Policy Information
Chiu-Man Yu, Kam-Wing Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Security Architecture for Open Collaborative Environment
Yuri Demchenko, Leon Gommans, Cees de Laat,
Bas Oudenaarde, Andrew Tokmakoff, Martin Snijders,
Rene van Buuren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

An Experimental Information Grid Environment for Cultural Heritage
Knowledge Sharing

A. Aiello, M. Mango Furnari, A. Massarotti . . . . . . . . . . . . . . . . . . . . . . 600

Implementation of Federated Databases Through Updatable Views
Hanna Kozankiewicz, Krzysztof Stencel, Kazimierz Subieta . . . . . . . . . . 610

Data Mining Tools: From Web to Grid Architectures
Davide Anguita, Arianna Poggi, Fabio Rivieccio,
Anna Marina Scapolla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications
Cosimo Anglano, Massimo Canonico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

The Design and Implementation of the KOALA Co-allocating Grid
Scheduler

H.H. Mohamed, D.H.J. Epema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

A Multi-agent Infrastructure and a Service Level Agreement
Negotiation Protocol for Robust Scheduling in Grid Computing

D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
K. Krishnakumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

Towards Quality of Service Support for Grid Workflows
Ivona Brandic, Siegfried Benkner, Gerhard Engelbrecht,
Rainer Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Transparent Fault Tolerance for Grid Applications
Pawe�l Garbacki, Bartosz Biskupski, Henri Bal . . . . . . . . . . . . . . . . . . . . . 671



Table of Contents XVII

Learning Automata Based Algorithms for Mapping of a Class of
Independent Tasks over Highly Heterogeneous Grids

S. Ghanbari, M.R. Meybodi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

Grid Resource Broker Using Application Benchmarking
Enis Afgan, Vijay Velusamy, Purushotham V. Bangalore . . . . . . . . . . . 691

The Grid Block Device: Performance in LAN and WAN
Environments

Bardur Arantsson, Brian Vinter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

WS-Based Discovery Service for Grid Computing Elements
Kazimierz Balos, Krzysztof Zielinski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Rapid Distribution of Tasks on a Commodity Grid
Ladislau Bölöni, Damla Turgut, Taskin Kocak, Yongchang Ji,
Dan C. Marinescu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Modeling Execution Time of Selected Computation and Communication
Kernels on Grids

M. Boullón, J.C. Cabaleiro, R. Doallo, P. González, D.R. Mart́ınez,
M. Mart́ın, J.C. Mouriño, T.F. Pena, F.F. Rivera . . . . . . . . . . . . . . . . . 731

Parallel Checkpointing on a Grid-Enabled Java Platform
Yudith Cardinale, Emilio Hernández . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

Fault Tolerance in the R-GMA Information and Monitoring System
Rob Byrom, Brian Coghlan, Andy Cooke, Roney Cordenonsi,
Linda Cornwall, Martin Craig, Abdeslem Djaoui, Alastair Duncan,
Steve Fisher, Alasdair Gray, Steve Hicks, Stuart Kenny,
Jason Leake, Oliver Lyttleton, James Magowan, Robin Middleton,
Werner Nutt, David O’Callaghan, Norbert Podhorszki, Paul Taylor,
John Walk, Antony Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

Deployment of Grid Gateways Using Virtual Machines
Stephen Childs, Brian Coghlan, David O’Callaghan, Geoff Quigley,
John Walsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

Development of Cactus Driver for CFD Analyses in the Grid Computing
Environment

Soon-Heum Ko, Kum Won Cho, Young Duk Song, Young Gyun Kim,
Jeong-su Na, Chongam Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

Striped Replication from Multiple Sites in the Grid Environment
Marek Ciglan, Ondrej Habala, Ladislav Hluchy . . . . . . . . . . . . . . . . . . . . . 778



XVIII Table of Contents

The Gridkit Distributed Resource Management Framework
Wei Cai, Geoff Coulson, Paul Grace, Gordon Blair, Laurent Mathy,
Wai-Kit Yeung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

Stochastic Approach for Secondary Storage Data Access Cost
Estimation

Lukasz Dutka, Jacek Kitowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

A Cluster-Based Dynamic Load Balancing Middleware Protocol for
Grids

Kayhan Erciyes, Reşat Ümit Payli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

Reconfigurable Scientific Applications on GRID Services
Jesper Andersson, Morgan Ericsson, Welf Löwe . . . . . . . . . . . . . . . . . . . 813

Geographic Information Systems Grid
Dan Feng, Lingfang Zeng, Fang Wang, Degang Liu, Fayong Zhang,
Lingjun Qin, Qun Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Tools for Distributed Development and Deployment on the Grid
Ariel Garćıa, Marcus Hardt, Harald Kornmayer . . . . . . . . . . . . . . . . . . . 831

DNS-Based Discovery System in Service Oriented Programming
Maurizio Giordano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Experiences with Deploying Legacy Code Applications as Grid Services
Using GEMLCA,

A. Goyeneche, T. Kiss, G. Terstyanszky, G. Kecskemeti,
T. Delaitre, P. Kacsuk, S.C. Winter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

A Framework for Job Management in the NorduGrid ARC
Middleware

Henrik Thostrup Jensen, Josva Kleist, Jesper Ryge Leth . . . . . . . . . . . . 861

Data Management in Flood Prediction
Ondrej Habala, Marek Ciglan, Ladislav Hluchy . . . . . . . . . . . . . . . . . . . . . 872

Adaptive Task Scheduling in Computational GRID Environments
Manuel Hidalgo-Conde, Andrés Rodŕıguez, Sergio Ramı́rez,
Oswaldo Trelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

Large-Scale Computational Finance Applications on the Open Grid
Service Environment

Ronald Hochreiter, Clemens Wiesinger, David Wozabal . . . . . . . . . . . . . 891



Table of Contents XIX

Localized Communications of Data Parallel Programs on Multi-cluster
Grid Systems

Ching-Hsien Hsu, Tzu-Tai Lo, Kun-Ming Yu . . . . . . . . . . . . . . . . . . . . . . 900

VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid
Computing

Lican Huang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

A Monitoring Architecture for Control Grids
Alexandru Iosup, Nicolae Ţãpuş, Stéphane Vialle . . . . . . . . . . . . . . . . . . 922

Mobile-to-Grid Middleware: Bridging the Gap Between Mobile and
Grid Environments

Hassan Jameel, Umar Kalim, Ali Sajjad, Sungyoung Lee,
Taewoong Jeon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932

Role of N1 Technology in the Next Generation Grids Middleware
Krzysztof Zielinski, Marcin Jarzab, Jacek Kosinski . . . . . . . . . . . . . . . . . 942

Optimizing Grid Application Setup Using Operating System Mobility
Jacob Gorm Hansen, Eric Jul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952

GriddLeS Enhancements and Building Virtual Applications for the
GRID with Legacy Components

Jagan Kommineni, David Abramson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

Application Oriented Brokering in Medical Imaging: Algorithms and
Software Architecture

Mario Rosario Guarracino, Giuliano Laccetti,
Almerico Murli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972

A Performance Contract System in a Grid Enabling, Component Based
Programming Environment

Pasquale Caruso, Giuliano Laccetti, Marco Lapegna . . . . . . . . . . . . . . . . 982

A WSRF Based Shopping Cart System
Maozhen Li, Man Qi, Masoud Rozati, Bin Yu . . . . . . . . . . . . . . . . . . . . . 993

Grid Access Middleware for Handheld Devices
Saad Liaquat Kiani, Maria Riaz, Sungyoung Lee, Taewoong Jeon,
Hagbae Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

An Extendable GRID Application Portal
Jonas Lindemann, Göran Sandberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012



XX Table of Contents

A Task Replication and Fair Resource Management Scheme for Fault
Tolerant Grids

Antonios Litke, Konstantinos Tserpes, Konstantinos Dolkas,
Theodora Varvarigou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

CrossGrid Integrated Workflow Management System
Martin Maliska, Branislav Simo, Ladislav Hluchy . . . . . . . . . . . . . . . . . . 1032

Load Balancing by Changing the Graph Connectivity on Heterogeneous
Clusters

Kalyani Munasinghe, Richard Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040

Threat Model for Grid Security Services
Syed Naqvi, Michel Riguidel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048

A Loosely Coupled Application Model for Grids
Fei Wu, K.W. Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056

A Locking Protocol for a Distributed Computing Environment
Jaechun No, Hyoungwoo Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

Grid-Based SLA Management
James Padgett, Karim Djemame, Peter Dew . . . . . . . . . . . . . . . . . . . . . . 1076

A Heuristic Algorithm for Mapping Parallel Applications on
Computational Grids

Panu Phinjaroenphan, Savitri Bevinakoppa, Panlop Zeephongsekul . . . 1086

A Bypass of Cohen’s Impossibility Result
Jan A. Bergstra, Alban Ponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097

Mapping Workflows onto Grid Resources Within an SLA Context
Dang Minh Quan, Odej Kao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

iShare - Open Internet Sharing Built on Peer-to-Peer and Web
Xiaojuan Ren, Rudolf Eigenmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117

A Service-Based Architecture for Integrating Globus 2 and Globus 3
Manuel Sánchez, Óscar Cánovas, Diego Sevilla, Antonio F. Gómez-
Skarmeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128

The CampusGrid Test Bed at Forschungszentrum Karlsruhe
Frank Schmitz, Olaf Schneider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139

A Model for Flexible Service Use and Secure Resource Management
Ken’ichi Takahashi, Satoshi Amamiya, Makoto Amamiya . . . . . . . . . . . 1143



Table of Contents XXI

Online Performance Monitoring and Analysis of Grid Scientific
Workflows

Hong-Linh Truong, Thomas Fahringer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154

WebGrid: A New Paradigm for Web System
Liutong Xu, Bai Wang, Bo Ai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165

Dynamic Failure Management for Parallel Applications on Grids
Hyungsoo Jung, Dongin Shin, Hyeongseog Kim, Hyuck Han,
Inseon Lee, Heon Y. Yeom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175

A Novel Intrusion Detection Method for Mobile Ad Hoc Networks
Ping Yi, Yiping Zhong, Shiyong Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193



Author Index

Abramson, David 961

Adams, D.L. 30

Afgan, Enis 691

Ai, Bo 1165

Aiello, A. 600

Albayrak, Sahin 1

Alexandrov, Vassil N. 434

Aloisio, Giovanni 506

Alpdemir, M. Nedim 444

Amamiya, Makoto 1143

Amamiya, Satoshi 1143

Andersson, Jesper 813

André, Françoise 538

Anglano, Cosimo 630

Anguita, Davide 620

Arantsson, Bardur 702

Astalos, J. 98, 285

Badia, Rosa M. 111

Bal, Henri 671

Balaton, Zoltán 193

Balos, Kazimierz 711

Bangalore, Purushotham V. 691

Ba�la, Piotr 364

Beckman, Nels 68

Belloum, A.S.Z. 154

Benedyczak, Krzysztof 364

Benfenati, Emilio 464

Benkner, Siegfried 661

Bergstra, Jan A. 1097

Bernardo, L. 98

Bevinakoppa, Savitri 226, 1086

Biskupski, Bartosz 671

Blair, Gordon 786

Bluj, M. 98

Boisrobert, Loic 6

Bölöni, Ladislau 721

Boullón, M. 731

Brandic, Ivona 661

Broeckhove, Jan 384

Buisson, Jérémy 538

Bunn, Julian 78

Byrom, Rob 751

Cabaleiro, J.C. 731

Cafaro, Massimo 506

Cai, Guoyin 40

Cai, Wei 786

Cano, D. 98

Canonico, Massimo 630

Cánovas, Óscar 1128

Cardinale, Yudith 741

Caruso, Pasquale 982

Cecchini, R. 285

Chadwick, D.W. 265

Chen, Jiaxun 557

Childs, Stephen 88, 404, 761

Cho, Kum Won 771

Ciglan, Marek 778, 872

Coghlan, Brian 88, 98, 275, 285,

354, 404, 751, 761

Cooke, Andy 751

Corbalán, Julita 111

Cordenonsi, Roney 751

Cornwall, Linda 751

Cotronis, Y. 98

Coulson, Geoff 786

Cowles, R. 285

Craig, Martin 751

Crichton, Daniel J. 68

Crouch, Stephen 59

David, M. 98

DC2 Production Team 30

de Laat, Cees 589

de Ridder, A. 154

De Vivo, Amelia 344

Delaitre, T. 851

Demchenko, Yuri 589

Dew, Peter 1076

Diaz, I. 98

Dikaiakos, Marios D. 98, 211, 516

Dittamo, Cristian 16

Djaoui, Abdeslem 751

Djemame, Karim 1076

Doallo, R. 731

Dolkas, Konstantinos 1022

Duan, Rubing 454



1194 Author Index

Duncan, Alastair 751

Dutka, Lukasz 796

Eftichidis, George 516

Eigenmann, Rudolf 1117

Engelbrecht, Gerhard 661

Epema, D.H.J. 640

Epicoco, Italo 506

Epting, U. 285

Erciyes, Kayhan 805

Ericsson, Morgan 813

Fahringer, Thomas 122, 454,

527, 1154

Fassi, Farida 30, 98

Feng, Dan 823

Fernández, Alvaro 424

Fernández, C. 98

Fernández, Enol 424

Fernandes, Alvaro A.A. 444

Fiore, Sandro 506

Fisher, Steve 751

Fleming, Peter J. 334

Floros, E. 98

Fontán, J. 98

Foster, Ian 495

Frangi, Alejandro F. 6

Gao, Kun 557

Garbacki, Pawe�l 671

Garćıa, Ariel 98, 831

Garibaldi, J. 651

Genovese, T. 285

Gervasi, Osvaldo 16

Ghanbari, S. 681

Giordano, Maurizio 840

Glover, Kevin 444

Gombás, Gábor 193

Gomes, J. 98, 285

Gómez-Skarmeta, Antonio F. 1128

Gommans, Leon 589

González, P. 731

González de la Hoz, Santiago 30, 98

Goossens, Luc 30

Goyeneche, A. 851

Grace, Paul 786

Graschew, Georgi 1

Gray, Alasdair 751

Greenhalgh, Chris 444

Groen, D. 98

Groep, D. 285

Gualandris, Alessia 237

Guan, Yanning 40

Guarracino, Mario Rosario 972

Gug, M. 285

Gusev, Marjan 548

Habala, Ondrej 778, 872

Han, Hyuck 1175

Hansen, Jacob Gorm 952

Hanushevsky, A. 285

Hardt, Marcus 98, 831

Helm, M. 285

Hernández, Emilio 741

Herrera, J. 315

Hertzberger, L.O. 154

Heymann, Elisa 98, 424

Hicks, Steve 751

Hidalgo-Conde, Manuel 880

Hluchy, Ladislav 778, 872, 1032

Hochreiter, Ronald 891

Hoekstra, Alfons G. 245

Hong, Sung Je 394

Hsu, Ching-Hsien 900

Hu, Yincui 40

Huang, Lican 911

Huedo, E. 315

Humphrey, Marty 50

Hung, Terence 296

Iosup, Alexandru 922

Jafar, Samir 323

Jakimovski, Boro 548

Jameel, Hassan 932

Jarzab, Marcin 942

Jensen, Henrik Thostrup 861

Jensen, J. 285

Jeon, Taewoong 932, 1002

Ji, Yongchang 721

Ji, Youquan 557

Jul, Eric 952

Jung, Hyungsoo 1175

Kacsuk, Péter 434, 851

Kaiser, Silvan 1

Kalim, Umar 932

Kaliszan, Damian 414

Kanellopoulos, C., 98, 285



Author Index 1195

Kao, Odej 1107

Kecskemeti, G. 851

Kelsey, D. 285

Kenny, Eamonn 88, 404

Kenny, Stuart 275, 751

Kiani, Saad Liaquat 1002

Kim, Byung Joon 394

Kim, Chongam 771

Kim, Hagbae 1002

Kim, Hyeongseog 1175

Kim, Jong 394

Kim, Kyong Hoon 394

Kim, Young Gyun 771

Kirtchakova, Lidia 23

Kiss, T. 851

Kitowski, Jacek 474, 796

Kleist, Josva 861

Ko, Soon-Heum 771

Kocak, Taskin 721

Kojima, Isao 144

Komerički, Hrvoje 200

Kommineni, Jagan 961

Kornmayer, Harald 98, 831

Kosinski, Jacek 942

Kozankiewicz, Hanna 610

Krings, Axel 323

Krishnakumar, K. 651

Kvaløy, Tor Arne 184

Labarta, Jesús 111

Laccetti, Giuliano 972, 982

Laganà, Antonio 16

Lapegna, Marco 982

Lara, V. 98

Lason, P. 98

Laucelli, Marco 6

Lawenda, Marcin 414

Leake, Jason 751

Lee, Bu-Sung 296

Lee, Inseon 1175

Lee, Sungyoung 932, 1002

Lelieveldt, Boudewijn P.F. 6

Leth, Jesper Ryge 861

Lewis, Gareth J. 434

Lezzi, Daniele 506

Li, Maozhen 993

Lim, H.W. 255

Lindemann, Jonas 1012

Litke, Antonios 1022

Liu, Degang 823

Liu, Meiqun 557

Liu, Qun 823

Llorente, I.M. 315

Lo, Tzu-Tai 900

Löwe, Welf 813

Lozano, Julio 30

Luo, Ying 40

Lyttleton, Oliver 751

MacLaren, J. 651

Magowan, James 751

Malek, Sam 68

Maliska, Martin 1032

Mango Furnari, M. 600

Maran, Uko 464

March, Luis 30

Marco, J. 98

Marco, R. 98, 285

Marinescu, Dan C. 721

Marosi, Csaba Attila 193

Mart́ın, M. 731

Mart́ınez, D.R. 731

Martins, J. 98

Massarotti, A. 600

Mastroianni, Carlo 132

Mathy, Laurent 786

Matijašević, Maja 200

Mattmann, Chris A. 68

Medvidovic, Nenad 68

Melab, N. 305

Meybodi, M.R. 681

Meyer, Norbert 414

Mezmaz, M. 305

Middleton, Robin 751

Mikic-Rakic, Marija 68

Mirto, Maria 506

Mošmondor, Miran 200

Mocavero, Silvia 506

Mohamed, H.H. 640

Montero, R.S. 315

Morajko, Anna 424

Moreau, Luc 495

Mouriño, J.C. 731

Mukherjee, Arijit 444

Munasinghe, Kalyani 1040

Murli, Almerico 972

Na, Jeong-su 771

Naqvi, Syed 1048

Nawrocki, K. 98



1196 Author Index

Neilson, I. 285

Ng, Hee-Khiang 296

Ng, Kam-Wing 578, 1056

Nicoud, S. 285

Nikolow, Darin 474

No, Jaechun 1066

Nowiński, Aleksander 364

Nowiński, Krzysztof S. 364

Nutt, Werner 751

Nyczyk, P. 98

O’Callaghan, David 88, 285,

354, 404, 751, 761

Oinn, Tom 444

Okoń, Marcin 414

Ong, Yew-Soon 296

Ordas, Sebastian 6

Otenko, O. 265

Oudenaarde, Bas 589

Ouelhadj, D. 651

Ozieblo, A. 98

Padee, A. 98

Padgett, James 1076

Pahlevi, Said Mirza 144

Pandžić, Igor 200

Park, Hyoungwoo 1066

Paton, Norman W. 444

Paventhan, Arumugam 374

Payli, Reşat Ümit 805

Pazat, Jean-Louis 538

Pena, T.F. 731

Phinjaroenphan, Panu 226, 1086

Podhorszki, Norbert 751

Poggi, Arianna 620

Politou, Eugenia 485

Portegies Zwart, Simon 237

Ponse, Alban 1097

Poulard, Gilbert 30

Power, David 485

Prodan, Radu 454, 527

Puente, Jesús 6

Qi, Man 993

Qin, Jun 454

Qin, Lingjun 823

Qu, Xiangli 567

Quan, Dang Minh 1107

Quesnel, D. 285

Quigley, Geoff 88, 404, 761

Rajtar, Tomasz 414

Rakowsky, Stefan 1

Ramı́rez, Sergio 880

Ren, Xiaojuan 1117

Riaz, Maria 1002

Riguidel, Michel 1048

Rivera, F.F. 731

Rivieccio, Fabio 620

Robshaw, M.J.B. 255

Roch, Jean-Louis 323

Rodero, Ivan 111

Rodŕıguez, Andrés 880

Rodŕıguez, D. 98

Roelofs, Theo A. 1

Romberg, Mathilde 23, 464

Rongen, Erik 184

Rozati, Masoud 993

Sabatier, Fabrice 344

Sajjad, Ali 932

Sakellariou, R. 651

Salt, Jose 30, 98

Sandberg, Göran 1012

Sánchez, Javier 30, 98

Sánchez, Manuel 1128

Scapolla, Anna Marina 620

Schaeffner, I. 285

Schlag, Peter M. 1

Schmidt, Rainer 661

Schmitz, Frank 1139

Schneider, Olaf 1139

Schuldt, Heiko 173

Schuller, Bernd 23, 464

Senar, Miquel Ángel 98, 424

Sevilla, Diego 1128

Shamardin, L. 285

Shenfield, Alex 334

Shin, Dongin 1175

Siddiqui, Mumtaz 122

Sild, Sulev 464

Simo, Branislav 1032

Simpson, Andrew 485

Sinnott, R.O. 265

Sipos, Gergely 434

Skita�l, �Lukasz 474

Skorin-Kapov, Lea 200

Skow, D. 285

Slaymaker, Mark 485

Sloot, Peter M.A. 184, 245

Snijders, Martin 589



Author Index 1197

Song, Young Duk 771

Sova, M. 285

Sphyris, Angelos 516

Steenberg, Conrad 78

Stell, A.J. 265

Stencel, Krzysztof 610

Stok�losa, Dominik 414

Stroiński, Maciej 414

Subieta, Kazimierz 610

S�lota, Renata 474

Takahashi, Ken’ichi 1143

Takeda, Kenji 374

Talbi, E.-G. 305

Talia, Domenico 132

Tang, Jiakui 40

Tang, Yuhua 567

Ţãpuş, Nicolae 922

Taylor, Paul 751

Terstyanszky, G. 851

Tipney, Hannah 444

Tirado-Ramos, Alfredo 98, 184, 237

Tokmakoff, Andrew 589

Trelles, Oswaldo 880

Truong, Hong-Linh 1154

Tserpes, Konstantinos 1022

Tsouloupas, George 98, 211

Turgut, Damla 721

van Assen, Hans C. 6

van Buuren, Rene 589

Vanmechelen, Kurt 384

Varrette, Sébastien 323

Varvarigou, Theodora 1022

Velusamy, Vijay 691

Verta, Oreste 132

Vialle, Stéphane 344, 922

Villazón, Alex 454

Vinter, Brian 702

Voeckler, Jens 495

Wäänänen, A. 285

Wait, Richard 1040

Walk, John 751

Walsh, John 88, 354,

404, 761

Walters, Robert John 59

Wang, Bai 1165

Wang, Fang 823

Wang, Jianqin 40

Wang, Weinong 164

Wang, Yanguang 40

Wasson, Glenn 50

Watson, Paul 444

Wieczorek, Marek 454

Wiesinger, Clemens 891

Wilde, Michael 495

Williams, Roy 78

Wilson, Antony 751

Winter, S.C. 851

Wislicki, W. 98

Wolniewicz, P. 98, 285

Wozabal, David 891

Wroński, Micha�l 364

Wu, Fei 1056

Wurz, Manfred 173

Wypychowski, Jaros�law 364

Xia, Qi 164

Xing, Wei 98, 285, 516

Xu, Liutong 1165

Xue, Yong 40

Yang, Hua 516

Yang, Ruijun 164

Yang, Xuejun 567

Yeom, Heon Y. 1175

Yeung, Wai-Kit 786

Yi, Ping 1183

Yu, Bin 993

Yu, Chiu-Man 578

Yu, Kun-Ming 900

Zeephongsekul, Panlop

226, 1086

Zeng, Lingfang 823

Zhang, Fayong 823

Zhang, Shiyong 1183

Zhao, Yong 495

Zhong, Shaobo 40

Zhong, Yiping 1183

Zhou, Haifang 567

Zielinski, Krzysztof 711, 942



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1 – 5, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Telemedical Applications and Grid Technology 

Georgi Graschew1, Theo A. Roelofs1, Stefan Rakowsky1, Peter M. Schlag1,  
Sahin Albayrak2, and Silvan Kaiser2 

1 Surgical Research Unit OP 2000,  
Max-Delbrueck-Centrum  and Robert-Roessle-Klinik, 

Charité – University Medicine Berlin,  
Lindenberger Weg 80, D-13125 Berlin, Germany 

2 DAI-Labor, Agent Technologies in Business Applications and Telecommunication, 
Technical University Berlin, Salzufer 12, 

D-10587 Berlin, Germany 

Abstract. In recent years different institutions have launched several 
telemedicine projects which aimed to encourage the Euro-Mediterranean co-
operation. The creation of a Virtual Euro-Mediterranean Hospital aiming to 
facilitate the interconnection of the various services through real integration has 
been recommended. Therefore Grid becomes inevitable for successful 
deployment of these services. Existing Grid Engines provide basic computing 
power needed by today's medical analysis tasks but lack other capabilities 
needed for communication and knowledge sharing services envisioned. When it 
comes to heterogeneous systems to be shared by different institutions especially 
the high level system management areas are still unsupported. Therefore a 
Metagrid Engine is needed that provides a superset of functionalities across 
different Grid Engines and manages strong privacy and Quality of Service 
constraints at this comprehensive level. 

1   Introduction 

1.1   The EMISPHER Network for Telemedical Applications 

The EMISPHER project (Euro-Mediterranean Internet-Satellite Platform for Health, 
medical Education and Research, see www.emispher.org/) is dedicated to 
telemedicine, e-Health and medical e-learning [1]. During its implementation over the 
last two years, EMISPHER has deployed and put in operation a dedicated internet-
satellite platform consisting of currently 10 sites in 5 MEDA countries (Casablanca,  
Algiers, Tunis, Cairo and Istanbul) and 5 EU countries (Palermo, Athens, Nicosia, 
Clermont-Ferrand and Berlin). 

1.2   From EMISPHER Towards the Deployment of a Virtual  
Euro-Mediterranean Hospital 

The EMISPHER network serves as a basis for the development and deployment of a 
Virtual Hospital for the Euro-Mediterranean region. The Virtual Euro-Mediterranean 



2 G. Graschew et al. 

 

Hospital (VEMH) aims to facilitate and accelerate the interconnection and 
interoperability of the various services, being developed by different organizations at 
different sites, through real integration. 

1.3   Services of the VEMH 

• Euro-Mediterranean Medical University 
improved qualification by exchange and standardization of educational 
modules 

• Real-time Telemedicine 
improved quality of patient care and qualification of staff 

• Medical assistance 
improved continuity of care to stimulate tourism 

• Implementation of Evidence-based medicine 
improved disease management and individual therapies 

• Fellowship programmes for young professionals 
improved qualifications in multi-cultural and inter-disciplinary settings 

1.4   Methodologies for the VEMH 

• Medical-needs-driven instead of technology-driven!!! 
• New management tools for virtual medical communities 

− trust- and synergy-building measures 
− balance between technological and interpersonal skills 

• Management of clinical outcomes 
improved implementation of evidence-based medicine  

• Modular architecture 
• Integration of different telemedical solutions in one platform to support many 

different medical services (matrix structure)

1.    Communication Infrastructures for a Virtual Hospital 

The communication infrastructure of such a Virtual Euro-Mediterranean Hospital 
should integrate satellite-based networks like EMISPHER with suitable terrestrial 
channels. Due to the distributed character of the Virtual Euro-Mediterranean Hospital, 
data, computing resources as well as the need for these are distributed over many sites 
in the Virtual Hospital. Therefore Grid becomes inevitable for successful deployment 
of services like acquisition and processing of medical images, data storage, archiving 
and retrieval, data mining (especially for evidence-based medicine). A more detailed 
description of the envisioned telemedical services can be found in [2]. 

Giving access to distributed services in a wide network of connected institutions 
the system shall integrate domain knowledge, powerful computing resources for 
analytical tasks and means of communication with partners and consultants in a 
trusted and secure user tailored support system. 

5 

  individual user needs (as matrix columns) 
 technical solutions (as matrix rows)

Data security & Patient’s privacy 

−
−

•



 Telemedical Applications and Grid Technology 3 

 

2   Approach 

2.1   Metagrid Services 

Here we introduce our view of an agent-based Metagrid Service Engine (MGSE), 
which implements an additional software layer between proprietary Grid engines and 
the applications and therefore integrates the different approaches. It will make a 
global Grid across OEM-boundaries become reality. 

 

Fig. 1. Agent-based Metagrid Service Engine (MGSE) 

The Metagrid Services should address the main issues of today's Grid Computing 
software. Low level Grids like the SUN Grid Engine provide scalable high 
performance Grids but have several requirements and shortages that need to be taken 
care of. First they need homogeneous Grid nodes because scheduled tasks contain 
only scripts designed to call the programs needed for the tasks. 

Furthermore the low level design does not handle AAA aspects too well. When 
applying the ideas of inter-organizational Grids this becomes a very important issue, 
as perceived by the Global Alliance. Focusing heavily in this partial area, the Open 
Grid Service Architecture (OGSA) uses Web Services and sophisticated 
Authentication and Authorization techniques. Web Services allow a platform 
independent approach, combined with the included security mechanisms this becomes 
an important basis for the Global Grid vision [3]. 



4 G. Graschew et al. 

 

2.2   Mobile Code 

We envision the use of mobile code in future Grids which allows service creation and 
deployment on arbitrary nodes of a Grid giving a flexibility unknown by today's Grid 
technology. Services can be created and distributed in a Grid through mobile code, 
severely reducing the need for software installation in the Grids nodes. 

The main objective is on the one hand an integration of low level concepts like 
the SUN Grid Engine in wide scale management like the OGSA and on the other 
hand bringing more flexibility to systems based on the OGSA framework by 
integrating features like dynamic service distribution, mobile code, etc. The 
ultimate goal being the ability to distribute tasks over a secure and organization 
spanning dynamic Grid. 

2.3   Dynamic Grid 

By using platform independent software Grids can be extended to large scale 
networks, allowing the flexible use of computing resources from a vast number of 
Grid nodes. Here support for dynamic Grid structures becomes an important point. 
Meta-Grid Services have to be able to tolerate changes in the managed Grid, like the 
addition or removal of nodes at runtime. Fallback mechanisms have to go to work 
when tasks cannot be fulfilled because nodes they where assigned to drop out without 
returning the appropriate task results. 

Sub Grids can be put to best use by assigning tasks through intelligent Meta-Grid 
Services, these can differentiate the individual needs of a task and assign it to an 
applicable node or sub Grid, e.g. by assigning mathematical computations to high 
power SUN Grids while directing low priority tasks to other nodes (which possibly 
demand lower prices). 

Integrating meta level accounting is an important Meta-Grid Service, empowering 
a Meta-Grid to ensure full accounting of scheduled tasks, including the use of sub 
Grids and other integrated legacy systems. These become immensely important when 
thinking about the inter-organizational aspects of global Grid structures. 

2.4   Experimental Environment  

In co-operation between Sun Microsystems and the Technical University Berlin a 
Grid testbed consisting of seven multiprocessor nodes based on heterogeneous 
hardware configurations has been set up. All nodes are interconnected by a Gigabit 
testbed. The systems are configured to run Linux or Solaris operating systems.  

3   Conclusions and Perspectives 

For successful deployment of the various medical services in the Virtual Euro-
Mediterranean Hospital, the development and implementation of Health Grid 
technology appears crucial. 



 Telemedical Applications and Grid Technology 5 

 

Subsequently, the implementation of this new technology might trigger a critical 
evaluation and adaptation / optimization of the medical workflow and corresponding 
decision-making trees. 

References 

[1] Graschew, G., Roelofs, T.A., Rakowsky, S., Schlag, P.M., Überbrückung der digitalen 
Teilung in der Euro-Mediterranen Gesundheitsversorgung – das EMISPHER-Projekt, In: 
A. Jäckel (Hrsg.) Telemedizinführer Deutschland, Ober-Mörlen, Ausgabe 2005,  
p. 231-236. 

[2] http://whitepaper.healthgrid.org/ 
[3] Foster, I., Kesselman, C., Nick, J., Tuecke, S., An Open Grid Services Architecture for 

Distributed Systems Integration, 2002, http://www.globus.org/research/papers/ogsa.pdf. 



Statistical Modeling and Segmentation in Cardiac MRI
Using a Grid Computing Approach

Sebastian Ordas1, Hans C. van Assen2, Loic Boisrobert1, Marco Laucelli3,
Jesús Puente3, Boudewijn P.F. Lelieveldt2, and Alejandro F. Frangi1

1 Computational Imaging Laboratory, Universitat Pompeu Fabra, Barcelona, Spain
sebastian.ordas@upf.edu

2 Division of Image Processing, Department of Radiology,
Leiden University Medical Center, Leiden, The Netherlands

3 GridSystems S.A., Palma de Mallorca, Spain

Abstract. Grid technology is widely emerging as a solution for wide-spread ap-
plicability of computerized analysis and processing procedures in biomedical sci-
ences. In this paper we show how a cardiac image analysis task can substantially
benefit from Grids, making use of a middleware service tailored to the needs of
common application tasks. In a first part we describe a methodology for the con-
struction of three-dimensional (3D) statistical shape models of the heart, from a
large image database of dynamic MRI studies. Non-rigid registration is needed
for the automatic establishing of landmark correspondences across populations
of healthy and diseased hearts; but when dealing with large databases, the com-
putational load of current algorithms becomes a serious burden. Our Grid service
API provided an easy way of taking benefit from our computing resources, by
allowing for pipelining the distributed and non-distributed steps of the algorithm.
As a second part of this work we show how the constructed shape models can
be used for segmenting the left ventricle in MRI studies. To this aim we have
performed an exhaustive tuning of the parameters of a 3D model-based segmen-
tation scheme, also in a distributed way. We run a series of segmentation tests in
a Monte Carlo fashion, but only making use of the Grid service web portal, as
this time the pipeline was simpler. Qualitative and quantitative validation of the
fitting results indicates that the segmentation performance was greatly improved
with the tuning, combining robustness with clinically acceptable accuracy.

1 Introduction

Cardiac imaging acquisition technology is being developed vertiginously by means of
tremendous technical progresses. These advances include an increased spatial and tem-
poral resolution, motion, exposure and scanning time reduction, and the availability of
functional imaging sequences for perfusion, viability and flow assessment. Neverthe-
less, the increased amount of data originated from state-of-the-art imaging examinations
could not been favored in a similar way from robust computerized quantitative analysis
tools appropriate for the routine clinical practice. Owing to this necessity, cardiac image
analysis has become quite an active field of research. An inevitable step before pursu-
ing any kind of quantitative and/or functional analysis is the automated segmentation

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 6–15, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Statistical Modeling and Segmentation in Cardiac MRI 7

of the cardiac chambers. In the last few years, many model-based approaches for image
segmentation have contributed to the quite evolving field of medical image analysis.
The rationale behind these methods is to analyze the image in a top-down fashion. A
generic template model of the structure of interest is deformed to accommodate for the
clues provided by image information. For a cardiac application, it is possible to learn
the shape statistics of a heart from a population of healthy and/or diseased hearts, and
construct a compact and specific anatomical model. Statistical model-based approaches
work in this way, and are able to provide constraints that allow for efficiently handling
situations with substantial sparse or missing information. Statistical models of shape
(ASM) [1] and appearance (AAM) [2] variability are two model-driven segmentation
schemes very popular in medical image analysis. In building these frameworks, a set of
segmentations of the shape of interest is required, as well as a set of corresponding land-
marks defined over them. An ASM comprises a shape and an appearance model. The
former primarily holds information about the shape and its allowed variations in a Point
Distribution Model (PDM), determined by a Principal Component Analysis (PCA). The
latter is responsible of learning grey-level patterns from the training set image data, that
are to be compared against those identified in a new (unknown) image during the fitting
stage. The algorithm therefore consists of an iterative process in which the appearance
model looks into the image for new candidate positions to deform the shape model, and
the shape model applies statistical geometric constraints in order to keep the deforma-
tion process always within legal statistical limits. First approaches like [3, 4] and [5]
have evidenced an encouraging performance in segmenting the left ventricle in 3D data
sets of MR/US and MR/CT, respectively.

In the work that we present here, we describe the methodology employed to au-
tomatically construct 3D-PDMs from large databases of cardiac dynamic studies [6],
as well as the Grid computing approach that has enabled their construction [7]. The
ultimate goal of such a representation is to model the geometry of the heart ensuring
that the final model will gather representative statistics of the studied population. The
statistical geometric constraints implied by such a representation can provide a priori
knowledge for different model-based segmentation approaches. To this aim, we used
the constructed 3D-PDMs within the 3D-ASM segmentation algorithm of van Assen et
al. [8], that uses a fuzzy inference system in the appearance model. By running the seg-
mentation tests with three different shape models, we aimed to explore to what extent
the use of our method for automatically building shape models does really improve the
segmentation performance. The way our Grid middleware is designed to work allowed
for quite an easy and general methodology for setting-up, running, and post-processing
the results. In the following sections we provide the general ideas behind the shape
model construction methodology and the parametric tuning of the segmentation algo-
rithm, making emphasis on our experience with the use of Grid computing.

2 Construction of the Statistical Shape Models

2.1 Training Data Set

We built the statistical shape models from a data set comprising 90 MRI studies of
healthy and diseased hearts. They were acquired from CETIR Sant Jordi Cardiovascu-



8 S. Ordas et al.

lar MR Centre (Barcelona, Spain) using a General Electric Signa CV/i, 1.5 T scanner
(General Electric, Milwaukee, USA) with the FIESTA protocol. The slice thickness was
8–10 mm with an in-plane pixel resolution of 1.56 × 1.56 mm2. Studies correspond
to 21 healthy subjects and 74 patients suffering from common cardiac pathologies, ran-
domly selected from those acquired during year 2002 in the clinical center. Therefore,
the types and relative proportion of pathologies were representative of typical examina-
tions. Manual delineations corresponding to five phases were considered. We were thus
able to construct both single-phase (90 samples) and multi-phase (450 samples) shape
models.

2.2 Grid Service and Cluster Facility

Our Grid middleware platform is the InnerGrid Nitya developed by GridSystems (Mal-
lorca, Spain), running on a 45-node dual Xeon (2.8 GHz CPU, 2 GHz RAM) cluster,
under Linux RedHat 9, accessible through a web interface (desktop portal) and from
an API. As a whole, the cluster represents more than 103 GFlops of computing power.
As each node in the cluster provides 2 Agents to the Grid, a total of 90 Agents were
available for tasks distribution.

2.3 Establishing Point Correspondences

The general layout of the method is to align all the images of the training set to an
atlas that can be interpreted as a mean shape. Once all the necessary transformations
are obtained, they are inverted and used to propagate any number of arbitrarily sampled
landmarks on the atlas, to the coordinate system of each subject. In this way, while it
is still necessary to manually draw the contours in each training image, our technique
reliefs from manual landmark definition and for establishing the point correspondence
across the training set. The method can easily be set to build either 1- or 2-chamber
models. Moreover, its generality allows for using it with other modalities (e.g. SPECT,
CT) and organs with shape variability close to that of the heart (e.g. liver, kidneys).
A detailed description of the method can be found in [6], but can be summarized as
follows:

1. The manually drawn contours in the training set are converted into labelled shapes
simply by flood-filling each (closed) sub-part with a different scalar value.

2. The labelled shapes are aligned through a global transformation (rigid registration
with nine degrees of freedom: translation, rotation, and anisotropic scaling) to a
Reference Sample (RS) randomly chosen from the training set. The RS is therefore
considered as the first atlas estimate.

3. A new atlas is constructed by shape-based averaging of the aligned shapes. This is
performed by averaging the images in their distance transform domain, and defining
a new labelled shape by considering the zero iso-surface of each sub-part separately.

4. To minimize the bias introduced by the choice of the RS, steps 2 and 3 are repeated
until the atlas becomes stable. At this point, the atlas is said to be in a Reference
Coordinate System (RCS).

5. Subsequently, each rigidly aligned shape is locally deformed (using non-rigid reg-
istration) in order to accommodate to the RCS atlas.



Statistical Modeling and Segmentation in Cardiac MRI 9

(a) (b)

Fig. 1. (a) Final transformations. A set of final global (Tg) and local (Tl) transformations can take
any sample shape of the training set, to the NCS atlas coordinate system. (b) Landmark propa-
gation. Once the final global and local transformations are obtained, they are inverted and used
to propagate any number of arbitrarily sampled landmarks on the NCS atlas, to the coordinate
system of the original samples

Fig. 2. Some plausible instances of the shape model. The shapes are generated by randomly set-
ting the shape parameters within the limits of ±3 SD (SD=

√
λi) from their mean values in the

training set

6. The obtained local transformations are averaged and the resulting transformation is
applied to the RCS atlas. The new atlas is said to be in a Natural Coordinate System
(NCS) and is unique regardless the RS election [6].

7. A new set of global and local transformations are recalculated in the same way as
in steps 2 and 5 (Fig. 1(a)).

8. Finally, any automatically generated landmarks in the NCS atlas can be propagated
to the training shapes through the transformations in 7 (Fig. 1(b)).



10 S. Ordas et al.

9. In order to build the statistical shape models, the autolandmarked shapes are nor-
malized with respect to a reference coordinate frame, eliminating differences across
objects due to rotation, translation and size. Once the shape samples are aligned, the
remaining differences are solely shape related, and PCA can be performed. In Fig. 2
some examples of valid shapes generated by the 1-chamber model are illustrated.

2.4 Grid Computing Approach

For this implementation it was necessary to use the Grid middleware API, by means of
a perl script. Some parts of the PDM construction methodology were distributed and
others not. The preprocessing (image labelling, shape-based interpolation) and postpro-
cessing (shape-based averaging, landmark propagation, PCA) tasks, were performed by
a single Agent. All the registrations (rigid and non-rigid) were distributed among the
Agents. With this facility, for instance, the construction of an atlas of 450 samples with
5 iterations takes approximately 50 minutes. Considering that the average processing
time for a rigid registration of one sample to an atlas is 4.5 minutes and that the pre-
and post- processes tasks take about 16 minutes, this time would represent one week of
calculation for a single equivalent CPU. For the non-rigid registration of the same 450
samples, the distributed process lasted 18 hours, while for a single equivalent CPU it
would have taken around 1480 hours (two months).

3 Segmentation Algorithm

3.1 Appearance Model

In order to deform the shape model, candidate points are collected from the image data
using a decision scheme based on the Takagi-Sugeno Fuzzy Inference System (FIS) [9].
For a complete description of this decision scheme, we refer to [8]. The Fuzzy C-Means
(FCM) within the FIS yields three membership distributions for the tissues: air, my-
ocardium and blood. In the inference part of the FIS, crisp values per pixel are derived
based on the fuzzy membership distributions. This is performed using two kinds of
thresholds:

1. Gray level threshold: first, a threshold is placed in the membership distributions,
marking a part that is attributed to a tissue class irrespective of its membership value
for that class. All pixels with a gray value below the threshold are assigned to the
air-class. The position of the threshold is determined as a proportion between tissue
class centers. The threshold is placed at a preset proportion between the tissue class
centers of the air and the myocardium tissue classes, resulting from the FCM.

2. Membership degree thresholds: the gray level threshold above divides the mem-
bership distributions from the FCM in two parts, assigning tissue labels to the lower
part. The remaining part is classified using membership threshold levels. Thus, pix-
els with a gray value in this part are assigned the tissue label of the class with the
highest membership value at that particular gray value, provided this membership
value is above the threshold for the tissue. Pixels with gray values whose highest
membership value does not reach the corresponding tissue membership threshold,
are left unclassified.



Statistical Modeling and Segmentation in Cardiac MRI 11

3.2 Matching Procedure

In summary, the 3D-ASM matching can be described as follows. The mean shape model
is placed in the target data set with a given initial scale and pose. The image planes
intersect the model’s sub-part surface meshes, yielding stacks of 2D contours. These
contours are composed of the intersections of the image planes with individual mesh
triangles. Candidate displacements (update-vectors) are propagated to the nodes in the
mesh. To facilitate through-plane motion in the model, they are projected on the model
surface normals, which also have a component perpendicular to the imaging planes.
The current model state is aligned to the proposed model state resulting from the model
update information using the method of Besl and McKay [10] for 3D point clouds,
effectively eliminating scaling, translation and rotation differences. The residual shape
differences are projected on the shape model subspace, yielding a model parameter
vector. The steps above are repeated either for a fixed number of iterations, or until
convergence is achieved.

3.3 Parametric Optimization

The fitting algorithm can easily be set to work either with the 1- or 2-chamber rep-
resentations built in the previous sections. Nevertheless, we have evidenced that the
segmentation results with the latter were not good enough in the area around the RV
apex. The confounding point candidates provided by this complex region of the data
set hampered the overall performance of the algorithm, by not allowing the model to
stretch towards that position. We realized that this effect was shadowing the differences
in segmentation performance that we were investigating with the use of different shape
model construction methodologies. Therefore, the results that we report in the following
sections only correspond to the 1-chamber shape model.

Parameters Related to the Shape Model. For every intersection of the model mesh
with an image plane, a model update is computed as explained before. For every single
update, the possibility exists that a non-optimal or even an erroneous position results.
To diminish the effects of erroneous updates, the update itself, which acts as a force
on a model surface, is smeared out over a small region on the model surface around
the source location. Thus, faulty or less reliable updates can be compensated for by
a number of neighboring updates. The contribution of a single model update to other
updates is weighted with a Gaussian kernel, with the actual weight depending on the
geodesic distance along the mesh edges to the source location of the update. To limit
the extent of the propagation of the updates, propagation is stopped either after a fixed
number of edges, or when the weight attributed to a particular update is below a preset
threshold. The actual values for the standard deviation of the kernel (sigma, σ), the
propagation level limit (extent, χ), and the number of standard deviations (beta, β) that
each shape model parameter is allowed to vary, are the three shape-related parameters
to optimize (see Table 1).

Parameters Related to the Appearance Model. The three membership thresholds
mentioned in Sec. 3.1 (for air, myocardium, and blood) constitute the three parameters



12 S. Ordas et al.

Table 1. Appearance model parameters, ranges and optimal values

Tissue Lower Upper Step size ED optimal ES optimal
Appearance model parameters
Blood 0.1 0.5 0.1 0.2 0.4
Myocardium 0.05 0.30 0.05 0.05 0.05
Air 0.3 0.7 0.1 0.5 0.5
Shape model parameters
Sigma, σ 3 9 1 6 4
Extent, χ 1 5 1 2 4
Beta, β 1 3 1 2 1

to update (t1, t2, t3 ) in relationship with the appearance model. Their tuning ranges are
specified in Table 1.

Fixed Settings. The 3D-ASM was set to run for a fixed number of iterations (N=100)
using 60 modes of variation (more than 95% of the total variance of the three shape
models tested). Always, the shape resulting from the final iteration was taken for as-
sessment of its point-to-surface (P2S) error with respect to its manual segmented coun-
terpart. The optimal settings for the algorithm where chosen based on the unsigned P2S
distance measures averaged over the complete evaluation database.

4 Fitting Experiments

4.1 Evaluation Data Set

The data set used for the segmentation tests comprised 30 subjects. Fifteen were short-
axis scans of healthy volunteers acquired at the Leiden University Medical Center (Lei-
den, Netherlands) using the balanced FFE-protocol on a Philips Gyroscan NT Intera,
1.5 T MR scanner (Philips Medical Systems, Best, Netherlands). The slice thickness
was 8 mm, with a slice gap of 2 mm and in-plane pixel resolution of 1.36×1.36 mm2.
The other fifteen studies corresponded to the same clinical center mentioned in Sec. 2.1.
Selected patients suffered from common cardiac diseases: myocardium infarction (10),
hypertrophy (2), and pericarditis (3). Expert segmentations were manually drawn along
the epicardial (LV-epi ) and endocardial (LV-endo) borders of the left ventricle (LV),
at two phases of the cardiac cycle: End Systole (ES) and End Diastole (ED). Manual
segmentations usually have an average intra- and inter-observer variability in the range
of 1–2 mm. Nevertheless, they generally constitute the gold standard for assessing the
achieved accuracy.

4.2 Grid Computing Approach

For setting up the experiments, 60 data sets (30 patients at ED and ES) and 6 shape
models (three construction methods and a different shape model for ED and ES) were
uploaded to the server. The tuning of the parameters that affect the appearance model
and the beta parameter, was run first. The remaining parameters were fixed at χ = 3 and
σ = 6 (values beforehand expected to be not far from optimal). The process produced
approximately 64,800 results and lasted 1.5 days. The optimal set of parameters of this



Statistical Modeling and Segmentation in Cardiac MRI 13

first step were used in a second run for tuning the other two parameters that affect the
shape model. This second run lasted 0.9 days and produced 5,670 result files. In both
runs, the post-processing was done in a local machine but could have been performed in
the Grid server itself, as a post-processing task. Each of the collected result files was in
fact a compressed folder (.tgz) comprising log files (with the segmentation errors) and
a series of intermediate results and shape model instances, intended to track for events
and visualization.

4.3 Quantitative Assessment

The performance assessment analysis was performed using the model state (i.e. po-
sition, orientation, scale and shape) from the last matching iteration of the fitting al-
gorithm. Errors were measured by computing the mean unsigned P2S distances from
regularly sampled points on the manually segmented contours to the surfaces of the
fitted shapes. Two patient data sets were discarded from the assessment because their
automatic segmentations were not comparable to the quality of the rest (for all mod-
els). The uncorrected field inhomogeneity in one case and a huge pericarditis on the
other, confounded the algorithm for any combination of the tuned parameters. Table 2
presents the automatic segmentation results, distinguishing between the shape model
subparts (LV-endo and LV-epi ). Values correspond to the shape model with best perfor-

Table 2. Mean ± SD of the unsigned point to surface (P2S) errors in millimeters. Between
brackets, the percentage of improvement achieved by the optimization with respect to previously
achieved segmentation accuracy using ad hoc settings

Phase LV-endo LV-epi
ED 1.98±0.54 (27.7%) 1.91±0.54 (22.0%)
ES 3.6±1.09 (13.0%) 2.76±0.89 (16.6%)
Fit of shape model 0.80±0.13 0.82±0.16

(a) (b)

Fig. 3. 3D-ASM segmentation. LV-endo (a) and LV-epi (b) final states. The shape rendered in
wireframe corresponds to the fitted shape and the surfaced shape, to the manual one



14 S. Ordas et al.

Fig. 4. View across slices of the fitted shape

mance (in fact, the autolandmarked shape model presented in [6]). It is also indicated
between brackets the percentage of improvement achieved by the optimization with re-
spect to previously achieved segmentation accuracy using ad hoc settings. The third row
corresponds to the error that the shape model would have for reconstructing the shapes
(either ED or ES) if their exact positions were known. The automatic results are quite
within clinically acceptable margins. Fig. 3 shows an example of the fitted model sub-
parts. The manual shape is built from the manual contours and rendered as a surface.
Fig. 4 shows a typical result of the achieved segmentation.

5 Conclusions

The presented work serves as an example of Grid computing in a conventional field
of software applications, like our research in cardiac image analysis. We believe that
in the near future they will become ubiquitous in other biomedical imaging related
fields like visualization, processing and archiving, were the availability of huge amounts
of data highly requires distributed processing and rapid accessing, as well as sharing
computer resources. Surgery planning and simulation or building application oriented
morphometric atlases may serve as examples. Based on the experienced benefits with
the use of Grid computing during the last two years, and foreseeing the advent of large-
scale tests and applications, we strongly see its use as an enabling approach not only
for new applications, but for enhancing past developments.

Two distributed applications were presented. The first one made use of the Grid
service API, as distributed and non-distributed steps where needed, as well as sub-
processes iterations and post-processing. The second Grid-enabled approach was an
exhaustive search of the optimal set of parameters for a 3D model-based algorithm for
cardiac MRI segmentation. The set-up for distributing such a big number of tasks was a
matter of minutes, using the Grid service web portal. This approach is specially suited
for Monte Carlo simulations. In both cases, the system took advantage of each resource
depending on its usage, and not interfering with end users. When one of the computers
in the Grid was not available, its tasks were automatically reassigned. Finally, the sys-
tem collected the local output from all the units and made them available for download.

In conclusion, we believe that Grid technology solutions are quite valuable as they
considerably shorten execution times of exhaustive searches and large-scale image pro-



Statistical Modeling and Segmentation in Cardiac MRI 15

cessing, effectively enabling the shearing of computing resources between institutions.
Our Grid service end user interface allowed for setting-up applications without the
need of mastering the topic. In our daily practise, Grid computing have become a real
necessity.

References

1. T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, “Active shape models - their training
and application,” Computer Vision and Image Understanding, vol. 61, no. 1, pp. 3859, 1995.

2. T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active appearance models,” Proc. European
Conf. on Computer Vision, vol. 2, pp. 484498, 1998.

3. S.C. Mitchell, J.G. Bosch, B.P.F. Lelieveldt, R.J. van der Geest, J.H.C Reiber, and M. Sonka,
“3D Active Appearance Models: Segmentation of cardiac MR and ultrasound images.,” IEEE
Trans Med Imaging, vol. 21, no. 9, pp. 11671179, 2002.

4. M. B. Stegmann, Generative Interpretation of Medical Images, Ph.D. thesis, Informatics and
Mathematical Modelling, Technical University of Denmark, DTU, apr 2004.

5. H.C. van Assen, M.G. Danilouchkine, F. Behloul, H.J. Lamb, R.J. van der Geest, J.H.C.
Reiber, and B.P.F. Lelieveldt, “Cardiac LV segmentation using a 3D active shape model
driven by fuzzy inference,” Montreal, CA, Nov. 2003, vol. 2876 of Lect Notes Comp Science,
pp. 533540, Springer Verlag.

6. A.F. Frangi, D. Rueckert, J.A. Schnabel, and W.J. Niessen, “Automatic construction of
multiple-object three-dimensional statistical shape models: Application to cardiac model-
ing,” IEEE Trans Med Imaging, vol. 21, no. 9, pp. 11511166, 2002.

7. S. Ordas, L. Boisrobert, M. Bossa, M. Laucelli, M. Huguet, S. Olmos, and A.F. Frangi,
“Grid-enabled automatic construction of a two-chamber cardiac PDM from a large database
of dynamic 3D shapes,” in IEEE International Symposium of Biomedical Imaging, 2004, pp.
416419.

8. H.C. van Assen, M.G. Danilouchkine, M.S. Dirksen, J.H.C. Rieber, and B.P.F. Lelieveldt, “A
3D-ASM driven by fuzzy inference: Application to cardiac CT and MR,” IEEE Trans Med
Imaging, 2005, submitted.

9. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling
and control,” IEEE Transactions of Systems, Man and Cybernetics, vol. 1, no. 15, pp. 116
132, 1985.

10. P.J. Besl and N.D. McKay, “A method for registration of 3D shapes,” IEEE Trans Pattern
Anal Machine Intell, vol. 14, no. 2, pp. 23955, Feb. 1992.



A Grid Molecular Simulator for E-Science

Osvaldo Gervasi1, Cristian Dittamo1, and Antonio Laganà2

1 Department of Mathematics and Computer Science, University of Perugia,
via Vanvitelli, 1, I-06124 Perugia, Italy

ogervasi@computer.org

cridit@woodie.unipg.it
2 Department of Chemistry, University of Perugia,

via Elce di Sotto, 8, I-06123 Perugia, Italy
lag@unipg.it

Abstract. The implementation of GEMS, a Grid-based molecular sim-
ulator, on the EGEE Grid environment is presented. We discuss the
main issues related to the porting of the application on the EGEE Grid
platform and the creation of the VO CompChem for the community of
Computational Chemists. The real-time visualization of some reaction’s
magnitudes on Virtual Monitors is also discussed.

1 Introduction

In the present paper we describe the progress made in implementing a Grid
based Molecular Simulator and porting the related computational procedure on
the EGEE1 European Grid infrastructure[1].

The EGEE infrastructure has made available to the partner laboratories a
massive amount of computational resources. As a result it has become possible
within the EGEE project to implement Grid aware applications. This opportu-
nity has been offered through the activities of the EGEE working group NA4
activity: Application Identification and Support, not only to high energy physics
and bioinformatics communities (as stated in the project from the very begin-
ning) but also to other communities which were ready to implement a complex
computational application on the Grid.

The Community of Chemists and Molecular Scientists has developed for
this purpose a prototype Grid based European Molecular Simulator (GEMS).
GEMS has been first developed as part of the SIMBEX project[2] under the
Action D23 [3] of the COST[4] (Cooperation in the field of Scientific and Tech-
nical Research) in Chemistry initiative of the European Union.

1 EGEE is a project funded by the European Union under contract INFSO-RI-508833
The EGEE infrastructure is built on the EU Research Network GEANT. The in-
frastructure provides interoperability with other Grids around the globe, including
Israel, Russia, the US and Asia, with the purpose of establishing a worldwide Grid
infrastructure.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 16–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Grid Molecular Simulator for E-Science 17

The implementation of GEMS on EGEE benefits also of the work done by
the workpackage 13 of the italian project Enabling platforms for high perfor-
mance computational Grids oriented to scalable virtual organizations[5] funded
by the Italian Ministry of the Education (MIUR).

To continue the development of GEMS within NA4, a virtual organization
(VO) of Computational Chemists (CompChem) has been established and is
being populated with researchers of various European countries.

The paper illustrates in Section 2 the structure of GEMS and the steps un-
dertaken to implement the EGEE environment, in section 3 some computational
aspects and the results.

2 GEMS

The general structure of GEMS is made of four modules: INTERACTION,
DYNAMICS, COLLECTIVE–MOTIONS and OBSERVABLES each of
which takes care of different aspects of the calculation.

INTERACTION: This module is devoted to the determination of the poten-
tial energy surface (PES) on which the nuclear motion takes place. This usually
implies the integration of the fixed nuclei Schrödinger equation for the electrons
at a proper extended grid of molecular geometries. To this end whenever pos-
sible, a suite of programs that calculates the value of the electronic energy of
molecular systems is used. The calculated values of the electronic energy are then
fitted using a procedure based on functional representations of the interactions
of polynomial nature either in physical or in bond-order (BO) coordinates. This
procedure builds a Fortran routine Pesfunction.

When ab initio values are neither available from a data-bank nor obtainable
by an ad hoc calculation, empirical approaches are often adopted by calling a
force field procedure. This procedure builds an estimate of the interaction by
summing simple two, three and four body functionals containing empirically
determined parameters [6]. This procedure can also be bypassed when a real
time (”on the fly”) evaluation of the electronic energy is performed at each
step of the dynamical calculation. Alternatively, when the Pesfunction routine
is already locally available it is imported and properly interfaced to the next
section DYNAMICS.

DYNAMICS: In this second module dynamical calculations can be carried out
using either Quasiclassical Trajectory or Quantum Mechanical (QM) approaches.
For small systems (a few atoms) QM calculations can be performed. In this case
either a time dependent or a time independent reactive scattering program is
activated according to whether a single initial state (for an interval of energy val-
ues) or a fixed energy (for all the open states) calculations needs to be performed.

For higher energies or heavier systems a reduction of the complexity of the
calculations may be desirable. In this case a trajectory approach is adopted and
the related procedure is articulated into several programs. The program dealing



18 O. Gervasi, C. Dittamo, and A. Laganà

with atom diatom systems is ABCtraj and the program dealing with few body
diatomic system is VENUS.

COLLECTIVE–MOTIONS: The third module takes care of large systems
using either dynamical or statistical means. Dynamical methods treat the system
as an ensemble of individual particles. In this case collective motions are dealt
as a sum of individual particle motions. More often other approaches accounting
for the different qualitative nature of the subsystems involved in electrodynam-
ics, fluid dynamics, interphase processes, etc, are adopted by building into the
equations statistical considerations. This module is no further detailed here since
in the implemented version of GEMS it has not been included. However in the
collaborations of the participating laboratories the study of plasmas, non equi-
librium processes, shock waves (still within the domain of the gas phase) will
soon be considered.

OBSERVABLES: This fourth module is devoted to the reconstruction and
visualization of the observable properties and of other features relevant to ex-
perimental measurements or practical applications. To this end the outcomes of
the DYNAMICS module are postprocessed by a procedure which either recon-
structs the signal measured by the beam apparatus or estimates other quantities
that the user may wish to know regardless of the fact that one deals with real
observables. These observables or pseudo–observables are extremely useful for
rationalizing the system behaviour. For this reason one has to pay significant
attention to the rendering of the results and to the relevant ”virtual monitors”.

The implemented version of the GEMS makes use of a Web Workflow envi-
ronment based on several server-side scripts written in PHP that are computed
by the Web Server installed on the User Interface (UI) host. Using the Work-
flow environment the user chooses the operating conditions of the simulation
(i.e: the chemical system, the Potential Energy Surface, the initial conditions of
the chemical species, etc) and submits to the Grid the application running the
simulation. The input data selected by the user are passed to the execution en-
vironment. The user can monitor the simulation by launching some Java applets
on the client side that will communicate with the Web server running on the UI

for getting updated results.
The Web Server performs the following tasks:

– receives the configuration values entered by the user through the web;
– builds the necessary files scripts and files with simulation data storing them

in specific path on the UI filesystem;
– executes shell scripts to run the parallel MPI job on the Grid.

A shell script launches a process, named SimGate[7], receives updated re-
sults from the parallel job and sends them to the client’s Java applets during the
execution of the simulation. For launching the parallel job on the Grid a JDL

file is built from the Web environment and sent to the Resource Broker of the
Grid environment.



A Grid Molecular Simulator for E-Science 19

3 Computational Issues and Results

The Simulator has been ported on the Grid platform of EGEE by implementing
it on the cluster of the Department of Chemistry of the University of Perugia.
This cluster has 14 double-processor nodes which are interconnected through a
dedicated Gigabit Ethernet switched network.

The test has been run on two applications, ABCtraj (for atom-diatom re-
actions) and VENUS (for multibody reactions). These computational engines
run concurrently using the Message Passing Interface (MPI) [8] libraries and
adopting a Farmer-Worker parallel programming paradigm, based on SPMD
(Single Program Multiple Data) pattern. The workload of trajectory subsets is
dynamically assigned to the nodes which also collect partial results.

The whole algorithm is illustrated in figure 1.
The input data file read by the Farmer program is created by the latest

web page of the work-flow environment, designed to help a user in defining

The ABCtraj algorithm

Farmer (process with MPI ID = 0):

Read input data from file /tmp/simbex job id.input;
Initialization of global variables;
Calculate a seed for each trajectory to be computed;
Send to each worker the trajectory number and the corresponding seed;
while(there are some trajectories not computed)

Wait for receiving relevant data from worker ;
Send to worker new work unit;
Write updated info into output file for monitoring;

end while
Send an ’end of work’ to worker;
Carry out the remaining calculations relevant to the evaluation;
Write rate coefficients, cross sections and product distributions for the

different reaction channels into output file for monitoring;

Worker:

while(’end of work’)
Receive assigned trajectory number and random number seed;
Generate in the string of pseudorandom numbers needed to set the initial
conditions of the related trajectory;
Integrate the trajectory;
Send the results to Farmer;
Wait for a new work unit;
end while

Fig. 1. Logical steps implemented in ABCtraj program



20 O. Gervasi, C. Dittamo, and A. Laganà

the input parameters of the simulation through the Graphical User Interfaces
(GUI) implemented in the PHP scripting language. For executing this server-
side scripts the Apache Web Server was chosen. In this way any authenticated
user can launch a simulation through a web browser.

To execute a simulation one has to issue the following steps:

1. connect to the GEMS Workflow environment[9]
2. authenticate or register (the first time only);
3. configure the input parameters of the simulation;
4. launch the simulation on the Grid (transparent to user);
5. monitor the application through Virtual Monitors customized for each com-

putational engine.

In the fourth step the latest web page gathers all info and writes it into an input
data file that will be read by the Farmer running on the Grid infrastructure. The
interactivity of the simulation is driven by SimGate, a daemon launched by the
Web Server on the UI as soon as the user starts the simulation on the Grid.
It manages the exchange of information between the Virtual Monitors and the
simulation job running on the Grid. The communication pattern is client-server.
The Virtual Monitors, running on the client side, asks for updated values to
SimGate which answers by supplying the updated values. Concurrently Sim-

Gate receives updated values from the Farmer. The SimGate protocol has been
designed to solve the problems related to the management of multiple connec-
tions of concurrent simulations. In the fifth step a user can monitor the evolution
of the simulation through Virtual Monitors implemented in Java.

For illustrative purposes the atom diatom case study H + ICl is discussed
here[10]. It can lead either to the HI or to the HCl product. For this atom-
diatom system the routine Pesfunction is already available and the trajectory
application ABCtraj was used.

After having inputed the operating conditions of a given simulation, the user
can choose the relevant Virtual Monitors by selecting them in the last page of the
Workflow environment. Two screenshots of the Opacity Function (the fraction of

Fig. 2. Example of the Opacity Function Virtual Monitors for the H + ICl → H + ICl
(lhs panel), the H + ICl → HI + Cl



A Grid Molecular Simulator for E-Science 21

trajectories started at a given value of the impact parameter b plotted as a func-
tion of b expressed in angstrom) obtained from the HICl run are shown in fig. 2.

Auseful featureoftheapplication isthattheusercanrevisit theVirtualMonitors
of previously performed simulations. This function is enabled when storing the
final results of the simulation in a user’s directory. When a user wants to see an
archived simulation she/he can select the wanted one from a summary table shown
in a dedicated web page.

The tests made showed a non negligible time of activation of the Grid dur-
ing the initial scheduling of the job (due to the time necessary to perform the
required authentications through the use of Grid certificates). Once the job is
started on the Grid, however, the simulation shows a good response evidencing
that even for systems described by a PES easy to compute, the largest fraction
of computing time goes into the integration of the distributed trajectories. The
Grid demonstrates even better its power when systems with a PES requiring
large amount of computing power are investigated. In this case the possibility of
running simultaneously a large number of tasks on the Grid dramatically reduces
the time required to complete the simulation making a clear advantage over a
single parallel machine even if with a large number of nodes.

4 Conclusions

In the present paper we have described the efforts spent by the Chemists and
Molecular science community in establishing a virtual organization within the
EGEE project. This first example is based on the implementation of a gas phase
molecular simulator derived from previous virtual laboratories international ex-
periences of the chemistry community. The simulator has shown to fully exploit
the Grid features by running the application in parallel using MPI and by allow-
ing the interactive monitoring of the simulations through virtual monitors made
by Java applets. Even if the response time of the Grid makes the simulations
involving fast trajectories and a small number of events not so advantageous,
the Grid demonstrates its power for molecular systems requiring a large number
of slow trajectories, because of the high number of working nodes involved.

5 Acknowledgment

Thanks are due to and COST and MIUR FIRB Grid.it (project RBNE01KNFP
on High Performance Grid Platforms and Tools) for financial support.

References

1. http://www.eu-egee.org
2. COST Action N.D23, 003/2001, SIMBEX: a Metalaboratory for the a priori Simula-

tion of Crossed Molecular Beam Experiments (duration: from 1/2/2001 to 31/1/2006),
Coordinator: O. Gervasi, Dept. of Mathematics and Informatics, University of Perugia
(2001).



22 O. Gervasi, C. Dittamo, and A. Laganà

3. Laganà, A.: METACHEM: Metalaboratories for cooperative innovative computa-
tional chemical applications, METACHEM workshop, Brussels, November (1999)
(see also [2]);
http://costchemistry.epfl.ch/docs/D23/d23-main.htm

4. http://www.cordis.lu/cost/home.html

5. http://www.grid.it

6. Burkert, U., Allinger, N.L.: Molecular Mechanics ACS Monograph Series, Washing-
ton DC, USA, (1982).

7. Gervasi, O., Laganà, A.: SIMBEX: a portal for the a priori simulation of crossed
beam experiments, Future Generation Computer Systems, 20, 703-715 (2004)

8. Message Passing Interface Forum, Int. J. of Supercomputer Applications 8(3/4),
1994; Smir, M., Otto, S., Huss-Ledermam, S., Walker, D., Dongarra, J.: MPI: The
complete reference, MIT Press (1996).

9. http://gems.simbex.org;
10. Gervasi, O., Laganà, A., Lobbiani, M.: Toward a GRID based Portal for an a Priori

Molecular Simulation of Chemical Reactivity, Lecture Notes in Computer Science
2331, pp. 956-967 (2002)



Application Driven Grid Developments in the
OpenMolGRID Project

Bernd Schuller, Mathilde Romberg, and Lidia Kirtchakova

Research Center Jülich, Central Institute for Applied Mathematics, Jülich, Germany
{b.schuller, m.romberg, l.kirtchakova}@fz-juelich.de

Abstract. Within the frame of the OpenMolGRID project, several ex-
tensions to the underlying UNICORE Grid infrastructure have been de-
veloped. This article gives an overview of these developments, focussing
on the support for complex scientific workflows and a newly developed
command line client for UNICORE.

1 Introduction

The OpenMolGRID (Open Computing Grid for Molecular Science and Engi-
neering) project1 [1] deals with the integration of data, applications and the
modelling of molecular design workflows in a Grid environment. The overall aim
of the project is to provide an extensible, information rich environment for molec-
ular engineering and molecular design, using resources available on the Grid in a
seamless and secure fashion. The underlying scientific methodology, quantitative
structure–activity relationship (QSAR), and other application-specific aspects
of the project have been described in detail in [2] and [3]. From an informa-
tion technology perspective, the unique challenges of the project, which make it
an excellent application domain and testing ground for Grid techniques, can be
summarised as follows:

– Molecular design and engineering is computationally very intensive, and can
generate huge amounts of data;

– Data from diverse sources needs to be integrated using data warehousing
techniques and made accessible seamlessly;

– The scientific processes, or workflows, typically involve diverse and hetero-
geneous data and compute resources;

– The workflows are fairly complex, involving multiple, dependent computa-
tional steps

As the Grid middleware underlying the OpenMolGRID system, UNICORE was
chosen. The challenges summarised above resulted in the development of sev-
eral new middleware components, that are generic enough to be used in other
contexts as well.

1 OpenMolGRID is funded in part by the EC under contract IST-2001-37238.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 23–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



24 B. Schuller, M. Romberg, and L. Kirtchakova

The remainder of this paper is organised as follows. After introducing the
UNICORE middleware we describe the components we have developed for work-
flow support and the new command line interface for UNICORE.

2 Unicore

The OpenMolGRID system is based on UNICORE2 (UNiform Interface to COm-
puter REsources) [4] as the underlying Grid middleware. UNICORE can be char-
acterised as a vertically integrated Grid system, that comprises a graphical client
and various server and target system components. UNICORE continues to be
developed in the recently started EU FP6 project UniGrids [5], and is being used
in various projects such as DEISA [6]. It is available fully open-source under a
BSD-type license from the SourceForge repository [7].

For use within an application-centric project such as OpenMolGRID, the
main asset of UNICORE is its excellent support for legacy software. UNICORE
allows applications to be integrated into the Grid easily [8]. On the server side,
the software can be installed ”as-is”. The client’s graphical user interface is
extensible by application specific user interface components (plugins).

Furthermore, UNICORE offers strong, end-to-end security through the use
of an X.509 public key infrastructure. Security is an important requirement of
the pharmaceutical industry, which is one of the key targeted user communities
of the OpenMolGRID project.

UNICORE jobs are represented by a Java object, the Abstract Job Object
(AJO). It is important to note that in order to be executable, such an AJO must
contain all the information about Grid sites and resources. The user can create
AJOs easily and comfortably using the graphical UNICORE client, but she needs
to allocate resources, select the correct sites for the individual subtasks, and take
care of data transfers between sites that may be needed. Obviously, in the case
of a large, or rapidly changing Grid, this gets increasingly tedious and difficult.

Within OpenMolGRID, new components have been developed for making
the resource selection and allocation procedures much easier, so the users can
concentrate on their scientific applications instead of having to deal with the
tedious details.

3 OpenMolGRID Workflow Support Architecture

While OpenMolGRID adds significant functionality to the basic UNICORE soft-
ware, it has been an important design principle to leave the basic UNICORE
software untouched, if possible. Thus, all application plugins and server-side

2 UNICORE has been developed in several research projects partly funded by the Ger-
man Ministry of Education and Research under Contracts 01-IR-703 (UNICORE)
and 01-IR-001 (UNICORE Plus) and by EC under Contract IST-1999-20247 (EU-
ROGRID) and IST-2001-32257 (GRIP).



Application Driven Grid Developments in the OpenMolGRID Project 25

tools developed within OpenMolGRID are usable individually, and are fully
functional when used outside the OpenMolGRID system, i.e. in a standard UNI-
CORE context. Also, the system has been designed for maximum extensibility
and flexibility, to be able to easily accomodate future changes and extensions
in the OpenMolGRID system as well as changes in the underlying UNICORE
software.

OpenMolGRID workflow support consists of a metadata layer for applica-
tions, an extension of the client side plugin interface and several components
that deal with resource management and workflow support.

3.1 Application Metadata

As is usual in UNICORE, integrating a software package into the Grid system
is done by installing the software executable on a Grid node (a virtual site,
or Vsite in UNICORE’s terminology), and by providing a metadata file that
is associated with the application. Additionally, an application-specific Client
extension (a plugin) providing a graphical user interface should be provided.

In OpenMolGRID, the application metadata play an important role. They are
used to define the services provided by the application, analogous to a WSDL
document in the web services world. Each such service, called “task” within the
OpenMolGRID system, is defined by the following elements:

– the task name
– input file(s) specification
– output file specification
– options

Input and output files are always associated with a high-level datatype, which
can be compared to a MIME type. This allows matching input and output
between subsequent steps in a complex workflow.

This metadata information is part of the server side resources (similar to,
for example, the number of CPUs the site provides) and is sent to the Client.
There, the metadata are used extensively by the workflow support components,
as described in section 3.3 below.

3.2 Client-Side Plugin Extension

On the Client side, plugins must implement a new interface, that allows the
workflow support components to set up the job without user intervention. This
interface has a function that returns the supported tasks, so that the system can
match client side plugins and server side applications easily. Furthermore, the
interface includes functions to set and query input and output filenames, and to
set options.

3.3 Workflow Support Components

Using the application integration layer and the additional plugin interface de-
scribed above, support for higher-level workflows could be introduced. Instead of



26 B. Schuller, M. Romberg, and L. Kirtchakova

Fig. 1. Workflow support architecture

preparing an executable UNICORE job with the usual methods, an XML work-
flow description is read by the workflow support components developed within
OpenMolGRID. From this XML workflow, a UNICORE job is then generated
automatically.

Compared to the usual UNICORE way of creating a job, this has a number
of advantages. The workflows are fairly high-level, focussing on tasks and depen-
dencies, and thus are very close to the actual scientific workflows the users are
interested in. The user need not specify where a given task will be executed, nor
need she worry about where certain software is available. The system will take
care of mapping the workflow to an executable UNICORE job. The system will
also take care of inserting data transfer tasks between Grid nodes, if needed.

The extensions to UNICORE which make up the OpenMolGRID workflow
support are given schematically in Fig. 1. The main new component is the Meta-
Plugin, that deals with setting up a ready-to-submit UNICORE job from an
XML workflow description. It is supported by a resource management plugin
that reads the server-side application metadata and checks the availability of
server-side applications and client-side plugins.

Apart from the basic functionality of setting up the job, the MetaPlugin has
sophisticated functionality that allows ”distributing” data-parallel tasks to run
on multiple Grid nodes. Its design is highly modular and offers various interfaces
for later enhancements. For example, currently resource allocation does not take
dynamic parameters such as system load into account. However, more advanced
brokering functions can be added easily.

3.4 XML Workflow Description

The workflows that play a role in OpenMolGRID are high-level workflows, fo-
cussing on tasks and their dependencies. Since none of the available workflow de-



Application Driven Grid Developments in the OpenMolGRID Project 27

scription schemas fully matched our needs, we developed a simple XML schema
ourselves. As an example, a typical workflow to compute molecular descriptors
for a molecular structure starting from two-dimensional chemical structures can
be expressed as:

– convert to the three-dimensional molecular structure
– optimize the molecular geometry
– compute molecular descriptors

In our workflow schema, this workflow would, in its simplest form, just state the
tasks and dependencies and would look as follows

<?xml version="1.0"?>
<workflow>
<task name="2Dto3DConversion" identifier="convert" id="1"/>
<task name="SemiempiricalCalculation" identifier="optimize"
id="2"/>
<task name="DescriptorCalculation"
identifier="Calculate descriptors" id="3"/>
<dependency pred="1" succ="2"/>
<dependency pred="2" succ="3"/>
</workflow>

However, this workflow still needs some user input: the initial input data
need to be setup, computational parameters must be chosen, the output data
needs to be stored permanently. UNICORE might need some resource requests,
for example CPU time allocation on resource management systems. The user
might wish to parallelize a task on as many grid nodes as possible.

All these things can be done automatically. The workflow schema includes
support for

– grouping tasks;
– flow control, such as repeat loops and an if–then–else construct;
– using local data as input;
– requesting specific resources (for example, a certain data source);
– requesting for a task to be run on multiple sites (if the task is data-parallel

and the input data can be split in multiple parts);
– setting options for a task;
– allocating resources (such as CPU time) to a task.

In effect, these workflows can be used very flexibly. They are high-level enough
so the user need not specify every tiny detail. But, if needed or wanted by the
user, they can include more detailed information about Grid nodes and resource
requirements.



28 B. Schuller, M. Romberg, and L. Kirtchakova

4 Command-Line Toolkit

UNICORE lacks a powerful command-line toolkit, or a simple API that could
be used by programmers or application developers to make use of Grid resources
from within their applications. Furthermore, for convenient automatisation of
processes (for example, batch processing) the standard, graphical UNICORE
client is not convenient. To address these issues, we have developed a powerful
command-line interface to UNICORE.

This tool offers an AJO generation function that builds a UNICORE job
dynamically from an XML workflow description. Furthermore, functions to run
jobs, monitor them, and fetch the job results are provided. The job generation
facility is based on the MetaPlugin, and uses the full OpenMolGRID metadata
layer. Therefore, the same high-level workflows can be run in the GUI client and
in the command-line client.

On top of the command-line client, a simple front-end has been developed
that simplifies running workflows through the command-line client. A workflow
can be submitted to the command-line client by placing it in the “request”
queue. From this, a UNICORE job will be built and run, and ultimately the
result files can be found in the result directory. This toolkit thus offers very
powerful batch-processing capabilities.

The command-line toolkit is already used successfully in OpenMolGRID’s
data warehousing component[3]. When loading data into the data warehouse, Grid
resourcesareusedtoperformconversiontasksandcomputatationofsupplementary
data. In this fashion, the subsequent data mining steps are simplified, as standard
computations have already been performed by the data warehousing components.

Specifically, for each chemical structure that is loaded into the warehouse,
the following data transformations are performed. The structure is converted to
a three-dimensional representation, which is then optimised. Finally, molecular
descriptors are calculated, and all this data is stored in the warehouse. This
process is fully automated by running the appropriate XML workflows through
the command-line client. Because the data transformations are done on a per
structure basis, the available Grid resources are used very efficiently, as the Grid
sites are used in a round-robin fashion automatically by the MetaPlugin.

5 Summary

Within OpenMolGRID, we have developed a number of powerful tools for the
UNICORE Grid infrastructure. While these tools were designed with a specific
field of application in mind, they are completely generic, and can be used in
a variety of contexts. We believe the workflow support tools can help speed
up, automatise and standardise scientific processes by integrating data and ap-
plications on a UNICORE Grid and offering support for complex workflows.
In addition, the command-line client toolkit offers new ways of accessing UNI-
CORE resources that are highly suitable for batch-processing tasks, where no
user intervention is needed or wanted.



Application Driven Grid Developments in the OpenMolGRID Project 29

These new tools are already used successfully in OpenMolGRID, and end
users are starting to make use of the new possibilities for doing their science
that this system offers.

References

1. The OpenMolGRID project: http://www.openmolgrid.org
2. Mazzatorta P., Benfenati, E., Schuller, B., Romberg, M., McCourt, D., Dubitzky W.,

Sild, S., Karelson, M., Papp, A., Bagyi, I., Darvas, F.: OpenMolGRID: Molecular
Science and Engineering in a Grid Context; in: Proceedings of the PDPTA 2004
Conference, June 21-24, Las Vegas, Nevada, USA

3. Dubitzky, W., McCourt, D., Galushka, M., Romberg, M., Schuller, B. Grid-enabled
data warehousing for molecular engineering; Parallel Computing 30 (2004), 1019–
1035

4. Romberg, M.: The UNICORE Grid Infrastructure; Scientific Programming Special
Issue on Grid Computing 10 (2002) 149–158

5. UniGrids homepage: http://www.unigrids.org
6. DEISA homepage: http://www.deisa.org
7. UNICORE SourceForge pages: http://unicore.sourceforge.net
8. Pytlinski, J., Skorwider, L., Huber, V., and Bala, P.: UNICORE - A uniform plat-

form for chemistry on the Grid; Journal of Computational Methods in Science and
Engineering, 2 (2002), 369–376



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 30 – 39, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

ATLAS Data Challenge 2: A Massive Monte Carlo 
Production on the Grid 

Santiago González de la Hoz1, Javier Sánchez1, Julio Lozano1, Jose Salt1,  
Farida Fassi1, Luis March1, D.L. Adams2, Gilbert Poulard3, Luc Goossens3, 

 and DC2 Production TEAM (ATLAS Experiment)3 

1 IFIC- Instituto de Física Corpuscular, Edificio de Institutos de Investigación,  
Apartado de Correos 22085, E-46071 Valencia, Spain 

{Santiago.Gonzalez, Javier.Sanchez, Julio.Lozano,  
Jose.Salt, Luis.March, Farida.Fassi}@ific.uv.es 

http://ific.uv.es/ 
2 Brookhaven National Laboratory, 

Upton NY 11973, USA 
dladams@bnl.gov 

http://www.bnl.gov/ 
3 CERN, European Organization for Nuclear Research, 

1211 Geneva 23, Switzerland 
{Gilbert.Poulard, Luc.Goossens}@cern.ch 

http://www.cern.ch/ 

Abstract.  The study and validation of the ATLAS Computing Model started 
three years ago and will continue for few years in the context of the so-called Data 
Challenges (DC). DC1 was conducted during 2002-03; the main goals achieved 
were to set up the simulation data production infrastructure in a real worldwide 
collaborative effort and to gain experience in exercising an ATLAS wide produc-
tion model. DC2 (from May until December 2004) is divided into three phases: (i) 
generate Monte Carlo data using GEANT4 on three different Grid projects: LCG, 
GRID3 and NorduGrid; (ii) simulate the first pass reconstruction of real data ex-
pected in 2007, and (iii) test the Distributed Analysis model. Experience with the 
use of the system in world-wide DC2 production of ten million events will be pre-
sented. We also present how the three Grid flavours are operated. Finally we dis-
cuss the first prototypes of Distributed Analysis systems. 

1   Introduction 

The ATLAS experiment [1] is a large detector for the study of high-energy proton-
proton collisions at the Large Hadron Collider (LHC) [2], presently under construc-
tion at the European Organization for Nuclear Research (CERN) and scheduled to 
start operation in 2007. In the ATLAS Computing Model, after reduction of the data 
by the online trigger processor farms, the expected volume of data recorded for off-
line reconstruction and analysis will be of the order of 1 PB (1015 bytes) per year. 
Therefore, in 2002 a series of Data Challenges (DC’s) were planned with the purpose 
of the validation of the Computing Model, of the complete software suite, of the data 
model, and to ensure the correctness of the technical choices to be made. A major 



 ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid 31 

 

feature of the first Data Challenge (DC1) [3] was the development and the deploy-
ment of the software required for the production of large event samples required by 
the High Level Trigger and Physics communities, and the production of those large 
data samples involving institutions worldwide. 

It should be noted that it was not possible to produce all the data at CERN, since 
the resources to perform this task on a reasonable timescale were not available. 

The ATLAS collaboration decided to perform these DC’s in the context of the 
LHC Computing Grid project, LCG [4], to which ATLAS is committed, but also to 
use both the middleware and the resources of two other Grid projects, GRID3 [5] and 
NorduGrid [6]. The job of the LCG is to prepare the computing infrastructure for the 
simulation, processing and analysis of the LHC data for all four LHC collaborations. 
The LCG scope spans both the common infrastructure of libraries, tools and frame-
works required to support the physics application software, and the development and 
deployment of the computing services needed to store and process the data, providing 
batch and interactive facilities for the worldwide community of physicists involved in 
LHC. The main emphasis of the LCG project is the deployment of Grid technologies 
for the LHC computing. Both GRID3 and NorduGrid have similar approaches using 
the same foundations (GLOBUS) as LCG but with slightly different middleware. 

Concerning the ATLAS data analysis model many important software components 
remain to be done. They will be based on the long term experience of previous ex-
periments and on the emerging new technological breakthroughs. The development 
and integration of the detector specific reconstruction and physics analysis software, 
followed by their deployment to the Grid in large scale Data Challenges, will enable 
ATLAS to validate its Computing Model and to demonstrate its physics potential. 

1.1   Scientific Originality and Innovation 

The high particle collision rate and the large event size in ATLAS make the offline 
computing much more difficult than in previous experiments, even comparing to CDF 
[7] and D0 [8] (two experiments which are currently running at the Fermilab labora-
tory in the United States). With respect to these two experiments, the event rate in 
ATLAS will be a factor of 50 and the event size will be eight times larger. 

The offline computing will have to deal with an output event rate of 100 Hz, i.e. 
109 events per year with an average event size of 1 Mbyte. This means that new algo-
rithms for data reconstruction are needed in order to achieve the required reconstruc-
tion latencies and the necessary large reduction of the data volume. 

The new Grid technologies will provide the tools to analyze all the data recorded 
by ATLAS and to generate the large “Monte Carlo” simulation samples required. 
They are expected to make feasible the creation of a giant computational environment 
out of a distributed collection of files, databases, computers, scientific instruments 
and devices.  

2   ATLAS Production System 

In order to handle the task of ATLAS DC2 an automated production system [9] was 
designed. All jobs are defined and stored in a central database. A supervisor agent 



 

(Windmill) [10] picks them up, and sends their definition as XML message to various 
executors, via a Jabber server. Executors are specialised agents, able to convert the 
XML job description into a Grid specific language (e.g. JDL, job description lan-
guage, for LCG). Four executors have been developed, for LCG (Lexor) [11], Nor-
dugrid (Dulcinea) [12], GRID3 (Capone) [13] and legacy systems [14], allowing the 
Data Challenge to be run on different Grids. 

When a LCG job is received by Lexor, it builds the corresponding JDL description, 
creates some scripts for data staging, and sends everything to a dedicated, standard 
Resource Broker (RB) through a Python module built over the workload management 
system (WMS) API. The requirements specified in the JDL let the RB choose a site 
where ATLAS software is present and the requested computing power is available. 
An extra requirement is a good outbound connectivity, necessary for data staging. 

The actual executable is wrapped in a script that performs various tasks: Check the 
ATLAS software (s/w) installation on the worker nodes (WN); Download and install 
packages [15] for the required application; Set up the ATLAS s/w environment; 
Stage-in the input files, perform the transformation and Stage-out the results. 

For data management, a central server, Don Quijote (DQ) [16] offers a uniform 
layer over the different replica catalogues of the 3 Grid flavors. Thus all the copy and 
registration operations are performed through calls to DQ. The s/w distribution is 
installed using LCG tools. 

 

Fig. 1. The ATLAS production system consists of 4 components: The production database; The 
windmill supervisor; The Executors; Don Quijote, the Atlas Data Management System 

3   DC2 Production Phases 

During the LHC preparation phase, ATLAS has large needs for simulated data which 
allow understanding the detector performance. These “Monte Carlo” simulations are 
done using the full ATLAS chain which runs in the [17] Athena framework [18] and 
consists of: 

• Event generation: (Pythia [19] and Herwig [20] generators), writing out the 
generated events to ROOT files [21], using POOL persistency [22]. The event 
size is 60 KB and the computer power required 156 KSI2K-s. 

32 S. González de la Hoz et al. 



 ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid 33 

 

• GEANT4 simulation [23]: reading the generated events via POOL and running 
GEANT4 simulation, writing out the simulated hits from all ATLAS sub-
detectors to ROOT files. The event size is1.9 MB and the computer power re-
quired 504 KSI2K-s.  

• Digitization: reading in the simulated hits via POOL; writing out the RDO’s 
(Raw Data Objects) to ROOT files. The event size is 1.9 MB and the computer 
power required 16 KSI2K-s 

The relevant output information of the reconstruction will be stored in the form of 
ESD (Event Summary Data) and in a more compact form, more suitable for analysis, 
AOD (Analysis Object Data). 

The Phase 1 of the ATLAS DC2 started in July 2004 and it is divided into five 
parts: Event generation and detector simulation; Pile-up and digitization. Pile-up is 
the superposition of “background” events with the “signal” event and digitization data 
stores the response of the sensitive elements of the detector. The output, called byte 
stream data, looks like detector “Raw Data”; Data transfer to CERN (~35 TB in 4 
weeks); Event mixing, events from different physics channels are “mixed” in “ad-
hoc” proportions. For the Pile-up, the event size is 3.3 MB and the computer power 
required 144 KSI2K-s and for the Event mixing 3 MB and 5400 SI2K-s. 

ATLAS is currently using 3 Grid flavors LCG [4], GRID3 [5] and NorduGrid [6] 
in different development states. The ATLAS DC2 collaboration finished the simula-
tion part at the end of September 2004. 10 million events were generated and simu-
lated using the three flavors. The contribution from each flavor is shown in Figure 2.  

Total
~1470 kSI2K.months
~100000 jobs
~7.94 million events (fully simulated)
~30 TB

LCG
41%

NorduGrid
29%

Grid3
30%

LCG

NorduGrid

Grid3

 
Fig. 2. The chart plots the contribution of each Grid flavor in the generation and simulation 
parts for the ATLAS Data Challenge 

3.1   DC2 Production Using GRID3  

The GRID3 collaboration has deployed an international Data Grid. The facility is 
operated jointly by the U.S. Grid projects iVDGL, GriPhyN, PPDG, and the U.S. 
participants in the LHC experiments.  



 

 

Fig. 3. Geographical distribution of GRID3 

 

Fig. 4. Jobs contribution by site in GRID3 for the simulation part in DC2 

The deployed infrastructure (see figure 3) has been in operation since November 
2003 involving 27 sites, a peak of 2800 processors, work loads from 10 different 
applications exceeding 1300 simultaneous jobs, and data transfers among sites greater 
than 2 TB/day. 

Figure 4 shows the jobs contribution to the ATLAS DC2 in the simulation part. A 
specific production system has submitted jobs to GRID3 sites at full scale using their 
shared facilities. Around 30000 jobs were finished successfully, 2.4 million of events 
and 8 TB were produced, and more than 0.5 million CPU-hours were consumed. 

3.2   DC2 Production Using NorduGrid 

The NorduGrid project is established mainly across Nordic countries but includes 
sites from other countries. It was the first to reach production quality level and con-
tributed to a significant part of the DC1 production. It provides resources for DC2 and 
support for production on non-RedHat 7.3 platforms (e.g. Mandrake 8.0, Debian 3.0). 

The NorduGrid resources range (see figure 5) from the original small test-clusters 
at the different physics-institutions to some of the biggest supercomputer clusters in 

34 S. González de la Hoz et al. 



 ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid 35 

 

Scandinavia. It is one of the largest operational Grids in the world with approximately 
4000 CPU’s, storage capacity of 14 TB, involving 40 sites and 11 countries.  

Figure 6 shows the jobs contribution to the ATLAS DC2 in the generation and 
simulation part. Around 30000 jobs were finished and 2.4 million of events were 
produced. 

 

Fig. 5. Geographical distribution of NorduGrid 

September 19

45%

12%

10%

6%

5%

4%

3%

3%
3%

2%2%2%1%1%1%1% 0%

swegrid

brenta.ijs.si

benedict.aau.dk

hypatia.uio.no

fe10.dcsc.sdu.dk

farm.hep.lu.se

fire.ii.uib.no

grid.uio.no

morpheus.dcgc.dk

atlas.hpc.unimelb.edu.au

lxsrv9 lrz-muenchen de  

Fig. 6. Jobs contribution by site in NorduGrid for the simulation part in DC2 

3.3   DC2 Production Using LCG 

The LCG project is built upon the most stable developments of the European Data 
Grid middleware (EDG) [24], the US Virtual Data Toolkit project (Globus) [25] and 
European DataTag [26] monitoring tools. 

The requirements for LHC data handling are very large, in terms of computational 
power, data storage capacity and data access performance. It is not considered feasi-



 

ble to fund all of the resources at one site, and so it has been agreed that the LHC 
computing services will be implemented as a geographical distributed Computational 
Data GRID (see figure 7). This means that each service is using computing resources, 
both computational and storage, installed at a large number of Regional Computing 
Centres in many different countries, interconnected by fast networks. The deployed 
infrastructure has been operating since 2003 with 82 sites of 22 countries at peak of 
7269 processors and a total storage capacity of 6558 TB. 

Figure 8 shows the LCG jobs distribution in the generation and simulation part. LCG 
sites ran production systems at scale during this period using shared facilities. Around 
40000 jobs were finished successfully and 3.1 million of events were produced. 

 

Fig. 7. Geographical distribution of LCG 

 

Fig. 8. Jobs contribution by site in LCG for the simulation part in DC2 

36 S. González de la Hoz et al. 



 ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid 37 

 

4   Experiences 

By design, the production system was highly dependent on the services of the Grids it 
interfaces to. The beta status of the implementation of these services has caused trou-
bles while operating the system. For example, the Globus Replica Location Services 
(RLS) [27], the Resource Broker and the information system were unstable at the 
initial phase. But it was not only the Grid software that needed many bug fixes, an-
other common failure was the mis-configuration of sites. 

On the other hand, since the beginning of DC2 to the end of September around 6 
TB of data have been moved using Don Quijote servers. The automatic production 
system has submitted about 235000 jobs belonging to 158000 job definitions in the 
Database, producing around 250000 logical files and reaching approximately 2500-
3500 jobs per day distributed over the three Grid flavors. 

5   Distributed Analysis System 

The Grid infrastructure will be used also by the physicists to perform the analysis of 
the reconstructed data. The ADA [28] (ATLAS Distributed Analysis) project aims at 
identifying those software components which will allow the end-user to take benefit 
from the Grid. The goals are rather challenging since they should cover a wide variety 
of applications involving production and analysis of large distributed data samples. It 
is possible to identify a generic way in which the user will interact with the Grid re-
sources: she will define an input dataset which will be processed by an application 
whose behavior will depend on a set of parameters and/or user’s code and it will be 
transformed into an output dataset. Those elements will characterize the job which 
will be sent to a high level service in charge of the job submission and output man-
agement. 

The aforementioned software components should provide a way to implement the 
different processing elements: input dataset, application, task (user’s source code and 
parameters), and output dataset and submission service. All these components make 
up the Analysis Job Description Language (AJDL) [29]. The submission component 
involves different tasks including the localization of resources, the splitting of the 
jobs, the staging of input data and the recollection of the output data. 

The ADA architecture is sketched in figure 9. Command line interfaces allow the 
user to interact via AJDL with the analysis services (AS) which give access to distrib-
uted computing power. 

DIAL [30] (Distributed Interactive Analysis of Large datasets) is a project within 
ADA which strives to demonstrate the feasibility of distributed analysis. It imple-
ments the AJDL components in C++ classes which can be interfaced through the 
ROOT [21] analysis framework or the Python [31] command line interface.  

The ATPROD (ATLAS PRODuction) system has been used for the DC2 ATLAS 
data production. Work has started to build an interface allowing users to make their 
own small scale productions. 

ARDA [32] (A Realization of Distributed Analysis for LHC) is another project to 
deliver a prototype for distributed analysis. The underlying middleware is based on the 
EGEE [33] gLite [34] package. User interfaces are at this moment under development. 



 

ROOT PYTHON

AMI DBS DIAL AS ATPROD AS ARDA AS

LSF, CONDOR gLite WMSATPROD DB

AJDL

sh SQL gLite

AMI ws

AJDL

 

Fig. 9. Main current elements of the ADA schema, including services and interfaces 

Currently, a fully operational system based on the DIAL analysis service is avail-
able; it accesses a Condor [35] based PC cluster for long running jobs and a LSF [36] 
based cluster providing interactive response, both located at BNL (Brookhaven Na-
tional Laboratory). A prototype analysis service based on gLite has been recently 
installed for testing purposes. 

6   Summary 

The generation and Geant4 simulation of events foreseen for ATLAS Data Chal-
lenges 2 have been completed using 3 flavors of Grid technology. They have been 
proven to be usable in a coherent way for a real production and this is a major 
achievement. 

On the other hand, this exercise has taught us that all the involved elements (Grid 
middleware; production system; deployment and monitoring tools over the sites) need 
improvements. 

Between the start of DC2 in July 2004 and the end of September 2004, the auto-
matic production system has submitted about 235000 jobs. These jobs were approxi-
mately evenly distributed over the 3 Grid flavors. Overall, they consumed ~1.5 mil-
lion SI2K months of cpu (~5000 cpu months on average present day cpu) and pro-
duced more than 30TB of physics data. 

ATLAS is also pursuing a model for distributed analysis which would improve 
the productivity of end users by profiting from Grid available resources. Generic 
software components have been identified and several implementations of useful 
tools are being developed. An important aim is to provide the users with simple 
interfaces (ROOT, Python) that facilitate their interaction with the Grid infrastruc-
ture. 

Acknowledgements 

The authors would like to thank the many people involved in ATLAS DC2. 

38 S. González de la Hoz et al. 



 ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid 39 

 

References 

1. http://www.cern.ch/atlas 
2. http://www.cern.ch/lhc 
3. R. Sturrock et al. “ATLAS Data Challenge 1”, CERN-PH-EP-2004-028, CERN, Apr 2004 
4. http://lcg.web.cern.ch/LCG/ 
5. “The Grid 2003 Project.” http://www.ivdgl.org/grid2003/index.php 
6. “NorduGrid.” http://www.nordugrid.org 
7. http://www-cdf.fnal.gov 
8. http://www-do.fnal.gov 
9. L. Goossens, “Production System in ATLAS DC2”, CHEP04, Interlaken, contr. no. 501 

10. http://heppc12.uta.edu/windmill/ 
11. D. Rebatto, “The LCG Executor for the ATLAS DC2”, CHEP04, Interlaken, contr. no. 

364 
12. R. Gardner, “ATLAS DC Production on Grid3”, CHEP04, Interlaken, contr. no. 503 
13. X. Zhao, “Experience with Deployment and Operation of the ATLAS production System 

and the Grid3”, CHEP04, Interlaken, contr. no. 185 
14. J. Kennedy, “Legacy services within ATLAS DC2”, CHEP 2004, Interlaken, contr. no. 

234 
15. http://physics.bu.edu/pacman/ 
16. M. Branco, “Don Quijote”, CHEP04, Interlaken, contr. no. 142 
17. http://atlas.web.cern.ch/atlas/groups/software/DOCUMENTATION/ATLSIM/atlsim.html 
18. http://atlas.web.cern.ch/atlas/GROUPS/SOFTWARE/OO/architecture/General/index.htm 
19. http://www.thep.lu.se/~torbjorn/Pythia.html 
20. http://hepwww.rl.ac.uk/theory/seymour/herwig/ 
21. R. Brun & F. Rademakers, “ROOT, An Object Oriented Data Analysis Frame-

work”,Proceedings AIHENP'96, Lausanne, Sep. 1996, Nucl. Inst. & Meth.A389 (1997) 
81-86.  

22. D. Duellmann, “The LCG POOL Project – General Overview and Project Structure” 2003 
23. http://geant4.web.cern.ch/geant4/ 
24. “The European DataGrid project.” http://eu-datagrid.web.cern.ch/ 
25. “Globus Toolkit.” http://www-unix.globus.org/toolkit/ 
26. “Data TransAtlantic Grid.” http://datatag.web.cern.ch/datatag 
27. A. Chervenak, “Giggle: A Framework for Constructing Replica Location Services”, SC02 
28. http://www.usatlas.bnl.gov/ADA/ 
29. http://www.usatlas.bnl.gov/ADA/dels/ajdl/ 
30. D. L. Adams, “DIAL: Distributed Interactive Analysis of Large Datasets”, CHEP03, 

UCSD 
31. http://www.python.org/ 
32. http://lcg.web.cern.ch/LCG/peb/arda/ 
33. http://public.eu-egee.org/ 
34. http://glite.web.cern.ch/glite/ 
35. http://www.cs.wisc.edu/condor/ 
36. http://www.platform.com/products/LSFfamily/ 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 40 – 49, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

High Throughput Computing for Spatial Information 
Processing (HIT-SIP) System on Grid Platform 

Yong Xue1,2, Yanguang Wang1, Jianqin Wang1, Ying Luo1, Yincui Hu1,  
Shaobo Zhong1, Jiakui Tang1, Guoyin Cai1, and Yanning Guan1 

1 Laboratory of Remote Sensing Information Sciences,  
Institute of Remote Sensing Applications, Chinese Academy of Sciences,  

P. O. Box 9718, Beijing 100101, China 
2 Department of Computing, London Metropolitan University,  

166-220 Holloway Road, London N7 8DB, UK 
y.xue@londonmet.ac.uk, yx9uk@yahoo.com 

Abstract. For many remote sensing application projects, the quality of the 
research or the product is heavily dependent upon the quantity of computing 
cycles available. Middleware is software that connects two or more otherwise 
separate applications across the Internet or local area networks. In this paper, 
we present the High Throughput Computing Spatial Information Processing 
(HIT-SIP) System (Prototype), which is developed in Institute of Remote 
Sensing Applications, Chinese Academy of Sciences, China. Several 
middleware packages developed in the HIT-SIP system are demonstrated. Our 
experience shows that it is feasible that our grid computing testbed can be used 
to do remote sensing information analysis. 

1   Introduction 

Dozens of satellites constantly collecting data about our planetary system 24 hours a 
day and 365 days a year. For many remote sensing application projects, the quality of 
the research or the product is heavily dependent upon the quantity of computing 
cycles available. Scientists and engineers engaged in this sort of work need a 
computing environment that delivers large amounts of computational power over a 
long period of time. Large scale of satellite data needed to be processed and stored in 
almost real time. So far this processing in remote sensing confronts much difficulties 
in one single computer, or even impossibility. Computing grid that is integrated by 
series of middleware provides a way to solve this problem. 

It is not uncommon to find problems that require weeks or months of computation 
to solve. Such an environment is called a High-Throughput Computing (HTC) 
environment (http://www.cs.wisc.edu/condor/). The key to HTC is to efficiently 
harness the use of all available resources. Years ago, the engineering and scientific 
community relied on a large, centralized mainframe or a supercomputer to do 
computational work. A large number of individuals and groups needed to pool their 
financial resources to afford such a machine. Users had to wait for their turn on the 
mainframe, and they had a limited amount of time allocated. While this environment 
was inconvenient for users, the utilization of the mainframe was high; it was busy 
nearly all the time.  



 High Throughput Computing for Spatial Information Processing (HIT-SIP) System 41 

 

As computers became smaller, faster, and cheaper, users moved away from 
centralized mainframes and purchased personal desktop workstations and PCs. An 
individual or small group could afford a computing resource that was available 
whenever they wanted it. The personal computer is slower than the large centralized 
machine, but it provides exclusive access. Now, instead of one giant computer for a 
large institution, there may be hundreds or thousands of personal computers. This is 
an environment of distributed ownership, where individuals throughout an 
organization own their own resources. The total computational power of the 
institution as a whole may rise dramatically as the result of such a change, but 
because of distributed ownership, individuals have not been able to capitalize on the 
institutional growth of computing power. And, while distributed ownership is more 
convenient for the users, the utilization of the computing power is lower. Many 
personal desktop machines sit idle for very long periods of time while their owners 
are busy doing other things (such as being away at lunch, in meetings, or at home 
sleeping). 

Grid computing enables the virtualization of distributed computing and data 
resources such as processing, network bandwidth and storage capacity to create a 
single system image, granting users and applications seamless access to vast IT 
capabilities (Foster and Kesselman 1998, Foster et al. 2001). Just as an Internet user 
views a unified instance of content via the Web, a grid user essentially sees a single, 
large virtual computer. At its core, grid computing is based on an open set of 
standards and protocols — e.g., Open Grid Services Architecture (OGSA) — that 
enable communication across heterogeneous, geographically dispersed environments. 
With grid computing, organizations can optimize computing and data resources, pool 
them for large capacity workloads, share them across networks and enable 
collaboration. In fact, grid can be seen as the latest and most complete evolution of 
more familiar developments — such as distributed computing, the Web, peer-to-peer 
computing and virtualization technologies.  

There are several famous grid projects today. Network for Earthquake Engineering 
and Simulation labs (NEESgrid) (www.neesgrid.org) intended to integrate computing 
environment for 20 earthquake engineering laboratories. Access Grid 
(ww.fp.mcs.anl.gov/fl/access_grid) lunched in 1999 and mainly focused on lecture 
and meetings-among scientists at facilities around the world. European Data Grid 
sponsored by European union, mainly in data analysis in high-energy physics, 
environmental science and bioinformatics. The Grid projects focused on spatial 
information include Chinese Spatial Information Grid (SIG) (http://www.863.gov.cn), 
ESA’s SpaceGrid (http://www.spacegrid.org), and USA Earth System Grid 
(http://www.earthsystemgrid.org). 

ESA’s SpaceGrid is an ESA funded initiative. The SpaceGRID project is run by an 
international consortium of industry and research centres led by Datamat (Italy). 
Other members include Alcatel Space (France), CS Systemes d'Information (France), 
Science Systems Plc (UK), QinetiQ (UK) and the Rutherford Appleton Laboratory of 
the UK Council for the Central Laboatory of the Research Councils. Two other 
aspects of this project are of particular importance for ESA: finding a way to ensure 
that the data processed by the SpaceGRID can be made available to public and 



42 Y. Xue et al. 

 

educational establishments, and ensuring that SpaceGRID activities are coordinated 
with other major international initiatives.  

The SpaceGRID project aims to assess how GRID technology can serve 
requirements across a large variety of space disciplines, such as space science, Earth 
observation, space weather and spacecraft engineering, sketch the design of an ESA-
wide GRID infrastructure, foster collaboration and enable shared efforts across space 
applications. It will analyse the highly complicated technical aspects of managing, 
accessing, exploiting and distributing large amounts of data, and set up test projects to 
see how well the GRID performs at carrying out specific tasks in Earth observation, 
space weather, space science and spacecraft engineering. 

The Earth System Grid (ESG) is funded by the U.S. Department of Energy (DOE). 
ESG integrates supercomputers with large-scale data and analysis servers located at 
numerous national labs and research centers to create a powerful environment for next 
generation climate research. This portal is the primary point of entry into the ESG. 

ESG Collaborators include Argonne National Laboratory, Lawrence Berkeley 
National Laboratory, Lawrence Livermore National Laboratory, National Center for 
Atmospheric Research, Oak Ridge National Laboratory and University of Southern 
California/Information Sciences Institute. 

The Condor Project has performed research in distributed high-throughput 
computing for the past 18 years, and maintains the Condor High Throughput 
Computing resource and job management software originally designed to harness idle 
CPU cycles on heterogeneous pool of computers. In essence a workload management 
system for compute intensive jobs, it provides means for users to submit jobs to a 
local scheduler and manage the remote execution of these jobs on suitably selected 
resources in a pool. Condor differs from traditional batch scheduling systems in that it 
does not require the underlying resources to be dedicated: Condor will match jobs 
(matchmaking) to suited machines in a pool according to job requirements and 
community, resource owner and workload distribution policies and may vacate or 
migrate jobs when a machine is required. Boasting features such as check-pointing 
(state of a remote job is regularly saved on the client machine), file transfer and I/O 
redirection (i.e. remote system calls performed by the job can be captured and 
performed on the client machine, hence ensuring that there is no need for a shared file 
system), and fair share priority management (users are guaranteed a fair share of the 
resources according to pre-assigned priorities), Condor proves to be a very complete 
and sophisticated package. While providing functionality similar to that of any 
traditional batch queuing system, Condor's architecture allows it to succeed in areas 
where traditional scheduling systems fail. As a result, Condor can be used to combine 
seamlessly all the computational power in a community. 

In this paper, we present the High Throughput Computing Spatial Information 
Processing (HIT-SIP) System (Prototype), which is developed in Institute of Remote 
Sensing Applications, Chinese Academy of Sciences, China. The system will be 
introduced in Section 2. Several middleware developed in the HIT-SIP system will be 
demonstrated in Section 3. Finally, the conclusion and further development will be 
addressed in Section 4.  



 High Throughput Computing for Spatial Information Processing (HIT-SIP) System 43 

 

2   High Throughput Computing Spatial Information Processing 
Prototype System 

Remote sensing data processing is characterized by magnitude and long period of 
computing. The HIT-SIP system on Grid platform has been developed in Institute of 
Remote Sensing Application, Chinese Academy of Science. It is an advanced High-
Throughput Computing system specialized for remote sensing data analysis using 
Condor. Heterogeneous computing nodes including two sets of Linux computers and 
WINNT 2000 professional computers and one set of WINNT XP computer provide 
stable computing power (Wang et al. 2003, 2004). The grid pool uses java universe to 
screen heterogeneous characters. The function structure of HIP-SIP system is shown 
in Figure 1. 

There are 3 different ways to access the HIT-SIP system: Web service, local pool 
and wireless Web service. The functionalities of the HIT-SIP are: 

• Remote sensing image processing and analysis: Thematic information extraction. 
• Spatial analysis: Overlay, buffering, Spatial Statistics 
• Remote sensing applications: Aerosol, Thermal Inertial and Heat Flux Exchange 
• System operations: System status, Job management 
• Visualization 

 

Fig. 1. The Functionality Structure of HIT-SIP system 

The key technologies of HIT-SIP involve integrating Web Services with condor, 
namely a Grid implementation of Condor. There are about several building remote 
sensing applications on top of condor, as follows, command line tools of condor that 
are applied in JSP and Servlet, Web Services (Xue et al, 2002), and Condor GAHP 

User

Applications 
Spatial Analysis Image Processing 

Visualization 

SYNTAM 
Aerosol 

Spatial query Buffering Overlay 

3D Immersive 

Classification Thematic Information Extraction 

DDV 
Aerosol 



44 Y. Xue et al. 

 

etc. In HIT-SIP, we serve those people who use web browsers on PCs or on mobile 
device, such as PDA, by using Java Servlet to invoke command line tools of condor in 
applications server Resin; and we provide programmer WSDL that tell how to 
invoking our grid computing functionality of Spatial Information Processing.  

 

Fig. 2. The Structure of HIT-SIP system 

 

Fig. 3. The interface of front page of HIT-SIP system 



 High Throughput Computing for Spatial Information Processing (HIT-SIP) System 45 

 

Web Service is selected because compared to other distributed computing 
technologies, such as CORBA, RMI and EJB, it is a more suitable candidate for 
Internet scale application. First, web service is based on a collection of open 
standards, such as XML, SOAP, WSDL and UDDI. It is platform independent and 
programming language independent because it uses standard XML language. Second, 
web service uses HTTP as the communication protocol. That is a big advantage 
because most of the Internet’s proxies and firewalls will not mess with HTTP traffic. 
Figure 2 shows the basic structure of HIT-SIP. Figure 3 show the interface of front 
page of HIT-SIP system, which can be access by web service. 

3   Middleware Development for the HIT-SIP System 

Middleware makes resource sharing seem transparent to the end user, providing 
consistency, security, privacy, and capabilities. Middleware is software that connects 
two or more otherwise separate applications across the Internet or local area networks 
(www.nsf-middleware.org). More specifically, the term refers to an evolving layer of 
services that resides between the network and more traditional applications for 
managing security, access and information exchange to 

• Let scientists, engineers, and educators transparently use and share distributed 
resources, such as computers, data, networks, and instruments,  

• Develop effective collaboration and communications tools such as Grid 
technologies, desktop video, and other advanced services to expedite research 
and education, and  

• Develop a working architecture and approach that can be extended to the larger 
set of Internet and network users. 

The HIT-SIP system is a fundamental bare computing platform and can not run 
remote sensing image processing program. So remote sensing data processing 
middleware running on grid pool is inevitable. Common users can use the 
heterogeneous grid and share its strong computing power to process remote sensing 
data with middleware as if on one supercomputer.  

All the processing algorithms of the remote sensing images can also be divided 
into three basic categories in term of the area dealt with by the operation: 

a) Point operators 
Point operators change each pixel of the original image into a new pixel of the 
output image in terms of the given mathematics function, which transforms single 
sample point. The transform process doesn’t refer to other samples and other 
samples don’t take part in the calculation. 

b) Local operators 
Local operators transform single sample point and the transform process takes its 
neighbor samples to take part in calculation. The output value is related to itself 
and its neighbor pixels. 

c) Global operators 
Global operators incorporate the whole image’s samples into the calculation when 
it copes with each sample. 



46 Y. Xue et al. 

 

There are three approaches to divide a sequential task into parallel subtasks: data 
partition, task partition and mix partition (Cai et al. 2004, Hu et al. 2004a, b). The 
data partition parts the image data into a number of sub-data. Each subtask processes 
one sub-data respectively. In this case, the function of each subtask is identical, and 
only the processing data is different. The task partition parts the process of computing 
into a number of steps. The efficiency can be increased through parallel execution of 
these steps. The mix partition take the above two approaches into account to design 
the parallel algorithm. The Grid computing takes the Internet as a computing 
platform, thus it differs from additional parallel computing or distributed computing. 
We must consider the bandwidth of the network, stability, global distribution of the 
nodes, security etc. the data partition is a suitable approach. If the algorithm cannot be 
designed by means of the data partition. We can try to part it into relatively 
unattached (little interaction) subtasks. If it cannot be done, we will conclude that 
Grid computing is not fit for the algorithm according to the above given criteria. 
Through analyzing all sorts of algorithms, we conclude that those algorithms which 
pertain to point operators or local operators are easy to part it them into relative 
unattached subtasks, however, for global operators, only if we take special data 
partition or together with task partition, We can adapt it to meet the condition of using 
grid computing. 

3.1   Middleware for Aerosol Retrieval from MODIS Data 

GCP-ARS (Grid Computation Platform for Aerosol Remote Sensing), developed by 
Telegeoprocessing Research group in Institute of Remote Sensing Applications 
(IRSA), Chinese Academy of Sciences (CAS), is a advanced high throughput 
computing grid middleware that supports the execution of aerosol remote sensing 
retrieval over a geographically distributed, heterogeneous collection of resources 
(Tang et al. 2004a, b). In GCP-ARS, Condor system provides the technologies for 
resource discovery, dynamic task-resource matching, communication, and result 
collection, etc.  

LUTGEN module provides the users of the power to generate the LUT on grid 
computing platform, LOOK-UP module can be used to look up and interpolate the 
LUT generated by LUTGEN module or user self-offered to determine aerosol optical 
thickness. GCP-ARS provides the users friendly Windows-based GUI (Graphical 
User Interface), computation tasks auto-partitioned, tasks auto-submission, the 
execution progress monitoring, the sub-results collection and the final result piecing, 
which results in screening the complexities of grid applications programming and the 
Grid platform for users. GCP-ARS architecture mainly consists of three entities: 
clients, a resource broke, and producers. Aerosol retrieval is launched though a client 
GUI for execution at producers that share its idle cycles through the resource broker. 
The resource broke manages tasks application execution, resource management and 
result collection by means of Condor system. 

The date and time of MODIS data we have chose for our test on GCP-ARS was 
acquired at 03:20 UTC on August 11, 2003. The image size is 512 x 512 with spatial 
resolution 500m, which covers most part of plain of north China and Bohai gulf. 
Figure 4 shows the final AOT (Aerosol Optical Thickness) image retrieved using 
GCP-ARS. 



 High Throughput Computing for Spatial Information Processing (HIT-SIP) System 47 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. AOT Image of MODIS Band 3 at 470 nm retrieved using GCP-ARS 

3.2   Middleware for NDVI Calculation from MODIS `Data 

Vegetation indices (VIs) are spectral transformations of two or more bands designed 
to enhance the contribution of vegetation properties and allow reliable spatial and 
temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural 
variations. The Normalized Difference Vegetation Index (NDVI), which is related to 
the proportion of photosynthetically absorbed radiation, is calculated from 
atmospherically corrected reflectances from the visible and near infrared remote 
sensing sensor channels as: (CH2 - CH1) / (CH2 + CH1), where the reflectance values 
are the surface bidirectional reflectance factors for MODIS bands 1 (620 - 670 nm) 
(CH1) and 2 (841 - 876 nm) (CH2). Figure 5 shows the architecture of the Condor 
pool supported mobile geoprocessing system. Figure 6 is one of the GUIs. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The architecture of the Condor pool supported mobile geoprocessing system 

One track of MODIS data (800x5000) used for the calculation of NDVI was 
acquired on 11 August 2003. We submitted the job from a WAP mobile phone to our 

AOT (470nm) from MODIS 
d

No data 

0.00~0.0

0.006~0.

0.10~0.2

0.20~0.3

0.30~0.40

0.40~0.50 

0.50~1.0

Internet 

GateWay Mobile Client

 
Mobile 
Com 
Net 

WAP 

WapServer+Condor 

Condor Pool 



48 Y. Xue et al. 

 

Condor pool. Figures 6 show the interface on WAP phone. We divided whole images 
into 4 parts. In theory, we could divide them into any number of parts. The 4 jobs 
have been submitted to our Condor pool. After each calculation, the results will be 
merged into one image (Wang et al. 2004). All these operations were performed 
automatically. 

 

Fig. 6. The interface on WAP phone 

4   Conclusions 

Grid computing and Web Service technology is really a very effective method for 
sharing remote sensing data and processing middleware codes. It’s feasible that our 
grid computing testbed can be used to do remote sensing information modelling. The 
most efficient image size and the best separation of a large image that apt to our 
testbed will be our further research with realizing an algorithm that can read and 
divide remote sensing images automatically, and transfer results back to the submitted 
machine as a whole data file. 

Acknowledgement 

This publication is an output from the research projects "CAS Hundred Talents 
Program" funded by Chinese Academy of Sciences, "Grid platform based aerosol fast 
monitoring modeling using MODIS data and middlewares development" (40471091) 
funded by National Natural Science Foundation of China (NSFC), and “Dynamic 
Monitoring of Beijing Olympic Environment Using Remote Sensing” 
(2002BA904B07-2) and “863 Plan – Remote Sensing Data Processing and Service 
Node” funded by the Ministry of Science and Technology, China. 

Reference 

[1] I. Foster, “What is the Grid: A Three-Point Checklist”, Grid Today, 1 (6), 2002. 
[2] I. Foster, C. Kesselman (Eds), The Grid: Blueprint for a New Computing Infrastructure, 

Morgan Kaufmann Publishers, 1998. 



 High Throughput Computing for Spatial Information Processing (HIT-SIP) System 49 

 

[3] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual 
Organizations”, International Journal of Super-computer Applications, 15(3), 2001, pp. 
200-222. 

[4] Jianqin Wang, Yong Xue, and Huadong Guo, 2003, A Spatial Information Grid 
Supported Prototype Telegeoprocessing System. In Proceedings of 2003 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS’2003) held in 
Toulouse, France on 21-25 July 2003, v 1, p 345-347. 

[5] Yincui Hu, Yong Xue, Jianqin Wang, Guoyin Cai, Shaobo Zhong, Yanguang Wang, 
Ying Luo, Jiakui Tang, and Xiaosong Sun, 2004, Feasibility Study of Geo-Spatial 
Analysis using Grid Computing. Lecture Notes in Computer Science, Vol. 3039, pp.971-
978. 

[6] Guoyin Cai, Yong Xue, Jiakui Tang, Jianqin Wang, Yanguang Wang, Ying Luo, Yincui 
HU, Shaobo Zhong, and Xiaosong Sun, 2004, Experience of Remote Sensing 
Information Modelling with Grid computing. Lecture Notes in Computer Science, Vol. 
3039, pp.1003-1010. 

[7] Jianqin Wang, Xiaosong Sun, Yong Xue, Yanguang Wang, Ying Luo, Guoyin Cai, 
Shaobo Zhong, and Jiakui Tang, 2004, Preliminary Study on Unsupervised Classification 
of Remotely Sensed Images on the Grid. Lecture Notes in Computer Science, Vol. 3039, 
pp.995-1002. 

[8] Yanguang Wang, Yong Xue, Jianqin Wang, Ying Luo, Yincui HU, Guoyin Cai, Shaobo 
Zhong, Jiakui Tang, and Xiaosong Sun, 2004, Ubiquitous Geocomputation using Grid 
technology – a Prime. In Proceedings of IEEE/IGARSS to be held at Anchorage, Alaska, 
20-24 September 2004. 

[9] Yincui Hu, Yong Xue, Jianqin Wang, Guoyin Cai, Yanguang Wang, Ying Luo, Jiakui 
Tang, Shaobo Zhong, Xiaosong Sun, and Aijun Zhang, 2004, An experience on buffer 
analyzing in Grid computing environments. In Proceedings of IEEE/IGARSS to be held 
at Anchorage, Alaska, 20-24 September 2004. 

[10] Jiakui Tang, Yong Xue, Yanning Guan, Linxiang Liang, Yincui Hu, Ying Luo,Guoyin 
Cai, Jianqin Wang, Shaobo Zhong, Yanguang Wang, Aijun Zhang and Xiaosong Sun, 
2004, Grid-based Aerosol Retrieval over Land Using Dark Target Algorithm from 
MODIS Data. In Proceedings of IEEE/IGARSS to be held at Anchorage, Alaska, 20-24 
September 2004. 

[11] Jiakui Tang, Yong Xue, Yanning Guan, and Linxiang Liang, 2004, A New Approach to 
Generate the Look-Up Table Using Grid Computing Platform for Aerosol Remote 
Sensing. In Proceedings of IEEE/IGARSS to be held at Anchorage, Alaska, 20-24 
September 2004. 

[12] Gang Xue, Matt J Fairman, Simon J Cox, 2002, Exploiting Web Technologies for Grid 
Architecture. In Proceedings of 2002 Cluster Computing and the Grid, pp.272-273. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 50 – 58, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The University of Virginia Campus Grid: Integrating 
Grid Technologies with the Campus Information 

Infrastructure∗ 

Marty Humphrey and Glenn Wasson 

Department of Computer Science, University of Virginia,  
Charlottesville, VA 22904 

{humphrey, gsw2c}@cs.virginia.edu 

Abstract. Grid software often unfortunately requires significant changes in ex-
isting infrastructure, both in terms of policy and mechanism, instead of accom-
modating and leveraging existing information servers such as enterprise LDAP 
servers and enterprise authentication infrastructures. The University of Virginia 
Campus Grid (UVaCG) has been designed explicitly to re-use as much existing 
infrastructure in the campus environment as possible in creating a Grid based 
on the Web Services Resource Framework (WSRF), specifically the Globus 
Toolkit v4 and WSRF.NET. We report on the design and the current status of 
the UVaCG, with particular emphasis on the challenge of creating explicit pol-
icy expression, negotiation, and enforcement. When fully operational, campus 
researchers will be able to seamlessly utilize resources within the campus enter-
prise and expand on-demand to larger Grids such as the TeraGrid and the Open 
Science Grid. 

1   Introduction 

In many ways, the core challenge of Grid computing is the ability to seamlessly inte-
grate legacy systems, both in terms of policy and mechanism. That is, while new 
protocols are often needed for such Grid-specific activities as remote execution and 
third-party data transfer, the goal of the Grid is to create a virtual computing platform 
from existing heterogeneous systems without requiring the imposition of new soft-
ware mechanisms and policies that are radically different than those already in place. 
For example, it is unrealistic to expect sites to abandon an existing Kerberos authenti-
cation infrastructure [1] in lieu of some Grid-specific authentication such as the PKI-
based GSI [2]. Similarly, resource owners who wish to participate in Grid activities 
must absolutely be allowed to retain control over their resources in a manner in which 

                                                           
∗  This work is supported in part by the US National Science Foundation under grants ACI-

0203960 (Next Generation Software program), SCI-0438263 (NSF Middleware Initiative), 
SCI-0123937 (through a subcontract to SURA), the US Department of Energy through an 
Early Career Grant (Humphrey), and Microsoft Research. 



 The University of Virginia Campus Grid: Integrating Grid Technologies 51 

 

they have previously established. Without this support for local autonomy, the vision 
of the Grid as vital-yet-commonplace infrastructure will never be achieved.  

The “campus Grid” is a compelling environment for Grid activities, because of the 
inherent opportunity for sharing of resources between campus researchers. Campus 
researchers should be able to utilize unused campus-wide resources such as the PCs 
available in general-purpose labs. However, mechanisms are lacking by which to 
integrate campus IT infrastructure and policies—both explicit and implicit—with the 
current Grid tools, particularly those based on the Web Services Resource Framework 
(WSRF [3][4]). Maintaining student security and privacy (as defined by FERPA [5] 
and increasingly HIPAA [6]) is paramount. While Grid software is certainly being 
deployed on machines on campuses as part of national and international Grid efforts, 
these deployments are generally “side-by-side” with the main campus IT infrastruc-
ture, particularly that for AAA (authentication, authorization, and accounting). In 
short, the campus is an excellent candidate for Grids, but only if the campus is com-
mitted to it, the Grid software taps into existing campus IT infrastructures, and the 
Grid deployment is especially careful not to impede pre-existing use patterns by cam-
pus researchers and students. 

This paper describes the design and current status of the University of Virginia 
Campus Grid (UVaCG), whose goal is to both create an intra-campus environment 
of sharing and as such facilitate the broader inter-campus sharing via future partici-
pation in Grids such as the Open Science Grid [7] and the TeraGrid [8]. This will be 
the first Grid in which the Windows machine (via our own WSRF.NET) participates 
side-by-side with the Linux machine (via the Globus Toolkit v.4). The key chal-
lenges will be for the Grid infrastructure to recognize and leverage the pre-existing 
campus trust fabric and campus policies. We describe the technologies being util-
ized, the unique challenges being faced as we attempt to integrate a substantial cam-
pus IT with the Grid technologies particularly with regard to policy management, 
and present a status report of the UVaCG. We believe that the UVaCG will be a 
prototypical example of a new class of Grids -- the enterprise Grid that is relatively 
self-contained but which interoperates and extends into other Grids on demand. As 
described in this paper, the key will be expressible, manageable, and negotiable 
policies on the part of resource owners, service deployers, service invokers, and the 
virtual organizations themselves.  

This paper is organized as follows. In Section 2, we present the technologies being 
used and deployed for the UVaCG. Section 3 enumerates the challenges being en-
countered and addressed. Section 4 contains the conclusions. 

2   Core Technologies 

In this section, we describe the core technologies that are the basis of the University 
of Virginia Campus Grid (UVaCG).  Section 2.1 discusses the Grid-related technolo-
gies, Section 2.2 discusses the key components of the Campus IT, and Section 2.3 
illustrates how everything fits together. 



52 M. Humphrey and G. Wasson 

 

2.1   Grid Technologies  

The foundation of the University of Virginia Campus Grid (UVaCG) is the Web Ser-
vices Resource Framework (WSRF). WSRF is a set of specifications that describe the 
relationship between “stateful resources” and web services. This relationship is de-
fined in terms of WS-Resources, an abstraction for modeling/discovering state ma-
nipulated by web services. A WS-Resource is a “composition of a web service and a 
stateful resource” [3] described by an XML document (with known schema) that is 
associated with the web service’s port type and addressed by a WS-Addressing End-
pointReference [9]. WSRF defines functions that allow interactions with WS-
Resources such as querying, lifetime management and grouping. WSRF is based on 
the OGSI specification [10] and can be thought of a expressing the OGSI concepts in 
terms that are compatible with today’s web service standards [11]. Arguably and 
simplistically, it is sometimes convenient when contrasting OGSI and WSRF to think 
of OGSI as “distributed objects that conform to many Web Services concepts (XML, 
SOAP, a modified version of WSDL)”, while WSRF is fundamentally “vanilla” Web 
Services with more explicit handling of state.  One artifact of this is that OGSI did not 
really support interacting with these base Web Services and instead only interacted 
with “Grid Services” (by definition these were OGSI-compliant); WSRF fully sup-
ports interacting with these base Web Services (although the argument is made that 
client interactions with WSRF-compliant are richer and easier to manage). 

Currently, there are 4 specifications [4] in the WS-ResourceFramework with a 
small number yet to be officially released. WS-ResourceProperties defines how WS-
Resources are described by ResourceProperty (XML) documents that can be queried 
and modified. WS-ResourceLifetime defines mechanisms for destroying WS-
Resources (there is no defined creation mechanism). WS-ServiceGroups describe how 
collections of services can be represented and managed. WS-BaseFaults defines a 
standard exception reporting format. WS-RenewableReference (unreleased) will de-
fine how a WS-Resource’s EndpointReference, which has become invalid, can be 
refreshed. There are also 3 WS-Notification specifications (WS-BaseNotification, 
WS-Topics and WS-BrokeredNotification) that although not part of WSRF, build on 
it to describe asynchronous notification. 

UVaCG will rely on two packages that support WSRF and WS-Notification: the 
Globus Toolkit v4 [12] and our own WSRF.NET [13][14]. We have been working 
closely with the Globus Toolkit developers to ensure that the two systems are interop-
erable, both with regard to the core WSRF and WS-Notification specifications and 
with regard to the Globus protocols.  

Many of the existing Windows boxes on campus that are to be included in the 
UVaCG are already controlled by a Windows domain (username/password) that is 
maintained by the UVa Campus IT department. To support single sign-on and re-use 
existing authentication infrastructures, we have developed CredEx [15], which is a 
general-purpose credential exchange mechanism. The main authentication mechanism 
will be the campus PKI (described in the next section), and these PKI credentials will 
be dynamically exchanged to obtain the appropriate username and password for the 
target (Windows) machine. We would have liked to use MyProxy [16], but MyProxy 



 The University of Virginia Campus Grid: Integrating Grid Technologies 53 

 

is not capable of speaking SOAP and WS-Security. By using CredEx, campus re-
searchers can still rely on the Campus IT department to create and maintain accounts; 
in the UVaCG we are selectively and securely re-using this legacy infrastructure.  

2.2   Campus Technologies 

In addition to leading a well-run campus infrastructure consisting of network man-
agement, user-help desk, account creation, etc., the University of Virginia is very 
active in the Internet2 community, helping to develop and promote common schemas 
(such as EduPerson and LDAP Recipe) and PKI procedures for inter-campus  
interoperability.  

Our main focus with the UVaCG is the re-use of campus authentication techniques. 
Recently, we have pursued the Bridge Certificate Authority (CA) as the basis for scal-
able Grid PKIs [18]. The Bridge CA is a compromise between a strictly hierarchical 
PKI and a mesh PKI and achieves many of the benefits of the hierarchical PKI and 
mesh PKI without with single point of failure of the hierarchical PKI and without the 
path validation complexity of the mesh PKI. This work is in part based on our previous 
work contributing to the Internet2/EDUCAUSE HEPKI-TAG group [19] and the 
EDUCAUSE effort to build and deploy a Higher Education Bridge CA (HEBCA) [20] 
in the US. Because the University of Virginia runs the PubCookie [21] infrastructure, 
in which a cookie-based authentication can be used to protect content on web servers 
(e.g., as an alternative for password-protected course content), we are in the final 
stages of completing a prototype in which a valid PubCookie can be exchanged (via 
CredEx discussed in the previous section) for either a username/password for a target 
machine or for a valid X.509 proxy credential for the Grid.  

Our second major focus is the re-use of campus account creation and management. 
We are currently considering the use of Walden [17] to manage the campus-wide 
Gridmap file as well as allocate temporary identities and accounts for non-local re-
searchers.  

2.3   University of Virginia Campus Grid (UVaCG)   

By re-using campus authentication and campus account procedures, the WSRF im-
plementations of the Globus Toolkit and WSRF.NET will be deployed with the 
minimal amount of disruption for existing campus resource users. The campus Grid 
resources—Windows machines and Linux compute clusters—will be seamlessly 
available to University of Virginia researchers and their collaborators as appropriate. 
Our goal is to have campus researchers that acquire new machines want to have these 
resources included in the campus grid, because they know that they are not, in fact, 
“giving their cycles away” but are instead being given access to an instantaneous pool 
of resources that they could never acquire merely in their campus lab. Figure 1 shows 
the UVaCG, illustrating the resources involved and the Grid users. UVaCG initially, 
will contain five separately-owned Linux clusters and two separately-owned instruc-
tional labs containing Windows XP machines. 

 
 



54 M. Humphrey and G. Wasson 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   Explicit Policy Expression, Negotiation, and Enforcement for 
the Campus Grid 

As we make progress on the interoperability between WSRF.NET and the Globus 
Toolkit v4, and we successfully integrate with the campus IT environment, we are 
finding it necessary to be able to express policies on these services, both from the 
viewpoint of the service author and/or deployer, the administrator of the domain in 
which the service is deployed, as well as the hierarchical policy makers of the Grid 
(Grid users will also have policies). These policies must be expressed and obeyed. We 
believe that in today’s Grid deployments, policies of Grid resource owners and Grid 
users are unnecessarily simplistic and homogeneous. For example, machines will 
often be purchased as part of a funded project and dedicated to “The Grid”. Resources 
will be hand-selected or hard-coded by the Grid user because he/she has had a good 
experience with that particular resource in the past. We believe that individual Grid 
users can have individual policies, and they want the Grid automation tools to adhere 
to their policies. Grid resource owners also want to explicitly and concisely express 
their policies, if even only to make it possible for Grid users (or tools acting on their 

ITC LDAP Server 

 Other CS 
machines 

Windows desktops 

BioMedical 
Engineering 

2 Linux clusters 

ITC Student Lab 

100 Windows XP 

Physics (high-energy) 

Linux cluster 

CS Teaching 
L b

60 Windows XP 

Biochemistry 

Linux cluster 

CS Opterons 

5 Win / 5 Linux 

CS Sunfire cluster 

22 Linux

Users: 
• BioMed 
• Physics 
• BioChem 
• UVA CS 
• Campus 

workshops 

Campus 
Network 

ITC Campus CA 

Fig. 1. University of Virginia Campus Grid (UVaCG) 



 The University of Virginia Campus Grid: Integrating Grid Technologies 55 

 

behalf) to begin to recognize these policies and adhere to them. Today, this is not 
possible because policy languages have not been evaluated, policy negotiation tools 
don’t exist, and policy enforcement points are ad hoc, if they exist at all. 

We have begun investigating approaches by which Grid users, resource owners, 
and the Grid as a whole can begin to express these policies and have them adhered to 
and enforced [22].  We focused only on the resource provisioning policy, which de-
scribes the Grid-wide distribution of resource utilization. In our approach, we made 
policy operational by describing actions that will be taken to maintain the desired 
Grid state. For example, a policy such as “if any site is performing less than 25% of 
the work of the other sites, all new work will be scheduled on that site until the work 
load is equalized” describes an explicit trigger condition and an action that will be 
taken if that condition is met. Note that while such statements may allow for auto-
mated policy enforcement, the Grid’s response need not be “fully automated”. That is, 
the appropriate administrator could be alerted to the relevant condition and/or a set of 
corrective actions might be suggested, allowing the human to make the final decision. 

We have focused our preliminary explorations for the UVaCG on three representa-
tive Grid-wide resource provisioning policies: 

• Each physical organization opportunistically gives what it can to the Grid [the 
you-give-what-you-can policy] 

• Resource utilization is divided equally among member resources [the 1/N pol-
icy] 

• Each physical organization receives Grid utilization credit for the resource 
utilization their physical organization provides to other Grid users outside their 
physical organization [the you-get-what-you-give policy] 

Our prototypical software simulation implemented the “you-get-what-you-give” 
policy and consisted of three types of software components: Gatekeeper services, 
Bank services, and Enforcement services. The Gatekeeper service was based on the 
operations of the Globus gatekeeper and controlled access to the resources. The bank 
service recorded the “contribution” the physical organizations made to the Grid 
(based on a hypothetical exchange rate). The enforcement services implemented two 
kinds of enforcement actions in the Grid, one punitive (“cutoff”) and one corrective 
(“redirect”). The “cutoff” action is when the enforcer contacts one or more Gatekeep-
ers and instructs them to deny access to their resources to the enforcer’s associated 
user. The “redirect” action involves the enforcer contacting one or more Gatekeepers 
to ask that resource requests they receive be re-directed to the enforcer’s user’s re-
source. This has the effect of providing more credit to a needy user.  

While arguably simplistic, we were able to conduct experiments in which we re-
fined the issues and approach and began to quantify the costs and benefits of attempt-
ing to enforce Grid policy in this manner. In our experiments, we were able to dy-
namically shift the workload to meet the resource-sharing policy, but only under 
highly-constrained conditions. We believe that policy expression, negotiation, and 
enforcement is an extremely difficult problem that must be addressed comprehen-
sively in Grids. Specifically, we are extending this work in the following ways for the 
UVaCG: 



56 M. Humphrey and G. Wasson 

 

• Expressible policies. We will make representative policies for resource owners 
and Grid users using a combination of WS-Policy, WS-SecurityPolicy, and 
XACML. Our previous policies were in our own ad-hoc language.  

• Policy enforcement in WSRF.NET. While we plan to utilize the Microsoft 
WSE as much as possible for policy enforcement, and we suspect that much of 
the policy enforcement may only be performed via application-specific logic, 
we believe that the WSRF.NET hosting environment that we are constructing 
can perform policy enforcement for the entire PC. An important first applica-
tion of this is to enforce the resource owner’s policy (such as “If a local user is 
interacting with this PC, no Grid activities can execute on this PC.”) We will 
create comprehensive, integrated logging for post-facto analysis.  

• Prototype tools that understand explicit policies. The first tool that we will 
develop will be a scheduler that understands explicit policies. A core capability 
of this tool will be the hypothetical exploration of the Grid via “What if…?” 
questions, such as “What if I tried to execute my parameter-space job at 5pm? 
Where could I be allowed to execute?” A related tool will be used to under-
stand the effects of policy on the Grid. For example, we anticipate situations in 
which policies are so restrictive (e.g., by a resource owner) that no services are 
engaged or no jobs are executed. Breaking the “inertia” of first Grid deploy-
ment, as well as determining the steady-state performance/behavior of the Grid 
will be very challenging problems. We need tools to resolve these policy con-
flicts and make suggested modifications.   

We are leveraging existing work to express, negotiate, and enforce the policies of 
Campus Grid users and resource providers. To a certain extent, security authorization 
policy has been treated explicitly in Grid contexts in Akenti [23], CAS [24] and the 
work by Keahey and Welch [25]. These systems make permit/deny decisions based 
on (potentially multiple) access control policies and the accessor’s identity / group 
membership. While this project will leverage these excellent projects, this existing 
work does not immediately satisfy the requirements of the UVaCG because all focus 
on authorization policy, whereas we need to address policies more broadly and in the 
context of Web Services (e.g., “I prefer predictable Grid behavior rather than having 9 
out of 10 jobs finish very quickly and the last job finish incredibly slowly”). Also, the 
referenced work is generally applicable to a particular service, whereas the problem 
we are addressing encompasses per-Grid-user, per-Service, and Grid-wide. For ex-
ample, the campus IT administrators may impose requirements on the “holistic” be-
havior of the Grid that is not merely satisfied through the individual actions of the 
services and the Grid users. 

The UVaCG leverages research into explicit policy management that has been per-
formed outside of the context of the Grid. Preconditions and obligation in policy [26] 
provide a compact means of representing what a user must do before performing a 
specific action as well as what they must do after an action. The Generic Authentica-
tion, Authorization, and Accounting (AAA) Architecture (RFC 2903[27]) builds an 
architecture in terms of Generic AAA servers, policy and event repositories, and Ap-
plication Specific Modules (ASMs). It is not clear how this architecture can be applied 
to policies broader than AAA. The specification is also not prescriptive in how to best 
implement such an architecture based on a particular technology such as Web Services. 



 The University of Virginia Campus Grid: Integrating Grid Technologies 57 

 

Within the context of OGSA, the WS-Agreement specification proposes support 
for service management, which is “the ability to create Grid services and adjust their 
policies and behaviors based on organizational goals and application require-
ments”[28]. This is a form of Service-Level Agreement (SLA) for OGSA. WS-
Agreement will be leveraged as much as possible to frame the work described in this 
proposal. While WS-Agreement does not suggest actual policies for Grid users, Grid 
Services, and the Grid as a whole (which is a contribution of this work), we anticipate 
using aspects of WS-Agreement.   

4   Conclusion 

The campus Grid presents a unique set of challenges and opportunities with regard to 
Grid Computing. Explicit policy management and negotiation is needed in order to 
support the dynamic environment. We are currently continuing to advance the inter-
operability of WSRF.NET and the Globus Toolkit v4 and have begun initial deploy-
ment on the UVaCG.  

We are also separately working with the San Diego Supercomputing Center 
(SDSC) to develop support for the campus researcher to more easily handle the strin-
gent security requirements of SDSC, NCSA, and the TeraGrid. We are hardening our 
Bridge CA work, whereby campuses that meet the security requirements of the Tera-
Grid can “cross-certify” with other CAs that the TeraGrid recognizes. This will, in 
principle, allow campuses to utilize their Campus authentication infrastructure as the 
basis of a single sign-on capability. 

References 

[1] B.C. Neuman, and T. Ts’o. Kerberos: An authentication service for computer networks. 
IEEE Communications Magazine, 32(9):33-38, September 1994. 

[2] Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computational 
Grids. Proc. 5th ACM Conference on Computer and Communications Security Confer-
ence, pg. 83-92, 1998. 

[3] K. Czajkowski., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., 
Tuecke, S., Vambenepe, W. 2004. The WS-Resource Framework. http://www-106.ibm. 
com/developerworks/library/ws-resource/ws-wsrf.pdf 

[4] WS-ResourceFramework and WS-Notification Specifications. http://devresource.hp.com/ 
drc/specifications/wsrf/index.jsp  

[5] Family Educational Rights and Privacy Act (FERPA). US Department of Education. 
http://www.ed.gov/policy/gen/guid/fpco/ferpa/index.html 

[6] United States Department of Health and Human Services. Office of Civil Rights – 
HIPAA. http://www.hhs.gov/ocr/hipaa/ 

[7] Open Science Grid. http://www.opensciencegrid.org/ 
[8] TeraGrid. http://www.teragrid.org 
[9] IBM, BEA, and Microsoft. WS-Addressing. 2004.  http://msdn.microsoft.com/webser-

vices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-addressing.asp 



58 M. Humphrey and G. Wasson 

 

[10] S. Tuecke et. al. Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Fo-
rum. GFD-R-P.15. Version as of June 27, 2003. 

[11] K. Czajkowski, Ferguson, D., Foster, I., Frey, J., Graham, S., Snelling, D., Tuecke, S., 
From Open Grid Services Infrastructure to Web Services Resource Framework: Refac-
toring and Evolution, 2004. http://www-106.ibm.com/developerworks/webservices/  
library/ws-resource/grogsitowsrf.html 

[12] Globus Toolkit v. 4. http://www.globus.org/wsrf/ 
[13] WSRF.NET: The Web Services Resource Framework on the .NET Framework. 

http://www.ws-rf.net 
[14] Humphrey, M., G. Wasson, M. Morgan, and N. Beekwilder (2004). An Early Evaluation 

of WSRF and WS-Notification via WSRF.NET. 2004 Grid Computing Workshop (asso-
ciated with Supercomputing 2004). Nov 8 2004, Pittsburgh, PA. 

[15] D. Del Vecchio, J. Basney, N. Nagaratnam, and M. Humphrey. CredEx: User-Centric 
Credential Selection and Management for Grids. University of Virginia Computer Sci-
ence Technical Report. November, 2004.   

[16] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for the Grid: 
MyProxy. Proceedings of the Tenth International Symposium on High Performance 
Distributed Computing (HPDC-10), IEEE Press, August 2001. 

[17] Kirschner, B., Adamson, W., Hacker, T. , Athey, B., Walden: A Scalable Solution for 
Grid Account Management, 2004 Grid Computing Workshop (associated with Super-
computing 2004). Nov 8 2004, Pittsburgh, PA.  

[18] J. Jokl, J. Basney, and M. Humphrey. Experiences using Bridge CAs for Grids. UK 
Workshop on Grid Security Experiences, Oxford 8th and 9th July 2004.  

[19] Higher Education PKI Technical Activities Group (HEPKI-TAG). 
http://middleware.internet2.edu/hepki-tag/ 

[20] Higher Education Bridge Certificate Authority (HEBCA). http://www.educause.edu/ 
hebca/ 

[21] Pubcookie. http://www.pubcookie.org 
[22] G. Wasson and M. Humphrey. Policy and Enforcement in Virtual Organizations. In 4th 

International Workshop on Grid Computing (Grid2003) (associated with Supercomput-
ing 2003). Phoenix, AZ. Nov 17, 2003. 

[23] M. Thompson. 2001. Akenti Policy Language. http://www-itg.lbl.gov/security/Akenti/ 
Papers/PolicyLanguage.html 

[24] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community Authorization 
Service for Group Collaboration. Proceedings of the IEEE 3rd International Workshop 
on Policies for Distributed Systems and Networks, 2002. 

[25] K. Keahey, V. Welch. Fine-Grain Authorization for Resource Management in the Grid 
Environment. Proceedings of Grid2002 Workshop, 2002. 

[26] N. Dulay, Lupu, E., Sloman, M. and Damianou, N. 2001. A Policy Deployment Model 
for the Ponder Language. Proc. IEEE/IFIP International Symposium on Integrated Net-
work Management (IM’2001) 

[27] C. de Laat et. al. Generic AAA Architecture. RFC 2903. Available at:  http://www.faqs. 
org/rfcs/rfc2903.html 

[28] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-based Service 
Management (WS-Agreement). Global Grid Forum draft-ggf-graap-agreement-1. Ver-
sion as of Feb 8, 2004. 

 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 59 – 67, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

M-Grid: Using Ubiquitous Web Technologies to Create  
a Computational Grid 

Robert John Walters and Stephen Crouch 

Declarative Systems and Software Engineering Group, 
Department of Electronics and Computer Science, 

University of Southampton, UK 
SO17 1BJ 

{rjw1, stc}@ecs.soton.ac.uk 

Abstract. There are many potential users and uses for grid computing.  However, 
the concept of sharing computing resources excites security concerns and, whilst 
being powerful and flexible, at least for novices, existing systems are complex to 
install and use. Together these represent a significant barrier to potential users 
who are interested to see what grid computing can do.  This paper describes M-
grid, a system for building a computational grid which can accept tasks from any 
user with access to a web browser and distribute them to almost any machine with 
access to the internet and manages to do this without the installation of additional 
software or interfering with existing security arrangements. 

1   Introduction 

Probably the most widespread application of grid technology is a computational grid 
[2, 13, 14] which provides a network for the distribution of computational power 
available from connected machines to users with work to perform.  On identifying a 
task, a user uses local software to present their task to the grid system which then ar-
ranges for the task to be executed (usually elsewhere and often distributed amongst a 
number of machines) and delivers the results back to the user.  Existing systems re-
quire the installation of software onto the machines which are connected to form the 
grid.   

The grid software [2, 7, 9-11, 13-15] provides the necessary infrastructure for the 
users to inject their tasks into the system, for the system to distribute tasks to nodes 
within the grid and to return the results.  This software also implements mechanisms 
to transmit tasks, input data and results from machine to machine as necessary and to 
execute tasks when they arrive at remote machines.  The effort associated with install-
ing and configuring most of these systems is considerable.  Aside from the effort as-
sociated with installing, configuring and coordinating the software, this can be a prob-
lem for two reasons.  The first is that, depending on their environment, users may 
need to obtain permissions to install software onto the machines to be used.  Even 
where this is not a problem, there is a second issue of the risk for those machines 
which will perform the computations of executing an unknown program which is de-
livered by the grid software but whose ultimate source is a third party.  Handling 
these two issues adds considerable complexity to the task of installing a computa-



60 R.J. Walters and S. Crouch 

 

tional grid, even where a lightweight grid framework [17] is being used.  M-grid of-
fers a solution which avoids these issues by using software and associated security 
which are ubiquitous.  

The essence of a computational grid is that it provides a mechanism whereby a col-
lection of computers with processing capability is made available to users with a 
computational tasks to perform.  Each system has its own features and strengths, but 
they all have the following three roles performed by one or more of the machines 
which form the grid: 

− Nodes which provide processing power to the grid. 
− Users who supply tasks to be performed 
− Coordinator(s) who distribute incoming tasks to the processing nodes and see 

that results are returned as appropriate. 

In a classical computational grid, there will be many nodes providing processing 
power and relatively few users each of whom has a need for large amounts of process-
ing power to perform either a few large tasks (which are often broken into pieces for 
execution) or a great many relatively smaller ones.  The coordination role is often per-
formed by a single machine.  The coordinator is at the heart of the system and has two 
main activities: collecting tasks and distributing them to available nodes.  Discharging 
these obligations implies a subsidiary task of collecting the results and delivering 
them to the users.   

The coordinating machine(s) need to be able to communicate with others in the 
grid and, in the case of the nodes providing processing, supply code (and associated 
data) for execution.  This is typically achieved by installing grid software on each of 
the machines taking part which handles communications between the component 
parts of the grid.  Installing this software can be problematic because of what it does.  
Owners of computers are concerned to ensure that new software installed will not dis-
rupt, compromise or damage their system.  Hence, before they are prepared to install 
it, they subject it to scrutiny to check that it's behaviour is acceptable.  Areas of con-
cern include ensuring that the software won't damage the machine on which it is in-
stalled, won't interfere with existing applications which operate on the machine and 
doesn't seek to destroy data or collect and disclose confidential information.  This 
might be established directly by examination of the software, or indirectly by the cer-
tification by some trusted party.  The aspect of the grid whereby the coordinator sends 
code to other nodes for execution is particularly problematic since the nature and de-
tail of the code to be executed is not known at the time the grid infrastructure is being 
installed.  Thus, in accepting code to execute, a node has to rely on the coordinator to 
only send code which is acceptable.  This requires trusting relationships between the 
node, the coordinator and the client [12].  Establishing these trusting relationships can 
be both difficult and time consuming. 

In all of the above, the real nub of the problem is the danger associated with executing 
code which arrives via the network.  These tasks arrive via the coordinator from cli-
ents who may not even be known to the processing node.  In accepting this work, the 

. 

2   Why Is M-Grid So Easy? 



 M-Grid: Using Ubiquitous Web Technologies to Create a Computational Grid 61 

 

processing node has to trust that it can execute the code safely.  In order to do this, the 
node must be prepared to trust in the other elements of the system.  In the case of the 
client, the node has to either trust it directly or be prepared to rely on the coordinator 
to vet clients and the tasks they supply appropriately.  In addition, the node then has 
to be prepared to trust the coordinator not to interfere with the tasks (such as by add-
ing in its own unacceptable code). 

We identified that, although the motivation is quite different, a browser which 
downloads and runs an applet contained within a web page is doing exactly what 
causes the trouble in a computational grid - the server sends code which is executed 
on the client machine in the browser [8, 16].  The enabling technology for this activity 
was developed to further the capability of the world wide web to provide a rich and 
comprehensive experience to the user of the browser.  It works by permitting the crea-
tion of elements in web pages which use local processing to enhance the appearance 
of web pages and interact with the user.  In order to do this, the browser provides, in 
the form of a specialised Java virtual machine, an execution environment which is 
carefully crafted to ensure there can be no risk to the local host from the actions of an 
applet [5, 8, 16].  Because the activity of the applet is constrained and contained, there 
is no risk to browser or the hosting machine associated with running the code.  We re-
alised that we could use the same mechanism to implement the nodes of a computa-
tional grid.  Any machine with a Java enabled web browser could provide processing 
capability to a grid system if the tasks were distributed as applets embedded within a 
web page.  Such a grid does not need its own communications infrastructure as it 
could use the mechanisms already in place for use by the web browser, nor is there 
any need to establish relationships of trust between the parties involved as the activi-
ties of applets are constrained to acceptable limits by the execution environment pro-
vided by the browser.   

Since virtually any connected machine will have a suitable browser installed, virtu-
ally any connected machine worldwide could take part in such a grid as a computa-
tional node without any software installation or security implications. 

2.1   How M-Grid Works in Outline 

M-grid uses applet technology to distribute work to client machines.  Many of the 
usual objections and problems associated with joining a grid are avoided because, 
there is no need to install software on the target machine.  M-grid uses the existing 
web browser.  Problems of security don't arise either since applets execute within the 
carefully constrained environment provided by the browser which is designed to pro-
tect their hosts from errant behaviour by applets.  Hence, there is no need for the 
processing node to establish a trusting relationship with the supplier of the task or its 
ultimate source since the "sandbox" in which the applet executes protects the host 
from errant behaviour by an applet (even if it is malicious). 

The only code required to create M-grid is in the provision of the coordinator role 
which supplies the mechanism for clients to inject their tasks into the system, distrib-
utes them to the nodes and returns the results.  This is achieved using two web pages: 



62 R.J. Walters and S. Crouch 

 

− A job distribution page.  Anyone willing to supply processing capability to the 
grid does so by opening the job distribution page in a java enabled browser. 

− A job submission page.  Those with tasks to be performed use a form on this 
page to upload them and await the results. 

3   Setting Up M-Grid 

Since all that is required to become a processing node of M-grid is to open the job re-
quest page in a browser and clients need only to submit their tasks to the job submis-
sion page, there is no setup for these beyond directing a browser to the appropriate 
web page.  This is unlikely to be difficult for even the most naïve of computer users.  
Such setup effort as there is for M-grid is in the creation of the coordinator web pages 
and their publication for which a machine running suitable web server software is re-
quired. 

Today, most people who might be interested to setup their own M-grid will have 
access to a suitable web server and resources which would enable them to construct 
and maintain simple web pages, even if they don't do it themselves.  The only com-
plexity in the M-grid web pages is the code embedded within them which elicits tasks 
from clients and distributes them to the nodes.  The manner in which this code is writ-
ten is dependent on the capabilities of the web server software being used.  For our 
first implementation, we have used Active Server Pages (ASP) which is provided by 
Microsoft in their Internet Information Server  (IIS)  [4]. 

However, we have already generated suitable code so the task of generating these 
pages may be reduced to including the ASP code in an appropriate web page, or add-
ing any desired presentation to our "vanilla" M-grid files.  Creating these pages this 
way requires no more than the most elementary skills in web page creation.  With the 
web pages in place, the M-grid can commence operation as soon as the first clients 
and nodes access the pages. 

4   Joining and Using M-grid 

Since there is no software to install and no security or trust relationships to establish 
between the various elements of M-grid, joining is trivial.  Almost any machine with 
a web browser able to view the M-grid web pages can take part. 

Becoming a node offering to perform processing couldn't be easier.  All that is re-
quired is to navigate a Java enabled browser to the job distribution web page and 
leave it.  Any browser able to host an applet is suitable regardless of the underlying 
hardware or operating system.  The page is created dynamically and displays some in-
formation about M-grid.  From time to time the server will insert an applet into the 
page which has a computational task encoded within it.  Once complete the applet re-
turns its results (and disappears).  There is nothing for the machine owner/operator to 
do.  To remove the machine from the grid, all that is necessary is to close the browser 
or redirect it to another page. 

The user with a job to be processed by M-grid only needs a browser able to access 
the form on the job submission page.  Once a job has been uploaded to the server us-



 M-Grid: Using Ubiquitous Web Technologies to Create a Computational Grid 63 

 

ing this form, M-grid passes the task out as  an applet  to an available node.  The re-
sults are collected and returned to the user in due course.  An enhancement which we 
are already implementing is to permit the user uploading a job to leave the job sub-
mission page as soon as the upload is completed instead of waiting for the outcome.  
They can  then return to the job submission page later and look up the result of their 
computation. 

5   M-Grid in More Detail 

Since the clients and computational nodes in M-grid use nothing more than standard 
features available in popular web browsers, there is little to say about these elements 
of the system.  However, there are a number of considerations concerning the coordi-
nating role. 

The coordinating role runs on a machine which hosts the M-grid web pages.  The 
server needs to collect and store jobs pending distribution to a node, arrange for each 
job to be sent (in due course) to just one node and to manage the results that the nodes 
return.  This can only be achieved with a server which has  the capability to generate 
dynamic content in the pages it supplies.  These types of feature are typically offered 
as a scripting language and are available from all but the most minimal web servers  
[3, 4, 6].  Any of these could be used to create the M-grid pages.  There is no one 
dominant technology which is universally available.  Therefore, we shall need to de-
velop different versions of the M-grid coordinating pages for each of the competing 
systems.  For the first implementation, have used ASP which is available on Micro-
soft web servers (Internet Information Server, IIS and Personal Web Server, PWS).  
One of these servers is either included with or available as a free download for most 
recent versions of Windows.  We felt that few potential users of M-grid would have 
difficulty gaining access to a machine running an ASP enabled web server.  In due 
course, we shall implement further versions using alternative technologies such as 
JSP/Tomcat [1, 3] so that the M-grid coordinator pages may be hosted on other popu-
lar web serving software. 

As indicated above, the coordinating role in M-grid comprises a small number of 
web pages published using a web server on the coordinating machine.  Computational 
nodes set a browser to view the jobRequest page and receive their jobs as applets em-
bedded in this page.  The coordinating role achieves its objective of getting each job it 
receives executed by manipulating the contents of the jobRequest page so that each 
job is distributed to just one of the available nodes.  In order to do this, the applet 
element to the jobRequest page is generated dynamically by the server each time it 
receives a request for the page.   

The lifecycle of a job by M-grid has four visible stages: the two halves of the inter-
action with the job submission page by the client and the two halves of the interaction 
with the job execution page at the processing node: 

1. The client submits a job via jobSubmit page. 
2. The client (eventually) collects results using the jobCollectResults page. 
3. A node requests a job via jobRequest page. 
4. The node submits the results from a job via the jobSubmitResults page. 



64 R.J. Walters and S. Crouch 

 

Let us first examine how a task is submitted to M-grid.  This is depicted in Figure 1.  
The client with a task which they require evaluated directs their browser to the job-
Submit.asp page where they insert the details required into the form, including the lo-
cation of their applet class file.  On pressing the upload button the task (encapsulated in 
an applet class file, see later) and associated details are uploaded to the server and 
stored in a collection of tasks awaiting processing. 

 

Fig. 1. Submitting an applet job to M-grid 

Fig. 2. Collecting results from a task 

The second part of the client's interaction with the server is to collect their results.  
In the prototype implementation of M-grid, the user had to wait until computation was 
completed at which point the output was displayed in a box on the jobSubmit page.  
This has been amended so that the user need no longer wait for the outcome of their 
calculation, although they may if they wish.  A returning user wishing to collect re-
sults is presented with a list of completed tasks.  Clicking on any of these displays 
their output.  This operation is shown in Figure 2.  In order to keep M-grid as simple 
as possible, it has no security.  Anyone accessing the system would be able to view 
the results of any task completed by the system.  (Of course a user concerned to keep 
their work secret could submit tasks which encrypt their results.) 

The remaining two visible pieces to the job's lifecycle concern the distribution of 
the job to a processing node and the subsequent return of the results to the coordina-
tor.  The first of these operations is illustrated in Figure 3.  Along with some static 
content, the jobRequest.asp page includes some content which is generated dynami-
cally.  In the absence of outstanding jobs, this dynamic element is a simple message to 
say there are no jobs available.  If there is a task waiting, it is inserted into the page as 
an applet.  The task is then moved from the collection of uploaded tasks to a collec-
tion of tasks in progress. 

Once the applet has completed, its results are uploaded to the server (using another 
ASP page) as illustrated in Figure 4.  The task and its results are stored in a collection 
of completed tasks. 
 



 M-Grid: Using Ubiquitous Web Technologies to Create a Computational Grid 65 

 

 

Fig. 3. Obtaining a task to perform 

 

Fig. 4. Returning results 

A feature of the jobRequest page is that it causes browsers to refresh the page peri-
odically to check for new tasks so long as they are not executing an applet.  

6   Issues and Future Work 

M-grid has limitations.  Some are a necessary consequence of the way that M-grid 
operates but we plan to address others.  For example, since M-grid distributes tasks to 
nodes as applets, these tasks are restricted by the constraints which apply to applets 
which include being forbidden to use the local file system or to establish communica-
tions other than with the host from which the applet was downloaded. 

Other limitations arise from our present implementation.  One is that, with its cur-
rent reliance on ASP in the coordinator web pages means that these need to be hosted 
on a Microsoft web server.  Since Microsoft software is so widely available, we felt 
using ASP for the coordinator role is not a severe restriction. Nevertheless, we intend 
to create alternative versions of these pages which are suitable for deployment on 
other widely available web servers. 

A further concern is the constraints which M-grid places on the tasks which clients 
can upload to M-grid.  In its present form, a task to be executed by M-grid must be 
uploaded as an applet contained in a single class file and the applet must include some 
M-grid specific code (associated with the return of results).  This requires the poten-
tial user to be able to embed their task into an applet along with the M-grid specific 
code.  This sounds like a considerable imposition onto the user, but in fact the users of 
any computational grid system have to submit their tasks in the form of a program 
compatible with the grid framework. 



66 R.J. Walters and S. Crouch 

 

One final issue which we have yet to investigate fully is performance.  The most 
obvious reason for a user to pass a job on to a computational grid is because they wish 
to take advantage of the processing power available from the grid.  It seems reason-
able to expect that the execution environment in which applets operate, in which their 
actions are constantly monitored to ensure they don't abuse their privilege of execu-
tion by breaching the conditions on which it is granted, would place a job executing 
as an applet at a performance disadvantage compared with an unrestrained application 
running in an open environment.  However, our results to date suggest that this per-
formance penalty is modest and quite acceptable in this context. 

7   Conclusion 

There is increasing interest in grid computing and there are many potential users of 
these technologies.  However, existing grid software requires considerable installation 
and configuration effort, including placing software onto each machine which is to 
take part in the grid.  Aside from any difficulty which may arise in the installation and 
configuration of the machines to be used, this raises issues in many environments 
(even if the software is to be installed on dedicated machines) and permissions need 
to be obtained before installation can commence.  

Issues of security are usually addressed by the use of certification and trust tech-
niques.  These are crafted to ensure that so far as is possible, malicious tasks are not 
accepted, and assure system owners that they will not suffer harm by joining the grid 
and executing jobs.  They also attempt to permit identification of responsibility if 
things go wrong.  However, not only is establishing these trusting relationships com-
plex and time consuming to set up, ultimately they still require machine owners to ac-
cept a degree of risk.  By using applets, which execute in a protected environment 
within a web browser, M-grid is able to operate without needing any of the usual soft-
ware and security infrastructure.  

M-grid provides a means for potential uses to experiment with grid technologies by 
allowing them to set up a computational grid quickly and easily with an absolute 
minimum of formality, software installation and time and effort from users.  It re-
quires nothing in the way of software installation on the computational nodes or the 
clients and on the coordinating machine all that is needed is a web server and permis-
sion to publish web pages.  Of course there is a price to pay for this convenience and 
this comes in the form of restrictions on the tasks which M-grid can perform to those 
which an applet can perform when executing within the controlled environment pro-
vided by a web browser. 

     We are investigating how we can eliminate the need for the M-grid specific code 
by either recompiling user supplied code after applying a source code transformation 
or providing a wrapper around the users' code.  Of the restrictions to what our users 
are permitted to do, these arise from the nature of applets and the environment in 
which they execute.  For example, applets are forbidden access to the local file sys-
tem.  Whilst some of these are inconvenient to clients creating tasks, they cannot eas-
ily be relaxed.  They represent the price we pay for being able to dispatch our jobs to 
other machines without formality. 



 M-Grid: Using Ubiquitous Web Technologies to Create a Computational Grid 67 

 

References 

1. The Apache Jakarta Tomcat 5.5 Servlet/JSP Container. See: http://jakarta.apache.org/ 
tomcat/tomcat-5.5-doc/index.html (2004) 

2. Altair Engineering Inc.: Portable Batch System. See: http://www.openpbs.org/ (2004) 
3. Bergsten, H.: JavaServer Pages. O'Reilly and Associates (2003) 
4. Buser, D., Kauffman, J., Llibre, J.T., Francis, B., Sussman, D., Ullman, C., Duckett, J.: 

Beginning Active Server Pages 3.0. Wiley Publishing, Inc. (2003) 
5. Chen, E.: Poison Java. IEEE Spectrum. Vol. 36 (1999) 38-43 
6. Converse, T.: PHP and MySQL Bible. John Wiley & Sons Inc  (2004) 
7. Erwin, D.W., Snelling, D.F.: UNICORE: A Grid Computing Environment. Lecture Notes 

in Computer Science, Vol. 2150. Springer-Verlag (2001) 825-839 
8. Flanagan, D.: Java in a Nutshell. O'Reilly and Associates, (2002) 
9. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Int. J. Super-

computer Applications and High Performance Computing, Vol. 11 (1997) 115-128 
10. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scaleable Vir-

tual Organization. International Journal of Supercomputer Applications and High Per-
formance Computing, Vol. 15 (2001) 200-222 

11. Frey, J., Tannenbaum, T., Livney, M., Foster, I., Tuecke, S.: Condor-G: A Computation 
Management Agent for Multi-Institutional Grids. J. Cluster Computing, Vol. 5 (2002) 
237-246 

12. Grandison, T., Sloman, M.: A survey of Trust in Internet Applications. IEEE Communica-
tions Surveys & Tutorials Vol. 3 (2000) 

13. Litzkow, M., Livny, M.: Experience with the Condor Distributed Batch System. IEEE 
Workshop on Experimental Distributed Systems, Huntsville, AL (1990) 97-101 

14. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for High Throughput 
Computing. SPEEDUP Journal Vol. 11 (1997) 36-40 

15. Gridsystems S.A.: Overview to InnerGrid. See: http://www.gridsystems.com/pdf/IGIn-
tro.pdf  (2003) 

16. Sun Microsystems, Inc.: Sun Microsystems, Java Technology. See: http://www.java.sun. 
com/ (2004) 

17. Sunderam, V., Kurzniec, D.: Lightweight Self-organizing Frameworks for Metacomput-
ing. 11th IEEE International Symposium on High Performance Distributed Computing, 
Edinburgh, Scotland (2002) 113-122 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 68 – 7 , 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

GLIDE: A Grid-Based Light-Weight Infrastructure for 
Data-Intensive Environments 

Chris A. Mattmann1,2, Sam Malek2, Nels Beckman2, Marija Mikic-Rakic2, 
Nenad Medvidovic2, and Daniel J. Crichton1 

1 Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 171-264, Pasadena, CA 91109, USA 
{chris.mattmann, dan.crichton}@jpl.nasa.gov 

2 University of Southern California, Los Angeles, CA 90089, USA 
{mattmann, malek, nbeckman, marija,neno}@usc.edu 

Abstract. The promise of the grid is that it will enable public access and 
sharing of immense amounts of computational and data resources among 
dynamic coalitions of individuals and institutions. However, the current grid 
solutions make several limiting assumptions that curtail their widespread 
adoption in the emerging decentralized, resource constrained, embedded, 
autonomic, and mobile (DREAM) environments: they are designed 
primarily for highly complex scientific problems, and therefore require 
powerful hardware and reliable network connectivity; additionally, they 
provide no application design support to grid users (e.g., scientists). To 
address these limitations, we present GLIDE, a prototype light-weight, data-
intensive middleware infrastructure that enables access to the robust data 
and computational power of the grid on DREAM platforms. We illustrate 
GLIDE on an example file sharing application. We discuss our early 
experience with GLIDE and present a set of open research questions. 

1   Introduction 

One of the most exciting and promising technologies in modern computing is the grid 
[4,6]. Grid computing connects dynamic collections of individuals, institutions, and re-
sources to create virtual organizations, which support sharing, discovery, transforma-
tion, and distribution of data and computational resources. Distributed workflow, mas-
sive parallel computation, and knowledge discovery are only some of the applications of 
the grid. Grid applications involve large numbers of distributed devices executing large 
numbers of computational and data components. As such, they require techniques and 
tools for supporting their design, implementation, and dynamic evolution.  

Current grid technologies provide extensive support for describing, modelling, dis-
covering, and retrieving data and computational resources. Unfortunately, they are pre-
dominantly implemented using middleware infrastructures that leverage both heavy-
weight and computationally intensive protocols and objects [3]. As such, current grid 
software systems are not readily applicable to the domain of decentralized, resource 
constrained, embedded, autonomic, and mobile (DREAM) environments. Existing grid 
technologies also lack native support for systematic application design, implementation, 
and evolution. Finally, the development, deployment, and runtime adaptation support 
for the grid is ad-hoc: shell scripts abound, makefiles are the common construction and 
deployment tool, and adaptation is usually handled by restarting the entire system. 

7



GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive Environments  69 

 

Given the central role that software architectures have played in engineering large-
scale distributed systems [12], we hypothesize that their importance will only grow in 
the even more complex (grid-enabled) DREAM environments. This is corroborated by 
the preliminary results from several recent studies of software architectural issues in 
embedded, mobile, and ubiquitous systems [10,14,19]. In order for architectural models 
to be truly useful in any development setting, they must be accompanied by support for 
their implementation [8]. This is particularly important for the DREAM environments: 
these systems will be highly distributed, decentralized, mobile, and long-lived, 
increasing the risk of architectural drift [12] unless there is a clear relationship between 
the architecture and its implementation. To address these issues, several light-weight 
software architecture-based solutions [10,14] supporting the design, implementation, 
and evolution of software systems in DREAM environments have recently emerged. 
However, these solutions are still not directly supporting the grid: they have not focused 
on, and uniformly lack facilities for, resource and data description, search, and retrieval.  

A recent focus of our work has been on addressing the limitations of the grid by 
bridging the two approaches described above. Specifically, we have drawn upon our 
previous experience in developing the OODT data grid middleware [2,8] along with 
our experience in developing the Prism-MW middleware for resource constrained 
devices [9,10], to arrive at GLIDE, a grid-based, lightweight infrastructure for data-
intensive environments. GLIDE was built with a focus on addressing both the resource 
limitations and lack of systematic application development support of the current grid 
technologies. GLIDE strives to marry the benefits of Prism-MW (architecture-based 
development, efficiency, and scalability) with those of OODT (resource description, 
discovery, and retrieval). We have performed a preliminary evaluation of GLIDE using 
a series of benchmarks, and have successfully tested it by creating a mobile media 
sharing application which allows users to share, describe and locate mp3 files on a set 
of distributed PDAs. While this work is still in its early stages, our initial results have 
been promising and have pointed to several avenues of future work. 

The rest of this paper is organized as follows. Section 2 describes the existing grid 
middleware infrastructures and presents an overview of Prism-MW. Section 3 describes 
the design, implementation, and evaluation of GLIDE and is illustrated using an exam-
ple MP3 sharing application. The paper concludes with an overview of future work. 

2   Background and Related Work 

GLIDE has been inspired by a set of related projects along with our own existing work in 
three areas: computational and data grids, light-weight middleware and protocols, and 
implementation support for software architectures. In this section, we first briefly 
overview existing grid solutions, and their most obvious limitations that motivated GLIDE. 
We then describe OODT, the grid technology used by NASA and the National Cancer 
Institute, along with other representative approaches to large-scale data sharing. Finally, 
we summarize Prism-MW, a light-weight middleware platform that explicitly focuses on 
implementation-level support for software architectures in DREAM environments; we 
also briefly overview a cross-section of representative light-weight middleware platforms. 

2.1   Computational Grid Technologies  

Globus [4,6] is an open-source middleware framework for constructing and deploying 
grid-based software systems, which has become the de facto standard grid toolkit. Glo-



 

bus realizes the basic goal of the grid: the establishment of virtual organizations sharing 
computational, data, metadata, and security resources. However, Globus lacks several 
development features that would ease its adoption and use across a more widespread 
family of software systems and environments. These features include (1) architecture-
based development, (2) deployment and evolution support (currently makefiles and 
shell-scripts are the standard build tools) and (3) lightweight implementation substrates.  

In addition to Globus, several other grid technologies have emerged recently. Al-
chemi [1] is based on the Microsoft .NET platform and allows developers to aggregate 
the processing power of many computers into virtual computers. Alchemi is designed 
for deployment on personal computers: computation cycles are only shared when the 
computer is idle. JXTA [7] is a framework for developing distributed applications 
based on a peer-to-peer topology. Its layered architecture provides abstractions of low-
level protocols along with services such as host discovery, data sharing, and security. 

2.2   Data Grid Technologies 

GLIDE is directly motivated by our own work in the area of data-grids, specifically on 
the Object Oriented Data Technology (OODT) system [2]. We have adopted an archi-
tecture-centric approach in OODT [8], in pursuit of supporting distribution, processing, 
query, discovery, and integration of heterogeneous data located in distributed data 
sources. Additionally, OODT provides methods for resource description and discovery 
based on the ISO-11179 data model standard [17], along with the Dublin Core standard 
for the specification and standardization of data elements [18].  

There are several other technologies for large-scale data sharing. Grid Data Farm [15] 
project is a parallel file system created for researchers in the field of high energy 
acceleration. Its goal is to federate extremely large numbers of file systems on local PCs 
and, at the same time, to manage the file replication across those systems, thus creating 
a single global file system. Similar to OODT, the SDSC Storage Resource Broker [13] 
is a middleware that provides access to large numbers of heterogeneous data sources. Its 
query services attempt to retrieve files based on logical information rather than file 
name or location, in much the same way that OODT maintains profile data.  

2.3   Prism-MW 

Prism-MW [10] is a middleware platform that provides explicit implementation-level 
support for software architectures. The key software architectural constructs are com-
ponents (units of computation within a software system), connectors (interaction 
facilities between  components such as local or remote method calls, shared variables, 
message multicast, and so on), and configurations (rules governing the arrangements 
of components and connectors) [12]. The top-left diagram in Figure 1 shows the class 
design view of Prism-MW’s core. Brick is an abstract class that encapsulates common 
features of its  subclasses (Architecture, Component, and Connector). The 
Architecture class records the configuration of its components and connectors, and 
provides facilities for their addition, removal, and reconnection, possibly at system 
runtime. A distributed application is implemented as a set of interacting Architecture 
objects, communicating via DistributionConnectors across process or machine 
boundaries. Components in an architecture communicate by exchanging Events, 
which are routed by Connectors. Finally, Prism-MW associates the IScaffold 
interface with every Brick. Scaffolds are used to schedule and dispatch events using a 

70 C.A. Mattmann et al. 



GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive Environments  71 

 

pool of threads in a decoupled manner. IScaffold also directly aids architectural self-
awareness by allowing the runtime probing of a Brick’s behavior.  

Prism-MW enables several desired features of GLIDE. First, it provides the needed 
low-level middleware services for use in DREAM environments, including 
decentralization, concurrency, distribution, programming language abstraction, and 
data marshalling and unmarshalling. Second, unlike the support in current grid-based 
middleware systems (including OODT), Prism-MW enables the definition and (re)use 
of architectural styles, thereby providing design guidelines and facilitating reuse of 
designs across families of DREAM systems. Third, Prism-DE [9], an architecture-
based (re-)deployment environment that utilizes Prism-MW, can be extended to aid 
GLIDE users in constructing, deploying, and evolving grid-based DREAM systems. 

A number of additional middleware technologies exist that support either architec-
tural design or mobile and resource constrained computation, but rarely both [10]. An 
example of the former is Enterprise Java Beans, a popular commercial technology for 
creating distributed Java applications. An example of the latter is XMIDDLE [16], an 
XML-based data sharing framework targeted at mobile environments. 

3   Arriving at GLIDE   

GLIDE is a hybrid grid middleware which combines the salient properties of Prism- 
MW and core services of the grid, with the goal of extending the reach of the grid be-
yond super-computing and desktop-or-better platforms to the realm of DREAM envi-
ronments. To this end, the myriad of heterogeneous data (music files, images, science 
data, accounting documents, and so on) and computational (web services, scientific 
computing testbeds, and so on) resources made available by heavy-weight grids can 
also be made available on their mobile counterparts. Thus, mobile grids enabled by 
GLIDE have the potential to be both data-intensive, requiring the system to provide 
rich metadata describing the abundant resources (and subsequently deliver and 
retrieve representatively large amounts of them), as well as computationally-intensive, 
focused on discovering and utilizing data, systems, authorization, and access 
privileges to enable complex, distributed processing and workflow.  

Existing grid solutions such as Globus and OODT take a completely agnostic 
approach to the amount of hardware, memory, and network resources available for 
deploying, executing, and evolving a grid-based software system. These technologies 
consider the system’s architectural design to be outside their scope. In addition, they 
also fail to provide sufficient development-level support for building, deploying, and 
evolving software applications. A solution that overcomes these limitations is needed to 
realize the widely stated vision of “data and computation everywhere”. By 
implementing the core grid components of OODT using Prism-MW, we believe to have 
created an effective prototype platform for investigating and addressing these limitations.  

3.1   GLIDE’s Design   

We specialized Prism-MW to implement the core components of GLIDE shown in 
Figure 1. Our first objective was to retain the key properties and services of Prism- MW 
and provide basic grid services (such as resource discovery and description, search and 
retrieval) across dynamic and mobile virtual organizations. Additionally, we desired 
GLIDE to support architecture-based design, implementation, deployment, and 
evolution of data-intensive grid applications in DREAM environments. Finally, we 



 

Fig. 1. Architecture diagram of GLIDE showing its Prism-
MW and OODT foundation

desired  that  GLIDE  
least partially 

interoperate with a 
heavy-weight grid 
counterpart: because of 
our prior experience with 
the OODT middleware, 
it seemed the most 
appropriate choice; 
indeed, OODT directly 
influenced our design of 
the key grid services 
provided by GLIDE. Be-
low we describe 
GLIDE’s architecture in 
light of these objectives.  

Inspired by OODT’s 
architecture, GLIDE’s

 
Data Components

 
include the Resource 
Profile, a data structure which describes the location and classification of a resource 
available within a grid-based software system. Resources include data granules (such as 
a File), data-producing software systems (including the below described profile servers, 
product servers, query servers, and so on), computation-providing software systems, and 
resource profiles themselves. Resource profiles may contain additional resource-
describing metadata [2]. The Query Object is a data structure which contains a query 
expression. A query expression assigns values to a predefined set of data elements that 
describe resources of interest to the user and a collection of obtained results.  

Again, inspired by OODT’s architecture, GLIDE’s Processing Components 
include Product Servers, which are responsible for abstracting heterogeneous 
software interfaces to data sources (such as an SQL interface to a database, a File 
System interface to a set of images, an HTTP interface to a set of web pages, and so 
on) into a single interface that supports querying for retrieval of data and 
computational resources. Users query product servers using the query object data 
structure. Product Clients connect and send queries (via a query object) to product 
servers. A query results in either data retrieval or use of a remote computational 
resource. Profile Servers generate and deliver metadata [2] in the form of resource 
profile data structures, which are used for making informed decisions regarding the 
type and location of resources that satisfy given criteria. Profile Clients connect and 
send queries to profile servers. After sending a query, a profile client waits for the 
profile server to send back any resource profiles that satisfy the query. Query Servers 
accept query objects, and then use profile servers to determine the available data or 
computational resources that satisfy the user’s query. Once all the resources have 
been collected, and processing has occurred, the data and processing results are 
returned (in the form of the result list of a query object) to the originating user. Query 
Clients connect to query servers, issue queries, and retrieve query objects with 
populated data results. GLIDE contains one software connector. The Messaging 
Layer connector is a data bus which marshals resource profiles and query objects 
between GLIDE client and server components. 

at

 
 

72 C.A. Mattmann et al. 





 

Fig. 3. Mobile Media Application Architecture 

between GLIDE and OODT. As part of our current work, we are investigating the 
Web Services Resource Framework (WS-RF) as a means of enabling interoperability 
between GLIDE and Globus, which looks to use WS-RF in its latest release. 

3.2   Sample Application Using GLIDE 

In order to evaluate the 
feasibility of GLIDE, 
we designed and 
implemented a Mobile 
Media Sharing 
application (MMS), 
shown in Figure 2. 
MMS allows a user to 
query, search, locate, 
and retrieve MP3 
resources across a set 
of mobile, distributed, 
resource-constrained 
devices. Users query 
mobile media servers 
for MP3 files by 
specifying values for 
genre and quality of 
the MP3 (described 
below), and if found, 
the MP3s are streamed 
asychronously to the 
requesting mobile 
media client.  

Figure 3 shows the 
overall distributed 
architecture of the 
MMS application. A mobile device can act as a server, a client, or both. 
MobileMediaServer and MobileMediaClient correspond to the parts of the application that 
are running on the server and the client devices.  

MobileMediaClient contains a single component called MediaQueryGUI, which 
provides a GUI for creating MP3 queries. MP3 queries use two query parameters, 
MP3.Genre (e.g., rock) and MP3.Quality (e.g., 192 kb/s, 128 kb/s). MediaQueryGUI 
is attached to a QueryConn, which is an instance of GLIDE’s messaging layer 
connector that forwards the queries to remote servers and responses back to the clients. 

MobileMediaServer is composed of three component types: MediaQueryServer, 
MediaProductServer, and MediaProfileServer. MediaQueryServer parses the query 
received from the client, retrieves the resource profiles that match the query from 
MediaProfileServer, retrieves the mp3 file(s) in which the user was interested from 
the MediaProductServer, and sends the MP3 file(s) back to the client.  

The MMS application helps to illustrate different aspects of GLIDE: it has been 
designed and implemented by leveraging most of GLIDE’s processing and data 
components and its messaging layer connector, and has been deployed on DREAM 
devices. In the next section we evaluate GLIDE using MMS as an example. 

74 C.A. Mattmann et al. 



GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive Environments  75 

3.3   Evaluation 

In this section we evaluate GLIDE along the two dimensions outlined in the Introduc-
tion: (1) its support for architecture-based Development and deployment, and (2) its 
suitability for DREAM environments.  

3.3.1   Architecture-Based Development and Deployment Support 
GLIDE inherits 
architecture-based 
development and 
deployment capabi-
lities, including 
style  aware ness, 
from Prism-MW 
and deployment 
support, from 
PRISM-DE. Unlike 
most existing grid 
middleware solu- 
tions (e.g. OODT), 
which provide 
support for either 
peer-to-peer or 
client-server styles, 
GLIDE does not impose any particular (possibly ill-suited) architectural style on the 
developers of a grid-based application. As a proof of concept, we have implemented 
several variations of the MMS application in different architectural styles including 
client-server, layered client-server, peer-to-peer, and C2 [20]. The variations of MMS 
leveraged existing support for these styles and were created with minimal effort. For 
example, changing MMS from client-server to peer-to-peer required addition of three 
components and a connector on  the server side, and one component and one 
connector on the client side. Figure 4 shows the peer-to-peer variant of MMS.  

3.3.2   DREAM Support 

Fig. 4. Peer-to-peer variation of the Mobile Media application 

Resource scarcity poses the greatest challenge to any grid solution for DREAM envi-
ronments. We have leveraged Prism-MW’s efficient implementation of architectural 
constructs [10] along with the following techniques to improve GLIDE’s performance 
and minimize the effect of the computing environment’s heterogeneity: (1) MinML 
[11], a lightweight XML parser, to parse the resource profiles and query object data 
structures; (2) W3C’s Jigsaw Web Server Base64 Encoding Library [5] to compress (at 
the product server end) and uncompress (at the product client end) the exchanged data; 
(3) Filtering inside the Messaging Layer to ensure event delivery only to the interested 
parties, thus minimizing propagation of events with large data loads (e.g., MP3 files). 
Specifically, GLIDE tags outgoing request events from a client with a unique ID, 
which is later used to route the replies appropriately; and (4) Incremental data 
exchange via numbered data segments for cases when the reliability of connectivity 
and network bandwidth prevent atomic exchange of large amounts of data.  



 

Table 1. Memory footprint of MobileMediaServer and MobileMediaClient in GLIDE 

As an illustration of GLIDE’s efficiency, Table 1 shows the memory footprint of 
MobileMediaServer’s and MobileMediaClient’s implementation in GLIDE. The total 
size of the MobileMediaServer was 5.7KB and MobileMediaClient was 4.1KB, which 
is two orders of magnitude smaller than their implementation in OODT (707KB and 
280KB, respectively). The memory overhead introduced by GLIDE on the client and 
server devices was under 4KB. 

4   Conclusions and Future Work  

This paper has presented the motivation for and prototype implementation of a grid 
platform  for decentralized, resource constrained, embedded, autonomic, and mobile 
(DREAM) environments. Although the results of our work to date are promising, a 
number of pertinent issues remain unexplored. Future work will focus on (1) extending 
GLIDE to provide a set of meta-level services, including monitoring of data and meta-

76 C.A. Mattmann et al. 

 

MobileMediaServer Java Packages # Live Objects Total Size (bytes)

Java java.lang 36 2016

glide.product 1 24

glide.profile 1 24

GLIDE’s Implementation of 
OODT components

glide.query 1 32

glide.queryparser 1 160

glide.structs 8 232

Application
mobilemedia.product.handlers 1 32

mobilemedia.profile.handlers 1 8

glide.prism.core 26 1744

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 4 216

glide.prism.handler 2 32

glide.prism.util 18 1200

Total size 5760

MobileMediaClient
Java java.lang 28 1568

GLIDE’s implementation of 
OODT components

glide.structs 7 208

Application mobilemedia 2 384

glide.prism.core 18 1304

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 3 136

glide.prism.handler 1 16

glide.prism.util 7 480

Total size 4136



GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive Environments  77 

 

data; and (2) addressing the resource replication issue in grid applications. We believe 
that GLIDE will afford us an effective platform for investigating this rich research area.  

Acknowledgements. This material is based upon work supported by the National Science 
Foundation under Grant Numbers CCR-9985441 and ITR-0312780. Effort also supported 
by the Jet Propulsion Laboratory, managed by the California Institute of Technology.   

References 

1. Alchemi .NET Grid Computing Framework. http://www.alchemi.net/doc/0_6_1/index.html 
2. D. J. Crichton, J. S. Hughes, and S. Kelly. A Science Data System Architecture for 

Information Retrieval. in Clustering and Information Retrieval. W. Wu, H. Xiong, and S. 
Shekhar, Eds.: Kluwer Academic Publishers, 2003, pp. 261-298. 

3. N. Davies, A. Friday and O. Storz. Exploring the Grid’s potential for ubiquitous 
computing. IEEE Pervasive Computing, Vol 3. No. 2, April-June, 2004, pp.74-75. 

4. I. Foster et al. The Physiology of the Grid: An Open Grid Services Architecture for 
Distributed Systems Integration. Globus Research, Work-in-Progress 2002. 

5. Jigsaw Overview. http://www.w3.org/Jigsaw/. 
6. C. Kesselman, I. Foster, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual 

Organizations, International Journal of Supercomputing Applications, pp. 1-25, 2001. 
7. N. Maibaum, T. Mundt. JXTA: A Technology Facilitating Mobile Peer-to-Peer Networks. 

MobiWac 2002. Fort Worth, TX, October 2002.  
8. C. Mattmann et al. Software Architecture for Large-scale, Distributed, Data-Intensive 

Systems. 4th Working IEEE/IFIP Conference on Software Architecture, Oslo, Norway, 2004. 
9. M. Mikic-Rakic and N. Medvidovic. Architecture-Level Support for Software Component 

Deployment in Resource Constrained Environments, 1st International IFIP/ACM Working 
Conference on Component Deployment, Berlin, Germany, 2002. 

10. M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for 
Programming-in-the-Small-and-Many. ACM/IFIP/USENIX Middleware Conference, Rio 
De Janeiro, Brazil, 2003. 

11. MinML A Minimal XML parser. http://www.wilson.co.uk/xml/minml.htm. 
12. D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture, ACM 

SIGSOFT Software Engineering Notes (SEN), vol. 17, 1992. 
13. A. Rajasekar, M. Wan, R. Moore. MySRB and SRB - Components of a Data Grid. High 

Performance Distributed Computing (HPDC-11). Edinburgh, UK, July 2002. 
14. J. P. Sousa and D. Garlan. Aura: an Architectural Framework for User Mobility in 

Ubiquitous Computing Environments. 3rd Working IEEE/IFIP Conference on Software 
Architecture (WICSA-2002), Montreal, Canada, 2002, pp. 29-43. 

15. O Tatebe et. al. The Second Trans-Pacific Grid Datafarm Testbed and Experiments for 
SC2003. 2004 International Symposium on Applications and the Internet, January 2004, 
Tokyo, Japan. 

16. S. Zachariadis et. al. XMIDDLE: Information Sharing Middleware for a Mobile 
Environment. ICSE 2002, Orlando, FL, May 2002. 

17. ISO/IEC, Framework for the Specification and Standardization of Data Elements, Geneva, 
1999. 

18. DCMI, Dublin Core Metadata Element Set, Version 1.1: Reference Description, 1999 
19. L. McKnight, J. Howison, and S. Bradner. Wireless Grids: Distributed Resource Sharing 

by Mobile, Nomadic, and Fixed Devices. IEEE Internet Computing, pp. 24-31, 
July/August 2004.  

20. R. N. Taylor, N. Medvidovic, et al. A Component-and-Message-Based Architectural Style 
for GUI Software. IEEE Transactions on Software Engineering, Vol. 22, No. 6, pp. 390-
406, June 1996. 



HotGrid: Graduated Access to Grid-Based
Science Gateways

Roy Williams, Conrad Steenberg, and Julian Bunn

California Institute of Technology, Pasadena, California, USA

Abstract. We describe the idea of a Science Gateway, an application-
specific task wrapped as a web service, and some examples of these that
are being implemented on the US TeraGrid cyberinfrastructure. We also
describe HotGrid, a means of providing simple, immediate access to the
Grid through one of these gateways, which we hope will broaden the
use of the Grid, drawing in a wide community of users. The secondary
purpose of HotGrid is to acclimate a science community to the concepts
of certificate use. Our system provides these weakly authenticated users
with immediate power to use the Grid resources for science, but without
the dangerous power of running arbitrary code. We describe the imple-
mentation of these Science Gateways with the Clarens secure web server.

1 Science Gateways

For many scientists, the Grid is perceived as difficult to use. There are several
reasons for this: accounts are issued in response to a proposal, which may take
weeks to review. Security concerns often mean that users cannot use passwords,
but rather public-key or certificate systems that have steep learning curves.
Users are then faced with just a Unix prompt, which many scientists find daunt-
ing. Other challenges include difficult porting of code, arcane archival storage
paradigms, the need to learn Globus, Condor, GridFTP, and so on. In return for
this difficulty is the promise of access to great computational power, but this only
for a small number of dedicated people who understand both Grid and science.

Conscious of these difficulties, we have devised the HotGrid concept reported
on in this paper, which makes domain-specific ease of use the driving factor. We
believe that the balanced, pragmatic approach outlined will not only provide
useful science gateways in the medium to long term, but also strong scientific
results in the short term. We will explore the construction of “science gateways”
which abstract the architectural complexity of Grid resources and scientific ap-
plications implemented on the Grid, presenting their capabilities to communities
(“Virtual Organizations”) of possibly anonymous scientists, who need no explicit
knowledge of the Grid. This approach to science gateways will provide a grad-
uated and documented path for scientists, from anonymous user, to the weakly
authenticated HotGrid user, through to the power user already comfortable with
the Grid.

Typically, a gateway developer is a scientist who wishes to host an application
and expose its use with a web form[1][2] – a simple way to describe a computation

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 78–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



HotGrid: Graduated Access to Grid-Based Science Gateways 79

request, with input fields to allow selection of dataset, parameters, response
format, etc., and an output data product returned, for example, as a URL. The
developer wants simplicity and transparency: a simple tool to do a simple job.
Once the web-form approach shows the service to be useful to a community, there
is generally a need to progress to a script-based scheme, or to have the service
functions embedded in a familiar data-analysis environment. The gateway is thus
utilized in several different ways:

– Web form: the user can use the service in a documented environment opti-
mized for teaching the why and how of the computation that the gateway
offers. This interface is also excellent for determining the health and “heart-
beat” service status.

– Data Analysis Environment: here the user executes a familiar data analy-
sis program such as ROOT[8], VOStatistics[9], IDL[10], or IRAF[11]. The
scientist can concetrate on the scientific goals, rather than the computation
logistics. The Science Gateway service is abstracted as a remote computation
service, and appears to the scientist just as any other service, except that
the considerable potential power of the Grid is employed to execute that
service. For weakly authenticated users, only a subset of predefined service
commands are allowed, making execution of arbitrary code impossible.

– Programming interface (API): the scientist uses an interface written in a
high level language that uses the standard web-service protocols (SOAP,
XML-RPC) to access the service. In the case of SOAP automatic generation
of the interface stubs can be foreseen thanks to the use of the WSDL (Web
Services Description Language) as a service descriptor. The connection of
the Data Analysis Environment (mentioned in the previous bullet) can be
made using this API.

– Logging in to the Grid itself: the scientist who is a “power user” can log in to
the host node of the Science Gateway and run a chosen application directly
from the command line. This is the traditional way of using a centralised
computing facility, and it requires the highest form of authentication due to
its wide scope.

1.1 Graduated Security and HotGrid

The HotGrid scheme aims to make the Grid easy to use, yet powerful. This is
achieved by gradating access semantics starting from the level of anonymous
user, who can obtain a small allocation of CPU time, to the power user, who can
be allocated a large quantity of resources, but who is required to write a resource
allocation proposal to a committee, wait for reviews to be obtained, and finally
to obtain authentication clearance.

There is a crucial difference between two kinds of authentication: the power to
use a lot of computer resources, and the power to run arbitrary code. The former
would, for example, allow a malicious person to execute an excessive number of
tasks in the Grid. At worse, this would constitute a “denial of service” activity,
which an operator or alert user would notice and have stopped.



80 R. Williams, C. Steenberg, and J. Bunn

In contrast, a malicious person able to run arbitrary code can do very serious
damage very quickly, for example by deleting files, spoofing, and expanding their
authentication and credentials to gain elevated access in the system and other
mutually trusted systems.

Thus the HotGrid scheme is focused on allowing weakly authenticated users
the ability to use powerful resources, but not allowing the execution of arbitrary
code.

1.2 Levels of Authentication

The following list illustrates the graduation from none, through weak and then
to strong authentication:

– A Science Gateway service runs a specific code with parameters that control
it. The service is exposed via a web form that allows a small job to be
executed anonymously and easily. The user might be allocated one CPU-
hour in any 24-hour period.

– At the next level is the HotGrid certificate. The user completes a form spec-
ifying who they are and what they want to do, and obtains a certificate that
allows perhaps 30 CPU-hours to be expended on jobs submitted via the Sci-
ence Gateway. When the HotGrid certificate expires, the user must fill out
the form again to obtain a new HotGrid certificate. (The analogy is filling
in a form to get a hotmail.com account.)

– If the user needs more resources, a strong certificate must be obtained, from a
certificate authority that makes proper checks on the user’s claimed identity
(eg. DOE, NASA, TeraGrid, Verisign etc.). The user will then attach that
strong certificate to the HotGrid form submission, and thereby obtain more
resources according to grant allocation policies, perhaps 100 CPU-hours in
any given month.

– Finally, the user may apply for Grid resources in the usual way, via a proposal
submitted for review (for TeraGrid accounts, see [12]) and then be allocated
a power-user account, with the associated right to use, say, 1000s of CPU-
hours per month. The user may also continue to use the Science Gateway,
or can log in with ssh and use traditional job submission techniques.

Currently, most Grid projects recognize only the power user. Some projects are
beginning to create anonymous gateways on non-Grid resources. We propose to
work with TeraGrid management to interpolate between these with the inter-
mediate levels in the list above, including the HotGrid level.

Initially, we will focus on two scientific application areas, high energy physics
(HEP) and virtual astronomy. The communities and scientists involved in these
fields are distributed across the nation and around the world. Both groups
already have substantial TeraGrid allocations and are planning additional re-
quests. Based on experience with HEP and virtual astronomy, we will widen the
scope of our work to support other scientific disciplines.



HotGrid: Graduated Access to Grid-Based Science Gateways 81

1.3 Certificate Authentication

A certificate is a means of authentication, meaning that when it is properly pre-
sented, it can prove that the presenting entity is who it says it is. Certificates can
be used by computers to prove their identity (“Yes this really is caltech.edu, not
a spoof”), but in this paper we shall think of the certificate as authenticating
a human. Note that a certificate does not specify an account or allocation of
any kind of resources, but rather it is used to prove identity, so that resources
owned by the owner or group of owners can be utilized. A certificate generally
has a start and an end (or revocation) date, and becomes invalid after the end
date.

The X.509 certificate is a digital document; when combined with a secret
passphrase and presented to a server, it provides proof that the correct se-
cret phrase was typed. This happens without the passphrase being stored or
transmitted on an open connection, so it is very difficult to steal passphrases
from a remote location. Of course it is possible that the passphrase has been
compromised; perhaps the owner told a colleague, or there was spyware on a
machine, or a camera watched keystrokes. If not compromised, however, then
presentation of the certificate is strong evidence that the person presenting is
the same as the person who thought of the passphrase. Therefore, the require-
ment for authentication is to make sure that a person asking for a certificate
to be issued is who they say they are: this is the responsibility of a Certificate
Authority (CA).

A strong CA will only issue a certificate when appropriate proof of identity is
presented: passport, driver’s licence, or referral by a trusted third party. We can
imagine a weak CA that issues certificates with little proof. Examples abound
in real life: a passport is a strong form identification since it is hard to obtain
without strong personal credentials and effort, whereas a membership card at
a public library is rather easy to obtain. There is a compromise between the
strength of the certificate and the difficulty of obtaining it. Generally, a weak
certificate can only be used in a restricted context: a fake library card can only
allow an imposter to steal a few books, whereas a fake passport can be used to
build a whole new life.

It is easy to set up a CA and issue certificates. So, those who accept cer-
tificates always have a list of CAs that they trust, and any new or previously
unknown CA must convince a resource provider to accept their certificates, oth-
erwise they are of no use to the certficates’ owners. Part of the difficulty of using
the major Grid systems (e.g. the US TeraGrid, the European Grid, the UK
eScience Grid) is the burdensome procedure of obtaining a sufficiently strong
certificate that is accepted by the system.

However, we hope to convince the administrators of these major Grids to
accept a certain class of weak certificate: the HotGrid certificates. These will be
obtainable quickly, simply by completing a form at a special HotGrid CA web
site, with name and address and a short abstract or description of the intended
purpose of the Grid work planned. Techniques for proving that a human is filling
in the form, rather than a bot, will be employed. The HotGrid certificate will



82 R. Williams, C. Steenberg, and J. Bunn

be issued immediately, but its use will be restricted to a particular time period,
or for executing a restricted set of tasks, and/or for using a limited amount of
resources.

1.4 User Experience

Our target user in the HotGrid project is the domain scientist who knows no more
about the Grid than the rhetoric from the colour supplements. This person is not
interested in downloading and installing software, nor in writing a proposal. This
person is primarily interested in using the power of the Grid to solve a scientific
problem. We assume that they have a web browser, an internet connection, and
some time to work on the problem.

The user can simply connect to a web server that runs a science gateway,
such as those in the examples below. We expect each gateway to offer minimal
functionality to the anonymous user, which will allow our user to try the system
and become convinced that a little more effort is worthwhile.

Fig. 1. An example of a CAPTCHA image (Completely Automated Public Turing
test to tell Computers and Humans Apart) that can be used to ensure that HotGrid
certificates cannot be obtained automatically

At this point, our user will be directed to a CA, and asked to fill out a form
with their name, location, and a chosen passphrase. They will also be asked to
specify which science gateway they wish to use, and for a short explanation of
the envisaged purpose. In the same way as the hotmail.com system allocates
free email accounts, the HotGrid system will prevent a “bot” from obtaining
HotGrid certificates automatically by use of techniques that can differentiate
human-based form entries from from computer-generated entries (see Fig. 1).
The CA will create an authentication certificate for the user in response to a
successful form submission. This will be returned to the user and also installed
on the science gateway. We note that this certificate is very weak authentication
– in fact all it shows is that a human filled in the form, but we also note that
an advantage to the procedure is that domain scientists learn what a certificate
is and how it works. Armed with the certificate, our user can now install it in
a web browser (online help is provided by all the popular web browsers for this
simple task).

With the HotGrid certificate in the browser, the user can now enjoy access to
more Grid resources via the science gateway. The certificate is restricted by time
and named gateway. If the user wishes to make more extensive use of the science



HotGrid: Graduated Access to Grid-Based Science Gateways 83

gateway, it can be done by obtaining a better, longer-lasting certificate, perhaps
through referral by a colleague, by membership in a professional organization,
or by providing stronger proof of identity. The user may also choose to obtain a
power-user account on the Grid system by writing a proposal or by joining an
existing trusted project.

Thus, by the use of the HotGrid scheme, we hope to engage and empower a
much wider community of domain scientists in Grid-based scientific computing
than would otherwise be expected.

2 Clarens

Clarens[13] is a Grid-enabled web services framework that provides a secure,
high-performance foundation for constructing web services. It accepts web ser-
vice requests from clients formatted as SOAP or XML-RPC messages, processes
these requests, and returns responses in the same message format.

Clients range from web browsers, through simple scripts, up to large compiled
applications. A minimum of software environment requirements are imposed on
these clients. Clarens provides a standard application programming interface
(API) that is independent of transport protocol or message format.

Two server implementations are currently provided: one using the well-known
Apache web server with an embedded Python interpreter, and the other in Java
with the Apache Tomcat servlet container. Clarens is agnostic towards operat-
ing systems: both Unix and Windows are supported. A set of standard services
are available to clients. These include authentication, file access, shell command
execution and tools for administration of security. Users with recognized certifi-
cates can be organized in a rich hierarchical structure of groups and sub-groups,
and thus into virtual organizations (VO).

2.1 Clarens Security

Clients are authenticated using standard X.509 certificates, using SSL encryp-
tion, as used by web browsers when communicating with e.g. banking web sites.
As an additional precaution clients can also be authenticated using so-called
proxy, or temporary, certificates that are valid for a limited period of time, but
which still provide cryptographically secure user authentication. These proxy
certificates can be generated on the client computer or by making use of an
intermediate proxy server that uses a username and password combination for
authentication. Once a client is authenticated, Clarens provides access to ser-
vices, refined by the use of using access control lists (ACLs) for individuals or
groups of individuals to each service (e.g. task submission, access to files, per-
mission to modify group definitions, etc.).

Clients are tracked in a session database that stores the certificate details and
is able to provide complete session logging for security and debugging purposes.
The database is also used by the server to enforce certificate time limits. Other
resource limits can be enforced e.g. CPU time, disk usage and network bandwidth
usage.



84 R. Williams, C. Steenberg, and J. Bunn

Fig. 2. Two methods of authentication: a) a temporary (proxy) certificate is created
on the client machine and presented to Grid services for authentication. b) A proxy
service is contacted using a username and password, and a temporary certificate is
returned to the client machine. This temporary certificate can be presented to Grid
services for authentication as usual

3 Building a Science Gateway

Increased computer security is always a compromise with ease-of-use. The agree-
ment on reasonable levels of security is generally achieved by balancing these
opposing requirements. In conventional use of computer centers, there are two
main roles: the User and the Administrator. In contrast, when designing and
building a science gateway, there are three roles:

– User: this is the person who uses the Gateway, and may be a skilled pro-
fessional scientist, a schoolchild or anyone with intermediate expertise. This
person may be an anonymous user, weakly authenticated or may be a strongly
authenticated “power user”. It is important to make sure that the former
cannot run arbitrary code on the center’s computers; and it is just as im-
portant not to overly restrict those who have gone to the effort of obtaining
a high level of certification.

– Administrator: this person decides on certificate policies, audits code (or
trusts the Gateway Developer, see below), and deploys the relevant services
so they are accessible and reliable. Furthermore, the Administrator makes
sure the Gateway resides in a sandbox, meaning that even if the Gateway
Developer supplies insecure software, then the damage is limited.

– Gateway Developer: this person (or group of people) has the scientific domain
knowledge (what is being computed and why), and also the programming
skill to connect domain-specific code into the execution sandbox, and to
decide appropriate levels of resource consumption. The Gateway Developer
has the responsibility for limiting what the Users can do, and in particular
for ensuring that anonymous or HotGrid Users cannot run arbitrary code.

The Administrator can build a sandbox for the gateway by keeping it within a
restricted environment using the well-known method of partitioning a so-called
chroot jail, meaning that only files within the sandbox can be read, written,
or executed. The Developer, in turn, should ensure that clients with weak au-
thentication cannot run shell commands that are not explicitly allowed for the



HotGrid: Graduated Access to Grid-Based Science Gateways 85

purposes of the science domain. The examples in section 4 illustrate these points
in the context of real examples.

3.1 Accounting

We have described how a user with weak authentication can be allowed to use
the power of a computer center, but without being given the power to run a
command that may compromise system integrity. However, the user needs to
be restricted further in the sense of resource usage. We do not want a weakly
authenticated HotGrid user submitting a thousand jobs to a queue and block
the queue with running jobs for weeks.

We envisage HotGrid users obtaining a certificate that has a near revocation
date, perhaps one or two days in the future. This will prevent any use of the
gateway after that time. Indeed, the user will be unable to access any information
about sessions that were started with that certificate.

When a HotGrid certificate is presented, it will be mapped to a generic ac-
count name that for all HotGrid users of a particular gateway. These accounts
will have an associated responsible “power user”, who would generally be the
gateway developer. The usage for these accounts will thus be an aggregate of all
HotGrid usage.

Usage could also be restricted in a very application-specific fashion. As an
example, an astronomical image mosaicker would not allow HotGrid users to
create a mosaic larger than a given size. An HEP Monte Carlo event simulator
would not allow more than a certain number of events to be generated.

4 Examples

4.1 Astronomical Image Processing

The objective here is a mosaic of astronomical images[14]; an example is in
prototype on the Caltech TeraGrid, using the Atlasmaker[15] software. The user
provides a string that is the name of an astronomical object or coordinates in
the sky, that will be the center of the requested image, together with an angular
size of the request. These parameters can be provided by web form or by client
API, which sends the request via XML-RPC to the gateway. The user receives
by immediate return a monitoring URL that contains the random sessionID.
The user can then probe the progress of the of the job through this URL and
collect results when the job is finished.

4.2 Monte-Carlo Processing and HEP

Another prototype is a science gateway that allows anonymous and HotGrid
users to submit Monte-Carlo jobs that simulate proton-proton collisions in the
CERN CMS (Compact Muon Solenoid) detector. Typically, a particular event
topology, and a statistically significant number of events are required. The Monte
Carlo is a standard piece of the CMS experiment’s software stack, and ideally



86 R. Williams, C. Steenberg, and J. Bunn

suited to encapsulation as a gateway service. A form would be completed spec-
ifying the desired Monte Carlo generation parameters and number of events.
The gateway would take care of parcelling the request into units that could be
individually and independently executed on a cluster of computers running e.g.
Condor[17], and aggregating the results datasets into a complete file which could
then be downloaded by the user.

4.3 Grid Enabled Analysis of HEP Events

The ROOT software is widely used in HEP for the analysis of particle physics
data. Akin to tools like Mathematica and Matlab, ROOT offers a rich suite of
integrated tools for histogramming, fitting, rendering, annotating and otherwise
processing scientific data. While ROOT is commonly run on a user’s desktop or
laptop, a ROOT server and slave system is available, called PROOF, that allows
the event processing to be carried out in parallel on a set of worker computers
that are coordinated by a master computer.

The PROOF system is an ideal configuration for an implementation of a
HotGrid-based service along the lines described in this paper. A ROOT user,
running on a resource-limited desktop system, and thus unable to analyse a
sufficient number of events to achieve a statistically significant result, obtains
a HotGrid certificate. With the certificate, she authenticates with a Clarens
TeraGrid service offering the PROOF system, which then allows her to bring
to bear the full power of a PROOF cluster of one hundred TeraGrid CPUs.
Moreover, she never needs to leave the ROOT environment: all the dataset I/O
and processing are handled in a transparent way, and the impression is simply
that her desktop system has suddenly increased in power by at least two orders
of magnitude.

4.4 VOStatistics and IRAF

The VOStatistics gateway is also in prototype, based on a web service framework
developed previously[9]. It provides the client with access to a remote session
of the “R” software, which provides powerful statistics and data mining capa-
bility. Similarly, the astronomical data processing package IRAF[11] is being
made available by the US National Virtual Observatory[16] as a remote service
package.

In each of these cases, the user enters a script that is executed by the server,
perhaps processing thousands of files. There is, however, a potential danger,
because these powerful environments all offer a shell escape command. There-
fore we must be careful that we are not providing the ability to execute arbi-
trary shell commands – by means of restricted shells on the server, as discussed
above.

The utility of remote execution is that the remote machine can be much more
powerful than the user’s workstation, perhaps because it holds a large archive
or runs on a multi-processor machine. However, effectively utilizing R or IRAF
on a distributed-memory cluster is still a research effort.



HotGrid: Graduated Access to Grid-Based Science Gateways 87

References

1. G. Aloisio, M. Cafaro, C. Kesselman, R. Williams: Web access to supercomputing,
Computational Science and Engineering 3 (6): 66-72 (2001)

2. G. Aloisio G, M. Cafaro, P. Falabella, R. Williams Grid computing on the web
using the globus toolkit, Lecture Notes in Computer Science 1823: 32-40 (2000)

3. Bunn J. and Newman H. Data Intensive Grids for High Energy Physics, in Grid
Computing: Making the Global Infrastructure a Reality, edited by Fran Berman,
Geoffrey Fox and Tony Hey, March 2003 by Wiley.

4. Conrad D. Steenberg, Eric Aslakson, Julian J. Bunn, Harvey B. Newman, Michael
Thomas, Ashiq Anjum, Asif J. Muhammad Web Services and Peer to Peer Net-
working in a Grid Environment Proceedings of the 8th International Conference
on Advanced Technology and Particle Physics, 2004

5. Arshad Ali, Ashiq Anjum, Tahir Azim, Michael Thomas, Conrad Steenberg, Har-
vey Newman, Julian Bunn, Rizwan Haider, Waqas ur Rehman JClarens: A Java
Based Interactive Physics Analysis Environment for Data Intensive Applications
Presented at the 2004 IEEE International Conference on Web Services (ICWS
2004), San Diego, July 2004

6. Julian J. Bunn, Harvey B.Newman, Michael Thomas, Conrad Steenberg, Ar-
shad Ali and Ashiq Anjum. Grid Enabled Data Analysis on Handheld De-
vices Presented at International Networking and Communications Conference
2004(INCC,2004),Lahore,Pakistan.

7. Julian J. Bunn, Harvey B.Newman, Michael Thomas, Conrad Steenberg, Arshad
Ali and Ashiq Anjum. Investigating the Role of Handheld devices in the ac-
complishment of Interactive Grid-Enabled Analysis Environment Proceedings of
GCC2003 and Springer LNCS.

8. The ROOT Object Oriented Analysis Framework, http://root.cern.ch
9. G. J. Babu, S. G. Djorovski E. Feigelson, , M. J. Graham, A. Mahabal: Statistical

Methodology for the National Virtual Observatory, http://vostat.org
10. The Interactive Data Language, http://www.rsinc.com/idl/
11. The Image Reduction and Analysis Facility, http://iraf.noao.edu/
12. Access to the TeraGrid, an overview,

http://www.teragrid.org/userinfo/guide access.html

13. Steenberg, C.D., et al.: The Clarens Web Services Architecture. Proc. Comp. in
High Energy Physics, La Jolla, MONT008, 2003

14. R. D. Williams, Grids and the Virtual Observatory, in “Grid Computing: Making
The Global Infrastructure a Reality” by Fran Berman, Anthony J.G. Hey, and
Geoffrey Fox, Wiley, 2003, pp 837-858.

15. R. D. Williams, S. G. Djorgovski, M. T. Feldmann, J. C. Jacob: Atlasmaker:
A Grid-based Implementation of the Hyperatlas http://arxiv.org/abs/astro-
ph/0312196

16. The US National Virtual Observatory http://www.us-vo.org, also the Interna-
tional Virtual Observatory Alliance http://www.ivoa.net.

17. Thain, D. and Livny, M., Building Reliable Clients and Servers, in The Grid:
Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 2003.



Principles of Transactional Grid Deployment

Brian Coghlan, John Walsh, Geoff Quigley, David O’Callaghan,
Stephen Childs, and Eamonn Kenny

Department of Computer Science, Trinity College, University of Dublin
{coghlan, john.walsh, geoff.quigley, david.ocallaghan,

stephen.childs, ekenny}@cs.tcd.ie

Abstract. This paper examines the availability of grid infrastructures,
describes the principles of transactional grid deployment, outlines the
design and implementation of a transactional deployment system for the
Grid-Ireland national grid infrastructure based on these principles, and
estimates the resulting availability.

1 Introduction

Consider for instance that a new release of some infrastructural grid software
is incompatible with the previous release, as is often the case. Once a certain
proportion of the sites in a grid infrastructure are no longer consistent with the
new release then the infrastructure as a whole can be considered inconsistent.
Each grid infrastructure will have its own measures, but in all cases there is a
threshold below which proper operation is no longer considered to exist. The
infrastructure is no longer available. Thus availability is directly related to con-
sistency. An inconsistent infrastructure is unavailable. As yet the authors are not
aware of any prior availability estimates for existing grid infrastructures such as
LCG[1], EGEE[2] or CrossGrid[3]. This is understandable in these early days of
full deployment. Below we examine this subject, present some early estimates,
propose a methodology, transactional deployment, that is intended to maximize
the infrastructure availability, describe an implementation, and estimate the ef-
fect of the methodology on availability.

1.1 Consistency of a Single Site

Assume N identical sites are being evaluated in independent experiments, and
that at time t, C(t) are consistent (have upgraded) and I(t) are inconsistent
(have yet to upgrade). The probabilities of consistency and inconsistency are:

PC(t) = C(t)/N PI(t) = I(t)/N (1)

where since C(t) + I(t) = N , then PC(t) + PI(t) = 1.0
The per-site upgrade rate is the number of upgrades per unit time compared

with the number of sites that remain inconsistent:

U(t) = I(t)−1dC(t)/dt (2)

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 88–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Principles of Transactional Grid Deployment 89

This is the instantaneous upgrade rate I(t)−1ΔC(t)/Δt for one site, i.e. the
proportion that upgrade per unit time. Hence the average time a site waits before
it becomes consistent (the mean time to consistency MTTC) is:

MTTC =
∫ ∞

0

PI(t)dt (3)

In some well regulated cases, e.g. 24×7 Operations Centres, it might be that
the upgrade rate is close to a constant, say λ. In these cases the probability of a
site being inconsistent (not upgraded) at time t and the resulting MTTC are:

PI(t) = e−λt MTTC =
∫ ∞

0

PI(t)dt = λ−1 (4)

Bear in mind that all the above is true only if the upgrade rate is a constant.
However, few organizations can afford facilities like 24×7 Operations Centres,
so the general case is that the per-site upgrade rate is not constant, but a fitful
function that reflects working hours, holidays, sick leave, etc. Moreover, upgrades
at different sites are not independent, since it is usual that sites benefit from the
experiences of sites that upgrade before them, but let us ignore this complication.

1.2 Consistency of a Multi-site Infrastructure

If the infrastructure contains M types of sites, then the Law of Probability states
that the probability of all sites being inconsistent (none upgrading) or consistent
(all upgraded) for time t is:

PIinfra(t) =
M∏

m=1

PIm(t) PCinfra(t) =
M∏

m=1

PCm(t) (5)

First let us take the case where all sites must be consistent for the infras-
tructure to be considered consistent. Then the probability of an inconsistent
multi-site infrastructure is the probability of at least one site being inconsistent,
i.e. the probability of NOT(all upgraded):

PIinfra(t) = 1 − PCinfra(t) = 1 −
M∏

m=1

(1 − PIm(t)) (6)

The more sites, the greater the probability. Clearly it is easier to understand
the situation if all M sites are identical, i.e. the infrastructure is homogeneous,
as is the case for Grid-Ireland. The MTTC is:

MTTCinfra =
∫ ∞

0

PIinfra(t)dt �= λ−1
infra (7)

Note λinfra is certainly not a constant, and the more sites, the longer the MTTC.
Now let us take the case where not all sites must be consistent for the infras-

tructure to be considered consistent. This might be the case for those grids where



90 B. Coghlan et al.

there are a set of core sites, or those where some inconsistency is acceptable. Here
we can use the Binomial expansion:

M∏
m=1

(PIm(t) + PCm(t)) = 1.0 (8)

where PCm(t) = 1 − PIm(t). For M identical sites, then (PI(t) + PC(t))M = 1.0
where PC(t) = 1 − PI(t). For example, for M = 4:

P 4
I (t) + 4P 3

I (t)PC(t) + 6P 2
I (t)P 2

C(t) + 4PI(t)P 3
C(t) + P 4

C(t) = 1.0 (9)

The first term represents the probability that no site has upgraded by time
t, the second that any 1 has upgraded, etc. The probability of an inconsistent
infrastructure representing ≥3 inconsistent sites, and the resulting MTTC, are:

PIinfra(t) = P 4
I (t) + 4P 3

I (t)PC(t) = 4P 3
I (t) + 3P 4

I (t)

MTTCinfra =
∫ ∞

0

PIinfra(t)dt �= λ−1
infra (10)

i.e. again, λinfra is not a constant.
Thus if one knows the deployment behaviour of each site it is possible to

calculate the MTTC of the infrastructure, especially if one uses symbolic algebra
tools such as Maple or Mathematica.

1.3 Mean Time Between Releases

The interval between releases MTBR is quite independent of the MTTC. The
MTTC is a deployment delay determined by the behaviour of the deployers,
whilst the MTBR is dependent upon the behaviour of developers. Otherwise
similar considerations apply.

1.4 Availability of a Multi-site Infrastructure

The availability of the infrastructure is given by the following equation:

Ainfra = MTBRinfra/(MTBRinfra + MTTCinfra) (11)

1.5 Estimates from Testbed Experience

Figure 1 shows derived histograms of the release intervals and deployment delays
for the CrossGrid production and development testbeds. The use of this data is
open to debate. Firstly one could argue for compensation for 8 hours of sleep per
day. Secondly they are derived from email arrival times, not from actual event
times. Steps have now been taken by the CrossGrid deployment team in FZK
to log these events, so in future much more accurate data will be accessible.

The release intervals greater than 30,000 seconds (approximately 21 days)
can be considered as outliers. Two intervals relate to the month of August, a



Principles of Transactional Grid Deployment 91

Fig. 1. CrossGrid testbed release intervals and deployment delays

Table 1. Observations for the CrossGrid production testbed

Observed MTBR 163 hours
Observed MTTC 11.5 hours

Observed availability 93.4%

Table 2. Observations for the CrossGrid development testbed

Observed MTBR 120 hours
Observed MTTC 18 hours

Observed availability 86.9%

traditional holiday month in Europe. Similarly the deployment delays greater
than 3,000 seconds (approximately 2 days) might be considered outliers.

If we ignore the outliers, then from these figures we may derive a notional
observed MTBR, MTTC and availability for the CrossGrid production and de-
velopment testbeds, assuming consistency after the average deployment delay.
Thus the observed infrastructure availabilities are as shown in Tables 1 and 2.

2 Principles

2.1 Two-Phase Transactionality

Maximizing availability means maximizing the proportion of time that the infras-
tructure is entirely consistent. This requires either the the time between releases



92 B. Coghlan et al.

MTBR to be maximized or the MTTC to be minimized. The MTBR is beyond
the control of those who manage the infrastructure. On the other hand, if the
MTTC can be minimized to a single, short action across the entire infrastructure
then the availability will indeed be maximized.

However, an upgrade to a new release may or may not be a short operation. To
enable the upgrade to become a short event the upgrade process must be split into
a variable-duration prepare phase and a short-duration upgrade phase, that is, a
two-phase commit. Later in this paper we will describe how this can be achieved.

If the entire infrastructure is to be consistent after the upgrade, then the
two-phase commit must succeed at all sites. Even if it fails at just one site, the
upgrade must be aborted. Of course this may be done in a variety of ways, but
from the infrastructure managers’ viewpoint the most ideal scenario would be
that if the upgrade is aborted the infrastructure should be in the same state as
it was before the upgrade was attempted, that is, the upgrade process should
appear to be an atomic action that either succeeds or fails.

Very few upgrades will comprise single actions. Most will be composed from
multiple subactions. For such an upgrade to appear as an atomic action requires
that it exhibits transactional behaviour, that all subactions succeed or all fail,
so that the infrastructure is never left in an undefined state.

Thus we can see that to maximize availability requires that an upgrade be
implemented as a two-phase transaction.

2.2 Preservation of ACID Properties

Since Gray[4, 5], transactions have been widely assumed to preserve so-called
ACID properties. Let us consider each of these:

(a) Atomicity: if a transaction contains multiple sub-actions, these are treated
as a single unit. Either all sites upgrade or none.

(b) Consistency: a transaction never leaves the infrastructure in an undefined
state. It is enforced by a single distributed commit action in the case of
success, or a distributed rollback in the case of an error.

(c) Isolation: transactions are separated from each other until they’re finished.
We only permit one transaction to take place at a time, bypassing this issue.

(d) Durability: once a transaction has been committed, that transaction will
persist even in the case of an abnormal termination.

2.3 Homogeneous Core Infrastructure

A homogeneous core infrastructure is not strictly required for transactional de-
ployment but is highly desirable. It greatly simplifies the understanding of the in-
frastructure availability, as can be seen from equations [7–10]. Logically, it allows
a uniform control of the grid infrastructure that guarantees uniform responses to
management actions. It also assures a degree of deterministic grid management.
Furthermore it substantially reduces the complexity of the release packaging and
process. Minimizing this complexity implies maximizing the uniformity of the
deployed release, i.e. the core infrastructure should be homogeneous.



Principles of Transactional Grid Deployment 93

2.4 Centralized Control via Remote Management

Centralized control of the core grid infrastructure enables simpler operations
management of the infrastructure. Remote systems management enables low-
level sub-actions to be remotely invoked if a transaction requires it. It also enables
remote recovery actions, e.g. reboot, to be applied in the case of deadlocks,
livelocks, or hung hardware or software. Realistically, all infrastructure hardware
should be remotely manageable to the BIOS level.

3 Transaction Algorithm

The transaction algorithm is:

ssh-add keys //server startup

fork ssh tunnel(localhost:9000,repository:9000)

file read sitelist

XMLRPC server start

create lock //transaction start

if(lock success) {

set global_status (preparing) // Server prepare

set release_dir(date, tag)

cvs_checkout(date, tag)

if (success) { // prepare sites

foreach(site in selected_sites) {

sync RPMS, LCG-CVS, GI-CVS

backup current GI,LCG links in release_dir

backup profiles link

create new GI,LCG links

build site profile

}

if(failure) { //rollback

foreach(site in selected_sites) {

restore link backup from release_dir

}

if( rollback_failure )

set status rollback_error

} else { // commit

foreach(site in selected_sites) {

create new profiles link

} } } }

delete lock //transaction end

4 Implementation

4.1 Architecture

Logically, the implementation divides into three segments. The first is the repos-
itory server, which hosts both the software to be deployed and the Transactional



94 B. Coghlan et al.

Deployment Service (TDS) logic. Secondly, there is the user interface, which has
been implemented as a PHP page residing on an Apache web server. Finally
there are the install servers at the sites that we are deploying to. These servers
hold configuration data and a local copy of software (RPMs) that are used by
LCFGng to maintain the configuration of the client nodes at the site. It is the
state of these managed nodes that we are trying to keep consistent.

4.2 Communication

The TDS establishes connections to the web server and the various install servers
using SSH. The TDS is run within ssh-agent and it loads the keys it needs at
start-up. Firewall rules on the repository server, where the TDS resides, and
the web server, where the user interface resides, prevent unwanted connections.
Susceptibility to address spoofing attacks is minimized by only allowing the TDS
to create network connections.

The use of ssh-agent is very powerful, as it allows the TDS software to securely
initiate multiple outbound connections as and when they are needed without
any need for the operator to enter passwords. This ability was a key enabler in
allowing all the control to come from the central server without having to push
scripts out to each site. It also means that the TDS directly receives the return
codes from the different commands on the remote sites. For extra security, when
the remote sites are configured to have the TDS in their authorized keys files,
the connections are restricted to only be accepted from the repository server, to
disallow interactive login and to disallow port tunnelling (an important difference
between the configuration of the ssh connection to the web server and to the
remote sites!).

4.3 Transactional Deployment Server

The TDS consists of a Perl script and a small number of shell scripts. Thanks
to the use of high level scripting languages the total amount of code is rela-
tively small — approximately 1000 lines. Much of this code is in the main Perl
script, which runs as an XMLRPC server[6, 7]. There are two reasons for the
choice of XMLRPC over HTTP for the communications between the TDS and
the user interface. Firstly, the XMLRPC protocol is not tied to a particular
language, platform or implementation. There are numerous high quality and
freely available implementations and they mostly work together without prob-
lems. Secondly, XMLRPC is simple and lightweight. Various other solutions were
considered, such as SOAP communications with WS-Security for authenticating
the communications at the TDS. However, WS-Security is still in development,
and SOAP interoperability is in debate within the WS-I initiative.

XMLRPC exposes methods for preparing a site, committing changes and
rolling back changes. Internally, the TDS uses a series of shell scripts to perform
the actions associated with the various stages. There are a small number of
these groups of actions to collect together as a single atomic prepare phase.
Importantly, each action that takes place is checked for success and if any action
fails then the whole group of actions returns an error. The error code returned can



Principles of Transactional Grid Deployment 95

Web client RepositoryWebserver

Gridinstall @ site1 Gridinstall @ site2 Gridinstall @ site3

HTTPS HTTP

SSH SSH SSH

Browser with 
x509 certificate

PHP Page XMLRPC Server

SSH tunnel RPM repository

CVS repository 
of profiles

Fig. 2. Transactional Deployment System architecture

be used to determine exactly where the failure occurred. Only one softlink needs
to be changed to roll back a remote site. The other changes that have taken place
are not rolled back; this results in mild clutter on the remote file system, but
does not cause significant problems. If the changes to the softlinks are not rolled
back there is a possibility of incorrect configurations being passed through to
the LCFG clients should an administrator attempt to manually build and deploy
profiles. We intend to add extra functionality so multiple past transactions can
be rolled back.

Locks are used to prevent more than one transaction being attempted at a
time. Should the TDS exit mid-transaction, the lock file will be left in place.
This file contains the process id of the TDS, so that the system administrator
can confirm that the process has unexpectedly exited. There is no possibility of
deadlock.

4.4 User Interface

The user interface is a simple page implemented in PHP and deployed on an
Apache web server. Access to the page is only allowed via HTTPS and Apache
is configured to only accept connections from browsers with particular certifi-
cates installed. The PHP code uses XMLRPC to communicate with the TDS
to determine which sites are available for deployment and what their current
state is. A drop-down list is populated with a list of the available version tags
from the Grid-Ireland CVS repository. These tags are only set for known good
releases of configuration settings. As previously stated, the TDS establishes an



96 B. Coghlan et al.

SSH tunnel between the repository server and the web server, so the PHP code
opens communications to a local port on the web server.

Users of the interface have five actions available. The simplest of these is to
simply update the information displayed. The other actions are prepare, commit,
rollback and a combined prepare and commit action. For the prepare actions, the
user needs to select a release tag to deploy plus the sites to deploy to. Once the
prepare action has been performed the control for selecting a release is disabled
until either a commit or rollback has taken place. Commit and rollback do,
however, accept selection of which sites to commit or rollback. Failure in the
prepare phase will normally result in an automatic rollback. The normal us-
age of the system will be to select sites and a release tag, and then to use the
combined prepare and commit action. This reduces the time between the pre-
pare and commit phase, reducing the likelihood of problems appearing in this
time, and ensuring that prepare and commit are carried out on the same list of
sites.

5 Evaluation

It will be a while before statistically significant data is available for transac-
tional deployment to a real grid infrastructure such as Grid-Ireland. The MTBR,
i.e. the time between releases, is the same with or without transactional de-
ployment. Let us assume the CrossGrid production testbed MTBR by way of
example.

The transactional deployment delay is the sum of three consecutive delays:
the commit time Tcommit, the time Tsignal for the LCFG install server to suc-
cessfully signal its client nodes, and the time Tupdate it takes for a client node
to update to the new release once it has recognized the server’s signal. Our
current estimates of these are: Tcommit = 20mSec, Tsignal = 10minutes worst
case, and Tupdate = 7.5minutes worst case. The worst case value for Tsignal re-
sults from the fact that client nodes check for the update signal on a 10 minute
cycle. The worst case value for Tupdate is an average of 50 runs of a clean in-
stallation of a LCFG Computing Element, so it represents an extreme upper
bound on representative physical machines. Therefore the worst-case MTTC is
17.5 minutes. The resulting worst-case infrastructure availability is shown in
Table 3.

If the LCFG client nodes could be signalled to update immediately, i.e.
Tsignal = 0, then the availability would be increased 99.92%, and in fact this
is likely to be substantially better for realistic release updates.

Table 3. Example MTBR, MTTC and availability for transactional deployment

Estimated MTBR 163 hours
Estimated MTTC 17.5 minutes

Estimated availability 99.82%



Principles of Transactional Grid Deployment 97

6 Conclusions

It is clear that the infrastructure has greatly enhanced availability with trans-
actional deployment, improved from 87–93% to 99.8%, with the potential for
99.9% availability with a small amount of extra work.

The concept is certainly scalable to many tens of sites, but probably not
hundreds, and almost certainly not at this time across national boundaries. How
can this be accommodated? One obvious solution is to mandate compatibility
across releases. The advantage is that a national commit is no longer necessary,
although a site commit is still worthwhile to reduce the MTTC. The disadvan-
tage is that it is very restrictive for developers. Another possibility is to avail
of the evolving federated structures within international grids such as EGEE.
Transactional deployment could be performed in concert across a federation by
the relevant Regional Operating Centre [8], perhaps loosely synchronized across
national boundaries. The mooted International Grid Organization could then
act as a further level of loose synchronization between the Core Infrastructure
Centres of each federation.

As far as the authors are aware, there has been no prior related work. Con-
figuration tools such as GridWeaver[9] and PACMAN[10] manage software de-
ployment on a single site rather than entire infrastructures.

Without doubt the most important benefit of the transactional deployment
system not yet mentioned is the ease it brings to deployment. Transactional de-
ployment allows for an automated totally-repeatable push-button upgrade pro-
cess, with no possibility of operator error. This is a major bonus when employing
inexperienced staff to maintain the grid infrastructure.

References

1. LCG: Large hadron collider computing grid project. http://lcg.web.cern.ch/LCG/
(2004)

2. EU: Enabling grids for e-science in europe (EGEE). http://www.eu-egee.org/
(2004)

3. EU: Crossgrid. http://www.crossgrid.org/ (2004)
4. Gray, J.N.: Notes on data base operating systems. In Bayer, R., Graham, R.,

Seegmuller, G., eds.: Operating Systems: An Advanced Course. Springer Verlag,
New York, NY (1978) 393–481

5. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufman (1993)

6. Userland-Software: XML-RPC home page. http://www.xmlrpc.org (2004)
7. Ray, R.J., Kulchenko, P.: Programming Web Services with Perl. O’Reilly (2003)
8. EGEE: SA1: Grid operations. http://egee-sa1.web.cern.ch/egee-sa1 (2004)
9. University of Edinburgh and HP Laboratories: Gridweaver. http://www.

gridweaver.org/ (2004)
10. Grid Research Integration Deployment and Support Center: PACMAN.

http://www-unix.grids-center.org/r6/ecosystem/packaging/pacman.php (2004)



Experience with the International Testbed in the
CrossGrid Project

J. Gomes1, M. David1, J. Martins1, L. Bernardo1, A. Garćıa2, M. Hardt2,
H. Kornmayer2, J. Marco3, R. Marco3, D. Rodŕıguez3, I. Diaz3, D. Cano3,

J. Salt4, S. Gonzalez4, J. Sánchez4, F. Fassi4, V. Lara4, P. Nyczyk5, P. Lason5,
A. Ozieblo5, P. Wolniewicz6, M. Bluj7, K. Nawrocki7, A. Padee8,9,

W. Wislicki8, C. Fernández10, J. Fontán10, Y. Cotronis11, E. Floros11,
G. Tsouloupas12, W. Xing12, M. Dikaiakos12, J. Astalos13, B. Coghlan14,

E. Heymann15, M. Senar15, C. Kanellopoulos16, A. Ramos17, and D. Groen17

1 Laboratório de Instrumentacão e F́ısica de Part́ıculas, Lisbon, Portugal
2 Forschungszentrum Karlsruhe GMBH, Germany

3 Instituto de F́ısica de Cantabria (CSIC-University of Cantabria), Santander, Spain
4 Instituto de F́ısica Corpuscular(CSIC-University of Valencia), Valencia, Spain

5 Akademickie Centrum Komputerowe CYFRONET, Krakow, Poland
6 Poznan Supercomputing and Networking Center, Poznan, Poland

7 A. Soltan Institute for Nuclear Studies, Warsaw, Poland
8 Interdisciplinary Centre for Mathematical and Computational Modelling,

University of Warsaw,Poland
9 Instytut Radioelektroniki PW, Warsaw, Poland

10 CESGA, Centro de Supercomputacion de Galicia, Santiago de Compostela, Spain
11 National Center for Scientific Research ”Demokritos”, National and Kapodistrian

University of Athens, Dep. of Informatics and Telecommunications, Greece
12 University of Cyprus, Cyprus

13 Ustav Informatiky Slovenska Akademia Vied, Bratislava, Slovakia
14 Trinity College Dublin, Ireland

15 Universitat Autonoma de Barcelona, Spain
16 Aristotle University of Thessaloniki, Greece
17 Universiteit van Amsterdam, Netherlands

Abstract. The International Testbed of the CrossGrid Project has been
in operation for the last three years, including 16 sites in 9 countries
across Europe. The main achievements in installation and operation are
described, and also the substantial experience gained on providing sup-
port to application and middleware developers in the project. Results
are presented showing the availability of a realistic Grid framework to
execute distributed interactive and parallel jobs.

1 Introduction

The European CrossGrid project [1] has developed new components for interac-
tive compute and data intensive applications in a Grid [2] framework.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 98–110, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Experience with the International Testbed in the CrossGrid Project 99

The main objective of the CrossGrid testbed was to provide the framework
where the new Grid services and programming tools could be developed and
tested, and interactive user-friendly applications executed.

One of the initial objectives was to assure full interoperability with the Eu-
ropean DataGrid (EDG) project [3] middleware to profit from their results and
experience, and achieve an extension of this basic Grid framework across eleven
European countries. This coordination has made possible also the successful con-
tribution of many of the CrossGrid partners to the EGEE initiative [4] to setup
a production-level Grid infrastructure in Europe.

Another important objective was to support the execution of parallel applica-
tions using the MPI [5] protocol, running either inside a cluster (using MPICH-
P4 [7]) or across different sites (using MPICH-G2 [6]), and of the different ser-
vices and tools oriented to support interactivity.

This article summarizes the experience gained not only on the deployment
and operation of the distributed computing resources, but also on the corre-
sponding support provided to developers and users.

Further technical details can be obtained from the project technical deliver-
ables, and are also described in the CrossGrid book [8].

2 Implementation of the CrossGrid International
Testbed

The CrossGrid international distributed testbed [9] shares resources across six-
teen European sites and this is itself one of the challenging points of the project.
The sites range from relatively small computing facilities in universities to large
computing centers, offering an ideal mixture to test the possibilities of the Grid
framework. National research networks and the high-performance European net-
work, Geant, assure the inter-connectivity between all sites. The network in-
cludes usually three ranges: the local campus (typically inside a University or
Research Center, via Fast or Gigabit Ethernet), the connection via the national
network provider (at speeds that range from 34 Mbits/s to 622 Mbits/s or even
Gigabit) to the national backbone, and finally the link to the Geant network (155
Mbits/s to 2.5 Gbits/s). The figure 1 shows a map with the different testbed
sites, including the major network links.

As indicated before, the basic Grid middleware was selected to guarantee
interoperability with the large EDG project testbed.

At the most lower level, the basic job submission services, information sys-
tems, authentication, authorization and data transfer are provided by the Globus
Toolkit [10]. These services are extended by a workload management system,
replica location services, improved information system and Virtual Organization
management system developed by the EDG project, incorporating also other
middleware components from packages like Condor [11]. This software is cur-
rently distributed in a version known as LCG-2, assembled and supported by
the LHC Computing Project at CERN [12].



100 J. Gomes et al.

Fig. 1. The CrossGrid testbed sites

On top of these two basic layers, CrossGrid has developed its own set of
services:

– User friendly Migrating Desktop (MD) to access the Grid environment, com-
plemented by a Roaming Access Server (RAS) and integrating support for
Interactivity.

– Improved workload management system (WMS) with MPI local and dis-
tributed support, and prioritization mechanism.

– Monitoring systems for infrastructure (JIMS), network traffic (SANTA-G),
application execution (OCM-G), and resource usage prediction (GMDAT)

– Data access optimization (UNIDAL)

All these services are used in the programming tools developed within the
project to help application teams to tune their software for the grid environment:

– Grid benchmarking tools (GRIDBENCH)
– Performance Prediction for application kernels (PPC)
– Performance Monitoring tool for distributed applications (GPM)
– MPI code debugging and verification tool (MARMOT)



Experience with the International Testbed in the CrossGrid Project 101

Finally, the testbed provides the Grid environment where four parallel and
interactive applications on different areas (BioMedicine, Flooding Crisis Manage-
ment, Particle Physics, and Meteorology and Air Pollution) have been developed
making use of these services and tools. The testbed also provides the framework
for the test and execution of these data and compute intensive applications.

For all these purposes, the final version of the CrossGrid testbed includes
two distinct setups. The ”development” testbed, with limited resources in five
different sites, supports deployment and test of new software, that once vali-
dated is deployed in a larger and more stable ”production” testbed, where the
applications are executed.

Grid testbeds provide two different types of services: global collective services,
and computing and data services using resources distributed across the sites.

In the CrossGrid testbed each site includes the following computing and data
storage resources:

– A Computing Element (CE) machine providing the interface between the
grid and the local processing farm.

– An Storage Element (SE) machine providing the interface between the grid
and local storage resources.

– A User Interface (UI) machine enabling the local users to access the testbed.
– A farm with at least two Worker Nodes (WN) or a dual CPU system.
– An installation server using the LCFGng [14] software.

The CrossGrid testbed includes a total of about 200 CPUs and a distributed
storage capacity above 4 Terabytes.

The integration of these resources is done by the global collective services:

– Resource Broker (RB): the heart of the testbed workload management sys-
tem. The RB receives job requests sent by users and finds computing re-
sources suitable to run the jobs. The CrossGrid RB supports single and par-
allel jobs (inside a cluster via MPICH-P4 or distributed using MPICH-G2)

– Information Index (II): the root entry point for the MDS information tree
that contains the resources information published by the CE and SE systems.

– MyProxy: repository of certificate proxies for long-lived jobs and portals.
– Virtual Organization server: repository of authorization information used

by the testbed systems to generate the authorization databases. The Cross-
Grid VO server contains the list of all CrossGrid users authorized to use the
testbed.

– Replica Location Services (RLS): a service that stores information about the
location of physical files in the grid. The RB uses the RLS to make schedul-
ing decisions based on the location of the files required by the jobs. The users
can also use the RLS service through the Replica Manager (RM). Although
this is an EDG service CrossGrid is developing components for its access
optimization functionality.

– Mapcenter: an EDG tool enhanced by CrossGrid to monitor the connectivity
of systems and services.

– Roaming Access Server (RAS): CrossGrid specific service that provides sup-
port for the CrossGrid Migrating Desktop (MD) and portal applications.



102 J. Gomes et al.

– Roaming Access Server Job Submission Service (RAS JSS): a component of
the CrossGrid RAS server that performs the actual job submission.

– Grid Monitoring Data Analysis Tool (GMDAT): a service to monitor and
predict the usage of grid resources and the network bandwidth between sites.

– Relational Grid Monitoring Architecture (R-GMA): a service to enable the
publishing of monitoring information in distributed grid enabled relational
database tables.

The global collective services are located mainly in four sites. Resulting
from the collaboration between the Laboratório de Instrumentacão e F́ısica de
Part́ıculas (LIP) in Lisbon and the Portuguese academic network (FCCN) on
Grid technologies the main production central systems at the LIP/FCCN site are
physically hosted at the FCCN Network Operations Center in Lisbon. The sys-
tems share a 100Mbits/s network connection to the multi-Gigabit Pan-European
network backbone Geant. The FCCN collaboration allowed the the production
RB to be installed in a Geant point of presence improving the network connectiv-
ity and resilience of this critical service. The less demanding central production
services have been hosted at the LIP computer centre facilities also in Lisbon.
Redundancy has been introduced into the production central services with the
duplication of the most critical central services at the Instituto de F́ısica de
Cantabria (IFCA) site in Santander. This duplication allows the production
testbed to continue to operate in case of a major failure at the Lisbon sites.

The main global services for the development testbed are located at the
Forschungszentrum (FZK) in Karlsruhe.

Several other sites contributed to the collective services support effort by
hosting services related with specific project developments for both the produc-
tion and development testbeds.

Security services in the CrossGrid infrastructure rely on the Globus Security
Infrastructure (GSI) using public key cryptography based on X.509 certificates.
GSI provides the ability for secure communications over the Grid and for decen-
tralized inter-organizational authentication enhanced by single sign-on features
and delegation of credentials.

Ten national Certification Authorities are involved, six of them setup thanks
to the CrossGrid project. All of them are now members of the European Grid
Policy Management Authority (euGridPMA) [13], and serve many other current
Grid projects across Europe.

3 Support Tools in the CrossGrid Testbed

The support within the project can be divided in three categories according
to the target communities: “user support”, “developer support” and “site ad-
ministrator support”. Site administrators are responsible for the installation,
maintenance and daily operation of the testbed sites. They need mostly good
documentation covering the software installation and configuration, and tools to
help them to verify their sites configuration and behavior. Developers are special
users that are deeply involved in writing software and as such need support not



Experience with the International Testbed in the CrossGrid Project 103

only in the testbed usage but also in the software testing, packaging, integration
and deployment. Developers also need access to specialized tools such as a cen-
tral CVS [20] repository, bug tracking tools and packaging tools. End-users are
interested in running the applications accessing to the testbed in a user friendly
way and being isolated as much as possible from the software and infrastructure
complexity.

To satisfy the needs of these different communities several support channels
have been created, from mailing lists to a dedicated helpdesk. Relevant links
for coordination and support are provided from the testbed workpackage (WP4)
main web page (http://grid.ifca.unican.es/crossgrid/wp4).

3.1 Site Administrators Support

Support for site managers is available through the ”Testbed Support web site”
at LIP. It includes three sections dedicated to the production, development and
validation activities, and provides information about the testbed infrastructure
and also on installing and configuring sites. The end users can also found relevant
information about the setup of the testbed and examples on how to use it.

Additionally the site also hosts the testbed verification and quality control
web pages. These pages contain information about the test and validation proce-
dures for testbed sites and software packages, a validation request web form and
a database with information about the validation requests and corresponding
reports is also available.

The complexity of the CrossGrid software releases requires specialized tools
to make the deployment process lightweight, fast and reliable. The release pro-
cess relies in the software packing using the RedHat Package Manager (RPM)
format. The generate auto-built packages are made available through the Grid-
Portal repository at FZK jointly with configuration profiles for automated instal-
lation using the LCFG [14] installation and configuration software. These profiles
contain configuration information that is common to all sites and are comple-
mented by the site specific information provided by the systems administrators
at each site. To further automate the deployment process, the cg-lcfg-go [23]
tool was developed.

This approach assures that all sites have the same package versions configured
properly and contributes to reduce the deployment time.

Additionally, a site installation manual ”Cluster Installation in CrossGrid”
[27], created and maintained by UoA and available from this ”Testbed Support”
web site, extensively explains all steps required to setup a new site, from the
preparation of a LCFGng installation server to the deployment of a whole cluster.
The manual has proved to be an excellent source of information for the sites
installation, upgrade and maintenance.

3.2 Developers Support

All CrossGrid partners contribute to the project development effort. In such
a complex development environment clear guidelines are needed to coordinate
the development process. Using the EDG [3] developer’s manual as input FZK



104 J. Gomes et al.

has created and maintained the official development reference manual [17] for
CrossGrid.

Additionally FZK supports central development services including a CVS [20]
repository, bug tracker, webspace and autobuild.

The autobuild [21] tool was developed by EDG and adapted for CrossGrid
use. The tool takes the source code from the repository and produces RPM
packages suitable from deployment. This fully automated process is performed
every four hours.

3.3 User Support

The CrossGrid HelpDesk system is the main generic tool of the User Support
Team. The system is installed at the Instituto de F́ısica Corpuscular (IFIC) in
Valencia, and can be accessed in http://cg1.ific.uv.es/hlpdesk.

It is a web based system based on the OneOrZero software [26], version
v1.2 RC2 Red Lava incorporating PHP [15], JavaScript and MySQL [16]. This
product is designed to be fully customizable.

All kind of questions related to the Testbed (i.e. CrossGrid V.O., Testbed
installation and upgrades, network, security, resource broker, etc.) can be posed
by users creating classified tickets, that are answered by a team of specialized
supporters.

A Knowledge Base contains the stored problems reported by users with their
corresponding solutions.

Another important tool for user support is the CrossGrid Tutorial, that in-
cludes a section with exercises on the CrossGrid Testbed, intended for new users
that would like to run their jobs or applications in the Grid framework.

This tutorial explains all the steps that a user must follow to be able to
execute jobs in the testbed: from obtaining the digital certificate to running MPI
jobs and using the Replica services. All the examples, including source code, are
available from http://grid.ifca.unican.es/crossgrid/wp4/Tutorial/Examples.

4 Test and Validation

The CrossGrid testbed workpackage includes a task dedicated to the testbed
verification and quality control. The task aims to ensure that the CrossGrid
testbeds conforms to the quality requirements of a near production service. Two
main areas of activity emerged from the task objectives:

– Software test and validation.
• Validation of the software to be deployed in the testbed.
• Validation of software documentation.

– Testbed test and validation.
• Validation of sites after each new installation or upgrade.
• Continuous monitoring of the testbed.



Experience with the International Testbed in the CrossGrid Project 105

The software test and validation is the last step of the CrossGrid quality
assurance process and is responsible for the execution of the software acceptance
tests. The testbed validation is responsible for the verification of the CrossGrid
sites and services.

4.1 Software Validation

The software test and validation procedure followed by CrossGrid is defined
as a set of interactions between the ”verification and quality control team”, the
”integration team” and the developers. The procedure covers the documentation,
the installation and the software functionalities. The documentation provided
by the developers is followed to install the software in systems dedicated or
allocated for the validation. The software is then tested using unit tests to verify
the correct behavior of the software. System tests with the software integrated
with the remaining testbed components are then performed. These tests are
performed first at local level and then between sites if applicable. Finally stress
tests are performed exercising the components.

The procedure was refined and improved along the project. Two major changes
were introduced in 2004, the possibility of bypassing the validation procedure
for minor fixes and the use of the bugtracker to keep a record of the detected
issues.

The problems detected during the validation are classified regarding their
severity and priority. These two attributes define the urgency and impact of the
problem and help to determine which issues must be addressed first. For each
severity level described a guideline action is recommended.

The validation procedure has been applied with good results. Providing im-
mediate feedback on detected problems results usually in prompt actions by the
developers, the cycle helps improving the stability of the middleware.

While applying the test and validation procedure to the CrossGrid software
packages produced until November of 2004 a total of 142 software issues and 34
documentation issues have been detected these issues are distributed as follows:

4.2 Testbed Sites Validation

One of the most important steps toward the assurance of the correct site deploy-
ment is the site validation. This is a procedure intended to validate testbed sites
after each major change, namely when a new middleware release is deployed.

Table 1. Issues found during validation

Severity Priority

Medium 72 Medium 57
High 70 High 64
Critical 21 Immediate 38
Low 13 Low 17



106 J. Gomes et al.

The procedure starts with the installation and configuration of the site fol-
lowing the CrossGrid site deployment manual and the support web pages. The
installation and configuration were initially performed with LCFG and later with
LCFGng to reduce the number of possible installation and configuration prob-
lems. The software release is downloaded from the CrossGrid repository at FZK
where the common LCFG profiles are also available. The installation and con-
figuration are responsibility of the site administrator. Once the site is deployed
the site administrator contacts the testbed administrators and provides the site
details.

The site is added to the CrossGrid ”mapcenter” grid monitoring service and
the connectivity of the systems and services is tested. If all services are reach-
able, the site CE and SE are added to the ”Host Check” verification tool, a
web enabled host verification tool that is capable of providing several installa-
tion, configuration and operation diagnostics. Once the nodes are added the site
administrator can see by himself the list of problems detected and take appro-
priate measures to correct them. In this phase a strong interaction between the
site administrators, the testbed administrators and the quality control team is
required to help site administrators quickly solve any problems that are detected
and bring the site up to the required quality level. The interaction is also im-
portant to reduce the testbed deployment time and understand problems and
situations that may have not been identified before.

Once all the problems that were detected have been corrected, stress tests
are performed on the site by submitting a large number of jobs and performing a
large number of file transfers. These tests cover job submission through Globus
and through the Resource Broker.

When the site is found to be stable, it is added to the list of official testbed
sites and authorized to join the top MDS information index where all sites are
registered.

The procedure has been successfully applied helping to locate many problems
that would pass unnoticed until the sites would be actually used by the users
possibly creating major testbed disturbances.

4.3 Testbed Monitoring

Sites must be continuously monitored both during the acceptance process and
during operation. The aim of monitoring is to detect problems that can disturb
the testbed and therefore contribute to instability. Monitoring also allows gath-
ering statistics about the testbed that are useful to spot problems and evaluate
its quality and usage.

The following tools have been developed at LIP and are used to perform
testbed and site monitoring:

– Mapcenter: developed by DataGrid, it has been improved by CrossGrid with
the support for usage statistics and testbed services uptime.

– CE usage statistics: Collects and presents information about the jobs sub-
mitted to Gatekeepers. Data is obtained from the gatekeepers log file and
processed to produce statistics about the job submission errors.



Experience with the International Testbed in the CrossGrid Project 107

– RB usage statistics: Collects information about the jobs submitted through
a Resource Broker. The statistics are collected from the RB logging and
bookkeeping database and are processed to produce usage graphics.

– Host Check: Host check is the main tool used in the site validation process.
It is designed to verify the installation and configuration of Computing Ele-
ments and Storage Elements. Host Check is capable of detecting most of the
known configuration and installation problems.

– CRL verification tool: The CRL verification tool performs CRL expiration
checks by downloading the latest CRL’s from the CA’s web sites and veri-
fying their expiration time.

– Site uptime: Collects and processes the Mapcenter alarms data to produce
an historical view of the systems and services uptime.

5 Results

The experience with the CrossGrid testbed has shown that is feasible to use grid
technologies to support interactive and parallel applications. However this class
of applications requires careful testbed planning, deployment and operation thus
infrastructure monitoring is a key factor for success.

Deploying and maintaining a grid site is a complex task that requires a con-
siderable degree of knowledge covering many aspects of the operating system,
grid middleware, security and networking. Experience has shown that manual
configuration although possible can be difficult and highly susceptible to er-
rors. Furthermore human resources with the necessary knowledge and practice
to perform these operations correctly are frequently not available at all sites. For
grid technologies to become widely available it is necessary to simplify the site
management tasks.

Following the approach introduced by DataGrid the site management in
CrossGrid was initially performed with the LCFG installation and management
software. At a later stage LCFG was replaced by its successor LCFGng that
become the official installation method until the end of the project. In spite of
the problems encountered, the CrossGrid testbed has been successfully managed
with LCFG. To help the site administrators in the deployment and daily mainte-
nance of their systems a LCFG cluster installation and management manual [27]
was written by UoA and common configuration profiles for each new release have
been developed by FZK greatly contributing to a reduction in the deployment
and upgrade times and enabling the maintenance of a homogeneous infrastruc-
ture.

The CrossGrid testbed supports parallel applications using both MPI re-
stricted to clusters and MPI across clusters. Supporting MPI applications re-
quires careful testbed configuration. Parallel applications that use MPI across
multiple machines have an increased probability of failure in comparison with
non-parallel applications.

The approach selected was to extend the DataGrid workload management
system to support the submission of MPI jobs using two methods:



108 J. Gomes et al.

MPI inside clusters: Job submission from the resource broker to the best
possible cluster according to the job specified requirements and using globus
GRAM. The job runs inside a cluster using MPICH-P4.

MPI across clusters: Job submission from the resource broker to the best
possible clusters using globus GRAM. Each application instance is started
as a separate globus sub job, and can be run across different clusters. The
communication mechanism between the sub jobs is provided by MPICH-G2,
an MPICH implementation that uses the globus communication mechanisms
(globus IO).

The last versions of the modified resource broker have shown remarkable
MPICH-P4 job submission reliability to which the careful testbed monitoring
and configuration has also greatly contributed.

The support for MPICH-G2 in the resource broker become available in 2004.
The experience showed several new problems. The most common problem is
caused by sub jobs that stay queued at a site while the remaining sub jobs enter
into execution at other sites. Interactivity also introduced similar problems, as
interactive applications need to be started immediately. This basic requirement
collides with the nature of the load balancing systems used today in most clus-
ters, such as PBS. These systems are designed to support the requirements of
batch applications, where waiting in a queue does not constitute a problem. The
interactivity issues are extremely similar to the ones from which MPICH-G2 suf-
fers. A patch for the PBS job manager as also been developed within CrossGrid
to specify that a job must enter immediately into execution, if the job remains
queued it will be killed giving a change for the resource broker to restart it at
some other location, or returning the control to the user.

Table 2. Testbed metrics

Month Sites Users Jobs Uptime
Tot Act Ratio Tot Ok Ratio

2003 Aug 16 79 28 0.35 11424 11059 0.97 90%

2003 Sep 16 79 39 0.49 9278 8781 0.95 85%

2003 Oct 16 81 32 0.40 8919 8772 0.98 82%

2003 Nov 16 83 32 0.39 3118 1950 0.63 56%

2003 Dec 16 87 29 0.33 1627 1565 0.96 77%

2004 Jan 16 92 46 0.50 16882 16526 0.98 76%

2004 Feb 15 96 40 0.42 17471 17394 0.99 92%

2004 Mar 15 100 55 0.55 39674 39357 0.99

2004 Apr 15 101 40 0.40 18620 18501 0.99 94%

2004 May 15 104 43 0.41 18648 18307 0.98 87%

2004 Jun 15 105 42 0.40 25687 24403 0.95 94%

2004 Jul 15 109 56 0.51 27326 27248 0.99 98%

2004 Aug 15 111 31 0.28 6148 6125 0.99 96%

2004 Sep 15 114 44 0.39 15381 14610 0.95 95%

2004 Oct 16 119 57 0.48 23279 23235 0.99 97%



Experience with the International Testbed in the CrossGrid Project 109

A more sophisticated method to support interactive applications based on
the Condor glide-in feature is also being introduced in the resource broker. This
method aims to bypass the local load balancing system when submitting in-
teractive applications. This method ensures that interactive jobs are started
immediately and faster.

All these situations require careful resource monitoring. The host check tool
was improved with tests that include job submissions using MPICH thus detect-
ing the sites with problems. Tools developed at FZK also allowed the detection of
SSH issues inside the clusters and the monitoring of relevant queue parameters.

The number of jobs submitted and jobs successfully executed since last year
shows a clear improvement during the last months corresponding to the deploy-
ment of more stable middleware releases, including better support for MPI jobs
in the workload management software.

The table 2 shows the evolution of the testbed quality indicators for the pro-
duction testbed since August of 2003. The Table shows for each month the num-
ber of testbed sites, registered users, active users, jobs submitted, jobs sucessfull,
and the average testbed uptime obtained from the Mapcenter monitoring tool.
It can be observed the growth of the number of users, the improvement of the
job submission ratio and of the average testbed uptime. The uptime values for
March of 2004 were not collected due to the upgrade of the monitoring software.

6 Conclusions

The installation and operation of the CrossGrid International Testbed has been
described. More than 200 CPUs and 4 Terabytes of storage are available for
application execution.

Despite the intrinsic difficulty of organizing a real distributed Grid framework
across 16 different sites, in 9 different countries, and thanks to the implemen-
tation of strong quality assurance mechanisms and support tools, the statistics
show that the testbed is functional and allows the development and execution
of interactive jobs and parallel applications.

Further effort along the next months will be devoted to improve on those areas
more critical for the execution of interactive jobs, like prioritisation mechanisms,
role of the load balancing systems, and optimized data transfer.

Acknowledgements

This work has been supported by the European project CrossGrid (IST-2001-
32243) and by the Polish Committee for Scientific Research through the grants
KBN/115/SPB/5.PRUE/DZ206 and KBN/115/SPB/5.PRUE/DZ208.

The authors would like to thank their colleagues in EDG and EGEE projects
for their nice collaboration, and also to the CrossGrid reviewers that have pushed
for the improvement of quality assurance mechanisms and support tools.



110 J. Gomes et al.

References

1. The European Project CrossGrid: http://www.eu-crossgrid.org
2. I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, 1999.
3. The European Project DataGrid: http://www.edg.org
4. The European Project EGEE (Enabling Grids for e-Science): http://www.eu-

egee.org
5. Message Passing Interface Forum, MPI: A Message Passing Interface Standard,

June 1995. http://www.mpi-forum.org
6. A grid enabled implementation of the MPI standard: http://www3.niu.edu/mpi/
7. An implementation of the MPI standard for applications running inside clusters:

http://www-unix.mcs.anl.gov/mpi/mpich
8. The CrossGrid Project Book, in press, Springer LNCS Series.
9. J. Gomes et al., “First Prototype of the CrossGrid Testbed”, Proc. AcrossGrids

Conf., Santiago, February 2003; ISBN 3-540-21048-2 Lecture Notes in Computer
Science 2970: 67-77, 2004.

10. The Globus Project: http://www.globus.org
11. Condor Project Homepage: http://www.cs.wisc.edu/condor
12. The LHC Computing Grid Project: http://lcg.web.cern.ch
13. J.Astalos et al., “International Grid CA Interworking”. Submitted to EGC’05,

http://www.eugridpma.org
14. The Local Configuration software: http://www.lcfg.org
15. The Hypertext Preprocessing scripting language: http://www.php.net
16. The MySQL relational database: http://www.mysql.org
17. The CrossGrid Developers’ Guide: http://gridportal.fzk.de/websites/crossgrid/

iteam/devguide/devguide-html
18. The CrossGrid central software repository and development server, GridPortal:

http://gridportal.fzk.de
19. The Savannah software: http://gna.org/projects/savane
20. CVS Documentation: http://www.cvshome.org
21. Autobuild entry page: http://savannah.fzk.de/autobuild/i386-rh7.3-gcc3.2.2
22. Autobuilt RPMs: http://savannah.fzk.de/distribution/crossgrid/autobuilt
23. cg-lcfg-go: http://cvs.fzk.de/cgi-bin/viewcvs.cgi/crossgrid/crossgrid/wp4/config/

cg-wp4-lcfg-server-files/cg-lcfg-go
24. Jorge Gomes et al., “CrossGrid Deliverable D4.1 Appendix D”” (http://www.lip.

pt/computing/projects/crossgrid/doc/deliverables/TestProcedure.pdf)
25. CVS Documentation: http://www.loria.fr/˜molli/cvs/doc/cvstoc.html
26. OneOrZero software: http://helpdesk.oneorzero.com
27. The CrossGrid cluster installation manual: http://cgi.di.uoa.gr/ xgrid/archive.htm



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 111 – 121, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

eNANOS Grid Resource Broker 

Ivan Rodero, Julita Corbalán, Rosa M. Badia, and Jesús Labarta 

CEPBA-IBM Research Institute, 
Technical University of Catalonia (UPC), Spain 

{irodero, juli, rosab, jesus}@ac.upc.es 

Abstract. Grid computing has been presented as a way of sharing 
geographically and organizationally distributed resources and of performing 
successfully distributed computation. To achieve these goals a software layer is 
necessary to interact with grid environments. Therefore, not only a middleware 
and its services are needed, but it is also necessary to offer resource 
management services to hide the underlying complexity of the Grid resources to 
Grid users. In this paper, we present the design and implementation of an 
OGSI-compliant Grid resource broker compatible with both GT2 and GT3. It 
focuses in resource discovery and management, and dynamic policies 
management for job scheduling and resource selection. The presented resource 
broker is designed in an extensible and modular way using standard protocols 
and schemas to become compatible with new middleware versions. We also 
present experimental results to demonstrate the resource broker behavior. 

1   Introduction 

Grid computing [1] has emerged in recent years as a way of sharing heterogeneous 
resources distributed over local or wide area networks and geographically and 
organizationally dispersed. Grid computing builds on the concept of distributed 
computing, and software provides a way to divide up tasks so they are processed in 
parallel. In that context Grid computing is a good framework for solving large-scale 
problems such as bioinformatics, physics, engineering or life sciences problems. 

In order to provide the necessary infrastructure for the Grid several projects have 
been developed such as Globus Toolkit [2], Condor [3] or Unicore [4]. In particular, 
Globus Toolkit is being implanted in several projects, with the aim of providing a 
generic solution for a Grid infrastructure. 

In addition to the infrastructure basic services to give support to paradigms like 
Resource Management [6] are also required. The resource management in Grid 
environments is different from the one used in cluster computing. Recently, many 
efforts have been devoted to HPC, especially in job scheduling policies and resource 
usage maximization. Globus Toolkit provides some useful services including Grid 
Security Infrastructure (GSI) [7], Grid Resource Allocation and Management 
(GRAM) [8], Data Management Services (e.g. gridFTP) [9], and Information 
Services, Monitoring and Discovery System (MDS) [10]. 

Discovering and selecting suitable resources for applications in Grid environments 
is still an open problem. Thus, when a user wants to interact with a Grid, all processes 



112 I. Rodero et al. 

 

related to resource management decisions should be handled manually. But these 
tasks are too difficult for a user and it appears to be a good idea to take a Resource 
Broker or a meta-scheduler to perform these basic functions. Additionally, no 
resource broker is included in top of the Globus Toolkit. 

The main motivations for developing this resource broker are developing a 
resource broker compatible with emerging technologies such as Globus Toolkit 3 and 
accomplish the requirements of eNANOS project. When we started this project, no 
resource broker had been developed on top of Globus Toolkit 3. 

In this paper, we present the design and implementation of an OGSI-Compliant 
resource broker developed as a Grid Service. The main objective is to expose the 
broker architecture and its characteristics not an evaluation. Our resource broker is 
compatible with both Globus Toolkit 2 and Globus Toolkit 3 services, and 
implements flexible mechanisms to become compatible with next Globus versions. It 
is centered in resource management and focuses on dynamic policy management. This 
resource broker is responsible for the Resource Discovery and Monitoring, Resource 
Selection, Job Submission and Job Monitoring; and implements policy management 
mechanisms from user side. It supports different policy classes including scheduling 
policies, resource selection policies and complex policies (called meta-policies). It 
uses a XML based language to specify user multi-criteria. It also provides a set of 
Grid Services interfaces and Java API for various clients, e.g. user applications, 
command-line clients or grid portals. Furthermore, we expose the main problems 
encountered in developing a resource broker on top of Globus Toolkit 3. 

The rest of this paper is organized as follows. Section 2 overviews previous 
research on resource brokering and scheduling. Section 3 discuss the system design 
and implementation details of our Grid resource broker. Section 4 describes 
experimental results and section 5 concludes the paper and presents future work. 

2   Related Work 

At the moment there are many projects related to Grid since it is an important 
research issue for the international community. Some projects, such as AppLes [11], 
Nimrod/G [12], Condor-G [13], EZ-Grid [14], GridLab Resource Management 
System (GRMS) [15] or GridWay [16], have been working on brokering systems. 
These projects are developed on top of GT2 but other initiatives have been presented, 
for instance a Grid Broker Service [17] in terms of OGSA running on GT3. 

Our Grid resource broker differs from previous existing brokerage systems in the 
following aspects: First, this general-purpose resource broker is compatible with GT2 
and GT3 services, it implies that a uniform internal representation of objects and data 
involved in any task of resource management is needed; secondly, the proposed 
resource broker provides dynamic policy management which combined with user 
multi-criteria requirements allows us to advanced users a large capacity of decision. 
This user multi-criteria file is a XML document; it can be used in policies evaluation 
and is composed of requirements and recommendations. A requirement (hard 
attribute) is a restriction for resource filtering and a recommendation (soft attribute), 
“with its priority,” can be used to provide a resource ranking for policies evaluation. 
Finally, since our resource broker is implemented as a grid service, we can have 
several broker instances to construct more scalable systems. 



 eNANOS Grid Resource Broker 113 

 

3   System Design and Implementation 

3.1   Overall Architecture 

This subsection presents the overall architecture of the proposed Grid resource broker. 
As shown in Fig. 1, the broker consists of five principal modules, a queuing system 
and data system for persistency. Moreover, the system is composed of Globus Toolkit 
services and an API to access the broker services. 

Resource Discovery uses both GT2 MDS (GRIS/GIIS servers) and GT3 
Information Services (based in Web Services). It uses a uniform representation of 
resource servers and resources based on GLUE schema. 

Resource Selection performs dynamic selection of best resources from job 
specifications, user criteria, resource information and policies evaluation. All 
decisions related to resources are made from the local data obtained in resource 
discovery and monitoring processes. 

Resource Monitoring gathers information about resources and stores it as local 
information which is available in “real-time” for broker modules and users. 

Job Submission performs job submission to GT2 or GT3 systems depending of 
user criteria and job characteristics. It receives a user criteria and RSL from the user 
side. To select the appropriate job from local queues the scheduling policy is 
evaluated. 

Job Monitoring controls job status 
changes and stores their history. It also 
performs job rescheduling when 
appropriate (e.g. when a resource has 
fallen). To do this, some interactions 
between resource monitoring and job 
monitoring are needed. 

The API is the responsible for 
providing a unique point of access to 
broker services. This API can be used by 
different clients such as user applications, 
grid portals or command-line. 

The broker design is based on Globus 
Toolkit as a middleware and as the 
provider of basic services. Furhtermore, 
the design is sufficiently extensible to 
make it easy to adapt the broker to new 
Globus versions. In order to obtain this, 
uniform and standard schemes have been 
used (e.g. GLUE based schema is used for internal resource representation). Recently, 
some Globus versions have appeared but it is not clear what the evolution of the Grid 
technology will be like. At present, the Globus project is working on implementations 
based in Web Services technology, e.g. Web Service Resource Framework (WSRF). 
These new technologies can be very useful but is very important to keep the 
compatibility with systems based on previous Globus versions and to give support to 
its users. There are a lot of projects related to different topics developed on top of 

Fig. 1. Overall architecture 



114 I. Rodero et al. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<CRITERIA> 
 

 <Memory-Processor> 
     <Attribute Name="RAMAvailable" Operator="&gt;=" Value="100" Type="INTEGER" Importance="HARD" Priority="1" /> 
     <Attribute Name="VirtualAvailable" Operator="&gt;=" Value="250" Type="INTEGER" Importance="SOFT" Priority="3" /> 
     <Attribute Name="ClockSpeed" Operator="&gt;=" Value="500" Type="INTEGER" Importance="SOFT" Priority="7" /> 
     <Attribute Name="LoadLast15Min" Operator="&lt;=" Value="45" Type="INTEGER" Importance="SOFT" Priority="10" /> 
 </Memory-Processor> 
 
 <FileSystem-OperatingSystem> 
     <Attribute Name="AvailableSpace" Operator="&gt;=" Value="600" Type="INTEGER" Importance="SOFT" Priority="7" /> 
     <Attribute Name="OS Name" Operator="==" Value="Linux" Type="STRING" Importance="HARD" Priority="1" /> 
 </FileSystem-OperatingSystem> 
 
 <Others> 
     <Attribute Name="Total CPUs" Operator="&gt;=" Value="4" Type="INTEGER" Importance="SOFT" Priority="1" /> 
     <Attribute Name="MaxQueueTime" Operator="==" Value="3600" Type="STRING" Importance="SOFT" Priority="1" /> 
 </Others> 
 

</CRITERIA> 

GT2, e.g. DataGrid [18], GridLab [15] or GRID SuperScalar [19]. More detailed 
description of our broker architecture is presented in the following subsections and 
more information can be found in [20]. 

3.2   Job Description and User Criteria 

To describe a job a RSL is required and a user criteria is optional. We do not extend 
RSL schema in order to simplify files and separate concepts. A user criteria is XML-
based and specifies basic parameters. A user criteria is composed of several attributes 
organized in three categories: Memory&Processor, Filesystems&OS, and Others. 
Each attribute is composed of various elements as shown in Fig. 2: 

− Name: name of the attribute (e.g. RAMAvailable, ClockSpeed, OSName, etc.) 
− Type: attribute values can be STRING or INTEGER 
− Operator: if the attribute type is STRING the possible operator is “==” 

(identical strings) and if it is an INTEGER attribute possible operator are “==”, 
“<=” or “>=” 

− Value: value of the attribute (corresponding to its type) 
− Importance: There are two types of attributes, HARD and SOFT attributes. A 

HARD attribute is a requirement for resources and must be accomplished. 
However, a SOFT attribute is a recommendation for choosing between all 
resources that accomplish their requirements. 

− Priority: this element is considered only in SOFT type attributes in order to 
obtain a ranking of resources according to the user criteria. The obtained rank 
value can be useful for later policies evaluation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. User criteria example 

3.3   Policy Management 

As well as basic brokering functions (resource discovery, job submission, etc.) 
dynamic management of policies and the implementation of the necessary 



 eNANOS Grid Resource Broker 115 

 

mechanisms to support them are important subjects in the design of this broker. The 
selection of the better job and better resource for a given configuration is an 
optimization problem with NP-Complete solution. In order to reduce and divide the 
complexity, the broker works with two kinds of basic policies, one for a job 
scheduling and another for resource selection. Furthermore, beyond job scheduling 
and resource selection policies, a meta-policy is offered, which can be implemented 
with genetic algorithms or other optimization methods. The evaluation process of 
policies is shown in Fig. 3 and consists of three phases. First an initial evaluation of 
the job scheduling policy is performed and then, for each job selected, the resource 
selection policy is evaluated and finally the meta-policy evaluation is performed. A 
meta-policy evaluation consists of choosing the best job to be executed and the best 
resource for the execution from the data structure obtained from the evaluation of the 
previous policies. This data structure is a matrix corresponding to the set of jobs 
obtained in the first step and for each of them a set of resources obtained in the second 
one. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Policies evaluation schema 

Some policies implementations for the broker are outlined next. For job scheduling 
FIFOjobPolicy (First In First Out), REALTIMEjobPolicy (minimizes 
REALTIME=deadline time-estimated time of job finalization), EDFjobPolicy (Earlest 
Deadline First). For resource selection RANKresPolicy (resource selection based in 
the greatest rank obtained from the resource filtering process), ESTresPolicy (Earlest 
Starting Time, based in the estimated waiting time for a job in a local queue). User 
criteria can be used in some evaluation policies like RANKresPolicy. 

In order to obtain dynamic policy management we propose a design based in 
generic interfaces for each kind of policy. Then, the mechanism is ready for a policy 
evaluation independently of its implementation. 

Dynamic management of policies allows them to be managed by the user. 
Considering that several instances of the broker can exist, it is possible to have broker 
instances with different policies at the same time. To manage policies from the user’s 
side some interfaces are available to examine the established policy, to change it and 
to see what policies are available. 

  

 



116 I. Rodero et al. 

 

3.4   Job Scheduling and Management 

When a job is submitted, it is automatically queued in the local system. Periodically 
the resource broker tries to schedule all jobs according to the established policies. 
When a machine fails, all the jobs running in that machine are rescheduled through 
another local queue called retrying. This queue is of higher priority than the submit 
one in order to prevent inanition situations. Any submitted job is scheduled until all 
jobs from the retrying queue are managed. 

The main issues of job management are job submission, cancellation, monitoring 
and termination. In order to submit a job, a RSL is required and optionally a user 
criteria file. The RSL can be a traditional RSL or XML based RSL-2 because the 
resource broker is compatible with both GT2 and GT3. If the RSL used is the 
traditional one this job could be executed in a GT2 or GT3 resource indifferently. If 
RSL-2 is used, the job can only be executed in a GT3 resource because no RSL-2 to 
RSL parser exits yet. Details about user criteria are shown in subsection 3.2. 

To submit a job to a certain resource the Globus GRAM API is used. Callbacks are 
managed with the GRAM interface responsible for status changes. To decide which is 
the appropriate resource for a job execution the resource selection policy is evaluated 
over the resources obtained previously from the resource discovery module. 

In the job monitoring process the resource broker is looking for notifications and 
callbacks to control the job status. In addition, the job history is kept in order to know 
what is happening and what happened during the job life. In job history some 
information is considered, such as date, time, operation and other details. In order to 
preserve data persistence of submitted jobs a recovery file is saved with the necessary 
job information to resubmit them. In case the resource broker machine crashes, when 
the resource broker is restarted, all jobs in the recovery file are rescheduled for 
execution. 

In the implementation of this resource broker we encountered some problems 
related with the Globus APIs, in particular with GRAM. Globus infrastructure adds 
overhead in job submission and GRAM interfaces are not compatible with different 
Globus versions at the same time. Thus, it was necessary to implement different 
interfaces and objects in the job management to give support to GT2 and GT3. 
Furthermore, Globus client APIs are designed to be used only from the final user side, 
and we encountered some problems in job submission from a Grid Service. It was 
therefore necessary to make some changes in code and correct some bugs. 

3.5   Resource Management 

Our resource broker has a generic and unique representation of resources based in 
GLUE schema. Therefore, we can use only one internal representation for GT2 and 
GT3 resources and we can make some decisions independently of the Globus version 
of resources. The main attributes for this resource representation are general 
information such as Globus version, hostname or #CPUs, main memory info, 
operating system, processors info, processors load, file systems info and running jobs. 

In order to simplify the resource discovery process we used a uniform 
representation for resource servers called Global Grid Resource Information Server 



 eNANOS Grid Resource Broker 117 

 

 

 

 

 

 

 

 

 

 

 

 

(GGRIS). In this representation we can specify a MDS GIIS, a GRIS or a GT3 Index 
Service. From these resource servers the resource broker can obtain resources and 
resource details in the represent- 
tation previous shown. 

Resource information is
dynamic and the only required 
functionality to maintain persistent 
is the GGRIS information. Due to 
this, we use an XML file with a 
list of available resource servers. 
Depending on the server type, 
different information is needed for 
specifying its location. For GT3 
servers only the Index Service 
GSH location is needed. However, 
for GT2 GRIS or GIIS servers, the 
hostname, port and baseDN are 
needed. 

Resource monitoring updates 
local data about resources by 
calling the resource discovery 
module continuously. In order to 
detect when a resource has failed 
the resource broker compares 
current available resources with 
the previous data before updating 
the list of resources. In the case 
of a detection of one or multiple 
resource falling, this module 
interacts with job management 
modules rescheduling their jobs. 

In both GT2 MDS and GT3 
Index Service we use the scripts 
provided by Globus. The GT3 
Index Service is a useful mecha- 
nism for indexing data but in 
some cases the scripts provided 
by Globus are not powerful 
enough and the provided data is 
not updated. In general, there is a lack of information about local resource 
management and performance monitoring. For instance, the behavior of applications 
is very useful information to make scheduling decisions with coordination. 
Consequently, it is difficult to give good support to HPC resources with Globus 
infrastructure. 

Fig. 4. Execution of some broker commands 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
T here are any job ! 
 

pcirodero:~/test$ job_submit rsl1.xml criteria1.xml 
Job submitted successfully with id: 1@1087831803184 
pcirodero:~/test$ job_submit rsl2.xml criteria2.xml 
Job submitted successfully with id: 2@1087831807889 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_PENDING 
Job ID: 1@1087831873835 at status: JOB_PENDING 

 

pcirodero:~/test$ add_ggris http://pcirodero.ac.upc.es:.../IndexService 
GGRIS added successfully: pcirodero.ac.upc.es 

 

pcirodero:~/test$ get_AllJobs  
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_PENDING 
Job ID: 1@1087831873835 at status: JOB_PENDING 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_SUBMITED 
Job ID: 1@1087831873835 at status: JOB_SUBMITED 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_RETRYING 
Job ID: 1@1087831873835 at status: JOB_RETRYING 

 

pcirodero:~/test$ add_ggris http://pcmas.ac.upc.es:.../IndexService 
GGRIS added successfully: pcmas.ac.upc.es 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_RETRYING 
Job ID: 1@1087831873835 at status: JOB_SUBMITED 

 

pcirodero:~/test$ job_history 1@1087831873835 
21/5/2004 17:30:3   =>JOB CREATION 
21/5/2004 17:30:3   =>JOB QUEUED  in PENDING queue 
21/5/2004 17:31:13 =>RESTORED  From Recovery File  

               (to be created another time) 
21/5/2004 17:31:13 =>JOB CREATION 
21/5/2004 17:31:13 =>JOB QUEUED  in PENDING queue 
21/5/2004 17:31:52 =>JOB SUBMITED  to pcirodero.ac.upc.es 
21/5/2004 17:33:1   =>JOB QUEUED FOR RETRYING  because 

                             resource pcirodero.ac.upc.es has down 
21/5/2004 17:34:2   =>JOB SUBMITED  to pcmas.ac.upc.es 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_SUBMITED 
Job ID: 1@1087831873835 at status: JOB_DONE 

 

pcirodero:~/test$ get_AllJobs 
A ll submitted jobs: 
Job ID: 2@1087831873909 at status: JOB_DONE 
Job ID: 1@1087831873835 at status: JOB_DONE 

6 

1

2 

3 

4 

5 

7 

8 

9 

10 

11 



118 I. Rodero et al. 

 

4   Experimental Results 

We present results to demonstrate the functionality of the broker. Since the main 
problem of GT3 is the overhead, we also present some performance results. 

4.1   Behavior Analysis 

In order to illustrate the broker behavior we are going to use an example shown in 
Fig. 4. In that example we can find several circumstances and actions related with the 
broker. Next, we explain each event and what decisions the broker system takes. 

Initially, no resource is available and no job is submitted. Next in (2), some jobs 
are submitted to the broker and are queued to the pending queue. In (3) the broker 
falls. When the broker is restarted we add a computational resource in order to 
execute submitted jobs. Then, in (4) the broker retrieves previous submitted jobs 
from the recovery system and queues them again in a local queue. In (5) jobs are 
submitted to the available resource and begin their execution. Suddenly, the resource 
which was executing jobs (pcirodero) falls, in (6). So, in (7) all jobs that were 
submitted in pcirodero are queued to retry their execution. Now there is no resource 
available, so in (8) we add a new computational resource to allow job execution. 
Afterwards jobs begin their execution on pcmas, in (9). In (10) we can see a job 
history and how all events have happened. Finally, in (11) all jobs finish their 
execution on pcmas. 

4.2   Performance Analysis 

In order to study the broker and system performance, we instrumented the broker 
through JIS and JACIT [21]. JIS enables us to instrument Java classes and to obtain 
some traces which can be visualized and analized with Paraver [22]. First, we present 
results obtained from an execution of a minimum job in a GT3 resource. With these 
results we can approximate various types of overhead such as Globus, the broker or 
communications overhead. In Fig. 5 a trace obtained from the execution of two 
minimal jobs is shown. In Paraver traces we can see the time on the X axis, each row  
 

 
 

 
 

Fig. 5. Trace obtained in the minimal execution 

2nd dispatch (3,2 s) 

Submission of second job 

state change - finalization (0,91 s) 

(A) 26,48 s

(B) 16,20 s 

(C) 6,11 s

- QMANAGER thread - 



 eNANOS Grid Resource Broker 119 

 

represents a thread, colors represent different states and flags are events. We can see 
some events (such as submission requests, job dispatching actions, finalization 
notifications and state requests) or the spent time for each one. 

(A) is the elapsed time between the reception of the job submission and the 
moment of its conclusion (including the state change, total process). 

(B) is the queuing time of the job until its submission to a specific resource. 
(C) is the elapsed time between the job submission to a specific resource and the 

notification of its conclusion. 

Then, considering the data 
obtained in this test, we can obtain 
some numbers relating to the 
overhead. Broker overhead=61%, 
Globus overhead=16%, the other 
overhead is not relevant. Total 
overhead=77% but this is only 
the result obtained from a concrete 
execution of a minimal job. 

Now we are going to present 
average results obtained from the 
execution of several tests of 
different duration. In Fig. 6 results 
of those arithmetic jobs are shown, in short executions we obtain big overhead but 
from a job of a minute duration, we obtain acceptable values. Then we can say the 
broker is the broker is suitable enough for Grid oriented applications1 in terms of 
overhead. 

5   Conclusion and Future Work 

In this paper, we have designed and implemented an OGSI-compliant Grid resource 
broker. Our resource broker performs resource discovery and management, 
scheduling and hides the underlying complexity of Grid resources from Grid users. It 
is compatible with both GT2 and GT3 services and is designed as an extensible and 
modular way to be easily extended and become compatible with future Globus 
versions. Moreover, the proposed resource broker considers dynamic policies 
management. To achieve these goals, the resource broker implements powerful 
mechanisms to allow users to manage policies using a Grid Service based interface, 
API, and client. Through experimental evaluations, we have successfully shown that 
the resource broker system behavior and its performance are satisfactory for Grid 
oriented applications. 

For future work we are seeking to improve our resource broker with greater 
robustness, check pointing, job migration and so on. We plan to add low level 
interaction with local queuing systems in order to choose the best approaches in Grid 
environments especially for parallel applications. Moreover, we need to implement 
                                                           
1  In this paper we do not consider results from the overhead of data transport and management. 

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

<10s 1min 10min 1h

execution time broker overhead GT overhead

Fig. 6. Distribution of time in tests 



120 I. Rodero et al. 

 

complex meta-policies and new policies based on prediction concepts. We wish to 
implement support for GT4 when this is stable. Finally, we plan to construct more 
scalable systems.  

With the experience gained from developing a broker on top of Globus Toolkit, we 
have found some deficiencies. First, we believe that APIs need to be improved to give 
better support for developers; currently Globus APIs are designed to be used for final 
users. Resources should be managed in a more effective way. A useful middleware 
should provide good monitoring tools and enable communications between the 
middleware and the local environment. Finally, the Globus Toolkit should be 
improved to reduce its overhead, and we hope future versions will be better. 

Acknowledgments 

This research has been supported by the Spanish Ministry of Science and Technology 
under contract TIC2001-0995-C02-01, and the European Union project HPC-Europa 
under contract 506079. 

References 

1. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations”, International Journal of High Perfomance Computing 
Applications, 15(3):200-222. 2001. 

2. “The Globus Project (Globus Alliance)”, http://www.globus.org 
3. M. Litzkow, M.Livny, and M. Mutka, “Condor – A Hunter of Idle Workstations”, 

Proceedings of the 8th International Conference of Distributed Computing Systems 
(ICDCS 1988), January 1988, San Jose, CA, IEEE CS Press, USA, 1998 

4. “Unicore Project”, http://www.unicore.org 
5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An Open 

Grid Services Architecture for Distributed Systems Integration”, Open Grid Service 
Infrastructure WG, Global Grid Forum, 2002. 

6. Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, “Grid Resource Management, 
State of the Art and Future Trends”, Kluwer Academic Publishers, 2004 

7. “Globus Security Infrastructure”, http://www.globus.org/security 
8. “Resource Management: GT2 GRAM and GT3 GRAM”, 
9. http://www-unix.globus.org/developer/resource-management.html 

10. “Globus Data Management Services”, 
11. http://www-unix.globus.org/toolkit/docs/3.2/datamanagement.html 
12. “Information Services in the Globus Toolkit”, http://www.globus.org/mds 
13. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-Level 

Scheduling on Distributed Heterogeneous Networks”, Proceedings of Supercomputing’96, 
1996 

14. D. Abramson, R. Buyya, and J. Giddy, “A Computational Economy for Grid Computing 
and its Implementation in the Nimrod-G Resource Broker”, Future Generation Computer 
Systems. 18(8), 2002 

15. J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A Computation 
Management Agent for Multi-Institutional Grids”. Proceedings of the Tenth International 
Symposium on High Performance Distributed Computing, IEEE CS Press, August 2001 



 eNANOS Grid Resource Broker 121 

 

16. B. Chapman et al, “EZ-Grid Resource Brokerage System”, http://www.cs.uh.edu/~ezgrid/ 
17. “GridLab, A Grid Application Toolkit and Testbed”, http://www.gridlab.org 
18. “The GridWay Project”, http://asds.dacya.ucm.es/GridWay/ 
19. Young-Seok Kim, Jung-Lok Yu, Jae-Gyoon Hahm, Jin-Soo Kim, and et al. “Design and 

Implementation of an OGSI-Compliant Grid Broker Service”, Proc. of CCGrid 2004 
20. “The DataGrid Project”, http://www.eu-datagrid.org 
21. Rosa M. Badia, Jesús Labarta, Raül Sirvent, Josep M. Pérez, José M. Cela, and Rogeli 

Grima, “Programming Grid Applications with GRID superscalar”, Journal of Grid 
Computing, January 2004 

22. Ivan Rodero, Julita Corbalán, Rosa M. Badia, Jesús Labarta, “Providing a Resource 
Broker for eNANOS Project”, Technical Report UPC-DAC-2004-43, Tech. U. of 
Catalonia, 2004 

23. Jordi Guitart, Jordi Torres, Eduard Ayguadé, José Oliver, and Jesús Labarta, “Java 
Instrumentation Suite: Accurate Analysis of Java Threaded Applications”, 2nd Annual 
Workshop on Java on High Performance Computing, Santa Fe, New Mexico, USA, 2000. 

24. Paraver, http://www.cepba.upc.edu/paraver/ 



GridARM: Askalon’s Grid Resource
Management System�

Mumtaz Siddiqui and Thomas Fahringer

Institute for Computer Science, University of Innsbruck,
Technikerstrasse 13, A-6020 Innsbruck, Austria

{Mumtaz.Siddiqui, Thomas.Fahringer}@uibk.ac.at

Abstract. The emergence of Grid computing has accentuated the need
of an adaptable, scalable and extensible resource management system. In
this paper we introduce GridARM system which renders the boundaries
of resource brokerage, virtual organization wide authorization and ad-
vanced reservation, and represents a scalable and adaptive Grid resource
management as a middleware infrastructure. The GridARM system pro-
vides mechanisms for Grid resource discovery, selection and allocation
along with resource requestor and provider interaction. Experiments are
presented that demonstrate the effectiveness of our approach.

1 Introduction

With the emergence of distributed computing, and the ’always on’ environment
of the computing elements; the computing services become scalable, extensible
and environment independent. This results in a high performance computational
environment composed of diverse resources spanning the entire Internet and mul-
tiple administrative domains. The new discipline called Grid Computing intends
to make high performance computational resources available to anyone. An effec-
tive Grid Resource Management System (GRMS) is required for the provisioning
and sharing of resources while keeping autonomy of their environment and geo-
graphical location.

In contrast to traditional resource management system, GRMS has to bal-
ance global resource sharing with local autonomy, by dealing with heterogeneous,
shared and variant resources distributed under different trust domains, address-
ing issues of multiple layers of schedulers and working with system participants
having inconsistent performance goals and assorted local and global policies.

In the Grid computing literature, Grid job scheduling is represented and
treated as part of the Grid resource management, therefore in most of the existing
Grid enabled systems, meta scheduling is integrated with resource management
and the terms Grid job scheduling and Grid resource management are used
interchangeably. Now the Grid computing has been evolved enough to redefine
and redesign its components so that they can be used as self comprised building

� This research is supported by the Higher Education Commission of Pakistan.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 122–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



GridARM: Askalon’s Grid Resource Management System 123

blocks in GRMS. Resource broker is one of the important GRMS components,
which is manual or semi manual in existing systems. An automatic resource
broker is essential for a stable and successful Grid computing infrastructure.

A GRMS must provide Resource discovery and selection mechanism which
performs persistent resource state and capacity checking, by discovering and
matching resources, Capability check mechanism which performs resource selec-
tion based on dynamic information, Resource allocation with advance reservation
and co-allocation and finally Resource requester and provider interaction for ne-
gotiation and notifications.

To our knowledge no widely deployed single GRMS supports these functions.
Attribute based resource description and resource matching available in existing
systems is unsuitable for ever evolving Grids. Virtual Organization (VO) wide
authorization, advance reservation and Co-allocation are still illusions for the
Grid users. We propose a new approach to flexible resource management for
Grid computing system which provides the management functions mentioned
above. The goal of our work is to provide an effective, efficient, extensible and
adaptive GRMS based on off-the-shelf technologies while making it capable to
adapt new emerging technologies.

This paper presents a design architecture and work-in-progress prototype im-
plementation of GridARM (Askalon’s [14] Grid Resource Management) System,
a new architecture for Grid resource management, resource control and resource
provisioning across sites and administrative domains. It provides automatic re-
source brokerage, VO-wide fine-grained authorization, advanced reservation and
negotiation between a potential client and resource provider. The automatic bro-
ker was necessary not only because of its usability, efficiency and low cost but
also because users don’t have time to make selection between alternative choices.
VO-wide authorization and user profiling mechanism reduces involvement of lo-
cal site administrators and even the user itself.

The rest of the paper is as follows. In Section 2, we describe general Grid
resource management architecture and define basic mechanisms to provide an
automatic resource brokerage system. Section 3 is about the client-GridARM
interaction mechanism. In Section 4, we described our experiences about the
proposed system, and examined its performance in a networked environment.
Related work is presented in Section 5. Finally we summarize our conclusion
about the proposed system and discuss future work in Section 6.

2 GridARM Architecture

The GridARM system is dynamically extensible, scalable and adaptive in which
new protocols and tools can easily be integrated without suffering from system
downtime and expensive code reorganization. In contrast to existing work which
is based on manual brokerage we propose an automated brokerage in this system.
This automation is required especially for Grid enabled workflows and execution
environments where the brokerage process acts as a middle tier between Meta-
scheduler and other Grid enabled components like Grid enabled resources and



124 M. Siddiqui and T. Fahringer

services. The brokerage process is responsible to discover and allocate suitable
resources for the Meta schedulers.

Client/Meta−scheduler GridARM

Referral

GridARM Resource Broker

Reservation Authorization Discovery
LRM Drivers MP/CAS Drivers GIS Drivers

Grid Computing Infrastructure
LRM/GRAM MyProxy/CAS MDS/NWS

Fig. 1. GridARM system architecture

We are developing GridARM sys-
tem which is WSRF [11] complaint.
The system consists of four persis-
tent and distributed Grid-enabled ser-
vices called Discovery, Authorization,
Reservation and Broker.

As shown in the Fig. 1, the Broker
service is a gateway to the GridARM
sytem. It is a configurable and cus-
tomizeable WS-Resource which works
with one or more other GridARM ser-
vices. An important feature of the Bro-
ker is its ability to recursively discover
Grid resources by interacting with the
other distributed GridARM brokers.

The Discovery service provides resource discovering and matching capability,
mainly to the Broker. It can be configured with one or more Grid Information
Services (GIS).

Authorization and Reservation services provide resource authorization and
advance reservation capabilities respectively. Authorization is based on the Grid
Security Infrastructure (GSI) [3] and works in coordination with My-Proxy [7]
and Community Authorization Service (CAS) [2]. The Reservation service pro-
vides capabilities like advanced reservation and negotiation for reservation with
the resource provider, based on time and cost model and other constraints set
by the both parties.

Each GridARM service is configured to have one or more drivers to the
resource specific modules like GIS service. In the following sections we describe
GridARM services in detail.

2.1 Discovery Service

A resource discovery mechanism mainly provided to the Broker service is based
on a set of information and monitoring services. It discovers and provides an op-
timal resource ensemble along with solicited specification congregated from the
underlying information services. We are currently working on a Grid resource
description language, a language to be used for describing Grid resources in an
ontological way. The internal structure of a discovery service is illustrated in
Fig. 2. It consists of a Request-Resource Correlator (RRC), Ontological Engine
(OE) and Resource Discoverer (RD). Correlator receives a request, checks its
integrity, correlates it with the resources and returns the result back. It inter-
acts with OE and the RD for request transformation and resource discovery. A
client can subscribe in the discovery service by registering resource requirements
or preferences in the RRC and receives notification from it when a matching
resource joins the Grid and observed by the discovery service.



GridARM: Askalon’s Grid Resource Management System 125

RR Correlator

Grid Information Services NWS
MDS

Ontology
Engine DiscovererOntology

GIS Drivers
Processors

Query

Client/Broker
<ResourceRequest>
  <resources>
    <totalNodes constraint="exact"> 15 </totalNodes>
    <constraints>
      <cpuCount constraint="min">4</cpuCount>
      <cpuAvailable constraint="min">2.5</cpuAvailable>
      <osType flavor="any">Linux</osType>
      <platform>sparc</platform>
    </constraints>
  </resources>
</ResourceRequest>

Fig. 2. A: Internal structure of a discovery service B: A simple resource request with
both static and dynamic attributes

Ontological Engine selects appropriate Query Processor (QP) and transforms
the request into resource filters for the registered information services, based on
which resources are discovered and selected. The transformation is done in two
steps: First, the compound request is split into multiple but simple requests, for
example by separating static and dynamic attributes of a request and making
two different GIS-specific requests. Second, it transforms requests from generic
format to GIS specific filters. For instance, a generic request given in Fig. 2 is
transformed into LDAP filter for the MDS2 [4] driver.

The RD component discovers resources and their specification based on the
filters provided by OE and congregates all found resources along with their
specification into a unique GIS-independent generic format. Finally it returns
the result back to the Correlator.

Discoverer drivers and query processors are loaded dynamically based on the
GIS and query type respectively. The default GIS type is mds2 and query type
is generic. A client can make a query for resources based on both static and
dynamic attributes. For instance, a resource request given in Fig. 2, contains
both static and dynamic attributes and discovery service uses MDS to collect
static information like OsName and Platform and NWS [5] to collect dynamic
information of resources such as AvailableCpu.

2.2 Reservation Service

Reservation is an undertaking by the system that an application will receive a
certain level of service from its resources. The reservation service provides this
functionality by supplying instant as well as advanced reservation of underlying
Grid-enabled resources. The architecture is flexible enough to work with different
local reservation managers for example Maui [6]. But our aim is to provide a
new VO wide reservation manager which is consistent with other Globus Toolkit
(GT) based components like CAS [2]. This service is used to interact with a
single resource, whereas Co-allocation of multiple resources is handled by the
Broker service which also acts as a Co-allocation manager.

The reservation service provides high level methods to create, modify, bind,
cancel, monitor and verify a resource reservation instance. Verification is re-



126 M. Siddiqui and T. Fahringer

quired to be performed before acquiring a reserved resource by a job submission
component. Also, the service can be used to look ahead for the advanced reser-
vation of a resource by employing its lookahead method. The Local Reservation
Managers (LRM) can be registered and managed dynamically.

The essential attributes of a reservation instance are LRM contact, reser-
vation mode, start time, end time, duration and constraints. The reservation
mode can be a single phase or a two-phase committable. In two-phase mode,
once a reservation is created, it remains on hold for a configurable duration.
If reservation is not committed within that time interval, then it is cancelled
automatically. The reservation, which is not committed with in specified time-
frame, represents a soft allocation of resource as described in Section 2.4. The
optional end time attribute can also be provided for flexibility. The reservation
is accepted if it can be started any time after start time and finished any time
before end time.

A special Constraint-based Advanced Reservation (CAR) can be created based
on resource constraints instead of hard coded resource manager contact. In CAR,
the LRM contact linking is deferred until bind time. Reservation service ensures
that minimum required resources which fulfill the CAR’s constraints should be
available during that time frame. In this way the required QoS is ensured.

A Ticket, which is granted by the service after making a reservation, is a
reference to a reservation instance. It embraces a unique reservation id, user’s
security principal and resource access point. Once a reservation has been made,
all future interactions, like monitoring for its status, modification, cancellation
and resource acquisition can only be done by producing a valid ticket. Before
performing any task, a user credential is produced or retrieved from the Au-
thorization service. The reservation is not possible if a user possesses invalid
credential or a given policy does not permit a reservation. A policy is described
in the form of constraints and used with authorization information to provide
enhanced quality of service. One can specify a list of users or groups allowed
to use a reservation ticket in subsequent operations. The integrity is ensured by
signing the policy with trusted entity.

2.3 Authorization Service

The Globus system lacks a middleware-based authorization. It uses local resource
mechanism for authorization by mapping a Grid user to a local identity which
also serves as an access control check. This scenario has several shortcomings
such as scalability, lack of expressiveness, and consistency between the policies
of different sites. In order to overcome these shortcomings GridARM proposes an
authorization mechanism, in which, the Grid users and sites are registered in a
middleware service, which maintains user profiles, proxy credentials, policies and
preferences. The Grid sites are registered by creating a local identity representing
the VO or community.

This service grants authorization to a user by verifying its access rights for
a particular resource ensemble and provides a restricted proxy credential to the
user. A restricted proxy credential can only be used during the reservation time-



GridARM: Askalon’s Grid Resource Management System 127

frame. Our authorization service uses Globus My-Proxy [7] as a credential repos-
itory, and we plan to integrate Community Authorization Service (CAS) [2] in
our approach.

2.4 Broker Service

The Broker service works as a gateway to the GridARM system. It makes an ef-
ficient and smart use of the other services, which can be registered and managed
dynamically. It also works as a Co-allocation manager and performs advance
reservation of multiple resources on request. Its role in the overall system is
illustrated in Fig. 1. High level interfaces are provided for resource selection, al-
location and management. These interfaces include methods like select, allocate,
confirm and release etc. Selection operation results in a resource ensemble based
on the resource request, whereas allocation operation results in a reservation en-
semble or reservation ticket. The input to the broker, provided mainly by Grid
scheduler, is examined and an appropriate and optimal operation is performed.

The allocation of resources can be a result of an interactive transaction by
following select-allocate-confirm cycle in steps, or it can be an atomic transaction
by making a direct confirmed reservation. An allocation of resources without
confirmation is a soft allocation. A soft allocation is one in which allocated
resources will be available to new clients only if (1) they are explicitly released
or (2) they are not used within certain configurable duration of time. Once
reservation is confirmed it becomes a hard allocation that means the allocated
resource ensemble remain dedicated to a client during the reservation timeframe.

If a broker could not find suitable resources, it can refer its clients to another
broker service, or it can be configured to work in a recursive mode to retrieve
required resources by interacting with the remote brokers.

Once a reservation ensemble is created, the Broker instantiates a resource
Ensemble Manager (EM) on one of least loaded GridARM-enabled hosts. EM
is responsible for further coordination and negotiation with client on behalf
of resource providers. It provides comprehensive functionality for editing and
managing a reservation ensemble. Also EM monitors its members while they
are being used by the client and ensures that resources are working according to
the constraints specified at the time of reservation. A node failure, if occurs, is
notified to the job submission system.

The GridARM system works based on GSI [3] provided by the Globus. A
client can interact with system via frontend broker service by providing its
own proxy credential supplied directly or through My-Proxy [7]. If an inter-VO-
referral based recursion is performed, then it would be possible that a requesting
user is not part of a referred VO. In this case user credentials are replaced with
referral or ’remote’ broker’s credential and a chained authorization is performed
to make it possible. The management interfaces of GridARM services are im-
plemented with message level security, so that an unauthorized Grid user could
not make changes in the configuration.



128 M. Siddiqui and T. Fahringer

3 Interaction Mechanism

Advanced reservation and Co-allocation of a resource ensemble is a multi transac-
tional process, which is simplified by providing a Proxy Resource Ensemble(PRE)
in the response of a resource request. The broker executes a request by selecting
a resource ensemble, instantiating an Ensemble Manager (EM), and returning
back a proxy (PRE). The PRE being a mobile agent, is downloaded to a client
machine and used as a stub of the resource ensemble for further interaction with
the GridARM system. It hides authorization mechanism and optionally physi-
cal resources from the client. This is done by providing a login mechanism, in
which the user along with reservation ticket is verified, and the user credential
is replaced with restricted community credential. The client presents community
credential to the resource ensemble before submitting a job. We plan to integrate
a policy evaluation mechanism in the PRE in order to provide a fine-grained user
authorization by the PRE.

4 Experiments

The Globus toolkit provides a decentralized scheduling model in which new
components can be integrated. An unofficial release of GT4 which consists of
core implementation of WSRF [11] was introduced in the beginning of 2004.
WSRF is a new model on which Grids are to be built. The GridARM system is
WSRF complaint and uses mechanisms like subscription/notification and service
lifetime management. We have deployed the system in ZID-Grid, University
of Innsbruck, which consists 13 Grid sites, one with 15 Solaris machines and
12 with 141 Linux PC boxes. GT2 is installed on all Grid sites whereas GT4
core is installed only on Solaris machines. Apart from site specific services like
GRAM [1], we have installed NWS [5] and MDS2 [4] with the Glue schema.
Both MDS and NWS cover all ZID-Grid sites. All the machines involved in the
experiment were located on a lightly loaded network with a maximum latency
between two computers of about 2 milliseconds.

A resource request can be a simple or compound request. A simple request
could be an attribute-based request for the selection of resources or a reservation
request for already selected resource. A compound request is one in which mul-
tiple operations are requested atomically. In the following sections we describe
different experiments conducted in the deployed Grid infrastructure.

4.1 Atomic Transaction

A compound request shown in Fig. 3 is made to the system for resource al-
location. The request consists of both resource and reservation description. In
this scenario, the broker service performs resource selection, authorization, allo-
cation and confirmation cycle as a single transaction. To determine the cost of
requested operation, we timed a series of requests varying both the total number
of required resources and their attributes. We measured the time for the request



GridARM: Askalon’s Grid Resource Management System 129

T
im

e(
se

c)

Nodes

25

0 1815129631

10

5

15

20

30

0

<ResourceRequest>
  <type> compound </type>
  <resources negotiation="no">
    <constraints>
      <cpuCount constraint="min">3</cpuCount>
      <cpuCurrent constraint="min">1.5</cpuCurrent>
      <osType flavor="any">Linux</osType>
      <platform>intel</platform>
    </constraints>
  </resources>
  <reservation negotiation="yes">
    <startTime format="YYMMddhhmm" constraint="exact">
      0410151230
    </startTime>
    <duration unit="minutes">150</duration>
  </reservation>
</ResourceRequest>

Fig. 3. A: GridARM system latency for resource reservation, time taken for atomic
transactions for the given number of nodes/CPUs B: Atomic transaction: A compound
request for a resource ensemble selection and confirmed allocation

T
im

e(
S

ec
)

Nodes
0 1815129631

0

2

4

6

8

10

Select
PRE Download
Verify
Allocate
Confirm
Login

12

Fig. 4. A: Time variation of GridARM system functions B: Breakdown of times spent
in processing a resource allocation request for a single resource

by starting a timer in the client program immediately before invoking the broker
and then stop this timer on successful login to the resource ensemble through
proxy PRE (See Section 3). The result of this experiment is shown in Fig. 3.
The graph shows how the time for request brokerage varies as the number of
resources changed. A further breakdown of the time spent in different GridARM
operations is given in Fig. 4, which shows the cost of each operation.

4.2 Interactive Transaction

In this experiment, the compound request shown in Fig. 3, is broken down into
two requests, and the brokerage is performed in steps by implying execute, verify,
allocate, confirm and login functions in a sequence by the client. The interactive
transaction is useful in case when a client wants to perform some intermediate
tasks. A simple use case could be as follows: A Metascheduler first reserves
the resource ensemble and then confirms after interacting with a performance
predictor, that may evaluate a Grid resource in the meantime. A client can
also call lookahead function for the reservation of the resource ensemble before
making a confirmed reservation.

A breakdown of the time spent in different system functions is given in Fig. 4.
The authorization (verify + login) and discovery (select) services are very con-



130 M. Siddiqui and T. Fahringer

sistent and economical. Most of the time is consumed by allocate and confirm
functions of the reservation service. This is due to the fact that currently a
separate request is made for each resource in the resource ensemble. We plan
to enhance the service by adding the functionality in which an entire resource
ensemble could be handled with a single request. As shown in the Fig. 4(right),
allocate and confirm functions collectively take less than one second, therefore
there will be a significant improvement in the system performance after having
the enhanced functionality.

5 Related Work

In the domain of GRMS, numerous projects and tools are available, but most of
them do not provide the required level of resource management. This pervasive
domain needs to split down further in more self contained and adaptable sub
domains. Most of the existing Grid enabled systems try to address resource
brokerage, job scheduling and monitoring under the same integrated scenario. It
works, but it’s not scaleable and adaptable. The resource broker in the Globus
system is missing. A few Grid systems like Condor [8], Legion [9], GridLab [16],
European Data Grid [10], Nimrod-G [15] and Maui [6] address GRM but the
broker is not a well divulged and concrete module. Also none of these systems
addresses resource management as a mechanism of the Grid middleware, in which
distributed resource brokerage, community-based authorization and advanced
reservation are consistent with each other.

A distributed resource management architecture that supports advance reser-
vation and Co-allocation is described in [12] but the modification proposed in the
local resource management is an overhead. Ontology based resource matching
proposed in [13] simplifies resource matching, but community based authoriza-
tion and reservation has not been addressed. The Global Grid Forum (GGF) is
actively working on devising new standards in different areas of resource man-
agement. The GridARM system will adopt GGF standards once fully specified.

6 Conclusion and Future ork

Unleashing the power of Grid infrastructures is a complex and tedious task
without a sophisticated resource management system. The focus of this paper
is to render the boundaries of resource brokerage, community wide authoriza-
tion and advanced reservation mechanism. The paper proposes a modular and
dynamically extensible Grid resource management architecture, which fills the
gap between Meta-scheduler and the Grid infrastructure. The GridARM system
makes the use of the Grid resources simple and efficient with the help of VO-wide
authorization and reservation mechanism. Our aim is to make the system fully
consistent with the Grid forum recommendations. We are evaluating different
related technologies which can be exploited to make the system more functional
and consistent with emerging web technologies.

W



GridARM: Askalon’s Grid Resource Management System 131

The GridARM system automates the process of the Grid resource manage-
ment, but its own management and VO-wide deployment is manual. The plan
for the future enhancement of the system is to make it fully automated.

References

1. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S.
Tuecke. A Resource Management Architecture for Metacomputing Systems. Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing,
po. 62-82, 1998.

2. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community Au-
thorization Service for Group Collaboration. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2001.

3. Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Archi-
tecture for Computational Grids. In Fifth ACM Conference on Computers and
Communications Security, November 1998.

4. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services
for Distributed Resource Sharing. Tenth IEEE International Symposium on High-
Performance Distributed Computing(HPDC-10), IEEE Press, Aug 2001.

5. Rich Wolski, Neil Spring, and Jim Hayes. The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing Future Gen-
eration Computing Systems Journal, Vol 15, 5-6, pp. 757-768, Oct. 1999.

6. The Maui Scheduler home page. http://maui-scheduler.mhpcc.edu
7. J. Novotny, S. Tuecke, V. Welch. An Online Credential Repository for the Grid:

MyProxy. Proceedings of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

8. Condor project homepage. http://www.cs.wisc.edu/condor/
9. Steve Chapin, Dimitrios Katramatos, John Karpovich, Andrew Grimshaw. The

Legion Resource Management System. Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP ’99)

10. B. Sagal. Grid Computing: The European DataGrid Project. In IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference Lyon, France, October 2000

11. Web Services Resource Framework. http://www.globus.org/wsrf/
12. K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in Compu-

tational Grids. In Proc. of the 8-th IEEE Int’l Symp. on High Performance Dis-
tributed Computing, pages 219-228, Redondo Beach, CA, USA, July 1999

13. H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based Resource Match-
ing in the Grid–The Grid meets the Semantic Web. Second International Semantic
Web Conference, Sanibel-Captiva Islands, Florida, USA, Oct. 2003

14. Thomas Fahringer ASKALON: A Programming Environment and Tool Set for
Cluster and Grid Computing Institute for Computer Science, University of Inns-
bruck. http://dps.uibk.ac.at/askalon/

15. R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a Re-
source Management and Scheduling System in a Global Computational Grid, HPC
ASIA’2000, China, IEEE CS Press, USA, 2000

16. Allen, G., Davis, K., et al. (2003). Enabling Applications on the Grid: A GridLab
Overview In International Journal of High Performance Computing Applications:
Special Issue on Grid Computing, August 2003.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 132 – 143, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Super-Peer Model for Building Resource Discovery 
Services in Grids: Design and Simulation Analysis* 

Carlo Mastroianni1, Domenico Talia2, and Oreste Verta2 

1 ICAR-CNR 87036 Rende (CS), Italy 
mastroianni@icar.cnr.it 

2 DEIS University of Calabria, 87036 Rende (CS), Italy 
{talia,verta}@deis.unical.it 

Abstract. As deployed Grids increase from tens to thousands of nodes, Peer-to-
Peer (P2P) techniques and protocols can be used to implement scalable services 
and applications. The super-peer model is a novel approach that helps the 
convergence of P2P models and Grid environments and can be used to deploy a 
P2P information service in Grids. A super-peer serves a single Virtual 
Organization (VO) in a Grid, and manages metadata associated to the resources 
provided by the nodes of that VO. Super-peers connect to each other to form a 
peer network at a higher level. This paper examines how the super-peer model 
can be used to handle membership management and resource discovery services 
in a multi-organizational Grid. A simulation analysis evaluates the performance 
of a resource discovery protocol; simulation results can be used to tune protocol 
parameters in order to increase search efficiency. 

1   Introduction 

Grid computing and peer-to-peer (P2P) computing models share several features and 
have more in common than we generally recognize. As Grids used for complex 
applications increase from tens to thousands of nodes, their functionalities should be 
decentralized to avoid bottlenecks. The P2P model could favor Grid scalability: 
designers can use P2P style and techniques to implement decentralized Grid systems. 
The adoption of the service oriented model in novel Grid systems (for example the 
Open Grid Services Architecture (OGSA [1]), or the Web Services Resource 
Framework (WSRF) [12]) will support the convergence between the two models, 
since Web Services can be used to implement P2P interactions between hosts 
belonging to different domains. 

P2P techniques can be particularly useful to manage two key services in Grid 
information systems: membership management (or simply membership) and resource 
discovery. The objective of a membership management service is twofold: adding a 
new node to the network, and assigning this node a set of neighbour nodes. The 
resource discovery service is invoked by a node when it needs to discover and use 
hardware or software resources having given characteristics.  
                                                           
*  This work was partially supported by the Italian MIUR FIRB Grid.it project RBNE01KNFP 

on High Performance Grid Platforms and Tools and by the project KMS-Plus funded by the 
Italian Ministry of Productive Activities. 



 A Super-Peer Model for Building Resource Discovery Services in Grids 133 

 

In currently deployed Grid systems, resources are often owned by research centres, 
public institutions, or large enterprises: in such organizations hosts and resources are 
usually stable. Hence, membership management and resource discovery services are 
efficiently handled through centralized or hierarchical approaches, as in the OGSA 
and WSRF frameworks. As opposed to Grids, in P2P systems nodes and resources 
provided to the community are very dynamic: peers can be frequently switched off or 
disconnected. In such an environment a distributed approach is more effective and 
fault-tolerant than a centralized or hierarchical one. 

Super-peer networks have been proposed [13] to achieve a balance between the 
inherent efficiency of centralized search, and the autonomy, load balancing and fault-
tolerant features offered by distributed search. A super-peer node acts as a centralized 
resource for a number of regular peers, while super-peers connect to each other to 
form a network that exploits P2P mechanisms at a higher level. The super-peer model 
allows for a very efficient implementation of the information service and it is 
naturally appropriate for large-scale Grids. A Grid can be viewed as a network 
composed of small-scale, proprietary Grids, called Virtual Organizations (VOs). 
Within each VO, one or more nodes, e.g. those that have the largest capabilities, can 
act as super-peers, while other nodes can use super-peers to access the Grid. 

The remainder of the paper is organized as follows. Section 2 discusses related 
work. Section 3 introduces the super-peer model, and shows how it can be used in 
service-oriented Grid frameworks. A discovery protocol based on the super-peer 
model is proposed and discussed. Section 4 analyzes the performance of the proposed 
discovery protocol by means of an event-driven simulation framework. The influence 
of network and protocol parameters on performance indices is evaluated, so that the 
protocol can be tuned to increase search efficiency. Section 5 concludes the paper. 

2   Related Work 

P2P membership and discovery services can be classified as using unstructured or 
structured approaches to search resources. Gnutella [4] is an example of unstructured 
P2P network: hosts and resources are made available on the network without a global 
overlay planning. Structured P2P networks, such as Chord [10], use highly structured 
overlays and exploit a Distributed Hash Table (DHT) to route queries over the 
network. A DHT is a data structure for distributed storing of pairs (key, data) which 
allows for fast locating of data when a key is given. 

Membership and resource discovery services are also key issues in Grid systems. A 
centralized or hierarchical approach is usually adopted. The information model 
exploited in the Globus Toolkit 3 (GT3) the version of Globus built upon OGSA, is 
based on Index Services [3], a specialized type of Grid Services. Index Services are 
used to aggregate and index Service Data, i.e. metadata associated to the resources 
provided by Grid hosts. There is typically one Index Service per Virtual Organization 
but, in large organizations, several Index Services can be organized in a hierarchy. A 
similar approach is used in the WSRF-based Globus Toolkit 4: ServiceGroup services 
are used to form a wide variety of collections of WS-Resources, a WS-Resource 
being a Web service that is associated with a stateful resource. 



134 C. Mastroianni, D. Talia, and O. Verta 

 

Today, the Grid community agrees that it is not efficient to devise scalable Grid 
resource discovery based on a centralized or hierarchical approach when a large 
number of Grid hosts, resources, and users have to be managed, also because of the 
heterogeneity of such resources.  

Recently, super-peer networks have been proposed to achieve a balance between 
the inherent efficiency of centralized search, and the autonomy, load balancing and 
fault-tolerant features offered by distributed search.  In [13], performance of super-
peer networks is evaluated, and rules of thumb are given for an efficient design of 
such networks: the objective is to enhance the performance of search operations and 
at the same time to limit bandwidth and processing load. In [7] a general mechanism 
for the construction and the maintenance of a superpeer network is proposed and 
evaluated. A gossip paradigm is used to exchange information among peers and 
dynamically decide how many and which peers can efficiently act as superpeers. 

In [8] both resources and the content stored at peers are described by means of 
RDF metadata. Routing indices located at super-peers use such metadata to perform 
the routing of queries expressed through the RDF-QEL query language. Puppin et al. 
[9] proposed a Grid Information Service based on the super-peer model and its 
integration within OGSA. The Hop Counting Routing Index algorithm is used to 
exchange queries among the super-peers and in particular to select the neighbour 
super-peers that offer the highest probability of success.  

3   A Super-Peer Model for Grids 

The super-peer model can be advantageously exploited in Grid systems for the 
deployment of information and discovery services. To maximize the efficiency of the 
super-peer model in Grids, it is useful to compare the characteristics of Grids and P2P 
networks. 

(i) Grids are less dynamic than P2P networks, since Grid nodes and resources often 
belong to large enterprises or public institutions and security reasons generally require 
that Grid nodes authenticate each other before accessing respective resources. 

(ii) Whereas in a P2P network users usually search for well defined resources (e.g. 
MP3 or MPEG files), in Grid systems they often need to discover software or 
hardware resources that match an extensible set of resource descriptions. 
Accordingly, while structured protocols, e.g. based on distributed indices, are usually 
very efficient in file sharing P2P networks, unstructured or hybrid protocols seem to 
be preferable in largely heterogeneous Grids. Another consequence is that the 
performance of a discovery service is influenced by the distribution of classes of 
resources, a class of resource being a set of resources that satisfy some given 
constraints on resource properties, as discussed in Section 4. 

(iii) In a Grid, it is feasible to identify, for each VO, a subset of powerful nodes 
having high availability properties; these nodes can be used as super-peers. 

These considerations guided us through the design of membership and discovery 
services. For the sake of simplicity we suppose that only one super-peer is associated 
to each VO, i.e. we will not consider redundant super-peers. Whenever a VO wants to 
join the Grid, the corresponding super-peer must know the address of at least another 
super-peer and explores the topology of the system to constitute its neighbour set. A 



 A Super-Peer Model for Building Resource Discovery Services in Grids 135 

 

super-peer accomplishes two main tasks: it is responsible for the communications 
with the other VOs, and it maintains metadata about all the nodes of the local VO. 
The set of nodes belonging to a VO (i.e. the super-peer and the ordinary nodes) is also 
referred to as a cluster in the following. 

As shown in Figure 1, the super-peer model exploits the centralized/hierarchical 
information service provided by the Grid infrastructure of the local VO: e.g. the 
MDS-2 service of GT2 [2] or the Index Service of GT3 [3]. It is not necessary that the 
same Grid framework is installed in all the VOs: it is only required that the super-
peers are able to communicate with each other using a standard protocol and that each 
super-peer knows how to interact with the information service of the local VO. 

The resource discovery protocol, exploited by the discovery service, is defined as 
follows. Query messages generated by a Grid node are forwarded to the local super-
peer. The super-peer examines the local information service to verify if the requested 
resources are present in some of the nodes belonging to the local VO, and in this case 
sends to the requesting node a queryHit containing the IDs of those nodes.  

Furthermore, the super-peer forwards a copy of the query to a selected number of 
neighbour super-peers, which in turn contact the respective information systems and 
so on. Whenever a resource, matching the criteria specified in the query, is found in a 
remote VO, a queryHit is generated and is forwarded along the same path back to the 
requesting node, and a notification message is sent by the remote super-peer to the 
node that handles the discovered resource. 

The set of neighbours to which a query is forwarded is determined through an 
empirical approach. Each super-peer maintains statistics on the number of queryHits 
received from all the known super-peers. The super-peer forwards a query to the 
neighbour super-peers from which the highest numbers of queryHits were received in 
the past. The maximum number of neighbours to which a query is forwarded can be 
tuned on the basis of the network configuration, as discussed in Section 4. 

S

Super-peer 1
GT2
GIIS

VO-1 2 GT3 Index
Service

Super-peer 2

VO-2

3 GT3 Index
Service

Super-peer 3

VO-3

 

Fig. 1. A Grid network configuration exploiting the super-peer model 

A number of techniques are adopted to decrease the network load. (i) The number 
of hops is limited by a Time-To-Live (TTL) parameter; the TTL is decremented when 
the query is forwarded between two super-peers, i.e. between two different VOs. (ii) 
Each query message contains a field used to annotate the nodes that the query 
traverses along its path. A super-peer does not forward a query to a neighbour super-



136 C. Mastroianni, D. Talia, and O. Verta 

 

peer that has already received it. (iii) Each super-peer maintains a cache where it 
annotates the IDs of the last received query messages. A super-peer discards the 
queries that it has already received. (iv) Whenever a super-peer, after receiving a 
query, finds several resources that satisfy the query constraints in the local VO, it 
constructs and forwards only one queryHit message containing the IDs of the nodes 
that own those resources. Techniques (ii) and (iii) are used to avoid the formation of 
cycles in the query path: technique (ii) can prevent cycles only in particular cases (i.e. 
when a query, forwarded by a super-peer, is subsequently delivered to the same super-
peer), whereas technique (iii) can remove cycles in all the other cases (e.g., when two 
copies of a query, sent by a super-peer A to two distinct super-peers B and C, are 
subsequently both delivered to the remote super-peer D). 

Index
Service

VO
Superpeer

Service

GS1 GS2 ...
Service

Data
Service

Data

Grid Services

GT3
Aggregators

Network
Module

Remote
VOs

Remote
VOs

 

Fig. 2. Implementation of the super-peer model using the GT3 framework 

// v = max number of neighbours 
// q.list: list of hosts traversed by the query q        
// q.sender: neighbour super-peer from which q has been received 
// q.id: query identifier 
// q.ttl: current value of ttl 
For each incoming query q: 
  If <q.id is in the cache> then queryInCache:=true; 
  Else <put q.id in the cache> 
  q.ttl -= 1; 
  if ((q.ttl>0) and not queryInCache) 
  {  
    select at most v best neighbours 
    for each selected neighbour n: 
      if <n is not in q.list> { 
        <Add this super-peer to q.list> 
  forward a copy of q to n 
      } 
  } 
  <ask the local information service for resources matching q> 
  if <there are such resources> { 
    send to q.sender a queryHit containing the IDs of the nodes owning 
      the discovered resources; 
    send notifications to the hosts owning the resources; 
  } 

Fig. 3. The resource discovery algorithm executed by the Superpeer Service 

Figure 2 shows how the GT3 information service is used in a VO to implement the 
super-peer model. Such architecture extends the one presented in [11]. The Index 



 A Super-Peer Model for Building Resource Discovery Services in Grids 137 

 

Service subscribes to the Service Data contained in the Grid Services published on the 
nodes of the local VO. Specialized GT3 aggregators periodically collect Service Data, 
which typically contain metadata information about Grid Services, and send it to the 
Index Service. The Superpeer Service is a static Grid Service that processes requests 
coming from the remote VOs, queries the Index Service to find resources matching 
the query constraints, and forwards query and queryHit messages through the 
Network Module. Minor modifications will be needed in this architecture to replace 
the GT3 framework with the WSRF-based Globus Toolkit 4 that is going to be 
released. 

A simplified version of the resource discovery algorithm, executed by a Superpeer 
Service when receiving a query from an external VO, is reported in Figure 3. 

4   Simulation Analysis 

The performance of the resource discovery protocol, described in Section 3, was 
analyzed in order to assess its effectiveness in a Grid environment and estimate the 
influence of protocol parameters on performance indices. An event-based object-
oriented simulator was used both for modelling the construction of a super-peer 
network, driven by the membership protocol, and for simulating the behaviour of the 
resource discovery protocol in very large Grid networks. 

4.1   Simulation Parameters and Performance Indices 

The performance of a resource discovery protocol depends on the distribution of 
resources among the hosts of a network. As mentioned in Section 3, in Grid systems 
users often need to discover resources that belong to classes of resources, rather than 
well defined resources. A class of resources is defined as the set of resources that 
satisfy some given constraints on resource properties. For example, when building a 
distributed data mining application [6], a user may need to discover a software that 
performs a clustering task on a given type of source data. Therefore the performance 
of a resource discovery protocol in a Grid is strictly related to the categorization of 
heterogeneous resources in a given application domain. 

We assumed, as in [5], that the average number of elementary resources offered 
by a single node (peer or super-peer) remains constant as the network size increases. 
This average value was set to 5, and a gamma stochastic function was used to 
determine the number of resources owned by each node. However, as the network 
size increases, it becomes more and more unlikely that a new node connecting to the 
network provides resources belonging to a new resource class. Therefore, we assumed 
that the overall number of distinct resource classes offered by a network does not 
increase linearly with the network size. We adopted a logarithmic distribution: the 
number of resource classes offered by a Grid network with N nodes (where N is 
comprised between 10 and 10000) is equal to 5*(log2N)^2. As an example, a Grid 
having 1024 nodes provides 5120 resources belonging to 500 different classes. 

Table 1 reports the simulation parameters and the performance indices used in our 
analysis. During a simulation run, a node randomly selects, with a frequency 
determined by the mean query generation time MQGT, a resource class, and forwards a 



138 C. Mastroianni, D. Talia, and O. Verta 

 

query for resources belonging to that class. Among the performance indices, Nres is 
deemed to be more important than the probability of success Psucc, since it is often 
argued that the satisfaction of the query depends on the number of results (i.e. the 
number of discovered resources) returned to the user that issued the query: for 
example, a resource discovery operation could be considered satisfactory only if the 
number of results exceeds a given threshold. The message load L should obviously be 
kept as low as possible. This performance index often counterbalances the success 
indices, in the sense that high success probabilities sometimes are only achievable at 
the cost of having high elaboration loads. The ratio R is an index of efficiency: if we 
succeed in increasing the value of R, a higher relative number of queryHit messages, 
containing useful results, is generated or forwarded with respect to the overall number 
of messages. Response times are related to the time to satisfaction experienced by a 
user: to calculate them, we assumed that the mean hop time is equal to 10 msec for an 
internal hop (i.e. a hop between a peer and the local super-peer) and to 50 msec for an 
external hop (i.e. a hop between two super-peers). 

Table 1. Simulation parameters and performance indices 

 

N

5(log2N)
2

 

th

4.2   Performance Evaluation 

The proposed discovery protocol was first analyzed for a Grid network having a fixed 
number of nodes (10000, including super-peers and simple peers), and a mean cluster 
size C ranging from 1 (corresponding to a fully decentralized P2P network, in which 
peers and super-peers coincide) to 5000 (corresponding to a network composed of 
two clusters). We tested different values of v and TTL, in order to analyze how those 
parameters can be tuned to improve performance when the mean cluster size is 



 A Super-Peer Model for Building Resource Discovery Services in Grids 139 

 

known. Notice that an estimated value of the mean cluster size can be computed by 
exchanging information among super-peers. 

Results shown in Figures 4-6 are obtained with v equal to 4. Figure 4(a) reports the 
mean number of discovered resources versus C, for TTL values ranging from 1 to 5. It 
appears that performance values increase with the TTL value as long as C is lower than 
1000. Beyond this threshold, curves related to different values of TTL tend to 
converge. This information can be exploited when tuning the value of TTL. For 
example, if we want to maximize the number of results, with a value of C equal to 
100, the TTL value should be 5 or higher, whereas if the value of C is higher than 500, 
it is almost ineffective to increase the TTL value beyond 3. The very small number of 
results obtained for a decentralized network, i.e. with a cluster size equal to 1, 
demonstrates the great advantage that comes from the use of the super-peer model. 
From Figure 4(b) we see that a high processing load at super-peers is a toll to pay if a 
high number of results are desired. Indeed the curves of message load show a trend 
similar to the trend observed in Figure 4(a), except for networks having very large 
clusters, in which a high percentage of resources is discovered within the local VO.  

A trade-off should be reached between maximizing the number of results and 
minimizing processing load; to this aim, we calculated the R index at super-peers. 
From Figure 5 we see that R, for a fixed value of TTL, initially increases with C, as a 
result of the fact that the number of incoming queryHits experiences a higher increase 
rate than the overall number of messages. Beyond a threshold value of C, which 
depends on the value of TTL, an opposite trend is observed; the number of received 
queryHits falls down, due to the fact that a consistent percentage of peers are internal, 
i.e. situated within the local VO. Remind that a super-peer receives queryHits only 
from remote VOs, since it knows the resources offered by the local VO. Values of R 
converge to 1/3 with C=5000, i.e. with only two clusters in the network, for the 
following reason: each super-peer receives comparable numbers of internal queries 
(queries from local peers), external queries (queries from the other super-peer) and 
queryHits, because the numbers of peers in the two clusters are similar and almost 
each query directed to the other super-peer is followed by one queryHit message. 

Fig. 4. Mean number of results (a) and message load at super-peers (b) w.r.t. the cluster size, 
for different values of TTL and v=4 

 

a) b)  



140 C. Mastroianni, D. Talia, and O. Verta 

 

Fig. 5. QueryHits/messages ratio R at super-peers w.r.t. the cluster size, calculated for different 
values of TTL and v=4 

Fig. 6. Response times w.r.t. the cluster size, with v=4. (a): average response times for different 
values of TTL; (b): comparison between Tr, Tr(1), Tr(10) and Tr(L), with TTL=4 

Figure 5 helps to identify, for a given value of C, the TTL value that maximizes the 
efficiency of the network. As the mean cluster size increases, the optimal value of TTL 
becomes smaller and smaller. For example, the optimal value of TTL is equal to 3 if C 
is 100, and to 2 if C is 1000. It is interesting to note that the highest values of R are 
obtained for cluster sizes comprised between 200 and 500 and a TTL value equal to 2.  

Values of response times versus the cluster size are reported in Figure 6. Figure 
6(a) shows that the average response time increases with the TTL value and decreases 
with the cluster size. Moreover, it is confirmed that a high value of TTL is 
advantageous only for small/medium cluster sizes. In Figure 6(b), different response 
time indices are compared (TTL is set to 4): plotted curves are related to the average 
response time, the response times of the first and the 10th queryHit, and the response 
time of the last queryHit received for a given query. The values of these indices 
decrease as the cluster size increases, for two main reasons: (i) queries and queryHits 
traverse a smaller number of super-peers and (ii) a higher fraction of queryHits are 
internal ones, which are statistically received earlier than external queryHits. The 
Tr(L) index is an exception: it slightly increases as the cluster size increases form 2 to 
100. The reason is that within that range of the cluster size the number of results 

 

a) b)  



 A Super-Peer Model for Building Resource Discovery Services in Grids 141 

 

increases very rapidly, therefore there is a higher and higher probability that the last 
query, which is normally an external query, experiences a long response time. 

Figure 7 reports the values of Nres and R obtained for a TTL value equal to 4 and a 
variable number of neighbours v, in order to evaluate how v can be tuned for a fixed 
value of TTL. The number of results significantly increases with the value of v only if 
the cluster size is lower than 100; with larger clusters, a value of v equal to 4 is 
sufficient to achieve a high number of results. Figure 7(b) shows that the values of R 
are maximized with v equal to 4. We can conclude that it is not convenient to set v to 
a value higher than 4 if the cluster size exceeds 100, because we would increase the 
network and processing load without increasing the number of results. 

Fig. 7. Mean number of results (a), and queryHits/messages ratio R at super-peers (b) w.r.t. the 
cluster size, for different values of v, and TTL=4 

Fig. 8. Mean number of results (a) and queryHits/messages ratio at super-peers (b) w.r.t. the 
network size, for different values of TTL, and v=4 

Finally, the performance of the super-peer model was analyzed for different 
network sizes. The mean cluster size was set to 10, while the number of Grid nodes 
was varied from 10 (corresponding to a super-peer network having only one cluster) 
to 10000. The value of v was set to 4. It appears from Figure 8(a) that an increase in 
the TTL value allows for increasing the number of results only in networks having 

 

a) b)  

a) b)  



142 C. Mastroianni, D. Talia, and O. Verta 

 

more than 1000 nodes. Moreover, Figure 8(b) shows that the optimum TTL value, i.e. 
the value that maximizes R, increases with the network size. For example, in a 
network with 1000 nodes the maximum value of R is obtained with a TTL equal to 3, 
whereas in a network with 10000 nodes R is maximized with a TTL equal to 5. Thus 
TTL should be set to a value equal or greater than 5 only if the number of nodes 
exceeds 5000; for smaller networks, tuning decisions should take into account that a 
high value of TTL can slightly increase the number of results but surely decreases the 
overall efficiency. 

5   Conclusions 

Resource discovery in Grid environments is currently based on centralized models. 
Because such information systems are built to address the requirements of 
organizational-based Grids, they do not deal with more dynamic, large-scale 
distributed environments. The number of queries in such environments makes a 
client-server approach ineffective. Future large-scale Grid systems should implement 
a P2P-style decentralized resource discovery model. 

The super-peer model is a novel approach that facilitates the convergence of P2P 
models and Grid environments, since a super-peer serves a single Virtual 
Organization (VO) in a Grid and at the same time connects to other super-peers to 
form a peer network at a higher level. This paper proposed an approach based on the 
super-peer model for handling membership management and resource discovery 
services in a Grid. In particular, a resource discovery protocol was presented and 
discussed. We reported simulation results obtained with different network 
configurations and evaluated the influence of protocol parameters (such as the number 
of neighbour super-peers and the time to live) on performance indices. Performance 
evaluation allows for efficiently tuning the values of protocol parameters when a real 
Grid must be deployed. 

References 

1. Foster, I., Kesselman, C., Nick, J., S. Tuecke, S.: Grid services for distributed system 
integration, IEEE Computer, 35(6) (2002) 37-46 

2. The Globus Alliance: Information Services in the Globus Toolkit 2 Release, 
http://www.globus.org/mds/mdstechnologybrief_draft4.pdf 

3. The Globus Alliance: Information Services in the Globus Toolkit 3 Release, 
http://www.globus.org/mds 

4. The Gnutella Protocol Specification v.0.4. http://www9.limewire.com/developer/ 
gnutella_protocol_0.4.pdf 

5. Iamnitchi, A., Foster, I., Weglarz, J., Nabrzyski, J., Schopf, J., Stroinski, M.: A Peer-to-
Peer Approach to Resource Location in Grid Environments, eds. Grid Resource 
Management, Kluwer Publishing (2003) 

6. Mastroianni, C. Talia, D., Trunfio, P.: Managing Heterogeneous Resources in Data 
Mining Applications on Grids Using XML-Based Metadata, Proc. of International Parallel 
and Distributed Processing Symposium (IPDPS), Nice, France (2003) 



 A Super-Peer Model for Building Resource Discovery Services in Grids 143 

 

7. Montresor, A.: A Robust Protocol for Building Superpeer Overlay Topologies, Proc. of 
the International Conference on Peer-to-Peer Computing, Zurich, Switzerland (2004) 

8. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Loser, 
A.: Super-peer-based routing and clustering strategies for RDF-based peer-to-peer 
networks, Proc. of World Wide Web Conference, Budapest, Hungary (2003) 536-543 

9. Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A Peer-to-peer 
Information Service for the Grid, Proc. of International Conference on Broadband 
Networks, San Jose, CA, USA (2004) 

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.: Chord: a scalable 
peer-to-peer lookup service for internet applications, Proc. of ACM SIGCOMM, San 
Diego, CA, USA (2001) 

11. Talia, D., Trunfio P.: A P2P Grid Services-Based Protocol: Design and Evaluation, Proc. 
of the European Conference on Parallel Computing (EuroPar), LNCS 3149 (2004) 

12. The Web Services Resource Framework, http://www.globus.org/wsrf/ 
13. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network, 19th Int'l Conf. on Data 

Engineering, IEEE Computer Society Press, Los Alamitos, CA, USA (2003) 



Ontology-Based Grid Index Service for
Advanced Resource Discovery and Monitoring

Said Mirza Pahlevi and Isao Kojima

National Institute of Advanced Industrial Science and Technology (AIST),
Grid Technology Research Center,
Tsukuba, Ibaraki 305-8568, Japan

Abstract. This paper proposes a framework for advanced Grid resource
discovery and monitoring. In the framework, a service’s state data are
mapped into ontologies so that service owners may enrich them with se-
mantic and other useful data, while keeping the state data unchanged.
The Index Service, based on the OGSA framework, aggregates and main-
tains the ontology data, and allows users to query the data by using
ontology-based query languages. The Index Service also provides a Con-
tinual Query mechanism that enables users to submit ontology queries as
subscription messages and to be notified when the query results change.
This paper also proposes an automatic ontology update mechanism, to
keep the ontology data up-to-date.

1 Introduction

The Open Grid Services Architecture (OGSA) [1] constitutes a conceptual frame-
work for Grid computing that is based on Web services concepts and technolo-
gies. It provides standard mechanisms for discovering Grid service instances.
The mechanisms define a standard representation for information about Grid
service instances, denoted as serviceData. Globus Toolkit 3.2 (GT3.2)1 [3] offers
a Base Service, known as the Index Service, that provides the functionality within
which serviceData can be collected, aggregated, and queried. Clients access the
aggregated serviceData by using either of two mechanisms, findServiceData (a
pull operation) or subscription-notification (a push operation). Clearly, the In-
dex Service offers users considerable help with respect to resource discovery,
selection, and monitoring.

The elements of serviceData (SDEs) are defined in a service’s definition of
the service interface, by means of an XML schema. As a result, serviceData
constitutes a structured document but imposes no semantic constraints on the
meaning of the document. Because it has no semantic constraints, serviceData

1 GT3.2 implements the Open Grid Service Infrastructure (OGSI), which addresses
detailed specifications for OGSA. Recently, the OGSI has been refactored to the
WS-Resource Framework (WSRF) [2]. Since the WSRF retains, essentially, all of the
OGSI concepts, the framework proposed here can easily be adapted to the WSRF.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 144–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ontology-Based Grid Index Service 145

cannot easily be shared across applications or domains, nor can it easily be pro-
cessed by automated agents/tools. The lack of semantic constraints also makes
it difficult to implement automated reasoning, which could improve resource
discovery and selection. For example, suppose there are Grid Data Service Fac-
tories (GDSFs)2 that provide access to relational databases that contain, in turn,
information about computer-related books. Each factory provides access to one
relational database, and each database covers one of the following topics: compil-
ers, firewalls, and biometrics. To facilitate resource discovery, the GDSFs provide
a databaseSchema SDE that contains logical schema of all tables existing in the
database. Since the SDE contains no semantic information, it would be difficult
to perform automatic resource discovery and selection. For example, it would be
difficult to automatically find factories that provide access to tables that have
a column containing a specific domain value, such as a book’s title. It would
be difficult to find factories that provide access to databases containing books
that address a specific topic such as biometrics, or a more general topic such as
computer security, a topic that is related to both biometrics and to firewalls.

In order to enrich serviceData with semantic constraints, one could directly
modify the SDE definition in the service specification. However, that would not
constitute a suitable approach because of the following. First, the modifica-
tion would affect all clients that refer to the serviceData. Second, adding ”non-
standard“ elements to the SDE definition would require communicating the new
elements to clients and, currently, there is no efficient way to publish the seman-
tics of new elements to clients. Third, the user may not have the access privileges
to update the service specification or to recompile and/or redeploy the service.

In GT3.2, the subscription-notification can be performed only for the entire
SDE. An Index Service client cannot specify a SDE’s part, or element of inter-
est, in order to receive notification only when that part changes. The client is
forced to accept notification messages pertaining to the entire SDE, regardless
of whether the monitored value, which may be a small part of the SDE, has
changed.

This paper proposes a framework for creating, maintaining, querying, and
monitoring semantic serviceData/SDEs. Some domain-specific ontologies are de-
fined, and SDE values of services are mapped onto the property values of the
ontologies. In the framework, each service has a Service Data Provider (SDP),
which stores the service’s semantic serviceData in an SDE. The Index Service
aggregates the semantic serviceData by subscribing to the SDE and storing the
serviceData in an ontology repository. To keep the semantic serviceData up-to-
date, an automatic ontology update mechanism is proposed. The mechanism
makes use of the subscription-notification mechanism and stores access paths to
the original SDE values in the semantic serviceData. Index Service clients for-
mulate queries with an ontology-based query language for information discovery
and exploration of the serviceData’s semantic parts.

2 GDSFs are the part of the OGSA-DAI software [4] that implements the Grid Data
Service Specification [5].



146 S.M. Pahlevi and I. Kojima

The Index Service also provides a Continual Query (CQ) mechanism for ad-
vanced resource monitoring. A CQ is a standing query that monitors the update
of interest and returns results whenever the update has satisfied a specified condi-
tion. With the mechanism, a client can send ontology queries as subscription mes-
sages and receive (new) query results whenever monitored values have changed.

The rest of the paper is organized as follows. Section 2 briefly describes
some semantic web technologies. Section 3 describes related work. Our proposed
framework and its implementation are presented in Section 4. We conclude our
paper in Section 5.

2 Resource Description Framework (RDF) and Ontology

The Resource Description Framework (RDF) [6] is a W3C Recommendation that
is particularly intended for representing metadata about Web resources. RDF
statements, also called triples, consist of three parts: subject, which identifies
the item the statement is about; predicate, which identifies the property of the
item that the statement specifies; and object, which identifies the value of that
property. The RDF Schema (RDFS) extends the RDF standard by providing
the means to specify vocabularies/terms used in RDF statements. To do this,
the RDFS pre-specifies a body of terminology, such as Class, subClassOf, and
Property, which forms a basis for building a hierarchical structure.

RDF and RDFS standards are widely used to build ontologies. An ontology
(or ’shared understanding‘) consists of explicit formal specifications of terms
in the domain, and the relations between them. An ontology allows people or
software agents to share a common understanding of the structure of information.

For effective storage and query of ontologies, use of a high level query language
is essential. The numerous existing ontology repositories include Jena [7] and
Sesame [8]. For querying ontologies, the repositories support query languages
such as RDQL [9] and SeRQL [10].

3 Related Work

Ontology-based Matchmaker (OMM) [11] is an ontology-based resource selector
for solving resource matching in the Grid. It consists of three components: on-
tologies, used for expressing resource advertisements and job requests; domain
background knowledge, which captures additional knowledge about the domain;
and matchmaking rules, which define the matching constraints based on the on-
tologies and background knowledge. In OMM, resource providers periodically
advertise their resources to a matchmaker by sending advertisement messages,
based on a resource ontology. Requesters formulate a job request to the match-
maker, basing it on a request ontology. On receiving a job request, the match-
maker activates the matching rules to find a list of potential matches.

Our work differs from the OMM, in the following aspects. First, the OMM
requires resource providers to construct advertisements and to send them, peri-



Ontology-Based Grid Index Service 147

odically, to the matchmaker, whereas our system uses an automatic service state
mapping and ontology update operation. Second, OMM uses different ontologies
for resource advertisements and job requests, while ours does not. Using different
ontologies for the two kinds of processes results in the need to define rules that
match advertisements and job requests. As a result, updating ontology vocab-
ularies results in a modification of the matching rules. In addition, the OMM
does not allow easy use of other rule-based engines, because the matching rules
and background knowledge must be transformed into the engine’s rules. By con-
trast, our system can easily use the existing ontology repositories and explore
the power of given ontology-based query languages. Third, the OMM lacks a CQ
mechanism, so the requestor cannot easily and effectively monitor the resource
advertisements.

Several approaches have already been suggested for adding semantics to the
Web service standard for improved service discovery. METEOR-S [12] is a frame-
work for semi-automatically marking up Web service descriptions with ontolo-
gies. It provides algorithms to match and annotate WSDL files with relevant
ontologies. By contrast, UDDI-MT [13] deals with Web service directories. It
enables users to specify metadata for the information stored in the directories.
The metadata are stored (locally) in a Jena repository and can be queried us-
ing RDQL. UDDIe [14] also adds metadata to the directories data but with a
service leasing mechanism. These systems do not deal with the service state of
Grid services but, rather, with Web service standards.

Continual Query for Web scale applications has been studied in the lit-
erature. The goal is to transform a passive web into an active environment.
OpenCQ [15] allows users to specify the information they want to monitor
by using an SQL-like expression with a trigger condition. Whenever the in-
formation of interest becomes available, the system immediately delivers it to
the users. The rest of the time, the system continually monitors the arrival
of the desired information and pushes it to the users as it meets a threshold.
NiagaraCQ [16] goes further, by grouping CQs that have similar structures so
they can share common computation. Our CQ mechanism is different in that
it monitors ontology instances/data3. Hence, our system uses RDQL to for-
mulate CQs. Furthermore, the mechanism is adapted to the Grid environment
because it uses the OGSA subscription-notification mechanism to deliver the
CQ execution results.

4 Proposed Framework

4.1 General and Service State Ontologies

To add semantic information to serviceData, we map the SDE values into on-
tology property values. Ontologies used in this framework can be categorized

3 The term ’ontology instance‘ corresponds to the RDF (facts), while the term
’ontology‘ (without instance) corresponds to the RDF schema.



148 S.M. Pahlevi and I. Kojima

oisf:Service

oisf:hasAccessPoint

oisf:hasName

oisf:Index

oisf:ServiceInf

oisf:hasType

oisf:LocationInf

oisf:country

oisf:vo

String

String

String
String

String*

wsdl:PortType glue:Host db:Database

…

oisf:Service

oisf:hasAccessPoint

oisf:hasName

oisf:Index

oisf:ServiceInf

oisf:hasType

oisf:LocationInf

oisf:country

oisf:vo

String

String

String
String

String*

wsdl:PortType glue:Host db:Database

…

Fig. 1. General Ontology

db:Database

db:Xml db:Rdb

db:ColumnSet

db:Column db:Table db:View

oisf:Semantics db:Webdb db:Local

db:Database

db:Xml db:Rdb

db:ColumnSet

db:Column db:Table db:View

oisf:Semantics db:Webdb db:Local

Fig. 2. Database Service Ontology

into two types: General Ontology and Service State Ontology. The former is for
service-general information, and the latter is for service-specific information.

Fig. 1 shows part of the General Ontology. The part shown defines certain
classes and properties as including general service information, such as service
location (country and VO names), service types (e.g., computing and database
service), service portType, service access point(s), and service name. Note that
the oisf:hasState property refers to Service State Ontology instances. Currently,
we define two Service State Ontologies: Database Service Ontology (shown in
Fig. 2) and Computing Service Ontology. The Database Service Ontology is
based on a database logical schema defined by the CIM-based Grid Schema
Working Group of GGF [17]. The Computing Service Ontology is based on the
GLUE schema defined by the EU-DataTAG and US-iVDGL projects [18].

4.2 SDE Value Mapping and Semantic ServiceData Creation

SDE values (in serviceData) are mapped into property values of a Service State
Ontology. To this end, each SDE value is associated with a specific class in the
ontology, called the SDEInfo class. This class has the following properties.

– oisf:value, which stores the SDE value.
– oisf:valueState, which stores the characteristics of the SDE value (’static‘ or

’dynamic‘). This property is used to efficiently update the oisf:value property
value when the corresponding SDE value changes (see Section 4.3).

– oisf:definedIn, which refers to a wsdl:portType class instance.
– oisf:hasSDEMapping, which refers to an SDEMapping class instance. This

class instance stores the access path information of the SDE value, such as
the SDE name, the XPath expression to retrieve the value from the SDE,
and the XML namespace mapping used in the XPath expression.

Fig. 3 shows the instances of db:Rdb, db:Driver (i.e., SDEInfo class), and
oisf:SDEMapping classes defined in the Database Service Ontology. db:Driver



Ontology-Based Grid Index Service 149

db:Rdb_instance

db:driver_instance

oisf:SDEMapping_instance

oisf:SDEMapping_instance

wsdl:PortType_instance

oisf:value= org.gjt.mm.mysql.Driver

oisf:valueState= static

oisf:definedIn=

oisf:hasSDEMapping=

oisf:sdeName= driver

oisf:xpath=

oisf:nsMapping=

oisf:sdeNameNS=

/ns1:driver/ns2:driverImplementation
xmlns:ns1=http://ogsadai.org.uk/namespace…

http://ogsadai.org.uk/namespaces/2003/07...

db:Rdb_instance

db:driver_instance

oisf:SDEMapping_instance

oisf:SDEMapping_instance

wsdl:PortType_instance

oisf:value= org.gjt.mm.mysql.Driver

oisf:valueState= static

oisf:definedIn=

oisf:hasSDEMapping=

oisf:sdeName= driver

oisf:xpath=

oisf:nsMapping=

oisf:sdeNameNS=

/ns1:driver/ns2:driverImplementation
xmlns:ns1=http://ogsadai.org.uk/namespace…

http://ogsadai.org.uk/namespaces/2003/07...

Fig. 3. SDE mapping

Algorithm: Maintain semanticData SDE.
Input: Ontology instances (semantic serviceData), inst.
Method:
1: Put inst into semanticData SDE and publish the SDE to Index Service;
2: Extract SDE names contained in Service State Ontology instances (∈ inst);
3: Subscribe to the extracted SDEs;
4: On receiving an SDE update message, mes,
5: sName ← extract SDE name from mes;
6: Get SDEInfo instance (∈ inst) where value(SDEInfo.oisf:valueState) =’dynamic‘;
7: For each obtained SDEInfo instance, sInfo,
8: sMapping ← get its SDEMapping instance (∈ inst);
9: If value(sMapping.oisf:sdeName) = sName,
10: xpath ← get XPath expression from sMapping;
11: val ← apply xpath to mes;
12: sInfo.oisf:value ← val;

Fig. 4. semanticData SDE maintenance algorithm

instance corresponds to the driver element content in the serviceData of a
database service (i.e., GDSF). It stores a driver implementation value in the
oisf:value property. The XPath expression in oisf:SDEMapping instance spec-
ifies how to retrieve the value from the driver element.

Ontology instances (semantic serviceData) of a service are created as follows.
General Ontology instances are created manually/semi-automatically by a re-
source/service owner, using ontology editors such as Protëgë [19]. Service State
Ontology instances are created, largely automatically, by the use of a simple
parser. The parser reads a mapping file that maps each SDE value to a corre-
sponding SDEInfo class in the ontology.

4.3 Service Data Provider (SDP)

To hold ontology instances, each service instance is associated with a Service
Data Provider (SDP). An SDP is a transient service that has a special SDE,
known as semanticData, to store semantic serviceData of the represented service.



150 S.M. Pahlevi and I. Kojima

Fig. 4 shows an algorithm used by an SDP to automatically maintain its se-
manticData SDE. Note that value(inst.oisf:prop) denotes the value of property
oisf:prop of class instance inst. On receiving ontology instances, an SDP stores
the instances into the semanticData SDE and publishes the SDE to Index Ser-
vice (line 1). Publishing the SDE to Index Service makes the SDE available to
be queried by clients. The SDP then extracts all distinct SDE names contained
in the Service State Ontology instances (line 2). This is accomplished by getting
oisf:sdeName property values from SDEMapping class instances. Next, the SDP
sends subscription messages to the (represented) service in order to subscribe to
the extracted SDEs (line 3). When the service updates an SDE value, the SDP
receives a notification message containing the updated SDE (line 4). The SDP
then extracts the SDE name from the message (line 5).

Next, the SDP updates the stored ontology instances (lines 6–12). To do
this, it first gets all SDEInfo class instances for which the oisf:valueState prop-
erty values are ’dynamic‘ (line 6). Then, for each obtained SDEInfo instance,
the SDP gets the SDEMapping instance referred by the SDEInfo class instance
(i.e., value(SDEInfo.oisf:hasSDEMapping)) (line 8). If the SDEMapping instance
corresponds to the SDE contained in the notification message, then the SDP gets
the XPath expression from the mapping instance (line 10), applies the expression
to the notification message (line 11), and finally puts the obtained result/value4

into the oisf:value property of the SDEInfo instance (line 12).
An SDP will be destroyed when the represented service stops. Before the

SDP is destroyed, an unpublish message is sent to the Index Service to remove
the service’s semantic serviceData from the Index Service’s repository.

4.4 Ontology-Based Grid Index Service (Ont-GIS)

RepositoryMaintenance. The Index Service (Ont-GIS) has an ontology repos-
itory, which it allows clients to query by using an ontology-based query language.
Queries are formulated based on the General and Service State Ontologies. We use
Jena [7] as the ontology repository and RDQL [9] as the query language.

Fig. 5 shows the Ont-GIS architecture. Ont-GIS collects semanticData SDEs
from several SDPs and stores their contents in the repository. The content of
each semanticData SDE is stored as a Jena persistent model5. On receiving a
publish request from an SDP, the Subscription Manager pulls the semanticData
SDE from the SDP and stores the content by passing it to the Update Manager.
The Subscription Manager then subscribes to the semanticData SDE and waits
for a notification change message.

On receiving a notification change message, the Subscription Manager passes
update data to the Update Manager and CQ Manager. Based on the update data,

4 Since the XPath expression always points to a specific SDE value, the result of its
application is always singular.

5 A Jena Model is a (Java) class instance that provides operations to manipulate
ontology instances stored in the model. A model backed by a database engine is
called a persistent model.



Ontology-Based Grid Index Service 151

Ontology
Manager

CQ
Manager

ontology
repository

Subscription
Manager

SDP1

SDPk

…

hash
table

Update
Manager

service1

servicek

Query
Processing
Manager

users/clients

Ontology
Manager

CQ
Manager

ontology
repository

Subscription
Manager

SDP1

SDPk

…

hash
table

Update
Manager

service1

servicek

Query
Processing
Manager

users/clients

Fig. 5. Ont-GIS Architecture

the Update Manager performs an ontology update operation with the assistance
of the Ontology Manager. The CQ Manager executes CQs that are related to the
update data. Update data consists of an (RDF) resource name, a model ID, and
the updated value. The resource name identifies a resource (i.e., SDEInfo class
instance) for which the oisf:value property value has changed, and the model ID
identifies the model in which the resource is stored.

Query Execution. An RDQL query is executed in a simple manner. On ac-
cepting a query, the Query Processing Manager executes the query by the help
of the Ontology Manager and returns the execution results to the users/clients.

On the other hand, execution of a CQ requires two steps. Fig. 6 shows the
algorithms used by the CQ Manager. The CQ Manager has a hash table to store
CQs and query execution information. Each location in the hash table is a set
so that it can store more than one value. InsertH(k, val) is a hash function that
inserts value val, based on key k. LookupH(k) retrieves an entry (a set) from
the hash table based on key k.

The query subscription process (left algorithm) constitutes the first step in
CQ execution. A client sends a query subscription request to the Query Process-
ing Manager, which, in turn, passes the request to the CQ Manager. The CQ
Manager then creates a unique SDE in Ont-GIS’s serviceData (line 1), executes
the CQ (which is included in the request) with the help of the Query Process-

Algorithm: Register a CQ.
Input: A CQ, cq.
Output: An SDE name.
Method:
1: Create a unique SDE, uSDE;
2: res ← execute cq;
3: mSet ← IDs of models that match cq;
4: For each model ID m ∈ mSet,
5: infSet ← get monitored resources

of m from res;
6: InsertH(m, 〈cq, infSet, uSDE〉);
7: Return uSDE;

Algorithm: Execute a CQ.
Input: resource rn and model ID m.
Method:
1: tSet ← LookupH(m);
2: If tSet is not empty,
3: mtSet ← all tuple from tSet s.t. the

monitored resource set contains rn;
4: For each tuple t ∈ mtSet,
5: res ← execute CQ contained in t;
6: Put res into SDE mentioned in t;

Fig. 6. CQ registration and execution algorithm



152 S.M. Pahlevi and I. Kojima

ing Manager (line 2), and gets Jena model IDs from the execution results (line
3). Next, the CQ Manager updates its hash table. For each matched model ID,
it inserts a tuple into the hash table, with the model ID as a key (lines 4–6).
The tuple consists of the given CQ, the monitored resource name set extracted
from the CQ execution results for the model, and the created unique SDE name.
A monitored resource is a resource (i.e., SDEInfo class instance) for which the
oisf:valueState property value is ’dynamic‘6. Finally, the CQ Manager returns
the unique SDE name to the client (line 7). A client receiving the SDE name
will (immediately) subscribe to the SDE to receive the CQ execution results.

Ontology-Based Grid Index ServiceOntology-Based Grid Index Service

Fig. 7. A GUI for clients

Line ChartLine Chart

Fig. 8. Line chart of processor load

The second step is that of the CQ query execution process (right algorithm).
When the CQ Manager receives the updateData (i.e., resource name and model ID)
fromtheSubscriptionManager, it uses its hash table to search forCQs thatmonitor
the changes of the given model (line 1). If it finds any, the CQ Manager then gets all
tuples, where the monitored resource set contains the given resource name (line 3).
Finally, the CQ Manager executes all CQs contained in the tuples and puts the exe-
cution results into the corresponding SDEs (lines 4–5). Since clients whose CQs are
executedhavesubscribedtotheSDEs,theyreceivetheexecutionresultsthroughno-
tification messages sent by Ont-GIS. It is important to note that because the execu-
tion results are delivered to the clients through theOGSAsubscription-notification
mechanism, Ont-GIS can also collaborate with the GT3.2’s Index Service.

4.5 Implementation

We have implemented the proposed framework using Java. Currently, Ont-GIS is
deployed in GT3.2’s service container and is able to collect semantic serviceData
from computing and database services. Fig. 7 shows a graphical user interface
(GUI) that helps clients construct an RDQL query. The upper and lower search

6 Since CQ always deals with dynamic SDE values, we assume CQ contains triple (?r,
oisf:valueState, ’dynamic‘), where ?r is a variable.



Ontology-Based Grid Index Service 153

forms of the GUI correspond to the General and Computing Service Ontology,
respectively. The GUI also allows clients to submit an RDQL query as either a
pull or a push query (CQ). Fig. 8 shows a line chart of the execution of a CQ,
which monitors the last-1-minute processor load of a resource of the type Host.

5 Conclusions and Future Work

Two clear benefits of enriching serviceData with semantic information are those
of automatic resource discovery and improved search results. Besides allowing
users to explore the semantic parts of the serviceData, Ont-GIS also provides the
CQ mechanism for efficient and effective resource monitoring. This mechanism
uses the OGSA subscription-notification mechanism that enables it to cooperate
with the GT3.2’s Index Service. We are now considering a distributed architec-
ture for Ont-GIS. This reason for this is that the Grid is distributed by nature
and, as such, always deals with a great number of resources.

References

1. Foster, I., et al.: The physiology of the grid: An open grid services architecture for
distributed systems integration. Globus Project (2002)

2. http://www.globus.org/wsrf/.
3. http://www-unix.globus.org/toolkit/.
4. http://www.ogsadai.org.uk.
5. http://www.cs.man.ac.uk/grid-db/documents.html.
6. http://www.w3.org/RDF/.
7. http://jena.sourceforge.net/.
8. Broekstra, J., et al.: Sesame: A generic architecture for storing and querying RDF

and RDF schema. In: Proc. of ISWC 2002. Volume 2342. (2003) 54–68
9. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

10. http://www.openrdf.org/doc/users/ch05.html.
11. Tangmunarunkit, H., et al.: Ontology-based resource matching in the grid—the

grid meets the semantic web. In: Proc. of SemPG03. Volume 2870. (2003) 706–721
12. Patil, A., et al.: METEOR-S web service annotation framework. In: Proc. of the

World Wide Web Conference. (2004) 553–562
13. Miles, S., et al.: Personalised grid service discovery. In: Proc. of 19th Annual UK

Performance Engineering Workshop. (2003) 131–140
14. ShaikhAli, A., et al.: UDDIe: An extended registry for web services. In: Proc.

of Workshop on Service Oriented Computing: Models, Architectures and Applica-
tions. (2003)

15. Liu, L., et al.: Continual queries for internet scale event-driven information delivery.
Knowledge and Data Engineering 11 (1999) 610–628

16. Chen, J., et al.: NiagaraCQ: a scalable continuous query system for Internet
databases. In: Proc. of the ACM SIGMOD Conf. (2000) 379–390

17. https://forge.gridforum.org/projects/cgs-wg.
18. http://www.cnaf.infn.it/ sergio/datatag/glue/.
19. http://protege.stanford.edu.



Grid Service Based Collaboration for VL-e:
Requirements, Analysis and Design

A. de Ridder, A.S.Z. Belloum, and L.O. Hertzberger

Faculty of Science, IvI, University of Amstedam Kruislaan 403,
1098SJ Amsterdam, The Netherlands

{adridder, adam, bob}@science.uva.nl
http://www.vl-e.nl

Abstract. The Virtual Laboratory for e-Science seeks to provide users
with a collaborative environment in which they will be able to work
together across time and space while using Grid technology. In this paper
we will define the requirements for collaboration in the VL-e. An in depth
study of the Userlist, Instant Messenger and Telepointer has been done
and a Grid Service based architecture has been designed for the Userlist
and Instant Messenger as a first step for the VL-e collaborative System.
The architecture consists of three Grid Services and a client. The Services
have been built using the Globus Toolkit [5] in combination with the Java
Shared Data Toolkit [3].

1 Introduction

One of the most interesting developments in computer science must be Grid
technology. By allowing users to share resources on a global scale it promises
virtually unlimited processor power, infinite storage, sharing of large databases,
sharing of expensive equipment, etc.

Grid technology is available through toolkits that provide the user with a
collection of low-level services. These can be used to develop Grid applications.
To harness the strength of Grid technology for a variety of applications and to
make the Grid available to a larger public, the Grid-based Virtual Laboratory
of AMsterdam (VLAM-G) [1] and its follow up the Virtual Laboratory for e-
Science (VL-e) [12] seek to provide a layer between the low-level Grid and the
application layer. The Virtual Laboratory must be capable of handling large
datasets coming from experimental devices regardless of the place and time of
actual readings [12].

The VL-e seeks to provide global collaboration not only by global sharing of
resources, but also by providing a shared-workspace environment that will allow
users to collaborate in real-time. Not only will such an application have to deal
with distributed computing issues, such as concurrency control, it will also have
to deal with issues specifically related to collaboration, such as awareness, GUI
consistency, communication, etc.

The VL-e project will extend the features of its predecessor, the VLAM-G,
where possible. However, since the VL-e is a grid-based project, its architec-

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 154–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Grid Service Based Collaboration for Vl-e 155

ture must follow the development in this domain. Since the grid is shifting to
a more service-oriented approach, the VL-e architecture is being redesigned to
fit this paradigm [9]. Using a service-oriented approach has some important
consequences. For one, individual components can be addressed only via their
published interface, which is made available to the network. This allows for de-
coupling between individual components, as the only connections between them
is via these interfaces. Furthermore services and multiple instances of a single
service can be located on different resources. When a resource fails, the same
service may still be available on another resource. This gives greater overall fault
tolerance. To achieve location transparency, applications search for services in a
directory after which they connect to them dynamically at run-time. This allows
for code mobility, as the client does not care where the service is located [13].

Grid technology allows for a special kind of services: Grid Services. Grid Ser-
vices are basically Web Services with enhanced capabilities, including notifica-
tions (events between client and server), lifecycle management, and statefulness.
The latter allows storage of information on the server side. Users can access a
Grid Service simultaneously and work on the same data.

In this paper we develop part of the VL-e’s collaborative environment. Sec-
tion 2 gives a general introduction to collaboration. The requirements of the
Collaborative System are defined in Section 3. In Section 4 the designed archi-
tecture is discussed and results are shown in Section 5. Finally a conclusion is
drawn and some light is shed on future work in Section 6.

2 Collaboration in General

Collaboration is about two or more people working together towards a joint
goal. It differs from cooperation in that with collaboration all sides benefit from
working together and that it is on an equal basis. Cooperation on the other hand
can also benefit only one side and is often more connected to hierarchy. Working
together towards a joint goal requires means to achieve this goal, for example
tools to perform an experiment, as well as means that make it possible to work
together, such as providing ways that allow users to communicate.

An important aspect of collaboration is communication. When two people
are engaged in verbal communication they exchange words, but much more is
involved: intonation, body-language, body odor, etc [6]. These non-verbal ele-
ments add information about a person’s character, his mood and provide better
insight on how to proceed with the discussion. When face-to-face communica-
tion is not possible, technologies are available which allow people to collaborate
over distances. One of the best known and widely used technologies is telecon-
ferencing, where two or more people meet via the telephone. This technology
provides intonation but removes any physical communication, thereby reducing
its effectiveness.

Collaborative systems tend to fail, or at least fall short far of expectations.
There are many reasons for this, including lack of common goals, social differ-



156 A. de Ridder, A.S.Z. Belloum, and L.O. Hertzberger

ences between collaborators, difficulty of testing groupware and organizational
culture [6].

Grudin [7] points out that in order for an application to succeed it has to
be beneficial to all its users. The VL-e allows users to make use of the power
of the Grid. By making it a collaborative system users will be able to perform
experiments together, discuss results, call in expertise from others, etc. This
makes it beneficial to all users.

Gutwin and Greenberg [6] believe that problems with groupware are often
caused by a failure to support basic necessities. They introduced the Mechanics
of Collaboration, ”the things groups have to do in shared workspaces, over and
above what an individual has to do, in order to carry out a task” [6]. They have
combined these Mechanics with Nielsen’s Usability Heuristics to create heuristics
for groupware [2]. These are meant for validating the quality of software but can
also be used to aid in defining the requirements of a collaborative system.

3 VL-e Requirements for Collaboration

As stated in the Introduction the VL-e will be a shared workspace environment.
The Mechanics of Collaboration, referred to in Section 2, are therefore valid
for the VL-e project. Furthermore, actions in shared-workspaces are limited to
few types [6] and these types will have to be supported. Based on these as well
as on other sources (e.g. [11]), the VL-e’s collaborative requirements can be
defined. They have been split into groups, beginning with the ones crucial for
the collaborative environment and ending with optional enhancements.

3.1 Basic Collaborative Requirements

The first set of basic collaborative requirements should allow for minimal collab-
oration in a single workspace. Minimal collaboration should allow users to join
a session, navigate through the shared workspace, explore artifacts1, find other
users and establish contact with them, and communicate with them, through
gestures as well as verbs. The most basic support for finding users and commu-
nicating with them, are a userlist, a Telepointer and an Instant Messenger.

The second set of basic collaborative requirements should provide the means
to allow for creation and alteration of artifacts in a collaborative session. As
now artifacts can be changed while collaborating, there is need for data con-
sistency management. With artifacts being shared and altered, access control
against unwanted alteration must be provided for the artifact’s owner. Addi-
tionally, awareness is crucial for the success of a shared workspace environment
as users need to be aware of other users’ actions. By providing a radar view
of the workspace, also showing the pointers of all users, such awareness can be
provided. Finally, with multiple users altering the project simultaneously, there
is now need for fault tolerance in case of an abnormal termination.

1 In a shared workspace this refers to any component located on the workspace.



Grid Service Based Collaboration for Vl-e 157

3.2 Advanced Collaboration Requirements

Additional protective features can be added, such as undo/redo and merging.
Asynchronous communication will allow communication across time and has the
additional benefit of storing previous communication. Feedback and feedthrough
of artifacts provides additional awareness, for example by providing information
on how an artifact evolved. Adding audio as a communicative device can be an
enormous improvement as it allows users to use their natural language. This is in
many cases is far more efficient than having to type a message and allows users
to better convey emotion. Allowing for the construction of larger objects from
component pieces not only reduces the chaos on the workspace, but may also
make the entire component reusable. Furthermore the workspace should allow
for the management of an autonomous system represented in the workspace.
The potential of video as a collaborative device is still uncertain. As Sellen [4]
suggested, video does not appear to be an improvement compared to high quality
audio and therefore should be considered ultimately.

3.3 Optional Collaboration Requirements

The Mechanics of Collaboration suggest additionally adding means for inten-
tional and appropriate gestural communication, and providing consequential
communication of an individual’s embodiment. Even though these features may
help collaboration, it is questionable whether it is realistic to propose them as a
requirement for the VL-e.

4 Architecture Design

Besides the collaborative requirements discussed in Section 3, the VL-e has ad-
ditional requirements, which are not related to collaboration but which influence
the design of the collaborative system. As mentioned in Section 1, the VL-e is
being redesigned to have a service-oriented architecture. The collaborative sys-
tem must therefore be service-oriented as well. The collaborative system benefits
from low-level services offered by the Grid, such as security, as well as from the
possibility to create statefull Grid Services.

For the VL-e the client has to be light-weight, so most of the processing
must be done at the server side. The VL-e does not only promote collaboration
within a single VL-e session2 but also cross-session collaboration; multiple VL-e
sessions should be able to communicate allowing a global collaboration within
VL-e. This opens up a new range of possibilities, such as communication outside
of a VL-e session, inviting someone to join, etc. Security is a must in the VL-e
environment, only people with access to a session are allowed to communicate
over a dedicated channel.

2 In the context of the VL-e a session refers to an active project.



158 A. de Ridder, A.S.Z. Belloum, and L.O. Hertzberger

Manager

ManagerManagerManager
ConnectionConnectionConnection
 Manager

Connection .................

................. Session

ClientClientClientClient

Collaborative Manager
Global

Collaborative Manager
InnerSession VL−e 

Manager
Session
VL−e 

Manager
Session
VL−e 

Collaborative Manager
InnerSession

Collaborative Manager
InnerSession

Fig. 1. Architecture Functional Overview

Use cases were developed and analyzed, available in [10], and a (Grid Service
based) Userlist and Instant Messenger have been develeped, as a first step for the
collaborative system. The architecture has three Grid Services and a client (Fig-
ure 1). Each client is connect to one Connection Manager (CM), which provides
the functionality for the light-weight client. CMs can be connected to one or more
Inner-Session Collaborative Managers (ISM). An ISM provides the collaborative
environment for a VL-e session and is created by that session’s VL-e Session
Manager. All ISMs are connected to the Global Collaborative Manager (GM).
Only one GM exists per VL-e deployment. We will explain each component in
more detail in the next subsection.

4.1 Client-Side

The client’s functionality is limited, as we are providing a light-weight client.
The architecture is shown in Figure 2. If a user wants to join a VL-e session,
his UserManager contacts the session’s ISM on his behalf. After the user has
joined, he can communicate with other users via the GUIs. These send messages
to the CommunicationsHandler component which communicates with the user’s
CM. The CommunicationsHandler also receives incoming messages from the CM,
which it forwards to the appropriate Handler. This component then ensures that
the GUI displays the received message.

4.2 Connection Manager

The Connection Manager is a Grid Service which allows for the light-weight
client. Each client communicates with his CM, which acts on his behalf on the



Grid Service Based Collaboration for Vl-e 159

GUI

TO ISM

TO CM

UserList

Communications
Handler

User

UserManager

MessageWindow
Handler

MessageWindow
GUI UserList

Handler

Fig. 2. Client-Side Architecture

server side. The CM joins ISMs on behalf of the client. The architecture is shown
in Figure 3.

When a message is to be sent, the client side sends it to the CM. If the
message was created by the client’s userlist, the CM forwards the message to
the UserList component. If it was created by a message window it is sent to
the MessageWindow component. Here, either a TextMessage or a UserListMes-
sage, which contains the message and necessary information retrieved from the
MessageWindow Administration component, is created. This message is then
sent to the MessageHandler component which then forwards it to the Message-
Sender.

Messages are transported between CMs over channels. The MessageReceiver
component is responsible for receiving them. A received message is sent to the
MessageHandler component, which decides upon the appropriate action. If the
message is a text message, the MessageHandler will forward the message to the
MessageWindow component and if it is a userlist message it will be forwarded
to the UserList. The MessageWindow and UserList use the MessageWindow
Administration component to retrieve information concerning existing conversa-
tions. When the necessary information has been retrieved, the message and the
information is placed in a buffer, until it is retrieved by the CM. The CM then
sends it to the client.

4.3 Global Collaborative Manager

The Global Collaborative Manager (GM) is a Grid Service that connects the
individual sessions, allowing users from separate session to communicate with
each other. Its architecture can be seen in Figure 4.

The GM has a MessageSender and MessageReceiver component, which allow
him to communicate over channels. The channels created by the GM are joined
by ISMs, thus connecting the individual ISMs.



160 A. de Ridder, A.S.Z. Belloum, and L.O. Hertzberger

TO CLIENT

Client

Connection
Manager

Connection

FROM CM FACTORY

MessageHandler

Message
(UL / Instnt)

MessageWindow
Administration

Buffer
(UL/IM)

UserList MessageWindow

SenderReceiver

MessageSender MessageReceiver

Channel−Based
Communication

Fig. 3. Connection Manager Architecture

4.4 Inner-Session Collaborative Manager

The third Grid Service, the Inner-Session Collaborative Manager, provides each
VL-e session with its own collaborative environment. Users join channels made
available by the ISM. An ISM can forward a message to another ISM, via the
channel made available by the GM, if a message is sent outside a session. As
it is to be expected that nearly all communications take place inside a session
and very little outside a session, network congestion should be less than with
a architecture where all CMs communicate via the GM. Also, if the GM fails,
users are only unable to send messages outside their sessions, making the ISM-
based architecture more fault-tolerant. The architecture of the ISM is shown in
Figure 5.

TO CM FACTORY

Communication
Channel−Based

ColManager
Global

Handler
Message

MessageSender

SenderReceiver

MessageReceiver

Fig. 4. Global Collaborative Manager Architecture



Grid Service Based Collaboration for Vl-e 161

FROM ACCESSLIST
PROVIDER

TO GM

FROM ISM FACTORYUSERMANAGER

MessageReceiver

Message
Handler

SenderReceiver

MessageSender Authenticator

AccessList

Inner Session
ColManager

Channel−Based
Communication

Channel−Based
Communication

FROM

Fig. 5. Inner-Session Collaborative Manager Architecture

When a client wants to join the ISM, the ISM requests the SenderReceiver
component to invite the client’s ConnectinClient to join the session. The Sender-
Receiver then invites the client after authenticating him. The Authenticator
component uses the AccessList component to validate that the client is allowed
to enter the VL-e session. The MessageSender and MessageReceiver components
of the ISM can send and receive messages over and from the channel created by
the GM as well as over and from the channel of the ISM.

5 Results

For the implementation of the VL-e collaboration component we made use of a
collaborative toolkit. Many of the groupware toolkits available on the Internet
are unsuitable for the VL-e project. To determine suitability of the toolkits,
we used the following selection criteria: customizable architecture, Java, recent
update, usable for a wide range of applications, small customizable components.
For more information on groupware toolkits we refer to [10].

We selected the Java Shared Data Toolkit [3] to aid in our work as it fits all
the requirements. Instead of providing entire components, JSDT provides small
building blocks to create a component, allowing it to be used to develop a wide
range of applications and making it highly customizable. It is written in Java
and is still being improved.

As most functionality is offered by the CM, most of the implementation been
done there. Nearly all of the components at the CM side have been implemented
to some extent. The ISM and GM are less complete. Not all of their components
have been implemented, as not all were required yet.



162 A. de Ridder, A.S.Z. Belloum, and L.O. Hertzberger

The Collaborative System currently allows the creation of ISMs and CMs,
users (and therefore CMs) to login into one or more ISMs, message sending
between users, and changing availability in the userlist. Authentication, the no-
tification system to invite another user to join a session and communication
outside of a session are presently not fully implemented. The mechanisms for
authentication have been included, but the component still has to be extended
by using the VL-e information system component[8]. For communication outside
a session we will use many of the mechanisms already used for communication
inside a session, but it will also require mechanisms that send a message from
one ISM to another via the GM. The invitation mechanism is mostly functional,
but requires communication outside a session. The Collaborative System also
currently lacks support for defining a personal userlist.

During the implementation several problems were encountered and one of
them is worth mentioning since it is related to the current Grid Service architec-
ture OGSI. The problem that occurred was that messages would arrive faster at
the CM than that it could deliver them to the user. The Grid Service notifica-
tion system notifies a client that some data has changed, after which the client
retrieves this data. This is slower than the channel based JSDT communications.
To solve this problem we opted for a simple solution using buffers.

6 Conclusion and Future Work

We defined a set of collaborative requirements for the VL-e, which is aiming
at providing a shared workspace environment. We included basic necessities in
the requirements and grouped our requirements by priority. As a first set to be
developed we believe it is necessary to provide: session control, allow users to
explore the workspace, a Userlist, an Instant Messenger, and a Telepointer. As
a first step we developed a Grid Service based architecture for a Userlist and an
Instant Messenger.

Grid Services improved our work in several ways. All three Grid Services
make use of the statefullness by storing information at the server side. For the
GM persistence is crucial, as there is only one GM per VL-e deployment. The
Connection Manager benefited from being a Grid Service by using notifications.
Furthermore, instance of both the ISM and CM can be created by a call to their
factories, making it is easy to expand the system to allow for many sessions and
many users. Also, it is possible to use multiple factories of the ISM and CM,
creating location transparency and a more fault tolerant system; if one of the
factories fails, users can switch to another. So far the only problem encountered
is that a notification-based system may be too slow.

At this point our design and implementation only provides basic collabora-
tive means. The VL-e Collaborative System requires more than just these basic
features and these are yet to be developed. Also, our current system must be
improved, adding the features described in Section 5.

The developments of the Grid area will have to be closely monitored, as the
switch from OGSI to WSRF will very likely make our current implementation



Grid Service Based Collaboration for Vl-e 163

incompatible with the new toolkit, though we believe the effort required to
change an OGSI-based system to WSRF will be small.

References

1. Afsarmanesh, H., et al. VLAM-G: A Grid-Based Virtual Laboratory. Scientific
Programming: Special Issue on Grid Computing, volume 10, number 2, p.173-181.
2002

2. Baker, K., Greenberg, S. and Gutwin, C. Heuristic Evaluation of Groupware Based
on the Mechanics of Collaboration. Proceedings of the 8th IFIP Working Confer-
ence on Engineering for Human-Computer Interaction (EHCI’01). (May 11-13,
Toronto, Canada). 2001

3. Java Shared Data Toolkit User Guide http://java.sun.com/products/java-
media/jsdt/

4. Bradner, E. and Mark, G. Why Distance Matters: Effects on Cooperation, Per-
suasion and Deception. In proceedings of Computer Supported Cooperative Work
(CSCW 2002). November 16-20, New Orleans, Louisiana. 2002

5. The Globus Aliance http://www.globus.org
6. Gutwin, C. and Greenberg, S. The Mechanics of Collaboration: Developing Low

Cost Usability Evaluation Methods for Shared Workspaces. Proceedings of the
9th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, p.98-103, June 04-16, 2000

7. Grudin, J. Why groupware applications fail: Problems in design and evaluation.
Office: Technology and People, 4 (3). 245-264. 1989

8. Kaletas, E. C. Scientific Information Management in Collaborative Experimen-
tation Environments. PhD Thesis. University of Amsterdam, Faculty of Science.
2004

9. Korkhov, V., Belloum, A., Hertzberger, L. O. VL-E: Approaches to design a Grid-
based Virtual Laboratory. 5th Austrian-Hungarian workshop on distributed and
parallel system, September 19-22, 2004

10. de Ridder, A., Belloum, A. S. Z. Collaboration in the Virtual Laboratory for e-
Science. 2004

11. Usability First http://www.usabilityfirst.com/groupware/index.txl (Groupware)
12. WTCT NV Virtual Lab e-Science: Towards a new Science paradigm. 2003
13. Stevens, M. http://www.developer.com/design/article.php/1010451 (Service-

Oriented Architecture Introduction)



A Fully Decentralized Approach to Grid
Service Discovery Using Self-organized

Overlay Networks

Qi Xia1,2, Weinong Wang2, and Ruijun Yang1,2

1 Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China

xiaqi@cs.sjtu.edu.cn
2 Network Center,

Shanghai Jiaotong University, Shanghai, China
{wnwang,rjyang}@sjtu.edu.cn

Abstract. Self-organized overlay is widely used in Peer-to-peer (P2P)
networks for its scalability, adaptability, and fault-tolerance in large and
dynamic environments. In this paper, we propose a fully decentralized
approach, DGSD(Decentralized Grid Service Discovery) for Grid service
discovery. DGSD makes use of the underlying P2P overlay network pro-
tocols to self-organize nodes and services in the Grid. In DGSD, Grid ser-
vice is represented by (attribute, value) pairs, and the Grid community,
named virtual organization (VO), is self-organized into 2-dimensional
overlay networks. One for attributes, and the other for values. Service
discovery request in a VO is firstly directed to the attribute overlay net-
work to find the servers with the searched attributes, then to the value
overlay until the servers which have the same (attribute, value) pairs are
reached. The architecture of DGSD supports interactions between VO’s.
Our approach is highly efficient, scalable and quickly responsive.

1 Introduction

Recent years have seen the rapid development of Grid technologies [1]. Many
Grid projects are coming into use, which tend to increase the population in the
Grid, and carry more heterogeneity and dynamic behaviors.

Open Grid Service Architecture (OGSA) [2] defines an open and service-
oriented architecture to allow the interaction of Grid services. Therefore, the
service discovery in the Grid is among the principle challenges. Globus im-
plement the service publish/discovery mechanism based on MDS-2 [2, 3] which
uses centralized register server. Although MDS-2 solved the scalability problem
using hierarchical architecture, it is still vulnerable to single point of failure.
Moreover, adaptation to the dynamic feature of servers is another challenge for
MDS-2. Therefore, the natural way is to use decentralized approach for service
discovery.

Recently, P2P communities have developed a number of fully decentral-
ized protocols, such as CAN [4], Chord [5], and Pastry [6], for routing and

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 164–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Fully Decentralized Approach to Grid Service Discovery 165

lookup in P2P networks. The core idea behind the protocols is to build self-
organized overlay networks when nodes join. In such overlay networks, each
node or the published item will be given a unique ID using Distributed Hash
Table (DHT). Motivated by these works, we propose a new decentralized ap-
proach, DGSD (Decentralized Grid Service Discovery), for Grid service
discovery.

The original DHT based overlay networks only support queries for items
which are expressed by one keyword. In the context of Grid service, we represent
the Grid service by a number of (attribute, value) pairs. Therefore, straightfor-
ward DHT indexing for the services is not applicable. However, if the (attribute,
value) pairs are placed into two search space, one for attributes, and the other
for values. In each space, we implement the DHT protocol into every space to
build overlay networks, then the problem can be solved. In addition, since in the
Grid infrastructure, service provider and consumer are organized into Virtual
Organizations (VO). We comply with such rule to develop DGSD.

The remainder of the paper is as follows. Section 2 surveys the related work.
Section 3 propose the overview of the architecture of DGSD. Section 4 describes
the detailed process of service discovery through DGSD. Perform analysis is done
in section 5, and finally, section 6 concludes the paper.

2 Related Work

There are many projects undergoing address the issue of service discovery in
the Grid. Globus [2] proposes MDS-2 for service discovery. MDS-2 provides a
directory service based on Lightweight Directory Access Protocol (LDAP), where
service is defined by a set of entities expressed by attribute-value pairs. The
Grid services are integrated in Grid Information Index Servers (GIIS) [2], which
includes GRRP (Grid Resources Registration Protocol) to let all services to be
registered, and GRIP (Grid Resource Information Protocol) to allow access to
the registered services.

The work related to MDS-2 is Web service [7]. Web service uses WSDL (Web
Service Description Language) [8] to describe services, and UDDI (Universal De-
scription, Discovery and Integration) [9] is applied for service registration and
discovery.

The above approaches use centralized registration servers for all services. In
such infrastructures, querying for services is very efficient and complex query can
be supported well. However, for a very large and dynamic environment, they face
the problems of scalability and single point of failure.

A natural and easily implemented improvement is to introduce hierarchical
overlay network to distribute the registration and query into network members,
as is done by [10] and [11]. They organized the nodes in the network in a hi-
erarchical way. In [10], nodes join and search in the hierarchy by flooding. And
in [11], nodes firstly self-organize themselves into a tree-like hierarchy, and the
query message is firstly directed to the top level node, then flood to all the under-
lay level. The main drawback of these approach is the network traffic incurred,



166 Q. Xia, W. Wang, and R. Yang

and the single point of failure of the node at the top of the hierarchy will make
the query to fail.

The first work addressing fully decentralized service discovery in the Grid
was done by Iamnitchi et al [12]. However, the algorithm they used is forward-
and-flooding, which is not efficient. Recent study on routing in P2P networks
give indication for Grid service discovery. Using DHT based protocols such as
CAN [4], Chord [5], or Pastry [6], all the nodes self-organize themselves into
overlay networks. The overlay network is fault-tolerant, and searching in such
network is scalable and efficient. However, the original DHT protocols only sup-
port (key, value) mapping, and one node or item only has one key. In case of
Grid service, which is expressed by multiple (attribute, value) pairs, it’s hard to
implement the DHT in that way.

To expand the original DHT mechanism, some systems were developed to
support service discovery in different environment. INS/Twine [13], which is
used to discover web service in a peer-to-peer way, split service description into
multiple strands - the keywords. All strands are indexed into a common overlay
network using Chord protocol, thus the service can be discovered using multiple
keywords. Lanes [14] proposes an approach of service discovery in mobile Ad Hoc
network based on CAN protocol. And [15] implemented a range query mechanism
for Grid information. These works are close to our approach in that overlay net-
work is used and adaptation is applied to the underlying P2P protocol to support
indexing complex service descriptions, and are efficient and scalable. However,
the approach of ours is more intuitive, and we explicitly address the use of VO.

3 The Architecture for Grid Service Discovery Using
Overlay Based on VO

In the Grid, all service providers and consumers are organized into VO’s. Each
VO contains miscellaneous members, and resources are described by services,
which can be represented by multiple (attribute, value) pairs. For example, the
following description of service:

<res>computer
<OpSys>UNIX</OpSys>
<Mem>512</Mem>

</res>

refers to a computer which runs the UNIX operating system, and provides 512
MByte memory for computing. It can be decomposed as three attribute-value
pairs: (res, computer), (OpSys, UNIX) and (Mem, 512). When one server wants
to join and publish its service in a VO. It firstly joins an overlay network in the
attribute space using DHT based protocol, and publish all the attributes in the
space respectively. Meanwhile, upon publishing each attribute, the server also
asks the current server in charge of the attribute to publish the value correspond-
ing to the attribute, i.e., there is an another overlay network for values. Fig. 1



A Fully Decentralized Approach to Grid Service Discovery 167

Attribute
Overlay

Value Overlay

Value Overlay

Value Overlay

Server

Res

Server

Server

Server

OpSys

Mem

Server

Server

UNIX

Computer

512

Fig. 1. Overview of the service overlay networks. Each service provider(denoted by
Server) in the network joins two overlay network, one is attribute overlay, the other
is value overlay. In the figure, an example of computing service as described before is
shown. The attribute server plays a role as entry point of the value overlay with the
corresponding attribute

shows the overview of the overlay networks. When a consumer (it may also be a
server) issues a service query message, it firstly gets the (attribute, value) pairs
from the service description, and contacts one server in the VO. Then for every
attribute, it locates the server in charge of the attribute in the attribute overlay,
then asks it to find the server in charge of the corresponding value. Searching
for every (attribute, value) pair is performed in a parallel way, and there may be
a number of matching servers for every pair returned to the consumer. Finally,
the consumer selects the server matching all (attribute, value) pairs.

All the servers join the overlays only within their own VO. Notice that a server
may join not only one VO, then it may join multiple overlays lie in different VO’s.
Service query will be executed in one’s own VO firstly. If there is no matching
service, the query message will be routed to the gateway server of the VO, and
redirected to other VO’s which have connection with it. Fig. 2 shows the overall
architecture.

4 Service Discovery Using DGSD

In the following, we give formal definitions used in DGSD and the detailed
process of the service discovery.

Definition 1. Attribute overlay network (denoted by AON) is a self-organized
overlay network constructed by servers in a VO. And AONV denotes the overlay
in VO named V .



168 Q. Xia, W. Wang, and R. Yang

VO

VO

VO

Gateway

Gateway

Gateway

Consumer

Entry
Server

Entry
Server

Entry
Server

Fig. 2. The overall architecture for the interaction among VO’s. The gateway server
may be some well-known server, and entry server is the entrance point for consumers
which have not joined the VO

Definition 2. Value overlay network (denoted by VON) is a self-organized over-
lay network constructed by servers in a VO. And V ONα

V denotes the overlay
corresponding to attribute α in VO named V .

Definition 3. Gateway servers (denoted by GSV ) in VO named V are the con-
nection points to other VO’s.

Definition 4. Entry servers (denoted by ESV ) in VO named V are the entrance
points for consumers not in V .

Table 1 describes the application programming interface (API) provided by
DGSD.

Table 1. The API in DGSD

Function Description

nodeInit(credentials,V ) To initialize status of a node in V , and return nodeId
generate(serv) According to service description of serv, generate (at-

tribute, value) pairs.
route(msg,key,net) In network net, find the node with nodeId numerically

closest to the key using the underlying DHT protocol,
and return the node.

join(xON,key,type) A server with key joins xON (either AON or VON) using
the underlying DHT protocol by contacting an arbitrary
node in xON ; Or a node wants to join in xON. type (ei-
ther node joining or key publishing) directs the operation
executed by nodes along the routing path.

reroute(V ,msg) reroute a message serv to V by the Gateway Server.



A Fully Decentralized Approach to Grid Service Discovery 169

4.1 Service Discovery Within VO

In section 3, we have shortly described the process of service discovery within a
specific Grid VO. Here we use the predefined API to give the detailed description.

Firstly, each service provider should publish its service in a VO.

//publish service in VO named V
server.publish(V ,serv)
{

generate(serv)→{αi, vi};
for each attribute αi

join(AONV , αi,key publishing);
join(V ONαi

V , vi,key publishing);
}

//join operation is for publishing one key or node joining
server.join(xON,key,type)
{

(key,server,type)→msg ;
if type=node joining

nodeInit(credentials,V )→nodeId ;
key :=nodeId ;
route(msg,key,xON )→Node;
constructing routing table and joining xON, using the underlying DHT pro-

tocol
else if type=key publishing

route(msg,key,xON )→Node;
Storing key and server information in Node;

}

Then service discovery can be performed for all published services.
//discover services in VO named V , assuming the consumer is also in the VO
consumer.discovery(V ,serv)
{

generate(serv)→{αi, vi} (i = 1, 2, . . . , k);
for each attribute αi

(αi, vi, discovery)→msg ;
route(msg,αi, AONV )→ Ni;
Ni.route(msg,vi, V ONαi

V )→ Ni;
(servers corresponding to (αi, vi) stored in Ni) → Si;

return S1 ∩ S2 ∩ . . . ∩ Sk;
}

4.2 Service Discovery Between VO’s

We consider a more complicated case. when a consumer not in a VO wants to
discover one Grid service, it will contact the entry server of the VO to perform



170 Q. Xia, W. Wang, and R. Yang

service discovery. If there is no service found in the VO, the discovery message
will be directed to other VO’s.

//consumer is not in the VO
consumer.discovery(V ,serv)
{

contact ESV , send query message with serv ;
ESV .discovery(V ,serv)→ S;
if S = φ

ESV send query message to the gateway GSV ;
(serv,discovery)→msg
GSV .reroute(V ′,msg)→ GSV ′ ;
GSV ′ .discovery(V ′,serv)→ S′;
S′ → GSV → ESV ;
return S′;

else

return S;
}

Notice that the gateway server may have to contact not only one other VO
to perform the discovery.

5 Performance Analysis

Firstly, we evaluate the storage load(L) on all nodes in the VO. The average
load on a node is:

Lavg =
2V S

N
,

where S is the number of services provided, V is the average number of (at-
tribute,value) pairs each service, which is typically 3 ∼ 5, and N is the number
of service providers in the VO. The factor 2 in the equation appears because for
each (attribute,value) pair, we have to publish both the attribute and value in
AON and VON separately. There may be some popular services, such as file,
which will cause very high load on the node in charge of file attribute. To resolve
this problem, we use the similar mechanism as [13], i.e., we set a load threshold
for a node. If the load on the node overloaded over the threshold, it may select
another node to store the items, while maintaining a link to it.

We use CAN [4] as the underlying overlay network protocol due to its poten-
tial support for range query [15, 16]. In a overlay network, each node maintains
a routing table containing d other nodes, and the routing latency to any node
is O(dN1/d). Therefore, from the algorithm defined in section 4, the discovery
latency in a VO is O(2dN1/d), because the discovery is performed in parallel
for all (attribute,value) pairs of a service, and for each pair there must be two
sequentially discovery, one for the attribute, the other for the value. The average
routing table size for a node is 2dV , where V is the average (attribute, value)



A Fully Decentralized Approach to Grid Service Discovery 171

pairs. We do not give the detailed simulation results here since it’s the work of
the underlying overlay protocol.

Replication mechanism should be implemented to ensure successful discovery.
In our architecture, nodes in AON serves as entrance for VON. If some node in
AON fails to be responsive, the discovery for the corresponding (attribute, value)
pair will fail. Therefore, for each node corresponding to some attribute in AON,
the successor or predecessor information in the corresponding VON must be
replicated into some other nodes, so that when it fails, the discovery message
can be routed to those nodes then enter the VON to continue value search.
Similar replication mechanism should be also applied in VON.

In this paper, we only give an example of exact service discovery. The original
CAN does not support partial or range query. However, using Hilbert space filling
curve (SFC) [17] instead of hash operation to numbering nodeId, attributes
and values. The underlying P2P protocol can support partial query similiar
to [18], which used SFC to map multi-dimensional data items into 1-dimensional
continuous numbers and still maintain the locality of the original data items. And
range query [15] is also supported well.

Relying on the underlying overlay network protocol, DGSD is highly efficient,
scalable, and fault-tolerant, and can be adaptable to the dynamic environment
to be quickly responsive to the changes of node status.

6 Conclusion

Service discovery in the Grid should be scalable, efficient, fault-tolerant, and
quick responsive to the dynamic changes of the nodes. DGSD provides such an
approach. The key idea behind DGSD is that service can be decomposed as (at-
tribute,value) pairs, and will be published into a 2-dimensional overlay networks
for both attribute and value. To build the 2-dimensional overlay networks, we
make use of the state-of-the-art P2P overlay protocols, which is proven suitable
in large and dynamic environments. Fully decentralized service discovery in the
Grid is highly deserved especially when the population grows very large and the
behavior of the population is very dynamic. DGSD can supplement MDS-2 to
improve the performance or be deployed independently.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal on Supercomputing Applications 15
(2001)

2. Foster, I., et al, C.K.: The physiology of the grid: An open grid services architecture
for distributed systems integration (2003)

3. Foster, I., Kasselman, K.: The globus project: A status report. In: IPPS/SPDP’98
Heterogeneous Computing Workshop. (1998)

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM, San Diego, CA (2001)



172 Q. Xia, W. Wang, and R. Yang

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proc. ACM SIG-
COMM 2001. (2001) 149–160

6. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware 2001). (2001) 329–350

7. Web services for business process design, http://www.gotdotnet.com/team/xml-
wsspecs/xlang-c/default.htm (2004)

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) 1.1. w3c, http://www.w3.org/tr/wsdl (2002)

9. UDDI: Universal description, discovery and integration, http://www.uddi.org/
(2004)

10. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. Tech-
nical report, Computer Science Department, Stanford University (2002)

11. Huang, L., Wu, Z., Pan, Y.: A scalable and effective architecture for grid services
discovery. In: Proceedings of SemPGRID’03. (2003)

12. Iamnitchi, A., Foster, I.: On fully decentralized resource discovery in grid environ-
ments. In: International Workshop on Grid Computing, Denver, Colorado, IEEE
(2001)

13. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A scalable peer-to-peer
architecture for intentional resource discovery. In: Proceedings of Pervasive. (2002)

14. Klein, M., Konig-Ries, B., Obreiter, P.: Lanes - a lightweight overlay for service
discovery in mobile ad hoc networks. Technical Report 2003-6, University of Karl-
sruhe (2003)

15. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services.
In: Proceedings of the Second IEEE International Conference on Peer-to-Peer Com-
puting (P2P2002). (2002)

16. Tang, C., Xu, Z., Mahalingam, M.: Peersearch: Efficient information retrieval in
peer-peer networks. Technical Report HPL-2002-198, Hewlett-Packard Labs (2002)

17. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmaier, P.: Space filling curves and
their use in geometric data structures. Theoretical Computer Science 181 (1997)
3–15

18. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World
Wide Web 7 (2004) 211–229



Dynamic Parallelization of Grid–Enabled
Web Services�

Manfred Wurz and Heiko Schuldt

University for Health Sciences, Medical Informatics and Technology (UMIT),
Information and Software Engineering Group,

Eduard-Wallnöfer-Zentrum 1, A–6060 Hall in Tyrol, Austria
{manfred.wurz, heiko.schuldt}@umit.at

Abstract. In a grid environment, it is of primary concern to make effi-
cient use of the resources that are available at run-time. If new compu-
tational resources become available, then requests shall also be sent to
these newly added resources in order to balance the overall load in the
system. However, scheduling of requests in a service grid considers each
single service invocation in isolation and determines the most appropriate
provider, according to some heuristics. Even when several providers offer
the same service, only one of them is chosen. In this paper, we provide a
novel approach to the parallelization of individual service requests. This
approach makes dynamic use of a set of service providers available at
the time the request is being issued. A dynamic service uses meta infor-
mation on the currently available service providers and their capabilities
and splits the original request up into a set of simpler requests of the
same service types, submits these requests in parallel to as many service
providers as possible, and finally integrates the individual results to the
result of the original service request.

1 Introduction

Grid computing aims to establish highly flexible and robust environments to
utilize distributed resources in an efficient way. This can be, for example, com-
putational resources, storage capacity, or various external sensors. An essential
feature of grid environments is to make use of the resources that are available at
run-time. While data grids focus on the exploitation of storage resources, service
grids mainly consider computational resources for scheduling. In particular, if
new computational resources become available, then requests will also be sent to
these newly added resources in order to balance the overall load in the system.

The advanced resource management of service grid infrastructures seamlessly
considers web service standards and protocols for making application logic acces-
sible. Web services can be invoked by common web protocols (e.g., SOAP over

� This work has been partially funded by the EU in the 6th Framework Programme
under the network of excellence DELOS (contract no. G038-507618) and by the
Austrian Industrial Research Promotion Fund (FFF) under the project HGI

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 173–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



174 M. Wurz and H. Schuldt

HTTP) and are described in a platform-independent way by XML and WSDL.
All this has led to the recent proliferation of web service technology which has
also gained significant importance in the grid computing community.

However, scheduling of (web) service requests in a grid considers each sin-
gle service invocation in isolation and determines the most appropriate (web)
service provider, according to some heuristics that, for example, take into ac-
count the current load of all providers of this particular service in the overall
system. Although several providers offer the same service or at least semantically
equivalent services, only one of them is chosen at run-time and the request is
submitted to this provider for processing. This distribution is even independent
of the complexity of the service request in question.

In this paper, we provide a novel approach to the parallelization of individual
web service requests by making dynamic use of a set of providers of services of the
same type which are available at the time the request is being issued. This work
specifically focuses on powerful new services using composition, self-adaptability,
and parallel service execution. The contribution of this paper is to introduce an
architecture of a service seeming to be an ordinary, callable service to the outside
world, which is able to adopt its behavior based on some quality of service criteria
attached, and the resources available on a grid. In short, this dynamic service
uses meta information on the currently available service providers and their
capabilities (taken from a service repository) and splits the original request up
into a set of simpler requests (in terms of the data that has to be processed)
of the same service types, submits these requests in parallel to as many service
providers as possible, and finally integrates the individual results from these
service providers to the result of the original service request.

The following scenario illustrates in which way dynamic services can be used
to solve real world problems, and how easily they can be integrated in existing
infrastructures. The applicability to large scale digital library systems within a
healthcare environment has been presented in [1].

Clustering: Data mining in high dimensional feature spaces is a commonly
used approach to gain new knowledge in medical informatics and bioinformatics.
In the field of functional metabolomics, it is, for example, used to support the
identification of disease state metabolites without any prior knowledge and per-
mits the construction of classification rules with high diagnostic prediction [2].
In this type of applications, clustering is important to understand the natural
structure or grouping in a data set. Clustering, in particular, aims at partition-
ing the data objects into distinct groups, maximizing the similarity within that
group, while minimizing the similarity between groups. Finding clusters in high
dimensional feature spaces is a computationally intensive task (more details can
be found in [3]). SURFING (SUbspaces Relevant For clusterING) [4], a sample
clustering algorithm, computes a distinct quality measure per subspace and then
ranks them according to the interestingness of the hierarchical clustering struc-
ture they exhibit. In worst case, this algorithm has to consider all 2d subspaces
(where d is the dimensionality of the feature space). Using SURFING, the num-
ber of relevant subspaces within the whole data set can be significantly reduced:



Dynamic Parallelization of Grid–Enabled Web Services 175

for most complex data sets, only 5% of all 2d subspaces have to be examined [4].
This benefit is achieved by calculating a quality measure based on the k-nearest
neighbor distances (k-nn-distances), which however has to be done in O(n2) (n
being the number of feature vectors to examine), leading to an overall complexity
of O(2d ·n2). Since these O(n2) calculations are independent, they are good can-
didates for (dynamic) parallelization. Assuming the availability of m instances
of a service to calculate k-nn-distances, the total effort for the subspace clus-
tering can be reduced to 0,05·O(2d·n2)

m (ignoring the effort to distribute the data
set examined). When knn-distance calculation is available as service by different
providers, it is highly beneficial to dynamically incorporate as many instances as
possible for improving the complexity of a clustering algorithm.

In this scenario, we assume that the implementation of the actual service is
already completed, and focus on the provision of dynamically adapting services
that parallelize execution. These services will provide added value to existing
applications which can profit from parallel execution without touching the con-
scientiously tested business logic itself.

The remainder of this work is organized as follows. Section 2 introduces the
concepts and components involved in dynamic call distribution. In Section 3, a
concrete implementation is presented and Section 4 provides first experimental
results. Related work is discussed in Section 5. Section 6 concludes.

2 A Dynamically Adapting Service for Parallel Execution

The combination of individual, generally usable services to solve complex and
specialized problems is of great importance in most applications. These efforts
mainly concentrate on abstract workflow definitions which can than be deployed
to the grid, and be bound to specific resources at the latest possible time. A
particular workflow step, a task that has to be processed, is then always mapped
to the service or resource, which best fits the requirements. If more than one
service is able to fulfill the requirements, one of them is chosen, following the
one or the other load balancing algorithm.

In our proposed architecture, we put the emphasis on improving the usability
of a single service, as well as on enabling faster and less error prone development
for grid environments. This approach is based on the observation, that following
the current proliferation of service oriented architectures, the number of services
and service providers in a grid will significantly increase. Especially services
which are provider independent and are not bound to special resources can be
distributed fast and widely in a grid environment or be deployed numerously on
demand.

The task of partitioning request parameters and reintegrating results after-
wards is highly application specific and, from our perspective, can not be solved
in a generic way. Although we see the potential to identify classes of applications
according to the mechanism they partition and reintegrate requests which allows
to have pre-built splitter and merger services, an expert in the problem domain



176 M. Wurz and H. Schuldt

Payload Service

Common Interface 
Wrapper

Partition Request

Merge Results Registry

Dynamizer

Splitter

Merger

QoS Policy
Dynamic Service

Fig. 1. Overall Architecture

will be necessary to tailor them for the specific need or perform some additional,
application domain specific work.

In our approach, splitting requests and merging results, as well as looking
up available services in a registry, is transparent to the user. The service that is
i.) enhanced with knowledge of how to partition the requested task into subtasks,
and ii.) how the partial results can be re-integrated, can still be accessed as
before. We call a service enhanced that way a dynamic service.

As shown in figure 1, the following logical units can be identified for dynamic
services.

The box in the center of the left side, labeled ’Payload Service’, represents
the actual service. It is responsible for providing application semantics, e.g., a
complex computation or a database lookup. This is usually a piece of business
logic that has existed beforehand, which is now supposed to be opened to the
grid and enabled for parallel execution. To achieve this goal, it is surrounded
by another box, labeled ’Common Interface Wrapper’, which encapsulates the
’Payload Service’ and enhances it with a common interface.

On top, ’Partition Request’ encapsulates knowledge on how incoming param-
eters for the ’Payload Service’ have to be partitioned, so that the original request
can be decomposed into numerous new ’sub’- requests. Each of these ’sub’- re-
quests can than be distributed on the grid, and be processed by other instances
of the originally targeted service. The box at the bottom (’Merge Results’) in-
tegrates (partial) results returned from the grid to provide the original service
requester with a consolidated result. It can therefore be seen as the reverse op-
eration to the ’Partition Request’ service. The combination of these elements is
referred to as ’Dynamic Service’.

To find the instances of the originally targeted service (e.g., services where
the functional description equals the one of the ’Payload Service’), a registry is
used (depicted in the lower right corner of figure 1) . This registry provides infor-
mation on which services are available, how they can be accessed, and what their
properties are (in terms of CPU load, connection bandwidth, access restrictions,
etc).



Dynamic Parallelization of Grid–Enabled Web Services 177

The ’Dynamizer’, depicted on the right hand side, makes use of the services
mentioned above. It glues together the previously described services by making
the parallel calls and coordinating incoming results. It has also to provide ap-
propriate failure handling. It is, in contrast to ’Partition Request’ and ’Merge
Results’, application independent and generally usable. The ’Dynamizer’ can in-
teract with all services that adhere to a common interface, as ensured by the
’Common Interface Wrapper’. It can be integrated in environments able to call
and orchestrate services, or it can be packaged and deployed together with spe-
cific services.

To make the best possible use of the ’Dynamizer’, the user can send a de-
scription of the desired service quality along with the mandatory parameters
needed to process the request. In this QoS (Quality of Service) policy, the user
can, for example, describe whether the request should be optimized in terms of
speed (select high performance nodes, and partition the input parameters ac-
cordingly), in terms of bandwidth (try to keep network usage low) or if it should
aim for best accuracy (important for iterative approaches or database queries,
where there is an option to use different data sources). Since these specifications
can be contradictory, adding preferences to rank the users requirements is of
importance. To better illustrate the mechanisms within the ’Dynamizer’ regard-
ing the user specified QoS policy, we consider the following example: A scientist
wants to use the SURFING algorithm as described in section 1 to examine a
set of metabolomic data. In the QoS policy file, he specifies that network usage
should be kept low (because his department has to pay for each megabyte sent
through the wire), and as a second preference to have his call optimized in terms
of speed. The ’Dynamizer’ has three powerful computational services at hand,
which would be able to deliver the result within approximately two hours at the
cost of three times transferring the data set, or, alternatively, 400 less powerful
services, which would be able to deliver within 20 minutes but at the obvious
cost of much higher network usage. The algorithms on how to reconcile the users
specifications, the details of the QoS description language and how to integrate
this best with our existing implementation is currently under investigation.

3 Implementing Virtual Dynamic Web Services

3.1 Dynamizer

The most vital part, the hub, where all the main control flow, the intelligence
and the failure handling, is located, is within the so called ’Dynamizer’ (shown in
figure 1). It is responsible for issuing the calls in parallel, in our implementation
each one in a separate thread, collecting the results, and combining them to
match the original request.

If a request to a ’dynamic’ service (consisting of the actual service and en-
hanced with a ’Common Interface Wrapper’, the ’Partition Request’ and ’Merge
Results’ services) is issued, it is redirected to the ’Dynamizer’. The registry is
queried for a list of available instances that are as well able to process the re-



178 M. Wurz and H. Schuldt

quest. In case there are any, the original request can be decomposed using the
’Partition Request’ service attached to the ’dynamic’ service. In our case, this is
implemented as an additional operation within the originally called web service,
named splitParameters. This operation takes a list of input parameters, the ones
specified by the issuer of the original call, along with a parameter indicating
how many partitions should be created. The decision on how many partitions
should be created is made by the ’Dynamizer’, based on information provided by
the registry. If the splitParameter operation can not produce as many partitions
as asked for by the ’Dynamizer’, it is empowered to adapt that parameter in
favor of producing an error. Along with the partitions of parameters, it creates
a re-assembly plan, which is later on used to reconstruct the overall result.

Having a number of available services, as well as the partitioned parameter
set at hand, the ’Dynamizer’ issues parallel calls to those services, each with one
of the partitions as an input. If the number of available services does not match
the number of partitions, not all available services are used, or some are used
more then once, respectively. Alternatively, a surplus of services can be used to
backup others, in case the nodes hosting the services fail or are disconnected (or
are known to be less reliable than others).

Finally, the (partial) results returned are integrated using the service ’Merge
Results’. It is, like the splitParameters operation, included in the ’dynamic’ ser-
vice. In our implementation, it was realized as an operation named mergeParti-
tialResult. It accepts as an input a reference to the overall result, the (partial)
result returned by one of the service instances called and the re-assembly plan
produced during partitioning. According to this re-assembly plan, the partial
result is inserted into the final result. When all partial results are returned, the
’Dynamizer’ forwards the overall result to the original issuer of the call. Figure
2 shows a sequence diagram to illustrate the call sequence among the described
services.

3.2 Dynamic Service

In contrast to the ’Dynamizer’ who plays a managing and coordinative role, the
’dynamic’ service exposes a piece of business logic to the grid, enhanced with
the possibility to dynamically execute incoming calls in parallel. It achieves that
by adding two additional operations, splitParameters and mergePartitialResult,
and interacting with the ’Dynamizer’ (as described above). To present all possi-
ble ’dynamic’ services to the ’Dynamizer’ with one common interface, the actual
service is wrapped within an operation we termed doOperation in our implemen-
tation. In the architectural view depicted in Figure 1, it is labeled with ’Common
Interface Wrapper’. It accepts partitions of parameters as an input, can do some
type conversions if necessary and maps the partition to the parameters of the
actual service.

Revisiting the scenario from chapter 1, the splitting can easily be achieved by
assigning each available knn-distance service a fraction of distances to calculate.
Let there be m distance calculation services available and a set of n feature
vectors, then each calculation service will have to return the knn-distances for



Dynamic Parallelization of Grid–Enabled Web Services 179

doOperation(...)

mergePartialResult(...)

mergePartialResult(...)

getEndpoints(...)

matrixMultiply(a, b)

Client Application

matrixMulitply(a, b)

Dynamic 
Service

matrixMultiply(a, b)

Dynamizer

splitParameters(...)

Ordinary Service j

dynamizeCall(...)

Registry Dynamic Service i

Fig. 2. Sequence Diagram of Service Invokation

n/m feature vectors. This ordered result vectors can then be merged into the
overall result vector of n knn-distances.

Depending on the actual service(s) in terms of number of available instances,
load, speed of instances available etc., and the QoS policy specified by the user,
different kinds of decompositions might be fruitful. If, for example, bandwidth
usage has to be kept small or the network used is slow, partitioning might occur
differently at the cost of less computational speed. The intelligence about which
way of decomposition is best is currently left to the implementation of the ’Split
Request’ service – but better support by the infrastructure is subject of ongoing
research.

3.3 Registry

As registry, any catalog service that is capable of storing information about
services available in the grid together with some metadata about their potential
behavior can be used. We have implemented a simple registry to store data
about the services available in our test bed, but others as GT3’s IndexService
or a UDDI server could of course be used as well.

4 Experiments and Results

We have implemented a simple matrix multiplication service which can be used
for dynamic parallelization. We ran it on varying numbers of personal computers
serving as our grid test bed. We have exploited ordinary desktop computers with
either Linux or Windows as operating system, and Tomcat with Axis as basis



180 M. Wurz and H. Schuldt

Table 1. Processing time for multiplication of NxN matrices on up to 4 PC’s

4 Nodes 3 Nodes 2 Nodes Non Parallel

N = 60 1990 ms 2200 ms 2650 ms 3940 ms
N = 120 5030 ms 5410 ms 6440 ms 7500 ms
N = 180 9580 ms 9720 ms 11390 ms 11250 ms

av. speedup 1.5 1.4 1.2 1.0

for call distribution. The ’Payload Service’, the matrix multiplication, was by
itself not aware of participation in a distributed infrastructure. It was just an
ordinary method implemented in Java, able to multiply two matrices passed in
as arguments and return the resulting product.

To enable this method for use through the previously described ’Dynamizer’,
the two additional services ’Partition Request’ and ’Merge Result’ have been im-
plemented. To comply with the strategy that the payload services itself should
not be changed, all parameter partitions generated by the ’Partition Request’
service have to be regular inputs for a matrix multiplication. Therefore, the par-
titioner cuts the first matrix along its rows into equally sized parts. Assume a
matrix having m rows, n columns and k computers offering the multiplication
service at the time of partitioning the request, this results in k matrices each
having m/k rows and n columns. The second matrix is partitioned analogously.
Along with this sub matrices, a description is generated for each partition which
stores the information of where to integrate the partial result. The ’Merge Re-
sult’ service copies the partial results received, according to the re-integration
description, into the result matrix.

Table 4 shows the results of multiplying N×N matrices, consisting of randomly
generated integer values out of the set 0, 1, locally or distributed on up to four PC’s
using dynamic partitioning and distribution of calculation requests as described.
To better shape out the usage of this distribution pattern for computational inten-
sive tasks, the multiplication was interrupted for 50 ms per resulting row.

It can be seen from the results in Table 4 that the speedup by adding nodes
to the system has not been tremendous. But we would like to stress that the
actual speedup of execution was not the primary goal in this work. Rather, the
dynamics of parallel execution, partitioning, and merging have been our main
focus. To gain better performance, optimizations can be applied in the algorithm
to partition requests. Similarly, the data that has to be transferred can be addi-
tionally compressed. The up to four PC’s used have been added or removed from
the grid without changing a single line of code in our services. Nevertheless, the
components adapted themselves automatically to the new environment.

5 Related Work

There are numerous possibilities to decompose an application into smaller parts
that can then be executed in parallel. One of the most important and widely



Dynamic Parallelization of Grid–Enabled Web Services 181

known decomposition pattern is to use a central master coordinating control and
data flow, and several slaves executing sub tasks. Although there are other possi-
bilities like divide and conquer or branch and bound, the master/slave paradigm
is especially suitable for grid environments [5] and therefore widely used. The
master worker tool [6] allows to integrate applications in the grid by implement-
ing a small number of user-defined functions similar to the approach described
in this paper, but has a strong focus on problems from the field of numerical
optimization [7]. While the master worker tool is tightly integrated in a Globus
Toolkit 2 environment, our approach focuses on evolving into a more generally
usable framework and is independent of the underlying grid infrastructure.

Similarly, the AppLeS Master-Worker Application Template (AMWAT) [8]
offers a mature library to ease the creation of applications which are able to solve
a problem by breaking it into subproblems and merging the subproblems results
into an overall solution. AppLes emphasizes scheduling and fault tolerance is-
sues. In contrast to the explicit exploitation of AppLeS agents and necessary
adaptation of existing applications, we aim to do the parallelization transpar-
ently and by wrapping existing code instead of interweaving it. Work with other
task parallel models can be found in [9, 10] using divide and conquer mechanisms
and [11] for an example of branch and bound type of decomposition.

Using Java [12] to build environments for parallel and distributed environ-
ments and research about performance differences to other technologies was,
among others, conducted in [13][14]. In [13], the Java Language has been en-
riched with a set of constructs like remote object creation, remote class loading,
asynchronous remote method invocation, and object migration focusing on ’java-
only’ environments, the evolution of web services enabled us to easily integrate
all environments being able to invoke web services. In [14], a good overview on
various programming models for parallel java applications can be found.

In addition to the possible registries mentioned in the previous chapters,
Miles et. al. describe a service registry which allows to store semantically en-
hanced services [15]. It extends the standard UDDI interface to provide semantic
capabilities by attaching metadata to entities within a service description.

6 Conclusion and Outlook

In this paper, we have presented a novel approach to the dynamic parallelization
and automatic adaptation of (web) service calls. Invocations of a service that is
extended to be dynamic are split up at run-time into a set of sub-requests which
are sent in parallel to different service providers. After execution, the results of
the sub-requests are integrated in order to determine the result of the original
service call. This allows for the fast development of distributed, standards-based
parallel applications. In many cases, it enables parallel execution of readily de-
veloped and deployed business logic without changes to existing code.

In further work we plan to implement the assignment of QoS policies to
services requests. Currently, we are working on the specification of a language to
formulate these policies and on mechanisms that allow to apply these policies,



182 M. Wurz and H. Schuldt

even in the case of contradictory specifications. The current implementation
presented in this paper is searching for identical instances of the same service to
distribute a call. An important question in our further work will be to examine
ways to extend the search also to semantically equivalent services. Finally, as
a next step, we aim to integrate our prototype implementation into OSIRIS
(Open Service Infrastructure for Reliable and Integrated process Support) [16],
a peer-to-peer process execution engine. This will allow to parallelize not only
single service invocations but to consider dynamic parallelization of services in
the context of process and workflow execution.

References

1. Wurz, M., Brettlecker, G., Schuldt, H.: Data Stream Management and Digital
Library Processes on Top of a Hyperdatabase and Grid Infrastructure. In: Pre-
Proceedings of the 6th Thematic Workshop of the EU Network of Excellence DE-
LOS: Digital Library Architectures - Peer-to-Peer, Grid, and Service-Orientation
(DLA 2004), Cagliari, Italy, Edizioni Progetto Padova (2004) 37–48

2. Baumgartner, C., Böhm, C., Baumgartner, D.: Modelling of Classification Rules on
Metabolic Patterns Including Machine Learning and Expert Knowledge. Journal
of Biomedical Informatics, In Press (2004)

3. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press
(2001)

4. Baumgartner, C., Plant, C., Kailing, K., Kriegel, H.P., Kröger, P.: Subspace Se-
lection for Clustering High-Dimensional Data. In: Proc. IEEE Int. Conf. on Data
Mining (ICDM’04). (2004)

5. Foster, I., Kesselman, C., eds.: The Grid 2, Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers (2004)

6. Linderoth, J., et al.: An Enabling Framework for Master-Worker Applications on
the Computational Grid. In: 9th IEEE Int’l Symp. on High Performance Dist.
Comp., Los Alamitos, CA, IEE Computer Society Press (2000) 43–50

7. Anstreicher, K., et al.: Solving Large Quadratic Assignment Problems on Compu-
tational Grids. In: Mathematical Programming 91(3). (2002) 563–588

8. Shao, G.: Adaptive Scheduling of Master/Worker Applications on Distributed
Computational Resources. PhD thesis, University of California - San Diego (2001)

9. Foster, I.: Automatic Generation of Self-Scheduling Programs. In: IEEE Transac-
tions on Parallel and Distributed Systems 2(1). (1991) 68–78

10. v. Nieuwpoort, R., et al.: Efficient Load Balancing for Wide-Area Divide-And-
Conquer Applications. In: 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. (2001) 34–43

11. Iamnitchi, A., et al.: A Problem-specific Fault-tolerance Mechanism for Asyn-
chronous Distributed Systems. In: Int’l Conference on Parallel Processing. (2000)

12. Microsystems, S.: Java Technology. http://java.sun.com/ (2004)

13. Izatt, M., Chan, P., Brecht, T.: Ajents: Towards an Environment for Parallel,
Distributed and Mobile Java Applications. Concurrency: Practice and Experience
12 (2000) 667–685

14. Bull, M., Telford, S.: Programming Models for Parallel Java Applications. Tech-
nical report, Edinburgh Parallel Computing Centre, Edinburgh (2000)



Dynamic Parallelization of Grid–Enabled Web Services 183

15. Miles, S., Papay, J., Payne, T., Decker, K., Mureau, L.: Towards a Protocol for
the Attachment of Semantic Descriptions to Grid Services. In: The 2nd European
Across Grids Conference, Nicosia, Cyprus, Springer LNCS (2004)

16. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Scalable Peer-to-Peer Process
Management - The OSIRIS Approach. In: Proceedings of the 2nd International
Conference on Web Services (ICWS’2004), San Diego, CA, USA, IEEE Computer
Society (2004) 26–34



Automatic Composition and Selection of
Semantic Web Services

Tor Arne Kvaløy1,2, Erik Rongen1, Alfredo Tirado-Ramos2, and Peter Sloot2

1 IBM Center for Advanced Studies,
David Ricardostraat 2-4, 1066 JS Amsterdam, The Netherlands

torarnek@pvv.org, erik@nl.ibm.com
2 Faculty of Sciences, Section Computational Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{alfredo, sloot}@science.uva.nl

Abstract. Interactive applications like Problem Solving Environments
require on demand access to Web Services, where the services are au-
tonomously discovered, composed, selected and invocated based on a
description of requested capabilities. Semantic Web Services aim at pro-
viding semantically interpretable capabilities through the use of shared
ontologies. We demonstrate how Grid Services for an interactive biomed-
ical application are annotated with a domain ontology, and propose al-
gorithms for automated composition and selection of workflows, where
workflows are created by semantically matching service capabilities, and
where workflow selection is based on a trade-off between the types of
semantic matches in the workflow and the number of services. The algo-
rithms are demonstrated on semantically annotated Grid Services in the
biomedical application.

1 Introduction

Web Services are self-describing, self-contained units of application logic that
are either used as a single service or composed into a workflow that is executed
sequentially as a whole. Creation of such workflows has traditionally been ac-
complished by manually locating suitable services via a registry like UDDI and
then composing them into a workflow. With the increase of available services
and the dynamic nature of the Web it is desirable to automate these processes
by having software agents discover, compose, select and execute workflows au-
tonomously [1].

XML Schema based standards for describing Web Services (WSDL and
SOAP) guarantee only syntactical interoperability between services in a work-
flow, while what is needed for automating the mentioned processes is interop-
erability on a semantic level. The Semantic Web provides standards for repre-
senting and reasoning with computer interpretable information [2], and this has
lead to the development of OWL-S, which is an attempt to standardize how Web
Services are described semantically, thus creating Semantic Web Services [3].

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 184–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Automatic Composition and Selection of Semantic Web Services 185

OWL-S provides a semantic layer on top of WSDL that maps operation
parameters to semantics defined in ontologies. Grid Services are with OGSI [4]
and WS-Resources [5] based on Web Services in that the interfaces are defined
with WSDL. OWL-S does neither reflect nor interfere with the standardized
interfaces for statefulness, so we maintain that OWL-S can be used to describe
the application specific interfaces of Grid Services. Semantic Grid Services are
therefore in our view Grid Services with semantically annotated capabilities,
where OWL-S is an example of a standard that specifies the semantic layer. In
this work we will focus on the interfaces of the services and not their statefulness.

It is anticipated that in the future, Grid Services will have associated econom-
ical costs with various degrees of quality and performance that can be used for
composition and preferred selection of services. Before this higher level informa-
tion is taken into account, it is important to achieve composition and workflow
selection on a fundamental level, where the focus is on the information and state
transformation of the services. In this work we represent services by the informa-
tion transformation they undertake, in the form of input and output parameters
which are described by semantics defined in ontologies.

To relieve the user from the unnecessary complexity of specifying exactly
which services to use, a semantic description of the information transformation
that is needed could be specified in the form of requested capabilities. Based
on these requested capabilities a Matchmaker could on-the-fly find the best ser-
vices and compose them into a workflow. And since semantic interoperability
is guaranteed by the semantics, the workflow could be automatically integrated
into the client application, which is in our case a Problem Solving Environment
(PSE) [7].

We demonstrate in this paper the significance of Semantic Web Services in
a PSE and show how a domain ontology is developed to annotate services. Fur-
thermore, we demonstrate composition of services with a simple algorithm and
we propose a novel algorithm for automated workflow selection.

The rest of the paper is organized as follows. In Section 2 we give a detailed
description of the scenario of the interactive biomedical application. In Section
3 we introduce the architecture of the Matchmaker by describing its interac-
tion with services, clients and ontologies. In Section 4 we discuss semantics for
annotating Semantic Web Services, and in Section 5 we develop a domain on-
tology to annotate the Semantic Grid Services for the biomedical application.
Algorithms for automated composition and workflow selection are presented in
Sections 4 and 5, and in Section 8 we demonstrate the algorithms by composing
and selecting the biomedical services, and finally in Section 9 we conclude.

2 An Interactive Biomedical Application

Problems where blood arteries are weakened or cluttered are called vascular
disorders, and lead to reduced or blocked blood circulation, causing in many
cases stroke, and eventually death. Medical data acquired by e.g. Magnetic Res-
onance Angiography (MRA) may be used by specialists to detect these disorders,



186 T.A. Kvaløy et al.

ArteryLBMGrid

Simulation ServiceModel Manipulation

Visualization ServicePolyDataRendering Display

Local Components Grid Services
Configuration

Fig. 1. Dataflow between local components and Grid Services in the PSE

and treatment consists of reconstructing defected arteries or adding bypasses so
that the blood flow can normalize. The best treatment is however not obvious.
Problem Solving Environments (PSE) are therefore developed to allow surgeons
conduct pretreatment planning in a virtual 3D environment [7]. The PSE com-
ponents and Grid Services for this case study are shown in figure 1. The surgeon
works with the Model Manipulation component by inserting or modifying a by-
pass around the defected part of the blood artery, and when finished submits the
data of the artery’s geometry (ArteryLBMGrid) to the Blood Flow Simulation
Service according to the also provided Configuration.

The Simulation Service produces a dataset (RawVisualizationData) that is
sent to a Visualization Service where it is converted into 3D polygons (PolyData),
which is then sent to the local rendering component where a visualization of
blood flow is displayed to the surgeon. This procedure is repeated until the
desired effects are obtained.

The user specifies in the PSE that an information transformation that takes
ArteryLBMGrid and Configuration as inputs, and that returns PolyData is
needed. This is communicated to the Matchmaker, which tries to find a sequence
of services that provides this transformation.

3 Matchmaker Architecture

Figure 2 shows the architecture for the Matchmaker, adapted from [1], depicting
the involved parties and their events of interaction. Ontologies are used to an-
notate capabilities of services that are advertised to the Matchmaker, and then
to annotate requested capabilities specified by the client, and based on these
requested capabilities the Matchmaker composes and selects the workflows that
satisfy the requirements. This involves retrieving the necessary ontologies from
the Web, and semantically matching the capabilities using an inference engine.
The Matchmaker returns then a proposed workflow of services to the client, that
is used to invoke the services.

The Matchmaker maintains the list of advertised services in a local database,
and by using the OWL-S API library from The University of Maryland, the
capabilities, described by Profile and Process, are parsed for input and output
parameters consisting of URIs to ontologies on the Web. The reasoning engine



Automatic Composition and Selection of Semantic Web Services 187

2: Requested

Requested
Capabilities

Client
PSE

1: Advertise
Capabilities

Ontologies

Composition and

Selection

Capabilities

4: Propose
Workflow

Matchmaker

3: Retrieve Information

ref. ref.

4: Service Invocation
ServiceService

CapabilitiesCapabilities

Fig. 2. Architecture with sequence of interaction(solid arrows) and references to on-
tologies(stippled arrows)

(Racer [12]) loads these ontologies and compares them for equivalence and sub-
sumption.

4 Semantic Data Structures

Input and output parameters of services are represented by semantics defined in
domain ontologies, where the ontologies describe the parameters by specifying
what information that has to be provided and communicated as part of the
parameter. Each parameter points to one concept (core concept) in the ontology,
that specifies the necessary information for the parameter, where the information
consists of concepts, properties and data values. This is achieved by defining
concepts and properties, and then relating the core concept to the concepts and
properties through axioms like equivalence and subsumption, specified in OWL
as equivalentClass and subclassOf [8], respectively.

Properties, either relating a two concepts or a concept to a data value, are de-
fined with restrictions like allValuesFrom and cardinality, respectively specifying
existential qualification of the range-concept and qualified exactly cardinality for
the property [8].

The ontologies define the structure that the information has to conform
to, and this differs significantly from structure verifications provided by XML
Schemas, because the interpretation of the information is based on an ontology
that allows complex relations and constraints. Thus, communication with such
structures becomes more flexible in that there might be more than one way of
satisfying the constraints.

To the best of our knowledge, there exists no adequate name for such semantic
structures, thus we coin the name Semantic Data Structure (SDS) to define a
group of concepts and relations that are required to satisfy the constraints of a
core concept.

A domain ontology may consists of several SDSs with equally many sub
concepts and data values. They can therefore grow large and become very com-
plex. Requested and advertised capabilities are annotated with core concepts,



188 T.A. Kvaløy et al.

and manually finding these concepts become thus tedious and difficult, and the
reusability of ontologies is lowered. Core concepts should therefore be distin-
guished from other concepts on a semantic level, so that e.g. computer based
design tools can be used to select and present core concepts to the user. We
propose therefore that core concepts should be subsumed by a certain concept
(say CoreConcept) defined in a standardized ontology for Semantic Web Services
like OWL-S, thus in this way improving the reusability of domain ontologies. It
is furthermore tempting to specify core concepts as inputs and outputs in the
domain ontology [9], but outputs for one service might be inputs for another
service so that would restrict reusability.

Usage of core concepts can be enforced by only allowing parameters refer to
concepts that are subsumed by CoreConcept. For OWL-S, this could be achieved
by specifying a range restriction for the property parameterType [3].

5 Domain Ontology

Figure 3 shows fragments of a domain ontology defined to annotate the Grid Ser-
vices in the biomedical application. The ontology is described with Description
Logics notation [11] because of its more compact form than OWL. ConfigLight
is a SDS defined as CoreConcept with a property Viscosity, where the data prop-
erty is restricted to Integer as range, and cardinality of one. ConfigFull is then
defined as equal to ConfigLight with ReynoldsNumber as data property. Config-
Full is a specialization of ConfigLight and thus derives property Viscosity and
concept CoreConcept. ConfigFull can thus be used in replacement of ConfigLight
because the former specifies stricter restrictions and includes more information
than the latter. PolyData and PolyDataExtra are defined with similar relation.

ConfigLight ≡ CoreConcept � ∀ Viscosity.Integer� ≡ 1Viscosity

ConfigFull ≡ ConfigLight � ∀ ReynoldsNumber.Integer� ≡ 1ReynoldsNumber

ArteryLBMGrid ≡ CoreConcept � ∀ LocatedAt.Integer� ≡ 1LocatedAt

RawVisData ≡ RawVisualizationData

PolyData ≡ CoreConcept � ∀ LocatedAt.URI� ≡ 1LocatedAt

PolyDataExtra ≡ PolyData � ∀ NumberOfFrames.Integer� ≡ 1NumberOfFrames

Fig. 3. Fragments of a domain ontology

To demonstrate mapping between concepts, possibly defined in different on-
tologies, we define RawVisData as equivalent to RawVisualizationData. These
core concepts can then be used interchangeable, because RawVisData inherits
the property LocatedAt from RawVisualizationData.

SDSs are defined with equivalence axioms and not subsumption. In this way
is it sufficient, and not only necessary, to satisfy the concepts and relations on
the right-hand side to be a valid member of the SDS. This makes semantic
matching more flexible in that different SDSs can refer to the same right-hand
side concepts and relations, and thus match as Exact.



Automatic Composition and Selection of Semantic Web Services 189

6 Automated Composition

In our work, services are composed into workflows based on the information
transformation they undertake in the form of input and output parameters.
Outputs can either be condition or unconditional, but we are currently for sim-
plicity only considering the latter, thus in this way creating simple workflows
that are directly executable without the need for human intervention or ma-
chine reasoning during execution.

Service capabilities, requested or advertised, consist of input and output pa-
rameters that each refer to a core concept in an ontology. These capabilities are
semantically matched as described by Paolucci et al. [10], where valid matching
types of SDSs are Exact and PlugIn. Exact match means that the SDSs are inter-
changeable and equal, while PlugIn match means that an inverse subsumption
relationship between the SDSs exists, and which depend whether it applies to
input or output parameters. A PlugIn match for an advertised input parameter
means that the service requires less information as input then what is asked for
or is provided to the service, and for advertised output parameters it means that
the service provides more output than what is asked for. PlugIn matches are
therefore defined as weaker than Exact matches.

The overall match between two capabilities, either between requested and
advertised capabilities, or between capabilities of two succeeding services in a
workflow, is determined by the weakest match of the parameters.

Compositions are made by first finding all services with inputs that match
with requested inputs, and then in forward chaining fashion, adding services
with inputs that match with the outputs of the last service in the workflow.
This leads to graphs of workflows where each branch represents a workflow, and
composition continues until no more matches among the unused services can be
found (each branch holds its own list of unused services), or the outputs of the
last service in the workflow match with the requested outputs.

Forward chaining is equally good as backward chaining when conditional
outputs are not taken into account, but if they are to be considered then a
backward chaining, or goal driven approach, would have been preferred because
of the asymmetries introduced by the conditional outputs.

7 Automated Workflow Selection

Several workflows might satisfy the requested capabilities specified in the PSE
and the problem is then to autonomously select the most optimal one. We present
here an algorithm that evaluates and assigns a cost to each workflow so that they
can be compared and thus one workflow selected. Evaluations are based on the
types of semantic matches the workflows consist of and the following observa-
tions:

– Workflows with as few services as possible are preferred, because services
might be located far from each other geographically and communication
latency can lower overall performance.



190 T.A. Kvaløy et al.

– Exact matches are in general preferred over PlugIn matches, because with
services that match as PlugIn there might be information produced that is
not used and this might affect the performance negatively.

– Inputs of the first service in the workflow that match as PlugIn with the
requested inputs might affect the quality of the outcome differently than
PlugIn matches elsewhere in the workflow and should therefore be consid-
ered separately. A PlugIn match of the first inputs is considered worse than
a PlugIn match in the middle or at the end. This is based on the assumption
that what the client requests as input is important and will influence the
execution of the workflow. As an example consider a request for a data con-
version from one format to another including a certain parameter specifying
the conversion. A workflow taking this parameter into account would most
likely bring about a conversion closer to what is requested than a workflow
not taking this parameter into account.

Equation 1 shows the function that calculates the cost for each workflow,
where the inputs and outputs of services are evaluated and given values based
on their type of semantic matches. The overall match of the inputs of the first
service in the workflow is evaluated and then added to the summation of the
matches of the outputs of all N services, where n denotes the service number.
Evaluating the input match of the first service separately enables us to specify
a matching value uniquely, and for succeeding services in the workflow only the
outputs need to be accounted, because an output match is equal to the input
match of the next service.

The workflow with the lowest cost is chosen, thus the selection is based on
the types of semantic matches and the number of services.

Costwf = Inputs1(match) +
∑N

n=1 Outputsn(match),

Inputs(match) =
{

1 if match = Exact;
2 if match = PlugIn.

Outputs(match) =
{

1 if match = Exact;
1.5 if match = PlugIn.

(1)

8 Demonstration

In the PSE it is specified that a composition is requested that takes ArteryLB-
MGrid and ConfigFull as inputs, and that produces PolyData as output. Five
different compositions that satisfy these requested capabilities are displayed
in figure 4. The workflows consist of two simulation services (FlowSim1 and
FlowSim2), two visualization services (Vis1 and Vis2) and one service that sim-
ulate and visualize (FlowSimVis).

The inputs of FlowSim1 match as Exact for the requested inputs, while the
inputs of FlowSim2 and FlowSimVis match as PlugIn because ConfigLight sub-
sumes ConfigFull (inverse subsumption match). All the matches between sim-
ulation and visualization services are Exact, because RawVisualizationData is



Automatic Composition and Selection of Semantic Web Services 191

Cost: 4.0

In: ArteryLBMGrid, ConfigFull
Out: RawVisualization

FlowSim1

Vis2

FlowSim2

FlowSimVis

Vis1

Vis2

In: RawVisData
Out: PolyData

In: RawVisualizationData
Out: PolyDataExtra

In: RawVisData
Out: PolyData

In: ArteryLBMGrid, ConfigLight
Out: PolyDataExtra

In: ArteryLBMGrid, ConfigLight
Out: RawVisualizationData

In: RawVisualizationData
Out: PolyDataExtra

Vis1
Cost: 3

Cost: 3.5

Cost: 4.5

Cost: 3.5

Fig. 4. Workflows with assigned costs

equal to RawVisData in the domain ontology. And the outputs of Vis1 match as
exact with the requested outputs, while outputs of Vis2 and FlowSimVis match
as PlugIn because PolyData subsumes PolyDataExtra.

The cost of each workflow is calculated with the algorithm in section 3, and
the workflow with cost 3 is selected. This workflow is preferred even over the
workflow consisting of only FlowSimVis because it brings about a more exact
semantic transformation of information.

9 Conclusions and Future Work

This paper identifies a class of applications where Semantic Web Services will
be indispensable, in that they enable automated discovery, composition and
selection of services for direct integration, without human involvement, into the
Problem Solving Environment.

We emphasize that each service input and output parameter refers to a con-
cept in a domain ontology that specifies the semantic description of the parame-
ter. Communicating the information of the parameter require that the concepts
and properties defined by this concept is satisfied. We describe this information
therefore as a Semantic Data Structure, because it differs from XML Schemas
in that interpretation is based on an ontology.

We argue that concepts representing service parameters must be distinguished
on a semantic level by sub-classing a certain predefined concept. This enables
design tools, and possible agents, to better select the right concepts to annotate
requested capabilities, thus improving the reusability of domain ontologies. We
propose an extension to OWL-S to enforce such a restriction.



192 T.A. Kvaløy et al.

We present an algorithm for automated workflow composition where services
are composed into workflows in forward-chaining fashion. The parameters are
semantically matched as either Exact or PlugIn, and the overall match between
services is determined by the weakest parameter match.

We propose an approach for selecting the best workflow from a set of alter-
natives, where the quality and cost of each workflow is estimated, based on the
types of semantic matches, and number of services, involved.

The algorithms are demonstrated within the context of a biomedical appli-
cation by composing and selecting Semantic Grid Services that are annotated
with a domain ontology.

Future works involves applying the framework to statefull Web Services such
as described in the Web Service Resource Framework [5].

References

1. Massimo Paolucci, Katia Sycara, and Takahiro Kawamura. Delivering Seman-
tic Web Services. In Proceedings of the Twelve’s World Wide Web Conference
(WWW2003), Budapest, Hungary, May 2003, pp 111- 118

2. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

3. Dean, M. (ed). OWL-S: Semantic Markup for Web Services. Version 1.0, 2004.
4. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C, Maguire

T., Sandholm, T., Snelling, D., and Vanderbilt, P. Open Grid Services Infrastruc-
ture (OGSI) Version 1.0.

5. I. Foster (ed.). Modeling Stateful Resources with Web Services v. 1.1. March 5,
2004.

6. Z. Zhao; G.D. van Albada; A. Tirado-Ramos; K.Z. Zajac and P.M.A. Sloot: ISS-
Studio: a prototype for a user-friendly tool for designing interactive experiments in
Problem Solving Environments, in P.M.A. Sloot; D. Abrahamson; A.V. Bogdanov;
J.J. Dongarra; A.Y. Zomaya and Y.E. Gorbachev, editors, Computational Science
- ICCS 2003, Melbourne, Australia and St. Petersburg, Russia, Proceedings Part
I, in series Lecture Notes in Computer Science, vol. 2657, pp. 679-688. Springer
Verlag, June 2003. ISBN 3-540-40194-6

7. P.M.A. Sloot; A. Tirado-Ramos; A.G. Hoekstra and M. Bubak. An Interactive
Grid Environment for Non-Invasive Vascular Reconstruction. 2nd Interna-tional
Workshop on Biomedical Computations on the Grid (BioGrid’04), in con-junction
with Fourth IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2004)

8. OWL Web Ontology Language. W3C Recommendation 10 February 2004.
9. Li, Lei and Horrocks, Ian. A Software Framework for Matchmaking Based on

Semantic Web Technology. In Proceedings International WWW Conference, Bu-
dapest, Hungary. (2003)

10. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic Matching of Web Services Capabilities. The First International Semantic
Web Conference (ISWC), Sardinia (Italy), June, 2002.

11. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2002.

12. Volker Haarsley and Ralf Moller. RACER User’s Guide and Reference Manual
Version 1.7.7



Grid Application Monitoring and Debugging
Using the Mercury Monitoring System

Gábor Gombás, Csaba Attila Marosi, and Zoltán Balaton

MTA SZTAKI Laboratory of Parallel and Distributed Systems,
H-1518 Budapest P.O. Box 63, Hungary
{gombasg, atisu, balaton}@sztaki.hu

Abstract. The Mercury Monitoring System is a generic GMA-compa-
tible grid monitoring framework. In this paper we present how higher
level application monitoring and debugging facilities can be built on top
of Mercury. Currently two higher level application monitoring systems
are implemented using Mercury: one is GRM/PROVE and the other is
a stand-alone MPI wrapper library that can be used to learn about the
communication patterns of MPI programs. Remote debugging of applica-
tions has also been implemented on top of Mercury by using the remote
debugging facilities of gdb (the GNU Debugger) which is also presented
in this paper.

Keywords: Grid, MPI, performance monitoring, remote debugging.

1 Introduction

As more and more diverse grid environments are becoming available for everyday
computation, monitoring and controlling the behaviour of jobs running at remote
sites becomes more and more important. Simple sequential applications may be
developed, debugged and analysed locally with conventional tools, and even the
behaviour of many parallel applications may be analysed on the developer’s
system using tools like Totalview.

There are cases however where this is not enough. When something does not
work as expected it can be difficult to tell whether there is a bug or performance
bottleneck inside the application itself or the unexpected behaviour is just an
artifact of the internals of the remote system that the user did not know about
before. A developer may not have the resources to run a large enough parallel
program locally and bugs may arise only when it is submitted to a remote
resource to which the developer has no direct access.

To overcome these problems it is essential for a grid environment to provide
infrastructure for monitoring and controlling applications. The APART project
tried to catalogue all tools being in use today for application performance anal-
ysis, their result is available in [2].

The Mercury Monitoring System is being developed as part of the GridLab
project [4] as a generic grid monitoring framework. The design goal is to provide

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 193–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



194 G. Gombás, C.A. Marosi, and Z. Balaton

support for both resource and application monitoring. In this paper we concen-
trate on how application developers can benefit from using Mercury by showing
two usages: one is for studying communication problems and possible bottle-
necks in MPI programs, and the other is support for source-level debugging of
applications running on remote grid resources.

2 The Mercury Monitoring System

The Mercury Monitoring System provides a generic GMA-compatible [9] grid
monitoring framework. It features a multi-level design where every level acting
as a consumer of information provided by lower levels may also be a producer
for higher levels. At the lowest level there is a daemon called the Local Monitor
running at every host to be monitored. Local Monitors are grouped together
by Main Monitors (usually running at the front-end node of a cluster) that
act as data aggregators and policy enforcement points. Consumers may con-
nect to a Main Monitor to request information provided by one or more Local
Monitors behind it. See [3] for a complete description of the architecture of
Mercury.

Mercury contains two elements to aid application monitoring and steering:
an application sensor and an instrumentation library that communicates with
this sensor. Together they allow an application to register metrics and controls
specific to the application and to receive and serve requests for metrics and
controls while the application is running.

The application sensor is loaded into every Local Monitor as a module. It
keeps track of processes of jobs running at that node as well as any private met-
rics or controls that the running applications provide. When the Local Monitor
receives a request for a metric or control the application sensor forwards the re-
quest to the application process(es) it belongs to. The request is then interpreted
by the instrumentation library by performing the measurement or executing the
requested operation.

The instrumentation library provides an API for the application developer to
connect to the Local Monitor, register application-specific metrics and controls
and accept requests for the registered metrics/controls. It communicates with
the application sensor using a UNIX domain socket. The instrumentation library
also has shared memory support to speed up transferring large volumes of data
such as generated by fine-grained instrumentation. The application may also put
certain variables into the shared memory area so they can be queried or modified
without direct interaction with the application. This is useful for single-threaded
applications that do not call the event handler of the instrumentation library for
extended periods of time.

Processing of events generated by the application is optimised inside the
instrumentation library in the sense that they will not be sent to the Local
Monitor if there are no consumers requesting them. This ensures that if an
application is built with fine-grained instrumentation it can still run without
noticeable performance degradation if the generated events are not requested.



Grid Application Monitoring and Debugging 195

3 Application Monitoring and Debugging

In order to an application to generate performance events, it has to be instru-
mented. The instrumentation can be either manual or automatic. Manual instru-
mentation makes it possible to concentrate on events that are really interesting
and not to be bothered by unimportant data, which makes evaluation of the
collected data very easy and efficient. The drawback of course is the amount
of work required to insert the instrumentation calls into the application. Auto-
matic instrumentation relieves the user from this work at the expense that the
collected data will likely contain unimportant details making the interpretation
harder.

The Mercury Monitoring System provides an API that can be used either di-
rectly by the application developer or indirectly by using instrumented libraries.
Currently two higher level application monitoring systems are implemented on
top of this API: one is GRM/PROVE which is part of P-GRADE [5] and the
other is a stand-alone MPI wrapper library that can be used to learn about the
communication patterns of MPI programs. Support for monitoring applications
using the GAT [4] is also under development.

3.1 P-GRADE

P-GRADE is a development environment for parallel grid applications. Its ap-
plication monitoring capabilities are described in detail in [1], so it will only be
mentioned here briefly.

P-GRADE uses a language called GRAPNEL for describing communication
and data flow inside a parallel application at a high level. During code gener-
ation GRAPNEL is translated to either PVM or MPI calls depending on the
user’s choice. The code generator may also insert calls to the GRM instrumen-
tation library around message passing functions if requested by the user. Thus
the application will generate trace events before and after a message is sent or
received. These trace events may be visualised by PROVE to show when appli-
cation processes perform useful computation and when are they blocked waiting
for communication, as well as computing statistics such as which processes com-
municate the most.

The GRM instrumentation library can use Mercury to send the trace events
to interested consumers. At the user’s side the GRM collector connects to the
Mercury Main Monitor at the site(s) where the job is running, collects the trace
events generated by the application, and feeds them to PROVE generating im-
ages as seen on figure 1.

3.2 Performance Monitoring of MPI Applications

Although P-GRADE can do full communication instrumentation and visualisa-
tion for parallel programs, it cannot instrument applications that were developed
outside of P-GRADE. To overcome this limitation, a stand-alone wrapper library
has been recently developed that can be used to monitor the communication of



196 G. Gombás, C.A. Marosi, and Z. Balaton

Fig. 1. Visualising MPI communication

MPI wrapper library

GRM

Application

MPI
Mercury lib.App. sensor

Local Monitor

Fig. 2. Using the MPI wrapper library

MPI applications without modifying the source code of the application. Instru-
mentation is enabled automatically by linking the application with the wrapper
library instead of the real MPI library. This solution has the additional benefit
that the same wrapper library can be used equally well for applications written
in either C or Fortran (or any other language that uses standard MPI library).

The wrapper library was implemented using the MPI profiler interface [7].
The library intercepts calls to a subset of MPI functions and calls the GRM
instrumentation library before and after the real MPI call. GRM in turn uses
Mercury to send trace events to interested parties (see fig. 2). This way the
resulting data can be visualised by PROVE just as if the application were created
and started by P-GRADE.

3.3 Remote Debugging

Debugging applications running in a grid environment is often difficult because
the user has no direct access to the grid resources. Therefore solutions providing
remote debugging facilities are important for application developers.



Grid Application Monitoring and Debugging 197

The OCM-G [6] monitoring system developed by the CrossGrid project sup-
ports debugging by providing access to internal variables of the application,
allowing the user to manipulate the state of the application and automatically
detect certain events (like thread creation). However, utilizing this requires using
of tools specific to OCM-G, possibly unfamiliar for grid application developers.

In Mercury, we followed a different approach by building on tools already
known to application developers. Remote application debugging has been im-
plemented using Mercury by exploiting the remote debugging facilities of gdb
(the GNU Debugger). The original goal of this facility in gdb was to aid debug-
ging applications running on embedded systems over a serial line. Notice that
running applications on the grid shows many similarities to embedded systems
since usually the owner of a grid job does not have direct access to the systems
his or her job is running on.

User
terminal

gdb

Terminal
emulation

gdbserver

App. process

Mercury consumer

Terminal
emulation

App. sensor

ptrace

Grid node

Comm. process

Local Monitor

Fig. 3. Remote application debugging

Debugging works as follows. The Mercury application monitoring library em-
bedded in the application connects to the Local Monitor running at the same
host. After that the instrumentation library checks for commands from the pro-
ducer whenever one of the library functions is called; this works best if the
application contains fine-grained instrumentation. Alternatively the instrumen-
tation library can export a file descriptor that the application can watch and can
call the event handler function in the instrumentation library if there are data
available on the file descriptor. This method is useful if the application process
already uses asynchronous communication or if the application is multi-threaded.

When the instrumentation library receives a request to execute the control
named application.gdbserver.spawn, it forks off a communicator process. The
communicator process puts itself in the background and creates a virtual master-
slave terminal pair. After that the communicator process forks again and starts



198 G. Gombás, C.A. Marosi, and Z. Balaton

gdbserver on the slave side of the virtual terminal, instructing it to attach to
the application process. The communicator process talks directly with the Local
Monitor instead of using the application’s communication channel therefore the
application can be debugged even if it detaches from the Local Monitor. After
gdbserver has been started, the communicator process simply relays messages
between gdbserver and the Local Monitor until either side exits.

At the user’s terminal there is a small wrapper application running that fills
the gap between gdb and Mercury. This wrapper also creates a virtual master-
slave terminal pair, forks off a gdb process, and instructs gdb to use the slave
side of the virtual terminal for remote debugging as if it were a serial line.

The wrapper application subscribes to the application.gdbserver.msg metric
at the Mercury Main Monitor that carries the output produced by the remote
gdbserver process, and forwards gdb’s commands to the remote gdbserver using a
control named application.gdbserver.cmd. Mercury forwards control invocations
to the appropriate Local Monitor(s) which invoke the application sensor imple-
menting the control. The application sensor then sends the data contained in
the arguments of the control to the communicator process (and thus gdbserver).

This method for debugging remote applications has several benefits:

– There is no overhead if debugging is not active. The debugger may be started
any time, there are no special preparations needed before submitting the job.

– The user may perform the debugging process in the environment he/she is
used to without being familiar with the system his/her job is running at.
The application can be debugged just as if it were running locally.

– If gdb is built with appropriate cross-debugging support the architecture of
the remote host may be different from the user’s terminal.

– Since gdb does symbol lookups locally no debugging information has to be
present at the remote system. This means the application’s binary may be
stripped before submitting, usually making it significantly smaller. For devel-
opers of proprietary applications this also means that neither the source nor
the debugging symbols that might help to reverse-engineer the application
have to be given away, yet full source-level debugging is possible remotely.

Debugging works for both sequential and parallel jobs although for parallel
jobs a different gdb (and with the current simplistic implementation, a different
wrapper process) has to be started for every remote process.

Gdb has good support for building higher level interfaces on top of it, such
an interface may be adapted to support grid-level debugging using Mercury with
relatively little effort.

The implementation of debugging does not require explicit support from the
application so it is possible to put the initialisation of the Mercury instrumenta-
tion library in some other library like the MPI wrapper described in the previous
section, or into a GAT monitoring adaptor. This means the source code of the ap-
plication does not have to be modified (although that should not be a limitation
if one wants to do source-level debugging).



Grid Application Monitoring and Debugging 199

4 Conclusion

The Mercury Monitoring System is a generic grid monitoring framework. It
is being used in the European GridLab project and the Hungarian SuperGrid
project, and is about to be deployed in the Hungarian ClusterGrid project. In
this paper we described how higher level application monitoring and remote
debugging was implemented on top of the generic framework. The flexibility
and modularity of the Mercury architecture and using gdb made implementing
the remote debugging support easy. Our choice of gdb provided the additional
benefit that the developer can use an already familiar user interface.

The remote debugging support is part of the latest Mercury release. Tracing of
communication of parallel programs using Mercury is already part of the newly
released P-GRADE 8.3 version while the stand-alone MPI wrapper library is
available separately. Support for tracing applications using the Grid Application
Toolkit is under development.

Acknowledgements

This work was sponsored by the European Commission under contract number
IST-2001-32133 and the Hungarian Scientific Research Fund (OTKA) under
grant number T042459.

References

1. Z. Balaton, P. Kacsuk, N. Podhorszki, F. Vajda: From Cluster monitoring to Grid
Monitoring Based on GRM. Parallel Processing: proceedings / Euro-Par 2001., pp.
874-881

2. M. Gerndt, R. Wismüller, Z. Balaton, G. Gombás, P. Kacsuk, Zs. Németh, N. Pod-
horszki, H-L. Truong, T. Fahringer, M. Bubak, E. Laure, T. Margalef: Performance
Tools for the Grid: State of the Art and Future. APART White Paper

3. G. Gombás, Z. Balaton: A Flexible Multi-level Grid Monitoring Architecture. F.
Fernandez Rivera et al. (Eds.): Across Grids 2003, LNCS 2970, pp. 257-264.

4. The GridLab Project. http://www.gridlab.org
5. P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, G. Gombás:

P-GRADE: a Grid Programming Environment. Journal of Grid Computing, Volume
1, Issue 2, 2003, Pages 171-197.

6. B. Balís, M. Bubak, M. Radeczki, T. Szepieniec, R. Wismüller: Application Mon-
itoring in CrossGrid and Other Grid Projects. Marios D. Dikaiakos et. al. (Eds.):
Across Grids 2004, LNCS 3165.

7. MPI - The Message Passing Interface standard.
http://www-unix.mcs.anl.gov/mpi

8. R. Ribler, J. Vetter, H. Simitci, D. Reed: Autopilot: Adaptive Control of Distributed
Applications. Proceedings of the 7th IEEE Symposium on High-Performance Dis-
tributed Computing, Chicago, July 1998.

9. B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, R. Wolski: A Grid
Monitoring Architecture.
http://www.gridforum.org/Documents/GFD/GFD-I.7.pdf



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 200 – 210, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Interactive Visualization of Grid Monitoring Data  
on Multiple Client Platforms 

Lea Skorin-Kapov1, Igor Pandži 2, Maja Matijaševi 2,  
Hrvoje Komeri ki2, and Miran Mošmondor1 

1 Research and Development Center, Ericsson Nikola Tesla, Krapinska 45,  
HR-10000 Zagreb, Croatia 

{lea.skorin-kapov, miran.mosmondor}@ericsson.com 
2 FER, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia 

{igor.pandzic, maja.matijasevic, hrvoje.komericki}@fer.hr 

Abstract. Most current Grid monitoring systems provide a visual user interface. 
With recent advances in multimedia capabilities in user terminals, there is a 
strong trend towards interactive, multi-modal and multi-platform visualization. 
In this paper we describe a multi-platform visualization architecture and a Web 
based service built upon it, which provides a view of the monitored Grid 
hierarchy, and the values of selected monitoring parameters for different Grid 
sites. We demonstrate the application on four platforms: a desktop Personal 
Computer (PC), a handheld PC, a Java-enabled new-generation mobile phone, 
and a Wireless Application Protocol (WAP) enabled mobile phone. 

1   Introduction 

Grid technologies have been described as supporting the sharing and coordinated use 
of diverse resources in distributed “virtual organizations” [ 1]. As Grid structure is 
inherently difficult to monitor and manage due to its many geographically and 
organizationally distributed components, tools and services to assist humans in such 
tasks have become a necessity. To date, a number of Grid monitoring systems has 
been developed to enable monitoring and displaying Grid topology, its components, 
and their selected parameters, for example, resource availability, load distribution and 
task performance [ 2][ 3][ 4][ 5]. In addition to data collection, most current systems 
also include a means for Web-based visualization of the monitoring information 
gathered by the system.  

With recent advances in multimedia capabilities in user terminals, there is a strong 
trend towards improved interactivity as well as rich media spaces for information 
visualization [ 6]. Visualizations are becoming multi-modal and multi-platform, i.e. 
they may combine various media such as text, hypertext, pictures, multi-dimensional 
graphics, audio, and video, on a wide range of client (end-user) platforms, from PCs 
to new-generation mobile phones.  

In this paper we describe a multi-platform visualization architecture and a Web 
based service built upon it, which provides a user with a view of the monitored Grid 
hierarchy, and the values of selected monitoring parameters for different Grid sites. 



Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms 201 

 

The data source used by our prototype was a central data repository provided by the 
MonALISA system [ 4], however, the described architecture is independent of data 
source, and the particular implementation described in this paper could be tailored to 
work with a different database or data source (e.g., a publish/subscribe system) by use 
of Web services. We also believe it to be suitable for integrated monitoring systems 
[ 7], where data could come from different sources but could be presented through a 
common visual interface. The prototype service we implemented provides an 
interface for users to view Grid configuration and monitoring data, such as load, data 
rates, and memory on different platforms. The capability for multiplatform 
visualization and flexibility in introducing new visualization techniques make our 
approach a viable alternative to custom-made graphical user interfaces. 

The paper is organized as follows. First, we briefly analyze the properties of 
typical client platforms with their communication and presentation capabilities. Next, 
we describe the proposed architecture and its implementation. Finally, we 
demonstrate the application of the proposed architecture on Grid monitoring data 
visualization on four platforms: a desktop Personal Computer (PC), a handheld PC, a 
Java-enabled new-generation mobile phone, and a Wireless Application Protocol 
(WAP) enabled mobile phone. 

2   Client Platform Capabilities  

With the growing heterogeneity arising from differences in client devices and network 
connections there is a need to adapt services to device networking and presentation 
capabilities. Various parameters dictate client platform capabilities (e.g. available 
memory, processor speed, graphics card, display) and connection types (e.g. LAN, 
Wireless LAN, General Packet Radio Service (GPRS)). Table 1 gives an overview of 
some client devices that were used in this work as test platforms, with their respective 
characteristics, processing capabilities, and communication capabilities. 

For the purposes of this paper we divide client platforms with regards to 
visualization capabilities into three groups (full, midi, mini) as follows: 

Full clients: platforms with enough processing power and visualization capabilities to 
locally process the raw data received from a server and visualize it while 
simultaneously supporting all visualization modes (2D and 3D graphics, tables, text, 
etc). In addition, the full client may offer better interaction capabilities with the data. 
Although other types of full clients may emerge, the representative of a full client is a 
PC (Windows, Linux, etc.) running a standard Web browser with Java support. 
Example interfaces and visualization tools may be implemented as Java applets (e.g. 
Shout3D) and standard Hypertext Markup Language (HTML) elements, so there is no 
need to download/install any software on the client machine. Additional software, 
however, may be installed if needed depending on the interface implementation (e.g. 
Virtual Reality Modeling Language (VRML) [ 8] plug-in for 3D graphics). Client 
hardware and software may vary from lower-end configurations to higher-end 
configurations. 

Midi clients: platforms with medium processing power and visualization capabilities, 
powerful enough to present a user interface, simple 2D/3D graphics, as well as text 



202 L. Skorin-Kapov et al. 

 

and tables. The representative of a midi client would be a Personal Digital Assistant 
(PDA) (e.g. Compaq iPAQ or Palm) or a PDA-integrated mobile phone (e.g. Sony 
Ericsson P800). 

Mini clients: platforms that have insufficient processing power for local processing of 
raw data, and insufficient presentation capabilities for showing either 2D or 3D 
graphics. Such a terminal would receive pre-formatted Wireless Markup Language 
(WML) pages ready for presentation instead of raw data. 

Table 1. Client platforms – processing and communication capabilities 

 
Full Client 

PC 
(low-end) 

Full Client 
PC 

(high-end) 

Midi Client 
PDA 

Midi Client 
Smart Phone 

Mini Client 
Mobile phone 

Terminal 
example 

Desktop PC 
low-end 

Desktop PC 
high-end 

Compaq iPAQ 
3870 

Sony Ericsson 
P800 

Ericsson 
R520s 

Operating 
system 

Windows 
2000/XP 

Windows 
2000/XP 

Windows 
Pocket PC 
(CE 3.0) 

Symbian 
7.0 

proprietary 

IE 5.5 / 
Netscape 6.0 

IE 6.0 / 
Netscape 

7.1 
IE 3.02 

Opera 6.0 / SE 
R101 

EricssonR520 
R201 WML 

browser 

G
eneral C

haracteristics 

Browser 
HTML, 
VRML,  
Shout3D 

HTML, 
VRML,  
Shout3D 

HTML, 
VRML,  
Shout3D 

HTML 
WML 

WML 

Processor 
PIII  

800 MHz 
P4  

2.66 GHz 

Intel Strong 
ARM SA 

1110  
206 MHz 

ARM 9 
156 MHz 

N/A 

Speed 1066 MIPS 4904 MIPS 235 MIPS N/A N/A 
Memory 

size 
128 MB 512 MB 64 MB 16+16 MB N/A 

Display 
size 

1024x768 1280x1024 240x320 208x320 101x65 

Color 
depth 

32-bit 32-bit 12-bit 12-bit 1-bit 

16-bit 16-bit 8-bit 16-bit none 

P
rocessing C

apabilities 

Sound 
 Stereo Stereo 

Mono/speaker, 
Stereo/headph. 

Mono/speaker, 
Stereo/headph. 

none 

Network 
connec-

tion 

LAN 
100 Mbps 

LAN 
100 Mbps 

GPRS CS-2 
53.6 kbps / 

WLAN 
11 Mbps 

GPRS CS-2 
53.6 kbps 

GSM 
9.6 kbps / 

GPRS 
48 kbps 

Latency <10 ms <10 ms 1 s (GPRS) 1 s 0.5 / 1 s 
Jitter <1 ms <1 ms N/A N/A N/A 

Packet 
loss <1% <1% N/A N/A N/A 

C
om

m
unication 

C
apabilities 

BER <10-8 <10-8 10-3 / 10-5 10-5 10-3 / 10-5 

In addition to service customization based on client processing and communication 
capabilities, customization may be introduced through user preferences. For example, 
a user may wish to filter some media types (e.g. sound, video, etc.) in order to 



Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms 203 

 

increase response time from the system and thus increase the functionality of a 
specific application interface at the expense of richness of presentation detail. 

3   Multiplatform Universal Visualization Architecture 

The architecture we apply to for visualization of Grid monitoring data is the 
Multiplatform universal visualization architecture (MUVA) [ 9]. MUVA provides 
universal visual access to data independent of the client platform, while automatically 
adapting delivery modes to the particular platform. Rather than developing data 
visualization applications designed to run on a target (group of) client platforms, we 
separate the platform adaptation procedure on the output side from the implemented 
data visualization technique, and so facilitate flexible client access. In addition, by 
separating the data source on the input side from the visualization technique, the 
result is reusability of such techniques across a wide range of application domains and 
data sources. For example, the implementation of a technique such as a 3D tree 
representation of a hierarchical structure may be reused when developing any 
application which makes use of hierarchical data visualization. 

MUVA has been designed as a flexible and modular architecture comprised of a 
collection of software modules. Fig. 1 presents a conceptual view of the MUVA 
architecture. Crucial parts of the architecture are the visualization tools, which 
represent various modes and concepts of visualizing the data (e.g. text, table; graph; 
chart; tree). Visualization tools are separated from actual client devices by platform 
drivers, designed to adapt the data delivery mode to specific platforms. On the input 
side, actual data collection is separated from the abstract visualization tools. This 
allows for any data source to be connected simply by developing thin application 
interfaces. The result is quick adaptability to various specific application domains.  

The service logic provides the necessary intelligence for connecting application 
interfaces, visualization tools, and platform drivers depending on the particular client 
platform capabilities and user request. Each component of the architecture contains 
several modules, where not all of them have to be used in each application. The 
modular design and separation of MUVA components allows for easy addition, 
modification, and maintenance of software modules. A more detailed description of 
MUVA components is given below. 

Visualization tools are responsible for one particular mode of visualization (tool), 
e.g., a 3D structure of an input hierarchy, a simple table, bar-chart, pie-chart, etc. 
Each tool is standardized, in terms of (1) input data parameters that can be fed to it 
through its API; (2) requests it can receive through its request interface; and 3) visual 
output it produces in reply to a given request. 

Platform drivers are implemented for each supported platform. They render 
(visualize) formatted data received from visualization tools on the screen, and enable 
user interaction. The communication with the visualization tools may be through the 
network or local, depending on the location of the visualization tool in relation to the 
platform driver. Any or both may in certain cases be located on the server side, and in 
other cases on the client. 

 



204 L. Skorin-Kapov et al. 

 

Service Logic

Application  Interfaces

Visualization  Tools

Platform  Drivers

- application  specific

- retrieve  application  data

- universal tools

- well defined  functionality, 
  parameters  and behaviour

- independent of actual data

- platform specific
- provide user interaction
- receive formatted data from 
  visualization tools  and render it

Incoming  
request

Outgoing 
response

- client  recognition

- control of data
  acquisition

- invocation of
  appropriate
  visualization tools

- delivery of 
  formatted data 
  to platform drivers

- response delivery

 

Fig. 1. MUVA concept 

Application interfaces are responsible for retrieving data from a data source via a 
standard application specific API. Retrieved data is converted to Extensible Markup 
Language (XML) format based on the specified input interface for visualization tools.  

Service logic encompasses modules that provide the intelligence needed to bring 
together the components of the architecture in order to enable universal visual access 
and delivery mode adaptation.  

To illustrate the typical usage scenario, we start from the incoming client request. 
Upon receiving a client service request, the client’s preferences and platform 
capabilities are identified. One method of identification is based W3C Composite 
Capabilities / Preference Profile (CC/PP) Recommendation for device independence 
[ 10], a proposed industry standard for describing delivery context. The client profile 
data format is based on the Resource Description Framework (RDF). A client profile 
may either be sent directly as an extension to a HyperText Transfer Protocol (HTTP) 
request, or referenced from a remote location using a Uniform Resource Locator 
(URL). The implementation of client identification based on a set of generic profile 
parameters allows for on-the-fly identification of the capabilities of an increasing 
number of end-user devices.  

The service logic retrieves raw data independently of the platform capabilities 
through invocation of application interface modules. The raw data is then sent to 
appropriate visualization tools. Formatted data received as the output from 
visualization tools is then delivered to necessary platform drivers. The service logic 



Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms 205 

 

layer provides the logic necessary to select adequate visualization tools and platform 
drivers to produce the final content, adapted to the given client platform. 

In order to demonstrate the proposed approach in a real world scenario, a prototype 
Web based service was implemented. In the following section, we describe a service 
providing multiplatform visual access to Grid monitoring data. Service 
implementation helps to demonstrate the separation between application interfaces, 
visualization tools, platform drivers, and service logic components, as well as the 
main communication channels involved. 

4   Implementation 

The service implemented in this work provides an interface for users to view network 
configuration and monitoring data, such as load, data rates, and memory on different 
platforms. As mentioned earlier, the data source used was a central data repository 
provided by the MonALISA system, which provides a distributed monitoring service 
and was in this case used to monitor hundreds of AliEn Grid sites 
(http://alien.cern.ch/). 

Users access the service by entering a unique URL, which is independent of the 
client device being used. Requested data, which is then retrieved from a central 
repository and described using XML, is dynamically converted to a format suitable 
for displaying on the client device. The different formats that were used include 
VRML, HTML, and WML. The service implementation was tested on four platforms: 
a desktop PC, a handheld PC, a Java-enabled PDA-type mobile phone, and a standard 
WAP-enabled mobile phone. 

Where possible, the monitored network configuration (or a particular sub-
configuration) was visualized using the 3D Cone Tree technique [ 11]. Cone Tree is an 
interactive visualization technique suitable for hierarchical structures. The root of the 
network hierarchy is located at the tip of a transparent cone. When a level in the 
hierarchy is expanded (on user click), its children nodes are distributed at equal 
distances around the base of a cone. The user interface is enhanced by enabling 
interactive viewing, zooming, expanding and collapsing of parts of the structure. A 
formal user study using a cone-tree-based file system visualization showed that 
although Cone Trees are not suitable for all tasks, users “were enthusiastic about the 
cone tree visualization and felt it provided a better ‘feel’ for the structure of the 
information space” [ 12].  

We now describe the implementation of the MUVA system architecture 
components.  

Service logic – Client recognition functionality was implemented using Apache 
server 2.0.47. Due to fact that the developed prototype service was intended to be 
made available to users outside of a laboratory environment, and the current lack of 
widespread availability of CC/PP compliant terminal browsers, implemented client 
recognition is in this case based simply on identification of the browser type specified 
in the User-Agent header field of the HTTP request.  

Data is retrieved in standard XML format through invocation of application 
interface components and formatted depending on the platform capabilities and 
requests of the client. Requests are directed towards a Java servlet that is run using 



206 L. Skorin-Kapov et al. 

 

Apache Tomcat Server 4.1.27-LE-jdk14. The servlet requests data, and invokes the 
necessary visualization tool. In cases when 3D content is generated, the Cone Tree 
tool is called. Once the VRML result is received, the servlet calls on a platform driver 
to further adapt the VRML file for rendering in a Shout3D (Eyematic Interfaces Inc., 
www.shout3d.com) applet, after which the HTTP response is sent to the client. 

In cases where the content generation is based on HTML or WML format, the 
servlet passes retrieved XML data to Apache Cocoon 2.0.4. Data is formatted into 
HTML tables or histograms using Extensible Stylesheet Language Transformations 
(XSLT) technology. Where necessary, additional platform drivers are invoked to 
further adapt the format, prior to sending the response to the client. 

Application interfaces – Data is always requested by application interfaces and 
returned in standard XML format. The interface towards the actual data repository 
storing monitoring data collected by the MonALISA system is based on Web Service 
technology. Connectivity to the Web Service was provided using Apache Axis 1.1 
open source solution, the follow up on the Apache SOAP project. The stub code for 
the Web Service was generated by Axis’ WSDL2Java utility and modified according 
to our needs. The Web Service returns values in the form of Java beans, that are then 
transformed to XML format.  

Visualization tools – Once data is retrieved, visualization tools are needed to 
generate the actual data representation. Various visualization techniques were used, 
including text, 2D graphics, and 3D graphics.  

The creation of a VRML Cone Tree display based on an input hierarchy was 
implemented using Java. In general, any form of hierarchical data structure may be 
given as a valid input. Optional additional parameters may be applied to create a 
simpler Cone Tree display (e.g. when the client device is a PDA), where certain 
elements of the tree hierarchy are filtered (e.g. display only nodes or clusters 
belonging to a particular farm). If a particular terminal is not capable of displaying or 
rendering complex 3D graphics, data is transformed to simple HTML tables or 
histograms by using XSLT.  

Platform drivers – The interface displaying the 3D scene, designed to be viewed on 
a client with a standard Web browser and Java support, was implemented as a Java 
applet and based on the Shout3D engine. Shout3D is a library of Java classes for 
rendering 3D scenes over the Internet, thus offering the user the ability to view and 
interact with 3D scenes without the need for any additional plug-ins. In a different set-
up, Cortona VRML plug-in and Pocket Cortona (for rendering on the iPAQ PDA) 
were used to render the 3D scene. Within the scope of MUVA, the Shout3D applet 
classes and Cortona plug-in are all considered platform drivers.  

In addition to displaying 3D content on the PC and iPAQ clients, we implemented 
a C++ application to dynamically generate a 3D scene (in our case a 3D Cone tree 
display) on the Sony Ericsson P800 mobile device. The DieselEngine SDK 1.3 was 
used for software support. It is a collection of C++ libraries for creating 3D 
applications on mobile devices. Additional software used included Symbian UIQ v7.0 
SDK and Metroworks CodeWarrior for Symbian OS. The application that was built 
reads a VRML file dynamically generated by the Cone tree visualization tool, parses 
the file, converts it to Diesel3D scene format and displays the content to the user. 
Additional interaction modules for navigation, camera manipulation, and object 



Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms 207 

 

selection within the scene were also implemented. Also, XSLT files were 
implemented to further adapt content for display on a particular device. This includes 
creation of WML format for display on a WAP-enabled mobile phone. 

5   Results 

The result is a multiplatform Grid data visualization service that is developed in a 
modular fashion in order to facilitate adaptation across different application domains. 
The implemented service provides visualization of monitoring parameters for a large 
number of Grid nodes. The monitored nodes are arranged in a hierarchical manner 
into farms and clusters, referring to the geographical and/or logical grouping of nodes 
into virtual computing systems. The MonALISA system collects monitoring data 
from all distributed sites and stores the data in a central repository. Data is collected 
by our service from the central repository in CERN via a Web Service interface. 

A view of the full client display interface is shown in Fig. 2. Upon initial loading, 
the 3D view window renders the 3D scene displaying the dynamic node configuration. 
The Parameters window enables a user to choose a monitoring parameter. The 
Histogram window enables a user to choose between displaying real-time data and 
history data. Once the user has chosen a parameter and histogram button, clicking on 
the “Execute!” button will initiate the coloring of tree nodes and writing text to the 
output window. Parameter values are retrieved for each node, and coloring is based on 
the range that the value fits into. These ranges are displayed in the Legend window. 

 
 
 
 

 
 
 

Fig. 2. Visualization using a full client: 3D visualization and text windows 

Parameter values Histogram scale 

Legend 
3D visualization window Parameter selection 



208 L. Skorin-Kapov et al. 

 

   

Fig. 3. Visualization using a midi client (iPAQ) 

   

Fig. 4. Visualization using a mini client (Sony Ericsson P800) 

 

Fig. 5. Visualization using a mini client (WAP enabled mobile phone) 

When a user accesses the same service using an iPAQ (Fig. 3), the same data is 
represented using a combination of HTML pages (to specify the network 



Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms 209 

 

configuration) and simpler 3D Cone trees with only subsets of nodes shown (e.g. a 
user chooses to view monitoring parameter values for a specific cluster). In cases 
where a large hierarchy needs to be presented, small display size and lower 
processing capabilities make it more efficient to present the data using a simpler 
method, such as a table that a user can scroll through. 

The visualization is also displayed on the Sony Ericsson P800 mobile device, 
where data is again represented using a combination of HTML pages and 3D content 
(Fig. 4). 

If a user using a WAP enabled mobile phone accesses the service, the result is data 
presented in WML format. Simple WML pages allow the user to list through the 
network configuration, and request monitoring parameter values (Fig. 5). 

6   Conclusion 

In this paper, we have presented the concept of a multiplatform universal visualization 
architecture and its application to visualization of Grid monitoring data on multiple 
platforms. The key features of the proposed approach are independence of data 
acquisition and the thin adaptation “layer” for the platform on which the data is 
visualized. The presented case study demonstrates the visualization of Grid 
monitoring data on multiple platforms: a desktop PC, a handheld PC, and various 
mobile phones. Our future work is directed towards extending the system with the 
ability to interact not only with the display, but also with the Grid itself, as well as 
towards introducing new visualization tools, suitable for mobile devices. 

References 

1. Foster, I., C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure, Morgan 
Kaufmann Publishers (1998) 

2. Andreozzi S., N. De Bortoli, S. Fantinel, A. Ghiselli, G. Tortone, C. Vistoli. GridICE: a 
monitoring service for the Grid, Proceedings of the Third Cracow Grid Workshop, 
Cracow, Poland (2003) 

3. Balaton, Z., P. Kacsuk, N. Podhorszki, F. Vajda, Comparison of Representative Grid 
Monitoring Tools, Laboratory of Parallel and Distributed Systems, Computer and 
Automation Research Institute of the Hungarian Academy of Sciences, Technical Report 
LPDS-2/2000 (2000) 
[Available: http://www.lpds.sztaki.hu/publications/reports/lpds-2-2000.pdf] 

4. Newman, H. B., I. C. Legrand, P. Galvez, R. Voicu, C. Cirstoiu. MonALISA: A 
Distributed Monitoring Services Architecture. Proceedings of 2003 Conference for 
Computing in High Energy Nuclear Physics, La Jolla, California, USA (2003) 

5. R-GMA: Relational Grid Monitoring Architecture, http://www.r-gma.org 
6. Card, S. K., J. D. Mackinlay, B. Shneiderman. Readings in information visualization: 

using vision to think. Morgan Kaufmann Publishers (1999) 
7. Mambelli, M., R. Gardner. Integration of Monitoring Systems for Grid Environments, 

Proceedings of the 13th IEEE International Workshop on Enabling Technologies WET-
ICE: Infrastructure for Collaborative Enterprises (2004) 266-267 



210 L. Skorin-Kapov et al. 

 

8. Information Technology – Computer graphics and image processing – The Virtual Reality 
Modeling Language (VRML) – Part 1: Functional specification and UTF-8 encoding. 
ISO/IEC 14772-1:1997 (1997) 

9. Skorin-Kapov, L., D. Mikic, H. Komericki, M. Matijasevic, Pandzic, I. Multiplatform 
Universal Visualization Architecture, Proceedings of the Second International Conference 
on Advances in Mobile Multimedia 2004, Bali, Indonesia (2004) 

10. Butler, M., F. Giannetti, R. Gimson, T. Wiley. Device Independence and the Web. IEEE 
Intenet Computing 6, 5 (2002) 81–86 

11. Robertson, G. G., J. D. Mackinlay, S. K. Card. Cone  trees: Animated 3D visualization of 
hierarchical information. Proceedings of the SIGCHI conference on Human factors in 
computing systems: Reaching through technology, ACM Press, New York, USA. (1991) 
189–184. 

12. Cockburn A., B. McKenzie. An Evaluation of Cone Trees, In People and Computers XIV: 
Proceedings of the HCI 2000, 14th Annual Conference of the British Human Computer 
Interaction Group (2000) 425–436 



GridBench: A Workbench
for Grid Benchmarking

George Tsouloupas and Marios D. Dikaiakos

Department of Computer Science,
University of Cyprus, 1678 Nicosia, Cyprus

{georget, mdd}@ucy.ac.cy

Abstract. In this article we present the GridBench, an extensible tool
for benchmarking and testing Grid resources. We give an overview of the
GridBench services and tools that provide easy invocation of benchmarks
and management of results. We also show how the tool can be used
in the analysis of results and how the measurements can be used to
complement the information provided by Grid information services and
used as a basis for resource selection. In order to illustrate the usage of the
tool, we describe scenarios for using the GridBench framework and the
GridBench “virtual workbench” to perform benchmarking experiments
and analyze the results.

1 Introduction

High Performance Computing and it’s users have greatly benefited from bench-
marking over the years; benchmarking can be just as beneficial for computational
Grid computing. Benchmarking metrics published on the Grid can provide a ba-
sis for users to assess the “quality of service” expected of a Grid resource or
a Virtual Organization providing computational services at a given cost. Grid
benchmarks can be used by middleware developers to compare different mid-
dleware solutions such as job submission services, resource allocation policies,
scheduling algorithms, etc. Grid-oriented benchmarks can serve as an evalua-
tion of the fitness of a collection of distributed resources for running a specific
application. As common programming models or paradigms start to emerge for
programming in Grid environments, Grid benchmarks can serve as a feasibility
study of running a general class of applications (or applications following a sim-
ilar programming paradigm). A key aspect of Grids and Grid resources is their
dynamic nature and Grid benchmarks can help study the effect of this dynamic
nature of the Grid on application performance. Additionally, they can provide
some insight to the properties of Grid Architectures.

The heterogeneity of Grid platforms and the dynamic nature of Grid re-
sources makes the archival and interpretation of measured metrics a complex
task and raises questions about the overall applicability of benchmarking. Ex-
isting platforms are largely under continuous re-design and development, with
very limited cross-platform interoperability, making the specification, submis-
sion, and management of jobs is a tedious process. Measuring and/or monitoring

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 211–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



212 G. Tsouloupas and M.D. Dikaiakos

performance metrics at the application level of the Grid is currently a target of
ongoing research work. Performance measurements are affected by a variety of
factors, including the characteristics of resources allocated for a particular run,
the time-dependent latency and bandwidth of shared Internet links used for
communication between remote sites, the performance capacity of middleware
libraries used at the application level, etc.

In the remainder of this article we describe the GridBench tool for bench-
marking and testing Grids. In the next section we describe our current imple-
mentation of the Gridbench architecture, services as well as the GridBench User
Interface and how we used it to perform experiments on a mid-sized Grid infras-
tructure. Finally we provide some use-case scenarios and results.

2 GridBench

Grids and Grid Resources in general are characterized by static information
provided by Grid Information systems. Grid end users and central Grid Services
(such as resource brokers) need a better source of information on which to base
decisions. These decisions mainly refer to resource allocation or scheduling de-
cisions. The use of results from micro and macro-benchmarks can improve the
decision making process, but at this point there is no easy, automated way to
obtain, manage and deliver these measurements. GridBench is aimed at fulfilling
this purpose.

Fig. 1. A generic view of the target infrastructure

GridBench assumes an underlying hardware infrastructure that loosely ad-
heres to the one depicted in figure 1. This basic infrastructure, a Grid Virtual
Organization (VO) consists of a set of geographically distributed sites connected
over a shared network (i.e. the Internet). Each site contains a Computing El-
ement which manages a set of “Worker Nodes” for performing computations.
Typically a CE is associated with a “Storage Element”, which is an inter-
face to mass storage, and to which it has direct (Local Area Network) access
(e.g. via the Network File System). The Grid VO also contains some VO ser-
vices such as Grid Information Services, a resource broker, VO membership
server etc.



GridBench: A Workbench for Grid Benchmarking 213

GridBench, as a tool for benchmarking grids, has two main objectives:

1. Generate metrics that characterize the performance capacity of resources be-
longing to a Virtual Organization and spanning across multiple Grid nodes,
in terms of computational power, file-transfer speed, inter-process commu-
nication bandwidth, application-kernel performance, scalability etc.

2. Provide a tool for researchers that wish to investigate various aspects of Grid
performance, using well-understood kernels that are representative of more
complex applications deployed on the Grid. Having access to a corpus of such
kernels and being able to easily specify and dispatch parameterized runs of
these kernels on Grids, facilitates the characterization of factors that affect
application and infrastructure performance, the quantitative comparison of
different middleware solutions, algorithms for scheduling, resource allocation,
etc.

To address the two main objectives mentioned, Gridbench has two con-
stituents: the GridBench Benchmark Suite and the GridBench Benchmarking
Framework. The GridBench Benchmark suite is a collection of new and exist-
ing micro-benchmarks, micro-kernel benchmarks and application benchmarks;
its purpose is to generate the metrics that will characterize resources and vir-
tual organizations. The GridBench suite takes a layered approach as shown
in figure 2. The multi-layered structure of the Grid (shown in figure 1) calls
for performance measurements at the different layers of the Grid. GridBench
seeks to investigate performance properties of the following “layers” of the Grid
architecture:

1. The Resource, for example a cluster node or a Storage Element;
2. The Site, which is a collection of resources interconnected through a local-

or system-area network, and belonging to one administrative domain(e.g. a
cluster of PCs or a symmetric multiprocessor system);

3. The Grid Constellation, which includes multiple sites constituting the com-
puting platform of a Virtual Organization.

4. The Middleware, that is the software layer providing access to shared re-
sources of a Grid constellation and which gives the programmer the Grid as
a shared resource.

The suite includes benchmarks for CPU (Floating Point and Integer op-
erations), memory bandwidth, cache performance, detecting available physi-
cal memory size, interconnect performance (MPI), synthetic benchmarks and
application kernels. A detailed description of the GridBench suite is beyond
the scope of this article, more details on the Gridbench suite can be found
in [10, 11].

2.1 The GridBench Back-End

The GridBench Benchmarking Framework provides facilities for defining and
running benchmarks as well as archiving, retrieving and analyzing the results of
the GridBench benchmark suite.



214 G. Tsouloupas and M.D. Dikaiakos

Fig. 2. A layered approach to benchmarking, with micro-benchmarks, micro-kernel
benchmarks and application benchmarks on the x-axis, and resource, site and grid
constellation on the y-axis

GridBench was designed to be as independent of specific middleware as pos-
sible. The design is open enough to allow easy replacement of the underlying
middleware by the use of Middleware plugins. Currently implemented are plu-
gins for Globus and the LCG2-compatible [8] EU CrossGrid middleware. The
user can use the Globus MDS [5] for information retrieval, and either the EU
CrossGrid [6, 7] Resource Broker or the Globus GRAM for job execution.

2.2 Overview

Figure 3 outlines the software architecture of GridBench and (at a very high
level) indicates which components interact with each other. This is indicated by
a line connecting the two interacting components. The main components of this
architecture are:

Fig. 3. The GridBench architecture overview. An outline of system’s major components
and their interaction



GridBench: A Workbench for Grid Benchmarking 215

– the GridBench Suite

– is made up of the benchmark executables (e.g. Linpack).
– the GridBench UI

– Interacts with the Archiver to retrieve benchmark models1 and results.
– Defines and submits benchmarks to the Orchestrator.
– Analyzes results, create charts.

– the Orchestrator web-service
– Accepts benchmark definitions generated by the GridBench GUI (or any
other source) and manages their execution by the use of the appropriate
Middleware Plugin.
– Monitors the job status for each benchmark job and on completion re-
trieves and archives the resulting metrics.

– the Archiver web-service;
– Maintains a repository of benchmark results and model definitions.
– Provides an interface to a relational database back-end.

– the Middleware Plugin

– Middleware-specific job execution, output retrieval.
– Translation of XML descriptions of benchmarks to a job description lan-
guage;
– There are currently two implementations of the Middleware Plugin inter-
face: one for Globus and one for the EU-CrossGrid middleware.

– the Monitoring Client (collects monitoring information);
– Collects infrastructure monitoring data (as specified in each GBDL) by
using different Monitoring Clients.
– Infrastructure monitoring data can be used to interpret benchmark results
based on the state of the infrastructure during benchmark execution.

2.3 The GridBench Definition Language

The GridBench Definition Language was introduced to the system for several
reasons:

– To allow easy definition of benchmarks, including work-flow benchmarks;
– To introduce a middleware-independent definition of benchmarks;
– To serve as a container for associating a definition to the resulting metrics

as well as the collected monitoring data.

Figure 3 provides a high-level schematic view of the GridBench Definition
Language. The benchmark definition includes all necessary information needed
to run a benchmark. It includes a set of parameters, which specify details for
the benchmark execution (such as the path to the executable and benchmark-
specific parameters). It also contains a location which specifies the resources on
which it should run. A benchmark can be hierarchical in nature, meaning that

1 A model definition is a template benchmark definition with default parameters. A
model is used for the creation of a new benchmark definition.



216 G. Tsouloupas and M.D. Dikaiakos

<benchmark name="epwhetstone"
date="20040515023918"
type="mpi" >

<location>
<resource name="cluster.ui.sav.sk"

cpucount="16"
wncount="16"

jobmanager="jobmanager-pbs-workq"/>
</location>
<parameter name="executable" type="value"

dataType="0">epwhetstone</parameter>
<parameter name="execpath" type="value"

dataType="0">/opt/cg/gb/bin</parameter>
<parameter name="stage_executable" type="value"

dataType="0">manual</parameter>
<parameter name="nloops" type="value"

dataType="1">10000</parameter>
</benchmark>

Fig. 4. Left: A schematic overview of GBDL; shown in boxes are the main parts of a
GBDL document. Right: An example GBDL definition

it can be made up of other benchmarks. This, in conjuction with the use of
the execution constraint elements, can be used to specify simple workflows. A
benchmark metric may be in the form of a single value or in the form of a vector
of values (such as bandwidth at different packet-sizes).

2.4 Archiver Web-Service

The Archiver allows the storage and retrieval of results generated by executions
of the GridBench Suite Benchmarks through the Gridbench Framework.

The Archiver was introduced in order to serve the following purposes:

– To manage a potentially large number of results depending on the size of
the Grid under study, the number of benchmarks and the frequency of their
execution.

– To provide a central repository for the results allowing access to measure-
ments for users or Grid services.

– To hold a set of model definitions serving as customizable benchmark defi-
nitions.

Fig. 5. Diagram describing the Archiver functionality



GridBench: A Workbench for Grid Benchmarking 217

The Archiver is an interface implemented as a web service. The Archiver
interface may have several implementations depending on the back-end in use.
There are already implementations for using the Apache Xindice native XML
database as a back-end and the (newer) MySQLArchiver implementation using
the MySQL relational database as a back-end.

2.5 Orchestrator Web-Service

When a new benchmark description (in the form of GBDL) is delivered to the
Orchestrator web service for execution the GBDL is translated to the Job De-
scription Language required by the underlying middleware. All specified moni-
toring data collection is initiated and the job is submitted. When the job finishes,
it’s output (the metrics) are incorporated into the benchmark, as well as all the
collected monitoring data. The final GBDL is then archived using the Archiver
service.

The diagram in figure 6 describes the Orchestrator functionality in a series
of steps. The steps are given below (the numbers correspond to the circled items
in the diagram):

Fig. 6. Diagram describing the Orchestrator functionality

1. The Orchestrator receives a benchmark description in the GridBench De-
scription Language (XML). This will originate from the GridBench GUI or
from an automated system performing automated / periodic executions;

2. The GBDL is passed to the GBDL translator (which is part of the Middle-
ware Plugin) which generates a middleware-specific job description in the
syntax and format required by the underlying middleware;

3. The middleware-specific job description is then returned to the Orchestrator ;
4. The Orchestrator determines all monitoring that need to be performed,

which is specified by the monitor element(s) of the GBDL. Using the type
and query attributes of the monitor, the correct monitoring plugin is invoked.



218 G. Tsouloupas and M.D. Dikaiakos

5. Monitoring data collection is started. (In the event where the banchmark is
put in the target resource’s local queue, synchronization of monitoring data
collection and the actual benchmark execution is performed by job-status
monitoring);

6. The benchmark job is then submitted using the Middleware plugin;

7. The benchmark job’s status is monitored either by an “in-process wait” or
by polling;

8. The benchmark job finishes and the result (i.e. the standard output contain-
ing the metrics) is returned to the Orchestrator by the Middleware Plugin;

9. The Monitoring Plugin is then signaled to stop collecting monitoring data
and the collected data is returned to the Orchestrator ;

10. The results of the benchmark in the form of metric elements, as well as the
monitoring data, are incorporated into the original GBDL. If the resources
specified in the location element were not specified explicitly (i.e. resources
were allocated by the system) then location element is also updated;

11. Finally, the resulting GBDL is passed to the Archiver, concluding the Or-
chestrator ’s role as it relates to this specific benchmark.

2.6 The GridBench User Interface: The “Virtual Workbench”

GridBench provides a user-friendly graphical interface for defining and executing
benchmarks, as well as browsing results. Additionally it provides tools for result
analysis through the easy construction of custom graphs from archives results.
Figure 8 shows the main graphical use interface for the definition of benchmarks.

In Figure 8 we can observe the list of available benchmarks (the list on the
left) and the available resources (the list on the right). The resource list shows
resources retrieved from one or more Grid Information Systems (MDS), with
details about each resource’s composition such as free/busy CPU’s and Worker
nodes, dual/single CPU machines etc. Additionally a set of tests can be per-
formed on each resource. In Figure 8 we can see tests such as the “PBS” test
and the “MPI” tests. These tests will test each resource for correct configu-
ration of PBS and MPI respectively. Tests involving multiple sites (e.g. using
MPICH-G2) can also be performed. Such tests are usefull for detecting configu-
ration problems as well as connectivity/firewall issues. More tests (e.g. targetting
other local queuing systems) can be easily added by implementing simple Java
interfaces.

Defining and executing a benchmark is as easy as dragging a benchmark onto
one of the resources (shown in Figure 8). The user has the opportunity to tune
the benchmark parameters prior to execution via a benchmark configuration
panel. The user can easily construct graphs as the ones in the results section by
using the “result matrix” shown in Figure 7.



GridBench: A Workbench for Grid Benchmarking 219

3 Use-Case Scenarios

We present 2 simple use-case scenarios for GridBench in order to illustrate the
functionality visible to the end-user and the overall simplicity in using the tool to
get performance metrics for Grid resources. First we describe the scenario where
a user would like to get a “picture” of the currest status of a set of resources in
terms of low-level performance metrics. In the second case the user has a specific
application in mind and would like to select a resource onto which to execute
the application. Many other use-case scenarios are possible; in fact some do not
even involve an end-user. For example, metrics obtained through GridBench
mechanisms can be used by a scheduler that performs resource ranking on an
application basis in a way that is completely transparent to the user.

Fig. 7. The GridBench graphical user interface showing the generation of charts from
historical data. The result shown is from a cache benchmark

3.1 Use-Case Scenario 1: Comparing Resources

As a first use-case, we consider a user who wants to compare a set of resources in
terms of 2 “basic” performance factors : CPU FLOP/s and memory bandwidth.
The user would like to use “fresh” data so she opts to invoke new benchmark
executions instead of fetching historical data. The user can perform the following
steps:

1. Determine which metrics will tell you what you want to know about the
resources. In this case, the metrics for these factors can be delivered by a set
of benchmarks as summarized below:

Factor Metric micro-benchmark
CPU OP/s EPWhetstone
Memory bandwidth EPStream



220 G. Tsouloupas and M.D. Dikaiakos

2. Using the GridBench GUI simply drag each of the benchmarks onto each
resource and submit the benchmark (Figure 8). When the benchmark exe-
cution finishes, the result will be automatically archived.

3. Using the GridBench GUI put together comparative charts for the resources
for each benchmark (Figure 9).

From the results on Figure 9 (the charts were generated using the GridBench
GUI) we observe that the three sides that were chosen for comparison vary in

Fig. 8. Screen-shot of the GridBench graphical user interface. The list on the left is a
list of benchmarks that are integrated into GridBench. The list on the right shows the
currently available resources and their status in terms of busy/free CPU’s. Invoking a
benchmark on a resource is as simple as dragging a benchmark from the template list
to a resource in the resource list

(a) Aggregate CPU performance (b) Aggregate memory bandwidth

Fig. 9. Results for use-case scenario 1



GridBench: A Workbench for Grid Benchmarking 221

their measurements. At this point it is important to note that two of the resources
(ce010.fzk.de and gtbcg01.ifca.unican.es) use dual-CPU worker-nodes. In
terms of aggregate CPU performance they vary only sightly. In terms of memory
bandwidth the performance varies greatly as shown in figure 9(b) (probably due
to the memory technology employed at each resource). Considering a memory-
intensive application where the main requirement is memory bandwidth then a
user (or resource broker) can select the four worker nodes from ce010.fzk.de
rather than the four from gtbcg01.ifca.unican.es.

3.2 Use-Case Scenario 2: Application Performance

As a second use-case we consider a user that wants to compare resources based on
performance of a given application or kernel 2. The user, in this case a surgeon,
needs to find the best resources to run a set of simulations. The user has a
given application that is used frequently, it is therefore justifiable to perform
some trivial instrumentation/timings on the application’s computational kernel
(e.g. to measure iteration times or simply measure completion time on a given
dataset) and make it part of the benchmarks available in GridBench.

One of the primary design goals of the GridBench framework is the easy
inclusion of new benchmarks/kernels. In this use-case scenario the user wishes
to include a frequently used kernel; the following steps need to be taken:

1. Create a new GBDL description (model) and add it to the Archiver database;
2. Write a simple implementation of the ParameterHandler Java interface;
3. Instrument the code of the kernel to generate metrics.

A New GBDL Description
The first step in adding a new kernel is to create a new GBDL description such

as the one that follows:
<benchmark name="bstream1_1" date="" type="mpi"

model="true" description="B_stream 1.1 ..." >
<parameter name="executable" type="system">bstream1.1</parameter>
<parameter name="iterations" type="value">40</parameter>
<parameter name="Reynolds" type="value">20</parameter>
<parameter name="data_id" type="value">tube38x40x40</parameter>
<parameter name="stage_file" type="system">tube38x40x40.bs</parameter>
</benchmark>

This description states that:

– this is a benchmark description that is to be used as a model (model=“true”);
– the parameters iterations, Reynolds and data id are application-specific pa-

rameters required by the kernel executable;
– “bstream1.1” is the name of the executable and file “tube38x40x40.bs” needs

to be staged;

2 The kernel in question is from a medical application, developed at the University of
Amsterdam, for pre-operative planning of vascular reconstruction. It involves blood-
flow simulation using a Lattice Boltzmann method in arteries using 3-Dimensional
data obtained from MRI scans of the patient [9].



222 G. Tsouloupas and M.D. Dikaiakos

Since the formatting of command-line arguments to the application exe-
cutable is application-dependent the user needs to provide a ParameterHandler.

Writing a ParameterHandler
A benchmark-specific ParameterHandler is required for special formatting of

command-line arguments (or creation of parameter files etc). In this use-case
scenario the applications takes three parameters, which need to be provided in
a given order on the command-line. A typical invocation would be:

bstream1_1 20 tube38x40x40 40

During translation of the GBDL to the middleware-specific job description,
the class ParameterHandler bstream1 1 will be dynamically loaded:

public class ParameterHandler_bstream1_1 implements ParameterHandler{
public java.util.Vector getCommandLineArguments(Benchmark benchmark){

ParameterCollection parameters=benchmark.getParameters();
Vector parameterVector=new Vector();

Parameter data_id=parameters.getParameter("data_id");
Parameter reynolds=parameters.getParameter("Reynolds");
Parameter iterations=parameters.getParameter("iterations");

parameterVector.add(raynolds.getValue());
parameterVector.add(data_id.getValue());
parameterVector.add(iterations.getValue());

return parameterVector;
}
...

}

The method getCommandLineArguments() is called and returns an ordered
list of parameters correctly formatted and ready to be passed to the application
executable.
Instrumenting Application Codes
Instrumentation of codes is highly application-specific and usually involves triv-

ial modification of the source code to obtain timings at a high level. In our specific
use-case the application performs iterations which are controlled by a main loop.
In total, about ten lines of code were added in order to time each iteration and
output the following metrics onto the standard output:

<metric name="iteration_times" type="vector" unit="s" step="20" period="200">
<vector name="time">0.079617 0.079529 0.079511 0.079498 ... 0.094326</vector>

</metric>
<metric name="completion_time" type="value" unit="s">639.633215</metric>

Obtaining Measurements
Once the kernel has been integrated into GridBench the user can invoke it

just like any other benchmark. The same steps listed in the previous use-case
apply to this case as well. One difference is that now the kernel benchmark takes
considerably longer to run (tens of minutes) than the micro-benchmarks (a few
seconds) in the previous use-case. In this case the user opts to use previously
archived executions of the kernel benchmark because it is considerably expensive
to get fresh measurements. The steps are now:



GridBench: A Workbench for Grid Benchmarking 223

Fig. 10. Results for use-case 2, showing iteration times of a given kernel on four
resources

1. Retrieve archived results for this kernel;
2. Benchmark the resources for which there are no archived results;
3. Compare the results.

Invoking the kernel benchmark on a set of resources allows us to construct
the chart shown in Figure 10. Based on these results a user (or resource broker)
can make relatively safe decisions for resource selection, given that the criterion
for a “good” selection is the performance of the given kernel.

4 Related Work

The ALU-Intensive Grid Benchmarks [3] are a specification to run the the
NAS Parallel Benchmarks [1] in pre-defined workflows and from that infer the
performance of Grid systems. The AIGB aim to benchmark the ability of dy-
namic collections of Grid resources to executes several types of workflow, while
the GridBench suite proposed an more hierarchical approach both in terms
of infrastructure and of benchmark types. Nevertheless, the GridBench tool
could serve as a means to execute these benchmarks just like any other
benchmark.

Diperf [4] is a distributed performance-testing framework aimed at automat-
ing performance evaluation of services. It does not address computational re-
sources or network performance directly.

Also, work has been done to “assess” the Grid using “probes” [2] but this
work focuses mainly on file transfers, remote execution, and Information Service
responses. Computational resource performance is not addressed.

5 Conclusions and Future Work

We have provided an overview the GridBench services and user interface which
can serve as a “virtual workbench” for performing benchmarking experiments,
archiving benchmark specifications and results and an aid for analysis of metrics.



224 G. Tsouloupas and M.D. Dikaiakos

We have presented two elementary use-case scenarios and illustrated the ease
of use of the tool: The first use-case illustrated how end-users and administrators
can perform benchmarking experiments either for resource selection of for deter-
mining the operational status of resources. The second use-case illustrated how
a user or application developer can obtain results from new application-based
benchmarks using the GridBench framework.

In on-going and future work we are working on the implementation of more
benchmarks focusing on the aspects of availability and performability and the
derivation of higher-level metrics to express “quality features” of Grid infras-
tructures: Homogeneity, trustworthiness of GIS, health of the infrastructure,
reliability and robustness. We also plan to enrich the Gridbench suite with more
benchmarks based on existing Grid applications.

We plan to extend the GBDL specification to include constrained and au-
tomatic parameter selection and to include additional middleware plugins to
provide interoperability with more infrastructures (such as UNICORE).

Acknowledgments

This work was supported by the European Union through the CrossGrid project
(IST-2001-32243). The authors wish to acknowledge Alfredo Tirado-Ramos and
Lilit Abrahamyan (University of Amsterdam) for the blood flow application
code, and the support of the CrossGrid testbed team for running the distributed
simulation.

References

1. David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and
Maurice Yarrow. The nas parallel benchmarks 2.0. The International Journal of
Supercomputer Applications, 1995.

2. Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes for
grid assessment. In 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa
Fe, New Mexico, USA. IEEE Computer Society, 2004.

3. R.F Van der Wijngaart and Michael Frumkin. Alu intensive grid benchmarks.
https://forge.gridforum.org/projects/gb-rgs, 2004.

4. Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf: an au-
tomated distributed performance testing framework. In Proceedings of the 5th
International Workshop on Grid Computing (GRID2004). IEEE, November 2004.

5. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations.
In Proceedings of the 6th IEEE Symp. on High-Performance Distributed Comput-
ing, pages 365–375. IEEE Computer Society, 1997.

6. The EU CrossGrid Project. http://www.eu-crossgrid.org.

7. The EU DataGrid Project. http://www.eu-datagrid.org.

8. The LCG Project. http://lcg.web.cern.ch/LCG/.



GridBench: A Workbench for Grid Benchmarking 225

9. P.M.A. Sloot, A. Tirado-Ramos, A.G. Hoekstra, and M. Bubak. An interactive
grid environment for non-invasive vascular reconstruction. In 2nd International
Workshop on Biomedical Computations on the Grid (BioGrid’04), in conjunction
with Fourth IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2004), Chicago, Illinois, USA, April 2004. IEEE. CD-ROM IEEE
Catalog # 04EX836C.

10. George Tsouloupas and Marios D. Dikaiakos. Gridbench: A tool for benchmark-
ing grids. In Proceedings of the 4th International Workshop on Grid Computing
(GRID2003), pages 60–67, Phoenix, AZ, November 2003. IEEE.

11. George Tsouloupas and Marios D. Dikaiakos. Characterization of computational
grid resources using low-level benchmarks. Technical Report TR-2004-5, Dept. of
Computer Science, University of Cyprus, 2004.



A Method for Estimating the Execution Time of
a Parallel Task on a Grid Node

Panu Phinjaroenphan1, Savitri Bevinakoppa1, and Panlop Zeephongsekul2

1 School of Computer Science and Information Technology,
2 School of Mathematical and Geospatial Sciences,

RMIT University, GPO Box 2476V, Melbourne Australia
{pphinjar, savitri}@cs.rmit.edu.au

panlopz@rmit.edu.au

Abstract. The mapping problem has been studied extensively and many
algorithms have been proposed. However, unrealistic assumptions have
made the practicality of those algorithms doubtful. One of these assump-
tions is the ability to precisely calculate the execution time of a task to
be mapped on a node before the actual execution. Since the theoretical
calculation of task execution time is impossible in real environments, an
estimation methodology is needed. In this paper, a practical method to
estimate the execution time of a parallel task to be mapped on a grid
node is proposed. It is not necessary to know the internal design and al-
gorithm of the application in order to apply this method. The estimation
is based upon past observations of the task executions. The estimating
technique is a k-nearest-neighbours algorithm (knn). A backward predic-
tor elimination, leave-one-out cross validation, and a statistical technique
are used to derive the relevant parameters to be used by knn. Experi-
mental results show that on average the proposed method can produce
2.3 times the number of accurate estimated execution times (with errors
less than 25%) greater than the existing method.

1 Introduction

Computational grid has been introduced as a new distributed computing paradigm
that is able to interconnect heterogeneous networks and a large number of com-
puting nodes regardless of their geographical locations [1]. This new paradigm
provides an access to tremendous computational power that can be harnessed
for various applications. Parallel applications are developed to solve implemen-
tations of computational intensive engineering or scientific problems that require
such power.

The main aim of solving such problems with a parallel application is to reduce
the execution time. As a computational grid involves a large number of nodes,
one of the challenging problems is to decide the destination nodes where the
tasks of the application are to be executed. This process is formally known as
the mapping problem [2]. In this paper, we broadly categorise studies of the
mapping problem into two classes: practical and theoretical.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 226–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Method for Estimating the Execution Time of a Parallel Task 227

In practical studies, the focus is on investigating an efficient approach to
map a specific parallel application on real environments. GrADS [3] and CGRS
[4] are examples of practical mapping studies. The internal knowledge of the
application, such as design and algorithm need to be known.

In theoretical studies, the problem is usually modelled at an abstract level
using graphs, and internal knowledge of the application is assumed to be un-
known. The developed mapping approach is therefore generic, but cannot be
used in reality due to unrealistic assumptions of the graph based model.

The current situation indicates a lack of a practical and generic mapping
approach. A methodology that can be undertaken to develop one such approach
is to address the unrealistic assumptions in theoretical studies. One of these is
the ability to precisely calculate the execution time of a task to be mapped on
a node before the actual execution. In practice, such a calculation is impossible;
however, an estimate (i.e. estimated execution time) can be made. This problem
is formally called the execution time estimation problem [6].

In this paper, a method is developed to estimate the execution time of a
parallel task, a task with inter-task communication, on a grid node. We only
assume that the input problem size (e.g. the sizes of the matrices in a matrix-
matrix multiplication application), the number of tasks, and the topology of the
application are known. The estimation method is based on past observations of
the task executions. A k-nearest-neighbours (knn) algorithm is employed as the
estimating technique. The relevant parameters to be used by knn are dynam-
ically and automatically chosen using the combination of a backward predictor
elimination, a statistical technique and leave-one-out cross validation [5].

In the experiments, the proposed method is compared with the existing esti-
mation method presented in [6] by estimating the execution times of the tasks of
a matrix-matrix multiplication application developed with Cannon’s algorithm
(Cartesian topology). Experimental results show that on average the proposed
method can produce 2.3 times the number of accurate estimated execution times
(with error less than 25%) greater than the existing method.

2 Related Work

The solutions to the execution time estimation problem are categorised into code
analysis, analytic benchmarking and code profiling and past observations [6].

The first two classes assume that the internal design and algorithm of the
application are known. The user-supplied performance model used in GrADS
[3] and CGRS [4] fit into these categories. On the other hand, estimation based
upon past observations does not require any knowledge of the internal design
and algorithm. However, some previous observations are essential.

An estimation method based upon past observations is proposed in [6]. The
employed estimating technique is a k-nearest-neighbours algorithm. Even though
their experimental results suggest a promising method, there are some shortcom-
ings. Their method is inflexible since the number of predictors (variables used
to make an estimate) is fixed. Another restriction assumption is that the exe-



228 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

cution time of a task only depends on the performance of the node the task is
mapped on, and the input problem size. However, in practice, the execution time
of a task may depend on its communications to other tasks. Another limitation
of this method is that the number of neighbours (k) chosen is always equal to
n

4
5 , where n is the number of known observations, and no justification has been

offered as to the choice of this number.

The execution time of a task on a given node depends on a vector x of p predic-
tors, x

� = (x1 x2 ... xp). Given y as the execution time of a task, y is considered
to be a function of x.

y = f(x�) (1)
Some vectors of predictors and their corresponding execution times are known.

Let X and y represent n of these vectors, respectively.

X =

⎡
⎢⎢⎣

x
�
1

x
�
2

:̇
x
�
n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x11 x12 ... x1p

x21 x22 ... x2p

:̇ :̇ ··· :̇
xn1 xn2 ... xnp

⎤
⎥⎥⎦ ,y =

⎡
⎢⎢⎣

y1

y2

:̇
yn

⎤
⎥⎥⎦ (2)

The goal is to estimate the execution time ŷ (dependant) from a vector of
predictors xq (query point) using the known observations X and y (dataset), and
the percentage relative residual error (%e) is used to evaluate the accuracy, i.e.

%e =
|ŷ − y|

y
· 100. (3)

4 The Proposed Estimation Method

The proposed method consists of two processes: estimating and learning. The
former is to estimate the execution time of the query point. The latter is to
derive the relevant parameters to be used in the estimating process.

4.1 Estimating Process

Given xq as the query point, with knn, ŷ is the average of the other k execution
times which are nearest neighbours of xq, i.e.

ŷ =

∑k
j=1 yj

k
. (4)

The other k execution times are determined from the Euclidean distance,
d(·), of their predictors to the query point xq, which is given by

d(x,xq) =

√√√√ p∑
i=1

(wi · (xi − xqi
))2 (5)

3 Estimation Based upon Past Observations



A Method for Estimating the Execution Time of a Parallel Task 229

where xi and xqi
are the ith predictor in x and xq, respectively. A distance factor

wi, is used to multiply the ith predictor to represent how important a predictor
is (the greater the distance factor, the more the important).

Using distance as a criterion, it is better to give greater weight to observations
that are close to xq and less weight to those that are remote. To assign the weight
to an observation, a weighting (kernel) function is necessary. The Gaussian kernel
is used as the weighting function and is given by

K(d) = e−d2
. (6)

Using this, ŷ is now the weighted average of the execution times of k nearest
neighbours and is given by

ŷ =

∑k
j=1 yjK(d(xj ,xq))∑k
j=1 K(d(xj ,xq))

. (7)

4.2 Learning Process

It can be seen that the predictors, the number of neighbours, and the distance
factors need to be defined for the knn in the estimating process. The learning
process explained here is for specifying these parameters. The process consists
of two steps: preprocessing and parameter-deriving.

Preprocessing: Let p represent a predictor type, and p
� = (x1 x2 ... xn).

Hence, X in (2) can now be rewritten as

X =
[
p1 p2 ... pp

]
=

⎡
⎢⎢⎣

x11 x12 ... x1p

x21 x22 ... x2p

:̇ :̇ ··· :̇
xn1 xn2 ... xnp

⎤
⎥⎥⎦ . (8)

The first step is to transform the elements in each p such that their values
range from zero to one using (9).

xi =
xi − minx

maxx − minx
(9)

where xi, maxx, and minx are the ith, the maximum, and the minimum elements
in p, respectively.

The second step is to remove the predictors that have no influence on the
dependants y. p has no influence on y if all elements in p are identical. This
situation usually occurs when the number of observations in the dataset is small.

The final step is to remove multicollinearity. Multicollinearity refers to the
situation that a pair of predictors are highly correlated, in which one of them
can be ignored. The linear relationship between predictors pi and pj can be
measured from their correlation coefficient (rij) [7], which is given by

rij =
n
∑

xixj −
∑

xi

∑
xj√

[n
∑

x2
i − (

∑
xi)2][n

∑
x2

j − (
∑

xj)2]
. (10)



230 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

00. mincv, kopt, lopt = LOOCV (X, y)
01. for (l = 1; l ≤ maxl; l = l + 1)
02. calculate w for each p;
03. for (i = 1; i ≤ n; i = i + 1)
04. xq = xi;
05. y = yi;
06. X = X − xi;
07. y = y − yi;
08. for (j = 1; j ≤ n − 1; j = j + 1)
09. D[j][l] = d(xj,xq);
10. sort D by distance;
11. for (k = 1; k ≤ maxk; k = k + 1)
12. ŷ = knn from k neighbours based on the distances in D;
13. E[i][k][l] = |ŷ−y|

y
· 100;

14. X = X + xq;
15. y = y + y;
16. mincv = minimum cv in E;
17. kopt, lopt = kth and lth indices that minimum cv is found;

Fig. 1. Leave-one-out cross validation algorithm

In our study, if |rij | is greater than 0.90 then a multicollinearity exists between
them.

Parameter-deriving: In this step, the predictors are related to the dependants
in the dataset as to derive the actual predictors (Xact – the predictors that will
be used in the estimating process), and the optimal number of neighbours (kopt),
and distance factors (wopt). The main technique to accomplish this is leave-one-
out cross validation (LOOCV) [5]. The algorithm is shown in Fig.1, which is
to leave the ith observation out of the dataset, and use the other observations
to estimate the left out observation. The objective is to find X, k, and w that
minimise the cross validation (cv) function

cv(X, k,w) =
∑n

i=1 %ei

n
(11)

where %ei is the percentage relative residual error of the ith observation when
it is left out and estimated by using X, k, and w.

The distance factor for each predictor in the algorithm is derived from the
statistical technique Spearman’s rank correlation coefficient (rs) [7], and the level
of importance.

rs is used to measure the strength of association between two sets of data,
assuming that the underlying relationship is unknown. rs is given by

rs = 1 − 6
∑n

i=1 d2
i

n3 − n
(12)



A Method for Estimating the Execution Time of a Parallel Task 231

0

0.2

0.4

0.6

0.8

1

|r
s| level = 2 (w = 1.0)

level = 1 (w = 0.5)

p
1
 p

2
 

Fig. 2. |rs|1 and |rs|2 are 0.3 and 0.7, respectively. Since l = 2, m1 = 1 and m2 = 2,
and w1 and w2 are 0.5 and 1.0, respectively

where d is the difference in statistical rank – the ordinal number of a value in a list
arranged in increasing order – of corresponding variables. The values of rs range
from -1 to 1, indicating perfect negative and positive association, respectively.
Let |rs|i represent |rs| between the ith predictor and the dependants y, this
predictor is in level m if and only if

m − 1
l

< |rs|i ≤ m

l
(13)

where l is the number of levels and m = 1, ..., l. Given mi as the level that the
ith predictor is in, the distance factor for this predictor, wi, is given by

wi =
mi

l
. (14)

Fig.2 shows an example of how to calculate the distance factors. In LOOCV ,
maxl is the predefined maximum number of levels while maxk is the predefined
maximum number of neighbours. The possible numbers of neighbours range from
1 to n − 1.

The execution time of each left out observation is estimated over different
ks and ls, and the associated error (%e) is stored in an array E. After all the
errors have been stored, the algorithm calculates cv (over different ks and ls),
and returns the minimum cv and the kth and lth indices (as kopt and lopt) that
lead LOOCV to mincv.

Thus far, the predictors given to LOOCV are the ones after the prepro-
cessing step. However, they are not yet the actual predictors. To derive the
actual predictors, the simplest approach is to generate all possible combina-
tions of the predictors, process each to LOOCV , and pick the one that yields
the least cv.

However, a problem arises when p is large since the complexity grows expo-
nentially with the number of predictors, i.e. O(2p). To address this problem, the
backward predictor elimination is augmented into the parameter-deriving algo-
rithm (as shown in Fig.3) to seek the actual predictors.

The idea is to drop each predictor one by one to make p new sets of predictors.
If all cvs from processing these sets to LOOCV are more than the cv from
processing all predictors in X to LOOCV , the predictors in X are the actual



232 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

00. Xact, kopt, lopt = parameter-deriving (X, y)
01. mincv, kopt, lopt = LOOCV(X,y);
02. Xact = X;
03. for (i = 1; i ≤ p; i = i + 1)
04. tmpcv, tmpk, tmpl = LOOCV(X − pi,y);
05. if (mincv ≤ tmpcv)
06. mincv = tmpcv;
07. Xact = X − pi;
08. kopt = tmpk;
09. lopt = tmpl;
10. if (X is Xact)
11. return;
12. else
13. Xact, kopt, lopt = parameter-deriving(Xact,y);

Fig. 3. The parameter-deriving algorithm

1 2 2 3
p p

p p p pp p
1 2 1 3 2 3

p p432

1

5 6

p p p
2 3

3
p p

1

1

Fig. 4. Only the sets of predictors in the oval are considered in the backward predictor
elimination. Here, Xact = p3 and cv(X = [p1p2p3]) ≥ cv(X = [p1p3]) ≥ cv(X = [p3])

predictors. Otherwise, the parameter-deriving is recursively called with the set
that yields the least cv (see Fig.4 for an example). The returned Xact, kopt, and
lopt are the actual predictors, the optimal number of neighbours, and levels which
is used to derive the optimal distance factors, respectively. The complexity of
the backward predictor elimination is O(p·(p+1)

2 ) for the worst case.

5 Experiments

In the experiments, three estimation methods, as shown in Table 1, are evalu-
ated. Method-1 is the estimation method proposed in [6]. In method-3, maxk

is set to n − 1, which is the maximum possible number of neighbours, and
maxl is set to 10. maxk in method-2 is also set to n−1. Notice that method-
2 is a specialisation of method-3. The simulator used in the experiments is
GMap1. All the experiments are conducted on a 2.8 GHz Intel Pentium-4
computer.

1 GMap is a simulator developed to study the mapping problem, available at
http://www.cs.rmit.edu.au/∼pphinjar/GMap



A Method for Estimating the Execution Time of a Parallel Task 233

Table 1. The experimented estimation methods

method learning process estimating process

method-1 fixed X, kopt = n
4
5 , and lopt = 1 knn explained in [6]

method-2 dynamically chosen X and kopt, and lopt = 1 knn explained in Sect.4.1
method-3 dynamically chosen X, kopt, and lopt knn explained in Sect.4.1

Fig. 5. The topology of the experimented parallel application. Here, c1 and c2 are the
neighbour tasks of c0, c0 and c3 are the neighbour tasks of c1, and so on

5.1 Parallel Application

The execution times of the tasks of a four-task square matrix-matrix multipli-
cation are estimated. The topology of the application is Cartesian (as shown in
Fig.5). The algorithm is Cannon’s algorithm (see [8] for details), in which the
tasks perform some different instructions.

As for simplicity, the small number of tasks is experimented on. However,
the same method can be applied directly to applications with larger number of
tasks and other types of topologies.

5.2 Grid Testbed

The experimental testbed is partially modelled from ThaiGrid testbed [9]. The
testbed consists of 7 clusters 96 nodes and 141 processors. It is assumed that the
clusters are located in 7 different countries, and all nodes are dedicated. Mapping
tasks to unreliable nodes are not considered in the experiments.

The bandwidth among the nodes in the testbed are derived from the network
statistics among nodes located in those 7 countries measured during May 2004,
available from the PingER project [10].

5.3 Experimental Results

The application is executed on the testbed 100 times by randomly varying the
size of the matrices (i.e. 100, 200, ..., 5000). At each run, 10 nodes are first
randomly chosen. Then, the nodes to run the tasks are randomly chosen from
these 10 nodes. This leads to multiple tasks being executed on the same node.

Assume that task c0 (in Fig.5) is to be mapped on node v0 while c1 and
c2 (which are the neighbour tasks of task c0) are mapped on nodes v1 and v2,
respectively. The predictors used to estimate the execution time of task c0 are
the problem size of the application, the performance and load factor of nodes v0,
v1 and v2, and the bandwidth from node v0 to nodes v1 and v2 and vice versa.



234 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

1st 15th 30th 45th 60th 75th 90th
0

500

1000

%
e

1st 15th 30th 45th 60th 75th 90th
0

100

200

query point

%
e

0~25 25~50 50~75 75~100 >100
0

20

40

60

80

%e

%
nu

m
be

r 
of

 e
st

im
at

es

1st 30th 60th 90th
0

5

10

15

20

query point

le
ar

ni
ng

 ti
m

e 
(s

ec
on

ds
)

1st 30th 60th 90th
0

100

200

300

400

query point

es
tim

at
in

g 
tim

e 
(m

ic
ro

se
co

nd
s)

method−1

method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

1st 15th 30th 45th 60th 75th 90th
0

500

1000

%
e

1st 15th 30th 45th 60th 75th 90th
0

100

200

query point

%
e

0~25 25~50 50~75 75~100 >100
0

20

40

60

80

%e

%
nu

m
be

r 
of

 e
st

im
at

es

1st 30th 60th 90th
0

5

10

15

20

query point

le
ar

ni
ng

 ti
m

e 
(s

ec
on

ds
)

1st 30th 60th 90th
0

100

200

300

400

query point

es
tim

at
in

g 
tim

e 
(m

ic
ro

se
co

nd
s)

method−1

method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

task c0 task c1

1st 15th 30th 45th 60th 75th 90th
0

500

1000

%
e

1st 15th 30th 45th 60th 75th 90th
0

100

200

query point

%
e

0~25 25~50 50~75 75~100 >100
0

20

40

60

80

%e

%
nu

m
be

r 
of

 e
st

im
at

es

1st 30th 60th 90th
0

5

10

15

20

query point

le
ar

ni
ng

 ti
m

e 
(s

ec
on

ds
)

1st 30th 60th 90th
0

100

200

300

400

query point

es
tim

at
in

g 
tim

e 
(m

ic
ro

se
co

nd
s)

method−1

method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

1st 15th 30th 45th 60th 75th 90th
0

500

1000

%
e

1st 15th 30th 45th 60th 75th 90th
0

100

200

query point

%
e

0~25 25~50 50~75 75~100 >100
0

20

40

60

80

%e

%
nu

m
be

r 
of

 e
st

im
at

es

1st 30th 60th 90th
0

5

10

15

20

query point

le
ar

ni
ng

 ti
m

e 
(s

ec
on

ds
)

1st 30th 60th 90th
0

100

200

300

400

query point
es

tim
at

in
g 

tim
e 

(m
ic

ro
se

co
nd

s)

method−1

method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

method−1
method−2
method−3

task c2 task c3

Fig. 6. Estimation evaluation for the application

The load factor of a node is defined as the upper bound of the ratio between the
number of tasks to be mapped on that node and the number of processors of the
node. For instance, if node v0 has two processors, its load factor is

⌈
1
2

⌉
= 1.

The estimation starts from 10 observations in the dataset, and the total of 90
query points are estimated. Fig.6 shows the results from estimating the execution
time of each task of the application.

Results from the top two sub-figures of each task show that %e of esti-
mates produced from method-1 are very large when compared to method-2 and
method-3. The more the number of observations in the dataset, the lower the
%e of estimates produced from method-2 and method-3.

Results from the bar graphs of each task show that, in terms of estimation
accuracy, method-3 outperforms the others. For example, from the results of task
c1, about 43%, 35%, and 18% of the total number of estimates have their %e
less than 25%, which are considered as accurate estimates, when estimated with
method-3, method-2, and method-1, respectively. Method-2 performs reasonably
well whereas method-1 is the worst. On average, 27% of the total number of
estimates produced from method-1 have their %e greater than 100% whereas
around 10% and 6% with method-2 and method-3, respectively.



A Method for Estimating the Execution Time of a Parallel Task 235

As expected, the learning time of method-3 is the greatest (� 15 seconds
with 99 observations in the dataset) since it needs to perform cross validation
to find Xact, kopt, and lopt. Method-1 has the fastest learning as only adding
the new observation to the dataset needs to be done. However, note that the
learning can be done off-line. From the bottom right sub-figure of each task,
results show that the estimating times of all methods are performed quite ef-
ficiently in the scale of less than 400 microseconds with 99 observations in the
dataset.

It can be seen from the results that on average method-3 produces 2.3 times
the number of accurate estimates (%e < 25%) greater than method-1.

6 Conclusions

In this paper, a new method to estimate the execution time of a parallel task
on a grid node is proposed. This is to address the problem caused by an unre-
alistic assumption that the execution time of a task to be mapped on a node
can be precisely calculated before the actual execution. The proposed estimation
method is based upon past observations of the task executions. The employed
estimating technique is a k-nearest-neighbours algorithm (knn). Leave-one-out
cross validation technique, a backward predictor elimination, and a statistical
technique are used to derive the relevant parameters to be used by knn. In the
experiments, the proposed method is compared with the existing method by
estimating the execution times of the tasks of a matrix-matrix multiplication
developed with Cannon’s algorithm (Cartesian topology). Experimental results
show that on average the proposed method can produce 2.3 times the num-
ber of accurate estimates (with error less than 25%) greater than the existing
method.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for Future Computing Infrastruc-
ture. Morgan Kaufmann (1998)

2. Bokhari, S.: On the mapping problem. IEEE Transaction on Computers C-30
(1981) 207–214

3. Dail, H., Berman, F., Casanova, H.: A decoupled scheduling approach for grid
application development environments. Parallel and Distributed Computing 63
(2003) 505–524

4. Zhang, W., Fang, B., He, H., Zhang, H., Hu, M.: Multisite resource selection and
scheduling algorithm on computational grid. In: 18th International Parallel and
Distributed Processing Symposium (IPDPS). (2004) 105–115

5. Atkeson, C., Schaal, S., Moore, A.: Locally weighted learning. AI Reviews 11
(1997) 11–73

6. Iverson, M., Ozguner, F., Potter, L.: Statistical prediction of task execution times
through analytic benchmarking for scheduling in a heterogeneous environment.
IEEE Transaction on Computers 48 (1999) 35–44



236 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

7. Walpole, R.: Introduction to Statistics. 3rd edn. Collier Macmillan (1982)
8. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-

ing. 2nd edn. Pearson Education Limited, Essex, England (2003)
9. Varavithya, V., Uthayopas, P.: ThaiGrid: Architecture and overview. NECTEC

Technical Journal 2 (2000)
10. The PingER Project, http://www-iepm.slac.stanford.edu/pinger/ (2004)



Performance of a Parallel Astrophysical N-Body
Solver on Pan-European Computational Grids

Alfredo Tirado-Ramos1, Alessia Gualandris1,2, and Simon Portegies Zwart1,2

1 Faculty of Science, Section Computational Science,
University of Amsterdam Kruislaan,

403, 1098 SJ Amsterdam, The Netherlands
2 Astronomical Institute Anton Pannekoek,

University of Amsterdam Kruislaan,
403, 1098 SJ Amsterdam, The Netherlands

Abstract. We present performance results obtained by running a di-
rect gravitational N -body code for astrophysical simulations across the
Dutch DAS-2 and the pan-European CrossGrid computational grids. We
find that the performance on large grids improves as the size of the N -
body system increases because the computation to communication ratio
becomes higher and a better load balance can be achieved. Communica-
tion among nodes residing in different locations across Europe becomes
more evident as the number of locations increases. Nevertheless, con-
trary to our expectations, we find that the performance decreases only
by about a factor three for a large simulation. We conclude that highly
distributed computational Grid infrastructures can be used efficiently for
simulating large gravitational N -body systems.

1 Introduction

Direct summation methods to model the dynamics and evolution of collisional
systems allow scientists to follow the global evolution of large stellar systems
along their lifetime. As a counterpart to their high numerical accuracy, they
present O(N2) complexity, which translates in massive computational require-
ments for complete sets of inter-particle forces.

Significant improvement in the performance of direct codes used in the nu-
merical simulation of astrophysical stellar systems can be obtained by means
of general purpose parallel computers (Dorband, Hemsendorf and Merrit, [1];
Gualandris, Portegies Zwart and Tirado-Ramos, [4]), but the use of highly dis-
tributed clusters within computational grids has not yet been explored. Grid
technology is rapidly becoming a major component of computational science. It
offers a unified means of access to different and distant computational resources,
with the possibility to securely access highly distributed resources that scientists
do not necessarily own or have an account on. Connectivity between distant lo-
cations and interoperability between different kinds of systems and resources are
some of the most promising characteristics of the Grid.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 237–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



In this paper we present the results of the first experiments conducted on
computational Grids using a direct gravitational N -body code. The code is par-
allelized with MPI using a systolic algorithm. We explore the effects of network
latency on the performance on the DAS-2 Grid testbed 1, distributed within the
Netherlands and running the Globus toolkit (Foster & Kesselman, [2]), as well
as on the 18-node CrossGrid testbed 2, distributed across Europe (see Fig. 1)
and running the LCG2 3 infrastructure software.

In Sec. 2 we discuss the numerical integrator and the parallel algorithm used
for our experiments. Section 3 briefly describes our experimental grid testbed
setup, Sec. 4 presents the obtained timing results, and Sec. 5 contains our sum-
mary and conclusions.

2 Numerical Method

For the work described in this paper we consider a direct N -body code applied to
the study of astrophysical stellar systems. An N -body code solves the equations
of motion of N point particles interacting gravitationally with each other. In
a direct method the gravitational force acting on each particle is computed by
summing up the contributions from all the other particles according to Newton’s
law:

Fi = miai = −Gmi

j=N∑
j=1,j �=i

mj(ri − rj)
|ri − rj |3 . (1)

Starting from initial values of the positions and velocities of all the stars and
using the values of the forces and their first derivatives, new positions and veloc-
ities at successive times can be computed. The code uses a fourth-order Hermite
integrator (Makino & Aarseth, [9]) for the determination of the trajectories. This
method results in an accurate integration of the equations of motion of all the
stars and allows us to study the dynamical evolution of different stellar systems
in great detail. On the other hand, the calculation has a O(N2) computational
complexity and is therefore very demanding.

An important feature in our code is the use of the hierarchical or block time-
step scheme (Makino [8]). The value of the step is computed for every particle
after each force calculation, depending on the time-scale on which its orbital
parameters change, and is quantized to a power of two. In this way, groups of
particles are forced to share the same time-step and can be advanced at the same
time. The particles sharing the same time-step are said to form a block.

We implemented the ring or systolic algorithm for a Hermite scheme with
block time-steps using the standard MPI library package. The particles are
evenly distributed among the processors during the initialization phase and the
ones which need to be updated circulate among the nodes according to a virtual

1 http://www.cs.vu.nl/das2
2 http://www.eu-Crossgrid.org
3 http://lcg.web.cern.ch/LCG/Documents/default.htm

238 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart



Performance of a Parallel Astrophysical N-Body Solver 239

ring topology. Partial forces are computed by the different nodes at each step
and are summed up to obtain the total forces. The number of communication
steps needed to compute the total forces is equal to the number of available pro-
cessors. This algorithm has the advantage of minimizing memory requirements
on each node.

3 Experimental Grid Setup

3.1 The DAS-2 Testbed

For our first set of experiments, we have used the Distributed ASCI Supercom-
puter (DAS-2), a wide-area computer which consists of clusters of workstations
distributed across the Netherlands.

The DAS-2 machine is used for research on parallel and distributed com-
puting by five Dutch universities: University of Amsterdam, Vrije Universiteit
Amsterdam, Delft University of Technology, Leiden University, and University
of Utrecht. The cluster at the Vrije Universiteit contains 72 nodes while the
other four clusters have 32 nodes. Each node contains two 1-GHz Pentium-IIIs,
at least 1 GB RAM, a 20 GB local IDE disk (80 GB for Leiden and UvA),
a Myrinet interface card, a Fast Ethernet interface. The nodes within a local
cluster are connected by a Myrinet-2000 network, which is used as high-speed
interconnect. In addition, Fast Ethernet is used as OS network. The five local
clusters are connected by Surfnet, the Dutch university Internet backbone for
wide-area communication.

The MPI implementation that is used in a Globus environment is MPICH-
G2, which is a grid-enabled implementation of the MPI v1.1 standard. That is,
using services from the Globus Toolkit, MPICH-G2 allows you to couple mul-
tiple machines, potentially of different architectures, to run MPI applications.
MPICH-G2 automatically converts data in messages sent between machines of
different architectures and supports multi-protocol communication by automat-
ically selecting TCP for inter-machine messaging and vendor-supplied MPI for
intra-machine messaging. The version available on DAS-2 is MPICH-GM, which
uses Myricom’s GM as its message passing layer on Myrinet. MPICH-GM is
based on the MPICH package from Argonne/MSU. The current version is now
able to use the fast local DAS-2 interconnect (Myrinet) on the local clusters;
only communication between clusters goes over TCP/IP sockets.

3.2 The CrossGrid Testbed

For our more widely distributed set of experiments, we have used the Cross-
Grid pan-European distributed testbed. This infrastructure combines resources
across 16 European sites (Fig. 1) into a large Grid Virtual Organization. The sites
range from relatively small computing facilities in universities to large research
computing centers, offering a heterogeneous set of resources to test the possi-
bilities of a widely distributed experimental Grid framework. National research



Fig. 1. Different locations in Europe participating in the CrossGrid network

networks and the high-performance European network, Geant, assure intercon-
nectivity between all sites. The network includes a local step, typically inside a
research center or university via Fast or Gigabit Ethernet, a jump via a national
network provider at speeds that will range from 34 Mbits/s to 622 Mbits/s or
even Gigabit, and a link to the Geant European network at 155 Mbits/s to 2.5
Gbits/s.

The CrossGrid team focuses on the development of Grid middleware com-
ponents, tools and applications with a special focus on parallel and interactive
computing, deployed across 11 countries. The added value of this project consists
in the extension of the Grid to interactive applications. Interaction, in this con-
text, refers to the presence of a human in a processing loop, and a requirement
for near real-time response from the computer system. The CrossGrid testbed
largely benefits from the EDG (Foster, Kesselman & Tuecke, [3]) experience on
testbed setup and Globus (Karonis, Toonen & Foster, [6]) middleware distribu-
tions. The efforts to establish an integrated CrossGrid testbed started with the
release of EDG 1.2.0; currently LCG2 is deployed in the testbed.

The CrossGrid testbed architecture and minimum hardware requirements are
modeled after the LCG2 specification, with each site offering at least five system
components:

– a gatekeeper that provides the gateway through which jobs are submitted to
local farm nodes.

– a set of worker nodes or local farm computing nodes where jobs are actually
executed; the combination of a gatekeeper with its worker nodes is usually
called a computing element.

240 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart



Performance of a Parallel Astrophysical N-Body Solver 241

– a storage element or storage resource that includes a Grid interface ranging
from large hierarchical storage management systems to disk pools.

– a user interface machine, used by end-users to submit jobs to the Grid com-
puting elements.

– and a local configuration server, used to install, configure and maintain the
above systems from a single management system.

Table 1. Sample Globus Resource Specification Language script for submitting MPI
(MPICH-G2 device) jobs via Globus standard libraries, and performing file transfers
and file access by Globus access to secondary storage. In the first line of the script we
submit a job to a cluster in Spain requesting one processor. In the next 7 lines we set
up the local environment and invoke the code called nbodygrid to run with N=65536
particles for one N -body time-unit. In the subsequent blocks of lines we simultaneously
request one processor per cluster in Germany, Portugal and Cyprus, respectively

(&(resourceManagerContact="ce.grid.cesga.es:2119/jobmanager-pbs")

(count=1)

(label="subjob 0")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)

(POWER 1200)

(DATADIR /home/cg013)

(LD_LIBRARY_PATH /opt/globus/lib:/opt/edg/lib:/usr/local/lib)

(GLOBUS_GRAM_JOB_CONTACT ce.grid.cesga.es:2119/jobmanager-pbs))

(directory="/home/cg013/nbody_code/crossgrid/65536")

(executable="/home/cg013/nbody_code/crossgrid/65536/nbodygrid")

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce010.fzk.de:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce02.lip.pt:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce001.grid.ucy.ac.cy:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)



The CrossGrid testbed includes a set of tools and services such as monitoring
tools, development tools, a remote access server, portals and a prototype of the
parallel resource broker.

Since the support of the CrossGrid resource broker for parallel applications
using the MPICHG2 device was still being deployed at the time of our exper-
iments, our job submissions were performed using the Globus job submission
capabilities directly. As was the case for our experiments in the DAS2 network,
the MPI package used for the tests was MPICH-G2, to allow for submission of a
simulation job to a number of different sites, using different distributed processor
topologies per run. Table 1 reports a sample job submission script for one run
requiring 4 processors distributed among 4 different clusters.

4 Performance Results

The performance of a parallel code depends on the properties of the code itself,
like the parallelization scheme and the intrinsic degree of parallelism, and on the
properties of the parallel computer used for the computation. The main factors
determining the general performance are the calculation speed of each node, the
bandwidth of the inter-processor communication, and the network latency. In the
case of a computational grid, the latency between different clusters may sensibly
affect the execution times. To measure the effect of latency we performed test
runs on the DAS-2 supercomputer and the CrossGrid testbed using the direct
N -body code described in Sec. 2. We evolved the same initial configuration for
one N -body time-unit4 (Heggie & Mathieu, [5]), using 4 processors.

The total execution time is plotted in Fig. 2 as a function of the number
of different locations hosting computing nodes. The low latency network on the
DAS-2 generally results in good performance even if the nodes are allocated in
different clusters. Only in the case of a very small number of particles, like for
the N = 4096 run, the execution time increases steadily with the number of
locations. This is due to an unfavorable computation to communication ratio for
small N . The effects of inter-process communication are more evident for the
CrossGrid runs, where the execution time generally increases with the number
of locations. For large systems, however, the total time is dominated by the
computation and the performance on the CrossGrid is comparable to that on
DAS-2.

5 Summary and Conclusions

We have performed tests on two computational grids, the Dutch DAS-2 and the
pan-European CrossGrid infrastructure. The application under consideration is
a direct gravitational N -body code for simulating astrophysical stellar systems,
like planetary systems, star clusters or dwarf galaxies. N-body methods are not

4 A quantity proportional to the time needed for a typical star to cross the system.

242 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart



Performance of a Parallel Astrophysical N-Body Solver 243

Fig. 2. Performance comparison of a direct gravitational N -body code on the DAS-2
wide-area supercomputer (dashed lines) and the CrossGrid distributed testbed (solid
lines). The full dots refer to runs with N=4096, the full triangles to runs with N=16384
and the full squares to runs with N=65536. As a comparison, the empty symbols
indicate the timing results in the case of a single processor on DAS-2. For all the runs
we allocated 4 processors, distributed in 1 to 4 different locations. For example, in
the case of one location all the 4 processors were selected in the same cluster, for two
locations the processors were selected either two per location or three in one location
and one in another, for four locations one processor per location was selected. The data
related to one location were obtained on the DAS-2 only, which is effectively part of
the CrossGrid

only applied to gravitational systems but can be used to efficiently solve a wide
range of scientific problems ranging from the atomic to the cosmological scale.
Applications include the study of equilibrium and non-equilibrium phenomena
of microscopic and macroscopic molecular systems, equations of state and fluid
dynamics. The algorithm is parallelized using a systolic scheme by means of
the MPI library. For both grids we have allocated computing nodes in different
locations, that is among different clusters participating in the grid network. The
timing results indicate that the effects of latency are more prominent on the
CrossGrid than on the DAS-2, as, for the latter, the clusters are interconnected
with a faster and lower latency network. For both grids the communication effects
on the performance decrease as the number of simulated particles increase. For
large systems the total execution time is dominated by the computation rather
than the communication and the load balance among the nodes is higher.



Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research
(NWO), the Royal Netherlands Academy of Arts and Sciences (KNAW) and the
Netherlands Research School for Astronomy (NOVA). The authors acknowledge
the DAS-2 and CrossGrid projects, for their help and support.

References

Dorband, E.N., Hemsendorf M., Merritt D.: Systolic and hyper-systolic algorithms for
the gravitational N-body problem, with an application to Brownian motion. Journal
of Computational Physics (2003), 185, 484-511

Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Interna-
tional J. Supercomputer Applications, (1997), 11(2):115-128

Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, (2001), 15(3)

Gualandris, A., Portegies Zwart, S., Tirado-Ramos, A.: Performance analysis of parallel
N -body algorithms on highly distributed systems. Submitted to IEEE Transactions
on Parallel and Distributed Systems

Heggie, D.C. and Mathieu, R.D.: Standardised Units and Time Scales The Use of
Supercomputers in Stellar Dynamics, (1986), 267

Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing (2003)

Makino, J., Hut, P.: Performance analysis of direct N-body calculations. ApJS (1988)
833–856

Makino, J.: A Modified Aarseth Code for GRAPE and Vector Processors. PASJ (1991)
859-876

Makino, J., Aarseth, S.J.: On a Hermite integrator with Ahmad-Cohen scheme for
gravitational many-body problems. PASJ (1992), 44, 141-151

244 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 245 – 254, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Introducing Grid Speedup Γ : A Scalability Metric  
for Parallel Applications on the Grid 

Alfons G. Hoekstra and Peter M.A. Sloot 

Section Computational Science, Laboratory for Computing,  
Systems Architecture and Programming, Faculty of Science, 

University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 
{alfons, sloot}@science.uva.nl 

http://www.science.uva.nl/research/scs/ 

Abstract. We introduce the concept of Grid Speedup as a scalability metric for 
parallel applications on the grid and analyze it theoretically. It is shown that 
classes of applications exist for which good grid speedups can be expected. The 
class of stencil-based applications is taken as an example. The Grid computing 
community is challenged to demonstrate large grid speedups on real Grid com-
puting environments. 

1   Introduction 

We consider ‘traditional’ tightly coupled parallel applications in Grid Computing en-
vironments. This is the Computation-Centric class of Grid application [1] which, ac-
cording to Allen et al. “turned to parallel computing to overcome the limitations of a 
single processor, and many of them will turn to Grid computing to overcome the limi-
tations of a parallel computer.” However, common wisdom is that running a tightly 
coupled parallel application in a computational grid is of no general use because of 
the large overheads that will be induced by communications between computing ele-
ments (see e.g. [2]) and the inherent unreliable nature of a computational Grid. 

We introduce the concept of Grid Speedup and analyze it theoretically on a Homo-
geneous Computational Grid. To do so we assume a two-level hierarchical decompo-
sition. We will show that in terms of Grid Speedup good performance of Computation 
Centric Grid applications is possible, provided that workloads per Computing Ele-
ment remain at a sufficiently high level. This large grain size demand is off course not 
very surprising and well known from parallel computing. Moreover, we introduce 
grid fractional overhead functions that are sources of grid efficiency reductions. Fi-
nally, we will consider one specific example and analyze for which problem sizes grid 
computing is beneficial. 

This new scalability metric will be useful to predict performance of applications on 
a computational grid, and may be used in e.g. intelligent grid resource managers to fa-
cilitate more advanced selection of resources for applications requesting computa-
tional power from a Grid. 



246 A.G. Hoekstra and P.M.A. Sloot 

 

2   Notation 

We use the notation of parallel work Wi as in [3-5]. So, Wi represents the amount of 
work (expressed e.g. in Mflop) with a degree of parallelism (DOP) i. Define Δ as the 
computing capacity of a processor (expressed in e.g. Mflop/s). The amount of work 
executed while running a part of the program with DOP = i is 

ii itW Δ= , (1) 

where ti is the total amount of time during which DOP = i. The total amount of work is 

∑
=

=
m

i
iWW

1

, 
(2) 

with m the maximum DOP in the application. Now assume that the workload W is 
executed on p processors. The execution time for the portion of work with DOP = i is 

⎥
⎥

⎤
⎢
⎢

⎡
Δ

=
p

i

i

W
pt i

i )( . 
(3) 

Notice that in the formulation of Eq. [3], possible load imbalance is implicitly 
taken into account. The total execution time of workload W on p processors, Tp(W), 
equals 

),()()(
11

pWQ
p

i

i

W
ptWT

m

i

i
m

i
ip +⎥

⎥

⎤
⎢
⎢

⎡
Δ

== ∑∑
==

 
(4) 

with the (communication) overhead for a p processor system for completion of the 
workload W defined as Q(W,p), and understanding that Q(W,1) = 0. 

In this paper we assume the simplest possible workload: Wi = 0 if  i ≠ p, i.e. a fully 
parallel workload. In this case we find 

Δ
== p

p
W

WTWT )()( 11 , ),()( pWQ
p

W
WT p

p
p +

Δ
= , 

(5) 

and from this we derive expressions for relative speedup Sp and efficiency εp  

),(1)(

)(1
pWf

p

WT

WT
S

pp
p +

==  ; 
),(1

1

)(

)(1
pWfWpT

WT

pp
p +

==ε  
(6) 

with f(W,p) the fractional overhead function 

W

pWQ
ppWf

),(
),( Δ= . 

(7) 

3   Hierarchical Decomposition 

We will now consider the case of a parallel application with a workload W running in 
a grid-computing environment. We assume that within the Virtual Organization (VO) 



Introducing Grid Speedup Γ : A Scalability Metric for Parallel Applications on the Grid 247 

 

in which the application is running, the workload is decomposed among C Computing 
Elements (CE’s), and that each CE in itself is some HPC system (typically a parallel 
computer with p nodes). Such hierarchical resource models were already proposed in 
[6,7] So, we see a two-level hierarchical decomposition appearing. First, the workload 
is decomposed between C CE’s, and next within each CE the portion of workload is 
again decomposed between the processors within a specific CE (see Fig. 1). Examples 
of Grid Enabled parallel applications applying such hierarchical decompositions can 
be found in the recent literature, e.g. [8]. 

Q1(W,C) Level 1 

Level 0 

Level 2 Q2(W/C,p) 

W 

W/C W/C
C CE’s 

p processors p processors
 

Fig. 1. The hierarchical decomposition 

Referring to Fig. 1, we identify three levels. This first is level 0, which is the full 
non-decomposed workload W. This level would be the sequential computing level. 
The second level is level-1 decomposition, i.e. the division of the workload between 
the CE’s. This decomposition induces a level-1 overhead Q1(W,C), e.g. communica-
tion between CE’s. Next, within each CE the workload W/C is again decomposed be-
tween the p processors of the CE. On this level we again encounter an overhead 
Q2(W/C,p). If we have one CE (i.e. C = 1 and understanding that Q1(W,1) = 0) we re-
turn to the standard parallel case where Q2(W,p) now plays the role of Q(W,p) of the 
previous section.1 

Please note that by now we have made the implicit assumption that each CE re-
ceives an equal share of the total workload, and that each CE has the same amount of 
processors. We will work under this assumption. Moreover, we will assume that each 
processor in each CE has the same computing capacity Δ, and that within each CE the 
same overhead function Q2(W,p) applies. We refer to this situation as a Homogeneous 
Computational Grid (HCG). The formalism can be extended to Heterogeneous sys-
tems in a straightforward way, using e.g. concepts from [9]. 

                                                           
1  Clearly we can write Q2(W,p) = Q(W,p). 



248 A.G. Hoekstra and P.M.A. Sloot 

 

4   Grid Speedup 

We denote the execution time on a HCG with C CE’s and p processors per CE as 
TC,p(W), and with the definitions as introduced earlier we find 

),(),()( 12, CWQpCWQ
pC

W
WT pp

p
pC ++

Δ
=  (8) 

The question now is how to interpret Eq. 8. As already noted in Section 1, common 
wisdom is that running a application decomposed over several CE’s is not very use-
full because of the large overheads that will be induced by the communication be-
tween the CE’s. A first look at Eq. 8 confirms this, the extra overhead expressed by 
Q1(Wp,C) contains it all. However, by running the application on more than one CE, 
we also have more processors to do all the work (a factor C more, reducing the time 
for pure computation by a factor C). Moreover, the overhead per CE is changed, from 
Q2(Wp,p) in the case of running on one CE to Q2(Wp/C,p) in the case of running on C 
CE’s. Although we do not know this function without turning to specific applications, 
at this point it is clear that a more detailed analysis is needed. 

One can now easily compute the parallel speedup of the application on the HCG. 
One can however question to what extend this speedup is a good metric to assess the 
added value of decomposing an application over CE’s. Let us recall the reason why par-
allelism was introduced. Researchers wanted to use parallel computers for two reasons. 

1. They were compute bound, meaning that on one processor the computing time 
was unacceptably high, and more computing power was needed. 

2. They were memory bound, meaning that the memory consumption of the 
application was so large that it would not fit in memory of a single processor. 
Using more processors (assuming distributed memory computers here) would 
not only increase the computational power, but also the amount of available 
memory. 

In many cases both reasons applied. To assess the quality of the parallel applica-
tion, the speedup/efficiency metric was applied. Also, scaled speedup models were in-
troduced, to cope with the fact that researchers will immediately increase the amount 
of computational work once they get more computing power and available memory. 

The bottom line of the previous discussion is that in order to analyze the added 
value of parallelism, one compared the execution time of the parallel application with 
a reference value: the execution time on a sequential computer. Let us now analyze 
performance in a grid-computing environment. We can argue that our reference value 
in this case should not be the single processor, but the execution time on one single 
CE. The reason that we decide to decompose our application over more that one CE 
are exactly the same as our original reasons to parallelize our application, we are 
compute bound or memory bound in one CE, or a combination of both. So, the ques-
tion that we must ask ourselves is: “does decomposing over C CE’s give us any added 
value as compared to running on one CE?”. This leads us to the concept of Grid 
Speedup, defined as 



Introducing Grid Speedup Γ : A Scalability Metric for Parallel Applications on the Grid 249 

 

)(

)(

,

,1

WT

WT

pC

pC
p =Γ . (9) 

So, in Grid Speedup we take the quotient of the execution time of our application 
on 1 CE and the execution time on C CE’s. If p = 1 we are back in the normal situa-
tion of a parallel computation, with C now playing the role of the number of proces-
sor. Also note that Grid speedup depends on two parameters, the number of CE’s and 
the number of processors per CE. Grid efficiency is now defined as 

)(

)(

,

,1

WCT

WT

pC

pC
p =γ . (10) 

Let us compute the grid speedup for the example of a single parallel workload Wp. 
Substitute Eq. 8 into Eq. 10, which after some algebra results in 

),,(),,(1 12 CpWgCpWg

C

pp

C
p ++

=Γ . (11) 

We defined two fractional grid overhead functions: 

)(

),(
),,(

,1

1
1

pp

p
p WT

CWQ
CCpWg = ; 

(12) 

)(

),(),/(
),,(

,1

22
2

pp

pp
p WT

pWQpCWCQ
CpWg

−
= . 

(13) 

The first fractional grid overhead function g1 plays exactly the same role as the 
fractional overhead f (Eq. 7) in the simple parallel case. This analogy becomes clear 
by realizing that f can be rewritten as f = pQ(Wp,p)/T1(Wp). So, we can obtain good 
grid speedups if the grid fractional overhead g1 is small, that is, if we let the grain 
size, defined as the portion of work per CE, be large enough such that the amount of 
work per CE is much larger than the amount of overhead induced by the level-1 de-
composition Q1. 

The hierarchical decomposition introduces another fractional grid overhead g2, 
which expresses the relative difference in overhead inside a CE between the level-1 
decomposed workload Wp/p and the original workload Wp. For the special case that 

),(),( 22 pWQpCWCQ =  (14) 

we immediately find that g2 = 0 and 

),,(1 1 CpWg

C

p

C
p +

=Γ . (15) 

5   An Example: Stencil-Based Operations 

Let us consider a prototypical scientific computation: that of a stencil based operation. 
So, we assume some computational mesh, and we assume an iterative procedure on 



250 A.G. Hoekstra and P.M.A. Sloot 

 

this mesh where during each iteration each mesh point is updated, using information 
from a small local neighborhood of that point. This could e.g. be a time dependent 
explicit finite difference, finite volume or finite element computation, a Cellular 
Automaton, or a pixel based image analysis algorithms. In the sequel we assume a 
two-dimensional square Cartesian mesh with n × n points. 

First consider the case where we apply a 1 dimensional ‘strip wise’ decomposition 
of the computational domain. This is schematically drawn in Fig. 2. The left panel 
shows the decomposition in the normal parallel case (i.e. C = 1), and the right panel 
shows the hierarchical decomposition. Note that in the hierarchical decomposition we 
choose to decompose the computational domain in each CE along the dimension with 
the shortest size. 

p = 1 

p = 2 

p = 0 

C = 2C = 1C = 0p = 2p = 1 p = 0 

 

Fig. 2. Decomposition in case 1, strip wise. The left panel shows the decomposition in the nor-
mal parallel case, the right panel shows the hierarchical decomposition. In this figure we as-
sume C = p = 3 

The execution time on one CE in this case becomes 

comp n
p

n
T τ2

2

,1 +
Δ

= , 
(16) 

where τcom is the communication time needed to send the stencil information of a 
point on the boundary of the processor domain to a neighboring processor. The factor 
2 emerges because each processor should communicate with its left and right 
neighbor.2 On more than one CE the hierarchical decomposition results in the follow-
ing execution time: 

comgridpC C

n
n

pC

n
T ττ 22

2

, ++
Δ

= . 
(17) 

Here, τgrid is the communication time needed to send the stencil information of a 
point on the boundary of a CE to a neighboring CE. Note that we assume here a 
                                                           
2  For 2 processors this could change from a factor 2 to a factor 1 if the algorithm does not as-

sume period boundary conditions. We neglect this here. 



Introducing Grid Speedup Γ : A Scalability Metric for Parallel Applications on the Grid 251 

 

communication pattern where we first communicate between CE’s (giving rise to the 
term 2nτgrid) followed by a communication step inside each CE (the 2n/C τcom term).  

Inspection of Eq. 16 and 17 shows that we can write for the overhead functions 

gridnCWQ τ2),(1 =  (18) 

comm
C

n
pCWQ τ2),/(2 =  

(19) 

In this example ),(),( 22 pWQpCWCQ =  applies, so we find immediately for the 

Grid speedup, using Eq. 15, 

com

grid

C
p

n
p

n

Cn
C

τ

τ

2

2
1

2
+

Δ

+
=Γ , (20) 

which we rewrite to 

2

2
1

+
+

=Γ

β
αC

CC
p , (21) 

with 

com

grid

τ
τ

α = , 
(22) 

comp

n

τ
β

Δ
= . (23) 

Note that dimensionless parameter α expresses the imbalance between inter- and 
intra CE communication. The dimensionless number β contains the grain size of the 
application running on 1 CE, and the balance between computational speed and com-
munication within one CE. Note that if one would compute the fractional communica-
tion overhead in this example (Eq. 7) one would find that f = 2/β. Large grid speedups 
are obtained if α is very small and/or β is very large. 

We should explicitly analyze the case of C = 2 and assuming no periodic boundary 
conditions in our application. In that case we have 

gridnCWQ τ== )2,(1  (24) 

and Eq. 21 changes to 

2

2
1

22

+
+

=Γ =

β
α

C
p . (25) 

The first question one could ask is: “when does it pay off to execute my application 

on more than one CE?”. Translated in our formalism, when will 1≥ΓC
p . Clearly, a 



252 A.G. Hoekstra and P.M.A. Sloot 

 

speedup marginally larger then 1 is probably not worth the effort of porting an appli-
cation to the grid. A better analysis would be to demand that the Grid efficiency 
should be larger than a certain value, say larger then γ0. So, we demand that 

0/ γ≥Γ CC
p . This results in 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−
−

=−
−

≥

otherwise2
1

2

applyboundariesperiodicno2if2
1

2

0

0

0

0

γ
αγ

γ
αγ

β
C

andC

 

(26) 

Note that if we put γ 0 = 1/C we return to demanding that the grid speedup should 
be larger than 1. 

Let us now try to find some representative numbers for the parameters, and com-
pute grain sizes for which we expect to see a beneficial effect of using a Grid for 
tightly coupled applications.  

As a representative application that falls in the category of the stencil based opera-
tions as analyzed in this section we choose the Lattice Boltzmann Method [10]. As 
was recently reported by Wellein et al. during ICMMES 2004 in Braunschweig [11] a 
Lattice Boltzmann simulation attains computational speeds in the order of 1 Gflop/s 
on modern processors such as a 1.3 GHz Itanium2 or a 2.4 GHz Opteron. Updating 
one lattice point requires in the order of 200 floating point operations, so we find Δ = 
1×109 / 2×102 = 5×106 sites/s. Now let us assume that α = 10, i.e. inter CE communi-
cation is 10 times faster then intra CE communication (see e.g. discussion in [12]). 
Finally, assume that processors in a CE can communicate at a speed of 10 Mbyte/s 
and that in a 2D Lattice Boltzmann simulation 4 floating point numbers must be sent 
in both directions. Under these assumption we find τcomm = 4×8 / 107 ~ 3×10-6. 

Let us first consider the case of two CE’s. In this case the result is that (see Eq. 26, 
using α = 10) 

2
1

20

0

0 −
−

≥
γ
γβ . (27) 

The breakeven point is for γ0 = 1/C = 0.5, so β ≥ 18. Using Eq. 23 we find 

comm
p

n τΔ≥ 18 . 
(28) 

With the numbers as defined above Eq. 28 results in n/p ≥ 270. So, only if n ≥ 
270×p the Grid Speedup will be larger than 1 and therefore the execution time of run-
ning the simulation on 2 CE’s will be smaller than running on 1 CE. Now suppose we 
want to have a grid efficiency of at least 0.8 (i.e. a grid speedup of 1.6 on 2 CE’s). In 
that case we find n/p ≥ 1170. We clearly see that in order to get real benefits of run-
ning this stencil-based operation on a Computational grid we need very large do-
mains. Assuming e.g p = 10 (which would be a relatively small parallel computer) 
boils down to demanding that in order to pay off, n ≥ 2700, and in order to get real 



Introducing Grid Speedup Γ : A Scalability Metric for Parallel Applications on the Grid 253 

 

benefit n ≥ 11700. The positive conclusion is that albeit large, these are not unrealisti-
cally large grain sizes and that such applications can truly achieve grid speedup on 2 
CE’s. Clearly for C > 2 larger dimensions are needed, and our analysis gives a quick 
estimate of what to expect. 

6   Discussion and Conclusions 

We have introduced a new metric, Grid Speedup Γ, that allows analyzing the per-
formance of tightly coupled parallel applications on a Homogeneous Computational 
Grid. Using the concept of a two level hierarchical decomposition of the workload, a 
general formalism was introduced that allows computing Grid Speedup in terms of 
two fractional overhead functions. Using this formalism we analyzed in detail a proto-
typical application based on a two-dimensional stencil operation. In turns out that two 
dimensionless numbers now determine Grid Speedup. The number α  expresses the 
ratio of inter- and intra CE communication and the other, β, is inversely proportional 
to the well-known fractional communication overhead of the parallel application. Es-
timating the parameters appearing in the model leads to the conclusion that for a small 
number of CE’s good Grid Speedups is attainable, as long as the work per CE is large 
enough. 

More extended analysis then the one presented here clearly is possible. For in-
stance, in our example a more efficient decomposition, in which the intra- and inter 
CE decomposition run in the same direction, can be used, leading to the count intui-
tive conclusion that for such decomposition the Grid Speedup can be larger due to a 
latency hiding effect. A more realistic case in which CE’s have different number of 
processors, leading to the concept of a fractional C, could be discussed. Or, more real-
istic workloads, including a sequential workload W1 could be considered. We will 
analyze all this in more detail in a future paper. 

We must now test these theoretical ideas and try to measure Grid Speedups on real 
Computational Grids. It will be quite challenging to try to apply our theoretical ideas 
to real Grids, that will behave must more dynamic and erratic as our ideal Homogene-
ous Computational Grid. Fortunately test systems, such as the Dutch ASCI – DAS2 
computer [13], that come close to the idea of a Homogenous Computational Grid are 
available as a first test site, before embarking on scalability measurement on real 
Grids, such as the European CrossGrid test bed [14]. 

References 

1. Allen, G., Goodale, T., Russell, M., Seidel, E., Shalf, J.: Classifying and Enabling Grid 
Applications. In Berman, F., Fox, G.C., Hey, A.J.G. (Eds.); Grid Computing, Making the 
Global Infrastructure a Reality. Wiley, chapter 23 (2003) 

2. Lee, C., Talia, D.: Grid Programming Models: Current Tools, Issues and Directions. In 
Berman, F., Fox, G.C., Hey, A.J.G. (Eds.): Grid Computing, Making the Global Infrastruc-
ture a Reality. Wiley, chapter 21, specifically section 21.2.3 (2003) 

3. Hwang, K.: Advanced Computer Architecture, Parallelism, Scalability, Programmability. 
McGraw-Hill, New York, chapter 3 (1993) 



254 A.G. Hoekstra and P.M.A. Sloot 

 

4. Kumar, V., Gupta, A.: Analyzing Scalability of Parallel Algoritms and Architectures. J. 
Parallel Distrib. Computing 22 (1994) 379-391 

5. Sun, X.H., Ni, L.M.: Scalable Problems and Memory-Bounded Speedup. J. Par. Distr. 
Comp. 19 (1993) 27-37 

6. Halderen, A.W. van, Overeinder, B.J. Sloot, P.M.A., Dantzig, R. van, Epema, D.H.J, 
Livny, M.: Hierarchical Resource Management in the Polder Metacomputing Initiative. 
Parallel Computing 24 (1998) 1807-1825 

7. Iskra, K.A., Belleman, R.G., Albada, G.D. van, Santoso, J., Sloot, P.M.A., Bal, H.E., 
Spoelder, H.J.W., Bubak, M.: The Polder Computing Environment, a system for interactive 
distributed simulation. Concurrency and Computation: Practice and Experience 14 (2002) 
1313-1335 

8. Keller, R., Gabriel, E., Krammer, B., Müller, M., Resch, M.M: Towards Efficient Execu-
tion of MPI Applications on the Grid: Porting and Optimization Issues. J. Grid Comp. 1 
(2003) 133-149 

9. Bosque, J.L., Pastor, L: Theoretical analysis of scalability on heterogeneous clusters. In 
proceedings of the 4th IEEE/ACM International Conference on Cluster Computing and 
Grids, Chicago (published on CD), April 2004. 

10. Succi, S: The Lattce Boltzmann Equation for fluid dynamics and beyond. Oxford Science 
Publications (2001) 

11. Wellein, G. et all.: Optimization Approaches and Peformance Characteristics of Lattice 
Boltzmann Kernels. Presented during International Conference for Mesoscopic Methods in 
Engineering and Science, Braunschweig, July 2004. To be published in Computers and 
Fluids. 

12. Berman, F., Fox, G., Hey, T.: The Grid: past present future. in Berman, F., Fox, G.C., Hey, 
A.J.G. (Eds.): Grid Computing, Making the Global Infrastructure a Reality. Wiley, chapter 
1 (2003) 

13. Bal, H.E. et all.: The Distributed ASCI supercomputer project: Operating Systems Review 
34 (2000) 76-96 

14. Gomes, J. et all.: First prototype of the CrossGrid Testbed. in Rivera, F.F., Bubak, M., 
Tato, A.G., Doallo, R. (Eds.): Grid Computing, Lecture Notes in Computer Science, Vol. 
2970, . Springer-Verlag, Berlin Heidelberg New York (2004) 67-77 

 



A Dynamic Key Infrastructure for Grid

H.W. Lim and M.J.B. Robshaw

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK
{h.lim, m.robshaw}@rhul.ac.uk

Abstract. This paper introduces the concept of a dynamic key infras-
tructure for Grid. It utilises the properties of Identity-based Cryptog-
raphy (IBC) to simplify key management techniques used in current
Public Key Infrastructure (PKI) settings for Grid. This approach can
offer greater simplicity, flexibility, and enhanced computation trade-offs.

1 Introduction

Grid computing is seen as the next generation computing technology, offering
virtually “unlimited” resource sharing for computationally intensive, and ad-
vanced science and engineering problems. It also provides a better opportunity
for improving life through “unlimited” access to all kinds of knowledge pools and
utilising many applications and different devices to support daily activities. After
close to a decade of research and development, it is believed that the Grid vision
is feasible based on a combination of technology trends and research advances [5].

Currently, Public Key Infrastructure (PKI) is the most widely used security
infrastructure for Grid implementations [11]. It is an interesting exercise to
consider whether PKI-based Grid security solutions are entirely matched to
such a dynamic, adaptable, and scalable environment. In an implementation
based on Globus Toolkit’s Grid Security Infrastructure (GSI) [6, 8, 14], two type
of certificates are used: public key certificate and proxy certificate. The former
is required for entity authentication and the latter is used for single sign-on and
rights delegation [12, 13]. One important motivation for the proxy certificate is to
limit the exposure of long-term credentials (which normally need to be updated
yearly) by using proxy credentials with much shorter lifetime (typically on the
order of hours or days) in a job submission. The heavy use of proxy credentials
involving creation of proxy certificates, computation of short-lived public/private
key pairs, and verification of the proxy certificates, is not trivial.

In this paper, we propose a dynamic key infrastructure for Grid (DKIG),
a lightweight and scalable security infrastructure through the use of properties
from Identity-based Cryptography (IBC) [2, 10]. We introduce the concept of a
master-public-key mould which can be used by any user to compute a per-session
public key on-the-fly. The corresponding session private key can be extracted

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 255–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



256 H.W. Lim and M.J.B. Robshaw

easily by the key mould owner with his master secret key. A master-public-key
mould is a permanent credential of a user requiring no update unless the associ-
ated master secret key is compromised. By replacing certificates in the current
PKI setting with these master-public-key moulds (which need to be initially au-
thenticated by a trusted authority), we achieve similar security goals as in the
current PKI setting in a more elegant manner. We also present IBC-based au-
thenticated key establishment and rights delegation protocols that use ephemeral
public/private key pairs, which can be bound to a specific job submission. This
approach, which is difficult to emulate with current PKI techniques, seems to
offer the potential for greater flexibility with less computation cost.

The remainder of this paper is organised as follows. Section 2 gives some
background information on PKI-based security infrastructure, and an IBC-based
security solution. In Section 3 we propose our DKIG model with considerations
of its fundamental framework and security mechanisms. Then Section 4 presents
some insights on how the Transport Layer Security protocol might be used in the
new framework. In Section 5, we will discuss the computation trade-offs of dele-
gation protocols in both GSI and DKIG settings. Section 6 concludes the paper.

2 Background

We briefly survey Globus Toolkit’s Grid Security Infrastructure (GSI), the most
prevailing security infrastructure thus far implemented in Grid projects [11],
and a proposed alternative approach using Identity-based Cryptography [7].

2.1 PKI and Globus Toolkit’s GSI

PKI (in this paper we assume X.509-based PKI) plays a vital role in facilitating
key distribution service to its users. The practicality of a public key cryptosystem
relies on the assurance of the authenticity of the public keys of the users. All
public keys generated by users or the Certificate Authority (CA) are random
arbitrary strings. These strings have no relation with the users’ Distinguished
Name (DN) and X.509 public key certificates are required to bind these unknown
strings to some easily recognised user identities.

One early development of PKI-based security infrastructure for Grid was
Globus Toolkit’s GSI. In GSI, an X.509 public key certificate is issued and signed
by a Grid CA. The X.509 certificate is used to support authentication in a proto-
col like Transport Layer Security (TLS), which establishes secure communication
channels between entities. Depending on the Grid CA’s policy, a user’s long-term
public/private key pair and its associated certificate are usually updated and re-
newed yearly.

The proxy certificate, a variant of the X.509 certificate, was introduced to
enable single sign-on and rights delegation. It is a short-lived certificate and typ-
ically carries restricted credentials of the user and expires upon completion of
a job. Before a user submits a job request, he must create a proxy certificate
which includes generating a new public/private key pair and signing the proxy



A Dynamic Key Infrastructure for Grid 257

certificate with his long-term private key. This newly created proxy certificate
can then be used for repeated authentication with other Grid entities without
accessing the user’s long-term private key. For rights delegation, e.g. if A wants
to delegate her privileges to a target service provider X, three steps are required:
(i) X creates a new public/private key pair and send a signed request (with the
new private key) to A; (ii) A verifies the new public key, creates a new proxy cer-
tificate and signs it with her current proxy credential (short-lived private key);
and (iii) A forwards the new proxy certificate to X and thus delegates her rights
to X [13]. Nevertheless, the creation of proxy certificates can be computationally
expensive. In both single sign-on and delegation services, new key pairs genera-
tion are required. Furthermore, additional signature generation and verification
operations are needed in the delegation process.

2.2 Alternative Security Infrastructure

While there are many alternative approaches in designing security infrastructures
for Grid, we are particularly interested in investigating the potential of IBC in
Grid environments.

In 1984, Shamir [10] introduced the concept of IBC in which the public key
can be generated from a publicly identifiable information such as a person’s
name, e-mail address, or IP address. The corresponding private key is gener-
ated and maintained by a Private Key Generator (PKG) which holds a master
key. However, it was not until 2001 that new wave of developments took place.
Then Boneh and Franklin [2] successfully proposed a fully functional and prac-
tical Identity-based Encryption (IBE) scheme making use of bilinear maps (or
pairings) between groups.

To simplify, the following four algorithms underpin the Boneh and Franklin
IBE scheme.

– Setup: Given a security parameter, the PKG generates params (system or
public parameters) which will be made publicly known, and a master key
which will be kept secret.

– Extract: This algorithm is run by the PKG to extract a private key from a
given public key. It takes params, master key, and an arbitrary identifier ID
(public key string) as input, and returns a private key.

– Encrypt: This algorithm uses params and ID to encrypt a message and gen-
erate a ciphertext.

– Decrypt: By using params and a private key as the input, the algorithm
returns a plaintext from a ciphertext.

Suppose that Alice wants to send a message M secretly to Bob using an
identity-based cryptosystem. She does not need to verify the authenticity of
Bob’s public key by retrieving Bob’s public key certificate (which happens in
a conventional PKI-based system). Instead Alice simply encrypts the message
with Bob’s ID, e.g.‘bob@xyz.com’. Clearly, Alice needs to know the params of
Bob’s PKG. If Bob does not already possess the corresponding private key d, he



258 H.W. Lim and M.J.B. Robshaw

has to obtain it from his PKG. If the PKG is satisfied that Bob is a legitimate
receiver of the ciphertext C, the PKG takes its params, master key, and Bob’s
ID to generate d, which will then be used by Bob to decrypt C.

Lim and Robshaw [7] illustrated how IBC could be applied in a Grid envi-
ronment. In their proposal, each virtual organisation (VO) has its own PKG and
all the users of that VO share the same params (which has been certified by a
Grid CA). When Alice wants to send a job request securely to Resource X, she
can in principle encrypt the message with an identifier ID = X ‖ timestamp. In
addition, one can add more granularity to impose restrictions on the receiving
party by concatenating the policy into the public key string. This offers greater
flexibility to key generation by the sender.

However, there are two potential downsides to an IBC-based Grid infrastruc-
ture, namely, the need for a user to maintain an independent secure channel with
the PKG for the retrieval of the private key; and the fact that the PKG knows all
the private keys of its users which makes it vulnerable to single point of attack.

3 Dynamic Key Infrastructure for Grid

Here we describe a new dynamic key infrastructure for Grid (DKIG). This term
is intended to capture the notion that the public keys used in the infrastructure
change dynamically on a per-job-request basis. The DKIG model will be dis-
cussed at a relatively abstract level.

3.1 Motivation

We propose a different approach of simplifying key management issues mentioned
in the previous section. In the conventional IBC-based setting, all the users
within a domain (or VO) share the same params generated by the PKG. However,
params can be turned into a master-public-key mould if each entity generates and
publishes their own unique params. Our core idea features in a different guise
in [2], where Boneh and Franklin proposed a means of delegating decryption
keys by having a users play the role of the PKG by publishing his params to
other users. In DKIG we extend this idea to a Grid environment whereby each
user acts as his own PKG. Interestingly, this technique also seems to solve the
key escrow and private key distribution problems in an IBC-based system. In
addition, when compared to the current use of PKI in GSI, a user’s params
(master-public-key mould) can provide the functionalities of both the certificate
and the proxy certificate. In other words, the user does no longer need to create
new proxy certificates for job submissions and rights delegations.

3.2 Defining DKIG

We propose an environment whereby a user manipulates his params as he would
a certificate. When a user A (Alice) wants to send a message securely to a
resource X, she can derive a short-lived public key on-the-fly using X’s ID and



A Dynamic Key Infrastructure for Grid 259

params without having it certified as in [12, 13]. Obviously, the params must be
verified and signed by a Grid CA a priori just like any other long-term public
key certificate.

To avoid confusion between ‘identity’ and ‘identifier’(ID), we use entity name
EN to represent the identity of a VO member and refer to ID as the arbitrary
identifying public key string used in the IBE scheme [2] (where ID contains EN).
In our setting, the public key of X can be computed as KX = H(IDX) where
IDX = ENX ‖ 〈optional〉. Note that in general, H is a one-way hash function
and 〈optional〉 denotes additional fields that can be included in ID such as IP
address, random number, timestamp, and so on. However, the system must be
aware of which specific additional fields might be used so that the receiver will
be able to decrypt the message with the associated master key. For signing and
verification algorithms, we refer to Cha and Cheon’s Identity-based Signature
(IBS) scheme [3] with similar conversion as in our encryption and decryption
settings whereby each user has his own params.

The fundamental DKIG framework is developed by considering the need of a
secure environment for job submissions from the users to remote resources. We
introduce a trusted third party within a VO called an Administration Server (S)
which acts like an authentication server, as well as an authorization server. This
server keeps track of all the legitimate users and has access to a policy database
that stores up-to-date access rights of each entity in the VO.

3.3 Security Mechanisms

In this section we illustrate some security goals required for Grid environments.
At the initial setup phase, we assume that each new member will be given a
copy of the public key certificate of the Grid CA and also the certified params of
S (by the Grid CA). Also, these new members must generate their own params
and get them validated by the Grid CA.

Authentication and Authorization. We present a protocol for authentica-
tion and authorization of job submissions by A to X via S, as shown in Proto-
col 1. After A has identified X as her target resource, she needs to send a job
request JReq to S to gain authorization for accessing X. JReq contains ENs of
the requestor and the target resource, their respective Administration Server,
job description Desc, a random number r, and timestamp t, e.g. JReq in Mes-
sage (1) is {ENA, ENX , ENS , DescA, rA, tA}. The random number rA is used
to detect replay attack and to ensure uniqueness of each ephemeral public key
created by the user which can be tied down to a specific job submission. It might
be replaced by a counter which may offer certain trade-offs.

Protocol 1 Authenticated key establishment for job request

(1) A → S : EK∗
S
[JReq], rA

(2) S → A : EK∗
A

[SigK∗
S
[JReq], rA]

(3) A → X : EK∗
X

[JReq, SigK∗
S
[JReq], KAX ], rA

(4) X → A : {rA}KAX



260 H.W. Lim and M.J.B. Robshaw

where

EKA
[m] = identity-based encryption of data m using a public key KA

of entity A

SigKA
[m] = identity-based signature with appendix of data m using a

private key KA of entity A

{m}KAX
= symmetric encryption of data m using a symmetric session

key KAX shared between entities A and X

JReq = job request information

r = random number

∗ = short-lived

The short-lived public key that A creates is based on the identifier ID∗
S =

ENS ‖rA. Because of this, rA is also attached in Message (1) in cleartext so that
S knows the ID used for extracting the corresponding decrypting key. When S re-
ceives the message, it would decrypt it and match ENA with the policy database.
If the status is that A is an authorized user of X and the timestamp stated in the
request is acceptable, then S would digitally sign JReq with a private key that
it extracts based on ID∗

S . If for some reason A is barred from accessing X, then
it would reject A’s request. In principle SigK∗

S
[JReq] serves as an access token

(access approval) of A. To reply to A as in Message (2), S encrypts the message
with ID∗

A = ENA ‖ rA . The next thing that A does is to forward a message
that contains all the required information as stated in Message (3) to X. Upon
receiving the message, X decrypts and verifies S’s signature on the access token.
X also compares the contents of the token with JReq forwarded by A. In addition
and more importantly, X validates A’s access rights with its local policy set by
a local administrator (note that local policy shall override VO policy enforced
by S if there is a conflict). If all checks succeed, X replies to A with the ses-
sion key to acknowledge mutual authentication and its readiness to establish a
secure channel with A. As in a common key establishment protocol, the shared
symmetric session key is used to protect data confidentiality and integrity.

Rights Delegation and Single Sign-on. Rights delegation is a core service
provided by the Globus Toolkit’s GSI through the proxy certificate [9, 13]. In
DKIG, we design a simpler approach as shown in Protocol 2 to deliver similar
services without the creation of “proxy params” (which would be analogous to
the need for a proxy certificate in the PKI setting).

Protocol 2 Rights delegation for job process

Delegation from A to X

(1) A → X : SigK∗
A

[ENA, ENX , rA], rA

Delegation from A to X to Y

(2) X → Y : SigK∗
X

[ENY , SigK∗
A

[ENA, ENX , rA]], rA



A Dynamic Key Infrastructure for Grid 261

If A wishes to delegate her rights to X, in principle, she could sign a delegation
token with her short-lived private key (where ID∗

A = ENA‖rA) and forwards it
to X. Message (1) shows that the delegation token is a string containing X’s
identity and the random number tied to a specific job request. A malicious user
will not be able to intercept and exploit A’s access rights unless he can forge A’s
signature. Thereafter, X can access other resources on A’s behalf by presenting
the delegation token. Any party can use paramsA and ID∗

A (which are publicly
available) to verify the delegation token. For instance, if X uses the token to
access Z, Z can verify A’s signature on the token and check if the token contains
X’s identity before allowing a data connection between X and Z. This approach
cannot be achieved through current PKI settings because one needs to create
a new “random looking” public key and then bind it with a proxy certificate.
Should X need to further delegate A’s access rights to a remote resource Y , it
uses a temporary private key to sign a message that contains Y ’s identity and
A’s original delegation token, as shown in message (2). And this signed message
becomes X’s delegation token for Y . Note that this process may form a chain of
delegation tokens with considerable less complexity than required in [13]. More
details on computation complexity of [13] and our model will be shown in Sec-
tion 5. A similar approach can be used for single sign-on by attaching an access
token to the protocol messages. For instance, A could reuse the token that she
received from S, SigK∗

S
[JReq] (in Protocol 1) to authenticate herself to other

resources provided S includes a list of resources that she is authorized to access
within a certain valid period of time.

4 Supporting DKIG via TLS

As we have explained earlier, the use of params is similar to X.509 certificate
in a PKI setting and thus it should be straightforward to integrate well-known
protocols within DKIG. We present in Protocol 3, a modified version of Proto-
col 1 based on minor adjustments to the TLS handshake protocol [4]. We make
use of the terminology from [4] with small changes where appropriate. For ease
of exposition, we focus only on the interaction between A and X.

Protocol 3 Authenticated key establishment based on TLS handshake

(1) A → X : ClientHello.random = rA, tA

(2) X → A : ServerHello.random = rX , tX

ServerParams = paramsX

ParamsRequest

ServerHelloDone

(3) A → X : ClientParams = paramsA

ClientKeyExchange = EK∗
X

[KAX ]

AccessVerify = SigK∗
S
[JReq]

ClientFinished

(4) X → A : ServerFinished



262 H.W. Lim and M.J.B. Robshaw

As in the current TLS setting, Protocol 3 begins with the client (A) sending
the server (X) a ClientHello message. The message contains a fresh random
number and a timestamp as shown in step (1). X responds with a ServerHello
message which contains an independent random number and a timestamp. X
also forwards its params to A and makes a request for A’s params. And then the
ServerHelloDone message is sent to indicate the end of step (2).

In step (3), A first forwards her params to X. She then calculates a pre-
master-secret as KAX and forwards it encrypted under X’s short-lived public
key in the ClientKeyExchange message. We modify CertificateVerify in [4]
to AccessVerify which contains the access token signed by S. A completes step
(3) by sending ClientFinished that contains a verification value. This allows
X to confirm that it has indeed received the previous handshake messages with
the correct contents. The verification value can be easily established based on
the specification in [4]. As with the ClientFinished, X should compute the
exact verification value as A in ServerFinished. The shared secret key between
A and X which will eventually be used for protecting application data over
the connection is master secret = PRF(KAX , “mastersecret”, rA‖rX), where
PRF is a pseudo-random function.

Note that message (3) in Protocol 1 forms the input of ClientKeyExchange
and AccessVerify. The handshake protocol will fail if the signature verification
fails, or JReq does not contain valid entries. If all succeed, X will compute its
verification value and return it to A for confirmation.

5 Performance Trade-Off

We now summarise the computation complexity of single sign-on and delegation
protocols for GSI when using the regular RSA-based PKI approach and DKIG
using a conversion of a signature scheme in [3].

It is noticeable from Table 1 that both single sign-on and delegation services
require the generation of a new RSA public/private key pair. This is compu-
tationally costly, particularly so if longer keys are used [13]. In addition, even

Table 1. Comparison between GSI and DKIG in terms of cryptographic operations in
performing single sign-on and delegation services

Service Infra. Operation

Single sign-on GSI 1. Generation of new key pair

2. Signing of new proxy

DKIG 1. Signing of access token

Delegation A (delegator) X (delegation target)

GSI 1. Generation of new key pair

2. Signing of proxy request

3. Verification of signed request

4. Signing of new proxy

DKIG 1. Signing of delegation token



A Dynamic Key Infrastructure for Grid 263

though signing and verification of signature in RSA scheme are computationally
faster than the key generation, the delegation protocol needs at least two signing
and one verification (for simplicity, we have not included verification of signature
by the delegated target).

DKIG appears to offer significant advantages due to the use of fixed params,
i.e. a user can create a new public key on-the-fly and requires no additional
signing or verification operation. Even though the signing and verification algo-
rithms in IBS are somewhat slower than RSA [1, 3], the total computation costs
incurred for either the single sign-on or the delegation protocols are considerably
lower than those encountered within an RSA-based PKI approach.

6 Conclusions

Current key management techniques used in PKI-based Grid solutions in partic-
ular for single sign-on and delegation protocols may well have high computation
costs. We have presented a more lightweight and dynamic approach to provid-
ing a security infrastructure through what we term DKIG. In our DKIG setting
which is based around the properties of IBC, each entity produces its own set
of parameters that can be used by other entities as a permanent master-public-
key mould. In this way, different temporary public keys can be tied to different
jobs. Such short-lived public keys change dynamically from one job session to
another, and thus improve key freshness and prevent key-replay attacks. We en-
visage such parameter sets to act as permanent credentials of the users just like
their identities, and as such they are not expected to be renewed unless their
master secret keys are compromised. More interestingly, the DKIG approach
can be used to achieve single sign-on and rights delegation without the need for
creating a proxy.

Acknowledgements

The authors would like to thank Sattam Al-Riyami, Chris Mitchell, Kenny Pa-
terson, and anonymous referees for their feedback and comments.

References

1. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology - Pro-
ceedings of CRYPTO 2002, pages 354–368. Springer-Verlag LNCS 2442, 2002.

2. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, Advances in Cryptology - Proceedings of CRYPTO 2001, pages
213–229. Springer-Verlag LNCS 2139, 2001.

3. J.C. Cha and J.H. Cheon. An identity-based signature from Gap Diffie-Hellman
groups. In Y.G. Desmedt, editor, Proceedings of the 6th International Workshop
on Theory and Practice in Public Key Cryptography - PKC 2003, pages 18–30.
Springer-Verlag LNCS 2567, 2003.



264 H.W. Lim and M.J.B. Robshaw

4. T. Dierks and C. Allen. The TLS protocol version 1.0. The Internet Engineering
Task Force (IETF), RFC 2246, January 1999.

5. I. Foster. The Grid: A new infrastructure for 21st century science. Physics Today,
55(2):42–47, February 2002.

6. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for com-
putational Grids. In Proceedings of the 5th ACM Computer and Communications
Security Conference, pages 83–92. ACM Press, 1998.

7. H.W. Lim and M.J.B. Robshaw. On identity-based cryptography and Grid com-
puting. In M. Bubak, G.D.v Albada, P.M.A. Sloot, and J.J. Dongarra, editors,
Proceedings of the 4th International Conference on Computational Science (ICCS
2004), pages 474–477. Springer-Verlag LNCS 3036, 2004.

8. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community au-
thorization service for group collaboration. In Proceedings of the 3rd IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY’02),
pages 50–59. IEEE Computer Society Press, June 2002.

9. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. The community
authorization service: Status and future. In Proceedings of Computing in High
Energy and Nuclear Physics (CHEP03), eConf, March 2003.

10. A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, Advances in Cryptology - Proceedings of CRYPTO ’84,
pages 47–53. Springer-Verlag LNCS 196, 1985.

11. M.R. Thompson and K.R. Jackson. Grid Resource Management: State of the Art
and Future Trends, chapter 5: security issues of Grid resource management, pages
53–69. Kluwer Academic, Boston, 2003.

12. S. Tuecke, V. Welch, D. Engert, L. Pearman, and M. Thompson. Internet X.509
public key infrastructure proxy certificate profile. The Internet Engineering Task
Force (IETF), RFC 3820, June 2004.

13. V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke, J. Gawor,
S. Meder, and F. Siebenlist. X.509 proxy certificates for dynamic delegation. In
Proceedings of the 3rd Annual PKI R&D Workshop, 2004.

14. V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid services.
In Proceedings of the 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC-12 2003), pages 48–61. IEEE Computer Society
Press, June 2003.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 265 – 274, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Experiences of Applying Advanced Grid 
Authorisation Infrastructures 

R.O. Sinnott1, A.J. Stell1, D.W. Chadwick2, and O. Otenko3 

1 National e-Science Centre, University of Glasgow 
{ros, ajstell}@dcs.gla.ac.uk 

2 Department of Computing Science, University of Kent 
D.W.Chadwick@salford.ac.uk 

3 IS Security Research Centre, University of Salford 
o.otenko@salford.ac.uk 

Abstract. The widespread acceptance and uptake of Grid technology can only 
be achieved if it can be ensured that the security mechanisms needed to support 
Grid based collaborations are at least as strong as local security mechanisms. 
The predominant way in which security is currently addressed in the Grid 
community is through Public Key Infrastructures (PKI) to support 
authentication. Whilst PKIs address user identity issues, authentication does not 
provide fine grained control over what users are allowed to do on remote 
resources (authorisation). The Grid community have put forward numerous 
software proposals for authorisation infrastructures such as AKENTI [1], CAS 
[2], CARDEA [3], GSI [4], PERMIS [5,6,7] and VOMS [8,9]. It is clear that for 
the foreseeable future a collection of solutions will be the norm. To address this, 
the Global Grid Forum (GGF) have proposed a generic SAML based 
authorisation API which in principle should allow for fine grained control for 
authorised access to any Grid service. Experiences in applying and stress 
testing this API from a variety of different application domains are essential to 
give insight into the practical aspects of large scale usage of authorisation 
infrastructures. This paper presents experiences from the DTI funded 
BRIDGES project [10] and the JISC funded DyVOSE project [11] in using this 
API with Globus version 3.3 [12] and the PERMIS authorisation infrastructure. 

1   Introduction 

Today, collections of distributed individuals and institutions in science and industry 
are increasingly forming virtual organisations (VOs) to pool resources such as data 
sets, data archives, CPUs, or specialised equipment from astronomical radio-
telescopes through to medical imaging scanners. Grid technology presents itself as 
one of the main ways in which such VOs can be established. With the open and 
collaborative nature of the Grid, ensuring that local security constraints are met and 
not weakened by Grid security solutions is paramount. PKIs represent the most 
common way in which security is addressed. Through PKIs, it is possible to validate 
the identity of a given user requesting access to a given resource. For example, with 
the Globus toolkit [12] solution, gatekeepers are used to ensure that signed requests 



266 R.O. Sinnott et al. 

 

are valid, i.e. from known collaborators. When this is so, i.e. the Distinguished Name 
(DN) of the requestor is in a locally stored and managed gridmap file, then the user is 
typically given access to the locally set up account as defined in the gridmap file.  

There are several key limitations with this approach with regard to security 
however. Most importantly, the level of granularity of security is limited. There is no 
mention of what the user is allowed to do once they have gained access to the 
resource. Another issue with this approach is that it works on the assumption that user 
certificates are provided by an acknowledged certificate authority (CA). In the UK, a 
centrally managed CA at Rutherford Appleton Laboratories exists which 
(necessarily!) has strict procedures for how certificates are allocated. Users are 
expected to “prove” who they are in order to get a certificate, e.g. through 
presenting their passports to a trusted individual. This is a human intensive activity 
and one which is likely to have scalability issues once it is rolled out to the wider 
community, e.g. to industry and larger groups such as students taking Grid/e-
Science courses. Having users personally take care of their private keys is another 
limitation of this approach. 

In short, current experiences with PKIs [13, 14] as the mechanism for ensuring 
security on the Grid have not been too successful [15, 16]. Authorisation 
infrastructures offer extended and finer grained security control when accessing and 
using Grid resources. Numerous technological solutions have been put forward 
providing various levels of authorisation capabilities e.g. AKENTI [1], CAS [2], 
CARDEA [3], GSI [4], PERMIS [5,6,7] and VOMS [8,9]. Examples of how these 
compare to one another is described in [17, 18, 19]. It is too early to say if large scale 
use of attribute certificates (ACs) for user authorisation, based on infrastructures such 
as PERMIS, will be successful or not – more practical experience is required. In the 
current PERMIS infrastructure, static delegation of authority is supported, meaning 
that a central authority has to be contacted, and register local managers in its policy, 
before managers are entitled to assign privileges to subordinates. A better system is 
dynamic delegation of authority, where local managers do not need to be registered, 
but are given the privilege to delegate when they are first given privileges to use the 
system. Managers can then allocate privileges to staff and students as required, 
without having to contact the central authority first to get permission. Through this, a 
federated and scalable model of security authorisation can be realised that can be used 
for the dynamic establishment of VOs. VOs allow shared use of computational and data 
resources by collaborating institutions. Establishing a VO requires that efficient access 
control mechanisms to the shared resources by known individuals are in place. 
However, currently in the Grid community access control is usually done by comparing 
the authenticated name of an entity to a name in an Access Control List. This approach 
lacks scalability and manageability as discussed in [15]. Dynamic delegation of 
privileges offers a more realistic approach that could shape future Grid security, 
especially when it is rolled-out to the masses, e.g. Grid students and industry. 

2   Authorisation Background 

Authentication should be augmented with authorisation capabilities, which can be 
considered as what Grid users are allowed to do on a given Grid end-system. Thus 



Experiences of Applying Advanced Grid Authorisation Infrastructures 267 

 

“what users are allowed to do” can be interpreted as the privileges that the users have 
been allocated on those end-systems. The X.509 standard [20] has standardised the 
certificates of a privilege management infrastructure (PMI). A PMI can be considered 
as being related to authorisation in much the same way as a PKI is related to 
authentication. Consequently, there are many similar concepts in PKIs and PMIs as 
discussed in detail in [6].  

A key concept from PMI are attribute certificates (ACs) which, in much the same 
manner as public key certificates in PKI, maintain a strong binding between a user’s 
name and one or more privilege attributes. The entity that digitally signs a public key 
certificate is called a Certification Authority (CA) whilst the entity that signs an AC is 
called an Attribute Authority (AA). The root of trust of a PKI is sometimes called the 
root CA – which in terms of the UK e-Science community is given by the Grid 
Support centre at RAL [21]. The root of trust of the PMI is called the Source of 
Authority (SOA). CAs may have subordinate CAs whom they trust and to which they 
delegate the powers of authentication and certification. Similarly, SOAs may delegate 
their power of authorisation to subordinate AAs. If a user needs to have their signing 
key revoked, a CA will issue a certificate revocation list. Similarly, if a user needs to 
have authorisation permissions revoked, an AA will issue an attribute certificate 
revocation list (ACRL). Typically, a given users’ access rights are held as access 
control lists (ACLs) within each target resource. In an X.509 PMI, the access rights 
are held within the privilege attributes of ACs that are issued to users. A given 
privilege attribute within an AC will describe one or more of the user’s access rights. 
A target resource will then read a user’s AC to see if they are allowed to perform the 
action being requested. 

The X.812 | ISO 10181-3 Access Control Framework standard [22] defines a 
generic framework to support authorisation. With this model initiators attempt to 
access a target in a remote domain. Two key components are put forward in [22] to 
support authorised access to the target: an Access control Enforcement Function (also 
known as a Policy Enforcement Point (PEP)) and an Access control Decision 
Function (also known as a Policy Decision Point (PDP)). The PEP ensures that all 
requests to access the target are authorised through checking with the PDP. The 
PDP’s authorisation decision policy is often represented through collections of rules 
(policies), e.g. stored in a Lightweight Directory Access Protocol (LDAP) server. The 
different authorisation infrastructures associated with Grid technology have put 
forward their own mechanisms for realising PEPs and PDPs. Recently however, the 
GGF has put forward a generic API – the SAML AuthZ API - which in principle 
provides a generic PEP that can be associated with an arbitrary authorisation 
infrastructure [23]. The Grid specification is an enhanced profile of the OASIS 
Security Assertion Markup Language v1.1 [24] 

2.1   GGF SAML AuthZ API 

The OASIS SAML specification defines a number of elements for making assertions 
and queries regarding authentication, authorization decisions and attributes The 
OASIS SAML AuthZ specification defines a message exchange between a policy 
enforcement point (PEP) and a policy decision point (PDP) consisting of an 
AuthorizationDecisionQuery flowing from the PEP to the PDP, with an assertion 



268 R.O. Sinnott et al. 

 

returned containing some number of AuthorizationDecisionStatements. The 
AuthorizationDecisionQuery itself consists of: a Subject element containing a 
NameIdentifier specifying the initiator identity; a Resource element specifying the 
resource to which the request to be authorized is being made, and one or more Action 
elements specifying the actions being requested on the resources. The GGF SAML 
profile specifies a SimpleAuthorizationDecisionStatement (essentially a 
granted/denied Boolean) and an ExtendedAuthorizationDecisionQuery that allows the 
PEP to specify whether the simple or full authorization decision is to be returned. In 
addition the GGF query supports both the pull and push modes of operation for the 
PDP to obtain attribute certificates, and has added a SubjectAttributeReferenceAdvice 
element to allow the PEP to inform the PDP where it may obtain the subject’s 
attribute certificates from.  

Through this SAML AuthZ API, a generic PEP can be achieved which can be 
associated with arbitrary (GT3.3) Grid services. Thus rather than developers having to 
explicitly engineer a PEP on a per application basis, the information contained within 
the deployment descriptor file (.wsdd) when the service is deployed within the 
container, is used. Authorisation checks on users attempting to invoke “methods” 
associated with this service are then made using the information in the .wsdd file and 
the contents of the LDAP repository (PDP) together with the DN of the user 
themselves. Note that this “method” authorisation basis extends current security 
mechanisms such as GSI which work on a per service/container basis. This generic 
solution can be applied to numerous infrastructures used to realise PDPs such as 
PERMIS.  

2.2   PERMIS Background 

The Privilege and Role Management Infrastructure Standards Validation (PERMIS) 
project [7] was an EC project that built an authorisation infrastructure to realise a 
scalable X.509 AC based PMI. Through PERMIS, an alternative and more scalable 
approach to centrally allocated X.509 public key certificates can be achieved through 
the issuance of locally allocated X.509 ACs.  

The PERMIS software realises a Role Based Access Control (RBAC) authorisation 
infrastructure. It offers a standards-based Java API that allows developers of resource 
gateways (gatekeepers) to enquire if a particular access to a resource should be 
allowed. The PERMIS RBAC system uses XML based policies defining rules, 
specifying which access control decisions are to be made for given VO resources. 
These rules include definitions of: subjects that can be assigned roles; SOAs (local 
managers) trusted to assign roles to subjects; roles and their hierarchical relationships; 
what roles can be assigned to which subjects by which SOAs; target resources, and the 
actions that can be applied to them; which roles are allowed to perform which actions on 
which targets, and the conditions under which access can be granted to roles. 

Roles are assigned to subjects by issuing them with X.509 Attribute Certificate(s). 
A graphical tool called the Privilege Allocator (PA) and a simpler version termed the 
Attribute Certificate Manager (ACM) have been developed to support this process. 
Once roles are assigned, and policies are developed, they are digitally signed by a 
manager and stored in one or more LDAP repositories. 



Experiences of Applying Advanced Grid Authorisation Infrastructures 269 

 

To set up and administer PERMIS requires the use of a LDAP server to store the 
attribute certificates and reference the SOA root certificate. A local certificate 
authority (CA) is also required to be set up using OpenSSL – this designates the SOA 
and all user certificates created from this CA must have a Distinguished Name that 
matches the structure of the LDAP server. The DN of the user certificate is what is 
used to identify the client making the call on the grid service. Establishing local CAs 
matching the structures of the LDAP repository is not without issues which need to be 
resolved, e.g. in ensuring that locally generated certificates are recognised (trusted) by 
other remote CAs since there is no root of trust. From the user’s perspective, once the 
administrator has set up the infrastructure, the PERMIS service is relatively easy to 
use. Unique identifiers are placed as parameters into the user’s grid service 
deployment descriptor (.wsdd file). These are the Object Identification (OID) number 
of the policy in the repository, the URI of the LDAP server where the policies are 
held and the SOA associated with the policy being implemented. Once these 
parameters are input and the service is deployed, the user creates a proxy certificate 
with the user certificate created by the local CA to perform strong authentication. The 
client is run and the authorisation process allows or disallows the intended action. 

3   Experiences of Authorisation 

The GGF SAML AuthZ API offers, in principle, a generic way in which authorisation 
can be made. It is clear that direct experiences in applying/stress testing this 
mechanism are needed from a variety of different application domains. This has been 
undertaken within the BRIDGES project where the emphasis on security has been on 
life science data security, and the DyVOSE project where focus has been on 
education case studies looking at method level security.  

3.1   Bridges Background 

The BRIDGES project [10] is investigating the application of the Globus toolkit [12] 
to support HPC bioinformatics BLAST services using large HPC facilities; and the 
Open Grid Services Architecture – Data Access and Integration (OGSA-DAI) [26] 
and IBM’s Information Integrator product [27] to deal with federation of distributed 
biomedical data for the Cardiovascular Functional Genomics (CFG) [25]. A key 
requirement of the scientist and hence focus of the BRIDGES work is security. 
Broadly speaking, the CFG scientific data can be classified dependent upon its 
security characteristics into three groups: public data (with no/minimal security, e.g. 
publicly curated genomic databases); shared data (belonging to the CFG 
scientists/consortia, e.g. shared research data sets); private data (belonging to given 
CFG sites and unavailable to anyone else, e.g. personal medical records). 

A typical scenario that the infrastructure supports is: a user requests access to the 
CFG portal; the access request results in a SAML query being raised to ensure that 
this user is authorised to access the portal (by ensuring an appropriate role AC is 
available in the secure LDAP repository); if successful (the user is authorised), the 
portal is configured/personalised to display the services that are associated with that 
user; at this point, the user can invoke various services (they are entitled to use) – one 



270 R.O. Sinnott et al. 

 

of these is a syntenic relation visualisation service (SyntenyVista); upon launching 
SyntenyVista (using WebStart technologies) the users can use data available in the 
repository (which itself provides an OGSA-DAI front end and exploits IBM 
Information Integator to integrate and where possible federate various remote  public 
data resources); the user may then visually explore genomic data sets and potentially 
export these onto the high throughput computing resources ScotGrid for sequence 
similarity checking (BLAST) against other query sequences.  

In the current implementation the usage of SyntenyVista offers direct visualisation 
of data sets available via the repository (from ensembl [28]). It is planned however 
that the user is restricted to seeing and visualising the data sets that they are entitled to 
see based upon their role within the CFG virtual organisation (VO), this applies also 
to the usage/invocation of GT3 based Blast services, i.e. that they will be restricted to 
those users and those data sets that meet appropriate security restrictions. For this 
purpose, the PERMIS Policy Editor tool has been used to develop appropriate policies 
based upon the specific roles in the projects and the capabilities to be associated with 
those roles.  

3.1.1   Bridges Security Experiences 
The emphasis on security in BRIDGES is upon data security. Work has investigated 
how best to map advanced Grid authorisation infrastructures such as PERMIS/SAML 
AuthZ with best practice in the database management systems (DBMS) world. DBMS 
have extensive experience in addressing security aspects, e.g. with how to ensure 
users access data that they are entitled to. The relation between how much 
authorisation should be done through Grid software and how much should be left to 
the DBMS is not always clear in the Grid community. Explorations of BRIDGES in 
this area are that the PERMIS (Grid) roles within the CFG VO (as extracted from the 
AC repository) are mapped against specifically established user views of data sets 
available via the DB2 data repository. However one issue that has been encountered 
with the SAML AuthZ profile is the lack of granularity in how users might invoke 
actions. For example, different actions may or may not be allowed depending upon 
the data that they wish to access and potentially change. The SAML AuthZ profile 
does not currently allow actions to be distinguished based upon the parameters that 
might be associated with them. As a result, the GT3 based BLAST service cannot be 
restricted to BLAST those data sets that are appropriate to the invoker. Instead, the 
SAML AuthZ specification supports either a SecureGrid BLAST service or a non-
secure BLAST service. Thus when the portal is personalised per user/role, it is not 
possible to distinguish the usage of individual operations, e.g. to allow arbitrary 
invocations of actions where the data sets themselves might change.  

Further, the identification of explicit targets and actions applicable to the data in 
the DB itself is not easily reconciled. A naïve approach would be for example to 
explicitly have read/write actions on contents of the database itself, e.g. read/write 
access to individual tables. The difficulty in this situation is that the DB is perpetually 
being modified (extended) as new data sets are added and changed. As a result, new 
policies would have to be defined with each DB change which impacts directly upon 
the scalability of the approach. In addition, attaching policies to individual data 
elements would face immediate scalability problems.  



Experiences of Applying Advanced Grid Authorisation Infrastructures 271 

 

To address this issue, the project is investigating how the schemas defining the 
secure data structures themselves might be extended in a more scalable way to include 
security attribute information. Thus policies can be formulated to query data sets that 
do/do not have appropriate security attributes depending upon the policy in place. 
Through this mechanism, a generic approach to secure authorised access to DB 
contents can be achieved. 

3.2   DyVOSE Background 

The Dynamic Virtual Organisations in e-Science Education (DyVOSE) project [11] 
began in May 2004 and involves the Universities of Glasgow, Salford and in the 
second phase of the project, the University of Edinburgh. It was funded through the 
JISC Core Middleware programme. 

One of the initial goals of DyVOSE is to explore scalability issues in the usage of 
advanced authorisation infrastructures such as PERMIS. To this extent, the PERMIS 
technology is being applied in the advanced MSc Grid Computing module at the 
University of Glasgow. It is worth noting that the first lecture had over 50 students.   

Within the DyVOSE project the PERMIS tools such as the Policy Editor and 
Privilege Allocator have been used to create policies to authorise what the students 
are allowed to do as part of their programming assignment. To explore the 
authorisation infrastructure, the students have been asked to develop a GT3.3 service 
(searchSortGridService) which wraps a Condor based application (this service offers 
two methods to search (searchMethod) and sort (sortMethod) a large (5MB) text file 
(the complete works of Shakespeare)). The students themselves have been split into 
groups with the authorisation policy to ensure that method sortMethod can only be 
invoked by members of your student group and the lecturing staff, and that method 
searchMethod can be invoked by everyone.  

Initially the students were asked to develop this policy themselves through the 
PERMIS Policy Editor. The usability of these tools is a key part in development of 
authorisation infrastructures. The output of the Policy Editor is an XML-based policy 
which identifies specific roles (studentteam1, studentteam2 and lecturer), specific 
targets (searchSortGridService) and specific actions on that target (searchMethod and 
sortMethod). This XML policy is then input to the Privilege Allocator tool denotes 
specific users associated with that given rule (i.e. the students themselves); to digitally 
sign the policy and store it in the LDAP server. 

3.2.1   DyVOSE Security Experiences 
All of the students were able to successfully create the policy defined above using the 
PERMIS Policy Editor with minimal help from staff. It should be noted that the 
students were informed of various background information that they would need to 
create the policy including the Policy Domain to use (“O=University of Glasgow, 
C=GB”), the Source of Authority to use (“CN=Administrator, O=University of 
Glasgow, C=GB”) and the Policy Object Identifier (1.0.0.1 for student group 1 and 
1.0.0.2 for student group 2).  

The students were requested to critically evaluate the PERMIS tools for this 
purpose, with these results being sent back to the PERMIS team for HCI 
improvements and minor bug fixes, e.g. problems in cross platform (Unix/Windows) 



272 R.O. Sinnott et al. 

 

versions of the tool and functionality in the tool that has not yet been implemented 
(although the buttons/pull down menus exist). The student policies themselves were 
signed and stored as ACs within the LDAP server. At the time of writing the students 
are completing their assignment which is using these authorisation policies. The 
working solution demonstrating that these policies and the SAML AuthZ API are 
working has been produced however.  

Establishing a working solution was not without issue however, e.g. one overhead 
is environment settings that must be configured before the PERMIS-GT3.3 solution 
can be used. The CLASSPATH environment variable, for instance, is sensitive to 
change: it must include most JAR files in the Globus installation library, but not 
include certain specific ones if an Ant build script is to be used to run the service 
client. Once these environment settings are identified, however, these can be 
incorporated into a script, which then only needs to be run once.  

4   Conclusions and Future Plans 

It is clear that detailed explorations are needed to assess the suitability of next 
generation Grid middleware. The work undertaken within the DyVOSE project has 
shown that the GGF SAML AuthZ API does provide a generic and useful mechanism 
through which fine grained authorisation can be achieved using GT3.3 and the 
PERMIS infrastructure. The BRIDGES project has shown the current limitations of 
this API which are being addressed by the GGF security authorisation working group 
through support for parameters in actions. Continued feedback on the PERMIS tools 
is an equally important activity. Students’ experiences within the DyVOSE project are 
providing the PERMIS team with detailed feedback on the usability of these tools. 
These stem from needed functionality through to improvements to the HCI aspects of 
these tools. 

The work in exploring the SAML AuthZ API has also identified issues with the 
Globus toolkit which have been fed back to the Globus team. Specifically, within the 
GT3.3 release, certain Globus source code was required to be commented out before 
PERMIS could run with it. Delays were also incurred due to the GT3.3 version 
compatible with PERMIS only being accessible via the CVS repository as opposed to 
the web site link. It is worth noting that it has been stated by the Globus team [30] that 
this SAML AuthZ API will be supported in future versions of the Globus software. 

This work is addressing scalability issues of security infrastructures. A local central 
CA has issues with the overall manageability of PKIs, and does not address 
authorisation issues. A more realistic model would be to have a local CA 
infrastructure to issue certificates, e.g. to students as part of their matriculation. 
Within DyVOSE and BRIDGES a local certificate authority was established using 
OpenSSL [29]. Whilst relatively straightforward to achieve, there are issues in 
recognition of these certificates by other CAs within PKIs, such as the UK e-Science 
CA. Since no root of trust exists between these CAs, solutions might be based upon 
some form of bridging solutions [31]. However, given the limitations of PKIs a better 
solution would be to support dynamic establishment and recognition of trust to 
support authorisation. The second phase of the DyVOSE project will, through 
extensions to the PERMIS technologies, investigate how dynamic delegation of trust 



Experiences of Applying Advanced Grid Authorisation Infrastructures 273 

 

can be achieved. In this situation, collections of distributed policies issued by various 
remote SOAs will be dynamically recognised (locally) and used as the basis for 
establishing the rules through which the dynamic VOs will be managed and enforced. 
This will benefit from the Shibboleth suite of protocols [33] for transport of policy 
information. 

The explorations being undertaken in the BRIDGES and DyVOSE projects are 
providing valuable insight into the scalability and suitability of advanced 
authorisation infrastructures to establish VOs. These experiences are feeding in to 
numerous other areas. These include applications of Grid technology to establish VOs 
within the clinical science domain as part of the VOTES project [32], and as input to 
the UK e-Science Grid Engineering Task Force – specifically the action line 
associated with authentication, authorisation and accounting. Experiences in the 
application of the PERMIS infrastructure have also been presented to the UK e-
Science Security Task Force as part of an on-going activity in establishing best 
practice and usage of Grid security software. 

References 

[1] Johnston, W., Mudumbai, S., Thompson, M. Authorization and Attribute Certificates for 
Widely Distributed Access Control, IEEE 7th Int. Workshop on Enabling Technologies: 
Infrastructure for Collaborative Enterprises (http://www-itg.lbl.gov/security/Akenti/) 

[2] L Pearlman, et al., A Community Authorisation Service for Group Collaboration, in 
Proceedings of the IEEE 3rd International Workshop on Policies for Distributed Systems 
and Networks. 2002. 

[3] Lepro, R., Cardea: Dynamic Access Control in Distributed Systems, NASA Technical 
Report NAS-03-020, November 2003 

[4] Globus Grid Security Infrastructure (GSI),  
http://www-unix.globus.org/toolkit/docs/3.2/gsi/index.html  

[5] D.W.Chadwick, A. Otenko, E.Ball, Role-based Access Control with X.509 Attribute 
Certificates, IEEE Internet Computing, March-April 2003, pp. 62-69. 

[6] D.W.Chadwick, A. Otenko, The PERMIS X.509 Role Based Privilege Management 
Infrastructure, Future Generation Computer Systems, 936 (2002) 1–13, December 2002. 
Elsevier Science BV. 

[7] Privilege and Role Management Infrastructure Standards Validation project 
www.permis.org 

[8] VOMS Architecture, European Datagrid Authorization Working group, 5 September 2002.  
[9] Steven Newhouse, Virtual Organisation Management, The London E-Science centre, 

http://www.lesc.ic.ac.uk/projects/oscar-g.html 
[10] BioMedical Research Informatics Delivered by Grid Enabled Services project 

(BRIDGES), www.nesc.ac.uk/hub/projects/bridges 
[11] Dynamic Virtual Organisations in e-Science Education project (DyVOSE), 

www.nesc.ac.uk/hub/projects/dyvose  
[12] Globus, http://www.globus.org  
[13] R. Housley, T. Polk, Planning for PKI: Best Practices Guide for Deploying Public Key 

Infrastructures, Wiley Computer Publishing, 2001. 
[14] ITU-T Recommendation X.509 (2001) | ISO/IEC 9594-8: 2001, Information technology 

– Open Systems Interconnection – Public-Key and Attribute Certificate Frameworks. 



274 R.O. Sinnott et al. 

 

[15] JISC Authentication, Authorisation and Accounting (AAA) Programme Technologies 
for Information Environment Security (TIES), http://www.edina.ac.uk/projects/ties/ 
ties_23-9.pdf. 

[16] Whitten, A., and Tygar, J. D. Why Johnny can't encrypt: a usability evaluation of PGP 
5.0. Paper presented at the 9th USENIX security symposium, Washington, 1999. 

[17] D. Chadwick, O. Otenko, A Comparison of the Akenti and PERMIS Authorization 
Infrastructures, in Ensuring Security in IT Infrastructures, Proceedings of ITI First 
International Conference on Information and Communications Technology (ICICT 2003) 
Cairo University, Ed. Mahmoud T El-Hadidi, p5-26, 2003 

[18] Conceptual AuthZ Framework and Classification (DOC) https://forge.gridforum.org/ 
docman2/ViewCategory.php?group_id=55&category_id=458  

[19] A.J. Stell, Grid Security: An Evaluation of Authorisation Infrastructures for Grid 
Computing, MSc Dissertation, University of Glasgow, 2004. 

[20] ITU-T Rec. X.509 (2000) | ISO/IEC 9594-8. The Directory: Authentication Framework. 
[21] UK e-Science Certification Authority, www.grid-support.ac.uk 
[22] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996, Security Frameworks for open 

systems: Access control framework 
[23] V. Welch, F. Siebenlist, D. Chadwick, S. Meder, L. Pearlman, Use of SAML for OGSA 

Authorization, June 2004, https://forge.gridforum.org/projects/ogsa-authz  
[24] OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Language 

(SAML) v1.1,. 2 September 2003, http://www.oasis-open.org/committees/security/  
[25] Cardiovascular Functional Genomics project, http://www.brc.dcs.gla.ac.uk/projects/cfg/  
[26] Open Grid Service Architecture – Data Access and Integration project (OGSA-DAI), 

www.ogsadai.org.uk 
[27] IBM Information Integrator, www.ibm.com  
[28] EMBL-EBI European Bioinformatics Institute, http://www.ebi.ac.uk/ensembl/ 
[29] OpenSSL to create certificates, http://www.flatmtn.com/computer/Linux-SSLC 

ertificates.html  
[30] Von Welch/Jennifer Schopf personal communications. 
[31] J. Jokl, J. Basney and M. Humphrey, Experiences using Bridge CAs for Grids, 

Proceedings of UK Workshop on Grid Security Practice - Oxford, July 2004 
[32] Virtual Organisations for Trials and Epidemiological Studies project (VOTES), 

www.nesc.ac.uk/hub/projects/votes  
[33] Shibboleth, http://shibboleth.internet2.edu/  



Towards a Grid-wide Intrusion Detection System

Stuart Kenny and Brian Coghlan

Trinity College Dublin, Ireland
{stuart.kenny, coghlan}@cs.tcd.ie

Abstract. We describe SANTA-G (Grid-enabled System Area Networks
Trace Analysis), an instrument monitoring framework that uses the R-
GMA (Relational Grid Monitoring Architecture). We describe the Canon-
icalProducer, the component that allows for instrument monitoring, and
how it would be used to construct the basis of a Grid-wide intrusion
detection system.

1 The R-GMA

The Grid Monitoring Architecture (GMA) [2] of the Global Grid Forum (GGF),
as shown in Figure 1, consists of three components: Consumers, Producers and
a directory service, which in the R-GMA is referred to as a Registry.

Fig. 1. Grid Monitoring Architecture

R-GMA is a relational implementation of the GMA developed within the
European DataGrid (EDG), which harnesses the power and flexibility of the
relational model. R-GMA creates the impression that you have one RDBMS
per Virtual Organisation (VO). However it is important to appreciate that the
system is a way of using the relational model in a Grid environment and not
a general distributed RDBMS with guaranteed ACID properties. All the pro-
ducers of information are quite independent. It is relational in the sense that
Producers announce what they have to publish via an SQL CREATE TABLE

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 275–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



276 S. Kenny and B. Coghlan

statement and publish with an SQL INSERT and that Consumers use an SQL
SELECT to collect the information they need. For a more formal description of
R-GMA see [3]. The R-GMA makes use of the Tomcat Servlet container. Most
of the R-GMA code is written in Java and is therefore highly portable. The only
dependency on other EDG software components is in the security area.

There have so far been defined not just a single Producer but four different
types: a DataBaseProducer, a StreamProducer, a LatestProducer and a Canon-
icalProducer. All appear to be Producers as seen by a Consumer, but they
have different characteristics. The StreamProducer allows for information to be
streamed continously to a Consumer. The LatestProducer only stores the most
recent tuple of information for a given primary key, thus providing the latest-
state information, whereas a DataBaseProducer stores the entire history of a
stream of information.

2 The CanonicalProducer

If we have to deal with a large volume of data it may not be practical to convert
it all to a tabular storage model. Moreover, it may be inefficient to transfer the
data to a Producer servlet with SQL INSERT statements. It may be judged
better to leave the data in its raw form at the location where it was created. The
CanonicalProducer is able to cope with this by accepting SQL queries and using
user-supplied code to return selected information in tabular form when required.

CanonicalProducer
API

User's Canonical
Producer Code

Consumer
API

User's Consumer
Code

Registry
API

Producer
API

Registry
API

Canonical
Producer
Servlet

Registry
Servlet

select data

select data

transfer
data

transfer
data select data

register Consumers,
and select Producers

Consumer
Servlet

Fig. 2. CanonicalProducer Servlet Communication

In general the R-GMA producers are sub-classes of the Insertable class, the
class that provides the insert method. The insert method is used by the producers
to send data to the servlets as an SQL INSERT string. The CanonicalProducer
is different however; it is a subclass of the Declarable class. This means that
it inherits the methods for declaring tables, but not inserting data. The user’s
producer code is responsible for obtaining the data requested. Figure 2 shows the
communication between the servlets for a CanonicalProducer. When the other



Towards a Grid-wide Intrusion Detection System 277

producer types publish data, the data is transferred to a local producer servlet
via a SQL INSERT. The CanonicalProducer Servlet, however, is never sent raw
data, which is instead retained local to the user’s CanonicalProducer code.

Because the user must write the code to parse and execute the query, the
CanonicalProducer can be used to carry out any type of query on any type of
data source.

R-GMA is being further developed within the EU EGEE project [23]. A
new Static query type has been added. The concept of the Canonical Pro-
ducer has been extended as an On-Demand Producer that can encompass large
databases as well as instruments, and which specifically supports the static query
type.

3 SANTA-G

SANTA-G (Grid-enabled System Area Networks Trace Analysis) is a generic
template for ad-hoc, non-invasive monitoring with external instruments, see
Figure 3.

Monitoring
Instrument

Grid Resource

Log Files

Canonical
Producer API

User's Canonical
Producer Code

Grid Information
System (R-GMA)

Fig. 3. SANTA-G monitoring framework

The template allows for the information captured by external instruments
to be introduced into the Grid Information System. It is possible for these
intruments to be anything, from fish sonars to PCR Analysers. The enabling
technology for the template is the CanonicalProducer. The demonstrator of this
concept, developed within the CrossGrid [17] project, is a network monitor that
allows a user to access logs stored in libpcap (a packet capture library) format
through the R-GMA. Examples of tools that generate logs in this format are
Tcpdump [13], an open-source packet capture application, and SNORT.

SNORT [14] is an open-source network intrusion detection system. SNORT
works by monitoring network packets received on the host’s network interface
card. Any packet found which matches a rule from a set of defined security rules
is logged to a log file, and an alert is generated, which is also stored in a separate
alert file.



278 S. Kenny and B. Coghlan

We now describe the use of the SANTA-G with SNORT as the basis for Grid-
wide intrusion detection.

The SANTA-G NetTracer is composed of three components that allow for
the monitoring data to be accessed through the R-GMA: a Sensor (which is
installed on the node(s) to be monitored), a QueryEngine, and a Viewer GUI (see
Figure 4). The Sensor monitors the log files created by the external sensor, for
example SNORT, and notifies the QueryEngine when new log files are detected.
SNORT logs alerts when suspect packets are detected. The Sensor monitors
the alert file generated by SNORT and when a new alert is detected its details
are sent to the QueryEngine, which records these events and publishes them to
users through the R-GMA (by using the LatestProducer API). Users can then
view these alerts, using the Viewer GUI. The full packet data of the packet that
triggered the alert can also then be viewed by querying the packet log file also
generated by SNORT.

Fig. 4. SANTA-G NetTracer, SNORT monitoring

The QueryEngine provides the interface to the R-GMA by using the Canon-
icalProducer API. Data is viewed via the R-GMA by submitting an SQL SE-
LECT statement, as if querying a relational database. Through the Canonical-
Producer this query is forwarded to the QueryEngine, which then parses the

4 Grid-wide Intrusion Detection



Towards a Grid-wide Intrusion Detection System 279

query, searches the appropriate log file to obtain the data required to satisfy the
query, and returns the dataset to the GUI through the R-GMA.

The QueryEngine implements the required components of CanonicalProducer
code. Figure 5 shows how the QueryEngine executes a SQL query received from
the R-GMA (i.e. from the CanonicalProducerServlet).

R-GMA

transfer
data

SQL query

SANTA-G
QueryEngine

SQLParser

Search

Responder

LatestProducer
API

CanonicalProducer
API

Log File

Log File

seek

data

socket

parsed SQL

ResultSet

XML
ResultSet

Fig. 5. SANTA-G QueryEngine Query Processing

The QueryEngine listens on a socket, waiting for connections from the Servlet.
When a connection is made the SQL query is read from the socket and passed
to an SQLParser class. The parser breaks the query into three separate lists;
a select list that contains the fields to be read, a from list that contains the
table the fields belong to, and a where list that contains the values used to filter
the fields with. The Search class searches the log file for data that matches the
WHERE predicates specified in the query, and extracts the required fields. The
data that satisfies the query is accumulated into a ResultSet in XML format and
returned to the Servlet over the socket connection. For example, the following
query:

SELECT source_address, destination_address,
packet_type
FROM Ethernet
WHERE sensorId = ‘some.machine.com:0’
AND fileId = 0
AND packetId < 100

would return the source address, destination address, and packet type fields of
the Ethernet header for the first 100 packets in the log file assigned ID 0 and
stored on ‘some.machine.com’.



280 S. Kenny and B. Coghlan

The information that can be queried is defined by the schema that the Canon-
icalProducer registers with the CanonicalProducer servlet. The schema for the
SNORT alerts is shown in Table 1.

Table 1. SNORT alerts table schema

Field Key Description

siteId PRI Site ID

sensorId PRI Sensor ID

fileId PRI Log file ID

alert timestamp Timestamp of when the event was logged

alert type Type of event

sig info Alert signature information

message Alert message

classification Alert classification name

priority Alert priority

source ip Source IP address

destination ip Destination IP address

source port TCP source port

destination port TCP destination port

data Packet header data

Fig. 6. SANTA-G Viewer, SNORT alerts panel

The SANTA-G Viewer provides a graphical user interface, which makes use of
the R-GMA Consumer API, to allow users to graphically view network packets



Towards a Grid-wide Intrusion Detection System 281

in the log files, and also to build and submit SQL queries that will be carried out
on the log files. Figure 6 shows the SNORT alerts panel of the Viewer, which
allows a user to browse the alerts that have been published by the SNORT
sensors to the R-GMA.

Fig. 7. SNORT monitoring example

Figure 7 shows how alerts can be generated, and published from a site, in
order for them to be viewed at a Grid Operations Center. Here we show four
worker nodes instrumented with the SNORT sensors, each attacking the other
three. The alerts generated will be collected and published to the R-GMA via
the QueryEngine. The Viewer (or any R-GMA Consumer) can then be used to
query for and view the published alerts. If this example is expanded to include
multiple sites then the alerts table published by the R-GMA becomes a Grid-
wide intrusion log.

5 Future Work

It is intended to use the SNORT functionality of the SANTA-G network mon-
itoring tool developed within Grid-Ireland to construct a ‘Grid-wide intrusion
detection system’. It is envisaged that each site within a Grid will run a set
of SNORT sensors publishing alerts to the R-GMA. A high-level incident de-
tection, tracking and response platform will be created by using custom coded
Consumers to filter and analyse the alerts published in order to detect patterns
that would signify an attempted distributed attack on the Grid infrastructure.
This will be constructed with two components (as shown in Figure 8):

1. a R-GMA Archiver that will query for the alerts detected by the SNORT
sensors and save the results in a MySQL database, that will then represent
the Grid-wide intrusion log, and



282 S. Kenny and B. Coghlan

Fig. 8. Grid-wide Intrusion Detection System

2. one or more R-GMA Consumers that will issue stream queries to the Archiver,
and receive back a stream of responses that they will convert to email alerts.

It is also intended to complement the SNORT data with information from
other security components. Work is currently underway creating new sensor
types and query engines for use with such tools as Tripwire [15] and AIDE
(Advanced Intrusion Detection Environment) [16].

6 Conclusion

The SANTA-G network monitoring tool developed within the CrossGrid project
demonstrates the CanonicalProducer concept by allowing log files to be accessed
through the R-GMA. Since the logs are published to the R-GMA grid informa-
tion system this can provide the basis for a Grid-wide intrusion detection sys-
tem. SANTA-G NetTracer has been extended to publish logs generated by the
SNORT network intrusion detection system. We intend to use this functionality,
along with further extensions that incorporate information from other security
components, to construct a system that will allow for Grid-wide intrusion detec-
tion. By using other R-GMA components, such as an Archiver, alerts published
from multiple sites can be aggregated to form a Grid-wide intrusion log. Custom
coded Consumers can then query this log for specific alert patterns, trigger-
ing their own alerts if a pattern is detected, and thereby generating Grid-wide
intrusion alerts.



Towards a Grid-wide Intrusion Detection System 283

References

1. Andrew Cooke, Werner Nutt, James Magowan, Manfred Oevers, Paul Taylor, Ari
Datta, Roney Cordenonsi, Rob Byrom, Laurence Field, Steve Hicks, Manish Soni,
Antony Wilson, Xiaomei Zhu, Linda Cornwall, Abdeslem Djaoui, Steve Fisher,
Norbert Podhorszki, Brian Coghlan, Stuart Kenny David O’Callaghan, John Ryan.
RGMA: First Results After Deployment CHEP03, La Jolla, California, March 24-
28, 2003.

2. B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski.
A Grid monitoring architecture. Global Grid Forum Performance Working Group,
March 2000. Revised January 2002.

3. Andy Cooke, Alasdair J G Gray, Lisha Ma, Werner Nutt, James Magowan,
Manfred Oevers, Paul Taylor, Rob Byrom, Laurence Field, Steve Hicks, Jason
Leake, Manish Soni, Antony Wilson, Roney Cordenonsi, Linda Cornwall, Abdeslem
Djaoui, Steve Fisher, Norbert Podhorszki, Brian Coghlan Stuart Kenny, David
O’Callaghan. R-GMA: An Information Integration System for Grid Monitoring
Proceedings of the Tenth International Conference on Cooperative Information
Systems, 2003.

4. Andrew Cooke, Werner Nutt, James Magowan, Manfred Oevers, Paul Taylor,
Ari Datta, Roney Cordenonsi, Rob Byrom, Laurence Field, Steve Hicks, Man-
ish Soni, Antony Wilson, Xiaomei Zhu, Linda Cornwall, Abdeslem Djaoui, Steve
Fisher, Norbert Podhorszki, Brian Coghlan, Stuart Kenny, Oliver Lyttleton, David
O’Callaghan, John Ryan. Information and Monitoring Services Within a Grid
Proceedings of the Eleventh International Conference on Cooperative Information
Systems, 2004.

5. Brian Coghlan, Abdeslem Djaoui, Steve Fisher, James Magowan, Manfred Oevers.
Time, Information Services and the Grid 31st May 2001.

6. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, P. Vander-
bilt. Grid Service Specification http://www.gridforum.org/ogsi-wg/drafts/draft-
ggf-ogsi-gridservice-04 2002-10-04.pdf, 2003.

7. The DataGrid Project. http://www.eu-datagrid.org
8. DataGrid WP3. DataGrid Information and Monitoring Final Evaluation Report

https://edms.cern.ch/document/410810/4/DataGrid-03-D3.6-410810-4-0.pdf
9. Brian Coghlan, Stuart Kenny. SANTA-G Software Design Document

10. Brian Coghlan, Stuart Kenny. SANTA-G First prototype Description http://www-
eu-crossgrid.org/Deliverables/M12pdf/CG3.3.2-TCD-D3.3-v1.1-SANTAG.pdf

11. CrossGrid WP3. Deliverable D3.5, Report on the Results of the 2nd and 3rd
Prototype http://www-eu-crossgrid.org/Deliverables/M24pdf/CG3.0-D3.5-v1.2-
PSNC010-Proto2Status.pdf

12. Brian Coghlan, Andrew Cooke, Roney Cordenonsi, Linda Cornwall, Ari Datta,
Abdeslem Djaoui, Laurence Field, Steve Fisher, Steve Hicks, Stuart Kenny, James
Magowan, Werner Nutt, David O’Callaghan, Manfred Oevers, Norbert Podhorszki,
John Ryan, Manish Soni, Paul Taylor, Antony Wilson Xiaomei Zhu. The Canon-
icalProducer: an instrument monitoring component of the Relational Grid Moni-
toring Architecture Proceedings of the 3rd International Symposium on Parallel
and Distributed Computing, July 2004.

13. Tcpdump. http://www.tcpdump.org
14. SNORT. http://www.snort.org
15. Tripwire. http://www.tripwire.org
16. AIDE. http://sourceforge.net/projects/aide



284 S. Kenny and B. Coghlan

17. The CrossGrid Project http://www.eu-crossgrid.org
18. DataGrid WP3 Information and Monitoring Services

http://hepunx.rl.ac.uk/edg/wp3/
19. Global grid forum. http://www.ggf.org
20. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-

ture, chapter 2: Computational Grids, pages 15–51. Morgan Kaufmann, 1999.
21. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable

virtual organization. The International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

22. Globus Toolkit. http://www.globus.org
23. Enabling Grids for E-science in Europe http://egee-intranet.web.cern.ch/egee-

intranet/gateway.html



International Grid CA Interworking, Peer
Review and Policy Management Through the
European DataGrid Certification Authority

Coordination Group

J. Astalos13, R. Cecchini14, B. Coghlan6, R. Cowles20, U. Epting11,
T. Genovese8, J. Gomes15, D. Groep18, M. Gug9, A. Hanushevsky20, M. Helm8,

J. Jensen3, C. Kanellopoulos1, D. Kelsey3,�, R. Marco12, I. Neilson9,
S. Nicoud5, D. O’Callaghan6, D. Quesnel2, I. Schaeffner11, L. Shamardin16,

D. Skow10, M. Sova4, A. Wäänänen17, P. Wolniewicz19, and W. Xing7

1 Aristotle University of Thessaloniki, Greece
2 Canarie, Canada

3 Rutherford Appleton Laboratory, UK
4 CESNET, Czech Republic

5 CNRS/UREC CPPM, France
6 Trinity College Dublin, Ireland
7 University of Cyprus, Cyprus

8 ESnet/LBNL, USA
9 European Organization for Nuclear Research (CERN), Switzerland

10 Fermi National Accelerator Laboratory, USA
11 Forschungszentrum Karlsruhe, Germany

12 Instituto de F́ısica de Cantabria (CSIC-UC), Spain
13 Slovak Academy of Sciences, Slovakia

14 INFN, Italy
15 Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Portugal

16 Moscow State University, Russia
17 Niels Bohr Institute, Denmark

18 NIKHEF, Netherlands
19 Poznań Supercomputing and Networking Center, Poland

20 Stanford Linear Accelerator Center, USA

Abstract. The Certification Authority Coordination Group in the Eu-
ropean DataGrid project has created a large-scale Public Key Infras-
tructure and the policies and procedures to operate it successfully. The
infrastructure demonstrates interoperability of multiple certification au-
thorities (CAs) in a novel system of peer-assessment of the roots of trust.
Crucial to the assessment is the definition of minimum requirements that
all CAs must meet in order to be accepted. The evaluation is aided by
software-generated trust matrices. Related work building on this infras-
tructure is described. The group’s policies and experience now form the
basis of the new European Policy Management Authority for Grid Au-
thentication in e-Science.

� Corresponding author: D.P.Kelsey@rl.ac.uk

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 285–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



286 J. Astalos et al.

1 Introduction

This paper describes the creation and operation of a Public Key Infrastructure
(PKI) for grid authentication used by several international grids. The European
DataGrid (EDG) project[1], which began in January 2001, was the first Euro-
pean project to establish a wide-scale grid. During the three years of EDG, the
authentication requirements of this and other grid projects led to the inclusion
of 21 Certification Authorities (CAs) in the PKI. These CAs provide authenti-
cation services for people and grid services in the majority of the EU member
states and also in Canada, Russia, Taiwan and the USA.

EDG was the first grid project to involve more than a small number of nations,
each with their own administrative and security domains. Initially this was not
perceived as an issue, but project members soon realised that the resource owners
required a more structured approach to security. The Certification Authority
Coordination Group (CACG) was established at the beginning of the project
to define a common authentication infrastructure trusted by all relying parties
that were part of the EDG project. EDG’s sister projects, such as DataTAG[2]
and CrossGrid[3] have adopted the EDG security model. GridLab[4] recognises
the CACG member CAs. The LCG[5] and EGEE[6] projects also take the EDG
approach to authentication.

EDG security activities fell into three categories: authentication, authoriza-
tion and coordination. EDG decided to keep authentication and authorization
separate (due to the more dynamic nature of authorization) while recognizing
that authentication often includes some implicit authorization. Authentication
was based on the Globus Grid Security Infrastructure (GSI)[7]. The Security Co-
ordination Group (SCG) have documented the EDG authorization developments
[8, 9, 10].

2 DataGrid Authentication

The EDG SCG collected and documented the security requirements of the project
[11]. These included 17 requirements for authentication of which three important
items were: for a user to authenticate just once per session; interoperable authen-
tication between many grids and applications; and the ability of authentication
to be revoked in the event of loss or compromise of an identity credential. The
requirements led to the use of Globus GSI. This uses a Public Key Infrastructure
(PKI) with X.509 certificates[12]. Identity is checked by a Registration Authority
(RA) and certified by a Certification Authority (CA). Users, hosts and services
perform mutual authentication. Delegation with short-lifetime proxy credentials
achieves the important goal of single sign-on[13]. A grid mapfile maps a certifi-
cate’s distinguished name (DN) to a local account and authorization is enforced
by the local security mechanisms.

The CA Coordination Group had the task of creating a PKI, which was
unique in its successful coordinated use of the technology with a large number of
independently operated CAs. The infrastructure was for GSI authentication only:



International Grid CA Interworking, Peer Review and Policy Management 287

it specifically did not support long-term encryption or digital signatures. A single
certification authority for the whole project was not thought to be sufficient due
to concerns about a single point of failure or attack. It was also important to
have robust relationships between each CA and its associated RAs. To meet
these requirements, an appropriate scale was one CA for each country, large
region or international organization. A single hierarchy would have excluded
some pre-existing CAs, reduced the ability of CAs to meet local needs, and
was not convenient to support with the Globus software. For these reasons a
coordinated group of peer CAs was the most suitable choice. The EDG project
did not have any resources allocated to run such a PKI, so efforts were drawn
from participating national projects and organizations.

2.1 Globus Grid Security Infrastructure Features

In Globus GSI the end-entity certificate is used to sign a ‘proxy’ certificate. In the
validation of the proxy certificate, the end-entity basicConstraints (which state
the that certificate is not a CA certificate) are deliberately ignored, a violation
of the normal validation procedures. GSI proxy certificates are now an IETF
standard described in RFC 3820 [14].

X.509 CRLs[15] have a nextUpdate field that conveys a hint when a new CRL
can be obtained. In GSI, this field is interpreted strictly as an expiration date:
if the CRL for a particular CA is present but outdated, end-entity certificates
signed by this CA will not be accepted by the software.

2.2 Status of DataGrid PKI

At the end of the EDG project there were 21 approved national certification
authorities. CNRS, France ran a ‘catch-all’ CA, for those without a national CA,
with appropriate RA mechanisms. In Table 1, ‘Total Issued’ certificates include
those for users, hosts and services and also includes certificates which have since
expired or been revoked. In the ‘Currently Valid’ column is the current number
of active certificates. The data for this table were collected in April 2004. Note:
The CERN CA serves the CERN community. The FNAL Root CA is accredited
but only issues CA certificates.

The CAs in the PKI each provide an equivalent service but with different
resources. Many CAs use OpenSSL[16] . Others use Globus Simple CA[17] and
various versions of OpenCA[18]. The DOEGrids CA uses Sun ONE[19] Certifi-
cate Server.

The relying parties, i.e. users, services and resources, of the PKI must be
able to download and install the CA certificates, namespace signing policies,
and CRLs of each trusted CA in a secure and robust way. The Certification
Authority Repository1 provides this information for grid administrators. CA
information is distributed in RPM (RedHat Package Manager) format for the

1 Certification Authority Repository: http://marianne.in2p3.fr/datagrid/ca/



288 J. Astalos et al.

Table 1. certification authority statistics

CA Country Total Issued Currently Valid

ArmeSFo Armenia 1 1
ASCCG Taiwan 80 68
CERN CERN 640 321

CESNET Czech Republic 365 211
CNRS France & Catch-all 1400 392
CyGrid Cyprus 18 14

DataGrid-ES Spain 408 191
DOEGrids USA 2807 1572

GridCanada Canada 570 467
Grid-Ireland Ireland 170 111

GridKA Germany 364 225
HellasGrid Greece 49 33

INFN Italy 1956 1158
LIP Portugal 61 43

NIKHEF Netherlands 321 124
NorduGrid Nordic Countries 579 316
PolishGrid Poland 266 207

Russian DataGrid Russia 230 99
SlovakGrid Slovakia 26 18

UK e-Science CA UK 1856 1297

Total 12167 6868

EDG testbed. Scripts have been written to update CRLs periodically, as they
are not fetched automatically by the Globus software.

3 Minimum Requirements for Grid Certification
Authorities

One of the major activities of the CACG has been the production and mainte-
nance of a set of minimum requirements and best practices for an “acceptable
and trustworthy” CA as defined by the relying parties of EDG and related grid
projects, taking into account the level of risk associated with the assets to be
protected. These requirements have evolved during the project largely as a result
of the numerous difficulties that arise when interoperating between different lin-
guistic, administrative, networking and security domains. This section is based
on the Minimum Requirements document of the European Policy Management
Authority for Grid Authentication in e-Science (EUGridPMA), which is publicly
available from http://www.eugridpma.org/.

In this section, the key words ‘must’, ‘must not’, ‘required’, ‘shall’,
‘shall not’, ‘should’, ‘should not’, ‘recommended’, ‘may’, and ‘optional’
are to be interpreted as described in RFC 2119. Text in italics provides discussion
and clarification of the requirements.



International Grid CA Interworking, Peer Review and Policy Management 289

Due to certain idiosyncrasies of the grid middleware, the PKI structure should

not follow the conventional hierarchical model: there should be one certification
authority (CA) per country, large region or international organization each with
an associated network of registration authorities (RA). The RAs handle the tasks
of validating the identity of the end entities and authenticating their requests,
which will then be forwarded to the CA. The CA will handle the tasks of issuing
CRLs; signing certificates and CRLs; and revoking certificates when necessary.

Requirements of the Certification Authority:

Computer Security Controls: The CA computer, where certificates are signed,
should be a dedicated machine, running only services needed for CA op-
erations. It must be located in a secure environment where access is limited
to specific trained personnel and must be kept disconnected from any kind of
network. If the CA computer is equipped with at least a FIPS 140-1 level 3
Hardware Security Module or equivalent it may be connected to a highly pro-
tected/monitored network. The security controls must be documented and the
documentation made available to the PMA.

CA Namespace: Each CA must sign only a well defined namespace that does
not clash with any other CA.

Policy Document & Identification: Every CA must have a Certification
Policy and Certification Practice Statement (CP/CPS) and assign it an OID
(object identifier). Whenever there is a change in the CP/CPS the OID of the
document must change and changes must be approved by the PMA before sign-
ing any certs under the new CP/CPS. All the CP/CPSs under which valid certs
are issued must be available on the web. We currently recommend the RFC 2527
template for the CP/CPS document.

CA Key: The CA Key must have a minimum length of 2048 bits and, for CAs
that issue end-entity certificates, the lifetime must be no longer than 5 years and
no less than twice the maximum life time of an end-entity certificate. The private
key of the CA must be protected with a pass phrase of at least 15 characters
and known only by specific personnel of the certification authority. A copy of
the encrypted private key must be kept on an offline medium in a secure place.
The pass phrase of the encrypted private key must also be kept on an offline
medium in a secure place, separate from the key.

CA Certificate: The CA certificate must have the extensions keyUsage and
basicConstraints marked as critical.

CRLs: The maximum CRL lifetime must be at most 30 days and the CA must

issue a new CRL at least 7 days before expiration and immediately after a re-
vocation. The CRLs must be published in a repository accessible via the World
Wide Web, as soon as issued. We recommend that all relying parties update their
local copies of CRLs at least once per day.



290 J. Astalos et al.

Records Archival: The CA must record and archive all requests for certifi-
cates, along with all the issued certificates; all the requests for revocation; all
the issued CRLs; and the login/logout/reboot records of the issuing machine.

Key Changeover: The CA’s private signing key must be changed periodically;
from that time on only the new key will be used for certificate signing purposes.
The overlap of the old and new key must be at least the longest time an end-
entity cert can be valid. The older but still valid certificate must be available to
verify old signatures, and the private key to sign CRLs, until all the certificates
signed using the associated private key have expired.

Repository: The repository must be run on a best-effort basis, with an in-
tended availability of 24×7.

Compliance Audits: Each CA must accept being audited by other CAs to
verify its compliance with the rules and procedures specified in its CP/CPS doc-
ument.

Operational Audits: The CA must perform operational audits of the CA and
RA staff at least once per year.

Requirements of the Registration Authority:

Entity Identification: In order for an RA to validate the identity of a person,
the subject must contact the RA personally and present photographic identifi-
cation and/or valid official documents showing that the subject is an acceptable
end entity as defined in the CA’s CP/CPS. In case of host or service certificate
requests, the request must be delivered to the RA by the person in charge of
the specific entities using a secure method.

Name Uniqueness: The subject name listed in a certificate must be unam-
biguous and unique for all certificates issued by the CA.

Records and Archival: The RAs must record and archive all requests and
confirmations.

Communication with CA: The RA must communicate with the CA with
secure methods that are clearly defined in the CP/CPS. e.g. signed emails, voice
conversations with a known person, SSL protected mutually authenticated private
web pages .

The end-entity (EE) keys must be at least 1024 bits long and must not be gener-
ated by the CA or the RA. The EE certificates must have a maximum lifetime of
1 year and must not be shared among end entities. The EE certificate must con-
tain information to identify which CP/CPS was used to issue the certificate (e.g.
OID or date). The extensions basicConstraints and keyUsage must be marked as
critical and the basicConstraints must be set to“CA: False”. The CA should make
a reasonable effort to make sure that end-entities understand the importance of
protecting their private key, with a pass phrase of at least 12 characters.



International Grid CA Interworking, Peer Review and Policy Management 291

4 Trust Evaluation

To establish trust, each CA is required to demonstrate to the group that the setup
and policies are secure. This is usually done in person at a meeting of the CACG
where detailed questions about the CP/CPS, the practices, the RA structure,
etc. are answered. After satisfying this peer review a CA will be ‘accredited’.
Each relying party (RP) wants to evaluate all the CAs, either that they meet
the RP’s standard, or that they meet an agreed common standard. The CACG
peer review establishes this common standard. This requires inspection of each
CA’s CP/CPS by a volunteer subset of the other CAs. Third-party audits have
been considered but would be time-consuming and expensive and none have
yet been done. Evaluation of trust is a continuous and long-term process and
experience has shown that personal contacts are fundamental. The Global Grid
Forum (GGF)[20] has established several working groups to establish policies
and procedures in this area.

The assessment process is manual, and CA managers want to make it more
automatic. Software is being developed to aid this process based on evaluation
of a CA Feature Matrix. CP/CPS documents are encoded in a report file and the
Feature Matrix displays the features. The CA report file uses a basic contextual
language involving key-value pairs, e.g. name = ‘CERN CA’. The language is
designed to enable later extension to allow formal analysis, but is presently very
simple. Features can be evaluated relative to rulesets. A default ruleset has been
defined for EDG, based on the CACG minimum requirements. This allows the
construction of a CA Acceptance Matrix.2 The GGF concept of assurance levels
is accommodated to allow rulesets to be defined for each level[21]. Each Virtual
Organization (VO) can also define their own rules that override and extend the
default ruleset. The Ruleset Inclusion Principle extends from the general to the
specific. It can be extended to CAs, sites, hosts, users and even specific services
simply by defining the appropriate ruleset. Thus a typical chain might be: default
ruleset → VO ruleset → host ruleset. It is not necessary for a subject to have all
possible rulesets in their possession, only those rulesets that they are interested
in. Further evaluations with example user, host and service certificates, and
samples of issued certificates are possible and this is the current focus. There are
other complementary approaches: for example, evaluating an XML encoding of
a CP/CPS[22].

5 Related Work

5.1 Certificate Request Applets

Java applets have been developed to be used for certificate requests. An applet
generates the keys and associated request and submits them to the CA. Another
applet is used to download the certificate and match it with the corresponding

2 CA Trust Matrices: http://www.cs.tcd.ie/coghlan/cps-matrix/cps-matrix.cgi



292 J. Astalos et al.

private key. Once the certificate and key have been matched, they are exported
in PKCS #12 format which can be imported into a browser.

The applets must be signed, since they read and write files on the user’s
disk, and so that the user trusts that the applets were issued by the CA. An
advantage of using applets is that the CA can perform some basic validation
when the user applies for the certificate, rather than rejecting invalid requests
at a later stage. The applet method allows the CA to check the strength of the
user’s passphrase without ever seeing the passphrase or the private key. This is
a great advantage over the ‘normal’ method where the user must be trusted to
generate a sufficiently strong passphrase.

5.2 Compromised and Exposed Private Keys

The CACG has explored the issues related to the compromise and exposure
of private keys. Compromised keys should be revoked, but the definition of a
‘compromise’ of credential confidentiality is unclear. It is a priori impossible
to prove confidentiality to a third party, so we must rely on best professional
judgement. This necessarily means cases will have to be evaluated individually.
The following cases provide a working definition for ‘compromise’ and ‘exposure’
of private keys.

If a private key can be shown to be in the possession of someone other than the
user then it is considered ‘compromised’. When an attacker has had access to the
user’s unencrypted private key, it will be considered a ‘compromise’ unless foren-
sic analysis can rule out access to the key. Compromised keys must be revoked.

If an encrypted private key is available to someone other than the user then
it is considered ‘exposed’. An encrypted private key is vulnerable to offline at-
tack, protected only by the user-chosen passphrase. When an attacker has had
access to the user’s encrypted private key and the attacker demonstrates suf-
ficient skill and knowledge of PKI, it will be considered a ‘compromise’ unless
forensic analysis can rule out access to the key. Exposed keys should be reported
to the appropriate CA who will alert the user to the exposure. Keys visible in
the course of system administration will not normally be considered exposed.

5.3 Online Certificate Services

Traditionally, grid certification authorities have been operated offline. This re-
duces the risk of compromise of the CA signing key. Online certificate services
are those which store private keys, and generate or sign certificates on a network-
connected system. LCG[5] is using a KCA and ESnet is proposing a minimum
requirements profile for online services.

5.3.1 Kerberized Certification Authority

The Kerberized Certification Authority (KCA) provides a automated mechanism
for an organization with an existing Kerberos infrastructure to generate X.509
credentials for use in PKI-based authentication systems. The KCA software is
distributed by the NSF Middleware Initiative (NMI)[23].



International Grid CA Interworking, Peer Review and Policy Management 293

The KCA consists of a secure server which communicates with a client to
generate PKI credentials. The KCA service is attractive for sites operating a
Kerberos-based authentication infrastructure. The user is not issued a long term
private key and proxy maintenance uses the existing Kerberos infrastructure.
The administrative overhead and possibility of error or deliberate attack on
another RA is removed. Since the KCA issues only short-lived certificates, there
is no need to distribute CRLs. Compared to a well run offline service the danger
of signing key compromise is increased. In the context of long-running jobs in
the grid the problem arises of how to renew a proxy certificate derived from a
user’s Kerberos token which is typically valid for about one day.

5.3.2 Virtual Smart Cards

The SLAC Virtual Smart Card system[24], provides an online credential store
analogous to a physical smart card. As users cannot be trusted to keep private
keys secure they should not be given the private key. VSC can provide stronger
security guarantees with a central restricted-access server than individual un-
trustworthy users, and it allows users to generate proxy certificates from any-
where that has access to the VSC server. The disadvantages are that the private
keys are concentrated in one place, therefore giving a single point of failure, and
the authentication for the whole system is only as strong as the authentication
with the VSC server, so this must be of high quality, e.g. a well-administered
Kerberos setup.

6 Summary

During the last three years the Certification Authorities Coordination Group has
successfully built a large-scale Public Key Infrastructure which is now in global
production use. This infrastructure allows users and services to have just one
identity credential which is accepted and trusted by a growing number of VOs
and grid projects.

The evolution of the best practices, minimum requirements and the associated
establishment of inter-domain trust via peer review on behalf of the various
relying parties, has taken time and involved many debates during the meetings
of the group. The tools developed for trust evaluation and the various technical
challenges of grid authentication have enabled the group to avoid having to
spend all of its time concentrating on policies and procedures. As described in
the paper, future work building on this infrastructure has already started. The
expected growth of online certificate services and repositories, together with
online certificate status checking, is likely to play a significant role in future
authentication services.

The policies of the Certification Authority Coordination Group worked ex-
tremely well for EDG. With the input from other grid projects it has become
a large group and now forms the basis of the new European Policy Manage-
ment Authority for Grid Authentication in e-Science (EUGridPMA)[25]. This



294 J. Astalos et al.

new body, which is initially coordinating authentication services for EGEE[6],
DEISA[26], LCG[5] and SEEGRID[27], is associated with the global Grid Policy
Management Authority[28] initiative, started in 2002 to coordinate the PMAs.
The policies, procedures and technical solutions developed by CACG and de-
scribed in this paper, are being taken forward by the EUGridPMA with the aim
of turning this into an even more pervasive general infrastructure for authenti-
cation for e-Science.

The authors wish to acknowledge the EU and many national funding bodies,
institutes and projects that allowed their staff to participate in the activities
of the Certification Authority Coordination Group. We thank all our colleagues
in each of the grid projects, particularly European DataGrid, for providing very
valuable comments and feedback on the authentication infrastructure during the
project.

References

1. European DataGrid. (2004) http://www.edg.org/.
2. DataTAG. (2004) http://datatag.web.cern.ch/.
3. CrossGrid. (2004) http://www.crossgrid.org/.
4. GridLab. (2004) http://gridlab.org/.
5. LHC Computing Grid. (2004) http://lcg.web.cern.ch/.
6. Enabling Grids for E-science in Europe. (2004) http://www.eu-egee.org/.
7. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-

putational grids. In: ACM Conference on Computers and Security. ACM Press
(1998) 83–91

8. DataGrid Security Coordination Group: Security Design. (2003) https://edms.
cern.ch/document/344562.

9. DataGrid Security Coordination Group: Final Security Report. (2004) https://
edms.cern.ch/document/414762.

10. Cornwall, L.A. et al.: Security in multi-domain grid environments. Journal of Grid
Computing (2004)

11. DataGrid Security Coordination Group: Security Requirements Testbed 1 Security
Implementation. (2002) https://edms.cern.ch/document/340234.

12. IETF: PKIX Charter. (2004) http://www.ietf.org/html.charters/pkix-
charter.html.

13. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J., Welch,
V.: Design and deployment of a national-scale authentication infrastructure. IEEE
Computer 33 (2000) 60–66

14. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: In-
ternet X.509 Public Key Infrastructure Proxy Certificate Profile. (2003)
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-10.txt.

15. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. (2002) RFC 3280.

16. OpenSSL. (2004) http://www.openssl.org/.
17. Globus Simple CA. (2004) http://www.globus.org/security/simple-ca.html.
18. OpenCA. (2004) http://www.openca.org/.
19. Sun Open Network Environment. (2004) http://wwws.sun.com/software/sunone/.



International Grid CA Interworking, Peer Review and Policy Management 295

20. Global Grid Forum. (2004) http://www.ggf.org/.
21. Butler, R., Genovese, T.: Global Grid Forum Certificate Policy Model. (2003)
22. Ball, E., Chadwick, D., Basden, A. In: The Implementation of a System for Eval-

uating Trust in a PKI Environment. Volume 2 of Evolaris. SpringerWein (2003)
263–279

23. NSF Middleware Initiative. (2004) http://www.nsf-middleware.org/.
24. Hanushevsky, A., Cowles, R.: Virtual Smart Card. (2002) http://www.slac.

stanford.edu/ abh/vsc/.
25. European Grid Policy Management Authority for e-Science. (2004) http://www.

eugridpma.org/.
26. Distributed European Infrastructure for Supercomputing Applications. (2004)

http://www.deisa.org/.
27. South Eastern European Grid-enabled eInfrastructure Development. (2004) http://

www.see-grid.org/.
28. GridPMA. (2004) http://www.gridpma.org/.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 296 – 304, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Grid Enabled Optimization 

Hee-Khiang Ng, Yew-Soon Ong, Terence Hung2, and Bu-Sung Lee1 

1 School of Computer Engineering, Nanyang Technological University,  
Nanyang Avenue, Singapore 639798 

{mhkng, asysong, ebslee}@ntu.edu.sg 
2 Institute of High Performance Computing, Singapore Science Park II, 

Singapore 117528 
terence@ihpc.a-star.edu.sg 

Abstract. In this paper, we present a scalable parallel framework, which em-
ploys grid computing technologies, for solving computationally expensive and 
intractable design problems. Using an aerodynamic airfoil design optimization 
problem as an example the application of the grid computing strategies is dis-
cussed. 

1   Introduction 

Grid [1] Computing has gained widespread popularity in the research community for 
distributed and parallel computing because it has tremendous potential in enabling 
complex applications, especially those requiring huge amount of computation power 
and data storage requirements. A rising trend in the science and engineering world is 
in the utilization of increasingly high-fidelity and accurate analysis codes in the de-
sign analysis and optimization process. In many application areas such as photonics, 
electro-magnetics, aerospace, biomedical, micro-electro-mechanical systems and 
coupled-field multidisciplinary system design processes, the design process generally 
requires a Computational Structural Mechanics (CSM), a Computational Fluid Dy-
namics (CFD) or a Computational Electronics & Electro-magnetics (CEE) simulation 
procedure. The time taken for these processes generally varies from many minutes to 
hours or days of supercomputing time. This would often lead to high computing costs 
in the design optimization process, hence a much longer design cycle time to locate 
the optimum design solution. The benefits of Grid computing in the context of evolu-
tionary computation, especially on computational expensive design optimization 
problem are numerous. In particular, the ability to tap on vast compute power. For 
instance, specialized high-fidelity analysis codes and computing nodes owned by 
different design teams that spans across geographically distributed locations may be 
shared and better utilized. 

Solving large scale optimization problems requires a huge amount of computa-
tional power. The size of optimization problems that can be solved on a few CPUs has 
been limited due to a lack of computational power. The recent development in Grid 
has received much attention as a powerful and inexpensive way of solving large scale 
optimization problems that an existing single-unit CPU cannot process. The aim of 



 Grid Enabled Optimization 297 

 

this paper is to show that grid computing provides tremendous power to solve such 
large scale optimization problems.  

The rest of this paper is organized as follows: In section 2, we present a brief over-
view of the fundamental concept of Evolutionary Algorithms, and in Section 3 we 
discuss the aerodynamic design and in section 4, we describe the implementation 
aspects of wrapping airfoil analysis code as services and realizing genetic algorithms 
as Grid enabled services. Finally in section 5, we conclude this paper. 

2   Evolutionary Algorithms 

In this section, we offer a brief overview on evolutionary algorithms, in particular, the 
general forms of parallel evolutionary algorithms that exist. Evolutionary Algorithms 
(EAs) are modern stochastic search techniques inspired by the ‘survival of the fitness’ 
principle of the Darwinian theory of natural evolution. By simulating natural evolu-
tion, EAs has been employed for solving many complex problems. A well-known 
strength of EAs is the ease of extensions to incorporate parallelism []. For instance, 
Parallel Genetic Algorithms (PGAs) are extensions of the standard Genetic Algo-
rithm. Since the algorithm works with sets of populations, instead of a single individ-
ual, the basic concept of PGA is a simple division of the tasks in a classical GA across 
different processors. The other advantage of PGA is that it facilitates speciation, a 
process by which different populations evolve in different directions simultaneously. 
They have been shown to speed up the search process as well as to obtain higher 
quality solutions when dealing with complex design problems. In the paper, the PGA 
is applied to the optimization of an aerodynamic airfoil design problem, whereby the 
optimization is carried out through a number of generations. In each generation, the 
algorithm produces populations for the design analysis process. These results would 
then act as inputs in the next iterative stage of the numerical procedure. 

Aerodynamic design optimization is one of the most frequently tackled problems 
in the aeronautics industry. It generally poses serious economic questions as the 
analysis is often very computationally expensive and often requires very intensive 
design solutions. In such situations, due to the large aerodynamic design search space 
often required, stochastic optimization algorithms such as EA are often employed, in 
the search for the near optimum design. Typically, such algorithms requires thousands 
of function evaluations, which often requires excessive CPU times, in locating the 
near optimal solution, whilst each function evaluation, using the high-fidelity analysis 
codes, may take up to many minutes to hours of computing time. Hence, it is not 
uncommon to hear that the design of an aircraft wing, using such algorithm, usually 
takes up to several months of CPU time even while running on supercomputers. This 
is a major obstacle in the practical application of EA optimization to complex engi-
neering design problems, as the design process may prove to be computationally in-
tractable if the optimal design is desired. 

On the other extreme, however, the main advantage of EA is that it is a popula-
tion-based technique, which allows the parallelization of the algorithm, in such a way 
that the designs in each generation can be evaluated simultaneously across the range 
of available machines. This is undertaken here as the computing complications en-
countered in the aerodynamic airfoil design problem are tackled with a parallelized 



298 H.-K. Ng et al. 

 

EA, deployed on a High Performance Computing (HPC) platform such as NetSolve, 
across multiple HPC clusters. This allowed a large number of these evaluation tasks 
to be farmed out to various nodes/CPUs within the cluster using a cluster scheduler 
arrangement. As a result, improved optimization solutions in the design cycle are 
achieved. The details of the numerical implementation of these algorithms are de-
scribed in subsequent sections. 

2.1   Genetic Algorithms 

Genetic Algorithms is a member of the EA family employed in the numerical proce-
dure. The term Genetic Algorithms or GA was first introduced by Holland in his 
seminal book referring to the probabilistic search techniques inspired by the ‘survival 
of the fittest’ principle of the Darwin theory of natural selection. Artificial creatures 
are created, which will then compete in a struggle for life. The fittest will then survive 
and are then allowed to reproduce. New creatures will then be created again using 
some operators such as crossover and mutation. The schematic workflow of this re-
petitive process is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The Schematic Workflow of Canonical GA 

3   Aerodynamic Airfoil Design 

One of the most important features of an aircraft is during its takeoff, i.e. to get the 
body off the ground and subsequently to maintain it there. This usually comes from 
the efficient process of lifting the body up. By far the most common means of lifting, 
widely used in today’s industry, is the wing. It is a concept ergonomically designed 
and embodied in current modern machinery. In actual fact, wings of all shapes and 

Procedure GA 
Begin 
    for i:=1 to n do begin 
 initialise(xi)    // with random values 
 f(xi):=evaluate(xi) // determine fitness 
    end 
    while termination condition not satisfied do begin 
 p1…n:= select from x1…n in random order 
 for i:=1 to n step 2 do begin 
  x’i,x’i+1:=crossover(pi,pi+1) 
  mutate(x’i) 
  mutate(x’i+1) 
 end 
 x1…n:=x’1…n // copy new population 
 for i:=1 to n do begin 
  f(xi):=evaluate(xi) 
 end 
      end {while} 
end 



 Grid Enabled Optimization 299 

 

sizes can be used to lift these bodies up, but special care must be taken to ensure that 
these wings are of the proper geometry. This is to ensure stability, efficiency and 
performance excellence. 

Simplifications were made to the original design of the aerodynamic airfoil design 
problem. As the main emphasis of the study is to show the possibility of using EA, 
with the proposed alternative procedure, to solve such problems, the assumptions and 
changes made does not affect the gist of the problem. As such, the details of the prob-
lem are not discussed here, but can be found in literatures published elsewhere [8]. 

The simplified problem, considered in this study, is to achieve the best 24 design 
variables with an optimized drag profile, i.e. a minimized drag and a maximized lift, 
at a Mach number value of ]5.0,45.0[∈∞M , with the best midpoint value of 5.0  at 

an angle of attack (AOA) of 2.0 . These requirements are schematically illustrated in 
Figure 2. 

 

Fig. 2. Simplified aerodynamic airfoil design problem 

4   Grid Enabled Optimization (GEO) 

Here, the architecture of the grid enabled optimization services for each grid cluster, 
on the aerodynamic airfoil design optimization problem, is described. For this particu-
lar computing setup, the airfoil analysis problem enabled as an ‘airfoil analysis’ ser-
vice is implemented to facilitate parallelism in the algorithm. This service were de-
ployed on the cluster and registered to the resource Agent. This implies that the latter 
would search for the available resources and allocate them to the ‘airfoil analysis’ 
Services.  



300 H.-K. Ng et al. 

 

In the implementation of the proposed grid computing technology in this paper, 
two essential features are highlighted. The first is that a extended GridRPC API is 
used to ‘gridify’ the applications. This is done or ‘gridified’ using Globus [13] API, 
CoG built into our extension of the GridRPC API. This choice is down to its relative 
simplicity in implementation and its ability to offer high-level abstraction, i.e. the 
concealing of complex grid environment from the users.  

The second feature of the proposed procedure is the implementation of a meta-
scheduler, to be discussed later. From reviews conducted, it was discovered that the 
current state-of-the-art GridRPC implementations lack the feature for automatic re-
source discovery and selection on the grid environment. As a result, users have to 
perform look-up and select resources that suit their needs manually before they can 
assign computing tasks to the respective resources. This leads to the inefficient use of 
resources since large amount of resources exist on Grid and these are often dynamic. 
Furthermore, most optimization problems generally have a large number of evaluation 
tasks that requires many identical computations, with different analysis parameter 
sets. Hence it is extremely inefficient if the interactions between the Clients and re-
sources are repeated many times for the same remote procedure call. This is overcome 
here with the use of a meta-scheduler which schedules GridRPC requests and bal-
ances the workload across multiple clusters on grid. 

 

Fig. 3. Components in the GEO 

Another characteristic of the proposed grid computing system is the employment 
of a Lightweight Directory Access Protocol (LDAP), to query the MDS database for 
available resources and workload information. To the GridRPC Client, this acts as a 
centralized directory service to scout for the available resources and identify their 
location within the grid environment. In its initialization process, the GridRPC func-
tion requires a simple entry from the MDS server and a virtual organization name to 



 Grid Enabled Optimization 301 

 

retrieve the available resources and check whether or not these resources are capable 
of servicing further GridRPC requests. These checks were performed for software, i.e. 
remote procedure, specialized libraries, etc, hardware, i.e. platform, operating system, 
etc and the workload. In this regard, the Ganglia monitor toolkit is employed, to 
monitor and provide information relating to the available clusters in the computing 
systems. 

For the multi-clusters execution of the PGA task, the adopted procedure is devel-
oped from the Globus toolkits. It basically involves using the Global Access Secon-
dary Storage (GASS) to marshal the results back to the Client program, where the 
multi-clusters farming process initiates. GridFTP is then used to perform the transfer 
of the design input variables files to the selected clusters, which are available on grid. 
This is then followed by the use of Globus job submission protocol to facilitate the 
execution of the PGA process at the grid resources. This outline is shown in Figure 3, 
clearly presenting the different components in the procedure. 

4.1   GEO Workflow 

For the aerodynamic airfoil design optimization problem considered, the process 
begins with the meta-scheduler searching for the grid resources, to obtain the list of 
compute resources. The meta-scheduler also contains the information relating to the 
aerodynamic problem, which is deployed on the resources through the lookup on 
Globus MDS. Once the required computational resources are identified, the input 
design variables files are then transferred to the selected resources using GridFTP. 
Upon the successful transfer of these files to the resources, the application will then 
farm out the different chromosomes to the different clusters in parallel using the 
Globus execution command. Globus will then initiate and execute this task on the 
remote grid resources. When execution completes, the results are then marshalled 
back to the Globus Client application based on the GASS mechanism. The Client will 
then collect this data and continue with the GA program execution, i.e. iterating the 
program until the termination criterion is met, which in this report, is number of gen-
erations to run the analyses. 

As discussed, the meta-scheduler is used to achieve immense parallelism in the 
search process as well as the seamless access to the grid resources. In the context of 
evolutionary algorithm, the term parallelism here meant the division of a population 
into isolated subpopulations. This gives rise to the concept of distributed EA, where 
each compute node may be allocated to evolve a subpopulation of individuals as well 
as the periodic migration of chromosomes among each another. Its implementation 
here is based on GridRPC [10], a remote procedure call standard interface for grid 
applications, proposed by the Grid Forum Advanced Programming Models research 
group of the Global Grid Forum [11]. 

Basically, the workflow of the Grid-enabled GA procedure in Figure 4 can be as-
sembled into 9 main stages. These stages are as follows: - 

1) The procedure begins with the Client contacting the meta-scheduler for ser-
vices and resources necessary for the performance of the analyses. 

2) The metascheduler, which in essence is the heart of the solution process, then 
obtains a list of the available resources together with their availability status. 
This is obtained from services such as the Globus Monitoring and Discovery 



302 H.-K. Ng et al. 

 

Service (Globus MDS) [12] and the Ganglia Monitoring Service (Ganglia) 
[13]. It then farms out the parallel analysis requests to the available grid re-
sources based on the workload and the resource information retrieved from 
the monitoring services. The important point to take note here is that every 
time a new resource joins the grid, it is registered to the Globus MDS. This 
implies that as more computer resources and power are available, it can be 
added to the system. 

 

 

Fig. 4. GEO Workflow 

3) These resources information and services are then fed back to the Client. 
4) Upon obtaining the information in relation to the resources and services, the 

GSI [14] credentials are then generated. This can be viewed upon as an au-
thentication or the authority to use the computing resources available in the 
system. 

5) GridFTP [15] is then performed, to transfer the necessary input files from the 
Client to the resources and services. 

6) The analysis job is then initiated at the resource cluster through the Globus 
submission protocol. 

7) Whenever the Grid Resource Allocation Manager (GRAM) [16] gatekeeper 
of a cluster receives a service request, an instance of the service will be ini-



 Grid Enabled Optimization 303 

 

tialized on the master node of the cluster. Subsequently, the set of service re-
quests will then be farmed across multiple computing nodes in the cluster by 
the cluster level scheduler, such as NetSolve. The responsibility of the local 
agent in each cluster is to perform local scheduling and resource discovery 
across computing nodes in the cluster for basic services. 

8) The results of the completed jobs are then staged on the GASS [17]. 
9) Upon which, the results are channeled back from the GASS to the Client for 

assessment and evaluation. 

5   Conclusions 

The aim of this paper is to present our grid computing platform, which employs grid 
computing technologies, in solving computationally expensive and intractable design 
optimization problems. We successfully deployed the airfoil design optimization 
problem, onto the Nanyang campus grid [18]. From which, the optimization problem 
is executed across the grid computing platform, unleashing and utilizing the full 
power of grid computing technology. 

References 

1. SIGHT, http://www.engineous.com, Engineous software Inc, "iSIGHT, Version 7.1", 2004  
2. I.Foster, C.Kesselman, and S.Tuecke, "The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations" , International J.Supercomputer Applications, vol. 15, no. 3, 2001 
3. Agrawal S., Dongarra J., Seymour K., Vadhiyar S., “NetSolve: past, present,  and fu-

ture; a look at a grid enabled server”, 2002. 
4. Arnold D. C., Casanova H., Dongarra J., “Innovations of the NetSolve grid computing 

system”, 2002. 
5. The Globus Alliance, http://www.globus.org/, 2004 
6. Goldberg D. E., “Genetic algortihms in search, optimisation and machine  learn-

ing”, 1989. 
7. Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, Mike Russell. 

Designing Grid-based Problem Solving Envionments and Portals Argonne National 
Laboratory, Argonne, IL 60439. 

8. Giannakoglou K. C., “Design of optimal aerodynamic shapes using optimization methods and 
computational intelligence”, Process in Aerospace  Sciences, Vol 38, pp 43-76, 2002. 

9. Ho Q. T., Ong Y. S., Cai W. T., ”Gridifying aerodynamic design problem using GridRPC”, 
2nd International Workshop on Grid and Cooperative Computing, Shanghai, China, 2003. 

10. Nakada H., Matsuoka S., Seymour K., Dongarra J., Lee C., Casanova H., “GridRPC: A 
remote procedure call API for grid computing”, Grid  Computing – Grid 2002, LNCS 
2536, pp 274-278, 2002. 

11. http://www.ggf.org/, GGF, 2004. 
12. Fitzgerald S., Foster I., Kesselman G., Laszewski V., Smith W., Tuecke S.,  “A directory ser-

vice for configuring high-performance distributed  computations”, Proceedings 6th IEEE Sym-
posium on High-Performance Distributed Computing, pp 365-375, 1997. 

13. http://sourge.ganglia.net, 2004 
14. http://www-unix.globus.org/security/, The Globus GSI, 2004. 
15. http://www.globus.org/datagrid/gridftp.html, GridFTP, 2004. 



304 H.-K. Ng et al. 

 

16. The Globus Resource Allocation Manager (GRAM),  
http://www-unix.globus.org/developer/resource-management.html, 2004, 

17. http://www.globus.org/gass/, Global access to secondary storage (GASS), 2004. 
18. Nanyang Campus Grid, http://www.ntu-cg.ntu.edu.sg, 2004 

 
 
 



Towards a Coordination Model for Parallel
Cooperative P2P Multi-objective Optimization�

M. Mezmaz, N. Melab, and E.-G. Talbi

LIFL, CNRS UMR 8022,
INRIA Futurs - Dolphin,

Université des Sciences et Technologies de Lille,
59655 - Villeneuve d’Ascq cedex - France

{mezmaz, melab, talbi}@lifl.fr

Abstract. Existing Dispatcher-Worker Peer-to-Peer (P2P) computing
environments are well-suited for multi-parameter applications. However,
they are limited regarding the parallel computing where the generated
tasks need to communicate. In this paper, we investigate that limita-
tion and propose a coordination model for parallel P2P multi-objective
optimization (MOO). The model has been implemented on top of the
XtremWeb middleware. Then, it has been experimented on a combina-
torial optimization application: a parallel branch-and-bound algorithm
applied to the multi-objective (MO) Flow-Shop scheduling problem. The
preliminary results obtained on a network of 120 heterogeneous PCs
demonstrate the efficiency of the proposed approach.

Keywords: P2P Computing, Parallelism and Coordination, Multi-
objective Optimization, Branch-and-Bound, Flow-Shop.

1 Introduction

In many domains such as telecommunications, genomics, transport, and so on,
the tackled optimization problems need more and more computational power.
However, very often the users do not have high-end supercomputers to deal with
these problems. Therefore, they have to scale down the size of the problems to
solve them. In the last decade, Peer-to-Peer (P2P) computing [1] has become a
real alternative to traditional supercomputing environments for the development
of parallel applications that harness massive computational resources.

Nowadays, existing Dispatcher-Worker middlewares such as SETI@HOme [2],
XtremWeb [3] and JNGI/JXTA [4] facilitate the development of parallel appli-
cations on P2P systems. They include a Dispatcher (server) that maintains a list
of work unites and their associated data, and a set of workers (volunteer peers)
that steal these work units according to the cycle stealing model. These envi-
ronments all well-suited for multi-parameter applications that can be naturally

� This work is a part of the current national joint grid project GGM of ACI-Masse de
Données.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 305–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



306 M. Mezmaz, N. Melab, and E.-G. Talbi

split into several independent tasks. However, they are not adapted to parallel
distributed applications where communications between peers are needed.

In this paper, we investigate this issue by proposing a data-driven coordina-
tion model which provides communication through a tuple space. A tuple space
is a global associative memory consisting of a bag (or multi-set) of tuples. The
model is dedicated to support parallel multi-objective optimization (MOO) on
top of Dispatcher-Worker systems such as XtremWeb. The proposed model ex-
tends Linda [5] with group and non-blocking coordination operations that are
very useful for P2P multi-objective optimization. The model has been imple-
mented as a software layer on top of XtremWeb. At implementation level, the
coordination is based on Java RMI calls.

The model has been experimented on a combinatorial optimization applica-
tion: a parallel branch-and-bound algorithm applied to the bi-objective Flow-
Shop scheduling problem. The problem consists in scheduling in the same order
a set of jobs on a set of machines, such that the total lateness (tardiness objec-
tive) and the total completion time (makespan) are minimized. The parallelism
consists in exploring in parallel a large irregular tree. The work units distributed
to the workers are sub-trees to be explored. The experimentations have been
conducted on a network of 120 heterogeneous PCs during more than two full
days. The preliminary results demonstrate the efficiency of the proposed model
and its implementation.

The rest of the paper is organized as follows: Section 2 presents a brief
overview on P2P computing and coordination. Section 3 highlights the require-
ments of parallel cooperative MOO and then describes the proposed coordina-
tion model. Thereafter, its implementation on top of the middleware XtremWeb
is discussed. Section 4 presents the experimentation of the model through the
parallel Branch-and-Bound applied to the Bi-objective Flow-Shop Scheduling
problem, and analyzes the preliminary experimental results. Finally, Section 5
draws some concluding remarks and the perspectives of the presented work.

2 P2P Computing and Coordination

Nowadays, there exist several fully distributed P2P systems meaning they do not
include a central server [6]. These systems are often well-suited for the storage
of massive data sets and their retrieval. There are also P2P systems dedicated
to large scale computing [3, 2, 4, 7], but only few of them are fully distributed
[7]. Fully distributed computing P2P are just emerging and are not yet mature
nor stable to be exploited.

More mature software systems such as XtremWeb[3] and SETI@Home[2] are
today those based on a Dispatcher-Worker architecture. In such systems, clients
can submit their jobs to the Dispatcher. A set of volatile workers (peers) request
the jobs from the Dispatcher according to the cycle stealing model. Then, they
execute the jobs and return the results to the Dispatcher to be collected by the
clients. In these middlewares, even a central server (the Dispatcher) is required



Towards a Coordination Model for Parallel Cooperative P2P MOO 307

for controlling the peers (workers) they are considered as P2P software environ-
ments. Indeed, an important part of these systems is executed on these peers
with a high autonomy. In addition, a hierarchical design allows them to deal
with a larger number of peers.

One of the major limitations of P2P computing environments is that they are
well-suited for embarrassingly parallel (e.g. multi-parameter) applications with
independent tasks. In this case, no communication is required between the tasks,
and thus peers. The deployment of parallel applications needing cross-peer/task
communications is not straightforward. The programmer has the burden to man-
age and control the complex coordination between the workers. To deal with such
issue existing middlewares must be extended with a software layer which imple-
ments a coordination model. Several interesting coordination models have been
proposed in the literature [8]. In this paper, we focus only on one of the most
popular of them i.e. Linda [5] because our proposed model is inspired from that
model.

In the Linda model, the coordination is performed through generative com-
munications. Processes share a virtual memory space called a tuple-space (set
of tuples). The fundamental data unit, a tuple, is an ordered vector of typed
values. Processes communicate by reading, writing, and consuming these tuples.
A small set of four simple operations allows highly complex communication and
synchronization schemes:

– out(tuple): puts tuple into tuple-space.
– in(pattern): removes a (often the first) tuple matching pattern from tuple-

space.
– rd(pattern): is the same as in(pattern), but does not remove the tuple from

tuple-space.
– eval(expression): puts expression in tuple-space for evaluation. The evalua-

tion result is a tuple left in tuple-space.

Due to the high communication delays in a P2P system, tuple rewriting is
very important as it allows to reduce the number of communications and the
synchronization cost. Indeed, in Linda a rewriting operation is performed as an
“in” or “rd” operation followed by a local modification and an “out” operation.
The operations “in”/“rd” and “out” involve two communications and an heavy
synchronization. Therefore, a rewriting (or update) operation is very useful for
coordination in P2P environments.

3 The Proposed P2P Coordination Model

3.1 Parallel MOO and Coordination

A multi-objective problem (MOP) consists generally in optimizing a vector
of nbobj objective functions F (x) = (f1(x), . . . , fnbobj

(x)), where x is an d-
dimensional decision vector x = (x1, . . . , xd) from some universe called decision
space. The space the objective vector belongs to is called the objective space.



308 M. Mezmaz, N. Melab, and E.-G. Talbi

F can be defined as a cost function from the decision space to the objective
space that evaluates the quality of each solution (x1, . . . , xd) by assigning it an
objective vector (y1, . . . , ynbobj

), called the fitness.
Unlike single-objective optimization problems, a MOP may have a set of

solutions known as the Pareto optimal set rather than an unique optimal solution.
The image of this set in the objective space is denoted as Pareto Front or PF).
Graphically, a solution x is Pareto optimal if there is no other solution x′ such
that the point F (x′) is in the dominance cone of F (x). This dominance cone is
the box defined by F (x), its projections on the axes and the origin (Fig. 1).

Pareto solution
Dominated solution

f
2

f
1

Fig. 1. Example of Pareto solutions

There are two major categories of MOO methods: MO exact methods and
MO meta-heuristics. While the first category allows to find optimal solutions for
MOPs, the second class provides near-optimal solutions in a reasonable time.
Real-world MOPs involve highly constrained design and and high computational
cost. Parallelism is proved to be a powerful way to achieve efficiency and effec-
tiveness. In general, parallel MO exact methods consist in exploring in parallel
a search three. The processes share the best found PF, which is remotely up-
dated each time a process has discovered in its search sub-tree a better PF.
Coordination operations are required to update this shared information.

In parallel models of MO meta-heuristics [9] such as the island model, dif-
ferent processes cooperate by exchanging Pareto optimal solutions in order to
improve the effectiveness. The exchange may be performed either directly by
message passing or through a shared space. In the last case, a coordination
model is required to ensure the cooperation.

3.2 The Coordination Model

Designing a coordination model for parallel MOO requires the specification of
the content of the tuple space, a set of coordination operations and a pattern
matching mechanism. According to the comments of the previous sub-section,
the tuple space may be composed of a set of Pareto optimal solutions and their



Towards a Coordination Model for Parallel Cooperative P2P MOO 309

corresponding solutions in the objective space. For the parallel exact MO meth-
ods, all the solutions in the tuple space belong to the same PF i.e. the actual best
found one. For the parallel island model of the MO meta-heuristics, the tuple
space contains a collection of (parts of) Pareto optimal sets deposited by the
islands for migration. The mathematical formulation of the tuple space (Pareto
Space or PS) is the following:

PS =
⋃

PO, with PO = {(x, F (x)), x is Pareto optimal}
In addition to the operations provided in Linda, parallel P2P MOO needs

other operations. These operations can be divided in two categories: group op-
erations and non-blocking operations. Group operations are useful to manage
multiple Pareto optimal solutions. Non-blocking operations are necessary to take
into account the volatile nature of P2P systems. In our model, the coordination
primitives are defined as follows:

– in, rd, out and eval: These operations are the same as those of Linda defined
in Section 2.

– ing(pattern): Withdraws from PS all the solutions matching the specified
pattern.

– rdg(pattern): Reads from PS a copy of all the solutions matching the speci-
fied pattern.

– outg(setOfSolutions): Inserts multiple solutions in PS.
– update(pattern, expression): Updates all the solutions matching the specified

pattern by the solutions resulting from the evaluation of expression.
– inIfExist, rdIfExist, ingIfExist and rdgIfExist: These operations have the

same syntax than respectively in, rd, ing and rdg but they are non-blocking
probe operations.

The update operation allows to locally update the Pareto space, and so to re-
duce the communication and synchronization cost. The pattern matching mech-
anism depends strongly on how the model is implemented, and in particular on
how the tuple space is stored and accessed. For instance, if the tuple space is
stored in a database the mechanism can be the request mechanism used by the
database management system. More details on the pattern matching mechanism
of our model are given in the next Section.

3.3 Implementation on Top of XtremWeb

XtremWeb [3] is a Java P2P project developed at Paris-Sud University. It is
intended to distribute applications over a set of peers, and is dedicated to multi-
parameter applications that have to be computed several times with different
inputs. XtremWeb manages tasks following the Dispatcher-Worker paradigm.
Tasks are scheduled by the Dispatcher to workers only on their specific demand
since they may adaptively appear (connect to the Dispatcher) and disappear
(disconnect from the Dispatcher). The tasks are submitted by either a client or
a worker, and in the latter case, the tasks are dynamically generated for parallel
execution. The final or intermediate results returned by the workers are stored
in a MySQL database. These results can be requested later by either the clients



310 M. Mezmaz, N. Melab, and E.-G. Talbi

or the workers. The database stores also different information related to the
workers and the deployed application tasks.

XtremWeb is well-suited for embarrassingly parallel applications where no
cross-peer communication occurs between workers, and these can only commu-
nicate with the Dispatcher. Yet, many parallel distributed applications partic-
ularly parallel MOO ones need cooperation between workers. In order to free
the user from the burden of managing himself or herself such cooperation we
propose an extension of the middleware with a software layer.

The software layer is an implementation of the proposed model composed of
two parts: a coordination API and its implementation at the worker level and a
coordination request broker (CRB). The Pareto Space is a part of the MySQL
database associated with the Dispatcher. Each tuple or solution of the Pareto
Space is stored as a record in the database. From the worker side the coordi-
nation API is implemented in Java and in C/C++. The C/C++ version allows
the deployment and execution of C/C++ applications with XtremWeb (written
in Java). The coordination library must be included in these programmer appli-
cations. From the Dispatcher side, the coordination API is implemented in Java
as a Pareto Space manager. The CRB is a software broker allowing the workers
to transport their coordination operations to the Dispatcher through RMI calls.

4 Application to Parallel MO Branch-and-Bound

In this Section, we describe the sequential B&B algorithm, then a parallel version
using the proposed coordination model, and finally some experiments performed
on a P2P network through the Flow Shop problem.

4.1 Parallel MO Branch-and-Bound

MO Branch-and-bound algorithms (MO-B&B) solve MOPs by iteratively par-
titioning the solution space into subspaces (each subspace is associated with a
sub-MOP). In this paper, we assume that the MOP to solve is a minimization
MOP. A sequential MO-B&B algorithm consists in iteratively applying five basic
operations over a list of problems: Branching, Resolution, Bounding, Selection
and Elimination.

Successive branching (decomposition) operations create a tree of MOPs rooted
in the original MOP. The value of the best PF found so far is used to prune the
tree and eliminate the MOPs that are likely to lead to worse solutions. At each
step, a MOP is selected either according to the bound values (as in best-first strat-
egy) or not (as in depth-first and breadth-first strategies). The selected MOP may
not be split because it has no solution or because a solution is already be found.
In this case, it is solved, and if its solution can improve the best known PF this
latter is updated. If the MOP can be split than it is decomposed into smaller
sub-MOPs. A sub-MOP is eliminated if its bound value is not better that the
best known PF. Otherwise, it is added to the pool of MOPs to be solved.



Towards a Coordination Model for Parallel Cooperative P2P MOO 311

There exist different parallel models in B&B algorithms [10]. We focus here
on the most general approach, in which the B&B tree is built in parallel by per-
forming simultaneously the operations presented above on different sub-MOPs.
According to such approach, the design of parallel B&B algorithms is based on
three major parameters: the execution mode, the work sharing strategy and the
information sharing policy. The execution mode defines what processes do af-
ter completion of a work unit, and may be synchronous or asynchronous. The
processes (do not) wait for each other in a(n) (a)synchronous mode. The work
sharing strategy defines how work units are assigned to processes to efficiently
exploit available parallelism. The information sharing policy indicates how the
best-known solution is published and updated.

In this paper, we propose an asynchronous parallel cooperative Dispatcher-
Worker MO B&B algorithm. Asynchrony is required by the heterogeneity nature
of the P2P target execution architecture. The work sharing strategy follows the
idle cycle or work stealing paradigm. Each worker maintains its local pool of
MOPs to be solved. When the local pool is empty, the worker sends a work
request to the Dispatcher. The information sharing issue is solved as the follow-
ing: the best known PF is published and maintained by the Dispatcher. This
information is requested by the workers, and updated each time a better PF is
locally found.

At each step, the worker tests if there is some MOP to solve in its local work
pool. If the pool is empty it requests work from the Dispatcher. The Dispatcher
replies with a pool of work units and the value of the best-known PF. This
value is stored locally. Otherwise, if there is some work in the local pool, the
worker performs a step of the sequential MO-B&B on its local pool. Thereafter,
it probably requests the Dispatcher to update the best-known PF by merging
this latter with its local version. The operation is performed by the Pareto Space
Manager on the Dispatcher. The new best-known PF is returned to the calling
worker.

4.2 Application to the Flow-Shop MOP

The Flow-Shop MOP is one of the numerous scheduling MOPs [11] that has
received a great attention given its importance in many industrial areas. The
MOP can be formulated as a set of N jobs J1, J2, . . . , JN to be scheduled on
M machines. The machines are critical resources as each machine can not be
simultaneously assigned to two jobs. Each job Ji is composed of M consecutive
tasks ti1, . . . , tiM , where tij represents the jth task of the job Ji requiring the
machine mj . To each task tij is associated a processing time pij , and each job
Ji must be achieved before a due date di.

The MOP being tackled here is the Bi-objective Permutation Flow-Shop
MOP (BPFSP) where jobs must be scheduled in the same order on all the
machines. Therefore, two objectives have to be minimized: (1) Cmax: Makespan
(Total completion time), (2) T : Total tardiness. The task tij being scheduled at
time sij , the two objectives can be formulated as follows:



312 M. Mezmaz, N. Melab, and E.-G. Talbi

f1 = Cmax = Max{siM + piM |i ∈ [1 . . . N ]}
f2 = T =

∑N
i=1 [max(0, siM + piM − di)]

In this paper, we do not focus on how the MO-B&B technique is applied to
BPFSP, the reader is referred to [12] for such details. We are interested in the
parallel P2P design features. In the implementation of the parallel MO-B&B ap-
plied to BPFSP, the best-known PF is updated if a sufficient number of iterations
is already performed. The adopted selection strategy is the depth-first one, the
node with the best bound being chosen at each step. The update coordination
operation is executed on the Dispatcher by the Pareto Space Manager. First, it
consists in performing an union between the two sets: the global best-known PF
(stored in the Pareto Space) and its local version. The new best-known PF is
then selected from this union set by considering all the non-dominated solutions.
The new result is returned to the calling Worker.

After a fixed number of iterations, if a Worker has work in its local pool it
splits it into as many pools as available workers (considering itself). The Worker
saves a pool for its own need, and submits (in a client role) the other pools to
the Dispatcher through the eval coordination operation. The Dispatcher puts
these work units in its task pool to be sent to available workers at their request.

4.3 Experimentation

The application has been deployed on the education network of the Polytech’Lille
engineering school. The experimentation hardware platform is composed of 120
heterogeneous Linux Debian PCs. The BPFSP MOP benchmark is composed of
10 jobs and 20 machines (n = 10 and m = 20). The experimental results are sum-
marized in Table 1. The total execution time is measured for the sequential and
parallel versions. The execution time of the sequential version is normalized as
the whole target architecture is heterogeneous. The machine where the sequen-
tial algorithm is executed is an Intel Pentium 4, 3 GHz, and is considered as a
reference machine for the computation of the normalized factor. The normalized
factor for each peer is obtained by using an application specific benchmark task
that is sent to all workers that join the computational pool. The speed at which
the benchmark task is completed is considered as the normalized factor.

Formally, let tref and ti be the execution time of the benchmark on respec-
tively the reference machine and the machine number i = 1..N of the pool of
worker peers. The normalized factor αi associated with the worker peer i is
computed as follows: αi = ti

tref
. Let αav be the average normalized factor for

all the worker peers. It can be formulated as: αav =
∑N

i=1 αi

N . The sequential
time reported in Table 1 is the time obtained on an average peer, obtained by
multiplying the sequential time obtained on the reference peer by the average
factor.

The results show that the execution time is divided by over 29 on 120 ma-
chines. One has to note that the experiments have been performed during a
working day, thus the experimentation environment is non-dedicated. On the



Towards a Coordination Model for Parallel Cooperative P2P MOO 313

Table 1. Parallel MO-B&B vs. Sequential MO-B&B

Sequential B&B Parallel B&B

Total number of tasks 1 657

Total execution time 54h51 1h53

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120

nu
m

be
r 

of
 ta

sk
s

time(minutes)

’number=f(time)’

Fig. 2. Task generation over time

5 Conclusion and Future Work

In this paper, we have presented a coordination model for parallel cooperative
MOO applications in a P2P environment. The model allows to overcome a ma-
jor limitation of existing Dispatcher-Worker middlewares: they do not allow a
straightforward communication between tasks executed by different peers. The
model has been implemented on top of XtremWeb, a middleware dedicated to
the execution of independent multi-parameter applications. The result is that the
users can develop parallel cooperative applications in a transparent way. They
do not need to manually manage and control the cooperation. Furthermore, the
model is generic and can be integrated into another P2P computing middleware
and applied in the context of another application domain.

The model has been experimented and validated on an MOO application:
a parallel B&B algorithm applied to the Bi-criterion Permutation Flow-Shop
Scheduling problem. The experimental results show that the time wasted by
the PCs of the experimentation hardware platform is well exploited as the total
execution time of the application is divided by a factor of 4 in a non-dedicated
execution environment.

In the future, we will experiment and extend the model to deal with parallel
cooperative meta-heuristics. We will also deploy it on top of another middleware
(JNGI/JXTA [4]) to demonstrate its generic nature.

parallelism (for the 120 peers) is generated during only 1 hour over about two
hours of total execution.

other hand, as Fig. 2 illustrates it, due to the nature of the application sufficient



314 M. Mezmaz, N. Melab, and E.-G. Talbi

References

1. Oram, A.: Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
& Associates (2001)

2. Anderson, D., Cobb, J., Korpela, E., , Lepofsky, M., Werthimer, D.: SETI@home:
An Experiment in Public-Resource Computing. Communications of the ACM Vol.
45 (2002) 56–61

3. Fedak, G., Germain, C., Neri, V., Cappello, F.: XtremWeb: building an experimen-
tal platform for Global Computing. Workshop on Global Computing on Personal
Devices (CCGRID2001), IEEE Press (2001)

4. Verbeke, J., Nadgir, N., Ruetsch, G., Sharapov, I.: Framework for Peer-to-Peer
Distributed Computing in a Heterogeneous, Decentralized Environment. In Proc.
of the Third Intl. Workshop on Grid Computing (GRID’2002), Baltimore, MD
(2002) 1–12

5. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems Vol. 7 (1985) 80–112

6. Ripeanu, M.: Peer-to-Peer Architecture Case Study: Gnutella Network. 1st IEEE
Intl. Conf. on Peer-to-peer Computing (P2P2001) (2001)

7. Oliveira, L., Lopes, L., Silva, F.: P3: Parallel Peer to Peer - An Internet Parallel
Programming Environment. Intl. Workshop on Peer-to-Peer Computing, Pisa,
Italy (2002)

8. Papadopoulos, G., Arbab, F.: Coordination models and languages. Advances in
Computers: The Engineering of Large Systems, Academic Press 46 (1998)

9. van Veldhuizen, D., Zydallis, J., Lamont, G.: Considerations in engineering parallel
multiobjective evolutionary algorithms. IEEE Trans. on Evolutionary Computa-
tion 7 (2003) 144–173

10. Gendron, B., Crainic, T.: Parallel branch-and-bound algorithms: Survey and syn-
thesis. Operations Research 42 (1994) 1042–1066

11. T’kindt, V., Billaut, J.C.: Multicriteria Scheduling - Theory, Models and Algo-
rithms. Springer-Verlag (2002)

12. Basseur, M., Lemesre, J., Dhaenens, C., Talbi, E.G.: Cooperation between Branch
and Bound and Evolutionary Approaches to solve a BiObjective Flow Shop Prob-
lem. Worshop on Evolutionary Algorithms (WEA’04) (2004) 72–86



A Grid-Oriented Genetic Algorithm�

J. Herrera1, E. Huedo2, R.S. Montero1, and I.M. Llorente1,2

1 Departamento de Arquitectura de Computadores y Automática,
Universidad Complutense, 28040 Madrid, Spain

2 Laboratorio de Computación Avanzada,
Simulación y Aplicaciones Telemáticas,
Centro de Astrobioloǵıa (CSIC-INTA),

28850 Torrejón de Ardoz, Spain

Abstract. Genetic algorithms (GAs) are stochastic search methods that
have been successfully applied in many search, optimization, and ma-
chine learning problems. Their parallel counterpart (PGA, parallel ge-
netic algorithms) offers many advantages over the traditional GAs, such
as speed, ability to search on a larger search space, and less likely to run
into a local optimum. With the advent of Grid computing, the compu-
tational power that can be deliver to the applications have substantially
increased, and so PGAs can potentially benefit from this new Grid tech-
nologies. However, because of the dynamic and heterogeneous nature
of Grid environments, the implementation and execution of PGAs in a
Grid involve challenging issues. This paper discusses the distribution of a
PGA across the Grid using the DRMAA standard API and the GridW ay
framework. The efficiency and reliability of this schema to solve the One
Max problem is analyzed in a globus-based research testbed.

1 Introduction

Genetics algorithms are search algorithms inspired in natural selection and ge-
netic mechanisms. GAs use historic information to find new search points and
reach an optimal problem solution. In order to increase the speed and the effi-
ciency of sequential GAs, several Parallel Genetic Algorithm (PGA) alternatives
have been developed. PGAs have been successfully applied in previous works,
(see for example [1]), and in most cases, they succeed to reduce the time required
to find acceptable solutions.

Traditionally, PGAs have tried to efficiently exploit the performance offered
by massively parallel processing systems (MPPs). The development of the Grid
has opened up avenues that could lead to a dramatic increase in performance
of PGAs, in terms of execution time and problem size. However, the execution
and development of Grid applications requires a high level of expertise and a
significant amount of effort.

� This research was supported by Ministerio de Ciencia y Tecnoloǵıa through the
research grant TIC 2003-01321 and Instituto Nacional de Técnica Aeroespacial.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 315–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



316 J. Herrera et al.

The main difficulties arise from the characteristics of the Grid itself, namely:
complexity, heterogeneity, dynamism and high fault rate. To overcome these
difficulties, we have developed a Globus submission framework, GridW ay [2],
that allows an easier and more efficient execution of jobs on a dynamic Grid
environment. GridW ay automatically performs all the job scheduling steps [3]
(resource discovery and selection, and job preparation, submission, monitoring,
migration and termination), provides fault recovery mechanisms, and adapts job
execution to the changing Grid conditions [4].

On the other hand, the Grid lacks of a standard programming paradigm
to port existing applications among different environments. The DRMAA (Dis-
tributed Resource Management Application API) [5] specification, developed
within the Global Grid Forum (GGF)1 framework, tries to fill this gap. The
DRMAA specification constitutes a homogeneous interface to different DRMS
(Distributed Resource Management Systems) to handle job submission, moni-
toring and control, and retrieval of finished job status.

In this work we analyze the distribution of a PGA across the Grid using the
DRMAA standard API and the GridW ay framework. In particular, the PGA
considered here adopts a modified version of the fully connected multi-deme
approach, to adapt it to the Grid characteristics mentioned above. The rest of
the paper is organized as follows, Section 3 briefly reviews the main strategies
proposed in the literature to distribute GAs. Then, we propose in Section 3.1
a Grid-aware distribution scheme of GAs, and we describe its implementation
with DRMAA. The performance of this scheme in a research testbed is then
discussed in Section 4. The paper ends with some conclusions.

2 Parallel Genetic Algorithms

The different alternatives proposed in the literature to parallelize genetic algo-
rithms can be classified in three main categories [6]:

– Single Population (Panmitic GA). This kind of GAs is usually imple-
mented using a Master/Worker paradigm [7]. Panmitic GAs can be efficiently
used when the evaluation function requires a considerable amount of compu-
tational work. The main advantage of this method is that the search behavior
of the sequential GA is not altered, and therefore all the available GA theory
can be applied directly. However this approach is not well suited for a Grid
because of the high network requirements of its communication pattern.

– Single Population (Fine Grain) GA. This type of GA has only one pop-
ulation and its spatial structure limits the interactions between individuals.
This limit can be imposed at the chromosome level (each member can only
interact with their neighbors) or at the population level (only member of the
same subpopulation may mate during crossover).

1 http://www.gridforum.org (2004)



A Grid-Oriented Genetic Algorithm 317

– Coarse Grain GA. The main population is divided into subpopulations
(demes), each one is independently evaluated in a different node. Probably
the most important characteristic of these algorithms is the communication
topology used to exchange information between subpopulations. The possible
communication patterns include ring model (processes can only interact with
their neighbors in a ring topology), master-slave (slave processes swap best
individuals with the master) or all-to-all (all process swap best individuals
with the others).
This kind of GA is difficult to understand because of the effects of migrations
between populations are not fully understood. Moreover, coarse grain GAs
introduce fundamental changes in the implementation of a simple GA.

In this work we will use a modified version of the coarse grain approach (see
Section 3), since this algorithm does not imply a tightly coupled deme topology.
Therefore it is more tolerant to the high latencies and dynamic bandwidths that
can be expected in the Internet, unlike the single population alternatives.

3 Grid-Oriented Coarse Grain Genetic Algorithms

In order to develop efficient Grid-oriented genetic algorithms (GOGAs, following
the notation introduced by H. Imade et al. [8]), the dynamism and heterogeneity
of a Grid environment must be considered. In this way, traditional load-balancing
techniques could lead to a performance slow-down, since, in general the perfor-
mance of each computing element can not be guaranteed during the execution.
Moreover, some failure recovery mechanisms should be included in such a faulty
environment.

3.1 Algorithm Description

Taking into account the above considerations we will use a fully connected multi-
deme genetic algorithm. In spite of this approach represents the most intense
communication pattern (all demes exchange individuals every generation), it
does not imply any overhead since the population of each deme is used as check-
point files, and therefore transferred to the client in each iteration.

The initial population is uniformity distributed among the available number
of nodes, and then a sequential GA is locally executed over each subpopulation.
The resultant subpopulations are transferred back to the client, and worst in-
dividuals of each subpopulation are exchanged with the best ones of the rest.
Finally, a new population is generated to perform the next iteration [6]. The
schema of this algorithm is depicted in figure 1.

However, the previous algorithm may incur in performance losses when the
relative computing power of the nodes involved in the solution process greatly
differs, since the iteration time is determined by the slowest machine. In order
to prevent these situations we allow an asynchronous communication pattern
between demes. In this way, information exchange only occurs between a fixed



318 J. Herrera et al.

Population

SubPopulation SubPopulation SubPopulation

Deme 1 Deme 2 Deme 3

SubPopulation SubPopulation SubPopulationn Best n Best

nBest

Next
Population

Fig. 1. Schema of fully-connected multi-deme genetic algorithm, with three computing
nodes

number of demes, instead of synchronizing the execution of all subpopulations.
The minimum number of demes that should communicate in each iteration de-
pends strongly on the numerical characteristics of the problem. We will refer
to this characteristic as dynamic connectivity, since the demes that exchange
individuals differs each iteration.

3.2 Distributed Resource Management Application API

The Distributed Resource Management Application API (DRMAA) is an API
specification for job submission, monitoring and control that provides a high
level interface with Distributed Resource Management Systems (DRMS). In this
way, DRMAA could aid scientists and engineers to express their computational
problems by providing a portable direct interface to DRMS.

Although the DRMAA standard can help in exploiting the intrinsic paral-
lelism found in some application domains, like GAs, the underlying DRMS is
responsible for the efficient and robust execution of each job. The following as-
pects are considered by the GridW ay framework, used in this work:

– Given the dynamic characteristics of the Grid, the GridW ay framework pe-
riodically adapts the schedule to the available resources and their character-
istics [4].

– The GridW ay framework also provides adaptive job execution to migrate
running applications to more suitable resources. So improving application
performance by adapting it to the dynamic availability, capacity, cost of
Grid resources, or its own requirements and preferences [4].

– GridW ay also provides the application with fault tolerance capabilities by
capturing GRAM callbacks, by periodically probing the GRAM jobmanager,
and by inspecting the output of each job.



A Grid-Oriented Genetic Algorithm 319

Table 1. Implementation of the Grid-oriented coarse-grain genetic algorithm using the
DRMAA standard

//Initialize a new DRMAA session.

rc = drmaa init (contact, error)

//Execute all jobs consecutively

for (i=0; i < ALL JOBS; i++)

rc = drmaa run job(job id, jt, err diag)

//Execute GOGA if it dosen′t rise objective function

while (!this->objective function()){
//Wait for (dynamic connectivity degree) jobs

//and store results

for (i=0; i < NUM JOBS; i++)

rc = drmaa wait(job id, &stat, timeout, rusage, err diag)

this->store results())

//Execute (dynamic connectivity degree) jobs consecutively

for (i=0; i < NUM JOBS; i++)

rc = drmaa run job(job id, jt, err diag)

}
//Finalize DRMAA session.

rc = drmaa exit(err diag)

In particular, the following list describes the DRMAA interface routines im-
plemented within the GridW ay framework (see [9] for a detailed description of
the C API):

– Initialization and finalization routines: Initialize and finalize a DRMAA ses-
sion.
• drmaa init. Initialize DRMAA API library and create a new DRMAA

session.
• drmaa exit. Disengage from DRMAA library and allow the DRMAA

library to perform any necessary internal cleanup.
– Job template routines: These routines enable the manipulation of job defi-

nition entities to set parameters such as the executable.
• drmaa set attribute. Adds (’name’, ’value’) pair to list of attributes

in job template.
• drmaa allocate job template. Allocate a new job template.
• drmaa delete job template. Deallocate a job template. This routine

has no effect on jobs.
– Job submission routines:

• drmaa run job. Submit a job with attributes defined in the job template
• drmaa run bulk jobs. The bulk jobs are defined as a group of n similar

jobs with a separate job id.
– Job control and monitoring routines: These routines are used to control and

synchronize jobs, and monitor their status.



320 J. Herrera et al.

• drmaa control. Start, stop, restart, or kill a job.
• drmaa synchronize. Wait until all jobs specified, have finished execu-

tion.
• drmaa wait. This routine waits for a single job to finish execution.
• drmaa job ps. Get the program status of a job.

Table 1 shows the implementation of the grid-oriented genetic algorithm describe
above, using the DRMAA standard.

4 Experimental Results

In this section we will evaluate the functionality and efficiency of the Grid-
oriented Genetic Algorithm described in Section 3, in the solution of the One-
Max problem [10]. The One-Max is a classical benchmark problem for genetic
algorithm computations, and it tries to evolve an initial matrix of zeros in a
matrix of ones.

In our case we will consider an initial population of 1000 individuals, each one
a 20x100 zero matrix. The sequential GA executed on each node will performed
a fixed number of iterations (50), with a mutation and crossover probabilities
of 0,1% and 60%, respectively. The exchange probability of best individuals
between demes is 10%.

The following experiments were conducted on a research testbed made up
of three different organizations, and based on the Globus Toolkit 2.4 [11]. See
table 2 for a brief description of the resources in the testbed.

Table 2. Characteristics of the machines in the research testbed

Name VO Model Speed OS Memory DRMS

hydrus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cygnus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
aquila UCM Intel PIII 700MHz Linux 2.4 128MB fork
babieca CAB 5×Alpha DS10 450MHz Linux 2.2 256MB pbs

Figure 2 shows the execution profile of 4 generations of the GOGA, with
a 5-way dynamic connectivity. Each subpopulation has been traced, and la-
beled with a different number (Pdeme). As can be shown, individuals are ex-
changed between subpopulations P1, P2, P3, P4, P5 in the first generation; while
in the third one the subpopulations used are P1, P2, P4, P7, P8. In this way
the dynamic connectivity, introduces another degree of randomness since the
demes that communicate differ each iteration and depend on the dynamism of
the Grid.



A Grid-Oriented Genetic Algorithm 321

Fig. 2. Execution profile of four generations of the GOGA, each subpopulation has
been labeled with Pdeme

In order to study the effect of the dynamic connectivity we will consider five
different executions, with different degrees of dynamic connectivity. In general, a
high degree implies more demes exchanging individuals in each iteration, but also
a higher execution time per iteration. On the other hand, a low degree reduces
the iteration time, but deteriorates the numerical properties of the algorithm
(the migration rate of individuals between subpopulations is also reduced). This
effect is clearly shown in figure 3, in this case the optimum configuration is a
5-way connectivity.

Fig. 3. Score versus execution time for five different degrees of connectivity



322 J. Herrera et al.

5 Conclusion

In this work we have presented an efficient Grid-oriented genetic algorithm. Our
approach uses a fully connected multi-deme GA, with a dynamic connectivity
between subpopulations to deal with the heterogeneity of the Grid. The optimum
degree of connectivity depends on both, the computational characteristics of the
Grid nodes, and the computational problem.

The GOGA has been developed taking advantage of the GridW ay framework
features and the DRMAA API. In this way, it have been shown that DRMAA
can aid the rapid development and distribution across the Grid of typical genetic
algorithm strategies.

References

1. Kang, L., Chen, Y.: Parallel Evolutionary Algorithms and Applications. (1999)
2. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution

on Grids. J. of Software – Practice and Experience 34 (2004) 631–651
3. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-I.4,

Scheduling Working Group – The Global Grid Forum (2001)
4. Huedo, E., Montero, R.S., Llorente, I.M.: Adaptive Scheduling and Execution on

Computational Grids. J. of Supercomputing (2004) (in press).
5. Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J.: Distributed Resource

Management Application API Specification 1.0. (2004)
6. Cant-Paz, E.: A Survey of Parallel Genetic Algorthms (1999)
7. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel Genetic

Algorithms. (2002)
8. Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A Grid-oriented Genetic

Algorithm Framework for Bioinformatics. New Generation Computing 22 (2004)
177–186

9. Haas, A., Brobst, R., Geib, N., Rajic, H., Tollefsrud, J.: Distributed Resource
Management Application API C Bindings v0.95. (2004)

10. Schaffer, J., Eshelman, L.: On Crossover as an Evolutionary Viable Strategy. In
Belew, R., Booker, L., eds.: Proceedings of the 4th International Conference on
Genetic Algorithms, Morgan Kaufmann (1991) 61–68

11. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. In-
ternational Journal of Supercomputer Applications 11 (1997) 115–128



A Probabilistic Approach for Task and Result
Certification of Large-Scale Distributed
Applications in Hostile Environments�

Axel Krings, Jean-Louis Roch, Samir Jafar, and Sébastien Varrette

Laboratoire ID-IMAG (CNRS-INPG-INRIA-UJF – UMR 5132), Grenoble, France
{axel.krings, jean-louis.roch, samir.jafar, sebastien.varrette}@imag.fr

Abstract. This paper presents a new approach for certifying the cor-
rectness of program executions in hostile environments, where tasks or
their results have been corrupted due to benign or malicious act. Extend-
ing previous results in the restricted context of independent tasks, we
introduce a probabilistic certification that establishes whether the results
of computations are correct. This probabilistic approach does not make
any assumptions about the attack and certification errors are only due
to unlucky random choices. Bounds associated with certification are pro-
vided for general graphs and for tasks with out-tree dependencies found
in a medical image analysis application that motivated the research.

1 Introduction

Large scale global computing systems like the GRID and Peer-to-peer comput-
ing platforms gather thousands of resources for computing parallel applications,
utilizing middleware infrastructures such as the Open Grid Service Architecture
(OGSA) [2] to provide strong authentication, secure communications [11], and
resource management. In this unbounded environment one should consider pos-
sible malicious act that may result in massive attacks against the whole global
computation. This is supported by an exponentially increasing number of re-
ported incidents [1], e.g. CERT/CC recorded close to 140,000 incidents in 2003.

Usually, global computations are expected to tolerate certain rates of faults [5,
9], e.g. small number of isolated intrusions. However, in order to ensure correct-
ness of the computed results, one should detect if the global computation has
been the victim of a massive attack resulting in an error rate larger than can be
tolerated by the application.

The problem of protecting a computation against massive attacks has been
mainly addressed for independent tasks. The analysis of voting, spot-checking
and credibility-based fault tolerance is presented in [9]. An approach based on
re-execution of tasks on reliable nodes is considered in [5], assuming that the

� This work has been supported by CNRS ACI Grid-DOCG and the Region Rhône-
Alpes (Ragtime project).

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 323–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



324 A. Krings et al.

majority of workers are honest while workers compromised by an attack will
always falsify their results. Under the same assumption, task dependencies are
considered in [6], however, dependencies are used only for correction. Faults in
systems with task dependencies are addressed in [4] where tasks are determined
to execute on reliable or non-reliable nodes in order to maximize the expected
number of correct results. Whereas the approach considers the critical issue of
fault propagation, it is deterministic and therefore could be exploited by an
intelligent adversary.

In order to eliminate any assumption on the attack and the distribution of
errors in the context of a general parallel computation with dependencies, we
propose to adopt a view directly inspired by probabilistic algorithms. Specifically,
given the results of a global computation with task dependencies, we attempt
to detect if the execution contains faulty results. Probabilistic algorithms are
presented that make random choices and determine whether the execution is
correct or faulty. Since the detection is probabilistic, its output may be wrong.
However, contrary to previous approaches, the probability of certification error
is not related to the application, i.e. the global computation, but only to the
unlucky random choices associated with task selection for verification.

This work is motivated by medical applications [7] studied in the context of
the French research project Ragtime [8] where certain highly computational ma-
nipulations of medical 3D/4D images, distributed over their production sites, al-
low for an acceptable fraction of error. The probabilistic certification algorithms
presented can detect if these computations have been subjected to a massive
attack with a so-called attack ratio greater than or equal to q < 1, with no other
assumption about the attack. We show that pathological cases exist that min-
imize the probability of detection. The bound on the error is not related to q,
but to the minimum number of so-called initiator tasks.

2 Definitions and Assumptions

Applications are executed on the global computing platform presented in [6]. A
user initiates a computation, represented by a directed acyclic graph G, which
is then executed on (a potentially large number of) unreliable workers. In order
to verify the correctness of the results of the execution, verifiers, implemented
by reliable resources which know graph G, re-execute selected tasks. Communi-
cation between workers and verifiers is through a checkpoint server containing
computations submitted by workers [6]. Whereas any attack can occur on the
worker or between the worker and the checkpoint server, the checkpoint server
and verifiers are considered secure.

Dataflow Graph: The data-flow graph referred to above is a directed graph
G = (V, E), where V is a finite set of vertices vj and E is a set of edges ejk,
j �= k, representing precedence relations between vj , vk ∈ V. The vertex set con-
sists of two kinds of tasks. Let Tj denote the tasks as seen in the traditional
context of task scheduling, i.e. a task is the smallest program unit of an instance



of execution. Let Dk denote a data task. Data tasks represent the inputs and
outputs of a task. In the remainder of this paper, when talking about a task, it
is implied to be a task Tj . Data tasks will be referred to as inputs or outputs of
Tj . The total number of tasks Tj in G is n.

Executions and the Impact of Faults: We will first establish the notion of program
execution and the impact of faults. Let E denote the execution of a workload
represented by G with a set Î of initial inputs on a set of unreliable resources.
It is assumed that G is static, i.e. it is fixed. Each task T in E executes with
inputs i(T, E) and creates output o(T, E). The inputs of a task Tj are composed
of either inputs from Î or outputs of other tasks Tk, i.e. o(Tk, E).

Let Ê denote the execution of the program on a verifier, i.e. a reliable resource,
or set thereof. If E = Ê, i.e. if every task in E uses the same inputs and computes
the same outputs as those in Ê, then E is said to be “correct”. Conversely, if
E �= Ê, then at least one task in E produced a wrong result and the execution
is said to have “failed”.

In order to differentiate whether a task execution is considered to be on a
client or verifier and whether the inputs and outputs of the execution are those
of E or Ê, the following notation is adapted. Note that a “hat” always refers
to a reliable resource, input or output. Let i(T, E) denote the input of T in E

and î(T, Ê) the input of T in Ê. Furthermore, let o(T, E) denote the output of
T on the client, ô(T, E) the output of T on the verifier based on inputs from E,
and ô(T, Ê) the output of T on the verifier based on inputs from Ê. Note that
the notations ô(T, E) and ô(T, Ê) differ. Both indicate outputs generated on a
verifier, but the first assumes i(T, E) and the latter î(T, Ê) as inputs.

Probabilistic Certification: We consider probabilistic certification based on a
probabilistic algorithm that uses randomization in order to state if E has failed
or not. Given an execution E, a Monte Carlo certification is defined as a ran-
domized algorithm that takes an arbitrary ε, 0 < ε ≤ 1, as input and delivers
(1) either CORRECT or (2) FAILED, together with a proof that E has failed.
The probabilistic certification is said to be with error ε if the probability of the
answer CORRECT, when E has actually failed, is less than or equal to ε.

For instance, a Monte Carlo certification may consist of re-executing ran-
domly chosen tasks in G on a verifier, comparing results to those obtained in E.
If the results differ E has failed. Otherwise, E may be correct or failed. How-
ever, if E has failed, a probabilistic certification with error ε ensures that the
probability of non-detection of failure (based on randomly selecting tasks in G
for re-execution) is less than or equal to ε.

Monte Carlo Certification Against Massive Attacks: In the sequel we denote the
number of forged tasks in G by nF . We are considering the two scenarios where
either all tasks execute correctly, i.e. nF = 0, or nF is large, corresponding to
a massive attack. A massive attack with attack ratio q consists of falsifying the
execution of at least nq = �qn� ≤ nF tasks. E is said to be “attacked with
ratio q” and nF

n ≥ q. It should be noted that q is assumed relatively large, see

A Probabilistic Approach for Task and Result Certification 325



326 A. Krings et al.

Section 5, resulting from massive attacks such as caused by a virus or Trojan.
The objective is to provide a probabilistic Monte Carlo certification against such
massive attacks. Note that detection of small attacks, e.g. single intrusions, is
not the scope of this work. As indicated in Section 1, global computations are
expected to tolerate certain fault rates.

3 Certification of Independent Tasks

We first consider the case where all tasks in G are independent. In this case,
certification of tasks is equivalent to certification of results. The following Monte-
Carlo Test (MCT), based on task re-execution on a verifier, will be used to detect
if execution E contains forged tasks.

Algorithm MTC

1. Uniformly choose one task T in G. The input and output of T in E are
i(T, E) and o(T, E) respectively.

2. Re-execute T on a verifier, using inputs from E, i.e. i(T, E), to get output
ô(T, E). If o(T, E) �= ô(T, E) return FAILED;

3. Return CORRECT.

Since all tasks in G are independent1 we always have i(T, E) = î(T, Ê). If
Algorithm MTC selects a forged task, then one knows with certainty that the
execution E has failed. However, if MTC returns CORRECT, then one can only
make conclusions based on the probabilities of randomly selecting a falsified or
non-falsified task. The following lemma addresses these probabilities.

Lemma 1. Let E be an execution with n independent tasks, nF of which have
been forged. The probability that MTC returns FAILED is nF

n and the probability
that it returns CORRECT is 1 − nF

n ≤ 1 − q.

Proof. The probability that MTC chooses a forged task is nF

n . Then the prob-
ability that MTC returns CORRECT is n−nF

n = 1 − nF

n ≤ 1 − q. ��
The theorem below gives a lower bound on the number of tasks to be re-

executed in order to achieve a specific ε.

Theorem 1. Let E be an execution with only independent tasks and assume that
E is either correct or massively attacked with ratio q. For a given ε, the number
of independent executions of algorithm MTC necessary to achieve a certification
of E with probability of error less than or equal to ε is N ≥ � log ε

log(1−q)�.
Proof. Consider N executions of Algorithm MTC. If during any of the N exe-
cutions MTC selects a forged task, the execution has failed. Therefore, assume

1 In the case of task dependencies this assumption about the inputs does not hold
anymore, as will be addressed later.



that only non-forged tasks are selected. According to Lemma 1 the probability
of MTC selecting a non-forged task is n−nF

n ≤ 1−q. Then N independent appli-
cations of MTC lead to a Monte-Carlo certification with a probability of error
bound by ε ≤ (1−q)N . For a given ε, it is thus sufficient to select N ≥ � log ε

log(1−q)�
tasks. ��

4 Certification in the Presence of Task Dependencies

In the previous section there is no difference between certification of tasks and
their respective results. If one allows for dependencies among tasks the certifica-
tion of the results of tasks is more difficult. The problem lies in the way a reliable
resource has to determine the validity of results. Any measure of validity of a
task’s result based on the comparison to the results obtained by re-executing
the same task on a reliable resource, depends on the validity of the inputs the
reliable resource uses for re-execution. Just the fact that the outputs of a task
execution and its re-execution on a reliable resource produce identical results
does not say much about the validity of that result, since in the assumed de-
terministic computing environment the same faulty input will produce identical
faulty output. Thus, in the presence of dependencies, o(T, E) = ô(T, E) only
indicates that the results are the same, but not that they are correct. It should
be noted that correctness would imply that o(T, E) = ô(T, Ê).

4.1 Faulty Tasks and the Concept of Initiators

The randomized testing used in Section 3 is only valid for result certification
of independent tasks. If we were to apply the same reasoning in the presence
of dependencies, certification based on repeated application of Algorithm MTC
would only certify results if o(T, E) �= ô(T, E) for each falsified T selected by
MTC. However, this assumption is too restrictive since it would assume that a
re-execution with some (perhaps incorrect) input values would always expose2

the forgery. This weak assumption could be easily exploited by an attacker.
Suppose Algorithm MTC is used. If o(T, E) �= ô(T, E) then E has failed.

However, o(T, E) = ô(T, E) indicates a correct output only if the inputs are cor-
rect, i.e. î(T, Ê). This implies that T has no forged predecessors. In the following
discussion, falsified tasks which have no falsified predecessors will be called ini-
tiators. The probabilities associated with randomly selecting initiators will be
the basis for result certification. It should be noted that it is difficult to speculate
on the capabilities of detecting incorrect results of falsified tasks that are not
initiators. Pathological attacks may be derived where the output of one falsified
task may be custom tailored to produce results for other falsified tasks that do
not differ from their re-executions (with the forged inputs) on reliable resources.

2 It should be noted that the task inputs define a rather limited “test vector” for the
task. The quality of test vectors with respect to fault coverage has been extensively
studied in the context of the Test Vector Generation Problem [3].

A Probabilistic Approach for Task and Result Certification 327



328 A. Krings et al.

4.2 Certification

Result certification is directly related to the probability of the certification algo-
rithm selecting initiators. Let nI denote the number of initiators in G. Note that
the determination of nI depends on the graph and which nodes have been falsi-
fied. The following lemma and theorem, modified from Lemma 1 and Theorem 1,
can be stated.

Lemma 2. Let E be an execution with n tasks with dependencies. Furthermore,
let nF and nI be the number of forged tasks and initiators respectively, nI ≤ nF .
The probability that MTC returns FAILED is at least nI

n and the probability that
it returns CORRECT is less than or equal to 1 − nI

n .

Proof. The probability that MTC selects an initiator, and thus returns value
FAILED, is nI

n . Then the probability that MTC returns CORRECT is less than
or equal to n−nI

n = 1 − nI

n . ��

Lemma 3. Let E be an execution of tasks with dependencies and assume that
E is either correct or massively attacked with ratio q. For a given ε, the number
of independent executions of algorithm MTC necessary to achieve a certification
of E with probability of error less than or equal to ε is N ≥ � log ε

log(1−nI
n )

�.

Proof. Consider N executions of Algorithm MTC. If during any of the N ex-
ecutions MTC selects an initiator, the execution has failed. Therefore, assume
that only non-initiator tasks are selected. According to Lemma 2 the probability
of MTC selecting a non-initiator task is n−nI

n = 1 − nI

n . Then N independent
applications of MTC lead to a Monte-Carlo certification with a probability of
error bound by ε ≤ (1 − nI

n )N . For a given ε, it is thus sufficient to select
N ≥ � log ε

log(1−nI
n )

� tasks. ��

Unlike the case of Theorem 1, this result is more restrictive since the value of
nI depends on G under consideration of the worst-case attack scenario and it is
likely to be small. In the remainder of the paper we study the implications of
worse case attacks, where the attacker knows or can estimate the structure of
the graph. We will prove that even in pathological cases a lower bound on the
number of initiators nI can be defined, considering G and attack ratio q.

Let G<(T) denote the sub-graph induced by all predecessors of a task T or a
set of tasks V , i.e. G<(V ). Furthermore, let G≤(T) = G<(T)∪{T}. The graphs of
successors are denoted similarly, i.e. G>(T) and G≥(T). We now formally define
the set of initiators.

For a given G with n tasks let F denote the set of all falsified tasks. The
initiator set I(F ) is defined as the set of all Ti ∈ F which have no predecessors
in F , i.e. I(F ) = {Ti ∈ F : F ∩ G<(Ti) = ∅}. It is obvious that the actual tasks
in sets F and I(F ) are not known, since otherwise certification would be trivial.

Since re-execution of a task with incorrect inputs may still result in o(T, E) =
ô(T, E) one has to consider the limitations induced by the inputs.



Lemma 4. Given the set of all falsified tasks F and an arbitrary T in G, if the
outputs of T are not correct, then it must be that G≤(T) ∩ I(F ) �= ∅.
The proof follows directly from the fact that, if the output of T is not correct,
then either T is faulty, i.e. T ∈ F , or there must be at least one forged task
in predecessor set G<(T). Determining that the output of T is incorrect may
require to verify few or many tasks and is largely dictated by the size of G≤(T).
The following definitions will aid in capturing the difficulties associated with de-
termining whether results are incorrect, considering that a pathological attacker
will minimize the probability of finding forged tasks.

First, the minimum number of initiators with respect to given subgraph of
G is defined. Let V be a set of tasks in G and let k ≤ nF be the number
of falsified tasks assumed. Define γV (k) as the minimum number of initiators
with respect to V and k such that γV (k) = min|G≤(V ) ∩ I(F )| for |F | ≥ k
and of all G≤(V ) ∩ I(F ) �= ∅. Recall that nq ≤ nF is the smallest number of
falsified tasks as the result of an attack with ratio q. Then γG(nq) is the smallest
number of initiators possible, e.g. the number associated with a pathological
attack scenario. With respect to Lemma 2 the probability that MTC returns
correct can thus be written as 1 − γG(nq)

n .
Next, we will define the minimal initiator ratio ΓV (k) as

ΓV (k) =
γV (k)

|G≤(V )| . (1)

The minimum initiator ratio is helpful in determining bounds on probabilities
of selecting initiators in predecessor sets. This is of interest when the structure
of G will allow for adjustments of probabilities of finding initiators based on the
specific task considered by an algorithm like MTC. With respect to G this allows
the number of verifications in Lemma 3 to be expressed as N ≥ � log ε

log(1−ΓG(nq))�.

4.3 The Impact of Graph G

Knowing the graph, an attacker may attempt to minimize the visibility of even a
massive attack with ratio q. From an attacker’s point of view, it is advantageous
to “hide” falsified nodes in the successor graphs of certain tasks in order to
achieve the pathological minimum number of initiators γG(nF ). This allows to
generate a general bound on γG(nF ) based on the the size of successor graphs.

Lemma 5. Given height h (the length of the critical path) and maximum out-
degree d of a graph G, the minimum number of initiators is

γG(nF ) = � nF(
1−dh

1−d

)�. (2)

Proof. Given h and d and any task Ti in G the maximal size of the successor
graph G≥(Ti) is bound by |G≥(Ti)| ≤ 1 + d + d2 + . . . + dh−1 = 1−dh

1−d . Thus, a

single initiator Ti can “hide” at most 1−dh

1−d of the nF falsified tasks in F . This

A Probabilistic Approach for Task and Result Certification 329



330 A. Krings et al.

would, by definition, make all tasks in G>(Ti) non-initiators. If each initiator can
“hide” a maximum of 1−dh

1−d tasks in F , the minimum number of such initiators
is � nF(

1−dh

1−d

) �. Note that this term is has the smallest value for nF = nq. ��

For specific graphs this general worst-case scenario may be overly conserva-
tive. The following Extended Monte-Carlo Test (EMCT) will allow graphs with
relatively small predecessor subgraphs to overcome the restrictions imposed by
γG(nq). Note that it is similar to Algorithm MTC except that it contains pre-
visions to verify all predecessors for the task T selected for verification. Thus, it
effectively verifies G≤(T).

Algorithm EMTC

1. Uniformly chose one task T in G.
2. Re-execute all Tj in G≤(T), which have not been verified yet, with input

i(Tj , E) on a reliable resource and return FAILED if for any Tj we have
ô(Tj , E) �= o(Tj , E).

3. Return CORRECT.

In the context of our application domain in which G consists mainly of
out-trees, Algorithm EMTC exhibits its strength, e.g. the worst number of
re-executions in Step 2 is less than height h.

Theorem 2. For a single execution of Algorithms EMTC the probability of
error is eE ≤ 1 − q. The average cost in terms of verification, i.e. the expected
number of verifications, is

C =

∑
Ti∈G |G≤(Ti)|

n
. (3)

Proof. A pathological attacker who knows that uniform random task selection
is used and that all predecessor tasks are verified can minimize detection by
falsifying tasks in such a way as to minimize error propagation, thereby mini-
mizing the total number of tasks affected by falsifications. In other words, in the
worst case nq falsified tasks in G are distributed so that the number of T whose
G≤(T) contain falsified tasks is minimized. This can be achieved in any scenario
which attacks the nq tasks Ti with the smallest successor graph G≥(i), e.g. first
attack only leaf tasks, then tasks at the second level etc. until nq tasks have been
attacked. Finally, the error eE is 1 minus the probability of G≤(T) containing a
faulty task. In the worst case described above this leads to eE ≤ 1− nq

n ≤ 1− q.
The average number of verifications is simply the average number of tasks in

the predecessor graph verified in EMTC Step 2. Note that once T is selected,
the cost can be specified exactly as |G≤(T)|. ��



Table 1. Results for general graph and forest of out-trees

Algorithm MTC EMTC

Number of effective initiators � nq(
1−dh

1−d

)  nq

Probability of error 1 −
� nq(

1−dh

1−d

) �

n
1 − q

Verification cost: general G 1 O(n)

Verification cost: G is out-tree 1 h − logd(nv)

Ave. # effective initiators, G is out-tree � nq(
1−(h+2)dh+1+(h+1)dh+2

(1−d)(1−dh+1)

)  nq

Fig. 1. Impact of q on N
Fig. 2. Impact of ε on N

5 Results

Table 1 shows results with respect to a single invocation of the algorithm specified
for pathological cases associated with general graphs and out-trees (as indicated).
The number of effective initiators is the number of initiators as perceived by the
algorithm3. The probability of error is a direct result of the number of effective
initiators. The cost of verification reflects the number of tasks verified for each
invocation of the algorithm. When G is a forest of out-trees the cost of verification
changes based on the number of tasks verified, nv, since only non-verified tasks
are re-executed. If attacks are random, the average number of effective initiators
depends on the average size of successor graphs.

The impact of ε and q on the number of invocations of MTC or EMTC is
shown next. The results shown in the Figures 3 and 3 are identical for certificat-
ion of independent tasks with MTC and dependent tasks with EMTC. For
different values of ε Figure 3 shows the impact of attack ratio q on N . It should be
noted that N decreases fast with increasing values of q. Conversely, it shows that

3 The term “effective” initiator is used to emphasize that in Algorithm EMTC step 2
any falsification in G≤(T) is guaranteed to result in detection.

A Probabilistic Approach for Task and Result Certification 331



332 A. Krings et al.

probabilistic detection is unsuitable for very small q. Next, Figure 3 shows the
impact of ε on N for fixed attack ratios q. Note that N only grows logarithmically
in ε. This is very desirable, as it allows for certification with high degrees of
certainty, i.e. very small ε.

6 Conclusion

This paper discussed certification of large distributed applications executing
in hostile environments, where tasks or data may be manipulated by attacks.
Unlike previous work based on independent tasks, we considered fault propa-
gation occurring in applications with dependent tasks. In addition we used a
probabilistic approach with no assumptions about fault behavior. Two prob-
abilistic algorithms were introduced that selected a small number of tasks to
be re-executed on a reliable resource, indicating correct execution with a prob-
ability of error based on probabilities associated with task selection. Task re-
execution was based on utilizing inputs available through macro data-flow check-
pointing. By introducing the concept of initiators, the fault-detection problem
associated with fault propagation were overcome. The cost for this were addi-
tional verifications noticeable in Algorithm EMTC. However, in the context of
real-world applications, represented by out-trees, this translated to only minor
overhead.

References

1. CERT/CC Statistics 1988-2004, CERT Coordination Center,
http://www.cert.org/stats/cert stats.html

2. Foster, I., Kesselman, C., Nick, J. and Tuecke, S., Grid Services for Distributed
System Integration, IEEE Computer, No. 6, Vol. 35 (2002) 37-46

3. Fujiwara Hideo, Logic Testing and Design for Testability, MIT Press, 1985
4. Gao, L., and Malewicz, G., Internet Computing of Tasks with Dependencies us-

ing Unreliable Workers, 8th International Conference on Principles of Distributed
Systems (OPODIS’04), Dec., 15-17, 2004 (to appear)

5. Germain, C., and Playez, N., Result Checking in Global Computing Systems, Pro-
ceedings of the 17th Annual ACM International Conference on Supercomputing
(ICS 03), San Francisco, California, 23-26 June, (2003) 218-227

6. Jafar S., Varrette S., and Roch J.-L., Using Data-Flow Analysis for Resilence and
Result Checking in Peer to Peer Computations, Proceedings of the 15th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2004),
Zaragoza, Espagne, 30th Aug. - 3rd Sep., (2004) 512-516

7. Montagnat, J., Breton, V., and Magnin, I., Partitioning medical image databases
for content-based queries on grid, Methods of Information in Medicine, Special
Issue HealthGrid04, 2004, (to appear)

8. Ragtime: Grille pour le Traitement d’Informations Médicales, Région Rhône-Alpes
http://liris.univ-lyon2.fr/∼miguet/ragtime/



9. Sarmenta, Luis F.G., Sabotage-Tolerance Mechanisms for Volunteer Computing
Systems, Future Generation Computer Systems, Vol. 18, Issue 4 (2002) 561-572

10. Wasserman, H., and M. Blum, Software reliability via run-time result-checking,
Journal of the ACM, Vol. 44, No. 6 (1997) 826-849

11. Von Welch, et.al., Security for Grid Services, 12th Intl. Symposium on High Perfor-
mance Distributed Computing (HPDC-12), 22-24 June, Seattle, WA, (2003) 48–57

A Probabilistic Approach for Task and Result Certification 333



A Service Oriented Architecture for Decision
Making in Engineering Design

Alex Shenfield and Peter J. Fleming

Department of Automatic Control and Systems Engineering,
University of Sheffield,

Mappin Street, Sheffield, S1 3JD, United Kingdom
A.Shenfield@sheffield.ac.uk

Abstract. Decision making in engineering design can be effectively ad-
dressed by using genetic algorithms to solve multi-objective problems.
These multi-objective genetic algorithms (MOGAs) are well suited to
implementation in a Service Oriented Architecture. Often the evaluation
process of the MOGA is compute-intensive due to the use of a com-
plex computer model to represent the real-world system. The emerging
paradigm of Grid Computing offers a potential solution to the compute-
intensive nature of this objective function evaluation, by allowing access
to large amounts of compute resources in a distributed manner. This pa-
per presents a grid-enabled framework for multi-objective optimisation
using genetic algorithms (MOGA-G) to aid decision making in engineer-
ing design.

1 Introduction

Soft Computing techniques such as Neural Networks, Fuzzy Logic, and Evo-
lutionary Computation are used to solve many complex real-world engineering
problems. These techniques provide the engineer with a new set of tools that
often out-perform conventional methods in areas where the problem domain is
noisy or ill-defined. However, in the cases of Neural Networks and Evolutionary
Computation especially, these tools can be computationally intensive.

Grid Computing offers a solution to the computationally intensive nature of
these techniques. The Grid Computing paradigm is an emerging field of computer
science that aims to offer “a seamless, integrated computational and collabora-
tive environment” [1]. Ian Foster defines a computational grid as “a hardware
and software infrastructure that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities” [2]. Grid Computing
is differentiated from conventional distributed computing by its emphasis on co-
ordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organisations [3]. These resources include software packages, compute
resources, sensor arrays, data and many others.

The purpose of this paper is to introduce a grid enabled framework for multi-
objective optimisation using genetic algorithms (MOGA-G). This framework will

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 334–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Service Oriented Architecture for Decision Making in Engineering Design 335

be presented in the context of a Service Oriented Architecture approach. This
approach ties in with that taken by the Globus Project [4] to providing access
to grid resources via Grid Services. Section 2 will introduce Genetic Algorithms
and Multi-Objective Optimisation. Section 3 will briefly introduce the core grid
concepts used in the implementation of our framework. Section 4 will outline
other related work. Section 5 will provide details of the implementation of our
framework, and Section 6 will draw some conclusions and present some ideas for
further work.

2 Genetic Algorithms and Multi-objective Optimisation

2.1 Genetic Algorithms

Genetic Algorithms (GAs) are an optimisation technique utilising some of the
mechanisms of natural selection [5]. GAs are an iterative, population based
method of optimisation that are capable of both exploring the solution space
of the problem and exploiting previous generations of solutions. Exploitation of
the previous generation of solutions is performed by a selection operator. This
operator gives preference to those solutions which have high fitness when creat-
ing the next generation of solutions to be evaluated. Exploration of the solution
space is performed by a mutation operator and a recombination operator and
helps to ensure the robustness of the algorithm by preventing the algorithm from
getting stuck in local optima.

Genetic Algorithms evaluate candidate solutions based on pay-off informa-
tion from the objective function, rather than derivative information or auxiliary
knowledge. This ensures that GAs are applicable to many different problem
domains, including those where conventional optimisation techniques (such as
hill-climbing) may fail.

2.2 Multi-objective Optimisation

Many real-world engineering design problems involve the satisfaction of multiple
conflicting objectives. In this case it is unlikely that a single ideal solution will be
possible. Instead, the solution of a multi-objective optimisation problem will lead
to a family of Pareto optimal points, where any improvement in one objective
will result in the degradation of one or more of the other objectives.

Genetic Algorithms are particularly well suited to this kind of multi-objective
optimisation, because they search a population of candidate solutions. This en-
ables the GA to find multiple solutions which form the Pareto optimal set (see
Fig. 1). GAs are often able to find superior solutions to real-world problems than
conventional optimisation techniques (i.e. constraint satisfaction). This is due to
the difficulty that conventional optimisation techniques have when searching in
the noisy or discontinuous solution spaces that real-world problems often have.



336 A. Shenfield and P.J. Fleming

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

T
im

e

Cost

Pareto Front

Fig. 1. The Pareto Optimal Solution Set

2.3 Applications of Genetic Algorithms

Genetic Algorithms have been used to solve problems across many different
disciplines. GAs have been used in such diverse fields as Economics and Social
Theory [6], Robotics [7] and Art [8]. For many non-trivial real-world applications
the evaluation of the objective function is performed by computer simulation of
the system. For example, in the optimisation of controller parameters for gas
turbine aero engines [9], a computer model of the engine is used to calculate the
values of the objective functions for a given controller design.

The use of computer simulations to evaluate the objective function leads to
some new issues. To ensure that the results gained from the genetic algorithm are
meaningful, the simulation must be complex enough to capture all the relevant
dynamics of the true system. However, assuming that this level of complexity
is obtainable, the simulation may be very computationally intensive. As genetic
algorithms are population based methods, the simulation must be run many
times. In a typical genetic algorithm this could involve running the simulation
10,000 times.

2.4 Parallel Genetic Algorithms

The computationally intensive nature of the evaluation process has motivated
the development of parallel genetic algorithms. Early proposals for the implemen-
tation of parallel GAs considered two forms of parallelisation which still apply
today: multiple communicating populations, and single-population master-slave
implementations [10].



A Service Oriented Architecture for Decision Making in Engineering Design 337

The decision between which of these two types of parallelisation to implement
must consider several factors, such as ease of implementation and use, and the
performance gained by parallelisation. Single-population parallel GAs are often
the easier to implement and use, as experience gained with sequential GAs can
be easily applied to these. In contrast, the implementation and use of multiple
communicating populations based parallel GAs involves choosing appropriate
values for additional parameters such as size and number of populations, fre-
quency of migration, and the number of individuals involved in migration. This
increases the complexity of the parallel GA as each of these parameters affects
the efficiency of the algorithm and the quality of the overall solution.

3 Grid Technologies

The concept of Grid Computing is not new. As far back as 1969 Len Kleinrock
suggested:

“We will probably see the spread of ‘computer utilities’, which, like
present electric and telephone utilities, will serve individual homes and
offices across the country.” [11]

However, it is only recently that technologies such as the Globus Toolkit
have emerged to enable this concept to be achieved. The Globus Toolkit is an
open-source, community-based set of software tools to enable the aggregation of
compute, data, and other resources to form computational grids. Since version 3
of the Globus Toolkit it has been based on the Open Grid Services Architecture
(OGSA) introduced by the Globus Project. OGSA builds on current Web Service
concepts and technologies to support the creation, maintenance, and application
of ensembles of services maintained by virtual organisations [12].

3.1 Web Services

A Web Service is defined by the W3C as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using
SOAP messages” [13]. Web Services are accessible through standards-based in-
ternet protocols such as HTTP and are enabled by three core technologies [14]:

– Simple Object Access Protocol (SOAP)
– Web Services Description Language (WSDL)
– Universal Description, Discovery, and Integration (UDDI)

These technologies work together in an application as shown in Fig. 2. The
Web Service client queries a UDDI registry for the desired service. This can be
done by service name, service category, or other identifier. Once this service has



338 A. Shenfield and P.J. Fleming

Web Service 
Client

Application Service

WSDL 
document

Web Service 
Logic

HTTP request

HTTP response

SOAP processor

UDDI registry

Fig. 2. Interaction between Web Service Technologies

been located the client queries the WSDL document to find out how to interact
with the service. The communication between client and service is then carried
out by sending and receiving SOAP messages that conform to the XML schema
found in the WSDL document.

3.2 Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) is the basis for the Globus Toolkit
version 3. OGSA represents computational resources, data resources, programs,
networks and databases as services. These services utilise the Web Services tech-
nologies mentioned in Section 3.1. There are three main advantages to repre-
senting these resources as services:

1. It aids interoperability. A service-oriented view addresses the need for stan-
dard service definition mechanisms, local/remote transparency, adaptation
to local OS services, and uniform semantics [12].

2. It simplifies virtualisation. Virtualisation allows for consistent resource ac-
cess across multiple heterogeneous platforms by using a common interface
to hide multiple implementations [12].

3. It enables incremental implementation of grid functionality. The provision
of grid functionality via services means that the application developer is free
to pick and choose the services that provide the desired behaviour to their
application.

4 Related Work

In recent years the interest in using parallel genetic algorithms to solve single-
objective optimisation problems has increased considerably [15]. However, there
has been little research performed in applying parallel GAs to solve multi-
objective optimisation problems. In [16] and [17] there is some discussion con-
cerning multi-objective evolutionary optimisation techniques in distributed sys-
tems, but these do not implement parallel GAs in a Grid Computing
environment.



A Service Oriented Architecture for Decision Making in Engineering Design 339

A middleware system for evolutionary computation in a Grid Computing en-
vironment is proposed in [18], and then used to construct a parallel simulated
annealing algorithm to solve a single objective problem. This system requires the
application developer to implement a set of interfaces (comprising the middle-
ware) and write the code for the desired evolutionary operations. Another paper
that utilizes the Grid Computing concept for single-objective optimisation us-
ing genetic algorithms is [19]. This paper develops a ‘Black Box Optimisation
Framework’ (BBOF) in C++ to optimise a computer simulation of a forest fire
propagation problem from environmental science. This BBOF is executed in a
Condor pool to harness the spare CPU cycles of a cluster of computers.

Our MOGA-G system differs from those proposed in [18] and [19] because it
provides a concrete implementation of a multi-objective genetic algorithm. Like
[19] we have utilised the power of computational grids to perform distributed
fitness evaluation of our objectives, but we have implemented our framework in
a Service Oriented Architecture using the Globus Toolkit to provide access to
the resources of the grid (see section 5.2).

The power of computational grids is used to execute a distributed enumera-
tive search in [20]. This distributed enumerative search is then used to generate
the Pareto-optimal front for several benchmark test functions that are com-
monly used in the evaluation of the performance of multi-objective optimisation
algorithms. A brief comparison with heuristic techniques is then performed.

This MOGA-G system is more computationally efficient than the distributed
enumerative search described in [20]. This is because our algorithm converges
on the Pareto optimal front by making intelligent choices about which points to
search in the next generation, whereas the enumerative search algorithm has to
evaluate every point in the search space. This approach would be impossible for
a real-world engineering design problem due to the potential size of the search
space.

5 Implementation

5.1 Parallelisation of the Multi-objective Genetic Algorithm

In section 2.4 we found that there are two types of possible parallelisation strate-
gies for genetic algorithms: multiple communicating populations, and single-
population master-slave implementations. In the implementation of our grid-
enabled framework for multi-objective optimisation using genetic algorithms
(MOGA-G) we have decided to parallelise our multi-objective genetic algorithm
using the single-population master-slave implementation. This is also known
as distributed fitness evaluation or global parallelisation. This model uses the
master-worker paradigm (see Fig. 3) of parallel programming.

A master-slave parallel genetic algorithm uses a single population maintained
globally by the master node and parallelises the evaluation of the objective
function by distributing the population to the worker processes. These are then
assigned to the available processors for execution (in the ideal case, one individual



340 A. Shenfield and P.J. Fleming

Master Node 

Worker 1 Worker 2 Worker n

Fig. 3. The Master-Worker Programming Paradigm

per processor). The genetic operators - selection, recombination and mutation -
are then applied globally by the master node to form the next generation.

This model is particularly well suited for the parallelisation of genetic algo-
rithms as the evaluation of the objective function requires only the knowledge
of the candidate solution to evaluate, and therefore there is no need for inter-
communication between worker processes. Communication only occurs when the
individuals are sent to the worker processes for evaluation and when the results
of those evaluations are returned to the master node.

5.2 Service-Oriented Architecture and the Globus Toolkit

Version 3

We have chosen to implement our grid-enabled framework for multi-objective
optimisation using genetic algorithms in a Service-Oriented Architecture (SOA)
using the Globus Toolkit version 3 to provide access to the resources of the
grid. We have implemented the MOGA-G framework using the Java program-
ming language, primarily due to the portability of the code. This means that
the components of the MOGA-G framework can easily be run across various
heterogeneous platforms.

A service-oriented architecture is essentially a collection of services that com-
municate with each other in order to perform a complex task. SOA is an ap-
proach to building loosely-coupled, distributed systems that combine services to
provide functionality to an application. IBM sees SOA as key to interoperability
and flexibility requirements for its vision of an on demand business [21].

The SOA approach to grid computing is well suited to the kind of master-
worker parallelism used in the MOGA-G framework. This SOA view of grid
computing has the client acting as the master node, and the service acting as the
worker. In the implementation of the MOGA-G framework (see Fig. 4) there are
two different services. One service exposes the operations of the multi-objective
genetic algorithm to the client, and the other provides operations for running
evaluations of the objective function on the computational grid.

This SOA approach also provides flexibility both in how the MOGA-G frame-
work is used and in the maintenance of the framework. The provision of the
components of the MOGA-G framework as services means that it is simple to



A Service Oriented Architecture for Decision Making in Engineering Design 341

E
valuation 

Factory 
S

ervice

Evaluation 
Instance 1

Evaluation 
Instance 2

Evaluation 
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

 
Se

rv
ic

e

Generation to 
be evaluated

Results of 
evaluation

E
valuation 

Factory 
S

ervice

E
valuation 

Factory 
S

ervice

Evaluation 
Instance 1

Evaluation 
Instance 2

Evaluation 
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

 
Se

rv
ic

e
M

O
G

A
 

Se
rv

ic
e

Generation to 
be evaluated

Results of 
evaluation

Create Evaluation 
Service Instance

Fig. 4. The Implementation of the MOGA-G Framework

add new functionality to the system, and to improve upon existing function-
ality, by adding new services. In the context of the MOGA-G framework, this
functionality could be anything from the implementation of the genetic algo-
rithm operators - selection, recombination and mutation - to the distribution
and management of the objective function evaluation.

Providing the MOGA-G framework as services also means that the function-
ality can be accessed via the HTTP protocol. This means that the services can
be easily integrated into an Internet portal so as to be accessible by any device
with a capable web browser (such as a PDA).

This SOA approach is used in providing access to grid resources via the
Globus Toolkit (see section 3). The Globus Toolkit has become a fundamental
enabling technology for grid computation, letting people carry out computations
across geographically distributed resources in a secure way. The success of the
Globus Project has meant that the project has become one of the driving forces
in developing standards for grid computing.

6 Conclusions and Further Work

This paper has described a grid-enabled framework for multi-objective optimisa-
tion using genetic algorithms (MOGA-G). This MOGA-G framework has been
designed in a Service-Oriented Architecture (SOA) so as to take advantage of the
flexibility that this architecture offers. In the MOGA-G framework a concrete
implementation of a multi-objective genetic algorithm is provided. However, the
SOA approach that we have taken allows our implementation to be easily ex-
tended to provide additional features, such as those required to construct hybrid
genetic algorithms. Extending the MOGA-G framework to support additional
features is an area for further investigation.

This framework is primarily suited to computationally expensive objective
function evaluations, such as those performed by computer simulation, due to its
distributed nature. For computationally trivial objective functions the commu-
nication overheads involved in executing the evaluations in a distributed manner



342 A. Shenfield and P.J. Fleming

result in a decrease in performance compared to a sequential GA. This is due to
the way in which job submission and management is performed. Whilst further
work will be conducted into determining the scale of problems for which this
framework is most effective, it is expected that further research and develop-
ment of grid-middleware, job submission services, and job management services
will provide a reduction in these communication overheads. This will allow our
framework to provide increased performance for less computationally intensive
problems. However, this framework is not intended to replace sequential GAs in
cases where the performance of the sequential GA is satisfactory.

References

1. Baker, M., Buyya, R., and Laforenza, D., Grids and Grid technologies for wide-area
distributed computing, Software: Practice and Experience, 32(15), pp. 1437–1466,
2002.

2. Foster, I., and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

3. Foster, I., Kesselman, C., and Tuecke, S., The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, Int. J. Supercomputer Applications, 15(3), 2001.

4. The Globus Project; www.globus.org
5. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, Addison-Wesley, 1999.
6. Axelrod, R., The evolution of strategies in the Iterated Prisoners Dilemma, in

Genetic Algorithms and Simulated Annealing (L. Davies ed.), Morgan Kaufmann,
pp. 32–41, 1987.

7. Pratihar, D., Deb, K., and Ghosh, A., A genetic-fuzzy approach for mobile robot
navigation among moving obstacles, Int. J. Approximate Reasoning, 20(2), pp.
145–172, 1999.

8. Sims, K., Artificial Evolution for Computer Graphics, Computer Graphics (Proc.
SIGGRAPH ‘91), 25(4), pp. 319–328, 1991.

9. Fleming, P. J., Purshouse, R. C., Chipperfield, A. J., Griffin, I. A., and Thomp-
son, H. A., Control Systems Design with Multiple Objectives: An Evolutionary
Computing Approach, Workshop in the 15th IFAC World Congress, Barcalona,
2002.

10. Cantú-Paz, E., and Goldberg, D. E., On the Scalability of Parallel Genetic Algo-
rithms, Evolutionary Computation, 7(4), pp. 429–449, 1999.

11. Kleinroack, L., UCLA Press Release, July 3rd 1969.
12. Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S., The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration, Open
Grid Services Infrastructure WG, Global Grid Forum, June 22nd 2002.

13. Web Services Architecture, www.w3c.org/TR/ws-arch, W3C Working Group Note
February 11th 2004.

14. Chappell, D. A., and Jewell, T., Java Web Services, O’Reilly, 2002.
15. Alander, J. T., Indexed Bibliography of Distributed Genetic Algorithms Technical

Report 94-1-PARA, University of Vaasa, 2003.
16. Deb, K., Zope, P., and Jain, A., Distributed Computing of Pareto-Optimal So-

lutions with Evolutionary Algorithms, Proc. EMO 2003, pp. 534–549, Springer-
Verlag, 2003.



A Service Oriented Architecture for Decision Making in Engineering Design 343

17. Van Veldhuizen, D. A., Zydallis, J. B., and Lamont, G. B., Considerations in En-
gineering Parallel Multiobjective Evolutionary Algorithms, IEEE Trans. on Evo-
lutionary Computation, 7(2), pp. 144–173, 2003.

18. Tanimura, Y., Hiroyasu, T., Miki, M., and Aoi, K., The System for Evolutionary
Computing on the Computational Grid, Proc. IASTED 14th Intl. Conf. on Parallel
and Distributed Computing and Systems, pp. 39–44, ACTA Press, 2002.

19. Abdalhaq, B., Cortes, A., Margalef, T., and Luque, E., Evolutionary Optimization
Techniques on Computational Grids, Proc. ICCS 2002, pp. 513–522, Springer-
Verlag, 2002.

20. Luna, F., Nebro, A. J., and Alba, E., A Globus-Based Distributed Enumera-
tive Search Algorithm for Multi-Objective Optimization Technical Report LCC
2004/02, University of Malaga, 2004.

21. Colan, M., Service Oriented Architecture expands the vision of Web Services: part
1, IBM developerWorks paper, 2004.



A Grid Architecture for Comfortable
Robot Control

Stéphane Vialle1, Amelia De Vivo2, and Fabrice Sabatier1

1 Supelec, 2 rue Edouard Belin, 57070 Metz, France
Stephane.Vialle@supelec.fr, sabatier fab@metz.supelec.fr

2 Universitá degli Studi della Basilicata,
C.da Macchia Romana, 85100 Potenza, Italy

devivo@unibas.it

Abstract. This paper describes a research project about robot control
across a computing Grid, first step toward a Grid solution for generic
process control. A computational Grid can significantly improve remote
robot control. It can choose at any time the most suitable machine for
each task, transparently run redundant computations for critical oper-
ations, adding fault tolerance, allowing robotic system sharing among
remote partners.

We built a Grid spanning France and Italy and successfully controlled
a navigating robot and a robotic arm. Our Grid is based on the GridRPC
paradigm, the DIET environment and an IPSEC-based VPN. We turned
some modules of robotic applications into Grid services. Finally we de-
veloped a high-level API, specializing the GridRPC paradigm for our
purposes, and a semantics for quickly adding new Grid services.

1 Motivations and Project Overview

This paper introduces a Grid architecture for comfortable and fault tolerant
robot control. It is part of a larger project aiming to develop a grid solution for
generic process control.

Motivations. In several real situations robots must be remotely controlled.
This is because we install robots where an application requires them. It can be
a not computer-suitable environment, for example, for temperature constraints.
Sometimes the building where the robots are is far away from that one where the
computing centre is. In such a case probably the computer maintenance team is
in the computing centre and it could be uncomfortable and expensive to have
some computers near the robots.

Simple robots, like robotic arms, just need to receive commands and some-
times to send feedback. A simple remote application can manage the situation,
but a devoted machine makes sense only if the robot is continuously used. An
integrated environment, like a Grid environment, can run the robotic application
on the first available computer when needed.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 344–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Grid Architecture for Comfortable Robot Control 345

Complex robots, like navigating robots, are equipped with sensors and de-
vices acquiring data about the surrounding environment. They send these data
to a remote server running complex computations for deciding robot behavior.
Navigating robot applications sometimes, but not always, need a powerful ma-
chine. A computational Grid could find a suitable machine on the fly, avoiding
to devote an expensive computer to the robotic system.

Finally, a computational Grid can be useful and comfortable in several other
situations. It can automatically switch to an unloaded computer when the cur-
rent one gets overloaded, guaranteeing some QOS to time-constrained robotic
applications. Some applications are embarrassingly parallel and a Grid can offer
a different server for each task. A single application execution is not fault toler-
ant for critical missions. A Grid can automatically run the same application on
different machines, so that if one fails, another one can keep robot control. In
a robotic research environment, a Grid allows remote partners to easy share a
robotic system.

Project Roadmap. In 2002 we started a four-step project about remote robot
control across a Grid. A careful evaluation about delay, security policies, Inter-
net uncertainty and so on [4, 6] was mandatory and the first step was about
it. We worked with a self-localization application for a single navigating robot
[7], using ”ssh links” and a simple client-server mechanism. We focussed on ad-
hoc overlap techniques for amortizing the Internet communication, and at the
end we achieved a reasonable slow down [8]. In the second step we built and
experimented a Grid based on a secure VPN and DIET [1]. We added a naviga-
tion module, we turned both modules into Grid services, and we designed and
implemented an easy-to-use and easy-to-expand robotic API [2]. In our Grid
configuration the robot, a client and some computing servers were in a single
site in France, while another server was in Italy. The third step is a working in
progress. Using our API we quickly and easily added a lightness detection Grid
service for environment checking. Then we extended the Grid with other two
sites in France, each one hosting just a computing server. Finally we added a
second robot (a robotic arm) and a related control module. In the fourth step we
will investigate the way to adapt our software architecture to the Globus mid-
dleware. The current solution is very suitable for our applications, but Globus
is an example of more generic and standard middleware.

2 Robotic Applications and Grid Testbed

Hardware Resources. The physical resources on our Grid are two robots,
some PCs at Metz Supelec campus, two PCs in two different sites in Metz and a
PC at Salerno University, see figure 1. Our robots are an autonomous navigating
Koala, with several onboard devices, and a robotic arm. Both are connected to
external servers through serial links. Each server is a devoted PC controlling
basic robot behaviors. All robotic applications are clients of these servers.



346 S. Vialle, A. De Vivo, and F. Sabatier

PC
X1

PC
QX1

PC
QX2

computing servers

PC robot
server

serial
link

PC

PC client
PC

VPN
firewall &
gateway

router

Supelec Metz campus, France
Salerno University, Italy

PC

comput. serv.

router PC

firewall
INTERNET

PC

comput. serv.

router PC

firewall

PC

comput. serv.

router PC

firewall

2 sites at
Metz,

France
PC

DHCP
DNS

LDAP
PCrobot

server

serial
link

Fig. 1. Grid Testbed for robot control: 2 robots and four sites

Grid Environment. We chose the DIET [1] (Distributed Interactive Engi-
neering Toolbox) Grid environment. It supports synchronous and asynchronous
Grid-RPC calls [5], and can be considered a Grid Problem Solving Environment,
based on a Client/Agent/Server scheme. A Client is an application that submits
a problem to the Grid through an Agent hierarchy. This avoids the single Agent
bottleneck. Agents have a Grid Servers list and choose the most suitable for a
Client request, according to some performance forecasting software.

DIET communication is Corba-based, but this was a problem for our insti-
tutes security policies. In order not to relax our respective security levels, we
created an IPSEC-based VPN [3]. This just requires the 500/UDP port opened
and the ESP and AH protocols authorized on the destination gateway.

Robotic Testbed Applications. The testbed application for the robotic arm
is a simple action loop, while the testbed application for the Koala robot con-
sists of three complex modules: self-localization, navigation and lightness de-
tection. Our robot navigates in dynamic environments, where no complete pre-
determined map can be used. Artificial landmarks are installed at known coor-
dinates. When switched on, the robot makes a panoramic scan with its cam-
era, detects landmarks and self-localizes [7]. Based on its position, it can com-
pute a theoretical trajectory to go somewhere. For error compensation, new
self-localizations happen at intermediate positions. During navigation the robot
checks the environment lightning and, eventually, signals problems. For this pur-
pose it moves its camera and catches images. The Koala Server always sends its
clients JPEG-compressed images.

3 Software Architecture and Grid Deployment

Figure 2 shows our Grid architecture. At the toplevel, a Grid application is al-
most like a classical application. It calls RobGrid API functions (see section 6)
to achieve Grid services. Our Grid services implement robotic application mod-
ules, so that they appear as high-level robot commands, such as ”Localization”



A Grid Architecture for Comfortable Robot Control 347

Serial link
driver

TCP sockets

Buffered client-server
mechanism

Devoted robot server

Redundant GridRPC calls

High-level robot commands on the Grid

DIET (Grid) middleware
(based on Corba bus)

VPN middleware
(based on IPSEC)

Ethernet
protocol

Internet
protocol

DIET API (GridRPC)

Serial-link robot commands

Simple robot commands

Compounded robot commands

Buffered client-server
mechanism

TCP sockets

Robotic application on the Grid

High-level RobGrid API,
and Grid services

Low-level robot
services G

rid m
iddlew

are
Grid applications

High-level
DIET interface

Fig. 2. Software architecture overview

or ”Navigation”. Users can call them concurrently, but in this case they are
responsible for robot devices coordination and synchronization.

We implemented our Grid services using the DIET GridRPC interface, ac-
cording to the RobGrid API semantic rules (see section 5). Depending on the
service, it can make a synchronous call to a low-level service (to control just
one robot device), an asynchronous call to a low-level service (to simultaneously
control more robot devices), or several concurrent asynchronous calls to low-level
services, for example to run redundant computations on different Grid servers.
When a Grid service runs redundant computations, it waits just for the first one
to finish, ignoring or cancelling the others. All these details are hidden to the
programmer that can focus on robotic problems.

Each low-level robot service is implemented as a three layers stack. A buffered
client-server mechanism allows different and/or redundant tasks to concurrently
access a robot server through TCP sockets. This supports the fault tolerance
strategy of our grid (see section 4). Finally a serial link driver runs on each
devoted robot server.

The Grid middleware consists of the DIET API, a Corba bus and a secure
IPSEC-based VPN. We configured IPSEC so that our grid has a main node at
Supelec, including a LAN segment and a gateway-and-firewall PC. Each of the
other three sites have just a stand alone computer, with a lighter configuration.
It does not include a gateway, so that the stand alone PCs can only communicate
with the main node. The client machine can access all Grid services only if it is
on the main node. Of course this solution is not suitable for a larger Grid and
we are currently working for removing this limitation.

IPSEC requires just the 500/UDP port for security keys exchanging, and the
AH and ESP protocols for secure communication. This made possible to deploy
an IPSEC-based VPN without changing our local security policies.

In figure 3 there is an example of (Koala) robot control across our Grid.
The client application, on a client PC, requires some Grid services through the
RobGrid API. The underlying DIET functions contact the DIET agents running



348 S. Vialle, A. De Vivo, and F. Sabatier

rsrc directory

serial link
driver (object)

Robot
server
PC

Robot Server: multithreaded
& buffered server

global arm command

turret wheelimage rsrc directoryserial link init

serial link driver (object)

Robot
server
PC history

buffers

threads

Robot Server: multithreaded & buffered server

User PC

Client pgm

Computing server PC

- navigation-1 service
- localization-1 service

DIET server A

Computing server PC

- navigation-1 service
- localization-1 service

DIET server B

PC on the Grid

DIET Local AgentDIET Master Agent

Computing server PC

- navigation-2 service
-localization-2 service

DIET server C

serial link

VPN1 - VPN-Corba-DIET

2 - VPN
Corba
DIET

2 - VPN-Corba-DIET

4 - VPN-TCP 3 - VPN-TCP
ItalyFrance

serial link

"koala"

robotic
arm

Fig. 3. An operation sequence example

somewhere on the Grid to know the addresses of the most suitable computing
servers. Then the user program contacts them directly through the DIET proto-
col on the Corba bus, and each computing server establishes a direct communi-
cation with the Koala Server, using TCP sockets instead of the DIET protocol.
This way camera images to be sent to the Grid servers can avoid Corba encod-
ing. After processing, only small results (such as a computed localizations) has
to be sent to the client machine across the Corba bus.

4 Low-Level Robot Services

Devoted Robot Servers. A robot is a set of independent devices (wheel,
camera, infra red sensors, articulation, grip. . . ), that can be considered as a
set of independent resources accessible through related elementary or low-level
services.

A devoted robot server collects all elementary services for its connected robot.
Each service is attached to a different port (see the bottom of figure 3) and
is multithreaded, so that it can serve several clients. If necessary, it can also
lock the related resource. For example, several clients (actually Grid servers)
can simultaneously connect to the camera for taking images while the robot
navigates, but only one client at a time can drive the camera motor.

Resource Directory Service. In order to make the Grid servers independent
from the robot server, we added a resource directory service (see the bottom of



A Grid Architecture for Comfortable Robot Control 349

Client machine Grid servers Low level robot server Robot

command
command
algorithm

sequence of serial
link command

sequence of serial
link command &

history buffer usage

robot actuors

robot sensors

high-level
grid services

low-level
grid services

resource
services

application
program serial

linkTCPDIET

Fig. 4. Translation steps from an application command to robot device commands

figure 3). Clients have just to know its port number for achieving the directory
of all available resources and related ports. This way low-level robot services
upgrades have no impact on Grid services.

History Buffers. Redundant computations require the same robot data for
all redundant clients, so we associate a number of history buffers to each robot
device. On figure 3 each robot resource has three buffers. Each Grid service has
a default number of history buffers, but applications can modify it.

Before to reset a history buffer, we have to consider that several redundant
Grid services can be using it. Each Grid service needs a reset strategy depending
on the related robot device and on the Grid service algorithm. All reset strategies
are implemented in the RobGrid API (see section 6).

Slow Grid servers asking for too old execution are rejected and finally can-
celled. However, slow servers get results faster because they have not to wait for
robot actions. So, few servers are actually rejected and cancelled. If the network
load changes during the execution, the Grid server that sends the new next com-
mand may change too. In this case the robot server goes ahead, driven by the
new fastest Grid server.

5 Grid Services

Grid services implement robotic application modules and, of course, we can add
other of them in future. Our RobGrid API introduces a semantics for Grid service
programming. This makes Grid service development easy for robotic researchers.

For adding a new Grid service it is not required to deal with low-level details
and to manage the communication with the robot server. Grid services have just
to implement four sub-services and to define a reset strategy for history buffers:

– Connection. This is done by a generic Grid service that contacts the re-
source directory service, asks for the required TCP port and connects the
application to a low-level service.

– Disconnection. This is done by a generic Grid service that closes the ap-
plication connection to a TCP port.



350 S. Vialle, A. De Vivo, and F. Sabatier

– History Buffer Reset. This is a simple reset request for one of the history
buffers associated to the related device. An index identifies the required
buffer, according to the buffer reset strategy of the Grid service.

– Robotic Command Execution. This is something like navigation(x,y,
theta). Grid services execute each high-level robot command calling the
staked up low-level robot commands. Each stack layer decomposes a higher-
level command in more simple commands. For example the navigation com-
mand above can include move straightforward(x,y). At the bottom of the
stack there are basic commands (serial link commands) to be sent to the
devoted robot server across TCP sockets. Here the serial link driver gets the
robot to execute the lower-level commands. Figure 4 illustrates the transla-
tion steps from an application command to robot device commands.

We experimented our semantic rules adding a new Grid service. It implements
the lightness measurement module for the navigating robot application. Then we
extended our testbed with a robotic arm and a related application module. The
same low-level robotic library drives both the robotic arm and the navigating
robot. In order to integrate the arm application module we added a new Grid
service and related low-level services. In both cases we encountered no major
difficulties.

6 The RobGrid API

To make the robotic application development easy, our RobGrid API offers
classes and objects for Grid service interfacing. They hide DIET communica-
tion details and automatically initialize some DIET data structures. The appli-
cation has to explicitly call three sub-services of each Grid service: connection,
disconnection and command execution. RobGrid provides very friendly functions
for this purpose. The buffer reset sub-service, instead, is called in a transparent
way, according to the predetermined reset strategy of the Grid service which is
implemented in a RobGrid object.

When creating a local interface object, a user just specifies a redundancy
factor. The local interface object chooses the requested Grid servers, waits for
the first one to finish, cancels the others, and returns the results.

Moreover, it is possible to request a Grid service through a local inter-
face object in an asynchronous way. The API provides functions for testing
and waiting for a service completion. See [2] for details about RobGrid API
usage.

7 Experimental Results

Experimentation on a Local Sub-Grid. In real conditions, researchers work-
ing on new control algorithms are near the robotic system, for avoiding unex-
pected problems. A comfortable solution is to use a laptop, a wifi connection and



A Grid Architecture for Comfortable Robot Control 351

 0
 20
 40
 60
 80

 100
 120

 0  2  4  6  8  10  12  14  16  18  20  22  24

E
xe

cu
tio

n 
tim

e 
(s

)

date (h)

Supelec - Salerno-Univ
Supelec LAN

Fig. 5. Limited slow down across the Internet

a computing server for large computations. The wifi connection allows to control
the robot and to walk around the robotic system when needed, and a comput-
ing server avoids to overload the laptop. But generally a computing server is a
shared resource and can be loaded. A local grid including several servers can
choose an unloaded machine on the fly. It can also run redundant computations
on different servers and get the first available result.

Table 1 shows experimental performance on a local sub-grid for the self-
localization module. We run redundant computations for critical tasks on several
servers and wait for the first to finish. Execution time decreased until 9.5-8.5s
against 13.5s measured with a single shared server. Last columns of table 1 show
there is no remarkable overhead using DIET on this benchmark.

Performance Across the Internet. We measured the self-localization per-
formance when the localization service runs in Italy. During 24 hours its average
execution time elapsed from 15.5s during the night up to 100s during the day (see
figure 5). In both cases remote localization succeeded and during the night the
slow down was limited to a 2 factor compared to a local computation. So, running
robot control services in Italy can be an interesting solution during the night.

Fault Tolerance. We experimented a complete long application for the navi-
gating robot, with several localization and navigation steps, on the whole Grid.
Robot camera was simultaneously controlled by two Grid servers, one in France

Table 1. Execution time on a local sub-grid for the self-localization service. Devoted
resources and overloaded laptop are not real situations

Laptop-wifi Laptop-wifi+local sub-Grid Laptop-wifi+devoted rsrcs
Basic pgm Optimized pgm One Grid N redundant One server One server

(Std load on (Overloading server Grid servers across an across a
the laptop) the laptop) unloaded Grid ssh link

14.34s 11.23s 13.5-10.5s 9.5-8.5s 8.65s 8.65s



352 S. Vialle, A. De Vivo, and F. Sabatier

Table 2. Execution time of the localization Grid service on different nodes

Grid Computing PC server Desktop PC Computing PC server at
machines at Supelec (France) at Metz (France) Salerno University (Italy)

day run 9.5s-8.5s 21.5s-23.7s ≈ 100s (large variations)

night run 9.5s-8.5s 21.5s-23.7s ≈ 15.5s

and the other in Italy. We killed the local server and the robot camera con-
tinued to execute its panoramic scans, slower, controlled by the remote server
from Italy. Then we run again the server in France, and the client application
speeded-up. So we achieved a fault tolerant behavior when a server went down,
avoiding the robot mission failure.

Even if the localization slow down was significant during the day, it was
limited to some parts of the application and had a reasonable global impact.
The whole application slow down was limited to a 2.5 factor during the day
(252s instead of 102s).

First Scalability Experiment. To test the scalability of our Grid architec-
ture, we added a new module to the navigating robot application (lightness
measurement service), a new robot (a robotic arm) and 2 new nodes in the grid
(2 PCs in two different areas in Metz). From a configuration point of view, we
had a little trouble to extend the VPN and the Corba bus to PCs with dynamic
IP addresses. Grid gateway and firewall configuration has to be updated each
time an IP address changes.

About performance, we registered no slow down when our servers controlled
both the robots simultaneously. Robot localization on servers from the new nodes
took between 21.5s and 23.7s during the day. These nodes have low-speed con-
nections, that is download at 512 KB/s and upload at 128 KB/s. They appeared
interesting solution for redundant computations during the day, while the Ital-
ian server is a better solution during the night (see table 2). A larger Grid with
several nodes improves the capability to find computing resources at any time
with limited slowdown.

8 Conclusion and Perspectives

During the first steps of this project we built and experimented a secure Grid
for robot control. We developed a friendly API for application programmers, a
Grid semantics for high-level service developers, and low-level services supporting
concurrent and redundant requests to robot devices. We obtained a comfortable
and efficient environment for robotic experiments, and, finally, we showed that
this Grid is easy to extend.

Currently we are working for adding new robots on different sites, and for
allowing client applications to run from any Grid node. Next step is a porting
of our software architecture on a more standard grid middleware, like Globus.



A Grid Architecture for Comfortable Robot Control 353

But our final goal remains a more generic Grid for process control, allowing re-
searchers and engineers to easily share physical processes and related computing
resources.

Acknowledgements

This research is partially supported by Region Lorraine and ACI-GRID ARGE
research project.

Authors want to thank Hervé Frezza-Buet for low-level robot library devel-
opment, Alexandru Iosup for optimized versions of the navigating robot ap-
plication, and Yannick Boyé for preliminary implementation on the DIET
environment.

References

1. F. Lombard J-M. Nicod M. Quinson E. Caron, F. Desprez and F. Suter. A scalable
approach to network enabled servers. 8th International EuroPar Conference, volume
2400 of Lecture Notes in Computer Science, August 2002.

2. A. De Vivo F. Sabatier and S. Vialle. Grid programming for distributed remote
robot control. 13th IEEE International Workshops on Enabling Technologies: In-
frastructures for Collaborative Enterprises (WETICE-2004). Workshop on Emerg-
ing Technologies for Next Generation GRID, June 2004. Modena, Italy.

3. I. Foster and C. Kesselman. N. Doraswamy and D. Harkins. Ipsec: The New Security
Standard for the Inter- net, Intranets, and Virtual Private Networks. Prentice-Hall,
1999.

4. L. Frangu and C. Chiculita. A web based remote control laboratory. 6th World
Multiconference on Systemics, Cybernetics and Informatics, July 2002. Orlando,
Florida.

5. S. Matsuoka J. Dongarra C. Lee K. Seymour, H. Nakada and H. Casanova. Overview
of gridrpc: A remote procedure call API for grid computing. Grid Computing - GRID
2002, Third International Workshop Baltimore, Vol. 2536 of LNCS, November 2002.
Manish Parashar, editor, MD, USA.

6. S.H. Shen R.C. Luo, K.L. Su and K.H. Tsai. Networked intelligent robots through
the internet: Issues and opportunities. Proceedings of IEEE Special Issue on Net-
worked Intelligent Robots Through the Internet, 91(3), March 2003.

7. A. Siadat and S. Vialle. Robot localization, using p-similar landmarks, optimized
triangulation and parallel programming. 2nd IEEE International Symposium on
Signal Processing and Information Technology, December 2002. Marrakesh, Mo-
rocco.

8. A. De Vivo and S. Vialle. Robot control from remote computers through different
communication networks. Internal Report, January 2003.



The Grid-Ireland Deployment Architecture

Brian Coghlan, John Walsh, and David O’Callaghan

Department of Computer Science,
Trinity College Dublin, Ireland

coghlan@cs.tcd.ie, john.walsh@cs.tcd.ie

david.ocallaghan@cs.tcd.ie

Abstract. Grid-Ireland is unusual in its integrated infrastructure, and
the stress that is laid on homogeneity of its core. The major benefit is the
decoupling of site details from the core infrastructure, and the resulting
freedom for heterogeneity of site resources. We describe the efforts to
support this heterogeneity in a systematic way. We also describe the
deployment architecture and a methodology to increase the availability
of the core infrastructure.

1 Introduction

The HPC facilities in Ireland are very limited. There is an Origin 3800/40, a
64-way Xeon cluster and a 6TB disk farm at NUI, Galway, and a 20-CPU SGI
Altix 3700 has just been installed. There is a 100-CPU cluster in the Boole Centre
at UCC in Cork, and two 96-CPU clusters plus funding for three extra 96-CPU
clusters in the NMRC at UCC. There are 80-CPU P3 and 130-CPU Xeon clusters
and a 4TB disk farm at TCD in Dublin, and a fully immersive VR cave is to be
installed. A 256-CPU cluster will be installed at UCD in Dublin by the end of
2004. There is a 84-CPU cluster at NUIM in Maynooth. There are several small-
scale clusters. There is funding from Science Foundation Ireland (SFI) and the
Higher Education Authority (HEA) for several medium-scale clusters (100-500
CPUs) and two medium-scale data farms in 2004/5.

Whilst the experimental and theoretical science paradigms remain strongly
embedded in Irish science, there is strong growth in the hybrid paradigm, compu-
tational science. Most of this scientific computing is still done on local facilities.
It involves a wide range of application areas, but few truly parallel applications.
Most users develop their codes but use commercial libraries and tools. The refer-
ence architectures for these are a major factor in the choice of HPC architecture,
i.e. most of the deployed architectures are mission-specific.

Currently there is no large-scale facility in Ireland. Until very recently there
was no identified governmental intention to have one. In August 2004, however,
SFI announced that they wished to enhance the high-end computational capabil-
ities of the overall Irish research community by the creation of a National Centre
for High End Computing within the Republic of Ireland. Phase 1 funding has
been approved and Phase 2 funding will follow in 2005. It is very likely that the
resulting centre will include a mix of mission-specific architectures.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 354–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Grid-Ireland Deployment Architecture 355

These limited and mostly mission-specific resources should not be wasted by
being inaccessible to the Grid simply because their architectures are not those
of the reference ports.

1.1 Grid-Ireland

Grid-Ireland provides grid services above the Irish research network, allowing
researchers to share Irish computing and storage resources using a common in-
terface. It also provides for international collaborations by linking Irish sites
into the European grid infrastructures being developed under such EU projects
as EGEE, LCG and CrossGrid. The grid infrastructure is currently based on
LCG2, the common foundation that ensures interoperability between partici-
pating scientific computing centres around the world. Internationally, members
of Grid-Ireland are involved in the EU EGEE, CrossGrid, JetSet and COST 283
iAstro projects, and there are links to the UK GridPP and e-Science programs.
The Grid-Ireland OpsCentre is the EGEE Regional Operations Centre (ROC)
for Ireland.

Grid-Ireland currently encompasses six sites, at TCD, UCC, NUIG, DIAS,
UCD and QUB, with an Operations Centre in TCD. It aims to make Grid
services accessible to an additional eleven Irish third-level institutions in the
near future as a result of a generous donation by Dell Ireland Limited. The Irish
NREN (HEAnet) are substantively assisting in this initiative. Grid-Ireland will
then encompass 17 sites, i.e. the majority of academic institutions in Ireland will
be connected to the national grid.

There are three major national VOs. The first, CosmoGrid, is a collabora-
tive project entitled Grid-enabled computational physics of natural phenomena,
explicitly aimed at inter-institutional and interdisciplinary compute-intensive re-
search in natural physics, with nine participating institutions, led by the Dublin
Institute for Advanced Studies (DIAS). Astrophysics are a key and central el-
ement of the project centred on astrophysical objects ranging from supernova
remnant (with strong collisionless shocks), forming stars (jets and outflows) to
neutron stars (radiative processes) and the sun (the solar transition region). In
addition to those areas, studies on gravitational waves, adaptive optics, mete-
orology (regional climate models), geophysics (full simulation of a digital rock)
and atmospheric physics are being pursued.

The second VO, MarineGrid, is a data-intensive collaboration between Geo-
logical Survey of Ireland, Marine Institute and four Universities (NUIG, UCC,
UCD and UL). The Irish National Sea-bed Survey is taking place at present
through bathymetric mapping of the seabed. Ireland is an island with nine tenths
of its area under water. The seabed survey spans 525,000km2 and currently con-
tains approximately 6TB of data. Detailed knowledge of the seabed topography
with location resolutions of up to 2m will have significant economic implica-
tions on, for example, fishing and mineral resource management. An unexpected
spin-off is exploitation of historically valuable wrecks. The Survey is a valuable
government resource with associated security concerns.



356 B. Coghlan, J. Walsh, and D. O’Callaghan

The third VO, WebCom-G, is investigating an alternative to existing von
Neumann grid execution models, which are not appropriate to their high-latency,
loosely-coupled infrastructure. UCC, TCD, NUIG and QUB are creating a con-
densed graph grid engine that exploits laziness and speculation and is compatible
with and uses traditional grids. There is a depth of interest in Irish computer
science circles about issues of languages, programming models[1] and execution
models[2][3] for heterogenous environments, and this VO is a good example.
Grid-Ireland specifically wishes to support these research directions.

1.2 Homogeneous Core Infrastructure, Heterogenous Resources

There are three further motivations:

(a) To minimize the demand on human resources by minimizing the proportion
of the software that needs to be ported. The simplest component of most
grid software frameworks is that relating to the worker nodes.

(b) To minimize the demand on human resources by maximizing the proportion
of the software that does not need to be ported. Thus all the non-worker
node components should use the reference port, i.e. the core infrastructure
should be homogeneous.

(c) To maximize the availablility of the infrastructure. Grid-Ireland has designed
a transactional deployment system to achieve this[4]. This requires that the
core infrastructure be homogeneous, and also centrally managed.

Thus Homogeneous Core Infrastructure, Heterogenous Resources is a pervasive
motto that encapsulates explicit and implicit principles:

(a) Explicit homogeneous core infrastructure: this principle enables a uniform
dedicated core national grid infrastructure, which supports a uniform ar-
chitecture based on reference ports of the grid software, and thereby frees
resources for maximum focus on the critical activites such as security and
monitoring/information systems. Logically, it allows a uniform control of
the grid infrastructure that guarantees uniform responses to management
actions. It also assures a degree of deterministic grid management. Fur-
thermore it substantially reduces the complexity of the release packaging
and process. Minimizing this complexity implies maximizing the unifor-
mity of the deployed release, i.e. the core infrastructure should be homo-
geneous.

(b) Implicit centralized control via remote management: this principle enables
simpler operations management of the infrastructure. Remote systems man-
agement enables low-level sub-actions to be remotely invoked if required.
It also enables remote recovery actions, e.g. reboot, to be applied in the
case of deadlocks, livelocks, or hung hardware or software. Realistically,
all infrastructure hardware should be remotely manageable to the BIOS
level.



The Grid-Ireland Deployment Architecture 357

Fig. 1. (a) OpsCentre resources (b) TestGrid

(c) Implicit decoupling of grid infrastructure and site management: this princi-
ple enables the infrastructure and sites to be independent. It can encompass
policies, planning, design, deployment, management and administration. In
particular it allows the infrastructure upgrade management to be indepen-
dent of that of the site, and non-reference mission-specific architectures to
be deployed at the site.

Grid-Ireland has been designed with this approach since mid-2001. Funding
was sought and eventually granted, a senior Grid Manager appointed, a Grid Op-
erations Centre established and staffed, infrastructure specified, purchased and
installed, and finally middleware and management tools deployed. We consider
that the use of these principles has been highly beneficial.

The Operations Centre resources are illustrated in Figure 1(a). They include
approximately 20 national servers, 64-CPUs and a 4TB disk farm for the vari-
ous testbeds, and a certification TestGrid. The TestGrid (see Figure 1(b)), which
includes approximately 40 machines and a 4TB disk farm, serves multiple pur-
poses: it implements a fully working replica of the national servers and sites; it
permits experimentation without affecting the national services; it acts as the
testing and validation platform; and it acts as a non-reference porting platform.

Internet

Shared

Cluster 

(16 CPUs)

Shared

Cluster 

(16 CPUs)

SoloVO

Cluster 

(16 CPUs)

TCD

Grid-Ireland

Gateway (x3)

Grid-Ireland

National 

Servers (x20)

TCD Router

Dept. Router

Firewall

Switch

RAID 1

RAID 2

RAID 3

TestGrid

(x40)

CrossGrid

Testbed 

(32 CPUs)

Firewall

Firewall

TCD

Gateway

(x4)

Grid-Ireland

National 

Servers (x8)

DIAS

Gateway 

(x4)

NUIG

Gateway 

(x4)

Queens

Gateway 

(x6)

AIX

IRIX

MacOS X

Athlon

Gateway-in-a-box (x1)

Gateway-in-a-box (x1)

WN Pool 

(x8)



358 B. Coghlan, J. Walsh, and D. O’Callaghan

2 Heterogeneity

Grid-Ireland wished, in the first instance, that the porting of the LCG2 soft-
ware to other platforms would focus on the ability to execute Globus and EDG
jobs on worker nodes, and that replica management, R-GMA and VOMS would
be supported. There was also a desire that MPI, replica management and the
OpenPBS client be provided on each worker node. In some cases Torque might
be required since newer versions of operating systems are not always provided
for in OpenPBS. Also the R-GMA information system producer and consumer
APIs and the VOMS client were required.

In summary we wished to port:

1. VDT
2. MPI
3. OpenPBS or Torque client
4. R-GMA producer and consumer APIs
5. VOMS client

There are a number of on-going issues, but we have successfully ported the
functionality for job submission to Fedora Core 2, IRIX 6.5.14 and 6.5.17m, AIX
5.2L and Red Hat 9. We also plan to do this for Mac OS X v10.3 very soon, and
a number of other platforms if the need arises within Grid-Ireland.

A number of CVS repositories are used to build all the necessary software for a
worker node. The head version of VOMS is obtained from INFN’s own repository.
The whole of LCG2 is extracted using CVS checkouts directly from CERN’s
lcgware repository. The CrossGrid software is obtained by directly copying the
CVS repository to a local repository. Nightly builds are then done from this local
repository. The RAL repository of R-GMA will also need to be added soon, since
LCG2 no longer maintain the most recent version of R-GMA.

Figure 2 shows the status of the build system in November 2004. The results
change quite regularly as new ports are completed.

Fig. 2. Auto-build Results for Worker Nodes

Redhat

OS Type

Redhat

Fedora Core

SGI

Darwin

AIX

Version VDT Basic VOMS RGMA RM

7.3

9.0

2

6.5.14

5.2L

10

RPMS RPMS RPMS RPMS RPMS

RPMS RPMS RPMS RPMS RPMS

RPMS
RPMSRPMSRPMS

RPMS

tarball tarball

tarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarball

Started

Done

To be started

Colour Meaning



The Grid-Ireland Deployment Architecture 359

3 Deployment

As stated above, Grid-Ireland has installed a grid computing infrastructure that
is fully homogeneous at its core. Each of the sites connects via a grid gateway.
This infrastructure is centrally managed from Trinity College Dublin. These
gateways are composed of a set of seven machines: a firewall, a LCFGng install
server, a compute element (CE), a storage element (SE), a user interface machine
(UI), a worker node that is used for gateway tests only, and optionally a network
monitor. All the sites are identically configured. The grid software is initially
based on LCG2, but later will follow the EGEE releases.

As can be seen from Figure 3, the site resources (shown as a cluster of worker
nodes) are outside the domain of the gateway; these resources belong to the
site, and the site is always in charge of their own resources. One of the key
departures from the structures for deployment commonly used in Europe is to
facilitate those resources to be heterogeneous with respect to the gateways. As
explained in Section 2, Grid-Ireland is attempting to provide ported code for
any potential platform that will be used for worker nodes (WNs). The rationale
behind this is described in the early sections of this paper.

The only requirement on the site is that the worker nodes be set up to cater
for data- and computation-intensive tasks by installing the worker-node software
outlined in Section 2 This includes both the Replica Management software from
LCG2 and the various versions of MPICH from CrossGrid. A site submits jobs
via the gateway UI, whilst the gateway CE exports core grid services to the site
and queues job submissions to the site resource management system, and its SE
provides scratch storage for grid jobs. Therefore the gateway is both the client
of the site and vice versa.

Grid-Ireland has specified its gateways to ensure minimal divergence from
standard site configuration, minimal hardware and space costs per site, and
minimal personnel costs per site. The basic technology for this is the use of virtual
machines. Currently there are two physical realisations of this architecture. At
minimum, a generic Grid-Ireland gateway comprises a single physical machine,
a switch, and a UPS unit. The machine runs its own OS plus a number of
virtual machines that appear to be a normal machine both to the host OS
and to external users. The Linux OS and grid services are remotely installed,
upgraded and managed by the Operations Centre, without needing any attention
at the site. The firewall and LCFG server run concurrently on the host operating
system. All other servers are hosted as virtual machines. Eleven such gateways
are presently being prepared for deployment.

For more demanding sites the functionality is spread over four physical ma-
chines, with the firewall, LCFG server, CE and SE running on the host operating
systems. The other servers are hosted as virtual machines: the test WN on the
CE, and the UI and NM on the SE. Six such gateways are already deployed.

Apart from the firewall, all other servers on the gateways are installed via
PXE from the LCFG server. The LCFG server itself is manually installed, but
thereafter it is updated with new releases from the central Grid-Ireland CVS
repository, see Figure 4. It is usual that this is a manual process involving CVS



360 B. Coghlan, J. Walsh, and D. O’Callaghan

Fig. 3. Generic Grid-Ireland Site

Fig. 4. Deployment Process

checkouts. Whilst this takes place the site is essentially in an inconsistent state.
Grid-Ireland, however, have designed an automatic process that is specifically
intended to reduce inconsistency to a minimum.

3.1 Consistency

Let us consider for instance that a new release of some infrastructural grid soft-
ware is incompatible with the previous release, as is often the case. Once a
certain proportion of the sites in a grid infrastructure are no longer consistent
with the new release then the infrastructure as a whole can be considered in-
consistent. Each grid insfrastructure will have its own measures, but in all cases

Level−3 Switch UPS

gridfw

gridinstall

gridgate

gridstore

gridmon

gridui

gridnm network monitor

user entry point

site temporary storage

site entry point

boot server for others

protects gateway and site

test worker node

CVS Repository/Autobuild

other machines

gridinstall

other machines

gridinstall

nightly builds

transactional 

update



The Grid-Ireland Deployment Architecture 361

there is a threshold below which proper operation is no longer considered to ex-
ist. The infrastructure is no longer available. Thus availability is directly related
to consistency. An inconsistent infrastructure is unavailable.

The average time a site waits before it becomes consistent is called the mean
time to consistency MTTC. The interval between releases MTBR is quite inde-
pendent of the MTTC. The MTTC is a deployment delay determined by the
behaviour of the deployers, whilst the MTBR is dependent upon the behaviour
of developers.

3.2 The Need for Transactionality

Maximizing availability means maximizing the proportion of time that the infras-
tructure is entirely consistent. This requires either the the time between releases
MTBR to be maximized or the MTTC to be minimized. The MTBR is beyond
the control of those who manage the infrastructure. On the other hand, if the
MTTC can be minimized to a single, short action across the entire infrastructure
then the availability will indeed be maximized.

However, an upgrade to a new release may or may not be a short operation.
To enable the upgrade to become a short event the upgrade process must be
split into a variable-duration prepare phase and a short-duration upgrade phase,
that is, a two-phase commit. Later in this paper we will describe how this can
be achieved.

If the entire infrastructure is to be consistent after the upgrade, then the
two-phase commit must succeed at all sites. Even if it fails at just one site, the
upgrade must be aborted. Of course this may be done in a variety of ways, but
from the infrastructure managers’ viewpoint the most ideal scenario would be
that if the upgrade is aborted the infrastructure should be in the same state as
it was before the upgrade was attempted, that is, the upgrade process should
appear to be an atomic action that either succeeds or fails.

Very few upgrades will comprise single actions. Most will be composed from
multiple subactions. For such an upgrade to appear as an atomic action requires
that it exhibits transactional behaviour, that all subactions succeed or all fail,
so that the infrastructure is never left in an undefined state.

Thus we can see that to maximize availability requires that an upgrade be
implemented as a two-phase transaction.

3.3 Transactional Deployment System

We have implemented transactional deployment using three components[4]. The
first is a repository server, which hosts both the software to be deployed and
the Transactional Deployment Service (TDS) logic. Secondly, there is a user
interface, which has been implemented as a PHP page residing on an Apache
web server. Finally there are the install servers at the sites that we are deploying
to. These servers hold configuration data and a local copy of software (RPMs)
that are used by LCFGng to maintain the configuration of the client nodes at the
site. It is the state of these managed nodes that we are trying to keep consistent.



362 B. Coghlan, J. Walsh, and D. O’Callaghan

Table 1. Example MTBR, MTTC and availability for transactional deployment

Estimated MTBR 163 hours
Estimated MTTC 17.5 minutes

Estimated availability 99.82%

Fig. 5. Transactional Deployment System GUI

It will be a while before statistically significant data is available for transac-
tional deployment to a real grid infrastructure such as Grid-Ireland. The MTBR,
i.e. the time between releases, is the same with or without transactional deploy-
ment. We have estimated the worst-case MTTC as 17.5 minutes, and if we
assume the CrossGrid production testbed MTBR by way of example, then the
resulting worst-case infrastructure availability is as shown in Table 1.

4 Conclusions

Grid-Ireland is unusual in its integrated infrastructure, and the stress that is laid
on homogeneity of its core. The principles behind this have been described above.
The major benefit is the decoupling of site details from the core infrastructure,
and the resulting freedom for heterogeneity of site resources.



The Grid-Ireland Deployment Architecture 363

We have described our efforts to support this heterogeneity by porting to
non-reference platforms in a systematic way, with nightly autobuilding. This has
allowed us to begin a most interesting set of benchmarking and heterogeneity
experiments involving all of these platforms.

It is clear that the infrastructure has greatly enhanced availability with trans-
actional deployment. However, the most important benefit of the transactional
deployment system is the ease it brings to deployment. Transactional deploy-
ment allows for an automated totally-repeatable push-button upgrade process
(see Figure 5), with no possibility of operator error. This is a major bonus when
employing inexperienced staff to maintain the grid infrastructure.

Acknowledgements

We would like to thank Enterprise Ireland, the Higher Education Authority,
Science Foundation Ireland and the EU for funding this effort. We gratefully
thank DIAS for the SGI machine they have loaned to us for the IRIX port,
and IBM and Dell for sponsoring us with machines to perform ports to their
platforms. Most of all we would like to thank those at INFN and CERN for all
their help in porting to each platform.

References

1. Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with mpc.
Parallel Comput. 28 (2002) 1369–1407

2. Ryan, J.P., Coghlan, B.A.: Smg: Shared memory for grids. In: The 16 th IASTED
International Conference on Parallel and Distributed Computing and Systems, Cam-
bridge, MA, USA (2004)

3. Morrison, J.P.: Condensed Graphs: Unifying Availability-Driven, Coercion-Driven,
and Control-Driven Computing. PhD thesis, Technische Universiteit Eindhoven
(1996)

4. Coghlan, B., , Walsh, J., Quigley, G., O’Callaghan, D., Childs, S., Kenny, E.: Prin-
ciples of transactional grid deployment. European Grid Conference (2005)



UNICORE as Uniform Grid Environment for
Life Sciences

Krzysztof Benedyczak1, Micha�l Wroński1, Aleksander Nowiński2,
Krzysztof S. Nowiński2, Jaros�law Wypychowski2, and Piotr Ba�la12

1 Interdisciplinary Center for Mathematical,
and Computational Modelling,

Warsaw University,
Pawinskiego 5a, 02-106 Warsaw, Poland

2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University,

Chopina 12/18, 87-100 Toruń, Poland

Abstract. In this paper we present UNICORE middleware as uniform
framework for life sciences applications. The UNICORE provides envi-
ronment for integration of the different tasks as simulations, database
access or data acquition. We have developed number of application spe-
cific interfaces which can substitute existing visualization packages. The
significant advantage of this solution is its modularity which makes de-
velopment of new interfaces fast and easy. The UNICORE middleware
allows user use these components in the grid environment by providing
access to the distributed geographically resources.

1 Introduction

Life sciences become one of the most rapidly growing research fields. Molecular
biology and quantum chemistry traditionally provide large number of nontrivial,
important and computationally intensive problems. Recently, development of the
experimental techniques provided research community with the large number of
sequence or micro-array data. Because of the complexity of the studied systems
the significant computational effort must be taken to provide scientific insight.
Lack of the realistic model of the studied systems makes this tasks very diffi-
cult. Another characteristic feature of the life sciences research is large number
of applications, tools and standards involved. The user has to access different
databases, transform data and use number of applications which requires com-
plicated workflow and dataflow management.

The users are forced to search for computational systems who can carry out
simulations and, which is sometimes even more important, are available to the
users. They have to move large amount of data from local systems to the remote
one and vice versa. Unfortunately, the resources such as computational servers,
databases and data acquition systems are not available at the user workstation.
The users sharing external as well as departmental or even local computers are

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 364–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



UNICORE as Uniform Grid Environment for Life Sciences 365

faced with the different site polices and practices such as different security, differ-
ent user identification, different priorities or scheduling mechanisms and so on.

The growing group of the researches in the life sciences research very often has
limited background in the computational chemistry and biology and is computer
experience is limited to the use of the desktops. The users, especially ones in the
life sciences research, expect intuitive tools which are easy to learn and use. Such
tools cannot be just another application, but rather should allow for integration
of existing tools and programs within one uniform framework.

Recent advances in the computer technology, especially grid tools make them
good candidate for development of the uniform interface to distributed resources
[1]. Computational grids enable sharing a wide variety of geographically dis-
tributed resources and allow selection and aggregation of them across multiple
organizations for solving large scale computational and data intensive problems
in chemistry and biology. This includes access to various databases as well as
unique experimental facilities. In order to attract users, grid interfaces must be
easy to install, simple to use and able to work with different operating system
and hardware platforms.

2 Grid Middleware

Grid middleware is designed to provide access to remote high performance re-
sources. However most of the development goes to the design and production
of general tools which can be used in different situations. The existing solutions
like Globus [2], Legion [3], LSF [4] address most important issues. Unfortunately,
these tools require an advanced computer skills for the installation and usage.
Moreover, in order to provide required functionality user application must be
modified, sometimes significantly. This is not possible for commercial or legacy
codes which cannot be easily adopted by the user, however, such programs are
most widely used.

In order to overcome these disadvantages, the web interfaces are being de-
veloped. This approach is represented by the portals dedicated to the particular
software package where user can prepare job, submit and control it. A good
example is BioCore [5] which additionally provides user with quite advanced
collaborative environment.

One should note, that advantages of the existing prototypes of the web based
interfaces to the grid middleware resulted in the proposition of the Open Grid
Software Architecture (OGSA) [6] which, amongst other advantages, should al-
low for much easier development of the users interfaces.

This approach is presented by the European DataGrid [7] which provides user
with the web access to the selected applications in the area of bioinformatics or
image processing. User obtains web interface to the distributed computational
resources and can prepare and submit job. Results are transferred to the users
workstation with the web browser and can be saved for further processing. The
underlying grid middleware which provides access to the computational resources
is based on the Globus Toolkit.



366 K. Benedyczak et al.

Different approach motivated development of the UNICORE [8] middleware.
Compared to other tools UNICORE provides access top the various types of
resources, has advanced user interface, is more flexible and allows for much
easier integration with external applications. The details of the UNICORE can
be found elsewhere [9] and we will summarize here its most important features
and present recent achievements and extensions.

2.1 UNICORE Middleware

The UNICORE architecture is based, like other grid middleware, on the three tier
model. It consists of the user, server and target system tier (see Fig. 1). The user
tier consists of the graphical user interface, the UNICORE client, written as Java
application. It offers the functions to prepare and control jobs and to set up and
maintain the user’s security environment. The UNICORE job can be build from
multiple parts which can be executed asynchronously or dependently on different
systems at different UNICORE sites. Within the UNICORE environment user
has a comfortable way to use distributed computing resources without having
to learn about a site or system specifics.

The UNICORE security is based on the Secure Socket Layer (SSL) protocol
and the X.509 certificates. SSL uses public key cryptography to establish con-
nections between client and server. Therefore each component of the UNICORE
infrastructure has a public-private key pair with the public part known by the
others. The keys have to be certified by a certification authority.

The user is authenticated by the gateway when presenting certificate. The
user certificate is translated to the user login under which all tasks are executed
on the target system. The user can use number of certificates to access different
remote resources. The authentication scheme supports also project concept and
jobs can be executed using different projects with single login. The UNICORE
client provides users with tools for certificate management such as certificate
signature request generation, keystroke editor or public key export.

The important advantage of the UNICORE architecture is an uniform access
to the resources, independent of the underlying middleware. Each Virtual Site
(Vsite) which is a single system or a cluster which shares the same user ids and file
space is controlled by the Network Job Supervisor (NJS). It maps the UNICORE
user id to the local user id at the target system, extracts and translates the jobs
into real batch jobs, sends job-groups to be executed at the other sites to the
corresponding gateway, provides local resource information to the gateway and
takes care of the file transfer.

Site specific settings such as different paths to the particular application, local
or system specific settings are introduced to the UNICORE through the Incarna-
tion DataBase (IDB) entries which describe details of the local
installation.

The UNICORE infrastructure allows also for registration of the applications
available on the target machine through SOFTWARE RESOURCE entries in the IDB.
The UNICORE client has build-in capabilities to check software resource en-
tries on the particular target systems and use it for job construction. Described



UNICORE as Uniform Grid Environment for Life Sciences 367

Fig. 1. The scheme of the UNICORE system. IDB denotes Incarnation DataBase, TSI
- Target System Infrastructure and UUDB - UNICORE User DataBase

mechanism is especially useful for the pre-installed applications maintained by
the system administrators.

The UNICORE has been adopted to the number of the target systems queu-
ing software such as PBS, NQE, LSF, Load Level and Sun Grid Engine. Imple-
mentation to the other systems is relatively easily and requires only modifica-
tions of the target system infrastructure. User can also use UNICORE Client
to submit job to the target system which provides resources with the Globus
Toolkit.

The UNICORE client provides the plugin mechanism which becomes very
attractive and efficient method for integration of applications with grid middle-
ware. The plugin is written in Java and is loaded to the UNICORE client during
start, or on request. Once it is available in the client, in addition to the standard
futures such as preparation of the script job, user gets access to the menu which
allows preparation of the application specific input and job files.

UNICORE fits to the Open Grid Software Architecture (OGSA) and pro-
vides interoperability with other existing grid middleware, in particular Globus
Toolkit.



368 K. Benedyczak et al.

3 UNICORE Workflow Management

The UNICORE middleware has build in advanced workflow management. The
user can build job in the form of an oriented acyclic graph, which covers ma-
jority of the user cases. Each node in the graph is represented by a single task
(command task, script task or plugin) or a subgroup. Since the workflow build
in the form of pure acyclic graph has some limitations, the UNICORE allows for
conditional execution and loops. The conditional execution allows to switch to
the different execution tree based on the logical conditions. The condition can be
of different kind, for example return code value, test if particular file exists and
has particular permissions. The decision can be made also based on the actual
timestamp. Loop execution allows for sequential execution of the group of tasks
given number of times or as long as execution conditions, similar to one used in
the conditional execution, will be satisfy. User can control loop execution and
within loop has access to the shell variables such as iteration index or loop length
and user can use them for the parametric execution.

The UNICORE workflow management is relatively simple and intuitive and
covers most important job scenarios. Significant advantage of this solution is
integrated workflow editor which allows for graphical construction of the work-
flow. The UNICORE is oriented on the job execution, therefore data transfer
associated with the workflow must be designed by the user. This possibility is
especially important in the life sciences applications because user has to deal
with number of different formats and data types and the only existing solution
is utilization of filters.

The created workflow can be stored as Abstract Job Object (AJO) which
is used as internal UNICORE format, or as the XML file. In the later case no
standard job description schema is available and UNICORE specific tags are
used. The standardized tag set could be used once it will be proposed.

The most important advantage of the UNICORE workflow model is possibil-
ity to use applications or groups of applications as single node in the workflow
graph. The number of existing plugins makes such node easy to create and mod-
ify. User can also define required software resources for each node separately, as
well as choose different target system for execution.

Number of AJO templates have been developed for most popular biomolec-
ular applications including Gaussian98 [10], Gromos96 [11], Amber [12] and
Charmm [13]. The templates can be easily modified by the user in the part
including application input, exactly as it is done for the batch jobs. Significant
difference comes from the fact using UNICORE middleware scripts can be run
on any target system without modifications taking advantage of the environment
variables defined in the IDB. The job configuration includes information on the
input files which has to be transferred form the user workstation to the system
where particular application will be executed as well as information on the out-
put files which must be transferred back. Once this information is provided by
the user all required file transfers will be performed automatically during job
submission or retrieval of the results.



UNICORE as Uniform Grid Environment for Life Sciences 369

Currently, in addition to the standard script and command tasks, user can use
plugins for job preparation for the most popular quantum chemistry codes such
as Gaussian, Carr-Parrinello Molecular Dynamics [14], molecular dynamics codes
such as Amber and Gromos or for the sequence comparison code BLAST [9, 15].

The dedicated plugin for monitoring of the execution of the running job is
available. The plugin prepares service job which based on the provided UNI-
CORE job number enters this job working directory on the target system and
gets access to the generated files. Selected files can be retrieved to the users
workstation as they exists in the working directory or can be filtered to transfer
only the most significant information. This plugin provides user with typical fil-
ters such as retrieval of the last lines of selected file, but more advanced filters
can be written. The postprocessed file is transferred to the UNICORE client and
can be displayed in a text window or used for the visualization.

We have also developed extended visualization plugins which can be used
for post processing including 2D and 3D visualization of the molecular data.
[16]. The range of applications integrated with the UNICORE environment has
been extended by us with access to the databases both available through web
interface or accessed directly. The another developed extension is access to the
remote experimental facilities. Both solutions are described below.

4 Database Access

An access to the remote databases plays important role in the life sciences. Cur-
rently most of the databases provide web interfaces to query and submit data.
The good example of such databases is protein structural database - PDB [17]
and sequence database ENTREZ at NCBI [18]. We have develop interfaces to
these database in the form of the UNICORE plugin. This allowed us to inte-
grate database search with the UNICORE environment and use them as part
of the workflow. While plugin is started user can build database query using
dedicated interface: simple, based on the keyword search, or advanced one with
full functionality provided by the database.

The query is submitted to the databases web interface and result is returned
to the UNICORE client. The search results can be browsed, visualized or saved
for later processing. Since copies of both databases are available at different
locations, the plugin checks automatically which mirror is currently available
and for the user query the one which provides answer in the shortest time is
used. We have decided to use existing visualization packages because users are
used to them and there is no need to develop just another visualization tool. As
result we were able to integrate UNICORE plugins with packages such as JMol,
JMV or RasMol/RasWin as well as any other application available on the Client
workstation.

Currently the HTTP protocol is used to communicate with the database
server, but it can be replaced by more advanced one such as web services.

The another communication scenario is implemented by the DBAccess Plugin
which allows for access to the SQL databases from the UNICORE Client. The



370 K. Benedyczak et al.

Fig. 2. The DBAccess plugin loaded into UNICORE Client. The outcome of the
database query job is presented

access is realized with the help of the dedicated scripts run directly on the
database serwer. The Unicore middleware provides secure methods for the access
authorization and user authentication therefore the server can be separated from
the internet by the firewalls and not directly accessible. Currently the DBAccess
Plugin it is able to connect to PostgreSQL and MySQL - the most popular free
databases. The interface to another database can be easily developed and added
to the existing plugin.

With the help of DBAccess Plugin user can prepare database query in the
dedicated window and than submit it to the target system. The results are
retrived and displayed in the UNICORE Client window in the text form or
using XML (see. Fig. 2). In the later case the user obtains number of tools to
order and search results within table. The plugin can be also used to store data
in the database and can be used as part of the job workflow.

The DBAccess Plugin offers also a possibility to communicate with SDSC
Storage Resource Broker [19] providing user-friendly interface. In an easy way
user can specify host, port, database, query etc. Query results can be stored as
XML for later processing. Queries can be predefined in the Incarnation Database
(IDB) as well as in the plugin defaults file. User can use queries prepared by
the Vsite administrator while advanced user may use his own query to retrieve
data form the database. In particular case the perl bindings to the SRB has
been developed, but other mechanisms like developed recently SRB web services
interface can be used.

5 Access to the Remote Equipment

The resources available on the Grid are not limited to the computational ones.
As it was stated before, life sciences research uses large amount of data obtained



UNICORE as Uniform Grid Environment for Life Sciences 371

Fig. 3. An output from the measurement plugin

from the various experimental facilities. Therefore an integration of the various
data sources with the computational and database systems is important.

To solve this problem, we have used UNICORE middleware to access remote
experimental setups. In this case the interactive and semi-interactive access to
the resources must be provided. Using dedicated extensions to the UNICORE
Client user can control remote device and set up experimental conditions. The
user can also use dedicated plugin to set up experiment and submit it to the
target site as part of the job, in the exactly the same way as computational task.
User also benefits from the UNCIORE authentication and authorization which
secures access to the resources.

The results can be retrieved to the client workstation and postprocessed
using visualization plugins within UNICORE Client or using other applications
available at the client workstation. The described above plugins can be used to
store results automatically in the database for further processing.

Developed plugin benefits from the interactive access functionality in the
UNICORE middleware. The equipment control application is installed at the
target system and it is registered in the IDB. The plugin constructs jobs for this
application and retrieves output as presented in the Fig. 3. The plugin technol-
ogy allows for immediate integration of the access to the measurement devices



372 K. Benedyczak et al.

with the users workflow and combine measurements with the simulations or data
processing. The UNICORE allows also for interactive access to the remote in-
struments which can be used for the experiment set up and various adjustments.

This technology has been used to access devices connected to the target
systems with serial or ethernet port, but interface to the other communication
mechanism and protocols can be easily developed.

6 Conclusions

The UNICORE software was used as framework providing uniform access to
the number of resources and applications important for life sciences such as
computational chemistry and molecular biology. This includes seamless access
to the computational resources, databases as well as experimental devices. The
UNICORE software was used to establish European computational grid - EU-
ROGRID [9, 20]. BioGRID is application oriented grid which adopt EURO-
GRID infrastructure to the specific area, namely molecular biology and quantum
chemistry. Examples presented here demonstrates capabilities of the UNICORE
middleware and shows directions for further development. Modular architecture
based on the plugin concept and demonstrated visualization capabilities open
number of possible applications in the different areas.

One should note, that UNICORE middleware can be used also together with
other grid middleware, especially can be used as job preparation and submission
tool for Globus.

Acknowledgements. This work is supported by European Commission under
IST grants EUROGRID (IST-1999-20247), GRIP (IST-2001-32257) and Uni-
Grids (No. 004279). The finacial support of State Comeetee for Scientific Re-
search is also acknowledged.

References

1. Kesselman, C., Foster, I., The Grid: Blueprint for a Future Computing Infrastruc-
ture. Morgan Kaufman Publishers, USA, 1999.

2. Foster, I., Kesselman, C., ”Globus: A metacomputing infrastructure toolkit,” Int.
J. Scientific Applications. 11, 2 pp. 115–128, 1997.

3. Legion. University of Virginia. Charlottesville. VA USA Http://legion.virginia.edu.
4. LSF. Platform Computing. http://www.platform.com.
5. Bhandarkar, M., Budescu, G., Humphrey, W. F., Izaguirre, J. A., Izrailev, S., Kal,

L. V., Kosztin, D., Molnar, F., Phillips, L. C., Schulten, K., ”Biocore: A collabo-
ratory for structural biology,” in Proceedings of the SCS International Conference
on Web-Based Modeling and Simulation. (Bruzzone, A. G., Uchrmacher, A., Page,
E. H. ed.) San Francisco, California, 1999.

6. Talia, D., ”The Open Grid Services Architecture: where the grid meets the Web,”
IEEE Internet Computing, 6, 6 pp. 67–71, 2002.

7. DataGrid WP10 (HealthGrid) http://edg-wp10.healthgrid.org/
8. UNICORE. Unicore Forum. http://www.unicore.org.



UNICORE as Uniform Grid Environment for Life Sciences 373

9. Ba�la, P., Lesyng, B. Erwin, D., EUROGRID - European Computational Grid
Testbed. J. Parallel and Distrib. Comp. 63, 5 pp. 590–596, 2003

10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.
Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Mar-
tin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challa-
combe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gon-
zalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98. 2001.

11. Van Gunsteren, W., Berendsen, H. J. C., GROMOS (Groningen Molecular Sim-
ulation Computer Program Package). Biomos, Laboratory of Physical Chemistry,
ETH Zentrum, Zurich, 1996.

12. Kollman, P., AMBER (Assisted Model Building with Energy Refinement). Univer-
sity of California, San Francisco, USA, 2001.

13. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S.,
Karplus. M., ”A program for macromolecular energy, minimization, and dynamics
calculations,” J. Comp. Chem. 4, pp. 187–217, 1983.

14. CPMD consortium. http://www.cpmd.org.
15. Wypychowski J., Pytliński J., Skorwider �L., Benedyczak K., Wroński M., Ba�la Life

Sciences Grid in EUROGRID and GRIP projects. New Generation Computing 22,
2, pp. 147–156, 2004

16. Ba�la P., Benedyczak K., Nowiński A., Nowiński K. S., Wypychowski J. Interactive
Visualization for the UNICORE Grid Environment In: ICCS2004(Lecture Notes
in Computer Science 1332) Eds. M. Bubak, G. D. v. Albada, P. M. A. Sloot, J.
Dongarra, J. Springer-Verlag 2004 pp. 101-108

17. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N., Bourne. P. E., ”The Protein Data Bank,” Nucleic Acids Re-
search. 28 pp. 235-242, 2000.

18. http://www.ncbi.nlm.nih.gov/entrez
19. M. Wan, A. Rajasekar, R. Moore, P. Andrews A simple mass storage system for

the SRB data grid. Proceedings 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies. IEEE Comput. Soc. 2003, pp.20-5. Los
Alamitos, CA, USA

20. Pytliński, J., Skorwider, �L., Ba�la, P., Nazaruk, M., Alessandrini, V., Girou, D.,
Grasseau, G., Erwin, D., Mallmann, D., MacLaren, J., Brooke, J., ”BioGRID -
An European grid for molecular biology,” Proceedings 11th IEEE International
Symposium on Distributed Computig, IEEE Comput. Soc. 2002, p. 412

21. Pytliński, J.,Skorwider, �L., Huber, V., Bednarczyk, K., Ba�la, P., ”UNICORE - An
Uniform Platform for Chemistry on the Grid,” Journal of Computational Methods
in Science and Engineering., 2, 3s-4s pp. 369–376, 2002



MyGridFTP: A Zero-Deployment GridFTP
Client Using the .NET Framework

Arumugam Paventhan and Kenji Takeda

School of Engineering Sciences, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

{povs, ktakeda}@soton.ac.uk

Abstract. Large-scale scientific and engineering applications are in-
creasingly being hosted as Grid services using Globus middleware com-
plying to the Open Grid Services Architecture (OGSA) framework. In
order for users to fully embrace Grid applications, seamless access to Grid
services is required. In working towards this aim we present the design
and implementation of Grid clients that utilise the language-independent
Microsoft .NET Framework that can be deployed without software pre-
requisites (zero-deployment). We demonstrate runtime security authenti-
cation interoperability between Microsoft Windows-native SSPI and the
Globus GSSAPI, with full proxy support. This is demonstrated with a
.NET GridFTP client, called MyGridFTP. We believe that this is one
of the first implementations to use Windows native security infrastruc-
ture to interoperate with the Grid Security Infrastructure in Globus.
This paves the way for language-independent .NET clients to be writ-
ten that are fully interoperable with Globus-based Grid services. This
work is part of a larger experimental aerodynamics Wind Tunnel Grid
project, which has significant requirements for data management from
acquisition, collating, processing, analysis and visualisation.

1 Introduction

The data acquired in scientific and engineering experiments must be stored,
processed, and visualized effectively in order for users to be able to analyze the
results in a coherent fashion. The resources utilized in these steps are often dis-
tributed across the network, at both inter-organization and intra-organization
level. Grid technology can help build a coordinated resource sharing environ-
ment [1] in this scenario.

Grid clients developed using client side Application Programming Interface
(API) allow application users to consume Grid Services. [2] demonstrates how
the Java commodity technology can be used to access Grid services and envis-
ages Commodity Grid (CoG) Kit on other platforms. There are two possible
approaches to developing Grid clients:Client-side application and Browser or
Web-based application. The advantage of client side applications is a rich user
experience and access to the local file system. The disadvantage is that the neces-
sary software and runtime environment must be installed and configured before

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 374–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



MyGridFTP: A Zero-Deployment GridFTP Client 375

it can start on the client machine. Any version change at the server side could
affect the client, often requiring installation of a new version of the client. The
advantage of Web-based applications is that the up-to-date version can be in-
voked without having to worry about any installation steps on the part of user.
The disadvantages are that it will have no access to the local file system - a
problem, for instance, with client initiated file transfers and accessing a local
X.509 certificate store for GSSAPI authentication - and it is not configurable to
connect to an arbitrary IP Address/Port number. For example, GridFTP uti-
lizes port 2811, supports certificate based authentication and may be running
on a server other than the Web server front-ending the Grid service. Also, in the
case of third party GridFTP transfers the client needs to make control channel
connections to multiple servers.

The .NET framework allows another possible approach to the above problem
when we assume Windows client [3]. Since the .NET runtime environment and
SSPI are integral part of Windows, a .NET based Grid client can be downloaded
over HTTP similar to HTML document and run as a client-side application
(Fig.1). In this way, it does not require client-side installation or configuration
steps combining the advantages of both the client-side application and web-based
application. The first time download is cached on the client machine for subse-
quent invocations and can be configured to only download again when there is
a version change. The technology is comparable to Java Web Start. The advan-
tages of zero-deployment using .NET include the ability to leverage rich client
capabilities such as highly-interactive user interface; a simple user interaction
does not have to take a round-trip for response; access to local filesystem for
data transfer services; and ability to make network connections to any server.

Fig. 1. Zero-deployment architecture

This work is part of a project to develop a Wind Tunnel Grid system aims at
consolidating the workflow process for aerodynamics test engineers and scientists
in test planning, data acquisition, processing, analysis, visualization, data man-
agement and data mining. The raw data from the Wind Tunnel experiments are



376 A. Paventhan and K. Takeda

stored as flat files and its associated metadata are stored in Relational Database
Management System (RDBMS). Authorized users are allowed to access the func-
tionalities exposed as a set of Grid/Web services.

In the following sections we enlist the Wind Tunnel Grid requirements in gen-
eral and .NET managed GridFTP client MyGridFTP in particular and describe
its implementation details.

2 Wind Tunnel Experiments and Grid-Specific
Requirements

The School of Engineering Sciences at the University of Southampton has a
number of small and large wind tunnel facilities that are used for teaching,
research and industrial applications, such as Formula One racing car, aircraft
and high-performance yacht design.

A variety of measurement systems, such as particle image velocimetry (PIV),
pressure transducers, microphones, video, digital photographs for flow visual-
isation and laser doppler (LDA) and hot-wire anemometry (HWA) are used.
These require a disparate array of software, running on many standalone hard-
ware systems. The data acquired using these systems varies in format, volume
and processing requirements. The raw data is in a number of different flat file
formats, typically proprietary binary formats and text files. Processing the data
is performed using commercial software, mostly provided by the data acquisi-
tion hardware vendor, spreadsheets, user-written C and FORTRAN programs
and Matlab scripts. Issues that arise from this arrangement include training,
support, data compatibility, data access and analysis, and backup.

In order to improve the overall workflow efficiency a Wind Tunnel Grid sys-
tem is being developed (Fig.2). This will allow experimental data to be managed,

Fig. 2. Wind Tunnel Grid



MyGridFTP: A Zero-Deployment GridFTP Client 377

stored and analysed in an RDBMS. For a given project users spread across mul-
tiple sites may perform complementary experiments, and use each other’s com-
pute resources for data processing and analysis. In order to provide seamless
user access to the system, easy to use, lightweight client software is a major
requirement. Typical users of the system include experienced aerodynamics en-
gineers and scientists, undergraduate and postgraduate students, and visiting
staff. Extensibility, so that additional data acquisition systems and analysis al-
gorithms/software can be integrated into the system, is also required.

As a first step, the system should provide Globus GridFTP service to users
for their data management. Data generated through wind tunnel experiments
can be managed via the Wind Tunnel Grid portal from any .NET-enabled laptop
or desktop on the network, without any client-side installations.

3 MyGridFTP Requirements

The major requirement of MyGridFTP is to provide GridFTP file transfer fea-
tures including X.509 certificate based GSSAPI authentication. User should be
able to invoke MyGridFTP from the Wind Tunnel Grid portal. This gives users
the flexibility of transferring data files from any network location using their lap-
top or any desktop without having to install any software. MyGridFTP must also
provide APIs for the development of custom clients supporting zero-deployment.
Users should have options to configure GridFTP features - parallelism, striping,
TCP Buffer size etc. From the project specific metadata available as part of the
Wind Tunnel Grid system MyGridFTP can provide the user with an application
specific automatic upload option. It means that the user does not have to select
individual files for transfer, rather they simply need to select the folder and files
are selected for transfer automatically. The graphical user interface must allow
remote directory browsing of user’s project space.

4 MyGridFTP Implementation

MyGridFTP is implemented using the Microsoft .NET runtime environment,
as it enables application deployment from a Web location and rich client capa-
bilites. It consists of GridFTP client APIs, a security module and graphical user
interfaces. GridFTP client APIs include calls supporting features that are part
of GridFTP extensions [4]. The security module uses SSPI and CryptoAPI1, re-
spectively to mutually authenticate with the GridFTP server and generate proxy
certificates. MyGridFTP is hosted as part of the data transfer services in Wind
Tunnel Grid Portal. The Wind Tunnel Grid Portal allows users to log into the
system, create projects, sub-projects and test-cases, and upload raw data files
from experiments. When the user clicks on the MyGridFTP link the .NET ex-
ecutable is automatically downloaded and run on the local machine supporting

1 Microsoft Cryptographic Service Provider functions.



378 A. Paventhan and K. Takeda

GSSAPI authentication, Globus Proxies and GridFTP data transfer features.
The following sections elaborate the implementation with technical details.

4.1 Security

Grid security is crucial for authentication, authorization and delegation. The
Generic Security Services Application Programming Interface (GSSAPI) [5] de-
fines a portable API for client-server authentication. At the server side, Grid
Security Infrastructure (GSI) is implemented using GSSAPI and Grid forum
recommended extensions [6]. The GSI Message specification [7] defines three
types of GSI messages exchanged between client and server as shown in Table 1.
During Context-establishment, the MyGridFTP client uses SSPI to exchange
SSLv3 handshake messages for mutual authentication with the GridFTP server.
The client can delegate its credentials to server by sending a delegation flag. The
server responds by sending a PKCS10 certificate request containing a valid pub-
lic key and proxy certificate extension. A new proxy certificate with full/limited
proxy credential is created, DER encoded and signed using CryptoAPI based on
the Proxy Certificate Profile [8]. The Windows environment provides each user
a personal ”MY” store to manage user’s X.509 certificates.

4.2 Runtime Environment

The .NET Framework consists of Common Language Runtime (CLR) and Frame-
work Class Library (FCL). The CLR operates on assemblies which is a logical
grouping of one or more managed modules or resource files. The assembly is de-
fined as the smallest unit of reuse, versioning and security. Assemblies can consist
of types implemented in different programming languages. The CLR is discussed
and compared with the Java Virtual Machine (JVM) for multi-language support
in [9]. The .NET development environment compiles high-level language code
into Intermediate Language (IL). The CLR’s JIT (just-in-time) compiler con-
verts IL into CPU instructions at runtime. More details on architecture of .NET
platform, about managed and unmanaged code can be found in [10].

MyGridFTP consists of three assemblies: the security module written in
C++ for GSSAPI authentication and delegation of user credentials; GridFTP

Table 1. MyGridFTP Mutual authentication, Delegation and Message security

GSI Message Phase MyGridFTP Client SSLv3 Message Type GridFTP Server

Context Establishment AcquireCredentialHandle gss acquire cred
InitializeSecurityContext ⇔Client-Server Hello gss accept sec context
called until ⇐ Server Certificate called until
’Finished’ ⇐ Certificate Request ’Finished’
(implying successful ⇒ Client Certificate (implying successful
authentication) ⇒ Client Key Exchange authentication)

⇒ Certificate Verify
⇔ ChangeCipherSpec
⇔ Finished

Delegation ⇒ Delegation Flag ⇒ ApplicationData gss accept delegation
⇐ PKCS10 certificate request ⇐ ApplicationData
⇒ Proxy Certificate Chain ⇒ ApplicationData

Application-specific EncryptMessage ⇒ ApplicationData gss unwrap
DecryptMessage ⇐ ApplicationData gss wrap

⇔ Both client and server exchange, ⇐ Server to client message, ⇒ Client to server message



MyGridFTP: A Zero-Deployment GridFTP Client 379

client classes written in C#; and graphical user interfaces written C#. The se-
curity assembly uses interoperability services available in the .NET framework
to invoke services available as part of SSPI and CryptoAPI. SSPI (Secur32.dll)
and CryptoAPI (Crypt32.dll) are currently available as unmanaged implemen-
tations in Windows, but it is envisaged that these will be available as fully
managed implementations in due course. Interoperability services available in
the System.Runtime.InteropServices namespace in FCL expose mechanisms for man-
aged code to call out to unmanaged functions contained in Dynamic Link Li-
braries (DLL). The user requires to make either the MyGridFTP assembly or
the MyGridFTP download site as trusted by using .NET Framework configura-
tion wizard, so that MyGridFTP client will have read/write access to the local
file system.

4.3 Web Server Description

The Wind Tunnel Grid Portal consists of set of Active Server Pages (ASP.NET)
web forms (HTML pages) and associated processing logic known as code-behind
files written in C#. It is hosted using Internet Information Services (IIS) under
Microsoft Windows Server 2003. The code-behind files instantiate the data access
layer classes for accessing project metadata stored in the RDBMS (SQL server
2000). Some of the Wind Tunnel Grid metadata tables include UserAccounts,
Projects and TestCases.

The application specific Testcases metadata vary depending on the Wind
Tunnel experiment. The Testcases ASP.NET web page has the link for My-
GridFTP, as shown in Fig.3. When the user clicks on the link the MyGridFTP
executable is downloaded and runs on the client machine for GridFTP file trans-
fer. Since the number and names of files to be transferred can be determined
based on the Testcases metadata available, users can opt for an automatic data
transfer option. In auto mode the files are transferred automatically; based on
the direction of data transfer the user would select an upload folder or down-
load folder. The user experience is seamless, in that they are not aware that a
separate rich client application has been downloaded, installed and run.

4.4 GridFTP Server Configurations

The GridFTP server component part of Globus Toolkit 2.4 is configured on a
Linux platform. It runs as an inetd network service on port 2811. Since the
UserAccounts metadata table holds the home directory information, the system
administrator has the flexibility of mapping multiple Wind Tunnel Grid users to
the same unix login based on projects or user roles. The /etc/grid-security/grid-
mapfile below shows a sample authorization entries.

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=Paventhan” wtg

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=Kenji Takeda” wtg

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=C Williams” wtgadmin

In this example the first two users are authorized to login as ’wtg’ (Wind
Tunnel Grid User) and the last as ’wtgadmin’ (Wind Tunnel Grid Administra-



380 A. Paventhan and K. Takeda

Fig. 3. Webpage hosting MyGridFTP

tor). UserAccounts table holds the actual home directory metadata, which could
be, for example, a subdirectory in /home/wtg for the first two users - this gives
them different project space. MyGridFTP makes an XML Web service request
immediately after authentication and sets the home directory metadata as the
FTP root directory during file transfer.

4.5 User Interfaces and Features

Fig.4. shows the user interface when invoked from the MyGridFTP(Auto) http
link in Fig.3. Once downloaded MyGridFTP reads the user certificate store, au-
thenticates with the GridFTP server, delegates user credential and performs an
auto upload from selected folder. The auto upload feature is based on Testcases
metadata (see section 4.3). In case of the manual option, the user needs to select
individual files for transfer.

MyGridFTP can be configured for parallelism in extended block mode dur-
ing Upload/Download. At the API level the MyGridFTP class (Table 2) sup-
ports GridFTP protocol for extended retrieve (ERET), extended store (ESTO)
and striped data transfers (SPAS or SPOR). The ExtendedStore and Extende-
dRetrieve allow partial copy (data reduction) of the file to be transferred. Partial

Table 2. MyGridFTP Class and its usage

Class: MyGridFTP Usage
Functions:

Authenticate(x509Cert.ThumbPrint) // read user’s personal certificate store here
ParallelUpload(localFile, remoteFile, nDataPaths) mygftp = new MyGridFTP(ipaddress, port);
ParallelDownload(remoteFile, localFile, nDataPaths) mygftp.Delegation = true;
ExtendedStore(localFile, remoteFile, offset, length) mygrftp.DelegationType = LimitedProxy;
ExtendedRetrieve(remoteFile, localFile, offset, length) mygftp.Authenticate(userX509Cert.ThumbPrint);
Mode(modeString) mygftp.Mode(MyGridFTP.ExtendedMode);
Type(typeString) mygftp.ParallelUpload(localFile, remoteFile, 2)
Upload(localFile, remoteFile)
Download(remoteFile, localFile)
List(listParams)
...
and other basic FTP calls



MyGridFTP: A Zero-Deployment GridFTP Client 381

Fig. 4. MyGridFTP graphical user interface

data transfer will be more useful when we implement processing and visualiza-
tion components of the Wind Tunnel Grid portal. Similarly striping and third
party transfers are programmatically possible using the MyGridFTP class.

4.6 Performance

MyGridFTP download and upload performance are compared with Java CoG
GridFTP client for various file sizes as shown in Fig.5. The performance test was
measured within two separate programs written in C# and Java, respectively,
using MyGridFTP APIs and Java CoG APIs. The GridFTP clients were run
on a Intel Pentium-4 2.2 GHz Desktop running Windows XP and GridFTP
server was configured on a Dual Intel Pentium-III 450 MHz, Linux system. The
client and server are connected over a 100 Mbps Ethernet LAN. The time taken
for Grid server authentication and authorization was measured separately over
number of runs to compare Grid security implementations of MyGridFTP and

Fig. 5. MyGridFTP Performance

 0

 20

 40

 60

 80

 100

1MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB

T
ra

ns
fe

r 
ra

te
 in

 M
bp

s

File size

MyGridFTP(nstream=1)
MyGridFTP(nstream=2)

JavaCoG(nstream=1)
JavaCoG(nstream=2)

(a) Download Performance

 0

 20

 40

 60

 80

 100

1MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB

T
ra

ns
fe

r 
ra

te
 in

 M
bp

s

File size

MyGridFTP(nstream=1)
MyGridFTP(nstream=2)

JavaCoG(nstream=1)
JavaCoG(nstream=2)

(b) Upload Performance



382 A. Paventhan and K. Takeda

Java CoG as shown in Table 3. The X.509 user certificate for this experiment
is of 1024 bit key length. The lesser authentication time of MyGridFTP could
be attributed to its use of native runtime and security infrastructure. Each file
was transferred between client and server a number of times and minimum,
average and maximum bandwidths were recorded. As can be seen from the plot,
large file sizes have very less bandwidth variability between different runs. Also,
parallel streams does not improve the performance for smaller files as the test
were run in a LAN environment. Both Java CoG and MyGridFTP measures
a maximum download performance of 91 Mbps and upload performance of 89
Mbps for 1GB file size. As a comparison, iperf [11] bandwidth measurement tool
gives 92.5 Mbps for 1 GB file input. By default, Windows XP operating system
sets the TCP send and receive buffer size to 8K. This value is limiting, especially,
for file transfers over wide area networks (WANs). The TCP buffer size could
be increased in MyGridFTP programmatically to suit to high bandwidth-delay
product subject to Operating Systems upper limits.

Table 3. GSSAPI Authentication

Authentication Time Minimum Maximum Average

JavaCoG 1891ms 2563ms 2122ms
MyGridFTP 734ms 1156ms 848ms

5 Discussion

As the .NET Common Language Infrastructure (CLI) has been ratified as an
ECMA standard (ISO/IEC 23271 ) there is interest in implementations on non-
Windows platforms. For example, the Mono project [12] is an open source imple-
mentation of the .NET framework for use on Linux, Unix and Windows. Mono
enables .NET managed code to run on multiple platforms similar to Java. The
Mono.Security.Protocol.Tls namespace part of mono .NET project implements
a 100% managed Transport Layer Security (TLSv1.0) and SSLv3. Incorporat-
ing GSSAPI authentication using this namespace will make MyGridFTP (and
other clients requiring X.509 certificate based authentication) run on multiple
platforms. Hence, the approach to Grid client deployment by means of hosting
and executing on multiple platforms using the .NET framework will become
realizable. Also, the Microsoft .NET Compact Framework targeting mobile de-
vices will enhance the Grid application reach to Pocket PCs, PDAs and Smart
Phones.

The Globus Reliable File Transfer (RFT) service could be hosted on Wind
tunnel data acquisition system, data management server and compute cluster.
This would allow client initiated asynchronous data transfer and notifications. If
user is interested in uploading or downloading the data to their local system at
any stage of the workflow, client/server style interactive data transfer is required.

The Wind Tunnel Grid portal could selectively implement XML Web services-
based approach and GSI-security based approach for services such as GridFTP



MyGridFTP: A Zero-Deployment GridFTP Client 383

for maximum compatability with other Grid resources. As future work, the My-
GridFTP API can be extended to include GridFTP protocol improvements [13],
resource management and information management making it a full-blown Globus
client kit based on .NET.

6 Conclusions

A zero-deployment GridFTP client using Windows native runtime (.NET) and
Security infrastructure (SSPI and CryptoAPI) is described. MyGridFTP launches
from a web location and runs on the client machine without any software pre-
requisite, it can access the local file system and allows server-to-server communi-
cations via proxy certificates. We believe that this is one of the first Grid client
implementations to use the Windows native security infrastructure (SSPI) to
interoperate with the Grid Security Infrastructure (GSSAPI) in Globus, and as
such it provides the basis for a language-independent .NET-based Commodity
Grid (CoG) Kit.

References

1. Foster I, Kesselman C (eds.):The Grid: Blueprint for a Future Computing Infras-
tructure, Morgan-Kaufmann (1999)

2. Gregor von Laszewski et.al: A Java commodity grid kit, Concurrency and Compu-
tation: Practice and Experience, vol. 13 (2001) 643-662

3. Duncan Mackenzie:Introducing Client Application Deployment with ClickOnce,
Microsoft Developer Network (2003)

4. W. Allock (ed.):GridFTP: Protocol Extensions to FTP for the Grid, Global Grid
Forum Recommended Document (2003)

5. Linn J.:Generic Security Service Application Program Interface, Version 2, Update
1, RFC 2743, (2000)

6. Meder S., et al:GSS-API Extensions, Global Grid Forum Document (2002)
7. Welch Von (ed.):Grid Security Infrastructure Message Specification (2004)
8. Tuecke S., et.al:Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate

Profile, IETF (2004) http://www.ietf.org/rfc/rfc3820.txt

9. Erik Meijer:Technical Overview of the Common Language Runtime, Microsoft Re-
search, Technical Report (2001)

10. Jeffrey Richter:Applied Microsoft .NET Programming, Microsoft Press (2002)
11. http://dast.nlanr.net/Projects/Iperf/
12. http://www.go-mono.com
13. I.Mandrichenko (ed.):GridFTP v2 Protocol Description, Global Grid Forum Rec-

ommended Document (2004)



On Using Jini and JXTA in Lightweight Grids

Kurt Vanmechelen and Jan Broeckhove

Department of Mathematics and Computer Sciences,
University of Antwerp, BE-2020 Antwerp, Belgium

kurt.vanmechelen@ua.ac.be

Abstract. Many production level Grid systems deployed today are char-
acterized by their focus on the integration of dedicated high-end systems
and their high administration and maintenance costs. We make the case
for lightweight Grid middleware as a prerequisite to harnessing general
computing resources in order to achieve large scale computing. We out-
line the characteristics of the environment in which such a lightweight
Grid operates and the ensuing middleware requirements. We analyze the
possible contribution of two distributed frameworks, Jini and JXTA, in
achieving these requirements.

1 Introduction

Grid systems have gained tremendous popularity in recent times because they
hold a promise of enabling secure, coordinated, resource sharing across multiple
administrative domains, networks, and institutions. Compute Grids typically
consist of a relatively small and static group of, permanently and completely
dedicated, high-end nodes. These nodes are the supercomputers and clusters
which can be found in the participating research centers. Also, the Grid resources
are typically not open in the sense that anyone can submit jobs to them. Usually,
they are set up to solve only one particular set of problems. This model, known as
heavyweight Grids (HWG), has been adopted in several projects and software
toolkits, such as Globus, the Enabling Grids for E-science project in Europe
(EGEE) and many others. Overviews can be found in [1] and [2].

Many applications of smaller magnitude do not require a heavy software
stack delivering explicit coordination and centralized services for authentication,
registration, and resource brokering as is the case in traditional Grid-systems.
For these applications, a lightweight and stateless model, in which individuals
and organizations share their superfluous resources on a peer-to-peer basis, is
more suitable. A potential role for Jini [3] and JXTA [4] technologies in such a
model has been recognized in a recent e-Science Gap Analysis report [5]. In this
contribution, we will consider the requirements for lightweight Grid middleware
and review the contributions of the Jini and JXTA frameworks in this regard.

2 LWG Environmental Characteristics

In contrast to their heavyweight counterparts, lightweight Grids (LWG) broaden
the scope of resource sharing by including lower-end computing resources as

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 384–393, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



On Using Jini and JXTA in Lightweight Grids 385

found in desktop machines or laptops at home or in the office. This results in
a new and significantly different environment in which the lightweight Grid has
to operate. In this section we discuss the properties of this environment and the
resulting consequences on the requirements for the Grid middleware.

Limited Administrative Resources. Heavyweight Grids mainly integrate
supercomputers and high-end clusters that are hosted in an institutional con-
text. These systems are maintained and administered by dedicated professional
personnel. This lowers the ’ease of administration’ requirement on heavyweight
Grids. Often heavyweight Grids have an important installation and maintenance
cost, even for relatively simple applications demands [6]. However, because of the
small number of system administrators involved, it is feasible to provide training
for the administrators and reduce the burden on end-users.

In the lightweight Grid setting, a large number of people will want to share
their resources. However, these individuals will not have the technical expertise
nor the time to administer their resources on a day to day basis. Therefore the
middleware should be highly self configurable, self maintainable and very easy
to install and administer.

In addition to the larger number of users, a higher number of applications
will be deployed on a global lightweight Grid, each with its own requirements
concerning the execution environment. Therefore, special attention should be
given to the ease of deployment of new applications in the Grid and automated
preparation of the execution environment hosted by the computational resources
in support for these applications.

Heterogeneity. Another consequence of including general desktop resources
is the higher degree of both hardware and software heterogeneity in the Grid
fabric. At the software level, the middleware needs to deal with differences in
operating systems, installed libraries, local security policies, etc. At the hardware
level great variances related to CPU, storage, memory and bandwidth availabil-
ity have to be dealt with. In heavyweight Grids homogeneity of the software
backplane is sometimes dictated by the strict adherence to OS and middleware
package listings that are managed centrally (e.g. EGEE). This is no longer pos-
sible in lightweight Grids as resources are expected to be non-dedicated.

Volatility. In clusters or heavyweight Grids, the resources are permanently and
completely dedicated to the Grid. This is no longer the case for home and of-
fice resources. The resource owner has to be able to enforce full control on the
conditions under which resources are shared. These include the requirement of
non-obtrusiveness (i.e. only superfluous resources are shared), time based re-
quirements (e.g. not during office hours) or virtual organization (VO) specific
requirements (support for a limited and dynamic set of applications and VO’s).
This results in a highly volatile Grid fabric and strongly varying resource avail-
ability. This volatility has a prominent impact on the middleware components
that make up the lightweight Grid. Firstly, because resources leave and join the



386 K. Vanmechelen and J. Broeckhove

Grid fabric at high rates, efficient and dynamic lookup, discovery and monitor-
ing of resources becomes more important. Secondly, more complex scheduling
policies and algorithms are required. Finally, fault tolerant execution of compos-
ite workflows (failure transparency) and migration of jobs or services between
resources (migration transparency) become more important. The same goes for
having a persistent service state (persistence transparency) and for support of
atomic transactions (transaction transparency).

Scale. Due to the large number of participants in a lightweight Grid, both as
resource providers and resource consumers, scalability is of the utmost impor-
tance. With large numbers of concurrent nodes, all forms of centralized services
have to be approached with caution. Services such as lookup, discovery, resource
brokering, scheduling, accounting and monitoring have to be implemented in a
highly scalable and distributed fashion. On the other hand, lightweight Grids
also have a role to play in setting up relatively small, institutional Grids. Such
Grids have different requirements for the middleware’s services. Consequently, a
general purpose lightweight Grid middleware should be highly customizable and
modular, making it possible to selectively assemble components depending on
the deployment context.

Openness. Heavyweight Grids are typically closed systems in that only a limited
number of parties are authorized to submit jobs. The right to consume resources
in a heavyweight Grid setting is linked to membership within a particular VO.
Enrollment in a VO however, is still dependent on human intervention for es-
tablishing the identity of the prospective member. Also, the knowledge resource
providers have of the applications that a VO hosts is limited, as is the knowledge
resource consumers have of the characteristics and quality of the resources that
are generally available. All of this makes joining a Grid and formulating service
level agreements for resource sharing, a less than transparent proposition.

The even higher number of users and applications targeted by a lightweight
Grid will require a more dynamic and automated form of resource sharing. Ser-
vice level agreements and collaborations will need to be established on the fly
based on the system’s knowledge of resource provider and consumer charac-
teristics and policies. This requires the necessary accounting and monitoring
infrastructure to be in place.

More importantly, in this open peer-to-peer setting, some incentive or re-
ward has to be given to resource providers. This could be achieved by a token
based approach. Providers earn tokens for sharing their resources and are able
to trade them for remote resources later on. For resource providers that are not
consumers, a conversion from tokens to another (hard) currency or service is
necessary. A first step in this direction has been taken by the Compute Power
Market project and the Nimrod/G resource broker [7].

Hostility. A lightweight Grid should be able to operate in an environment where
a multitude of independent clients consume the resources delivered by a mul-



On Using Jini and JXTA in Lightweight Grids 387

titude of independent providers across the internet. This is in effect a hostile
environment where resource consumers, owners and their process of information
exchange should be protected from malicious actors. Protection of the provider
system against malicious consumers or third-parties becomes an important is-
sue. If LWG middleware needs to be easy to install, a strict, but easy to under-
stand, security model should be adopted. Proper authentication and authoriza-
tion mechanisms should be in place in order to be able to trace user actions and
limit their potentially negative consequences.

At present, lightweight Grid systems do not address all of the issues outlined
above, often focusing on one particular aspect among the environmental charac-
teristics. According to the taxonomy given in [5] an LWG operating in the above
environment would be characterized as an Autonomic and Lightweight Peer-to-
Peer Desktop Grid. The following sections will discuss how Jini and JXTA can
contribute to such a Grid.

3 An Overview of Jini and JXTA

Clearly the design and implementation of a lightweight Grid system is an ex-
tensive undertaking. Leveraging existing technologies or technology components
is indispensable. A number of groups have considered Jini [8, 9, 10, 11] or JXTA
[12, 13, 11] in the realization of their Grid middleware. Both technologies, devel-
oped by Sun Microsystems, have a mission statement that involves enabling or
facilitating distributed computing in a dynamic environment.

3.1 Jini

The design of the Jini framework and its resulting programming model are
strongly influenced by the recognition of the Eight Fallacies of Distributed Com-
puting [14]. Jini’s goal is to enable the creation of virtually administration free
service communities. It offers the developer the possibility to partition a user
community and its resources into groups, also called federations, and to publish
and discover services within the context of a federation. To this extent, lookup
services (LUS) take on the brokerage of service proxies within federation(s). Ser-
vices can be hardware or software oriented and are expected to join and leave the
network in a non-orderly fashion. In the Jini vision, clients interact with services
through a representative called a proxy, which is a Java object that is shipped to
the client’s JVM in order to mediate all client-server interactions. Clients of the
discovery infrastructure find lookup services by means of multicast or unicast
protocols [3]. Services can be looked up in the LUS with type based object-
oriented matching semantics based on the proxy’s type, or with attribute value
matching semantics based on the the attribute values accompanying the proxy.

For client-to-service interactions through the proxy, Jini provides a pluggable
service invocation layer called JERI (Jini Extensible Remote method Invocation)
with RMI based semantics. JERI exposes the layers of the service invocation pro-
cess to the developer. Three layers are defined, the invocation layer, the object



388 K. Vanmechelen and J. Broeckhove

identification layer and the transport layer. As a result, new policies and imple-
mentations for object marshalling, distributed garbage collection, wire protocols,
and method dispatching can be plugged in.

Jini offers a distributed programming model that includes dynamic lookup
and discovery, support for distributed events, transactions, resource leasing [15]
and a security model. The main features of the security model are strong sup-
port for safe delivery of mobile code, mutual client-server authentication and
authorization, and secure client-server communication. The leasing model con-
tributes to the construction of self healing systems with low administration costs
by automatically reclaiming service resources upon client failure. Acquisition of a
(remote) resource includes negotiating a lease period during which this resource
will remain allocated to the client. After this period, the resource owner is free
to reclaim the resource. A client may of course renew the lease.

3.2 JXTA

The JXTA framework consists of the specification of six XML protocols that
enable the creation of dynamic user communities in a heterogenous peer-to-peer
environment. The framework aims to support key peer-to-peer (P2P) abstrac-
tions such as multi-peer communication, peers and peer groups [4]. A pipe ab-
straction is used to represent end-to-end communications between peers over a
virtual overlay network [16]. This virtual network enables seamless communica-
tion between peers in the presence of networking barriers such as firewalls and
Network Address Translation (NAT), through the use of relay peers.

All resources in the JXTA network are described by XML documents called
advertisements. Standard advertisements defined by the JXTA framework in-
clude, advertisements for peers, peer groups, pipes and services. JXTA presents
general application logic as a resource in the form of module advertisements.
Three different classes of module advertisements are defined. Module Class ad-
vertisements embody a certain behavior, but do not contain the implementation
for that behavior nor the means to appeal to it. They can be used to group a
set of Module Specification advertisements who embody the access specification
to the module. Often such a module specification advertisement contains a pipe
advertisement that can be used to set up a communication channel with the
service. Module Implementation advertisements contain the physical form of the
platform specific application logic for the service that implements a particular
module specification.

JXTA supports client-server interaction models through peer services as well
as more collaborative models through peer group services. One invokes a peer
service through a contact point embedded in the service’s module specification
advertisement. Although client to service communication is left open ended in
the JXTA framework, one should use JXTA pipes for transmitting messages
between peers in order to benefit from the global connectivity features of the
JXTA overlay network. Messages are constructed in XML and are converted to
a binary wire format for efficient transfer over the network. In the group service
model, a client does not have to interact with a representative through its contact



On Using Jini and JXTA in Lightweight Grids 389

point but can appeal directly to the service network by posting a request that
requires collaboration among different service instances. The key service within
the JXTA framework that enables this form of service interaction, is the resolver
service. The resolver enables nodes to automatically distribute generic queries
among service instances and receive the associated responses.

Security-wise, JXTA offers secure, TLS compliant, pipe communications [17].
In JXTA, the peer group may be used as a security context. Access to the peer
group, and by consequence to all services advertised in the group, can be guarded
by a group membership service. Such a membership service may require a peer
to authenticate itself before access to the group and its services is granted. Apart
from the membership service, a JXTA peer group also hosts standard slots for
components responsible for advertisement discovery, query propagation, routing
and peer monitoring. As such, every peer group may define its own infrastructure
components and access to these components is limited to group members. Groups
can also be hierarchically structured, a standard top level group called the World
group delivers the minimal infrastructure to discover and become part of other
subgroups.

4 Contributions of Jini and JXTA to an LWG
Middleware

In this section we discuss a mapping of the features outlined the previous section,
to the middleware requirements of a lightweight Grid as discussed in section two.

4.1 Limited Administrative Resources

The creation of virtually administration free service communities is one of the
key mission statements of the Jini framework. The most notable contributions
of Jini in this regard are:

– Proxy autonomy: The use of proxies allows the service designer to include
client side logic that automates certain tasks and eases the amount of ad-
ministration forced upon the user. An example is to include a user interface
that is automatically deployed on the client machine.

– Low cost service updates: services are easy to upgrade. As soon as a new
version of the service proxy is uploaded and the service provider discontinues
the lease on the old proxy, client side discovery will return the new service
proxy. As code is automatically downloaded to the client, no manual steps
are involved to upgrade the client side proxy code.

– Dynamic registration/deregistration: When services go live they automati-
cally register with the discovery infrastructure. When the service’s hosting
environment goes down the registration lease is discontinued and all stale
information is automatically cleared from the discovery infrastructure.

– Low cost middleware installation: Java based middleware can be installed
across the Web with a single click through the use of Java Webstart or
custom applets.



390 K. Vanmechelen and J. Broeckhove

– Leasing Model: The leasing model as a whole contributes to the development
of autonomous self healing services that are able to recover from crashes and
clear stale information without administrator intervention.

4.2 Heterogeneity

As both Jini and JXTA have Java based implementations, the Java features
for dealing with OS and hardware heterogeneity are inherited by both frame-
works. These features include uniform access to file system and network, code
and data portability and a uniform security framework. We note however that
a pure Java based approach is not mandated by Jini nor JXTA. While Jini re-
quires a Java platform on the client side to cope with system heterogeneity, a
service’s backend can be implemented in any language on any platform. JXTA
on the other hand, aims to provide different implementations of its framework
for different languages and systems. These implementations are able to commu-
nicate with each other because of the framework’s standardized XML protocols.
Consequently, both frameworks are able to integrate non-Java services in the
Grid middleware. Also, support for heterogeneous networks is one of JXTA’s
key goals. The presence of relays in the network is transparently used by the
JXTA routing protocols to provide communication links between peers across
protocol and firewall boundaries. Despite the frameworks’ contributions, signif-
icant heterogeneity issues still need to be dealt with by the middleware itself.
These include the dependencies Grid applications will have on a particular ex-
ecution environment, extension of scheduling algorithms to cope with widely
varying system characteristics and the consequences of site autonomy in respect
to local security policies.

4.3 Volatility

The idea that distributed resources are volatile is inherently addressed in the
Jini philosophy. Features such as dynamic registration and deregistration of ser-
vices in the discovery architecture with proper client notification, support for
two phase commit transactions, a leasing model, and the presence of sequence
numbers in the eventing system reflect this. In Jini, every client interacts with
a service’s backend through a mediator called a proxy. The use of smart proxies
enables service developers to include fault recovery policies in the proxy in order
to shield clients from the consequences of a service going down. A Jini proxy
thus contributes to the fulfillment of the failure transparency requirement. Jini
services also integrate well with the RMI activation framework which enables
the automatic recovery of services in the event of the hosting JVM going down
and coming back up again. This fulfills the persistence transparency requirement.
Jini’s strong support for mobile code and mediation of communication channels
through smart proxies, contribute to the migration transparency that is neces-
sary to adapt to changing fabric conditions in a volatile environment. Jini deals
with the transaction transparency requirement by offering standard services for
setting up two phase commit transactions.



On Using Jini and JXTA in Lightweight Grids 391

JXTA’s group service model automatically distributes queries among all ser-
vice instances in the group, and thus provides a fault tolerant way of accessing
service functionality. As long as one service instance is up, the query will be
answered. JXTA also features a fault tolerant message routing infrastructure.
Upon detection of a failed link a new route is automatically resolved for the
message. JXTA uses a distributed hash table (DHT) [18] approach to provide
efficient discovery of resources and avoid flooding the network with discovery
queries. However, maintaining the consistency of a DHT under volatile condi-
tions is costly. JXTA combines a loosely consistent DHT with limited range
walks around the network to deal with this trade-off. It mitigates the cost of
keeping a DHT consistent under high volatility rates and can deal with varying
levels of node volatility.

4.4 Scale

Jini has firm roots in object-oriented distributed programming. Its modular ar-
chitectural style and programming model contribute to the development of exten-
sible middleware that supports customized deployment depending on the scale
of deployment. This is demonstrated by the Jini ICENI project [11]. Jini lookup
services have been found to scale well as the number of registered services in-
creases [19]. Scalability studies of the same extent are not available for JXTA
although performance studies of the framework on a smaller deployment scale
are available [20]. Jini lacks support for discovering computational resources on
a global scale in a fully distributed manner, but JXTA does have this capabil-
ity. Integrating Jini and JXTA discovery infrastructures and plugging in JXTA
pipes into the JERI protocol stack is a possible course of action in this regard.
Other schemes for extending Jini’s discovery reach exist [10][21]. Ubiquitous
large scale discovery and communication is one of JXTA’s key goals. A fully dis-
tributed discovery infrastructure based on a hierarchical peer-to-peer network,
and the ability to assign infrastructure resources such as routing, discovery and
membership services to specific peer groups, contribute to the fulfillment of the
scalability requirement. In principle, JXTA’s peer-to-peer infrastructure is better
qualified to address scalability requirements by avoiding central server bottle-
necks on a network and system load level. However, there have been practical
problems in the past regarding the scalability of JXTA’s implementation. Al-
though the 2.0 release addressed scalability issues [16], more research remains
necessary [20].

4.5 Openness

Jini and JXTA do not provide features that have a direct impact on the open-
ness of the resulting LWG middleware. As mentioned in section 2, making a
computing platform openly accessible involves creating incentive for resource
owners to share and consumers to consume, which is beyond the scope of both
frameworks. However, JXTA’s pluggable approach to group membership services
and the ability of every peer to start, join or leave a peer group, does support
the creation of more dynamic and open communities than currently found in



392 K. Vanmechelen and J. Broeckhove

heavyweight Grid VOs. Jini’s support for mobile code is beneficial to the devel-
opment of an agent based framework that is able to implement a dynamic form
of service level agreement (SLA) negotiation between providers and consumers.
In this regard, group communication in a JXTA peer group can also help in
implementing economic pricing and bidding models.

4.6 Hostility

Both Jini and JXTA offer means to protect information exchange in a hostile
environment. Jini provides TLS/SSL and Kerberos GSS-API based communi-
cators for client service interactions, while JXTA provides TLS pipes for secure
communication. Jini also has strong support for safe delivery of mobile code.

Mutual client-server authentication and authorization schemes integrated
within the Jini framework, allow involved parties to establish identity, trust
and grant each other the right access permissions. Once parties trust each other
enforcement of access rights is further controlled by the security provisions de-
livered by the Java platform. This includes sandboxing the mobile code to limit
its range of impact on the hosting system. Although this scheme allows for safe
execution of pure Java code, it has no support for safe execution of non-Java
binaries. Apart from TLS transports, JXTA also includes standardized slots for
group membership services that control peer access to the peer group in ques-
tion, a feature missing in Jini. The implementation of this group service is up to
the peer group creator. For lightweight Grid deployments, a group membership
model that is based on peer reviewing [22] would be an interesting option for
certain virtual organizations.

5 Conclusion

In this contribution we have looked at the key characteristics of the environment
in which a lightweight Grid has to operate and how this determines requirements
for lightweight Grid middleware. We have presented a technical overview of Jini
and JXTA in order to analyze their possible contributions to the fulfillment
of these requirements. Although neither platform delivers a silver bullet to the
Grid middleware developer, we have identified areas in which both platforms
clearly show their contributions. As such, both technologies have their own role
in constructing a lightweight Grid middleware that will provide a more open
and dynamic base for deploying Grids in a hostile, volatile and heterogeneous
environment with limited administrative resources.

References

1. Ian Foster, Carl Kesselman, The Grid 2: Blueprint for a New Computing Infras-
tructure (Morgan Kaufmann, 2003).

2. Fran Berman, Geoffrey Fox, Anthony J.G. Hey, Grid Computing: Making The
Global Infrastructure a Reality (John Wiley & Sons, 2003).



On Using Jini and JXTA in Lightweight Grids 393

3. K. Edwards: Core Jini (Prentice Hall, 1999).
4. D. Brookshier, D. Govoni, N. Krishnan, J.C. Soto: JXTA : Java P2P Programming

(Indiana, Sams Publishing, 2002).
5. G.Fox, D. Walker: e-Science Gap Analysis.

http://www.nesc.ac.uk/technical papers/UKeS-2003-01/GapAnalysis30June03.pdf
6. J. Chin, P. Coveney: Towards tractable toolkits for the Grid: a plea for lightweight,

usable middleware. UK e-Science Technical Report, number UKeS-2004-01, 2004
7. D. Abramson, R. Buyya, J. Giddy: A computational economy for grid comput-

ing and its implementation in the Nimrod-G resource broker. Future Generation
Computer Systems, 18(8), 2002, pp. 1061-1074.

8. Y. Huang: JISGA: A Jini-Based Service-Oriented Grid Architecture, International
Journal of High Performance Computing Applications, 17(3), 2003, pp. 317-327.

9. Y.M. Teo and X.B. Wang: ALiCE: A Scalable Runtime Infrastructure for High
Performance Grid Computing. Proceedings of IFIP International Conference on
Network and Parallel Computing, Springer-Verlag Lecture Notes in Computer Sci-
ence Series 3222, Xian, China, 2004, pp. 101-109.

10. Z. Juhasz, A. Andics, K. Kuntner Szabolcs Pota: Towards a Robust and Fault-
Tolerant Multicast Discovery Architecture for Global Computing Grids. Proceed-
ings of the 4th DAPSYS workshop, Linz, Austria, September 2002, pp. 74-81.

11. N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington: Implementations of
a Service-Oriented Architecture on top of Jini, JXTA and OGSI. In Second Across
Grids Conference, Nicosia, Cyprus, 2004

12. S. Majithia, M. Shields, I. Taylor and I. Wang: Triana: A Graphical Web Ser-
vice Composition and Execution Toolkit. Proceedings of the IEEE International
Conference on Web Services (ICWS’2004), San Diego, California, USA, 2004, pp.
514-521.

13. T. Ping, G. Sodhy, C. Yong, F. Haron and R. Buyya, A Market-Based Scheduler
for JXTA-Based Peer-to-Peer Computing System. Springer-Verlag Lecture Notes
in Computer Science Series 3046, 2004, pp. 147-157.

14. P. Deutsch: The eight fallacies of distributed computing.
http://today.java.net/jag/Fallacies.html

15. M. Kircher, P. Jain: Leasing pattern. Proceedings of the Pattern Language of
Programs conference, Allerton Park, Monticello, Illinois, USA, 1996.

16. B. Traversat, A. Arora, M. Abdelaziz et al.: Project JXTA 2.0 Super-Peer Virtual
Network. http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf.

17. Sun Microsystems: Security and Project JXTA, Sun Microsystems, Inc, 2002.
18. E. Pouyoul, B. Traversat, M. Abdelaziz: Project JXTA: A Loosely-Consistent DHT

Rendezvous Walker. Sun Microsystems, Inc., 2003.
19. M. Kahn, C. Cicalese: CoABS Grid Scalability Experiments. Journal of Au-

tonomous Agents and Multi-Agent Systems, 7(1-2), 2003, pp. 171-178.
20. E. Halepovic, R. Deters: The Costs of Using JXTA. Proceedings of the 3th IEEE In-

ternational Conference on Peer-to-Peer Computing (P2P’03), Linköping, Sweden,
September 2003, pp. 160-167.

21. W.-H. Tseng, H. Mei: Inter-Cluster Service Lookup Based on Jini. Proceedings of
the 17th IEEE International Conference on Advanced Information Networking and
Applications, Xian, China, March 2003, pp. 84-89.

22. S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina: The EigenTrust Algorithm for
Reputation Management in P2P Networks. Proceedings of the 12th International
World Wide Web Conference, Budapest, Hungary, May 2003, pp. 640-651.



Ticket-Based Grid Services Architecture
for Dynamic Virtual Organizations

Byung Joon Kim, Kyong Hoon Kim, Sung Je Hong, and Jong Kim

Department of Computer Science and Engineering,
Pohang University of Science and Technology (POSTECH),

San-31, Hyoja-dong, Pohang, KOREA
{caleb80, jysh, sjhong, jkim}@postech.ac.kr

Abstract. A Virtual Organization (VO) in the Grid is a collection of
users and distributed resources, in which resources are shared by users.
VOs are dynamically created for some goals and then disappear after
the goals are achieved. Conventional Grid architectures have been pro-
posed for a single or static VO environment. In this paper, we propose
a ticket-based Grid services architecture to support the dynamic VO en-
vironment. Tickets contain information and delegated rights of resource
providers, VO managers, and users. By using these tickets, the proposed
architecture supports various services in the dynamic VO environment,
such as VO management, fine-grained authorization, resource informa-
tion, and resource management.

1 Introduction

Due to the rapid growth of technologies of computer and network, much research
has focused on computing with a plenty of resources which are heterogeneous
and scattered geographically. The Grid has started from the concern of scientific
computation over geographically distributed systems and has been an emerging
technology in recent years. The Grid is defined as a controlled and coordinated
resource sharing and resource use in dynamic, scalable virtual organizations [1].
Many studies [2, 3, 4] have been conducted on resource information, resource
management, security, and implementation of the Grid.

A Virtual Organization (VO) in the Grid consists of a set of users and resource
providers under the spirit of sharing [1, 5]. Individuals who want to collaborate
on a common goal make a VO in the Grid and share information through the
VO. A user in the VO has easy access to resources in that VO, while resource
holders utilize their resources more efficiently throughout the VO. Thus, a VO
generally consists of users, resource providers, and VO managers.

As the Grid computing spreads rapidly in recent years, the need for dynamic
VOs is apprehended. VOs for various purposes are created and then disappear
after their goals are achieved. In a VO, many users join and leave according
to their needs. Resource providers can also dynamically change their policies in
the VO, such as available time, provided resources, and so on. In the dynamic

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 394–403, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations 395

VO environment, each user and resource provider can participate in several VOs
simultaneously. So, a resource provider can receive resource requests from users
of several different VOs. Also, a user can request resources from several VOs.
Although recent research [4, 6, 7] on fine-grained authorization has proposed in
a single VO, few research has focused on the dynamic VO environment.

In this paper, we present a ticket-based Grid (Ti-Grid) services architecture
for dynamic virtual organizations. The proposed architecture is based on tickets
issued by VO members. Tickets contain information and delegated rights of
resource providers, VO managers, and users. A VO is easily created and managed
by the tickets published by resource providers and the VO manager. Each user
knows the VO information and acquires the necessary tickets for his jobs. Since
only the rights specified in the tickets are permitted, fine-grained authorization
is also supported. The Ti-Grid architecture uses distributed agents to share and
find tickets efficiently.

The remainder of this paper is organized as follows. The overview of the
proposed architecture is provided in Section 2, which includes the components
of the architecture, the description of tickets, and the ticket management system.
Section 3 will describe the Grid services supported by the proposed architecture.
In Section 4, we will explain the current implementation issue. Finally, this paper
is summarized in Section 5.

2 Overview of Ti-Grid Architecture

2.1 Components

The Grid environment supporting for dynamic virtual organizations is composed
of VO managers, resource providers, and users. A VO manager organizes a VO
of resource providers and users who share a common goal of the VO. The VO
manager knows which resource providers and users join the VO. Moreover, the
VO manager keeps the VO’s policy, such as the resource amount that each
user can take. A resource provider grants its resource to users in the Grid, spe-
cially to those in the VOs that the resource provider joins. Resource providers
need not know information about all users in the VOs, but ensure that only
users in the VOs use their resources. A user is an end entity to run a job in
the Grid. Users submit and run their jobs in the resource sites of their own
joined VOs.

The proposed architecture uses tickets to provide the dynamic VO-enabled
Grid services. A VO manager and resource providers in a VO issue their own
tickets to organize the VO. Users in the VO issue tickets to submit and run
their jobs in the VO. The entities that are geographically separated each other
operate the VO by sharing these tickets.

In order to share and locate tickets from various entities, we use a distributed
agent system for ticket management. In the proposed architecture, ticket man-
agement agents are implemented as a structured peer-to-peer system to provide
an efficient ticket location service. VO managers and resource providers pub-



396 B.J. Kim et al.

: Resource Ticket

: Attribute Ticket

: User Ticket: User

: Resource

Bio VO

: Resource Ticket

: Attribute Ticket

: User Ticket: User

: Resource

Chemical VO

R
R

R

R

A
A

A

A

R

R R
R

R
R

A

R

U

A

R

U

R

U

A

Site B

Chemical VO

Bio VO
Manager

Manager

A

U

A

R

: Ticket Management Agent
Site A

Site C

Site D

Fig. 1. An example of the Ti-Grid architecture

lish their tickets to the agent system. Users request the agent system to find
appropriate tickets for their jobs.

Figure 1 depicts an example of the Ti-Grid architecture, in which four sites or
resource providers are available, two VOs are organized, and several users want
to use resource in the Grid. Bio VO’s resource in Figure 1 consists of one from
site A, one from site B, and two from site C. Likewise, Chemical VO is composed
of resource from four sites. Resource providers issue and publish their resource
tickets. Each VO manager also issues and publishes attribute tickets for VO
users. The published tickets are registered to the distributed agent system. In
Figure 1, a user in Bio VO obtains necessary tickets from the agent and submits
a job with the tickets to site C.

2.2 Tickets

The main idea of the Ti-Grid architecture is to use tickets for the assertion of
delegated rights in a virtual organization. A ticket is unforgeable and exchange-
able among VO entities for resource control. A ticket record is an XML object
asserting that the specified policy controls a resource over the specified time
interval in the ticket. To protect the integrity of a ticket, each ticket record is
signed with the private key of the issuer.

Tickets are classified as a resource ticket, an attribute ticket, a user ticket,
and a job ticket. The former three tickets are signed by each issuer to prevent
forgery. The resource ticket is issued by a resource provider and describes the
provider’s local policy for a VO. Resource providers issue various resource tickets
for several services and VOs. A resource ticket includes ticket fields, such as Id,
Issuer, VOName, ValidTime, UseTime, ServiceType, Condition, and so on. Id,
Issuer, and VOName specify the unique ticket identifier, the resource provider’s
name, and the VO name, respectively. ValidTime corresponds to the ticket’s



Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations 397

......

<ResourceTicket Id="2004HPC112">
<Issuer>/O=Globus/O=Hpc/Ou=ticketgrid.com/CN=hpc2<Issuer>
<VOName>/O=Globus/O=Hpc/Ou=ticketgrid.com/CN=VO1<VOName>
<ValidTime start="2004−04−18−12−00" end="2004−04−18−13−00"/>
<UseTime>01−00−00</UseTime>
<ServiceType>

<wsdl:service name="ManagedJobFactoryService">

</wsdl:service>
<Condition>

<rslrestriction>
<maxCpuTime>720</maxCpuTime>
<maxMemory>300</maxMemory>
<jobType>mpi</jobType>
<jobType>single</jobType>

</rslrestriction>
</Condition>

</ServiceType>
<Signature Id="S1" xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo/>
</Signature>

</ResourceTicket>

Fig. 2. A sample resource ticket

lifetime, so that the expired ticket is not useful anymore. UseTime means the
guaranteed usable time of a job with the ticket, which will be explained in Section
3.2. ServiceType and Condition fields inform the provided service name and the
resource provider’s policy for the VO. The signature of the resource provider is
also attached to the ticket.

Figure 2 shows a sample resource ticket. The name of the resource provider
is ’/O=Globus/O=Hpc/Ou= ticketgrid.com/CN=hpc2’ and the joining VO is
’/O=Globus/O=Hpc/Ou=ticketgrid.com/CN=VO1.’ The expiration time of the
ticket is ’2004-04-18-13-00’, as described in the ValidTime field in the ticket. The
resource provider re-issues the resource ticket if the ticket is not used until the
expiration time.

The attribute ticket is issued by a VO manager to assert the VO manager’s
policy for each user in the VO. VO managers specify attribute or policy of users
in their VOs in this attribute ticket. Ticket fields in the attribute ticket are the
same as those in the resource ticket, except that the UserName field indicates the
user name. However, the fields in the attribute ticket mean the VO manager’s
policy for the user.

The user ticket is issued by a user who will submit a job to the resource site in
a VO. The user ticket asserts the necessary rights to run the job. A user delegates
his or her rights to the user ticket under the policies of the resource ticket and
the attribute ticket. The user ticket also contains ticket fields similar to other
tickets, such as Id, Issuer, UseTime, ServiceType, and Condition. Differently
from other tickets, the user ticket has ImportedTicket field, which references the
resource ticket and the attribute ticket.



398 B.J. Kim et al.

<Issuer>Resource Name</Issuer>

</ResourceTicket>

<ResourceTicket Id>

<AttributeTicket Id>
<Issuer>VO Name</Issuer>
<UserName>User Name</UserName>

<JobTicket>

<UserTicket Id>

</AttributeTicket>

<Issuer>User Name</Issuer>

<ImportedTicket id>

<VaildTime>......</ValidTime>
<UseTime> ...... </UseTime>

<UseTime> ...... </UseTime>

</UserTicket>

VO manager’s
signature

User’s signature

Indicate the attribute
ticket’s issuer

Indicate the user
ticket’s issuer

</JobTicket>

Resource provider’s
signature

<VOName>VO Name</VOName>
<VaildTime>......</ValidTime>
<UseTime> ...... </UseTime>
<ServiceType>

<wsdl:service name/>
<Condition>

</ServiceType>
<ds:Signature>

<ds:Signature>

<ServiceType>
<wsdl:service name/>
<Condition>

</ServiceType>

<ds:Signature>

<ServiceType>
<wsdl:service name/>
<Condition>

</ServiceType>

ticket id
Indicate the imported

Fig. 3. An example of a job ticket

The job ticket1 is generated by a user in order to request a job. A user con-
catenates the other three tickets and forms the job ticket, as shown in Figure 3.
The ImportedTicket field in the user ticket indicates which resource and at-
tribute tickets are included in the job ticket. The job ticket is used to authorize
the submitted job.

2.3 Ticket Management Agent System

The ticket management in the proposed architecture is accomplished by dis-
tributed agents. For the cooperation between agents and the efficiency of the
ticket management service, we construct the agent system with the peer-to-peer
system, such as Chord [9]. Each agent keeps the registered tickets and shares the
ticket information with other agents through the peer-to-peer system.

The ticket management service includes ticket registration, ticket location,
and ticket revocation. Resource providers and VO managers publish and register
their newly issued tickets to the agent system. When resource providers recognize
that their resources are available to VOs, they issue tickets and register them to
the agent system. VO managers also publish their users’ attribute tickets when
new VOs are created or policies of VOs are changed. These registered tickets are
shared among the agents so as to make location service efficient.

1 In our previous work [8], the job ticket was called the TAS ticket. TAS (Ticket-based
Authorization Service) is the name of the authorization system in the proposed
architecture.



Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations 399

When a user requests resource tickets or attribute tickets, the ticket location
service of the agent system searches the location of requested tickets and returns
the tickets. In addition, each agent removes the expired tickets in its ticket pool.
All tickets have the ValidTime field which implies the expiration time of the
ticket. Since the expired tickets are of no use, they are automatically removed
from the agent system, which improves the performance of location service.

The distributed agent system may have a lot of routing overhead for ticket
registration and location. To reduce this overhead and improve performance, we
construct the distributed agent system with the Chord [9] which is a structured
P2P architecture based on DHT (Distributed Hash Table). In the Chord, each
node, which is the agent in our system, has a unique identifier ranging from 0
to 2m−1. These identifiers are arranged in a circle, where each node maintains
information about its successor and predecessor on the circle. Additionally, each
node also maintains information about at most m other neighbors for efficient
routing. Thus, data lookup takes O(log N) hops, where N is the total number
of nodes in the system. It guarantees that all existing tickets matching a query
will be found within the bounded costs in terms of the number of messages and
involved agents.

3 Ticket-Based Grid Services Architecture

3.1 Dynamic VO Management

The Ti-Grid architecture provides the dynamic VO environment based on tick-
ets. In the Grid, many VOs are created for various goals and disappear after
accomplishing the goals. The VO policy also changes dynamically as the VO
operates normally. The proposed tickets are used to construct this dynamic VO
environment.

In order to create a new VO, resource providers and the VO manager publish
their tickets. The resource providers in the VO issue their resource tickets that
assert resource providers’ policies for the VO. The VO manager also issues and
publishes attribute tickets for users in the VO. After these tickets are registered
to the agent system, the VO is created conceptually. Users who want to run their
jobs in that VO can request the rights with proper resource tickets and attribute
ticket.

When a VO need not operate any more, the VO manager and resource
providers should not publish their tickets. No ticket for the VO in the agent
system implies the disorganization of the VO.

The policy change of a resource provider or a VO manager is also easily
realized with a newly issued ticket. When a resource provider wants to adjust the
amount of resource to the VO, the resource provider reissues and publishes the
resource tickets that reflect the policy about the changed amount. If a resource
provider does not want to provide resource any more, it stops publishing resource
tickets. The VO manager can also issue attribute tickets again if the policy for
some users changes. Moreover, a new user can easily join the VO by obtaining a



400 B.J. Kim et al.

new attribute ticket issued by the manager. On the other hand, a user is deleted
from the VO as the VO manager stops issuing the user’s attribute ticket.

3.2 Fine-Grained Authorization

When a user wants to run a job using the VO resource, the user requires resource
tickets from the resource provider and an attribute ticket from the VO manager.
The user can acquire these tickets from the distributed agent system and choose
proper tickets for the job. When one resource ticket dose not have enough rights
for the user’s job, the user can use several resource tickets at the same time
unless the total rights of the resource tickets do not exceed the rights asserted in
the attribute ticket. After obtaining the necessary tickets, the user issues a user
ticket that describes the needed rights for the job. The user generates a job ticket
by concatenating the resource tickets, the attribute ticket, and the user ticket. As
shown in Figure 3, the job ticket envelops the other tickets. The ImportedTicket
field in the user ticket references the other resource tickets and the attribute
ticket, which prevents modification of the ticket set. Since each included ticket
is signed by the issuer, it cannot be forged by a malicious intermediate.

After the job ticket is ready, the user submits the job with the job ticket to
the resource provider. The resource provider starts to verify the job ticket. The
job ticket verification is performed in two steps, which are signature verification
and content verification. Signature verification confirms that the job ticket is not
forged. The signatures on the user ticket, the attribute ticket, and the resource
tickets enveloped in the job ticket are verified by the public keys of each issuers.
The resource provider also inspects whether Ids of the resource tickets and the
attribute ticket are the same as those in Imported Ticket of the user ticket.

Next, the content verification process starts. Requested rights in the user
ticket should be less than the issued rights in the resource tickets and the at-
tribute ticket. Thus, the resource provider checks whether the requested rights
in the user ticket are within the bounds of the total issued rights in the re-
source tickets and those of the attribute ticket. Then, the resource provider also
confirms the availability of the requested service. After signature and content
verification, the resource provider grants the requested rights to the user’s job.

While the authorized job is running, the resource provider does not issue
resource tickets for the used service. Resource tickets are reissued for other users
only after the job is completed or the UseTime on the user ticket expires. There-
fore, the user’s job is guaranteed to use the resource for the UseTime period.

3.3 Resource Information and Management

The proposed architecture provides the VO information service, as well as the
Grid information service. When a user submits a job to the Grid, the user should
know which resource providers or sites have the available resource to run the
job. Moreover, the information service in the dynamic VO environment should
ensure that the provided resource information is classified according to each
VO. The distributed agent system in the proposed architecture supports the VO



Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations 401

information service by gathering the VO attribute ticket and the resource tickets
for the VO. For a given VO, the agent system provides the information of the
available resource amount that each VO user can take.

Although users have the resource information, the submitted jobs are not
guaranteed to be run. However, in the Ti-Grid architecture, the job tickets assure
that the submitted jobs run in the resource sites. Resource providers offer their
resource as long as the job ticket is valid. While executing the admitted job,
they do not issue the resource tickets any more for the currently used resource.
Thus, the resource tickets shared in the ticket management system are those for
the currently available resource.

In addition, the accounting service can be easily supported in the proposed
architecture. It is difficult to alter or forge tickets used in the job authorization.
The enveloped tickets in the job ticket are signed by the resource provider,
the VO manager, and the user, respectively. Besides the difficulty in modifying
tickets, the fact that only the job with the job ticket is permitted to run enables
more exact accounting for the job.

4 Implementation

The Ti-Grid architecture has been implemented to work on Globus toolkit 3 [5].
We implemented a ticket generator and the distributed agent system which
shares tickets. And we also implemented the Gatekeeper service on the Globus
toolkit. All components have been implemented in Java.

4.1 Agent

The agent shares and provides published tickets. We implemented the distributed
agent based on the Chord which is a structured P2P architecture. The agent
performs the ticket registration and location service. In the registration service,
the agents save published tickets in the local XML database and advertise the
ticket’s reference to other agents. In the location service, the agent finds the
advertised ticket reference and provides proper tickets to users.

The agent architecture is shown in Figure 4(a). Axis is essentially a SOAP
engine that is a framework for constructing SOAP message service. Agent Service
is a message style web service that receives and returns ticket XML documents
in the SOAP envelope. XMLDB is designed to store and retrieve large numbers
of XML documents such as tickets. Since Chord is based on a fast consistent
hash function, it is necessary to define keywords to map agents. In the Ti-Grid
architecture, we make the resource ticket’s keyword by concatenating the VO
name and the service name, and the attribute ticket’s keyword by concatenating
the user name and the VO name.

4.2 Gatekeeper Service

In the resource part, we implemented a Gatekeeper service and modified the
Globus toolkit to recognize the Ti-Grid architecture. As shown in Figure 4(b),



402 B.J. Kim et al.

AXIS

XMLDB

: Agent

UserAgent

PKI
(XKMS)Distributed

Agent System

SOAP Message

*Locate

Chord

* Register

Agent Service

with the job ticketresource tickets
Submit a job requestPublish

Target Service
(Globus Toolkit 3)

Client
Agent

Manager
Ticket

Authentication Module

Authorization Module

(a) Agent architecture (b) Gatekeeper service

Fig. 4. Implementation of agent and Gatekeeper service

the Gatekeeper service is composed of three modules, which are the authenti-
cation module, the authorization module, and the ticket manager module. The
authentication module enables to authenticate users. This module performs sig-
nature verification which provides integrity, message authentication, and signer
authentication. For signature verification, authentication module communicates
with XKMS [10] which is a XML based public key infrastructure. The autho-
rization module provides ticket-based fine-grained authorization on the authen-
ticated user. This module checks that the requested rights in the user ticket are
within the bounds of the total issued rights in the resource ticket and attribute
ticket.

After the authorization process, Gatekeeper service invokes the target service
of Globus toolkit 3. The ticket manager module generates and publishes resource
tickets. This module includes a ticket parsing module to create tickets and an
XML signature module to perform the signature process. While the target service
is running, this module does not generate and publish a new resource ticket for
the used service. Only after the job is completed or the UseTime in the user
ticket expires, it reissues and publishes new resource tickets for other users.

5 Summary

In this paper, we proposed the Ti-Grid architecture for dynamic virtual organi-
zations. The proposed Ti-Grid architecture uses tickets that are unforgeable and
exchangeable among VO entities for resource control. A VO manager, resource
providers, and users in a VO issue their own tickets for delegating their rights.
The VO is constructed by sharing these tickets. The VO also changes its policy
as each Grid entity reissues the ticket containing the changed policy. Since the
published tickets contain delegated rights of the issuers, fine-grained authoriza-
tion is supported. The VO information service and VO resource management
are also provided by using the tickets.



Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations 403

To share and locate tickets from various entities, we use a distributed agent
system for ticket management. Agents in the distributed agent system share
their tickets from the Grid entities. We use a structured P2P system for agents
so that locating tickets is provided efficiently.

The previous implementation work has been focused on the fine-grained au-
thorization service using tickets. Our current work includes the implementation
of the VO information service and the further research on the accounting service
in the proposed architecture.

Acknowledgment

This work was supported in part by the Ministry of Information and Communica-
tion of Korea under the Chung-Ang University HNRC-ITRC program supervised
by the IITA, and the Ministry of Education of Korea under the BK21 program
towards the Electrical and Computer Engineering Division at POSTECH.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications 15(3)
(2001) 200–222

2. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. Inter-
national Journal of Supercomputer Applications and High Performance Computing
11(2) (1997) 115–128

3. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. Proc. of 10th IEEE International Symposium on
High-Performance Distributed Computing (2001) 181–194

4. Pearlman, L., Welch, V., Foster, I., Kesselman, C.: A community authorization ser-
vice for group collaboration. Proc. of IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks (2002)

5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
Grid services architecture for distributed systems integration. Open Grid Service
Infrastructure WG, Global Grid Forum (2002)

6. Keahey, K., Welch, V., Lang, S., Liu, B., Meder, S.: Fine-grain authorization poli-
cies in the GRID: Design and implementation. Proc. of 1st International Workshop
on Middleware for Grid Computing (2003)

7. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, Á., Gianoli, A.,
Lõrentey, K., Spataro, F.: VOMS, an authorization system for virtual organiza-
tions. Proc. of European Across Grids Conference (2003) 33–40

8. Kim, B. J., Hong, S. J., Kim, J.: Ticket-based fine-grained authorization service in
the dynamic VO environment. Proc. of ACM Workshop on Secure Web Services
(2004)

9. Stoica, I., Morris, R., Nowell, D. L., Karger, D. R., Kaashoek, M. F., Dabek,
F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions of Networking 11(1) (2003) 17–32

10. XML Key Management Specification (XKMS). http://www.w3.org/2001/XKMS/



Heterogeneity of Computing Nodes
for Grid Computing

Eamonn Kenny, Brian Coghlan, John Walsh, Stephen Childs,
David O’Callaghan, and Geoff Quigley

Department of Computer Science, Trinity College Dublin, Ireland
{ekenny, coghlan, john.walsh, stephen.childs, david.ocallaghan,

geoff.quigley}@cs.tcd.ie

Abstract. A heterogeneous implementation of the current LCG2/EGEE
grid computing software is supported in the Grid-Ireland infrastructure.
Theportingandtestingof thecurrentsoftwareversionofLCG2iswellunder
way on Red Hat 9, Fedora Core 2, IRIX and AIX. The issues concerned
are discussed, and recommendations are presented for improvement of
portability to non-reference operating systems.

1 Introduction

The computing needs of CERN’s Large Hadron Collider (LHC) are to be met by
the deployment of a grid service utilizing computing resources in many countries.
The LHC Grid (LCG) project [1] is prototyping this infrastructure. Much of its
current software, called LCG2, derives from the previous European DataGrid
(EDG) project [2] that prototyped many of the necessary technologies. In sim-
ilar fashion, the Enabling Grids for E-science in Europe (EGEE) project [3] is
prototyping the future production grid for Europe, based on the LCG software.
The CrossGrid project [4] is exploring near-interactive grid environments, first
based on an EDG, now on a LCG, and soon on an EGEE foundation. Many
other European grid projects are likewise building upon these foundations.

The LCG and EGEE software originally assumed reference ports to Red Hat
7.3 and Microsoft Windows, but subsequently this has been revised to include
Scientific Linux 3 (SL3). Unfortunately this is a very restrictive situation that
also contravenes the original heterogeneous ethos of grid computing. As a result
of our interest in heterogeneity, we at Trinity College Dublin began porting to
non-reference platforms in October 2003. Subsequently EGEE have almost fin-
ished porting the current LCG2 grid implementation to Scientific Linux on 32-bit
and 64-bit architectures. Other work has been carried out by Casey[5] to port the
replica management software to Darwin, on which Apple’s Mac OS X is built. Fur-
ther work has been begun by Maroney[6] at Imperial College London to convert
some of the Red Hat 7.3 version of the LCG2 worker node code to Fedora Core 2.

For reasons discussed below, within the Grid-Ireland infrastructure we have
been attempting to fully port some basic LCG2 worker node functionality to Red
Hat 9, Fedora Core 2, IRIX 6.5, AIX 5.2L and Mac OS X v10.3, sufficient to

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 404–413, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Heterogeneity of Computing Nodes for Grid Computing 405

perform Globus and EDG job submission. On this base we are attempting a full
port of the Virtual Organisation Management System (VOMS), the Relational
Grid Monitoring Architecture (R-GMA) and the Replica Management (RM)
software. Since April 2004 we have been working closely with Maarten Litmaath,
Carlos Osuna, Zdenek Sekera and James Casey in CERN and Vincenzo Ciaschini
at INFN to achieve our goals.

Below we outline the motivations, the porting process itself, auto-building of
the software, deployment and early benchmarking results.

2 Background and Motivation

Whilst the experimental and theoretical science paradigms remain strongly em-
bedded in Irish science, there is strong growth in the hybrid paradigm, compu-
tational science. Most of this scientific computing is still done on local facilities.
It involves a wide range of application areas, but few truly parallel applica-
tions. Most users develop their codes but use commercial libraries and tools.
The reference architectures for these are a major factor in the choice of High-
Performance Computing (HPC) architecture, i.e. most of the deployed architec-
tures are mission-specific.

The HPC facilities in Ireland are very limited, an aggregate of about 1000
CPUs and 10TB of disk farms. There is funding for several medium-scale clusters
(100-500 CPUs) and two medium-scale data farms in 2004/5.

Currently there is no large-scale HPC facility in Ireland. Until very recently
there was no identified governmental intention to have one. In August 2004,
however, the Irish government announced an initiative for the creation of a
National Centre for High End Computing. It is very likely that the resulting
centre will include a mix of mission-specific architectures.

These limited and mostly mission-specific resources should not be wasted by
being inaccessible to the Grid simply because their architectures are not those
of the reference ports.

There are four further considerations:

– Minimizing the demand on human resources by minimizing the proportion
of the software that needs to be ported. The simplest component of most
grid software frameworks is that relating to the worker nodes.

– Minimizing the demand on human resources by maximizing the proportion
of the software that does not need to be ported. Thus all the non-worker
node components should use the reference port, i.e. the core infrastructure
should be homogeneous.

– Maximizing the availability of the infrastructure. Grid-Ireland has designed a
transactional deployment system to achieve this[7], for which a homogeneous
core infrastructure is highly desirable.

– There is interest in Irish computer science circles about issues of languages,
programming models[8] and execution models[9][10] for heterogeneous en-
vironments, and Grid-Ireland specifically wishes to support these research
directions.



406 E. Kenny et al.

Thus Homogeneous Core Infrastructure, Heterogeneous Resources is a perva-
sive motto that encapsulates explicit and implicit principles:

– Explicit homogeneous core infrastructure: this principle enables a uniform
dedicated core national grid infrastructure, which supports a uniform ar-
chitecture based on reference ports of the grid software, and thereby frees
resources for maximum focus on the critical activities such as security and
monitoring/information systems. Logically, it allows a uniform control of
the grid infrastructure that guarantees uniform responses to management
actions.

– Implicit decoupling of grid infrastructure and site management: this princi-
ple enables the infrastructure and sites to be independent. It can encompass
policies, planning, design, deployment, management and administration. In
particular it allows the infrastructure upgrade management to be indepen-
dent of that of the site, and non-reference mission-specific architectures to
be deployed at the site.

Grid-Ireland has been designed with this approach since mid-2001. Funding
was sought and eventually granted, a senior Grid Manager appointed, a Grid Op-
erations Centre established and staffed, infrastructure specified, purchased and
installed, and finally middleware and management tools deployed. We consider
that the use of these principles has been highly beneficial.

The Operations Centre hosts approximately 20 national servers, a certifica-
tion TestGrid of approximately 40 machines and 4TB disk farm, a cluster of
64-CPUs and 4TB disk farm for the various testbeds, plus support staff. The
TestGrid serves multiple purposes, but most importantly in the context of this
paper, it acts as a non-reference porting platform.

3 Porting

3.1 Best Practice for Code Portability

Difficult issues arise when more than one programming language is allowed in
a large project. At the other extreme, restriction to only one programming lan-
guage is very difficult to enforce. The sheer size of the LCG2 and EGEE projects
is such that no one person can know what everyone else is doing. Nonetheless,
even without knowing a great deal about the software and its dependencies, one
can formulate clear guidelines as to how to improve the software portability.

What follows is a summary based on the porting of software to non-reference
platforms and what is described in the literature by experts in porting:

1. Dependency information: In large projects such as the LCG2/EGEE, new
and legacy code should be designed in such a way that it is easily built by
a third party. This requires that all dependencies and versions are described
in some machine readable form. This was not, for example, the case for all
packages in LCG2. Some dependencies were only required when building the
package, but not required after the package was built.



Heterogeneity of Computing Nodes for Grid Computing 407

2. Standards conformance: POSIX conformance [11] requires that POSIX stan-
dard code should be easily portable to other UNIX platforms. The use of
non-POSIX standard code has always been problematic in our experience.
ANSI and IEEE standards should always be adhered to.

3. Timing: Tsoukiȧs[12] states very clearly and with good reason that lifetime,
usability and reliability must be considered when developing and testing
code. To develop software on too many platforms from the beginning is too
costly and results in slow development. Some code may be a proof of concept,
subsequently replaced or phased out. Expending too large an effort to get
everything right first time often yields poor returns.

4. Build Tool portability: The build tools described by some authors are cum-
bersome but do have the ability to be extremely portable across all UNIX
platforms. Ant is obviously portable also because it builds on Java. This is
all good news.

3.2 Porting Objectives

The LCG2/EGEE software components are shown in the form of a dependency
graph in Figure 1.

Grid-Ireland wished, in the first instance, that the porting of the LCG2 soft-
ware to other platforms would focus on the ability to execute Globus and EDG
jobs on worker nodes, and that replica management, R-GMA and VOMS would
be supported.

To avail of the base functionality requires Globus and various EDG support
packages. Since Globus 2.4.3 is known to have many bugs, the University of
Wisconsin-Madison corrects these and packages all the necessary components as
part of the Virtual Data Toolkit (VDT) [13]. We have assisted Maarten Litmaath
in CERN to port VDT-1.1.14 to IRIX and Fedora Core 2. A Red Hat 9 port is
already provided by VDT [14]. A port exists for Globus to Mac OS X and AIX
but the VDT version must be ported to both of these platforms.

Grid-Ireland also wished that MPI, replica management and the OpenPBS
client be provided on each worker node. In some cases Torque might be re-

VDT

VOMS

profile
mkgridmap pbs−utils

Globus

gridftp−client

gacl

Other
DependenciesJava/Ant

R−GMA

java−tools
java−security
java−data−util

OpenPBS
Torque

AutoTools
Other
Depend−
encies

Management
Replica

Fig. 1. LCG2/EGEE software components



408 E. Kenny et al.

quired since newer versions of operating systems are not always provided for in
OpenPBS. Also the R-GMA information system producer and consumer APIs
and the VOMS client were required.

At the moment there is no requirement by Grid-Ireland for the workload
management system (WMS) but it appears that there is logging of WMS events
from worker nodes to the resource broker. This logging activity can be disabled
but with the loss of a desirable feature. WMS consists of many modules, but it
may be able to be refactored to delineate those specific to the event logging, so
that just this functionality needs to be ported. It should be noted that if the
whole of WMS were ported successfully then almost everything will have been
ported because it depends on so many other packages. Without WMS it will be
shown that it is still possible to run jobs on the worker node (see Sect. 4.3).

There are a number of on-going issues, but we have successfully ported the
functionality for job submission to Fedora Core 2, IRIX 6.5.14 and 6.5.17m, AIX
5.2L and Red Hat 9. We also plan to do this for Mac OS X v10.3 very soon, and
a number of other platforms if the need arises within Grid-Ireland.

3.3 Porting of EGEE/LCG2

There were a large number of porting issues, some of which were trivial to solve,
but others are on-going. The main issues were:

1. Versioning issues: The LCG2 C and C++ modules use Red Hat 7.3 auto-
tools so that when porting to other platforms the exact same versions must
be used so that the porting can be done successfully. For instance trying to
use libtool-1.5.6 makes it impossible to compile VOMS under IRIX.

2. Old package conflicts: Most Linux operating systems are now updated
using yum or apt and in the case of newer architectures some of the old
Linux modules are considered obsolete. In the case of Fedora Core 2 the
Red Hat 7.3 versions of automake and autoconf are contained in most yum
repositories and happily co-exist with newer version.

3. Binary Packaging issues: Red Hat Package Manager (RPM) packages
exist for most of the necessary software on Linux platforms. Packages have
to be found in other formats for IRIX and AIX, which can be time consuming.

4. Architecture Specific: Some dependency packages are not available for
certain architectures. For instance glibc has never been ported for later ver-
sions of gcc under AIX. Also gcc-3.2.2 is not available under AIX so gcc-3.3.3
has to be used instead. In the case of gsoap, the Linux version needs to be
installed as gsoap-linux-2.3 instead of the less architecture specific gsoap-2.3.

5. Shared libraries: It was found that, under AIX, shared libraries could not
be generated easily for some packages. Therefore the LCG2 code had to be
altered to include static libraries instead.

6. Differing bit architectures: 32-bit terms are hard-coded in many pack-
ages, making the porting of software much more time consuming. Sufficient
allowance is not always made for 64-bit and 32-bit variants.



Heterogeneity of Computing Nodes for Grid Computing 409

7. Dependency knowledge: In many cases just trying to obtain the correct
dependency packages and installing them in the correct locations was a very
time consuming exercise.

8. Module specific issues: A brief summary of these issues are described as
follows:
(a) Only certain versions of the grid packaging toolkit (GPT) built on all

platforms.
(b) There was parsing issues when Globus was built under IRIX and AIX

stopping the compilation from starting.
(c) VDT required gnu tar since tar could not extract the package on all

platforms correctly. Extra scripts were required under IRIX and Fedora
Core 2 to create tar balls and RPMs.

(d) gacl and edg-gridftp-client issues relate to shared libraries under IRIX.
(e) VOMS required changes related to POSIX, compiler version, environ-

ment variable and 64-bit issues.
(f) The order in which edg-build builds modules needed to be revised.
(g) Finding the correct versions of software for replica management under

IRIX took a considerable amount of time. Generally speaking, finding
the correct dependencies for each module was very time consuming.

4 Autobuilding the Non-reference Ports

Early in the porting effort it became obvious that it would be necessary to make
an exact replica of the DataGrid Red Hat 7.3 software repository so that any
teething problems could be solved incrementally as the code was ported to other
platforms.

At first the whole European DataGrid repository was obtained from the
developer of the build software, Yannick Patois[15][16], of IN2P3. This software
was used to maintain a Red Hat 6.2 and 7.3 repository of all the EDG software
up to November 2003. The build software is now used to maintain the CrossGrid
repository at FZK and the LCG2/EGEE repositories at CERN. CERN is using
the auto-building tool to support Scientific Linux 3 (SL3) on both 32-bit and
64-bit architectures, as well as the Red Hat 7.3 version. Since April 2004 we are
in constant contact with CERN with regard to porting the worker-node software
to five other platforms. Currently we maintain a full copy of the EDG, LCG2
and some CrossGrid modules on a Red Hat 7.3 repository.

4.1 CVS Repositories

A number of CVS repositories are used to build all the necessary software for a
worker node. The head version of VOMS is obtained from INFN’s own reposi-
tory. The whole of LCG2 is extracted using CVS checkouts directly from CERN’s
lcgware repository. The CrossGrid software is obtained by directly copying the
CVS repository to a local repository. Edg-build then contacts this local repos-
itory to perform the nightly builds. The RAL repository of R-GMA will also



410 E. Kenny et al.

need to be added soon, since LCG2 no longer maintain the most recent version
of R-GMA.

Because different repositories are being used to build different pieces of soft-
ware, this means that there must be a number of different build machines, one
for each repository. We have designed additional configuration scripts within
edg-build for each type of CVS repository and also different start-up scripts for
the cron jobs for each repository type. This makes the build process very easy
to maintain and easy to port to other machines.

4.2 Auto-Build Porting Issues and Upgrades

The auto-build software, edg-build, has the ability to configure, compile and
install software developed with the gnu autotools and apache ant. Therefore
C, C++ and Java code can be compiled on a nightly basis using cron jobs
or on a demand basis using a build-on-demand (BoD) server. The edg-build
software is written in Python 2.2 making it portable to most operating sys-
tems. It contains facilities to run aclocal, automake, autoconf, libtool, make and
ant in a sequential way, that will result in the production of binary tarballs or
RPMs (under Linux). It was designed specifically to cater for gcc-2.95.2 and later
gcc-3.2.2.

Although reasonably portable, edg-build had a number of issues and upgrades
that needed to be taken care of before auto-building on non-reference platforms.
These can be summarized as follows:

1. The software relies on specific versions of the gnu autotools. Any deviation
from the specified list results in uncompilable code.

2. The Makefile could not be generated under IRIX or AIX, but it could be
copied from Red Hat 7.3 and built the software successfully.

3. The Python scripts needed to be modified to allow for specific configurations
of some modules.

4. Much of the LCG2/EGEE code relies on Red Hat 7.3 RPMs. Under Fe-
dora these older RPMs are now deprecated. The older versions needed to
be installed in a separate directory structure to allow edg-build to build the
software correctly.

5. Direct access to most of the European CVS software repositories was impos-
sible from inside our firewall, so a SSH tunnel was created to obtain access.

6. The sequence describing the compilation of nightly built modules was re-
ordered so that every package built first time.

4.3 Results

In Figure 2 the current status of the build system can be seen. This figure is a
snapshot of the Grid-Ireland auto-build web page [17] at the start of November
2004. The results change quite regularly as new ports are completed.



Heterogeneity of Computing Nodes for Grid Computing 411

Redhat

OS Type

Redhat

Fedora Core

SGI

Darwin

AIX

Version VDT Basic VOMS RGMA RM

7.3

9.0

2

6.5.14

5.2L

10

RPMS RPMS RPMS RPMS RPMS

RPMS RPMS RPMS RPMS RPMS

RPMS
RPMSRPMSRPMS

RPMS

tarball tarball

tarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarballtarball

tarball

tarball

Started

Done

To be started

Colour Meaning

Fig. 2. Auto-build Results for Worker Nodes

5 Worker Node Setup

Currently our download repository contains only the Fedora Core 2 worker node
RPMs. They can be deployed using yum, but we have found yum to be very
slow in finding package dependencies, so we plan to migrate to apt. An empty
RPM is provided which depends on the all the others, so performing an install of
this one package will install the whole worker node. Post installation is achieved
using the guidelines for LCG2 worker node installation[18]. At the moment this
must be done by hand, but we plan to automate this step. In the case of IRIX
where only tar balls are available, copying the /opt/ directory from one IRIX
machine to another may be sufficient to create a working worker node, but this
needs to be tested, particularly to see if libraries are missing or stored in other
directories. One way to avoid this might be to create tardist files of all packages
and ensure that all dependencies are accounted for on the new worker node.

6 Early Benchmarking Results

For comparison purposes a FFT job was submitted via Globus and via the EDG
broker to worker nodes built with Fedora Core 2, IRIX, Red Hat 7.3 and Red
Hat 9. These jobs involve submission of the executable built on the relevant
worker node platforms. The executable is placed inside a wrapper script that is
then described using the job description language (JDL). Mean times (x̄) are

Table 1. Preliminary FFT EDG Job Submission Results

OS Type Version CPU Speed iterations x̄ σ

Red Hat 9 2.8GHz 400 8.65 0.36
Red Hat 7.3 2.8GHz 400 8.39 0.53

Fedora Core 2 2.8GHz 400 9.6 0.34
IRIX 6.5.14 400MHz 100 10.52 0.01



412 E. Kenny et al.

calculated for a FFT with vector length of N = 216 for a specified number of
iteration (see Table 1). Red Hat 7.3 turns out to be the faster than Red Hat 9,
and Red Hat 9 faster than Fedora Core 2. IRIX is approximately 5 times slower
but has a much slower CPU speed. The load is very stable on the IRIX as can
be seen by the small standard deviation (σ). The mean and standard deviation
are calculated from 10 samples.

7 Conclusions

The base worker node port of the LCG2/EGEE grid software for Globus and
EDG job submission is now completed for Fedora Core 2, Red Hat 9, IRIX and
AIX. VOMS is ported to Fedora Core 2, Red Hat 9 and IRIX but still has pend-
ing issues related to 64-bit architectures, amongst other things. In the coming
months VOMS will be supported on the LCG2/EGEE testbed, so this issue, we
presume, will be resolved as time goes on. We also have R-GMA and replica
management software building under Fedora Core 2 and Red Hat 9 but it will
take a little longer to complete under IRIX and AIX. The workload management
system will possibly be incorporated, or some subset of it, in the foreseeable fu-
ture. We plan to release software tags that are exactly the same versions as
those provided for SL3, and do this using apt repositories. This requires that the
replica management be tested for all worker nodes in accordance with the test
procedures for deployment laid out in the LCG2 deployment documentation [19].

This has allowed us to begin a most interesting set of benchmarking and
heterogeneity experiments involving all of these platforms. With manual instal-
lation of Fedora Core 2, IRIX and Red Hat 9 worker nodes it will be possible to
submit jobs heterogeneously across Grid-Ireland.

Acknowledgements

We would like to thank IBM and Dell for sponsoring us with machines to perform
the software ports, and Science Foundation Ireland for funding this effort. We
would also like to thank Vincenzo Ciaschini in INFN for his sterling work on
VOMS. We gratefully thank DIAS for the SGI machine they have loaned to us
for the IRIX port. Most of all we would like to thank the deployment group in
CERN for all their help in porting to each platform, in particular Carlos Osuna
for his help in customizing the auto-build procedure and Maarten Litmaath in
porting VDT Globus.

References

1. LHC: Large hadron collider computing grid project. http://lcg.web.cern.ch/LCG/
(2004)

2. EDG: European datagrid project. http://www.eu-datagrid.org/ (2004)



Heterogeneity of Computing Nodes for Grid Computing 413

3. EGEE: Enabling grids for e-science in europe. http://www.eu-egee.org/ (2004)
4. CrossGrid. http://www.crossgrid.org/ (2004)
5. CASEY, J., BAUD, J.P.: The Evolution of Data Management in LCG-2.

http://chep2004.web.cern.ch/chep2004/ (2004)
6. Maroney, O.: London Tier-2. http://www.gridpp.ac.uk/gridpp11/ (2004)
7. Coghlan, B., Walsh, J., Quigley, G., O’Callaghan, D., Childs, S., Kenny, E.: Prin-

ciples of Transactional Grid Deployment. Submitted to EGC 2005 (2004)
8. Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with

mpC. Volume 28. Elsevier Science Publishers B. V. (2002)
9. Ryan, J.: SMG: Shared Memory for Grids. PDCS’04, Boston (2004)

10. Morrison, J.: Condensed Graphs: Unifying Availability-Driven, Coercion-Driven,
and Control-Driven Computing. ISBN: 90-386-0478-5 (1996)

11. Lynuxworks: POSIX conformance.
http://www.lynuxworks.com/products/posix/posix.pdf (2004)

12. Stamelos, I., Vlahavas, I., Refanidis, I., Tsoukiȧs, A.: Knowledge Based Evalua-
tion of Software Systems: a Case Study. http://l1.lamsade.dauphine.fr/tsoukias/
papers/kb-esse.pdf (2003)

13. VDT: Virtual data toolkit. http://www.cs.wisc.edu/vdt/ (2004)
14. VDT: Versions for RH7.3 and RH9.0.

http://www.cs.wisc.edu/vdt/vdt rpms/1.2.1/stable/ (2004)
15. Garcia, A., Hardt, M., Patois, Y., Schwickerath, U.: Collaborative Development

Tools. Cracow Grid Workshop (2003)
16. Patois, Y.: Datagrid configuration management and build conventions.

http://datagrid.in2p3.fr/d6.2/DataGrid-ConfMngmt-BuildConv.html (2003)
17. Autobuild: TCD Autobuild Web-page. http://grid.ie/autobuild (2004)
18. Retico, A., Usai, A., Keeble, O., Diez-Andino, G.: LCG Grid INfras-

tructure Support. http://grid-deployment.web.cern.ch/grid-deployment/gis/lcg-
2 2 0/LCG2InstallNotes.pdf (2004)

19. LCG2-deployment: Deployment web-pages. http://cern.ch/grid-deployment/
(2004)



Effective Job Management
in the Virtual Laboratory

Marcin Lawenda, Norbert Meyer, Maciej Stroiński, Tomasz Rajtar,
Marcin Okoń, Dominik Stok�losa, and Damian Kaliszan

Poznań Supercomputing and Networking Center,
Noskowskiego 10, 61-704 Poznań, Poland

Marcin.Lawenda@man.poznan.pl

http://vlab.psnc.pl

Abstract. In the paper approach to effective job management in the vir-
tual laboratory is presented. The Dynamic Measurement Scenario (DMS)
is used for advanced workflow control. DMS often consists of many dif-
ferent tasks connected by links with specified conditions. To prepare
DMS we need a special application (during the definition process) on
the one hand and on the other hand a sophisticated (and complex) mod-
ule for manage and control specified workflow is needed. The described
issues are illustrated by Nuclear Magnetic Resonance (NMR) laboratory
examples.

1 Introduction

Experiments executed in the science laboratories are complex and consist of
many stages [3],[4]. Usually it looks as follows: a scientist prepares a sample
and/or input data (e.g. parameters) which will be measured/computed. Next
she/he uses laboratory devices to achieve data which are the processed by a spe-
cialized software. Processing can include the visualization stage if it is needed
to assess the results. In case of undesirable results some measurement stages
should be repeated. At each stage the scientist decides which way the research
should go next. As we can see, the experiment process execution may consist of
very similar stages in many scientific disciplines (laboratories). The given exper-
imental process is often executed recurrently by some parameters modification.
Obviously, the presented scenario is typical but we realize that scholars can have
more sophisticated needs.

Thus, we can define a graph which describes the execution path specified
by a user. Nodes in this graph correspond to experimental or computational
tasks. Edges (links) correspond to the path the measurement execution is fol-
lowing. In nodes we have a defined type of application and its parameters. In
links the passing conditions which substitute decisions made by the user are de-
fined. These conditions are connected with applications and let us determine if
the application is finished with the desired results (if not, the condition is not
met). This execution graph with specified nodes and links (with conditions) is

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 414–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Effective Job Management in the Virtual Laboratory 415

called the Dynamic Measurement Scenario (DMS). The term ”dynamic” is used,
because the real execution path is determined by the results achieved on each
measurement stage and can change dynamically. All the DMS parameters can
be written down using a special language: the Dynamic Measurement Scenario
Language (DMSL).

The DMS is used in the Virtual Laboratory [5] system developed in Poznań
Supercomputing and Networking Center in collaboration with the Institute of
Bioorganic Chemistry (IBCH) and Department of Radio Astronomy of Nicolaus
Copernicus University.

2 Related Work

Pegasus. Pegasus (Planning for Execution in Grids) [1], was developed at In-
formation Science Institute (ISI) as part of the GriPhyN project [2]. The system
is designed to map abstract workflows onto the Grid environment. The abstract
workflow is presented as an workflow, where the activities are independent of
the Grid resources used to execute those activities. The abstract workflow can
be constructed by Chimera or can be written directly by the user. Whether
the input comes through Chimera or is given directly by the user, Pegasus re-
quires that it is in DAX format. Based on this specification, Pegasus produces
a concrete (executable) workflow.

Wf-XML. Wf-XML comes from the Workflow Management Coalition (WMC),
an independent body of workflow vendors, customers and higher education es-
tablishments. The Wf-XML interface is based on XML and build on top of the
Asynchronous Service Access Protocol (ASAP), which is in turn built on Simple
Object Access Protocol (SOAP). It allows workflows from different vendors to
communicate with each other. The WMC claims that Wf-Xml is an ideal way
for the Business Process Manager (BMP) engine to invoke a process in another
BPM engine. Such engines have the property that their process can be examined
by being retrieved in a standard form, such BPEL. It also provides an interface
to send new or updated process definitions to the BPM engine.

The VLab has different approach. First of all, we do not want to target only the
computational applications, but also live experiments and interactive and batch
applications. The VLab user is given a simple graphical interface (Scenario Sub-
mission Application - SSA) and is not required to study new language. We have
created a resource schema which can be used to describe resources like experi-
ments (i.e. NMR spectroscopy, radio telescope, etc.) or computations. Using SSA
the VLab user builds his workflow, which is called Dynamic Measurement Sce-
nario (DMS), connecting defined resources together and providing the required
properties. Moreover each application or experiment in DMS is represented as
an separate node. The DMS can be submitted to the VLab system, where is de-
composed according to the user specification and each node is launched. When



416 M. Lawenda et al.

the current node is experiment the user is given an interface to the scientific
equipment where he can conduct an experiment. The computational nodes are
submitted to the GRID using GRMS Broker [6]. The decision, where the task
will be executed is made basing on the user specification.

3 Designing

To properly define the Dynamic Measurement Scenario the system has to have
knowledge about available applications and connections which are enabled to
create. In case of the laboratory type, where the processing software is well
known, it seems to be easy. The issue will be more complex when we want to
define the DMS model for a wider range of virtual laboratories.

To solve this problem we have defined a special language (DMSL) which
determines the following conditions: names of the connected applications, a con-
dition (or conditions) connected with a given path, an additional condition which
has to be met to pass a given path (e.g. when special conversion between appli-
cation is needed) and, finally, a list of input or output files for applications.

An expertise from a particular discipline is necessary to define rules for DMS.
It can be done by a laboratory administrator together with a domain expert.

The DMS schema must be designed by the VLab administrator before it
is available for users. Creating a new Dynamic Measurement Scenario needs a
special attitude. We assume that some stages will be performed by the computer
science engineer and scientist from a scientific discipline DMS concerns, and some
by application.

The designing of the DMS consists of the following stages:

– application analyzing,
– connection diagram preparing,
– describing additional dependencies in the connection diagram,
– applications and links description generating,
– measurement scenario description generating.

All stages are tightly connected between themselves and should be executed
in the presented sequence. The first three phases should be performed, as we
mentioned before, by the VLab administrator and engaged scientist (see 3.1,
3.2, 3.3). The last two can be done by a special application which take into
consideration user’s rights and information introduced by the user (see 3.4, 3.5).
Next, we will analyse each stage of DMS designing. Because of the paper limi-
tations we had to focus only on the major aspects of these issues.

3.1 Application Analyzing

Each application available in the dynamic scenario must be first analyzed from
the functional point of view. Input and output parameters have to be taken into
consideration. Also, input and output format files must be described. An exem-
plary option to describe in these files follows: file type (binary, text), filename



Effective Job Management in the Virtual Laboratory 417

format (if exists): filename mask, filename extension. If the file format type is
text, the analyst can analyze information within. A specified pattern connected
with parameters important for the final user (calculated by application) can be
used to specify link conditions.

3.2 Connection Diagram Preparation

After the application analysis step the VLab administrator can make the con-
nection diagram. In this phase applications are assigned to execution stages.
Exemplary stages for the laboratory of NMR spectroscopy follow: acquisition,
processing, visualization, structure determination, structure visualization.

The following stages do not have to occur one after another in the mea-
surement process but connection dependencies have to be met. The available
measurement sequence is determined in the next step. Each application from
each stage is connected to another one taking into consideration data achieved
in the previous analysing step (see 3.1).

At this stage the necessity of cooperation between a computer science engi-
neer and a scientist connected with a given science discipline is strictly required.

In Fig. 1 we present an exemplary diagram for the Virtual Laboratory of
NMR Spectroscopy.

3.3 Describing Additional Dependencies in the Connection

Diagram

At this stage we present conditions on the connections between applications
which were created at the previous stage (see 3.1). We should focus our attention
on: connection conditions, conversion issues, files types related to links.

Conditions defined on the connections can influence the measurement exe-
cution path. After the end of each application execution they are verified and
in this way the following execution path is determined. For more information
please go to 4.

Fig. 1. An exemplary connection diagram for the Virtual Laboratory of NMR Spec-
troscopy (prepared by �Lukasz Popenda (IBCH))



418 M. Lawenda et al.

Conversion is performed when two connected applications have a different
input-output file format. It should be described for each connection separately.
Depending on the connected applications conversion can be realized in a different
way. More about the conversion issues can be found in section 5.

It is necessary to determine which type of file can be used as an input file
to the target application. Therefore, a set of output files of a given application
must be related to each link. Note that a different set of files can be related to
each link. This means that some output files of a source application can be used
for one target application but not for another one and vise versa.

3.4 Applications and Links Description Generation

The next steps can be performed using the Scenario Submission Application
(SSA) based on the information from the previous stages. DMS is encoded in the
Dynamic Measurement Scenario Language (DMSL). DMSL base on the XML
and XSD standard. The general DMS consists of a description of all possible
applications with all parameters available for users.

XSD Schema. The purpose of an XML Schema is to define the legal building
blocks of an XML document, just like a DTD. An XML Schema defines: elements
that can appear in a document, attributes that can appear in a document, defines
which elements are child elements, defines the order of child elements, defines the
number of child elements, defines whether an element is empty or can include
text, defines data types for elements and attributes, defines default and fixed
values for elements and attributes. The XML Schema language is also referred
to as the XML Schema Definition (XSD). The next paragraphs describe the
XSD schemas which are used by the VLab system. The XSD schemas have been
created for the Dynamic Measurement Scenario definition.

Components Description Schema. The Components Description Schema
(CDS) defines the Java swing components (JComponent) which are used for
displaying the resource properties (See RDS description). The schema structure
is presented in a diagram in Fig. 2.

Also, a set of component attributes is available. Some of the attributes are
required by the component, some are optional. They are all used to define the
component behaviour i.e. whether the component should be visible, editable,
etc. A list of all available attributes is presented in the table below.

Fig. 2. Component description schema



Effective Job Management in the Virtual Laboratory 419

No Name Description

1 id the component identifier
2 name component name
3 class java class name which implements the given compo-

nent
4 modelDataAttached specifies whether the component requires the model

data (i.e. JList requires the list of items. From the set
of items the user chooses the item)

5 model the java class which implement the component data
model

6 document the java class, which implements the component doc-
ument

7 editor the java class, which implements the component edi-
tor

8 enabled determines whether this component is enabled. An
enabled component can respond to user input and
generate events

9 visible Determines whether this component should be visible
when its parent is visible

10 editable tells whether the component is read only
11 columns the number of columns (i.e. in the JTextarea)
12 rows the number of rows (i.e. in the JTextarea)
13 min the minimum value of the component (i.e. JSpinner)
14 max the maximum value of the component (i.e. JSpinner)
15 step the step value of the component (i.e. JSpinner)
16 selectedIndex the index of the component item which should be

selected by default (i.e. JComboBox)
17 dateFormat specifies the date format of the component
18 icon the component icon (i.e. JCheckBox)
19 selectedIcon the component selected icon (i.e. JCheckBox)

Using the schema described above the following Java components have been
defined: check box (JCheckBox), text field (JTextField), list (JList), combo box
(JComboBox), text area (JTextArea), date field, radio button (JRadioButton),
spinner field (JSpinner).

Links Description Schema (LDS). The LDS schema describes the available
connections between resources. It also specifies the conditions which have to be
taken into consideration while connecting resources. The schema structure is
presented below (Fig. 3).

The Link Element. The link element, as it is shown in the figure below con-
tains the connection definition between two nodes (Fig. 4).

The connection attributes are: id (the link identifier), resourceId (component
name), externalConversion (necessity of external conversion).



420 M. Lawenda et al.

Fig. 3. Links description schema

Fig. 4. The link element

Fig. 5. Resource description schema

Resource Description Schema. The Resource Description Schema (RDS)
has been created for the VLab resource description. The general resource de-
scription structure is presented in the figure below (Fig. 5).

The schema defines a list of the resources which are all attached to the re-
sources node. Every resource element contains the following sections: nodeType
(defines the type of the given resource), tabs (the resource properties are grouped
in tabbed panes which are displayed in the JTabbedPanes), monitoring (infor-
mation about the given resource in the VLab system).



Effective Job Management in the Virtual Laboratory 421

The resource definition can be visualized by the Scenario Submission
Application.

3.5 Measurement Scenario Description

The user is welcome to create the measurement diagram using the Scenario
Submission Application (SSA).

The applications and links definition specified in the previous stage are im-
ported to the SSA. A List of imported applications take into account the user’s
rights. Thus, it consists of only these applications descriptions (and possible
connections) which are available for the user.

After finishing the measurement scenario defined by the user, a new DMS
description is generated. It is defined on the basis of the diagram and infor-
mation added by user. Only the chosen application descriptions with specified
parameters are placed there.

4 Connection Issues

The user can define conditions on the connections which can influence the mea-
surement workflow. These conditions concern the computational or experimental
results. A set of available conditions to be specified by the user (while a new mea-
surement is defined) is determined on the ”describing additional dependencies”
stage of the DMS creation process (see 3.3). To enable a given connection all
conditions defined there have to be met.

The user is also welcome to define logical conditions between links. There
are two types of conditions: OR (default) and AND. Logical conditions can be
defined in the beginning and end of connections. Their meaning depends on their
localization.

Beginning Conditions. The Beginning conditions are connected with the re-
sults achieved at the computational stage. Each link is marked by logical 1 if all
conditions are met or logical 0 otherwise. The default logical operation defined
between links is OR, which means that each execution path can be done sepa-
rately. In case of the AND operation simultaneously execution of two or more
paths is possible on condition that achieving results in the source application
are met (value 1 on each link).

Ending Conditions. The ending conditions are defined to assure that all nec-
essary data is available before the start of the next processing task.

Similarly as before, for the OR condition the link is independent from the
other ones. This means that if conditions on a given link are met, the measure-
ment process can go on without waiting for other processes.

The AND condition is used when results computation from a few sources is
needed. In this way we can force waiting for finishing a number of processes and
only then run the next task.

The discussed situation is presented in Fig. 6.



422 M. Lawenda et al.

Fig. 6. Defining in/out-connections conditions

Fig. 7. Four ways of conversion

5 Conversion Issues

In this section we want to focus on the conversion issues. As we mentioned before,
conversion is made when input and output file application formats are different.
We assume that conversion may be done in four different ways:

– setting up the switch in the source application to export data in an appro-
priate format (1),

– using a program on the source server to convert the output file (mini post-
processing) (2),

– using a program on the source server to convert the output file (mini pre-
processing) (3),

– setting up the switch in the target application to import data in an appro-
priate format (4).

The discussed situation is illustrated on figure below (Fig. 7).
The conversion way has to be matched with a given connection. The pre-

ferred way is using the application switches because it usually does not cause
additional CPU power consuming. Please note that not every conversion way
will be possible in each situation.

6 Summary

The Dynamic Measurement Scenario is a flexible and very convenient way to
define workflow in many types of virtual laboratories. It allows to spare a lot



Effective Job Management in the Virtual Laboratory 423

of user’s time and speed up of the project realization. It facilitates defining and
monitoring the measurement process from the preparation stage through exper-
imental and computational processes to results analysis (based on the achieved
visualization data). In the DMS model, besides the definition of the tasks exe-
cution sequence, we can also define some extra connections (e.g. loops, parallel
connections), conditions on the connections and different lengths of the execution
paths. Thanks to the possibility of the conditions defining on the connections
paths, the real path is determined during execution and can depend on com-
putational results. Thanks to the Submission Scenario Application the user can
easily define, submit and monitor the progress of the DMS realization.

References

1. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Mei-Hui Su,
Vahi, K., Livny, M.,: Pegasus: Mapping Scientific Workflows onto the Grid, Across
Grids Conference 2004, Nicosia, Cyprus

2. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.,: Workflow Management in Gri-
PhyN, Grid Resource Management, J. Nabrzyski, J. Schopf, and J. Weglarz editors,
Kluwer, 2003.

3. Lawenda, M., Meyer, N., Rajtar, T.: General framework for Virtual Laboratory.
The 2nd Cracow Grid Workshop, Cracow, Poland, December 11 - 14, 2002

4. Lawenda, M., Meyer, N., Rajtar, T., Okoń, M., Stok�losa, D., Stroiński, M.,
Popenda, �L., Gdaniec, Z., Adamiak, R.W.: General Conception of the Virtual Lab-
oratory. International Conference on Computational Science 2004, LNCS 3038, pp.
1013-1016, Cracow, Poland, June 6-9, 2004

5. Virtual Laboratory project http://vlab.psnc.pl/
6. WP9 Resource Management - GridLab Project http://www.gridlab.org/Work

Packages/wp-9/



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 424 – 433, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Workflow Management in the CrossGrid Project* 

Anna Morajko1, Enol Fernández1, Alvaro Fernández2,  
Elisa Heymann1, and Miquel Ángel Senar1 

1 Universitat Autònoma de Barcelona, Barcelona, Spain 
{ania, enol}@aomail.uab.es 

{elisa.heymann, miquelangel.senar}@uab.es 
2 Instituto de Física Corpuscular, Valencia, Spain 

alvaro.fernandez@ific.uv.es  

Abstract. Grid systems offer high computing capabilities that are used in many 
scientific research fields and thus many applications are submitted to these 
powerful systems. Parallel applications and applications consisting of inter-
dependent jobs may especially be characterized by a complex workflow. 
Therefore, Grid systems should be capable of executing and controlling 
workflow computations. This document sets out our approach to workflow 
management in a Grid environment. It introduces common steps on how to map 
an application workflow to the DAG structure, and how to carry out its 
execution and control. We present the Workflow Management Service (WFMS) 
implemented and integrated as a part of the CrossGrid project. The purpose of 
this service is to schedule workflow computations according to user-defined 
requirements, also providing a set of mechanisms to deal with failures in Grid. 

1   Introduction 

The Grid represents distributed and heterogeneous systems and involves coordinating 
and sharing computing, application, data, storage, or network resources across 
dynamic and geographically dispersed organizations [1]. Grid systems offer high 
computing capabilities that are used in many scientific research fields. They facilitate 
the determination of the human genome, computing atomic interactions or simulating 
the evolution of the universe. Many researchers have therefore become intensive users 
of applications with high performance computing characteristics. There are projects 
such as GriPhyn [2], DataGrid [3], GridLab [4] or Crossgrid [5] that provide the 
middleware infrastructure to simplify application deployment on computational grids. 

The main objective of the CrossGrid project is to incorporate a collection of 
machines distributed across Europe, and to provide support especially for parallel and 
interactive compute- and data-intensive applications. As a result of this project, 
parallel applications compiled with the MPICH library (and using either ch-p4 [6] or 
Globus2 [7] device) are executed on Grid resources in a transparent and automatic 
way. The workload management system that we have implemented as part of the 
                                                           
*  This work has been partially supported by the European Union through the IST-2001-32243 

project “CrossGrid” and partially supported by the Comisión Interministerial de Ciencia y 
Tecnología (CICYT) under contract TIC2001-2592. 



 Workflow Management in the CrossGrid Project 425 

 

CrossGrid middleware carries out all necessary steps incurred from the time that the 
application is submitted by the user until the end of its execution (i.e. potential 
resource discovery, selection of the best matched resources and execution tracking). 
Our workload management system has been designed to manage Grid-specific details 
of the application execution with minimal effort by the user. 

In the previous work [8], we described the specific details related to the execution 
of MPI applications on the Grid. In this paper, we focus on the additional service that 
we have included to support workflow computations. Many applications may consist 
of inter-dependent jobs, where information or tasks are passed from one job to 
another for action, according to a set of rules. Such applications known as workflows 
consists of a collection of jobs that need to be executed in a partial order determined 
by control and data dependencies. Workflows are an important class of applications 
that can take advantages of the resource power available in Grid infrastructures, as 
has been shown in the LIGO [9] pulsar search, several image processing applications 
[10] or physics experiment ATLAS [11]. The execution of such an application may be 
very difficult. Normally, a user should submit to a Grid system manually, job by job, 
following the rules of dependencies that appear between jobs. The manual tracking of 
the application workflow may be very ineffective, time consuming and may produce 
many errors in application execution. Therefore, we present a solution to the 
automatic management of the application workflows applied in the CrossGrid project.  

Section 2 briefly presents related work. Section 3 introduces a general overview of 
the workload management in the CrossGrid, indicating new features for workflow 
support. Section 4 sets out the workflow notation and Section 5 introduces details of 
the workflow management. Section 6 shows the results of the probes conducted using 
a workflow whose structure is representative of the ATLAS experiment. Finally, 
Section 7 presents the conclusions to this study. 

2   Related Work 

A number of studies in Grid systems provide general-purpose workflow management. 
The Condor's DAGMan [12] – DAGMan (Directed Acyclic Graph Manager) is a 
meta-scheduler for Condor. DAGMan manages dependencies between jobs, 
submitting these to Condor according to the order represented by a DAG and 
processes the results. The DAG must be described in an input file processed by the 
DAGMan and each node (program) in the DAG needs its own Condor submit 
description file. DAGMan is responsible for scheduling, recovery, and reporting for 
the set of programs submitted to Condor. This scheduler focuses on the execution of 
workflows in a local cluster managed by the Condor system. 

Pegasus system [13] – Planning for Execution in Grids – was developed as part of 
the GriPhyN project. Pegasus can map scientific workflows onto the Grid. It has been 
integrated with the GriPhyN Chimera system. Chimera generates an abstract 
workflow (AW), Pegasus then receives such a description and produces a concrete 
workflow (CW), which specifies the location of the data and the execution platforms. 
Finally, Pegasus submits CW to Condor's DAGMan for execution. This system 
focuses on the concept of virtual data and workflow reduction. Triana [14] is a 
Problem Solving Environment (PSE) that provides a graphical user interface to 



426 A. Morajko et al. 

 

compose scientific applications. A component in Triana is the smallest unit of 
execution written as Java class. Each component has a definition encoded in XML. 
Such created application’s  graph can then be executed over Grid network using the 
GAP interface. Unicore [15] stands for Uniform Interface to Computing Resources 
and allows users to create and manage batch jobs that can be executed on different 
systems and different UNICORE sites. The user creates an abstract representation of 
the job group (AJO – Abstract Job Object) that is then serialized as a Java object, and 
in XML format. UNICORE supports dependencies inside the job group and ensures 
the correct order of the execution. Its job model can be described as directed acyclic 
graphs. UNICORE maps the user request to system specification, providing job 
control. In contrast to our work, Triana, Pegasus and Unicore lack resource brokerage 
and scheduling strategies. 

GridFlow [16] supports a workflow management system for grid computing. It 
includes a user portal in addition to services of global grid workflow management and 
local grid sub-workflow scheduling. At the global level, the GridFlow project 
provides execution and monitoring functionalities. It also manages the workflow 
simulation that takes place before the workflow is actually executed. This approach is 
applicable only in the case of having performance information about job execution. At 
the local grid sub-workflow level, scheduling service is supported. 

3   CrossGrid Workload Management 

This section presents the main components that constitute the Workload Management 
System (WMS) applied in the CrossGrid project. A user submits a job to a Scheduling 
Agent (SA) through a Migrating Desktop or command line (see Figure 1). The job is 
described by a JobAd (Job Advertisement) using the EU-Datagrid Job Description 
Language (JDL) [17], which has been extended with additional attributes to support 
interactive and parallel applications, as well as workflows.  

To support the workflow execution, we have included specific service into the 
WMS. Workflows have a special treatment at the beginning as they are passed from 
the SA to the Condor’s DAGMan, which is a specialized scheduler module that 
submits each individual job to the SA when job dependencies have been satisfied.  

For each simple job (submitted directly by the user or by the Condor’s DAGMan), 
the SA follows the same steps. It asks the Resource Searcher (RS) for resources to run 
the application. The main duty of the RS is to perform the matchmaking between job 
needs and available resources. The RS receives a job description as input, and, as 
output, returns a list of possible resources within which to execute the job. Computing 
resources are available as Computing Elements (CE), which provide the abstraction of 
a local farm of Working Nodes (WN). This local farm (or CE) is accessed through a 
Gatekeeper. The list of resources returned by the Resource Searcher consists of a 
Computing Elements list. Subsequently, the Scheduling Agent selects a CE on which 
to run the job. The SA passes the job and the first-selected CE to the Application 
Launcher (AL), who is responsible for the submission of that job on the specified CE. 
The AL passes the job to Condor_G [18], which manages a queue of jobs and 
resources from sites where the job can be executed. Due to the dynamic nature of the 
Grid, the job submission may fail on that particular CE. Therefore, the Scheduling 



 Workflow Management in the CrossGrid Project 427 

 

Agent will try the other CEs from the list returned by the Resource Searcher. Finally, 
the Scheduling Agent notifies the user of the result.  

Fig. 1. Architecture of the Workload Management System 

4   Workflow Notation and Specification 

There are many complex applications that consist of inter-dependent jobs that 
cooperate to solve a particular problem. The completion of a particular job is the 
condition needed to start the execution of jobs that depend upon it. This kind of 
application workflow may be represented in the form of a DAG – a directed acyclic 
graph. A DAG is a graph with one-way edges that does not contain cycles. It can be 
used to represent a set of programs where the input, output, or execution of one or 
more programs is dependent on one or more other programs. The programs are nodes 
(vertices) in the graph, and the edges (arcs) identify the dependencies of these 
programs. Figure 2 presents an example DAG that consists of 4 nodes lying on 3 
levels. The execution of the indicated DAG consists of three successive steps:  

1. Execution of the node NodeA from the first level.  
2. Parallel execution of nodes NodeB1 and NodeB2 from the second level. The 

execution can start if and only if the execution of the node NodeA is successful.  
3. Execution of the node NodeC from the third level. The execution can start if and 

only if the execution of all nodes from the level two is successful. 

Fig. 2. Example DAG 

Scheduling Agent Resource 
Searcher 

Migrating Desktop 

Resource 
Management 

CEGatekeeper 

WN WNWN 

CE Gatekeeper

WN WN WN

User 

User Interface 
Command -line 

Application Launcher DAGMan 

Condor-G 

NodeA 

NodeB1 NodeB2

NodeC 



428 A. Morajko et al. 

 

4.1   Workflow Specification Using JDL 

Workflows, similar to a normal job, are specified in a text file using DataGrid JDL 
format extended appropriately to support DAG structure and control. The workflow 
description has two components: specification of dependencies between computations 
(node dependencies) and specification of computation (node description). Below, we 
present an example JDL file for a workflow specified as in Figure 2. 

[ 
type = "dag"; 
nodes = [  

dependencies={{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}}; 
 NodeA = [ 
  node_type = "edg-jdl"; 
  description = [ 
   Executable = "jobA.sh"; 
   InputSandbox = {" jobA.sh"}; 
  ]; 
 ]; 
 NodeB1 = [ 
  node_type = "edg-jdl"; 

node_retry_count = 3; 
app_exit_code = { 10, 11 }; 
file = “jobB1.jdl”; 

 ]; 
 NodeB2 = [ 

node_type = "edg-jdl"; 
file = “jobB2.jdl”;  

 ]; 
 NodeC = [ 

node_type = "edg-jdl"; 
file = “jobC.jdl”; 

 ]; 
]; 
]  

4.2   Dependencies Between Nodes 

Each dependence is specified as a pair of elements positioned between brackets, 
where the meaning is that the second element depends on the first. Both elements may 
be formed by a set of elements written between brackets. This indicates a dependence 
of many-to-one, one-to many or many-to-many elements. Therefore, considering the 
example DAG, there are few possibilities to specify the attribute dependencies:  

• {{NodeA,NodeB1},{NodeA,NodeB2},{NodeB1,NodeC},{NodeB2,NodeC}} 

• {{NodeA,NodeB1},{NodeA,NodeB2},{{NodeB1,NodeB2},NodeC}} 

• {{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}} 

4.3   Node Description 

The attribute nodes contains the list of nodes that form the DAG. Each node 
represents a job to be executed and contains node-specific attributes, as well as the job 
specification. The attributes for a node description are: 

Job 
specification 

Node 
specification 



 Workflow Management in the CrossGrid Project 429 

 

• node_type – specifying a type of a node. This attribute is mandatory and must 
contain the value “edg-jdl”, as the node is a normal job written in JDL format. 

• node_retry_count – specifying how many times a node execution may be retried 
in the case of failure. This attribute is optional. If the user specifies this attribute 
for a node; hence, if it fails, this particular node will be automatically retried. 
Otherwise, this attribute will be set to the default value.  

• app_exit_code – specifying the possible exit codes for a job. If a node fails 
because of the application failure (e.g. segmentation fault, division by 0, a file 
already registered in a Storage Element), then a job should be aborted. However, 
when a job fails because given resources fail (e.g. a machine failure, Condor/PBS 
queue problems), it should be automatically retried. By default, in both cases, the 
node will be retried until node_retry_count. The attribute app_exit_code 
provides the possibility to control the job exit code and terminate job execution in 
case of failure. If this attribute contains certain values, this means that the job 
may return such values and that they are recognized by the user. If the job 
execution returns one of the specified values, the node will not be retried. 
Otherwise, the job will be retried automatically according to node_retry_count 
(if the maximum of retries is not reached) and submitted to other CE.  

• description / file – specification of the job; A job can be a normal, single job 
or an MPI job. There are two ways to specify a job:  

o Via an attribute called description, where a job is specified directly 
inside this attribute in JDL: 

description = [ 
Executable = "jobA.sh"; 
InputSandbox = {" jobA.sh"}; 
… 

]; 

o Via an attribute file, where a job is specified in the indicated JDL file 
file = “jobA.jdl”; 

5   Scheduling Application Workflow  

To support application workflows, we have extended the Scheduling Agent with a 
new component called Workflow Manager Service (WFMS). The WFMS is executed 
within the Resource Broker machine that contains the WMS presented in Section 3. 
Specification and implementation of the workflow supported in the CrossGrid project 
takes advantages and leverages of a preliminary work presented in [19]. As shown in 
Figure 1, workflows are passed from the Scheduler Agent to the Condor’s DAGMan. 
DAGMan is an iterator on the DAG, whose main purpose is to navigate through the 
graph, determine which nodes are free of dependencies, and follow the execution of 
corresponding jobs, submitting these to the SA. While DAGMan provides us with the 
automatic graph management, the WFMS is responsible for searching grid resources, 
controlling errors and retrying the execution of failed nodes avoiding CEs’ repetition. 
A DAGMan process is started for each workflow submitted to the WMS. If there is 
more than one DAG to execute, a separate DAGMan process will be started for each 
DAG. A set of steps must be performed for each node in the workflow:  



430 A. Morajko et al. 

 

1. Initial phase – preparing all necessary information for the node execution. A 
suitable resource to run the job is searched by the Resource Searcher and the job is 
then passed to Condor-G, which will be responsible for submitting this to the 
remote site. If no resources are found, the WFMS will mark the node as failed, 
which implies the end of the node execution. This node can be automatically 
retried according to the node_retry_count value. 

2. Job execution on the remote site.  
3. Final phase – checking the job execution return code. If the job was executed 

successfully, it is marked as Done. Otherwise, the WFMS compares the return 
value to the attribute app_exit_code; if the return value is one of the values 
specified by the user, the job is not retried; in any other, case the job is marked as 
failed and is retried according to the node_retry_count value.  

The WMS also supports the functionality by which to submit a failed workflow 
and execute only those nodes that have not yet been successfully executed. This 
workflow is automatically produced by the WMS when one or more nodes in the 
workflow has resulted in failure, making the application execution impossible to 
finish. If any node in the a workflow fails, the remainder of the DAG is continued 
until no more forward progress can be made, due to workflow’s dependencies. At this 
point, the WFMS produces a file called a Rescue DAG, which is given back to the 
user. Such a DAG is the same as the original workflow file, but is annotated with an 
indication of successfully completed nodes using the status=done attribute. If the 
Rescue DAG is resubmitted using this Rescue DAG input file, the nodes marked as 
completed will not be re-executed. 

A DAG is considered as a normal, single job unit of work. A DAG execution goes 
through a number of states during its lifetime: 

• Submitted – The user has submitted the DAG using User Interface but it has not 
yet been processed by the Network Server 

• Waiting – The DAG has been accepted by the Network Server  
• Ready – The DAG has been processed by the Workload Manager that has 

decided to run a Condor’s DAGMan  
• Running – The DAGMan process is running; the DAG is passed to the DAGMan 
• Done – The DAG execution has finished 
• Aborted – The DAG execution has been aborted because of an external reason 
• Cancelled – The DAG execution has been cancelled by the user 
• Cleared – The Output Sandbox of all nodes has been transferred to the UI. 

5.1   User-Level Commands for Workflow Management 

A set of user commands is available, allowing users to submit and control the 
application workflow execution. The list of commands is as follows:  

• edg-dag-submit – this command submits a DAG 
• edg-job-status – this command checks the status of the submitted DAG 
• edg-job-cancel – this permits a user to cancel the execution of a DAG 
• edg-job-get-output – this command obtains output for all jobs of the DAG 
• edg-job-get-logging-info – this presents logging info for a DAGMan execution. 



 Workflow Management in the CrossGrid Project 431 

 

6   Experimental Results 

We conducted a number of experiments on parallel/distributed applications to study 
how this approach works in practice. We present a DAG whose structure is 
representative of the ATLAS (Atlas A Toroidal LHC ApparatuS) experiment [9] – the 
largest collaborative effort in the physical sciences. This experiment contains the 
following successive steps: event generation (evgen), simulation (sim), digitalization 
(digi). The first process does not take any input data, but rather generates certain 
output data. The second process processes data generated by the previous step, giving 
another data as result. The third process repeats the scheme of the sim step. To 
provide an efficient execution of the experiment, each step can be divided into N 
parts, where each part processes a subset of data as it is shown in Figure 3 (because of 
limits on space, we do not present the JDL specification of this DAG): 

Fig. 3. An example DAG that represents the workflow of the ATLAS experiment 

• evgen – this contains N sub-nodes, where each sub-node performs the partial 
event generation, and the generated partial result file is copied and registered in 
the Crossgrid storage using EDG Replica Manager [20]. 

• sim – this contains N sub-nodes, where each one copies the partial file generated 
by an evgen sub-node; it then performs the simulation on the partial data and 
generates a partial file. Finally, it copies and registers this file in the storage. 

• digi – this contains N sub-nodes, where each one copies the partial file 
generated by a sim sub-node; it then performs digitalization on the partial data 
and generates a partial file. Finally, it copies and registers this file in the storage. 

There is, additionally, a need for further steps that merge the temporal files 
generated by all parts of the considered step and remove such temporal files:  

evgen1 evgen2 evgen3

M1

sim1 

M3

M2

Del2 

Del3

sim2 sim3

digi2 digi3

evgen 

sim 

digi 

Del1 

digi1 



432 A. Morajko et al. 

 

• Merge – this copies the files generated by all nodes (separately for each level) 
and merges them; it saves the results to a file and finally copies and registers this 
file in the storage; these merged files will be the result of the experiment. 

• Delete – this deletes the files generated by all levels except Merge; this step can 
be carried out separately for each level. 

Figure 4 presents an example execution of the workflow in the ATLAS 
experiment. The horizontal axis represents time, the vertical shows Computing 
Elements in which the workflow may be executed (Poland, Spain or Portugal). In this 
example, all nodes from the Event Generation level and merge operation have been 
successfully finished. During the execution of the simulation nodes, one of these has 
failed (sim2). This node has been retried automatically, but has failed again. It has not 
been possible to retry it as, e.g., a user specified node_retry_count=1. The workflow 
execution has terminated as failed. However, the Rescue DAG, which contains nodes 
annotated as already done, is provided for the user, who may therefore submit the 
failed workflow executing only those nodes that have not been successfully finished. 

Fig. 4. An example execution of the DAG for the ATLAS experiment 

7   Conclusions 

The Grid system offers high computing capabilities for users in many scientific 
research fields. A great number of applications are made for a set of jobs that depend 
on each other. Generally, the execution of such applications in the grid environments 
requires users’ intervention and the manual execution of each job, step by step, 
simulating their dependencies. It is therefore necessary to provide a good, reliable and 
simple service which automatically carries out the task of mapping the application 
workflow to the Grid.  

In this paper, we have presented the solution to this problem, which has been 
applied within the EU-Crossgrid project. To provide workflow execution, we have 
represented such a workflow in the form of DAGs. The DAG execution is provided 
by the DAG Manager service and is integrated with the CrossGrid’s Workload 
Management System (WMS). Our implementation is based on the DAGMan 
scheduler provided by the Condor group and is targeted to LCG-2 middleware. 

DAG execution Rescue DAG execution 

fatal
error 

time 

evgen1

evgen2 

evgen3 

CE 
zeus 

aow6grid 

lip 

sim1 
cesga 

sim2 

sim3

error 

sim2

retry

sim2

digi1

digi2

digi3

M1 

M2

Del1

Del2 

M3 

Del3 



 Workflow Management in the CrossGrid Project 433 

 

Many aspects could be introduced to improve DAG support. For example, support 
for DAG in DAG (the possibility of specifying a node as another DAG) or the 
integration of DAG into the Migrating Desktop and Web Portal that provides a user-
friendly interface by which to interact with the Grid. 

References 

1. I. Foster, C. Kesselman (Editors), “The GRID Blueprint for a New Computing 
Infrastructure”. Morgan Kauffmann Publishers. 1999. 

2. GriPhyN: The Grid Physics Network. http://www.griphyn.org 
3. The DataGrid Project. http://www.eu-datagrid.org 
4. GridLab: A Grid Application Toolkit and Testbed: http://www.gridlab.org 
5. The EU-Crossgrid project. http://www.eu-crossgrid.org 
6. W. Gropp, E. Lusk, N. Doss, A. Skjellum, “A high-performance, portable implementation of 

the MPI message passing interface standard”. Parallel Computing, 22(6), pp.789-828. 1996. 
7. N. Karonis, B. Toonen, I. Foster, “MPICH-G2: A Gridenabled implementation of the 

message passing interface”. Journal of Parallel and Distributed Computing, to appear. 2003. 
8. E. Heymann, M.A. Senar, A. Fernandez, J. Salt, “The Eu-Crossgrid approach for Grid 

Application Scheduling”. 1st European Across Grids Conference, LNCS series, pp.17-24. 
February, 2003. 

9. B. Barish, R. Weiss, “Ligo and detection of gravitational waves”. Physics Today, 52 (10). 
1999. 

10. S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T. Pan, J. Saltz, “Image processing on 
the Grid: a toolkit or building grid-enabled image processing applications”. In 3rd 
International Symposium on Cluster Computing and the Grid. 2003. 

11. http://atlasexperiment.org/ 
12. http://www.cs.wisc.edu/condor/dagman/ 
13. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.H. Su, K. Vahi, M. 

Livny, "Pegasus : Mapping Scientific Workflows onto the Grid". Across Grids 
Conference. Nicosia, Cyprus, 2004. 

14. M. Shields, “Programming Scientific and Distributed Workflow with Triana Services”. 
GGF10 Workflow Workshop. Berlin, March, 2004. 

15. UNICORE Plus - Final Report (2003). http://www.unicore.org 
16. J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, “GridFlow: Workflow Management for Grid 

Computing”. 3rd International Symposium on CCGrid. Japan, May 2003.  
17. F. Pazini, “JDL Attributes - DataGrid-01-NOT-0101-0_4.pdf” http://www.infn.it/ 

workload-grid/docs/ DataGrid-01-NOT-0101-0_4-Note.pdf. December, 2001. 
18. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, "Condor-G: 

A Computation Management Agent for Multi-Institutional Grids",  Journal of Cluster 
Computing, vol. 5, pages 237-246, 2002. 

19. Data grid: Definition of the architecture, technical plan and evaluation criteria for the 
resource coallocation framework and mechanisms for parallel job partitioning. WP1: 
Workload Management. DataGrid-01-D1.4-0127-1_0. Deliverable DataGrid-D1.4. 2002. 

20. L. Guy, P. Kunszt, E. Laure, H. Stockinger, K. Stockinger, “Replica Management in Data 
Grids”. Technical report, GGF5 Working Draft. July 2002. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 434 – 443, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Workflow-Oriented Collaborative Grid Portals1 

Gergely Sipos1, Gareth J. Lewis2, Péter Kacsuk1,  
and Vassil N. Alexandrov2 

1 MTA SZTAKI Computer and Automation Research Institute, 
H-1518 Budapest, P.O. Box 63, Hungary 
{sipos, kacsuk}@sztaki.hu 

2 Advanced Computing and Emergent Technologies Centre, 
School of Systems Engineering, University of Reading, 
Whiteknights P.O. Box 225, Reading, RG6 6AY, UK 

{v.n.alexandrov, g.j.lewis}@reading.ac.uk 

Abstract. The paper presents how workflow-oriented, single-user Grid portals 
could be extended to meet the requirements of users with collaborative needs. 
Through collaborative Grid portals different research and engineering teams 
would be able to share knowledge and resources. At the same time the 
workflow concept assures that the shared knowledge and computational 
capacity is aggregated to achieve the high-level goals of the group. The paper 
discusses the different issues collaborative support requires from Grid portal 
environments during the different phases of the workflow-oriented development 
work. While in the design period the most important task of the portal is to 
provide consistent and fault tolerant data management, during the workflow 
execution it must act upon the security framework its back-end Grids are built on.  

1   Introduction 

The workflow concept is a widely accepted approach to compose large scale 
applications [14], [15], [16]. Most of today’s well-known production Grids support 
the execution of workflows composed from sequential or parallel jobs [2], [3]. At the 
same time, none of these infrastructures contain services that enable the creation and 
processing of the workflows: the required functionality is provided by the front-end 
Grid portals. Globus 2 [1], the middleware layer the referred systems are built on, 
contains services for job-execution and for the different aspects of data management. 
Because workflow management builds directly onto these basic computation-related 
services and because the workflow support can be the top layer of a Grid, its 
integration into portals is an obvious simplification.  

One of the original goals of grid computing is to enable the cooperative work 
between researcher or engineer teams through the sharing of resources [5]. In 
collaborative systems the different teams’ software and hardware infrastructures and 
                                                           
1  The work described in this paper is supported by the Hungarian Grid project (IHM 

4671/1/2003) by the Hungarian OTKA project (No. T042459) and by the University of 
Reading. 



 Workflow-Oriented Collaborative Grid Portals 435 

 

the team member’s knowledge can be aggregated to generate an environment that is 
suitable to solve previously unsolvable problems [6]. Unfortunately, today’s different 
Grid portals focus solely on High Performance and High Throughput Computing, but 
they do not support collaborative work.  

The P-GRADE Portal [4] is a Grid portal solution with such typical characteristics. 
On one hand it gives high-level workflow management support, on the other hand it is 
a useless piece of software for users with collaborative problem solving requirements. 
Using its integrated workflow editor component, or its graphical Web interface the 
users can comfortably organise sequential or parallel MPI jobs into workflows, can 
execute, monitor and visualize them, but cannot achieve the aggregation of 
knowledge, resources and results.  

The main goal of our research was to determine how to convert the P-GRADE 
Portal, a Globus-based computational Grid portal into a centre for collaborative work. 
Although we discuss the problems collaborative computational portals face in 
reference to the P-GRADE Portal, the presented results can be easily generalised for 
other portal solutions like Triana [8] or GENIUS [9].  

The remaining part of the paper is organised as follows. Chapter 2 discusses the 
several advantages workflow-oriented collaborative computational Grid portals bring 
for clients, while chapters 3 and 4 describe the different difficulties collaborative 
support requires in these environments. In chapter 3 the collaborative workflow 
design is introduced, while chapter 4 examines the differences between collaborative 
and single-user workflow execution processes. At the end chapter 5 gives 
conclusions.  

2   Knowledge and Resource Aggregation with Collaborative 
Portals 

Today’s computational Grids sometimes seem quite small from the end-user’s point 
of view. Even if a Grid has quite large number of sites an account or certificate is 
usually valid for a small subset of them, for the sites that participle in a specific 
Virtual Organisation (VO). Some VOs can be accessed by physicists, some others by 
geologists, while another subset is allocated for biologists. None of these scientists 
can break out from the “sandboxes” grid administrators force them into. This is true 
for the applications as well. Different VOs (or even Grids) are built for different jobs 
[3], and there is little chance for a program to run elsewhere than in its own special 
environment. Consequence of the usually special requirements of Grid jobs that the 
valuable results they produce bring benefit only for a few favoured researchers. 
Because Grid portals are designed to serve one specific VO (or sometimes more VOs 
inside the same Grid) there is no chance to define and execute across-grids workflows 
with them. The different jobs of such a workflow should run in different Grids (or at 
least in different VOs) and the portal framework must be able to handle the special 
design and execution needs such applications require.  

With the collaborative P-GRADE Portal we would like to give solutions for this 
problem. The main aim of this new version of the P-GRADE Portal is to support the 
integration and sharing of knowledge and resources through collaborative workflows. 
 



436 G. Sipos et al. 

 

 

Fig. 1. Sharing and integrating knowledge and resources through collaborative portals 

A collaborative workflow is a job-workflow built by multiple persons, by the 
members of a collaborative team. Every team member gives his/her own execution 
logic, jobs and resource access rights to the workflow graph, enabling the team to 
exploit aggregated knowledge and hardware capacity. This main goal of collaborative 
portals can be seen in Fig. 1. 

If we first take a look at a single-user P-GRADE Portal workflow, it can be stated 
that one individual must possess all the knowledge and site access rights the workflow 
definition and execution requires [4]. The person that defines the graph must specify 
the jobs for the different nodes and must have a certificate which is valid to execute 
these jobs on the chosen Grid sites. (Even if a high-level broker service automatically 
maps the jobs onto the best sites it is the consequence of GSI that the end-user must 
possess with the appropriate certificate(s) that are accepted by those sites.) This it true 
for all the previously referred, Globus 2 based Grids and their portals.  

Using the team work support of a collaborative portal, the different participants can 
aggregate their knowledge and abilities granted them by their certificates to achieve 
higher level goals than they individually would be able to. In the design phase the 
team members can collaboratively and in real-time define the structure of the 
workflow graph and the content of the different nodes. Every member can contribute 
to the workflow with his/her jobs. A job can use the results produced by other 
members’ jobs and can generate results for other jobs again. Through the data flow 
between the jobs inside a collaborative workflow the system realises the flow of 
knowledge. The different users do not have to take care where and how the input files 
for their jobs will be produced, they have to know only the format and the meaning of 
the incoming and outgoing data flows.  

Globus 2 and Globus 3 based Grids can be accessed  through the P-GRADE 
Portal [4]. In Globus 2 environments GRAM sites provide the job execution facility 
and consequence of the GSI philosophy is that different users can access different 
GRAM sites. These sites can be inside the same VO, inside different VOs within the 
same Grid, or in totally different Grids. The P-GRADE Portal does not cooperate with  
 



 Workflow-Oriented Collaborative Grid Portals 437 

 

 

Fig. 2. Collaborative inter-grid resource aggregation 

Grid resource brokers, it sends the different jobs to GRAM sites statically defined by 
the developers of the workflows. Since several participants are involved in the 
construction of a collaborative workflow, the sites they can individually access are 
collectively available for the collaborative jobs. Any job of a collaborative workflow 
can use any site that at least one team member has access to. (See Fig. 2.) Due to this 
philosophy workflow-based inter-grid resource aggregation can be realised. 

3   Collaborative Workflow Development 

The P-GRADE Portal provides a dynamically downloadable editor application what 
the users can apply to construct and upload workflows onto the portal server [4]. A 
P-GRADE workflow consists of three types of components: jobs, ports and links. 
Jobs are the sequential programs and parallel MPI applications that must be executed 
on the different Grid sites. Ports are the output and input files these jobs generate or 
require, while links define data channels between them. 

 

Fig. 3. The different synchronization tasks in the collaborative workflow editing period 



438 G. Sipos et al. 

 

In the collaborative version of the P-GRADE portal multiple editors must be able 
to work on the same workflow definition simultaneously. To enable the parallel work, 
every editor must manage its own local copy of the actually opened collaborative 
workflow and synchronize it with the appropriate global view stored on the portal 
server. The purpose of the synchronization is twofold: with a local-to-global update 
the locally performed changes can be validated on the consistent global view, while 
the global-to-local update is necessary to inform the different team members about 
each others’ work in a real-time fashion. The different synchronization tasks are 
illustrated in Fig. 3.  

The server component of the P-GRADE Portal is a Web application that cannot 
send asynchronous calls to its client side workflow editors [4]. Consequently, both the 
global-to-local and the local-to-global synchronization processes have to be initialized 
by the clients. During a local-to-global synchronization process the portal server has 
to generate a new global view from the present global and the received local 
workflows. During a global-to-local synchronization the workflow editor has to 
generate a new local view from the present local and the received global workflows.  

The most obvious way to update a workflow with another one is to simply 
overwrite it with the new one. It can be clearly seen that this protocol would lead to 
lost updates and would make the final result of the editing phase unpredictable: the 
user, whose editor updates the global workflow last, overwrites the other members’ 
already validated work. Database manager systems successfully solve similar 
problems with data locking mechanisms [10]. These servers lock smaller or bigger 
parts of their managed data to provide consistent view. In our case the global 
workflow is the managed data. Because locking of full workflows would prevent the 
collaborative work itself, (in that case only one person could work on a workflow at a 
time) collaborative portals have to enable the locking of workflow parts. A workflow 
part can be locked for maximum one user at a time, but different parts of the same 
workflow can be locked for different users simultaneously. Only locked workflow 
parts can be edited and only by their owners. On the other hand every collaborative 
group member must be able to read both locked and unlocked parts of the 
collaborative workflow.  

Our approach cuts workflow design periods to three phases: contention, editing and 
releasing. In the contention phase the user must lock the workflow part he/she is 
interested in. In the editing phase the locked part can be modified, while in the 
releasing phase the modified components get unlocked and become part of the 
consistent global view. 

In our proposed concept locking requests can be generated through the workflow 
editor by the users manually. When a collaborative team member clicks a special 
menu item of a workflow node his/her editor generates a locking request. The 
meaning of this request for the system is the following: take the part of the workflow 
graph which starts with the selected job, and lock as big continuous part of it as 
possible. In other words the system has to lock the selected job, every job that directly 
or indirectly depends on this job via file dependencies, all ports that are connected to 
these jobs, and finally all direct links between these jobs. If a locked component is 
found during this graph traversal process, the system skips the rest of the branch and 
continues the work on the remaining branches. Fig. 4. illustrates the protocol through 
a simple example. 



 Workflow-Oriented Collaborative Grid Portals 439 

 

 

Fig. 4. Workflow component locking scenario 

The extended sequence diagram presents a locking scenario. On the left side one 
member of a collaborative team can be seen. He participates in the collaborative 
design through his workflow editor. The editor manages the local view of the 
collaborative workflow, and it communicates with the portal server that stores the 
global view. At the beginning both the editor and the portal server store the same 
view: “Job 5” together with its input and output ports (the small squares connected to 
it) are locked, while the rest of the workflow is unlocked. This means that some other 
person from the group is currently working on “Job 5”, but the rest of the graph is free 
to lock.  

Suppose that our user clicks the “Lock” menu of “Job 3”. The editor automatically 
generates an appropriate request message and sends it to the server. The server 
appoints that the status of “Job 3” is unlocked, so it estimates the biggest part of the 
graph that depends on “Job 3” and contains only unlocked components. In our case 
this part graph consists of “Job 3”, “Job 4”, their two input and output ports, and the 
link that connects them. (Since “Job 5” was already locked it does not become part of 
this group.) The server locks this branch in the global view and sends this new view 
back to the editor. The editor updates its GUI according to the received graph 
allowing the user to begin the development work. The user now can modify the 
properties of his/her components, he/she can add new jobs to this graph, can connect 
new ports to his jobs, can define new links between his ports and finally he can delete 
any of his locked components.  



440 G. Sipos et al. 

 

The development phase normally comes to its end when the user finishes the work 
and manually unlocks the components just like he/she locked them earlier. Besides 
this the system has to be prepared for unstable clients as well. The workflow editor 
can crash, the client host or the network can break down, hence the portal server must 
be able to identify and automatically unlock unnecessarily locked workflow 
components. Distributed systems apply leasing/lifetime based solutions for this 
purpose [11], [12]. If the portal server locks workflow components only for limited 
periods and enables the on-demand extensions of these locking intervals then 
unnecessarily locked components can be released as soon as possible. The workflow 
editor can hide the regular task of the leasing/lifetime extension from the user.  

The workflow editor has to perform regular local-to-global synchronization (see 
Fig. 3.) during the whole design period. In the contention phase out-of-date local 
information can make the user believe that a given part of the workflow is still locked 
by someone else, or contrarily, it is still free to lock. In the editing phase rarely 
updated local views deprive the users from the experience of the real-time 
collaboration. During a global-to-local synchronization process the editor has to 
merge the received global workflow with the present local one. The new local view 
must be generated from the following items: 

• every component from the old local view that is locked for the local user 
• every unlocked component from the received global view 
• every component from the global view that is locked for other users 

Since only locked components can be modified, the local-to-global synchronization 
process makes no sense in the contention phase. During a local-to-global 
synchronization process the portal server has to merge the present global workflow 
with the received local one. The following items have to be aggregated to generate the 
new global view: 

• every component from the local view that is locked for the user whose editor 
performed the local-to-global update process 

• every component from the global view that is locked for other users 
• every unlocked component from the global view. 

4   Collaborative Workflow Execution 

In the execution phase there are two differences between collaborative and single-user 
Globus workflows:  

1. In the collaborative case multiple clients must be able to observe and control 
the execution of a workflow.  

2. To execute a collaborative workflow usually more than one GSI proxies are 
required. For a normal workflow a single proxy is enough.  

The synchronization process discussed earlier provides an adequate solution to the 
first issue. The system can provide a consistent view during in the execution phase 
just like it is achieved in the editing period.  

Our proposed solution for the second problem is not so simple. The present version 
of the P-GRADE Portal generates a Globus proxy for a workflow job from the long-



 Workflow-Oriented Collaborative Grid Portals 441 

 

term certificate that belongs to the person who defined GRAM site for that job [4]. To 
enhance security, the P-GRADE Portal delegates the certificate and proxy 
management tasks to MyProxy servers [13]. The Portal itself is only a Web interface 
to access MyProxy sites. The users can upload and download certificates and proxies 
between their client machines, the portal server and the MyProxy hosts through their 
Web browsers. Collaborative portals must be able to automatically download proxies 
for the different collaborative jobs, since a user, who submits a collaborative 
workflow cannot wait until all the involved team members download the necessary 
proxies by hand.  

Collaborative portals can provide an automatic proxy download facility if they 
store the relations between users, MyProxy sites, and GRAM hosts. Using this 
database the portal can estimate which MyProxy server must be used to get a valid 
proxy for a GRAM site defined by a collaborative group member. The infrastructure 
required to process the automated proxy download can be seen in Fig. 5. The huge 
benefit of this approach is that once the collaborative group members define their own 
MyProxy-GRAM relations, the portal can always get the required proxies without any 
manual help.  

Another consequence of the usage of multiple proxies within a single workflow is 
that file transfers between different security domains necessarily occur. In this case 
none of the proxies is sufficient to perform direct file transfer between the job 
executor sites. The portals server has to be used as a temporary storage for the indirect 
file transfer. The portal server application can use the proxy of the first job to copy the 
output files into a permanent or temporary directory on the portal server, and it can 
use the proxy of the second job to copy these files onto the second GRAM site. After 
the successful finish of the workflow the proxies that belong to the jobs that produced 
the final results can be used to copy the files onto the portal server at a place where 
every collaborative team member can access them. 

 

Fig. 5. Infrastructure for automated execution of collaborative workflows 



442 G. Sipos et al. 

 

5   Summary and Conclusions 

The paper discussed how today’s Globus-based, workflow-oriented computational 
Grid portals can be adapted to collaborative centres. The solutions have been examined 
through the example of P-GRADE Portal, a concrete computational Grid portal, but 
most of the results can be applied for other widely used frameworks as well.  

In the workflow design phase the biggest difference between single-user and 
collaborative portals is the requirement to protect against lost updates. Our approach 
is a data locking mechanism optimised for workflow-oriented environments. In the 
execution phase security is the biggest issue for collaborative groups. The paper 
introduced an automatically proxy download facility to submit the workflow jobs into 
the different VOs and Grids the collaborative team members have access to.  The 
solution is based on a special database that specifies which proxies and how must be 
obtained to access the specified executor sites.  

Because of the extra features that collaborative portals must provide in contrast 
with single-user portals, these complex systems loose their interface characteristics 
and become functionality providers. Since Grid portals should be slim layers that 
provide Web interface for standardised Grid services, the introduced collaborative 
functionality should be realised by stateful Grid services and not by a Grid portal. Jini 
[11] or WSRF [21] would be possible nominates to develop these services. 

The P-GRADE Portal is already used in several Grid systems like the LCG-2 based 
SEE-GRID [18], the GridLAB testbed [8], the Hungarian Supercomputing Grid [19] 
and the UK OGSA testbed [20]. We already started the implementation of its 
collaborative version. The prototype will be available by June 2005 and the final 
system will be absolutely unique on the market and will provide an optimal balance 
between HPC, HTC and collaborative support.  

References 

[1] Foster and C. Kesselman: “The Globus project: A status report”, In Proceedings of the 
Heterogeneous Computing Workshop, pages 4-18. IEEE Computer Society Press, 1998. 

[2] The Grid2003 Production Grid: “Principles and Practice”, To appear in 13th IEEE 
International Symposium on High-Performance Distributed Computing (HPDC13), 
Honolulu, 2004. 

[3] LHC Grid: http://lcg.web.cern.ch/LCG/ 
[4] Cs. Németh, G. Dózsa, R. Lovas and P. Kacsuk: The P-GRADE Grid portal 

In: Computational Science and Its Applications – ICCSA 2004: International Conference, 
Assisi, Italy, LNCS 3044, pp. 10-19 

[5] Foster and C. Kesselman: "The Grid: Blueprint for a New Computing Infrastructure”, 
Morgan-Kaufman, 1999. 

[6] Gareth J. Lewis, S. Mehmood Hasan, Vassil N. Alexandrov: “Building Collaborative 
Environments for Advanced Computing” In proc. of the 17th International Conference 
on Parallel and Distributed Systems (ISCA), pp. 497-502, San Francisco, 2004. 

[7] Foster, C. Kesselman, G. Tsudik, and S. Tuecke: “A security architecture for 
computational grids”, In ACM Conference on Computers and Security, pages 83–91. 
ACM Press, 1998. 



 Workflow-Oriented Collaborative Grid Portals 443 

 

[8] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, 
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor: 
“Enabling Applications on the Grid: A GridLab Overview”, International Journal of High 
Performance Computing Applications, Aug. 2003. 

[9] R. Barbera, A. Falzone, A. Rodolico: “The GENIUS Grid Portal”, Computing in High 
Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 

[10] V. Gottemukkala and T. Lehman: “Locking and latching in a memory-resident database 
system”, In Proceedings of the Eighteenth International Conference on Very Large 
Databases, Vancouver, pp. 533-544, August 1992.  

[11] J. Waldo: “The Jini architecture for network-centric computing”, Communications of the 
ACM, 42(7), pp. 76-82, 1999. 

[12] Foster, C. Kesselman, J. Nick, and S. Tuecke: “The physiology of the Grid: An Open 
Grid Services Architecture for distributed systems integration”, Technical report, Open 
Grid Services Architecture WG, Global Grid Forum, 2002. 

[13] J. Novotny, S. Tuecke, and V. Welch: “An online credential repository for the grid: 
MyProxy”, Symposium on High Performance Distributed Computing, San Francisco, 
Aug. 2001.  

[14] Taylor, M. Shields, I. Wang and R. Philp: “Grid Enabling Applications Using Triana”, In 
Workshop on Grid Applications and Programming Tools. Seattle, 2003. 

[15] Matthew Addis, et al: “Experiences with eScience workflow specification and enactment 
in bioinformatics”, Proceedings of UK e-Science All Hands Meeting 2003  

[16] Ewa Deelman, et al: “Mapping Abstract Complex Workflows onto Grid Environments”, 
Journal of Grid Computing, Vol.1, no. 1, 2003, pp. 25-39. 

[17] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke: “Condor-G: A Computation 
Management Agent for Multi-Institutional Grids”, in 10th International Symposium on 
High Performance Distributed Computing. IEE Press, 2001 

[18] SEE-GRID Infrastructure: http://www.see-grid.org/ 
[19] J. Patvarszki, G. Dozsa, P Kacsuk: “The Hungarian Supercomputing Grid in the actual 

practice”, Proc. of the XXVII. MIPRO Conference, Hypermedia and Grid Systems, 
Opatija, Croatia, 2004. pp. 203-207. 

[20] T. Delaitre, A.Goyeneche, T.Kiss, G.Z. Terstyanszky, N. Weingarten, P. Maselino, A. 
Gourgoulis, S.C. Winter: “Traffic Simulation in P-Grade as a Grid Service”, Proc. of the 
DAPSYS 2004 Conference, September 19-22, 2004, Budapest, Hungary 

[21] Foster, I., J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Leymann, M. 
Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and S. Weerawarana: 
“Modeling Stateful Resources with Web Services”, 2004, www.globus.org/wsrf 



Contextualised Workflow Execution in MyGrid

M. Nedim Alpdemir1, Arijit Mukherjee2, Norman W. Paton1,
Alvaro A.A. Fernandes1, Paul Watson2, Kevin Glover3,
Chris Greenhalgh3, Tom Oinn4, and Hannah Tipney1

1 Department of Computer Science, University of Manchester, Oxford Road,
Manchester M13 9PL, United Kingdom

2 School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, United Kingdom

3 School of Comp. Sci. and Inf. Tech., University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

4 European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, United Kingdom

Abstract. e-Scientists stand to benefit from tools and environments
that either hide, or help to manage, the inherent complexity involved in
accessing and making concerted use of the diverse resources that might be
used as part of an in silico experiment. This paper illustrates the benefits
that derive from the provision of integrated access to contextual informa-
tion that links the phases of a problem-solving activity, so that the steps
of a solution do not happen in isolation, but rather as the components
of a coherent whole. Experiences with myGrid workflow execution envi-
ronment (Taverna) are presented, where an information model provides
the conceptual basis for contextualisation. This information model de-
scribes key characteristics that are shared by many e-Science activities,
and is used both to organise the scientist’s personal data resources, and
to support data sharing and capture within the myGrid environment.

1 Introduction and Related Work

Grid-based solutions to typical e-Science problems require the integration of
many distributed resources, and the orchestration of diverse analysis services in a
semantically rich, collaborative environment [5]. In such a context, it is important
that e-Scientists are supported in their day-to-day experiments with tools and
environments that allow the principal focus to be on scientific challenges, rather
than on the management and organisation of computational activities.

Research into Problem Solving Environments (PSEs) has long targeted this
particular challenge. Although the term Problem Solving Environment means
different things to different people [4], and its meaning seems to have been evolv-
ing over time, a number of common concepts can be identified from the relevant
research (e.g. [4, 6, 12, 8]). For example, the following features are commonly sup-
ported: problem definition; solution formulation; execution of the problem solu-
tion; provenance recording while applying the solution; result visualisation and

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 444–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Contextualised Workflow Execution in MyGrid 445

analysis; and support for communicating results to others (i.e. collaboration).
Although these are among the most common features, different PSEs add var-
ious other capabilities, such as intelligent support for problem formulation and
solution selection, or highlight a particular feature, such as the use of workflow
(e.g. [3, 1, 11]).

This paper emphasizes a specific aspect that has been largely overlooked,
namely the provision of integrated access to contextual information that links
the phases of a problem-solving exercise in a meaningful way. In myGrid, the
following are principles underpin support for contextualisation:

Consistent Representation: The information model ensures that informa-
tion required to establish the execution context conforms to a well-defined data
model, and therefore is understood by the myGrid components that take part
in an experiment as well as external parties.

Automatic Capture: When a workflow is executed, contextual information is
preserved by the workflow enactment engine, and used to annotate both inter-
mediate and final results.

Long-term preservation: The contextual information used to organise the
persistent storage of provenance information on workflows and their results,
easing interpretation and sharing.

Uniform Identification: Both contextual and experimental data are identified
and linked using a standard data and metadata identification scheme, namely
LSIDs [2].

The rest of the paper describes contextualisation in myGrid, indicating both
how contextualisation supports users and how the myGrid architecture captures
and conveys the relevant information. As such, Section 2 summarises the in-
formation model, which is at the heart of contextualisation. Section 3 provides
some concrete examples of contextualisation in practice, in a bioinformatics ap-
plication. Section 4 provides an architectural view of the execution environment,
and finally Section 5 presents some conclusions.

2 The Information Model

The myGrid project (http://www.mygrid.org.uk/) is developing high-level
middleware to support the e-Scientist in conducting in silico experiments in
biology. An important part of this has been the design of an Information Model
(IM) [9], which defines the basic concepts through which different aspects of
an e-Science process can be represented and linked. By providing shared data
abstractions that underpin important service interactions, the IM promotes syn-
ergy between myGrid components. The IM is defined in UML, and equivalent
XML Schema definitions have been derived from the UML to facilitate the design
of the myGrid service interfaces.



446 M.N. Alpdemir et al.

Fig. 1. A UML class diagram providing an overview of the information model

Figure 1 illustrates several of the principal classes and associations in the IM.
In summary; a Programme is a structuring device for grouping other Studies and
can be used to represent e.g. a project or sub-project. An Experiment Design
represents the method to be used (typically as a workflow script) to solve a
scientific problem. An Experiment Instance is an application of an Experiment
Design and represents some executing or completed task. The relationship of a
Person with an Organizational Structure is captured by an Affiliation. A Study
Participation qualifies a person’s relationship to the study by a set of study roles.
An Operation Trace represents inputs, outputs and the intermediate results of an
experiment (i.e. the experiment provenance), as opposed to the Data Provenance
which primarily indicates a data item’s creation method and time.

An important feature of the IM is that it does not model application-specific
data, but rather treats such data as opaque, and delegates responsibility for
its interpretation to users and to application-specific services. As such, concepts
such as sequence or gene, although they are relevant to the Williams-Beuren Syn-
drome (WBS) case study described in Section 3.1, are not explicitly described
in the IM. Rather, the IM captures information that is common to, and may
even be shared by, many e-Science applications, such as scientists, studies and

Study

name : String

description : String

startTime : Date

endTime : Date

status : String

DataProvenance

title : String

description : String

ExperimentInstance

name : String

ExperimentDesign

name : String

OperationTrace

Operation

name : String

operationScriptXML : String

StudyParticipation

experiment : ExperimentInstance

labbook : LabBookView

Person

email : String

firstName : String

lastName : String
Affiliation

description : String

OrganisationalStructure

organisationName : String

unitName : String

Programme

name : String

StudyParticipationEpisode

startDate : Date

endDate : Date

roleName : String

roleDescription : StringAddress

street : String

city : String

locality : String

city : String

pcode : String

country : String

addressType : String

LabBookView

name : String

rule : String

ActualInputParameter

name : String

ActualOutputParameter

name : String

AffiliationEpisode

startDate : Date

endDate : Date

status : String

0..1

-

hasInstances
0

0..*
-instanceinitiates

0..*

hasParticipants

-

contains
0..*

-   

experimentMethod

0..*

-

isAffiliatedTo
0..*

hasAffiliates
0..*

createdBy

0..*

participatesIn

0..*

0..1

0..*1..*

orgAddres

hasLabBooks

-

selectedStudies

0..1

-

inputs
0..*

-

outputs
0..*

-

0..*



Contextualised Workflow Execution in MyGrid 447

experiments. A consequence of this design decision is that the myGrid compo-
nents are less coupled to each other and to a particular domain, and so are more
easily deployable in different contexts. However, interpretation and processing
(e.g. content aware storage and visualisation) of the results for the end user be-
comes more difficult, and falls largely on the application developer’s shoulders.

3 Contextualized Workflows: A User’s Perspective

3.1 Case Study

Informatic studies in Williams-Beuren Syndrome (WBS) are used to illustrate
the added value obtained from contextualisation. WBS is a rare disorder charac-
terized by physical and developmental problems. The search for improved under-
standing of the genetic basis for WBS requires repeated application of a range
of standard bioinformatics techniques. Due to the highly repetitive nature of
the genome sequence flanking the Williams-Beuren syndrome critical region, se-
quencing of the region is incomplete, leaving documented gaps in the released
genomic sequence. In order to produce a complete and accurate map of the re-
gion, researchers must constantly search for newly sequenced human DNA clones
that extended into these gap regions [10].

Several requirements of the WBS application stand to benefit from integrated
support for contextualisation:

– The experimenter needs to conduct several tasks repeatedly (e.g. execution
of follow-on workflows), which requires the inputs, outputs and intermediate
results of one step to be kept in the same experimental context, to ease
comparisons of multiple runs and of alternative approaches.

– Results or experimental procedures need to be shared among researchers in
the group. A contextualized environment helps scientists to migrate from ad-
hoc practices for capturing the processes followed and the results obtained,
to computer-supported information-rich collaboration schemes.

3.2 Contextual Data n Use

This section illustrates how integrated support for contextualisation surfaces
to the user. In myGrid, workflows are developed and executed using the Tav-
erna workbench [7], which is essentially a workflow editor and a front-end to
a workflow execution environment with an extensible architecture, into which
additional components can be plugged. The following myGrid plug-ins provide
users with access to external information resources when designing and execut-
ing workflows:

MIR Browser: The myGrid Information Repository (MIR) is a web service
that provides long-term storage of information model and associated application-
specific data. The plug-in supports access to and modification of data in the MIR.

i



448 M.N. Alpdemir et al.

Fig. 2. MIR Browser displaying context information

Metadata Browser: The myGrid Metadata Store is a web service that sup-
ports application-specific annotations of data, including data in the MIR, using
semantic-web technologies. The plug-in supports searching and browsing of in-
formation in the metadata store, as well of the addition of new annotations.

Feta Search Engine: The Feta Search Engine provides access to registry data
on available services and resources.

Users are supported in providing, managing or accessing contextual data using
one or more of the above plug-ins, and benefit from the automatic maintenance
of contextual data in the MIR.

When developing or using workflows, the e-Scientist first launches the Tav-
erna workbench, which provides workflow-specific user interface elements, as well
as the plug-ins described above. When the MIR browser is launched, the user
provides login details, and is then provided with access to their personal instance
of the information model, as illustrated in Figure 2. This figure shows how ac-
cess has been provided, among other things, to: (i) data from the studies in
which the e-Scientist is participating – in this case a Williams-Beuren Syndrome
Study; (ii) the experiment designs that are being used in the study – in this case
a single WBS-Scenario Experiment; and (iii) the definitions of the workflows



Contextualised Workflow Execution in MyGrid 449

Fig. 3. Workflow execution results in the MIR Browser

that are used in the in silico experiments – in this case a single workflow named
WBS part-A workflow. In this particular case, the absence of a + beside the
ExperimentInstance indicates that the WBS-Scenario Experiment has not yet
been executed. At this point, the e-Scientist is free either to select the existing
workflow, or to search for a new workflow using Feta search engine. Either way,
it is possible for the workflow to be edited, for example by adding new services
discovered using Feta to try variations to an existing solution.

When a workflow is selected for execution, the e-Scientist can obtain data
values for use as inputs to the workflow from previous experiment results stored
in the MIR. The execution of follow-on analyses is common practice in the WBS
case study.

The user’s view in Figure 2 illustrates that resources, such as individual
workflows, do not exist in isolation, but rather are part of a context – in this
case a study into WBS. There may be many experiments and workflows that
are part of that study. In addition, when a workflow from a study is executed,
it is executed in the context of that study, and the results of the workflow are



450 M.N. Alpdemir et al.

Fig. 4. A simplified architectural view

automatically considered to be among the results of the study. For example,
Figure 3 illustrates the results obtained by executing WBS part-A workflow
from Figure 2. The results of the execution are automatically recorded under
the Experiment Instance entity, which is associated with the Experiment Design
from Figure 2. The values obtained for each of the Formaloutputparameter values
from Figure 2 are made available as Actualoutputparameter values in Figure 3.
In addition, provenance information about the workflow execution has also been
captured automatically. For example, the LSID [2] of each operation invoked
from the workflow is made available as an Operationtrace value. Further browsing
of the individual operation invocations indicates exactly what values were used
as input and output parameters. Such provenance information can be useful in
helping to explain and interpret the results of in silico experiments.

4 Contextualised Workflows: An Architectural
Perspective

The core components that participate in the process of formulating and exe-
cuting a workflow were introduced in Section 3.2. Figure 4 illustrates principal
relationships between the components, where the Taverna workbench constitutes
the presentation layer, and includes a number of GUI plug-ins to facilitate user
interaction. The workflow enactor (Freefluo) is the central component of the
execution environment, and communicates with other myGrid components via
plug-ins that observe the events generated as the enactor’s internal state changes.
For example, when an intermediate step in the workflow completes its execution,
the enactor generates an event and makes the intermediate results available to
the event listeners. The MIR plug-in responds to this event by obtaining the

Freefluo

Metadata
Store

MIR

    MIR
Browser

WF Model
  Editor /
Explorer

  Feta
Search
  GUI

Metadata
 Browser

  MIR
Plug-in

Registry

MD Store
 Plug-in

  Feta
Plug-in

Taverna Workbench

Taverna Workflow Execution Environment

myGrid Information Model (Context)



Contextualised Workflow Execution in MyGrid 451

Fig. 5. Interactions between core myGrid components

intermediate results and storing them in the MIR in their appropriate context.
As such, the plug-in architecture is instrumental in facilitating the automatic
propagation of the experimental context across the participating components.

Figure 5 is a UML sequence diagram that illustrates a basic set of interac-
tions between the myGrid components from in Figure 4, and provides a simplified
view of the steps involved in contextualised execution of a workflow. A typical
interaction for a contextualized workflow execution starts with user’s login via
the MIRBrowser. The next step is normally finding a workflow to execute. This
could either be done by a simple load from the local file system, by a get op-
eration from the MIR, or by a search query via the Feta GUI panel. Next, the
experimenter executes the workflow. Although in the diagram this is shown as
a direct interaction with the enactor for simplicity, in reality this is done via a
separate GUI panel and the context is passed to the enactor implicitly. As the
enactor executes the workflow, it informs event listeners (i.e. the MIR plug-in
and the Metadata Store plug-in) that act as proxies on behalf of other myGrid
components, at each critical event. Only two important events, namely Work-
flowCreated and WorkflowCompleted, are shown in the diagram, although there



452 M.N. Alpdemir et al.

are several other intermediate events emitted by the enactor, for example for
capturing provenance data on operation calls. The listeners respond to those
events by extracting the context information and any other information they
need from the enactor’s state, thereby ensuring that the MIR and the Metadata
Store receive the relevant provenance information.

An additional benefit of the automatic capturing of workflow results and
provenance information is that the e-Scientist can pose complex queries against
historical records. For example, a query could be expressed to select all the
workflows that were executed after date 30th March 2004, by the person ’Hannah
Tipney’, that had an output of type ’BLAST output’.

5 Conclusions

This paper has described how a workflow definition and enactment environment
can provide enhanced support for e-Science activities by closely associating work-
flows with their broader context. The particular benefits that have been obtained
in myGrid derive from the principles introduced in Section 1, namely:

Consistent Representation: the paper has described how an e-Science spe-
cific, but application-independent, information model can be used not only to
manage the data resources associated with a study, but also to drive interface
components. In addition many myGrid components take and return values that
conform to the information model, leading to more consistent interfaces and
more efficient development.

Automatic Capture: the paper has described how the results of a workflow ex-
ecution, plus associated provenance information, can be captured automatically,
and made available throughout an e-Science infrastructure as events to which
different components may subscribe. The properties of these events are generally
modelled using the information model, and are used in the core myGrid services
to support the updating of displays and the automatic storage of contextualised
information.

Long-term Preservation: the paper has described how an information repos-
itory can be used to store the data artifacts of individual scientists in a consis-
tent fashion, thereby supporting future interpretation, sharing and analysis of
the data. Most current bioinformatics analyses are conducted in environments in
which the user rather than the system has responsibility for recording precisely
what tasks have taken place, and how specific derived values have been obtained.

Uniform Identification: the paper has described how a wide range of different
kinds of data can provide useful context for the conducting of in silico experi-
ments. Such information often has to be shared, or cross-referenced. In myGrid,
LSIDs are used to identify the different kinds of data stored in the MIR, and
LSIDs also enable cross-referencing between stores. For example, if an assertion
is made about a workflow from an MIR in a Metadata Store, the Metadata Store
will refer to the workflow by way of its LSID.



Contextualised Workflow Execution in MyGrid 453

As such, the contribution of this paper has been both to demonstrate the benefits
of contextualisation for workflow enactment, and also to describe the myGrid ap-
proach, both from a user and architectural perspective. The software described
in this paper is available from http://www.mygrid.org.uk.

Acknowledgements. The work reported in this paper has been supported by
the UK e-Science Programme.

References

1. S. AlSairafi et al. The design of Discovery Net: Towards Open Grid Services for
Knowledge Discovery. The International Journal of High Performance Computing
Applications, 17(3):297 – 315, Fall 2003.

2. T. Clark, S. Martin, and T. Liefeld. Globally distributed object identification for
biological knowledgebases. Briefings in Bioinformatics, 5(1):59 – 70, 2004.

3. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
and M. Livny. Pegasus : Mapping scientific workflows onto the grid. In I. Foster
and C. Kesselman, editors, 2nd European Across Grids Conference, 2004.

4. E. Gallopoulos, E. Houstis, and J. R. Rice. Computer as thinker/doer: Problem-
solving environments for computational science. IEEE Comput. Sci. Eng., 1(2):11–
23, 1994.

5. C. Goble, C. Greenhalgh, S. Pettifer, and R. Stevens. Knowledge integration:
In silico experiments in bioinformatics. In I. Foster and C. Kesselman, editors,
The Grid: Blueprint for a New Computing Infrastructure, pages 121–134. Morgan
Kaufmann, 2004.

6. E. N. Houstis and J. R. Rice. Future problem solving environments for computa-
tional science. Math. Comput. Simul., 54(4-5):243–257, 2000.

7. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioin-
formatics workflows. Bioinformatics, page bth361, 2004.

8. K. Schuchardt, B. Didier, and G. Black. Ecce – a problem-solving environment’s
evolution toward grid services and a web architecture. Concurrency and Compu-
tation: Practice and Experience, 14(13 – 15):1221 – 1239, 2002.

9. N. Sharman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li, and C. Wroe. The
myGrid Information Model. In S. J. Cox, editor, Proceedings of UK e-Science All
Hands Meeting 2004. EPSRC, September 2004.

10. R. D. Stevens, H. J. Tipney, C. J. Wroe, T. M. Oinn, M. Senger, P. W. Lord, C. A.
Goble, A. Brass, and M. Tassabehji. Exploring Williams-Beuren syndrome using
myGrid. Bioinformatics, 20(suppl 1):i303–310, 2004.

11. I. Taylor, M. Shields, and I. Wang. Grid Resource Management, chapter Resource
Management of Triana P2P Services. Kluwer, June 2003.

12. D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang. The software
architecture of a distributed problem-solving environment. Concurrency: Practice
and Experience, 12(15):1455–1480, 2000.



Real World Workflow Applications in the

Askalon Grid Environment�

Rubing Duan, Thomas Fahringer, Radu Prodan, Jun Qin, Alex Villazón,
Marek Wieczorek

Institute for Computer Science, University of Innsbruck,
Technikerstraße 21a, A-6020 Innsbruck, Austria

{rubing,tf,radu,jerry,alex,marek}@dps.uibk.ac.at

Abstract. The workflow paradigm is widely considered as an impor-
tant class of truly distributed Grid applications which poses many chal-
lenges for a Grid computing environment. Still to this time, rather few
real-world applications have been successfully ported as Grid-enabled
workflows. We present the Askalon programming and computing envi-
ronment for the Grid which comprises a high-level abstract workflow lan-
guage and a sophisticated service-oriented runtime environment includ-
ing meta-scheduling, performance monitoring and analysis, and resource
brokerage services. We demonstrate the development of a real-world river
modelling distributed workflow system in the Askalon environment that
harnesses the computational power of multiple Grid sites to optimise the
overall execution time.

1 Introduction

Grid computing simplifies the sharing and aggregation of distributed heteroge-
neous hardware and software resources through seamless, dependable, and per-
vasive access. It is well known that highly dynamic Grid infrastructures severely
hamper the composition and execution of distributed applications that form
complex workflows.

We have developed the Askalon programming and computing environment [5]
whose goal is to simplify the development of Grid applications. Askalon currently
supports the performance-oriented development of single-site, parameter study,
and workflow Grid applications. The focus of this paper is on distributed work-
flow applications.

Workflow applications are first specified using a novel high-level abstract
workflow language that shields the user from any Grid middleware implemen-
tation or technology details. The abstract representation is then mapped to a
concrete workflow that can be scheduled, deployed, and executed on multiple
Grid sites. The Askalon computing environment is based on a service-oriented

� This research is partially supported by the Austrian Grid project funded by the
Austrian Federal Ministry for Education, Science and Culture under the contract
GZ 4003/2-VI/4c/2004.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 454–46 , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

and

3



architecture comprising a variety of services including information service and
resource brokerage, monitoring, performance prediction and analysis, reliable ex-
ecution, and meta-scheduling. Although a variety of Grid programming systems
exist, few concentrate on workflow applications, and even fewer are capable to
support the development and execution of real-world workflow applications.

In this paper we describe the development of a workflow application in the
Askalon Grid environment which extends an existing river modelling system that
was previously developed to run on a sequential computer only. This work re-
sulted in a real-world distributed workflow river modelling system that harnesses
the computational power of multiple national Austrian Grid sites.

The next section describes the Askalon programming and computing envi-
ronmentfor the Grid. Section 3 proposes several overheads that we use in the
workflow performance analysis process. Section 4 shows the representation of a
river modelling workflow application in the Askalon environment. We present in
Section 5 a performance analysis study accompanied by a small overhead analy-
sis that illustrates the benefit of executing the application in a distributed Grid
environment. Section 6 concludes the paper.

2 Askalon Programming and Computing Environment

This section describes the Askalon programming and computing environment
for the Grid, currently under development at the University of Innsbruck [5].

2.1 Workflow Specification Languages: AGWL and CGWL

In contrast to other approaches [1, 3, 6, 8, 10, 12–14], Askalon enables the descrip-
tion of workflow applications at a high level of abstraction that shields the user
from the middleware complexity and the dynamic nature of the Grid. Although
workflow applications have been extensively studied in areas like business process
modelling and web services, it is relatively new in the Grid computing area.

Existing work on Grid workflow programming commonly suffers by one or
several of the following drawbacks: control flow limitations (e.g., no loops), un-
scalable mechanisms for expressing large parallelism (e.g., no parallel sections or
loops), restricted data flow mechanisms (e.g., limited to files), implementation
specific (e.g., focus on Web services, Java classes, software components), and low
level constructs (e.g., start/stop tasks, transfer data, queue task for execution)
that should be part of the workflow execution engine.

Using the XML-based Abstract Grid Workflow Language (AGWL) [4], the
user constructs a workflow application through the composition of atomic units
of work called activities interconnected through control-flow and data-flow de-
pendencies. In contrast to much existing work, AGWL is not bound to any
implementation technology such as Web services. The control-flow dependen-
cies include sequences, Directed Acyclic Graphs, for, foreach, and while loops,
if-then-else and switch constructs, as also more advanced constructs such as

Real World Workflow Applications in the Askalon Grid Environment 455



parallel activities (or master-slave patterns), parallel loops, and collection iter-
ators. In order to modularise and reuse workflows, so called sub-workflows (or
activity types) can be defined and invoked. Basic data-flow is specified by con-
necting input and output ports between activities. AGWL is free of low-level
constructs as mentioned above.

Optionally, the user can link constraints and properties to activities and
data flow dependencies that provide additional functional and non-functional
information to the runtime system for optimisation and steering of the workflow
execution on the Grid. Properties define additional information about activities
or data links, such as computational and communication complexity, or semantic
description of workflow activities. Constraints define additional requirements
or contracts to be fulfilled by the runtime system that executes the workflow
application, like the minimum memory necessary for an activity execution, or
the minimum bandwidth required on a data flow link.

A transformation system parses and transforms the AGWL representation
into a concrete workflow specified by the Concrete Grid Workflow Language
(CGWL). In contrast to AGWL designed for the end-user, CGWL is oriented
towards the runtime system by enriching the workflow representation with ad-
ditional information useful to support effective scheduling and execution of the
workflow. At this level, the activities are mapped to concrete implementation
technologies such as Web services or legacy parallel applications. Moreover, a
CGWL representation commonly assumes that every activity can be executed
on a different Grid site. Thus, additional activities are inserted to pre-process
and transfer I/O data and to invoke remote job submissions. Data transfer pro-
tocols are included as well. CGWL is also enriched with additional constraints
and properties that provide execution requirements and hints, e.g., on which
platform a specific activity implementation may run, an estimated number of
floating point operations, or the approximate execution time of a given activity
implementation.

During the compilation from AGWL to CGWL, several correctness checks
are performed, like the uniqueness of names, the syntax of conditionals, or the
existence of links. The data-flow loosely defined in AGWL is verified and com-
pleted, the data types are added to all the ports, and the compatibility of the
data-links is validated. If possible, automatic data type conversions are added.

The CGWL representation of an AGWL specification serves as input to the
Askalon middleware services, in particular to the Workflow Executor and the
Meta-scheduler (see Figure 1).

2.2 Askalon Grid Services

Askalon supports the performance-oriented execution of workflows specified in
CGWL through the provision of a broad set of services briefly outlined in this
section. All the services are developed based on a low-level Grid infrastructure
implemented by the Globus toolkit, which provides a uniform platform for secure
job submission, file transfer, discovery, and resource monitoring.

456 R. Duan et al.



Fig. 1. The Askalon service-oriented architecture

Resource broker service targets negotiation and reservation of resources re-
quired to execute a Grid application [11].

Resource monitoring integrates and extends our present effort on developing
the SCALEA-G performance analysis tool for the Grid [5].

Information service is a general purpose service for scalable discovery, organ-
isation, and maintenance of resource and application-specific online and post-
mortem data.

Workflow executor service targets dynamic deployment, coordinated activa-
tion, and fault tolerant completion of activities onto the remote Grid sites.

Performance prediction is a service through which we are currently investigat-
ing new techniques for accurate estimation of execution time of atomic activities
and data transfers, as well as of Grid resource availability.

Performance analysis is a service that targets automatic instrumentation
and bottleneck detection (e.g., excessive synchronisation and communication,
load imbalance, inefficiency) within Grid workflows, based on the online data
provided by the Monitoring service, or the offline data organised and managed
by the Information service.

(Meta)-scheduler performs appropriate mapping of single or multiple work-
flow applications onto the Grid. We have taken a hybrid approach to scheduling
single workflow applications based on the following two algorithms [9]:

1. Static scheduling algorithm approaches the workflow scheduling as an NP-
complete optimisation problem. We have designed the algorithm as an in-
stantiation of a generic optimisation framework developed within the ZEN-
TURIO experiment management tool. The framework is completely generic

Real World Workflow Applications in the Askalon Grid Environment 457



and customisable in two aspects: the definition of the objective function and
the heuristic-based search engine. ZENTURIO gives first the user the op-
portunity to specify arbitrary parameter spaces through a generic directive-
based language. In the particular case of the scheduling problem, the ap-
plication parameters are the Grid machines where the workflows are to be
scheduled. A heuristic-based search engine attempts to maximise a plug-and-
play objective function defined over the set of generic annotated application
parameters. For the scheduling problem, we have chosen the converse of the
workflow makespan as the objective function to be maximised. For the im-
plementation of the search engine we target problem-independent heuristics
like gradient descent or evolutionary algorithms that can be instantiate the
framework for other optimisation problems too (e.g., parameter optimisa-
tion, performance tuning). Our first search engine implementation is based
on genetic algorithms that encodes the (arbitrary) application parameters
(e.g., Grid machines for the scheduling problem) as genes and the param-
eter space as the complete set of chromosomes. We have conducted several
experiments on real world-applications where a correctly tuned algorithm
delivered in average 700% generational improvement and 25% precision by
visiting a fraction of 105 search space points in 7 minutes on a 3GHz Pentium
4 processor.

2. Dynamic scheduling algorithm is based on the repeated invocation of the
static scheduling algorithm at well-defined scheduling events whose frequency
depends on the Grid resource load variation. The repeated static schedul-
ing invocation attempts to adapt the highly-optimised workflow schedule to
the dynamically changing Grid resources. Workflow activities have associ-
ated well-defined performance contracts that determine whether an activity
should be migrated and rescheduled upon underlying resource perturbation
or failure. We have conducted several experimental results in which our dy-
namic scheduling algorithm produced in average 30% faster execution times
than the Condor DAGMan matchmaking mechanism [13].

3 Grid Workflow Overhead Analysis

In Askalon, a Grid workflow application is executed by the Workflow Executor
service, based on the CGWL workflow representation. The workflow activities
are mapped onto the processors available through the Grid using the (Meta)-
Scheduler [9]. For each workflow activity A we currently compute three metrics:

1. computation time tA of the corresponding remote Unix process, which we
measure by submitting the job on the Grid as an argument to the POSIX-
compliant “/bin/time --portability” program; the timing results are re-
trieved from the job’s standard error stream;

2. Grid execution time TA, measured between the events STAGEIN (i.e., when
the input data is transferred to the execution site) and COMPLETED generated
by the Globus Resource Allocation Manager used to submit the job on the
Grid;

458 R. Duan et al.



3. Grid middleware overhead associated with the activity A, which we define
as: OA = TA − tA.

With each workflow execution we associate a Directed Acyclic Trace Graph
by unrolling the loops and cloning each activity upon every loop iteration. Since
the number of parallel activities in our rather large workflow applications com-
monly exceed the available Grid machines, we introduce additional edges at the
execution time which we call run-time schedule dependencies, that prohibit two
parallel activities to execute on the same machine simultaneously because of the
lack of additional Grid sites. For instance, if the parallel activities A1 and A2 are
scheduled on the same Grid machine, an artificial run-time schedule dependency
(A1, A2) is added to the set of workflow edges.

Let (A1, . . . , An) represent a path in the trace graph of a workflow W which
maximises the sum

∑n
i=1 TAi , also called the critical workflow path. We define

the Grid middleware overhead of W as: OW =
∑n

i=1 OAi .
Additionally, we measure the communication overhead generated by the

(GridFTP-based) file transfers required by activities which are executed on dif-
ferent Grid sites having different NFS file systems.

4 River Modelling: Invmod

Fig. 2. The Invmod

Invmod is a hydrological application
for river modelling which has been de-
signed for inverse modelling calibra-
tion of the WaSiM-ETH program [7].
It uses the Levenberg-Marquardt algo-
rithm to minimise the least squares of
the differences between the measured
and the simulated runoff for a deter-
mined time period. Invmod has two
levels of parallelism which are reflected
in the Grid-enabled workflow version
of the application depicted Figure 2:

1. the calibration of parameters is
calculated separately for each
starting value using multiple, so
called, parallel random runs;

2. for each optimisation step repre-
sented by an inner loop iteration, all the parameters are changed in parallel
and the goal function is separately calculated.

The number of inner loop iterations is variable and depends on the actual con-
vergence of the optimisation process, however, it is usually equal to the input
maximum iteration number. Figure 3 represents an AGWL excerpt of the In-
vmod workflow, which contains the declarations of the internal while loop and
parallel-for structures.

Real World Workflow Applications in the Askalon Grid Environment 459

workflow



<agwl>

<importATD url="http://.../invmodg/ATD/atd.xml" prefix="invmodgAtd"/>

<workflow name="wfInvModG">

<dataIn name="invModGIFile" source="wfInvModG/input.tar.gz"/>

<body> ...

<while name="while1">

<dataIn name="repeatLoop" loopSource="wasimC/repeatLoop">

<value>true</value>

</dataIn>

...

<condition>repeatLoop=’true’</condition>

<loopBody>

<sequence name="seq3">

<parallelFor name="pfor2">

<dataIn name="noOfParams" source="a1/nrOfParameters"/>

<loopCounter name="j" from="0" to="nrOfParams"/>

<loopBody>

<activity name="iWasimB1" type="invModGAtd:WasimB1">

...

<dataIn name="wasimABData" source="w1/wasimABData"/>

<dataIn name="paramNr" source="pfor2/j"/>

<dataOut name="oFiles"/>

</activity>

</loopBody>

<dataOut name="wasimB1OFiles" source="wasimB1/oFiles"/>

</parallelFor>

<activity name="iWasimB2C" type="invModGAtd:WasimB2C">

...

</activity>

</sequence>

<loopBody>

<dataOut name="loopResult" source="iWasimB2C/oFiles"/>

</while>

... </body>

<dataOut name="result" source="FindBest/bestResult" saveTo="/tmp"/>

</workflow>

<agwl>

Fig. 3. Excerpt from the Invmod AGWL representation

5 Experiments

The Askalon service-oriented architecture is currently being developed and de-
ployed within the Austrian Grid infrastructure that aggregates several national
Grid sites [2]. A subset of the computational resources which have been used for
the experiments presented in this paper are summarised in Table 1.

460 R. Duan et al.



Site Number of CPUs CPU Type Clock [GHz] RAM [MBytes] Location

Hydra 16 AMD 2000 1.6 1000 Linz
ZID392 16 Pentium 4 1.8 512 Innsbruck
ZID421 16 Pentium 4 1.8 512 Innsbruck
ZID108 6 Pentium 3 1 256 Innsbruck
ZID119 6 Pentium 3 1 256 Innsbruck
ZID139 6 Pentium 3 1 256 Innsbruck
ZID145 6 Pentium 3 1 256 Innsbruck

activities are instantiated by legacy Fortran applications executed using the re-
source and data management support offered by the Globus toolkit. We per-
formed three series of experiments for the Invmod river modelling application
corresponding to three different problem sizes identified by 100, 150, respectively
200 parallel random runs. We first executed each problem size on the Hydra ref-
erence Grid site, since it is the fastest cluster in our Grid testbed for this applica-
tion (faster than the Pentium 4). Then, we incrementally added new sites to the
execution testbed to investigate whether we can improve the performance of the
application by increasing the available computational Grid resources. For each
individual execution, we measured the execution time as well as the overheads
described in Section 3.

Figure 4 shows that the Invmod execution time improves by increasing the
number of Grid sites. The best speedup is obtained when the two fastest clusters
(i.e., Hydra and ZID392) are first joined to the resource pool. Less powerful
clusters, however, also improve the overall execution but with a less steep increase
in the speedup (see Figure 4(d)). As expected, the Grid middleware overhead
increases by adding new slower clusters to the Grid testbed. This is mostly visible
for the smallest problem size executed (i.e., 100 random runs), for which the
large overhead/computation ratio produces the rather low increases in speedup
(see Figure 4(a)). We obtained similar speedup curves for all the three problem
sizes due to the limited number of Grid machines available. As the problem size
gets larger, the ratio of the overhead to the overall execution time gets smaller
and the speedup obtained are higher since the Grid machines perform more
computation (see Figure 4(c)). Since the workflow schedules are computed by
the meta-scheduler such that the data dependent activities are scheduled on the
same sites (sharing the same NFS file system), the time spent on communication
is negligible in all the experiments, even though the size of the generated files is
of the order of Gigabytes.

The most important result is that by increasing the number of Grid sites, the
overall performance of the distributed Invmod application improves compared
to the fastest parallel computer available in the Grid infrastructure.

The abstract AGWL representation of the Invmod workflow depicted in Fig-
ure 4 is translated into a concrete CGWL representation, which in which the

Real World Workflow Applications in the Askalon Grid Environment 461

Table 1. The Austrian Grid testbed



(a) 100 random runs. (b) 150 random runs.

(c) 200 random runs. (d) Speedup.

Fig. 4. The Invmod experimental results

6 Conclusions

In this paper we have shown the approach taken by the Askalon project for
defining and executing Grid workflow applications. Askalon proposes a ser-
vice oriented-architecture that comprises a variety of services for performance-
oriented development of Grid applications, including resource brokerage, re-
source monitoring, information service, workflow execution, (meta-)scheduling,
performance prediction, and performance analysis. Workflows are specified in
a high-level abstract language that shields the application developer from the
underlying Grid and its technologies. A transformation system instantiates the
workflow into a concrete representation appropriate for Grid execution. We have
demonstrated the effective use of Askalon for modelling, scheduling, executing,
and analysing the performance of a real-world distributed river modelling appli-
cation in the Austrian Grid environment. Our experiments based on workflow
overhead analysis show that substantial performance improvement can be gained
by increasing the number of sites available in the Grid environment (up to a rea-
sonable number), compared to the fastest parallel computer available.

Currently we are applying Askalon to other real world applications from
areas such as astrophysics and material science. Moreover, we are incrementally
improving the Askalon middleware to better service the effective performance-
oriented development of Grid applications.

462 R. Duan et al.



References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Siebel Systems,
Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business process exe-
cution language for web services (bpel4ws). Specification version 1.1, Microsoft,
BEA, and IBM, May 2003.

2. The Austrian Grid Consortium. http://www.austriangrid.at.
3. Dietmar W. Erwin and David F. Snelling. UNICORE: A Grid computing environ-

ment. Lecture Notes in Computer Science, 2150, 2001.
4. T. Fahringer, S. Pllana, and A. Villazon. A-GWL: Abstract Grid Workflow

Language. In International Conference on Computational Science. Programming
Paradigms for Grids and Metacomputing Systems., Krakow, Poland, June 2004.
Springer-Verlag.

5. Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Ser-
agiotto Junior, and Hong-Linh Truong. ASKALON: A Tool Set for Cluster and
Grid Computing. Concurrency and Computation: Practice and Experience, 17(2-
4), 2005. http://dps.uibk.ac.at/askalon/.

6. IT Innovation. Workflow enactment engine, October 2002. http://www.it-
innovation.soton.ac.uk/mygrid/workflow/.

7. K. Jasper. Hydrological Modelling of Alpine River Catchments Using Output Vari-
ables from Atmospheric Models. PhD thesis, ETH Zurich, 2001. Diss. ETH No.
14385.

8. Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL : A Work-
flow Framework for Grid Services. Technical Report, Argonne National Laboratory,
9700 S. Cass Avenue, Argonne, IL 60439, U.S.A., July 2002.

9. Radu Prodan and Thomas Fahringer. Dynamic Scheduling of Scientific Workflow
Applications on the Grid using a Modular Optimisation Tool: A Case Study. In
20th Symposion of Applied Computing (SAC 2005), Santa Fe, New Mexico, USA,
March 2005. ACM Press.

10. Ed Seidel, Gabrielle Allen, Andr&#233; Merzky, and Jarek Nabrzyski. Gridlab:
a grid application toolkit and testbed. Future Generation of Computer Systems,
18(8):1143–1153, 2002.

11. Mumtaz Siddiqui and Thomas Fahringer. GridARM: Askalon’s Grid Resource
Management System. In European Grid Conference (EGC 2005), Lecture Notes
in Computer Science. Springer Verlag, February 2005.

12. Ian Taylor, Matthew Shields, Ian Wang, and Rana Rana. Triana applications
within Grid computing and peer to peer environments. Journal of Grid Computing,
1(2):199–217, 2003.

13. The Condor Team. Dagman (directed acyclic graph manager).
http://www.cs.wisc.edu/condor/dagman/.

14. Gregor von Laszewski, Beulah Alunkal, Kaizar Amin, Shawn Hampton, and
Sandeep Nijsure. GridAnt-Client-side Workflow Management with Ant. Whitepa-
per, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439,
U.S.A., July 2002.

Real World Workflow Applications in the Askalon Grid Environment 463



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 464 – 473, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

OpenMolGRID: Using Automated Workflows 
in GRID Computing Environment 

Sulev Sild1, Uko Maran1, Mathilde Romberg2, Bernd Schuller2, 

 and Emilio Benfenati3 

1 Department of Chemistry, University of Tartu, Tartu 51014, Estonia 
{sulev.sild, uko.maran}@ut.ee 

2 Forschungszentrum Jülich GmbH, ZAM, D-52425 Jülich, Germany 
{m.romberg, b.schuller}@fz-juelich.de 

3 Istituto di Ricerche Farmacologiche "Mario Negri" Via Eritrea 62, 20157 Milano, Italy 
benfenati@marionegri.it 

Abstract. Quantitative Structure Activity/Property Relationship (QSAR/QSPR) 
model development is a complex and time-consuming procedure involving data 
gathering and preparation. It plays an important role in the drug discovery pipe-
line, which still is mostly done manually. The current paper describes the auto-
mated workflow support of the OpenMolGRID system and provides a case 
study for the automation of the QSPR model development process in the Grid. 

1   Introduction 

The typical process for solving complex scientific problems involves the execution of
 time-consuming tasks  that  have  to be carried out in a specific order. Often these 
interdependent tasks are carried out by independent applications that may require the 
manual processing of intermediate results by end-users in the middle of the process. 
While Grid computing provides a powerful infrastructure for making distributed 
computational resources available to compute intensive tasks, the automated work-
flows provide new ways to combine otherwise independent programs (or services) in 
the Grid environment to create a new form of applications designed specifically for 
the problem at hand. This article describes the automated workflow support of the 
OpenMolGRID system and provides a case study for the automation of the QSPR 
model development process. 

1.1   Open Computing Grid for Molecular Science and Engineering 

Open Computing Grid for Molecular Science and Engineering (OpenMolGRID) [1] is 
a project focused on the development of Grid enabled molecular design and engineer-
ing applications. In silico testing has become a crucial part in the molecular design 
process of new drugs, pesticides, biopolymers, and biomaterials. In a typical design 
process hundred thousands or even millions of candidate molecules are generated and 
their viability has to be tested. Economically it is not feasible to carry out an experi-
mental testing on all possible candidates. Therefore, computational screening methods 
provide a cheap and cost effective alternative to reduce the number of candidates to a 



 OpenMolGRID: Using Automated Workflows in GRID Computing Environment 465 

 

more manageable size. Over the years quantitative structure activity/property relation-
ship (QSAR/QSPR) methods have been proved to be a reliable for the prediction of 
various physical, chemical and biological activities [2, 3]. 

The QSAR/QSPR methodology relies on a basic assumption that biological activ-
ity or physical property is a function of the molecular structure [4]. The molecular 
structure is characterized by theoretical parameters or so called molecular descriptors. 
Various statistical [5, 6] and variable selection [7] methods are then used to find quan-
titative relationships between experimentally available biological activity data and 
relevant molecular descriptors. The development of QSAR/QSPR models is rather 
complicated in practice, since various data pre-processing steps are required to pre-
pare a proper training set before the model development can be started. The most 
common pre-processing tasks include the collection of experimental data, the genera-
tion of 3D coordinates for input structures, quantum chemical calculations, and mo-
lecular descriptor calculation. All these steps must be repeated in a proper sequence 
for each molecule in the training set. Traditionally, this kind of workflow involves a 
lot of manual labor and user interaction that is not practical when huge data sets are 
processed. The consistency of the data set is very important and the manual process 
may introduce unnecessary errors due to human factors. Computations in the data 
processing steps are time consuming, especially when quantum chemical calculations 
are involved. 

The molecular design process can be significantly improved when Grid resources 
are exploited for the development and application of QSAR/QSPR models. Improve-
ments are possible both for the reduced time necessary for the task of building a 
model (with all the above listed steps) and better quality resulting from the automa-
tion, which reduces mistakes and the variability of results. The OpenMolGRID pro-
ject addresses the above-described problems by providing a Grid enabled infrastruc-
ture to automate these complex workflows and to speed up the process by distributing 
data parallel tasks over available computational resources. 

2   Automated Workflows in Grid Environment 

The specification and execution of complex processes like the process of molecular 
design and engineering using Grid resources is still an open field in Grid research 
and development. Solutions exist mostly for business processes. Languages to de-
scribe business processes are for example BPEL4WS (Business Process Execution 
Language for Web Services, see [8]) and WPDL (Workflow Process Definition 
Language, see [9]). The modeling of complex workflows in the scientific arena is 
mostly done manually using the tools some Grid middleware offers. The key point 
is the description of software resources available on Grid computing resources. 
These descriptions can be used for automated application identification and inclu-
sion in multi-step workflows. The following sub-sections will describe the solution 
for automated workflow specification and processing developed within the Open-
MolGRID project. 



466 S. Sild et al. 

 

2.1   Workflow Specification 

The primary question to be answered for identifying the necessary elements for a 
closed definition of a workflow is how applications and their interfaces are described 
in the environment at hand. In general workflows are built of tasks or processes as 
key elements. These elements are related through sequential temporal dependencies 
correlated to data flow between them or they are independent. OpenMolGRID uses 
the UNICORE Grid middleware [10] which offers workflow specification within a 
graphical user interface where tasks and sub-jobs are graphically linked to reflect 
dependencies and the necessary data flow is given through explicit transfer tasks. In 
addition workflow elements like loops, if-the-else, and hold are available to build up 
complex jobs. Applications or tasks within a job or sub-job are available on the client 
side as (application specific) plugins, which correspond to defined application re-
sources on the server side. These resources are described by metadata that, among 
others, define the interface and I/O format information to clients. 

Existing workflow description languages do not match the UNICORE model with 
respect to software resources. As these play the most important role within the auto-
matic job generation a workflow specification language has been developed which 
allows a high level definition of various scientific processes containing sufficient 
information for the automatic generation of complete UNICORE jobs. This includes 
the tasks and their dependencies but also necessary resources for the steps. XML has 
been selected as a specification language for the workflow. A core element in a work-
flow is task, which has  

• a name giving the identifier of a task fulfilled by an application resource and 
supported by a Client Plugin, 

• an identifier giving the name for the UNICORE task in the job tree,  
• an id giving the unique numerical identification within the workflow, 
• an export flag specifying whether result files are to be exported to the user’s 

workstation, 
• a split flag specifying whether the task is data parallel and can be distributed 

onto several execution systems,  
• a splitterTask giving the name of an application which is capable of splitting 

the input data for this task into n chunks,  
• a joinerTask giving the name of an application which is capable of joining the 

n result files into one file, and 
• options to feed the application with parameter settings. 

For a task a set of simple resources can be specified requesting runTime, number of 
nodes, number of processorsPerNode, and memoryPerNode. For a group element of 
the workflow, which corresponds to a UNICORE sub-job the target system for the 
execution of all tasks within the group can be specified by usite and vsite. The work-
flow specification details are given in Appendix A. 

Currently, there is no additional tool to generate the XML workflow; one has to 
use a standard text editor. With new UNICORE Client developments this will 
change. 



 OpenMolGRID: Using Automated Workflows in GRID Computing Environment 467 

 

2.2   Workflow Processing 

A workflow specified as described above serves as input to the MetaPlugin, a special 
Plugin to the UNICORE Client. The MetaPlugin parses the XML workflow, creates a 
UNICORE job from it, and assigns target systems and resources to it. These tasks 
include a lot of sophisticated actions: 

• Sub-jobs have to be introduced into the job wherever necessary, for example 
when requested applications are not available on the same target system; 

• Transfer tasks have to be introduced into the job to ship data from one target 
system to another, which is target of a sub-job; 

• Data conversion tasks have to be added between two tasks where the output 
format (specified in XML according to the application metadata) of one task 
does not match the input format of the successor task; 

• Splitter and transfer tasks have to be added to the workflow as predecessor 
tasks of a splitable task for input data preparation; 

• Sub-jobs have to be created around splitable tasks for each selected target sys-
tem, and a transfer task to transfer the output data back to the superordnate sub-
job; 

• Joiner tasks have to be added to join the output data of split tasks; 
• The directed acyclic graph of dependencies between all tasks (the explicit ones 

from the workflow specification and the automatically generated ones) has to 
be set up. 

The MetaPlugin uses the resource information provided by the target system 
(vsite), the metadata of the applications, and information about the Plugins available 
in the Client. A so called resource information provider component has been devel-
oped to support the MetaPlugin in resource selection: It says which Client Plugin 
serves the task, which target system offers the application, and which are the I/O 
formats. Currently the MetaPlugin does resource selection at a very basic level but a 
more sophisticated resource broker component could easily be added. 

The main advantage of this mechanism is that a user who wants to do model build-
ing can name the coarse-grained tasks and their dependencies in an XML workflow 
thereby avoiding the tedious job of the step-by-step preparation of the UNICORE job. 
The latter would afford detailed knowledge about for instance I/O formats for correct 
job preparation and the manual splitting and distribution of tasks onto appropriate 
target systems. Doing this automatically gives a lot of flexibility to the system to adapt 
to the actual Grid layout and resource availability and it helps avoiding human errors. 

3   Case Study: Prediction of Solubility 

The solubility is one of the most significant properties of chemicals and therefore 
important in various areas of human activity. Solubility in water is fundamental to 
environmental issues such as pollution, erosion, and mass transfer. Solubility in or-
ganic solvents forms much of the basis of the chemical industry. Solubility determines 
shelf life and cross contamination. Toxicity is critically dependent on solubility. Solu-
bility is also linked to bioavailability and thus to the effectiveness of pharmaceuticals. 



468 S. Sild et al. 

 

Solubility is one of the most important parameters of the ADME/Tox (absorption, 
distribution, metabolism, elimination and toxicity) profile that is used to test the drug 
ability (drug-likeness) of potential new drugs [11]. 

Therefore the computational prediction of solubility has been of huge interest, and 
the methods range from statistical and quantum mechanics to QSPR approaches [12]. 
The latter method is implemented in the OpenMolGRID system, an environment for 
solving the large-scale drug design and molecular design problems. 

3.1   Description of the Solubility Data and Distributed Tasks 

The example of using workflows in the Grid environment is given with the prediction 
of solubility in water. The example set of 178 data points consists of a large range of 
organic chemicals and is described in detail elsewhere [12]. 

The development of a QSPR model for the prediction of water solubility involves 4 
distributed tasks in our Grid environment: (i) the 2D to 3D conversion of molecular 
structures; (ii) semi-empirical quantum chemical calculations of 3D structures; (iii) 
calculation of molecular descriptors for each 3D structure; and (iv) building up QSPR 
models. All those tasks are mapped onto geographically distributed resources and do 
need different amounts of computational resources, with the first and second step 
being the most demanding. 

 

Fig. 1. Graphical representation of the OpenMolGRID workflow  

The XML workflow used for the prediction of the solubility is given in Appendix 
B. As one can see the semi-empirical tasks are automatically split between available 
computational resources. Also different options can be set for the tasks. In the current 



 OpenMolGRID: Using Automated Workflows in GRID Computing Environment 469 

 

example a predefined set of keywords for the semi-empirical calculations is specified. 
It is not necessary to set them by hand when the workflow is reused. The graphical 
representation of the full workflow is given in the UNICORE Client Job Preparation 
area and the splitting of the semi-empirical task can be seen in the Task Dependencies 
area in Figure 1. 

3.2   The QSPR Model for the Prediction of Water Solubility 

The above described model development workflow has been carried out with the 
OpenMolGRID system and it produced a multi-linear QSPR equation (Table 1) with 
five descriptors for the prediction of the water solubility. 

Table 1. The developed 5-descriptor QSPR model 

Descriptors Coefficient t-test 
Intercept -0.81906 -5.48578 
count of H-acceptor sites (MOPAC PC) 1.95510 22.60995 
LUMO+1 energy -0.27144 -7.77956 
Min partial charge (Zefirov PC) -13.80021 -13.18722 
Number of rings 0.83094 8.03049 
HA dep. HDSA-2/TMSA (MOPAC PC) 27.02062 7.32149 

 

Fig. 2. Job Monitoring area with the finished workflow for Model Development and respective 
plot for 5-descriptor QSPR 



470 S. Sild et al. 

 

The squared correlation coefficient, R2, of this model equals to 0.94, its squared 
cross-validated correlation coefficient R2

CV equals to 0.93, its F-value equals to 
517.27, and its standard error of estimate, s, equals to 0.56. The R2 and R2

CV values 
are close to each other showing good predictive potential of the model. The analysis 
of the t-test values reveals that for the solubility the most important characteristics of 
the molecular structure are hydrogen bonding and minimum partial charge. Other 
characteristics of the structure are less important but influential like the number of 
aromatic and aliphatic rings in molecules. The plot of experimental versus predicted 
solubility values is given in Figure 2 together with the Job Monitoring area showing 
the successfully finished workflow. 

4   Conclusions 

The automated workflows in the Grid environment offer many attractive features to 
the end-users in many application domains, not limited to the molecular design. They 
reduce the time used for manual repetitive operations and allow convenient and trans-
parent use of distributed resources. The automated workflows are user friendly and 
reduce the probability for human errors. In the above described model development 
process, the system located appropriate resources to carry out all the required tasks 
and automatically handled time consuming data conversion and transfer operations 
that normally involve manual processing. Workflows follow a unique defined proce-
dure (once fixed) and thus it eliminates the problem of variability, related to the sub-
jective choice of input parameters done by different users. For the above reasons, the 
results obtained with predefined workflows are easier to reproduce, a characteristic, 
which is very valuable in general and in particular for regulatory purposes (e.g. the 
assessment of toxicity by regulatory bodies). 

Acknowledgements 

Financial support is greatly acknowledged from the EU 5-th framework Information 
Society Technologies program (grant no. IST-2001-37238). 

References 

1. http://www.openmolgird.org 
2. Katritzky, A. R., Maran, U., Lobanov, V. S., Karelson, M.: Structurally Diverse QSPR 

Correlations of Technologically Relevant Physical Properties. J. Chem. Inf. Comput. 
Sci.40 (2000) 1-18 

3. Katritzky, A. R., Fara, D. C., Petrukhin. R., Tatham, D. B., Maran, U., Lomaka, A., 
Karelson, M.: The Present Utility and Future Potential for Medicinal Chemistry of 
QSAR/QSPR with Whole Molecule Descriptors. Curr. Top. Med. Chem. 2 (2002) 1333-
1356 

4. Karelson, M.: Molecular Descriptors in QSAR/QSPR. John Wiley & Sons, New York 
(2000). 



 OpenMolGRID: Using Automated Workflows in GRID Computing Environment 471 

 

5. Kowalski, B. R. (ed.): Chemometrics: Mathematics and Statistics in Chemistry. Nato Sci-
ence Series: C:, Vol. 138. Kluwer Academic Publishers (1984) 

6. Leardi R.: Nature-Inspired Methods in Chemometrics: Genetic Algorithms and Artificial 
Neural Networks. Elsevier Science (2003) 

7. Maran, U., Sild, S.: QSAR Modeling of Mutagenicity on Non-congeneric Sets of Organic 
Compounds. In: Dubitzky, W., Azuaje, F. (eds.): Artificial Intelligence Methods and 
Tools for Systems Biology, Kluwer Academic Publishers, Boston Dordrecht London 
(2004) 19-36 

8. Business Process Execution Language for Web Services. Version 1.0. 31-July-2002. 
(http://www-106.ibm.com/developerworks/library/ws-bpel1/) By Francisco Curbera 
(IBM), Yaron Goland (BEA Systems), Johannes Klein (Microsoft), Frank Leymann 
(IBM), Dieter Roller (IBM), Satish Thatte (Microsoft - Editor), and Sanjiva Weerawarana 
(IBM). Copyright 2001-2002 BEA Systems, International Business Machines Corpora-
tion, Microsoft Corporation, Inc. 

9. zur Muehlen, Michael; Becker, Jörg: WPDL – State-of-the-Art and Directions of a Meta-
Language for Workflow Processes. In: Bading, L. et al. (Ed.): Proceedings of the 1st 
KnowTech Forum, September 17th-19th 1999, Potsdam 1999 

10. http://unicore.sourceforge.net/paper.html 
11. Butina, D., Segall, M. D., Frankcombe, K.: Predicting ADME properties in silico: meth-

ods and models. Drug Discovery Today 7 (2002) S83-S88 
12. Katritzky, A. R., Oliferenko, A. A., Oliferenko, P. V., Petrukhin, P., Tatham, D. B., Ma-

ran, U., Lomaka, A., Acree, W. E. Jr.: A General Treatment of Solubility. Part 1. The 
QSPR Correlation of Solvation Free Energies of Single Solutes in Series Solvents. J. 
Chem. Inf. Comput. Sci. 43 (2003) 1794-1805 

Appendix A 

XML Data Type Defintion for the specification of workflows: 

<?xml version="1.0"?> 
<!ELEMENT workflow ( ( (task*, group*) | (group*, task*) ), 
 dependency*, resourceRequest?)> 
<!ELEMENT task (option*, localInput*, resourceRequest?)> 
<!ELEMENT option EMPTY> 
<!ATTLIST option  
          name CDATA #REQUIRED 
          value CDATA #REQUIRED 
> 
<!ELEMENT localInput EMPTY> 
<!ATTLIST localInput 
          source CDATA #REQUIRED 
          destination CDATA #IMPLIED 
          type CDATA #REQUIRED 
          ascii (true|false) #IMPLIED 
          overwrite (true|false) #IMPLIED 
> 
<!ATTLIST task 
          name CDATA #REQUIRED 



472 S. Sild et al. 

 

          identifier CDATA #REQUIRED 
          id CDATA #REQUIRED 
          export (true | false) #IMPLIED 
          split (true | false) #IMPLIED 
          splitterTask CDATA #IMPLIED 
          joinerTask CDATA #IMPLIED 
> 
<!ELEMENT group (option*, ((task*, group*) | (group*, 
task*)), dependency*, resourceRequest?)> 
<!ATTLIST group 
          type (subjob | repeat | doN | if | then | else) 
             #REQUIRED 
          identifier CDATA #REQUIRED 
          id CDATA #REQUIRED 
> 
<!ELEMENT dependency EMPTY> 
<!ATTLIST dependency 
          pred CDATA #REQUIRED 
          succ CDATA #REQUIRED 
> 

<!ELEMENT resourceRequest ANY> 

Appendix B 

The XML workflow used for the prediction of solubility 

<?xml version="1.0"?> 
<!-- Model development for Solubility in Water --> 
<workflow 
xmlns="http://www.openmolgrid.org/namespaces/2004/Workf
lowDescription" 
xmlns:rd="http://www.openmolgrid.org/namespaces/2004/Si
mpleResources"> 
<task name="2Dto3Dconversion" identifier="2Dto3D" 
id="1" export="false" split="false"> 
<option name="molgeo.algorithm" value="Distance geome-
try"/><option name="molgeo.tolerance" value="3"/> 
</task> 

<task name="SemiempiricalCalculation" identi-
fier="MOPAC_OPT" id="2" export="false" split="true" 
splitterTask="SplitStructureList" joiner-
Task="JoinStructureLists"> 
<option name="keywords" value="AM1 NOINTER MMOK 
GNORM=0.1 EF"/> 
</task> 

<task name="SemiempiricalCalculation" identi-
fier="MOPAC_PCalc" id="3" export="false" split="true" 
splitterTask="SplitStructureList" joiner-



 OpenMolGRID: Using Automated Workflows in GRID Computing Environment 473 

 

Task="JoinStructureLists"> 
<option name="keywords" value="AM1 VECTORS BONDS PI 
POLAR PRECISE ENPART MMOK 1SCF"/> 
</task> 

<task name="DescriptorCalculation" identi-
fier="DescCalc" id="4" export="false" split="false"> 
</task> 

<task name="ModelBuilding" identifier="ModelBuild" 
id="5" export="false" split="false"> 
<localInput source="H:\Unicore\test\Solub-data-
water.plf" destination="SolubData" 
type="http://www.openmolgrid.org/namespaces/PropertyFil
e"/> 
</task> 

<dependency pred="1" succ="2"/><!-- 2D-3D to MOP1 --> 
<dependency pred="2" succ="3"/><!-- MOP1 to MOP2 --> 
<dependency pred="3" succ="4"/><!-- MOP2 to DC --> 
<dependency pred="4" succ="5"/><!-- DC to MB --> 
</workflow> 



Implementation of Replication Methods in the
Grid Environment

Renata S�lota1, Darin Nikolow1, �Lukasz Skita�l2, and Jacek Kitowski1,2

1 Institute of Computer Science, AGH-UST, al.Mickiewicza 30, Cracow, Poland
2 Academic Computer Center CYFRONET AGH, ul.Nawojki 11, Cracow, Poland

Abstract. Data replication methods are often used in Grid environ-
ments for improving the access time and data protection level. Dynamic
replication allows the system to automatically create and delete repli-
cas in order to follow dynamically changing system parameters and user
access patterns keeping the performance high and resource usage in rea-
sonable limits. In this paper we present the replication aspects of the
Virtual Storage System developed within one of the grid projects. We
also present results from replication tests done in a real grid environment.

1 Introduction

The Grids make possible usage of widely distributed computational and stor-
age resources for solving scientific problems with scale and performance unseen
before. A common problem in the scope of widely distributed computing is the
distance1 between the storage location where the requested data is kept and the
computational resource location where these data are going to be used. This is
even more important with the growing size of the data set since the time nec-
essary to transfer the data may overcome benefits of the higher performance of
distributed computing. One of the methods dealing with this problem is repli-
cation of data.

Data replication is the process of making additional copies of the original
data. Data replication has been successfully used in the traditional computing
systems, like mirroring (RAID systems) or backup. Three types of replication
can be distinguished in the distributed systems: general replication, caching and
buffering. The main difference between these types is in the place where the
decision about making a copy of data is made and in the way of data removal.
The decision of making a general replica is made by the server, while the decision
of making a cache copy is made locally by the client. In the case of caching some
data is being removed when the cache is full and new data have to be put there.
This is done according to some data purging policy (like LRU). In the case of
general replication the replicas are removed because the server decides they are

1 The distance can be real geographical distance or a distance in the sense of latency
and bandwidth parameters of the network connections.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 474–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Implementation of Replication Methods in the Grid Environment 475

no longer useful in this location. In the case of buffering the data is always copied
and always removed after being consumed.

The replication of data in the Grid environments is done for two important
reasons: improving the access time (and thus the performance) and increasing
the data protection level. Additional benefits of using replication methods is the
smaller system load for the storage resources as well as the lower network usage.
On the other side there are some challenges and penalties to be paid when using
replication. The main problem is making a decision about a replica creation.
Obviously the replication methods need more storage capacity as the number
of replicas increases. Additionally, the overall network traffic increases because
of replica copying in time of creation and copying of data for keeping all the
replicas consistent. Finding an efficient method for keeping all the replicas up-
to-date in the cases of data modification is also challenging. Another problem is
the need for additional software functionality which takes the role of managing
replicated data sets. Finally the problem of determining which replica is the best
for a given data access request should also be mentioned.

There are two main replication method categories: static replication and dy-
namic replication. The static replication is usually done manually by the user or
administrator and is based on static parameters, while the dynamic replication
is done automatically by the appropriate replica management component based
on dynamically changing system parameters or user behavior. It can be based,
for instance, on the statistical data about the previous accessing to the files or
it can be based on predictions about the user behavior in the future.

The rest of the paper is organized as follows: Section 2 presents state of the
art. Section 3 introduces the Virtual Storage System developed as part of the
SGIgrid [1] project and the replication techniques used in it. Section 4 presents
the test results. Section 5 concludes the paper.

2 State of the Art

In the DataGrid project [2] the replication was based on the tier model and
the data was mostly read-only originating from a center location - CERN.
The replication was static with best replica selection based on data access cost
estimation.

In order to make an optimal replica selection some essential information con-
cerning the network and the storage elements have to be available. The first
kind of information is the bandwidth of network connections and the perfor-
mance of the storage elements. The second kind of information is measurement
data representing statistical or current system parameters - the measured net-
work bandwidth and load of the storage elements. The third kind of information
is data about the estimated performance parameters of the network and storage
elements.

The cost of data access (in terms of access time) can be divided into two parts:
the access cost imposed by the storage element and the access cost introduced
by the network. Appropriate access cost model is introduced in [3]. The storage



476 R. S�lota et al.

element access cost estimation subsystem used in this model has been developed
within the CrossGrid project [4].

For storage elements based on Hierarchical Storage Management (HSM) sys-
tems the access time can vary a lot from milliseconds to minutes. This estimation
is not a trivial task since many parameters influence the access time: system load,
the data location - tape or disk, number and availability of drives, size of file,
etc. In our previous work we proposed a gray-box data access estimation system
for HSM systems [5]. The estimation is done by event driven simulation of the
essential (from the access time point of view) components of real HSM system.

The dynamic replication is an interesting topic and seems worth studying.
Foster et al. in [6] evaluate, using simulations, different dynamic replication

strategies for managing large data sets in a high performance data grid. Their
research has been done within the GriPhyN project [7]. They define six different
replication strategies and test them by generating three different kinds of access
patterns. They show how the bandwidth saving and latency differ with these
access patterns depending on the applied strategy. The best strategies according
to this paper are Fast Spreading and Cascading with Caching, but in the same
time these strategies are the most storage consuming ones.

Park et al. in [8] present a simulation based study of a dynamic replica-
tion method called BHR (Bandwidth Hierarchy Replication). The BHR strategy
takes advantage from the network-level locality which does not always fit to the
geographical one. They show that their strategy outperforms other strategies in
the case when hierarchy of bandwidth appears in the Internet.

Szymanski et al. in [9] study the use of highly decentralized dynamic replica-
tion services for improving the access time and bandwidth consumption of the
overall system. They have assumed a two-tier data grid. They have tested two
replication strategies: replicating to level 1 intermediate nodes (closer to tier 0)
and replicating to level 2 intermediate nodes (closer to clients). Their simulation
results show that the performance gains increase with the size of the data.

In the SGIgrid project, managed by ACC Cyfronet-AGH, instead of doing
simulation research an attempt to study automatic replication methods by im-
plementing and testing them in a real grid environment is being made.

3 Data Replication - SGIGrid Example

The SGIgrid project [1] aims to design and implement broadband services for
remote access to expensive laboratory equipment as well as services for remote
data-visualization. This goal is achieved by using the Grid technologies. The
data produced during a remote experiment are stored for further visualization
processing. Since the data and the visualization service can be far from each
other the problem of efficient access to these data arises. The data replication
method has been chosen for optimizing the access to data in terms of access
time. The replicas are created and removed automatically by the system in order
to achieve overall lower access time for client applications, not exhausting the
storage resources in terms of capacity and the network in terms of bandwidth.



Implementation of Replication Methods in the Grid Environment 477

The replication functionality is provided by a subsystem called Virtual Storage
System (VSS) being developed as part of the SGIgrid infrastructure.

The VSS is a storage system integrating the storage facilities, including Hi-
erarchical Storage Management (HSM) systems, being part of the SGIGrid into
a common storage infrastructure. It is built on top of Data Management System
(DMS) [10] developed at the supercomputing center PCSS. Among the other
functionalities like ordering of files and faster access to large files on tapes, VSS
enhances the DMS with automatic data replication functionalities.

3.1 System Architecture

The VSS software is written in the Java language and uses the web services
technology. The communication between the components is based on the SOAP
[11] protocol. The system architecture is shown in Fig. 1. The gray boxes rep-
resent the components which has been added to the DMS. These extensions are
Replica Manager, Log Analyzer (LA), Data Container Extensions (DCE) and
API allowing file access to VSS from within an application.

The system consists of the following components:

– Data Broker - interface the VSS to the client. The purpose of this compo-
nent is authentication and authorization of the user.

– Metadata Repository, Log Analyzer - the repository is the core of the
system. It stores data concerning the virtual filesystem and the location of
data. The Log Analyzer is part of the Repository. Its purpose is analyzing
the history of data access operation and providing the result data to the
Replica Manager.

Database

Storage

Data Broker

Metadata Repository

Data Container

Replica Manager

Data Container

Storage

Statistic data

Client

DCE DCE

A

P

I

Existing Architecture Proposed extensions

L
A

Fig. 1. Architecture of the VSS



478 R. S�lota et al.

– Data Container, Data Container Extension - Data Container is re-
sponsible for the physical data storage and retrieval. It has three parts:
• Managements Services - provide services for data management to the

Metadata Repository.
• DCE - provides the new functionalities, i.e. file ordering, faster access

to large files on tapes, data access time estimation.
• File transport - provides file transfer services (servers for ftp, gsiftp,

http).
– Replica Manager - the Replica Manger is responsible for the automatic

creation and deletion of replicas.

The Replica Manager is described in more detail in the next subsection.

3.2 Replica Manager and Automatic Replication

The Replica Manager (RM) is responsible for the automatic creation and removal
of replicas. The decision, made by the RM, when and where to create a replica
is based on the statistic data provided by the LA.

The structure of the RM component is shown in Fig.2.

Replica Creation. The automatic replication is based on statistic data con-
cerning previous data accesses. The Metadata Repository logs data access re-
quests among the other events. The statistic data are gathered from this log by
the LA in an XML file for easier later processing by the RM.

The following events are logged by the LA:

1. download of a file(GET),
2. upload of a file (PUT),
3. cancel upload of a file (ROLLBACK),
4. replica deletion (DEL).

Every event is described by the following record:

1. action - type of event (GET,PUT,ROLLBACK,DEL),
2. location - IP address of a client,
3. fileID - file identifier,

Statistic
Data

SOAP Interface

RMCore

Statistic Analyzer

Fig. 2. Structure of the RM component



Implementation of Replication Methods in the Grid Environment 479

4. container - URL address describing data container and protocol,
5. timestamp - milliseconds since time zero (1970 January 01).

The algorithm for automatic replication, provided by the RM, takes as input
parameter the records containing information about the previous file operations
and returns as result a list of files with their replica destinations.

At the moment implemented algorithm for automatic replication takes under
consideration the frequency of file downloads per user. Details are presented
below.

Every couple location, fileID - (loc, fid) is considered separately and if it
fulfills initial conditions (e.g. file size, number of replicas) the weight w is com-
puted:

w(loc, fid) =
∑

a∈Lr(loc,fid)

f(ta), (1)

where:
Lr(loc, fid) – set of GET events for the file fid performed from location loc,
ta – timestamp of an event a,
f(ta) – function specifying the influence of events age. It is defined as the fol-
lowing cut-off function:

f(ta) =
{

1 if ta ≥ tc − tmax

0 if ta < tc − tmax
, (2)

where tmax is the maximal age of event taken into account and tc is the current
time.

If w(loc, fid) > τc, where τc is a threshold value, the RM decides to create a
new replica of file fid. A data container to hold the new replica is selected, based
on the user location, by the container selection algorithm described in paragraph
“Replica Selection, Container Selection”. If the file exists on selected data con-
tainer or there is not enough free space for the new replica none replication is
done, otherwise the file is replicated to this data container.

Removal of Replicas. Automatic replica removal, provided by the RM, is also
based on statistic data. The algorithm used here is very similar to that used for
automatic replication.

The following initial conditions have to be fulfilled for the replica removal:

1. the replica has been created by the RM - replicas, which were created man-
ually, can be removed only manually,

2. the age of replica is greater, than the time period considered.

For every replica r, which fulfills the above initial conditions, the weight w
is computed:

w(r) =
∑

a∈Lr(r)

f(ta), (3)



480 R. S�lota et al.

where:
Lr(r) – set of GET events for replica r,
ta, f(ta) – the same as in formulas 1,2.

If w(r) < τr, where τr is a removal threshold value, the RM decides to remove
replica r.

Replica Selection, Container Selection. Replica and container selection is
made by Metadata Repository. Selection of optimal replica (for an user request)
is based on the following values:

1. network latency,
2. storage performance (read/write tests),
3. file access time estimation (significant for HSM),

Network latency measurement is performed using traceroute method, which is
more reliable than ICMP Ping Request.

For location loc and for each data container c storing requested file fid,
following weight d is computed:

d(c, loc, fid) = n(c, loc) + r(c) + w(c) + eta(fid) (4)

where:
n(c, loc) – network latency between data container c and user location loc,
r(c) – read performance test,
w(c) – write performance test,
eta(fid) – access time estimation for file fid.

The optimal container is the one with minimal d.
Selection of data container for new replica is based on the above replica

selection algorithm but takes under consideration only the network latency and
the storage performance.

Replica Consistency, Propagation. Replica consistency is assured by Meta-
data Repository while the replica propagation is performed by the RM.

In the case of replica update Metadata Repository puts all other replicas in
inconsistent state. Only consistent replicas are available for download. Metadata
Repository inform RM about replica update. The RM is responsible for replica
propagation. For this purpose we define two sets: sources and destinations. Ini-
tially sources set contains the updated replica and destinations set contains all
other (inconsistent) replicas. Algorithm used for replica propagation is the Span-
ning Tree algorithm.

4 Test Results

4.1 Testbed Configuration

The VSS during the tests consisted of data containers localized in various sites in
Poland. Data containers stored the data on heterogeneous storage systems (like



Implementation of Replication Methods in the Grid Environment 481

HSM systems and hard disk systems) with different data access performance
characteristics. The network bandwidth between the sites ranged between 10
Mb/s to 625 Mb/s.

4.2 Testing Procedure

Ten files having different sizes (10-1000MB) have been stored on the VSS. In
order to test the data replication facilities of the system a script simulating user
activity has been implemented. The script first takes list of files to be accessed
and next starts posting read requests to the system according to the specified
access pattern. The script logs the file identifiers and the access times for these
files. Few parameters allow us to control the behavior of the script program:

– No requests - the number of requests to be issued,
– α - the alpha value for the Zipf-like pattern. 0 turns the pattern into com-

pletely random, while 1 will represent classical Zipf distribution,
– interval - the average time interval between requests; each interval is ran-

domly generated,
– interval bias - the maximal deviation from the average interval for a given

time interval; the value should be between 0 and interval.

The tests are done in two phases. First, the script is executed on the client
hosts located in different sites, and second, when the automatic replication trig-
gered by the script execution is finished, the script is executed again with the
same conditions. Then the results from the two runs are compared.

The tests were done for three different access patterns (α values). The replicas
for the test files were removed before each test run.

4.3 Test Results

In the conducted experiment the client requests have been simplified to a read-
whole-file requests. By access time to a file we assume the time from the moment
of issuing a request till the moment the file is completely transfered. Taking into
account the client requests for a given file an average access time value for that file
has been calculated. The access time to a file requested by a client is considered
as an access time to the best replica for this client. The results have been divided
into three groups depending on the file size. The test results are shown in Fig.
3, 4, 5.

We can see that for small file sizes the performance gain is none or even
negative. This is because of the replica selection algorithm. It is time consuming
because it checks the estimated time of arrival for each container. It takes about
5-10 s for each container. For the medium and large files sizes the gain from
replication increases.

The important costs associated with replication like increased storage capac-
ity usage and possible higher network load is balanced by: wakeup period of RM
and reaching a certain level of temporal locality by client requests. Addition-
ally the file size and number of replicas thresholds can also be used to limit the
replica creations.



482 R. S�lota et al.

0

5

10

15

20 16

α = 0

17
15

α = 0.5

15 14

α = 1

14

[s]

Before replication After replication

Fig. 3. Average Access Time - small files (10-20MB)

0

40

80

120

160
159

α = 0

59

154

α = 0.5

89

170

α = 1

80

[s]

Before replication

After replication

Fig. 4. Average Access Time - medium
files (100-300MB)

0

200

400

600

800
627

α = 0

190

691

α = 0.5

177

779

α = 1

288

[s]

Before replication

After replication

Fig. 5. Average Access Time - big files
(512-1024MB)

5 Conclusions

In this paper we have presented an implementation of automatic data replica-
tion techniques for the Virtual Storage System developed within the SGIgrid
project. The automatic data replication has been tested in a real grid environ-
ment. The tests have shown that the replication algorithm behaves properly and
that the reduction of access time is more significant for larger files. For small files
the replication didn’t bring any performance gain, because of replica selection
overhead. Achieved performance gain heavily depends on network architecture
and data container’s performance for low network and storage load. For highly
loaded system the performance will mostly depend on the load balancing and
scalability achieved by using replication.

The presented replication method is a user driven replication which seems
reasonable for our framework where a geographically local group of scientist can



Implementation of Replication Methods in the Grid Environment 483

work together using the same data sets. In this case the gain can increase. Our
further long term experiments with real requests clients will aim at studying
such cases.

The tests were intended to show if some gain would be obtained due to the
automatic replication. The penalty of replication is the higher usage of storage
space. The growth of storage usage in the VSS is not fast due to the appropriate
algorithm, which does not create new replicas too quickly. Additionally, the
replicas that are unused for a long time are removed by a garbage-collector-like
algorithm. Another aspect, not covered in this study, is the problem of system
performance when the dynamics of replica creation and removal is much higher
then in our current approach. In this case a replica may be removed even if it is
used but the new replica coming in place is expected to bring higher overall gain.
This aspect should be addressed in systems requiring faster system response due
to the changes of user data access patterns.

Acknowledgments

The work described in this paper was supported by the Polish Committee for
Scientific Research (KBN) project “SGIgrid” 6 T11 0052 2002 C/05836 and by
AGH grant.

Thanks go to our colleagues from PCSS and CKP�L for cooperation.

References

1. SGIgrid: Large-scale computing and visualization for virtual laboratory using SGI
cluster (in Polish), KBN Project, http://www.wcss.wroc.pl/pb/sgigrid/

2. “DataGrid – Research and Technological Development for an International Data
Grid”, EU Project IST-2000-25182.

3. Stockinger, K., Stokinger, H., Dutka, �L., S�lota, R., Nikolow, D., Kitowski, J., ”Ac-
cess Cost Estimation for Unified Grid Storage Systems”, 4-th Int. Workshop on
Grid Computing (Grid 2003), Phoenix, Arizona, Nov 17, 2003, IEEE Computer
Society Press.

4. “CROSSGRID – Development of Grid Environment for Interactive Applications”,
EU Project IST-2001-32243.

5. Nikolow, D., S�lota, R., Kitowski, J. ”Gray Box Based Data Access Time Estima-
tion for Tertiary Storage in Grid Environment”, in: Wyrzykowski, R., Dongarra, J.,
Paprzycki, M., Waśniewski, J. (Eds.), Parallel Processing and Applied Mathemat-
ics. 5th International Conference, PPAM 2003, Czȩstochowa, Poland, September
2003, LNCS, no. 3019, Springer, 2004, pp. 182-188.

6. Ranganathan, K., Foster, I., ”Identifying Dynamic Replication Strategies for a
High-Performance Data Grid”, Proceedings of the International Workshop on Grid
Computing, Denver, November 2001.

7. Grid Physics Network http://www.griphyn.org/

8. Park, S., Kim, J., Ko, Y., Yoon, W., ”Dynamic Data Grid Replication Strat-
egy Based on Internet Hierarchy”, Lecture Notes in Computer Science Publisher,
Springer-Verlag Heidelberg Volume 3033, 2004, pp.838-846.



484 R. S�lota et al.

9. Lamehamedi, H., Szymanski, B., Deelman, E., “Data Replication Strategies in
Grid Environments”, 5th Int. Conf. on Algorithms and Architectures for Parallel
Processing, ICA3PP2002, Beijing, China, October 2002, IEEE Computer Science
Press, Los Alamitos, CA, 2002, pp. 378-383.

10. PROGRESS, http://progress.man.poznan.pl/.
11. WebServices - SOAP http://ws.apache.org/soap/



A Secure Wrapper for OGSA-DAI

David Power, Mark Slaymaker, Eugenia Politou, and Andrew Simpson

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD,United Kingdom

Abstract. OGSA-DAI is a reference implementation of the OGSA Data
Access and Integration services that facilitates homogeneous access to
a wide range of databases, with this access being independent of the
underlying database schemas and database management systems. In this
paper we propose a secure wrapper for OGSA-DAI to allow an existing
OGSA-DAI installation to be secured against inappropriate actions. The
wrapper utilises XACML.

1 Introduction

OGSA-DAI [1] is a reference implementation of the OGSA [2] Data Access and
Integration services. OGSA-DAI provides grid services that allow homogeneous
access to a wide range of relational and XML databases, with this access being
independent of the underlying database schemas or database management sys-
tems. As well as supporting simple query and update commands, it also allows
data to be transferred to and from remote sites, the transformation of data, and
the chaining together of actions to perform more complex tasks.

The current provision of support for security in OGSA-DAI is rather limited.
The standard distribution of OGSA-DAI utilises a file that maps the distin-
guished name from a user’s proxy certificate to a database username and pass-
word; all other security mechanisms have to be configured on the target database.
Furthermore, there is—at the time of writing—no mechanism to restrict the use
of other activities such as accessing remote sites or reading local files at the
granularity of individual users. This approach would appear to be inconsistent
with the widely held view that security is a systems issue—where consideration
of the whole system is essential in order to reason appropriately about security
properties. More positively, the OGSA-DAI mechanisms have been written in a
modular fashion, which makes attempts to plug in additional security models
relatively straightforward.

In this paper we propose a secure wrapper for OGSA-DAI that allows an ex-
isting OGSA-DAI installation to be secured against inappropriate use. We argue
that shifting the configuration of users’ rights away from the database has bene-
fits. First, such an approach facilitates systems thinking, which is essential with
respect to non-functional properties such as security. Second, it becomes possible
to configure heterogeneous databases using a single unified policy—which, for
some scenarios, is desirable. (This does not, of course, preclude individual sites

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 485–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



486 D. Power et al.

opting-out of such a global policy and enforcing a policy that is consistent with
local requirements.) Finally, it is then also possible to restrict other activities
such as undesirable file access and connecting to remote sites.

The motivation for this work comes from the e-DiaMoND project [3], the
main aim of which is to develop a prototype for a Grid-enabled national database
of mammograms that is sympathetic to the work practices employed within the
United Kingdom’s NHS Breast Screening Programme. The core e-DiaMoND sys-
tem consists of middleware and a virtualised medical image store to support the
concept of a data grid. The virtualised medical image store comprises physical
databases, with each being owned and managed by a Breast Care Unit (BCU).
The e-DiaMoND grid is formed by participating BCUs coming together as a
virtual organisation and uniting their individual databases as a single logical
resource. In addition, there are a number of stand-alone databases and applica-
tions. The design of the underlying database has been described in a previous
paper [4], as have the security issues surrounding the platform [5]. This paper
brings these two key issues together.

The fundamental requirements for an access control model for a system such
as e-DiaMoND can be stated simply: it should be flexible and it should be
fine-grained. This simple statement of requirements is derived from the fact
that there is no way of stating a priori what access control policies will be
implemented at each site: some access control requirements will be nationally
(or even internationally in the case of the European Union) mandated; others will
be due to local policies and requirements; others to the quirks of departmental
administrators. The best that one can do in such circumstances is to offer a
system that is sufficiently flexible to accommodate these different needs. Our
goal is to offer a model of access control that could support, on the one hand,
one logical database with one national DBA and, on the other hand, every patient
record being associated with exactly one hospital, which, in turn, has exactly one
DBA. These needs can, perhaps, be made more concrete by means of examples.

One might imagine a national repository of mammograms and related patient
data being an invaluable resource for studies of cancer trends. Having sought
appropriate approval, a hospital might permit a clinician from a different part
of the country to run queries across a subset of its patient information. This
permission might, perhaps, be given to a particular individual under certain
conditions—perhaps only access to those mammograms associated with smokers
over 70 who died between 1995 and 2000 will be granted. It is thus necessary to
offer means both of expressing this policy and enforcing it in a fashion that does
not impact significantly upon performance.

As a second example, consider a woman who lives in west London—where her
hospital records are based—but travels daily to east London to work. It would be
more appropriate and convenient for the woman to attend for routine screening in
east London—during her lunch break—than it would in west London. Therefore,
the west London hospital offering remote access to that woman’s information to
the east London hospital would offer benefits for that individual, and would
be exactly the kind of benefit one would expect from a national database that



A Secure Wrapper for OGSA-DAI 487

supported the breast screening process. Again, specific secure access without a
significant impact upon performance is required.

As well as addressing the specific needs of the e-DiaMoND project, our secure
wrapper for OGSA-DAI offers several more generic benefits. First, the appear-
ance of the wrapped OGSA-DAI would appear to clients just like OGSA-DAI
grid services; as such, applications would not need redesigning or redeveloping to
be compliant. Second, and a benefit that is key for systems such as e-DiaMoND,
is the fact that the wrapper provides an exhaustive log of all users’ interac-
tions with the database (although this is, to be fair, relatively straightforward
to achieve). A third benefit is that the approach allows access control policies to
be configured in a variety of ways: homogeneously, with one policy covering the
whole federated database, or heterogeneously, with each site implementing its
own, individual, policy. Not only can security policies be different, but they may
be configured at a number of different levels: the activities a user can access can
be restricted, access to specific stored procedures can be restricted, and even the
SQL queries passed to the database can be restricted/modified.

2 OGSA-DAI

Fundamentally, OGSA-DAI [1] consists of a set of grid services that facilitates
interaction with databases via a common grid interface. Logically, OGSA-DAI
consists of three main components: DAI Service Group Registry (DAISGR), Grid
Data Service Factory (GDSF), and Grid Data Service (GDS).

The general pattern of usage is as follows. A user or application queries the
DAISGR to find an appropriate GDSF. The user will then request that the
GDSF creates a GDS, which it will subsequently communicate with directly. If
the user or application wishes the GDS to perform a task, the user must create
a perform document and pass it to the GDS. The GDS will then perform the ac-
tions described. If the actions involve interaction with the underlying database,
then the GDS will obtain a user name and password from the database roles
file.

Perform documents are XML documents containing a number of elements,
with each such element representing an action to be performed. In this section we
discuss a number of actions which are of particular interest. The reader should
refer to the Grid Data Service documentation [6] for a more detailed description.

There are a number of activities which allow interaction with a relational
database using a JDBC connection. First, an sqlQueryStatement element con-
tains an expression tag, which, in turn, contains the SQL that will be executed.
This is intended for read-only statements; it should be noted, however, that not
all DBMSs support read-only connections.

An sqlUpdateStatement element also contains an expression tag which con-
tains the SQL to be executed. This differs from sqlQueryStatement in that it is
assumed that the statement will modify the database.

An sqlStoredProcedure element contains a storedProcedureName tag contain-
ing the name of the stored procedure. As is the case for sqlQueryStatement and



488 D. Power et al.

sqlUpdateStatement, it can also contain sqlParameter tags which contain either
embedded values or a reference to a data source.

The relationalResourceManagement activity can be used to create and drop
databases. The name of the database to be created or dropped is embedded in
either the createDatabase or dropDatabase tag respectively.

One powerful feature of OGSA-DAI is the ability to send and receive data
from third parties: in this respect, both synchronous and asynchronous activities
are supported.

The default delivery mechanism is a deliverToResponse activity. This can
be used to deliver the output stream of an activity within the GDS-Response
document. This is, however, only one of many options.

There are activities to send and receive data from: GridFTP servers, other
OGSA-DAI services using the Grid Data Transport portType, and a generic
URL. It is the delivery of data from a URL that is of particular interest, as it
provides an illustration of the need for access control.

The deliverFromURL activity can be used to pull data from a URL. It sup-
ports http, https, file and ftp. The URL is contained in the fromURL tag. Sim-
ilarly, the deliverToURL activity can be used to deliver output to a URL as
specified in the fromURL tag. By combining these two activities, it is straight-
forward to write a perform document to copy a file from the server hosting the
OGSA-DAI service and then transfer it using ftp to another server. In the fol-
lowing example, the file being copied is the database roles file which contains the
user names and passwords used to connect to the database. It should be noted
that executing this perform document will cause an error to be reported, but
only after the file has been transferred.

<gridDataServicePerform

xmlns="http://ogsadai.org.uk/namespaces/2003/07/gds/types">

<documentation>This will copy DatabaseRoles.xml</documentation>

<deliverFromURL name="GetDatabaseRoles">

<fromURL>

file:///tomcat/webapps/ogsa/WEB-INF/etc/DatabaseRoles.xml

</fromURL><toLocal name="theXMLFile"/>

</deliverFromURL>

<deliverToURL name="SendDatabaseRoles">

<fromLocal from="theXMLFile"/>

<toURL>ftp://guest@myserver.mydomain.com/DatabaseRoles.xml</toURL>

</deliverToURL>

</gridDataServicePerform>

3 XACML

XACML (eXtensible Access Control Markup Language) [7] is an OASIS standard
that allows one to describe—in terms of XML—two languages for a particular
application. The policy language is used to describe general access control re-



A Secure Wrapper for OGSA-DAI 489

quirements. The policy language has standard extension points that allow one
to define aspects such as new functions, data types, and logics to combine such
entities. The request/response language allows one to construct a query to deter-
mine whether a particular action should be permitted. Every response contains
an answer pertaining to whether the action should be permitted in terms of one
of four possible values: permit, deny, indeterminate, or not applicable. The first
two of these values are self-explanatory. The indeterminate value denotes the
fact that a decision cannot be made due to a missing value or the occurrence of
an error. The not applicable value denotes the fact that this particular question
cannot be answered by this particular service.

Typically, an application or user will wish to perform some action on a par-
ticular data resource. In order for this action to occur, a request to perform it
is made to the entity that protects that resource. This policy enforcement point
(PEP) might be, for example, a file system or a web server. On the basis of sev-
eral aspects—the requester’s attributes, the resource that the requester wishes
to perform its action on, what the action is, and so on—the PEP will form a
request. This request is then sent to a policy decision point (PDP). The PDP
analyses the request together with a set of policies that apply to the request, and
determines the appropriate answer with respect to whether or not the request
should be granted. This answer is returned to the PEP. The PEP may then
either allow or deny access.

The physical and logical relationships that exists between the PEP and the
PDP are not prescribed: they may sit within a single application on the same
machine; they may sit within a single application across different machines; they
may exist in different applications on the same machine; or they may have no
physical or logical connection. What is of interest to us is the potential for
describing and enforcing access control policies via XACML.

A request is sent to a PDP via a request document. It is the responsibility of
the PDP to find a policy that applies to that request.

A policy can have any number of rules—it is rules that contain the core logic
of an XACML policy. At the heart of most rules is a condition, which is a Boolean
function. If the condition evaluates to true, then the rule’s effect—which is the
intended consequence of a satisfied rule (either ‘permit’ or ‘deny’)—is returned.
In addition, a rule specifies a target, which defines: the set of subjects that want
to access the resource, the resource that the subject wants to access, and the
action that the subject wishes to undertake on the resource.

Within the request document exist values of specific attributes that must be
compared with the corresponding policy document values in order to determine
whether or not access should be allowed. Request attributes consist of the tar-
get and the environment, which is a set of attributes that are relevant to an
authorisation decision. These attributes are independent of a particular subject,
resource, or action.

The values of the request attributes are compared with those of the policy
document so that a decision can be made with respect to access permission.
In the situation where many different policies exist—as opposed to the case in



490 D. Power et al.

which a single policy document exists—a policy set document is defined as a
combining set of many policies.

A policy or policy set may contain multiple policies or rules, each of which
may evaluate to different access control decisions. In order for a final authorisa-
tion decision to be made, combining algorithms are used, with policy combining
algorithms being used by policy sets and rule combining algorithms being used
by policies. Each algorithm represents a different way of combining multiple
decisions into a single authorisation decision.

When the PDP compares the attribute values contained in the request doc-
ument with those contained in the policy or policy set document, a response
document is generated. The response document includes an answer containing
the authorisation decision. This result, together with an optional set of obliga-
tions, is returned to the PEP by the PDP. Obligations are sets of operations that
must be performed by the PEP in conjunction with an authorization decision; an
obligation may be associated with a positive or negative authorization decision.

4 A Secure Wrapper for OGSA-DAI

In this section we describe our method of implementing our secure wrapper for
OGSA-DAI. To meet the aim of ensuring that the wrapper appears like just
another OGSA-DAI service, we utilise the code already available from OGSA-
DAI. However, we only use the portions of the code that provide the interface
and the extraction of the perform document. We propose an extension to the
general process involved in the usage of an OGSA-DAI grid: this is illustrated
in Figures 1 and 2. The wrapper provides a Wrapper Grid Data Service Factory
(WGDSF) and a Wrapper Grid Data Service (WGDS), with the WGDSF and
WGDS effectively acting as a level of indirection. The usage of the wrapper can
be summarised as follows.

A request that would normally go to a GDSF actually goes to the WGDSF,
as illustrated by action 1 in Figure 1. This request is generally signed by the user
certificate of the requester. The WGDSF then sends a request (action 2), signed
by a wrapper certificate, to the GDSF. The GDSF creates a GDS in the normal

WGDSF GDSF

GDSWGDS

1 2

4
35

6

H2

H1
H1

User Certificate Wrapper Certificate

H1

H2

Fig. 1. Instantiation



A Secure Wrapper for OGSA-DAI 491

WGDS GDS

PDP

1 2

5
4

6 PEP

DB

3

OGSA-DAI 
Perform Doc OGSA-DAI Perform Doc

OGSA-DAI 
Response

OGSA-DAI Response

Wrapper CertificateUser Certificate

Fig. 2. Use

way (actions 3 and 4), and returns the handle to the WGDSF. The handle
returned is used by the WGDSF as a parameter when it creates the WGDS
(action 5). The handle to the WGDS is then returned to the requester (action 6).
When the user or application subsequently wishes a task to be performed by the
WGDS, they interact with it in exactly the same way as they would with a GDS.
This interaction is shown in Figure 2, and can be described as follows.

An OGSA-DAI perform document signed by the user’s certificate is passed
to the WGDS (action 1 of Figure 2), as described in Section 2. This gives the
impression to the user that they are interacting directly with an OGSA-DAI
system.

Once the signed perform document is received by the WGDS several processes
must be carried out to decide the correct response to the request. First, the
perform document is extracted and then processed by the wrapper specific code.
This will allow any changes to be made to the perform document, reflecting
security restrictions, before forwarding it to a GDS instance.

The initial processing of the perform document involves extracting a list of
activities that have been requested. This includes, amongst other items, the
names of stored procedures along with any parameters, SQL statements and
other activities. It is also necessary to check that the proxy certificate associated
with the request is valid, i.e., that is it has not expired and it is signed by a
trusted Certificate Authority (CA). If a proxy certificate has expired, or it is not
signed by a trusted CA, then the request is rejected in exactly the same way as
OGSA-DAI would do so.

Once the proxy certificate has been validated we need to extract the Dis-
tinguished Name (DN) from it. This is used as part of the XACML request as
detailed in Section 5.

A logging system records various pieces of information, including: the DN,
the contents of the perform document, the date and time of the request, the time
before the proxy expires, and the source of the request (if known). The logging
system could be a database or a simple log file: this is an implementation issue
that can be decided on a case-by-case basis. It is, however, important that this
logging system is secure and cannot be interfered with.

A request is then formulated so that it can be passed to the XACML PDP
as described in Section 3 and indicated in Figure 2. This request contains all
of the necessary information needed to make an informed decision about the



492 D. Power et al.

access requested. As a minimum, this must include the DN and details about
the activities requested. If any parameters are passed in, then these also need to
be forwarded to enable validation.

The PDP also needs to validate that not only does the DN have permission
to execute a given activity with any parameters supplied, but also that this can
be done at the current time.

The returned information will indicate the actual permissions that the sys-
tem is prepared to grant to the user along with any obligations. If any of the
activities requested are not authorised then the perform document will be re-
jected by returning an OGSA-DAI response document. This behaviour can be
modified to allow the perform document to be changed so as it can be autho-
rised. The amount of information that should be returned to the user when a
rejection is given is open to debate. If the rejection is because of something
like an expired proxy then this should be reported back. However, information
pertaining to other errors may result in information flow, i.e., it may give away
sensitive information pertaining to what is and is not stored in the database. It
is however suggested that the method of detailing rejections should be consistent
with OGSA-DAI.

The processing of SQL statements in a context such as this is a vast topic. The
authors consider that full discussion of this is beyond the scope of this paper, and
intend discussing this issue in a follow-on paper. We do, however, acknowledge
that this is an important part of the overall security of a data access system. It
is also worth noting that currently a perform document can have many activities
that feed into each other. This can potentially cause problems unless the outputs
and inputs to each activity are carefully analysed.

Any SQL statements need to be fully analysed to ensure that access restric-
tions imposed on users are not circumvented: attacks such as SQL injection are
of particular relevance in this respect.

If the request document is valid, it is then passed to the target OGSA-DAI
system. This is shown as action 2 in Figure 2. This request is passed to the GDS
and is signed using a special system certificate that identifies the wrapper. The
certificate used may be one of several and would be defined within the obligation
returned from the PEP/PDP.

To increase security, a number of different certificates should be used, with
these certificates corresponding to different users on the target database. A sim-
ple set of users could be a read-only user, a read/write user, and an admin user:
this would help reduce the possibility of a read-only user being able to modify
the database.

The modified perform document along with DN, date and time, etc. is again
recorded to the logging ‘database’. This provides a complete audit trail giving
the history of the requests. It is also suggested that the OGSA-DAI system could
sit on an intranet and thus only be available to requests originating from the
‘OGSA-DAI Wrapper’ system. Once the perform document is forwarded to the
GDS the activities requested are carried out. The OGSA-DAI response document
is returned to the WGDS (action 5 of Figure 2). The response document is logged



A Secure Wrapper for OGSA-DAI 493

along with the DN, date and time, to the logging system. It is then returned to
the user or application that made the initial request (action 6 of Figure 2).

5 Converting Perform Documents into Requests

Each activity in the perform document is converted into a separate XACML
request, with the name of the activity being represented as the action-id in
the request document using a string data type. The subject of each request
is the distinguished name taken from the X509 certificate which was used to
authenticate the user of the service. The distinguished name is stored as the
subject-id in the request document using the XACML X500Name data type.

The values stored in the resources section of the request will depend on
the type of activity which has been requested. For an sqlQueryStatement or an
sqlUpdateStatement, the SQL statement stored in the expression tag is used as a
resource-id, with any parameters being stored as separate parameter resources. If
the values of the parameters are not known in advance then the implementation
has two choices: either to execute each activity separately and insert the values
into the request, or to only write policies which are applicable irrespective of the
values of the parameters.

For an sqlStoredProcedure activity, the resource-id will be the name of the
stored procedure, and any parameters will be stored as parameter resources as
in the previous case.

For a relationalResourceManagement activity, the resource-id will be either
createDatabase or dropDatabase depending on which tag is present. The name
of the database will be placed in a databaseName resource.

For the deliverToUrl and deliverFromUrl activities the resource-id is either
the toURL or the fromURL.

While it would have been possible to produce requests that represented the
entire perform document, this would have required unnecessarily complex pol-
icy documents. A more effective long-term solution would be to add support
to XACML for composition of requests, in the same way that policies can be
composed using policy sets.

6 Discussion

We have described a secure wrapper for OGSA-DAI that utilises XACML with
a view to allowing an existing OGSA-DAI installation to be secured against
inappropriate actions. The work was driven by the needs of the e-DiaMoND
project, and in addition to being of use to that project offers a number of more
generic benefits that may be of relevance to the wider community. We would
argue that—ultimately—the approach is very general and as such, it could be
used to add an extra level of security to a wide range of grid services.

Some of the underlying technologies that the current technical realisation
of our approach utilises will soon be surpassed; however we would argue that



494 D. Power et al.

the principles underpinning our approach and, indeed the wrapper itself, will
remain largely unaffected by these changes. For example, from the GT3 toolkit,
e-DiaMoND currently uses the Grid Security Infrastructure (GSI) to provide user
authentication using X509 certificates; this will almost certainly be present in
the forthcoming WSRF-based GT4. From OGSA-DAI we are using the request
document, which is but one format in which a request could be encoded; any
changes to this request document format would require a new mapping to an
XACML request document, which compared to the intellectual effort expended
would be a minor issue. The wrapper uses XACML version 1.1. Version 2.0 is at
the time of writing (September 2004) under development, but it would be fair
to assume that this later version will offer more, rather than less, functionality.
This will hopefully allow the simplification of policies and request documents
and increase the usefulness of this approach.

There are several potential areas of future work. Of particular relevance is
the task of securing user activity permissions: how these are stored and accessed
will be key to utilising this approach within a project such as e-DiaMoND. A
more immediate pressing need—as discussed earlier—is the task of restricting
and modifying SQL so that queries behave in accordance with global and local
policies, and the potential for information flow is minimised.

References

1. Antonioletti, M., Jackson, M.: Product Overview. http://www.ogsadai.org.uk
(2004) OGSA-DAI-USER-UG-PRODUCT-OVERVIEW-v5.0.

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the
grid: an open grid services architecture for distributed systems integration.
www.globus.org/research/papers/ogsa.pdf (2002)

3. Brady, J.M., Gavaghan, D.J., Simpson, A.C., Mulet-Parada, M., Highnam, R.P.:
eDiaMoND: A grid-enabled federated database of annotated mammograms. In
Berman, F., Fox, G.C., Hey, A.J.G., eds.: Grid Computing: Making the Global
Infrastructure a Reality. Wiley Series (2003) 923–943

4. Power, D.J., Politou, E., Slaymaker, M.A., Harris, S., Simpson, A.C.: An approach
to the storage of DICOM files for grid-enabled medical imaging databases. In:
Proceedings of the ACM Symposium on Applied Computing. (2004) 272–279

5. Slaymaker, M.A., Politou, E., Power, D.J., Lloyd, S., Simpson, A.C.: Security as-
pects of grid-enabled digital mammography. Methods of Information in Medicine
(to appear) (2004)

6. Krause, A., Sugden, T., Borley, A.: Grid data service. http://www.ogsa-dai.org
(2004) OGSA-DAI-USER-UG-GDS-v5.0.

7. Godik, S., Moses, T.: eXtensible Access Control Markup Language (XACML) ver-
sion 1.1, committee specification. http://www.oasis-open.org (2003)



XDTM: The XML Data Type and Mapping for
Specifying Datasets

Luc Moreau1, Yong Zhao3, Ian Foster2,3,
Jens Voeckler3, and Michael Wilde2,3

1Univ. of Southampton
2 Argonne National Laboratory

3 Univ. of Chicago

Abstract. We are concerned with the following problem: How do we
allow a community of users to access and process diverse data stored in
many different formats? Standard data formats and data access APIs
can help but are not general solutions because of their assumption of
homogeneity. We propose a new approach based on a separation of con-
cerns between logical and physical structure. We use XML Schema as a
type system for expressing the logical structure of datasets and define a
separate notion of a mapping that combines declarative and procedural
elements to describe physical representations. For example, a collection
of environmental data might be mapped variously to a set of files, a rela-
tional database, or a spreadsheet but can look the same in all three cases
to a user or program that accesses the data via its logical structure. This
separation of concerns allows us to specify workflows that operate over
complex datasets with, for example, selector constructs being used to se-
lect and initiate computations on sets of dataset elements—regardless of
whether the sets in question are files in a directory, tables in a database,
or columns in a spreadsheet. We present the XDTM design and also the
results of application experiments with an XDTM prototype.

1 Introduction

In large open environments, users need to be able to access data stored in many
different formats. An answer to this problem is the standardization of data for-
mats and associated APIs. For example, XML is playing an increasingly im-
portant role in data exchange; FITS, the Flexible Image Transport System, is
a standard method for storing astronomical data; and HDF5, the Hierarchical
Data Format [5], is a file format (and associated software library) for storing
large and complex scientific and engineering data.

Data and format standards are helpful in this context but are not general
solutions in today’s heterogeneous networked environments. Open environments
must deal with legacy data, coexisting and evolving standards, and new data
formats introduced to meet the needs of new applications or devices. Above all,
open environments must be able to cope with evolution in data formats, so that
ideally (for example) computational procedures do not require major changes to

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 495–505, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



496 L. Moreau et al.

work with new formats. Format neutrality is hard to achieve, however, and we
often encounter computational procedures that are no longer operational simply
because their target data format no longer exists. The problem is that format
dependency prevents code reuse over datasets that are conceptually identical,
but physically represented differently.

BFD [11] and DFDL [2] offer partial solutions to this problem based on
binary format descriptions: BDF offers converters from binary to some XML-
based universal representation (and vice versa), whereas DFDL provides uniform
access APIs to binary. They do not address the variety of existing datasets
formats, however, since they focus on legacy binary formats. Moreover, they
incur potentially expensive conversion cost to XML (both in time and space), and
they do not promote reuse of computational procedures for logically equivalent
datasets.

We propose a new approach to this problem based on a separation of concerns
between logical and physical structure. We use a type system for expressing the
logical structure of datasets, and we define a separate notion of a mapping to
describe their physical representations. For example, a collection of environmen-
tal data might be mapped variously to a set of files, a relational database, or a
spreadsheet but can look the same in all three cases to the user who accesses
the data via its logical structure.

To explore the feasibility and applicability of these ideas, we define (and
introduce here) XDTM, the XML Dataset Type and Mapping system. XDTM
provides a two-level description of datasets: a type system that characterizes
the abstract structure of datasets, complemented by a physical representation
description that identifies how datasets are physically laid out in their storage.
We adopt XML Schema [13, 3] as our type system; this technology has the ben-
efit of supporting some powerful standardized query language that we use in
selection methods. XDTM allows the specification of computational procedures
capable of selecting subsets of datasets in a manner that is agnostic of physical
representation.

Working within the GriPhyN project (www.griphyn.org), we have produced
an implementation of XDTM and used it to manipulate datasets produced by
the Sloan Digital Sky Survey (SDSS) [12]. Throughout this paper we use SDSS
examples to demonstrate that the separation of concerns enabled by XDTM does
indeed allow us to specify workflows that operate over complex datasets with,
for example, selector constructs being used to select and initiate computations
on sets of dataset elements—regardless of whether the sets in question are files,
directories, or XML structures.

This paper is organized as follows. Section 2 reviews applications that use
complex datasets and examines limitations that prevent their easy manipulation.
Section 3 discusses the distinction between structure and format, while Section 4
describes how a type system, and specifically XML Schema, can be used to spec-
ify datasets structures. Section 5 focuses on a mapping that allows us to specify
how a dataset’s structure can be mapped to a physical representation. Section
6 overviews our prototype implementation. Section 7 discusses related work.



XDTM: The XML Data Type and Mapping for Specifying Datasets 497

2 An Application Manipulating Complex Datasets

We introduce an application that has strong requirements for complex multi-
format datasets. The Sloan Digital Sky Survey [12] maps one-quarter of the
entire sky, determining the positions and absolute brightnesses of more than
100 million celestial objects, and measures the distances to more than a million
galaxies and quasars. Data Release 2, DR2, is the second major data release and
provides images, imaging catalogs, spectra, and redshifts for download.

imaging

.

.

.

1239

.

.

.

6

40…

objcs 1

fpAtlas -001239 -1-0011.fit

...

fpAtlas -001239 -1-0166.fit

fpBIN-001239 -g1-0011.fit 

...

fpBIN-001239 -z1-0166.fit 

fpFieldStat -001239 -1-0011.fit

...

fpFieldStat -001239 -1-0166.fit

fpM-001239 -g1-0011.fit   

...

fpM-001239 -z1-0166.fit   

fpObjc -001239 -1-0011.fit 

...

fpObjc -001239 -1-0166.fit 

psField -001239 -1-0011.fit

...

psField -001239 -1-0166.fit

2…

3…

…

94

3478

astron …

…

corr

imaging

.

.

.

1239

.

.

.

6

40…

objcs 1

fpAtlas -001239 -1-0011.fit

...

fpAtlas -001239 -1-0166.fit

fpBIN-001239 -g1-0011.fit 

...

fpBIN-001239 -z1-0166.fit 

fpFieldStat -001239 -1-0011.fit

...

fpFieldStat -001239 -1-0166.fit

fpM-001239 -g1-0011.fit   

...

fpM-001239 -z1-0166.fit   

fpObjc -001239 -1-0011.fit 

...

fpObjc -001239 -1-0166.fit 

psField -001239 -1-0011.fit

...

psField -001239 -1-0166.fit

2…

3…

…

94

3478

astron …

…

corr

Fig. 1. Excerpt of DR2 (http://das.sdss.org/DR2/data)

We focus here on the directory imaging appearing at the root of the DR2
distribution, which we display in Figure 1. Inside it, we find a collection of di-
rectories, each containing information about a Run, which is a fraction of a strip
(from pole to pole) observed in a single contiguous observing pass scan. Within a
Run, we find Reruns, which are reprocessings of an imaging run (the underlying
imaging data is the same, but the software version and calibration may have
changed). Both Runs and Reruns directories are named by their number: in this
paper, we will take Run 1239 and Rerun 6 as an example to focus the discussion.
Within a Rerun directory, we find a series of directories, including objcs, ob-
ject catalogs containing lists of celestial objects that have been cataloged by the
survey. Within objcs, we find six subdirectories, each containing a Camcol , that
is, the output of one camera column as part of a Run. In each Camcol, we find
collections of files in the FITS format, the Flexible Image Transport System, a
standard method of storing astronomical data. For instance, the fpObjc files are
FITS binary tables containing catalogs of detected objects output by the frames
pipeline. For these files, we see that the Run number (1239) and other infor-
mation are directly encoded in the file name. From this brief analysis of a DR2
subset, we can see that DR2 is a complex hierarchical dataset, in which metadata
is sometimes directly encoded in filenames, as illustrated for Run, ReRun, and
CamCol directories and for all FITS files. Furthermore, DR2 is available in mul-
tiple forms: some institutions have DR2 available from their file system; it can
also be accessed through the rsync and http protocols; alternatively, sometimes,



498 L. Moreau et al.

astronomers package up subsets directly as tar balls, such as specific Runs, for
rapid exchange and experimentation.

3 Distinguishing Structure from Format

XML Schema, standardized by the World Wide Web Consortium [13, 3], provides
a means for defining the structure, content, and semantics of XML documents.
We assert in this paper that XML Schema can also be used to express the struc-
ture complex datasets. Increasingly, XML is being used as a way of representing
different kinds of information that may be stored in diverse systems. This use of
XML implies not that all information needs to be converted into XML but that
the information can be viewed as if it were XML. Such an overall approach is
also supported at the programming level. The Document Object Model (DOM)
[9] is an application programming interface for well-formed XML documents: it
defines the logical structure of documents and a programmatic way of accessing
and manipulating a document.

Against this background, we decided to adopt a multilevel explicit represen-
tation of information and propose to make the physical representation (i.e., the
format) of datasets an explicit notion, to coexist with the abstract structure of
the dataset (i.e., its type). We strive to specify format separately from type,
so that a dataset of a given type can be encoded into different physical repre-
sentations. Programs that operate on datasets can then be designed in terms
of dataset types, rather than formats, but can be executed regardless of the
physical representations.

4 Type System for Describing Datasets Structure

We now introduce the type system that we use to specify the abstract structure
of datasets. As in programming languages, we consider two forms of aggrega-
tions: arrays make their contents referenceable by indices, whereas records (or
structures) make them referenceable by their name. As far as atomic types are
concerned (i.e., types that cannot be decomposed into smaller elements), we
consider the usual primitive types found in programming languages, such as
int, float, string, and boolean. Furthermore, there exist numerous formats for
encoding well-defined datasets, such as FITS files in astronomy or DICOM for
medical imaging. We want such existing formats to be reusable directly, which
means that such datasets should also be viewed as primitive types.

The type system must be language independent so that it can describe the
structure of datasets independently of any programming or workflow language.
All the features we discussed above (and more)—namely, array and recordlike
aggregation, type naming, and attributes—are supported by XML Schema [13,
3]. We therefore propose to adopt the XML Schema, since it brings along other
benefits by its standardized nature.

We show in Figure 2 an excerpt of the XML Schema for DR2. (For con-
ciseness, we keep namespaces implicit in this paper.) The schema specifies that



XDTM: The XML Data Type and Mapping for Specifying Datasets 499

<xs:schema targetNamespace="http://www.griphyn.org/SDSS" 

                      xmlns:xs="http://www.w3.org/2001/XMLSchema" 

                      xmlns="http://www.griphyn.org/SDSS">

    <xs:element name="imaging" type="Imaging"/>

    <xs:complexType name="Imaging">

           <xs:sequence>

                  <xs:element name="run" type="Run" minOccurs="0" maxOccurs="unbounded"/>

           </xs:sequence>

    </xs:complexType>

    <xs:complexType name="Run">

           <xs:sequence>

                  <xs:element name="rerun" type="ReRun" minOccurs="0" maxOccurs="unbounded"/>

           </xs:sequence>

           <xs:attribute name="number" type="xs:nonNegativeInteger" use="required"/>

    </xs:complexType>

</xs:schema>

Fig. 2. XML Schema Excerpt for DR2

DR2 is composed of a single element named imaging of type Imaging. The com-
plex type Imaging is a sequence of elements run, of type Run, with a variable
(and possibly unbounded) number of occurrences. The complex type Run is a
sequence of elements rerun, of type Rerun. Note that a mandatory attribute is
being specified for type Run, with name number and natural value.

We note from this example that the type system provides a uniform mecha-
nism for representing the structure of datasets both “within” and “outside” files.
In fact, at the level of the type system, no construct distinguishes between what
is inside a file and what is outside. Such a uniform approach allows us to express
workflows and programs that operate both on datasets and file contents. Note
that while XDTM makes it possible to express the structure of a file’s content
in the type system, this level of detail is not required. In particular, it may not
be desirable to describe the structure of binary formats, and we may prefer to
consider such types as opaque.

This use of XML Schema to describe the structure of datasets allows us
to take the conceptual view that there is an XML document that represents a
dataset encoded into a physical representation. Navigating a dataset can thus be
expressed by using the conceptual XML view. We say that the XML document
represents a conceptual view of a dataset because we do not expect every dataset
to be translated into XML: to do so would defeat the purpose of what we are
trying to achieve here, namely, to deal with complex data formats, as currently
used in everyday practice.

Since XML Schema is standardized by the W3C, tools for editing and val-
idating schemas exist; also, query languages such as XPath and XQuery are
specifically conceived to operate on XML documents; moreover, the Document
Object Model [9] offers a standard programmatic interface to such documents.
We use these benefits in the rest of the paper, and we assume that the reader
is familiar with the XPath notation [4]. We now turn to the problem of declar-
ing the physical representation of datasets whose abstract structure has been
specified by XML Schema.

5 Mapping to the Physical Representation of Datasets

We next present our approach to specifying the physical representation of data-
sets. First, since the structure of a dataset is specified by an XML Schema and



500 L. Moreau et al.

since a given dataset may have different physical representations, it is appro-
priate to characterize the physical representation in a document distinct from
the schema, so that the schema can be shared by multiple representations. We
expect the physical representation specification to refer to the Schema (using
XML namespaces and conventions), but we do not want to annotate the schema
directly with physical representation information (as does DFDL [2]), since this
would prevent the schema from being reused for multiple representations of a
same dataset.

Second, we recognize, like DFDL, the need to contextualize physical represen-
tations, so that we can allow a given type that occurs multiple times in a dataset
to be encoded into different physical representations depending on its position in
the dataset. Whereas annotation can directly be scoped by XML Schema’s block
structure, we now need to provide an alternative mechanism, since we have just
precluded the use of annotations and therefore cannot take advantage of their
natural scoping.

Third, our focus is on representing datasets, that is, aggregation of data,
rather than on specifying the format of arbitrary (binary) data files (for example,
for legacy reasons). Hence, we do not expect a single formalism for representing
physical formats to be able to characterize arbitrary files in a descriptive man-
ner. Instead, we support a mix of declarative and procedural representations;
concretely, we adopt notations from which we can derive methods to read the
physical representation of a dataset into an abstract one, and vice versa to write
the abstract representation into a physical one. We anticipate that a library of
such converters can be made available to the user and that new converters are
permitted to be defined, hereby providing for extensibility. Such a pragmatic
operational view of conversion to and from physical representation allows for
direct reuse of legacy converters for pre-existing formats.

Requirements have identified that it is not desirable to add annotations to
an XML Schema directly. Instead, we need a mechanism by which we can refer
uniquely to an element in a dataset and indicate how it should be converted
(remembering that XML Schema does not impose element names to be unique
in a schema). Such a notation already exists: given that datasets structures are
specified by XML Schema, we can use the XPath notation to identify the path
that leads to a given element in a dataset.

We now introduce an XML notation for the mapping between abstract and
concrete representation. Such a mapping is itself contained in a file so that it
can be made explicit with datasets and published with their XML Schemas.
XDTM (XML Dataset Type and Mapping) is the system that uses the schema
and mapping documents in order to help users manipulate arbitrary datasets as
if they were XML documents.

Figure 3 presents an excerpt of the mappings between abstract and physical
representations for DR2. Each individual mapping identifies an element in DR2
using an XPath expression, and specifies its physical representation by one of the
XML elements directory, file, line, url, and so forth. Specifically, Figure 3
states that the whole DR2 dataset is accessible from a URL; imaging and run



XDTM: The XML Data Type and Mapping for Specifying Datasets 501

<xdtm:mappings>

      <xdtm:mapping path="/DR2">

            <xdtm:URL namingMethod="Self"  location="http://das.sdss.org/DR2/data"/>

      </xdtm:mapping>

      <xdtm:mapping path="/DR2/imaging">

            <xdtm:directory namingMethod="Self"/>

      </xdtm:mapping>

      <xdtm:mapping path="/DR2/imaging/run">

            <xdtm:directory namingMethod="RepresentRun"/>

      </xdtm:mapping>

      <xdtm:mapping path="//fpObjc">

            <xdtm:file namingMethod="RepresentFpObjc" type="opaque"/>

      </xdtm:mapping>

</xdtm:mappings>

Fig. 3. Excerpt of Mapping to/from Physical Representation

datasets are each represented by a directory; and fpobjc datasets are represented
by files. Other mappings could refer to tar talls or zipped files.

For each kind of physical representation (directory, file, etc.), we use the at-
tribute namingMethod to specify the name it is expected to have. The value
of this attribute denotes a procedure that produces, from the abstract repre-
sentation, a string that is the physical dataset’s name (and vice versa). For
example, Self returns the name of the element in the abstract representation;
RepresentRun returns the value of the run attribute; RepresentFpObjc is used
to create the fpObjc filename from field, run, and rerun attributes. In the case
of fpObjc files, the mapping also specifies that the file type is “opaque”; that is,
we do not describe the internal physical representation of this dataset.

6 Implementation

The aim of an XDTM implementation is to present, as DOM objects, datasets
encoded in their physical formats so that they can be navigated by an XPath
library like any other DOM object; symmetrically, it allows one to construct
DOM objects that can be serialized to their physical representation. The imple-
mentation of XDTM consists of several components: (i) parsers for mappings
and types, (ii) a library that reads datasets as DOM objects and vice versa,
(iii) an XPath library that allows navigation of such DOM objects.

Our Java implementation uses the Jaxen XPath engine (jaxen.org), which
processes XPath queries over DOM objects. Hence, the aim of our implemen-
tation is to materialize physical datasets as DOM objects so that they can be
navigated by Jaxen, even though they refer to the actual physical representation
of datasets. To this end, our implementation provides a library of classes imple-
menting the standardized DOM interface [9] for all the physical representations
found in DR2.

For each kind of physical representation, we have defined an associated class:
directory in a file system (VDSDirectoryElement), reference to a http server
through a URL (VDSURLElement), file containing an opaque or a fully described
dataset (VDSFileElement), line within a file (VDSLineElement), and conjunction
of multiple representations (VDSGroupElement). In addition, we need to allow
for immediate values such as primitive types, which we abstract by the class



502 L. Moreau et al.

VDSImmediateElement. All these classes implement the DOM interface, which
specifies standard methods to access and create node children, attributes, parent,
and siblings. For example, the dataset imaging is mapped to a directory in Figure
3; in this case, XDTM internally uses the class VDSDirectoryElement, which
implements accessor and creator methods for a directory in a file system.

In more detail, when the dataset imaging is read from the filesystem, it is rep-
resented by an instance of VDSDirectoryElement in the abstract representation.
Whenever the dataset’s children are accessed in the abstract representation, they
are read from the contents of the directory in the filesystem and are made avail-
able as DOM elements themselves, all chained as siblings. The namingMethod
attribute is also used at that point because the procedure it denotes reads the
physical name and returns an element name in the abstract representation and
potentially sets some attributes. Symmetrically, at the abstract level, one can in-
stantiate the class VDSDirectoryElement, create new children for it, and insert
it in other datasets. When saved into the physical representation, it is repre-
sented as a directory that contains its children encoded as files or directories.
The namingMethod attribute value is again used to obtain the name of the di-
rectory from its abstract representation.

7 Related Work

The Data Format Description Language (DFDL) [2] is a descriptive approach by
which one chooses an appropriate data representation for an application and then
describes its format using DFDL. DFDL’s ambitious aim is to describe all legacy
data files, including complex binary formats and compression formats such as zip.
This highlights a crucial difference with our approach: we seek not to describe
binary formats but to express how data is aggregated into datasets. DFDL uses
a subset of XML Schema to describe abstract data models, which are annotated
by information specifying how the data model is represented physically. Specifi-
cally, mappings are declared as restrictions of primitive data types annotated by
the concrete types they must be mapped to; the XML Schema is then decorated
by scoped annotations specifying which mapping applies for the different types.
Since the actual annotations are embedded inside an XML Schema, mappings
and abstract types are not separable in practice. We see DFDL as complemen-
tary to our approach, however, since it can be used to convert XDTM atomic
types.

The METS schema [10] is a standard for encoding descriptive, administrative
and structural metadata regarding objects within a digital library. In particular,
it contains a structural map, which outlines the hierarchical structure of digital
library objects and links the elements of that structure to content files and meta-
data that pertains to each element. The METS standard represents a hierarchy
of nested elements (e.g., a book, composed of chapters, composed of subchapters,
themselves composed of text). Every node in the structural map hierarchy may
be connected to content files that represent that node’s portion of the whole
document. As opposed to XDTM, METS does not separate an abstract data



XDTM: The XML Data Type and Mapping for Specifying Datasets 503

structure from its mapping to physical representation, nor do physical aggrega-
tions such as complex directory structures or tar balls.

XSIL (XSIL: Java/XML for Scientific Data) comprises an XML format for
scientific data objects and a corresponding Java object model, so that XML files
can be read, transformed, and visualized [14]. Binary Format Description (BFD)
[11] extends XSIL with conditionals; it can convert binary files into other binary
formats; to this end, datasets are successively converted into XML by a parser
that uses the BFD description of the input set, translated into another XML
document using XSLT transformations, and finally converted by an “inverse
parser” into another binary format, also specified in BFD.

Hierarchical Data Format 5, HDF5 [5], is a file format (and associated soft-
ware library) for storing large and complex scientific and engineering data. HDF5
relies on a custom type system allowing arbitrary nestings of multidimensional
arrays, compound structures similar to records and primitive data types. HDF5
introduces a virtual file layer that allows applications to specify particular file
storage media such as network, memory, or remote file systems or to specify
special-purpose I/O mechanisms such as parallel I/Os. The virtual file layer
bears some similarity with our mapping, but focuses on run-time access to data
rather than physical encoding. While HDF5 is not capable of describing legacy
datasets that are not encoded as HDF5, some tools allow conversion to and from
XML [8]. Specifically, the XML “Document Type Definition” (DTD) can be used
to describe HDF5 files and their contents.

Microsoft ADO DataSet [1] is a “memory-resident representation of data
that provides a consistent relational programming model regardless of the data
source.” Such DataSets can be read from XML documents or saved into XML
documents; likewise, DataSet schemas can be converted into XML Schemas and
vice versa. The approach bears some similarity with ours because it offers a
uniform way of interacting with (in-memory copies of) datasets, with a spe-
cific focus on relational tables: however, the approach does not support inter-
actions with arbitrary legacy formats. To some extent, the product XMLSpy
(www.xmlspy.com) provides a symmetric facility, by allowing the conversion of
relational data base to XML (and vice versa), but using XML Schema as the
common model for interacting with data stored in different databases. It does
not either provide support for datasets in non-relational formats.

8 Conclusion

We have presented the XML Dataset Typing and Mapping system, a new ap-
proach to characterizing legacy datasets such as those used in scientific appli-
cations. The fundamental idea of XDTM is to separate the description of a
dataset structure from the description of its physical representation. We adopt
the XML Schema type system to characterize a dataset’s structure, and intro-
duce a context-aware mapping of dataset types to physical representation. The
separation of concerns between structure and physical representation allows one
to define workflows and programs that are specified in terms of dataset struc-



504 L. Moreau et al.

tures, but can operate on multiple representations of them. This makes such
computational procedures more adapted to deal with the evolution of data for-
mats, typical of open environments. Beyond the SDSS application described in
this paper, we have experimented with applications in in high energy physics
and medical imaging, by which we demonstrate that the XDTM approach can
help users to operate on concrete datasets used in many disciplines.

We are working on a robust implementation of XDTM capable of operating
over large datasets, with checkpointing and restart capabilities. We are also
designing the second generation of the GriPhyN Virtual Data Language, which
will use XDTM to make workflows independent of the physical format of datasets
they are intended to manipulate.

Acknowledgments

This research is funded in part by the Overseas Travel Scheme of the Royal
Academy of Engineering, EPSRC project (reference GR/S75758/01), and by
the National Science Foundation grant 86044 (GriPhyN).

References

1. Ado .net dataset. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpcontheadonetdataset.asp.

2. M. Beckerle and M. Westhead. GGF DFDL Primer. Technical report, Global Grid
Forum, 2004.

3. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. http://www.w3.
org/TR/xmlschema-2/, May 2001.

4. J. Clark and S. DeRose. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, November 1999.

5. National Center for Supercomputing Applications (NCSA) at the Uni-
versity of Illinois at Urbana-Champaign (UIUC). HDF5 Home Page.
http://hdf.ncsa.uiuc.edu/HDF5/.

6. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system
for representing, querying and automating data derivation. In Proceedings of the
14th Conference on Scientific and Statistical Database Management, Edinburgh,
Scotland, July 2002.

7. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The virtual data grid: a new model
and architecture for data-intensive collaboration. In Proceedings of the Conference
on Innovative Data Systems Research, Asilomar, CA, January 2003.

8. The HDF5 XML Information Page, jan 2004.
9. A. Le Hors, P. Le Hgaret, L. Wood, G. Nicol, J. Robie, Mike Champion, and

Steve Byrne. Document object model (dom) level 3 core specification version 1.0.
http://www.w3.org/TR/DOM-Level-3-Core/, April 2004.

10. Mets: An overview and tutorial. http://www.loc.gov/standards/mets/ METSOver
view.v2.html, 2003.

11. J. Myers and A. Chappell. Binary format description (bfd) language.
http://collaboratory.emsl.pnl.gov/sam/bfd/, 2000.



XDTM: The XML Data Type and Mapping for Specifying Datasets 505

12. Sloan digital sky survey. www.sdss.org/dr2.
13. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part

1: Structures. http://www.w3.org/TR/xmlschema-1/, May 2001.
14. R. Williams. Xsil: Java/xml for scientific data. Technical report, California Insti-

tute of Technology, 2000.



iGrid, a Novel Grid Information Service

Giovanni Aloisio, Massimo Cafaro, Italo Epicoco, Sandro Fiore,
Daniele Lezzi, Maria Mirto, and Silvia Mocavero

Center for Advanced Computational Technologies,
University of Lecce/ISUFI, Italy

{giovanni.aloisio, massimo.cafaro, italo.epicoco, sandro.fiore,

daniele.lezzi, maria.mirto, silvia.mocavero}@unile.it

Abstract. In this paper we describe iGrid, a novel Grid Information
Service based on the relational model. iGrid is developed within the Euro-
pean GridLab project by the ISUFI Center for Advanced Computational
Technologies (CACT) of the University of Lecce, Italy. Among iGrid re-
quirements there are security, decentralized control, support for dynamic
data and the possibility to handle user’s and/or application supplied in-
formation, performance and scalability. The iGrid Information Service
has been specified and carefully designed to meet these requirements.

1 Introduction

Flexible, secure and coordinated resource sharing among VOs requires the avail-
ability of an information rich environment to support resource discovery and
decision making processes. Indeed, distributed computational resources, services
and VOs can be thought of as sources and/or potential sinks of information.
The data produced can be static or dynamic in nature, or even dynamic to some
extent. Depending on the actual degree of dynamism, information is better han-
dled by a Grid Information Service (static or quasi-static information) or by a
Monitoring Service (highly dynamic information).

It is important to recall here the key role of information, and thus of Grid
Information Services. High performance execution in grid environments relies
on timely access to accurate and up-to-date information related to distributed
resources and services: experience has shown that manual of default configuration
hinders application performance. A so called grid-aware application can not even
be designed and implemented if information about the execution environment
is lacking. Indeed, an application can react to changes in its environment only
if these changes are advertised. Self-adjusting, adaptive applications are natural
consumers of information produced in grid environments.

However, making the relevant information available on-demand to applica-
tions is nontrivial. Care must be taken, since the information can be (i) diverse
in scope, (ii) dynamic and (iii) distributed across one or more VOs. Information
about structure and state of grid resources, services, networks etc. can be chal-
lenging to obtain. As an example, let us think about the problem of locating

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 506–515, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



iGrid, a Novel Grid Information Service 507

resources and/or services. Since grid environments are increasingly adopting ar-
chitectures that are distributed and rather dynamic collections of resources and
services, discovery of both resources and services becomes a difficult and com-
plex task on large-scale grids. Thus, it is immediately evident the fundamental
role of a Grid Information Service. It is, among many others, a key service that
must be provided as part of a grid infrastructure/middleware.

The Globus Toolkit [2] version 2.x provides an LDAP based Information Ser-
vice called Metadata Directory Service (MDS-2). This service has been deployed
and used on many grid projects, both for production and development. How-
ever, the performances of the MDS Information Service were not satisfactory
enough, and the Globus project provided users with a new version of this ser-
vice, available in the Toolkit version 3.x and called Monitoring and Discovery
Service (again, MDS-3) [9].

Version 3.x of the Globus Toolkit has been based on the Open Grid Service In-
frastructure (OGSI) and the Open Grid Service Architecture [11] specifications.
The MDS has been developed using Java and the Grid Services framework [10],
but this service has not seen widespread adoption and deployment because it
will change once again in the upcoming Globus Toolkit version 4. The new ver-
sion, MDS-4, will be based on the emerging Web Service Resource Framework
(WSRF) specification [12].

The GridLab project started adopting initially the Globus MDS, and some
work has been done in order to extend it and to improve its performances
[13]. Anyway, we decided to move from LDAP to the relational model, in or-
der to overcome the Globus MDS shortcomings: a data model better suited
for frequent reading, not able to cope with frequent updates, a weak query
language missing key operations on data (e.g., there is no join), and perfor-
mances. The relational data model allows us to model information and store
data in tabular form, relationships among tables are possible, typical relational
DBMS are strongly optimized for both fast reading and writing, and finally a
good query language, namely SQL, allows complex operations on data, including
joins.

The rest of the paper is organized as follows. We describe the iGrid Informa-
tion Service in Section 2, and report iGrid performances in Section3. Finally, we
conclude the paper in Section 4.

2 The iGrid Information Service

iGrid is a novel Grid Information Service developed within the European Grid-
Lab project [1] by the ISUFI Center for Advanced Computational Technolo-
gies (CACT) of the University of Lecce, Italy. Among iGrid requirements there
are performance, scalability, security, decentralized control, support for dynamic
data and the possibility to handle user’s supplied information. The iGrid Infor-
mation Service has been specified and carefully designed to meet these require-
ments. Core iGrid features include:



508 G. Aloisio et al.

Web Service Interface built using the open source gSOAP Toolkit [5];

Distributed Architecture based on two kind of nodes, the iServe and the
iStore Web services;

Based on Relational DBMS currently we are using PostgreSQL [6] as the
relational back-end for both iServe and iStore nodes;

Support for Globus GSI through the GSI plug-in for gSOAP that we have
developed;

Support for TLS (Transport Layer Security) Binding to DBMS to se-
cure database communications;

Support for GridLab Authorization Service (GAS) to retrieve authoriza-
tion decisions [7];

Support for Administrator defined Access Control List to allow for lo-
cal decisions;

Support for Heterogeneous Relational DBMS through the GRelC library
that we have developed;

Support for GridLab Mercury Logging Service to allow logging opera-
tions on the Mercury Monitor Service [8];

Support for Multiple Platforms iGrid builds on Linux, Mac Os X, Tru64,
Aix and Irix;

Extensible by adding new information providers (this requires modifying the
iGrid relational schema);

Extreme Performances as needed to support grid-aware applications;

Fault Tolerance see details in this section.

The iGrid distributed architecture, as shown in Fig. 1, is based on two kind of
nodes, the iServe and the iStore GSI [3] enabled Web services. The iServe collects
information related to a specific computational resource, while the iStore gathers
information coming from registered iServes. The iGrid Information Service is
based on a relational DBMS back-end and can handle information extracted from
computational resources and also user’s and/or application supplied information.
iStores and iServes have the same relational schema for easy ingestion both on
the local machine (iServe node) and remote machine (iStore node). The current
architecture allows iStores to register themselves to other iStores, thus creating
distributed hierarchies.

We recall here that the network topology closely resembles the one adopted
by the Globus Toolkit MDS-2, however we use a completely different information
dissemination strategy based on a push approach, whilst MDS-2 is based on a



iGrid, a Novel Grid Information Service 509

pull approach. Even though the iGrid performances are alredy satisfactory (as
shown later in Section 3), we are also investigating a possible implementation of
a peer to peer overlay network based on one of the current state of the art dis-
tributed hash table algorithms in order to further improve iGrid scalability. The
implementation includes system information providers outputting XML, while
user’s and/or application information is directly supplied by the user/application
simply calling a web service registration method.

The information generated on iServe machines is stored locally on their Post-
greSQL database using the GRelC library and binding securely with TLS to the
database; moreover the information is also converted to XML using the GRelC
MultiQuery protocol to preserve referential integrity among data belonging to
different tables. Finally, it is sent to the iStore nodes.

The Web service interface is based on the gSOAP toolkit and on the GSI
plug-in for gSOAP [4], a package we have developed to add GSI security to the
iGrid Web Service. Our latest version of this software provides the following
features:

– based on the GSS API for improved performances;
– extensive error reporting related to GSS functions used;
– debugging framework;
– support for both IPv4 and IPv6;
– support for development of both web services and clients;
– support for mutual authentication;
– support for authorization;
– support for delegation of credentials;
– support for connection caching.

We have designed iGrid taking into account security as follows. All of the con-
nections from users/applications to iServes, from iServes to iStores and from
iStores to hierarchical iStores are protected by means of a GSI channel, and all
of the communications from an iServe or iStore to its local PostgreSQL database
are protected by a TLS channel. This provides mutual authentication, confiden-
tiality and anti-tampering, preventing snooping, spoofing, tampering, hijacking
and capture replay network attacks. iGrid provides a fully customizable autho-
rization mechanism, based on a GSI callback. Administrators are free to use
the GridLab Authorization Service (GAS), the Globus Toolkit Community Au-
thorization Service (CAS) or to implement their own authorization service. The
iGrid daemon does not need to run as a privileged user, we sanitize the environ-
ment on iGrid startup and validate all user input. Special attention is devoted
to the prevention of SQL injection attacks. For a typical SQL SELECT query
the user’s query string is escaped as needed and validated lexically and syntacti-
cally by an SQL parser that accepts only valid SELECT statements and rejects
everything else.

Decentralized control in iGrid is achieved by means of distributed iServe and
iStore services. Both creation and maintenance of system/user/application in-
formation are delegated to the sites where resources are actually located, and



510 G. Aloisio et al.

administrators fully control how their site local policies are enforced. For in-
stance, they decide about users/application that must be trusted for both data
lookup and registration, if an iServe must register to one or more iStores, if an
iStore must accept incoming data from remote iServes, the frequency of system
information dissemination from iServes to iStores on a per information provider
basis etc.

The implementation exploits the GrelC libraries [14], another software pack-
age we have developed targeting iGrid initially, and extended later to support
the management of general purpose grid DBMS.The GRelC project supplies
applications with a bag of services for data access and integration in a grid
environment. In particular, iGrid relies on the following two libraries:

– Standard Database Access Interface (libgrelcSDAI-v2.0);
– MultiQuery (libgrelcMultiQuery-v1.0).

The former provides a set of primitives that allows the iGrid Information
Service to transparently get access and interact with different data sources. This
library offers an uniform access interface to several DBMSs exploiting a set
of wrappers (that is, dynamic libraries providing dynamic binding to specific
DBMSs) which can be easily plugged into our system. It is worth noting here
that the SDAI library must take into account and solve the DBMS heterogeneity
(different back-end errors, APIs and data types), hiding all of the differences by
means of a uniform layer. To date, SDAI wrappers are developed for PostgreSQL
(which represents the default DBMS used by the iGrid Information Service),
MySQL and unixODBC data sources, providing interaction both with relational
and not relational databases.

The MultiQuery library is built on top of the libgrelcSDAI and provides a
set of APIs to develop an XML/SQL translator for the MultiQuery submission.
The MultiQuery is a GRelC proprietary kind of query/format used to update a
data source using a massive amount of data (this is a single shot query). The
rationale behind this kind of query is that the user does not directly transfer the
update query (INSERT, UPDATE and DELETE), but just the data in XML
format from which the XML/SQL translator is able to infer the query itself.
The MultiQuery format contains logical links which will be resolved to physical
links by the XML/SQL translator on the DBMS side. Due to the nature, the
mechanism and the performance of this query, the Multiquery is strongly rec-
ommended to populate relational Information Services. In the iGrid project the
MultiQuery files are written by the Information Providers after gathering local
data. Additional information related to a performance analysis in an European
testbed of the MultiQuery can be found in [15].

The iGrid Information System can handle information related to:

System belongs to this class information like operating system, release version,
machine architecture etc;

CPU for a CPU, static information like model, vendor, version, clock speed
is extracted; but also dynamic information like idle time, nice time, user time,
system time and load is provided;



iGrid, a Novel Grid Information Service 511

Fig. 1. iGrid hierarchical architecture

Memory related to memory, static information like RAM amount, swap space
size is available. Dynamic information is related to available memory and swap
space;

File Systems static as well dynamic information is extracted; some examples
include file system type, mount point, access rights, size and available space;

Network Interfaces information that belongs to this category includes: net-
work interface name, network address and network mask;

Local Resource Manager the information belonging to this category can be
further classified as belonging to three different subclasses: information about
queues, about jobs and static information about Local Resource Management
System (LRMS). Some examples of information that can be extracted are:
LRMS type and name; queue name and status, number of CPU assigned to
the queue, maximum number of jobs that can be queued, number of queued
jobs, etc; job name, identifier, owner, status, submission time etc. Currently
information providers for OpenPBS and Globus Gatekepeer are available;

Certification Authorities information related to trusted Certification Au-
thorities includes certificate subject name, serial number, expiration date, issuer,
public key algorithm etc.

Information can be also supplied by users by invoking the appropriate Web ser-
vice register methods. The user’s supplied information includes:



512 G. Aloisio et al.

Firewall name of the machine where the firewall is installed on, administrator
name, the range of open ports allowed to pass through the firewall;

Virtual Organization information related to VOs can be used to automati-
cally discover which resources belong to a given VO. In this category we have VO
name, resource type, help desk phone number, help desk URL, job manager, etc;

Service and Web service this information can be used for Service or Web
service discovery; information like service name, access url, owner, description,
WSDL location, keyword is available.

The iGrid implementation relies on three main threads:

– Web Service Interface this thread is in charge of serving all of the SOAP
requests coming from SOAP clients;

– Collector this thread handles the communications needed to publish iServe
information into registered iStores. Periodically, the Collector will send to all
of the registered iStores the information extracted by information providers,
while user’s and/or application supplied information is instead immediately
sent to registered iStores. In case of failure of an iStore, iServes temporarily
remove the faulty iStore from their registration list. Periodically, the iStore
list is updated by adding previously removed iStores when iStores are avail-
able again. In this case, the local database is dumped and immediately sent
to newly added iStores;

– Information Provider Manager this thread will activate one thread for each
information provider listed in the iGrid configuration file. Upon information
provider termination the extracted information will be immediately stored
into the local database and copied in an appropriate spool directory for
further pubblication on registered iStores by the Collector thread.

iGrid uses a push model for data exchange: as already explained, informa-
tion extracted from resources is stored on the local PostgreSQL database, and
periodically sent to registered iStores, while user’s and/or application supplied
information is immediately stored on the local database and sent to registered
iStores. Thus, an iStore has always fresh, updated information on its local Post-
greSQL back-end, and does not need to ask iServes for information. In contrast,
the Globus Toolkit MDS-2 GIIS (Grid Index Information Service) needs to query
remote GRIS (Grid Resource Information Service) servers when the information
requested by the user is not available on the GIIS local cache. Indeed, MDS-2
uses a pull mechanism, and a cache expiry mechanism. This adversely affects
MDS-2 performances.

The iGrid Information service does not need to exploit caching mechanisms in
order to improve performances, since the underlying relational engine can answer
complex queries efficiently, and all of the information is always available. Another
mechanism we exploit to enhance performances is automatic stale information
pruning. Each information is tagged with a time to live attribute that allows
iGrid to safely remove stale information from the database as needed. Indeed,



iGrid, a Novel Grid Information Service 513

on each user lookup data clean-up is performed before returning to the client
the requested information. Moreover, when iGrid starts the entire database is
cleaned up. Thus the user will never see stale information.

The iGrid Information Service provides fault tolerance: in case of failure of
an iStore, iServes temporarily remove the faulty iStore from their registration
list. Periodically, the iStore list is updated by adding previously removed iStores
when iStores are available again. In this case, the local database is dumped and
immediately sent to newly added iStores. Moreover, because of iGrid distributed
and hierarchical architecture it is possible to implement a primary/backup ap-
proach by mirroring an iStore configuring all of the iServes to publish their
information simultaneously on two or more different iStores.

The iGrid Information Service is used by the recently established SPACI
consortium, that is building a grid among ISUFI/CACT, University of Naples,
University of Calabria and Hewlett-Packard.

3 iGrid Performances

The performances of iGrid are extremely good. In what follows, we report the
performance obtained for information retrieval on two testbeds. There were
no high speed, dedicated networks connecting the machines belonging to the
testbeds, and MDS2 servers were accessed without GSI authentication, while
iGrid servers were accessed using GSI. The results were averaged over 50 runs.

Table 1 refers to tests related to the first testbed which comprises an iServe
and a GRIS server hosted on one machine in Lecce, Italy, and an iStore and GIIS
server hosted on another machine in Brno, Czech Republic. A query to both
iStore and MDS2 GIIS was issued requesting all of the available information
using clients in Lecce.

Table 2 refers to tests related to iStore/GIIS servers running on the second
testbed which comprises four machines in Italy (three in Lecce and one in Bari,
a city 200 Km far from Lecce) and one located in Poznan (Poland). The clients
were in Poland, and the servers in Lecce. A total of four queries were issued.
The first query in this set requested all of the information of each registered
resource, the second one requested all of the information related to the machine
in Poland, and the third one requested only the CPU information related to each
registered resource. The last query was a complex query involving many filtering
operations to retrieve information about attributes related to CPU, memory,
network and filesystems.

Table 3 refers to tests related to iServe/GRIS servers running on the second
testbed. Two queries were issued requesting respectively all of the information
and information related only to the CPU using clients in Poland and servers in
Bari.

As shown, iGrid performance is always much better than MDS2 when the
cache is expired. When the cache is not expired iGrid performs like MDS2 and
in some cases even better taking into account that iGrid uses GSI authentication
while MDS2 do not on these testbeds. Finally, it is worth noting here that iGrid



514 G. Aloisio et al.

Table 1. iStore / GIIS Performance on Testbed One

Search for information
related to all resources

Cache Cache
expired not expired
(secs) (secs)

GIIS 77 7

iStore 0.6

Table 2. iStore / GIIS Performance on Testbed Two

iStore / GIIS All res. info Poland machine all info All res. CPU info Complex query
(secs) (secs) (secs) (secs)

GIIS

cache
expired

25,88 23,52 22,42 18.59

cache not
expired

2,53 1,64 0,46 0.67

iStore 3,06 1,01 0,92 0.67

Table 3. iServe / GRIS Performance on Testbed Two

iServe / GRIS All info CPU info
(secs) (secs)

GRIS

cache
expired

23,88 3,36

cache not
expired

1,05 0,39

iServe 0,95 0,81

answers very quickly even queries involving complex filtering on data. Since in
grid environments it is difficult to always find an MDS2 server cache not expired,
iGrid clearly represents a valid alternative to MDS2.

4 Conclusions

We have described iGrid, a novel Grid Information Service based on the rela-
tional model. The GridLab Information Service provides fast and secure access
to both static and dynamic information through a GSI enabled Web service.
Besides publishing system information, iGrid also allow publication of user’s
and/or application supplied information. The adoption of the relational model
provides a flexible model for data, and the hierarchical distributed architecture
provides scalability and fault tolerance. The software, which is open source, is
freely available and can be downloaded from the GridLab project web site.



iGrid, a Novel Grid Information Service 515

Acknowledgements

We gratefully acknowledge support of the European Commission 5th Framework
program, grant IST-2001-32133, which is the primary source of funding for the
GridLab project.

References

1. The GridLab project. http://www.gridlab.org
2. Foster, I., Kesselman C.: GLOBUS: a Metacomputing Infrastructure Toolkit, Int.

J. Supercomputing Applications, 1997, pp. 115–28
3. Foster, I., Kesselmann, C., Tsudik G., Tuecke, S.: A security Architecture for Com-

putational Grids. Proceedings of 5th ACM Conference on Computer and Commu-
nications Security Conference, pp. 83-92, 1998.

4. Aloisio, G., Cafaro, M., Lezzi, D., Van Engelen, R.A.: Secure Web Services with
Globus GSI and gSOAP. Proceedings of Euro-Par 2003, 26th - 29th August 2003,
Klagenfurt, Austria, Lecture Notes in Computer Science, Springer-Verlag, N. 2790,
pp. 421-426, 2003

5. Van Engelen, R.A., Gallivan, K.A.: The gSOAP Toolkit for Web Services and
Peer-To-Peer Computing Networks. Proceedings of IEEE CCGrid Conference, May
2002, Berlin, pp- 128–135

6. The PostgreSQL relational DBMS. http://www.postgresql.org
7. The GridLab Authorization Service. http://www.gridlab.org/WorkPackages/wp-

6/index.html
8. Nmeth Zs., Gombs G., Balaton Z.: Performance Evaluation on Grids: Directions,

Issues, and Open Problems. Proceedings of the Euromicro PDP 2004, A Coruna,
Spain, IEEE Computer Society Press

9. Czajkowski K., Fitzgerald S., Foster I., Kesselman C.: Grid Information Services for
Distributed Resource Sharing. Proceedings of the Tenth IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC-10), IEEE Press,
August 2001.

10. Foster, I., Kesselmann, C., Nick, J., Tuecke, S.: Grid Services for Distributed Sys-
tem Integration. Computer, Vol. 35, 2002, No. 6, pp. 37–46

11. Foster, I., Kesselmann, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed System Integration. Technical
Report for the Globus project. http://www.globus.org/research/papers/ogsa.pdf

12. The WSRF specification. http://www.globus.org/wsrf/specs/ws-wsrf.pdf
13. Aloisio G., Cafaro M., Epicoco I., Lezzi D., Mirto M., Mocavero S.: The Design and

Implementation of the GridLab Information Service. Proceedings of The Second
International Workshop on Grid and Cooperative Computing (GCC 2003), 7-10
December 2003, Shanghai (China), Lecture Notes in Computer Science, Springer-
Verlag, N. 3032, pp. 131-138, 2004

14. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: The GRelC Project: Towards GRID-
DBMS, Proceedings of Parallel and Distributed Computing and Networks (PDCN)
- IASTED, February 17 to 19, 2004, Innsbruck, Austria

15. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: Early Experiences with the GRelC
Library. Journal of Digital Information Management, Digital Information Research
Foundation (DIRF) Press. Vol. 2, No. 2, June 2004, pp 54-60



A Grid-Enabled Digital Library System for Natural
Disaster Metadata�

Wei Xing1, Marios D. Dikaiakos1, Hua Yang2, Angelos Sphyris3,
and George Eftichidis3

1 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
{xing, mdd}@ucy.ac.cy

2 Department of Computer Science, Xian Institute of Post and Telecommunications,
710061 Shannxi, China

yanghua@xiyou.edu.cn
3 Algosystems SA, 206 Syggrou Ave, 176 62, Kallithea (Athens), Greece

{asphyris, geftihid}@algosystems.gr

Abstract. The need to organize and publish metadata about European research
results in the field of natural disasters has been met with the help of two innova-
tive technologies: the Open Grid Service Architecture (OGSA) and the Resource
Description Framework (RDF). OGSA provides a common platform for sharing
distributed metadata securely. RDF facilitates the creation and exchange of meta-
data. In this paper, we present the design and implementation of a Grid-based dig-
ital library for natural-disaster research metadata. We describe the EU-MEDIN
RDF schema that we propose to standardize the description of natural-disaster
resources, and the gDisDL Grid service-based architecture for storing and query-
ing of RDF metadata in a secure and distributed manner. Finally, we describe a
prototype implementation of gDisDL using the Jena RDF Library by HP and the
Globus 3 toolkit.

1 Introduction

European R&D projects and other related activities focusing on Natural Hazards and
Disasters (earthquakes, floods, forest fires, industrial hazards, landslides, and volcano
eruptions) produce results in the form of explicit or tacit knowledge represented by
reports, project deliverables, data-sets derived from field work, interesting training and
dissemination materials, etc. These artifacts are usually published and described in Web
sites maintained by project partners during the duration of the respective projects. Fol-
lowing project completion, however, project teams dissolve and Web-site maintenance
and support gradually fade out. Hence, general-purpose search engines are used to
search for past-project results. Nevertheless, search-engine query results provide large
numbers of unrelated links. Furthermore, hyperlinks pointing to potentially useful mate-
rial do not come with references or additional links to adequate information describing

� Work supported in part by the European Commission under the EU-MEDIN project (grant
agreement no. EVG1-CT-60003).

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 516–526, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A Grid-Enabled Digital Library System for Natural Disaster Metadata 517

the “value” of identified resources. Consequently, the identification of and access to use-
ful information and knowledge becomes very difficult. Effectively, valuable knowledge
is lost and it is practically impossible to find and take advantage of it.

To cope with this situation and to make research artifacts in the field of natural disas-
ters widely and easily available to the research community, the European Commission
has commissioned to Algosystems S.A. the development of a thematic Web portal to
support the storage and retrieval of metadata pertaining to results of research in natural
disasters [3]. Project-related metadata can be inserted via a Web interface to a back-end
database. Interested researchers can use the “EU-MEDIN” portal to query the database
and search for project-artifacts. This approach, however, is based on a platform-specific
solution. A change in database technology or a need for upgrading the hardware plat-
form or the operating system may dictate the transformation and storage of metadata in
a different data model, format, and database system, hence incurring significant cost.
Furthermore, the existence, update, and maintenance of the particular site is guaranteed
only during the life-cycle of the project that undertook the portal’s design, develop-
ment, and maintenance. Also, the functionality of the site requires that end-users have
to connect through the Web and register their metadata centrally; this makes it difficult,
however, to extract all metadata related to a particular project and possibly submit them
to a third party in batch. Last, but not least, there is a need to describe the metadata in a
common and open format, which can become a widely accepted standard; the existence
of a common standard will enable the storage of metadata in different platforms while
supporting the capability of distributed queries across different metadata databases, the
integration of metadata extracted from different sources, etc.

In this paper, we present gDisDL, a system designed to address some of the prob-
lems mentioned above. Our approach comprises:

– A schema for describing project-related metadata in a platform-independent form,
using the Resource Description Framework (RDF). RDF is a general framework
for describing metadata of Internet resources and for processing these metadata; it
is a standard of World Wide Web Consortium (W3C). RDF supports the interop-
erability between applications that exchange machine-understandable information
on the Web.

– A digital library system enabling the collection and storage of RDF-encoded meta-
data in distributed repositories, and the retrieval thereof from remote sites. This
library is implemented as a Grid-service architecture comprising a set of Grid ser-
vices, which allow the storage, management, and query of RDF metadata in a se-
cure and distributed manner. To develop the library we use the Globus Toolkit 3 [18]
for programming Grid services and the Jena toolkit [1] for handling RDF data.

– A set of graphical-user interfaces developed in Java to enable authorized end-
users to create RDF metadata for natural-disaster research artifacts and to conduct
keyword-based searches in RDF repositories.

The remaining of this paper is organized as follows. In section 2, we introduce Se-
mantic Web technologies and Grid that used in our work and review related work. Sec-
tion 3 describes matadata representation of the gDisDL system. We present the design
challenges and architecture of the gDisDL system in section 4. Finally, we conclude our
paper in Section 5.



518 W. Xing et al.

2 Background

Jena: Jena is a Java toolkit for building Semantic Web applications [1]. The Jena Java
RDF API is developed by HP Labs for creating and manipulating RDF metadata. It
mainly comprises:1)The “Another RDF Parser” (ARP), a streaming parser suitable for
validating the syntax of large RDF documents. 2)A persistence subsystem, which pro-
vides persistence for RDF metadata through the use of a back-end database engine. It
supports RDQL queries. 3)The RDF query language (RDQL), which is an implemen-
tation of an SQL-like query language for RDF. Jena generates RDQL queries dynam-
ically and executes RDQL queries over RDF data stored in the relational persistence
store.

Open Grid Service Architecture: Grid supports the sharing and coordinated use of
diverse resources in dynamic, distributed ”Virtual Organizations” (VOs)[?]. The Open
Grid Services Architecture (OGSA) is a service-oriented Grid computing architecture,
which an extensible set of Grid services that may be aggregated in various ways to
meet the needs of VOs[?]. OGSA defines uniform Grid service semantics and standard
mechanisms for creating, naming, and discovering Grid services. Web service technolo-
gies, such as XML, SOAP, WSDL, UDDI,etc., are adopted to build up the Grid services
infrastructure. A Grid service is a Web service that provides a set of well-defined inter-
face and that follows specific conventions [?]. The interface and behaviors of all Grid
services is described by GWSDL[18].

3 Metadata Elicitation

Metadata is structured data about data. The goal of the gDisDL system is to support
the storage and retrieval of metadata that pertain to a variety of results derived from

Resource Description Framework (RDF): The Resource Description Framework
(RDF) is a language mainly used for representing information about resources on the
World Wide Web [15]. In particular, it is intended for representing metadata about doc-
uments or other entities (e.g, Web resources, software, publications, reports, image files
etc), such as the title, author, modification date, copyright, and licensing information.
Although originally intended to be used on Web resources, RDF is capable of repre-
senting information about things that can be identified on the Web, even when they
cannot be directly retrieved from the Web [15]. This capability makes RDF an appro-
priate metadata schema language for describing information related to the various re-
sults and outcomes of natural-disaster research. RDF is intended for situations in which
information needs to be processed by applications, rather than only being displayed to
people. RDF provides a common framework for expressing information and can thus be
exchanged between applications without loss of meaning. Since it is a common frame-
work, application designers can leverage the availability of common RDF parsers and
processing tools. The ability to exchange information between different applications
means that the information can be made available to applications other than those for
which it was originally created [15].



A Grid-Enabled Digital Library System for Natural Disaster Metadata 519

(a) Class Hierarchy for the EU-MEDIN
RDF Schema

(b) Example of an EU-MEDIN RDF
Schema

Fig. 1. EU-MEDIN RDF Schema

research in natural disasters (earthquakes, floods, forest fires, industrial hazards, land-
slides, volcano eruptions, etc). To this end, we need a metadata language defined in a
common and open format, that will: (i) Promote the standardization of natural disaster
metadata, while at the same time allowing future extensions; (ii) Enable the storage of
metadata in different platforms according to a common, standard schema; (iii) Support
the interoperability of different metadata repositories; in particular the specification of
queries and the execution thereof upon different metadata databases.

We consider artifacts derived from natural-disaster research projects as resources
whose properties will be represented in RDF. To specify the metadata for those arti-
facts, we conducted a detailed requirements analysis and came up with a classification
containing 17 distinct resource classes: “EC project,” “Event,” “Journal paper,” “Soft-
ware,” “Student Thesis (MSc or PhD),” “Other scientific paper,” “Report/deliverable,”
“Web site,” “Press article,” “Book,” “Other project,” “Field experimental dataset,” “Lab-
oratory experimental dataset,” “Spatial digital dataset,” “Hardware,” “Media presenta-
tion,” and “Unclassified activity.” The properties of and the relationships between class
instances were defined accordingly.

We used the RDF Schema [9] to describe the identified set of RDF classes, prop-
erties, and values. The resulting schema is called EU-MEDIN RDF schema and rep-
resents our proposed metadata standard for natural-disaster research resources. Fig-
ure 1(a) shows the class hierarchy of the EU-MEDIN RDF schema.

Below, we give an example extracted from the EU-MEDIN RDF schema. This ex-
cerpt of our schema includes two classes, Press article, and EC Project, and three prop-
erties, author, belongTo and name. Using those classes and properties, we can describe
in RDF the following piece of knowledge: “John Smith wrote a Paper, which belongs
to FloodSim project. The paper’s title is “Flood Simulation on the Grid” in RDF. Fig-
ure 1(b) shows part of the schema definition and the RDF description of the example,
presented as an RDF graph.



520 W. Xing et al.

4 gDisDL System Design

gDisDL system is a Grid service-oriented system, which consists of the following com-
ponents: the Data Aggregator, the Searcher, the gDisDL Store, and the Data Man-
ager. As shown in Figure 2, the gDisDL system comprises a number of geographically
distributed gDisDL nodes. Each node should includes a Data Aggregator, a Searcher,
and a gDisDL Store. The Data Aggregator collects, validates, and encodes metadata in
RDF; the Searcher is designed for querying RDF metadata; the gDisDL Store is used to
store RDF metadata; the Data manager manages the RDF metadata maintained in the
gDisDL stores. Finally, the Editor and the Searcher GUI are client tools enabling users
to interacting easily with gDisDL through a graphical-user interface.

Fig. 2. The Architecture of the gDisDL System

4.1 Design Goals

The main design issue of the gDisDL system is how to share RDF metadata efficiently
and securely in a distributed manner. To address this challenge, we adopt the Open
Grid Service Architecture (OGSA). To this end, we design gDisDL as a set of Grid
services, which are defined according to the Open Grid Service Infrastructure (OGSI)
specifications.

Another design challenge is how to encode and store metadata in RDF. Currently,
most RDF-based systems ask users to feed RDF metadata directly [4]. Therefore, users
have to encode resource metadata into RDF syntax manually, a process which is in-
convenient and difficult. To cope with this problem, we designed and implemented the
DataAggregator, a component which generates the RDF syntax automatically and sub-
sequently stores the RDF-encoded metadata in RDF storage.

Another challenge is the storage and query of RDF metadata. Typically, an RDF
database can be used to store RDF metadata, and an RDF query language can be used



A Grid-Enabled Digital Library System for Natural Disaster Metadata 521

to express queries and execute them on the database. In the EU-MEDIN use-case sce-
nario, however, most projects do not contribute large bodies of metadata; also, metadata
updates are not very frequent. Therefore, a database system would be an overly expen-
sive solution for our system requirements. Moreover, we would have to choose one
among several existing RDF databases and query languages [4, 1, 17, 13], and integrate
it with gDisDL. Thus, the system would depend heavily on the chosen database system.
Currently, the default behavior of gDisDL is to store RDF metadata in plain files. In or-
der to make gDisDL more open and extensible, we designed the Searcher component as
a “query translator” that processes user requests and generates queries according to the
back-end storage used in each gDisDL site. Thus, the back-end storage system remains
transparent to the user and any RDF database systems can be deployed with gDisDL.

Another important design consideration is security. The security of the gDisDL is
mainly concerning two aspects: one is accessing distributed RDF metadata secretly;
another is that the shared RDF metadata should be protected, for instance, restricting
the users who have not the right to access the information. We adopt the Grid secu-
rity infrastructure (GSI) in the gDisDL, which uses the security mechanisms such as
authentication and authorization to secrete the shared RDF metadata.

4.2 gDisDL Components

The Data Aggregator. The Data Aggregator encodes information provided by end-
users for EU-MEDIN resources into RDF. In particular, the Aggregator:

1. Gets the information describing an EU-MEDIN resource from the Editor.
2. Validates the provided information with respect to the EU-MEDIN RDF schema,

taking into account resource classes, class properties, restrictions, and data types.
3. If the information is deemed valid, the Aggregator will generate a unique URI to

identify the resource. The URI contains two parts: one is the location of the gDisDL
system that the user uses (e.g. the domain name); the other is the time when the RDF
metadata was generated.

4. If the data is not valid, the Aggregator sends an error message to the Editor, and
ends the process.

5. The Data Aggregator transforms the validated data together with the created URI
into an RDF graph, which is a collection triples, each consisting of a subject, a
predicate and an object [14]. The RDF metadata of the resource is thus created.

6. The RDF metadata is encoded in RDF/XML format and saved in a gDisDL store.

The gDisDL Store. gDisDL Stores are the repositories used to save RDF metadata
created by the Data Aggregator. A gDisDL Store, by default, stores metadata for similar
EU-MEDIN resources (i.e, resources belonging to the same EU-MEDIN class) into the
same RDF file. For example, all RDF metadata describing Journal Papers are kept in
one file, all RDF metadata describing Data Sets are kept in another file, and so on. Thus,
when we look for metadata about Journal Papers, we can search into local or remote
RDF files dedicates to Journal-paper metadata. In order for a gDisDL Store to make
its contents available on the Grid, it has to register with one gDisDL Data Manager.
Furthermore, the Store has to notify this Data Manage about updates in its contents.
The Store’s contents are published through Jena’s Joseki Web server [1, 2].



522 W. Xing et al.

The Searcher. The Searcher is the component responsible for the metadata search pro-
cess. It comprises three subcomponents: the Query Pre-processor, the Query Planner,
and the Query Executor. The Query Pre-processor receives and validates the user’s re-
quests using a mechanism similar to that of the Data Aggregator. The Query Planner
works together with a Data Manager to prepare a query plan; the Query Executor exe-
cutes the query according to the query plan.

A typical searching procedure begins with the Query Pre-processor that receives the
request from the client. It checks the data of the request according to the RDF Schema,
translates it into an RDF triple model, and passes the result to the Query Planner. The
Query Planner then makes a query plan by consulting the gDisDL Data Manager. The
query plan specifies what kind of back-end storage system should be queried, e.g. a
gDisDL Store or an RDF database; in the first case, it also provides the address of the
target gDisDL Store. Eventually, the Query Executer performs the real query according
to the query plan. It can search the RDF metadata looking through the RDF file in target
gDisDL Stores.

The query of the gDisDL system is based on the RDF triple model. Namely, the
query is a a single triple pattern, with optional subject (parameter “s”), predicate (pa-
rameter “p”), and object (parameter “o”). Absence of a parameter implies “any” for
matching that part of the triple pattern. The Searcher handles RDF data based on the
triple (Subject, predicate, Object). According the user’s input parameters, the Searcher
will make a query and locate the RDF file that may contain the desired RDF metadata
from the gDisDL store; then it explores all the RDF triple statements, e.g., the name or
URI of the resources (“s”), their properties (“p”), and their values (“o”), compares them
with the input parameters, and retrieves the matched RDF triples. if the back-end store
is an RDF database system, the Query Planner can translate the user’s input (i.e. the
resource type, the property, values of the properties) into a proper RDF query language
format.

The gDisDL Data Manager. The gDisDL Data Manager provides index information
about RDF metadata maintained in distributed gDisDL Stores. To this end, it keeps a
list of URI’s of the stored RDF resources. The index information is used when making
a query plan. The gDisDL Data Manager has three subcomponents: an Indexer, which
maintains the list of URIs of all the metadata in all the gDisDL nodes; a Registrar for
registering gDisDL Stores; the Joseki RDF web server, for retrieving and publishing
RDF metadata, i.e., index information. The gDisDL Data Manager receives update no-
tifications from its associated gDisDL Stores and updates its index accordingly. Each
gDisDL store should register to the gDisDL Data Manager in order to share the RDF
metadata of it.

5 Implementation

We have implemented a prototype of gDisDL. In this section, we provide some details
about the gDisDL implementation.

The Grid gDisDL is implemented within the Open Grid Services Infrastructure
(OGSI). Globus Toolkit 3 and Jena are the main development tools used in our im-



A Grid-Enabled Digital Library System for Natural Disaster Metadata 523

plementation. GT3 is a software toolkit that can be used to program grid-based appli-
cations. It is implemented in Java based on the OGSI specification. GT3 provides lot of
services, programs, utilities, etc. Jena is a Java API that can be used to create and manip-
ulate RDF graphs. it comprises object classes to represent graphs, resources, properties,
and literals; a graph is called a model and is represented by the model interface. In
our implementation, Jena is used as a JAVA RDF toolkit for creating, manipulating and
querying RDF metadata.

To implement a Grid service, the first and most important work is to define the
interface of the Grid service, namely, specify the service interface in GWSDL [18].
Once the interface is correctly defined in GWSDL, implementing the service using Java
and other tools is straightforward. Thus we will focus on describing how the interface
is defined and what kinds of operations will be invoked.

5.1 Data Aggregator Grid Services and Interface

The DataAggregator service processes the collected information and data from the Ed-
itor client, encodes it into RDF format, and saves it into gDisDL stores as RDF files.
The interface of the DataAggregator grid service is defined in GWSDL as follows:

<gwsdl:portType name="DataAggregatorPortType" extends="ogsi:GridService">
<operation name="retriveInfo">

<input message="tns:GetInputMessage"/>
<output message="tns:GetOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="getRDF">

<input message="tns:GetRDFInputMessage"/>
<output message="tns:GetRDFOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="validate">

<input message="tns:ValInputMessage"/>
<output message="tns:ValOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="saveRDF">

<input message="tns:SaveInputMessage"/>
<output message="tns:SaveOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
</gwsdl:portType>

Operation/PortType: retrieveInfo() is used to get values of the RDF triples
from a client; getRDF() creates an RDF graph and assigns the values of the triples;
validate() checks and validates the input data according to the syntax of EU-MEDIN
RDF metadata; saveRDF() saves the RDF metadata into a file in RDF/XML syntax.

5.2 Searcher Grid Services and Interface

The Searcher grid service is used for receiving and answering user queries about EU-
MEDIN resources. There are two cases for the Searcher when searching for RDF meta-



524 W. Xing et al.

data. In the first case, the Searcher uses the RDF metadata document match() method
to search the RDF metadata in a RDF document. In the second case, the search in con-
ducted upon an RDF database, using a database-specific plug-in. Currently we just im-
plemented the first one. The interface is defined as follows:

<gwsdl:portType name="SearcherPortType" extends="ogsi:GridService">
<operation name="preprocess">

<input message="tns:PreInputMessage"/>
<output message="tns:PreOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="searchList">

<input message="tns:ListInputMessage"/>
<output message="tns:ListOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="match">

<input message="tns:MatchInputMessage"/>
<output message="tns:MatchOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
</gwsdl:portType>

Operation/PortType: the preprocess() operation is used for preprocessing user
requests. The searchList() gets the remote RDF metadata information from a
gDisDL Data Manager. The match() operation is used by Query Executor to match
RDF triples.

Fig. 3. GUI of gDisDL Searcher

5.3 gDisDL GUIs

Two graphical interfaces are designed and developed to facilitate the end user: the Ed-
itor and the GUI Client of the Searcher. The Editor is a GUI client of the Data Ag-



A Grid-Enabled Digital Library System for Natural Disaster Metadata 525

gregator Grid service where a user can input information and data about EU-MEDIN
resources. Similar to the EU-MEDIN portal, it also provides some forms which can be
used to collect information about the EU-MEDIN resources. The Searcher GUI Client
of the Searcher Grid Service is needed for users to input the parameters of metadata
queries and get results (see Figure 3). The GUI allows users to specify the resource type,
the property, values of the properties, etc. The GUI Client also decodes the RDF query
results into human-readable form, and displays it on the result window (see Figure3).

6 Conclusions and Future Work

In this paper, we present an RDF-based Grid service approach for organizing and capi-
talizing European research results in the field of natural disasters. In brief, our approach
makes the RDF metadata of the European research results in the field of natural dis-
asters to be shared securely and effectively in a heterogeneous network environment
using Grid technology. Then we describe the design and the prototype implementation
of the Grid-enable gDisDL system. The RDF-based Grid-enable gDisDL system is a
platform independent system which provides good interoperability with other systems.
It can store, manage, and query RDF metadata in a secure and distributed manner.

Next step, we will develop a RDF database plug-in of the Searcher in order to inte-
grate RDF databases into our system. A mechanism is also needed for the gDisDL Data
managers to exchange indexing information. Furthermore, the gDisDL Data manager
will be able to be used as a kind of Cache to retrieve and publish metadata located in
the gDisDL stores for improving the query performance.

References

1. Jena - a semantic web framework for java. http://jena.sourceforge.net, 2003.
2. Joseki. http://www.joseki.org, 2003.
3. Eu-medin portal. http://www.eu-medin.org, 2004.
4. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-

FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proceedings of the
Second International Workshop on the Semantic Web (SemWeb ’01), pages 1–13, May 2001.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-40/.

5. Seaborne Andy. An rdf netapi. Technical report, HP Labs, 2002.
6. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):Generic

Syntax. The Internet Engineering Task Force, August 1998.
7. Tim Berners-Lee. Notation 3, 1998.
8. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup

Language (XML) 1.0. World Wide Web Consortium, third edition, February 2004.
9. Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification

1.0. World Wide Web Consortium.

10. D. Connolly, F.V. Harmelen, I. Horrocks, D.L. McGuinness, P. Patel-Schneider, and L.A.
Stein. DAML+OIL (March 2001) Reference Description. World Wide Web Consortium,
March 2001.



526 W. Xing et al.

11. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid. An Open
Grid Services Architecture for Distributed Systems Integration. Technical report, Open Grid
Service Infrastructure WG, Global Grid Forum, June 2002.

12. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3), 2001.

13. G.Karvounarakis, V.Christophides S.Alexaki, and Michel Scholl D.Plexousakis. RQL: A
Declarative Query Language for RDF. The Eleventh International World Wide Web Confer-
ence (WWW’02), May 2004.

14. Graham Klyne and Jeremy Carroll. Resource Description Framework (RDF): Concepts and
Abstract Data Model. Technical report, The World Wide Web Consortium, August 2002.

15. F. Manola and E. Miller (editors). RDF Primer. W3C Working Draft, October 2003.
http://www.w3.org/TR/rdf-primer/.

16. P.F. Patel-Schneider, P. Hayes, and I. Horrock. OWL Web Ontology Language Semantics and
Abstract Syntax. World Wide Web Consortium, February 2004.

17. Andy Seaborne. RDQL - A Query Language for RDF. The World Wide Web Consortium
(W3C), January 2004.

18. Borja Sotomayor. The globus toolkit 3 programmer’s tutorial. Technical report, The Globus
Alliance, 2003.

19. S. Tuecke, I. Foster K. Czajkowski, C. Kesselman J. Frey, S. Graham, T. Sandholm
T. Maguire, and D. Snelling P. Vanderbilt. Open grid service infrastructure (ogsi) version
1.0. Open Grid Service Infrastructure WG, Global Grid Forum, 2002.



Optimising Parallel Applications on the Grid
Using Irregular Array Distributions�

Radu Prodan and Thomas Fahringer

Institute for Computer Science, University of Innsbruck,
Technikerstraße 13, A-6020 Innsbruck, Austria

{radu, tf}@dps.uibk.ac.at

Abstract. In this paper we propose a new approach for scheduling data
parallel applications on the Grid using irregular array distributions. We
implement the scheduler as a new case study for using a general purpose
experiment management tool that we developed in previous work for
performance tuning and optimisation of scientific applications. We report
results on scheduling a Jacobi relaxation application on a simulation
testbed of the Austrian Grid [2] using a problem independent plug-and-
play genetic algorithm.

1 Introduction

Even though the message passing paradigm used for writing tightly-coupled par-
allel applications contradicts with the loosely-coupled Grid model, it is currently
still being used in the community as an opportunity for executing large problem
sizes of existing parallel applications on the Grid. In this context, scheduling par-
allel applications relies on appropriate mappings of the parallel processes onto
the heterogeneous Grid resources. This often requires irregular data distributions
such that more work is assigned to the processes mapped onto the fast machines.

Related work on application-level scheduling [3] based on the explicit mes-
sage passing-based paradigm (often called fragmented programming) designs a
generic data mapping module, but omits to concretely specify how this difficult
problem is realised for message passing programs.

In this paper we propose the High Performance Fortran (HPF) [8] data dis-
tribution model as an explicit method to specify irregular data distributions for
scheduling data parallel applications on the Grid. We instantiate our approach
as a new case study of using a Grid-enabled experiment management tool that
we designed in previous work for cross-experiment performance analysis and
optimisation of scientific applications [10].

In the next section we give a short background on our experiment manage-
ment and optimisation tool. Section 3 introduces the irregular array distribution
model and the parameterisation technique that we use to solve the scheduling

� This research is supported by the Austrian Science Fund as part of the Aurora
project under contract SFBF1104.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 527–537, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



528 R. Prodan and T. Fahringer

problem. Section 4 presents a simple prediction model for a Jacobi relaxation
method that we use as the sample objective function in our experiments. Sec-
tion 5 presents experimental results on tuning a genetic scheduling algorithm to
the Austrian Grid [2] resource characteristics. Section 6 concludes the paper.

2 ZENTURIO Optimisation Framework Design

ZENTURIO [10] is an experiment management tool for automatic cross-
experiment performance and parameter studies of parallel applications on clus-
ter and Grid architectures. A directive-based language (in the Fortran HPF and
OpenMP style) called ZEN is used to specify value ranges for arbitrary applica-
tion parameters, including problem and machine sizes, loop and array distribu-
tions, software libraries and algorithms, interconnection networks, or execution
machines (see Examples 1, 2, and 3). Constraint directives are used to filter the
meaningless experiments from the default cross product of the parameter values
(see the directives c1 and c2 in Example 1). Additionally, performance directives
are used for measuring a wide range of performance metrics (e.g., execution, com-
munication, synchronisation times, hardware counters, parallelisation overhead)
focused to arbitrary code regions (see the directive p in Example 1).

After the user parameterised the application with ZEN directives (which
define a problem independent search space), ZENTURIO automatically instru-
ments, generates, and executes the experiments. The suite of experiments is
generated either exhaustively, or according to a general-purpose heuristic algo-
rithm, like subdivision, simplex, simulated annealing, BFGS, EPSOC, or genetic
algorithms. The heuristic algorithm tries to find an experiment that maximises
an input objective function that implements a problem independent interface
(e.g., ZEN performance metric for performance tuning or analytical prediction
function in case of scheduling). After the completion of each experiment, the
performance and the output files are automatically stored into a relational data
repository. An visualisation portal allows the user to automatically query the
database by mapping the application parameters and the performance metrics
to the axis of a variety of visualisation diagrams, including linechart, barchart,
piechart, and surface (see Figure 4 in Section 5).

3 Irregular Array Distributions

High Performance Fortran (HPF) [8] has been designed to express array distri-
butions at a high-level of abstraction, while offering the programmer a single pro-
gram view which is not fragmented by low-level message passing library routines.
In this paper we propose a new formal mechanism for scheduling data parallel
applications on heterogeneous Grid resources using irregular array distributions.
We use the Vienna Fortran Compiler [1] to translate an HPF application into
an MPI equivalent that we link with the Grid-enabled MPICH-G2 [6] library for
Grid execution.



Optimising Parallel Applications on the Grid 529

3.1 General Block Distribution

Let MAT(m,n) denote a two-dimensional matrix and PROC(p, q) a two-dimensional
processor array.

Definition 1. Let Bx(p) and By(q) denote two one-dimensional arrays that
satisfy the conditions:

∑p
i=1 Bxi ≥ m and

∑q
i=1 Byi ≥ n. The general block

data distribution of MAT using the mapping arrays Bx and By is a function:

DISTR : [1..m] × [1..n] → [1..p] × [1..q], DISTR(x, y) = (z, w),

such that:
∑z−1

i=1 Bxi < x ≤ ∑z
i=1 Bxi, ∀ x ∈ [1..p] and

∑w−1
i=1 Byi < y ≤∑w

i=1 Byi, ∀ y ∈ [1..q]. The partition:

MATPROC(i,j) = {MATk,l | DISTR(k, l) = (i, j), ∀ k ∈ [0..p], ∀ l ∈ [0..q]}
is called the distribution of MAT onto the processor PROCij.

Example 1 (Parameterised HPF general block array distribution).

p: !ZEN$ CR CR_A PMETRIC WTIME, ODATA

INTEGER, PARAMETER m = 4, n = 8, p = 2, q = 3

REAL MAT(m, n)

!HPF$ PROCESSOR PROC(p, q)

INTEGER, PARAMETER :: x1 = 3, x2 = 1, y1 = 2, y2 = 2, y3 = 4

!ZEN$ SUBSTITUTE x1 = { 0 : 4 } BEGIN

!ZEN$ SUBSTITUTE x2 = { 0 : 4 } BEGIN

!ZEN$ SUBSTITUTE y1 = { 0 : 8 } BEGIN

!ZEN$ SUBSTITUTE y2 = { 0 : 8 } BEGIN

!ZEN$ SUBSTITUTE y3 = { 0 : 8 } BEGIN

INTEGER, PARAMETER :: Bx(p) = (/ x1, x2 /)

INTEGER, PARAMETER :: By(q) = (/ y1, y2, y3 /)

!ZEN$ END SUBSTITUTE

. . .

!HPF$ DISTRIBUTE MAT(GEN_BLOCK(Bx), GEN_BLOCK(By)) ONTO PROC

c1: !ZEN$ CONSTRAINT VALUE x1 + x2 == 4

c2: !ZEN$ CONSTRAINT VALUE y1 + y2 + y3 == 8

Example 1 defines one matrix MAT(m,n) which has both dimensions dis-
tributed over the processor array PROC(p, q) using the general block mapping
arrays Bx(p) and By(q) (see Figure 1). One can notice that the HPF and MPI
programming paradigms (improperly) consider the Grid as a single parallel com-
puter. The HPF PROCESSORS directive in this approach refers to the complete set
of Grid machines retrieved from the Grid information service [5] and organised
in a two-dimensional array PROC(p, q) constrained to the cardinality of p · q.

A general block array distribution defines an application schedule. We specify
the complete set of possible distributions by representing each mapping array
element (i.e., Bxi,∀ i ∈ [1..p] and Byj ,∀ j ∈ [1..q]) as a generic problem parame-
ter. For this reason, we encode the default elements of the mapping arrays Bx(p)



530 R. Prodan and T. Fahringer

Fig. 1. The default general block array distribution defined in Example 1

and By(q) as program constants. We annotate each such parameter with a ZEN
directive that defines the complete set of possible block size instantiation values
(i.e. from 0 to m or n, depending on the distribution axis). A distribution of size
zero on one processor (i.e., Grid machine) influences the application machine
size, since the corresponding processor will not take part in the computation.
The constraint directives insure that the sum of the general block mapping ele-
ments match the matrix rank on each dimension. The ZEN directive parameter
annotations define a search space of size (m+1)p−1 ·(n+1)q−1 of possible matrix
schedules (two orders of magnitude are eliminated by the two constraints).

3.2 Indirect Distribution

The same techniques presented in the previous section can be applied for the
more general indirect array distribution. Let MAT(m,n) denote a two-dimensional
matrix and PROC(p, q) a two-dimensional processor array.

Definition 2. Let I(p, q) denote a two-dimensional distribution array such that
I(i, j) ≤ p · q, ∀ i ∈ [1..m], ∀ j ∈ [1..n]. The indirect data distribution of MAT
using the mapping matrix I is a function:

DISTR : [1..m]×[1..n] → [1..p]×[1..q], DISTR(x, y)=
(

I(x, y) mod p,

[
I(x, y)

p

])
.

Fig. 2. The default indirect array dis-
tribution defined in Example 2

Example 2 defines the matrix MAT(m,n)
whose elements are indirectly distributed
across the over processor array PROC(p, q)
(representing again the entire Grid) ac-
cording to the mapping matrix I(m,n)
(see Figure 2). The default elements of
the mapping matrix I(m,n) are program
constants that represent the processors
where each array element shall be dis-
tributed. We represent each mapping ar-
ray element as an application parameter



Optimising Parallel Applications on the Grid 531

annotated with a ZEN directive that specifies the complete set of possible indi-
rect distributions. These ZEN directives define a search space of size (p · q)mn

of possible indirect array distributions (i.e., schedules). This search space in this
case, however, tends to be rather huge compared to general block, as it expo-
nentially depends on the matrix size.

Example 2 (Parameterised HPF indirect array distribution).

INTEGER, PARAMETER m = 4, n = 4, p = 2, q = 2

DIMENSION MAT(m, n)

!HPF$ PROCESSORS PROC(p, q)

INTEGER, PARAMETER M11 = 1, M12 = 2, M13 = 3, M14 = 4

INTEGER, PARAMETER M21 = 2, M22 = 3, M23 = 4, M24 = 2

INTEGER, PARAMETER M31 = 3, M32 = 4, M33 = 3, M34 = 2

INTEGER, PARAMETER M41 = 4, M42 = 3, M43 = 2, M44 = 1

!ZEN$ SUBSTITUTE M11 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M12 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M13 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M14 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M21 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M22 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M23 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M24 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M31 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M32 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M33 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M34 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M41 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M42 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M43 = { 1 : 4 } BEGIN

!ZEN$ SUBSTITUTE M44 = { 1 : 4 } BEGIN

INTEGER I(m,n) = (/ (/ M11, M12, M13, M14 /),

(/ M21, M22, M23, M24 /),

(/ M31, M32, M33, M34 /),

(/ M41, M42, M43, M44 /) /)

!ZEN$ END SUBSTITUTE

. . .

!HPF$ DISTRIBUTE MAT(INDIRECT(MAP)) ONTO PROC

4 Objective Function

Application scheduling relies on performance prediction models, which is a diffi-
cult research topic on its own that goes beyond the optimisation and scheduling
topics addressed in this paper. Therefore, we exemplify our techniques in the
context of a Jacobi relaxation application for which we could formulate simple
analytical prediction formulas.

Let E denote an experiment of a parameterised application that implements a
two-dimensional Jacobi relaxation method as sketched in the Examples 1 and 2



532 R. Prodan and T. Fahringer

and E (MATPROC(i,j)) the parallel process that that hosts the (irregular) distribu-
tion of MAT onto the processor PROCi,j (see Definition 1). Let COMP(E) denote
the computation performance metric, COMM(E) the data communication metric
of E , and M(PROCi,j) the physical memory available on the processor PROCi,j

as recorded by the Grid information service [5]. We approximate the objective
function for the parallel Jacobi relaxation as the maximum sum between the
computation and the communication metrics across all the parallel processes:

F(E) =

⎧⎪⎪⎨
⎪⎪⎩

max
∀i∈[1..p]
∀j∈[1..q]

{
COMP

(E (MATPROC(i,j)))+ COMM
(E (MATPROC(i,j)))} ,

if
∣∣MATPROC(i,j)∣∣ · size(e) ≤ M(PROCi,j), ∀i ∈ [1..p] ∧ ∀j ∈ [1..q];

∞, if ∃i ∈ [1..p] ∨ ∃j ∈ [1..q],
∣∣MATPROC(i,j)∣∣ · size(e) > M(PROCi,j),

where
∣∣MATPROC(i,j)∣∣ is the cardinality of the distribution of MAT onto the processor

PROCi,j and size(e) is the size in bytes of a matrix element e.
In the case of the general block array distribution, the computation and the

communication metrics could be analytically approximated as:

COMP(E(MATPROC(i,j))) = Bxi · Byj · We

vPROC(i,j)
· I;

COMM(E(MATPROC(i,j))) = L(PROCi,j)+

+ Bxi · size(e) ·
(

1

B(PROCi,j , PROCi−1,j)
+

1

B(PROCi,j , PROCi+1,j)

)
+

+ Byj · size(e) ·
(

1

B(PROCi,j , PROCi,j−1)
+

1

B(PROCi,j , PROCi,j+1)

)
,

∀ i ∈ [1..p], ∀ j ∈ [1..q], where:

– We is the work required to compute one matrix element e, expressed in
floating point instructions (i.e., four in case of the Jacobi application);

– vPROC(i,j) is the speed of the Grid machine PROCi,j in floating point instructions
per second (e.g., as measured using the LINPACK benchmark);

– I is the number of iterations;
– L(PROCi,j) is the total latency required for receiving the four neighbouring

matrix elements: L(PROCi,j) = L(PROCi,j , PROCi−1,j)+L(PROCi,j , PROCi+1,j)+
L(PROCi,j , PROCi,j−1) + L(PROCi,j , PROCi,j+1);

– L(PROCi,j , PROCk,l) is the latency between the processors PROCi,j and PROCk,l;
– B(PROCi,j , PROCk,l) is the bandwidth between the processors PROCi,j and
PROCk,l, as obtained from the Grid resource information service.

For the Jacobi relaxation application with an indirectly distributed matrix,
the computation and the communication metrics could be approximated as:



Optimising Parallel Applications on the Grid 533

COMP(E(MATPROC(i,j))) =
∣∣MATPROC(i,j)∣∣ · We

vPROC(i,j)
;

COMM(E(MATPROC(i,j))) =
∑

∀(k,l)∈MATPROC(i,j)

size(e) · COMM(MATk,l);

COMM(MATk,l) =
1

B(PROCi,j , PROCDISTR(i−1,j))
+

1

B(PROCi,j , PROCDISTR(i+1,j))
+

+
1

B(PROCi,j , PROCDISTR(i,j−1))
+

1

B(PROCi,j , PROCDISTR(i,j+1))
,

which ignores latencies for brevity reasons.

5 Parameter Tuning

In this section we report experiments on tuning a genetic algorithm for schedul-
ing the Jacobi application within a simulation testbed of the Austrian Grid
environment consisting of about 200 machines running Globus 2.4.2. We organ-
ised the fastest Grid machines into a square processor matrix of size 14 × 14.
We have chosen a square matrix of size 104 × 104 distributed over the Grid
using the general block distribution, and a fixed number of 100000 iterations.
These inputs produce a search space of size: (104 +1)14−1 · (104 +1)14−1 ≈ 10104

points.
We assume the user is familiar with genetic algorithm fundamentals [7]. To

search for an optimal schedule using ZENTURIO, we plug-in a problem indepen-
dent genetic search engine that encodes a generic application parameter defined
by a ZEN directive (and represented in this instantiation by a general block
mapping array element – see Example 1) as a gene. The complete string of genes
builds a chromosome. A schedule is obtained by instantiating each gene with a
concrete block size. We employ a classic generational genetic search algorithm
that uses the reminder stochastic sampling with replacement selection mecha-
nism and the single point crossover and mutation operators, as described in [7].

The quality of the solutions delivered by the genetic algorithm is heavily
influenced by seven input parameters: population size, crossover and mutation
probabilities, maximum generation number, steady state generation number, fit-
ness scaling factor, and use of the elitist model. We automatically tuned the al-
gorithm parameters as a scalability exercise for an exhaustive parameter tuning
experiment using ZENTURIO. We specified the interesting parameter values for
the genetic scheduler by annotating the PBS script used to submit the schedule
experiments on a dedicated Beowulf cluster as shown in Example 3. The cross
product of these parameters defines a total of 3840 experiments which were au-
tomatically conducted by ZENTURIO. Every experiment represents an instance
of the genetic scheduling algorithm configured using a different parameter com-
bination. All the experiments use the Grid resource information collected at the
same time instance (i.e., Grid snapshot). This hierarchical experimental setup
that applies ZENTURIO as an exhaustive cross-experiment performance study
tool on the genetic search optimisation engine is depicted in Figure 3.



534 R. Prodan and T. Fahringer

Fig. 3. Hierarchical experimental setup for genetic scheduling algorithm tuning

We evaluate the quality of the solutions produced by the algorithm against a
set of 16 parallel 3GHz processors (that are twice as fast as any other machine in
the Austrian Grid) that we know to deliver a good scalability for this problem size
from a previous study. We refer to the execution time of the Jacobi application
on this machine set as optimal fitness Fo. From each experiment we collect
three metrics that characterise the performance of the genetic algorithm: (1)
precision P of the best individual Fb compared to the optimum Fo, defined as
the ratio: P = Fb

Fo
; (2) visited points representing the total set of individuals

(i.e., schedules) which have been evaluated by the algorithm during the search
process; (3) improvement I in the fitness Fb of the last generation best schedule,
compared to the first generation best schedule Ff : I = Ff−Fb

Fb
·100. To attenuate

the stochastic errors to which randomised algorithms are bound, we repeat each
scheduling experiment for 40 times and report the arithmetic mean.

Example 3 (Parameterised PBS script).

#PBS -l walltime=00:10:00:nodes=1:ppn=1

size = 300

#ZEN$ ASSIGN size = { 50 : 300 : 50 }

crossover = 0.9

#ZEN$ ASSIGN crossover = { 0.25 : 1 : 0.25 }

mutation = 0.001

#ZEN$ ASSIGN mutation = { 0.01, 0.05, 0.1, 0.2 }

generations = 500

#ZEN$ ASSIGN generations = { 100 : 500 : 100 }

convergence = 0.2

#ZEN$ ASSIGN convergence = { 0.1, 0.2 }

scaling = 2

#ZEN$ ASSIGN scaling = { 1, 2 }

elitist = T

#ZEN$ ASSIGN elitist = { T, F }

${JAVA} -DSIZE=${size} -DCROSSOVER=${crossover} ...



Optimising Parallel Applications on the Grid 535

(a) Population Size. (b) Visited Points.

(c) Best Individual Improvement. (d) Generation Percentage.

(e) Crossover Probability. (f) Mutation Probability.

(g) Fitness Scaling Factor. (h) Elitist Model.

Fig. 4. Genetic scheduling algorithm parameter tuning results



536 R. Prodan and T. Fahringer

Various automatically generated diagrams from this experiment are depicted
in Figure 4, which we cannot analyse in detail due to paper length constraints.
The execution time of the genetic algorithm is proportional with the number
of visited points (see Figure 4(b)). Considering 2ms per schedule evaluation
on a 3GHz Intel Pentium processor, this translates to an average of 3min per
genetic algorithm execution. In addition, genetic algorithms are well known to
be embarrassingly parallel [9] which further decreases their execution time.

The genetic algorithm parameters depend most heavily on the search space
characteristics, which is exclusively represented in this instantiation by the Aus-
trian Grid testbed. Therefore, we are currently using the following genetic algo-
rithm parameter configuration: population size: 300, crossover probability: 0.9,
mutation probability: 0.001, maximum generation: 500, steady state generation
percentage: 20%, fitness scaling factor: 2, elitist model: yes. In this configuration,
our algorithm constantly produces about 25% precision and 500% improvement
in solution, by visiting a fraction (i.e., 105 from 10104) of the entire space points.

6 Conclusions

In this paper we showed a new application of an experiment management and
optimisation tool for scheduling data parallel applications on the Grid using
well-defined HPF irregular array distributions. In contrast to [3] which focuses
on the explicit message passing paradigm, our scheduler has the advantage of
clearly specifying and exposing to the user the application parameter space, rep-
resented in this instantiation by the complete set of possible array distributions,
based on a single unified (i.e., not fragmented with message passing routines)
program view. Our approach is, therefore, apart from the specification of the
objective prediction function, application independent and, furthermore, not re-
stricted to the particular scheduling problem addressed by this paper. A generic
directive-based language used for parametrisation enables the realisation of prob-
lem independent heuristics, such as genetic algorithms, that could be plugged-in
for other optimisation problems too. We have reported successful experimen-
tal results on scheduling a parallel Jacobi relaxation application using a genetic
algorithm within a simulation testbed of the Austrian Grid. We are currently
working on a new application of our tool for scheduling workflow applications in
the frame of the ASKALON programming environment and tool-set for cluster
and Grid computing [4].

References

1. S. Benkner. VFC: The Vienna Fortran Compiler. Scientific Programming, IOS
Press, The Netherlands, 7(1):67–81, 1999.

2. The Austrian Grid Consortium. http://www.austriangrid.at.
3. Holly Dail, Henri Casanova, and Fran Berman. A Decoupled Scheduling Approach

for the GrADS Program Development Environment. In SC’2002 Conference CD,
Baltimore, November 2002. IEEE/ACM SIGARCH.



Optimising Parallel Applications on the Grid 537

4. T. Fahringer. ASKALON - A Programming Environment and Tool Set for Cluster
and Grid Computing. http://www.par.univie.ac.at/project/askalon, Institute for
Computer Science, University of Innsbruck.

5. Steve Fitzgerald, Ian Foster, Carl Kesselman, Gregor von Laszewski, Warren
Smith, and Steve Tuecke. A Directory Service for Configuring High-Performance
Distributed Computations. In Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing, pages 365–375, Portland, August 1997.

6. I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems. In Proceedings of SC’98. ACM Press, 1998.

7. David E. Goldberg. Genetic Algorithms in Search, Optimization 6 Machine Learn-
ing. Reading. Addison-Wesley, Massachusetts, 1989.

8. High Performance Fortran Forum. High Performance Fortran language specifica-
tion. Scientific Programming, 2(1-2):1–170, 1993.

9. Yu-Kwong Kwok and Ishfaq Ahmad. Efficient scheduling of arbitrary task graphs
to multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing, 47(1):58–77, 25 November 1997.

10. Radu Prodan and Thomas Fahringer. ZENTURIO: A Grid Middleware-based Tool
for Experiment Management of Parallel and Distributed Applications. Journal of
Parallel and Distributed Computing, 64/6:693–707, 2004.



Dynamic Adaptation for Grid Computing

Jérémy Buisson1, Françoise André2, and Jean-Louis Pazat1

1 IRISA/INSA de Rennes, Rennes, France
2 IRISA/Université de Rennes 1, Rennes, France

Abstract. As Grid architectures provide resources that fluctuate, ap-
plications that should be run on such environments must be able to take
into account the changes that may occur. This document describes how
applications can be built from components that may dynamically adapt
themselves. We propose a generic framework to help the developpers of
such components. In the case of a component that encapsulates a parallel
code, a consistency model for the dynamic adaptation is defined. An im-
plementation of a restricted consistency model allowed us to experiment
our ideas.

1 Introduction

Grid architectures differ from classical execution environments in that they are
mainly built up as a federation of pooled resources. Those resources include
processing elements, storage, network, and so on; they come from the inter-
connection of parallel machines, clusters, or any workstation. One of the main
properties of these resources is to have changing characteristics even during the
execution of an application. Resources may come and go; their capacities may
vary during the execution of the applications. Moreover, resources may be allo-
cated then reclaimed and reallocated as applications start and terminate on the
Grid. Thus, resource usage by applications cannot be static; neither can changes
in resource allocation be considered as faults. Grid-enabled application designers
must keep in mind that resources and resource management are highly dynamic
within Grid architectures.

Dynamic adaptation is a way to support evolving execution environments. It
aims at allowing applications to modify themselves depending on the available
resources. The key idea is that when the environment changes, the application
should also change to fit with it. To react softly, the application can negotiates
with its execution environment about resources, instead of undergoing the de-
cisions of the execution environment. Because taking adaptation into account
should not burden too much the application developpers, it is necessary to pro-
vide them adequate frameworks and mechanisms. That is our main research
objective.

Section 2 makes a tour of existing researches in areas close to adaptation.
Section 3 exposes how we model the dynamic adaptation of an application.
Section 4 shows the architecture we are currently building as a support to make

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 538–547, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Dynamic Adaptation for Grid Computing 539

adaptable applications. Section 5 describes the consistency model we introduced
for the adaptation of components that encapsulate parallel codes. Section 6
presents the state of the experiments we have done with our consistency model.

2 Adaptation Through Existing Works

Several projects use the word adaptation to describe themselves. As this section
presents, all of those projects have different views of what adaptation is, what
it consists in and why it should be used. Basically, the only common point is
that adaptation consists in changing some things in applications. This asks four
major questions: why adaptation should be done (section 2.1); where is it done
in the execution (section 2.2); how can it be done (section 2.3); when should it
be done (section 2.4). As the section shows, the several projects that exist have
different answers to these four questions.

2.1 Goal of the Adaptation

With existing projects, two main views of what the goal of adaptation could
be opposed. In [1], the Grid.It project and its ASSIST [2] programming model
present adaptation as a way to achieve a specified level of performance. An
application should modify its structure or change the resources it has allocated
when performance contracts are not satisfied.

On the other hand, projects such as SaNS [3], GrADS [4] and PCL [5] consider
that applications should adapt themselves to optimize themselves. Adaptation
is a way for application to provide a “best effort” strategy. In this case, the
application chooses the best implementation given the allocated resources and
the properties of input data.

2.2 Location of the Adaptation

Many projects such as SaNS, GrADS and GrADSolve [6] do the adaptation upon
invokation: when a function, method, procedure is called, the best algorithm is
chosen. Although this is not as static as the automatic optimization such as for
ATLAS [7], adaptation is not possible once the adaptable software has started
its execution. This approach is realistic only if the adaptable softwares are fine-
grained enough. In the case of SaNS, the targeted softwares are libraries of
numerical kernels. In this case, it is sufficient to adapt only at invokation time.

Some projects such as Grit.It and PCL allows dynamic adaptation (namely,
adaptation of a software that is executing). This is necessary when the execution
time of the adaptable software is high. Moreover, the PCL project defines in [8]
a consistency model for the adaptation of parallel codes.

2.3 Means of the Adaptation

When the adaptation is done exclusively at invokation time, adaptation is simply
the selection of one implementation of several that are available. This is what is
done with SaNS and GrADSolve.



540 J. Buisson, F. André, and J.-L. Pazat

In the case of dynamic adaptation, this is not sufficient. Adaptation either
involves parameterizable softwares or reflexive programming. For example, within
the ASSIST model of the Grid.It project, the parmod skeleton exposes several
parameters such as the degree of parallelism that can be changed dynamically;
the PCL project defines a framework for reflexive programming in distributed and
parallel applications. Dynamic aspect weavers (such as Arachne [9]) may also be
used as an alternative to reflexive programming to dynamically adapt the software.

2.4 Decisions to Adapt

Several approaches can be used to decide when a software should adapt itself
and what it should do. Within the ASSIST model, since adaptation is a way to
achieve the contracted performance level, adaptation is mostly triggered from
feedback control. On the other side, within the PCL project, the trigger is the
reception of external events generated by external monitors. The projects SaNS
and GrADSolve use performance models and a database of empirical measures
to choose the right implementation to use.

3 Model of Dynamic Adaptation

Our model for dynamic adaptation considers that dynamic adaptation should
occur in order to maximize the adequation between the application and its exe-
cution environment. Namely, this means that the purpose of dynamic adaptation
is to optimize the application whenever its execution environment changes. To
do so, it may use whatever means the developper is willing to.

The figure 1 shows the two kinds of curves for the progress of an adaptive
software. The two cases correspond to an adaptation that causes the execution
to slow down 1(a) and one that makes the application accelerates 1(b). The dis-
continuity reflects the cost of the adaptation. Although the adaptation optimizes

(a) Execution that is slowing
down

(b) Execution that is speeding
up

Fig. 1. Progress of an adaptive software



Dynamic Adaptation for Grid Computing 541

Fig. 2. Completion time depending on the state at which the adaptation is done

the application, the application may slow down. Indeed, this occurs when the
execution environment reclaims some resources. Even if the application slows
down, it is optimized compared to its execution if it has not been adapted: in
such a case, the application could even have crashed.

The application can adapt itself anywhere in the execution path. It can be
either at a past state or at a state in the future. The figure 2 shows how the
overall completion time conceptually behaves depending on the current state
and the one at which the adaptation is done. This curve directly translates that
the adaptation optimizes the application. Thus, in the future, the sooner it is
done, the better the completion time is. It reduces the time during which the
application is suboptimal. By symmetry, in the past, the earlier in the applica-
tion lifetime the adaptation is done, the bigger the computations to be redone
are. Adapting “just after now” is better than “just before now” because of the
overhead of restoring a past state.

Adapting in the past has the advantage over adapting in the future that the
adaptation can occur immediatly once the decision has been made. Thus, there
is no transition during which the execution is suboptimal. Moreover, it does not
require the prediction of a point in the future of the execution path, which is an
undecidable problem in the general case.

On the other hand, adapting in the future does not require any instruction
to be reexecuted; neither it has the overhead due to checkpoint-taking.

4 Architecture of Adaptable Software

Applications are considered to be built as assemblies of software components.
Each of those components can encapsulate sequential or parallel codes. More-
over, each component can adapt itself. To do so, the component is supported
by a framework. Indeed, it appears that some of the mechanisms involved in
adaptation are independant of the component itself.

4.1 Architecture of an Adaptable Component

The figure 3 shows the architecture of a parallel component. Five major func-
tional boxes have been identified that lie in three parts of an adaptable compo-
nent built with our adaptation framework.



542 J. Buisson, F. André, and J.-L. Pazat

Fig. 3. Overall architecture of an adaptable component

– Functional part of the component.
• Behavior. This is the implementation of the services provided by the

component. An adaptable component is allowed to contain several be-
haviors that are alternative implementations.

– Component-specific part of the adaptation framework.
• Reaction. This is a code that modifies the behavior that is being ex-

ecuted by the component. A component can include several reactions.
The reactions can change some parameters of the behavior; replace the
behavior with another one; modify the behavior with the help of reflexive
programming or dynamic aspect weaving.

• Policy. This provides all the necessary information that are specific
to the component to make decisions concerning the adaptation. It ed-
dicts on which events the component should adapt and which reaction
it should use.

– Component-independant part of the adaptation framework.
• Coordinator. The coordinator is responsible for choosing where the re-

action is going to be executed within the execution path of the behavior.
The possible locations are called candidate points; the chosen one is the
adaptation point.

• Decider. The decider decides when the component should adapt itself
and chooses which reaction should be executed. To do so, it relies on the
information given by the policy.

The coordinator and the decider both make decisions regarding the adapta-
tion. However, they encapsulate separate concerns. The decider encapsulates the
goal of the adaptation and the criterium that is going to be optimized; whereas
the coordinator focuses on the mechanisms for enforcing the consistency of the
dynamic adaptation.

4.2 Scenario of the Adaptation of a Component

From time to time, the decider decides that the component should adapt itself
with one reaction. This may come from an external event (specified in the policy
of the component); this may be a spontaneous decision (as a result of feedback
control for example). Once the decision to adapt is made, the decider orders



Dynamic Adaptation for Grid Computing 543

the coordinator to execute the chosen reaction. Then, the coordinator chooses
one candidate point in the execution path of the behavior. It also starts to
monitor the execution of the behavior. When it reaches the adaptation point,
the coordinator suspends the execution of the behavior and gives the execution
control to the reaction. Once the reaction has finished, the behavior resumes its
execution.

In addition, the behavior of a component can be a parallel code. In this case,
the candidate points and the chosen adaptation point are global and represent
global states. A global point is composed of one local point for each concurrent
thread of the parallel behavior. Local points are identified by both their name
in a model of the functional code and the indices in the iteration spaces.

The decider relies on the policy to make its decisions. The policy may contain
an explicit set of rules: this can help the decider to choose the events to subscribe
to. The policy may also contain performance models to help to choose the right
reaction. Those performance models are parameterized with the content of the
contracts describing the quality of the used services and resources.

5 Consistency of the Adaptation Within Parallel
Components

When the component encapsulates a parallel code, the coordinator must choose a
global point. However, the result of the execution of the adapted component must
be semantically equivalent to the one of the component that does not adapt itself.
Thus, the chosen point should be consistent with respect to a given property
that garanties this semantic equivalence. The adaptation is said consistent if the
reaction is executed from such a point.

A simple example illustrates this: if the component does not dead-lock in
normal executions, it must not dead-lock when it adapts itself. Thus, choosing
the point at which the reaction can be executed requires to be aware of the
communications that occur in the behaviors and reactions of the component.

5.1 Consistency Model

The global point is R-consistent if and only if it satisfies the R relation. It is a
n-ary relation if the parallel behavior is composed of n concurrent threads. This
relation is defined over the n sets of local points. It is specific to each component.

In our example about dead-lock, this R relation encapsulates the required
knowledge about communications within the component.

5.2 Classes of Parallel Components

Depending on the properties of the R relation, the parallel components can be
classified. There is four major classes of parallel components.



544 J. Buisson, F. André, and J.-L. Pazat

SPMD components. If the R relation is id the identity, a global point is consistent
if all the threads are locally at the same point. Regarding to the points, this
means that all the threads share the same set of points. This case corresponds
to the SPMD class of parallel applications.

Quasi-SPMD components. We consider that the R relation holds the following
property:

(R (p1, p2, . . . , pn) ∧ R (q1, q2, . . . , qn))
⇒ (p1 ≺ q1 ∧ p2 ≺ q2 ∧ . . . ∧ pn ≺ qn)
∨ (q1 ≺ p1 ∧ q2 ≺ p2 ∧ . . . ∧ qn ≺ pn) ∨ (q1 = p1 ∧ q2 = p2 ∧ . . . ∧ qn = pn)

The ≺ symbol denotes the strict “precede” relation over the sets of local points.
In the execution paths, this is a total order relation.

If this property is satisfied, the local points can be renamed such that R
becomes the identity relation. Thus, the component behaves like SPMD compo-
nents.

Synchronous MPMD components. We suppose that the R relation satisfies the
following property:

(R (p1, p2, . . . , pn) ∧ R (q1, q2, . . . , qn))
⇒ (p1 � q1 ∧ p2 � q2 ∧ . . . ∧ pn � qn) ∨ (q1 � p1 ∧ q2 � p2 ∧ . . . ∧ qn � pn)

The � symbol denotes the reflexive “precede” relation over the sets of local
points. In the execution paths, this is a total order relation.

In this case, the global points are still totally ordered in the execution path
by a “precede” relation. This reflects the synchronization of the threads within
the component. However, a local point can participate to several global points.
Those components can be rewritten as quasi-SPMD components by duplicating
such local points. This transformation restricts the consistency model.

Pessimistic parallel discrete event simulators belong to this class of compo-
nents.

Asynchronous MPMD components. If none of the preceding properties is satis-
fied, the “precede” relation over global points in execution path is not a total
order relation.

This class of components includes in particular master-slaves codes.

5.3 Comparison with Other Consistency Models

The model defined by PCL in [8] says that the adaptation is consistent if all
the threads reach the i-th point (same i for all the threads) in the execution
path. Although it seems similar, this is not equivalent to our id-consistency.
Indeed, our model identifies points by name (identifier in the model of the code
augmented with indices in iteration spaces) whereas PCL explicitly uses the rank
of the point in the execution path.



Dynamic Adaptation for Grid Computing 545

Thus, our model accepts that the threads have different dynamic behaviors.
The threads are not expected to execute the same number of iterations or to
choose the same branch of conditional instructions. On the other hand, PCL
supposes that all the threads remain in sync.

6 Realisation

By the time, we have designed and implemented an algorithmic solution for the
coordinator. Our work restricts the model to the id-consistency in the case of
SPMD parallel components. The candidate global points are exclusively looked
for in the future of the execution path of the threads.

We have chosen to restrict to candidate points in the future. We worked
around the impossibility of predicting the next point in the future of the ex-
ecution path by introducing several strategies: the “postpone” strategy delays
the prediction until the conditional instruction is executed; the “skip” strategy
ignores the candidate points within the branches of the conditional instruction.

Figure 4 compares these two strategies. This experiment has been done with
the NPB 3.1 [10] FFT code on a 4 PCs cluster running PadicoTM [11], which
permits us to mix several middlewares such as MPI and CORBA within a single
application. Only the coordinator has been implemented: the reaction is empty
(no real adaptation); the decider is simulated by a trigger provided to the user.
The encapsulation within a component has not been done as it has no influence
for this experiment if we consider that the whole FFT code is within a single
component.

Each dot of figure 4 represents one trigger of the adaptation. It appears on
figure 4(a) that the “postpone” strategy generally chooses adaptation points
that come sooner than the “skip” strategy. On the other hand, the figure 4(b)
shows that the “postpone” strategy suspends more frequently the functional code

0 s

5 s

10 s

15 s

SkipPostpone

T
im

e

(a) In regard to the delay before
adaptation

0 s

1 s

2 s

3 s

SkipPostpone

T
im

e

(b) In regard to time during which
the functional code is suspended

Fig. 4. Comparison of the “postpone” and the “skip” strategies



546 J. Buisson, F. André, and J.-L. Pazat

than the “skip” strategy. Indeed, we observe that most of the experiments with
the “skip” strategy causes no suspension (high density of dots at 0 s), whereas
the functional code is frequently suspended with the “postpone” strategy (high
density of dots up to about 0.5 s). These two observations exhibit the trade-off
between the precision of the prediction and the risk of suspending the functional
code.

7 Conclusion

In this paper we have shown that adaptation of parallel components can be
achieved using our framework. Such an adaptation process needs to develop a
consistency model and an algorithm to enforce this consistency before adapta-
tion: the id-consistency model we developped shows the relevance of our consis-
tency model for the adaptation of SPMD parallel codes.

We have shown through the FFT example that there is a trade-off between
the precision of the choice of the point (best theoretical result) and the risk of
uselessly suspending the execution of the functional code.

Futur works around the coordinator will consist in extending our implemen-
tation of the consistency model for non-SPMD components.

We plan to fully implement our framework, including a smart decider. This
decider will be organized as a rule-based system. We will study how to repre-
sent usefull information for decision-making, such as states or changes of the
environment. The representation of the adaptation policy have also to be de-
fined. For this work we plan to rely on previous works on monitoring such as
Delphoi [12] or SAJE/RAJE [13] and on our previous works on adaptation for
mobile computing [14].

Another direction of our work is the study of the adaptation of assemblies of
components for complete Grid applications. It is clear that in many applications,
one component will not be able to adapt itself without taking into account the
other components of the application. The role of the decider will be extended to
include negotiation with deciders of other components of the application.

References

1. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,
Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance grid
programming int the grid.it project. In: Workshop on Component Models andd
Systems for Grid Applications. (2004)

2. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: Assist
as a research framework for high-performance grid programming environments.
Technical Report TR-04-09, Università di Pisa, Dipartimento di Informatica, via
F. Buonarroti 2, 56127 Pisa, Italy (2004)

3. Dongarra, J., Eijkhout, V.: Self-adapting numerical software for next generation
application (2002)



Dynamic Adaptation for Grid Computing 547

4. Kennedy, K., Mazina, M., Mellor-Crummey, J., Cooper, K., Torczon, L., Berman,
F., Chien, A., Dail, H., Sievert, O., Angulo, D., Foster, I., Gannon, D., Johnsson, L.,
Kesselman, C., Aydt, R., Reed, D., Dongarra, J., Vadhiyar, S., Wolski, R.: Toward
a framework for preparing and executing adaptive grid programs. In: Proceedings
of NSF Next Generation Systems Program Workshop (IPDPS). (2002)

5. Adve, V., Lam, V.V., Ensink, B.: Language and compiler support for adaptive
distributed applications. In: ACM SIGPLAN Workshop on Optimization of Mid-
dleware and Distributed Systems (OM 2001), Snowbird, Utah (2001)

6. Vadhiyar, S., Dongarra, J.: GrADSolve: RPC for high performance computing on
the grid. In: Euro-Par 2003: Parallel Processing. Volume 2790. (2003)

7. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project (2000)

8. Ensink, B., Adve, V.: Coordinating adaptations in distributed systems. In: 24th
International Conference on Distributed Computing Systems. (2004) 446–455

9. Ségura-Devillechaise, M., Menaud, J.M., Muller, G., Lawall, J.: Web cache
prefetching as an aspect: Towards a dynamic-weaving based solution. In: Proceed-
ings of the 2nd international conference on Aspect-oriented software development,
ACM Press (2003) 110–119

10. Nas parallel benchmark. (http://www.nas.nasa.gov/Software/NPB/)
11. PadicoTM. (http://www.irisa.fr/paris/Padicotm/welcome.htm)
12. Maassen, J., van Nieuwpoort, R.V., Kielmann, T., Verstoep, K.: Middleware adap-

tation with the delphoi service. In: AGridM 2004 - Proceedings of the 2004 Work-
shop on Adaptive Grid Middleware, Antibes Juan-Les-Pins, France (2004)

13. Guidec, F., Sommer, N.L.: Towards resource consumption accouting and control
in java: a practical experience. In: Workshop on Resource Management for Safe
Language, ECOOP 2002, Malaga, Spain (2002)

14. Chefrour, D., André, F.: Développement d’applications en environnements mobiles
à l’aide du modèle de composant adaptatif aceel. In: Langages et Modèles à Objets
LMO’03. Actes publiés dans la Revue STI. Volume 9 of L’objet. (2003)



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 548 – 556, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Improving Multilevel Approach for Optimizing 
Collective Communications in Computational Grids 

Boro Jakimovski and Marjan Gusev 

University Sts. Cyril and Methodius,  
Faculty of Natural Sciences and Mathematics,  

Institute of Informatics,  
Arhimedova 5, 1000 Skopje, Macedonia 
{boroj, marjan}@ii.edu.mk 

Abstract. Collective operations represent a tool for easy implementation of 
parallel algorithms in the message-passing parallel programming languages. 
Efficient implementation of these operations significantly improves the 
performance of the parallel algorithms, especially in the Grid systems. We 
introduce an improvement of multilevel algorithm that enables improvement of 
the performance of collective communication operations. An implementation of 
the algorithm is used for analyzing its characteristics and for comparing its 
performance it with the multilevel algorithm. 

1   Introduction 

Computational Grids [1] represent a technology that will enable ultimate computing 
power at the fingertips of users. Today Grids are evolving in their usability and 
diversity. New technologies and standards are used for improving their capabilities. 
Since this powerful resources need to be utilized very efficiently we need to adopt the 
programming models used in the parallel and distributed computing. One of the main 
problems facing parallel and distributed computing when introduced to the Grid 
environment is scalability.  

Currently most widely used message passing parallel programming standard is the 
MPI standard [2]. MPI represents a programming standard that enables 
implementation of parallelism using message passing. Operations for Collective 
communication represent a part of the MPI standard that involves communications 
between a group of processes. Optimizations of collective communications have been 
the focus of many years of research. This research has led to development of many 
different algorithms for implementation of collective communications [3]. These 
algorithms were optimized mainly for cluster computations where the characteristics 
of the communications between every two nodes are the same. 

Main problem of introducing MPI to the Grid environment is the big latency of the 
communications. Even bigger problem lies in the different latencies of different pairs 
of processes involved in the communication. This led to the development of new 
improved algorithms for implementation of collective communication in the Grid 
environment. Most algorithms for implementation of collective communications are 



 Improving Multilevel Approach for Optimizing Collective Communications 549 

 

based on tree like communication pattern. There have been many efforts for 
optimization of the topology of this communication trees for better performance in the 
Computational Grids. In this paper we introduce an improvement of the multilevel 
approach for optimization of collective communications, using an adaptive tree 
algorithm called α tree.  

In Section 2, we give a brief overview to the previous solutions for optimization of 
collective communications in Computational Grids and describe the multilevel 
approach for optimization of collective communications. In Section 3, we introduce 
the improvement of the multilevel approach called Multilevel communication α tree. 
In Section 4, we present the results of the experiments for the evaluation of the newly 
proposed algorithm. Finally in Section 5, we give a brief conclusion and the direction 
for future research. 

2   Topology Aware Collective Communications 

There have been different approaches for solving the problem of optimizing 
communication tree for collective operations in Computational Grids. First efforts 
started with the development of algorithms that involved Minimal Spanning Tree [4], 
followed by variations of this approach by changing the weights and conditions in the 
steps for building the communication tree (SPOC [5], FNF [5], FEF [6], ECEF [6], 
Look-ahead [6], TTCC [7]).  

Currently best performing solution is the solution utilizing the network topology 
information for building the communication tree. This approach, later called topology 
aware collective communication, was introduced in [4] and later improved in [8] and 
[9]. This algorithm involved grouping of the processors in groups where each group 
represent either processors from one multiprocessor computer or processors from one 
cluster. Once the groups are defined, the communication tree is defined in two levels. 
The first level contains one group consisting of the root processes from each group. 
The second level contains the groups defined previously.  

The main disadvantage of the two-level algorithm was the utilization of only two 
levels of communication, local area communication (low latency) and wide area 
communication (high latency). This disadvantage was overthrown by implementation 
of multilevel communication pattern introduced by Karonis et. all in [10]. Their 
approach, implemented in MPICH-G2 [11], defines up to four levels of network 
communication. Each level consists of several groups of processors where the 
communications have common characteristics. This way they achieve more adequate 
topology aware communication pattern which is very close to the optimal. 

3   Multilevel Communication α Tree 

The multilevel communication tree improves the communication time of collective 
communications by introducing better topology awareness. The only disadvantage of 
multilevel communication tree is the choice of communication algorithms. Authors 
settle for simple solution where they choose one algorithm for high latency level (the 
first level – wide area level) and another algorithm for low latency levels (all other 



550 B. Jakimovski and M. Gusev 

 

levels – local area and intra machine). The algorithm chosen for high latency 
communications is flat tree, which has been shown to behave optimally in such 
conditions. For low latency communications, the authors choose binomial tree, which 
also has been shown by LogP model [12] to be optimal in such conditions. 

3.1   α Communication Tree 

One of the most advanced algorithms for implementation of collective communi- 
cation operations is the α-tree algorithm [13]. The algorithm is derived from the 
theoretically optimal algorithm of λ-tree. The α-tree algorithm overcomes the 
problems for implementation of the λ-tree but with reduced optimality. 

The α-tree algorithm represents a communication tree dependent of the value of 
the parameter α. The value of the parameter is in the range between 0 and 0.5. The 
main characteristic of the α-tree is that for α=0, the α-tree looks like flat tree, and for 
α=0.5 the α-tree looks like binomial tree. This characteristic shows that the α-tree 
algorithm can adjust itself according to the network characteristics, i.e. if the latency 
of the communications is low then the value of the parameter will shift towards 0.5, 
and if the latency of the communications is high then the value of the parameter will 
move towards 0. This behavior is visually represented in Fig. 1. 

 

 

a) α = 0.5 b) α = 0.4 

 

 

c) α = 0.3 d) α  0.2 

Fig. 1. Tree topology changes from binomial tree a) to flat tree d) as the value of the parameter 
α changes from 0.5 to 0 

3.2   Multilevel Communication α Tree 

The disadvantage of the Multilevel communication tree algorithm lies in the choice of 
the algorithms for communication inside the groups of processes on each level. Our 
approach tries to improve this disadvantage by defining new communication scheme 
which will be more efficient then the multilevel tree. 



 Improving Multilevel Approach for Optimizing Collective Communications 551 

 

Multilevel communication α tree represents an improvement of the multilevel 
algorithm. The improvement lies in the ability to properly choose the communication 
algorithm for each of the four levels of the multilevel communication tree algorithm. 
The best way to implement the communication algorithm for each group of the 
communication tree is to properly adjust the communication algorithm according to 
the latency characteristics of the network. We choose to use the α-tree algorithm for 
each level of the multilevel tree but with different values of the parameter α for each 
group. This should enable more flexibility for the algorithm, enabling it to achieve 
better performance. As it can be seen from the characteristics of the multilevel α tree 
algorithm, the multilevel tree algorithm represents a special case of the new algorithm 
when we choose value of α=0 for the first level and value of α=0.5 for all of the other 
levels. Therefore we can conclude that the new algorithm should enable better 
performance then the multilevel algorithm. 

4   Experimental Results 

4.1   Simulation Environment 

The evaluation of the proposed solution for implementation of collective 
communication was conduced in our relatively small Grid infrastructure. For 
evaluation purposes we have changed the topology of our Grid by making it more 
suitable to achieve real results from the simulation. Our simulation resources were 
four laboratories each with 20 PCs installed with Red Hat Linux and Globus 2.4. The 
laboratories are separated in two buildings connected between with a link, which we 
have reduced to 10 Mbit link. Each laboratory we further separated in several clusters 
of 4-5 PCs. The overall Grid infrastructure used for evaluation of the new algorithm is 
depicted in Fig.2. 

From the figure it can be seen that the communication infrastructure on the second 
and third level is 100 Mbit switch/hub. To simulate different network scenarios we 
made different experiments in the grid infrastructure either by using switch 
technology, or by using hub technology. 

4.2   Measurement Technique 

Since the measurement of the performance is the crucial part of the evaluation process 
it is very important to choose the correct measuring technique. Measuring collective 
communication requires measurement of consecutive execution of many operation 
calls since one operation call is very short and cannot be measured correctly. Main 
measurement problem is the pipelining effect that is generated by consecutive calls of 
the collective operation [14][15]. 

The pipelining effect can easily be solved by introducing barriers between 
consecutive calls of the operations. This approach cannot be implemented straight 
forward because of the problems that arise with the barrier implementation. When 
using already implemented barrier from the MPICH library (topology unaware), the 
main problem lies in the very slow solution for the barrier. This slow solution cannot 
be used since if the barrier execution time varies only by few percents then the results  
 



552 B. Jakimovski and M. Gusev 

 

 

Fig. 2. Topology of the Grid infrastructure used for the experiments for evaluating the new 
algorithm 

from the collective operation will be distorted completely. In such case the use of 
some specially tailored barrier is needed. This barrier will not be a real barrier but a 
pseudo barrier that in these circumstances will ensure that the execution will not be 
pipelined. 

Our choice for semi-barrier is the use of opposite ring topology for 
communication. This means that the between each collective communication 
operation the processes synchronize between each other by communicating in a ring 
where each process (with rank r) receives a message from the process with rank r + 1 
and once it receives the message it resends it to the process with tank r – 1. This 
process starts with the root process and ends with it. This solution represents simple, 
efficient barrier that reduces pipelining effect in the operation and the barrier. 

4.3   Experimental Results 

Performance measurement of the new algorithm is evaluated by using the broadcast 
operation. In order to fully evaluate the new algorithm we have measured the 
performance using many different scenarios. To achieve this in our experiments we 
have changed the following parameters: 

− message size 
− parameter α for the second level 
− parameter α for the third level 
− characteristics of the network topology 

The parameter α for the first level is fixed to the value of 0 because this level 
contains only two processes and any value of α will lead to the same communication 
topology. 

The results of the experiments are depicted in the figures of this chapter. The 
figures represent three dimensional charts where on the two axes (x and y) are 
represented the α parameters for the second and the third level of the communication 
tree. The third axes (z – depth) represents the measured time of the operation for the 
particular values of α for the second and third level. The shading of the charts 
represents the value of the z-axes for easier reading. If the shade is darker then the 
time is lower. 



 Improving Multilevel Approach for Optimizing Collective Communications 553 

 

On Fig. 3 we can see the results for the measurements for different network 
characteristic. The figure shows how the performance changes once the network 
latency increments. The first part of the figure shown the performance of the hub 
infrastructure. This infrastructure characterizes with bigger latency because of the 
non-parallel communications. This makes the binomial tree very inefficient because 
of its low latency and parallel nature. This shows that the optimum shifts towards the 
lower values of the parameters α. On the other hand the for the switch infrastructure 
the optimum moves toward the higher values for α, but still doesn’t achieve value of 
0.5 for both levels which is the case of the multilevel algorithm. 

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

 

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

 
a) b) 

Fig. 3. Results from the simulations using different network topology: a) hub infrastructure, b) 
switch infrastructure 

The second analyzed aspect during the simulations was the effect of the message 
size over the performance of the operations. Results gathered from the simulations are 
shown on Fig. 4. As it can be seen from the figures the optimum for the values of the 
parameter α change as the message size grows. The conducted experiments were for 
message sizes from 1 byte to 16 KB with the step “power of 2”. The results shown on 
the picture are from 2 KB and above since the results less then 2 KB are identical to 
the 2 KB results. Reason for this is the usage of TCP/IP protocol that sends messages 
of approximately 1KB in size even if we send messages with 1 byte of data. The 
results show the desired performance improvement. It can be concluded that for 
smaller packet sizes the optimum tends to move towards the lower values of 
parameters α, and for bigger packet size the optimum moves towards the higher 
values of the parameters. This is expected since the usage of TCP/IP as transport 
protocol. When TCP/IP segments large packets into small packets the network 
communication is flooded with packets and in such case the parallelism in 
communication is increased.  

 



554 B. Jakimovski and M. Gusev 

 

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

 
a) 2KB b) 4KB 

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

0 0.1 0.2 0.3 0.4 0.5
third level

0

0.1

0.2

0.3

0.4

0.5

second level

 
c) 8KB d)16KB 

Fig. 4. Results from the simulations using different message size 

4.4   Performance Improvement 

As it could be expected from the analytical characteristics, experimental results show 
that the new algorithm gives the opportunity for improvement of the performance of 
collective communications. The overall improvements gathered from the 
experimental results are shown on Table 1 and Table 2. The results shown represent 
the optimal time for the given α parameters using the multilevel α tree algorithm 
(Optimal time). For comparison with the multilevel algorithm, we give the measured 
time of the multilevel algorithm (Multilevel time). The results show that in switch 
topology the improvements are around 15% compared to the multilevel algorithm. In 
hub infrastructure the improvements are smaller for the bigger data size, since this 
introduces many packets to the network which makes even flat tree behave as parallel 
algorithm, but for smaller data size the improvements are significant and achieve 40% 
improvement. 



 Improving Multilevel Approach for Optimizing Collective Communications 555 

 

Table 1. Performance improvement for switch topology 

Packet 
size 

Optimal 
time 

Multilevel 
time α second α third Improvement 

16KB 42.5472 48.5963 0.3 0.3 12.45% 
8KB 24.4484 26.3964 0.25 0.35 7.38% 
4KB 9.82545 12.498 0.1 0.35 21.38% 
2KB 5.76205 7.16053 0.1 0.4 19.53% 
1KB 3.64349 4.04574 0.1 0.35 9.94% 
512B 3.17763 3.68794 0.1 0.45 13.84% 

Table 2. Performance improvement for hub topology 

Packet 
size 

Optimal 
time 

Multilevel 
time α second α third Improvement 

16KB 116.988 125.192 0.25 0 6.55% 
8KB 61.2282 64.0655 0.25 0 4.43% 
4KB 33.6797 34.9603 0.5 0.25 3.66% 
2KB 18.0641 18.6563 0.25 0.25 3.17% 
1KB 10.1231 18.4963 0 0.1 45.27% 
512B 5.59515 9.34781 0 0.15 40.14% 

5   Conclusion 

As Computational Grids are more widely used, the need for new techniques for 
parallel and distributed computing are needed. Topology aware communications are 
essential aspect of improvement of parallel programs. The currently adopted 
multilevel tree topology aware solution achieves great performance improvements. 
Still the simple solution in algorithm performance limits the ability to fully utilize the 
topology and network characteristics. 

Our approach represents an improvement to the multilevel approach for optimizing 
collective communications in Computational Grids. The usage of the α tree algorithm 
for adopting the different network characteristics enables significant improvement in 
the collective operations performance. The new algorithm doesn’t increase the 
implementation issues since the α-tree algorithm is very easy to implement and is 
easily fitted in the MPICH-G2 implementation of topology aware collective 
communications that utilize communication trees. The only problem is the choice of 
the parameter α, and its distribution during communicator creation. 

Simulation of the new algorithm shows the possibility for improving the 
performance of collective communications in Computational Grids. Because the 
measurement of the performance of the algorithm is a very important issue, we gave 
special attention on problems concerning the measurement techniques. Our choice of 
measurement technique is consecutive call of the collective operation followed by a 
semi-barrier implemented using opposite ring communication topology. 



556 B. Jakimovski and M. Gusev 

 

Future work is research in developing an efficient and easy way of utilizing this 
new approach for use in Computational Grids. This will require a mechanism for 
gathering and using network characteristics for automatic parameter selection. 

References 

1. Foster, I., Kesselman, C. ed.: The Grid: Blueprint for a New Computing Infrastructure. 
Morgan Kaufmann Publishers, 1999. 

2. Message Passing Interface Forum: MPI: A message-passing interface standard. 
International Journal of Supercomputer Applications, 8(3/4) (1994) 165-414 

3. Vadhiyar, S. S., Fagg, G. E., Dongarra, J.: Automatically Tuned Collective 
Communications. Proceedings of the IEEE/ACM SC2000 Conference, Dallas, Texas 
(2000) 

4. Lowekamp, B. B., Beguelin. A.: ECO: Efficient Collective Operations for communication 
on heterogeneous networks. Proc. of 10th Intl. Parallel Processing Symposium, (1996) 
399–405 

5. Banikazemi, M., Moorthy, V., Panda, D.: Efficient Collective Communication on 
Heterogeneous Networks of Workstations. International Conference on Parallel 
Processing. Minneapolis, MN (1998) 460–467 

6. Bhat, P.B., Raghavendra, C.S., Prasanna, V.K.: Efficient Collective Communication in 
Distributed Heterogeneous Systems. Proceedings of the International Conference on 
Distributed Computing Systems (1999) 

7. Cha, K., Han, D., Yu, C., Byeon, O.: Two-Tree Collective Communication in Distributed 
Heterogeneous Systems. IASTED International Conference on Networks, Parallel and 
Distributed Processing, and Applications (2002) 

8. Kielmann, T., Hofman, R. F. H., Bal, H. E., Plaat, A., Bhoedjang, R. A. F.: MAGPIE: 
MPI’s Collective Communication Operations for Clustered Wide Area Systems. Proc. 
Symposium on Principles and Practice of Parallel Programming (PPoPP), Atlanta, GA, 
(1999) 131–140 

9. Kielmann, T., Bal, H. E., Gorlatch, S.: Bandwidth-efficient Collective Communication for 
Clustered Wide Area Systems. IPDPS 2000, Cancun, Mexico (2000) 

10. Karonis, N., de Supinski, B., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.: Exploiting 
hierarchy in parallel computer networks to optimize collective operation performance. 
Proc. of the 14th International Parallel and Distributed Processing Symposium, (2000) 
377–384 

11. MPICH-G2 web page. http://www.globus.org/mpi. 
12. Culler, D.E., Karp, R., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., 

Subramonian, R., von Eicken, T: LogP: Towards a realistic model of parallel computation. 
Proceedings of the 4th SIGPLAN Symposium on Principles and Practices of Parallel 
Programming, (1993) 1–12  

13. Bernaschi, M., Iannello, G.: Collective Communication Operations: Experimental Results 
vs. Theory. Concurrency: Practice and Experience, (1998), 10(5):359–386 

14. de Supinski, B., Karonis, N.: Accurately Measuring MPI Broadcasts in a Computational 
Grid. In The Eighth IEEE International Symposium on High Performance Distributed 
Computing. IEEE Computer Society Press, (1999). 

15. Lacour, S.: MPICH-G2 collective operations: performance evaluation, optimizations. 
Rapport de stage MIM2, Magistère d'informatique et modélisation (MIM), ENS Lyon, 
MCS Division, Argonne National Laboratory, USA, (2001) 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 557 – 566, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Rough Set Based Computation Times 
Estimation on Knowledge Grid  

Kun Gao1,2, Youquan Ji3, Meiqun Liu4, and Jiaxun Chen1 

1 Information Science and Technology College, Donghua University, P.R.C 
2 Aviation University of Air Force, P.R.C 

3 Geo-Exploration Science and Technology College, Jilin University, P.R.C 
4 Administration of Radio Film and Television of Jilin Province, P.R.C 

gaokun@mail.dhu.edu.cn  

Abstract. Efficient estimating the application computation times of data mining 
is a key component of successful scheduling on Knowledge Grid. In this paper, 
we present a holistic approach to estimation that uses rough sets theory to de-
termine a reduct and then compute a runtime estimate. The heuristic reduct al-
gorithm is based on frequencies of attributes appeared in discernibility matrix. 
We also present to add dynamic information about the performances of various 
data mining tools over specific data sources to the Knowledge Grid service for 
supporting the estimation. This information can be added as additional metadata 
stored in Knowledge Metadata Repository of Grid. Experimental result vali-
dates our solution that rough sets provide a formal framework for the problem 
of application run times estimation in Grid environment. 

1   Introduction 

Knowledge Grid is a software architecture for geographically distributed PDKD (Par-
allel and Distributed Knowledge Discovery) systems [1]. This architecture is built on 
top of a computational Grid and Data Grid that provides dependable, consistent, and 
pervasive access to high-end computational resources[2][3]. The Knowledge Grid 
uses the basic Grid services and defines a set of additional layers to implement the 
services of distributed knowledge discovery on world wide connected computers 
where each node can be a sequential or a parallel machine. 

A key aspect of scheduling data mining applications on Knowledge Grid is the 
ability to accurately estimate the computation times. Such techniques can improve the 
performance of scheduling algorithms and help estimate queue times in Knowledge 
Grid environments. For example, the Knowledge Grid provides a specialized broker 
of Grid resources for PDKD computations: given a user’s request for performing a 
data mining analysis, the broker takes allocation and scheduling decisions, and builds 
the execution plan, establishing the sequence of actions that have to be performed in 
order to prepare execution (e.g., resource allocation, data and code deployment), actu-
ally execute the task, and return the results to the user. The execution plan has to satisfy 
given requirements (such as performance, response time, and mining algorithm) and 



558 K. Gao et al. 

 

constraints (such as data locations, available computing power, storage size, memory, 
network bandwidth and latency). Once the execution plan is built, it is passed to the 
Grid Resource Management service for execution. Clearly, many different execution 
plans can be devised, and the Resource Allocation and Execution Management ser-
vices have to choose the one which minimizes response time. In its decision making 
process, this service has to accurately estimate applications processing or computation 
times so as to help estimate queue times and improve the performance of scheduling 
algorithms. Unfortunately, the computation times depend on many factors: data size, 
specific mining parameters provided by users and actual status of the Grid etc. More-
over, the correlations between the items present in the various transactions of a data-
set largely influence the response times of data mining applications. Thus, predicting 
its performance becomes very difficult. 

Our application runtime prediction algorithms operate on the principle that applica-
tions with similar characteristics have similar runtimes. Thus, we maintain a history 
of applications that have executed along with their respective runtimes. To estimate a 
given application's runtime, we identify similar applications in the history and then 
compute a statistical estimate of their runtimes. We use this as the predicted runtime. 
The fundamental problem with this approach is the definition of similarity; diverse 
views exist on the criteria that make two applications similar. For instance, we can 
say that two applications are similar because the same user on the same machine 
submitted them or because they have the same application name and are required to 
operate on the same size data. Thus, we must develop techniques that can effectively 
identify similar applications. Such techniques must be able to accurately choose ap-
plications' attributes that best determine similarity. Having identified a similarity 
template, the next step is to estimate the applications' runtime based on previous, 
similar applications. We can use several statistical measures to compute the predic-
tion, including measures of central tendency such as the mean and linear regression. 

Due to the lack of centralized control and the dynamic nature of resource availabil-
ity, we propose to include in the KDS (Knowledge Directory service) [1] dynamic 
information about the performances of the various data mining tools over specific 
data sources. This information can be added as additional metadata associated with 
datasets. Therefore, the extended KDS not only includes static metadata utilized to 
search data or components, but also dynamic information used for estimating the 
computation times. The dynamic metadata regards monitoring information about 
previous runs of the various software components on particular datasets.  

In this paper, we present a holistic approach to estimation that uses rough sets the-
ory to determine a similarity template and then compute a runtime estimate using 
identified similar applications. We tested the technique in a similar Grid environment. 
The rest of this paper is organised as follows: in section 2, we introduce related works 
and point out the limitations of some previous works. In section 3, we discuss the 
suitability of rough set to predict applications run times. In section 4, we recall neces-
sary rough set notions used in the paper, and then present our reduct algorithm and 
application runtime estimation algorithm. In section 5, we conduct experiments to 
evaluate our approach. Finally section 6 concludes this paper. 



 Rough Set Based Computation Times Estimation on Knowledge Grid 559 

 

2   Related Works  

Early work in the parallel computing area proposed using similarity templates of 
application characteristics to identify similar tasks in a history. A similarity template 
is a set of attributes that we use to compare applications in order to determine if they 
are similar. Thus, for histories recorded from parallel computer workloads, one set of 
researchers selected the queue name as the characteristic to determine similarity [4]. 
They considered that applications assigned to the same queue were similar. In other 
work [5], researchers used several templates for the same history, including user, 
application name, number of nodes, and age. 

Manually selecting similarity templates had the following limitations: 

• Identifying the characteristics that best determine similarity isn't always possible. 
• It's not generic: although a particular set of characteristics might be appropriate 

for one domain, it's not always applicable to other domains. 

In [6][7], they proposed automated definition and search for templates and used 
genetic algorithms and greedy search techniques. They were able to obtain improved 
prediction accuracy using these techniques. 

Recently, another effective approach to predict execution times on Grid is [8]. 
They investigate a use of sampling: in order to forecast the actual execution times of a 
given data mining algorithm on the whole dataset, they run the same algorithm on a 
small sample of the dataset. Many data mining algorithms demonstrate optimal scal-
ability with respect to the size of the processed dataset, thus making the performance 
estimate possible and accurate enough. However, in order to derive an accurate per-
formance model for a given algorithm, it should be important to perform an off-line 
training of the model, for different dataset characteristics and different parameter sets. 

In this paper, we develop a rough sets based technique to address the problem of 
automatically selecting characteristics that best define similarity. In contrast to [6], 
our method determines a reduct as template, instead of using greedy and genetic algo-
rithms. Rough sets provide an intuitively appropriate theory for identifying templates. 
The entire process of identifying similarity templates and matching tasks to similar 
tasks is based on rough sets theory, thereby providing an appropriate solution with a 
strong mathematical underpinning.  

3   Rough Set Based Computation Times Estimation 

Rough sets theory as a mathematical tool to deal with uncertainty in data provides us 
with a sound theoretical basis to determine the properties that define similarity. Rough 
sets operate entirely on the basis of the data that is available in the history and require 
no external additional information. The history represents an information system in 
which the objects are the previous applications whose runtimes and other properties 
have been recorded. The attributes in the information system are these applications' 
properties. The decision attribute is the application runtime, and the other recorded 
properties constitute the condition attributes. This history model intuitively facilitates 
reasoning about the recorded properties so as to identify the dependency between the 
recorded attributes and the runtime. So, we can concretize similarity in terms of the 
condition attributes that are relevant and significant in determining the runtime. Thus, 



560 K. Gao et al. 

 

the set of attributes that have a strong dependency relation with the runtime can form 
a good similarity template. Having cast the problem of application runtime as a rough 
information system, we can examine the fundamental concepts that are applicable in 
determining the similarity template.  

The objective of similarity templates in application runtime estimation is to iden-
tify a set of characteristics on the basis of which we can compare applications. We 
could try identical matching, i.e. if n characteristics are recorded in the history, two 
applications are similar if they are identical with respect to all n properties. However, 
this considerably limits our ability to find similar applications because not all re-
corded properties are necessarily relevant in determining the runtime. Such an ap-
proach could also lead to errors, as applications that have important similarities might 
be considered dissimilar even if they differed in a characteristic that had little bearing 
on the runtime. 

A similarity template should consist of the most important set of attributes that de-
termine the runtime without any superfluous attributes. A reduct consists of the mini-
mal set of condition attributes that have the same discerning power as the entire in-
formation system. In other words, the similarity template is equivalent to a reduct that 
includes the most significant attributes. Finding a reduct is similar to feature selection 
problem. All reducts of a dataset can be found by constructing a kind of discernibility 
function from the dataset and simplifying it. Unfortunately, it has been shown that 
finding minimal reduct or all reducts are both NP-hard problems. Some heuristics 
algorithms have been proposed. Hu gave an algorithm using significant of attribute as 
heuristics [9]. Starzyk used strong equivalence to simplify discernibility function [10]. 
Some algorithms using genetic algorithm have been also proposed. However, there 
are no universal solutions. It’s still an open problem in rough set theory.  

Rough sets theory has highly suitable and appropriate constructs for identifying the 
properties that best define similarity for estimating application runtime. A similarity 
template must include attributes that significantly affect the runtime and eliminate 
those that don't. This ensures that the criteria with which we compare applications for 
similarity have a significant bearing on determining runtime. Consequently, applica-
tions that have the same characteristics with respect to these criteria will have similar 
runtimes.  

In this paper, we propose a simple but useful heuristic reduct algorithm using dis-
cernibility matrix. The algorithm is based on frequencies of attributes appeared in 
discernibility matrix.  

4   Heuristic Reduct Algorithm and Application Runtime 
Estimation Algorithm 

In this section, we first recall necessary rough set notions [11] used in this section, 
and then present the reduct algorithm and application runtime estimation algorithm. 

4.1   Related Rough Set Concepts 

Definition 1 (information system). An information system is an ordered pair S=(U, 
A {d}), where U is a non-empty, finite set called the universe, A is a non-empty, 



 Rough Set Based Computation Times Estimation on Knowledge Grid 561 

 

finite set of conditional attributes, d is a decision attribute. A {d} = . The elements 
of the universe are called objects or instances.  

Information system contains knowledge about a set of objects in term of a prede-
fined set of attributes. The set of objects is called concept in rough set theory. In order 
to represent or approximate these concepts, an equivalence relation is defined. The 
equivalence classes of the equivalence relation, which are the minimal blocks of the 
information system, can be used to approximate these concepts. Concept can be con-
structed from these blocks are called definable sets. As to undefinable sets, two defin-
able sets, upper-approximation set and lower-approximation set are constructed to 
approximate the concept.  

Definition 2 (Indiscernibility relation). Let S=(U,A {d}) be an information system, 
every subset B ⊆ A defines an equivalence relation IND(B),called an indiscernibility 

relation,defined as IND(B)={(x,y) U×U:a(x)=a(y) for every a  B}.  

Definition 3 (Positive region). Given an information system S= (U,A {d}), let 
X ⊆ U be a set of objects and B ⊆ A a selected set of attributes. The lower approxima-
tion of X with respect to B is B*(X)={x∈U:[x]B ⊆ X}. The upper approximation of X 
with respect to B is B*(X)={x∈U: [x]B X }. The positive region of decision d with 
respect to B is POSB(d)= {B*(X):X U/IND(d)}  

The positive region of decision attribute with respect to B represents approximate 
quantity of B. Not all attributes are necessary while preserving the approximate quan-
tity of the original information system. Reduct is the minimal set of attribute preserv-
ing approximate quantity.  

Definition 4 (Reduct). An attribute a is dispensable in B ⊆ A if POSB(d)= POSB-{a}(d). 

A reduct of B is a set of attributes B’ ⊆ B such that all attributes a B-B’ are dispen-
sable, and POSB(d)= POSB’(d).  

There are usually many reducts in an information system. In fact, one can show 

that the number of reducts of an information system may be up to C
|A|/2

|A|. In order to 
find reducts, discernibility matrix and discernibility function are introduced.  

Definition 5 (discernibility matrix). The discernibility matrix of an information sys-
tem is a symmetric |U|×|U| matrix with entries cij defined as {a A|a(xi) a(xj)} if 
d(xi) d(xj),  otherwise. A discernibility function can be constructed from discernibil-
ity matrix by or-ing all attributes in cij and then and-ing all of them together. After 
simplifying the discernibility function using absorption law, the set of all prime impli-
cants determines the set of all reducts of the information system.  

4.2   Heuristic Reduct Algorithm 

The heuristic comes from the fact that intersection of a reduct and every items of 
discernibility matrix can not be empty. If there are any empty intersections between 
some item cij with some reduct, object i and object j would be indiscernible to the 
reduct. And this contradicts the definition that reduct is the minimal attribute set dis-
cerning all objects (assuming the dataset is consistent).  



562 K. Gao et al. 

 

A straightforward algorithm can be constructed based on the heuristic. Let candi-
date reduct set R= . We examine every entry cij of discernibility matrix. If their inter-
section is empty, a random attribute from cij is picked and inserted in R; skip the entry 
otherwise. Repeat the procedure until all entries of discernibility matrix are examined. 
We get the reduct in R.  

The algorithm is simple and straightforward. However, in most times what we get 
is not reduct itself but superset of reduct. For example, there are three entries in the 
matrix: {a1, a3}, {a2, a3}, {a3}. According the algorithm, we get the reduct {a1, a2, a3} 
although it is obvious {a3} is the only reduct. This is because our heuristic is a neces-
sary but not sufficient condition for a reduct. The reduct must be a minimal one. The 
above algorithm does not consider this. In order to find reduct, especially shorter 
reduct in most times, we need more heuristics.  

A simple yet powerful method is to sort the discernibility matrix according to |cij|. 
As we know, if there is only one element in cij, it must be a member of the reduct. We 
can image that attributes in shorter and frequent |cij| contribute more classification 
power to the reduct. After sorting, we can first pick up more powerful attributes, 
avoid situations like in the example mentioned above, and more likely get optimal or 
sub-optimal reduct.  

The sort procedure is like this. First, all the same entries in the discernibility matrix 
are merged and their frequency is recorded. Then the matrix is sorted according to the 
length of every entry. If two entries have the same length, more frequent entry takes 
precedence.  

Input: an information system (U, A {d}), where A= ai, i=1,…,n. 
Output: a reduct Red 

1. Red= , count (ai) =0, for i=1,…n. 
2. Generate discernibility matrix M and count frequency of every attribute 

count(ai); 
3. Merge and sort discernibility matrix M; 
4. For every entry m in M do 
5. If (m Red = = ) 
6. select attribute a with maximal count(a) in m 
7. Red=Red {a} 
8. Endif 
9. EndFor  

10. Return Red 

Fig. 1. A Heuristic Reduct Algorithm 

When generating the discernibility matrix, the frequency of every individual attrib-
ute is also counted for later use. The frequencies are used in helping picking up attrib-
ute when it is needed to pick up one attribute from some entry to insert into the re-
duct. The idea is that a more frequent attribute is more likely to be a member of the 
reduct. The counting process is weighted. Similarly, attributes appeared in shorter 
entry get higher weight. When a new entry c is computed, the frequency of the corre-
sponding attribute f(a) is updated as f(a)=f(a)+|A|/|c|, for every a c; where |A| is 



 Rough Set Based Computation Times Estimation on Knowledge Grid 563 

 

total attribute of information system. For example, let f (a1) =3, f (a3) =4, the system 
have 10 attributes in total, and the new entry is {a1, a3}. Then frequencies after this 
entry can be computed: f(a1)=3+10/2=8; f(a3)=4+10/2=9.  

Fig. 1 is a heuristic reduct algorithm written in pseudo-code. In line 2, when a new 
entry c of M is computed, count(ai) is updated. count(ai):=count(ai)+n/|c| for every 
ai |c|. In line 3, the same entries are merged and M is sorted according to the length 
and frequency of every entry. Line 4-9 traverses M and generates the reduct. 

4.3   Application Runtime Estimation Algorithm  

Let's now look at the estimation algorithm as a whole. Its input is a history record of 
application characteristics collected over time, specifically including actual recorded 
runtimes, and a task T with known parameters whose runtime we wish to estimate.  

Step 1. Partition the history into decision and condition attributes. The recorded 
runtime is the decision attribute, and the other recorded characteristics are the condi-
tion attributes. The approach is to record a comprehensive history of all possible sta-
tistics with respect to an application because identifying the attributes that determine 
the runtime isn't always possible.  

Step 2. Apply the rough sets algorithm to the history and identify the similarity 
template.  

Step 3. Combine the current task T with the history H to form a current history HT.  
Step 4. Determine from HT the equivalence classes with respect to the identified 

similarity templates. This implies grouping into classes previous tasks in the history 
that are identical with respect to the similarity template. Because the similarity tem-
plate generated using rough sets is a reduct, this leads to the equivalence classes con-
sisting of previous tasks that are identical with respect to the characteristics that have 
the most significant bearing on the runtime. In this case, rough sets provide a basis for 
identifying the similarity template and finding previous tasks that match the current 
task by the intuitive use of equivalence classes. Thus, we integrate the process of 
matching the current task with previous tasks in the history into the overall process of 
estimating application runtime.  

Step 5. Identify the equivalence class EQ to which T belongs.  
Step 6. Compute the mean of the runtimes of the objects: EQ  H.  

Input: History of tasks=H, Current task for which the runtime has to be esti-
mated=T. 
Output: Estimated runtime EST. 

1. Partition H such that the runtime is the decision attribute and all the other recorded 
characteristics are the condition attributes.  

2. Apply the rough sets algorithm to the history and generate a similarity template ST.  
3. Let HT = H + T, where H and T are union compatible.  
4. Compute equivalence classes of HT with respect to ST.  
5. Identify the equivalence class EQT to which T belongs.  
6. Compute the mean of the recorded runtimes EST in H for all objects in EQT. 

Fig. 2. Application Runtime Estimation Algorithm 
 



564 K. Gao et al. 

 

The formal algorithm Fig. 2 offers a formal view of the estimation algorithm. As 
we explained previously, the entire process of identifying similarity templates and 
matching tasks to similar tasks is based on rough sets theory, thereby providing an 
appropriate solution with a strong mathematical underpinning.  

5   Experiments and Results  

This experiment aims to validate the prediction accuracy of our rough sets algorithm 
and investigate the impact of varying the number of condition attributes on prediction 
performance. We applied our approach in estimating the computation times of data 
mining tasks. We differentiated the test case from the historical records by removing 
the runtime information and varying the number of attributes. Thus, all test cases 
consist of attributes specified except the recorded runtime. The runtime included data 
transmission and algorithm execution. The idea was to determine an estimated run-
time using our prediction technique and compare it with the task's actual runtime.  

We compiled a history of data mining tasks by running several data mining algo-
rithms and recording information about the tasks and environment. We executed sev-
eral runs of data mining jobs by varying the jobs' parameters such as the mining algo-
rithm, the data sets, and the sizes of the data sets and so on. Several data sets with 
sizes varying from 1 to 20 Mbytes were generated.  

Table 1. Condition Attributes and Corresponding Reduct in Each Experiment 

Experiment  
Number 

Condition Attributes Reduct 

1 time, algorithm, parameter, disk cache, data 
size 

algorithm, parameter, data 
size 

2 operating system, time, algorithm, parame-
ter, disk cache, data size, dimensionality, 
file name 

algorithm, parameter, data 
size, dimensionality 

3 CPU type, operating system, time, algo-
rithm, parameter, disk cache, data size, 
dimensionality,  file name, operating sys-
tem version, CPU speed 

algorithm, parameter, data 
size, dimensionality, CPU 
speed 

4 memory type, CPU type, operating system, 
time, algorithm, parameter, disk cache, data 
size, dimensionality, file name, operating 
system version, CPU speed, available 
memory, disk type 

algorithm, parameter, data 
size, dimensionality, CPU 
speed, available memory 

5 IP, memory type, CPU type, operating 
system, time, algorithm, parameter, disk 
cache, data size, dimensionality, file name, 
operating system version, CPU speed, 
available memory, disk type, bandwidth, 
mainboard bus 

algorithm, parameter, data 
size, dimensionality, CPU 
speed, available memory, 
bandwidth 



 Rough Set Based Computation Times Estimation on Knowledge Grid 565 

 

The simulated environment is similar to an actual Grid environment. It is com-
posed of fifteen machines installed with GT3. Those machines have different physical 
configurations (CPU, memory, disk, and network adaptor etc.), operating systems 
(windows 2000 and Linux) and bandwidth of network. We used histories with 100 
and 150 records and each experimental run consisted of 25 tests. Table 1 shows the 
condition attributes and corresponding reduct in each experiment. Fig. 3 illustrates the 
impact of prediction performance by varying the number of condition attributes. 

Impact of Varying Condition Attributes on Prediction 
Performance

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

Experiment Number

M
ea

n 
E

rr
or

/M
ea

n 
R

un
 

T
im

es
(%

)

 
Fig. 3. The Number of Condition Attributes Vs. Prediction Performance 

The measure used for comparison is the percentage of the mean error to the mean 
run times. A lower value indicates the better prediction accuracy. The result we re-
corded was 9.28%. It is very low, which indicates that we obtained very good estima-
tion accuracy for data mining tasks. Because rough sets operate entirely on the basis 
of the condition attributes available in the history and require no external additional 
information, thus the more abundant the information correlating with performance, 
the more accurate the prediction is. 

6   Conclusion 

We have presented a novel rough sets approach to estimating application run times. 
The approach is based on frequencies of attributes appeared in discernibility matrix. 
The theoretical foundation of rough sets provides an intuitive solution to the problem 
of application run time estimation on Knowledge Grid. Our hypothesis that rough sets 
are suitable for estimating application run time in Grid environment is validated by 
the experimental results, which demonstrate the good prediction accuracy of our ap-
proach. The estimation technique presented in this paper is generic and can be applied 
to other optimization problems. 



566 K. Gao et al. 

 

References 

1. D. Talia and M. Cannataro, Knowledge grid: An architecture for distributed knowledge 
discovery, Communications of the ACM, 2002. 

2. I. Foster and C. Kasselman, The Grid: blueprint for a future infrastructure. Morgan Kauf-
man, 1999. 

3. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, The Data Grid: to-
wards an architecture for the distributed management and analysis of large scientific data-
sets. J. of Network and Comp. Appl., (23):187–200, 2001. 

4. A.B. Downey, Predicting Queue Times on Space-Sharing Parallel Computers, In Proceed-
ings of the 11th International Parallel Processing Symposium, pp.209-218, 1997. 

5. R. Gibbons, A Historical Application Profiler for Use by Parallel Schedulers. Lecture 
Notes on Computer Science, Vol. 1297, pp.58-75, 1997. 

6. W. Smith , I. Foster, and V. Taylor , Predicting Application Runtimes Using Historical In-
formation, Job Scheduling Strategies for Parallel Processing: IPPS/SPDP'98 Workshop, 
LNCS 1459, Springer-Verlag, pp.122-142,1998. 

7. W. Smith , V. Taylor, and I. Foster, Using Runtime Predictions to Estimate Queue Wait 
Times and Improve Scheduler Performance, Job Scheduling Strategies for Parallel Proc-
essing , LNCS 1659, D.G. Feitelson and L.Rudolph, eds., Springer-Verlag, pp. 202-
229,1999. 

8. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, Scheduling high performance data 
mining tasks on a data grid environment. In Proceedings of Europar, 2002. 

9. X. Hu, Knowledge discovery in databases: An attribute-oriented rough set approach, Ph.D 
thesis, Regina university, 1995. 

10. J. Starzyk, D.E.Nelson, K.Sturtz, Reduct generation in information systems, Bulletin of 
international rough set society, volume 3, 19-22, 1998. 

11. J. Komorowski , et al., Rough Sets: A Tutorial, Rough-Fuzzy Hybridization: A New Trend 
in Decision Making , S.K. Pal and A. Skowron, eds., Springer-Verlag, pp. 3-98, 1998. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 567 – 577, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Behavior Characteristics-Based Reputation  
Evaluation Method for Grid Entities 1 

Xiangli Qu, Xuejun Yang, Yuhua Tang, and Haifang Zhou 

School of Computer Science, National University of Defense Technology,  
Changsha, China, 410073 
cathysmile@eyou.com 

Abstract. Reputation provides an operable metric for trust establishment 
between unknown entities in Grid. Yet, most reputation evaluation methods 
rarely analyze an entity's past behaviors, which is a deviation from the 
definition of reputation: an expectation for future behaviors based on past 
behavior information. Therefore, we propose this behavior-based method for 
reputation evaluation. The main idea is that: according to reputation evidences 
from third parties, behavior characteristics such as behavior coherence, 
behavior inertia etc will be well abstracted, and reputation evaluation will be 
better guided. Experimental results show that: this method can effectively 
characterize an entity's behavior, and the final reputation result is reasonable 
and reliable.  

Keywords: reputation, Grid, approximation, behavior coherence factor, behavior 
inertia degree. 

1   Introduction 

It shows from survey that, in Grid, collaborations often cross organizational lines, 
underscoring the significance of inter-organizational trust. The responses showed a 
high level of communication and collaboration with people from outside the 
respondent's department (90%), outside their company or organization (82%), and 
outside their country (69%) [11]. Therefore, in open Grid circumstances with large-
scale resource sharing, it is frequent for unknown entities to interact and collaborate 
with each other. To guarantee smooth ongoing of such cooperation, certain trust 
relationship must be established among cooperative entities. For completely unknown 
entities, traditional identity-based trust system obviously cannot work well. In such 
case, third parties' participation becomes a necessity for trust establishment; 
meanwhile, Grid's inherent sharing and cooperative characteristics provide an 

                                                           
1 This work is partially supported by the National 863 High Technology Plan of China under 

the grant No. 2002AA1Z201, China 863 OS New Technologies Research under the grant No. 
2003AA1Z2063 and the Grid Project sponsored by China ministry of education under the 
grant No. CG2003-GA00103. 



568 X. Qu et al. 

 

excellent support for this. Using shared information in Grid, analyzing evidence of an 
entity's past behavior, evaluating its trustworthiness, based on which dynamically 
establishing corresponding trust relationship, this is the basic idea of reputation 
mechanism in Grid.  

For the whole mechanism to succeed, it is crucial to perform a scientific analysis of 
behavior evidence from third parties and give a reasonable evaluation of an entity's 
reputation. Yet, in current reputation evaluation, it is usually the evaluation result 
from third parties that is directly used in combination, with no analysis of original 
evidence, and as a result analysis of an entity's past behavior is neglected [3] [4] [5] 
[9]. We believe, for lack of an overall study of an entity's behavior characteristics, it is 
hard for such methods to give a reasonable and convincing evaluation result. In fact, 
reputation in itself means the expectation of an entity's future behavior based on 
information about its past behavior, therefore, analysis of past behavior should be the 
first step for reputation evaluation. So, we propose this behavior characteristics-based 
reputation evaluation method. According to the idea of approximation in Fuzzy Set 
theory [1] [2], we introduce the notion of behavior coherence factor CF, as well as 
behavior inertia degree (including PID (Positive Inertia Degree) and NID (Negative 
Inertia Degree)) and behavior deviation BD, based on which behavior eigenvector BE 
is constituted to be an abstract of entity's behavior characteristics so as to guide the 
evaluation of Grid entities' reputation. Experiments show that, reputation evaluated 
with this method is reliable and reasonable, which can scientifically represent the 
overall trend of entities' behavior.  

The rest of this paper is organized as follows: a brief introduction of current 
reputation evaluation method is outlined in section 2; some basic definitions and 
notations used in this paper are stated in section 3; reputation evaluation methods 
based on evidence from a single entity and multiple entities are detailed in section 4 
and section 5 respectively; specific tests and results are presented in section 6; and 
finally in section 7 the whole paper is concluded and future work is considered.  

2   Related Work 

The idea of reputation is firstly used in Electronic Commerce, online communities 
[15], such as eBay, Amazon and so on. Recently, it is introduced to multi-agent 
systems, P2P systems and Grid systems [3] [4] [9] [12] [13] [16]. 

In [12], an EigenTrust mechanism is proposed, which aggregates local trust values 
according to the notion of transitive trust. During its evaluation process, a kind of 
normalization is presumed: trust values held by entities are normalized, and their sum is 
1. Though this has very good mathematical characteristics: the trust matrix produced is 
a Markov matrix, and the global trust values just correspond to its left principal 
eigenvector. But, for the introduction of normalization process, much useful original 
information is lost. 

In [9], Grid Eigen trust, a framework for reputation computing in Grid is introduced. 
It adopts a hierarchical model, reputation computing is performed from 3 levels: VO, 
Institution and Entity, that is, an entity's reputation is computed as weighted average of 
new and old reputation values, an institution's reputation is computed as the eigenvalue 
of composing entities' reputation matrix, and a VO's reputation is computed as weighted 
average of all composing institution's reputation value.  



 A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 569 

 

In [14] reputation evaluation is based on "Web of Trust". There are two 
interpretations: Path Algebra Interpretation and Probabilistic Interpretation. Path 
Algebra Interpretation is performed as follows: 1. Enumerate all (possibly exponential 
number of) paths between the user and every user with a personal belief in the 
statement; 2. calculate the belief associated with each path by applying a 
concatenation function (such as multiplication and minimum value etc.) to the trusts 
along the path and also the personal belief held by the final node; 3. Combine those 
beliefs with an aggregation function. Probabilistic Interpretation makes a weighted 
average of local merged belief and neighbor merged belief. 

In [16], Dempster-Shafer theory is adopted as the underlying computing 
framework, and reputation is combined by means of orthogonal sum of mass function. 

Generally speaking, all these existing methods are directly performed on the 
evaluation result from third parties, with little utilization of those reputation evidences 
from real interaction. In fact, it is such original information that records an entity's 
behavior track. If we can perform some analysis of them, it will be easy to 
characterize an entity's behavior. Moreover, reputation by itself is the expectation of 
future behavior according to information about past behavior. Therefore, we cannot 
get a reliable, reasonable and convincing evaluation result unless it is done according 
to an entity's behavior characteristics. Actually, in Grid it is not difficult to get such 
reputation related behavior evidence. For example: the Service Negotiation and 
Acquisition Protocol (SNAP) proposed in [8] gives 3 kinds of service level agreement: 
RSLA (Resource Service Level Agreement), TSLA (Task Service Level Agreement) 
and BSLA (Binding Service Level Agreement). The 3 agreements supplement each 
other, clarify a service's provider, user and binding, specify an entity's capability, and 
concretize interaction context. Therefore, once the reputation value assessed for each 
cooperator in an interaction is inserted to the above agreement, it can become 
behavior evidence for us. Storing these evidences to our Grid information system, we 
can get related evidence for reputation evaluation as needed anytime and anywhere. 
Our work is done based on this assumption.   

3   Related Definitions and Notations 

Some definitions and notations used in this paper are given in the following:  

Definition 1. Reputation  In this paper, we define reputation as an expectation of 
future behavior based on information about past behavior, whose value is within the 
scope of [0, 1]. 

Definition 2. Reputation Evidence   It is a specific assessment of an entity's behavior 
in some interaction given by its cooperative counterpart according to their agreement, 
whose value is within the scope of [0, 1], denoted as >< ji e,e,tR , that is: for the 

interaction occurring at time (the period of) t  between entity ie  and je , ie  assesses 

je 's behavior reputation as R . The higher the value of R , the trustworthier je  is. For 

the set of reputation evidence ie  given to je , following the notations in Fuzzy Set, 



570 X. Qu et al. 

 

we use { } >< ji ,eenn1100 tR...,,tR,tR  to denote that for the interaction occurring at 

time (the period of) kt , ie  assesses je 's behavior reputation as kR  (elements in the 

set are ordered according to time). 

Definition 3. Behavior Coherence Factor  denoted as CF (CF∈ [0,1]), characterizing 
when an entity cooperates with different entities at different period, to what degree its 
behavior is coherent. The higher the value of CF, the more coherent its behavior is. It 
includes Time Coherence Factor TCF and Entity Coherence Factor ECF. TCF reflects 
to what degree an entity's behavior is coherent when interacting with the same entity 
at different period, while ECF reflects to what degree an entity's behavior is coherent 
when interacting with different entities at the same period. 

Definition 4. Behavior Inertia  reflects the overall changing trend of an entity, 
including Positive Inertia Degree PID and Negative Inertia Degree NID. PID reflects 
how the trend that an entity's behavior is more and more satisfying with the increase 
of time is, whose value is within the scope of [0, 1]. The higher the value of PID, the 
stronger an entity's better-behaving trend is, while NID denotes an entity's worse-
behaving trend.  

Definition 5. Behavior Deviation  denoted as BD, reflects to what degree an entity's 
behavior fluctuates. BD∈ [0, 1]. 

Definition 6. Trustworthy entity  We believe a trustworthy entity should embody the 
following characteristics: the satisfying degrees given by cooperative counterparts are 
generally high; its behavior is basically stable: behaves basically coherently when 
interacting with different entities and at different time; the overall behavior embodies 
a well-evolving trend.  

4   Reputation Evaluation Based on Evidence Set from a Single 
Entity 

To begin with, we will evaluate entity je 's reputation based on evidence set 

{ } ><=
ji ,eenn1100 tR...,,tR,tRE  from a single entity ie . 

4.1 Behavior Characterization 

According to the fact that reputation decays with time, the most recent reputation 
evidence nn tR  has the most deciding effect in the whole evidence set. Therefore, 

we choose it as a criterion to construct a standard set 
{ } ><=

ji ,eenn1n0n0 tR...,,tR,tRE . For the inherent fuzzy character of reputation, 

the two set can both be viewed as a fuzzy set.  

1. TCF 
For evidence set from a single entity, we will study the behavior coherence for 
interactions with the same entity during the period selected evidence set spans, that is, 



 A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 571 

 

TCF is used to evaluate behavior coherence. Since each evidence in the set is given 
from a same evaluator, therefore the criterion to evaluate each interaction is relatively 
fixed; under this precondition it is reasonable to compare reputation values of each 
time. In the specific coherence analysis, we borrow the idea of approximation from 
Fuzzy Set theory. Since in Fuzzy Set theory, approximation characterizes how two 
fuzzy sets approximate each other [1], to some degree the approximation of the two 
sets E  and 0E  reflects the time coherence of an entity's behavior. In the specific 

calculation, we can choose Hamming approximation, Euclid approximation and so on:  
For Hamming approximation, we will get: 

==

Δ
−

+
−=−

+
−==

n

0i
i

n

0i
0i0 nRR

1n

1
1)i(RE)E(R

1n

1
1)N(E,ETCF

 

(1) 

For Euclid approximation, we will get: 

1/2
n

0i

2
i

1/2
n

0i

2
0i0 ))nR(R(

1n

1
1)))i(RE)(E(R(

1n

1
1)N(E,ETCF

==

Δ
−

+
−=−

+
−==  (2) 

2. Inertial Degree 
PID is used to describe an entity's well-behaving trend for the spanned time period. Its 
calculation is very simple: just compare neighboring reputation values one by one, if 
the count of instances where the successor has a greater value than its predecessor is 
m, then: 

m/nPID =  (3) 

As opposed to the above, if the count of instances where the successor has a 
smaller value than its predecessor is l, then l/nNID = . 

If PID is greater than NID, it shows that the entity's reputation embodies a steadily 
increasing trend, and the more closely PID approaches 1, the more evident this trend 
is; If PID=NID, it shows that the entity's reputation fluctuates upward and downward, 
and the overall trend is not clear; if PID is smaller than NID, it shows that the entity's 
reputation embodies a steadily decreasing trend, and the more PID approaches 0, the 
more evident this trend is. Noted that, the sum of PID and NID is not always 1, since 
sometimes the neighboring reputation value is equal.  

3. BD 
BD reflects, in standard of nn tR , other evidences' average deviation, which is 

calculated as Equation (4) shows: 

n

RR

BD

1n

0i
in

−

=

−
=  

(4) 

4. Behavior Eigenvector BE 
For single entity based evidence set, BE=(TCF, PID, NID, BD  



572 X. Qu et al. 

 

4.2   Reputation Evaluation 

By means of BE, we characterize entity je 's behavior when interacting with entity 

ie , based on which we will evaluate je 's reputation as Equation (5) shows: 

<−∗

=∗

>−+∗

=><

NID      PID          0)        BD ,Rmax(TCF

NIDPID                                                  RTCF

NID      PID)         R1min(BD,RTCF

R wavg

wavgwavg

wavg

e,e ji
 (5) 

Herein, wavgR  denotes the time-decaying weighted average of all reputation 

evidences from set E , and its calculation is: 

=

=

∗
=

n

0i
i

n

0i
ii

wavg

)D(t

R)D(t

R  (6) 

Wherein D(t)  is a time decaying function. Here, we use the fact that reputation 

will decay with time. 
Obviously, 0<TCF ≤ 1, and )R1min(BD, wavg− ≤ 1- wavgR , so 

10 =−+≤−+∗< wavgwavgwavgwavg R1R)R1min(BD,RTCF ; Similarly, it is 

easy to get that 10 <∗< wavgRTCF  and 10 <−∗≤ BD ,0)Rmax(TCF wavg ; 

therefore >< ji ,eeR ∈[0,1] and >< ji ,eeR  is a kind of reputation. From Equation (5) and 

(6), it can be seen that, this method considers such behavior characteristics as 
coherence, inertia and deviation, as well as the time decaying characteristics of 
reputation.  

5   Reputation Evaluation Based on Evidence Sets from Multiple 
Entities 

Reputation evaluation based on evidence sets from multiple entities is established on 
the basis of evaluation based on evidence set from a single entity. Before evaluating, 
we should first perform evaluation on each evidence set from a single entity according 
to the method given in section 4. Note that, to guarantee the comparability of 
evidence sets, and with the consideration of the fact that reputation decays with time, 
we should select evidence sets with approximately same time span when acquiring 
evidence sets from Grid information service. Suppose that, we get p evidence sets 

from different entities 0e , 1e 1pe − , which constitute the reputation evidence set 



 A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 573 

 

for entity e , where evidence set from entity ke  is denoted as 

{ } ><= ,eenn1100k k
tR...,,tR,tRE . Noted that, here it  is a period of time. In fact, 

some process should be performed on the original evidence set to get such evidence 
set with time correspondence: if there are several evidences in the original evidence 
set during the period of it , iR  is computed as their time-decaying weighted average, 

as is illustrated in Equation (6); if there is no evidence during the period of it , iR  

will take the value of the final reputation result for corresponding single evidence set, 
which is computed according to Equation (5). 

5.1   Behavior Characterization 

Behavior characterization is still the first step in our reputation evaluation. For 
evidence sets from multiple entities, our analysis mainly focuses on entity coherence. 
Similar to the evaluating method for time coherence, it is necessary to find a standard 
set for comparison. This is chosen as follows: according to past interaction 
experience, choose a most trustworthy entity, suppose it is 0e , then we will use its 

evidence set as the standard set. If it happens that all the p entities are unknown, 
randomly select one as the standard. The next step is analyzing the entity coherence 
factor for each evidence set as compared to 0E , taking mE as an example: 

Since there is some difference between assessments of the same behavior from 
different entities, we adopt a relaxed model in ECF calculation though the basic idea 
still comes from approximation in Fuzzy Set theory. We make comparison of coarser 
granularity, the specific computing step is as follows: 

Step 1. Compute the difference set EΔ : 

0,1...nii

0imi

0,1...nii

i
m,0 t

RR
t

RE
=

><><

=
><

−=Δ=Δ  (7) 

Step 2. Perform a classification of EΔ according to the criterion 
>< tdiscoherenfuzzycoherent ,, σσσ  (where 10 tdiscoherenfuzzycoherent <<<< σσσ ), and 

divide EΔ into 4 subsets: coherent subset cE , comparatively coherent subset chalfE − , 

comparatively discoherent subset dischalfE −  and discoherent subset discE : 

∈Δ

∈Δ

∈Δ
∈Δ

∈Δ
−

−

],[RE

)    ,[R       E

) ,[           E

)   [0,R                 E

R

discohrenti               disc      

discohrentfuzzyidischalf

fuzzycohrentichafl

cohrentic

i

1

R
 (8) 



574 X. Qu et al. 

 

Step 3. Compute ECF: according to the weighted coherence vector 
>< discdisc-halfc-halfc ,,, ωωωω  ( 01 discdisc-halfc-halfc ≥>>>≥ ωωωω ), ECF 

between 0E  and mE  is computed as follows: 

5.2   Reputation Evaluation 

With ECF, the method we use to evaluate entity e's reputation is given in Equation 
(10) (where 1ECF 0,0 =>< ): 

6   Experimental Results 

For the behavior characteristics-based reputation evaluation method stated above, we 
performed a series of simulated experiments. Results show that our method makes a 
good characterization of entity's past behavior, and the reputation result is relatively 
reliable and reasonable. In the following experiments, each evidence set from a single 
entity includes 10 evidences, and the 10 evidences are distributed within same time 
interval. In the experiment, we use Hamming approximation method, as is shown in 
Equation (1), to calculate TCF. And the time decaying function D(t) adopted is:  

6.1   Experiments for Evidence Set from a Single Entity 

Since the evaluation of reputation is established on the basis of information about past 
behavior, in our experiments various kind of behavior modes (mainly focusing on 
behavior coherence and evolving trend) are used, so as to test the effectiveness and 
reasonability of this behavior characteristics-based reputation evaluation method. In 
the experiments for evidence set from a single entity, we simulate 7 kinds of behavior 
mode. In Table 1, results from our method and from commonly used time-decaying 
weighted average method are compared: 

From Table 1, it can be seen that our method has taken each entity's behavior 
characteristics into account: those entities with high coherence and obvious well-
behaving trend get higher reputation. Compared with time-decaying weighted average 
method, our method can characterize an entity's behaving trend as a whole, 

><

−−
>< Δ

∗+∗+∗+∗
=

m,0

discdischalf-discdischalfhalf-cchalfcc

m,0
E

EEEE
ECF

ωωωω
 (9)

−

=
><

−

=
><><

><

∗
=

− 1p

0i
i,0

1p

0i
i,0,ee

,e,...,e,ee

ECF

ECFR

R
i

1p10
 (10) 

9n0,1,...9,ie)D(t in
i === −−  (11) 



 A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 575 

 

scientifically integrate information about past behavior, and have a reliable prediction 
of future trend. It is not difficult to see that, this method well matches what we 
defined as a trustworthy entity in section 3: only those entities with coherent behavior 
and well-evolving trend are trustworthy entities.  

Table 1. Experimental results for evidence set from a single entity 

Original evidence Evaluation result 

Entity 
Behavior 

Mode 
0t  

1t  2t  3t  4t  5t  6t 7t  8t  9t  
Our 

method 

Weighted 
average 
method 

0 
Basically 
Stable 

0.81 0.82 0.81 0.81 0.82 0.82 0.83 0.83 0.82 0.82 0.818 0.821 

1 
Completely 
Stable 

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

2 
Steadily 
Increasing 

0.7 0.7 0.75 0.75 0.8 0.8 0.8 0.85 0.85 0.85 0.845 0.827 

3 
Continuously 
Increasing 

0.78 0.8 0.83 0.85 0.87 0.88 0.89 0.90 0.91 0.92 0.910 0.898 

4 Fluctuating 0.8 0.7 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.724 0.762 

5 
Steadily 
Decreasing 

0.84 0.83 0.83 0.82 0.82 0.82 0.81 0.81 0.8 0.8 0.772 0.807 

6 
Continuously 
Decreasing 

0.92 0.91 0.9 0.89 0.88 0.87 0.85 0.84 0.83 0.82 0.741 0.841 

6.2   Experiments for Evidence Sets from Multiple Entities 

In experiments for evidence sets from multiple entities, the selected classification 
criterion >< tdiscoherenfuzzycoherent ,, σσσ is <0.1,0.2,0.3>, and the weighted coherence 

vector >< discdisc-halfc-halfc ,,, ωωωω  is <1,0.6,0.3,0>. Next, we will take the 7 

evidence sets from Table 1 as an example to perform our evaluation. Deem that the 
entity of "basically stable" behavior mode is the most trustworthy entity, taking its 
evidence set as a standard, we get the following ECF results: 

>< 01ECF =1; >< 02ECF =0.92; >< 03ECF =0.96; >< 04ECF =0.8; >< 05ECF =1; >< 06ECF =0.96 

Refer to the reputation distribution curve in Figure 1, we can see that the ECF 
result above is reasonable.  

And according to Equation (10), the final result of reputation is: 0.808. 

7   Conclusions and Future Work 

In this paper, we give a behavior characteristics-based reputation evaluation method 
for Grid entities. Its underlying idea is a good match to the definition of reputation: an 
expectation of future behavior according to information about past behavior. This 



576 X. Qu et al. 

 

method focuses on analysis of an entity's behavior coherence (including time 
coherence and entity coherence) and inertia, based on which reputation evaluation for 
evidence set from a single entity and multiple entities is performed. Experiments 
show that, this method can well characterize an entity's behavior and get reliable and 
reasonable evaluation results.  

Currently, the analysis of behavior characteristics for multiple entities-based 
evidence sets only involves behavior coherence between entities, therefore we hope 
that more behavior characteristics can be abstracted as a better guide for reputation 
evaluation for evidence sets from multiple entities.  

And as mentioned in Section 2, our work is largely based on the assumption that 
we have real reputation data of each participant in an interaction. For all the 
processing relating to this kind of data, such as gathering, storing, accessing etc., we 
propose to implement a Grid Reputation Service as proposed in [17]. An 
implementation of this service is another work to be done. 

 

Fig. 1. The data distribution of 7 types of evidences (From 1 to 7 are: basically stable, 
completely stable, steadily increasing, continuously increasing, fluctuating, steadily decreasing 
and continuously decreasing.) 

References 

1. L.B. Yang and Y.Y.: Gao The Theory and Application of Fuzzy Sets (Second Edition). 
South China University of Technology Press (1996) 

2. C.Z. Luo: An Introduction to Fuzzy Sets (I). Beijing Normal University Press (1989) 



 A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 577 

 

3. Beulah Kurian Alunkal, Ivana Veljkovic, Gregor von Laszewski, and Kaizar Amin1: 
Reputation-Based Grid Resource Selection. AGridM 2003: Workshop on Adaptive Grid 
Middleware (September 28, 2003) 

4. Farag Azzedin and Muthucumaru Maheswaran: Evolving and Managing Trust in Grid 
Computing Systems. Proceedings of the 2002 IEEE Canadian Conference on Electrical 
Computer Engineering 

5. G. Zacharia and P. Maes: Trust Management through Reputation Mechanisms. Applied 
Artificial Intelligence 14 (2000) 881~907 

6. S. P. Marsh: Formalising trust as a computational concept. Ph.D. Thesis (1994) 
7. Michael Schillo, Petra Funk and Michael Rovatsos: Using Trust for Detecting Deceitful 

Agents in Artificial Societies. Applied Artificial Intelligence, 14 (2000) 825~848 
8. K.Czajkowski, I.Foster, C.Kesselman: “SNAP:A Protocol for Negotiating Service Level 

Agreements and Coordinating Resource Management in Distributed Systems”, Lecture 
Notes in Computer Science, Vol. 2537. Springer-Verlag (2002) 153~183 

9. Beulah Kurian Alunkal: Grid EigenTrust: A Framework for Computing Reputation in 
Grids. MS thesis, Department of Computer Science, Illinois Institute of Technology (Nov, 
2003) 

10. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis: The Role of Trust Management 
in Distributed Systems Security. In Vitek, J., Jensen, C.D., eds. Chapter in Secure Internet 
Programming: Security Issues for Mobile and Distributed Objects. Lecture Notes in 
Computer Science, Vol. 1603. Springer-Verlag (1999) 

11. Markus Lorch, Dennis Kafura: Grid Community Characteristics and their Relation to Grid 
Security. VT CS Technical Report, 2003. http://zuni.cs.vt.edu/publications/draft-ggf-
lorch-grid-security-version0.pdf 

12. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina: The EigenTrust 
Algorithm for Reputation Management in P2P Networks. In Twelfth International World 
Wide Web Conference, 2003, Budapest, Hungary, May 20~24 2003. ACM Press. 
http://www.stanford.edu/_sdkamvar/papers/eigentrust.pdf. 

13. E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante: Reputation-
based Method for Choosing Reliable Resources in Peer-to-peer Networks. In Proc. of the 
9th ACM Conference on Computer and Communications Security (2002)  

14. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the Semantic web. 
In Proceedings of the Second International Semantic Web Conference (2003) 351~368 

15. B. Yu and M. P. Singh. A Social Mechanism of Reputation Management in electronic 
Communities. In Cooperative Information Agents (2000) 154~165 

16. B. Yu and M. P. Singh. An Evidential Model of Distributed Reputation Management. In 
Proceedings of the first international joint conference on Autonomous Agents and 
Multiagent Systems: Part 1 (2002) 294~301 

17. Xiangli Qu, Nong Xiao, Guang Xiang, Xuejun Yang: Reputation-aware Contract-
supervised Grid Computing. GCC Workshops 2004. Lecture Notes in Computer Science, 
Vol. 3252. Springer-Verlag-Berlin Heidelberg (2004) 44~51 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 578 – 588, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Dynamic Policy Management Framework for 
Partial Policy Information 

Chiu-Man Yu and Kam-Wing Ng 

Department of Computer Science and Engineering, 
The Chinese University of Hong Kong, Shatin,  

New Territories, Hong Kong SAR 
{cmyu,kwng}@cse.cuhk.edu.hk 

Abstract. A Grid can support organized resource sharing between multiple het-
erogeneous Virtual Organizations. A Virtual Organization can be considered to 
be an administrative domain consisting of hosts from different networks. The 
dynamic VO membership organization of Grid computing and heterogeneous 
VOs are major challenges to policy management. We propose a Dynamic Pol-
icy Management Framework (DPMF) to resolve the problems. DPMF groups 
VOs of same policy framework to form a virtual cluster. Policy management is 
divided into inter-cluster heterogeneous policy management, and intra-cluster 
homogeneous policy management. Inside a virtual cluster, policy agents of the 
VOs form trust relationship hierarchy for distributing the works of policy con-
flict analysis. Conflict Analysis with Partial Information (CAwPI) mechanism 
is developed to provide an approach to analyze policy conflict in open envi-
ronments without complete policy information. 

1   Introduction 

Grid computing enables computers on different networks to share their resources in 
an organized way. Authorized users can deploy the resources as if they were in the 
same organization. This resource sharing environment is called a Virtual Organization 
(VO) [3]. A Virtual Organization applies coherent resource sharing mechanism and 
authorization policy management framework to enable organized resource sharing in 
the VO. It would be desirable for a Grid to be able to manage multiple VOs. Regard-
ing to the dynamic nature of the Grid, Grid membership is dynamic. VOs can join or 
leave the Grid environment throughout the Grid lifetime. Besides, regarding to the 
heterogeneous nature of the Grid, the VOs may use different policy frameworks. The 
dynamic and heterogeneous natures impose challenges to policy management on 
Grids. Traditional security policy frameworks [5][7][8] deal with security policy 
management inside a VO. There is still little research on policy management for mul-
tiple VOs. Due to the increasing popularity of Grid computing, it is likely that there 
will be a large number of application systems based on Grid computing environments 
in the future. Each Grid application system forms a VO. With the use of different grid 
development toolkits, the VOs may deploy different security policy frameworks. To 
enable secure interaction of heterogeneous VOs, frameworks and mechanisms are 



 Dynamic Policy Management Framework for Partial Policy Information 579 

 

needed to manage security policies across the VOs. We have proposed a Security 
Policy Dynamic Management Framework (DPMF) [9] to handle this problem. In this 
paper, we present the DPMF’s architecture and its mechanism of policy conflict 
analysis with partial information. 

A Grid may consist of multiple VOs. Each VO is considered to be an individual 
administrative domain. Each administrative domain can decide on the resources and 
information for sharing. The domains set their own authorization policies to limit 
access to their resources. The access limitation can include domains, users, time, and 
other tailor-made conditions. 

In a Grid computing environment, a user may plan to perform tasks which involve 
access to resources on multiple domains. To determine the limitations to perform the 
tasks, the user needs to check the authorization policies of the resource owners. There-
fore the user needs to retrieve all the policies related to the user and the resources. The 
user then performs conflict analysis on the policies to find out the limitations. 

In a Grid computing environment, some VO domains may refuse to share their pol-
icy information to other (or certain) domains. If some resource owners do not disclose 
their authorization policies to the user, the user can only get partial policy informa-
tion. The user would have to perform conflict analysis with partial policy information. 

In this paper, we present our approach of conflict analysis with partial information. 
The approach includes construction of substitutions to uncertain policies, and conflict 
detection with partial policy information. 

This paper is structured as follows. Section 1 introduces the target problems and re-
lated works. Section 2 reviews our proposed Dynamic Management Framework for 
policy management in open Grids. Section 3 presents the “conflict analysis with par-
tial information” mechanism. Section 4 makes the conclusions. 

2   Dynamic Policy Management Framework (DPMF) 

Dynamic Policy Management Framework (DPMF) is a hierarchical framework which 
aims to support “dynamic policy management” and “heterogeneous policy conflict 
analysis” for Grid environments of multiple VOs. It contains a number of “Policy 
Agents” (PA), “Policy Processing Units” (PPU) and a “Principal Policy Processing 
Unit” (P-PPU). DPMF deploys PAs to divide VOs into virtual clusters according to 
their security policy frameworks. Conflict analysis can be performed homogeneously 
in a virtual cluster, or can be performed heterogeneously through the P-PPU. The 
PAs’ virtual connection architecture inside a virtual cluster is constructed hierarchi-
cally according to trust relationship so that policy management tasks can be distrib-
uted to PAs. 

In the Grid environment model for DPMF, there is one Grid Operator and a number 
of VOs. The Grid Operator coordinates meta-VO interaction or interoperation among 
the VOs. The Grid Operator also maintains meta-VO level policies. Each VO consists 
of a number of nodes which can be service providers, or service requesters. Each VO 
has a policy server. The VOs’ policy servers and the Grid Operator are PDPs (Policy 
Decision Points). The service providers and service requesters on the VOs are PEPs 
(Policy Enforcement Points). A PDP is the point where the policy decisions are made; 
and a PEP is the point where the policy decisions are actually enforced [6]. 



580 C.-M. Yu and K.-W. Ng 

 

2.1   Framework Architecture 

Figure 1 illustrates the DPMF’s hierarchical architecture. In DPMF, each VO needs to 
own a PA. The Grid Operator owns a P-PPU. PAs of the same security policy frame-
work would form a virtual cluster. One of the PAs in each virtual cluster would be 
elected as PPU. A PPU performs runtime conflict analysis for homogeneous security 
policy framework, whereas the P-PPU is used to perform heterogeneous security 
policy conflict analysis across different security policy frameworks. In DPMF, the 
service providers are PEPs; whereas the PAs, PPUs, and P-PPUs are PDPs. 

 

Fig. 1. DPMF architecture 

All PPUs are connected to the single P-PPU. PAs are connected to either the PPU 
or other PAs. PAs can access the information of their local security policies. A PPU 
can access the information of its local security policies, global security policies, and 
knowledge of local conflict analysis. A P-PPU can access the information of global 
policies, and the knowledge of heterogeneous policy conflict analysis. The PA needs 
to be able to access the VO’s security policies. If the VO already has a PDP (or policy 
server), the PA is likely to be run on the PDP. Otherwise, the PA can be run on a node 
which has privilege to access the security policy repositories in the VO. 

PAs of the same “security policy framework model” would form a virtual cluster. 
For example, Web Services policy framework (WSPolicy) [1] and IETF security 
policy framework [4] are different framework models. A newly initialized PA can ask 
the P-PPU for which virtual cluster to join. PAs in a virtual cluster elect one of them 
to be the PPU. PPU is also a kind of PA. 

In an ideal trust relationship, if all PAs in the same virtual cluster trust one of the 
PAs, then the PA can become the PPU of the cluster. However, usually the ideal trust 
relationship cannot be achieved. Some VOs do not trust other VOs, or none of the 
VOs are trusted by all other VOs in the virtual cluster. Therefore, DPMF needs a PPU 
election mechanism in the non-ideal trust relationship. The election mechanism se-
lects a PA with the most number of supporters to be PPU. The PPU connects to PAs 



 Dynamic Policy Management Framework for Partial Policy Information 581 

 

according to the trust relationships of the PAs. The PPU may be untrusted by some 
PAs such that the PPU is unable to retrieve the security policy information from some 
PAs. Therefore the PPU may need to perform conflict analysis with partial informa-
tion. Simultaneously, the PPU maintains the PA trust relationship hierarchy in the 
virtual cluster. It finds out the most suitable PA for a conflict analysis task according 
to the hierarchy, and it can delegate the task to the PA. 

2.2   Policy Agent (PA) Trust Relationship Hierarchy 

In a virtual cluster, not all PAs are virtually connected to the PPU directly by default. 
The PA virtual connection hierarchy depends on their trust relationships. 

 

Fig. 2. Examples of PA trust relationships 

Figure 2 shows several examples of trust relationships between PAs. The symbol 
“ ” represents the direction of trust. The PA in the square box is the subject PA. We 
transform the PA trust relationship diagrams into two-way “be trusted” and “to trust” 
expressions. The trust relationships for Figure 2 can be expressed in the followings: 

(a) PA0  {PA1} 
(b) PA0  {PA1, PA2} 
(c) PA0  {PA1} 
(d) PA0  {PA1, PA2} 
(e) PA0  {PA1} and PA0  {PA2} 

PA trust relationship hierarchy is to record trust relationships between PAs for dis-
tributing policy management tasks. DPMF deploys a trust model in which a trust 
relationship is non-symmetric and non-transitive. Therefore, the PA trust relationship 
hierarchy is reduced to sets of “be trusted” (symbol “ ”) PAs and sets of “to trust” 
(symbol “ ”) PAs. In the examples in Figure 2, the trust relationships of the subject 
PA in the diagrams can be record as the trust relationships as shown above. Using the 
information of PA trust relationship hierarchy, the PPU can find the subject PA which 
is trusted by most PAs in a conflict analysis task. Then the PPU can delegate the task 
to the subject PA to perform conflict analysis. This enables the workload of conflict 
analysis to be distributed in a virtual cluster. 

In DPMF, each VO owns a PA which can access to the policy information of the 
VO domain and the VO’s service providers. The PA is an access point to the policy 
repositories in the VO.  DPMF defines P-PPU and PPU to manipulate policy man-
agement services which include: 



582 C.-M. Yu and K.-W. Ng 

 

1. Notification of policy update 
When a service provider or a VO has its policy information updated, its representa-
tive PA needs to inform the PPU for the update. The PPU checks if the policy up-
date involves in current service requests. The PPU needs to notify a service re-
quester if the request’s request is not valid after the update. The PPU supports the 
notification service for service requests which involve services in two or more VOs 
in the same virtual cluster. The P-PPU supports the notification service for service 
request where the target service is on a VO in a different virtual cluster. 

2. Conflict analysis of policies 
When a host wants to run a task which involves services on multiple VOs, it sends 
the request to the PPU. The PPU requests the PAs of target services for authoriza-
tion policy information. The PPU checks if there is conflict within the set of au-
thorization policies related to the service request. Policy decision is made after the 
conflict detection. Since PAs in a virtual cluster use the same policy framework, 
the conflict analysis performed by the PPU is homogeneous in terms of policy 
model. On the other hand, the P-PPU handles conflict analysis for heterogeneous 
policies. 

Table 1. Classification of agents which support policy management services 

Agent Scope of target service requests 
P-PPU Services on VOs which are in different virtual clusters. 
PPU Services on multiple VOs which are in same virtual cluster. 
PA Subset of PPU’s scope while the PA has authorization to the 

policy information involved in the service request. 

DMPF deploys the PA trust relationship hierarchy to delegate policy management 
services of PPU to other PAs in same virtual cluster. According to the PA trust rela-
tionship hierarchy, the PPU can know the trusting PA(s) of each PA, that is, the PA(s) 
which trust that PA. A trust relationship in DPMF represents authorization to policy 
information. Therefore the PPU can know the authorization of policy information of 
each PA. To distribute workload among PAs in a virtual cluster, the PPU delegates a 
number of service requests and corresponding policy management services to suitable 
PAs. Table 1 lists the three kinds of agents and their respective scopes of service 
request. After receiving a service request involving services on multiple VOs, PPU 
can delegate the policy management task through the following procedure. 

1. Search the PA trust relationship hierarchy for the PA which has greatest authori-
zation of policy information related to the request. 

2. Request the PA to handle a service request. 
3. The PA replies to the PPU for accept or rejection. If the PA rejects, then the 

PPU handles the service request as normal. 
4. If the PA accepts, then the PPU sends the service request to the PA, and notify 

the service requester for the assignment of a request handler.  
5. The PA supports conflict analysis, policy decision, and update notification ser-

vices for that service request. 



 Dynamic Policy Management Framework for Partial Policy Information 583 

 

3   Policy Conflict Analysis with Partial Information (CAwPI) 

When some PAs do not trust the PPU, the PPU is not able to retrieve certain security 
policy information from the PAs. For example, an individual from a VO wants to 
perform interoperation with individuals from VOs in the same virtual clusters. So the 
PAs of the VOs request the PPU to perform conflict analysis. All of the PAs trust the 
PPU except one. The PPU cannot retrieve the policy information from the untrustful 
PA. The PPU can only perform policy conflict analysis with policy information from 
the trustful PAs. Therefore we need to look into methods to perform conflict analysis 
with partial policy information. 

The main idea of our current approach of partial information conflict detection is 
that the PPU performs conflict analysis with the known security policies, generates 
substitutions for unknown policies, finds out a set of conditions which can cause con-
flicts, then sends the set of conditions to the untrustful VO for its checking. When the 
PPU is firstly initialized, it constructs a policy template database which contains a set 
of popular policy templates. The templates are generated by reading policies of VOs 
(which trust the PPU) in the same virtual clusters. When there is a request to perform 
conflict analysis with partial information. The PPU retrieves all possible policies 
templates from the policy template database to substitute for the non-retrieved policy 
information. It recursively performs conflict analysis with substitutions of different 
(sets of) policy templates. This is the critical process of partial information conflict 
analysis. In this section, we describe the model of policy templates, and the conflict 
analysis mechanism using policy templates for partial information. 

3.1   Assumptions, System Model, and Policy Model 

Two assumptions are made in DPMF related to the trust relationship between VOs 
and the policy information sharing: 

1. “A PA trusts a PPU or PA” means that the PA will disclose its complete au-
thorization policy information to the PPU or PA. 

2. A PA can obtain policy sets of service providers in its VO domain. 

 

Fig. 3. An example of system model for CAwPI 



584 C.-M. Yu and K.-W. Ng 

 

Figure 3 shows an example of system model for CAwPI. The system model de-
scribes the target generic system setting for the conflict analysis mechanism. The 
model describes the necessary principals for a service request which requires conflict 
analysis with partial information. In the example, a service requester requests services 
on two (or multiple) VOs. Policy Agent A and Policy Agent B handle security poli-
cies of the two VOs respectively. The service request to multiple VOs would require a 
conflict analysis between the service requester and the VOs involved. A PPU is re-
sponsible to perform the conflict analysis. The PPU needs to retrieve policy informa-
tion from the Policy Agents. If one or more PA(s) does not trust the PPU and hence 
does not share its policy information to PPU, the PPU needs to perform conflict 
analysis with partial information. 

DPMF defines a skeletal policy model in order to inter-exchange with other exist-
ing policy models. The policy model is mainly a reduced version of IETF Policy Core 
Information Model [4] with the addition of an extension option. The policy model in 
DPMF defines that each service provider maintains an authorization policy set. Each 
domain can also maintain an authorization policy set which applies to all service pro-
viders in the domain. A policy set consists of a number of individual policies. Each 
policy has four components. They are Condition Set, Action Set, Target Identity, and 
extension element(s). 

The Condition Set is a collection of conditions with AND or OR relationship. Each 
condition is a Boolean expression which can result into true (positive) or false (nega-
tive) logic. The Action Set is a collection of actions with AND relationship. The ac-
tions can be defined to be performed in one-by-one order or simultaneously. The 
Policy Rule in the model is authorization model. Therefore, the Action is to define if a 
Target Identity is allowed to access a resource or if a Target Identity is prohibited to 
access a resource. The Target Identity is a credential which can be represented by a 
certificate to recognize a user, or just a login name in the local domain. 

The Extension Element(s) is used to record elements which cannot be represented 
by Condition Set or Action Set. This reserves rooms for compatibility with various 
policy models. However, to activate this option, all principals for a conflict analysis 
task (Service requester, PAs, PPU) need to be able to recognize the extension ele-
ment(s). 

3.2   Policy Template 

The mechanism of CAwPI is to generate a set of policy templates for substitution of 
unknown policy information. The policy template model includes the skeletal policy 
model of DPMF, an Evaluation Element Set, and a corresponding Priority Set. The 
Evaluation Element Set stores evaluation elements which are attributes of the policy 
owner. The attributes are defined by the PPU. They probably include the type of ser-
vice providers, the type of Virtual Organizations, security levels, etc. The Priority Set 
stores the order of importance of the evaluation elements. 

Condition =  
when (<time expression variable>) [occurred, occurring] (<event expression variable>) 
Action =  
do ([Permit, Prohibit] to access <resource variable>) 
Target Identity = <service requester identity> 



 Dynamic Policy Management Framework for Partial Policy Information 585 

 

Extension Element Set 
Evaluation Element Set 
Priority Set 

The format of a policy template is shown above. The Condition Set, Action Set, 
and Extension Element Set are learnt from policy information provided by trustful 
PAs. The Evaluation Element Set and Priority Set are defined by the PPU. In a 
CAwPI task, PPU would deploy certain policy templates to generate substitution 
policies to substitute unknown policies. When a policy template is used in a conflict 
analysis task, substitution policies are generated by setting the Target Identity to be 
the service requester’s identity.  

3.3   Conflict Detection with Partial Information 

The conflict detection of DPMF currently targets on authorization policy conflicts. An 
authorization policy defines if a Target Identity is permitted or prohibited to access a 
resource. The policy model in DPMF is described in Section 3.2. A conflict occurs 
when two policies have same Condition Set but opposite authorization actions. Posi-
tive authorization refers to permission to access while negative authorization refers to 
prohibition to access. 

policy1  policy2 
when (time expression) [occurred, occurring] (event expression) 

 do ([Permit/Prohibit] to access resource) for <Target Identity> 

The above expression shows a generic conflict model for policy conflict between 
two policies. The symbol “ ” represents conflict relationship, which is symmetric. 
The expression shows that policy1 and policy2 have the same condition but resulting 
in opposite signs of authorization on the resource for the Target Identity. This kind of 
conflict is a modality conflict [2]. 

The conflict detection mechanism in DPMF is performed in three phases: 

1. Collect policy information. 
2. Perform conflict detection on the policies. 
3. Generate conflict results. 

For a conflict detection task involving service providers on VOs which all trusts 
the PPU, the respective PAs would provide the policies related to the service re-
quester identity. The provided policies include the policy set of the service providers 
and that of the VO domain. PPU can then transverse the policies to detect modality 
conflict between any two policies. DPMF currently cannot support conflict analysis if 
all the involved PAs do not trust the PPU. 

After collection of policy information, the PPU can detect modality conflicts in the 
following steps: 

1. Target a resource requesting from service requester. 
2. Transverse the policies to select the ones whose resource field is resource. 
3. Select the pairs in which the authorization signs are opposite. 
4. Check if their Condition Sets have intersection or not. 
5. If yes, then conflict is detected. 



586 C.-M. Yu and K.-W. Ng 

 

If some PAs do not trust the PPU, then the Conflict Analysis with Partial Informa-
tion (CAwPI) would be initialized at the “Collect policy information” phase. The 
mechanism of CAwPI is different from normal conflict detection mechanism in 
DPMF, but it is also divided into three phases. 

1.  Collect policy information 
PA(s) which trusts the PPU would send the related policy information to the PPU. 

For PA(s) which does not trust the PPU, the PPU needs to deploy policy templates to 
generate substitution policies. The PPU uses the Evaluation Element Set and Priority 
Set for the selection of policy templates. The policy generation procedure can be 
primarily divided into two steps: 

(i) Given a predefined priority threshold, for priority from high to low, target the 
evaluation elements one by one. Select policy templates which have same value of 
an evaluation element to the untrustful PA. 
(ii) Given a predefined priority threshold and similarity threshold of individual 
evaluation elements, target the evaluation elements one by one. Select policy tem-
plates which have similar values of an evaluation element to the untrustful PA. 

2.  Perform conflict detection on the policies 
The detection procedure of CAwPI is mostly similar to the normal conflict detec-
tion procedure. However in CAwPI, when there is a substitution policy involved in 
a conflict, the policy would be stored in a Conflict Policy Set. 

3. Generate conflict results 
PPU sends the Conflict Policy Set to the untrustful PA(s). The set contains policies 
which can cause conflicts to the service request. PPU queries the untrustful PA to 
see if the PA’s VO domain and its respective service provider(s) have any one of 
the policies. There can be three possible replies from the PA: 

(i) If the PA replies “no”, PPU concludes that no conflict is found. 
(ii) If the PA replies “yes”, PPU concludes that conflict is found. 
(iii) IF the PA does not reply, PPU concludes that there is insufficient information 

for the conflict analysis. 

Every PA can collect policy information to train its policy template set. PPU 
should be able to exchange policy template set information between trusting PAs. 

4   Conclusions 

We have proposed Dynamic Policy Management Framework (DPMF) to manage 
policies on multiple Virtual Organizations (VOs) in a Grid. The dynamic VO mem-
bership organization of Grid computing and heterogeneous VOs are major challenges 
to policy management. DPMF develops an architecture which groups VOs of the 
same policy framework to forms virtual clusters. Each VO has a Policy Agent (PA) to 
store and manage the policies of the VO. Inter-“virtual cluster” heterogeneous policy 
management is handled by a Principal Policy Processing Unit (P-PPU). On the other 



 Dynamic Policy Management Framework for Partial Policy Information 587 

 

hand, intra-cluster homogeneous policy managements are handled by a Principal 
Processing Unit (PPU) which is one of the PAs in the cluster. A PPU learns about the 
trust relationships of fellow PAs to form the PA trust relationship hierarchy of the 
virtual cluster. By the hierarchy, the PPU can delegate policy conflict analysis tasks to 
other PAs, and exchange policy information. 

Since the VOs have their own trust decisions, a PPU may not be trusted by all PAs 
in its virtual cluster. In DPMF, the Conflict Analysis with Partial Information 
(CAwPI) mechanism is used to generate substitution policies for unknown policies for 
conflict analysis. By CAwPI mechanism, PPU generates sets of policy templates by 
learning the authorization policies from other PAs. The policy templates store policies 
with the properties of the policy owners. In a conflict analysis task, if there is PA(s) 
not trusting the PPU for providing policy information, the PPU would deploy policy 
templates to generate substitution policies. The selection principle is to select policies 
templates with owner properties similar to the untrusting PA(s). The CAwPI mecha-
nism would detect possible conflicts between known policies from untrusting PAs and 
the substitution policies. The mechanism provides an approach to analyze policy 
conflict in open environment without complete information. 

Acknowledgements 

The work described in this paper was partially supported by the following grants: 
RGC Competitive Earmarked Research Grants (Project ID: 2150348, RGC Ref. No.: 
CUHK4187/03E ; Project ID: 2150414, RGC Ref. No.: CUHK4220/04E). 

References 

1. Don Box, Franciso Curbera, Maryann Hondo, Chris Kale, Dave Langworthy, Anthony 
Nadalin, Nataraj Nagaratnam, Mark Nottingham, Claus von Riegen, John Shewchuk: 
Specification: Web Services Policy Framework (WSPolicy), available at http://www-
106.ibm.com/developerworks/library/ws-polfram/ 

2. N. Dunlop, J. Indulska, K. Raymond. “Methods for conflict resolution in policy-based 
management systems”, Proceedings of the Seventh IEEE International Conference on En-
terprise Distributed Object Computing 2003, 16-19 Sept 2003, Pages 98-109. 

3. I. Foster and C. Kesselman, J. Nick, and S. Tuecke: The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration, avaliable at 
http://www.globus.org, 2002. Version: 6/22/2002. 

4. B. Moore, E. Ellesson, J. Strassner, A. Westerinen: Policy Core Information Model – Ver-
sion 1 Specification, IETF Network Group RFC 3060, February 2001. 

5. Gary N. Stone, Bert Lundy, and Geoffery G. Xie, U.S Department of Defense: Network 
Policy Languages: A Survey and a New Approach, in IEEE Network, Jan/Feb 2001. 

6. J. Strassner and E. Ellesson: Terminology for Describing Network Policy and Services, 
Internet draft draft-strasner-policy-terms-01.txt, 1998. 

7. Dinesh Verma, Sambit Sahu, Seraphin Calo, Manid Beigi, and Isabella Chang: A Pol-
icy Service for GRID Computing, M. Parashar(Ed.): GRID 2002, LNCS 2536, pp. 243-
255. 



588 C.-M. Yu and K.-W. Ng 

 

8. Von Welch, Frank SiebenSet, Ian Foster, John Bresnahan, Karl Czajkowski, Jarek Gawor, 
Carl Kesselman, Sam Meder, Laura Pearlman, and Steven Tuecke: Security for Grid Ser-
vices, in Proceedings of the 12th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC’03). 

9. Chiu-Man Yu and Kam-Wing Ng. "A Dynamic Management Framework for Security 
Policies in Open Grid Computing Environments". Proceedings of the Third International 
Conference of Grid and Cooperative Computing (GCC 2004), pp. 871-874. China, October, 
2004. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 589 – 599, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Security Architecture for Open Collaborative 
Environment 

Yuri Demchenko1, Leon Gommans1, Cees de Laat1, Bas Oudenaarde1, 
 Andrew Tokmakoff2, Martin Snijders2, and Rene van Buuren2  

¹ Universiteit van Amsterdam, Advanced Internet Research Group, Kruislaan 403, 
NL-1098 SJ Amsterdam, The Netherlands  

{demch, lgommans, delaat, oudenaarde}@science.uva.nl 
² Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands  

{Andrew.Tokmakoff, Martin.Snijders,  
Rene.vanBuuren}@telin.nl  

Abstract. The paper presents proposed Security Architecture for Open Collabo-
rative Environment (OCE) being developed in the framework of the Collabora-
tory.nl (CNL) project with the intent to build a flexible, customer-driven secu-
rity infrastructure for open collaborative applications. The architecture is based 
on extended use of emerging Web Services and Grid security technologies 
combined with concepts from the generic Authentication Authorization and Ac-
counting (AAA) and Role-based Access Control (RBAC) frameworks. The pa-
per describes another proposed solution the Job-centric security model that uses 
a Job description as a semantic document created on the basis of the signed or-
der (or business agreement) to provide a job-specific context for invocation of 
the basic OCE security services. Typical OCE use case of policy based access 
control is discussed in details.  

1   Introduction 

The process industry makes extensive use of advanced laboratory equipment, such as 
electron microscopes, equipment for surface analysis and mass spectrometers. Labo-
ratories tend not to have purchased highly specialized and sophisticated equipment, 
due to high initial outlay and operational costs and the expertise required to operate 
such equipment. The Collaboratory.nl1 project (CNL) is one of the projects that inves-
tigate how technologies for remote operation of laboratory equipment can be inte-
grated with existing Groupware and emerging Web Services and Grid technologies 
for enhanced remote collaboration.  

This paper presents the results of the development of an open, flexible, customer-
driven security infrastructure for open collaborative applications, in particular ad-
dressing practical needs of the Collaboratory.nl project. The proposed solution is 
based upon extended use of emerging Web Services and Computer Grid security 
technologies and the generic AAA authorisation framework [1, 2, 3, 4]. 
                                                           
1 http://www.collaboratory.nl/ 



590 Y. Demchenko et al. 

 

Collaborative applications require a sophisticated, multi-dimensional security in-
frastructure that manages the secure operation of user applications between multiple 
administrative and trust domains. Typical Open Collaborative Environment (OCE) 
use cases imply specifics of the collaborative environment that: 

− is dynamic as the environment may change from experiment to experiment, 
− may span multiple trust domains, 
− needs to handle different user identities and attributes that must comply with 

different policies that are both experiment and task specific. 

Managing access based upon role, assigned privileges and policy enforcement have 
been addressed in many collaborative and Computer Grids projects. It can provide a 
good basis for the development of security architecture for OCE. The majority of 
known solutions and implementations use widely recognised Role-based Access Con-
trol (RBAC) [5] model and its implementation in XACML [6] as a general conceptual 
approach.  

The current Grid Security Infrastructure and Authorisation framework evolved 
from using proprietary systems like Community Authorisation Service (CAS) [7] to 
XACML based Policy Management and Authorization Service for Grid resources [8]. 
Although they provide a good example of addressing similar tasks, current Grid-based 
solutions cannot be directly used within OCE, since their deep embedding into paral-
lel task scheduling mechanisms prevents distributed execution of dissimilar computa-
tional tasks/jobs. A typical collaborative environment is less coupled and mostly con-
cerned with the allocation and execution of complex experiments on the equipment 
that for most use cases, requires human control and interaction during the experiment. 

Collaborative tools such as CHEF2, initially designed for online educational course 
management, can provide most of the necessary functionality for the creation of a 
collaborative environment. However, this environment needs to be extended such that 
it can be integrated with other stages and components of the collaborative organisa-
tion managing the experiment stages. These stages include the initial stage of order 
creation, and the main experimental stage that requires secure access to the instrument 
or resource.  

To address the specifics, the proposed OCE Security Architecture uses a novel Job-
centric approach, which is based on Job description as a semantic document, created 
on the basis of a signed order (business agreement). The document contains all the 
information required to run the analysis, including the Job ID, assigned users and 
roles, and a trust/security anchor(s) in a form of customer and/or OCE provider digital 
signature. In general, such approach allows binding security services and policies to a 
particular job or resource.  

The paper is organized as follows. Section 2 of the paper describes basic OCE use 
cases and their required security functionality. Section 3 describes the general OCE 
Security Architecture and its general security services model. The architecture builds 
upon (and is intended to be compatible with) WS-Security and OGSA Security. Sec-
tion 4 describes the OCE policy enforcement framework implementation using ge-
neric AAA architecture and RBAC based Authorisation service model.  

                                                           
2 http://www.chefproject.org/ 



 Security Architecture for Open Collaborative Environment 591 

 

Proposed solutions are being developed in coordination with ongoing projects CNL 
and EGEE3, and can represent a typical use case for the general Web Services and 
OGSA Security framework. It is expected that other similar projects such as VL-E4 
and GridLab5 will benefit from this work as it intends to propose a general approach 
and common solutions for the security problems in OCE.  

2   Basic OCE Use Cases and Proposed Job-Centric Security Model 

Security services are defined as a component of the OCE middleware that provides 
secure infrastructure and environment for executing OCE tasks/jobs. Generally, secu-
rity services can be added to an already existing operational architecture, however 
current industry demand for very secure operational environments requires that a 
Security architecture is developed as an integral part of the system design. There 
should be also a possibility to define a security services profile at the moment of a 
system service invocation defined by a security policy.  

For the purpose of analysis of the required security functionality, all use cases in 
CNL can be split into two groups of simple security interactions and extended ones. 
In a simple/basic use case the major task is to securely provide remote access to in-
strument(s) belonging to a single provider. For this case, the remote site or the re-
source owner can provide few onsite services and allow distributed user groups. An 
extended use case must additionally allow distributed multi-site services, multiple 
user identities and attribute providers, and distributed job execution. In its own turn, 
multiple trust domains will require dynamic creation of user and resource federa-
tions/associations, handling different policies, specific measures for protecting data 
confidentiality and user/subject privacy in potentially uncontrolled environment.  
In both cases, there is a need for the following functionality:  

− fine grained access control based on user/subject attributes/roles and policies de-
fined by a resource 

− privilege/attribute management by a designated person carrying responsibility 
for a particular experiment or job  

− customer controlled security environment with the root of trust defined by the 
customer (in particular, their private key).  

Listed above functionalities require a new job-centric approach to security services 
provisioning in OCE that can be realised in the following way.  

Procedures in OCE include two major stages in accepting and executing the order: 
negotiation and signing the order  (business part), and performing the experiment (tech-
nical part). The Job description, as a semantic document, is created based on the signed 
order and contains all information required to run the experiment on the collaborative 
infrastructure. The job description contains the following components: a Job ID and 
other attributes, Job owner, assigned users and roles, business anchor(s) (BA) and/or 
trust/security anchor(s) (TA) in a form of customer and provider digital signatures.  

                                                           
3 http://public.eu-egee.org/ 
4 http://www.vl-e.nl/ 
5 http://www.gridlab.org/ 



592 Y. Demchenko et al. 

 

Figure 1 illustrates a structure of the Job description and its relation to other OCE 
components and security services. This kind of job description can also be used as a 
foundation for creating Virtual Organisation (VO) [2] instance as an association of 
designated users and resources, which support all standard security constructs such as 
users, groups, roles, trust domains, designated services and authorities.  

The job description (mandatory) must include or reference the Job policy, which 
defines all aspects of the user, resource and trust management when executing the job. 
This policy should define the following issues: 

− trusted CA (Certification Authorities) or Identity Providers; 
− trusted users, VO’s, resources and in general trusted credentials; 
− privileges/permissions assigned to roles;  
− delegation policy; 
− credit limits and conditions of use; 
− confidentiality and privacy requirements; 
− identity federation/mapping policy; 
− Job access control or authorisation policy. 

 

Signed 
Order 

Document
 

(BA/TA) 

* JobID 
* Job Attributes 
* Job Priority 
* Job Owner 

* User List 
* User Attributes 
* RBAC Admin 

Job Description

* Policy Ref 
* Trust Anchor 

Job Manager 
(Scheduler) 

Access Control 
System 
* UserDB 
* Policy 
* AuthN/Z context 

 

Fig. 1. OCE Security built around Job description 

It is important to note that a Job policy may be combined with the Resource admis-
sion policy and in practice should not be more restrictive than the Resource policy. 
Otherwise the Job security management service may reject some resources based on 
Resource policy evaluation as a procedure of mutual authorisation.  

Job-centric approach gives organizations complete flexibility in the creation of 
their security associations and services for the specific tasks or applications. 

Practical implementation of the Job-centric security model requires wide spectrum 
of emerging XML and Web Services Security technologies that altogether constitute a 
general OCE Security Architecture as described in the next chapter.  



 Security Architecture for Open Collaborative Environment 593 

 

3   Adopting Web Services Security Architecture for an Open 
Collaborative Environment 

This section provides an overview and describes the general OCE Security Architec-
ture based on wide use of the related WS-Security [1] and Open Grid Service Archi-
tecture (OGSA) [2] Security services and standards. The intension of this section is to 
provide guidance to existing XML and WS-Security standards and how they can be 
used for basic security services in OCE.  

In Web Services Architecture (WSA) a Web Service is defined by PortTypes, Op-
erations, Messages and Binding between all three components and actual back-end 
service in the form of WSDL (Web Services Description Language) description [9]. 
Security services and components can be added to the service description and defined 
by WS-Security set of standards. WS-Security components are already included into 
WSDP 1.46 and in the Globus Toolkit Version 3.2 and later7.  

 

Communication/Transport Security: SSL/TLS, VPN, IPSec, Stunnel, etc. 

Intrusion 
Detection and 

Incident 
Response 

Policy 
Management 

(AuthZ, 
Privacy, 
Trust, 

Federation) 

Key 
Management 

Messaging Security: SOAP/WS- Security  

Policy Expression and Exchange 

Confidentiality 
and  

Privacy Policy 

Identity/ 
Federation Policy 

Trust 
Management 

Policy 

Authorisation 
Policy 

Services/Operational Security 

Auditing and 
Notarisation 

Authentication 
and Identity 
Management 

Authorisation 
(Access Control)

Secure Context 
Management 

Site Security 
Services 

User 
Management 

Secure 
Logging 

 

Fig. 2. Security Architecture for an Open Collaborative Environment 

The OCE Security Architecture is built upon above mentioned technologies and 
includes the following layers and components (see Fig. 2):  

1) Communication/transport Security Layer defines network infrastructure security 
and uses such network security services as SSL/TLS, IPSec, VPN, and others.  

                                                           
6 http://java.sun.com/webservices/jwsdp/ 
7 http://www-unix.globus.org/toolkit/ 



594 Y. Demchenko et al. 

 

2) Messaging Security Layer is based on currently well-defined SOAP/WS-
Security mechanisms [10] and may use SAML as a security token exchange 
format [11].  

3) Policy Expression and Exchange Layer defines set of policies which can be ap-
plied to OCE/VO users when they interact with the environment, and which are 
necessary to ensure multi-domain and multiplatform compatibility.  

4) Services/Operational Layer defines security services/mechanisms for secure op-
eration of the OCE components in an open environment: authentication and 
identity management, authorisation and access control, trust or secure context 
management, auditing/logging and notarization. 

Some of the layers and components important for understanding the proposed OCE 
security architecture and job-centric security model are described in more details 
below.  

3.1   Policy Expression and Exchange Layer 

Communicating OCE services/principals need to conform to certain requirements in 
order to interact securely. It is important that service or resource requestors have ac-
cess to and understand policies associated with the target service. As a result, both the 
service requestor and service provider must select an acceptable security profile. It is 
also important to mention that the privilege to acquire security policy is given by the 
hosting environment to authenticated and authorised entities only. 

The policy layer provides necessary information for the policy enforcement mod-
ules of the Operational Security layer. It is suggested that policy expression should 
conform to the general WS-Policy framework and may include component policies 
using different policy expression formats including XACML [6] or Generic AAA [12] 
policy formats. Policies for end applications and services are described by (a set of) 
rules for a specific target comprising of a triad (Subject, Resource, Action). Policy 
may also include common attributes such as security tokens, delegation and trust 
chain requirements, policy combination algorithms in a form defined by WS-Security 
and WS-Policy [13].  

Policy association with the service can be done using WS-PolicyAttachment that 
defines extensions mechanisms to attach a policy or policy reference to different 
components of the service description including PortType, operation/message, or 
arbitrary element [14]. XACML Web Services profile defines the mapping between 
Web Service description components and its own policy description hierarchy [15]. 

3.2   Authentication and Identity Management 

The OCE operational environment may consist of multiple locations and security 
domains that maintain their own Authentication and Identity management services. 
Interoperation and secure Single Sign-on (SSO) will require federation of the in-
volved domains and identity and credentials translation or mapping that can be built 
on two currently available identity management specifications: WS-Federation [16] 
and Liberty Alliance Project (LAP) [17]. Preferences can be defined by other OCE 



 Security Architecture for Open Collaborative Environment 595 

 

security components. LAP has benefit of being a more independent implementation, 
but it implements more business oriented approach. WS-Federation is more naturally 
integrated with Web services environments.  

Authentication and Identity management services can use PKI based credentials for 
user/entity identification and authentication, and SAML and WS-Security for security 
credentials and token definition and exchange format [10, 11].  

3.3   Authorisation and Access Control 

The Authorisation and Access Control security service is a key part of the managed 
security in an open service oriented environment. Authorisation is typically associated 
with a service provider or resource owner. The resource owner controls access to a 
resource based upon requestor credentials or attributes that define the requestor’s 
privileges or associated roles bound to the requestor’s identity. Separation of Authen-
tication and Authorisation services allows dynamic RBAC management [5] and vir-
tual association between interacting entities, and provides a basis for privacy.  

For distributed multi-domain services/applications, an Authorisation service can 
operate in pull or push modes as defined by the generic AAA architecture [3, 4] in 
which correspondently Authorisation decision is requested by a Resource service, or 
requestor preliminary obtains the Authorisation token from the trusted Authorisation 
service.  It subsequently presents the token together with the authorisation context to 
the resource or service. When using the push or the combined pull-push model for 
complex services requests, the SAML format is considered as a recommended format 
for authorisation tokens exchange. 

4   Policy Based Access Control Using RBAC Model and Generic 
AAA Framework 

This section provides an illustration how generic security components, in particular 
generic AAA framework and RBAC, can be used for providing policy based access 
control functionality in OCE. 

Security services may be bound to and requested from any basic OCE service us-
ing a standard request/response format. Security services use must be specified by the 
policy that provides a mapping between a request context (e.g., action requested by a 
particular subject on a particular resource) and resource permissions. 

Binding between (core) services and security services can be defined dynamically 
at the moment of service deployment or invocation using existing Web services and 
XML Security technologies for binding/associating security services and policies to 
the service description as explained above.  

Figure 3 illustrates basic RBAC components and their interaction during the 
evaluation of the authorisation request against the access policy. When combined with 
the Job- centric approach, the Policy components and attributes and the request con-
text can be defined by the particular job description that binds job attributes, user 
information and established trust relations between the customer and the provider.  

 



596 Y. Demchenko et al. 

 

The OCE policy/role based Authorisation infrastructure consists of 

− a PDP (Policy Decision Point) as a central policy based decision making point, 
− a PEP (Policy Enforcement Point) providing Resource specific authorisation re-

quest/response handling and policy defined obligations execution, 
− a PAP (Policy Authority Point) as a policy storage (in general, distributed), 
− a PIP (Policy Information Point) providing external policy context and attributes 

to the PDP including subject credentials and attributes verification 
− a RIP (Resource Information Point) that provides resource context  
− a AA (Attribute Authority) that manages user attributes and can be in particular 

case VO management service (VOMS) [19]. 

PEP

context
handler

4. request
notification

PIP

6. attribute
query

11. response
context

1. policy

8. attribute

environment

Resource
(RIP)

Subjects
(AA)

7b. environment
attributes

PAP

Service
(provider)

13a. access decision

PDP

access
requester

2. access request

9. resource
content

3. request 12. response

7c. resource
attributes

7a. subject
attributes

5. attribute
queries

10. attributes

obligations
service

13b. obligations

 

Fig. 3. RBAC based authorisation system components and dataflows 

To obtain a permission to access a resource, a user or resource agent request via 
PEP an authorisation decision from PDP that evaluates the authorisation request 
against the policy defined for a particular job, resource and user attributes/roles. The 
access policy is normally defined by the resource owner and may be combined with 



 Security Architecture for Open Collaborative Environment 597 

 

the Job policy. The PEP and PDP may also request specific user attributes or creden-
tials from the authentication service, or additional information from the Resource.  

When using XACML as a policy and messaging format, the Policy is constructed 
as a set of rules against the Target defined as a triad (Subject, Resource, Action), and 
the Request message also requests a PDP decision against a particular Target. The 
Subject element may contain Subject ID, Subject authentication or identity token, 
attributes or role(s), and other credentials. The Response message returns the PDP 
decision and may contain obligation conditions that must be executed by the PEP. 

5   Summary and Conclusions 

The general OCE Security architecture and implementation suggestions described in 
this paper are based on practical experience of building open collaborative environ-
ment for the Collaboratory.nl project undertaken in framework of the Collaboratory.nl 
consortium.  

Proposed Security Architecture is based upon existing and emerging Web Services 
Security technologies and intends to be compatible with the OGSA Security Architec-
ture. Existing XML and Web Services Security technologies provide a basis for build-
ing distributed Security infrastructure for OCE and easy integration with existing and 
developing security services and solutions. Use of industry standards such as WS-
Security, XACML and SAML will guarantee future compatibility between CNL/OCE 
implementations and third party products for security services. 

On other side, the CNL project provides a good platform for testing and further de-
velopment of the proposed ideas and solutions. The CNL Security Architecture im-
plements proposed Job-centric approach that allows building basic CNL security 
services around the semantic Job description document created on the base of signed 
order and containing all information required to run the experiment or execute the job 
on the CNL and enable basic security services such as user authentication, policy and 
role based access control, confidentiality and integrity of information and data.  

The CNL Authorisation framework combines Web Services security mechanisms 
with the flexibility of the Generic AAA Architecture and XACML policy/role based 
access control model to built fine-grained access control. Separating policy definition 
from the authorisation or access control execution/enforcement will simplify access 
control management, which can be delegated to the resource owner. To reduce 
performance overhead when requesting authorisation decision from PDP, CNL 
implementation combines pull and push models [4] by using authorisation ticket 
with the limited validity period that allows to bypass potentially slow request 
evaluation by PDP. 

The CNL project is being developed in coordination with the EGEE project what 
will allow future use of the Grid infrastructure being development in the framework 
of EGEE project and guarantee the compatibility of basic security services such as 
authentication, authorisation, and corresponding formats of metadata, policies, mes-
sages, etc. 



598 Y. Demchenko et al. 

 

Authors believe that the proposed OCE Security architecture and related technical 
solutions will be interesting for other projects dealing with the development of mid-
dleware for virtual laboratories and collaborative applications. Discussed here OCE 
specific components will be available openly as a part of the GAAA Toolkits by the 
middle of 2005.  

Acknowledgements 

This paper results from the Collaboratory.nl project, a research initiative that explores 
the possibilities of remote control and use of advanced lab facilities in a distributed 
and collaborative industrial research setting. The Collaboratory.nl consortium consists 
of DSM, Philips, Corus, FEI, Telematica Instituut and the University of Amsterdam. 

References 

1. Security in a Web Services World: A Proposed Architecture and Roadmap, Version 1.0, A 
joint security whitepaper from IBM Corporation and Microsoft Corporation. April 7, 
2002, http://www-106.ibm.com/developerworks/library/ws-secmap/ 

2. The Open Grid Services Architecture, Version 1.0 – 12 July 2004, 2004. - 
http://www.gridforum.org/Meetings/GGF12/Documents/draft-ggf-ogsa-specv1.pdf  

3. RFC 2903 , Experimental, "Generic AAA Architecture",. de Laat, G. Gross, L. Gommans, 
J. Vollbrecht, D. Spence, August 2000 - ftp://ftp.isi.edu/in-notes/rfc2903.txt 

4. RFC 2904 , Informational, "AAA Authorization Framework" J. Vollbrecht, P. Calhoun, S. 
Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, D. Spence, August 
2000 - ftp://ftp.isi.edu/in-notes/rfc2904.txt 

5. Role Based Access Control (RBAC) – NIST, April 2003. - http://csrc.nist.gov/rbac/  
6. eXtensible Access Control Markup Language (XACML) Version 1.0 - OASIS Standard, 

Feb. 2003 - http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0. pdf  
7. K.Keahey, V.Welch, “Fine-Grain Authorization for Resource Management in the Grid 

Environment”. - http://www.fusiongrid.org/research/papers/grid2002.pdf 
8. Markus Lorch, Dennis Kafura, Sumit Shah, "An XACML-based Policy Management and 

Authorization Service for Globus Resources". - Grid 2003, 17 November 2003. - 
http://zuni.cs.vt.edu/publications/grid-authz-policy-mgmt-wip03.ps  

9. Web Services Architecture, W3C Working Draft 8 August 2003 - http://www.w3.org/ 
TR/ws-arch/  

10. Web Services Security Framework by OASIS - http://www.oasis-open.org/committees/ 
tc_home.php?wg_abbrev=wss 

11. Security Assertion Markup Language (SAML) v1.0 - OASIS Standard, Nov. 2002 - 
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security 

12. A grammar for Policies in a Generic AAA Environment - http://www.ietf.org/internet-
drafts/draft-irtf-aaaarch-generic-policy-03.txt  

13. Web Services Policy Framework (WS-Policy). Version 1.1. http://msdn.microsoft.com/ 
ws/ 2002/12/Policy/ 

14. Web Services Policy Attachment (WS-PolicyAttachment). Version 1.1. - 
http://msdn.microsoft. com/ws/2002/12/PolicyAttachment/ 



 Security Architecture for Open Collaborative Environment 599 

 

15. XACML profile for Web-services (WSPL): - http://www.oasis-open.org/committees/ 
download.php/ 3661/draft-xacml-wspl-04.pdf 

16. Web Services Federation Language (WS-Federation) Version 1.0 - July 8 2003 – 
http://msdn.microsoft.com/ws/2003/07/ws-federation/ 

17. Liberty Alliance Phase 2 Final Specifications - http://www.projectliberty.org/specs/ 
18. Demchenko Yu. Virtual Organisations in Computer Grids and Identity Management. – El-

sevier Information Security Technical Report - Volume 9, Issue 1, January-March 2004, 
Pages 59-76. 



An Experimental Information Grid Environment
for Cultural Heritage Knowledge Sharing

A. Aiello, M. Mango Furnari, and A. Massarotti

Istituto di Cibernetica E. Caianiello, Via Campi Flegrei, 34,
I-80078 – Pozzuoli, Italy

{a.aiello, mf, a.massarotti}@cib.na.cnr.it

Abstract. In this paper the authors address the problems of making
existing distributed collection document repositories mutually interop-
erable at the semantic level. The authors argue that semantic web tech-
nologies offer a promising approach to facilitate homogeneous, semantic
information retrieval based on heterogeneous document repositories on
the web. From contents point of view, the distributed system is built as
a collection of multimedia documents repository nodes glued together
by an ontology server. A set of methodologies and tools for organizing
the information space around the notion of contents community is devel-
oped, where each content provider will publish a set of ontologies to col-
lect metadata information organized and published through the Contents
Community Authority on top of an ontology server. These methodolo-
gies were deployed setting up a prototype to connect about 20 museums
in the city of Naples (Italy).

1 Introduction

In this paper the authors address the problem of making distributed document
collection repositories mutually interoperable at semantic level. Furthermore,
they argue that emerging semantic web technologies, more specifically the on-
tology one, offer a promising approach to facilitate semantic information retrieval
based on heterogeneous document repositories distributed on the web. However,
the current source ontologies exploitation attempts are oriented to cope with
the conceptualization of single information source. Furthermore, most of exist-
ing tools treat ontologies as monolithic entities and provide little support for
specifying, storing and accessing ontologies in a modular manner.

The authors’ efforts described in this paper are based on the hypothesis that
it is necessary to develop an adequate treatment of distributed ontologies in
order to promote information sharing on the semantic web, and appropriate in-
frastructures for representing and managing distributed ontologies have also to
be developed. To pursue these goals we defined a modularized ontology repre-
sentation and developed an ontology server to deploy a knowledge repository
community. An experimental implementation to verify the developed method-
ologies and tools within the cultural heritage promotion arena is also described.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 600–609, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Experimental Information Grid Environment 601

The rest of the paper is organized as follows: In the first section the architec-
ture and the implementation of the proposed Distributed Contents Management
System are given together the Ontology Server architecture. In the second sec-
tion a modular representation for the ontology structure is described. In the
third section the implemented test bed is described. In last section the proposed
architecture advantages are summarized and compared with other efforts.

2 The Distributed Contents Management System and
Ontology Server Architecture

We chose the WWW paradigm as design criteria for a distributed contents man-
agement system, where the notion of document plays the role of elementary
information and basic building block. Documents are represented as digital ob-
jects together with the associated metadata information, where the metadata
are organized using domain ontology. Furthermore, we assumed the multi-tiers
web architecture, with the application server playing the central role of business
logic driver, where the main identified components are:

– Document Repository System (DRS ). The DRS stores and organizes the
documents together with the associated metadata.

– Document Access System (DAS ). The DAS creates friendly and flexible user
interfaces to discover and access the contents.

– Contents Authority Management System (CAS ). The CAS stores and man-
ages the ontologies used by each participating node to facilitate the DRS
semantic interoperability.

All these systems communicate among them exchanging XML encoded mes-
sages over http, according to well-defined protocols that represent the XML
communication bus core, see Figure 1.

The user will interact with the community of systems through a conventional
browser; the DRS appears and behaves like a traditional web site. Documents
must underway a text processing before to be displayed, and programmed accord-
ing to a sequence of transformations expressed using the eXtensible Stylesheet
Language Transformation (XSLT) [7]. The Document Access System manages
this document composition process, whose business logic could be summarized
as follows: the ontology client makes the first step by extracting the informa-
tion from the data store and wrapping this information with XML tags. The
extraction is done querying the ontology server. The second step involves the
application of the appropriate stylesheet transformations to the XML data and
thereby the creation of a corresponding HTML page. The foregoing step is car-
ried out by the XSLT package included in the application server. The output of
that transformation is the HTML page directly sent to the browser.

The advantages of the whole proposed architecture are: a) ease of deployment
on Internet, high reliability and fault-tolerance, and efficient use of the network
infrastructures; b) flexibility and generality as needed in order to evolve and



Fig. 1. Distributed Contents Management architecture

meet future needs; c) scalability without fundamental changes in the structure
of the resource name spaces.

In the previous scenario the ontology server provides the basic semantic in-
teroperability capabilities to build a Document Repositories Community. From
the conceptual point of view the Ontology Server it is the most important type
of servers since it manages the OWL/RDF [15] schema for the stored data, and
determines the interactions with the other servers and/or modules, through the
ontology exchange protocol [13].

The Ontology Server provides the information provider with the possibility of
interacting with heterogeneous and distributed document repositories. Actually,
it guarantees the necessary autonomy to the information provider in organizing
their contents space. To achieve these goals the Ontology Server is equipped with
the following modules:

– Ontology Development Module. The ontology development module is built
around the Protégé-2000 [19] ontology editor, since its architecture is mod-
ular and extensible. We developed an extension for the OWL Protégé-2000
Plug-in in order to store the ontology directly on the Data Store Module
using the client/server metaphor, see Figure 2.

602 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 603

Fig. 2. The Plugin OWL and Tab architecture

– Ontology Repository Module. For the OWL/RDF data persistent storage we
choose the Sesame package [3]. It is an open source, platform-independent,
RDF Schema-based repository, provided with querying facility written in
Java. The low level persistent storage is achieved using Postgresql [18], one
of most widely used public domain database environment. The Sesame en-
vironment offers three different levels of programming interfaces: the client
API, for client-server programming; the server API; and the lower level Stor-
age and Inference Layer (SAIL) API, for the RDF repositories.

– Ontology Interface Module. The Ontology Interface Module consists of a set
of functionalities for walking through the ontology graph and the associated
attributes. At runtime, these functionalities could be used by a Document
Access System to build the user interfaces, to browse the ontology struc-
tures, to implement an ontology driven search engine, and so forth. The
Ontology Interface Module can be queried about the ontology class hierar-
chy, and/or the class properties, giving back an RDF document that could
be transformed into HTML forms.

3 Ontology Modular Representation

The main purpose of building an ontology is to capture the semantics of the doc-
uments describing a given knowledge domain, especially the conceptual aspects
and interrelations. We used OWL DL [17] to represent domain of concepts and
relationships in a machines and humans understandable form. OWL DL is a rich
ontology language with built-in semantics. It allows exploiting the well-defined
semantics of description logics, where a reasonable upper bound is guaranteed
for the complexity inconsistency, misclassifications, misunderstandings and de-
ductions checking.



To cope with the interoperability problems related to exchange ontologies
among cooperating information systems, we took into account the fact that
interoperability worst case occurs when useful communication is restricted to
transfer an ontology, as a whole such as happens with the currently serializing
language and/or schema. By contrast, we may expect that transferring ontology
in small meaningful chunks could significantly improve the knowledge system
interoperability.

We defined a language for the XML serialization of the OWL DL ontolo-
gies, called ezXML4OWL [14]. The idea was to serialize an OWL mereology
by mapping whole OWL ontologies to whole XML documents as well as parts
belonging to the OWL mereology to the corresponding XML elements, all of
them with the constraint that the relation part-of corresponds to the relation
XML-element-of. Of course, it is not required that every XML-element occur-
ring in ezXML4OWL have a correspondent in the OWL mereology. There are,
indeed, auxiliary XML elements that have only serializing roles. Moreover, some
redundancy was created to make our representation more understandable, and
to make ezXML4OWL documents modular.

An ezXML4OWL document serializing an OWL DL ontology is composed
of exactly the following three modules1: <ontology>, <axioms>, and <facts>.
These modules are the top modules and like other modules and/or elements
are recursively defined. The module <ontology> encodes metadata about the
ontology, such as the name and the four OWL built-in ontology properties:
owl:imports, owl:priorVersion, owl:backwordCompatibleWith and
owl:incompatibleWith. The ontology’s name and the associated properties are
encoded according to the following skeleton:

<ontology name=ontologyID>
<ontoProperty name= owl:priorVersion>

<value name= ontologyID>
</ontoProperty>
<ontoProperty name= owl:backwordCompatibleWith>

<value name= ontologyID>
.....
<value name= ontologyID>

</ontoProperty>
<ontoProperty name= owl:incompatibleWith>

<value name= ontologyID>
.....
<value name= ontologyID>

</ontoProperty>
<ontoProperty name= owl:imports>

1 We use the term “module” for referring to ezXML4OWL elements that codify con-
cepts belonging to the OWL mereology. Henceforth, the term “element” will refer
to generic XML elements (not necessarily modules).

604 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 605

.....
<value name= ontologyID>

</ontoProperty>
</ontology>

The module <facts> stores all the data gathered during the data entry phase.
Since <facts> modules are about individuals, they might contain only modules
of the type <individual>. Anyway, since each <individual> module would cod-
ify an instance of a class we defined a module, of the type <classIndividuals>,
corresponding to the mereological entity “set of instances in the same class”, and
operating as a container for all <individual> codifying instances in the same
class. <classIndividuals>. The fact module skeleton is:

<facts>
<classIndividuals className>

<individual name>
<individualID_ValuedProperties>

<property name >
<value name/>
......

</property>
.....
.....

</individualID_ValuedProperties>
<data_ValuedProperties>

<property name >
<value name/>

</property>
.....

</data_ValuedProperties>
</individual>
.....

</classIndividuals>\\
.....
.....
</facts>

We codify the different kind of ontology axioms in different modules, all be-
ing direct parts of the module <axioms>, where the module <classesLattice>
explicitly describes the lattice formed by the classes associated to the ontology
to be serialized. The lattice’s structure is specified giving the direct subclasses of
each class. The module <classesLattice> implements both the first two types
of description prescribed by OWL: the class identifier (a URI reference) and the
property rdfs:subClassOf. The module <classesSlots> codifies the classes
and the related properties. There are modules for each type of OWL property.

<value name= ontologyID>



Namely, the owl:DatatypeProperty’s are encoded in modules <dataProp/> and
the owl:ObjectProperty are encoded in modules <obProp>. Attributes are also
given to specify the range, the cardinality and the source (inherited or specific)
of the properties, the remaining modules description and remarks can be found
in [17].

The axioms module skeleton is:

<axioms>
<classesLattice>

<root name ‘‘classeID’’/>
.....
<root name =‘‘classeID’’/>
<leaf name =‘‘classeID’’/>
.....
<leaf name=‘‘classeID’’/>
....
<sup name =‘‘classeID’’>

<sub name =‘‘classeID’’/>
.....
<sub name =‘‘classeID’’/>

</sup>
</classesLattice>
<classesSlots>

<class name ‘‘classeID’’> ..... </class>
......
<class name ‘‘classeID’’> ..... </class>
.....

</classesSlots>
<subClassOf> ..... </subClassOf>
<enumeratedClasses> ..... </enumeratedClasses>
<equivalentClasses> ..... </equivalentClasses>
<disjointClasses> ..... </disjointClasses>
<objectProperties> ..... </objectProperties>
<datatypeProperties> ..... </datatypeProperties>

</axioms>

4 The Museo Virtuale di Napoli Testbed

The aim of any ordinary museum visitor is something quite different from trying
to find certain objects. In physical exhibitions, the cognitive museum experi-
ence is often based on the thematic combination of exhibits and their contextual
information. In order to figure out how much it would be complex to achieve
these goals and which kind of technologies would be necessary, the research

606 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 607

project “Museo Virtuale di Napoli: Rete dei Musei Napoletani” (REMUNA)2 is
carried out at the Istituto di Cibernetica E. Caianiello. The collection of eigh-
teen Neapolitan museums document repositories are used as case study. These
repositories use different technologies, have different conceptual schemas and are
physically located in different districts of Naples.

Each museum is equipped with multimedia information system and commu-
nication infrastructures. From the museum managers’ perspective each informa-
tion system allows him to make available the managed artifacts’ information
through the ReMuNa environment, just after registering them into the system.
This information is encapsulated into a digital object that plays the role of a
handle for the actual artifact information. No assumption about fixed attributes
names’ schemata is taken, so the application builder can create new attributes,
as needed just modifying the associated ontology without changing the internal
database schemata.

The information provider3 could also organize a set of related documents,
in document collections, according to some relationships defined on top of the
associated ontology. The adopted notion of collection is a recursive one, in the
sense that a collection could contain other collections. Each digital document
is allowed to belong to multiple collections and may have multiple relationships
with other documents. This nesting features are represented by the document
repository collection graph, and allows the system to deliver more than one
logical view of a given digital documents asset.

To assure the necessary operational autonomy to the museum manager, with-
out reducing the cooperation opportunities with other museum managers, we
deployed this cooperation schema as an intermediate coordination organization
that is in charge to register, syndicate and to guarantee the document contents
quality, that we called Content Authority. The presence of the content author-
ity could create a bottleneck; therefore the notion of delegation was introduced.
In other words, the top authority could delegate another organization to oper-
ate as Cultural Heritage Contents Authority, on its behalf, for a more specific
knowledge domain.

The domain ontology developed to exchange cultural heritage data has many
common features with the CRM/CIDOC [9] have been developed. The designed
cultural heritage ontology is empirical and descriptive one; it formalizes the se-
mantics necessary to express stated observations about the world in the domain
of museum documentation. It is composed of a class hierarchy, named classes
interlinked by named properties. It follows object oriented design principle, the
classes in the hierarchy inherit properties from their parents. Property inheri-
tance means that both classes and properties can be optionally sub–typed for

2 The project “Museo Virtuale di Napoli: Rete dei Musei Napoletani” is supported by
Ministero dell’Università, Ricerca e Tecnologia, under contract C29/P12/M03, from
here on denoted with ReMuNa.

3 In this paper we assume that museum manager means the responsible, inside the
museum organization, of the cultural heritage goods information.



specific applications, making the ontology highly extensible without reducing
the overall semantic coherence and integrity.

The ontology is expressed according to the OWL semantic model, this choice
yelds a number of significant benefits, for example the class hierarchy enables
us to coherently integrate related information from different sources at varying
levels of detail.

5 Conclusions

One of the most interesting technological aspects investigated was how to design
document repositories systems that allow the museum manager to organize the
cultural heritage heterogeneous information space spread in many autonomous
organizations.

Ontology Exchange Protocol and tools were implemented to exploit the Mul-
timedia Document Information System federation settlement. The ontology ex-
change protocol is very similar to the Dienst [12] collection service, where the
main difference relies on the fact that in our case the collections are entities
built on top of a domain ontology describing the domain of the documents con-
tent and not predefined ones. To a certain degree, our usage is similar to that
of the CIMI project [4]. In fact, it has become increasingly evident that simple
application-specific standard, such as Dublin Core (DC) [5], cannot satisfy the
requirements of communities such as BIBLINK [2] and OAI [16] that need to
combine metadata standards for simple resource discovery process.

Our work successfully showed that an RDF data store (Sesame) could be
used as a backend document repository for a distributed Contents Management
System (CMS), and the central role that the Ontology Server plays on deploying
such kind of systems.

As the Semantic Web begins to fully take shape, this type of distributed
CMS implementation will enable agents to understand what is actually being
presented in distributed CMS, since all content within the system is modeled in
machine understandable OWL/RDF.

Starting from these encouraging results we are planning to actively pursue
some of the goals foreseen by the Semantic Web Initiative [1], [10], [11]. For
example, to gain more semantic information we are exploiting pieces of well-
known and supported ontologies, like ICOM-CIDOC [9].

Acknowledgment

Acknowledgments are expressed to all the people of Istituto di Cibernetica E.
Caianiello that worked on the ReMuNa project, for their help, and fruitful dis-
cussions, and also to all the staff members of the Soprintendenza ai Beni Archeo-
logici delle Province di Napoli e Caserta, Soprintendenza ai beni Artistici, Storici
e Demo Antropologici della Provincia di Napoli, Soprintenda ai Beni Architet-
tonici ed Ambientali della Provincia di Napoli, Archivio di Stato di Napoli, to

608 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 609

the people of Direzione Musei of Comune di Napoli, and the Assessorato alla
Cultura of Comune di Napoli, without their assistance the ReMuNa project
and activities would not exist.

References

1. Berners-Lee, T., “WWW: Past, Present, and Future”, IEEE Computer, 29, (1996)
2. “The BIBLINK Core Application Profile”,

http://www.schemas-forum.org/registry/biblink/BC-schema.html

3. Broekstra J., Kampman A., van Harmelen F., “Sesame: A generic architecture
for storing a querying rdf and rdf schema”, In The Semantic Web – ISWC 2002,
volume 2342 of Lecture Notes in Computer Science, pp. 54-68 (2002)

4. “CIMI: Consortium of Museum Intelligence”,
http://www.cimi.org/

5. “The Dublin Core Metadata Initiative”,
http://www.purl.org/dc/

6. Davis J. and Lagoze C., “The Networked Computer Science Technical Report
Library”, Cornell CS TR96-1595

7. “Extensible Style Language for Transformation”,
http://www.w3c.org/Style/XSLT

8. Lassila O., Swick R., “Resource Description Framework (RDF) Model and Syntax”,
World Wide Consortium Working Draft

9. “ICOM/CIDOC Documentation Standard Group, Revised Definition of the
CIDOC Conceptual Reference Model”, 1999,
http://cidoc.ics.forth.gr/

10. HP Labs Semantic Web Research, “Jena-A Semantic Web Framework for Java”,
2004
http://www.hpl.hp.com/seweb/

11. Horrocks I., Tessaris S., “Querying the Semantic Web: a Formal Approach”. The
1st International Semantic Web Conference (ISWC2002), Sardinia, Italy, June 9-
12, 2002

12. Lagoze C., Shaw E., Davis J.R. and Krafft D.B., “Dienst: Implementation Refer-
ence Manual”, May 5, 1995.

13. Mango Furnari M., Aiello A., Caputo V. Barone V., “Ontology Server Protocol
Specification”, ICIB TR-12/03

14. Mango Furnari M., Aiello A., Massarotti A., “ezXML4OWL: an easy XML for
OWL”, ICIB TR-06/04.

15. McGuinness D., van Harmelen F. (eds)., “OWL Web Ontology Language
Overview”, 2003
http://www.w3.org/TR/2003/WD-owl-features-20030331/

16. “Open Archives Initiative”,
http://www.openarchives.org

17. “OWL Web Ontology Language Overview”,
http://www.w3.org/TR/2003/PR-owl-features-20031215/

18. http://www.postgresql.org/

19. http://protege.stanford.edu



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 610 – 619, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Implementation of Federated Databases  
Through Updatable Views 

Hanna Kozankiewicz1, Krzysztof Stencel2, and Kazimierz Subieta1,3 

1 Institute of Computer Sciences of the Polish Academy of Sciences, Warsaw, Poland 
{hanka, subieta}@ipipan.waw.pl 

2 Institute of Informatics Warsaw University, Warsaw, Poland 
stencel@mimuw.edu.pl 

3 Polish-Japanese Institute of Information Technology, Warsaw, Poland 

Abstract. We present a new approach to the grid technology that is based on 
federated databases and updatable views. Views are used in two ways: (1) as 
wrappers of local servers that adopt local schemata to the federated database re-
quirements; (2) as a facility for data integration and transformation into a ca-
nonical form according to the federated database schema. Views deliver virtual 
updatable objects to global clients. These objects can be associated with meth-
ods that present the procedural part of remote services, like in Web Services. 
The fundamental quality of the approach is transparency of servers: the user 
perceives the distributed environment of objects and services as an integrated 
virtual whole. The approach is based on a very simple and universal architec-
ture and on the stack-based approach, which treats query languages as a kind of 
programming language. 

1   Introduction 

Grid technology provides a new information processing culture that integrates many 
local services into a big virtual service, summing the resources belonging to particular 
services. The grid user is interested in services rather than in service providers. For 
instance, if the grid integrates thousands of small bookstores, the customer is looking 
for a cheapest required book and can buy it without interesting in concrete bookstores 
offering this book (see Amazon’s Z-shops). The service providers transparency has to 
be supported by many technical forms of transparency that facilitate designers and 
programmers of grid applications.  

In this paper we focus on data-intensive applications of the grid technology where 
distribution of data implies distributed and parallel computing. From this point of 
view, the technology can be perceived as continuation of distributed/federated data-
bases – the topic that has been developed for many years. The domain of federated 
databases worked out many concepts that are very close to the current grid research, 
such as various forms of transparency, heterogeneity, canonical data models, transac-
tion procession within distributed federations, metamodels for federations, etc. In our 
opinion the concepts, ideas and solutions worked out by the distributed/federated 
databases domain must sooner or later be absorbed by the field of grid technology.  



 Implementation of Federated Databases Through Updatable Views 611 

 

The key issue behind data integration in grid is transparency i.e., abstraction from 
secondary features of distributed resources. There are many forms of transparency 
like location, access, concurrency, implementation, scaling, fragmentation, replica-
tion, indexing, or failure transparency. Due to transparency (implemented at the 
middleware level) some complex features of distributed data/service environment 
need not to be taken into account in the application code. Thus, transparency much 
amplifies programmers’ productivity and supports flexibility and maintainability of 
software. 

In this paper we present a new approach to implementation of several forms of 
transparency based on universal architecture for integration of local, autonomous 
databases. Data and services of a particular server are made visible for global applica-
tions through a wrapper that virtually maps the data/services to some assumed ca-
nonical object model. Then, all contributing services are integrated into the virtual 
whole by means of a updatable views. In this way all participating local data and 
services are seen through a single federated schema.  

The novelty of the presented approach is that we propose to use updatable object-
oriented views with full computational power. Views are defined in the query language 
SBQL that is integrated with imperative constructs (e.g. updating) and abstractions 
(functions, methods, procedures). The idea of using views for integration of distrib-
uted/federated databases is not new (see e.g. [Bell97, Subi00, Hal01]) and there are 
some prototype implementations [KLN+04, KW96]. However, to the best of our 
knowledge the issue is still challenging because of updatability and practical universal-
ity of view definitions. In our recent research [KLS03] we have developed and imple-
mented object-oriented virtual views that have full algorithmic power and are updatable 
with no anomalies and limitations. Our views support full transparency of virtual ob-
jects, i.e. the programmer is unable to distinguish stored and virtual objects. Such 
views are considered as a general facility for integrating distributed and heterogene-
ous resources, including methods acting on virtual objects. Views deliver virtual data 
to the clients of a federation. Therefore, such views offer similar facilities as Web 
Services or a middleware based on CORBA. The advantage of our approach is that it 
offers a very simple architecture that is much more flexible and universal than the 
technologies mentioned above.  

The rest of the paper is structured as follows. In Section 2 we describe Stack-Based 
Approach and its query language SBQL. In Section 3 we sketch the approach to up-
datable views. In Section 4 we explain the ideas of our grid approach. In Section 5 we 
present an example application of the approach. Section 6 concludes. 

2   Stack-Based Approach 

Our grid mechanism is based on the Stack-Based Approach (SBA) to query languages 
[SKL95]. SBA aims at integrating the concepts of programming languages and query 
languages. Therefore, queries are evaluated using mechanisms that are common in 
programming languages, such as stacks. 



612 H. Kozankiewicz, K. Stencel, and K. Subieta 

 

2.1   SBA Data Store 

In SBA each object has the following properties: a unique internal identifier, an ex-
ternal name, and a value. Basing on the value we distinguish three kinds of objects:  

• atomic object where the value is an atomic value (number, string, blob, etc.);  
• link object with the value being a pointer to another object;  
• complex object where the value is a set of objects (the definition is recursive and 

allows one to model nested objects with no limitations on nesting levels). 

An SBA store consists of: the structure of objects/subobjects (as defined above), 
identifiers of root objects (starting points for queries), and constraints. 

2.2   Environment Stack and Name Binding 

SBA is based on the programming languages’ naming-scoping-binding principle. 
Each name occurring in a query/program is bound to a proper run-time data-
base/program entity according to the name scope. Scopes for names are managed by 
means of an Environment Stack (ES). The stack supports the abstraction principle 
what means that a programmer can consider a piece of code to be independent of the 
context of its use. 

ES consists of sections, which contain entities called binders. Binders relate names 
with run-time objects and are used during binding names. A binder is a pair (n, i),  
written as n(i), where n is an object name, and i  is an object identifier. 
New sections on ES are built by means of a special function nested that works in the 
following way: 

• For the identifier of a link object the function returns the binder of the object the 
link points to. 

• For a binder the function returns that binder. 
• For a complex object the function returns binders its sub-objects.  
• For structures nested(struct{x1, x2,...}) = nested(x1) ∪ nested(x2) ∪ ... 
• For other elements the result of nested is empty. 

The process of name binding is the following. When the query interpreter wants to 
bind name n occurring in a query it searches ES for a binder with the name n that is 
the closest to the top of ES. The process of binding respects scoping rules what means 
that some sections of ES can be not visible during the binding. The name binding can 
return multiple binders and this way we can handle collections. 

In this paper w present examples basing on a simple database that keeps informa-
tion on Books in a form Book(title, author, ISBN, price). Example ES states during 
evaluation of a query Book where author = “Niklaus Wirth” are illustrated in Fig. 1. 
In the initial and final states the ES contains only base section with binders to root 
objects. During evaluation the query the operator where puts on ES a new section 
with the environment (internal objects) of the particular Book object. This section is 
created by means of the function nested which for a book id returns binders: au-
thor(iw), title(ix), price(iy), ISBN(iz). After the query evaluation ES returns to the pre-
vious state.  



 Implementation of Federated Databases Through Updatable Views 613 

 

 

Customer(ia) Customer(ib)
Customer(ic) Book(id)

Book(ie)

author(iw) title(ix) price(iy) 
( iz)

Customer ( i a ) Customer ( i b ) 
Customer (ic) Book ( i d ) 

Book(ie)

Customer(ia) Customer ( i b ) 
Customer(ic ) Book ( i d ) 

Book ( i e ) 

Initial state of ES Final state of  ES State of ES during 
query evaluation 

Customer(ia) Customer(ib)
Customer(ic) Book(id)

Book(ie)

author(iw) title(ix) price(iy) 
ISBN iz)

Customer ( i a ) Customer ( i b ) 
Customer (ic) Book ( i d ) 

Book(ie)

Customer(ia) Customer ( i b ) 
Customer(ic ) Book ( i d ) 

Book ( i e ) 

Initial state of ES Final state of  ES State of ES during 
query evaluation  

Fig. 1. States of ES during evaluation of query Book where author = “Niklaus Wirth” 

2.3   Stack-Based Query Language 

SBA has its own query language – Stack-Based Query Language [SKL95] that is 
based on the principle of compositionality what means that more complex queries can 
be built of simpler ones. In SBQL queries are defined as follows: 

1. A name or a literal is a query; e.g., 2, “Niklaus Wirth”, Book, author 
2. σ q, where σ  is an unary operator and q is a query, is a query; e.g., count(Book), 

sin(x). 
3. q1 τ q2, where τ  is a binary operator, is a query; e.g., 2+2, Book.title, Customer 

where <condition> 

Due to the compositionality discipline that recursively defines semantics of complex 
queries on semantics of its components, up to primitive queries (literals and names), 
the whole semantics of SBQL is precise, minimal, easy to implement and optimize, 
and easy to understand by the users. 

SBQL can be extended to support procedures. They can be defined with or without 
parameters, can have local environment, can have side-effects, and can call other 
procedures (including recursive calls). 

3   View Mechanism 

A view is a mapping of stored data into virtual ones. In the classical approach (SQL) a 
view is a function, similar to programming languages’ functions. View updating 
means that a function result is treated as an l-value in updating statements. Such an 
approach, however, appeared to be inconsistent due to problems with finding un-
equivocal mapping of updates on virtual data into updates on stored data. In our ap-
proach to view updates [KLS03] a view definer can include into a view definition 
information on update intents for the given view. It allows us to eliminate ambiguities 
connected with multiple ways of performing a view update and the risk of warping 
user intention, which is a well-known problem.  

Therefore, in our approach a view definition consists of two main parts. The first 
part describes a mapping between stored and virtual objects. The second part de-
scribes operations that can be performed on virtual objects. A view definition can 
contain other elements like definition of subviews, procedures, internal state vari-
ables, etc. 



614 H. Kozankiewicz, K. Stencel, and K. Subieta 

 

The first part is a procedure that returns entities called seeds that ambiguously 
identify virtual objects. Seeds are also parameters for the procedures describing op-
erations on virtual objects that are defined in the second part of the view definition. In 
the approach we identified four generic operations on virtual objects: 

• Deletion of a given virtual object. 
• Update that changes value of a given virtual object. The operation has a parame-

ter that is a new value of the object. 
• Insertion of a new object into a given virtual object. The operation has a pa-

rameter that is an object to be inserted into the given virtual object. 
• Dereference that returns a value of the given virtual object. 

If an operation is not defined, it is forbidden. Internally, each operation on a virtual 
object has a fixed name – respectively on_delete, on_update, on_insert, and 
on_retrieve. The names of parameters of operations on_update and on_insert can be 
freely chosen by the view definer. The name of a view definition is different from the 
name of virtual objects – we introduced a naming convention where name of the view 
definition is written with a suffix “Def”. 

Here, we present an example definition of a view returning books that have never 
been bought in a bookstore: 

  create view worstSellingBookTitleDef { 
 virtual objects worstSellingBookTitle {  
                                               return (Books where count( bought_by ) = 0) as b; } 
 on_retrieve do { return b . title;} 
 on_update new_title do { b . title := new_title; } 
  } 

The view defines the following operations: dereference that returns title of the 
book, and update that changes the title of the book to the new value. We can call the 
view: 

( worstSellingBookTitle as wsb  where wsb = ”XMl” ) :=  “XML” 

Mind, that in the query we call operation on_retrieve when comparison “=” is per-
formed and operation on_update when “:=” is performed. 

In our approach views can be nested, with no limitations concerning number of 
nesting levels. We follow the principle of relativity what means that at each level of 
nesting hierarchy a view is defined using the same syntax, semantics, and pragmatic. 
Subviews of the given view are seen as subobjects of a given virtual object.   

4   Novel Approach to Integration of Federated Databases 

There are many aspects of the grid technology that have to be considered for real 
applications, in particular, transparency, security, interoperability, efficiency, compu-
tational universality, etc. Here we concentrate only on the transparency and computa-
tional universality aspects, presenting a general architecture of a grid application and 
some discussion concerning adaptation of SBA to this architecture. 



 Implementation of Federated Databases Through Updatable Views 615 

 

4.1   Architecture 

The heart of our approach to federated databases is the global virtual object and ser-
vice store (we will use also a shorter term i.e. the global virtual store). It stores ad-
dresses of local servers and has some computation power. It involves a query engine 
with ES. Global clients are applications that send requests and queries to the global 
virtual store. Global virtual store is stateless thus can be replicated by many clients. 

The global schema is a collection of definitions of data and services provided by 
the global virtual store. Application programmers are the main users of these defini-
tions (also the grid organizer uses it; see below). The programmers make use of them, 
while they are creating global clients. The global schema is agreed upon by a consor-
tium (of course it may be a single company) that funds the creation of the grid. 

The grid offers services and data of local servers to these global clients. The local 
schema defines data and services inside a local server. The syntax and semantics of 
these schemata as well as the natures of the data and services can be very distinct at 
each local server. They can be written in e.g. OMG IDL, WSDL and ODL. However, 
this schema is invisible to the grid.  

The first step of the integration of a local server into the grid is done by the admin-
istrator of this local server. She has to define the contributory schema which must con-
form to the global schema (we will describe this conformance later in this paper). It is 
the description of the data and services contributed by the local server to the grid. The 
local server’s administrator also defines contributory views that constitute the mapping 
of the data and of the local server to the data and services digestible to the grid. 

The second step of the integration of local servers into the grid is the creation of 
global views. These views are stored inside the global virtual store. The interface of 
them is defined by the global schema. They map the data and services provided by the 
local servers (in the contributory schema) to the data and services available to the 
global clients (in the global schema).  

Such a grid would be useless if we had not had updatable views. The global clients 
not only query the global virtual store but also request its updates. The same concerns 
the grid that not only queries the contributory views but also updates data of it. 

Note that the view in SBA are just complex objects, thus they can contain methods 
and procedures as well as the local variables that store the state of these views. There-
fore these views can offer the same facilities as CORBA or Web Services. There is no 
limitations, because SBQL has the power of universal programming languages.  

The communication protocol is the collection of routines used in the definition of 
the global views. It contains the functions to check e.g. the state (up or down) of a 
local server and the access time to a local server. 

The global views are defined by the grid designer, which is a person, a team or 
software that generates these views upon the contributory schemata, the global 
schema and the integration schema. The integration schema contains additional in-
formation how the data and services of local servers are to be integrated into the grid. 
The integration schema does not duplicate the definitions from the contributory sche-
mata. It holds only the items that cannot be included in the contributory schemata, e.g. 
the way to integrate pieces of a fragmented object the relationships among local serv-
ers that they are not aware of. The integration schema is used during the creation of 
views of the global virtual store. 



616 H. Kozankiewicz, K. Stencel, and K. Subieta 

 

Global 
client 1

Global 
client 3

Global 
client 2

Global views

Global virtual object and service store

Communication protocol

Global schema

Contributory
views

Local service and 
object store 

Local server

Local
schema

Grid designer

Integration schema

Contributory 
schema

Contributory
views

Local service and 
object store 

Local server

Local
schema

Contributory 
schema

Global 
client 1

Global 
client 3

Global 
client 2

Global views

Global virtual object and service store

Communication protocol

Global schema

Contributory
views

Local service and 
object store 

Local server

Local
schema

Grid designer

Integration schema

Contributory 
schema

Contributory
views

Local service and 
object store 

Local server

Local
schema

Contributory 
schema

 

Fig. 2. Architecture of the GRID 

The architecture of GRID is depicted in Fig. 2. In the figure solid lines represent 
run-time relationships i.e., queries, requests, and answers. Global users ask global 
view for resources and the global view request for some resources from local servers. 

In the figure dashed arrows illustrate association that are used during development 
of the grid software. The programmers of global applications (global clients) use the 
global schema. The global views conform to the global schema. The grid designer 
uses the contributory schemata, the global schema and the integration schema in order 
to develop a global view. 

4.2   Adaptation of the Approach to SBA 

In the approach global views have to have access to information stored at local serv-
ers. Therefore, the global virtual store keeps the addresses of local servers in the form: 

(oid, server’s name, server’s address) 

In this triple oid is the internal identifier inside the global virtual store, server’s 
name is a human-readable name (e.g. Cracow) and the server’s address is the descrip-
tion of the physical location of the server (e.g. URI or URL). We call such a triple a 
server link object. A server link object looks like a link object. However, when some-
one navigates into it, it behaves like a complex object. 

Let us assume that we have a server link object (iC, Cracow, IPCracow). Concep-
tually when identifier iC is processed (e.g. when query Cracow.Book. title is evalu-
ated), ES is augmented with all root objects of the local server located at IPCracow. 
More formally the value of nested(iC) is equal to the set of all the root objects stored 
by the server identified by iC (in this case server IPCracow). This process should be 



 Implementation of Federated Databases Through Updatable Views 617 

 

the subject of query optimization, to avoid sending to the global virtual store too 
many information. Conceptually all the root objects migrate onto the global virtual 
store’s ES. Physically however local query engines can evaluate certain parts of que-
ries (like Book . title in this case). 

When object references fall onto the top of the global store’s ES, they are no longer 
sufficient to identify objects. The local object identifiers are unique only inside local 
servers. Thus when a local object identifier iO finds its way onto the global store’s ES, 
it is implicitly converted to global object identifier i.e. pair (iLS, iO) where iLS is the 
identifier of the server link object. 

Therefore, the binders on the global store’s ES can hold the identifiers of server 
link objects, the global object identifiers and possibly references of necessary local 
objects of the global virtual store.  

5   Example Application 

In this example we show that our approach can deal with replicas of data. We assume 
that we deal with multiple bookstores (respectively, located in Cracow, Warsaw, and 
Radom) and each of them sells books. We would like to create one virtual bookstore 
that offers books from all locations. Additionally, the local server in Cracow is a rep-
lica of the server in Warsaw. 

In the integration schema we have the following information: 

1. ISBN is a unique identifier of a book. 
2. There are no duplicates in databases in Warsaw and Radom. 
3. The local servers in Cracow and in Warsaw contain the same information. 
4. Data should be retrieved from the server that has shorter access time. 
5. Data in Cracow cannot be modified as they are replica of data in Warsaw. 
6. After updating data in Warsaw data in Cracow are automatically updated. 

The example global view is below: 

  create view myBookDef { 
virtual objects myBook { 

int timeTo Warsaw := 1000000; int timeToCracow := 1000000; 
if alive(Warsaw) then timeToWarsaw := checkAccessTime(Warsaw); 
if alive(Cracow) then timeToCracow := checkAccessTime(Cracow); 
if min(bag(timeToWarsaw, timeToCracow)) > 100 then { 

exception(AccessTimeToHigh); 
return ∅; 

} 
return ((Radom . Book as b) ∪  

if timeToWarsaw < timeToCracow  then (Warsaw . Book as b) 
else  (Cracow . Book as b)); 

} 
on_retrieve do {  

return b.(deref(ISBN) as ISBN, deref(title) as title,  
                deref(author) as author, deref(price) as price) 

} 



618 H. Kozankiewicz, K. Stencel, and K. Subieta 

 

on_delete do { 
if server(b) = Cracow then  

delete (Warsaw . Book where ISBN  = b.ISBN); 
else delete b; 

} 
on_insert newObj do { 

if server(b) = Cracow then  
insert newObj into ( Warsaw . Book where ISBN = b.ISBN); 

else insert newObj into b; 
} 
on_update newTitle do  

if server(b) = Cracow then  
(Warsaw . Book where ISBN = b.ISBN) . title := newTitle; 

else b . title := newTitle; 
  }} 

Note, that in this example there are implicitly used some routines of the communica-
tion protocol i.e., navigation (“.”), deletion (keyword delete), and update (“:=”). All 
these operations are called as if they are performed locally, in fact they are performed 
on data from remote servers. In means that inside global virtual store these operations 
have to be implemented as elements of the communication protocol. 

Apart from the core protocol routines (like navigation, insert, delete, and update), 
we used additional routines of communication protocol. Their names are underlined. 
Functions alive and checkAccessTime are used to determine which local servers (Cra-
cow or Warsaw) to use when constructing the seeds. The routine server acts on a pair 
(iLS, iO) returned by query b and then delivers the name server’s name from the triple  
(iLS, server’s name, server’s address) representing the corresponding local server. 

Clients can call the view in the following query: 

(myBook where title =”Solaris” ) . ( author, price ) 

that returns an author and a price of the book with the title “Solaris”. This example 
shows that our mechanism supports service providers transparency – the user does not 
need to know the origin of the data. 

6   Conclusion 

We have presented a novel approach to implementation of federated databases based 
on updatable views. The approach fulfills some fundamental requirements for grid 
applications like transparency, interoperability and computational universality. The 
approach is based on a powerful query language SBQL which ensures high abstrac-
tion level. The advantage is decreasing development time of grid applications and 
simpler adaptation to changing requirements. The presented view mechanism is flexi-
ble and allows for describing any mapping between local databases and a federated 
database. Since our views can also map methods, we offer facilities as powerful as 
CORBA or Web Services. We have implemented SBQL and updatable views for 
XML repositories based on the DOM model. Our nearest plans assume implementa-
tion of our approach to the grid technology in the prototype ODRA, an object-



 Implementation of Federated Databases Through Updatable Views 619 

 

oriented database platform build from scratch by our team (ca. 20 researchers). Cur-
rently in ODRA we have finished implementation of SBQL and start to implement 
other functionalities (imperative constructs, procedures, views, distribution protocols, 
etc.) that are necessary to make our idea sufficiently ready for testing and prototype 
applications. 

References 

[Bell97] Z. Bellahsene: Extending a View Mechanism to Support Schema Evolution in 
Federated Database Systems. Proc. of DEXA 1997, 573-582 

[Hal01] A. Y. Halevy: Answering queries using views: A survey. VLDB J. 10(4): 270-294 
(2001) 

[KLN+04] S. Kambhampati, E. Lambrecht, U. Nambiar, Z. Nie, G. Senthil: Optimizing Recur-
sive Information Gathering Plans in EMERAC. J. Intell. Inf. Syst. 22(2): 119-153 
(2004) 

[KLS03] H.Kozankiewicz, J. Leszczyłowski, K. Subieta. Updateable XML Views. Proc. of 
ADBIS’03, Springer LNCS 2798, 2003, 385-399 

[KW96] Chung T. Kwok, Daniel S. Weld: Planning to Gather Information. AAAI/IAAI, 
Vol. 1 1996: 32-39 

[SKL95] K.Subieta, Y.Kambayashi, J.Leszczyłowski. Procedures in Object-Oriented Query 
Languages. Proc. of 21-st VLDB Conf., 1995, 182-193 

[Subi00] K.Subieta. Mapping Heterogeneous Ontologies through Object Views. Proc. of 
EFIS, IOS Press, 1-10, 2000 



Data Mining Tools: From Web to Grid
Architectures

Davide Anguita, Arianna Poggi,
Fabio Rivieccio, and Anna Marina Scapolla

DIBE Dept. of Biophysical and Electronic Engineering,
University of Genoa, Via Opera Pia 11a, 16145 Genova, Italy

{anguita, apoggi, rivieccio, ams}@dibe.unige.it

Abstract. The paradigm of Grid computing is establishing as a novel,
reliable and effective method to exploit a pool of hardware resources and
make them available to the users. Data-mining benefits from the Grid as
it often requires to run time consuming algorithms on large amounts of
data which maybe reside on a different resource from the one having the
proper data-mining algorithms. Also, in recent times, machine learning
methods have been available to the purposes of knowledge discovery,
which is a topic of interest for a large community of users. The present
work is an account of the evolution of the ways in which a user can
be provided with a data-mining service: from a web interface to a Grid
service, the exploitation of a complex resource from a technical and a
user-friendliness point of view is considered. More specifically, the goal
is to show the interest/advantage of running data mining algorithm on
the Grid. Such an environment can employ computational and storage
resources in an efficient way, making it possible to open data mining
services to Grid users and providing services to business contexts.

1 Introduction

The availability of large amounts of data has raised the interest in various tasks
having the common goal of finding complex relationships between the supplied
data. These tasks, often referred to as data mining, include (among others)
classification, regression and clustering: the first two deal with the prediction of
a value (in an ordered or unordered set) and the last is related to estimating
a probability density. Machine Learning [19] provides methods and theory to
perform these tasks in an inductive and data-based fashion, where a data-set
is regarded as a collection of samples coming from an input/output statistical
relation. This relation is learnt by means of algorithms working on data and
the resulting Machine (e.g. a classifier or a regressor) can be used to forecast
future output values on the basis of some input. The Support Vector Machine
[8] is currently rated among the best performing algorithms and can be used
to accomplish any of the three tasks above (and more). The recent inclusion of
this algorithm in the data-mining suite of a well known database product [6]
witnesses this method is fit for a large scale practical exploitation.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 620–629, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Data Mining Tools: From Web to Grid Architectures 621

In this scenario, the paradigm of Grid computing can be seen as a natural and
fruitful evolution of the software layer on which data-mining builds. Data mining
algorithms need a large amount of storage and computational resources, and Grid
computing is a way to meet these requirements. A Grid enabled environment
should provide the core processing capabilities with secure, reliable and scalable
high bandwidth access to the various distributed data sources and formats across
various administrative domains [14]. When running computationally intensive
processes in a dynamic Grid environment, a further advantage comes from having
an accurate representation of the available resources and their current status.
An example of the adoption of data–mining techniques in conjunction with a
grid–enabled technology is given by the NEOS server [15].

The next section clarifies the main technical issues related to the SVM al-
gorithm while section 3 describes in greater detail the two realizations of the
SVM model selection and testing as an on-demand service. Paragraph 3.1 deals
with the deployment of SVM as a web-accessible service, while paragraph 3.2 is
focused on the SVM Grid service. The paper ends with a hint on possible future
developments of the Grid service (Sec.4).

2 Data Mining Through Support Vector Machines

The Support Vector Machine was presented by Vapnik and Cortes [8] in the mid
of the nineties. The method has proven an effective data mining tool since it
was successfully adopted to solve problems in diverse fields. A predictive model
is generated by induction on the sole basis of ”examples”, i.e. couples of in-
put/ouput objects which underlie an unknown relation. The goal of the method
is to learn a model for this relation.

This paradigm lies within the so-called Statistical Learning Theory [19], de-
veloped by Vapnik and Chervonenkis in the early seventies. The theory gives the
method a sound background from various points of view:

– The procedure which identifies the final model is principled as it embeds a
requirement of smoothness together with the obvious requisite to score a low
number of errors.

– Effective criteria are available to select a model endowed with good general-
ization capability. Novel methods which are theoretically well founded drive
the choice of a performing model [4, 2].

– Performance bounds holding in probability exist to estimate the error rate
scored on-line by the generated model [3].

The Support Vector Method provides algorithms to tackle very different sorts
of problem: classification, regression and clustering. Each of these problems is
casted into a constrained quadratic programming (CQP) problem offering many
advantages, such as the existence of a unique solution and the availability of
many algorithms to solve it in a fast and accurate way.

For the reader’s convenience the SVM algorithm for classification is here de-
tailed, anyhow the same way of reasoning can be likewise applied in the other



622 D. Anguita et al.

Table 1. Valid kernel functions

Kernel Type Kernel expression

Linear k(xi, xj) = xi · xj

Gaussian k(xi, xj) = e−γ|xi−xj |2

Polynomial k(xi, xj) = (
(xi·xj)

ni
+ 1)p

two data-mining tasks. Two issues are considered when seeking for a good Sup-
port Vector Classifier: a low number of training errors and a smooth classifier.
These two requirements are embedded in an optimization problem, called primal
problem. The solution for this problem, if x ∈ �ni, is of the form

f(x) = (w · x) + b (1)

and |w|2 is a smoothness measure: the lower the norm, the better the gener-
alization capability. Actually, the margin between the two classes scales as the
inverse of |w|2, hence searching for a smooth function means searching for a
large margin classifier. Extension to non-linear classification is possible through
the so-called kernel trick [1]: the basic idea is to replace each dot product ap-
pearing in the problem formulation with a suitable kernel function thus enabling
a non-linear separation of the data. The theoretical justification of this peculiar
procedure is to map the data-points into a high dimensionality Hilbert space,
where the chance to find a good linear separation is greatly augmented. The lin-
ear separation found in this mapped space (called feature space) is then mapped
back into the input space and can be described by only means of dot products
between mapped points: the dot product in the features space can be expressed
by a kernel function in the input space, thus allowing to describe the linear sep-
aration in the feature space as a non-linear separation in the input space [7].
The (implicit) seek for a suitable hyperplane in the feature space and thus the
identification of a non-linear classifier is made possible by the solution of a prob-
lem originating from the primal, called the dual problem which contains only
dot products between input points (thus making possible the use of the kernel
trick). The dual problem is a CQP problem and its solution is given by a set
of lagrange multipliers related to the optimization problem (αi) which minimize
the dual cost function and define the classifier in the following way:

f(x) =
np∑
i=1

αiyik(xi, x) + b (2)

where b is a bias, the value of which can also be assessed from the alphas, and
k(xi, x) is the kernel function. Suitable kernels are:

It turns out that often the solution is sparse (some of the αi are zero), then
the solution can be described (or supported) by a number of points less than
np, i.e. those points corresponding to the non-zero alphas; for this reason these
points are also called support vectors. A by product of the whole SVM algorithm
is then a selection of the input points which are most relevant to the sake of



Data Mining Tools: From Web to Grid Architectures 623

classification. The final form of the solution is a weighted sum involving the
kernel function (see eq.2), where the CQP problem identifies the weights (i.e.
the alphas) of the sum. Some other parameters are clearly not identified by the
optimization procedures but must be set a priori in order to instruct the CQP.
These parameters are sometimes called for this reason hyperparameters and they
are:

– The values shaping the kernel function (e.g. for RBFs the value of the width,
for polynomials the degree, etc.).

– The upper bound on the alpha value (as they should not grow to an infinite
value); this also results in setting the overall error relevance.

– A parameter modeling the noise amount (only for regression problems).

Hyperparameters are tightly connected to the final system performance. Sta-
tistical Learning Theory features some probabilistic bounds which estimate the
on-line error rate related to a certain model; as a by product, one can choose
the model (i.e. a certain set of hyperparameters) on the basis of the forecasted
performance. Many methods are available to this end; the resampling methods
(e.g. the bootstrap [11]) are among the most used: they build on the concept of
splitting the available data into subsets that are used for training and testing
various classifiers. The on-line performance is then devised on the basis of the
average test error. Despite the problem of how to select a model is quite thorny,
practical methods often grant a fair performance: for an account of the vast
amount of real-world problems solved through the use of SVM see [13].

3 Deploying a SVM-Based Classifier as an On-demand
Service

From the above description it is clear that some efforts must be made to shrink
the gap between unskilled users and data mining algorithms. The two following
examples show how the Support Vector Algorithms can be offered to users in
a friendly way: we first present the Internet-based Smart Adaptive Algorithm
Computational (ISAAC) server, and then the implementation of SVM as a Grid
service.

The goals shared by these two implementations are:

– No specific knowledge of what the hyperparameters are and of their values
is required: the system seeks for the best values in a transparent way.

– The user is allowed to upload his own data without bearing the load of
computation required by the algorithm: the mining engine resides in fact on
a remote server.

– The architectural layout of the whole system should be easy to upgrade in
order to widen the offered solution portfolio with new mining algorithms and
facilities.

The main intent that motivates the present work is to set-up an on-demand
data-mining service exploiting remote resources and freeing users from the ne-
cessity of having expensive hardware and/or a solid know-how in the field of



624 D. Anguita et al.

Machine Learning. Indeed, the remote elaboration is here carried on in the most
user-transparent possible way, only requiring the user to perform some basic
actions (like identification and data upload) in order to build a proper classifier.

3.1 The ISAAC Server

The ISAAC server hosts a sequence of web pages which allow a user to interac-
tively launch a model selection procedure for finding a Support Vector Classifier
based on the data provided by the user himself. The server builds on a cluster
of PCs connected through a switch, thus avoiding possible bottlenecks. The user
can connect to the system at the following URL:

http://www.smartlab.dibe.unige.it/

The system features 8 Intel P4 @ 2.4/2.8GHz nodes with 1GB RAM and an
overall storage space of about a TeraByte. Each node of the cluster runs Linux
Red Hat 9 and the hosting is granted by the Apache web server. Users are able
to access the system (without having to register in the system and supply a pass-
word) and upload data through an upload form. The web connection offers the
standard security provided by the https protocol. In this case the user navigates
in different forms which allow him/her to upload the data, launch an elabora-
tion including model selection with historical data and test the built model on
new data. The user is finally sent the communication of the estimated output
values via e-mail. A software infrastructure made of bash procedures called via
php provides the necessary substrate for the system to function properly. No
user registration other than email address storing has been provided here. In
compliance with the desired features, the ISAAC system can be updated with
new mining algorithms without affecting the general process architecture, as all
the requests are forwarded to a unique Requests Queue Manager (RQM). This
module decides when the overall load is low enough to launch another process: it
gains information about each node load state through monitoring facilities and
passes to the Process Launching Module (PLM) the reference to the job request.
The PLM launches the jobs and is responsible to instruct the Results Delivering
System (RDS) about which user has to be contacted when a certain job ends.
The general architecture is depicted in Fig.1.

All the procedures running in the ISAAC system are specific and cannot
be ported without a significant intervention to fit the code to novel hardware
resources. Also, the addition of new nodes to the cluster is tightly bounded
to the OS, which should run some Linux distribution in order to avoid a time
consuming tuning phase. In other words, a scaling of the whole system to a
wider cluster of resources could not be easily performed. As already pointed
out, the security of the system (which is critical when uploading sensible data)
is demanded to the standard https protocol. All the problems presented are
commonplace in a cluster of workstations: in particular, the security issues are
wholly demanded to the server, which should filter malicious actions coming
from the outer world; security issues among the cluster nodes are clearly not



Data Mining Tools: From Web to Grid Architectures 625

Fig. 1. The ISAAC process architecture

considered. The paradigm of Grid computing addresses these problems (among
others) offering a more reliable and effective solution.

3.2 SVM as a Grid Component

Grid computing is establishing as the state-of-the-art technology to connect re-
mote and heterogeneous resources and make them available to the users’ commu-
nity. The scenario opened by Grid computing features a dynamic optimization
of the computational load across the whole pool of resources, also allowing the
delivering of payback services in a business framework. A Grid infrastructure at
DIBE (Department of Biophysical and Electronic Engineering) is being built up
[10] as a embryonal testing environment for Grid distributed technology with
a single administrative domain. This specific Grid is focused on data-mining
problems, and the tool considered for tackling such problems is the SVM algo-
rithm. The Grid structure also allows power users to add new mining tools so to
set up a modular mining framework without having to complement every new
method with some ad-hoc code. The environment is open to evolution incorpo-
rating other nodes (e.g. university departments or business organizations) and it
is able to become an effective Grid-based system, geographically distributed and
comprehensive of different organizations each one with its distinctive network
and security policies. The hardware architecture is composed by some nodes
running different Linux distributions and the Globus Toolkit v.3.2 middleware:
the de facto standard to build a Grid infrastructure. One of these nodes is consti-



626 D. Anguita et al.

tuted by the above described Isaac System. More precisely, only the web server
is a Grid node and the cluster remains in a private sub-network. The idea is to
extend and improve the Isaac system, that has shown security and scalability lim-
its, providing an on-demand data-mining service, a secure, reliable, scalable and
portable service for the Grid users. In fact, the requirements for a data-mining
algorithm are a secure transfer of data between the client application (user inter-
face) and the Grid node, as well as a large amount of computational resources for
a quick response to the user. The requests of data-mining elaborations are met
through Grid Service techniques: a distributed computing technology that al-
lows creating client/server applications and obtaining interoperability between
different operating systems, programming languages and object models. Grid
Services are an extension of Web Services technology so they inherit all advan-
tages of that technology plus some features. They are platform-independent and
language-independent, since they use the standard XML language and the In-
ternet standard HTTP (HyperText Transfer Protocol). Distributed technologies
already existing like CORBA, RMI, EJB, result in highly coupled distributed
systems, where the client and the server are very dependent on each other; Web
Services are instead oriented towards loosely coupled systems and meet the de-
mands of an Internet-wide application, just like Grid-oriented applications [12].
Until now Grid Services can be regarded as a ”patch” over the Web Services
(WS) specification, but from the beginning of this year, a new WS specification

Fig. 2. Engine Service Class Diagram



Data Mining Tools: From Web to Grid Architectures 627

is coming up: the WSRF, Web Services Resource Framework [20]. This frame-
work defines a family of specifications for accessing stateful resources using Web
services and includes the WS-ResourceProperties, WS-ResourceLifetime, WS-
BaseFaults, and WS-ServiceGroup specifications. The motivation for this is that
while Web service implementations typically do not maintain the state infor-
mation during their interactions, their interfaces have the need to frequently
allow for the manipulation of the state, that is, data values that persist across
and evolve as a result of Web service interactions [18]. The choice of developing
a Grid Service is justified by the great portability, scalability and security of
this kind of applications. In this secure environment, only accessible to autho-
rized logins (i.e. certificated by a custom DIBE Certification Authority), users
requiring data mining services have the peacefulness that their sensible data
are transferred and elaborated over a secure environment. The service is called
Engine Service (like the name of its PortType), and its class EngineServiceImpl
extends Grid ServiceImpl, the base class that provides the basic functionality for
a Grid Service. The only exposed method is startEngine() that starts the SVM
elaboration on the Grid. The other two methods are not exposed in the Grid
Service but they implement the service security (see Fig.2). A client application
is provided to give a user-friendly interface to interact with the service. From
this one, it is possible to transfer the input data files and start the elaboration,
involving the identification and building of a proper model for a support vector
classifier. The user can upload two files: one is used for training and is made
of couples of input/output values, the other is only composed of input values
(called validation data), the task of the classifier being an estimation of the cor-
rect labels. If the user does not set any of the hyperparameters, the algorithm
performs the model selection procedure and seeks for the set of hyperparameters
which minimizes the estimated generalization error. The results are displayed in
two text areas: one for the model, which supplies detailed information about the
learning phase, and one for the validation, which tells how fairly the model is
performing on the validation data. The mechanism of file transfer is implemented
using GridFTP: a high-performance, secure, reliable data transfer protocol opti-
mized for high-bandwidth wide-area networks. The GridFTP protocol is based
on FTP, the highly-popular Internet file transfer protocol [16](see Fig.3).

4 Final Considerations

The system presented above is oriented towards on-demand computing. A future
refinement in the sense of a dynamic and effective distribution of the compu-
tational load will improve the overall quality of service offered to users. In a
scenario in which one tries to exploit both the Grid capabilities and the clus-
ter computational power, this first layer could be exclusively managed by the
Grid. An evolution is planned to grow the complexity of the software architec-
ture to enable a faster model selection procedure: once the data is uploaded by
the user, the estimation of the generalization ability of the various candidate
models could be spread across the available resources; this second layer could



628 D. Anguita et al.

Fig. 3. Engine Service Client Interface Appearance

be managed both by the Grid level and the cluster one. Each evaluation can be
performed in a parallel fashion thus speeding up the identification of the esti-
mated best model. Some methods are also available in literature to speed the
CQP optimization based on previously available solutions related to a different
set of hyperparameters (e.g. alpha seeding procedures [5]).

Besides these two layers into which the service can be allotted, a third and
deeper level of parallelization can be foreseen. Recently some algorithms have
been made available ([21]) which allow to parallelize each CQP problem, thus
opening to new scenarios in which a single classification request will be dis-
tributed into several tasks on the basis of a two-folded parallelization: the clas-
sification task is at first split into the parallel testing of several potential models
and secondly the evaluation of each of these models is shared among a number
of nodes which contribute to solving the same CQP problem. This third layer
could be exclusively performed by the cluster, thus enabling better performance.

The challenges lying in this envision are the proper allocation of the tasks
coming from different levels of optimization and the handling of concurrent re-
quests coming from different clients, in order to lower the response time perceived
by the single user.

References

1. M. A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical foundations
of the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

2. D. Anguita, S. Ridella, F. Rivieccio, R. Zunino, Hyperparameter design criteria
for support vector classifiers, Neurocomputing, Vol. 55, N. 1-2, pp. 109-134, 2003.



Data Mining Tools: From Web to Grid Architectures 629

3. D. Anguita, A. Boni,D. Sterpi, S. Ridella, F. Rivieccio, Theoretical and Practi-
cal Model Selection Methods for Support Vector Classifiers, in ”Support Vector
Machines: Theory and Applications”, by L. Wang (Ed.), Springer, in press.

4. P. L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation.
Mach. Learn., 48(1-3):85–113, 2002.

5. D. DeCoste, K. Wagstaff, Alpha seeding for support vector machines, Proceedings
of the International Conference on Knowledge Discovery and Data Mining, pp.345–
359, 2000.

6. Oracle Corp. Discover patterns, make predictions, develop advanced BI A pplica-
tions, January 2004.

7. M. G. Genton, Classes of Kernels for Machine Learning: A Statistics Perspective,
Journal of Machine Learning Research, vol. 2, pp. 299-312, 2001.

8. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

9. D. Anguita, A. Boni, and S. Ridella. Evaluating the generalization ability of sup-
port vector machines through the bootstrap. Neural Processing Letters, 11(1),
2000.

10. D. Anguita, A. Poggi, and A.M. Scapolla. Smart adaptive algorithm on the grid.
11th Plenary HP-OUVA Conference, June 2004, Paris, page 2, 2004.

11. B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
London, 1993.

12. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration, 2002.

13. I. Guyon. Online svm application list, available on web at:
http://www.clopinet.com/isabelle/projects/svm/applist.html.

14. BeSC-Belfast e-Science Centre Online available on web at:
http://www.qub.ac.uk/escience/projects/geddm/.

15. J. Czyzyk, M. P. Mesnier, J. J. Mor, ”The NEOS Server”, IEEE Computational
Science and Engineering, Vol.5, N.3, pp. 68-75, 1998.

16. Globus-Project, ”GridFTP, Universal Data Transfer for the Grid”, White Paper,
Sept. 2000.

17. T. Poggio and S. Smale, The mathematics of learning: Dealing with data, Amer.
Math. Soc. Notice, Vol.50(5),pp. 537–544, 2003.

18. IBM-Report. Web services resource framework, March 2004.
19. V. Vapnik. Statistical Learning Theory. Wiley, 1998.
20. I. Foster, J. Frey, S. Graham, S. Tuecke, K.Czajkowski, D. Ferguson, F. Leymann,

M. Nally, I. Sedukhin, D. Snelling, T.Storey, W.Vambenepe, S.Weerawarana, Mod-
eling Stateful Resources with Web Services, whitepaper available at: http://www-
106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf

21. G. Zanghirati, L. Zanni, ”A Parallel Solver for Large Quadratic Programs in Train-
ing Support Vector Machines”, Parallel Computing, 29 (2003), 535-551.



Fault-Tolerant Scheduling for Bag-of-Tasks
Grid Applications�

Cosimo Anglano and Massimo Canonico

Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy
{cosimo.anglano, massimo.canonico}@unipmn.it

Abstract. In this paper we propose a fault-tolerant scheduler for Bag-
of-Tasks Grid applications, called WorkQueue with Replication Fault Tol-
erant (WQR-FT), obtained by adding checkpointing and replication to
the WorkQueue with Replication (WQR) scheduling algorithm. By using
discrete-event simulation, we show that WQR-FT not only ensures the
successful completion of all the tasks in a bag, but also achieves perfor-
mance better than WQR and other fault-tolerant schedulers obtained by
coupling WQR with replication only, or with checkpointing only.

1 Introduction

Grid Computing technology provides resource sharing and resource virtualiza-
tion to end-users, allowing for computational resources to be accessed as a util-
ity. By dynamically coupling computing, networking, storage, and software re-
sources, Grid technology enables the construction of virtual computing platforms
capable of delivering unprecedented levels of performance. However, in order
to take advantage of Grid environments, suitable application-specific schedul-
ing strategies, able to select, for a given application, the set of resources that
maximize its performance, must be devised [2]. The inherent wide distribution,
heterogeneity, and dynamism of Grid environments makes them better suited
to the execution of loosely-coupled parallel applications, such as Bag-of-Tasks
[11] (BoT) applications, rather than of tightly-coupled ones. Bag-of-Tasks ap-
plications (parallel applications whose tasks are completely independent from
one another) are particularly able to exploit the computing power provided by
Grids [6] and, despite their simplicity, are used in a variety of domains, such as
parameter sweep, simulations, fractal calculations, computational biology, and
computer imaging. Therefore, scheduling algorithms tailored to this class of ap-
plications have recently received the attention of the Grid community [3, 4, 6].
Although these algorithms enable BoT applications to achieve very good per-
formance, they suffer from a common drawback, namely their reliance on the
assumption that the resources in a Grid are perfectly reliable, i.e. that they will

� This work has been supported by the Italian MIUR under the project Societá
dell’Informazione, Sottoprogetto 3 - Grid Computing: Tecnologie abilitanti ed ap-
plicazioni per eScience, L. 449/97, anno 1999.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 630–639, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications 631

never fail or become unavailable during the execution of a task. Unfortunately,
in Grid environments faults occur with a frequency significantly higher than in
traditional distributed systems, so this assumption is overly unrealistic. A Grid
may indeed potentially encompass thousands of resources, services, and applica-
tions that need to interact in order for each of them to carry out its task. The
extreme heterogeneity of these elements gives rise to many failure possibilities,
including not only independent failures of each resource, but also those resulting
from interactions among them. Moreover, resources may be disconnected from a
Grid because of machine hardware and/or software failures or reboots, network
misbehaviors, or process suspension/abortion in remote machines to prioritize
local computations. Finally, configuration problems or middleware bugs may
easily make an application fail even if the resources or services it uses remain
available [9].

In order to hide the occurrence of faults, or the sudden unavailability of
resources, fault-tolerance mechanisms (e.g., replication or checkpointing-and-
restart) are usually employed. Although scheduling and fault tolerance have
been traditionally considered independently from each other, there is a strong
correlation between them. As a matter of fact, each time a fault-tolerance action
must be performed, i.e. a replica must be created or a checkpointed job must be
restarted, a scheduling decision must be taken in order to decide where these jobs
must be run, and when their execution must start. A scheduling decision taken
by considering only the needs of the faulty task may thus strongly adversely
impact non-faulty jobs, and vice versa. Therefore, scheduling and fault tolerance
should be jointly addressed in order to simultaneously achieve fault tolerance
and satisfactory performance. Fault-tolerant schedulers [1, 12, 15] attempt to do
so by integrating scheduling and fault management, in order to properly sched-
ule both faulty and non-faulty tasks. However, to the best of our knowledge, no
fault-tolerant scheduler for BoT applications has been proposed in the literature.
This paper aims at filling this gap by proposing a novel fault-tolerant scheduler
for BoT applications, that we call WorkQueue with Replication/Fault-Tolerant
(WQR-FT). WQR-FT extends the WorkQueue with Replication (WQR) [6] al-
gorithm by adding to it both task checkpointing and automatic restart of failed
tasks. As shown by our results, the simultaneous adoption of these mechanisms,
besides providing fault tolerance, allows WQR-FT to achieve performance better
than WQR, WQR using automatic restart only, and WQR using checkpointing-
and-restart only. The rest of the paper is organized as follows. In Section 2 we
present the WRQ-FT scheduling algorithm, while in Section 3 we presents the
performance results we obtained in our experiments. Finally, Section 4 concludes
the paper and outlines future research work.

2 WQR-FT: A Fault-Tolerant Scheduler for BoT
Applications

Scheduling applications on a Grid is a non trivial task, even for simple appli-
cations like those belonging to the BoT paradigm [6]. As a matter of fact, the



632 C. Anglano and M. Canonico

set of Grid resources may greatly vary over time (because of resource additions
and/or removals), the performance a resource delivers may vary from an appli-
cation to another (because of resource heterogeneity), and may fluctuate over
time (because of resource contention caused by applications competing for the
same resource). Achieving good performance in these situations usually requires
the availability of good information about both the resources and the tasks, so
that a proper scheduling plan can be devised. Unfortunately, the wide distri-
bution of Grid resources makes obtaining this information very difficult, if not
impossible, in many cases. Thus, the so-called knowledge-free schedulers, that
do not base their decisions on information concerning the status of resources or
the characteristics of applications, are particularly interesting.

WorkQueue with Replication is a knowledge-free scheduling algorithm that
adds task replication to the classical WorkQueue scheduler. Our scheduler, WQR-
FT, adds both automatic restart and checkpointing to WQR, and properly coor-
dinates the scheduling of faulty and non-faulty tasks in order to simultaneously
achieve fault-tolerance and good application performance.

2.1 The Standard WQR Scheduler

In the classical WorkQueue (WQ) scheduling algorithm, tasks in a bag are cho-
sen in an arbitrary order and are sent to the processors as soon as they become
available. WQR adds task replication to WQ in order to cope with task and
host heterogeneity, as well as with dynamic variations of the available resource
capacity due to the competing load caused by other Grid users. WQR works very
similarly to WQ, in the sense that tasks are scheduled the same way. However,
after the last task has been scheduled, WQR assigns replicas of already-running
tasks to the processors that become free (in contrast, WQ leaves them idle).
Tasks are replicated until a predefined replication threshold is reached. When a
tasks replica terminates its execution, its other replicas are canceled. By repli-
cating a task on several resources, WQR increases the probability of running
one of the instances on a faster machine, thereby reducing task completion time.
As shown in [6], WQR performance are equivalent to solutions that require full
knowledge about the environment, at the expenses of consuming more CPU
cycles.

2.2 The WorkQueue with Replication – Fault Tolerant Scheduler

In its original formulation, WQR does not do anything when a task fails. Con-
sequently, it may happen that one or more tasks in a bag will not successfully
complete their execution. In order to obtain fault tolerance, we add automatic
restart, with the purpose of keeping the number of running replicas of each task
above a predefined replication threshold R. In particular, when a replica of a
task t dies and the number of running replicas of t falls below R, WQR-FT
creates another replica of t that is scheduled as soon as a processor becomes
available, but only if all the other tasks have at least one replica running. Au-
tomatic restart ensures that all the tasks in a bag are successfully completed
even in face of resource failures. However, each time a new instance must be



Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications 633

started to replace a failed one, its computation must start from the beginning,
thus wasting the work already done by the failed instance. In order to overcome
this problem, WQR-FT uses checkpointing, that is the state of the computation
of each running replica is periodically saved with a frequency set as indicated in
[13] (we postulate the existence of a reliable checkpoint server where checkpoints
are stored). In this way, the execution of a new instance of a failed task may
start from the latest available checkpoint. In this paper we assume that an ap-
plication may be restarted from its latest checkpoint only on a machine having
the same operating system of that on which the checkpoint was taken. If such
a machine cannot be found when a new replica is created (to replace a faulty
one), its execution will start from the beginning.

3 Performance Analysis

In order to assess the performance of WQR-FT, we compared it with both plain
WQR, WQR using automatic restart only (henceforth referred to as WQR-
R), and WQR using checkpointing only for various values of the replication
threshold and checkpoint overhead, as well as for a variety of different workloads.
In order to perform this comparison, we developed a discrete-event simulator,
based on the CSIM [10] libraries, that has been used to perform a large number
of experiments for a variety of operational scenarios. Our comparison is based
on the following two metrics:

– Average task response time, defined as the time elapsing between the sub-
mission of the bag to which the task belong and the successful completion
of its first instance;

– Average BoT completion time, defined as the time elapsing between the
submission of the bag and the termination (either successful or not) of all
its tasks.

3.1 Simulation Scenarios

Because the space covering the relevant parameters of our study is too large to
explore exhaustively, we fix a number of system characteristics. The configura-
tion of the Grid used in all the experiments has been obtained by means of GridG
[5], that was used to generate a configuration comprising 100 clusters, each one
comprising a random number of machines uniformly distributed between 1 and
16 (for a total number N = 185 of machines). The tasks submitted to each clus-
ter are scheduled according to the FIFO policy. Individual machines do not run
local jobs and do not support time-sharing. Each machine is characterized by its
computing power P , an integer parameter whose value is directly proportional
to its speed (i.e., a machine with P = 2 is twice faster than a machine with
P = 1), that we assume to be uniformly distributed between 1 and 20. More-
over, each machine is associated with its operating system type, that is chosen
with equal probability in the set {Solaris, Linux, FreeBSD}. A machine may



634 C. Anglano and M. Canonico

fail to complete the execution of its running task either because of a reboot (in
80% of the cases) or a crash (in 20% of the cases). The Fault Time (i.e., the time
elapsing between two consecutive failures) is assumed to be a random variable
with a Weibull distribution (in according with the results reported in [7]), while
the Repair Time (i.e., the time elapsing from the fault to when the machine is
operational again) is assumed to be uniformly distributed between 120 and 600
seconds (for a reboot) [8], or exponentially distributed with mean 2 days (for a
hardware crash) [14]. The parameters of the Weibull distribution characterizing
Fault Time were set according to the following procedure. We considered various
scenarios in which the availability α of machines, defined as α = MTBF

MTBF+MTTR
(where MTBF and MTTR denote the mean of the Fault Time and of the Repair
Time, respectively), was set to 90%, 50%, 25% and 10%, respectively. For a par-
ticular scenario, given the corresponding value of α and of the MTTR (that in all
our experiments was set to 34848 sec., according to the values reported before
for the distributions of the Repair Time), we computed the MTBF from the
definition of α and, from this value, we obtained the parameters of the Weibull
distribution.

3.2 The Workloads

In order to make an exhaustive comparison, we considered a rather large set of
workloads, obtained by varying some parameters of a base workload. The base
workload consists in a sequence of Bag of Tasks, each one comprising RR · N
tasks, where N is the number of machines in the Grid (N = 185), and RR is a
numerical coefficient used to change the size of each bag. The duration of each
task is assumed to be a random variable uniformly distributed in the interval
[RT ∗0.5∗BaseT ime,RT ∗1.5∗BaseT ime] seconds, where BaseT ime and RT are
workload parameters (note that the duration of tasks is referred to a machine
with computing power P = 1). By suitably setting RR,RT , and BaseT ime,
very different workloads may be generated. In particular, in our study RR took
values in the set {0.25, 0.5, 1, 1.25, 1.5}, RT in the set {0.5, 1, 1.5, 2, 3, 5}, and
BaseT ime in the set {35000, 100000}, thus generating 70 different workloads.

3.3 Results

Let us now describe the results we obtained in our experiments. We first show
that simple replication, as the one used by WQR, cannot guarantee the comple-
tion of all the tasks in a bag, except in scenarios characterized by high machine
availability and by the use of a relatively high number of task replicas. Then, we
will show that WQR-R outperforms WQR for the same number of replicas, and
that WQR-FT outperforms both strategies for all the simulation scenarios we
considered. In all our experiments, we computed 98% confidence intervals with
a relative error of 2.5% or less for both the average task response time and the
average BoT completion time.

Is Replication Sufficient? In order to verify whether the addition of fur-
ther fault tolerance mechanisms to WQR is motivated by a real need, we per-



Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications 635

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10%25%50%90%

R
el

at
iv

e 
B

oT
 a

nd
 T

as
ks

 C
om

pl
et

ed

Availability

TaskComp(2)

BoTComp(2)

TaskComp(3)

BoTComp(3)

TaskComp(4)

BoTComp(4)

Fig. 1. Fraction of tasks and of BoTs successfully completed by WQR

formed a set of experiments in which we progressively decreased the availability
of machines, and computed the fraction of tasks (TaskComp(x)) and of BoTs
(BoTComp(x)) completed for various values of the replication threshold x. Our
results, shown in Fig. 1 for a workload in which RR = RT = 1 (for the other
workloads the results were not significantly different), clearly indicate that 100%
of tasks (and, consequently, bag of tasks) is completed only with 4 replicas and
for availability values greater than 90%. In all the other cases, the fraction of
both completed tasks and bags decreases for decreasing availability values. This
is due to the fact that the lower the availability, the higher the frequency of
faults of each resource, and the probability of having all the instances of a task
fail. Therefore, WQR without additional fault-tolerance mechanisms cannot en-
sure the successful completion of all the tasks, except in cases when machine
availability is quite high, and a relatively large number of replicas is used.

WQR-R vs. WQR: The Benefits of Automatic Restart. Let us now
compare the performance of WQR with those attained by WQR-R. Let us start
with the results obtained, for various replication threshold values, for a workload
in which RR = 1 (that is, each bag contains as many tasks as the number of
Grid resources) and RT = 1. Fig. 2(a) and (b), where the number between
parentheses indicate the value of the replication threshold, show respectively the
average task response time and BoT completion time obtained by WQR and
WQR-R for decreasing values of availability α and for BaseT ime = 35000 sec.
(the results for BaseT ime = 100000 sec. are not significantly different, so are
not reported here because of space constraints). As can be observed from the
above figure, for availability values from 90% down to 25%, the average task
response time (Fig. 2(a)) is practically not affected neither by the presence of
automatic resubmission nor by the number of replicas, while a small difference in
favor of WQR appears for α = 10%. This means that the presence of additional
replicas created to replace faulty ones does not significantly increase the time



636 C. Anglano and M. Canonico

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

90% 50% 25% 10%

R
es

po
ns

e 
T

im
e

Availability

WQR(2)

WQR(2)-R

WQR(3)

WQR(3)-R

WQR(4)

WQR(4)-R

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

90% 50% 25% 10%

B
oT

 T
im

e

Availability

WQR(2)

WQR(2)-R

WQR(3)

WQR(3)-R

WQR(4)

WQR(4)-R

(a) (b)

Fig. 2. (a) Average task response time, and (b) Average BoT completion time

(a) (b)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

0.25 0.5 1 1.25 1.5

T
im

e 
(s

)

RR

WQR(2)

WQR(2)-R

WQR(3)

WQR(3)-R

WQR(4)

WQR(4)-R

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.25 0.5 1 1.25 1.5

T
im

e 
(s

)

RR

WQR(2)

WQR(2)-R

WQR(3)

WQR(3)-R

WQR(4)

WQR(4)-R

Fig. 3. (a) Average task response time, and (b) Average BoT completion time, α = 0.5,
RT=1

each tasks spends in the queue waiting to be scheduled. However, WQR-R results
in a better average BoT completion time (Fig. 2(b)) than WQR for the same
number of replicas. This is due to the fact that, when a replica fails, the one
that replaces it may be scheduled on a faster machine, thus reducing the task
execution time and, hence, the time taken to complete a bag. In order to validate
this hypothesis, we performed a set of experiments in which we set α = 50% and
RT = 1, while we increased the size of the BoTs from 50% to 150% of the number
of Grid resources (by varying RR accordingly). Our results show comparable task
response times (Fig. 3(a)), but significants gains in terms of BoT completion time
(Fig. 3(b)), especially for lower values of RR. This is due to the fact that the
lower RR, the higher the number of machines on which a restarted replica may
be executed, and consequently the higher the probability of choosing, for this
replica, a faster machine. Therefore, our intuition is confirmed by these results.

WQR-FT vs. WQR-R: The Benefits of Checkpointing. As discussed
in Sec. 2.2, the rationale behind the development of WQR-FT is to exploit the



Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications 637

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

10%25%50%90%

T
im

e 
(s

)

Availability

WQR(1)-FT(1)

WQR(1)-FT(2)

WQR(1)-FT(3)

WQR(2)-R

WQR(2)-FT(1)

WQR(2)-FT(2)

WQR(2)-FT(3)

WQR(3)-R

WQR(3)-FT(1)

WQR(3)-FT(2)

WQR(3)-FT(3)

Fig. 4. Average BoT time

work already done by failed task replicas, so that better application performance
may be obtained. In order to verify whether the introduction of checkpointing
is beneficial or not, we performed a set of experiments in which we compared
the performance of WQR-FT and WQR-R for various values of the checkpoint
overhead (i.e., the time that each task is blocked to carry out a checkpoint
operation) and of the replication threshold. More specifically, we run three sets
of experiments in which the checkpoint overhead was assumed to be uniformly
distributed between 0.1 and 0.3 sec. (Set 1 ), 6 and 10 sec. (Set 2 ), and 11 and 20
sec. (Set 3 ), respectively. In Fig. 4, where the first number between parentheses
denotes the replication threshold, and the second one the experiment set (i.e.,
1, 2, and 3 correspond to Set 1, Set 2, and Set 3, respectively), we report the
results corresponding to the workload obtained by setting RR = 1, RT = 1,
and BaseT ime = 35000 sec., for different values of the availability α. As can
be seen from this figure, the curves form three rather distinct groups, each one
corresponding to a different replication threshold. The lower, intermediate, and
upper group corresponds to scheduling strategies using 3 instances, 2 instances,
and 1 instance for each task, respectively. As can be observed from these curves,
the larger the number of replicas, the better the performance (the performance
for larger values of the replication threshold show the same behavior, and have
not included in the graph for the sake of readability). Within a given group
is very hard to distinguish the curves corresponding to the various scheduling
algorithms for availability values from 90% down to 50%, and this means that
there is practically no difference among them. However, for lower availability
values, checkpoint proves to be beneficial in terms of performance, and obviously
the smaller the checkpointing overhead, the larger the performance gains. This
is due to the fact that the higher the fault frequency, the higher the probability



638 C. Anglano and M. Canonico

that a task has already performed a large fraction of his work before failing. In
these cases, the use of checkpointing is crucial to avoid wasting a large amount
of already performed work. This effect is even more evident for workloads where
BaseT ime = 100000 s. (not shown here because of space constraints), since
in these cases the amount of work wasted if checkpointing is not used is even
larger. It is worth to point out that checkpointing alone is not sufficient to ensure
good performance, as indicated by the upper set of curves shown in Fig. 4. These
curves indeed show that simple checkpointing (that corresponds to WQR(1)-FT,
i.e. to the use of a single task instance) attains the worst performance among all
the considered alternatives. The graph concerning instead the task response time
(not shown here because of space constraints), shows no difference – for a given
replication threshold – among all the strategies, meaning that checkpointing does
not enlarge the time spent by each tasks waiting to be scheduled. Therefore, we
can conclude that, being the availability of machines usually unknown, it is
better to use checkpointing rather than not, as this may result in much better
performance when machine availability is low.

The results obtained for the other workloads and scenarios, not reported in
this paper because of the limited amount of available space, confirm the above
conclusions. In particular, we observed that the larger the execution time of
tasks (i.e. the larger the values of RT and BaseT ime), the larger the perfor-
mance gains due to checkpointing. This is due to the fact that the larger the
task execution time, the larger the performance loss occurring when a task replica
has to restart its execution from the beginning. Moreover, the larger the value
of RR, that is the number of tasks in a bag, the better the performance of
checkpointing. This can be explained by the fact that, the larger RR, the lower
the probability for WQR-R of finding soon an available machine faster than the
one that failed. Conversely, in these situations the possibility of exploiting the
work already done given by the use of checkpointing may significantly enhance
performance.

4 Conclusions and Future Work

In this paper we have presented WQR-FT, a fault-tolerant scheduling algorithm
for Bag-of-Tasks Grid applications based on the WQR algorithm. By simultane-
ously using replication and checkpointing, WQR-FT is able not only to guarantee
the completion of all the tasks in a bag, but also to achieve performance better
than alternative scheduling strategies. As a matter of fact, being WQR able to
attain performance higher than other (non fault-tolerant) alternative strategies
[6], and being WQR-FT to achieve performance better than WQR, we can con-
clude that WQR-FT outperforms these strategies when resource failures and/or
unavailabilities are taken into account.

As future work, we plan to study the behavior of WQR-FT in more complex
scenarios, such as those in which background computation load is present on the
resources in the Grid, and multiple WQR-FT instances are present in the same
Grid. Moreover, we plan to investigate possible extensions to WQR-FT, in order



Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications 639

to make it able to deal with applications that require data transfers in order to
carry out their computation, and with the corresponding failure models.

References

1. J.H. Abawajy. Fault-Tolerant Scheduling Policy for Grid Computing Systems. In
Proc. of 18th Int. Parallel and Distributed Processing Symposium, Workshop on.
IEEE-CS Press, April 2004.

2. F. Berman and R. Wolski et al. Adaptive Computing on the Grid Using AppLeS.
IEEE Trans. on Parallel and Distributed Systems, 14(4), April 2004.

3. H. Casanova, F. Berman, G. Obertelli, and R. Wolski. The AppLeS Parameter
Sweep Template: User-Level Middleware for the Grid. In Proc. of Supercomputing
2000. IEEE CS Press, 2000.

4. H. Casanova, A. Legrand, and D. Zagorodnov et al. Heuristics for Scheduling
Parameter Sweeping Application in Grif Environments. In Proc. of Heterogeneous
Computing Workshop. IEEE CS Press, 2000.

5. P. Dinda D. Lu. GridG: Generating Realistic Computational Grids. Performance
Evaluation Review, 30, 2003.

6. D.P. da Silva, W. Cirne, and F.V. Brasileiro. Trading Cycles for Information: Using
Replication to Schedule Bag-of-Tasks Applications on Computational Grids. In
Proc. of EuroPar 2003, volume 2790 of Lecture Notes in Computer Science, 2003.

7. J. Brevik, D. Nurmi, and R. Wolski. Modeling machine availability in enterprise
and wide-area distributed computing environments. Technical Report 37, Depart-
ment of Computer Science, University of California, Santa Barbara, 2003.

8. J. Brevik, D. Nurmi, and R. Wolski. Automatic Methods for Predicting Machine
Availability in Desktop Grid and Peer-to-peer Systems. In Proc. of 4th Int. Work-
shop on Global and Peer-to-Peer Computing, Chicago, Illinois (USA), April 19-22,
2004. IEEE Press.

9. R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauvé. Fault in Grids: Why are they
so bad and What can be done about it? In Proc. 4th Int. Workshop on Grid
Computing (Grid 2003). IEEE-CS Press, Nov. 2003.

10. H. Schwetman. Object-oriented simulation modeling with c++/csim. In Proc. of
1995 Winter Simulation Conference, Dec. 1995.

11. W. Cirne, et al. Grid Computing for Bag of Tasks Applications. In Proc. of 3rd

IFIP Conf. on E-Commerce, E-Business and E-Government, Sao Paulo, Brazil,
Sept. 2003.

12. J. Weissman and D. Womack. Fault Tolerant Scheduling in Distributed Networks.
Technical Report TR CS-96-10, Department of Computer Science, University of
Texas, San Antonio, Sept. 1996.

13. J.W. Young. A First-order Approximation to the Optimum Checkpoint. Commu-
nications of the ACM, 17, 1974.

14. S. Hwang, C. Kesselman. A Flexible Framework for Fault Tolerance in the Grid.
Journal of Grid Computing, 1(3), 2003.

15. X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo, and R.D. Schlichting. Fault-
tolerant Grid Services Using Primary-Backup: Feasibility and Performance. In
Proc. IEEE Int. Conf. on Cluster Computing. IEEE-CS Press, Sep. 2004.



The Design and Implementation of the KOALA
Co-allocating Grid Scheduler

H.H. Mohamed and D.H.J. Epema

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology,

P.O. Box 5031, 2600 GA Delft, The Netherlands
{H.H.Mohamed, D.H.J.Epema}@ewi.tudelft.nl

Abstract. In multicluster systems, and more generally, in grids, jobs
may require co-allocation, i.e., the simultaneous allocation of resources
such as processors and input files in multiple clusters. While such jobs
may have reduced runtimes because they have access to more resources,
waiting for processors in multiple clusters and for the input files to be-
come available in the right locations, may introduce inefficiencies. In this
paper we present the design of KOALA, a prototype for processor and
data co-allocation that tries to minimize these inefficiencies through the
use of its Close-to-Files placement policy and its Incremental Claiming
Policy. The latter policy tries to solve the problem of a lack of support
for reservation by local resource managers.

1 Introduction

Grids offer the promise of transparent access to large collections of resources for
applications demanding many processors and access to huge data sets. In fact,
the needs of a single application may exceed the capacity available in each of
the subsystems making up a grid, and so co-allocation, i.e., the simultaneous
access to resources of possibly multiple types in multiple locations, managed by
different resource managers [1], may be required.

Even though multiclusters and grids offer very large amounts of resources,
to date most applications submitted to such systems run in single subsystems
managed by a single scheduler. With this approach, grids are in fact used as big
load balancing devices, and the function of a grid scheduler amounts to choosing
a suitable subsystem for every application. The real challenge in resource man-
agement in grids lies in co-allocation. Indeed, the feasibility of running parallel
applications in multicluster systems by employing processor co-allocation has
been demonstrated [2, 3].

In this paper, we present the design and implementation of a grid scheduler
named KOALA on our wide-area Distributed ASCI Supercomputer (DAS, see
Section 2.1). KOALA includes mechanisms and policies for both processor and
data co-allocation in multicluster systems, and more generally, in grids. KOALA
uses the Close-to-Files (CF) and the Worst Fit (WF) policy for placing job com-

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 640–650, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Design and Implementation of the KOALA 641

ponents on clusters with enough idle processors. Our biggest problem in pro-
cessor co-allocation is the lack of a reservation mechanism in the local resource
managers. In order to solve this problem, we propose the Incremental Claiming
Policy (ICP), which optimistically postpones the claiming of the processors for
the job to a time close to the estimated job start time.

In this paper we present complete design of KOALA which has been imple-
mented and tested extensively in the DAS testbed. A more extensive description
and evaluation of its placement policies can be found in [4]. The main contribu-
tions of this paper are a reliably working prototype for co-allocation and the ICP
policy, which is a workaround method for processor reservation. The evaluation
of the performance of ICP will be the subject of a future paper.

2 A Model for Co-allocation

In this section, we present our model of co-allocation in multiclusters and in grids.

2.1 System Model

Our system model is inspired by DAS [5] which is a wide-area computer system
consisting of five clusters (one at each of five universities in the Netherlands,
amongst which Delft) of dual-processor Pentium-based nodes, one with 72, the
other four with 32 nodes each. The clusters are interconnected by the Dutch
university backbone (100 Mbit/s), while for local communications inside the
clusters Myrinet LANs are used (1200 Mbit/s). The system was designed for
research on parallel and distributed computing. On single DAS clusters, PBS
[6] is used as a local resource manager. Each DAS cluster has its own separate
file system, and therefore, in principle, files have to be moved explicitly between
users’ working spaces in different clusters.

We assume a multicluster environment with sites that each contain compu-
tational resources (processors), a file server, and a local resource manager. The
sites may combine their resources to be managed by a grid scheduler when ex-
ecuting jobs in a grid. The sites where the components of a job run are called
its execution sites, and the site(s) where its input file(s) reside are its file sites.
In this paper, we assume a single central grid scheduler, and the site where it
runs is called the submission site. Of course, we are aware of the drawbacks of
a single central submission site and currently we are working on extending our
model to multiple submission sites.

2.2 Job Model

By a job we mean a parallel application requiring files and processors that can
be split up into several job components which can be scheduled to execute on
multiple execution sites simultaneously (co-allocation) [7, 8, 1, 4]. This allows the
execution of large parallel applications requiring more processors than available
on a single site [4]. Job requests are supposed to be unordered, meaning that



642 H.H. Mohamed and D.H.J. Epema

a job only specifies the numbers of processors needed by its components, but
not the sites where these components should run. It is the task of the grid
scheduler to determine in which cluster each job component should run, to move
the executables as well as the input files to those clusters before the job starts,
and to start the job components simultaneously.

We consider two priority levels, high and low, for jobs. The priority levels
play part only when a job of a high priority is about to start executing. At this
time and at the execution sites of the job, it is possible for processors requested
by the job to be occupied by other jobs. Then, if not enough processors are
available, a job of high priority may preempt low-priority jobs until enough idle
processors for it to execute are freed (see Section 4.2).

We assume that the input of a whole job is a single data file. We deal with
two models of file distribution to the job components. In the first model, job
components work on different chunks of the same data file, which has been
partitioned as requested by the components. In the second model, the input
to each of the job components is the whole data file. The input data files have
unique logical names and are stored and possibly replicated at different sites. We
assume that there is a replica manager that maps the logical file names specified
by jobs onto their physical location(s).

2.3 Processor Reservation

In order to achieve co-allocation for a job, we need to guarantee the simultaneous
availability of sufficient numbers of idle processors to be used by the job at multiple
sites. The most straight-forward strategy to do so is to reserve processors at each of
the selected sites. If the local schedulers do support reservations, this strategy can
be implementedbyhaving a global grid scheduler obtain a list of available time slots
from each local scheduler, and reserve a common timeslot for all job components.
Unfortunately, a reservation-based strategy in grids is currently limited due to the
fact that only few local resource managers support reservations (for instance, PBS-
pro [9] and Maui [10] do). In the absence of processor reservation, good alternatives
are required in order to achieve co-allocation.

3 The Processor and Data Co-allocator

We have developed a Processor and Data Co-Allocator (KOALA) prototype of
a co-allocation service in our DAS system (see Section 2.1). In this section we
describe the components of the KOALA, and how they work together to achieve
co-allocation.

3.1 The KOALA Components

The KOALA consists of the following four components: the Co-allocator (CO), the
Information Service (IS), the Job Dispatcher (JD), and the Data Mover (DM). The
components and interactions between them are illustrated in Figure 1, and are de-
scribed below.



The Design and Implementation of the KOALA 643

COJDF

FS 1 FS 2 FS n

1

MDSNWS

RLS DM
5

JD

2

3

4

6.2

6.1

GRAM JS

Execution sites

File sites

Submission site

IS

Fig. 1. The interaction between the KOALA components. The arrows correspond to
the description in Section 3

The CO accepts a job r equest (arrow 1 in the figure) in the form of a job De-
scription File (JDF). We use the Globus Resource Specification Language (RSL)
[11] for JDFs, with the RSL ”+”-construct to aggregate the components’ requests
into a single multi-request. The CO uses a placement policy (see Section 4.1) to try
to place jobs, based on information obtained from the IS (arrow 2). The IS is com-
prised of the Globus Toolkit’s Metacomputing Directory Service (MDS) [11] and
Replica Location Service (RLS) [11], and Iperf [12], a tool to measure network
bandwidth. The MDS provides the information about the numbers of processors
currently used and the RLS provides the mapping information from the logi-
cal names of files to their physical locations. After a job has been successfully
placed, i.e., the file sites and the execution sites of the job components have been
determined, the CO forwards the job to the JD (arrow 3).

On receipt of the job, the JD instructs the DM (arrow 4) to initiate the third-
party file transfers from the file sites to the execution sites of the job components
(arrows 5). The DM uses Globus GridFTP [13] to move files to their destinations.
The JD then determines the Job Start Time and the appropriate time that the
processors required by a job can be claimed (Job Claiming Time)(Section 3.3)
At this time, the JD uses a claiming policy (see Section 4.2) to determine the
components that can be started based on the information from the IS (arrow 6.1).
The components which can be started are sent to their Local Schedulers (LSs)
of respective execution sites through the Globus Resource Allocation Manager
(GRAM) [11].

Synchronization of the start of the job components is achieved through a
piece of code added to the application which delays the execution of the job
components until the estimated Job Start Time (see Section 4).

3.2 The Placement Queue

When a job is submitted to the system, the KOALA tries to place it according to
one of its placement policies (Section 4.1). If a placement try fails, the KOALA



644 H.H. Mohamed and D.H.J. Epema

adds the job to the tail of the so-called placement queue , which holds all jobs
that have not yet been successfully placed. The KOALA regularly scans the
placement queue from head to tail to see whether any job in it can be placed.
For each job in the queue we maintain its number of placement tries, and when
this number exceeds a threshold, the job submission fails. This threshold can
be set to ∞, i.e., no job placement fails. The time between successive scans of
the placement queue is adaptive; it is computed as the product of the average
number of placement tries of the jobs in the queue and a fixed interval (which
is a parameter of the KOALA). The time when job placement succeeds is called
its Job Placement Time (see Figure 2).

placement 
tries

PWTPGT
FTT + ACT

TWT

Job Run Time

A: Job Submission Time

B: Job Placement Time (JPT)

C: Job Claiming Time (JCT)

D: Job Start Time (JST)
E: Job Finish Time

A EDCB

TWT:   Total Waiting Time
PGT:    Proccesor Gained Time
PWT:    Processor Wasted Time
FTT:    Estimated File Transfer Time
ACT:     Additional Claiming Tries

Placement 
 Time

Fig. 2. The timeline of a job submission

3.3 The Claiming Queue

After the successful placement of a job, its File Transfer Time (FTT) and its
Job Start Time (JST) are estimated before the job is added to the so-called
claiming queue. This queue holds jobs which have been placed but for which the
allocated processors have not yet been claimed. The job’s FTT is calculated as
the maximum of all of its components’ estimated transfer times, and the JST
is estimated as the sum of its Job Placement Time (JPT) and its FTT (see
Figure 2). We then set its Job Claiming Time (JCT) (point C in Figure 2)
initially to the sum of its JPT and the product of L and FTT:

JCT0 = JPT + L · FTT ,

where L is job-dependent parameter, with 0 < L < 1. In the claiming queue,
jobs are arranged in increasing order of their JCT.

We try to claim (claiming try) at the current JCT by using our Incremental
Claiming Policy (see Section 4.2). The job is removed from the claiming queue
if claiming for all of its components has succeeded. Otherwise, we perform suc-
cessive claiming tries. For each such try we recalculate the JCT by adding to
the current JCT the product of L and the time remaining until the JST (time
between points C and D in Figure 2):

JCTn+1 = JCTn + L · (JST − JCTn).



The Design and Implementation of the KOALA 645

If the job’s JCTn+1 reaches its JST and for some of its components claiming
has still not succeeded, the job is returned to the placement queue (see Section
3.2). Before doing so, its parameter L is decreased by a fixed amount and its
components that were successfully started in previous claiming tries are aborted.
The parameter L is decreased in each claiming try until its lower bound is reached
so as to increase the chance of claiming success. If the number of times we have
performed claiming try for the job exceeds some threshold (which can be set to
∞), the job submission fails.

We call the time between the JPT of a job and the time of successfully
claiming processors for it, the Processor Gained Time (PGT) of the job. The
time between the successful claiming and the actual job start time is Processor
Wasted Time (PWT) (see Figure 2). During the PGT, jobs submitted through
other schedulers than our grid scheduler can use the processors. The time from
the submission of the job until its actual start time is called the Total Waiting
Time (TWT) of the job.

4 Co-allocation Policies

In this section, we present the co-allocation policies for placing jobs and claiming
processors that are used with KOALA.

4.1 The Close-to-Files Placement Policy

Placing a job in a multicluster means finding a suitable set of execution sites
for all of its components and suitable file sites for the input file. (Different com-
ponents may get the input file from different locations.) The most important
consideration here is of course finding execution sites with enough processors.
However, when there is a choice among execution sites for a job component,
we choose the site such that the (estimated) delay of transferring the input file
to the execution site is minimal. We call the placement policy doing just this
the Close-to-Files (CF) policy. A more extensive description and performance
analysis of this policy can be found in [4].

Built into the KOALA is also the Worst Fit (WF) placement policy. WF
places the job components in decreasing order of their sizes on the execution
sites with the largest (remaining) number of idle processors. In case the files are
replicated, we select for each component the replica with the minimum estimated
file transfer time to that component’s execution site.

Note that both CF and WF may place multiple job components on the same
cluster. We also remark that both CF and WF make perfect sense in the absence
of co-allocation.

4.2 The Incremental Claiming Policy

Claiming processors for job components starts at a job’s initial JCT and is re-
peated at subsequent claiming tries. Claiming for a component will only succeed



646 H.H. Mohamed and D.H.J. Epema

if there are still enough idle processors to run it. Since we want the job to start
with minimal delay, the component may, in the process of the claiming policy,
be re-placed using our placement policy. A re-placement can be accepted if the
file from the new file site can be transferred to the new execution site before the
job’s JST. We can further minimize the delay of starting high priority jobs by
allowing them to preempt low priority jobs at their execution sites.

We call the policy doing all of this the Incremental Claiming Policy (ICP),
which operates as follows (the line numbers mentioned below refer to Algorithm
1.). For a job, ICP first determines the sets Cprev, Cnow, and Cnot of components
that have been previously started, of components that can be started now based
on the current number of idle processors, and of components that cannot be
started based on these numbers, respectively. It further calculates F , which is
the sum of the fractions of the job components that have previously been started
and components that can be started in the current claiming try (line 1). We
define T as the required lower bound of F ; the job is returned to the claiming
queue if its F is lower than T (line 2).

Algorithm 1. Pseudo-code of the Incremental Claiming Policy
Require: job J is already placed
Require: set Cprev of previously started components of J
Require: set Cnow of components of J that can be started now
Require: set Cnot of components of J that cannot be started now
1: F ⇐ (|Cprev| + |Cnow|)/|J |
2: if F ≥ T then
3: if Cnot �= ∅ then
4: for all k ∈ Cnot do
5: (Ek, Fk, fttk) ⇐ Place(k)
6: if fttk + JCT < JST then
7: Cnow ⇐ Cnot \ {k}
8: else if J priority is high then
9: Pk ⇐ count(processors) \* used by low-priority jobs at Ek ∗\

10: if Pk ≥ size of k then
11: repeat
12: Preempt low-priority jobs at Ek

13: until count(freed processors) ≥ size of k \* at Ek ∗\
14: Cnow ⇐ Cnot \ {k}
15: start components in Cnow

Otherwise, for each component k that cannot be started, ICP first tries to
find a new pair of execution site-file site with the CF policy (line 5). On success,
the new execution site Ek, file site Fk and the new estimated transfer time
between them, fttk, are returned. If it is possible to transfer file between these
sites before JST (line 6), the component k is moved from the set Cnot to the set
Cnow (line 7).

For a job of high priority, if the file cannot be transferred before JST or
the re-placement of component failed (line 8), the policy performs the follow-



The Design and Implementation of the KOALA 647

ing. At the execution site Ek of component k, it checks whether the sum of
its number of idle processors and the number of processors currently being
used by low-priority jobs is at least equal to the number of processors the
component requests (lines 9 and 10). If so, the policy preempts low-priority
jobs in descending order of their JST (newest-job-first) until a sufficient num-
ber of processors have been freed (lines 11-13). The preempted jobs are then
returned to the placement queue.

Finally, those components that can be claimed at this claiming try are started
(line 15). For this purpose, a small piece of code has been added with the sole
purpose of delaying the execution of the job barrier until the job start time.
Synchronization is achieved by making each component wait on the barrier until
it hears from all the other components.

When T is set to 1 the claiming process becomes atomic, i.e., claiming only
succeeds if for all the job components processors can be claimed.

4.3 Experiences

We have gathered extensive experience with the KOALA while performing hun-
dreds of experiments to asses the performance of the CF placement policy in [4].
In each of these experiments, more than 500 jobs were successfully submitted
to the KOALA. These experiments proved the reliability of the KOALA. An
attempt was also made to submit jobs to the GridLab [14] testbed, which is a
heterogeneous grid environment. KOALA managed also to submit jobs success-
fully to this testbed, and currently more experiments have been planned on this
testbed.

5 Related Work

In [15, 16], co-allocation (called multi-site computing there) is studied also with
simulations, with as performance metric the (average weighted) response time.
There, jobs only specify a total number of processors, and are split up across
the clusters. The slow wide-area communication is accounted for by a factor r
by which the total execution times are multiplied. Co-allocation is compared to
keeping jobs local and to only sharing load among the clusters, assuming that
all jobs fit in a single cluster. One of the most important findings is that for r
less than or equal to 1.25, it pays to use co-allocation. In [17] an architecture
for a grid superscheduler is proposed, and three job migration algorithms are
simulated. However, there is no real implementation of this scheduler, and jobs
are confined to run within a single subsystem of a grid, reducing the problem
studied to a traditional load-balancing problem.

In [18], the Condor class-ad matchmaking mechanism for matching single
jobs with single machines is extended to ”gangmatching” for co-allocation. The
running example in [18] is the inclusion of a software license in a match of a
job and a machine, but it seems that the gangmatching mechanism might be
extended to the co-allocation of processors and data.



648 H.H. Mohamed and D.H.J. Epema

5by binding execution and storage sites into I/O communities that reflect the
physical reality.

In [19], the scheduling of sequential jobs that need a single input file is studied
in grid environments with simulations of synthetic workloads. Every site has a
Local Scheduler, an External Scheduler (ES) that determines where to send
locally submitted jobs, and a Data Scheduler (DS) that asynchronously, i.e.,
independently of the jobs being scheduled, replicates the most popular files stored
locally. All combinations of four ES and three DS algorithms are studied, and
it turns out that sending jobs to the sites where their input files are already
present, and actively replicating popular files, performs best.

In [20], the creation of abstract workflows consisting of application compo-
nents, their translation into concrete workflows, and the mapping of the latter
onto grid resources is considered. These operations have been implemented using
the Pegasus [21] planning tool and the Chimera [22] data definition tool. The
workflows are represented by DAGs, which are actually assigned to resources
using the Condor DAGMan and Condor-G [23]. As DAGs are involved, no si-
multaneous resource possession implemented by a co-allocation mechanism is
needed.

In the AppLes project [24], each grid application is scheduled according to its
own performance model. The general strategy of AppLes is to take into account
resource performance estimates to generate a plan for assigning file transfers to
network links and tasks (sequential jobs) to hosts.

6 Conclusions

We have addressed the problem of scheduling jobs consisting of multiple com-
ponents that require both processor and data co-allocation in multicluster sys-
tems and grids in general. We have developed KOALA, a prototype for pro-
cessor and data co-allocation which implements our placement and claiming
policies. Our initial experiences show the correct and reliable operation of the
KOALA.

As future work, we are planning to remove the bottleneck of a single global
scheduler, and to allow flexible jobs that only specify the total number of proces-
sors needed and allow the KOALA to fragment jobs into components (the way
of dividing the input files across the job components is then not obvious). In
addition, more extensive performance study of the KOALA in a heterogeneous
grid environment has been planned.

References

1. Czajkowski, K., Foster, I.T., Kesselman, C.: Resource Co-Allocation in Compu-
tational Grids. In: Proc. of the Eighth IEEE International Symposium on High
Performance Distributed Computing (HPDC-8). (1999) 219–228



The Design and Implementation of the KOALA 649

2. van Nieuwpoort, R., Maassen, J., Bal, H., Kielmann, T., Veldema, R.: Wide-Area
Parallel Programming Using the Remote Method Invocation Method. Concur-
rency: Practice and Experience 12 (2000) 643–666

3. Banen, S., Bucur, A., Epema, D.: A Measurement-Based Simulation Study of
Processor Co-Allocation in Multicluster Systems. In Feitelson, D., Rudolph, L.,
Schwiegelshohn, U., eds.: 9th Workshop on Job Scheduling Strategies for Parallel
Processing. Volume 2862 of LNCS. Springer-Verlag (2003) 105–128

4. Mohamed, H., Epema, D.: An Evaluation of the Close-to-Files Processor and
Data Co-Allocation Policy in Multiclusters. In: Proc. of CLUSTER 2004, IEEE
Int’l Conference Cluster Computing 2004. (2004)

5. Web-site: (The Distributed ASCI Supercomputer (DAS))
http://www.cs.vu.nl/das2.

6. Web-site: (The Portable Batch System) www.openpbs.org.
7. Bucur, A., Epema, D.: Local versus Global Queues with Processor Co-Allocation

in Multicluster Systems. In Feitelson, D., Rudolph, L., Schwiegelshohn, U., eds.:
8th Workshop on Job Scheduling Strategies for Parallel Processing. Volume 2537
of LNCS. Springer-Verlag (2002) 184–204

8. Ananad, S., Yoginath, S., von Laszewski, G., Alunkal, B.: Flow-based Multistage
Co-allocation Service. In d’Auriol, B.J., ed.: Proc. of the International Conference
on Communications in Computing, Las Vegas, CSREA Press (2003) 24–30

9. Web-site: (The Portable Batch System) http://www.pbspro.com/.
10. Web-site: (Maui Scheduler) http://supercluster.org/maui/.
11. Web-site: (The Globus Toolkit) http://www.globus.org/.
12. Web-site: (Iperf Version 1.7.0) http://dast.nlanr.net/Projects/Iperf/.
13. Allcock, W., Bresnahan, J., Foster, I., Liming, L., Link, J., Plaszczac, P.: GridFTP

Update. Technical report (2002)
14. Web-site: (A Grid Application Toolkit and Testbed ) http://www.gridlab.org/.
15. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On

Advantages of Grid Computing for Parallel Job Scheduling. In: 2nd IEEE/ACM
Int’l Symposium on Cluster Computing and the GRID (CCGrid2002). (2002) 39–46

16. Ernemann, C., Hamscher, V., Streit, A., Yahyapour, R.: Enhanced Algorithms for
Multi-Site Scheduling. In: 3rd Int’l Workshop on Grid Computing. (2002) 219–231

17. Shan, H., Oliker, L., Biswas, R.: Job superscheduler architecture and performance
in computational grid environments. In: Supercomputing ’03. (2003)

18. Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource
co-allocation with gangmatching. In: 12th IEEE Int’l Symp. on High Performance
Distributed Computing (HPDC-12). IEEE Computer Society Press (2003) 80–89

19. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications. In: 11 th IEEE International Symposium
on High Performance Distributed Computing HPDC-11 2002 Edinburgh, Scotland.
(2002)

20. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.: Mapping
Abstract Complex Workflows onto Grid Environments. J. of Grid Computing 1
(2003) 25–39

21. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Vahi, G.M.K., Koranda, S.,
Lazzarini, A., Papa, M.A.: From Metadata to Execution on the Grid Pegasus and
the Pulsar Search. Technical report (2003)

22. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation. In: 14th Int’l Conf.
on Scientific and Statistical Database Management (SSDBM 2002). (2002)



650 H.H. Mohamed and D.H.J. Epema

23. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: A
Computation Management Agent for Multi-Institutional Grids. In: Proceedings
of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC), San Francisco, California (2001) 7–9

24. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS Parameter
Sweep Template: User-Level Middleware for the Grid. (2000) 75–76



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 651 – 660, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Multi-agent Infrastructure and a Service Level 
Agreement Negotiation Protocol for Robust Scheduling  

in Grid Computing1 

D. Ouelhadj1, J. Garibaldi2, J. MacLaren3, R. Sakellariou4,  
and K. Krishnakumar5  

 
1, 2  School of Computer Science and IT, University of Nottingham, 

Jubilee Campus, Nottingham, NG8 1BB, UK 
{dxs, jmg}@cs.nott.ac.uk 

3, 4, 5  University of Manchester, Oxford Road, Manchester, M13 9PL, UK 
{jon.maclaren, rizos, krish}@man.ac.uk  

Abstract. In this paper we propose a new infrastructure for efficient job 
scheduling on the Grid using multi-agent systems and a Service Level 
Agreement (SLA) negotiation protocol based on the Contract Net Protocol. The 
agent-based Grid scheduling system involves user agents, local scheduler 
agents, and super scheduler agents. User agents submit jobs to Grid compute 
resources. Local scheduler agents schedule jobs on compute resources. Super 
scheduler agents act as mediators between the local scheduler and the user 
agents to schedule the jobs at the global level of the Grid. The SLA negotiation 
protocol is a hierarchical bidding mechanism involving meta-SLA negotiation 
between the user agents and the super scheduler agents; and sub-SLA 
negotiation between the super scheduler agents and the local scheduler agents. 
In this protocol the agents exchange SLA-announcements, SLA-bids, and SLA-
awards to negotiate the schedule of jobs on Grid compute resources. In the 
presence of uncertainties a re-negotiation mechanism is proposed to re-
negotiate the SLAs in failure.  

1   Introduction 

Grid computing has emerged as a new paradigm for next generation distributed 
computing. A Computational Grid is an infrastructure which enables the 
interconnection of substantial distributed compute resources in order to solve large 
scale problems in science, engineering and commerce that cannot be solved on a 
single system [6]. One of the most challenging issues from a Grid infrastructure 
perspective is the efficient schedule of jobs on distributed resources. Scheduling jobs 
in a Grid computing environment is a complex problem as resources are 
geographically distributed having different usage policies and may exhibit highly 
non-uniform performance characteristics, heterogeneous in nature, and have varying 
loads and availability. 
                                                           
1 This work is funded by the EPSRC Fundamental Computer Science for e-Science initiative 

(Grants GR/S67654/01 and GR/S67661/01), whose support we are pleased to acknowledge. 



652 D. Ouelhadj et al. 

 

The Grid scheduling problem is defined as: “given appropriate input, the high 
performance scheduler determines an application schedule, which is an assignment of 
tasks, data, and communication to resources, ordered in time, based on the rules of the 
scheduling policy, and evaluated as performance efficient under the criteria 
established by the objective function. The goal of the high-performance scheduler is 
to optimise the performance [1].  

Within the Grid community at present, there is a keen focus on the management 
and scheduling of workflows, i.e. complex jobs, consisting multiple computational 
tasks, connected either in a Directed Acyclic Graph (DAG), or in a more general 
graph, incorporating conditionals and branches [15]. In order for a workflow 
enactment engine to successfully orchestrate these workflows, it must be possible to 
schedule multiple computational tasks onto distributed resources, while still 
respecting any dependence in the workflow. Current methods employed to schedule 
work on compute resources within the Grid are unsuitable for this purpose. 
Traditionally, these scheduling systems are queue based and use simple heuristics 
such as First-Come-First-Served (FCFS), or more complicated and efficient methods 
such as Backfilling, Gang Scheduling, Time Slicing, etc [9]. Such batch scheduling 
systems provide only one level of service, namely ‘run this when it gets to the head of 
the queue’, which approximates to ‘whenever’. New patterns of usage arising from 
Grid computing have resulted in the introduction of advance reservation to these 
schedulers, where jobs can be made to run at a precise time. However, this is also an 
extreme level of service, and is excessive for many workflows, where often it would 
be sufficient to know the latest finish time, or perhaps the soonest start time and latest 
end time. Advance reservation (in its current form) is also unsuitable for any scenario 
involving the simultaneous scheduling of multiple computation tasks, either as a 
sequence, or tasks that must be co-scheduled. Also, advance reservation has several 
disadvantages for the resource owner. When an advance reservation is made, the 
scheduler must place jobs around this fixed job. Typically, this is done using 
backfilling, which increases utilisation by searching the work queues for small jobs, 
which can plug the gaps. In practice, this rarely works perfectly, and so the scheduler 
must either leave the reserved processing elements empty for a time, or suspend or 
checkpoint active jobs near to the time of the reservation. Either way, there are gaps 
in the schedule, i.e., CPU time which is not processing users’ work. As utilisation 
often represents income for the service owner, there is a tendency to offset the cost of 
the unused time by charging for advance reservation jobs at a considerably higher 
tariff. As these new patterns of usage increase, utilisation will fall further. While it is 
possible to set tariffs high enough to compensate, this brute-force solution is 
inefficient in terms of resources, and undesirable for both users, who pay higher 
prices, and for resource owners, who must charge uncompetitive prices.  

Recently, Multi-Agent Systems [5, 14] and the Contract Net Protocol [18] have 
proven a major success in solving dynamic scheduling problems and have given 
answers to the problem of how to efficiently integrate and cooperate communities of 
distributed and interactive systems in a wide range of applications [16]. A multi-agent 
system is a network of agents that work together to solve problems that are beyond their 
individual capabilities [14]. Multi-agent systems have been known to provide 
capabilities of autonomy, cooperation, heterogeneity, robustness and reactivity, 
scalability, and flexibility [5, 16]. A number of initiatives to apply agents in 



 A Multi-agent Infrastructure and a Service Level Agreement Negotiation Protocol 653 

 

computational Grids have appeared [2, 7, 11]. Most these agent-based Grid scheduling 
systems are centralised and static as scheduling is performed by a Grid high-
performance scheduler (broker), and resource agents do not use any flexible negotiation 
to schedule the jobs. In a Grid environment resources are geographically distributed and 
owned by different individuals. It is not practical that a single point in the virtual system 
retains entire Grid's information that can be used for job scheduling and cope with the 
dynamic nature of the Grid environment. Therefore, the use distributed scheduling and 
negotiation models would be more efficient, flexible, and robust.  

In this paper we propose a fundamental new infrastructure for efficient job 
scheduling on the Grid based on multi-agent systems, and a Service Level Agreement 
(SLA) negotiation protocol based on the Contract Net Protocol [13]. Section 2 
describes SLAs. Section 3 presents the proposed SLA based Grid scheduling multi-
agent system infrastructure. Section 4 elaborates the SLA negotiation protocol. 
Section 5 describes the SLA re-negotiation process in the presence of failures. 
Conclusions are presented in Section 6. 

2   Service Level Agreement 

Service Level Agreements (SLAs) [3, 10] are emerging as the standard concept by 
which work on the Grid can be arranged and co-ordinated. An SLA is a bilateral 
agreement, typically between a service provider and a service consumer. These form a 
natural choice for representing the agreed constraints for individual jobs. While there 
are technologies for composing SLAs in XML-based representations, e.g. WSLA 
[12], these embed domain-specific terms; no terms for resource reservation have yet 
been proposed within the Grid community. In any case, it is certain that SLAs can be 
designed to include acceptable start and end time bounds and a simple description of 
resource requirements. SLAs expressing conventional requirements of “at time 
HH:MM” or “whenever” could still be used where necessary, although these—
especially the latter—may not be accepted by the scheduler. The GGF GRAAP 
Working Group [8] is interested in SLA terms for resource reservation, but has not yet 
put forward any designs for what these SLAs should look like. It is intended that the 
project will feed back a design of these SLA terms to the community, contributing to 
the standardisation process, and influencing the development of emerging 
technologies, such as the negotiation protocol WS-Agreement, which is being defined 
by the GGF GRAAP Working Group. 

3   The Grid Scheduling Multi-agent System Infrastructure  

The multi-agent infrastructure proposed is organised as a population of cognitive, 
autonomous, and heterogeneous agents, for integrating a range of scheduling 
objectives related to Grid compute resources. Figure 1 shows the multi-agent 
infrastructure for SLA based Grid scheduling. The infrastructure involves three types 
of agents: User agents, Local Scheduler (LS) Agents, and Super Scheduler (SS) 
Agents. Three databases are also used in this architecture to store information on 
SLAs, LS agents, and resources. 



654 D. Ouelhadj et al. 

 

User Agent: The user agent requests the execution of jobs on the Grid and negotiates 
SLAs with the SS agents. The user agent can also submit jobs locally to SL agents. 

Local Scheduler Agent: Each computer resource within each institution is assigned 
to an LS agent. The set of compute resources and their corresponding LS agents 
constitute a cluster. The LS agents are responsible for scheduling jobs, usually 
assigned by the SS agents, on compute resources within the cluster. However, jobs 
cannot only be arriving from the SS agents, but they can also be injected from other 
means such as PC which is locally connected to the machine that hosts the LS agent. 

Super Scheduler Agent: SS agents are distributed in the Grid having each at every 
institution, and act as mediators between the user agent and the LS agents. Each 
cluster of LS agents of the same institution is coordinated by an SS agent. The user 
agent usually submits jobs to the SS agents. SS agents negotiate SLAs with the user 
agent and the LS agents to schedule the jobs globally on compute resources. 

Databases: The databases used in the architecture are the following: 

− Resource record: holds information about the compute resources on which the 
jobs are executed by an LS agent.  

− SLA database: stores the description of the SLAs. 
− LS agent state database: holds the status of LS agents and the loading/usage 

information about their local resources which is used by the SS agents. 

LS 
Agent11 

C
om

pu
te

 
R

es
ou

rc
es

 

Cluster1  

Clustern Resource 
Record  LS agent state 

database 

SS Agentn 

User Agent 

 

Fig. 1. SLA based grid scheduling system infrastructure 

Cluster2 

SS 
Agent1 

SS 
Agent2 

LS 
Agent21

LS 
Agent31 

LS 
Agentm1 

 

 

SLA 
database



 A Multi-agent Infrastructure and a Service Level Agreement Negotiation Protocol 655 

 

4   SLA Negotiation Protocol 

We propose an SLA negotiation protocol based on the Contract Net Protocol to allow 
the SS agents to negotiate with the user agent and the LS agents the schedule of jobs 
on the distributed computer resources. The Contract Net Protocol is a high level 
protocol for achieving efficient cooperation introduced by Smith [18] based on a 
market-like protocol. The basic metaphor used in the Contract Net Protocol is, as the 
name of the protocol suggests, contracting. It is the most common and best-studied 
mechanism for distributed task allocation in agent-based systems [5, 16]. In this 
protocol, a decentralised market structure is assumed and agents can take on two 
roles: a manager and a contractor. The manager agent advertises the task by a task 
announcement to other agents in the net. In response, contracting agents evaluate the 
task with respect to their abilities and engagements and submit bids. A bid indicates 
the capabilities of the bidder that are relevant to the execution of the announced task. 
The manager agent evaluates the submitted bids, and selects the most appropriate 
bidder to execute the task, which leads to awarding a contract to the contractor with 
the most appropriate bid. The advantages of the contract net protocol include the 
following: dynamic task allocation via self-bidding which leads to better agreements; 
it provides natural load balancing (as busy agents need not bid); agents can be 
introduced and removed dynamically; and it is a reliable mechanism for distributed 
control and failure recovery.  

The proposed SLA negotiation protocol is a hierarchical bidding mechanism 
involving two negotiation levels:  

1. Meta-SLA negotiation level: In this level the SS agents and the user agents 
negotiate meta-SLAs. A meta-SLA contains high-level description of jobs supplied by 
the user and may be refined or additional information may be added in the final 
agreed SLA at the end of negotiation. A meta-SLA may have the following baseline 
information: 

− Resource information: the required capability of the resource for the 
application. It is usually very high level description of a resource metric 
containing resource details such as machine information, the range of 
processors, etc. 

− Estimated due date:  the time by which the job should be finished.  
− Estimated cost: it is the maximum cost limit pre-set by the user for any given 

job execution request.  
− Required execution host information (optional).  

Uncertainty in user requirements such as time and cost constraint is represented by 
fuzzy numbers [17, 19]. 

2. Sub-SLA negotiation level: In this level the SS agents negotiate sub-SLAs with 
the LS agents. The SS agents decompose the meta-SLA into its low level resource 
attributes, sub-SLAs which contain low level raw resource description such as 
processes, memory processors, etc. A sub-SLA may have the following baseline 
information: 

 



656 D. Ouelhadj et al. 

 

−  Low level raw resource descriptions such as number of nodes, architecture, 
memory, disk size, CPU, network, OS, application (if any needed). 

−  Time constraint. 
−  Cost constraint. 
−  Storage Requirement.  

4.1   Steps of the Hierarchical SLA Negotiation Protocol 

The hierarchical SLA negotiation protocol involves several negotiation steps at each 
level of the protocol. The steps are described below and illustrated in figure 2.  
 
 

 
a. Meta-SLA negotiation steps: Meta-SLA negotiation steps are the following:  

a1. Meta-SLA-request: The user agent submits a meta-SLA to the nearest SS 
agent to request the execution of a job. The meta-SLA at this stage describes 
baseline user requirements such as required resources over a time period, job start 
time and end time, the cost the user is prepared to pay, required execution host 
information, etc. 

a2. Meta-SLA-announcement: Upon receiving the meta-SLA request from the 
user agent, the SS agent advertises the meta-SLA to the neighbouring SS agents in 
the net by sending a meta-SLA-announcement. 

Fig. 2. Steps of the SLA negotiation protocol 

LS 
Agent11 

Cluster 1

Resource 
Record 

SS Agent3 

User Agent 

SS Agent2 

SLA 
database

 

 

SS Agent1 

Meta-SLA negotiation level Sub-SLA negotiation level 

 a1 

LS 
Agent21

LS 
Agentm1

 a2 

 a3 
 a4 

 b1  b2  b3 

 c1 

 c2 

 c3 

 c4 

 LS agent state 
database 

 c5 
 c6 

SS Agentn 



 A Multi-agent Infrastructure and a Service Level Agreement Negotiation Protocol 657 

 

a3. Meta-SLA-bidding: In response to the meta-SLA-announcement, each SS 
agent queries the LS agent state database to check the availability of required 
resources for the job response time to identify suitable set of resources. Cost is 
then evaluated for each potential resource. The SS agents select the best resources 
which satisfy the availability and cost constraints of the job. Each SS agent 
submits a meta-SLA-bid to the user agent. The meta-SLA-bid describes the new 
estimated response time and cost, and other additional information such as 
proposed compensation package.   

a4. Meta-SLA-award: The user agent, upon receiving the meta-SLA-bids, selects 
the most appropriate SS agent with the best meta-SLA-bid and sends a notification 
agreement to its. The selected SS agent stores the agreed meta-SLA in the SLAs 
database. The user has now an agreement with the Grid provider to use its resources. 

b. Sub-SLA negotiation steps: Once the SS agent has been awarded the agreement, 
it decomposes the meta-SLA by generating one or more sub-SLAs and negotiates the 
sub-SLAs with the local LS agents. The sub-SLA negotiation steps are the following: 

b1. Sub-SLA-announcement: The SS agent sends the sub-SLA-announcements 
to the identified suitable LS agents within the cluster under its control.  

b2. Sub-SLA-bidding: The LS agents, upon receiving the sub-SLA-announce 
ments, query the resource record for information on CPU speed, memory size, etc. 
to identify suitable resources and submit bids to the SS agent.  

b3. Sub-SLA-award: The SS agent evaluates the best sub-SLA in accordance to 
time and cost criteria and sends a notification agreement to the most appropriate 
LS agent with the best resources. The SS agent stores the sub-SLA in the SLAs 
database and updates the LS agent state information. The selected LS agents 
update the resource record and reserve the resources to execute the job. 

c. Task execution steps: The basic stages for task execution are the following:  
c1. The LS agent sends a notification of initiation of job execution to the user agent. 
c2. At the end of job execution, a final report including the output file details is 
sent to the user agent. 
c3. SL agent sends a notification end job execution to the SS agent. 
c4. SL agent updates information held in the resource record database. 
c5. SS agent updates the LS agent state database. 
c6. SS agent updates the status of the SLAs in the SLAs database. 

5   SLA Re-negotiation in the Presence of Uncertainties 

Re-negotiation has been identified as a long-term goal of the RealityGrid UK e-
Science Pilot Project [4]; here, simulations may be collaboratively visualized and 
steered as the simulation runs. Even once a SLA has been agreed, re-negotiation is 
required for multiple reasons: to extend the running time of an increasingly interesting 
simulation; to increase the computational resources dedicated to either the simulation, 
thereby accelerating the experiment, or to the visualization, in order to improve the 
resolution of the rendering; resources might also be given back when the improved 
speed or picture quality was no longer required. Also, more generally, resources may 



658 D. Ouelhadj et al. 

 

fail unpredictably, high-priority jobs may be submitted, etc. In a busy Grid 
environment, SLAs would be constantly being added, altered or withdrawn, and 
hence scheduling would need to be a continual, dynamic and uncertain process. The 
introduction of re-negotiation, permitted during job execution (as well as before it 
commences) makes the schedule more dynamic, requiring more frequent rebuilding of 
the schedule. 

In the presence of failures, the SS agents re-negotiate the SLAs in failure at the 
local and global levels in order to find alternative LS agents to execute the jobs in 
failure. The basic steps of failure recovery are the following, as shown in figure 3: 

f1. LS agent11 notifies SS agent1 of the failure. 
f2. SS agent1 re-negotiates the sub-SLAs in failure to find alternative LS agents 
locally within the same cluster by initiating a sub-SLA negotiation session with 
the suitable LS agents. 
f3. If it cannot manage to do so, the SS agent1 re-negotiates the meta-SLAs with 
the neighbouring SS agents by initiating a meta-SLA negotiation session.  
f4. SS agent2, …, SS agentn re-negotiate the sub-SLAs in failure to find alternative 
LS agents. 
f5. SS agent2 located LS agent22 to execute the job in failure.  
f6. At the end of task execution, LS agent22 sends a final report including the 
output file details to the user agent. 
f7. In case the SS agent1 could not find alternative LS agents at the local and global 
levels, the SS agent1 sends an alert message to the user agent to inform him that 
the meta-SLA cannot be fulfilled and the penalty fee needs to be paid.  

 

User Agent 
 

SS Agentn 

SS Agent1 

LS 
Agent11 

LS 
Agent21

LS 
Agentm1

LS 
Agent12 

LS 
Agent22 

LS 
Agentw2 

SS Agent2 

Fig. 3. Re-negotiation in the presence of resource failure 

 f1 

 f2 

 f2 

 f3 

 f3 

 f4 

 f4  f7 

 f5 

 f6 

Sub-SLA re-negotiation 
Meta-SLA re-negotiation

Sub-SLA re-negotiation 



 A Multi-agent Infrastructure and a Service Level Agreement Negotiation Protocol 659 

 

6   Conclusion 

In this paper we have proposed a new infrastructure for efficient job scheduling on the 
Grid using multi-agent systems and a SLA negotiation protocol based on the Contract 
Net Protocol. Local autonomy and cooperation capabilities of the multi-agent 
architecture offer prospects for the most challenging issues in Grid scheduling which are: 
integration, heterogeneity, high flexibility, high robustness, reliability, and scalability. 
The SLA negotiation protocol proposed based on the Contract Net Protocol allows the 
user agent a flexible and robust negotiation of the execution of jobs on the Grid. The 
SLA negotiation protocol is a hierarchical bidding mechanism which yields many 
advantages relevant to Grid scheduling, such as dynamic task allocation, natural load-
balancing as busy agents do not need to bid, dynamic introduction and removal of 
resources, and robustness against failures. To deal with the presence of uncertainties, re-
negotiation is proposed to allow the agents to re-negotiate the SLAs in failure. 

References 

1. Berman, F.: High performance schedulers. In: Foster, I., Kesselman, C. (Eds.): The Grid: 
Blueprint for a new computing infrastructure. Morgan Kaufman Publishers (1998) 279-307. 

2. Cao, J., Jarvis, S.: ARMS: An agent-based resource management system for Grid 
computing. Scientific Programming, 10 (2002) 135-148.  

3. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for 
negotiating service level agreements and coordinating resource management in distributed 
systems. Lecture Notes in Computer Science, Vol. 2537 (2002) 153-183.  

4. Czajkowski, K., Pickles, S. Pruyne, J., Sander, V.: Usage scenarios for a Grid resource 
allocation agreement protocol. Draft Global Grid Forum Informational Document (2003). 

5. Ferber, J. (ed.): Multi-agent systems: An introduction to Distributed Artificial Intelligence. 
Addison-Wesley, London (1999). 

6. Foster, I. and Kesselman, C. (eds.): The Grid: Blueprint for a new computing 
infrastructure. Morgan Kaufman Publishers (1998).   

7. Frey, J., Tannenbaum, T., Livny, M.: Condor-G: a computational management agent for 
multi-institutional Grid. Cluster Computing, 5 (2002) 237-246. 

8. GRAAP: GRAAP-WG, Grid resource allocation agreement protocol working group in the 
Global Grid Forum. Website: https://forge.gridforum.org/projects/graap-wg/ (2004). 

9. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of job scheduling 
strategies for Grid computing. Lecture Notes in Computer Science (2000) 191-202. 

10. Keller, A., Kar, G., Ludwig, H., Dan, A., Hellerstein, J.L.: Managing dynamic services: A 
contract based approach to a conceptual architecture. Proceedings of the 8th  IEEE/IFIP 
Network Operations and Management Symposium (2002) 513–528. 

11. Krauter, K., Buyya, R., Maheswaran, M. A taxonomy and survey of Grid resource 
management systems. Software Practices Experience, 32 (20020 135-164. 

12. Ludwig, H., Keller, A., Dan, A., King, R.: A service level agreement language for 
dynamic electronic services. Proceedings of the 4th IEEE International Workshop on 
Advanced Issues of E-Commerce and Web-Based Information Systems (2002) 25–32. 

13. MacLaren, J., Sakellariou, R., Garibaldi, J., Ouelhadj, D.: Towards service level 
agreement based scheduling on the Grid. Proceedings of the Workshop on Planning and 
Scheduling for Web and Grid Services,  in the 14th International Conference on Automated 
Planning & Scheduling, Whistler, Canada (2004) 100-102.  



660 D. Ouelhadj et al. 

 

14. O’Hare, G., Jennings, N. (Eds.): Foundations of Distributed Artificial Intelligence, Wiley, 
New York (1996). 

15. Sakellariou, R., and Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous 
systems. Proceedings of the 13th International Heterogeneous Computing Workshop 
(2004). 

16. Shen, W., Norrie, D., Barthes, J. (eds.): Multi-agent systems for concurrent intelligent 
design and manufacturing, Taylor & Francis, London (2001). 

17. Slowinski, R., and Hapke, M. (eds.): Scheduling under fuzziness. Physica Verlag (2000). 
18. Smith, R.: The contract net protocol: high level communication and control in distributed 

problem solver. IEEE Transactions on Computers, 29 (1980) 1104-1113. 
19. Zadeh, L.A.: Fuzzy Sets. Information and Control, 8 (1965) 338-353. 



Towards Quality of Service Support for
Grid Workflows

Ivona Brandic, Siegfried Benkner, Gerhard Engelbrecht, and Rainer Schmidt

Institute for Software Science, University of Vienna,
Nordbergstrasse 15, A-1090 Vienna, Austria

brandic@par.univie.ac.at

Abstract. Service-oriented workflow languages are being considered as
a key programming paradigm for composing Grid applications from basic
services. In this paper we present QoS support for grid workflows address-
ing the special requirements of time-critical Grid applications, as for ex-
ample medical simulation services. QoS support for grid workflow is cur-
rently being developed in the context of the Vienna Grid Environment, a
service-oriented Grid infrastructure for the provision of parallel simula-
tion codes as QoS-aware Grid services, which are capable of dynamically
negotiating with clients various QoS guarantees, e.g. with respect to ex-
ecution time and price. We use a real world Grid service for medical
image reconstruction to describe the main features of our approach and
present the first prototype of a QoS-aware workflow engine which sup-
ports dynamic QoS negotiation and QoS-aware workflow execution.

1 Introduction

Service-oriented workflow languages are considered as an important tool for com-
posing advanced Grid applications from basic Grid services and for constructing
higher-level composite Grid services. Basic parts of a Grid workflow are activities
which usually represent invocations of Grid service operations. Dependencies be-
tween activities are expressed in terms of control and data flow. Workflows can
be composed using an algebraic approach [19] or a more sophisticated graph-
based approach [13]. Graph-based workflows allow the synchronization between
concurrently executed activities whereas algebraic workflows permit only a struc-
tured way of programming.

The recent shift of Grid technologies towards the adoption of standard Web
Services has motivated several projects which are developing Web Service-based
workflow languages and engines including BPEL [1], Triana [14], Freefluo [16]
and several others.

The acceptance of Grid technologies by users depends on the ability of Grid
applications to satisfy users’ needs. For example, in application areas like medical
simulation for surgical procedures a major requirement are execution time guar-
antees for time critical applications. In the context of the EU project GEMSS [6],
which develops a test bed for GRID-enabled medical application services, we

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 661–670, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



662 I. Brandic et al.

have designed and implemented a QoS-enabled grid service provision framework
[5]. Using such a framework native HPC applications can be exposed as QoS-
aware Grid services which enable clients to negotiate dynamically QoS guaran-
tees with respect to execution time, price and other QoS properties. Dynamic
composition of QoS-aware services via a workflow structure allows the customiza-
tion of services and the automation of medical processes according to the concrete
medical problem. Although many groups are currently extending workflow sys-
tems for Grid computing, our work on QoS-aware workflow is the first attempt
to provide application-level QoS support for Grid workflows.

The major contributions of this paper are QoS extensions of the Business
Process Execution Language (BPEL) and the development of a corresponding
QoS-aware workflow execution engine which supports dynamic service selection,
and QoS negotiation in order to address the requirements of time critical ap-
plications. The language extensions for QoS-aware workflows allow the user to
associate each activity of a workflow with certain QoS constraints. Based on these
constraints, our QoS-aware workflow execution engine negotiates with multiple
potential service providers and dynamically selects services which can fulfill the
specified QoS constraints. Furthermore our execution engine is capable of deter-
mining QoS constraints for composite services by accumulating the constraints of
basic services. In order to accomplish these tasks we exploit the QoS-awareness
of Grid services as provided by the Vienna Grid Environment (VGE) [5].

The remainder of this paper is structured as follows: Section 2 gives an
overview about the Vienna Grid Environment, a QoS-aware grid service pro-
vision framework. Section 3 describes QoS extensions of BPEL using a medical
image reconstruction workflow as example. Section 4 presents our first proto-
type of a QoS-aware workflow execution engine and discusses the lifecycle of a
typical QoS-aware workflow. Section 5 gives an overview about related work.
Conclusions and an outlook to future work are presented in Section 6.

2 QoS-Aware Grid Services

A major prerequisite for the development of QoS-aware workflows are services,
which can provide QoS guarantees, for example with respect to execution time.
The Vienna Grid Environment (VGE) [5], a service-oriented infrastructure for
the provision of HPC applications as Grid Services, supports a flexible QoS
negotiation model where clients may negotiate dynamically and on a case-by-
case basis QoS guarantees on execution time, price, and others with potential
service providers. VGE services encapsulate native HPC applications and offer
a set of common operations for job execution, job monitoring, data staging,
error recovery, and application-level quality of service support. VGE services are
exposed using WSDL [9] and securely accessed via SOAP/WS-Security [18, 21].

In order to provide support for dynamic QoS negotiation, VGE services rely
on a generic QoS module which comprises an application-specific performance
model, a pricing model, a compute resource manager and several XML descriptors
(see Figure 1 (a)).



Towards Quality of Service Support for Grid Workflows 663

Prior to QoS negotiation the desired QoS constraints have to be specified by
the client in a QoS descriptor. Furthermore, the client has to provide a set of
request parameters with meta-data about a specific service request in a request
descriptor. For example, in the case of an image reconstruction service, request
parameters typically include image size and required accuracy (i.e. number of
iterations). A machine descriptor, supplied by the service provider, specifies the
resources (number of CPUs, main memory, disk space, etc.) that can be offered
for an application service.

At the center of the QoS module is an application-specific performance model
which takes as input a request descriptor and a machine descriptor and returns a
performance descriptor which includes the estimated execution time for a specific
service request. The QoS management module then relies on heuristics that
consider the outcome of the performance model, the availability of resources
via the compute resource manager, and the service provider’s pricing model to
decide whether the client’s QoS constraints can be fulfilled.

QoS Management
Module

Application
Performance

Model

Compute
Resource
Manager

Pricing Model

Input:
QoS Descriptor
Request Descriptor

Output:
QoS Offer

Machine
Descriptor

(a)

Client Service

QoS Descriptor, Request Descriptor

QoS Offer (WSLA)

QoS Contract (WSLA)

Signed QoS Contract   acknowledgment

(b)

Fig. 1. QoS negotiation module (a) QoS basic scenario (b)

The basic QoS negotiation scenario as shown in Figure 1 (b) is based on a
request/offer model where clients request offers from services. A client initiates
the negotiation by supplying a QoS descriptor and a request descriptor. If a ser-
vice decides to make an appropriate QoS offer, a temporary resource reservation
with a short expiration time is made by the compute resource manager. Only if
a QoS offer is confirmed by the client, a QoS contract in terms of a Web Service
Level Agreement (WSLA) [20] is established and signed by both parties.

The VGE service provision framework is currently utilized in the context of
the EU Project GEMSS [12] which focuses on the provision of advanced medical
simulation services via a Grid infrastructure [6].

3 Workflow Language Extensions for QoS Support

The first objective of QoS-aware workflow support is to enable the specification of
QoS constraints for services. The second objective is to compute QoS constraints



664 I. Brandic et al.

for the whole workflow based on the constraints of basic activities. In order to
achieve these goals we extend BPEL in order to allow the specification of QoS
constraints as described next.

3.1 BPEL Subset

In this section we describe the BPEL subset used to define QoS-aware work-
flows. BPEL is an XML-based language that uses WSDL [9] documents in order
to invoke Web Services. The basic construct of the language is an activity.
BPEL distinguishes between basic and complex activities. Basic activities per-
form primitive actions such as invoking other services with the <invoke> activity,
receiving a request from a client with the <receive> activity or sending a reply
to a client with the <reply> activity. Complex activities group basic or other
complex activities defining a special behavior of that group of services. The
<sequence> activity executes activities in the given order, whereas the <flow>
activity concurrently executes underlying activities. The <variable> activity
may be used to define input and output variables, which can be message parts
defined in a WSDL document or simple data types. Variables can be copied
using a <copy> activity and <from> and <to> activities.

3.2 Medical Image Workflow Example

One of the applications utilized within the GEMSS project is a Medical Image
Reconstruction Service, applying a compute intensive fully 3D ML-EM recon-
struction of 2D projection data recorded by a Single Photon Emission Computed
Tomography (SPECT) [4]. A client GUI utilized for the SPECT service imple-
ments the basic invocation scenario of the SPECT service which consists of the
upload of 2D projection data, the start of the reconstruction, and finally the
download of the reconstructed 3D images. These basic steps are currently con-
trolled by the user via the GUI. The execution of the SPECT service methods
can be automated using a workflow language and a workflow execution engine.
A corresponding BPEL workflow 1 is presented in Figure 2.

First, the input data is uploaded to the service using the invoke activity
named upload. Second, the start activity initiates the start of the reconstruc-
tion. Finally, the reconstructed 3D image is downloaded. The workflow shown
in Figure 2 specifies only the order of execution of activities.

3.3 BPEL Extensions for the Specification of QoS Constraints

In order to specify QoS constraints in BPEL, we introduce the
<qos-constraints> element, which can be used within the <sequence>, <flow>
and <invoke> activities. Figure 3 shows an image reconstruction workflow with
a corresponding <qos-constraints> element.

1 Instead of PartnerLinks we use the wsdl attribute for locating external services.



Towards Quality of Service Support for Grid Workflows 665

...
<sequence name="SPECTSequence">
  <invoke name="upload"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="upload" inputVariable="uploadData"/>
  <invoke name="start"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="start" inputVariable="Cid"/>
<invoke name="download"

    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="download"
    inputVariable="Cid" outputVariable="SPECTResult"/>
</sequence>
...

(a) (b)

sequence

upload

start

download

Fig. 2. SPECT workflow code (a). Graphical representation of a SPECT workflow (b)

The <qos-constraints> element may contain several <qos-constraint>
elements. Each <qos-constraint> element specifies one QoS constraint as a
name/value pair. In the example above, the <qos-constraints> element of the
start activity contains three <qos-constraint> elements. The
<qos-constraint> element beginTime specifies the earliest possible start time
of the reconstruction service, whereas the <qos-constraint> endTime specifies
the latest possible completion time of the service. The <qos-constraint> price
defines the maximal price for the service execution.

The attribute ReqDesc specifies the request descriptor of a service, which
contains the performance relevant input data, e.g. number of iterations, size of
the input data etc. The wsla attribute references the WSLA document of a
VGE service. Besides QoS constraints, the WSLA document contains different
conventions concerning the service execution, such as penalties to be paid if a
service could not be executed within the agreed constraints.

In the example above, we only use QoS constraints for begin time, end time
and price of the service execution. Additional QoS constraints could be added

sequence

start
t = 1 h, p = 5,5 Euros

download
t ~ 0 h, p ~ 0 Euros

...
<sequence name="SPECTSequence">
  <invoke name="upload"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="upload" inputVariable="uploadData"/>
  <invoke name="start"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="start" inputVariable="Cid">
    <qos-constraints

ReqDesc="/home/gemss/workflow/ReqDescs/ReqDesc-1077647254348-12.xml"
wsla="/home/gemss/workflow/wslas/wsla-107764727653-10.xml">
<qos-constraint name="beginTime" value="2004-10-18T10:00:00.000+02:00"/>
<qos-constraint name="endTime" value="2004-10-18T11:00:00.000+02:00"/>
<qos-constraint name="price" value="5.50"/>

    </qos-constraints>
  </invoke>
  <invoke name="download"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="download" inputVariable="Cid"
    outputVariable="SPECTResult"/>
</sequence>
...

(a) (b)

upload
t ~ 0 h, p ~ 0 Euros

Fig. 3. SPECT workflow code with QoS constraints (a). Graphical representation (b)



666 I. Brandic et al.

by defining new <qos-constraint> elements. Note that in our example, QoS
support is only defined for the reconstruction. Data staging activities, such as
upload and download, are currently neglected because usually transfer times of
image data are much shorter than reconstruction times.

4 QoS-Aware Workflow Engine

An appropriate Java-based negotiation and execution engine is being developed
which (1) parses the QoS-aware workflow documents, (2) generates an interme-
diary representation of the workflow based on the workflow document and on
the WSDL documents of the external services, (3) negotiates QoS parameters
with services, (4) generates a Web Service for the whole workflow and deploys
it, and finally (5) executes the workflow.

4.1 Architecture

Our QoS-aware execution engine consists of the following major components: the
workflow parser and unparser, the service generator, the QoS negotiator and the
workflow executer.

The workflow parser generates an intermediary representation of the work-
flow by parsing and validating the workflow document and WSDL document
according to the schema definition.

The intermediary representation is a tree-based structure merging informa-
tion of the according workflow document and WSDL documents of services.
During the QoS negotiation user-specified QoS constraints are replaced by the
actual constraints as offered by a service. After the QoS negotiation the XML
unparser generates the resulting workflow document.

The service generator is responsible for the generation of a service which
represents the whole workflow including the wsdd and other files necessary for
service deployment. This process is performed on the fly by parsing and analyzing
the workflow document and WSDL files. Services are deployed in a Tomcat
servlet container [3] using Apache Axis [2]. The first prototype of the execution
engine handles request/response and asynchronous invocations of the workflow
by a client.

The QoS negotiator is defined as an abstract interface called QoS handler
and is responsible for the negotiation of the QoS constraints of an activity. The
QoS handler defines only the interface for the QoS negotiation and therefore
different QoS negotiation strategies could be implemented, for example, auction-
based negotiation strategies. The QoS negotiator automatically generates the
QoS Descriptor with the constraints specified by the user and compares them
with the QoS constraints offered by services.

The workflow executer is triggered by an external invocation of a workflow.
The Service Invocation Handler is responsible for the invocation of services
initiated by the workflow process, for the generation of SOAP requests and for
the interpretation of responses.



Towards Quality of Service Support for Grid Workflows 667

4.2 Workflow Lifecycle

Figure 4 shows a lifecycle scenario for a QoS-aware workflow.

S1

R

S3

t = 8 min

t = 25 min

t = 20 min

S1

S2

S3

t = 8 min

t = 23 min

t = 17 min

QoS based workflow

requested QoS guaranteed QoS

S1 S2 S3R

Registry

negotiation

execution

QoS-based
Engine

1

3

4

(5)

6

7

Services

Negotiator

 Executer

XML Parser / Unparser

Intermediary
representationService generator /

deployer

2

optional

Sw

Fig. 4. QoS-aware workflow lifecycle

In the first step the user specifies a workflow document with requested QoS
constraints (1). In most cases QoS negotiation only make sense if the user or the
workflow execution engine may choose between several service providers. For this
purpose the wsdl attribute of the invoke activity should specify a service registry
(2) instead of a particular service endpoint. In this case a QoS negotiation (3)
is performed with all services found in the registry and the service with the
best offer is selected. If an activity specifies a particular service endpoint, the
QoS negotiator contacts the service (3) and receives an offer. After the QoS
negotiation the received QoS constraints are written to the original workflow
document (4).

Figure 5 shows the medical image workflow after the QoS negotiation. The
QoS constraints of the start activity are now those guaranteed by the selected
VGE service.

As shown in Figure 5 we distinguish between QoS constraints of a basic ac-
tivity, which reflect the QoS constraints of an external VGE service, and the



668 I. Brandic et al.

sequence
t = 30 min, p = 5,5 Euros

start
t = 30 min, p = 5,5 Euros

download
t ~ 0 h, p ~ 0 Euros

...
<sequence name="SPECTSequence">
  <qos-constraints

ReqDesc="/home/gemss/workflow/ReqDescs/ReqDesc-107764727563-12.xml">
<qos-constraint name="beginTime" value="2004-10-18T10:15:00.000+02:00"/>
<qos-constraint name="endTime" value="2004-10-18T10:45:00.000+02:00"/>
<qos-constraint name="price" value="5.5"/>

    </qos-constraints>
  <invoke name="upload"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="upload" inputVariable="uploadData"/>
  <invoke name="start"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="start" inputVariable="Cid">
    <qos-constraints

ReqDesc="/home/gemss/workflow/ReqDescs/ReqDesc-107764727535-12.xml"
wsla="/home/gemss/workflow/wslas/wsla-107764727653-10.xml">
<qos-constraint name="beginTime" value="2004-10-18T10:15:00.000+02:00"/>
<qos-constraint name="endTime" value="2004-10-18T10:45:00.000+02:00"/>
<qos-constraint name="price" value="5.5"/>

    </qos-constraints>
  </invoke>
  <invoke name="download"
    wsdl="http://bridge.vcpc.univie.ac.at:9355/SPECT/appex?wsdl"
    portType="appex" operation="download" inputVariable="Cid"
    outputVariable="SPECTResult"/>
</sequence>
...

(a) (b)

upload
t ~ 0 h, p ~ 0 Euros

Fig. 5. SPECT workflow code with the agreed QoS constraints after negotiation (a).
Corresponding graphical representation (b)

QoS constraints of a complex activity, which have to be calculated by the execu-
tion engine based on the QoS constraints of the underlying activities. The QoS
constraints of the start activity represent the QoS constraints of a VGE service
whereas the QoS constraints of the SPECTSequence are computed based on the
QoS constraints of the nested activities.

If the user-specified QoS constraints cannot be met, the user may repeat
the QoS negotiation (5) with new constraints or with new services and reg-
istries, respectively. If all constraints are satisfied, the execution of the workflow
is scheduled according to the begin time of the first activity (6 and 7).

5 Related Work

BPEL allows the definition of graph-based and algebraic workflows considering
the definition of communication channels in terms of partner links, advanced in-
stance routing mechanisms, and fault handling. Presently, two BPEL execution
engines exist: an IBM alphaworks execution engine BPWS4J [7] and a commer-
cial product Collaxa [10]. The work presented in [17] at GGF10 proposes a Grid
Process Execution Language (GPEL) and Grid-based workflow execution engine
with the appropriate Grid-based monitoring and lifecycle support. The key issue
of this approach is the representation of the current state of the workflow as an
XML document enabling workflow monitoring and recovery. Work presented in
[8] deals with theoretical concepts of a QoS-aware workflow defining QoS work-
flow metrics. A-GWL [11] focuses on the language constructs for an abstract



Towards Quality of Service Support for Grid Workflows 669

grid workflow language. Triana [14] is a component-based workflow language en-
abling the construction of visualized workflows by connecting predefined Triana
units. An integrated BPEL reader allows the definition of BPEL workflows and
invocation of external Web Services. FreeFluo [16] is a workflow execution engine
developed by the MyGrid project [15]. The WSDL-based Web Service invoca-
tion works with two different languages. The first one is a subset of WSFL, the
second one is a self-developed language named XScufl [22]. Freefluo supports the
definition of in silico bioinformatics experiments and allows semantic description
of workflows. However, none of the presented engines support QoS negotiation
which is a crucial requirement for time critical applications.

6 Conclusion and Future Work

In this paper we presented QoS support for grid workflows addressing the special
requirements of time-critical Grid applications. We defined extensions of BPEL
for specifying QoS constraints for basic and complex activities. A prototype
of QoS-aware workflow execution engine was presented that supports flexible
service discovery based on QoS negotiation.

In the future we plan to explore dynamic QoS negotiation mechanisms where
the QoS constraints of the particular activities can be modified during the work-
flow execution taking into account the actual state of the workflow execution.
The development of a user-friendly GUI for specification and visualization of
workflows is currently under way.

Acknowledgments

The work was partially supported by the Austrian Science Fund as part of the
AURORA project under contract SFB F011-02 and by the European Union’s
GEMSS (Grid-Enabled Medical Simulation Services) Project under contract IST
2001-37153.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana: ”Business Process
Execution Language for Web Services Version 1.1”,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/ 2003

2. Apache AXIS http://ws.apache.org/axis/ 2004

3. Apache Tomcat 4.1.30 http://jakarta.apache.org/tomcat/ 2004

4. W. Backfrieder, M. Forster, S. Benkner and G. Engelbrecht: Locally Variant VOR
in Fully 3D SPECT within a Service Oriented Environment, Proceedings of the
International Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences, CSREA Press, Las Vegas, USA, 2003



670 I. Brandic et al.

5. S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt. VGE - A Service-Oriented En-
vironment for On-Demand Supercomputing. Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (Grid 2004), Pittsburgh, PA, USA,
November 2004

6. S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. E. Middleton, R.
Schmidt: GEMSS: Grid-infrastructure for Medical Service Provision, HealthGrid
2004, Clermont-Ferrand, France, 2004

7. BPWS4J engine. http://www.alphaworks.ibm.com/tech/bpws4j 2004
8. J. Cardoso, A. Sheth, and J. Miller: Workflow Quality of Service , Enterprise Inter-

and Intra-Organisational Integration - Building International Consensus, Kluwer
Academic Publishers 2002

9. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, IBM: Web Services
Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl 2001

10. Collaxa Engine http://www.collaxa.com 2004
11. T. Fahringer, S. Pllana, and A. Villazon. A-GWL: Abstract Grid Workflow

Language. International Conference on Computational Science, Programming
Paradigms for Grids and Metacomputing Systems. Krakow, Poland, 2004

12. The GEMSS Project: Grid-Enabled Medical Simulation Services, EU IST Project,
IST-2001-37153, http://www.gemss.de/

13. F. Leyman: Web Service Flow Language WSFL 1.0, http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf IBM 2001

14. S. Majithia, M. S. Shields, I. J. Taylor, I. Wang: Triana: A Graphical Web Service
Composition and Execution Toolkit. International Conference on Web Services, San
Diego, USA, 2004

15. MyGrid Project http://www.mygrid.org.uk/ 2004
16. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, R. M. Greenwood, C. A. Goble, A.

Wipat, P. Li, T. Carver: Delivering Web Service Coordination Capability to Users.
International World Wide Web Conference, NY, USA, 2004

17. A. Slominski: BPEL in Grids http://www.extreme.indiana.edu/swf-
survey/GGF10 bpel in grids-2004-03-10.ppt 2004

18. SOAP Version 1.2. http://www.w3.org/TR/soap/
19. S. Thatte: XLANG http://www.gotdotnet.com/team/xml wsspecs/xlang-

c/default.htm
20. Web Service Level Agreement (WSLA) Language Specification.

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf, IBM 2001-
2003

21. Web Service Security. SOAP Message Security 1.0, OASIS Standard 200401, March
2004

22. XScufl - http://www.ebi.ac.uk/∼tmo/mygrid/XScuflSpecification.html 2004



Transparent Fault Tolerance for Grid
Applications

Pawe�l Garbacki1, Bartosz Biskupski2, and Henri Bal3

1 Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Delft, The Netherlands

p.garbacki@ewi.tudelft.nl
2 Department of Computer Science, Trinity College, Dublin, Ireland

biskupski@cs.tcd.ie
3 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

bal@cs.vu.nl

Abstract. A major challenge facing grid applications is the appropriate
handling of failures. In this paper we address the problem of making par-
allel Java applications based on Remote Method Invocation (RMI) fault
tolerant in a way transparent to the programmer. We use globally consis-
tent checkpointing to avoid having to restart long-running computations
from scratch after a system crash. The application’s execution state can
be captured at any time also when some of the application’s threads
are blocked waiting for the result of a (nested) remote method call. We
modify only the program’s bytecode which makes our solution indepen-
dent from a particular Java Virtual Machine (JVM) implementation. The
bytecode transformation algorithm performs a compile time analysis to
reduce the number of modifications in the application’s code which has a
direct impact on the application’s performance. The fault tolerance ex-
tensions encompass also the RMI components such as the RMI registry.
Since essential data as checkpoints are replicated, our system is resilient
to simultaneous failures of multiple machines. Experimental results show
negligible performance overhead of our fault-tolerance extensions.

1 Introduction

Computational grids become increasingly important to solve computationally
intensive and time consuming problems in science, industry, and engineering [3,
4, 21]. Since the failure probability increases with a rising number of components,
fault tolerance is an essential characteristic of massively parallel systems. Such
systems must provide redundancy and mechanisms to detect and localise errors
as well as to reconfigure the system and to recover from error states.

Java’s platform independence is well suited to a heterogeneous infrastructures
that typify grid architectures. The object oriented nature of Java facilitates and
code reuse significantly reduces development time. There is a wide variety of
interfaces and language extensions that simplify parallel programming in Java
not to mention Java threads and Remote Method Invocation (RMI) [2] which are

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 671–680, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



672 P. Garbacki, B. Biskupski, and H. Bal

parts of the Java specification [10]. Despite all these facilities, the Java Virtual
Machine (JVM) [12] standard does not support fault tolerance.

In this paper we present the design, implementation and evaluation of a
system that provides coordinated checkpointing and recovery for RMI-based
parallel Java applications with a focus on grid computing. Our approach is novel
in that it was designed to be transparent to the programmer, requiring minimal
changes to the application code.

The contributions of this paper are the following: first we design and imple-
ment a Java bytecode transformer that makes the application programs resilient
to failures by means of checkpoint-recovery. The comprehensive compile time
analysis significantly reduces the overhead incurred by the application code mod-
ifications. Second, we present a technique that allows checkpointing even inside
(nested) remote method calls. Third, we provide mechanisms which enable RMI
components to recover from a system crash in a completely transparent man-
ner. Finally, we present performance results for classic parallel applications. As
a yardstick, we compare the performance of Java applications with and without
the fault tolerance extensions.

The rest of this paper is organized as follows. Section 2 lists the related work.
Sections 3 and 4 describe the capturing and reestablishing of the state of a
single process and the whole application, respectively. Section 5 introduces the
subsystem responsible for handling checkpoints initiated inside remote method
calls. Section 6 describes fault tolerant RMI. Section 7 presents the performance
of our system. Finally, Section 8 concludes this paper.

2 Related Work

The importance of fault tolerance in grid computing has already been recog-
nised by the establishment of the Grid Checkpoint Recovery Working Group [16].
Its purpose is to define user-level mechanisms and grid services for fault
tolerance.

We are not aware of any other project that is specifically addressing the
provision of transparent fault tolerance support for grid applications written in
Java. There is, however, a considerable amount of work in various related areas.
The problem of saving the complete state of a Java program was investigated in
the context of mobile agents migration. The Nomads [17] and Sirac [5] projects
modify the JVM to capture the execution state of the application, which makes
them inappropriate for the heterogeneous grid environment where different ma-
chines may have different JVMs installed. The CIA [11] mobile agents platform
uses Java Platform Debugger Architecture (JPDA) API [1] which is not compat-
ible with most Just In Time (JIT) compilers and thus causes increased execution
overhead. The last category includes projects that insert additional instructions
to the application code. This is the case for the Brakes [8], JavaGo [15], and
Wasp [9] projects.



Transparent Fault Tolerance for Grid Applications 673

3 Capturing and Reestablishing Local State

A grid application is composed of a set of (multithreaded) processes distributed
over a number of nodes, usually on one process per node basis. A local checkpoint
is then a snapshot of the local state of a process. A global checkpoint is a set of
all local checkpoints saved on nonvolatile storage to survive system failures.

The process execution state consists of the Java stacks of all local threads.
Each Java stack consists of frames that are associated with method invocations.
A new frame is pushed onto the stack each time a method is invoked and popped
from the stack when the method returns. A frame includes the local variables,
the operand stack with partial results of the computations, and the program
counter which indicates the next instruction to be executed.

A thread has access only to data stored in the currently executing method
frame due to the strict Java security policies, and therefore there is no straight-
forward way to preserve the whole Java stack. In our system we use an approach
similar to that proposed by the Brakes [8] project. The state capturing in Brakes
is initiated explicitly by placing a checkpoint function call in the application
source code. Brakes provides a post-compiler which instruments the application
bytecode by inserting additional code blocks that do the actual capturing and
reestablishing of the execution state. The Brakes bytecode transformer inserts
a code block after every method invocation, which saves in the checkpoint the
stack frame of the current method and returns control to the previous method
on the stack. This process continues until the whole Java stack is saved. The
process of reestablishing a thread’s state is similar but restores the stack frames
in reverse order. The bytecode transformer inserts code at the beginning of each
method, which restores the stack frame of the current method and invokes the
next method whose state is saved in the checkpoint, consequently restoring the
next stack frame. The process continues until the whole stack is rebuilt.

A significant improvement that we made to the original Brakes algorithm is
that we added the analysis of the methods call graph in order to detect and mod-
ify only these methods and method invocations that could lead to the execution
state capturing. This modification has been proven (see Sect. 7) to dramati-
cally decrease the number of rewritten methods and thus reduce the overhead
caused by transforming the application. The methods call analyser finds a set
of all methods in all user classes whose invocation can lead to state capturing.
Initially, the set contains just one method — the internal method that directly
initiates state capturing. In each iteration the algorithm adds to the set new
methods that can invoke methods already in the set. The algorithm stops when
no methods were added in the last iteration.

4 Capturing and Reestablishing Global State

The checkpointing mechanisms described in Sect. 3 apply only to threads running
within the same address space. We extend the applicability of our checkpointing
mechanisms to the class of distributed applications by using the coordinated



674 P. Garbacki, B. Biskupski, and H. Bal

checkpointing scheme [18]. As its name suggests, in coordinated checkpointing
all the threads running on different nodes have to synchronise before writing
their states to stable storage. Global coordination guarantees that the saved
state is automatically globally consistent [6].

The global thread coordination is performed in two phases. In the first phase
threads are synchronised locally at each node. The goal of the second phase is
to synchronise all nodes. The coordination of threads running on the same node
is performed with the help of the local coordinator, a component deployed on
each node. When a thread is ready for a global checkpoint it notifies its local
coordinator. Once all local coordinators receive confirmation from all threads
the distributed phase of the global coordination process begins. The distributed
synchronisation algorithm proposed by us is based on software trees [19]. A tree-
based barrier is known to provide excellent performance and to scale well to large
machines [14]. Although this method was originally designed for multiprocessors,
it can easily be adapted to a distributed environment.

In order to make our system not only resilient to software faults but also to
hardware faults, we replicate the checkpointed data among different machines.
This way even in a situation when a stable storage device on one of the nodes
crashes, the checkpoint can be still retrieved from a remote location.

When a failure occurs, the processes that were running on the crashed nodes
are restored from the latest checkpoint on the backup nodes. Each of the backup
nodes runs a simple service capable of obtaining the local checkpoint of a crashed
process and initiating its recovery (described in Sect. 3).

There are several situations in which the failure may be detected. First, the
user application can explicitly invoke the scanning procedure that will check
which nodes are down. Second, the failure may be detected during the global
barrier synchronisation. Third, a crash of a remote object may be discovered by
the fault-tolerant RMI described in Sect. 6. Finally, there is a dedicated thread
running on every node that checks periodically whether all remote processes are
up and running.

5 Capturing and Reestablishing Distributed Thread’s
State

To increase the level of programming transparency, we allow the programmer
to initiate the state capturing at any stage of the program execution, also when
some of the threads perform remote method calls. To our knowledge our approach
is the first to manage this problem in a completely distributed way, without
any central components. Before presenting our solution, we first explain why
saving and restoring of a state of a thread performing a remote method call is
challenging, and also introduce some terminology.

Since Java threads are bound to the virtual machine in which they were
created, a remote method execution is mapped to two different Java threads:
the client thread that initiated the call, and the server thread that executes the
remote method on the remote node. These two threads are both representatives



Transparent Fault Tolerance for Grid Applications 675

for the same distributed thread of control [22, 7]. The checkpoint initiated inside a
remote method call should contain the state of both server and client threads. In
a local execution environment, the JVM thread identifier offers a unique reference
for a single computation entity. Java, however, does not offer any interfaces that
allow us to recognise two threads as parts of the same distributed thread. To
cope with this problem we extend Java programs with the notion of distributed
thread identity [22]. Propagation of globally unique identifiers allows for the
identification of local computations as parts of the same distributed computation
entity.

Using the introduced terminology we describe the idea of a distributed thread
state capturing. Each local thread in our system has an associated identity of the
distributed computation of which it is part. The identity is generated when the
distributed computation is started, that is, when the oldest local thread which is
part of the distributed computation is instantiated. The remote thread identity is
sent along with the remote method call. It is done by extending the signature of
the remote method with a parameter representing the distributed thread identity.
Now suppose that the checkpoint was requested inside a remote method call. We
start from capturing the state of the server thread which initiated the checkpoint.
The context object containing the serialized state of the server thread is stored
on the server machine under the key representing the distributed thread identity.
After its state was captured, the server thread throws a special type of exception
notifying the client thread that the checkpoint was requested. This procedure is
repeated until the contexts of all local threads have been saved. The distributed
thread state reestablishing is a reverse process.

6 Fault Tolerant RMI

A strong point of Java as a language for grid computing is the integrated support
for parallel and distributed programming. Java provides Remote Method Invo-
cation (RMI) [2] for transparent and efficient [13, 20] communication between
JVMs. However, it does not have any support for fault tolerance. Therefore, we
developed mechanisms that provide fault tolerance for the Java RMI compo-
nents. We provide a replicated RefStore server that maintains remote objects
references, mechanisms that allow remote objects and their stubs to transpar-
ently recover from a system crash, and a fault tolerant RMI registry.

The replicated RefStore server was developed for the purpose of storing re-
mote references to recovered fault tolerant remote objects. The remote reference
is a standard Java object (a component of every stub) containing the address
of the hosting node, a communication port number, and a key that together
uniquely identify the remote object. When a fault tolerant remote object re-
covers from a crash, it automatically registers its new remote reference in the
RefStore server. When a stub cannot connect to the object using its old remote
reference, it retrieves the new remote reference from the RefStore.

In order to release the programmer from the burden of detecting failures and
updating remote references, a transformation algorithm that analyses a user’s



676 P. Garbacki, B. Biskupski, and H. Bal

stub classes and automatically generates exception handlers was developed. The
exception handler is invoked when the stub cannot connect to the fault tolerant
remote object. When it happens, the recovery process is initiated. After success-
ful recovery, the stub automatically retrieves the new remote reference from the
RefStore server and reconnects to the remote object using its new location.

The Java RMI registry [2] is typically used for exchanging stubs for remote
objects. However, since the node on which the registry is running may also fail,
we provide an implementation of a fault-tolerant RMI registry service that is
checkpointed together with the whole application.

To summarize, each component of the fault-tolerant RMI system is either
replicated or checkpointed, and so there is no single point of failure. Moreover,
since no modifications in the application code are needed, our fault-tolerant RMI
is completely transparent to the programmer.

7 Performance Evaluation

In this section we study the impact of our fault-tolerance extensions on the
performance of the distributed applications. All tests were performed on the
DAS2 cluster1 of 1GHz Pentium III processors, running Linux, and connected
by a Myrinet network.

We investigate the overhead incurred by the checkpointing extensions on two
applications, namely Successive Over Relaxation (SOR) and Traveling Sales-
man Problem (TSP). These applications were selected as being challenging for
the checkpointing system. Complicated control flow scheme and non-negligible
amounts of temporary data pose difficulties for making these applications fault
tolerant manually.

SOR is an iterative method for solving discretised Laplace equations on a
grid. The program distributes the grid row-wise among the processors. Each
processor exchanges its row of the matrix with its neighbors at the beginning of
each iteration.

TSP finds the shortest route among a number of cities using a parallel branch-
and-bound algorithm, which prunes large parts of the search space by ignoring
partial routes already longer than the current best solution. We divide the whole
search tree into many small ones to form a job queue. Every worker thread will
get jobs from this queue until the queue is empty.

We measure the performance overhead during the normal execution (with-
out initiating the state capturing) introduced in these applications by the fault-
tolerance extensions. This overhead is generated by additional conditional state-
ments placed after method calls which may initiate state capturing, and by
replacing the standard Java RMI with its fault-tolerant counterpart. We argue
that the overhead caused by the extra conditional statements is negligible since
they are sensibly placed and thus rarely invoked.

1 A detailed description of the DAS2 cluster architecture can be found at
http://www.cs.vu.nl/das2



Transparent Fault Tolerance for Grid Applications 677

4 8 12 16 20 24 28
0

20

40

60

80

100

120
SOR with synchronous communication

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

20

40

60

80

100

120

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

SOR with a pool of threads

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

20

40

60

80

100

120
SOR with new thread per message

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

4 8 12 16 20 24 28
0

5

10

15
TSP with synchronous communication

Number of nodes

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Original execution time  
Overhead of modifications

Fig. 1. The performance overhead incurred by our fault-tolerance extensions

We first asses the performance when no checkpoints are taken. Figure 1
presents the comparison of the execution times of the original and the trans-
formed applications in relation to the number of nodes used for the computation
in that case. Three variants of the SOR algorithm (for a matrix 1000x10000
and 200 iterations) and one variant of TSP (for 17 cities) were used during the
measurements. The first version of the SOR algorithm uses synchronous commu-
nication. The second version is based on asynchronous communication scheme
with a pool of threads which are reused for sending messages. The last variant
of the SOR algorithm starts a new thread for every data send request. The TSP
application uses synchronous communication.

The measurements show that overhead in SOR incurred by the fault-tolerance
extensions increases with the number of nodes. The overhead caused by the stubs
transformations is proportional to the number of remote method invocations
which is higher for larger number of nodes. The highest performance overhead
of 9% was observed for the SOR application with synchronous communication.
In the case of synchronous communication, the overhead incurred by the stubs
transformations affects directly the computation thread, thus slowing down the
whole application. The performance degradation of the asynchronous versions



678 P. Garbacki, B. Biskupski, and H. Bal

 0.1

 0.2

 0.4

 0.8

 1.6

 3.2

 6.4

 12.8

 25.6

 51.2

0.25 0.5 1 2 4 8 16 32 64 128

C
he

ck
po

in
t t

im
e 

(s
ec

on
ds

)

Checkpoint size (MB)

SOR
TSP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  4  8  12  16  20  24  28  32

C
he

ck
po

in
t t

im
e 

(s
ec

on
ds

)

Number of nodes

SOR
TSP

Fig. 2. The duration of the checkpointing process as a function of the checkpoint size
(left) and the number of nodes (right). Note the logarithmic scale on both axes of the
left plot

of SOR affects directly only the communication threads that are running in
the background. The highest observed performance losses in the asynchronous
versions with a thread pool and a new thread per message were 5% and 6%,
respectively. A slightly higher overhead in the latter case comes from the fact
that creating a new thread for each message requires registering this thread
in our system. The bottom-right plot of Fig. 1 presents the results of the TSP
application. The fault-tolerance extensions in this application hardly influence its
performance. The highest observed overhead was less than 2%. Since processes
do not communicate with each other as frequently as in the SOR algorithm, the
overhead caused by the fault-tolerant RMI is much lower.

We now turn to the time that is needed to take a distributed checkpoint
(Fig. 2). Clearly, capturing the state of a process that contains more data takes
longer. Similarly the number of nodes in the system is not without influence on
the overall performance of the checkpoint. The delay introduced by the global
barrier synchronisations grows with the number of nodes involved.

The left half of Fig. 2 shows how the size of the checkpointed data relates to
the time needed to take a globally consistent checkpoint of the applications run-
ning on 20 nodes (note the logarithmic scale on both axes). For the distributed
checkpoint performance evaluation we used the most complex variant of the
SOR algorithm, namely the asynchronous communication with the thread pool.
As one could expect, the time of a checkpoint can be approximated by a linear
function of the data size. The linear dependency on this logarithmic plot is how-
ever much weaker for smaller (less than 3MB) than for bigger checkpoints. For
smaller checkpoints the state capturing time is dominated by the efficiency of the
state saving extensions. Checkpoints that contain more data move the overhead
from the data serialisation to the data replication phase, which is much more
data size dependent.

The plot presented in the right half of Fig. 2 shows the influence of the num-
ber of nodes on the performance of the checkpoint. The size of the checkpointed



Transparent Fault Tolerance for Grid Applications 679

data was approximately the same for all applications — 500KB. The overhead
of the checkpointing phase is determined by two factors. The performance of
the global barrier synchronisation algorithm depends on the number of nodes
involved. Furthermore, different threads need different amount of time to cap-
ture their states. The variations of the state serialization times among different
threads accumulate resulting in considerable delays. The results of the experi-
ments show however that our system can deal with a higher number of nodes
without excessive performance loss.

As we described in Sect. 3, we optimised the original Brakes algorithm by
rewriting only those methods that may lead to the checkpoint request. We mea-
sured the performance gain due to this optimization for the SOR and TSP
applications running on 8 nodes. The number of rewritten methods was reduced
for SOR from 53 to 5 and for TSP from 37 to 2. This resulted in a performance
gain of over 10% in the case of SOR and over 30% in the case of TSP.

8 Conclusions

In this paper we have presented a complete solution for making regular grid
applications written in Java fault tolerant. The high level of programming trans-
parency and independence from a particular JVM enable easy integration with
existing applications and grid services. The experiments show that our approach
has a very low performance overhead during normal program execution, and
scales well with the system size.

Acknowledgments

The authors would like to thank Jim Dowling, Dick Epema, Thilo Kielmann, and
Tim Walsh for their valuable comments on the draft version of this paper. This
work was partly supported by the DBE Project, IST 6th Framework Programme.

References

[1] Java platform debugger architecture (jpda). http://java.sun.com/products/

jpda/.
[2] Java remote method invocation specification. revision 1.10, jdk 1.5.0, 2004. http:

//java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf.
[3] G. Allen, W. Benger, T. Goodale, H. Ch. Hege, G. Lanfermann, A. Merzky,

T. Radke, E. Seidel, and J. Shalf. The cactus code: A problem solving environment
for the grid. In The Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC9), Pittsburgh, PA, USA, August 2000.

[4] D. C. Arnold and J. Dongarra. The netsolve environment: Progressing towards
the seamless grid. In International Workshop on Parallel Processing, Toronto,
Canada, August 2000.

[5] S. Bouchenak. Making java applications mobile or persistent. In Conference on
Object-Oriented Technologies and Systems, San Antonio, TX, USA, January 2001.



680 P. Garbacki, B. Biskupski, and H. Bal

[6] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75,
February 1985.

[7] R. Clark, E. Jensen, and F. Reynolds. An architectural overview of the alpha real-
time distributed kernel. In USENIX Winter Conference, San Diego, CA, USA,
January 1993.

[8] T. Coninx, E. Truyen, B. Vanhaute, Y. Berbers, W. Joosen, and P. Verbaeten.
On the use of threads in mobile object systems. In 6th ECOOP Workshop on
Mobile Object Systems, Sophia Antipolis, France, June 2000.

[9] S. Fuenfrocken. Transparent migration of java-based mobile agents. In Second
International Workshop on Mobile Agents, Stuttgart, Germany, September 1998.

[10] J. Gosling, B. Joy, G. L. Steele Jr., and G. Bracha. The Java Language Specifica-
tion. Addison Wesley, second edition, 2000. http://java.sun.com/docs/books/

jls/.
[11] T. Illman, T. Krueger, F. Kargl, and M. Weber. Transparent migration of mo-

bile agents using the java platform debugger architecture. In The Fifth IEEE
International Conference on Mobile Agents, Atlanta, GA, USA, December 2001.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, second edition, 1999. http://java.sun.com/docs/books/vmspec/.

[13] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs,
and R. Hofman. Efficient java rmi for parallel programming. ACM Transactions
on Programming Languages and Systems, 23(6):747–775, November 2001.

[14] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems,
9(1):21–65, February 1991.

[15] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A simple extension of java language
for controllable transparent migration and its portable implementation. In 3rd
International Conference on Coordination Models and Languages, Amsterdam,
The Netherlands, April 1999.

[16] Nathan Stone, Derek Simmel, and Thilo Kielmann. GWD-I: An architecture for
grid checkpoint recovery services and a GridCPR API. Grid Checkpoint Recovery
Working Group Draft 3.0, Global Grid Forum, http://gridcpr.psc.edu/GGF/

docs/draft-ggf-gridcpr-Architecture-2.0.pdf, May 2004.
[17] N. Suri, J. Bradshaw, M. Breedy, P. Groth, A. G. Hill, and R. Jeffers. Strong

mobility and fine-grained resource control in nomads. In Agent Systems and
Applications / Mobile Agents, Zurich, Switzerland, September 2000.

[18] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2002.

[19] P. Tang and P. C. Yew. Algorithms for distributing hot spot addressing. Techni-
cal report, Center for Supercomputing Research and Development, University of
Illinois Urbana-Champaign, January 1987.

[20] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal.
Ibis: An efficient java-based grid programming environment. In Joint ACM Java
Grande - ISCOPE 2002 Conference, Seattle, WA, USA, November 2002.

[21] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal. Satin:
Simple and efficient java-based grid programming. In AGridM 2003 Workshop on
Adaptive Grid Middleware, New Orleans, LA, USA, September 2003.

[22] D. Weyns, E. Truyen, and P. Verbaeten. Distributed threads in java. In Inter-
national Symposium on Parallel and Distributed Computing, Iasi, Romania, July
2002.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 681 – 690, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Learning Automata Based Algorithms for Mapping 
of a Class of Independent Tasks over Highly 

Heterogeneous Grids 

S. Ghanbari and M.R. Meybodi 

Soft Computing Laboratory, 
Computer Engineering Department and Information Technology, 

Amirkabir University, Tehran Iran 
saeed_ghanbari@yahoo.com , meybodi@ce.aut.ac.ir 

Abstract. Computational grid provides a platform for exploiting various 
computational resources over wide area networks. One of the concerns in 
implementing computational grid environment is how to effectively map tasks 
onto resources in order to gain high utilization in the highly heterogeneous 
environment of the grid. In this paper, three algorithms for task mapping based 
on learning automata are introduced.  To show the effectiveness of the proposed 
algorithms, computer simulations have been conducted.  The results of 
experiments show that the proposed algorithms outperform two best existing 
mapping algorithms when the heterogeneity of the environment is very high. 

1   Introduction 

Owing to advances in computational infrastructure and networking technology, 
construction of large-scale high performance distributed computing environment, 
known as computational grid, is now possible. Computational grid enables the 
sharing, selection, and aggregation of geographically distributed heterogeneous 
resources for solving large scale problems in science, engineering and commerce. 
Numerous efforts have been exerted focusing on various aspects of grid computing 
including resource specifications, information services, allocation, and security issues. 
A critical issue to meeting the computational requirements on the grid is the 
scheduling. 

Ensuring a favorable efficiency over computational grid is not a straightforward 
task, where a number of issues make scheduling challenging even for highly parallel 
applications. Resources on the grid are typically shared and undedicated so that the 
contention made by various applications results in dynamically fluctuating delays, 
capricious quality of services, and unpredictable behavior, which further complicate 
the scheduling. Regarding to these hurdles, the scheduling of applications on 
computational grids have become a major concern of multitude efforts in recent 
years[9]. 

In mixed-machine heterogeneous computing (HC) environments like 
computational grids, based on application model characterization, platform model 



682 S. Ghanbari and M.R. Meybodi 

 

characterization and mapping strategy characterization, there are various definitions 
for scheduling[6]. Ideal sorts of applications for computational grid are those 
composed of independent tasks, which tasks can be executed in any order and there is 
no inter-task communication (i.e. totally parallel) [1][12]. There are many 
applications of such feature including data mining, massive searches (such as key 
breaking), parameter sweeps, Monte Carlo simulations[2], fractals calculations (such 
as Mandelbrot), and image manipulation applications (such as tomographic 
reconstruction[3]). Computational grid platform model consists of different high-
performance machines, interconnected with high-speed links. Each machine executes 
a single task at a time (i.e. no multitasking) in the order to which the tasks are 
assigned. The matching of tasks to machines and scheduling the execution order of 
these tasks is referred to as mapping. The general problem of optimally mapping tasks 
to machines in an HC suite has been shown to be NP-complete [11].  

 In this paper, we present three algorithms based on learning automata for mapping 
metatask over HC. Through computer simulations we show that the proposed 
algorithms outperform the best existing mapping algorithms when the heterogeneity 
of the environment is very high. 

This paper is organized as follows: Section 2 discusses the related works. Section 3 
introduces learning automata. Section 4 explains the model of the Grid and the 
definitions used in later sections. Section 5 introduces the proposed learning automata 
based algorithms. In Section 6, experimental results are discussed, and section 7 
provides the conclusion. 

2   Related Works 

Existing mapping algorithms can be categorized into two classes[4]: on-line mode 
(immediate) and batch mode. In on-line mode, a task is mapped onto a host as soon as 
it arrives at the scheduler. In the batch mode, tasks are collected into a set that is 
examined for mapping at certain intervals called mapping events. The independent set 
of tasks that is considered for mapping at the mapping events is called a metatask.  
The on-line mode is suitable for low arrival rate, while batch-mode algorithms can 
yield higher performance when the arrival rate of tasks is high because there are a 
sufficient number of tasks to keep hosts busy between the mapping events, and 
scheduling is done according to the resource requirement information of all tasks in 
the set[4]. The objective of most mapping algorithms is to minimize makespan, where 
makespan is the time needed for completing the execution of a metatask. Minimizing 
makespan yields to higher throughput. 

Reported batch mode heuristics are Min-Min, Max-Min, Genetic Algorithm (GA), 
Simulated Annealing (SA), Genetic Simulated Annealing (GSA), A* search, 
Suffrage[5][4], and Relative Cost (RC) [7] . Experimental results show that among 
batch-mode heuristics, Min-Min and GA give lower makespan than other 
heuristics[5],  and RC further outperforms both GA and Min-Min[7].  

RC introduces two essential criteria for a high-quality mapping algorithm for 
heterogeneous computing systems: matching which is to better match the tasks and 
machines, and load balancing which is to better utilize the machines. It is shown that 
in order to minimize the makespan, matching and system utilization should be 



 Learning Automata Based Algorithms 683 

 

maximized[7]. However, these design goals are in conflict with each other because 
mapping tasks to their first choice of machines may cause load imbalance. Therefore, 
the mapping problem is essentially a tradeoff between the two criteria. Two out of 
three proposed algorithms in this paper resolve mapping by optimizing matching and 
load balancing. 

3   Learning Automata 

Learning Automata are adaptive decision-making devices operating on unknown 
random environments. A Learning Automaton has a finite set of actions and each 
action has a certain probability (unknown to the automaton) of getting rewarded by 
the environment of the automaton. The aim is to learn to choose the optimal action 
(i.e. the action with the highest probability of being rewarded) through repeated 
interaction on the system. If the learning algorithm is chosen properly, then the 
iterative process of interacting on the environment can be made to result in selection 
of the optimal action. Learning Automata can be classified into two main families: 
fixed structure learning automata and variable structure learning automata (VSLA) 
[8]. In the following, the variable structure learning automata which will be used in 
this paper is described. 

A VSLA is a quintuple < , , p, T( , , p) >, where , , and  p are an action set 
with r actions, an environment response set, and the probability set p containing r 
probabilities, each being the probability of performing every action in the current 
internal automaton state, respectively. The function of T is the reinforcement algorithm, 
which modifies the action probability vector p with respect to the performed action and 
received response. If the response of the environment takes binary values learning 
automata model is P-model and if it takes finite output set with more than two elements 
that take values in the interval [0,1], such a model is referred to as Q-model, and when 
the output of the environment is a continuous variable in the interval [0,1], it is refer to 
as S-model. Assuming [0,1], a general linear schema for updating action probabilities 
can be represented as follows. Let action i be performed then: 

ijjnapnnbprbnnpnp jjjj ≠∀−−−−+=+ )()](1[)]()1/()[()()1( ββ
 

(1) 

)](1[)](1[)()()()1( npannbpnnpnp iiii −−+−=+ ββ  (2) 

where a and b are reward and penalty parameters. When a=b, the automaton is called 
LRP. If b=0 the automaton is called LRI and if 0<b<<a<1, the automaton is called 
LR P. For more Information about learning automata the reader may refer to [8]. 

4   Simulation Model 

This section presents a general model of the computational grid. The environment 
consists of the heterogeneous suite of machines which will be used to execute the 
application. The scheduling system consists of the automata, and the model of the 
application and the HC suite of machines.  



684 S. Ghanbari and M.R. Meybodi 

 

The application and HC suite of machines are modeled as the estimate of the 
expected execution time for each task on each machine, which is known prior to the 
execution and contained within a ×  ETC (Expected Time to Compute) matrix, 
where  is the number of tasks and  is the number of machines. One row of the ETC 
matrix contains the estimated execution times for a given task on each machine. 
Similarly, one column of the ETC matrix consists of the estimated execution times of 
a given machine for each task in the metatask. Thus, for an arbitrary task si and an 
arbitrary machine mj, ETC(si,mj) is the estimated execution time of si on mj.  

We define (n)(i)=j as a general mapping from the task domain i=1,…,  to the 
machine domain j=1,…,  at iteration n. The load of each machine, which is denoted 
by (n)(j),  is defined as the time taken to execute all the assigned tasks: 

≤≤== τψθ kkjjkETCj nn 1)(),,()( )()(  (3) 

The maximum of (n)(j), over 1  j  , is the metatask execution time, which is 
referred to as makespan, denoted by T (n). 

5   Proposed Learning Automata Model 

The learning automata model is constructed by associating every task si in the 
metatask with a variable structure learning automaton, which is represented by a 3-
tuple(a(i), (i),A(i)). Each action of an automaton is associated with a machine, and 
since the tasks can be assigned to any of the  machines, the action set of all learning 
automata are identical. Therefore, for any task si, 1  i  , a(i)=m1,m2,…,m (mi is the 
ith machine), and (i) [0,1], where   (i) closer to 0 indicates that the action taken by 
the automaton of task si is favorable to the system, and closer to 1 indicates an 
unfavorable response. Reinforcement scheme used to update action probabilities of 
learning automata is LRI. 

To determine the goodness of an action taken by an automaton, we propose three 
different algorithms. The first algorithm calculates (i) for each automaton A(i) 
according to the reduction made in makespan and the load of the selected machine. 
The second and third algorithms calculate the goodness of an action based on 
improvement made in matching and load balancing. 

5.1   Algorithm No.1 

The algorithm No.1 (A1) determines the (n)(i) at iteration n for each automaton A(i) 
by considering makespan and load of the chosen machine. Algorithm A1 interprets 
the environment as P-model; therefore (n)(i) {0,1}. Makespan at iteration n may be 
greater, less than, or equal to makespan at iteration n-1. Similarly, load of the machine 
chosen by automaton A(i) at iteration n may be greater, less than, or equal to load of 
the machine chosen by the automaton at iteration n-1. Therefore, regarding to 
makespan and the load of the chosen machine in two consecutive iterations, nine 
states are possible. To determine the (n)(i), we associate a probability value to each 
nine possible state, which determines the probability of rewarding the chosen action. 
Probability one means that the chosen action will be rewarded. Table 1 shows the 
values, where D, U and I stand for decrease, remaining unchanged, and increase, 
respectively. 



 Learning Automata Based Algorithms 685 

 

Table 1. Reward probability associated with each state 

Makespan  Load of chosen machine Rewarding probability 
D D 1 
D U 0.875 
D I 0.75 
U D 0.625 
U U 0.5 
U I 0.375 
I D 0.25 
I U 0.125 
I I 0 

Algorithm Al is suitable for situations that the information used to evaluate the 
environment response is the load of machines. 

5.2   Algorithm No.2 

As mentioned in section 2, it is shown that to minimize the makespan, matching and 
system utilization must be maximized. Algorithm No.2 (A2) evaluates the response to 
the learning automata by considering these two criteria. Matching of tasks and 
machines can be measured by a parameter, matching proximity, which is defined as 
follows: 

≤≤

≤≤=
τ

τ

ψ
ψ

η
i

i

iiETC

iiETC

1

1 min

))(,(

))(,(
 (4) 

where 1, and min(i) is the ideal matching. Ideal matching is defined as executing 
every task on the machine with the shortest execution time. It is defined as follows:  

ji =)(minψ  such that ),(min),(
1

qiETCjiETC
q μ≤≤

=  (5) 

when =1, we have the ideal matching. System utilization is defined as follows: 

μ

μ

μ

θ
δ

T

j
j

×
= ≤≤1

)(
 (6) 

When the system is completely balanced, =1; otherwise <1.  
Algorithm A2 reduces the mapping problem to an optimization problem with 

matching proximity and system utilization as objective functions. Algorithm A2 
interprets the environment as S-model; therefore, (n)(i) is in [0,1]. 

To evaluate the contribution of each automaton to the improvement of matching 
and system utilization, we define two parameters, partial contribution to 
matching(PCM),  and partial contribution to load balancing(PCL). Input to each 
automaton is a linear combination of PCM (denoted by (n)(i)), and PCL (denoted by 

(n)(i)): 

δη λδληβ )()()( )()()( iii nnn +=  where 1=+ δη λλ  (7) 



686 S. Ghanbari and M.R. Meybodi 

 

 and  are weights associated with PCM and PCL, respectively. PCM for each 
automaton A(i) at iteration n is evaluated as: 

))(,())(,(

))(,())(,(
)(

minmax

min
)(

)(

iiETCiiETC

iiETCiiETC
i

n
n

ψψ
ψψη

−
−=  (8) 

where max(i)  is the worst matching which is defined as mapping each task to a 
machine with the longest execution time; it is defined below 

jin =)(maxψ  such that ),(max),(
1

qiETCjiETC
q μ≤≤

=  (9) 

The closer (n)(i) to 0, the more favorable the response from the environment as far 
as the matching is concerned. In the case that the automaton selects the machine with 
the worst matching, (n)(i) is evaluated to 1.  

PCL for each automaton A(i) at iteration n is evaluated as: 

)1(
))((

)(
2

)(

2
1 )

1.0

1
(

)(

)()(
)(

−−
−=∂

n

e
T

i
i

n

nn
n

δ

μ

ψθ  (10) 

The former part of the above expression is close to 0 when the chosen machine has 
a load less than the maximum load. In this way, the learning automata are encouraged 
to choose machines with low loads, thus, they are guided in a way to decrease the 
distance between the maximum load and the minimum load. The latter part of the 
expression is a Gaussian function, which gets closer to 0 as the system utilization 
increases; therefore, when the load is relatively balanced, PCL of each automaton is 
close to 0. Unlike algorithm A1, algorithm A2 requires information about the 
estimation of execution time of each task on each machine. 

5.3   Algorithm No.3 

Algorithm No.3 (A3) interprets the environment as a Q-Model environment. Like 
algorithm A2, it uses matching proximity and system utilization as objective 
functions. PCL and PCM are evaluated in the same way as algorithm A2, and used to 
produce the environment response. But, in algorithm A3, PCL and PCM are 
interpreted as probabilities, where PCL determines the probability that the learning 
automaton receives unfavorable response as far as system utilization is concerned, 
and PCM determines the probability that the learning automaton receives unfavorable 
response as far as matching is concerned. The environment response is evaluated as 
below: 

δη λδληβ ))(())(()( )()()( iIiIi nnn += where 1=+ δη λλ  (11) 

 and  are the weights associated with PCM and PCL, respectively. I(p) is an 
indicator function which returns 1 with the probability of p, and 0 with the probability 
of 1-p. Therefore, the input to each automaton (i) is in {0, , ,1}. In contrast to 
algorithm A2, algorithm A3 evaluates environment response stochastically, which 
allows the learning automata to jump local minimums in their search space. 



 Learning Automata Based Algorithms 687 

 

6   Experiments 

In this section the proposed algorithms are tested and compared with algorithms Min-
Min and RC because these two algorithms are the best existing algorithms. For the 
simulation studies, ETC matrices were generated using the method presented in [4]. 
Initially, a ×1 baseline column vector, B, of floating point values is created. Let b 
be the upper bound of the range of possible values within the baseline vector. The 
baseline column vector is generated by repeatedly selecting a uniform random 
number, xb

i [1, b), and letting B(i)=xb
i  for 1  i  . Next, the rows of the ETC matrix 

are constructed. Each element ETC(si,mj) in row i of the ETC matrix is created by 
taking the baseline value, B(i), and multiplying it by a uniform random number, xr

i,j, 
which has an upper bound of r. This new random number, xr

i,j [1, r), is called a 
row multiplier. One row requires  different row multipliers, 1  j  . Each row i of 
the ETC matrix can then be described as ETC(si,mj) = B(i)×xr

i,j, for 1  j  . (The 
baseline column itself does not appear in the final ETC matrix.) This process is 
repeated for each row until the ×  ETC matrix is full. Therefore, any given value in 
the ETC matrix is within the range [1, b× r). 

The amount of variance among the execution times of tasks in the metatask for a 
given machine is defined as task heterogeneity. Task heterogeneity is varied by 
changing the upper bound of the random numbers within the baseline column vector. 
High task heterogeneity was represented by b=3000 and low task heterogeneity used 

b=100. Machine heterogeneity represents the variation that is possible among the 
execution times for a given task across all the machines. Machine heterogeneity was 
varied by changing the upper bound of the random numbers used to multiply the 
baseline values. High machine heterogeneity values were generated using r=1000, 
while low machine heterogeneity values used r=10. The ranges were chosen to 
reflect the fact that in real situations there is more variability across execution times 
for different tasks on a given machine than the execution time for a single task across 
different machines. 

Different ETC matrix consistencies were used to capture more aspects of realistic 
mapping situations. An ETC matrix is said to be inconsistent if the ETC matrices are 
kept in the unordered, random state in which they were created. The ETC matrix 
indicates consistent characteristics if a machine j executes any task i faster than 
machine k, then machine j executes all tasks faster than machine k. The consistent 
matrix can be obtained by sorting every row of the matrix independently. Between 
two special situations, a semi-consistent matrix represents a partial ordering among 
the machine/task execution times. For the semi-consistent matrix used here, the row 
elements in even columns of row i are extracted, sorted and replaced in order, while 
the row elements in odd columns remain unordered. 

Twelve combinations of ETC matrix characteristics are possible: high or low task 
heterogeneity, high or low machine heterogeneity, and one type of consistencies 
(consistent, inconsistent, or semi-consistent). Among the twelve combinations the 
most heterogeneous environment is modeled with inconsistent, high task and machine 
heterogeneous ETC, and correspondingly the least heterogeneous environment is 
modeled with consistent, low task and machine heterogeneous ETC. Other 
combinations are between these two extremes. In charts presented in this section, Low 
and High task/machine heterogeneity are abbreviated to LoLo and HiHi, respectively. 



688 S. Ghanbari and M.R. Meybodi 

 

All results reported here are averaged over 50 trials, and done for 200 tasks and 20 
machines. The makespan for each experiment is normalized with respect to the 
benchmark heuristic, which is RC. Unless stated, the learning automata model used in 
the experiments is LRI with a=0.01 for algorithm A1 and a=0.001 for algorithms A2 
and A3. For algorithms A2 and A3, the weights  and  are set to 0.4 and 0.6, 
respectively, for inconsistent environment, and set to 0.05 and 0.95 for semi-
consistent and consistent environments. Matching weightage is set to a smaller value 
than system utilization weightage in semi-consistent and consistent environments, 
because in consistent environments all tasks have the same first choice for matching, 
the fastest machine. There is the same situation in a semi-consistent environment 
because of its consistent sub-matrix. Therefore, the decisive factor in gaining a better 
makespan is to maximize system utilization rather than matching proximity. 
Termination condition is met when, no change in makespan is made for 1500 
consecutive iterations, or number of iterations exceeds 500000.  

In Figure 1, three proposed algorithms are compared with Min-Min and RC in term 
of normalized makespan for different heterogeneity and consistency. For inconsistent 
environment, it can be noted that all three proposed algorithms outperform both RC 
and Min-Min. For high machine/task heterogeneity, makespan resulted by algorithm 
A3 is 21 percent less than the makespan resulted from RC. Algorithm A2 performs 
slightly better than algorithm A1, and algorithm A3 performs better than algorithms 
A1 and A2. For semi-consistent environment, all three proposed algorithms 
outperform Min-Min. Algorithms A1 and A3 perform better than RC for high 
task/machine heterogeneity; however, algorithm A2 fails to outperform RC. Except 
algorithm A3, the other two algorithms perform worse than RC for low task/machine 
heterogeneity. For consistent environment, it can be stated that RC and Min-Min 
performs better than the algorithms proposed in this paper. 

Results shown in Figure 2 indicate the fact that the proposed algorithms perform 
signifycantly better than both RC and Min-Min for inconsistent environments, while 
they fails to perform better than RC and Min-Min for consistent environment. For semi-
consistent environment whose heterogeneity is between consistent and inconsistent, 
learning automata outperforms Min-Min, but performs very closely to RC. Therefore, 
proposed algorithms operate better in environments with higher level of heterogeneity. 

0.60

0.70

0.80

0.90

1.00

1.10

1.20

HiHi LoLo HiHi LoLo HiHi LoLo

Inconsistent Semi-consistent Consistent

N
o

rm
al

iz
ed

 m
ak

es
p

an

RC Min-Min A1 A2 A3

 

Fig. 1. Comparison of the proposed algorithm with RC and Min-Min for different consistency 
and heterogeneity 



 Learning Automata Based Algorithms 689 

 

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

HiHi
LoLo

HiHi
LoLo

HiHi
LoLo

Inconsistent Semi-consistent Consistent

M
ak

es
p

an
 p

er
ce

nt
 o

f 
d

if
fe

re
n

ce
 w

it
h

 R
C

A1 A2 A3

 

Fig. 2. Difference of makespan with RC for different consistency and heterogeneity 

As expected, algorithm A3 performs better than algorithm A2 because it can avoid 
trapping in local minimums. Observing the results of the experiments, it is evident 
that algorithm A1 performs very close to and even better than algorithm A2 although 
it has a completely different reward criterion. It is worth mentioning that in contrast to 
algorithms A2 and A3 which use detailed information of expected run time of each 
task on each machine to guide learning automata, algorithm A1 ignores such informa- 
tion and guide learning automata blindly. 

The other important issue to consider is the computational cost of finding a 
mapping using each proposed algorithm. On average, algorithm A2 finds a mapping 
in about 39000 iterations, while algorithms A1 and A3 needs 12 times more. Setting 
reward parameter (a) to 0.01 for algorithm A2 but 0.001 for algorithms A1 and A3 
may account for faster convergence of A2. However, each algorithm is compared 
with others by setting learning parameter to a value that yields best result. 

7   Conclusion 

In this paper, we presented three algorithms based on learning automata for mapping 
a set of independent tasks over computational grid. The studied computational grid 
was modeled as a heterogeneous computing environment, and the objective of the 
proposed algorithm was to assign independent tasks to machines in a way to minimize 
makespan. Through experiments, we showed that for high heterogeneous 
environments, i.e. inconsistent environments, the proposed algorithms outperform two 
best existing mapping algorithms. 

References 

[1] A. L. Rosenberg, Optimal scheduling for cycle-stealing in a network of workstations 
with a bag-of-tasks workload, IEEE Trans. Parallel Distributed Systems, 13(2), 2002, 
179-191. 



690 S. Ghanbari and M.R. Meybodi 

 

[2] H. Casanova, T.M. Bartol, J. Stiles, and F. Berman, Distributing MCell simulations on 
the grid, Int'l J. High Performance Computing Applications, 15 (3), 2001, 243–257. 

[3] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S. Young, 
and M. Ellisman, Combining workstations and supercomputers to support grid 
applications: the parallel tomography experience, IEEE Proc. 9th Heterogeneous 
Computing Workshop, 2000, 241–252. 

[4] M. Macheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund, Dynamic 
mapping of a class of independent tasks onto heterogeneous computing systems, J. 
Parallel Distributed Computing, 59 (2), 1999, 107–131. 

[5] T. D. Braun, H. J. Siegel, and N. Beck, A comparison of eleven static heuristics for 
mapping a class of independent tasks onto heterogeneous distributed computing 
systems, J. Parallel and Distributed Computing, 61, 2001, 810-837. 

[6] T. D. Braun, H. J. Siegel, et al., Taxonomy for describing matching and scheduling 
heuristics for mixed-machine heterogeneous computing systems, Proc. 17th IEEE 
Symposium on Reliable Distributed Systems, 1998, 330-335.  

[7] Min-You Wu and Wei Shu, A high-performance mapping algorithm for 
heterogeneous computing systems, Proc. 15th Int'l Parallel and Distributed 
Processing Symposium (IPDPS'01), 2001.  

[8] K. Narendra and M. A. L. Thathachar, "Learning Automata: An Introduction," 
Prentice Hall, Englewood Cliffs, New Jersey, 1989. 

[9] F. Berman, High-performance schedulers, in The Grid: Blueprint for a New 
Computing Infrastructure, I. Foster and C Kesselman, eds., Morgan Kaufmann, San 
Francisco, CA, 1999, 279-310.  

[10] H. Chen and M. Maheswaran, Distributed dynamic scheduling of composite tasks on 
grid computing systems, Proc. Int'l Parallel and Distributed Processing Symposium 
(IPDPS'02), 2002.  

[11] O. H. Ibarra and C. E. Kim, Heuristic Algorithms for scheduling independent tasks on 
non-identical processors, J. ACM, 24(2), 1977, 280-289. 

[12] C. Weng and X. Lu, Heuristic scheduling for bag-of-tasks applications in combination 
with QoS in the computational grid, J. Future Generation Computer Systems, 
Elsevier, 2003. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 691 – 701, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Grid Resource Broker Using Application  
Benchmarking 

Enis Afgan, Vijay Velusamy, and Purushotham V. Bangalore 

Department of Computer and Information Sciences, 
University of Alabama at Birmingham, 

1300 University Boulevard, 
Birmingham, AL 35294 – USA 

{afgane, vvijay, puri}@uab.edu 

Abstract. While the Grid is becoming a common word in the context of 
distributed computing, users are still experiencing long phases of adaptability 
and increased complexity when using the system. Although users have access to 
multiple resources, selecting the optimal resource for their application and 
appropriately launching the job is a tedious process that not only proves 
difficult for the naïve user, but also leads to ineffective usage of the resources. 
A general-purpose resource broker that performs application specific resource 
selection on behalf of the user through a web interface is required. This paper 
describes the design and prototyping of such a resource broker that not only 
selects a matching resource based on user specified criteria but also uses the 
application performance characteristics on the resources enabling the user to 
execute applications transparently and efficiently thereby providing true 
virtualization. 

1   Introduction 

While Grid computing is rapidly evolving and becoming more widely accepted, 
traditional scientists may still find the use of middleware technologies cumbersome. 
While the middleware provides effective means to aggregate and virtualize resources, 
the discovery and categorization of vast resources in this heterogeneous and dynamic 
environment presents a problem for the end user due to the complexity of the 
information involved. A general purpose resource broker that facilitates the user’s 
resource selection and job submission automatically is required. While Grid 
Information Services [11] provides an overview of the available grid resources as well 
as provides information about the current status of the grid, an average user may be 
overwhelmed with the information to process, or the user may not have enough 
experience to select the best available resource. Automation of this selection process 
would simplify and expedite this process.  This Resource Broker was developed as 
part of the framework available for extension as well as modification that performs 
application specific resource selection. In order to simplify the process of resource 
selection and job submission for users, the application’s interface is a web-based 
portlet built as an extension to the Open Grid Computing Environment (OGCE) [15] 



692 E. Afgan, V. Velusamy, and P.V. Bangalore 

 

with a simple resource request format. The application is currently being tested to 
work with mpiBLAST [3]. The primary focus of this research is to design and 
prototype a resource broker that will not only select a matching resource based on 
user specified criteria but also use the application performance characteristics on these 
different resources and enable the user to execute the applications transparently 
thereby providing true virtualization. 

2   Related Work 

Resource brokering has been an important area of research for the development of 
Grid computing. Most research that has been done on resource selection of 
heterogeneous resources has essentially been from the viewpoint of an application. 
Condor [13] with its matchmaker is another project that is very relevant to the idea of 
general resource selection. It is based on ClassAd language, which allows users, as 
well as owners of resources, to specify arbitrary restraints. The matchmaker is used to 
match user requests to the available and appropriate resources; in case of multiple 
matching resources, a ranking system is employed. This ranking system is based on 
user-specified constraints in order to return the best match. 

Nimrod-G [2] is another well-known resource broker. The main functionality 
provided by the Nimrod-G is automation of creation and management of large 
parametric experiments [17]. Besides the plain submission of a request for a resource 
search, users have an option to specify time and cost constraints which are later used 
in selecting the resource. If the constraints cannot be met, tradeoffs are explained to 
the user [2,17]. 

Another well-established resource broker is the Application-Level Scheduler 
(AppLeS). It is mainly used for scheduling and deploying of parameter sweep 
applications where tasks have no or little inter-task communication [6]. The main 
advantage of this resource broker is fault tolerance where any errors are processed and 
jobs resubmitted on other resources without the need for user intervention[6].  

This research focuses on creating a general and easily applicable system that uses 
application benchmarking. The inspiration behind this application is to bring the 
resource selection and job submission in the grid to a practical level with user friendly 
orientation. Incorporation of the resource broker into the OGCE achieves the goal 
since the installation of the entire system is simple and part of a single package. Once 
the package is installed within a virtual organization, it can be accessed without any 
additional user-end configuration. Other approaches have not been completely 
integrated into a single yet complete system designed for easy installation and access.  

3   The Resource Information Problem 

The resource selection process is based on information available about a resource. 
Unlike the local resource schedulers (e.g., PBS [18], LSF [21], LoadLeveler [10], 
SGE [8]) that implement fine-tuned scheduling policies based on resource 
requirements running on the nodes as well as those waiting in the queue, resource 
selection and application-level scheduling in the Grid has a limited amount of 



 Grid Resource Broker Using Application Benchmarking 693 

 

information available. All the information is available from Grid  Information 
Services (GIS or MDS) [11] provided by Globus [4]. This provides a way to discover 
current system information, such as the static configuration of a computer as well as 
the current load and status.  

Some of the criteria used for resource selection at the application level include:   

• application-specific requirements  
• static resource capabilities 
• dynamic state of the resource 

This information needs to be collected individually and subsequently combined 
and processed into one meaningful result. Our resource broker conforms to this 
model, as is discussed throughout the rest of the paper.  

One more aspect worth noting is that any form of the application-level resource 
selection should be done based on the resource consumption in terms of that 
application. As an example, a heavily loaded resource from the view point of one 
application might be just the opposite for another application. This creates a wider 
pool of available resources as well as gives the resource selection process more 
options during the selection process. Consequently, in the context of limited 
information available in the Grid environment described earlier, the difficulty of 
writing a general purpose, yet efficient, scheduling algorithm increases. 

4   Architecture 

This section describes the integration of the resource broker with the OGCE, why we 
chose such an approach, as well as discusses resource broker architecture in detail. 

4.1   OGCE and Resource Broker  

OGCE [15] is a portal developed to provide easy access to Grid technologies (i.e., 
through the web-based interface). It provides sharable and reusable components for 
web-based access to scientific and business-oriented applications. Sharable 
components make it easy to quickly create Grid Portals from provided libraries that 
support baseline Grid technologies, such as file transfer, job launching and 
monitoring, and access to information services. This frees the developers to 
concentrate on the specialized needs of a particular scientific community [15]. 
Although GridSphere [14] could also be used for the portal, since OGCE is an NMI 
supported project , we have chosen to use OGCE for this architecture. 

Since OGCE was, mainly, designed and developed to hide the basic Grid 
infrastructure, a resource broker was not implemented because it is not part of the 
capability offered by Grid base services (e.g., MDS). Addition of the Resource Broker 
(RB) to OGCE adds a new layer of abstraction between the user and the Grid while it 
uses many base grid services, thus working toward the idea of seamless job 
submission. OGCE was built using J2EE technology to create multiple portlets 
representing different grid services. The resource broker adds a new service to the 
system using the same approach. 



694 E. Afgan, V. Velusamy, and P.V. Bangalore 

 

4.2   Architecture of the Resource Broker 

The architecture of our resource broker itself is shown in Figure 1. The resource 
broker consists of four main components, each having the basic functionality of 
providing standard interfaces to the rest of the application. Each of these components 
is discussed next. 

 

Fig. 1. Resource Broker architecture showing main components of the design 

4.2.1   Resource Lookup  
Is a module that acts as a front-end to the information services. Information available 
from Ganglia [7] is used for this purpose. Ganglia is a scalable distributed monitoring 
system for high-performance computing systems [7], and is, in turn, very similar to 
MDS [11] provided by Globus [5]. The major difference between Ganglia and MDS 
is the security aspect - MDS is configurable to use GSI [4], while Ganglia is an 
unshielded system. Any information retrieved from Ganglia should also be available 
from MDS and transformation from using one system to the other is easily supported 
by our resource broker. The Resource Lookup component is responsible for 
connecting to the information services and extracting the information for use by the 
RB. It generates a representation of the data about the available resources that is 
internal to the RB, thus, providing standard interface and format for the rest of the RB 
to use during the extraction of the data. Use of this interface module as a data reader 
makes use of different or, even, multiple information service providers. This simply 
requires a quick adaptation. The Resource Lookup does not do any sort of data 
organization or processing, other than storing it in the internal structure as it was 
received by the information source. 

4.2.2   Resource Filter 
Presents an effort to create, again, a generic functionality that, among others, 
implements a resource broker specific compareTo method which is specifically 
designed to compare the user request to the available resources. It provides a standard 
interface where the implementation of the selection process can be easily adapted for 
various formats of user request. In the current implementation of the resource broker, 
Resource Filter performs the basic filtering function of rejecting any non-matching 
string variables such as the operating system type, as well as the type of requested 
architecture. The idea of filtration was further extended to numerical-valued 

Result 

Request 

INTERFACE (OGCE) 

App/
User

Information 
Services

Resource 
Filter

Resource 
Lookup 

Resource 
MakeMatch 

Resource 
Ranker

RB 



 Grid Resource Broker Using Application Benchmarking 695 

 

components. Rather than just performing a basic true/false match for each component, 
a system of weights is employed that gives more insight into how a resource 
compares to the requested values. The weights represent how a requested value of a 
component compares to the resource capability in terms of percentage. These values 
are later used in the ranking of the different resources. Another function performed by 
the Resource Filter is subdivision of compared results in fully matching resources and 
non-matching resources. The idea is to distinct but not throw away the non-matching 
resources since there might be some that are very near the request, or applicable to an 
application, which is determined from the weighted system in the MakeMatch 
component.  

4.2.3   Resource Ranker 
Is the most important single piece of this application. It is designed to rank multiple 
matching resources and return the most appropriate resource for the user-submitted 
application. Typically, this is challenging to design and implement due to the 
described lack of resource information available, as well as the complexity of the 
brokering algorithm employed. This component has two general parts: information 
collection and information processing. In the first of the three stages of the 
information collection component, a rough resource selection, primarily based on 
hardware requirements supplied by the user, is performed from a pool of all the 
available resources. This is followed by collecting application-specific performance 
information from individual resources. In the final step, this section processes each 
resource, one component at a time, applying a value function that takes into 
consideration the user’s rank of the individual component. Following this initial 
information collection, a cumulative resource rank value is calculated in the 
information processing section. In an attempt to generate rank values that are not 
based only on the static values of a resource, a dynamic load function is applied 
which combines its prediction values with the results from the second step in the 
information collection part. The essential idea behind the second step in the 
information collection section is to submit a job to each of the matching resources 
from step one using a sample problem set and then monitor some performance meters. 
Currently, this performance measuring process is done by brute force for each 
individual job submission, but there is work being done on individual application 
profiling which would be used to help in this step resulting in more accurate and 
prompt scheduling policies. The benefits of processing resources at the level of 
individual components allows for application oriented resource selection. Initially, 
this orientation is user-dependant through the ranking values of the components, but 
as described in the future work section and in combination of the mentioned 
application profiling, a system will be provided where the selection of the best 
resource for the given application will be done by the resource broker itself. 

4.2.4 Resource MakeMatch 
Is an implementation of a technique that comes in very useful in the case where not a 
single full match is found, or even when there is just a small number of fully matching 
resources. There are three preferences the user can customize regarding this 
procedure. First, the user is given the option of selecting the minimum number of 
resources that must be fully matched before this system is invoked. The second option 



696 E. Afgan, V. Velusamy, and P.V. Bangalore 

 

is for the user to specify a range of values for which a request is valid, and lastly, the 
user has the option to rank individual components as they are pertinent to the 
submitted application. In the case where no fully matching resources are found, this 
system is invoked by default in order to suggest some possible matches. The way this 
system works is that each of the non-matching resource’s individual component’s 
weighted values, as computed by the Resource Filter, are tested against the user-
specified rank and/or range of possible values. Once all of the components are 
processed a custom rank for each resource is generated. This is used by the 
ResourceRanker in picking the most appropriate resource. This functionality was 
added for two reasons; one is to make user submissions simpler by increasing the 
chances of a match, and the second was inferred from [20]. In this paper, the authors 
point out that resources with weaker capabilities generally have a smaller variance 
and, thus, provide a better base for predicting the future load, resulting in more 
accurate scheduling procedures. This implies that a resource that might not appear to 
be adequate for the job may, in the end, produce a useful result, and the resource 
broker is used to suggest some of those resources. 

Division of the work done by the resource broker in the manner just explained 
creates a small framework that can be used as a base for plugging in other 
components or replacing the current ones while maintaining the main functionality. 
An obvious possibility is the expansion of this resource broker into a scheduler once 
the advance scheduling becomes more developed [9]. This design is intended to 
provide a set of API to facilitate this extension. 

4.3   User Request 

A request includes the following two elements, apart from the instructions on how to 
run the application: 

• Resource description: user requirements of the required resource, such as CPU 
speed, available memory, type of operating system 

• Individual component ranks: for each component in the Resource description, a 
weight signifying the importance for that component’s full match 

Figure 2 shows a sample request to describe the options available for the user: 

 
 
 
 
 

Fig. 2. Partial showing of a sample user request 

As the work in Global Grid Forum continues to approach the standard of the job 
description language [12], the simple request structure will allow us to use it in 
specifying job requirements more completely. 

/1/     cpuCount = 4   /4/    cpuCountRank = 10 
/2/     cpuSpeed = 2394  /5/    cpuSpeedRank = 6 
/3/     cpuType  = Pentium IV  /6/    cpuTypeRank  = 8 

  …    … 



 Grid Resource Broker Using Application Benchmarking 697 

 

4.4   Brokering Algorithm 

The brokering algorithm, or information processing section, is the second part of the 
ResourceRanker component. It is subdivided into two parts: resource rank value 
calculation and application of the load function. Figure 3 describes the algorithm. 

In order to calculate the initial resource rank value, each matching resource is 
processed on a per component basis taking into consideration user’s rank values for 
all the components. The resulting value relates each of the resources individually as 
well as to the initial request. A separate rank value, for each resource again, is 
calculated based on the performance measure of individual resource. The load 
function, supplied by the two initial resource rank values, considers current load and 
does prediction of future load based on load variance over the past 15 minutes, as 
provided by the information services. Both of the load functions are using fuzzy logic 
[19] with Fuzzy Engine for Java [16] as the fuzzy logic engine.  

 

Fig. 3. Brokering Algorithm for the generic resource selection 

The load function for considering the change in load variance employs six 
different membership functions, ranging from high positive change in the load to the 
high negative change. The fuzzy engine uses the trapezoidal membership function to 
determine the degree to which the load change belongs in a group. The parameters for 
each of the membership functions are statically assigned for now, but hope to soon 
turn this system into a self-learning one where these parameters can be automatically 
adjusted as more and more jobs are submitted using this resource broker. 

The current load value function uses a simpler membership function set, as well as 
fewer rules. Since it is using only one input variable (e.g., load value), it has three 
membership functions and three rules that control the outcome. The membership 
functions range from low to high again with statically typed parameters. 

Fuzzy logic is used in this part of the application, primarily since it allows for an 
easy and, automatic, way to dynamically assign the same load value to different 
membership groups. Depending on different user applications, as well as when 
applied in relation to systems connected to the grid that do not belong in the 
computationally intensive category, different parameters for resource selection should 
be used. Using fuzzy logic is an elegant way to allow for these changes. As this 
system evolves, we foresee a user option to select the type of application and/or 
resource they have or require in order to use this system in the best possible way.  

For each resource,  
a. For each component,  

i. Calculate  rank value taking into consideration user rank specification  
b. For each resource,  

i. Calculate rank value based on application-performance measure 
c. Apply load function to adjust resource rank value 

i. Consider load variance and use it for future load prediction 
ii. Consider current load value



698 E. Afgan, V. Velusamy, and P.V. Bangalore 

 

5   Application Deployment Case Study 

Instead of measuring the time saved or time spent by the resource broker, we present 
a use case outlining the major steps. The application we use in our simulation and test 
case is mpiBLAST [3]. It is a tool used for sequence analysis and interpretation in 
genomic sequencing. This being a popular application among bioinformatics 
researchers, it is an important and excellent gateway for the resource broker to bring 
an existing cluster application to a Grid application. For our test case, we are 
assuming the application is installed on all of the remote resources and all the 
necessary files needed to run the application are available in a user accessible 
directory.  

Table 1 compares the steps for job submission via the resource broker versus using 
command line tools. Italicized steps are automatically done by the resource broker. 

Table 1.  Resource Broker vs.  Manual Grid Job Submission 

Resource Broker Manual Job Submission 
0. The user has to submit their credentials 

to MyProxy server. This is server 
administration dependant, but generally, 
the credential should be renewed once a 
month.  

1. The user submits the request supplying 
desired resource information along with 
the parameterized command on how to 
run application (e.g. mpiBLAST) 

2. The Resource Broker queries GIS. 
3. The Resource Broker selects the best 

available resource. 
4. The Resource Broker acquires user’s 

credentials. 
5. The Resource Broker submits the job to 

a resource using user’s credentials. 
6. The Resource Broker transfers any 

output files. 
7. The user can monitor job progress from 

the webpage. 
8. The user is notified when the output 

files have been transferred back to the 
user’s local machine. 

1. The user must have a valid user certificate 
on the local machine and request a user 
proxy from GSI. 

2. The user must query information services, 
(GIS/MDS) which send back an XML 
formatted document listing all the 
information about all the known 
resources. 

3. The user must process the returned 
information and select the most 
appropriate resource for their application. 

4. The user must submit the job to the 
selected resource. This involves using 
authentication, command line job 
submission (i.e. create RSL command) 
and making sure the application is 
submitted correctly.  

5. The user can monitor the application 
progress using command line tools.  

6. Upon the end of the run for the 
application, the user should retrieve any 
output files back to the local machine 
using GridFTP [1] 

6   Future Work 

The main focus of future work is to integrate this infrastructure with the university 
grid and facilitating its users. User and application profiles will be stored in a database 
for easy retrieval. The most interesting part of the application information retrieval 
involves application profiling which would gather run time information about specific 



 
Grid Resource Broker Using Application Benchmarking 699 

 

applications on given resources. This information would enable the brokering 
algorithm to be enhanced and to make use of the precise past information when 
performing the selection. This specifically refers to the parameters used in the fuzzy 
logic components of the load function. These parameters currently have single, 
statically typed values which will be modified in stepwise fashion in the following 
two ways. The first option is to have different initialization procedures, depending on 
the application submitted, so that the parameters reflect application-oriented 
scheduling. The selection of different parameter options will be left to the user, based 
on their knowledge of the application. Another option regarding the modification of 
the parameter values refers to the adjustment of the values within an application 
group. Through the use of application profiling an automatic learning method will be 
implemented which, after the initial learning stage, would automatically monitor jobs 
for each resource selection, and adjust the parameter values. 

In the future, a set of API will be made available for extension. We hope to extend 
this application into a full grid access system that is easy to use and yet powerful in 
any given environment, e.g., a co-scheduler which could be used to schedule jobs in 
the long run among the selected resources. 

As work on the Job Description Submission Language (JSDL) evolves to a usable 
standard [12] the user request format would also evolve from one specifying a 
resource in terms of its components to one describing the application itself.  

7   Summary 

This paper introduces a resource broker that bridges the gap between a user finding of 
a resource, and job submission. Athough manual operations could achieve the same 
goal, it would be time-consuming and complex. This resource broker was developed 
in order to make the transition to using Grid technologies simple and efficient.  

This is a general-purpose resource broker with a simple and understandable 
interface providing appropriate resource selection capabilities for different types of 
applications. It is an attempt at developing a small framework where custom or tested 
components can be added as well as replace current ones. The current scheduling 
algorithm works based on information retrieved from MDS as well as performance 
measure of submitted application. It uses fuzzy logic during the resource profiling 
which would easily adapt to multiple user requirements based on different types of 
resources and jobs. We have tested our application with the mpiBLAST to validate 
our architecture design as well as the brokering algorithm. Preliminary results are 
promising, especially with respect to usability. 

To the best of the authors’ knowledge this study is the first investigation of 
incorporating application profiling into the resource scheduler, in order to simplify the 
selection, usage and enable efficient utilization of resources. Future plans include 
testing and adopting more applications, incorporating a metascheduler, and including 
application profiling with feedback.  

Acknowledgments 

The authors would like to acknowledge their colleagues from High Performance 
Computing Laboratory, specifically Zhijie Guan for providing support as well as 



700 E. Afgan, V. Velusamy, and P.V. Bangalore 

 

insight into some of the problems faced during this work. This work was in part 
supported by The Department of Computer and Information Sciences at the 
University of Alabama at Birmingham. 

References 

1. Allcock, W., Bester, J.Bresnahan, J., Chervenak, A., Liming, L., and Tuecke, S., Draft 
GridFTP Protocol, 2001, [Last accessed, Available from http://www-
fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf. 

2. Buyya, R., D. Abramson, and J. Giddy, "Nimrod-G: An Architecture for a Resource 
Management and Scheduling in a Global Computational Grid", In Proceedings of 4th 
International Conference and Exhibition on High Performance Computing in Asia-Pacific 
Region (HPC ASIA 2000), at Beijing, China, May 14-17, 2000. 

3. Darling, Aaron E., Lucas Carey, and Wu-chun Feng, "The design, implementation and 
evaluation of mpiBLAST", In Proceedings of ClusterWorld Conference & Expo in 
conjunction with the 4th International Conference on Linux Clusters: The HPC Revolution 
2003, at San Jose, CA, 2003. 

4. Foster, I., C. Kesselman, G. Tsudik, and S. Tuecke, "A Security Architecture for 
Computational Grids", In Proceedings of ACM Conference on Computer and 
Communications Security, ACM Press, at San Francisco, CA, 1998, pp. 83-92. 

5. Foster, Ian and Carl Kesselman, The Globus toolkit, In The Grid: Blueprint for a New 
Computing Infrastructure, Chapter 11, Edited by Foster, Ian and Carl Kesselman, pp. 259-
-78, San Francisco, California, 1999. 

6. Fran, B., W. Rich, F. Silvia, S. Jennifer, and S.Gary, "Application-Level Scheduling on 
Distributed Heterogeneous Networks", In Proceedings of Supercomputing '96, ACM 
Press, at Pittsburgh, PA, 1996, p. 28. 

7. Ganglia, 6/1/2004, 2004, [Last accessed 6/15, 2004], Available from http://ganglia.sourceforge. 
net/. 

8. Gentzsch, Wolfgang, "Sun Grid Engine: Towards Creating a Compute Power Grid", In 
Proceedings of Proceedings of the 1st International Symposium on Cluster Computing 
and the Grid (CCGRID '01), IEEE Computer Society, 2001, pp. 35-6. 

9. Grid Scheduling Architecture Research Group, 2004, [Last accessed 6/15, 2004], 
Available from http://forge.gridforum.org/projects/gsa-rg. 

10. "IBM LoadLeveler: User's Guide", International Business Machines (IBM), September, 
1993. 

11. Information Services/MDS, 6/14, 2004, [Last accessed 6/15, 2004], Available from 
http://www.globus.org/mds. 

12. Job Submission Description Language Working Group (JSDL-WG), 3/29, 2004, [Last  
accessed 6/15, 2004], Available from http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-
WG/. 

13. Litzkow, M., M. Livny, and M. Mutka, "Condor - A Hunter of Idle Workstations", In 
Proceedings of 8th International Conference of Distributed Computing Systems, June 
1988, pp. 104-11. 

14. Novotny, J., M. Russell, and O. Wehrens, "GridSphere: A Portal Framework for Building 
Collaborations", In Proceedings of 1st International Middleware Conference, at Rio de 
Janeiro, Brazil, June 16-20, 2003. 



 Grid Resource Broker Using Application Benchmarking 701 

 

15. OGCE - Open Grid Computing Environments Collaboratory, 1/22, 2004, [Last accessed 
6/15, 2004], Available from http://www.ogce.org/index.php. 

16. Sazonov, E. S., Open source fuzzy inference engine for Java, [Last accessed 6/15, 2004], 
Available from http://www.clarkson.edu/~esazonov/FuzzyEngine.htm. 

17. Steen, Martin van, Nimrod-G Resource Broker for Service-Oriented Grid Computing, 2004, [Last 
accessed 6/15, 2004], Available from http://dsonline.computer.org/0107/departments/res0107_ 
print.htm. 

18. Systems, Veridian, OpenPBS v2.3: The Portable Batch System Software, 2004. 
19. The MathWorks, Inc, What Is Fuzzy Logic? , 2004, [Last accessed 6/15, 2004], Available 

from http://www.mathworks.nl/access/helpdesk/help/toolbox/fuzzy/index.html. 
20. Yang, L., J. M. Schopf, and I. Foster, "Conservative Scheduling: Using Predicted 

Variance to Improve Scheduling Decisions in Dynamic Environments", In Proceedings of 
Super Computing 2003, ACM Press, at Phoenix, AZ, 2003. 

21. Zhou, Songnian, "LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems", 
In Proceedings of Workshop on Cluster Computing, 1992. 

 



The Grid Block Device: Performance in LAN

and WAN Environments

Bardur Arantsson� and Brian Vinter

IMADA, University of Southern Denmark,
Campusvej 55,5230 Odense M, Denmark

Tel.: +45 6550 2387 Fax: +45 6593 2691
{bardur, vinter}@imada.sdu.dk

Abstract. We present initial results from the implementation of the
Grid Block Device, a distributed, replicated block device for the Grid
based on the the replication algorithm of Y. Amir[1]. It supports
application-specific replication strategies and consistency models. Al-
though the presented WAN results are dissapointing because of issues
with the underlying group communication library, we believe the LAN
results show that the Grid Block Device could become a viable solution
for truly distributed storage.

1 Introduction

Achieving good scalability using traditional cluster configurations and current
commodity hardware is becoming increasingly difficult as the storage demands
of scientific applications continue to soar. New “superclusters” made up of large
clusters connected via dedicated high-speed Wide Area Network (WAN) links
are also becoming increasingly common, and while these decicated links have
high throughput and have relatively low latencies, the basic physical limit of the
speed of light sets a fixed lower bound for the best possible latency. Thus, truly
distributed storage solutions must be latency-tolerant.

The Grid Block Device (GBD) has been developed to provide simple and
efficient fault tolerant storage with many desirable features, among them repli-
cation and disconnected operation. The reason we have chosen a block device as
the abstraction instead of a file system is simplicity and efficiency: File systems
imply certain semantics which many Grid applications do not actually require.

This paper shows that the prototype GBD implementation can achieve quite
reasonable performance in LAN environments.

2 Previous Work

While many distributed file systems are currently being developed (see e.g.
OceanStore[2], Mammoth[3] and Lustre[4]), they all focus on the data distri-

� The work of this author is sponsored by the Faroese Research Council.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 702–710, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



The Grid Block Device: Performance in LAN and WAN Environments 703

bution problem at the granularity of files/objects, whereas we focus on it at the
granularity of fixed-size blocks. There are also systems, e.g. COMA [5], which
implement distributed paging which is similar to the GBD model, but they are
often very specific to a particular overall system architecture. Moreover both of
these types of systems often have built-in semantics which may be needlessly
strict or overly lax for a particular application.

2.1 Spread

The low-level communication layer utilized by the replication algorithm is the
Spread [6] group communication system. Spread provides efficient group commu-
nication with reliability and ordering guarantees. To reduce end-to-end latency
and provide reliable efficient multicast services with ordering, it uses UDP/IP
as the underlying communication protocol and implements the end-to-end reli-
ability and ordering on top of that.

2.2 Replication Algorithm

The basic replication algorithm used in the GBD is a slightly modified version
of Y. Amir’s algorithm in [1]. It is based on the Extended Virtual Synchrony [7]
concept and provides fault tolerant replication whilst considerably reducing the
need for – and for all common cases avoiding – the most expensive part of most
other replication algorithms, namely end-to-end acknowledgements. Avoidance
of end-to-end acknowledgements on a per-update basis can yield much higher
performance than algorithms such as 2PC and COReL as demonstrated in [8].
Network partitions are also handled correctly by the algorithm.

The replication algorithm is designed mainly for database-like scenarios where
the goal is to replicate the complete contents of a database to all participating
servers. Instead of taking the traditional approach of replicating the data itself
to participating servers, it instead replicates all actions taken upon the data,
and ensures that all these actions are applied across all replicas in a global total
order. While ensuring that all participating servers have functionally identical
replicas, this also affords a lot of flexibility, and, in particular, permits using
different consistency semantics for different actions.

Originally, the replication algorithm in [1] was restricted to a preconfigured
set of replication servers, but it was extended in [8] to allow for dynamic addi-
tion/removal of replicas.

3 Overview

The overall architecture of the Grid Block Device is very simple (see figure 1);
it simply sits as a layer between the replication/semantics engine and the client
application. It presents the application with a block device abstraction which
simply happens to be distributed and replicated semi-transparently. Note that
the “application” is not necessarily a user application, but could just as easily
be a distributed file system implementation running on top of the GBD.



704 B. Arantsson and B. Vinter

GBD:
Client Interface, Configuration

Spread:
Group Communication, Message Ordering

Replication:
Ordering, Replication Consistency, Persistence

Semantics:

Fig. 1. GBD overall architecture

In the following sections, we will motivate and discuss the implementation of
the features of the GBD in relevant detail.

3.1 Distributed Servers

Having geographically distributed servers is critical to high availability and low
latency for widely distributed clients accessing the system. Using widely dis-
tributed servers has traditionally been problematic because the inter-server com-
munication has usually been done using protocols and algorithms (e.g. 2PC) with
a lot of latency-sensitive overhead, or, which simply could not operate correctly
in partitioned networks. Clearly, network partitioning is to be expected in any
reasonably-sized WAN, simply because of the distances involved.

Since the algorithm of [1] can operate in partitioned networks and avoids per-
update end-to-end acknowledgements, it should be relatively cheap to employ
widely distributed servers in this context. However, there may be a tendency
for more conflicting updates to occur in such systems, so the result may be an
increase in the number of failed updates.

3.2 Replication and Migration

The ability to replicate and migrate data to where it is needed is among the most
important features of the Grid Block Device. Much research has been conducted
in this area; see [9] for an overview of early work. There are also some randomized
algorithms for the replica placement problem that are quite simple to implement
which also do well in practice; see [10], for example.

One problem with choosing among these algorithms is that the underlying
assumptions can vary wildly, and may or may not apply equally well to all appli-
cations. Clearly, the optimal choice of algorithm may also vary from application
to application.

Instead of trying to dynamically pick an optimal replication/migration strat-
egy based on application access patterns we have simply chosen to let the ap-
plication decide for itself when it wants to introduce/remove replicas or migrate
blocks of data. Therefore, the GBD contains explicit primitives to initiate replica
migration/removal.



The Grid Block Device: Performance in LAN and WAN Environments 705

3.3 Disconnected Operations

In general, we distinguish between two forms of disconnected operation, namely
involuntary disconnection and voluntary disconnection, but the GBD does not
currently distinguish between the two.

Keeping all the replicas consistent is, of course, the primary concern when dis-
connected operations are permitted. When the network configuration changes,
the replication engine automatically selects a new primary component which
is allowed to continue unhindered. However, for any servers that are not in the
primary component, special care must be taken to keep data consistent. Depend-
ing on the consistency requirements specified by an application, an operation is
either performed immediately or delayed until the desired consistency can be
achieved.

Mitigating the impact of such disconnection events on the performance of
the rest of the network is, of course, of great importance. Obviously, there are
instances where a performance degradation simply cannot be avoided, the most
extreme case being when network becomes partitioned and all servers with a
particular datum are isolated from the rest of the network (see figure 2).

The GBD provides primitives to introduce both regular replicas and what
we call transient replicas. Transient replicas are similar to regular read-only
replicas, but for any particular set of connected nodes, the GBD only guarantees
the consistency of a transient replica within that set. Among other things, this
means that it is possible to create transient replicas for data without being able
to reach the majority of the network – such replicas will naturally only be weakly
consistent with respect to the whole network. To see why this is useful, imagine
the following scenario: If a set of servers with, say, 1 replica of a particular datum
becomes disconnected from the majority, and the majority subsequently fails, the
total replica count is reduced to 1. However, the disconnected component cannot
know this until the network becomes whole again, so the data remains vulnerable
to failure until that happens. By introducing transient replicas in response to a
component becoming disconnected from the majority of the network, the replica
count can be temporarily increased until the system can ensure that enough
replicas exist.

3.4 Global Snapshots

Supporting global snapshots in distributed system is usually not trivial by any
means, because snapshots have very precise and strict semantics: A snapshot
represents a consistent and unchanging image of the data, in our case the con-
tents of the block device, at the time the snapshot was taken. Global snapshots
can be used for a variety of things, most commonly to allow backups in systems
which cannot be taken off-line.

There are two basic techniques for supporting snapshots: 1) Create a read-
only duplicate of the data, or 2) avoid overwriting data that is part of a snapshot
and write new copies of modified data instead. Since the former has steep stor-
age requirements and requires delaying all updates until a complete copy has
been made, we have chosen to use the latter approach. It requires some extra



706 B. Arantsson and B. Vinter

A

E

B

C

D

(a) Fully connected network.

A

E

B

C

D

Minority

Majority

(b) Partitioned network.

Fig. 2. Effects of network partitions: If node A and node C have some datum, x, which
is required by node B, D or E, then a network partition may prevent all access to x
until the network becomes whole again. However, the majority may continue issuing
and performing updates on shared data without causing consistency problems

bookkeeping, but its advantages far outweigh its disadvantages. Firstly, a snap-
shot only requires storage on the order of the number of blocks modified after
the snapshot was taken, and secondly it performs the minimal amount of copy-
ing needed. Implementing it is simply a matter of keeping track of the active
snapshots and storing extra copies of blocks which are subsequently overwritten.

4 Performance Testing

In order to test the basic throughput of the GBD system compared to just using
the raw Spread group communication protocol, we have performed a couple of
simple benchmarks. The idea is simply to connect to the GBD or Spread and
try to write/send a fixed amount of data. Measuring the time taken, we get the
throughput.

To avoid the potential bottleneck from disk I/O, all disk-related activity was
turned off during these tests.

The performance test results presented here were all obtained on a single
pair of identical Pentium 4, 2.4GHz machines with a switched 1GBps Ethernet
connection.

It should be noted that the GBD is implemented in OCaml, an efficient
high-level functional language.

4.1 LAN Performance

The benchmark yielded the results shown in figure 3. The Spread/C plot shows
the results of running the purely C-based benchmark, and all the other Spread
results were obtained from OCaml-based benchmarks. The text in parenthe-
ses indicates the method used for actual communication: “blocking” indicates
that blocking reads/writes were being used, “engines” indicates that the object-
oriented Equeue [11] non-blocking I/O framework was being used, and finally,
“select” indicates that a raw select() loop was being used. It should be noted



The Grid Block Device: Performance in LAN and WAN Environments 707

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  2000  4000  6000  8000  10000  12000  14000  16000

T
h
ro

u
g
h
p
u
t/

M
b
p
s

Packet Size/Bytes

Spread/C
Spread/OCaml (blocking)
Spread/OCaml (engines)
Spread/OCaml (select)
GBD/OCaml (select)

Fig. 3. Throughput as a function of packet size on our two test machines. The Spread
graph shows the throughput using only Spread for communication, and the GBD graph
shows the throughput when using the GBD on top of Spread

that the GBD requires some form of non-blocking I/O because it needs to be able
to communicate with clients while also communicating with the Spread daemon.

There is one obvious issue which contributes to the GBD overhead seen in
the plot: To guarantee proper update ordering in the GBD, all client requests
must be “repackaged” and sent to the whole group of servers (see figure 4). All
communication in this particular scenario is handled using TCP, which, given
adequate buffering, performs quite well for our purposes. It may seem odd that
the Spread daemon and the GBD server are running on separate hosts where
one might expect them to be running them on the same host (thus avoiding
superfluous network traffic). The explanation is simply that this yields better
performance than having both the Spread daemon and the GBD server on the
same host (due to the rather steep CPU requirements of Spread).

Contrasting this with figure 5 which shows the pure Spread benchmark we
see that it effectively means that this benchmark needs to push twice the amount
of data through the Spread daemon.

It is therefore not surprising that the GBD performance reaches its maximum
of around 200Mbit at roughly 50% of the Spread maximal performance which is
around 400Mbit (when using select).

4.2 WAN Performance

In figure 6 we see the results for our WAN test. Because of practical issues
these tests could only be run on a “simulated” WAN connection using the same
equipment as in the LAN tests, and using the Linux kernel’s sch netem [12]
packet scheduler to delay packets between the two machines by the specified
amount (with appropriate jitter and packet loss parameters).



708 B. Arantsson and B. Vinter

(4) reply

(2) request’

Node BNode A

(1) request

(3) request’

Spread

GBD

Client

Fig. 4. The path of a request travelling through the GDB system. Repackaging occurs
between step 1 and 2

Node BNode A

Spread Spread

Benchmark Client Benchmark Server

(1)

(2)

(3)

Fig. 5. The path of a request travelling through the Spread benchmark setup. The
Spread daemons communicate using UDP, everything else uses TCP. The “ground”
indicates that the message is not received by the sender itself

As we can see the results are very dissapointing, and suggest that the Spread
protocol, which is token-based, sends the token back and forth far too often with-
out “accumulating” enough data to enable any kind of reasonable throughput
in a WAN.

However, we believe that the Spread developers are currently working on
improving Spread WAN performance, so there is no reason to believe that these
results could not be improved drastically.

4.3 Future Work

Having found a baseline for the achievable performance we are currently bench-
marking more interesting scenarios, e.g. the cost of having multiple replicas, the
cost of reestablishing replicas after failure, etc.

Clearly, there is also considerable room for improvement when running in
WANs, but we believe that the performance problem lies with the Spread imple-
mentation and not the GDB. There are two obvious solutions to this: 1) Either
we implement our own group communication system with sufficiently strong



The Grid Block Device: Performance in LAN and WAN Environments 709

 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10

M
ax

 T
h
ro

u
g
h
p
u
t/

M
b
p
s

Latency/ms

Spread/OCaml (select)

Fig. 6. Throughput as a function of simulated latency between our two test machines.
There are no results for GBD as it would quite obviously be pointless to include them.
We have only shown the maximum throughput for each latency value since there was
almost no variation for different packet sizes (except at the very low end of the latency
scale)

message delivery semantics, or 2) we simply wait for the Spread developers to
improve WAN performance.

5 Conclusion

The benchmarks have shown that we can acheive quite reasonable performance
in a 1Gbit LAN, although we have not yet shown this to be the case for non-
trivial setups.

Unfortunately, the WAN tests are very dissapointing because of the lack
of Spread optimization for high throughput in WANs, but work is underway
to optimize Spread for this scenario. Esssentially the GBD does not rely on any
end-to-end communication during normal operation and should be quite capable
of high throughtput while maintaining consistency even in situations with high
latency, though we cannot show this currently.

References

1. Amir, Y.: Replication Using Group Communication Over a Partitioned Network.
PhD thesis (1995)

2. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)



710 B. Arantsson and B. Vinter

3. Brodsky, D., Brodsky, A., Pomkoski, J., Gong, S., Feeley, M., Hutchinson, N.:
(Using file-grain connectivity to implement a peer-to-peer file system)

4. (http://www.lustre.org)
5. Saulsbury, A., Wilkinson, T., Carter, J., Landin, A., Haridi, S.: An argument for

simple COMA. Technical Report R94:15, Swedish Institute of Computer Science
(1994)

6. Amir, Y., Danilov, C., Stanton, J.: A low latency, loss tolerant architecture and
protocol for wide area group communication. In: FTCS 2000. (2000)

7. Moser, L.E., Amir, Y., Melliar-Smith, P.M., Agarwal, D.A.: Extended virtual
synchrony. In: The 14th IEEE International Conference on Distributed Computing
Systems (ICDCS). (1994) 56–65

8. Amir, Y., Tutu, C.: From total order to database replication. Technical report,
Johns Hopkins University (2002)

9. Dowdy, D., Foster, D.: Comparative models of the file assignment problem (1982)
10. Bartal, Y.: 5. In: Lecture Notes in Computer Science 1442. Springer (1998)
11. Stolpmann, G.: Equeue. (http://www.ocaml-programming.de/programming/

equeue.html)
12. Hemminger, S.: Network emulator. (http://developer.osdl.org/shemminger/

netem/)



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 711 – 720, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

WS-Based Discovery Service for Grid  
Computing Elements 

Kazimierz Balos and Krzysztof Zielinski 

Department of Computer Science,  
AGH University of Science & Technology, 

Al. Mickiewicza 30, 30-059 Krakow, Poland 
{kbalos, kz}@agh.edu.pl 

Abstract. Monitoring system for grid requires an easy solution for clusters 
location and registration. The paper describes discovery service for Java 
Management Extensions and Web Services based infrastructure monitoring 
system which solves this problem. System was designed and put into practice in 
existing installation of development grid in EU IST CrossGrid project. 
Described discovery service for Computing Elements didn’t affect the 
installation and operation of existing monitoring system. Durability, immunity 
to failures of clusters, and no additional firewall configuration requirements are 
the main features of the service. In Section 1 there is presented the concept of 
WS-based Global Discovery Service (WS-GDS). Section 2 presents features 
causing that this solution fits best to existing monitoring system based on WS 
and JMX. Section 3 contains WS-GDS sequence diagrams. Section 4 covers the 
implementation issues of GDS module. Section 5 sums up the advantages and 
disadvantages of accepted solution and compares it with the other systems and 
frameworks that could be used. The paper is ended with conclusions. 

Keywords: Grid, discovery service, Computing Element, monitoring, JMX, 
MBean. 

1   Introduction 

Monitoring systems operating in particular clusters in grid networks need to be 
registered in central registry in order to be able to provide the list of all available 
systems. In environments where cluster and grid topology changes very often, it is 
required to keep actual list of monitoring services and their access points. Assuming 
that every cluster has one Web Service acting as a SOAP gateway for accessing 
monitoring parameters [6,7], there should be provided service that can deliver actual 
and valid list of all operating SOAP gateways that can be accessed by consumer at 
any time.  

There have to be fulfilled several conditions before design of Global Discovery 
Service can be adopted in particular monitoring system, especially in system applied 
in CrossGrid project, based on JMX (Java Management Extensions) [1,2] and Web 
Services [5]. These conditions include: 



712 K. Balos and K. Zielinski 

 

1. fail over, i.e. immunity to failures of SOAP gateway registry, 
2. accuracy - invalid entries should expire after certain period of time,  
3. possibility of applying the solution in current monitoring system without 

changes in firewalls and restarting the whole monitoring system. 

Global discovery service of all services running in different clusters could be based on 
a collection of chosen gateways. These gateways can act as a registry of SOAP 
gateways beside their normal function of registering local Worker Nodes. For fail 
over purposes the number of such machines can be increased to two or more. In 
extreme case it can be equal to the number of all running gateways.  

Possibility of practical application of presented solution is not less important than 
other functional features. Described solution takes advantages of current 
configuration of monitoring system and uses the available entry points to clusters in 
order to register appearing services. Though monitoring services and their interfaces 
based on Web Services can be considered rather read only, it’s possible to use the 
same mechanism to treat SOAP gateways as chosen GDS nodes to perform the 
registration and discovery. The way of calling a method for reading some monitoring 
parameters can be used for setting some parameters, and also for new services 
registration. It won’t affect the configuration of firewalls, and will be homogenous 
with other services exposed as Web Services. 

First part of the article presents layered architecture of JIMS – the JMX-based 
Infrastructure Monitoring System, briefly describes all layers, and finally defines the 
problem of discovery service. Next section shows WS-GDS sequence diagrams to 
show the CE (Computing Element) search process. Implementation of this service 
using Web Services and JMX is described in Section 4. There are shown elements of 
GDS module (implemented as JMX MBean [1]): its all attributes and methods. 
Section 5 covers the WS-GDS module evaluation and defines metrics that can be used 
for its performance estimation. Short discussion of other possible solutions, their 
advantages, disadvantages, and security concerns, is included in the conclusions. 

2   WS-Based Global Discovery Service 

Presented system of Computing Elements registration was implemented as a module 
for JIMS - monitoring system used in EU IST-2001-32243 CrossGrid project. Fig. 1 
shows layered architecture of the system. The lowest layer provides resources 
instrumentation and is responsible for making available information concerning grid 
resources such as CPUs, memory and network using: 

- virtual file system (/proc) and Java Native Interface (JNI) for Linux kernels 
2.4.x and 2.6.x monitoring modules,  

- SNMP version 2c agents running locally in monitored systems, 
- other modules, for example dedicated network module (NetworkMetrics) for 

ICMP and UDP measurements of latency and available bandwidth between 
monitored nodes [10] or Sun Grid Engine [4] monitoring module. 

Second layer, the interoperability layer, provides the common point of 
communication with all worker nodes (WNs) in cluster through dedicated node – CE.  
 



 WS-Based Discovery Service for Grid Computing Elements 713 

 

Fig. 1. JIMS architecture 

Agents running in CE are called SOAP gateways and act as proxy agents between 
clients and WNs [9]. SOAP gateways discover and keep lists of all WNs in particular 
clusters and provide translation between interoperable WS/SOAP protocol to 
Java/RMI used by WNs.  

Third layer, the integration layer, consists of certain number (typically three) of 
chosen SOAP gateways performing the role of Global Discovery Service. The fact 
of being GDS node is written in configuration file for CE agents in all clusters. As 
it was pointed out at the beginning, GDS was developed as a module for existing 
JMX-based monitoring system. There are no contraindications to have the same 
GDS module in all CE in the grid. Furthermore, all CEs must have the GDS module 
in order to perform registration in a set of well-known GDS nodes. Though not all 
CE agents are the GDS nodes, all keep the list of GDS nodes and all can keep the 
list of registered SOAP gateways, despite the fact, that only the lists in GDS nodes 
will be used. Detailed operation of integration layer will be described further in this 
chapter. 

In described system there was chosen the number of three GDS nodes, which 
seems to be optimal both from the point of view of the network load generated by 
GDS nodes and the simplicity of making a decision of which services are really 
running and which are not, basing on the rule of majority. The number of GDS nodes 
results from the number of GDS hosts entries in Java configuration file 
(gds.properties), which is read during GDS startup. Nevertheless, all entries 
concerning the GDS nodes can be fully edited after the system startup, i.e. changed, 
added and removed.  

 

 Monitoring agent (MBean Server) 

 CPU, memory & processes 

 Network state (SNMP) 

 Network metrics (UDP, ICMP) 

GSD agent – Global 
Discovery Service 

Proxy agent (SOAP GW) 

 Monitoring  
 agent 

Proxy agent (SOAP GW) Proxy agent (SOAP GW) 

Integration Layer 

Interoperability Layer 

Instrumentation Layer

Monitoring  
 agent 

... 

Client Applications Layer
WS-based  
JIMS client 



714 K. Balos and K. Zielinski 

 

The last layer, client application layer, is the layer where there is performed final 
processing of monitored data. This processing can concern visualization, performance 
prediction and benchmarking aspects. Description of this layer is not within the scope 
of the article; more information can be found in [11]. 

Though GDS existence is highly demanded, it’s only an additional module for 
monitoring system, what means that it is not required for normal monitoring system 
operation. GDS is rather the utility providing the current view of available clusters, 
assuming that every cluster has JIMS monitoring system installed and working. It 
doesn’t solve the problem of existing but not listed clusters due to the crash of the 
particular monitoring systems. However, successful GDS operation in production grid 
environment proves the stability and durability of presented solution. 

3   WS-GDS Sequence Diagrams 

Typical use case of JIMS monitoring system is shown in Fig. 2. In this scenario, client 
connects directly to Computing Element with running SOAP gateway and obtains the 
list of all available monitored Worker Nodes. Having the list of WNs, it requests 
certain parameters from monitoring agents operating in these WNs. This scenario 
assumes that client knows the address of SOAP gateway where there are required 
monitored stations. In order to gather information about all available WNs in all 
clusters, client has to maintain the list of all SOAP gateways in grid network, what is 
the main task of GDS.  

 Client CE 1  GDS CE2 WN 2 . 2 

getMBeanServers () 

getAttributes () 
getAttribute()

WN2.1

getAttribute()

  
  Client -  applicationconnecting to monitoringservice
CE1 
GDS

-  Computing Element number 1 holding the GDS 
registrCE2 -  Computing Element number 2 

WB2.1 -  Worker Node number 1 in cluster 2 
WN2.2 -  Worker Node number 2 in cluster 2

 

Fig. 2. Direct connection to CE 



 WS-Based Discovery Service for Grid Computing Elements 715 

 

 Client CE 1  GDS CE2 WN2.1 WN 2 . 2 

getGDSRegisteredSGs () 

getMBeanServers () 

getAttributes () 
getAttribute()

getAttribute()

  
  

  Client 
  -  application

 
connecting 

  to   monitoring
 
service

 CE1 GDS -  Computing Element number 1 holding the GDS registry
 CE2 

  -  Computing Element number 2 
  WB2.1 

  -  Worker Node number 1 in cluster 2 
 WN2.2 

  -  Worker Node number 2 in cluster 2

 

Fig. 3. CE localization using GDS node 

There are the following features that the Global Discovery Service should provide: 

- SOAP gateways registration facility and access to the list of currently 
registered SOAP gateways, 

- heartbeat mechanism for removing old entries of not working SOAP gateways, 
- timestamps when the registration took place, 
- fail-over facility - GDS should use redundant GDS nodes for immunity to 

software and network failures, 
- addresses of GDS nodes in all SOAP Gateways. 

Usage scenario using GDS is shown in Fig. 3. It is similar to scenario shown in Fig. 2 
and is supplemented by getGDSRegisteredSoapGateways() method, returning the list 
of valid SOAP gateway addresses, accessible at the time when the method was called. 
After this method call, communication between JIMS client and monitoring services 
takes place in the same way as before, i.e. client connects to SOAP gateway, requests 
monitoring parameters from WNs or executes a method on WNs to perform some 
measurements. 

Important thing in GDS is the known set of certain number of SOAP gateways 
serving as GDS registries. These GDS nodes addresses should be configured in all 
SOAP gateways, because they should register themselves in GDS nodes. The list is 
exposed as an attribute of managed bean in GDS JMX module and is available for  
 



716 K. Balos and K. Zielinski 

 

 Client CE 1  GDS CE2 CE3 WN 3 . 1 

getGDSSoapGateways ()

getGDSRegisteredSGs () 

getMBeanServers () 
getAttributes () 

getMBeanServers () 
getAttributes () 

getMBeanServers()

getAttributes()

getAttribute () 

  
  

  Client 
  -  application

 
connecting 

  to   monitoring
 
service

 CE1 GDS -  Computing Element number 1 holding the GDS registry
 CE2 

  -  Computing Element number 2 
  CE3 

  -  Computing Element number 3 
  WN3.1 

  -  Worker Node number 1 in cluster 1
  

Fig. 4. GDS localization using CE with GDS MBean installed (in CE2) 

clients at any time. Thanks to this, clients don’t even need to keep the list of all GDS 
nodes, because they can maintain only the address of one SOAP gateway, not necessary 
the SOAP gateway performing the GDS role. It is only required that the GDS MBean 
module is installed and addresses of the GDS nodes are available, so the client can read 
them, connect to GDS node and read the full list of all available SOAP gateways. 

Client can also connect to all available GDS nodes to choose the most reliable set 
of SOAP gateways using the majority rule. Having the list of SOAP gateways, it can 
query all sites with proxy agents and read information about all monitored nodes, 
what makes presented system the true grid utility, integrating all cluster monitoring 
systems and providing coherent view of all sites.   

Described scenario is presented in Fig. 4. In this case there are three SOAP 
gateways installed in CE 1, 2 and 3 respectively. CE 1 is the chosen SOAP gateway 
performing also the role of GDS node, what is specified in configuration file. Let us 
assume, that the client does not know the addresses of GDS nodes, so chooses the first 
known address of CE (in this case it is the CE 2), which can be the Computing 
Element installed locally, in place where the client is running. From CE 2 the client 



 WS-Based Discovery Service for Grid Computing Elements 717 

 

obtains the list of GDS nodes using getGDSSoapGateways() method. Having the list, 
the client connects to one of GDS nodes (in the picture it is CE 1) and executes the 
getGDSRegisteredSoapGateways() method (in the picture called 
getGDSRegisteredSGs()). In next step, the client connects to CE 1, CE 2 and CE 3, 
and requests information about interesting worker nodes, what was shown for CE 3. 
In order to get full list of WNs available through given SOAP gateway, the client 
connects to it and performs the getMBeanServers() method, which returns the RMI 
addresses of all WNs in cluster. These addresses contain the IP address and the 
serialized version of Java stub object, which can be useful for clients connecting 
directly to worker node. Next calls deliver only the values of requested parameters, 
though it is possible to indirectly call the particular WN’s parameter, using the 
described RMI address, what is described in [720]. 

4   GDS Implementation Using Web Services and JMX 

Presented system was implemented and deployed in European grid installation under 
CrossGrid project. The implementation is based on Java version 1.4, Java AXIS 
version 1.2 alpha and JMX - JSR 160. As many other JIMS modules, GDS was 
implemented as JMX module (MBean) running within SOAP gateway agent running 
on CE host. The GDS module implementation as MBean results in its high 
reusability. Furthermore, such design doesn’t narrow its functionality in any aspect. 
Having it compiled and packaged as standard Java library (JAR – Java archive), it’s 
possible not only to deploy GDS in any MBeanServer in other systems requiring 
global discovery functionality, but in any Java application as well, since MBean is a 
standard Java class with special interface exposing some attributes and methods for 
further usage. These attributes and methods are also exposed by the web interface 
using JMX HTTP Adaptor component, what is depicted in Fig. 5, 6 and 7. 

In order to achieve the ability to deploy modules while the system is running, JIMS 
was equipped with standard JMX MBean for dynamic modules uploading and 
starting: the MLet MBean, available in JMX. In order to dynamically load GDS 
module to SOAP gateway, the GDS JAR (Java Archive) file should be first installed 
on a HTTP server. Secondly, there should be prepared a mlet file containing 
description of provided JAR file and it’s content: class, module name, etc. In the end, 
in MBeanServer there should be invoked the getMBeansFromURL method with MLet 
URL as a parameter. Loaded module is shown in Fig. 5. There are three key 
components exposed in this module: 

- GDSRegisteredSoapGateways – Java String array containing all SOAP 
gateways registered in GDS; it should contain the full list of all JIMS 
monitoring systems running GDS, installed in the grid (Fig. 7), 

- GDSSoapGateways – Java String array containing all SOAP gateways 
performing the role of GDS nodes. Typically, it contains three entries of SOAP 
gateways that maintain the lists of registered SOAP gateways (Fig. 7), 

- LocalSoapGateway – the URL of local SOAP gateway, which is periodically 
registered in GDS nodes (Fig. 5). For development purposes the time between 
two registration was set to 30 seconds, but as well as the number of GDS nodes 
and their addresses, it is fully configurable through the GDS configuration file. 



718 K. Balos and K. Zielinski 

 

 

Fig. 5. GDS MBean attributes and methods 

 

Fig. 6. GDS SOAP gateway registry 

 

Fig. 7. GDS nodes list 

5   GDS Evaluation and Related Projects 

The most important thing in presented solution is its simple implementation based on 
Web Services providing connectivity between SOAP gateways in different clusters. 
Using WS along JMX allowed rapid development and implementation of quite 
complicated system. Using existing WS infrastructure and exposing monitored 



 WS-Based Discovery Service for Grid Computing Elements 719 

 

parameters and methods for network measurements, it was easy to prepare another 
module running within CE and to allow the clients to invoke the dedicated method 
addSoapGateway(). Next, the client can get addresses of all GDS nodes and obtain 
the complete list of running JIMS SOAP gateways. Such solution could be deployed 
in existing monitoring infrastructure without any configuration changes what is big 
advantage and speeded up deployment and test of the system administrated by many 
autonomous systems in wide area network.  

In the future performance evaluation of the presented system should be carried out.  
The most suitable metric seems to be the time of convergence. This metric can be 
used also for cluster level discovery service evaluation, described in [9]. Such 
convergence time will strongly depend on GDS update time, which is 30 seconds by 
default. It assures fast SOAP gateway list convergence, but requires more CPU power 
on CE elements. In stable environments, there should be considered definitely longer 
update interval, saving expensive CPU time spent on extensive XML processing due 
to the use of WS and JMX. 

Discovery service should be also equipped with heartbeat mechanism for dynamic 
SOAP gateways removal while they are inaccessible during given period of time [3]. 
Proposed solution can be the same as it is used in RIP routing protocol, marking 
SOAP gateways entries as invalid after certain period of time (typically triple times 
longer than the period of GDS updates) and then removing them after another well 
defined period of time. 

There is also place for optimizations in implementation area. While the system was 
being developed, Sun Microsystems issued an upgraded version of Java VM version 
5.0, equipped with support for JMX. It could be interesting to adapt the system to this 
new version of Java, what should result in further implementation simplifications, 
because there should be no need to use additional packages for Java Management 
Extensions.  

To sum up, WS-based Global Discovery Services features: simplicity (only one 
class to implement; GDS and GDSMBean as an interface), reliability (immunity to 
failures of up to (n-1) nodes in the collection of n nodes acting as a GDS registry 
nodes), non-intrusiveness to actual configuration of firewalls and the whole 
monitoring system resulting in fast deployment time and possible integration in other 
systems based on Java and JMX. Its simple concept can be easily implemented using 
other languages and technologies. Nevertheless, presented system proves that Java-
based WS and JMX provide sufficient level of abstraction and robustness to 
implement rich functionality using very little effort and implementation time, just 
using services already provided by JIMS and JMX. 

6   Conclusions 

JMX, Dynamic Loading service and Web Services allow implementation of 
functionally complicated systems in a simple way. It should be emphasized that the 
whole GDS system was implemented in a few days and was installed without any 
changes to existing system, including firewalls, packages and other configuration.  

It requires only any new monitoring system to be equipped with the new service in 
order to register itself in the GDS registry nodes.  



720 K. Balos and K. Zielinski 

 

Presented approach was successfully tested in the grid network monitoring system 
consisting of 16 clusters, providing fast convergence and easy integration with 
existing infrastructure, without any notice to network and firewall administrators. It’s 
also important, that this solution has the two key capabilities: 

- automation of deployment, 
- remote deployment,  

which are lacking in other considered solutions, based on JXTA or UDDI. Current 
implementations of JXTA platforms cannot be used in environments with requirement 
for full automatic installation and configuration. The UDDI solution for Web Services 
is also too complicated, requiring installation of separate database and even more 
nontrivial configuration.  

The last thing that needs discussion is security. Besides the functional features, 
monitoring system should provide firm security mechanism. Current version of 
monitoring system doesn’t support authentication facility, that’s why in the future 
there should be developed security mechanism to prevent unauthorized access to 
monitored parameters. Such mechanism could probably use standard solution such as 
GSI (Grid Security Infrastructure) and X.509 certificates [12]. 

References 

1. Sun Microsystems: Java Management Extension Reference Implementation (JMX), 
http://java.sun.com/products/JavaManagement/ 

2. Sun Microsystems: JMX Remote API Specification (JMX Remote API), 
http://developer.java.sun.com/developer/earlyAccess/jmx/ 

3. Sun Microsystems: Java Dynamic Management Kit Specification v. 4.2 (JDMK), 
http://java.sun.com/products/jdmk/, JDMK42_Tutorial.pdf, pp. 121-128 

4. Sun Microsystems: Grid Engine, http://gridengine.sunsource.net/ 
5. W3C: Web Services Activity, http://www.w3.org/2002/ws/ 
6. The Open Grid Services Infrastructure Working Group (OGSI-WG): OGSI Specification, 

http://www.ggf.org/ogsi-wg 
7. The Open Grid Services Architecture Working Group (OGSA-WG): Globus Tutorial, 

www.globus.org/ogsa/ 
8. J. Midura, K. Balos, K. Zielinski: Global Discovery Service for JMX Architecture, ICCS 

2004, LNCS 3038, pp. 114-118, 2004 
9. K. Balos, L. Bizon, M. Rozenau, K. Zielinski: Interoperability Architecture for Grid 

Networks Monitoring Systems, CGW '03, Workshop Proceedings, pp. 245-253, 2004 
10. K. Balos, K. Zielinski: JMX-based Grid Management Services, Workshop on Networks 

for Grid Applications - GridNets Proceedings, 2004 
11. K. Balos, D. Radziszowski, P. Rzepa, K. Zielinski and S. Zielinski: Monitoring Grid 

Resources: JMX in Action, Task Quarterly 8 No 4, pp. 487 – 501, 2004 
12. The Globus Alliance: Grid Security Infrastructure, http://www-unix.globus.org/toolkit/ 

docs/3.2/gsi/key/index.html 



Rapid Distribution of Tasks on a
Commodity Grid

Ladislau Bölöni1, Damla Turgut1, Taskin Kocak1, Yongchang Ji2,
and Dan C. Marinescu2

1 Department of Electrical and Computer Engineering
2 School of Computer Science,
University of Central Florida,

Orlando, FL 32816
{lboloni, turgut, tkocak}@cpe.ucf.edu,{yji,dcm}@cs.ucf.edu

Abstract. The global internet is rich in commodity resources but scarce
in specialized resources. We argue that a grid framework can achieve bet-
ter performance if it separates the management of commodity tasks from
the tasks requiring specialized resources. We show that the performance
of task execution on a commodity grid is the delay of entering into exe-
cution. This effectively transforms the resource allocation problem into
a routing problem.

We present an approach in which commodity tasks are distributed to
the computation service providers by the use of a forwarding mesh based
on randomized Hamilton cycles. We provide stochastically weighted algo-
rithms for forwarding. Mathematical analysis and extensive simulations
demonstrate that the approach is scalable and provides efficient task
allocation on networks loaded up to 95% of their capacity.

1 Introduction

The computational grid (and the internet at large) is rich in commodity resources
but scarce in specialized resources. There is a large number of PC class hardware
(Windows and Apple desktops, Unix and Linux workstations) with typically very
low resource utilization. On the other hand, there is a scarcity of specialized re-
sources, such as supercomputers, vector processors, specialized input and output
devices and so on. Typically, the need for specialized resources is dictated by the
nature of the application and, less often, by the chosen implementation.

If we look at the state of the art for distributed high performance computing,
we see two different approaches:

– The computational grid community develops software which manages scarce
specialized resources. Although the vision of grid computing was refined sev-
eral times ([4] → [6] → [5] → [2]) the main deployment of grid applications
are for projects with expensive specialized hardware. Examples of testbeds
are the grid projects of the National Partnership for Advanced Computa-
tional Infrastructure (NPACI) and National Computational Science Alliance

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 721–730, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



722 L. Bölöni et al.

(NCSA) in the US or the European DataGrid project. The grid computing
projects developed at IBM, Sun and Hewlett Packard are also largely fall in
this category.

– A number of distributed computing initiatives are exploiting the abundance
of commodity resources for solving highly parallelizable applications. Exam-
ples are SETI@Home [16], Folding@Home [13], the cryptographic challenges
sponsored by RSA laboratories [15] or the Mersenne prime search [14]. The
Berkeley Open Infrastructure for Network Computing (BOINC, [1, 12]) pro-
poses to provide a framework more general than the SETI@Home project,
which can be shared by a number of projects following this pattern of inter-
action. These projects, which rely on donated processor time are sometimes
referred as “public computing”.

Both approaches target grand challenge applications. The applications tar-
geted by the grid computing community however, are more general than the
typical public computing approaches. On the other hand, SETI@Home and the
related applications are highly successful in harnessing large amount of cheap
computing resources.

We note that many high performance computing workflows contain both
specialized and commodity tasks. For the specialized tasks, the best thing the
workflow engine can do is to queue them at the appropriate specialized providers,
for instance through a system such as Condor [11]. For commodity subtasks
however, this approach is not appropriate. There are a very large number of
community service providers (on the order of millions), which makes it difficult
to deploy any kind of centralized distribution system.

We note that if a task is executed on a commodity hardware, the main de-
termining factor of the termination time is the time at which the task is taken
into execution. Furthermore, given the abundance of the commodity resources,
it is likely that if a task needs to be queued at a certain host, it is almost sure
that somewhere on the internet there is a task which can take it into execution
immediately. Under this assumption, the task allocation problem is reduced to
a specialized routing problem. A similar idea is proposed in [7, 3]. The Wire
Speed Grid Project at the University of Chalmers [17], proposes an architec-
ture in which the task allocation is performed in a hardware accelerated manner
on the network routers. As our tasks have a relatively long execution time, an
application layer implementation would provide the same benefits.

2 Commodity Components in Grand Challenge
Applications

Grand challenge applications range from the application of relatively simple al-
gorithms on massive amounts of data (such as the SETI@Home project), to
exhaustive search of a complex combinatorial problems with small amounts of
input and output data (e.g. cryptographic analysis). Many of the high perfor-
mance applications however, are what we call grid workflows. Problems with



Rapid Distribution of Tasks on a Commodity Grid 723

BEGIN ENDP3DR 1
POD CHOICEMERGE POR JOIN PSFP3DR 3

P3DR 4

FORK

P3DR 2

Fig. 1. Workflow for 3D virus structure reconstruction based on 2D electronmicroscope
data

significant scientific and commercial interest such as predicting trajectories of
hurricanes (WRF, ROMS), virus structure reconstruction, protein folding, DNA
sequencing for individuals or designing custom drugs fall in this category.

Grid workflows involve a sequence of steps, such as data collection, filtering,
computation, modelling and visualization. They frequently require interaction
with the user in form of computation steering. The process can involve testing
alternative hypothesis, thus the execution sequence can vary between individual
runs. These problems are usually described as a workflow model of directed
acyclic graphs, although cycles are sometimes necessary. The nodes of the graph
are subtasks with different resource requirements.

Case Study: Structural Virology Application. In the following, we de-
scribe a typical grid application from the field of structural virology with which
the authors have extensive experience. The 3D atomic structure determination
of macromolecules based upon electron microscopy [9, 10, 8] consists of the fol-
lowing steps:

1. Extract individual particle projections from micrographs and identify the
center of each projection.

2. Determine the orientation of each projection.
3. Carry out the 3D reconstruction of the electron density of the macromolecule.
4. Dock an atomic model into the 3D density map.

Steps 2 and 3 are executed iteratively until the 3D electron density map cannot
be further improvedat a given resolution; then the resolution is increased gradually.
The number of iterations for these steps is in the range of hundreds and one cycle of
iteration for a medium size virus may take several days. Typically it takes months
to obtain a high resolution electron density map. Then Step 4 of the process can
be pursued. Once we have a detailed electron density map of the virus structure,
we can proceed to atomic level modelling, namely placing of groups of atoms,
secondary, tertiary, or quaternary structures on the electron density maps.

The grid workflow for this procedure is described in Figure 1. The experi-
mental data is collected using an electron microscope, and the initial input data



724 L. Bölöni et al.

is 2D virus projections extracted from the micrographs. The goal of the compu-
tation is to construct a 3D model of the virus at specified resolution or the finest
resolution possible given the physical limitations of the experimental instrumen-
tation. First, we determine the initial orientation of individual views using an
“ab initio” orientation determination program called POD. Then, we construct
an initial 3D density model using our parallel 3D reconstruction program called
P3DR. Next, we execute an iterative computation consisting of multi-resolution
orientation refinement followed by 3D reconstruction. The program for orienta-
tion refinement is called POR.

In order to determine the resolution, the input data is split in a number of
streams. For each stream, we construct a model of the electron density maps and
determine the resolution by correlating the models with a program called PSF.
The iterative process stops whenever no further improvement of the electron
density map is noticeable or the goal which we specified is reached.

Although the grid workflow contains multiple data dependencies, it has com-
ponents which can be executed on commodity hardware. The data acquisition
step requires a computer connected to an electron microscope, and significant hu-
man work. The POD and PSF steps are an parallel programs, utilizing the message
passing interface (MPI) and they require machines with very fast networking
capabilities. The cheapest hardware which would still do the work is a Beowulf
cluster of 32 or more computers and Gigabit Ethernet interconnects. The P3DR
steps however are parallelizable as they will be correlated only in the next step
of the workflow. Although computationally intensive, they can be run on com-
modity hardware. We need to note however, that components of the workflow
requiring specialized hardware depend on results coming from commodity tasks.

3 System Architecture

The participants in the distributed task allocation algorithm are:
Application Client (AC). A host which desires to run a grid application,
some part of which is expressible as task solvable by a commodity algorithm.
The application client is usually controlled by a human user.
Commodity Resource Providers (CRP). Computers which can run one or
more of the algorithms in the commodity algorithm server.
Distribution Nodes (DN). Computers which are able to forward tasks ac-
cording to the distribution policy. All the CRPs are also distribution nodes, but
a grid deployment might introduce distribution nodes to help the distribution
of the packets. The application client needs to be in contact with at least one
distribution node, which represents the entry point into the network.
Commodity Algorithm Server (CAS). A file service system which pro-
vides the standard implementation algorithms. This is normally a simple FTP
or HTTP based service with a specific naming convention.
Commodity Solution Checker (CSC). A trusted web service which given
a canonic description of a task and a proposed solution checks if the proposed



Rapid Distribution of Tasks on a Commodity Grid 725

solution is an acceptable solution of the task. The CSC enables us to use CRPs
with lower levels of trust. For some algorithms this check implies independent ex-
ecution of the algorithm and the comparisor of the results. For many algorithms,
the result can be verified without repeated execution.

The general process of the algorithm is as follows:

(1) The AC formulates a commodity problem as a task packet and sends it to
one of its entry points.

(2) When a packet reaches a distribution node which is also a CRP, it is either
bidded for its execution, or distributed/forwarded according to a distribution
policy. The bidding is sent to the AC and a preliminary allocation is done as
a soft state. The reply deadline is specified in the bid, and it is a relatively
short period of time (at most several minutes).

(3) The AC sends a task award packet, containing the descriptions of the access
methods of the application input. This might be contained in the confirma-
tion packet itself or it can be a remote reference, accesible by protocols such
as GridFTP. The bid might contain some setup information, such as whether
the bidder needs to download the required algorithm fro the CAS or it has
it in its local cache.

(4) The CRP starts the task execution process and sends a TASK STARTED
confirmation packet.

(5) [Optional] Algorithm download. If the provider does not have the required
algorithm installed, it can download it from a trusted algorithm provider.

(6) [Optional] Data preparation. The input data of the process is loaded by
the application using the GridFTP protocol. If the application input is very
small, it can be sent in the task award packet.

(7) The CRP executes the algorithm on the specified data. It uploads the results
to the locations indicated in the task specification packet. In case of success
it reports to the application with a TASK TERMINATED Packet. The CRP
then becomes available for processing other tasks.

4 The n-Cycle Task Distribution Algorithm

The goal of the task distribution algorithm is to deliver tasks to commodity
resource providers. With the number of CRPs involved (on the order of mil-
lions), scalability is of utmost importance. Having millions of hosts changing
their availability on a minute-per-minute basis centralized algorithms based on
global information are not appropriate.

The n-Cycle algorithm we propose uses only limited local information, it is
virtually indefinitely scalable and performs efficient task distribution for grids
loaded as high as 95% of their nominal capacity. The algorithm can be divided
in two parts: the creation and maintenance of the forwarding mesh and the
forwarding algorithm.



726 L. Bölöni et al.

AC DN CRP CAS CSC

Distribution
policy

Preliminary
reservation

T
im

e

Task

Bid

Task
assignment

Request for
data

Request for
algorithm (*)

Task
terminated

Request for
solution
cheking

Task
execution

Fig. 2. The flow of the task allocation process

4.1 Creation and Maintenance of the Forwarding Mesh

The n-Cycle algorithm creates a forwarding mesh comprised of directional links.
For any link A → B, we will have task forwarded from A to B and status
information propagated from B to A. The links of the forwarding mesh form n
separate Hamiltonian cycles connecting all the elements in the grid node. The
cycles are formed randomly, we are not interested in optimizing the length of
the cycle. The randomness of the cycles is an important part of the algorithm.
Figure 3 shows a 3-Cycle forwarding mesh on a grid of 5 nodes. For any n-
Cycle mesh, every individual node will have n nodes “upstream” and n nodes
“downstream” from it. The node forwards tasks to the upstream nodes and
receives status updates from them. Similarly, the node receives tasks from the
downstream nodes and forwards status updates to them.

4.2 Distributing Tasks on the Forwarding Mesh

One of the remarkable properties of the n-Cycle forwarding mesh is that a sig-
nificant majority of the nodes can be reached by only logn(|W |) hops.

We can design a random wandering task allocation algorithm, with the fol-
lowing rule: if current host is free, take the incoming task into execution. If not,



Rapid Distribution of Tasks on a Commodity Grid 727

Fig. 3. A 3-Cycle forwarding mesh on a network of 5 nodes

then forward randomly to one of the uplink nodes. As we showed before, we
are interested in bringing the task into execution as quickly as possible, which
means that we need to minimize the number of hops.

For a random wandering algorithm, the number of hops depends on the av-
erage load of the network p. In a first approximation, for any number of hops
h, the probability that a node will be allocated in less than h hops is (1 − n)h.
Although this approach leads to satisfactory average values as long as the load
is not getting close to 100%, the maximum values can be (potentially) indefi-
nitely long. The advantage of a random wandering algorithm is that it operates
without any information about the state of the network.

In the following we introduce a weighted stochastic algorithm which uses
information collected from upstream nodes in the forwarding decision. In our
simulation studies, we show that this algorithm leads to significantly better per-
formance with an acceptable cost. Every node maintains its weight w which
intuitely represents the desireability of the node as a forwarding target for a
task. The weight w is composed in equal parts from (a) the ability of the node
to receive a task for execution (b) the weights of the nodes downstream from the
node. The weight w is propagated to the upstream nodes. A change in the weight
is propagated only if it exceeds a threshold δ, preventing floods of updates.

At any given node, a task is either taken into execution (if the node is free),
or forwarded to one of the upstream nodes with a probability proportional with
their weight (as seen by the current node). The complete algorithm is presented
in Algorithm 1.

5 Simulation

We have used the YAES [18] simulation framework to simulate the behavior
of the algorithm. Table 1 illustrates the input and output parameters of the
simulation as specified in the YAES configuration files.



728 L. Bölöni et al.

Algorithm 1. Weighted stochastic task forwarding
When task T received by node N

If STATUS == free
take T into execution
STATUS == busy

Else
forward to upstream node i with probability wi∑

k=1,n
wk

calculate new weight wnew = f(STATUS, wi)
If |w − wnew < δ|

send the new weight to all upstream nodes
w = wnew

When weight w received from i-th downstream node
wi = w
calculate new weight wnew = f(STATUS, wi)
If |w − wnew < δ|

send the new weight to all upstream nodes
w = wnew

Table 1. YAES simulation parameters

Input parameters

Number of grid nodes 100,000
Forwarding mesh 5-Cycle
Task arrival Poisson-distributed arrival, mean 10. . . 200 tasks/sec
Task servicing Normally distributed, mean 60 sec/task
Simulation time 5000 seconds

Output parameters (Measurements)

Hops per task Number of hops a task is forwarded until it finds a host
for execution (avg, max)

Average load Ratio of busy vs. total nodes
Discarded tasks Number of tasks which were discarded

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Average hops

Maximum hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average load

H
op

s

Lo
ad

Fig. 4. Average number of hops, maximum number of hops and network load using
weighted stochastic forwarding on the n-Cycle forwarding mesh



Rapid Distribution of Tasks on a Commodity Grid 729

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Average hops

Maximum hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average load

H
op

s

Lo
ad

Fig. 5. Average number of hops, maximum number of hops and network load using
random forwarding on the n-Cycle forwarding mesh

Figure 4 presents the average and maximum number of hops it takes for a
task to be allocated and the total network load in function of the average number
of arriving tasks. We note that both the average and maximum number of hops is
staying virtually constant at a very low number, up to loads approaching 95%.
At that moment the number of hops increases dramatically as the algorithm
struggles to find free nodes in an overwhelmingly busy network.

The relatively constant number of nodes for moderate loads is explained by
the single insertion point. The nodes closer to the insertion point will be filled
in relatively quickly, so the majority of tasks need to “hop over” the busy nodes
in this area. A good approximation of the size of this constant value is logN (n)
which in our case is log5(10000), approximately 5.7. If we choose a random
insertion point, we will obtain a diagram with a similar shape, but with an
average number of hops for lightly loaded networks much smaller (about 1-2
hops).

In a different simulation run, Figure 5 presents the random walking algorithm.
For small loads, this algorithm also shows very good results (due to the random-
izing nature of the N-Cycle mesh). However, for greater loads, the maximum
number of hops start to increase. For instance, at load of 90% the maximum
will be as high as 100 hops vs. about 20 hops for the stochastically weighted
algorithm.

6 Conclusions and Future Work

In this paper, we introduced an algorithm for allocating commodity tasks on
a computational grid. Our analysis and simulation studies show that (a) the
algorithm is scalable (b) it proved to be very efficient in allocating tasks to free
computational service providers.

Our future work includes more extensive mathematical analysis of the algo-
rithms. It is of special interest on modeling the influence of the estimation of the
wi values of the upstream nodes, as higher accuracies for these values require
higher message traffic on the mesh. We also plan to extend the algorithm to
heterogeneous networks.



730 L. Bölöni et al.

References

1. D. P. Anderson. Public computing: Reconnecting people to science. In Proceedings
of the Conference on Shared Knowledge and the Web, Nov 2003.

2. M. Baker. Ian Foster on Recent Changes in the Grid Community. URL
http://dsonline.computer.org/0402/d/o2004a.htm.

3. B.Liljeqvist and L.Bengtsson. Grid computing distribution using network proces-
sors. In Proc. of the 14th IASTED Parallel and Distributed Computing Conference,
Nov 2002.

4. I. Foster and C. Kesselman, editors. The Computational Grid: Blueprint to a New
Computer Infrastructure. Morgan-Kauffman, 1998.

5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:
An open grid services architecture for distributed systems integration. URL
http://www.globus.org/research/papers/ogsa.pdf.

6. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 15(3),
2001.

7. A. Iamnitchi and I. Foster. On fully decentralized resource discovery in grif en-
vironments. In Proceedings of the International Workshop on Grid Computing,
Denver, CO, November 2001, 2001.

8. Y. Ji, D. C. Marinescu, W. Zhang, and T. S. Baker. Orientation refinement of
virus structures with unknown symmetry. In Proceedings of the 17th Ann. Int’l
Parallel and Distrib. Processing Symposium Nice, France. IEEE Press, 2003.

9. D. C. Marinescu and Y. Ji. A computational framework for the 3d structure deter-
mination of viruses with unknown symmetry. Journal of Parallel and Distributed
Computing, 63(7-8):738–758, 2003.

10. D. C. Marinescu and Y. Ji. A computational framework for the 3d structure deter-
mination of viruses with unknown symmetry. Journal of Parallel and Distributed
Computing, 63:738–758, 2003.

11. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman,
G. Fox, and T. Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., December 2002.

12. Berkeley Open Infrastructure for Network Computing. URL http://boinc.

berkeley.edu/.
13. Folding@Home project. URL http://www.stanford.edu/group/pandegroup/

folding/.
14. Mersenne Prime search. URL http://www.mersenne.org/prime.htm.
15. RSA Challenge. URL http://www.rsasecurity.com/rsalabs/challenges/.
16. SETI@Home project. URL http://setiathome.ssl.berkeley.edu/.
17. The Wire Speed Grid project. URL http://www.ce.chalmers.se/staff/labe/Wire

Speed Grid Project.htm.
18. YAES: Yet Another Extensible Simulator. URL http://netmoc.cpe.ucf.edu/

Yaes/Yaes.html.



Modeling Execution Time of Selected
Computation and Communication

Kernels on Grids

M. Boullón1, J.C. Cabaleiro1, R. Doallo2, P. González2, D.R. Mart́ınez1,
M. Mart́ın2, J.C. Mouriño2, T.F. Pena1, and F.F. Rivera1

1 Dept. Electronics and Computing, Univ. Santiago de Compostela, Spain
2 Dept. Electronics and Systems, Univ. A Coruña, Spain

Abstract. This paper introduces a methodology to model the execution
time of several computation and communication routines developed in
the frame of the CrossGrid project. The purpose of the methodology is
to provide performance information about some selected computational
kernels when they are executed in a grid. The models are based on ana-
lytical expressions obtained from exhaustive monitorized measurements.
Even though the kernels that are considered in this work include both
applications dependent and general purpose, the methodology can be
applied to any kind of kernel in which the most relevant part in terms of
execution time is due to computations and/or communications. We fo-
cused on MPI-based communications. In addition, an interactive Graphi-
cal User Interface was developed to summarize and show the information
provided by the models from different views.

1 Introduction

Performance evaluation, instrumentation, prediction and visualization of parallel
codes has been found to be a complex multidimensional problem [1] in parallel
and distributed systems. This situation is critical in grid environments. Tun-
ing the performance of codes on distributed memory systems has been a high
time-consuming task for users. When programming these systems, the reasons
for poor performance of parallel message-passing and data parallel codes can be
varied and complex, and the users need to be able to understand and correct
performance problems in order to achieve good results. This is especially rele-
vant when high level libraries and programming languages are used to implement
parallel codes. Performance data collection, analysis, prediction and visualiza-
tion environments are needed to detect the effects of architectural and system
variations.

In high-performance computing, applications performance is very sensitive to
problem features such as code and data partitioning, and machine computation
and communication parameters. Performance prediction is an important engi-
neering tool that provides timely feedback on design choices in program synthesis
as well as in machine architecture development. Apart from prediction accuracy,

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 731–740, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



732 M. Boullón et al.

prediction cost largely determines the utility of the tool. Performance prediction
approaches take many shapes, the choice of underlying modeling formalism de-
pending on the desired trade off between prediction cost and accuracy. Although
potentially accurate, modeling formalisms such as stochastic Petri nets [2] or pro-
cess algebras [3] are not attractive due to the exponential solution cost. Although
approaches based on combinations of directed acyclic task graphs and queuing
networks [4, 5] pair comparably high modeling power with a high efficiency, the
polynomial time complexity of the solution process still entails considerable cost
for very large problem sizes. In analytical approaches, the application is trans-
formed into an explicit, algebraic performance expression. In contrast to the
above numeric approaches, symbolic prediction techniques offer even lower so-
lution cost that is less dependent on problem size. Manual approaches, such as
BSP [6] and LogP [7], modeling cost is significant because the labor-intensive
and error-prone derivation effort. Alternatively, symbolic prediction techniques
based on stochastic direct acyclic graphs and deterministic direct acyclic graphs
[8, 9] offer a mechanized scheme. However, unacceptable prediction errors arise
when performance is largely dominated by contention for resources such as locks,
servers, processors, networks links, or memories.

Sophisticated performance prediction tools are being developed by a number
of groups. In particular we can cite the PACE toolset [10], PERFORM and
LEBEP[11], DIMEMAS [12], INSPIRE [13], Carnival [14], ALPES [15], P3T
[16], PerFore [17] and Bricks [18]. Other works used prediction as part of a
software-aided approach for particular applications, e.g. solvers - we cite SPEED
[19], SciRUN [20] or PARAISO [21]. A long-term project is the development of
the AlpStone [22] project, that simulates parallel performance using information
from a database of kernel benchmarks and underlying hardware parameters using
a ”skeleton application” approach. The kernel benchmarks are representative of
”algorithm classes” and a ”synthetic program” is built from these to represent
the real application.

The application of these techniques has so far been largely restricted to ac-
curate prediction of performance of code kernels with the goal of automatic
parallelization or execution steering. And all of them focus on specific parallel
systems, at most on clusters of workstations, like DIMEMAS or Carnival, but
to our knowledge, no one is currently fully adapted to grid environments except
Bricks and DAMIEN [23] that is a project to do that for DIMEMAS. On the
other hand, most of these tools require simulation of the codes, that takes much
time, also they are not application-dependent, and some of them are for specific
programming platforms, P3T is for High Performance Fortran programs, Alp-
Stone and Carnival are for PVM programs, PERFORM is just for sequential
systems, and PerFore is integrated in a specific compiler.

In this work we establish a methodology to obtain analytical models based
on exhaustive measurements of execution times obtained in a monitorized envi-
ronment. The idea is to correlate execution times with monitorized information.
In particular we consider computational power of each node as well as network
bandwidth and latency.



Modeling Execution Time of Selected Computation 733

The proposed models are application-dependent, and they focus on some ker-
nels from the applications of the CrossGrid project [24] as well as other general
purpose kernels. In this way, the results will be more accurate, and as the perfor-
mance will be modeled by simple analytical expressions, it is very fast. A model
for each MPI-coded kernel on the grid is established.

An additional and important feature is that the information is shown in a
friendly interactive visual tool for users or developers of applications, This GUI
uses the analytical models to establish performance predictions. In addition, this
tool can include detailed information about specific parameters of the codes, as
well as the predicted information about the execution of these codes. In fact, it
should be an interface that provides interactivity in the analysis of the behavior
of the codes under different conditions (number of processors, distributions, input
data, network parameters, ...).

This GUI is devoted to be used by applications developers and users that are
interested in analyzing the performance of the selected kernels under different
scenarios. The results could be used to modify the parameters of the parallel
execution of the application, like the number of nodes, the size of the problem,
the distribution of data, etc. To enable a user to quickly find his way in the
multidimensional design space, the GUI needs to be used interactively. In long
term, it can be also used by resource brokers and schedulers to select the best
platform according to the predicted figures offered by the tool.

Some of the main features of the tool are:

– It is an application dependent tool. It is specifically applied to selected ker-
nels that were analyzed in terms of performance to obtain analytical models.
Anyway, it can be also broadly used to study the performance of communi-
cation routines themselves.

– It is an interactive tool in the sense that the user can easily change the
parameters that characterize the system or the problem, and then analyze
their influence.

– It uses analytical models, and therefore the predictions are obtained fast.
This feature is very important for the interactivity.

– It is specifically developed for heterogeneous systems.

In next sections, the methodology to obtain the models is described in detail.

2 A Methodology to Model Execution Times

The methodology is divided into two main stages. The first one is a study about
the behaviour of the kernels that is useful to establish the parameters to be
considered in the models. The second stage is to obtain the models by correlating
execution times under different grid conditions and considering a range of values
for the parameters that characterize the kernels.



734 M. Boullón et al.

2.1 Static Characterization of the Kernels

Initially, the kernels were characterized statically, in terms of the precise number
of relevant events. One of these events is the number of floating point operations
(FLOPs) required for the target kernel. This number were counted manually
or using tools like PAPI [25] when it was necessary. After that, this value is
summarized in simple algebraic expressions involving parameters of the kernel,
such as the size of some matrices, or the number of iterations of some loop, or the
number of non-zero entries in a sparse matrix, or the grade of some polynomial
preconditioners, etc. All this parameters are statically established.

Fig. 1. A broadcast on 12 nodes

The study of the communication patterns generated by the MPICH-G2 rou-
tines used in the kernels is essential for predicting their overheads. In the same
way as for the number of FLOPs, information about the number and size of the
communications performed by each processor can be statically stated. In order
to model MPI collective communications, the behaviour of many collective rou-
tines in terms of individual point to point communications were extracted. In
this way, with the information about latency and bandwidth, the cost of these
routines can be estimated.

For the communications kernels, MPICH-G2 distributes the processors in
groups in different levels according to the communication behaviour. For exam-
ple, level 0 is for WANs, level 1 is for LANs, and so on. Therefore, characterizing
collective communications in MPICH-G2 in a set of point to point communi-
cations is based on the hierarchy of protocol levels: WAN, LAN, Local, .... In
particular:

– The MPI Bcast is implemented sequentially in level 0, and as a binary tree
in other levels.

– MPI Scatter is sequential in level 0, and a binary tree in other levels.



Modeling Execution Time of Selected Computation 735

– MPI Gather is also sequential in level 0, and a binary tree in other levels.
– The associative MPI Reduce is implemented as a MPI Bcast but in reverse

order, and it includes the arithmetic or logic operation in each processor.
– The no associative MPI Reduce is implemented as a MPI Gather, and after

that, the operation is performed sequentially in the root processor.
– The implementation of the MPI Barrier is based on a hypercube communi-

cation in each level followed by an all-to-all communication in level 0.
Figure 1 shows an example of this hierarchical structure for a broadcast in a

system with 12 nodes distributed in different levels.

2.2 The Models

To obtain a precise model for the performance of the computational kernels, a
large number of executions of them under different scenarios were performed. In
particular, the kernels were executed on different sites and on the whole grid.

As soon as all this static information about computations and communica-
tions was modelled, we deal with the development of the performance models. In
this stage, JIMS [26], a monitoring tool developed in the CrossGrid project, was
used. The cost of each kernel is measured through a large number of executions
under different network features. Even thought JIMS offers a broad amount of
information, just a reduced set of its functionalities is needed for our purposes.
In particular:

– The online workload per CPU is used to establish the performance models
for computations.

– The latency and bandwidth between each pair of processors to define the
models for communications.

The main idea of our methodology is to obtain the correlation between mon-
itoring information and features of the kernel with measured execution times.
This method is based on the concept of “cube of tests”. Consider, as an example,
a point to point communication of a certain size. This kernel is executed K times
in a short period of time, producing K measures of runtime named Ti. Consider
that M monitoring tests were performed in this short period of time, producing
M measures of latency and bandwidth named Lj and Wj respectively. A cube of
tests is defined as the cube in a, in this particular case, three dimensional space
{L,W, T} limited by the minimum and maximum values achieved for these three
parameters. Figure 2 illustrates a cube of tests. Note that this cube is defined
for a certain size of the message. Therefore a fourth dimension has to be taken
into account to obtain the model, that is, the size of the message.

Figure 3 illustrates how the monitorized information is extracted when the
kernels are executed. In order to minimize the number of executions that are
influenced by the monitoring process, their number have to be higher than the
number of monitoring tests. According to our experience, about 10 executions
of the kernel between two consecutive monitoring stamps are enough.

The monitoring information obtained in the period of time that defines the
measurements must be homogeneous. If this is not the case, we assume that the



736 M. Boullón et al.

Fig. 2. A cube of tests

TIME

Monitoring stamps

Kernel tests

Fig. 3. Samples of the execution of the kernels in a monitorized environment

status of the system is not stable, and it can not produce a consistent cube of
tests. In fact, some threshold to guaranty this homogeneity must be established
to define the cubes. Figure 4 shows, as an example, the measured execution
times for a ping-pong kernel executed 5000 times. The message is 32KB long.
Note that most of the measures (in this case 3150) are in a thin interval of
execution times, the others are not considered because they are influenced by
the monitoring process, or they are considered as spurious measurements.

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e 

(m
s)

samples

Fig. 4. 5000 samples of the execution of the ping-pong kernel

The monitoring process is also affected by the execution of the kernels. As
an example, figures 5 and 6 show the values of, respectively, the latency and



Modeling Execution Time of Selected Computation 737

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

600 650 700 750 800 850 900 950 1000

la
te

nc
y 

(m
s)

samples

Fig. 5. Samples of the monitorized latency when the ping-pong kernel is executed

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

2.4e+07

2.6e+07

2.8e+07

600 650 700 750 800 850 900 950 1000

ba
nd

w
id

th
 (

b/
s)

samples

Fig. 6. Samples of the monitorized bandwidth when the ping-pong kernel is executed

bandwidth obtained from JIMS when the experiment is being performed. Note
that these values change when the kernel is, in fact, executed (this corresponds
to the band in the middle of the figure, around sample number 800 in the figure).
Therefore the values obtained just before and after the execution of the kernel
are considered to define the cube of tests. Note that some spurious values were
obtained, they have to be discarded.

2.3 The Kernels

The kernels that are currently considered in the tool are the following:

– Paraiso is a MPI library of iterative methods for solving large sparse matrix
systems. This library includes the implementation of analytical models to
characterize a number of communications routines that can also be consid-
ered as kernels. These models for the communication routines are not only
needed for implementing the models of the kernels, but also for other users
who are not interested in these specific kernels.



738 M. Boullón et al.

– From the air pollution application of the CrossGrid project, we focused on
the routine that consumes most of the runtime of this application. It is
called vertlq. It was analyzed, and an analytical model for characterizing its
performance was developed. This routine basically consists of an intensive
computational part that is executed in parallel, i.e. locally, and just one re-
duction operation that involves communications. Both parts are uncoupled,
so the model adds both contributions.

– From the flooding application of the CrossGrid project, we developed some
models for the kernels of this task. For this application the standard PETSc
library for solving large sparse systems is the main kernel.

– Concerning the HEP application of the CrossGrid project, this application
was coded using the mater-slave paradigm. Its main kernel is a learning
process of a neural network that includes two parts: a parallel part that is
computational intensive, and some communications: a gather and a scatter
from the master to the nodes and some point to point communications.

3 The Graphical User Interface

An interactive graphical user interface (GUI) was developed in this task. It shows
three types of information:

– Information based on the analytical models, like predicted execution times,
or load balance based on the predicted execution times on each node.

– Information about features of the kernel, like the number and size of some
collective communication.

– Information about the status of the grid, like latency between a certain pair
of nodes.

Therefore, this tool can include detailed information about specific param-
eters of the code, as well as the predicted information about the execution
of the code. The user can interact on this information, changing some pa-
rameters, like, for example, the latency between a pair of nodes. In this way,
the user can analyze their effect over the overall performance. The interface
provides interactivity in the analysis of the behaviour of the code under dif-
ferent conditions (number of processors, distributions, input data, network
parameters, ...).

This GUI is devoted to be used by applications developers and users that are
interested in analyzing the performance of the selected kernels under different
scenarios. The results could be used to modify the parameters of the parallel
execution of the application, like the number of nodes, the size of the problem,
the distribution of data, etc. To enable a user to quickly find his way in the
multidimensional design space, the GUI needs to be used interactively. In long
term, it can be also used by resource brokers and schedulers to select the best
platform according to the predicted figures offered by the tool.



Modeling Execution Time of Selected Computation 739

Some of the main features of this GUI are:
– It is an application dependent tool. It is specifically applied to selected ker-

nels for which analytical models are available. Anyway, note that it can be
also used by others than the CrossGrid applications developers, for example
to study the performance of communication routines themselves.

– It is an interactive tool in the sense that the user can easily change the
parameters that characterize the system or the code them selves, and then
analyze the influence in the overall performance of these changes.

– It uses analytical models, and therefore the predictions are obtained very
fast. This feature is very important for the interactivity.

– It is specifically developed for heterogeneous systems.
In summary, the GUI of the PPC tool is devoted to be used by applications

developers and users that are interested in analyzing the performance of the
selected kernels under different scenarios. The results could be used to modify
the parameters of the parallel execution of the application, like the number of
nodes, the size of the problem, the distribution of data, etc. To enable a user to
quickly find his way in the multidimensional design space, PPC needs to be used
interactively. In long term, it can be also used by resource brokers and schedulers
to select the best platform according to the predicted figures offered by the tool.

4 Conclusions

This work present a methodology to characterize the execution of selected ker-
nels on a Grid environment. It is based on exhaustive executions of the kernels
under different states of the Grid. As a Grid can change its behavior often, we
only consider measures that are homogeneous in terms of monitorized informa-
tion. These pieces of homogeneous results define “cube of test” that are used to
correlate the dependency with network and node based information provided by
some monitoring system. This methodology can be applied to kernels that are
massively computational or that are dominated by communications. A GUI was
also presented in this paper.

Acknowledgement

This work was supported in part by the European Union through the IST-2001-
32243 project “CrossGrid”.

References

1. M. Simmons and R. Koskela. Performance instrumentation and visualization. ACM
Press. 1990.

2. M. Ajmone, G. balbo and G. Conte. A class of generalized stochastic Petri nets
for the performance analysis of multiprocessor systems. ACM trans. Computer
Systems. Vol. 2, pp. 93-122. 1984.



740 M. Boullón et al.

3. N. Gotz, U. Herzog and M. rettelbach. Multiprocessor and distributed system
design: the integration of functional specification and performance analysis using
stochastic process algebras. Proc. SIGMETICS93.

4. V.S. Adve. Analyzing the behavior and performance of parallel programs. PhD
thesis. Techn. Report 1201. Ini. Of Wisconsin. 1993.

5. V. Mak and S. Lundstrom. Predicting performance of parallel computations. IEEE
trans. Parallel and distributed systems. Vols 1. pp. 253-270. 1990.

6. L. Valiant. A bridging model for parallel computations. Comm. ACM Vol 33. pp.
103-111. 1990.

7. D. Culler et.al. LogP: towards a realistic model of parallel computations. Proc. 4th
ACM SIGPLAN symp. Pp. 1-12. 1993.

8. T. Fahringer. Estimating and optimizing performance for parallel programs. Com-
puter, pp. 47-56. Nov. 1995.

9. C. Mendes and D. reed. Integrated compilation and scalability analysis for parallel
systems. Proc. Int. Conf. Parallel Architectures and Compiler Technology. Pp.
385-392. 1998.

10. D.J. Kerbyson, E. Papaefstatuiou, J.S. Harper, S.C. Perry and G.R. Nudd. Is
Predictive Tracing too late for HPC Users? In “High Performance Computing”
Proc. HPCI’98 Conference 1998 R.J. Allan, M.F. Guest, D.S. Henty, D. Nicole and
A.D. Simpson (eds.) pp 57-67. 1999. Plenum/Kluwer Publishing.

11. T. Hey, A. Dunlop and E. Hernandez. Realistic Parallel Performance Estimation
Parallel Computing 23. 1997. pp. 5.21.

12. DIMEMAS. http://www.pallas.de/pages/dimemas.htm
13. K. Kubota, K. Itakura, M. Sato and T. Boku. Practical Simulation of large-scale

Parallel Programs and its Performance Analysis of the NAS Parallel Benchmarks
Lecture Notes Comp. Sci. 1470 1998. pp. 244-54.

14. Carnival. http://www.cs.rochester.edu/u/leblanc/prediction.html
15. J.P. Kitajima, C. Tron and B. Plateau. ALPES: a Tool for Performance Eval-

uation of Parallel Programs in “Environnments and Tools for Parallel Scientific
Computing” J.J. Dongarra and B. Tourancheau (eds.). North-Holland. 1993. pp
213-28.

16. Fahringer Estimating and optimising performance from parallel programs. special
issue IEEE Computer 28. 1995. pp. 47-56.

17. Perfore. http://ParaMount.www.ecn.purdue.edu
18. Bricks. http://www.is.ocha.ac.jp/ takefusa/bricks/
19. C.-C. Hui, M. Hamdi and I. Ahmad. SPEED: A Parallel Platform for Solving

and Predicting the Performance of PDEs on Distributed Systems Concurrency:
Practice and Experience 9. 1996. pp. 537-568.

20. M. Miller, C.D. Hansen and C.R. Johnson. Simulated Steering with SCIRun in a
Distributed Environment in “Applied Parallel Computing” Proc. 4th International
Workshop PARA’98. LNCS 1541. Springer. 1998. pp366-376.

21. PARAISO. http://www.ac.usc.es/ paraiso
22. AlpStone.

www.ifi.unibas.ch/generate.doc/English/Research/ParProg/alpstone/doc.html
23. DAMIEN. http://www.hlrs.de/organization/pds/projects/damien/
24. CrossGrid project. http://www.eu-crossgrid.org/
25. PAPI. http://icl.cs.utk.edu/papi/
26. JIMS. http://wp3.crossgrid.org/



Parallel Checkpointing on a Grid-Enabled
Java Platform

Yudith Cardinale and Emilio Hernández

Universidad Simón Boĺıvar, Departamento de Computación,
Apartado 89000, Caracas 1080-A, Venezuela

{yudith, emilio}@ldc.usb.ve

Abstract. This article describes the implementation of checkpointing
and recovery services in a Java-based distributed platform. Our case
study is suma, a distributed execution platform implemented on top of
Grid services. suma has been designed for execution of Java bytecode,
with additional support for parallel processing. suma middleware is built
on top of commodity software and communication technologies, including
Java, Corba, and Globus services. The implementation of suma that runs
on top of Globus services is called suma/g.

1 Introduction

Parallel checkpointing algorithms are important in environments where long-
term parallel processes are executed, for instance in grid computing platforms [7].
These algorithms can be classified into two main groups, according to the ap-
proach used to coordinate the capture of local checkpoints [6], i.e. the state of
single nodes. In the coordinated approach, it is necessary to synchronize all pro-
cesses in order for them to take relevant local checkpoints. This is done by send-
ing control messages explicitly. A consistent global checkpoint, which is a global
checkpoint that avoids orphan and in-transit messages, is always maintained in
the system, but the synchronizing checkpointing activity results in performance
degradation. In the uncoordinated approach, the processes take their local check-
points more or less independently. As a consequence, some of the checkpoints
may not belong to any consistent global checkpoint. In order to reduce the num-
ber of useless checkpoints, the processes must exchange information about its
checkpointing activity. This allows the processes to take communication induced
checkpoints (forced checkpoints, to avoid orphan messages) besides asynchronous
checkpoints and to log possible in-transit messages. This information is mainly
piggy-backed on the messages sent between processes. The algorithms based on
communication-induced protocols are called quasi-synchronous [10].

We address the development of a distributed platform that transparently
executes Java bytecode on remote machines, called suma (Scientific Ubiquitous
Metacomputing Architecture) [9] (http://suma.ldc.usb.ve). The goal is to extend
the Java Virtual Machine model to provide seamless access to distributed high
performance resources. One of our design goals was that suma should provide

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 741–750, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



742 Y. Cardinale and E. Hernández

checkpointing/recovery facilities. suma middleware was originally built on top of
commodity software and communication technologies, including Java and Corba.
A recent reimplementation called suma/g is also based on grid services [7], more
specifically on Globus services [13], which is the most important grid model
defined so far. By reimplementing suma components on top of Grid services we
can take advantage of the potential of existing Grid platforms, and also we can
keep the suma execution model unchanged, independent from the evolution of
the Grid services. Additional functionalities are inherited from Globus, such as
the I/O services. suma itself is implemented on top of Corba, but users of suma

are not aware of it, they only have to write Java classes and, if they want to
write a parallel program, they can use mpiJava [1], which is supported by suma.

Our goal is that suma/g supports recovery after fail-stop failures. We have
implemented a distributed checkpointing facility for suma/g, using an uncoor-
dinated approach based on a communication-induced protocol. The implementa-
tion of a distributed checkpointing facility on a Java distributed platform of this
kind requires some special considerations related to portability, transparency,
intrusiveness and persistence. In order to take into account these considerations,
we propose, in this paper, a design of checkpointing and recovery services based
on commodity technologies: Java, MPI and Globus.

2 Overview of SUMA/G

suma/g middleware is object oriented and built on top of commodity tech-
nologies. All suma/g components were implemented on the Java Virtual Ma-
chine, communicating via Corba [3], so it is possible to eventually implement
suma/g components in different languages or operating systems. suma/g ac-
cess the Globus general services through Java CoG Kit [15], in order to extend
the functionality of some components (e.g. the Scheduler and the User Control).
For special services (e.g. parallel execution, profiling, and checkpointing), the
Execution Agents (these components actually execute the applications on the
high performance platforms) could require special packages as mpiJava, Hprof
and MPE, among others.

As an execution platform, suma/g offers the Java execution model. suma/g

users are not aware of the presence of a distributed platform and they can invoke
the execution of a class just by typing “sumag class”, in the same fashion they
execute that class locally (by typing “java class”). Classes and local files are sent
on demand from the local machine to the actual execution platform chosen by
the suma/g core.

2.1 Implementation of SUMA/G on Globus

Globus is distributed as a toolkit that provides basic services and libraries for
resource monitoring and management, plus security, file management, job sub-
mission, and communication. There has been increasing interest in supporting
Java within the grid [15, 14]. Its GT3 version, is the first full-scale implementa-



Parallel Checkpointing on a Grid-Enabled Java Platform 743

Node
Concrete Slaves

Client stubs

User
ControlClients

GSI HBMMDS

GLOBUS

Proxies

Execution Agents

Loader
Class
SUMA

Control
Resuorce

Scheduler

Dispatcher

SUMA/G

SUMA/G CORE

Java CoG Kit

Put State Information

Authentication

Authorization

Find Platform

Get State Information

Register

Fig. 1. suma/g Architecture

tion of new Open Grid Services Architecture (OGSA). However, Globus toolkits
continue evolving and probably suma/g will need future reimplementations.

Current implementation of suma on top of Globus services is mainly based
on the Java CoG Kit. The Java CoG Kit defines and implements a set of general
components that map grid functionality into a commodity environment. The
Java CoG Kit not only enables access to the Globus services, but also provides
the benefit of using the Java framework as the programming model. According
to the Java CoG Kit components categorization, suma/g mainly uses the Low-
Level Grid Interface Components, that provide mappings to commonly used
Grid services. The main Globus services, from the point of view of suma/g are
(see Figure 1):

– The Monitoring and Directory System (MDS): it enables Grid application
developers and users to register their services with the MDS. The Globus
MDS service is used by suma/g for component registration. In this way the
suma/g scheduler, for example, queries the MDS to find a suitable platform
when it receives a request for a particular job execution. With this service,
resources that are allocated by Globus can then be added to the suma/g

resources, and suma/g will be able to deal in most cases with organizational
boundaries. suma/g has its own mechanism for submission and allocation
of resources, but we expect to achieve a greater integration of suma/g with
GRAM (Globus Resource Allocation Manager).

– The Globus Heartbeat Monitor (HBM): it provides a simple, uniform and
reliable mechanism for obtaining real-time information about the grid struc-
ture and status. This includes monitoring the state of machine and processes
in the grid. This mechanism allows suma/g Execution Agents to post infor-
mation about their state, and suma/g core could receive that information
in order to make scheduling decisions.

– The Grid Security Infrastructure (GSI): it defines a common credential for-
mat based on X.509 identify certificates and a common protocol based on



744 Y. Cardinale and E. Hernández

transport layer security (TLS, SSL). GSI policy allows a user to authenti-
cate just once per computation, at which time a credential is generated that
allows processes created on behalf of the user to acquire resources, and so
on, without additional user intervention. The initial security component in
suma is based on a simple centralized maintenance based on user accounts
and user groups known in a typical UNIX system. This security component
is not strong enough to support the increased security requirements in a
grid environment. The GSI is used to augment the user authentication and
authorization in suma/g, as well as a mechanism for including all suma/g

components in the grid security space.

3 Checkpointing and Recovering Services in SUMA/G

suma/g is intended to provide services for checkpointing and recovery, apart
from basic services related to on-line and off-line remote execution of Java appli-
cations. These services are mainly implemented within the Execution Agents. In
this way, suma/g provides different Execution Agents with particular services.
In order to provide checkpointing and recovery services for single-node and par-
allel Java applications, an Execution Agent with checkpointing support should
fulfill the following demands:

– Capacity for permanent storage. The checkpoints can be stored either in
local storage or in a remote checkpoint server. The first option could be
implemented through the access to a shared file system, such as NFS.

– Execute the extended JVM for providing local checkpointing/recovery ser-
vices at threads level.

– Execute the modified mpiJava that allows access to the messages exchanged
through MPI in order to have Global Consistent Checkpoints.

Figure 2 shows the new suma/g architecture after checkpointing/recovery ser-
vices were incorporated. There are two important components: SUMACkpMonitor
and SUMARecover. In the current implementation, the Execution Agent starts
the application, the SUMAClassloader and the thread SUMACkpMonitor in the
extended JVM. SUMACkpMonitor periodically takes the checkpoints, in an asyn-
chronous way. In case of parallel applications, this thread additionally is in
charge to take forced checkpoints when it is necessary. On the other hand, the
SUMARecover is called after a fault occurs and is in charge of restoring the ap-
plication execution from its last checkpoint.

The level of transparency that a checkpointing system can offer to the users
can be considered from two points of view. First, it is important to decide
whether modifications of the application source code are necessary, for instance,
by adding threads or data structures that are not related to the application.
To reach this goal, the process to capture the execution state is executed by
SUMACkpMonitor, without involving the application itself. Second, it is impor-
tant to consider whether the user should have control on the restarting and



Parallel Checkpointing on a Grid-Enabled Java Platform 745

Client stubs

Clients
Proxies

User
Control

GSI MDS HBM GASS

Extended
JVMmpiJava

Extended

Control
Resuorce

Scheduler

Dispatcher

Execution Agents

Loader
Class
SUMA

Node
Concrete Slaves

SUMA
Recover

SUMA Ckp
Monitor

GLOBUS

SUMA/G

SUMA/G CORE

Put State Information

Java CoG Kit

Authentication

Authorization Get State Information

Find Platform Register Get Ckp Put Ckp

Fig. 2. suma/g Architecture with Globus support for checkpointing/recovery services

migration actions. suma/g´s goal is to support recovery after fail-stop failures
in a transparent way. In this sense, after a crash occurs, suma/g launches the
recovery process without user involvement.

In order to take local checkpoints, we have used the implementation of Java
Thread Mobility and Persistence inside the JVM proposed in [2], which consists
on extending the JVM in such a way that the computation state is accessible
from Java threads. The reasons that led us to choose this approach and the
implementation details in suma are described in [4], where it is shown that this
approach does not introduce significant performance overhead.

Our proposed distributed checkpointing protocol is a combination of the pro-
tocols described in [11] and [8] which provide fault-tolerance in asynchronous
systems. We have extended the mpiJava functionality to implement the com-
bined checkpointing protocol. The details of the algorithm and results about the
implementation overhead are described elsewhere [5].

3.1 Checkpointing Support in Globus

Globus does not provide specific services for checkpointing/recovery, but it pro-
vides basic services, such as the Globus Heartbeat Monitor, that could help us
to implement checkpointing and recovery services. Specific tools implemented
on the grid, such as Condor, which has centralized checkpointing facilities [12],
could also be helpful in order to implement a distributed checkpointing and
recovery facility. Other Globus components can be used to implement check-
pointing/recovery services, such as the I/O services.

After a crash, suma/g has to determine an Execution Agent on which the
application can be re-initialized. To do so, the suma/g core asks the Globus
MDS for another computing platform suitable for that application (i.e. with
the appropriate extended JVM and extended mpiJava installed). One the su-



746 Y. Cardinale and E. Hernández

ma/g core has identified the new platform, it has to transfer the last check-
point to the selected machine. Then the application can be re-started on that
machine.

The heterogeneity of mechanism and policy encountered in grid environ-
ments means that we can not assume that the computation platforms (where
the suma/g Execution Agents run) share a file system, user id space, or com-
mon security mechanisms. Globus provides a uniform naming scheme and the
same access mechanism to access files, regardless of location with Global Ac-
cess to Secondary Storage (GASS) services. In order to keep the checkpoints,
suma/g can either store the checkpoints on top of virtual file platforms that
handle Logical File Names (LFN) or in a particular Checkpoint Server directly
accessible through GASS services. For the sake of simplicity, we are going to
assume that there is a Checkpoint Server for checkpoint storage and manage-
ment. The Java CoG Kit provides an essential subset of GASS services to sup-
port the copying of files between computers on which the Grid Services are
installed. The method get(String from, String to) copies a remote file to
a local file, and the method put(String from, String to) copies a local file
to a remote location. The SUMACkpMonitor posts the checkpoint files periodi-
cally to the Checkpoint Server with URLlocalckp.put(localhost,CkpServer),
and the SUMARecovery gets the checkpoints from the Checkpoint Server with
URLlocalckp=get(CkpServer,localhost).

The GASS open and close calls act like their standard UNIX I/O counter-
parts, except that a URL rather than a file name is used to specify the location
of the file data. A URL used in a GASS open call specifies a remote file name
(a checkpoint, in case of suma/g), the physical location of the data resource on
which the file is located (e.g. the suma/g Checkpoint Server), and the protocol
required to access the resource (e.g. GASS, ftp, or http protocol).

4 Recovery Algorithm

If a failure occurs in the platform while an application is running, an exception
is caught in the suma/g core. In this case, suma/g launches a recovery algo-
rithm. Figure 3 shows the execution of the recovery algorithm in three cases: (a)
when checkpoints are stored on local disk, in this case the application could be
restarted at the same platform, (b) when checkpoints are stored on a shared File
System, in this case the application could be restarted at any platform sharing
the file system, and (c) when the checkpoints are stored in a Checkpoint Server
based on Globus facilities, so the recovery can take place in any remote platform
reachable by suma/g.

In case of multiple-nodes applications, the last consistent global checkpoint is
not necessarily formed by the last local checkpoint of each process. In this sense,
the method getlastckpt of the Execution Agent and the method Getckpt of
the Checkpoint Server need to associate an algorithm to select the last consistent
global checkpoint. Hence, the previous algorithms must be complemented with
the following sentences:



Parallel Checkpointing on a Grid-Enabled Java Platform 747

File

Execution
Agent

Shared

System

ckps

Execution
Agent

Execution
Agent

4. lastckp=getlastckp(app)
5. restart(app,lastckp)

Execution
Agent

Agent to restart

3. resume(app)

3. resume(app)

(c) Case 3: Checkpoints are stored on the Checkpoint Server(with Globus support)

1. CORBA Exception

2. wait for Execution

Core
Execution

Agent
ckps

(a) Case 1: Checkpoints are stored on local disk

1. CORBA Exception

3. resume(app)

(b) Case 2: Checkpoints are stored on a shared File System

Core

2. new_node=sched.Findnode(FS_Domain)
4. lastckp=getlastckp(app)
5. restart(app,lastckp)

1. CORBA Exception

0. URLckp.put(localhost,CkpServer)

extended","freenodes=4")
2. new_node=mds.search("jvm

4. URLckp=CKPServer.Getckp(app)

6. restart(app,URLckp)

Globus Services
GASS

MDS . . .

Core

Execution
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Checkpoint
Server

5. URLckp.get(CkpServer,localhost)

SUMA/G SUMA/G

SUMA/G

Fig. 3. suma/g Recovery Algorithms

– Non-faulty processes are required to take a local checkpoint (this allows as
much correct computation as possible to be saved)

– In getlastckpt and GetCkp methods: The most recent consistent global
checkpoint is determined. This determination is done in the following way:
• obtain the last timestamp a that is common in almost one local check-

point of each process.
• built a consistent global checkpoint Ca=C1,x1,C2,x2, . . ., Cn,xn defined

as:
(Ci,xi is the local checkpoint of Pi)
∀k, Ck,xk is the last checkpoint of Pk such that Ck,xk.t <= a

– In Execution Agent Restart method: The state of each channel cij (mes-
sages in transit with respect to the ordered pair (Ci,xi,(Cj,xj)) is extracted
from the stable storage of Pi and re-sent to Pj .

5 Experimental Results

We implemented the previous algorithms in suma/g and conducted experiments
to evaluate the checkpointing intrusiveness and the overhead of the recovery
process. The platform used in the experiments was a set of clusters of 143 MHz
SUN Ultra 1 workstations running Solaris 7, with 64 MB Ram and a 32 Kbytes
cache memory, and a 10Mbps switched Ethernet LAN.



748 Y. Cardinale and E. Hernández

In order to evaluate checkpointing intrusiveness, we measured the total exe-
cution time with (Tckp) and without (Tnockp) invoking the checkpointing service.
The checkpointing overhead percent is given by:

O%ckp =
(Tckp − Tnockp)

Tnockp
∗ 100

The time spent by the recovery processes is measured by the suma/g core,
between the point in which the failure exception is received and the point in
which the “resume” service returns. The failure is simulated by killing the pro-
cesses. In all cases the application was restarted in a different execution platform.

We tested the checkpointing and recovery services on two kind of applications:
single-node and multiple-nodes programs. On single-node small applications the
overhead introduced was very low, typically less than 5%. Table 1 shows the
total execution time with and without checkpointing service for a numeric ap-
plication called “Acoustic”, which solves an acoustic wave propagation model
on an homogeneous, two dimensional medium. The problem size depends on the
plain dimensions and the total time, so it’s kept constant during the execution.
The checkpoints were taken every four minutes. For the “Acoustic” application,
the overhead is less than 0.5%.

Table 1. Total Execution Times for the Acoustic program

Tnockp(1) Tckp(2) # of ckps ckps size (2) - (1) O%ckp

103 min 29 sec 103 min 51 sec 25 2 KB (22 sec) 0.35%

We also executed several multiple-nodes programs. The first program is a
small synthetic program that calculates π, called “Pi Number”. All processes
execute the same amount of work, regardless of the number of processes used,
and keep an array of data obtained during the execution, so the checkpoint size
increases during the execution. The second one is the “Acoustic” parallel version
(called “Acoustic Par”) and its checkpoint size is constant during the execution.

Table 2 shows the measurements with and without the checkpointing ser-
vice for the parallel programs. Each row represents a single execution. For all
cases, the checkpoints were taken every 2 minutes approximately. The overhead
(O%ckp) exhibited when the checkpoint service is used increases with the num-
ber of processors. This is mainly due to the checkpoint calls and the distributed
checkpointing protocol. On the other hand, the “Acoustic Par” application re-
duces the execution time as the number of processors is increased.

We can note that the overhead for parallel applications is greater than the
overhead for sequential programs for several reasons: 1) there are more update
activities due to the distributed checkpointing algorithm, 2) on each checkpoint,
it is necessary to save additionally, the messages in transit, 3) all checkpoints are
saved in NFS (all processes contact the same file server), and 4) the applications
take a short time, so they are sensitives to the checkpointing intrusiveness.



Parallel Checkpointing on a Grid-Enabled Java Platform 749

Table 2. Total execution time for the multiple-nodes programs

App name # of proc Tnockp(1) Tckp(2) Checkpoints (2)-(1) O%ckp

# min size (KB) max size (KB)

2 6.74 m 7.1 m 3 1 131 0.36 m - 5.1%
Pi Number 4 7.31 m 7.77 m 3 1 139 0.48 m - 5.92%

6 7.68 m 8.18 m 4 1 142 0.5 m - 6.11%
2 5.45 m 5.51 m 2 1 1 0.06 m - 1.1%

Acoustic 4 3.56 m 3.65 m 2 1 1 0.09 m - 2.47%
Parallel 8 2.64 m 2.71 m 2 1 1 0.07 m - 2.58%

Table 3 shows checkpointing and recovery overhead for distributed appli-
cations. In each case the application was recovered from a checkpoint with the
same size but a different number of processors. Note that the recovery extra time
% increases as the number of processors is increased. It clearly depends on the
size of the checkpoints taken and the number of processors.

Table 3. Checkpointing and recovery overhead for the multiple-nodes programs

App name # of proc Ckp size (KB) Mintransit Ckp time (sec) Recov time (sec) % of extra time

2 220B 5,51 68.97
Pi Number 4 65 255B 1,71 6,45 73.49

6 410B 7,27 76.48
2 4,08 98.75

Acoustic 4 1 3KB 51 msec 5,65 99.21
Parallel 8 6,38 99.30

6 Conclusions and Future Work

This work addressed important aspects related to the implementation of a check-
pointing facility on a distributed execution platform intended to be implemented
on top of grid services, such as suma/g. This approach is almost transparent
at the user level, because the requirements for using this facility can be easily
hidden by using pre-processor and suma/g stubs.

We present an implementation of a distributed algorithm based on a commu-
nication-induced checkpointing protocol (quasi-synchronous algorithm). The al-
gorithm was implemented for execution of distributed Java bytecode using mpi-
Java, a wrapper for MPI, and tested on a grid-enabled Java execution platform.
The checkpointing/recovery facility is automatic if the parallel Java program uses
our extended mpiJava library and suma/g is used as the execution platform,
rather than submitting the mpiJava job directly on Globus execution servers.

In order to adequately implement the proposed checkpointing facility, some
basic grid services may be useful for reducing the checkpoint capture overhead.
A Heartbeat Monitor was not strictly necessary for this implementation. In-
stead, it seems more important the implementation of I/O support specifically
oriented to achieve a safe management of checkpoints. This mechanism could be
implemented as a Checkpoint Server accessible through GASS or, alternatively,
the checkpoints may be stored as virtual files in the grid. With the experiment



750 Y. Cardinale and E. Hernández

results, we concluded that, for the distributed checkpointing scheme that we
use, checkpoint manipulation dominates the overhead when using such facility,
rather than the synchronization operations needed among the processes.

References

1. M. Baker, B. Carpenter, S. Hoon Ko, and X. Li. mpiJava: A Java interface to
MPI. In First UK Workshop on Java for High Performance Network Computing,
Europar 98, 1998.

2. S. Bouchenak. Making Java applications mobile or persistent. In Proceedings of
6th USENIX Conference on Object-Oriented Technologies and Systems, 2001.

3. Y. Cardinale, M. Curiel, C. Figueira, P. Garćıa, and E. Hernández. Implementation
of a corba-based metacomputing system. Lecture Notes in Computer Science,
2110(Java in High Performance Computing), June 2001.

4. Y. Cardinale and E. Hernández. Checkpointing facility in a metasystem. In Lecture
Notes in Computer Science. 7th International Euro-Par Conference, volume 2150,
Manchester, UK, August 2001. Springer Verlag.

5. Y. Cardinale and E. Hernández. Parallel checkpointing facility in a metasystem.
In Proceedings of The Parallel Computing Conference, Naples, Italy, 2001.

6. E. N. Elnozahy, L. Alvisi, Y-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys, 34(30),
2002.

7. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications, 15(3), 2001.

8. J. M. Helary, A. Mostefaoui, R Netzer, and M. Raynal. Communication-based
prevention of useless checkpoints in distributed computations. Technical Report
Publication interne n 1105, Institut de Recherche en Informatique et Systemes
Aleatoires, May 1997.

9. E. Hernández, Y. Cardinale, C. Figueira, and A. Teruel. SUMA: A Scientific Meta-
computer. In Parallel Computing: Fundamentals and Applications. Proceedings of
The International Conference. Imperial College Press, 2000.

10. D. Manivannan and Mukesh Singhal. Quasi-Synchronous Checkpointing: Mod-
els, Characterization, and Classification. IEEE Transactions on Parallel and Dis-
tributed Systems, 10(7), July 1999.

11. A. Mostefaoui and M. Raynal. Efficient message logging for uncoordinated check-
pointing protocols. Technical Report Publication interne n 1018, Institut de
Recherche en Informatique et Systemes Aleatoires, June 1996.

12. G. Stellner. Cocheck: Checkpointing and process migration for MPI. In 10th
International Parallel Processing Symposium, 1996.

13. The Globus Alliance. The Globus Toolkit. http://www.globus.org/.
14. The Globus Alliance. The Globus Toolkit. http://www.globus.org/ogsa.
15. G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG Kits: A

Bridge between Commodity Distributed Computing and High-Performance Grids.
In ACM Java Grande 2000 Conference, San Francisco, CA, JUNE 2000.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 751 – 760, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Fault Tolerance in the R-GMA Information 
and Monitoring System 

Rob Byrom4, Brian Coghlan6, Andy Cooke1, Roney Cordenonsi3, Linda Cornwall4, 
Martin Craig4, Abdeslem Djaoui4, Alastair Duncan4, Steve Fisher4, Alasdair Gray1, 

Steve Hicks4, Stuart Kenny6, Jason Leake7, Oliver Lyttleton6, James Magowan2, 
Robin Middleton4, Werner Nutt1, David O'Callaghan6, Norbert Podhorszki5, 

Paul Taylor2, John Walk4, and Antony Wilson4 

1 Heriot-Watt University, Edinburgh 
2 IBM-UK 

3 Queen Mary, University of London 
4 Rutherford Appleton Laboratory,  

5 SZTAKI, Hungary 
6 Trinity College Dublin 

7 Objective Engineering Ltd. 

Abstract. R-GMA (Relational Grid Monitoring Architecture) [1] is a grid 
monitoring and information system that provides a global view of data 
distributed across a grid system. R-GMA creates the impression of a single 
centralised repository of information, but in reality the information can be 
stored at many different locations on the grid. The Registry and Schema are key 
components of R-GMA. The Registry matches queries for information to data 
sources that provide the appropriate information. The Schema defines the tables 
that can be queried. Without the combined availability of these components, R-
GMA ceases to operate as a useful service. This paper presents an overview of 
R-GMA and describes the Registry replication design and implementation. A 
replication algorithm for the Schema has also been designed. 

1   Introduction 

R-GMA is a monitoring and information application for grid environments. It is an 
implementation of the Grid Monitoring Architecture [2] proposed by the Global Grid 
Forum [3]. R-GMA was developed within the European DataGrid [4] project. . It is 
currently being re-engineered as web services, within the EGEE (Enabling Grids for 
E-Science in Europe) project. 

It has been used as the information and monitoring service within the DataGrid 
project, where it provided information on Computing and Storage Elements which was 
then used by the Resource Broker to decide where to submit jobs. Network monitoring 
data were also published using R-GMA [5].  A description of the use of R-GMA within 
DataGrid, along with detailed performance measurements (including indications of the 
performance gain with replicated registries) is about to be published [6]. 



752 R. Byrom et al. 

 

The LHC Computing (LCG) project [7] aims to meet its computing needs by 
deploying a grid composed of computing resources distributed across many different 
countries. R-GMA is being used to implement an accounting service on LCG.   

Santa-G (Grid-enabled System Area Networks Trace Analysis) was used to 
develop a network traffic monitoring application within the CrossGrid [8] project. 
This NetTracer application publishes information using R-GMA that can be used for 
the validation and calibration of intrusive monitoring systems, and also for analysing 
the performance of a site in a network.  

2   Grid Monitoring Architecture 

The Grid Monitoring Architecture models the information infrastructure of the grid as 
a set of Producers that provide information, and a set of Consumers that request 
information. A Registry contains details of Producers and Consumers. Producers 
contact the Registry to announce the structure of the data they provide. Consumers 
contact the Registry to find Producers that publish information they require. The 
Registry returns to the Consumer a list of Producers that provide the desired 
information, and the Consumer then contacts the appropriate Producer or Producers to 
obtain this information. 

3   Virtual Database  

R-GMA presents a global view of the information produced by the components of a 
grid system and by applications running on the grid. It presents this information as a 
virtual database, introducing the relational data model to the Grid Monitoring 
Architecture. Information can be inserted into and retrieved from the R-GMA virtual 
database using a subset of the statements specified in the SQL92 Entry Level 
standard. To a user who queries this virtual database, it seems as though they are 
querying a single, centralised repository of information. In actual fact, the information 
obtained from this virtual database can be stored at a number of different locations.  

Each table has a key column (or group of columns). In addition, each tuple inserted 
by a Producer has a timestamp added to it by the Producer. The combination of this 
timestamp and the key columns is similar to a primary key for the table. This enables 
R-GMA to provide time-sequenced data to monitoring applications where users may 
wish to request data published within a particular time interval. Of course for this to 
be reliable, all systems in an R-GMA installation must synchronize their system 
clocks using a tool suc as NTP. 

4   Producer Service 

The Producer service is used to publish data to the virtual database. The R-GMA 
schema contains the definitions of all tables in the virtual database, and Producers 
declare their intention to publish to a table by registering themselves with the 
Registry. The Producer service obtains the table structure from the Schema and 



 Fault Tolerance in the R-GMA Information and Monitoring System 753 

 

creates a table with identical structure in its own storage. Data in the Producer’s 
storage has a retention period associated with it. When data has been in the storage for 
longer than this retention period, it is deleted. The length of this retention period is 
dependent upon how long users require access to tuples after they have been 
published. There are three kinds of Producers. The difference between them is where 
the data they publish is coming from. 

− Primary Producer: The user's code inserts tuples directly into the Producer’s 
storage. 

− Secondary Producer: The Secondary Producer republishes tuples that have already 
been published by another Producer. It queries Primary Producers and other 
Secondary Producers and inserts the tuples returned from these queries into its own 
storage. This can be useful for creating a service that archives the data from 
multiple Producers, or for answering queries that require joins by combining tables 
from multiple Producers. 

− OnDemand Producer: It may not be practical to transfer a large volume of data to a 
Producer with SQL INSERT statements. The OnDemand Producer allows a user to 
request such information when it is required. Only then is the information encoded 
in tabular form and sent to the user. The OnDemand producer has no tuple storage 
facility. It sends all queries it receives to additional user code which sends tuples 
back to the consumer.  

5   Consumer Service 

Consumers allow users to execute SQL queries on the R-GMA virtual database. The 
Consumer contacts the Registry to find the Producers required to answer the query. It 
then sends the query to these Producers and collects the tuples returned into an 
internal store for subsequent retrieval by the user.  Consumers allow four types of 
query: 

− Continuous: All tuples matching a query are to be automatically streamed to the 
Consumer when they are inserted into the table. All Primary and Secondary 
Producers support continuous queries, but OnDemand Producers do not. An 
example of where receiving a continuous stream of data from a producer is of use 
would be a real-time job monitoring application, which must update the status of 
jobs on the grid as they are executing. 

− Latest: The most recent version of a tuple matching a query is returned to the user. 
A resource broker which decides where jobs should be executed on a grid may use 
a Latest producer. The resource broker needs up-to-date information about the 
resources on the grid. It is only interested in the most recent state of the resources, 
not their state over a period of time. 

− History: All available tuples matching a query are returned. This is useful when the 
Producer is to be used as part of an archiving application.  

− Static: These are specific to OnDemand Producers, and are handled like a normal 
database query (no timestamps or intervals associated with these queries). 



754 R. Byrom et al. 

 

6   Registry Service 

The Registry enables R-GMA to match Consumers to Producers that provide the 
information they require. Producers advertise what tables and parts of tables in the 
virtual database they produce rows for. Consumers can consult the registry to find 
Producers that can answer their queries. The process by which the Registry finds 
Producer(s) that are capable of providing information requested by a Consumer is 
called mediation[9]. Mediation allows a Consumer to have a global view of 
information from sources distributed across the grid.  

7   Schema Service 

R-GMA uses a Schema service to define the tables that comprise the virtual database. 
It also defines the authorization rights for these tables. The Schema service allows 
operations such as adding or removing tables to/from the virtual database, or getting 
the name, type and attributes of all columns in a particular table. 

8   Namespaces 

The term “Virtual Organisation” (VO) [10] has been formulated to represent a set of 
resources that are shared by a number of users, and rules that specify users’ access 
rights to resources. Individuals and institutions working on the same problems (for 
example, a community of researchers working in a particular area, such as High 
Energy Physics or Earth Observation),  benefit from pooling their resources and 
making them available to all members of the community. It is possible that a user can 
be a member of more than one VO. 

R-GMA allows users to issue queries to multiple VOs. A set of VOs may contain 
semantically different tables with identical names. Clearly a global namespace 
defined by just the table names is not scalable. The R-GMA solution is to form a 
virtual global namespace by giving each VO its own disjoint subset of the namespace. 
Information particular to each VO is contained in a virtual database, the name of the 
virtual database being that of the VO. Although it is possible to have a single registry 
and schema, scalability concerns strongly favour that each VO has a separate set of 
schema and registry services. To issue a query to a particular VO using a consumer,  
the table name in the SQL query must be prefaced with the VO name. For example, 
for the LCG VO: 

SELECT NumberOfJobsRunning FROM LCG.Workload WHERE 
Site=’RAL’ 

For publishing information we could adopt the same syntactic approach. However 
as it is common to wish to publish the same information to multiple VOs, the set of 
VOs that a tuple is published to is included as a separate parameter in the Producer 
API function call, and is not included in the SQL INSERT statement.  



 Fault Tolerance in the R-GMA Information and Monitoring System 755 

 

9   Registry Replication 

Although there is only one logical Registry per VO, replicas of the Registry are 
maintained. If a particular Registry fails at any time, an alternative Registry is used 
instead. This enables the client (i.e. the Consumer or Producer) to carry out a Registry 
operation in spite of any faults that occur within individual components of the 
replicated Registry group. 

9.1   Selecting a Registry 

Clients wishing to connect to a Registry do so by using a selection algorithm, which is 
carried out internally within the Registry API. A list of available Registry services is 
provided via a configuration file on the client. During runtime, a simple profile is 
created by contacting each Registry service identified in the configuration.  The 
quickest response time is then used to select the Registry to handle the client request. 
This Registry will then be re-used for all further client interaction unless the Registry 
becomes unavailable - at which point a new one is selected using the same procedure.  

A reliable Registry Service can be demonstrated with only a small set of Registries, 
typically between 2 to 4 per VO. Any overhead incurred from contacting each 
Registry is therefore acceptable for small groups of Registry peers. A more 
sophisticated profiling algorithm, perhaps based on the load average or overall 
reliability of a Registry, might benefit larger installations. 

9.2   Registry Replication Design 

Registry replication is based on a distributed model where each Registry pushes 
locally acquired data to its peers. New data is obtained when a Consumer or Producer 
carries out a registration process. When this occurs, an entry is copied into the local 
Registry database along with a replica status flag indicating the data is fresh. 
Conversely, the replica status flag is set to delete when a Consumer or Producer is 
closed by the client. A further state referred to as “replicated” is encoded by the 
replica status flag and represents rows that were copied in a previous replica update. 
An additional origin tag is added to each entry that identifies the Registry where the 
new data was added.  

A dedicated thread that runs periodically on each Registry replica initiates the 
replication process. It checks the existence of newly arrived registrations by reading 
the replica status flag of entries in the Registry. An additional check is made to ensure 
the origin matches the current Registry so only local data is considered. 

Once a list of candidate data is identified for replication, a replica message is 
constructed which encodes all the records within an XML format. XML was chosen 
due to open source API’s which provide XML parsing functionality. Although XML 
imposes additional padding to a replica message, the schema adopted has been 
carefully designed to help minimize the message size. On average, XML encoding 
increases the replica message by a factor of 1.5.  

The Registry reads from a configuration file the URLs of all Registry and Schema 
Servers that are members of the same VO. When the XML message is constructed, a 
checksum is then computed based on the state of the Registry and the final replica 



756 R. Byrom et al. 

 

message is then sent to each Registry peer. A list of available Registries is read-in 
from a configuration file each time the replication cycle is scheduled. When a replica 
message is received, the message is passed through a filter that works out in which 
table each record should be stored or removed. Once each record in the replica update 
is processed, the checksum is re-calculated to validate the consistency of the 
databases between the sender and recipient. If the checksums match up, a successful 
response message is returned to the sender. At that point, the replica status flag of all 
the copied records on the sending registry are set to “replicated” to prevent further 
replication in future. 

 

 Fig. 1.  Only data local to  a Registry is replicated  

If the checksums do not match, the replication attempt has failed, indicating that 
the data stored within the sender's database is inconsistent with that of its peer. In 
order to resolve this conflict, the original sender will copy all records that match the 
Registry's origin irrespective of whether the record has been replicated or not. The 
recipient Registry will then delete all records that match the sender's origin and then 
perform a clean install using the new replica message. This therefore ensures a high 
level of consistency is preserved, and that errors cannot go unnoticed. 

A checksum failure means a Registry may have provided inaccurate mediation 
prior to correction. In the worst case, a Producer or Consumer may receive false 
information about a resource that no longer exists. In this case, the Producer and 
Consumer Service are robust enough to quietly dispose of the false information.  

When a replica update is successfully stored (whether it is a complete or partial 
update) the receiving registry will attempt to mediate newly replicated Consumers 
with any locally stored Producers which do not match the sender’s origin. If a 
complete update is made, then it is possible a Consumer may receive duplicate calls 

Data belonging 
to R1 

Copy of R2 
Copy of R3

Registry 

Data belonging 
to R2 

Copy of R1 
Copy of R3

Registry 

Data belonging 
to R3 

Copy of R1 
Copy of R2 

Registry 

Producer 
Service 

Producer 
Service 

Producer 
Service 

Declare 
Table 

Declare 
Table 

Replica 

Declare 
Table 



 Fault Tolerance in the R-GMA Information and Monitoring System 757 

 

for the same producer. If this occurs, the Consumer Service will simply ignore the 
duplicate. The mediation phase ensures the query plans used by the Consumers and 
Secondary Producers are therefore complete. 

9.3   Batching Updates 

A Registry replication update is executed as one large batch. While this approach 
helps to reduce the overall load on each Registry, some inconsistency is introduced 
between successive batch updates. However, the Registry copes with any potential 
inconsistencies by performing an extra mediation phase once a batch update is 
received. As mentioned previously, this mediation phase ensures that any Consumers 
that may have missed a Producer are then notified. In the worst case, a Consumer may 
not receive data until the next batch update. By default, this is set to an interval of 30 
seconds but can be re-configured. This approach seems to work, but scalability may 
require the replication interval to be automatically adjusted, based on Registry usage. 

10   Schema Replication Design 

We have considered several possible designs for a schema replication system, mostly 
based around master-slave or atomic commitment protocols. All have struggled to 
balance the requirements of global consistency, fault tolerance and scalability. In fact 
we can relax the first of these. Schema replicas don’t have to be identical for R-GMA 
to operate safely, it is only necessary that individual table definitions (column names 
and types) be uniquely defined. We do permit table names to be re-used (dropped and 
re-created), but tables are identified internally by a table number which is unique for 
all time, and we don’t permit table definitions to be modified. Since mediation is done 
on table numbers, not names, there is no possibility of the mediator matching up 
producers and consumers that have different ideas about a table’s definition. Of 
course permitting schema replicas to get temporarily out of step (which could result in 
consumers not being matched up with producers, and vice versa) is not ideal, but it is 
safe, and in practice it is very unlikely to occur because dropping and re-creating 
tables is a rare event, especially on tables that are still being used elsewhere in the 
VO. With these observations, the replication problem reduces to designing an 
allocation system for unique table numbers for new tables, along with a simple 
scheme to re-synchronize replicas in slower time, following any changes. 

10.1   Schema Write Operations 

Changes to the schema are, of course, visible across the whole VO. We can therefore 
assume that schema write operations will require special privileges, will be relatively 
rare, and will probably be initiated by hand. We’ll see that these assumptions 
influence some of the design choices we make in the replication design. The write 
operations are createTable, dropTable and alterTableAuthorization. It turns out that it 
is convenient, for re-synchronization, to allocate a unique version number to the 
schema itself which is changed following any write operation. It can also be used as 
the new table number for a createTable operation. Thus the algorithm for all schema 
write operations is broadly the same: 



758 R. Byrom et al. 

 

1. Obtain a write lock on the schema database. 
2. Agree a new schema version number with the other replicas, as described below. 
3. Commit the schema changes and the new version number to the database, as a 

single transaction (so schema readers see an atomic change). 
4. Release the database lock. 
5. Schedule an immediate re-synchronization with the other replicas. 

Read operations on the schema are allowed to continue throughout this process. 

10.2   Schema Version Number Allocation 

Each schema replica has a version property and a nextVersion property stored in its 
database. These are both integers, initialised to zero when the replica is first created. 
Each replica also has access to a list of URLs of all other replicas. Finally each has a 
newVersion(proposedVersion) operation called by other replicas when they want it to 
agree a new version number, defined as follows: 

1. Obtain a write lock on the local schema database. 
2. Get the current value of nextVersion. 
3. If (nextVersion < proposedVersion) 

        Set nextVersion to proposedVersion and commit it to the database. 
Else 
        Set nextVersion to (nextVersion + 1) and commit it to the database. 
End If. 

4. Release the database lock. 
5. Return nextVersion to the caller. 

When a replica wants to agree a new schema version number, it first increments its own 
nextVersion number and commits it to its database, then proposes it to all other replicas 
by calling newVersion(), repeating the process until agreement is reached.  Although a 
synchronous call to each replica is potentially slow, it is a reasonable approach for a 
manually initiated operation, given the relatively small number of replicas a VO is likely 
to require. A time-out is used to make sure the call to each replica completes or fails in a 
reasonable length of time, and only a majority of replicas are required to reply for the 
process to succeed. The exact procedure is as follows:  

1. Increment the nextVersion property to (nextVersion + 1) and commit it to the 
database. 

2. Loop through the list of replicas, sending a newVersion(nextVersion) request to 
each of them. 

3. If (fewer than (N + 2) / 2 reply, for N replicas) 
        Abandon the operation. 
Else if (all replicas accept nextVersion) 
        Use nextVersion as the new schema version number. 
Else if (this is the second attempt to obtain a new version number) 
        Abandon the operation. 
Else 
        Set nextVersion to the highest version number returned by any replica. 
        Commit nextVersion to the database, and try again. 
End If. 



 Fault Tolerance in the R-GMA Information and Monitoring System 759 

 

It is essential that a replica always increments its nextVersion property before 
proposing it to the other replicas, so that concurrent instances of this algorithm don’t 
end up with the same number. There is still a possible race condition where two 
simultaneous instances contend with each other for a new version number and the 
process never terminates, but again, since schema write operations are manually 
initiated, it is sufficient just to make a limited number of tries before giving up with a 
suitable error message. 

10.3   Synchronizing Replicas 

A replica synchronizes itself with another replica by sending a synchronization 
request containing its own version number to the remote replica. The remote replica 
returns its version number in reply. If the remote replica is at a higher version number, 
it also returns a copy of itself with a checksum, much as in the registry replication. If, 
it is at a lower version number, it schedules its own synchronization request. A replica 
sends synchronization requests to all other replicas when it first starts up (selecting 
the most up to date reply) and when it completes a write operation. It also periodically 
sends re-synchronization requests to any replicas which it believes to be out of date 
(based on an in-memory list), to prompt them to re-synchronize themselves. 

10.4   Notifying Producers and Consumers of Schema Changes 

Normally, producer and consumer instances don’t need to be notified about schema 
changes, because they retain their own copy of table definitions for any tables on 
which they are currently processing queries, and these table definitions are 
immutable. Table authorization can change, however, and since producer and 
consumer services are responsible for imposing table authorization, these changes 
may need to be propagated immediately. 

11   Conclusions 

R-GMA provides a global view of information produced by applications distributed 
over a grid. The Registry and Schema are key components of R-GMA. If these 
components are unavailable, R-GMA ceases to operate as a useful information and 
monitoring service. Replication algorithms for both the Registry and Schema have 
been designed. If one of these components fails at any time, an alternative working 
Registry/Schema can be used instead. When replicas of the Registry and Schema are 
created, these components are no longer single points of failure within R-GMA. This 
improves the scalability and fault tolerance of R-GMA. 

References 

1. A. Cooke, A. Gray et al., R-GMA: An Information Integration System for Grid 
Monitoring, in Proceedings of the Tenth International Conference on Cooperative 
Information Systems (2003). 



760 R. Byrom et al. 

 

2. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski and M. Swany, A Grid 
Monitoring Architecture, GGF 2001. http://www-didc.lbl.gov/ggf-perf/gma-
wg/papers/gwd-gp-16-3.pdf. 

3. Global Grid Forum: http://www.ggf.org/ 
4. DataGrid project: http://www.edg.org/ 
5. F. Bonnassieux, Final Report on Network Infrastructure and Services, deliverable for 

DataGrid Project, 2003. 
6. A.Cooke, A.Gray et al., The Relational Grid Monitoring Architecture: Mediating 

Information about the Grid, to be published in Journal of Grid Computing 
7. LHC Computing Grid Project: http://lcg.web.cern.ch/ 
8. CrossGrid project: http://www.crossgrid.org/ 
9. A. Cooke, A.J.G. Gray and W. Nutt, Stream Integration Techniques for Grid Monitoring, 

Journal on Data Semantics, 2, 2004. LNCS 3360 
10. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling ScalableVirtual 

Organizations, International Journal of High Performance Computing Applications. 15(3), 
2001 



Deployment of Grid Gateways Using
Virtual Machines

Stephen Childs, Brian Coghlan, David O’Callaghan, Geoff Quigley
and John Walsh

Department of Computer Science,
Trinity College Dublin, Ireland

{childss, coghlan, ocalladw, gquigle, walshj1}@cs.tcd.ie

Abstract. Grid-Ireland, the national computational grid for Ireland,
has a centrally managed core infrastructure: the installation and con-
figuration of grid gateways at constituent sites are controlled from an
Operations Centre based at Trinity College Dublin. We have developed
tools to automate and simplify the deployment of Grid middleware to
these sites. Virtual machine (VM) technology has performed an impor-
tant role, allowing us to maximise the utilisation of server hardware and
to simplify installation and management procedures. By running multi-
ple OS instances, each on a VM, a full LCG-compatible Grid gateway
can be hosted on a single computer. This has significantly reduced the
hardware, installation and management investment needed to deploy a
new site. In this paper, we summarise an evaluation of competing VM
technologies and relate our experience with virtual machines to date.
We also describe a single-computer Grid gateway based on the Xen VM
system which we plan to deploy to eleven new sites in early 2005.

1 Introduction

1.1 Context

The Grid-Ireland project provides grid services above the Irish research network,
allowing researchers to share computing and storage resources using a common
interface. It also provides for extra-national collaborations by linking Irish sites
into the international computing grid. The national infrastructure is based on
middleware from the LHC Computing Grid (LCG) project [1]. LCG provides a
common software distribution and site configuration to ensure interoperability
between widely distributed sites. LCFGng [2] allows network installation of nodes
according to configuration profiles stored on an install server.

Grid-Ireland currently comprises an Operations Centre based at Trinity Col-
lege Dublin (TCD) and six nationwide sites. The Operations Centre provides
top-level services (resource broker, replica management, virtual organisation
management, etc.) to all sites. Each site hosts a Grid access gateway and a
number of worker nodes that provide compute resources. We aim to make Grid
services accessible to a far higher proportion of Irish research institutions in the

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 761–770, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



762 S. Childs et al.

near future. To achieve this goal we must ensure that the hardware and per-
sonnel costs necessary to connect a new site to the Grid are not prohibitive. A
standard LCG gateway configuration makes significant hardware demands of a
site. A minimum of four dedicated machines are normally required: an install
server, providing a configuration and software repository for all nodes; a com-
puting element (CE), providing scheduled access to compute nodes; a storage
element (SE), providing data management, and a user interface (UI) providing
for job submissions from users.

We have already deployed VM technology at six sites: all UIs are running
as User-Mode Linux (UML) VMs on the SE server. We now wish to deploy to
eleven new sites, and based on positive experience with the use of VMs, we are
currently developing a software distribution that will allow us to run all gateway
services for a site on a single computer. This machine will host a number of VMs
acting as logical servers, with each VM running its own OS instance. As each
VM will appear to be a real machine (both to the server software and to users),
there will be no need for special configuration relative to the existing gateways.

1.2 Aims

We aim to make Grid deployment more cost-effective by using VM technology to
reduce the number of machines that need to be dedicated to a Grid gateway. We
will also develop tools that allow administrators to automate the initialisation
and configuration of the VMs, thus simplifying the installation process. We also
aim to limit the divergence from a standard Grid site configuration so that the
same configuration data (LCFG profiles, software package lists) can be used
for all gateways, whether they use VMs or not. We also provide for central
management of remote sites: each of the servers must be accessible via both
console redirection and Secure Shell (ssh). Finally we must provide a simple
installation process that can be performed remotely.

1.3 Outline

In the remainder of this paper we describe the advantages of using VM technol-
ogy to build and deploy Grid gateway services on remote sites. In Section 2 we
discuss the factors determining the choice of a good VM system, in Section 3 we
briefly describe the architecture of a Grid gateway built on VMs, and in Section
4 we describe the tools we have developed to aid deployment. In Section 5 we
outline the installation procedure used to roll out new sites, and in Section 6 we
make some observations based on our experience of deploying VM technology.
Section 7 discusses related work, and finally Section 8 summarises our findings.

2 Choosing a VM System

Making a good choice of VM technology is crucial to building a secure, fast
system that is easy to manage. We briefly describe a range of currently available



Deployment of Grid Gateways Using Virtual Machines 763

VM systems, and choose representative VM systems for evaluation. We also
outline the technical and administrative requirements demanded by the task of
Grid deployment.

2.1 Overview of VMMs

A virtual machine system provides each user with a complete OS environment
tailored to his applications and isolated from other users of the computer. The
virtual machines are controlled by a monitor (VMM), which enforces protection
and provides communication channels. In the past, VM technology was most
widely applied in mainframe computing, for example in IBM’s VM/370 system
[3]), where it was used to allow many users to share the resources of a single
large computer.

Recently, interest has grown in implementing VMMs on commodity hardware
and the past few years have seen a stream of commercial and open-source VMMs
which provide varying levels of virtualisation. Full virtualisation virtualises a
complete instruction-set architecture: any OS that will run on the underlying
hardware will run on the VM. Examples include VMWare [4], a commercial
product that provides full x86 virtualisation on both Windows and Linux, and
Qemu [5], an open-source x86 emulator. Para-virtualisation presents a modified
interface to guest OSes, which must be ported to the new VM “architecture”;
this approach results in performance close to that of the bare hardware. Xen [6]
is a para-virtualised VMM which supports Linux and BSD-based guest OSes.
Finally, system call virtualisation provides an application binary interface that
enables guest OSes to run as user-space processes. User Mode Linux (UML) [7]
is a port of the Linux kernel to run in user-space; it can be run on an unmodified
host OS although kernel modifications are available that improve performance.

Our evaluation has focussed on Xen and UML. These are both open-source
projects, allowing us to customise the code if we need to. They are also sta-
ble projects with active user communities to provide support. Both Xen and
UML are compatible with the LCG software: LCFG profiles can be modified
to selectively install custom kernels on the correct machines. UML VMs can be
run on an unmodified Linux kernel, although specially patched kernels may be
used to improve performance. We have excluded commercial VMMs from our
experiments due to cost considerations and licensing restrictions.

2.2 Requirements

We aim to run all gateway services quickly, securely and reliably on a single
machine and so require a VMM to provide the following features:

Isolation: In a single-box solution, it is important for the VMM to provide iso-
lation between VMs, so that even a catastrophic OS failure in one VM will not
affect the others. (A hardware failure will inevitably affect all hosted OSes, but
this risk could be mitigated by providing a backup machine to act as a failover.)

sStorage: The logical servers each have different storage requirements but must
share a limited set of local disks: the VMM should provide a flexible means of



764 S. Childs et al.

sharing the available disk space between hosted nodes to reduce the need for
tricky repartitioning in the case of file systems filling up.

Resource control: The various servers also have different CPU requirements: the
VMM should provide a means for controlling CPU utilisation. For example,
to preserve interactive performance on the UI it may be necessary to throttle
back the CPU utilisation of the other nodes. It would also be useful to be able
to partition other resources such as disk and network bandwidth and physical
memory.

Low overhead: The VMM should not impose a high performance overhead or
significantly reduce system reliability. This is particularly an issue during I/O
intensive operations such as installation/upgrade: while almost all VMMs can
run compute-bound code without much of a performance hit, few can efficiently
run code that makes intensive use of OS services. As the gateway will host the
User Interface, the VMs must provide good interactive response times.

Management support: The VMM should also provide features to facilitate man-
agement of VM nodes. Such features typically include access to consoles for
each VM, a facility for storing VM configurations, and tools for displaying and
controlling VMs’ resource usage.

2.3 Performance Evaluation

Detailed performance measurements of Xen, VMWare and UML can be found
in the main paper describing Xen [6]. The results show that Xen consistently
out-performs the other VM systems tested: by a small factor for computation-
intensive applications, and by a very large factor for applications using I/O and
other OS services.

We have also performed our own measurements of Grid applications; full re-
sults may be found in [8]. Figure 1 shows the outcome of tests recording the
duration of a first-phase LCFG installation of a UI node — a procedure includ-
ing the creation of filesystems and the installation of the Red Hat 7.3 OS and
LCG middleware (over 700 RPM packages). This procedure takes around seven
minutes on a Xen VM, but over an hour on UML. The results of this performance
evaluation have led us to migrate our existing UML-based VMs over to Xen.

3 System Structure

Figure 2 shows the structure of our main VM-based application: a single-
computer Grid gateway. Each server runs in its own OS on a separate virtual
machine: the LCFG install server runs on the first VM and the other servers (CE,
SE, UI and WN) run in VMs with filesystems hosted in loopback files on the in-
stall server’s file system. Xen provides a virtual network interface for each of the
VMs. These are bridged onto the real Ethernet card using standard Linux util-
ities, providing direct network connections. Further details may be found in [8].



Deployment of Grid Gateways Using Virtual Machines 765

Fig. 1. LCFG installation of UI node

eth0

Compute 
Element

Storage 
Element

Worker 
Node

Install server / VM host
To public
network

/dev/hda /dev/hda /dev/hda

VM 0

eth0 eth0 eth0

VM 1 VM 2 VM 3

Bridging

User 
Interface

/dev/hda eth0

VM 4

Physical machine

Host file system

Fig. 2. Architecture of grid gateway



766 S. Childs et al.

4 Tool Support

4.1 Control Tools

If VM software is to be deployed across multiple sites, we need to make it simple
for system administrators to control its operation. This implies that they should
not need need detailed knowledge of the VM configuration parameters. For this
reason, it is important to integrate the VM system with standard system ser-
vice control tools. This is most easily done by writing scripts to wrap the tools
provided by the VM software.

We have already developed control tools for our UML-based VMs which have
been deployed for some time now on the national infrastructure. There are two
main components: a service control script used for integrating the VM system
with standard boot service configuration, and a command-line tool designed for
run-time control of VMs.

The service control script allows for all configured VMs to be automatically
started or stopped in a particular run-level. A list of VMs is stored in a file
and for each VM, a configuration file contains network settings stored as simple
shell variables. The control script reads the configuration variables and creates
an appropriate command line for the VM control system.

The principle behind the development of these tools is to provide a level of
abstraction that allows administrators to control the gateway services in the
same manner as they would other standard services. Configuration settings can
be set using standard shell variables: the administrator does not need detailed
knowledge of the VM command line parameters.

4.2 Remote Management

There are typically two levels at which remote management must be provided
for VMs: access to the machine itself at a low-level, and access to each of the
VMs. The first is typically provided by dedicated hardware in the server ma-
chines which enables management features such as remote console access over a
dedicated serial or Ethernet connection and console redirection allowing access
to BIOS settings. The second must be provided by the VM system itself. UML
VMs are in fact standard Linux processes, output appears directly on the con-
sole where the VM was created. However, when multiple VMs are running, it is
convenient to be able to attach to the console later on. We start each VM within
an instance of the screen utility and give them an unique name that allows
us to reconnect later on as necessary. Xen provides its own tools for console-
level access: the complete boot sequence for each VM can be observed via a
command-line application which can be attached or re-attached at any time.

5 Installation Procedure

In order to deploy software to eleven new sites around the country, it was impor-
tant to develop a simple installation procedure. We took a three-stage approach:



Deployment of Grid Gateways Using Virtual Machines 767

firstly we installed a base system using a combination of manual installation
and the LCFG install tool and took an image of that system; subsequently we
copy that image to the target machines’ disks, and reconfigure the new servers
to prepare them for installation at a specific site.

5.1 Stage 1: Installation of Base Image

The base OS (Red Hat Linux 7.3) was installed from CD, and then the LCFG
server software was installed according to the standard procedure. At this stage,
we upgraded a number of packages to provide the versions of software required
by the Xen tools. We then installed a custom RPM package which included Xen
kernels compiled with support for the hardware on the target machine. Changes
were made to the LCFG configuration to support the Grid-Ireland layout, and
profiles for the various nodes to be hosted were retrieved from a CVS repository.

The next step was to install the various nodes using LCFG. This involved
various modifications to the standard LCFG install procedure due to the fact
that these were virtual machines rather than real physical machines. Normally,
LCFG-installed machines network boot using PXE: this isn’t necessary with
VMs, as the VMs are started from the command line. Also, network settings
can be specified directly, eliminating the need for DHCP. Once the necessary
modifications were made to the LCFG install script, the VMs were booted with
a root file-system set to the LCFG installation directory, and executed this script
as init.

The LCFG installation process installs the Red Hat Linux 7.3 operating sys-
tem and the packages making up the LCG middleware: a total of 700-800 pack-
ages depending on the configuration. The first phase of the installation process
takes around 7 minutes on a Dell PowerEdge 1750 2.4 GHz machine running
Xen. Once all nodes (CE, SE, UI and WN) had been successfully installed, we
ran tests to confirm that they were operating correctly. We then shut down the
virtual machines and dumped the complete filesystem to a compressed image
file, which was approximately 6.6 GB in size.

5.2 Stage 2: Imaging Target Machines

This image file is stored on a portable hard drive, which we then use to install
the target machines. We use the standard dump format so the file system can be
restored to any disk of a sufficient size.

5.3 Stage 3: Configuration of New Servers

The system image transferred to the target machine contains many settings
that refer to the original installation, and these have to be updated to reflect
the desired configuration. Ideally, this would be simply a case of pointing each
individual virtual machine to its new profile, and then allowing LCFG to re-
configure the system. In practice, we have found it simpler to perform some
pre-configuration on the new file system before starting the boot process.



768 S. Childs et al.

The basic steps needed are to update the network settings, to copy the new
LCFG profile and to compile it. In the host OS, we mount the filesystem and
edit the network configuration files to reflect the new identity of the machine.
We then copy the XML version of the profile to the correct location on the VM
filesystem. We use the chroot program to run the profile compiler within the
VM filesystem so that the compiled profile ends up in the right place. All these
steps are scripted so that they can be included in an automated process.

When the virtual machine is booted, the LCFG client reads the new profile
and performs any reconfiguration necessary. Extensive changes should not be
necessary as the main differences between server installations at different sites
are the network settings, which we have already modified by this stage. Once
the new VM is up and running, a small number of manual steps still need to be
performed: this is because LCFG objects have not been written for all system
components.

5.4 Deployment to Sites

All previous steps can be carried out at the Operations Centre (subject to site
managers providing the necessary network settings for their site). The actual
procedure of installation at the site is intended to be straightforward: the main
task is to provide network and power connections for the gateway machine.

6 Experience with Virtual Machines

We have been using UML for the past year to share a single machine between
an SE and a UI; this configuration currently runs on six sites nationwide. As
a result of performance evaluations [8], we are switching to Xen for the next
tranche of gateway rollout. The performance overhead due to UML, while just
about acceptable for use with a single VM, is too high for our target of five VMs
per computer. UML is around ten times slower than Xen for OS-intensive tasks,
making node installations and upgrades lengthy processes. We have also found
Xen to be more responsive than UML during interactive use.

There are also management benefits: as the VMs’ file systems are stored
as regular files on the host, we can easily back up an entire site gateway by
dumping the host file system. VMs also ease site installation as only a single
machine needs to be provided with network connection and power. Installation
of individual servers is also more manageable. Even with network installation,
unforeseen issues often arise that require physical access to the machines. With
VMs this doesn’t arise: once the host is up and running, all servers can be easily
installed and accessed from the command line.

Full remote console access is more easily arranged with VMs than with real
machines. With virtual machines, BIOS settings are simply not an issue (there is
no BIOS!), and both Xen and UML provide full console redirection that allows
the entire boot process to be monitored.

We have also found that the use of VMs greatly eases the task of reconfiguring
existing sites. For example, we recently decided to deploy a test worker node at



Deployment of Grid Gateways Using Virtual Machines 769

each site to allow administrators to run comprehensive tests even when the site’s
physical compute resources were inaccessible. We decided to run this new node
on a VM, and this made the installation procedure very straightforward. We
simply took an filesystem image (actually of a UI system — the process would
be even easier using a WN image), copied it to a new machine, booted a new VM
from this image, and then reconfigured the VM with a new profile and network
settings. These operations were all performed remotely over SSH without any
need for physical access to the site.

7 Related Work

The work of Figueirdo et al [9] is complementary: they propose the use of virtual
machines for Grid worker nodes whereas we use VMs for the gateway servers.
They aim to support a variety of guest operating systems and so choose a VMM
that supports full virtualisation. Other sites within the LCG collaboration have
explored the use of VMs: the London e-Science Centre have used UML to pro-
vide an LCG-compatible environment on existing cluster machines [10], and
Forschungszentrum Karlsruhe have used UML to host their install server [11].
To our knowledge, no-one else has implemented a complete site gateway using
VMs. Outside the Grid community, the XenoServer [12] and Denali [13] projects
both use VM techniques to support dynamically instantiated application envi-
ronments for remote users.

8 Conclusion

The use of virtual machines is central to the speedy deployment of new sites in
the Grid-Ireland architecture. We have found that using VMs reduces hardware
costs, enabling more sites to be deployed for a given aggregate budget and in a
given time. This allows a significant increase in Grid participation.

Although we have demonstrated that it is feasible to construct a single-
machine Grid gateway using virtual machines, our experiments show that the
choice of VM technology is crucial. User-Mode Linux, while in widespread use, is
impractical for our purposes due to its extremely high overhead for OS-intensive
tasks. Xen, in contrast, performs well across a range of applications. Because
Xen provides an OS environment that is indistinguishable from a regular OS in-
stance, software servers can be run with the same configuration as on dedicated
machines.

VMs also speed up deployment as an entire gateway configuration can be
quickly imaged onto a single target computer. Remote management is also eas-
ier with VMs: full console access is available without the need for specialised
hardware and software.

We have already experienced significant benefits by using VM technology in
our site installations. We believe that this approach will be of interest to many
sites wishing to connect to the Grid.



770 S. Childs et al.

Acknowledgements

We would like to thank the Xen team at the University of Cambridge for develop-
ing the Xen VMM and for providing useful support. Dell Ireland kindly donated
the hardware for the VM-based gateways. The original UML work drew on a
configuration by David Coulson [14].

References

1. LCG: LHC Computing Grid Project (LCG) home page.
http://lcg.web.cern.ch/ LCG (2004)

2. Anderson, P., Scobie, A.: LCFG — the Next Generation. In: UKUUG Winter
Conference, UKUUG (2002)

3. Gum, P.H.: System/370 Extended Architecture: Facilities for Virtual Machines.
IBM Journal of Research and Development 27 (1983) 530–544

4. Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system including a virtual
machine monitor for a computer with a segmented architecture. US Patent (1998)

5. Bellard, F.: QEMU CPU emulator. http://fabrice.bellard.free.fr/qemu

(2004)
6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, ACM (2003)

7. Dike, J.: A user-mode port of the Linux kernel. In: Proceedings of the 4th Annual
Linux Showcase & Conference, Atlanta, USENIX (2000)

8. Childs, S., Coghlan, B., O’Callaghan, D., Walsh, J., Quigley, G.: A single-computer
grid gateway using virtual machines. In: Proceedings of the IEEE Conference on
Advanced Information Networking and Applications (to appear). (2005)

9. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on
Virtual Machines. In: Proceedings of the International Conference on Distributed
Computing Systems. (2003)

10. McBride, D.: Deploying LCG in User Mode Linux.
(http://www.doc.ic.ac.uk/~dwm99/LCG/LCG-in-UML.html)

11. Garcia, A., Hardt, M.: User Mode Linux LCFGng server.
http://gridportal.fzk.de/websites/crossgrid/site-fzk/UML-LCFG.txt

(2004)
12. Fraser, K.A., Hand, S.M., Harris, T.L., Leslie, I.M., Pratt, I.A.: The Xenoserver

computing infrastructure. Technical Report UCAM-CL-TR-552, University of
Cambridge Computer Laboratory (2003)

13. Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight virtual machines for
distributed and networked applications. In: Proceedings of the USENIX Annual
Technical Conference. (2002)

14. Coulson, D.: UML-based pseudo-dedicated hosting service.
(http://uml.openconsultancy.com)



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 771 – 777, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Development of Cactus Driver for CFD Analyses 
in the Grid Computing Environment 

Soon-Heum Ko1, Kum Won Cho2, Young Duk Song2, Young Gyun Kim3, 
Jeong-su Na2, and Chongam Kim1 

1 School of Mechanical and Aerospace Eng., Seoul National University 
2 Dept. of Supercomputing Application Technology, KISTI  

ckw@kisti.re.kr 
3 School of Computer Eng., Kumoh National Institute of Technology 

Abstract. The Grid Computing[1] has been paid much attention from research-
ers as an alternative to parallel computing for its unlimited number of potential 
resources available and as an easier way to build collaborative environments 
among multiple disciplines. However, the difficulty in establishing the envi-
ronments and accessing and utilizing the resources has prevented application 
scientists from using Grid computing. Thus, the present study focuses on build-
ing PSE(Problem Solving Environment) which assists application researchers to 
easily access and utilize the Grid. The Cactus toolkit, originally developed by 
astrophysicists, is used as a base frame for Grid PSE. Some modules are newly 
developed and modified for CFD(Computational Fluid Dynamics) analysis. Si-
multaneously, a web portal, Grid-One portal, is built for remote monitor-
ing/control and job migration. Cactus frame through the web portal service has 
been applied to various CFD problems, demonstrating that the developed PSE 
is valuable for large-scaled applications on the Grid. 

1   Introduction 

Many researches have been conducted on developing user-friendly interfaces for 
application scientists to easily utilize advanced computing environment, i.e., the Grid 
computing environment. A specialized computer system which offers computational 
conveniences required for a specific problem is called PSE(Problem Solving Envi-
ronment) and, nowadays Nimrod/G[2], Triana[3], and Cactus[4] are applied briskly. 
Of the PSEs, Cactus was firstly developed for collaboration among astrophysicists, 
but it is applicable to the CFD(Computational Fluid Dynamics) analysis. Users can 
easily attach their own application solver, a toolkit for checkpointing, a toolkit for 
parallel I/O, a visualzation software, and so on, to Cactus flesh which is an integration 
of multiple computational techniques. Additionally, Cactus can operate in various com-
puter platforms including a single machine, parallel clusters, super computers, and so 
on. And, application researchers can utilize many softwares and libraries inside the 
Cactus frame, like Globus toolkit, HDF5 I/O, PETSc library, and visualization tools. 

Present research focuses on improving Cactus frame for CFD analysis. So, a CFD 
flow solver is appended to Cactus frame and modules for general coordinate I/O are 



772 S.-H. Ko et al. 

 

newly developed. Additionally, researches on developing computational toolkits in-
cluding advanced visualization, job migration and load balancing, and portal service, 
are conducted by computer scientists. And then, a lot of validations are carried out 
utilizing Cactus-based CFD analyzer through a portal service and job migration test is 
conducted on K* Grid. From these studies, CFD flow solver is successfully imple-
mented to the existing Cactus frame and the collaboration between computer scien-
tists and application researchers is accomplished. 

2   Cactus and CFD 

To apply Cactus frame to CFD analysis, CFD researchers should implement their 
flow solver into Cactus frame. For application scientists, implementing their flow 
solver al-ready developed into a new frame may seem absurd at a glance. Thus, the 
advantages and disadvantages of applying Cactus to CFD analysis are to be investi-
gated in the present paragraph. 

The advantages of Cactus-based CFD analysis are as follows. Firstly, application 
scientists can perform the Grid computing without profound knowledge of the Grid, 
in-creasing the problem size. Additionally, as all the researchers modularize their 
application solver, the collaborative research can be easily accomplished. And, the 
most advanced computer science technologies can be achieved without associated 
knowledge by utilizing Cactus modules provided by computer scientists. 

However, when researchers analyze small-scaled problems or develop numerical 
techniques, Cactus is not necessary as analysis can be conducted inside a local or-
ganization. Rather, it can have a bad influence as learning how to use Cactus and 
implementing their flow solver into Cactus frame requires additional time. And, im-
plementation process is somewhat complex as flow solver should be generalized 
while each flow solver is developed for the analyses of specific problems. Finally, as 
CFD researches by Cactus are not activated until now, supports for CFD analysis, like 
mesh generation using body-fitted coordinate and visualization of CFD result, are not 
sufficient. 

3   Cactus-Based CFD Analysis 

3.1   3-D Inviscid Flow Analysis Using Cactus 

The procedure of 3-D inviscid flow analysis is as follows. At the pre-processing level, 
mesh generation is accomplished and at initial level, initialization of flow conditions, 
inputting mesh points and transformation to curvilinear coordinate are performed. 
And then, at iteration step, determination of time scale by local time stepping method, 
flux calculation by spatial discretization, time integration and application of boundary 
conditions are accomplished. Then, at the post-processing level, resultant data are 
visualized and analyzed. In present research, each component comprehended in the 
analysis process is made as a separate thorn of Cactus frame. Figure 1 shows the flow 
chart of 3-D inviscid flow analysis after converting each subroutine to thorn and 
scheduling thorns to the time bins of Cactus. 



 Development of Cactus Driver for CFD Analyses in the Grid Computing Environment 773 

 

 

Fig. 1. Time Bins and Thorns for 3-D Inviscid Analysis 

Each thorn is configured by CCL(Cactus Configuration Language) scripts and, 
analysis subroutine of flow solver is stored inside the src/ directory with the modifica-
tion of parameters and functions to Cactus format. 

3.2   Numerical Results 

The flowfield around a wing is analyzed by using Cactus-based CFD analyzer. 
Firstly, to confirm the possibility of CFD analysis using body-fitted coordinates, 
RAE-2822 airfoil is analyzed on single processor. The present configuration is basi-
cally 2-dimensional, but the mesh is extended to z-direction, making a 3-D mesh with 
symmetric condition along the z-direction. Total mesh points are 161×41×3. Mach 
number is set to be 2.0 and 0.78, depending on flow conditions. 

 

Fig. 2. RAE-2822 Mesh 



774 S.-H. Ko et al. 

 

 

Fig. 3. Supersonic(L) and Transonic(R) Analysis 

 

Fig. 4. 3-D Mesh around Onera-M6 Wing(O-type) 

 

Fig. 5. Pressure Contours along Root of the Wing and Wing Surface 

As Cactus CFD solver is proved to be valid from the analysis of RAE-2822 airfoil, 
the flowfield around a 3-D Onera-M6 wing is analyzed by using K* Grid, a Korean 



 Development of Cactus Driver for CFD Analyses in the Grid Computing Environment 775 

 

Grid testbed. The mesh system is shown in figure 4 and total mesh points are 
141×33×65. 6 processors are co-worked and, Cactus frame automatically partitions 
the whole domain by 1×2×3 zones. Mach number is 0.78 and angle of attack is 0 
degrees. And, the resultant pressure contour is shown in figure 5. Pressure increase 
near the leading edge of the wing and gradual decrease of pressure shows the correct-
ness of the flow analysis. However, when more than 8 processors are utilized, peri-
odic boundary condition should be applied along the tangential direction of wing 
surface and the result is not correct when periodic boundary condition is applied. 
Thus, the improvement of periodic condition is required. 

3.3   Utilization of Grid-One Portal Service 

As is mentioned, utilizing the Grid services is very hard to application scientists. 
Thus, a Grid-One portal is built and Cactus-based CFD analysis is conducted through 
the portal service. The frame of a portal service is built on the basis of GridSphere[5], 
an open-source portlet framework developed as a part of the GridLab project[6]. 

      

Fig. 6. Log-in Process of Grid-One(L) / Compile and Configuration Process(R) 

      

Fig. 7. Cactus Mode of Grid-One(L) / Cactus Control Page(R) 

The usage of Grid-One portal is as follows. At first, to get the service of Grid-One, 
users should register to the Grid-One portal and log-in. After logging-in, users will 
configure their own information like e-mail, password, and application part, and 



776 S.-H. Ko et al. 

 

check 'Cactus' in the configure group membership item to start Cactus-based analysis. 
After clicking 'Save' button, Cactus mode is shown in the browser. At Cactus mode, 
users will upload their own Cactus-based application modules and then, compile and 
link uploaded Cactus program. In ‘compile’ and ‘link’, users can handle the compil-
ing and linking options(if you are an advanced user) and, if users don’t add any op-
tions, the portal will automatically compile as a serial program. During and after the 
compiling and linking processes, users can confirm the result of compiling process by 
clicking ‘open’ button. After linking is complete, users start their analysis program. 
During analysis, on-going processes of the application problems are simulated via 
web browser and real-time control is possible. 

Cactus CFD simulation test with job migration is accomplished through Grid-One 
portal as shown in figure 8. Firstly, Cactus CFD solver is uploaded to the portal 
server, located in the K* Grid gateway. After compiling, CFD analysis starts in the 
gateway server. After 10 minutes of analysis in the gateway, job migration manager 
finds the better resources and analysis file with requested data files migrate to Venus 
cluster, one of computing resources in K* Grid. Migrated solver automatically restarts 
from where the solver ended in former resources(in the gateway). And, after 10 min-
utes, migration manager searches for better resources again. At that time, finding 
better re-source inside testbed, migration manager transfers required files to the re-
sources in Konkuk university, Seoul. After 10 minutes in Konkuk university, flow 
solver completes its analysis. 

 

Fig. 8. Job Migration Scenario on K* Grid 

From the users’ viewpoint, they only have to upload their analysis program to por-
tal server and compile inside the portal. During analysis, migration manager auto-
matically searches for a better resource and transfers the solver to the optimal re-
source in cooperation with the portal service. As is seen in figure 9, each resource in 
the Grid testbed starts migration manager when the analysis starts in the portal server 
and status report of each resource is transmitted to portal server. Based on the reports, 
migration manager decides the optimal resource for that analysis and, the result is 
printed in the web page of portal service. By looking at the messages printed in the 
web browser, users can get the information about the current job status and the loca-
tion. And, after the analysis is complete, resultant data are automatically transmitted 
to portal server, enabling downloading the data file and analyzing the result. 



 Development of Cactus Driver for CFD Analyses in the Grid Computing Environment 777 

 

 

Fig. 9. Procedure of Job Migration 

4   Concluding Remarks 

The present research applied Cactus PSE to the analysis of CFD problems. From the 
understandings of the structure of Cactus, researchers developed CactusEuler3D ar-
rangement with General Coordinate I/O routine that can utilize body-fitted coordinate 
in the Cactus frame. And Cactus-based CFD solver is validated by the analysis of the 
flowfield around the wing. From these researches, Cactus PSE is shown to be appli-
cable to CFD analysis and the possibility of multi-disciplinary collaboration by Cac-
tus frame is presented. 

Simultaneously, Grid-One portal is built for various applications including CFD. 
The frames are built on the basis of GridSphere and, Cactus CFD analyzer and migra-
tion manager are appended to the portal. The application users can easily utilize the 
Grid service only by clicking the menus in the web browser. During the analysis, 
portal manager offers monitoring and controlling service and migration manager 
automatically utilizes the optimal usable resources. Developed portal service and 
migration manager are very helpful to application users in utilizing the Grid resources 
and they will play a major part in the construction of Korean e-Science infra-
structure. 

References 

1. M. M. Resch, "Metacomputing in High Performance Computing Center," IEEE 0-7659-
0771-9/00, pp. 165-172 (2000) 

2. D. Abramson, K. Power, L. Kolter, “High performance parametric modelling with Nim-
rod/G: A killer application for the global Grid,” Proceedings of the International Parallel 
and Distributed Processing Symposium, Cancun, Mexico, pp. 520–528 (2000) 

3. http://www.triana.co.uk/ 
4. http://www.cactuscode.org/ 
5. http://www.gridsphere.org/ 
6. http://www.gridlab.org/ 



Striped Replication from Multiple Sites
in the Grid Environment�

Marek Ciglan, Ondrej Habala, and Ladislav Hluchy

Institute of Informatics, Slovak Academy of Science,
Dubravska cesta 9, 845 07 Bratislava, Slovakia

{marek.ciglan, ondrej.habala, hluchy.ui}@savba.sk

Abstract. Grid technology, as a highly distributed computing environ-
ment, requires an optimized access to the data resources to increase data
availability. In this paper, we propose a replication technique which is
based on parallel transfers from multiple sites containing replicas of the
desired file. From each site, we transport in parallel only a portion of the
given data source, obtaining the whole file at the end of the process. We
describe the work related to the data replication; then we discuss two
algorithms for striped replication optimization that aims at the mini-
mization of the time necessary for data transfer. Finally, we present the
results of the striped replication mechanism achieved by the prototype
implementation of the striped replication algorithm. We compare them
with the results of the standard replication tools and show interesting
performance improvement.

1 Introduction

Grid computing is an important new concept for distributed processing, based
on the idea of globally shared computer resources between organizations, such
as disk space, information and computational power [8]. Grid computing helps
users, who need to run computational and data intensive tasks, which could be
too demanding and time consuming for a single supercomputer or computational
cluster.

Such a task is distributed within the grid to several grid nodes, saving exe-
cution time. This brings immense computational power for relatively small cost.
In such highly distributed environment, an efficient data management is needed
to keep track of the data sources in the grid and to optimize the network traffic.
Many grid applications request large data collections, which, possibly, have to
be transferred via network to the grid nodes that execute given jobs. To mini-
mize the network traffic, transportation of the files, the data replication strategy

� This work is supported by EU 6FP RI(III) project: Enabling Grids for E-sciencE
(2004-2006) INFSO-RI-508833, EU 5FP IST RTD project: CROSSGRID Develop-
ment of Grid Environment for Interactive Applications (2002-05) IST-2001-32243
and the Slovak Scientific Grant Agency within Research Project No. 2/3132/23.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 778–785, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Striped Replication from Multiple Sites in the Grid Environment 779

is used. Data replication means creating copies, replicas, of files that are often
required by grid jobs. This leads to having multiple copies of a single file across
several grid nodes, which helps to reduce access latencies to the data.

In general, there are two levels of data access optimization: short-term and
long-term optimization. Short-term optimization aims at delivering replica of
required file in the shortest time possible, given a requesting grid node and
logical file name.

Long-term optimization concerns global reduction of network traffic in the
grid by deciding which files should be replicated (deleted) on (from) which grid
sites. Current state-of-the-art grid data management tools select the file replica
with lowest access cost, given a requesting grid node and logical file name of the
data source. The selected replica is then transferred to the grid site. We describe
work related to data replication in section 2. In this paper, we present an ap-
proach to the short-term replica optimization for grids, that has the potential
of further acceleration of the replication process, in the case when more than
one replica of desired data source is present in the grid. We propose a striped
replication mechanism, a method which doesn’t transfer the data from a single
grid site only, but is rather based on parallel transfers from multiple sites con-
taining replicas of the desired file. From each site, we transport only a portion of
the given data source, obtaining the whole file at the end of the process. Doing
so in a parallel way, we can expect time reduction of replica creation. However,
transferring file stripes from multiple sites can eventually increase the transfer
time, if the process isn’t supervised and optimized. For example, if one of the
file replica resides on the grid site with extremely low connectivity, attempt to
transfer the identical potions of file from each site could results in decrease of
overall replication speed. Optimization procedure for striped replication man-
agement is thus needed. We discuss two optimization algorithms for the striped
replication in the grid environment in section 3.

First algorithm computes portions of replicas that will be transferred from
distinct grid sites, according to the information about replica’s access costs ob-
tained from monitoring services. This is done before the transfer actually begins,
the method is static during the transfer period. Second algorithm is more flexible
during runtime and can dynamically change the amount of data that is trans-
ferred from different sites, according to actual network performance. We outline
the reasons why we choose the second algorithm for the prototype implementa-
tion of the striped replication tool.

In section 4, we present the results of replication tests obtained by our proto-
type implementation of striped replication. We compare them to the results ob-
tained by standard replication tools and show interesting performance increase.
Finally, we discuss the advantages and disadvantages of our approach.

2 Related Work

A short-term replica optimization service (ROS) for grids was implemented in
European Data Grid (EDG) project [3]. Main function of EDG ROS service is



780 M. Ciglan, O. Habala, and L. Hluchy

to evaluate a cost for accessing a set of files from grid sites and to choose the
cheapest replica to transfer. It uses gridFTP functionality to increase transfer
speed by opening multiple TCP streams from a single site.

A lot of attention to the acceleration of the file replication process was given
in peer-to-peer (p2p) systems such as BitTorent, Slurpie, Gnutella.

BitTorrent [9] is a file distribution system. Shared files, within this framework,
are made available using HTTP server. When multiple users are downloading
the same file at the same time, they upload the pieces of the file to each other.
System keeps metadata information about each file, containing file name, size,
hashing information and url of a tracker. Trackers are services that help file
downloaders to find each other. Information from the tracker is used to find
other peer and download management is then handled strictly in the interac-
tion between peers. Shared files are logically split into pieces, downloading peers
propagate information about file pieces they have available to each other. The
’rarest first’ method is used to decide which file’s block would be transferred. Bit-
Torent clients download the rarest file’s pieces first, leaving more common ones
for later. To prevent transfer slow-down, because of slow transfer rates from cer-
tain peers, a transfer choking feature was introduced. Peers try to maximize its
own download rates by transferring from whoever they can and deciding which
peers to upload file pieces. The choking is a temporally refusal to upload file to
the given peer. Peer A stops sending blocks to peer B, chokes the connection to
B, until B sends A a block or a time out occurs. The choking encourages peers
cooperation. Decisions as to which peer to upload and download from are based
strictly on current download rate. As calculating current transfer rate meaning-
fully is a difficult problem (the bandwidth shifts rapidly over time), BitTorent
peer change a single connection, performs ’optimistic unchoke’, regardless of the
current download rate.

Slurpie [10] is a p2p protocol for bulk data transfer, specifically designed
to reduce client download times for large files and to reduce load on servers.
All nodes downloading the same file contact the topology server and form a
random mesh. The nodes in the random mesh propagate progress updates to
each other. This information is used to coordinate the data transfer. Slurpie
uses an bandwidth estimation technique to make an informed decision about
number of connections to keep open, number of edges to keep in mesh and
update propagation rate. Considering the download decision, Sulrpie download
blocks served by peers before block served by the source server. Sulrpie adapts
to varying bandwidth conditions and scale the number of neighbors as the group
size increase.

Both p2p and grid systems use replication strategy to increase data availabil-
ity, however the setting of p2p and grid environments are different. Connections
and disconnections of nodes (users) in the p2p system are quite dynamic, grate
effort is focused on locating required file’s replicas and on discovering which
peer has which file blocks. In the current state of grid environment, we can eas-
ily determinate locations of file replicas and only complete replicas, containing
all blocks, are present. We try to introduce striped replication principle in the
scope of available grid services and we focus primary on the problem of data
transfer optimization.



Striped Replication from Multiple Sites in the Grid Environment 781

3 Striped Replication from Multiple Grid Sites

The striped replication in grid environment is enabled by capability of GridFTP
protocol, which allows the access and the transport of only a portion of the whole
file from a grid site (site’s Storage Element).

The idea behind striped replication is to transfer portions of desired file’s
replicas from different grid nodes to further increase the speed of replication.
Theoretically, if there are two replicas of the given file in the grid, placed on the
sites with the same connectivity considering the site where we want to replicate
the file and we replicate this data source in the striped way, 50% of the file from
one site and complementary 50% of the file from other site, we can achieve 50%
acceleration of the transfer comparing to the replication from a single source.
The attempt to transfer file in a striped way may potentially result in decreasing
the file transportation speed, if the process is not managed properly according
to the actual state of the grid system. For example, if one of the file replica
resides on the grid site with extremely low connectivity, attempt to transfer
the identical potions of file from each site could results in decrease of overall
replication speed. In this section, we describe two algorithms for optimization of
the striped replication and we compare them.

The first one is a static approach which computes the portions of distinct
replicas that will be transferred before the transfer begins. This method use
information from optimization service about the transfer speed from involved
grid sites. The second algorithm is more dynamic in nature, it starts by trying
to transfer even portions of replicas from different sites and in the course of the
data transmission it changes dynamically the amount of data for transfer from
different sites, according to the actual performance of the process.

3.1 Static Striped Transfer Mechanism

Our task is to replicate a file in a striped way from multiple grid sites and to
do this by computing the portions of involved replicas which will be transferred,
before replication actually begins. We can formulate this problem in the following
way: Let’s have replicas r1, . . . , rn of the data source with given GUID. For each
ri, there is a constant bi which expresses the amount of bytes that can be obtained
from given replica per second. The constants bi are acquired from the replica
optimization service and define current connectivity to the replica. Using this
information, we want to find the optimal distribution of replicas partitions for
distinct ri, so that the time of the replication is minimized. We use the following
equation as a basis of our thoughts:

s = t(b1 + b2 + . . . + bn)

Where s is the given file’s size, b1, . . . , bn are the byte-per-second constant for
each replica and t is the transfer time. This is a simplified and naive approach
because:

– Numbers bi are considered as constants for the single file replication, which
doesn’t reflect the dynamic, changing nature of network load.



782 M. Ciglan, O. Habala, and L. Hluchy

Replica 1 Replica 2 Replica 3

Replication Site

Fig. 1. Shared transfer line for Replica 1 and Replica 2 on the path to Replication Site

– We do not know the exact topology of the network. So if transfer paths from
ri and rj to the replication site, shares at some point the same line, the
transfer speeds bi, bj may be eventually lower in reality than those rendered
by optimization service, because of available bandwidth of the shared line
(figure 1)

– The sum of all bi can eventually be higher than available bandwidth at local
site

More reasons could be found to confirm the naivety of presented approach,
still we can use it as a rough approximation. From equation above we can com-
pute the minimal time needed to transfer the file. Now we can simply obtain
desired amount of replica portions for all ri as pri

= bit. Doing so, we gather
sufficient information to begin the striped replication process.

3.2 Dynamic Striped Transfer Mechanism

In this subsection, we propose the dynamic striped replication mechanism. This
method doesn’t use the information from the replica optimization service about
the connectivity of sites which stores replicas of the desired data source. The
only information we have at the beginning of the process, is the location of
those replicas.

We begin the striped replication process by initiating n striped transfer
threads, each for distinct replica and we try to download even portions of data by
all the initiated transfer threads. In the ideal case, this will happen and parallel
transfers from replicas grid sites will finish at the same time and the replication
time will be 1

n of the time required for the replication from a single site.
However, we cannot expect this to happen really often. We propose an opti-

mization technique for dynamic change of the transferring file portions. When
some of the parallel striped transfer thread finishes it’s replica portion download



Striped Replication from Multiple Sites in the Grid Environment 783

Replicated data source

a)
Replica 1 Replica 3Replica 2

Transfer thread 1 Transfer thread 2 Transfer thread 3

b)
Replica 1 Replica 3Replica 2

Transfer thread 1 Transfer thread 2 Transfer thread 3

c)
Replica 1 Replica 3Replica 2

Transfer thread 1 Transfer thread 2 Transfer thread 3

d)
Replica 1 Replica 3Replica 2

Transfer thread 1 Transfer thread 2 Transfer thread 3

Fig. 2. Illustration of striped replica transfer. Light blue parts symbolize file portions
assigned to transfer, dark blue parts sybolize portions already transfered.

a) Situation after the initiation of striped transfer
b) Situation after one of the transfer threads finishes it’s assigned portion(s) of replica
c) Situation after reasigning replica portions to transfer threads
d) Possible situation at the end of the process

(and would be idle for the rest of the execution if not handled otherwise), we
assign to this thread another portion of the replica, which is equal to the half of
the unfinished portion of the transfer thread with largest unfinished amount of
data and remove equivalent portion from the latter.

In other words, let there be n replicas of a data source which we need to
replicate. We initiate n transfer threads for distinct stripes of the file at different
n grid sites and begin transfer. Suppose that thread tri finishes transfer of as-
signed replica stripe and there are other threads that are still transmitting their
portions of replicas. Let trj be the thread which had transferred the smallest
amount of the data. Suppose that trj was initiated to replicate portion of the
file from the byte p to the byte r and till present, k bytes was downloaded. We
split the interval < p + k, r > to two halfs and assign < p + k, (r p+k

2 ) > to trj

and [(r p+k
2 ), r > to thread tri.

This process is repeated each time some striped transfer thread finishes it’s
assigned portion(s) of replica. For better illustration of the process see figure 2.
Dynamic striped replication from multiple grid sites reflects the changing status
of network load and so, brings necessary flexibility to the replication process.
Moreover, this method doesn’t need to use information from the replica opti-
mization service.



784 M. Ciglan, O. Habala, and L. Hluchy

4 Experimental Results

Intuitively, striped parallel transfer brings important increase of replication speed.
The acceleration of replication process clearly depends on the data transport
speed from involved replica sites. To give reader the idea of such replication
method performance in the real grid environment, we present in this section our
experimental results.

We have implemented the prototype of striped replication from multiple grid
sites and tested its performance in grid environment. The implementation is
made in Java programing language with use of CoG 1.2 API libraries - devel-
oped by Globus Alliance [6]. The dynamic striped replication strategy was used
in the implementation. We used EDG replica manager tool as a reference imple-
mentation of grid data replication, to compare obtained results.

Before presenting averages of the replication time savings during tests, we
describe one motivation test case. We replicated a file of 223.9Mb size 1. There
were two replicas of given data source in the testbed. Transfer time of the best
replica to the local node using EDG replica manager tool took 713 seconds, using
one tcp stream from the site which stored the cheapest replica (the replica with
the lowest access cost with the respect to the replication site). The transfer time
of striped replication from both gird sites containing given file’s replica took 405
seconds (using 1 tcp stream from each site), performing 43% time saving for
data transfer. Then we replicated the file to third grid site and run the striped
replication from three sites. This transfer took 209 seconds, accomplishing 71%
time saving comparing to previously done EDG replica manager transfer. We
performed test with two and three replicas of the replicated data source in the
grid, obtaining in average 37% time saving for two and 55% for three replicas
(compared to the transfer time of the replica from a single site which was selected
as the cheapest by EDG replica manager tool).

Concerning disadvantages, striped replication isn’t very useful for small data
sets. Another disadvantage is that, as the file is transferred in smaller portions,
data stripes have to be joined to the single file after the transfer is completed.
This requires additional time at the local site.

The advantages of striped replication approach are:

– important acceleration of replication process
– distribution of network load
– method doesn’t use the replica optimization service, monitoring services.

5 Future Work

We plan to integrate described mechanism with Replica Location Service, to
obtain list of data source’s replicas automatically (providing only data source’s

1 The replicated file was actually a short video presenting Data Grid project; we used
it as a kind of tribute to the fine work done in this project.



Striped Replication from Multiple Sites in the Grid Environment 785

LFN or GUID ) and to implement striped replication from multiple grid sites as
a web service.

6 Summary

In this paper we have presented the method of striped replication from multiple
sources in the grid environment. We have proposed two optimization algorithms
for the striped replication. Finally we have presented experimental results of the
tests of the prototype implementation of striped replication, performed in the
grid environment. The results of tests are promising, they show important time
savings compared to currently used method.

References

1. Chervenak A., Deelman E., Foster I., Guy L., Hoschek W., Iamnitchi A., Kessel-
man C., Kunszt P., Ripeanu M., Schwartzkopf B., Stocking H., Stockinger K.,
Tierney B., Giggle: A Framework for Constructing Scalable Replica Location Ser-
vices, Proceedings of SC2002 Conference, November 2002.

2. The Globus Project, www.globus.org
3. EU Data Grid project, WP2, replication, RLS, http://edg-wp2.web.cern.ch/edg-

wp2/replication/
4. EU Data Grid project, WP2, optimization, ROS, http://edg-wp2.web.cern.ch/edg-

wp2/optimization/ros.html
5. Kunszt P., Laure E., Stockinger H., Stockinger K., Advanced replica management

with Reptor, 5th international conference on parallel processing and applied math-
emetics, 2003

6. Commodity Grid Kits, http://www-unix.globus.org/cog/
7. Manohar M., Chervenak A., Clifford B., Kesselmann C., A Replica Location Grid

Service Implementation, GGF 10 Workshop, 2004
8. I. Foster and C. Kesselman. Computational Grids. The Grid: Blueprint for a New

Computing Infrastructure. Morgan-Kaufman, 1999
9. Cohen B., Incentives Build Robustness in BitTorrent, http://bittorrent.com

10. Sherwood R., Braud R., Bhattacharjee B., Slurpie: A Cooperative Bulk Data
Transfer Protocol, Proceedings of IEEE INFOCOM, March 2004



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 786 – 795, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The Gridkit Distributed Resource  
Management Framework 

Wei Cai, Geoff Coulson, Paul Grace, Gordon Blair,  
Laurent Mathy, and Wai-Kit Yeung 

Computing Department, Lancaster University, UK 
{w.cai, geoff, p.grace, gordon, laurent, 

yeungwk} @comp.lancs.ac.uk 

Abstract. Traditionally, distributed resource management/ scheduling systems 
for the Grid (e.g. Globus/ GRAM/ Condor-G) have tended to deal with coarse-
grained and concrete resource types (e.g. compute nodes and disks), to be stati-
cally configured and non-extensible, and to be non-adaptive at runtime. In this 
paper, we present a new resource management framework that tries to over-
come these limitations. The framework, which is part of our ‘Gridkit’ middle-
ware platform, uniformly accommodates an extensible set of resource types that 
may be both fine-grained (such as threads and TCP/IP connections), and ab-
stract (i.e. represent application-level concepts such as matrix containers). In 
addition, it is highly configurable and extensible in terms of pluggable strate-
gies, and supports flexible runtime adaptation to fluctuating application  
demand and resource availability. As a key contribution, the notion of tasks  
enables resource requirements to be expressed orthogonally to the structure of 
the application, allowing intuitive application-level QoS/ resource specification, 
highly flexible mappings of applications to available distributed infrastructures, 
and also facilitates autonomic adaptation.  

1   Introduction 

The task of a Grid resource management/ scheduling system is to appropriately map a 
set of distributed applications onto an underlying Grid infrastructure that consists of a 
diverse set of interconnected computational nodes. This is not an easy task if applica-
tion demands are to be met without wasting resources. Ideally, applications should 
share nodes to maximise the exploitation of scarce resources, and the environment 
should dynamically adapt the execution of applications to reflect fluctuating runtime 
application demand and resource availability. 

Presently, the major player in Grid resource management is Globus/ GRAM [10], 
which employs an architecture consisting of ‘brokers’ and ‘co-allocators’. Brokers 
map high-level resource requirements to concrete requirements. They also locate 
suitable computational nodes. Co-allocators then allocate these nodes, and initiate the 
execution of appropriate parts of the application on them.  

While this scheme is in successful use, it has a number of limitations. First, it deals 
only with coarse-grained resource specifications (e.g. whole machines or at best 



 The Gridkit Distributed Resource Management Framework 787 

 

processes) rather than fine-grained resources like threads, buffer pools, or TCP/IP 
connections. Second, it deals only with concrete resource specification and doesn’t 
support abstract resources that are meaningful to particular applications (e.g. matrix 
containers or EDF schedulers). Third, it is statically-configured and non-extensible—
i.e., its behaviour in many dimensions can only be changed—if at all—by restarting 
the system. Finally, it is non-adaptive—i.e., the resources allocated at application 
launch-time cannot be adjusted at runtime.  

These limitations are not peculiar to Globus/ GRAM—they are shared, at least in 
part, by most other distributed resource management proposals (see section 4). In this 
paper we present a new resource management framework that attempts to address 
these limitations and thereby improve both application-level flexibility and infrastruc-
ture-level resource exploitation. The remainder of the paper is structured as follows. 
Section 2 provides brief background on the ‘Gridkit’ middleware platform in which 
our framework is embedded. Subsequently, section 3 offers a detailed description of 
the framework itself, section 4 discusses related work, and section 5 concludes.  

2   Background on the Gridkit Middleware Platform 

The Gridkit middleware platform [11] is intended to provide flexible high-level sup-
port to complex and ‘advanced’ Grid applications such as forest fire management and 
environmental informatics systems. As well as traditional Grid functionality, such 
applications involve elements such as sensor network infrastructure, mobility, and 
collaborative visualisation.  

Resource    
Management

Resource 
Discovery

Interaction 
Services

Grid 
Security

Open Overlays

Grid Services

 

Fig. 1. The Gridkit Architecture 

As illustrated in figure 1, Gridkit places a Grid Services layer, which is presented in 
terms of web services, on top of four orthogonal domains of generic middleware sup-
port. These, in turn, are layered on top of an Open Overlays layer which abstracts the 
diversity of underlying communications support mechanisms in a consistent manner. 
In more detail, the four middleware domains addressed by Gridkit are as follows:  

1. Interaction services. This domain provides sophisticated and extensible applica-
tion-layer communication services beyond SOAP: i.e., support for quality of ser-
vice (QoS) configurable interactions, and for pluggable ‘interaction types’ such 
as publish-subscribe, multicast, streaming etc. More detail is available in [11].  

2. Resource discovery. This offers generic and extensible resource and service 
discovery services. It supports the use of multiple discovery technologies to 



788 W. Cai et al. 

 

maximise the flexibility available to applications. Examples of supported tech-
nologies are SLP or UPnP for traditional service discovery, Globus MDS for 
CPU discovery, and peer-to-peer protocols for general resource discovery.  

3. Resource management. This domain, which is the focus of the present paper, 
provides comprehensive distributed resource management and scheduling sup-
port for Grid applications.  

4. Grid security. This supports secure communication between participating 
nodes orthogonally to the interaction types in use.  

The construction of Gridkit follows the OpenORB architectural approach [2] which 
is targeted at building dynamic and adaptive systems software. The general idea is as 
follows: a lightweight component technology called OpenCOM [6] provides building-
blocks for constructing systems by composition (as advocated, e.g., by Szyperski 
[16]). Reflection then provides means to discover the structure and behaviour of com-
ponent compositions, and to adapt and extend them at run-time. And, finally, compo-
nent frameworks have the role of accepting ‘plug-in’ components, and ensuring archi-
tectural integrity during periods of adaptation. Each of the boxes in Fig. 1 is imple-
mented in this way. As far as we know Gridkit is unique in applying such a compo-
nent-based approach to both the middleware and the application layer of a Grid envi-
ronment (most component-based systems, e.g. [9], address only applications). 

3   The Resource Management Framework 

3.1   Overview and Application Model 

The distributed resource management design is realised as a component framework in 
which several areas of functionality are ‘pluggable’ as detailed below. At the most 
abstract level (see Fig. 2a), the framework is separated into two parts: i) a global re-
source manager, which coordinates resource management over multiple computa-
tional nodes, and ii) a local resource manager, which manages resources in an indi-
vidual computational node, with two distinct phases: i) an initial resource co-
allocation phase, and ii) a subsequent run-time resource management phase that can 
perform dynamic reconfiguration of resources in response to evolving application 
requirements and fluctuating resource availability in the infrastructure.  

The framework requires that applications are structured and described as a graph of 
potentially-distributed OpenCOM components. In more detail, the description submit-
ted to the framework by an application deployer (see Fig. 2b) is as follows1: 

1. a set of top-level2 OpenCOM components that encapsulate the various pieces 
of application functionality; 

2. a set of QoS-annotated tasks (see below) which, among other things, express 
the required QoS of different areas of the application; 

                                                           
1  This information is packaged as an XML schema which we do not present here due to space 

constraints. 
2  Components in OpenCOM may be composite—i.e. (recursively) composed of sub-components. 

In this paper, for simplicity, we only consider the special case of non-composite components. 
Essentially, composites are dealt with by applying the resource framework recursively. 



 The Gridkit Distributed Resource Management Framework 789 

 

task (with QoS annotation)

binding template
(with QoS annotation)

interface

OpenCOM
component

virtual cluster builder

gl
ob

al
 r

es
ou

rc
e 

m
an

ag
er

co-allocator

lo
ca

l r
es

ou
rc

e 
m

an
ag

er

negotiator

operating system resources

resource mapper

task mapper

resource mapperresource mapper

task mappertask mapper

resource mapper

task manager

resource mapperresource mapper

task managertask manager

finder

net. res.mapper

decomp. mapper

net. res.mappernet. res.mapper

decomp. mapperdecomp. mapper

net. rec. mappernet. rec. mapper

negotiator

 

Fig. 2. a) Overall architecture. b) Elements of an application description 

3. a set of QoS-annotated binding templates (see below) that represent bindings 
between the interfaces of the application components, and thus capture the ab-
stract topology of the application as a graph;  

4. a component/ task mapping—i.e. a list of components associated with each task. 

Tasks are abstractions of ‘activities’ or ‘units of work’ which are meaningful at the 
application level and which can be decorated with application-oriented QoS annota-
tions (the precise form of the QoS annotations is discussed below). Importantly, the 
definition of the tasks that comprise an application is orthogonal to the structure of 
the application itself in terms of components. Thus, in some cases (see Fig. 2b) a 
single task may span a set of (cooperating) components, while in others a single com-
ponent may host multiple independent tasks (also, tasks may overlap, as shown). 
Examples: i) a ‘transcode stream’ task could be realised as a set of components (e.g. 
buffering, compressing, encoding etc.) that cooperate to transcode a media stream; ii) 
multiple instances of an ‘access database’ task could be encapsulated within a single 
component that deals with concurrent database access.  

The orthogonality of tasks and component structure facilitates QoS specification 
that is meaningful at the application level. Thus, in the ‘transcode stream’ case, the 
QoS specification is attached to the entire user-visible task rather than to microcosmic 
aspects such as buffering etc. This orthogonality also offers a useful separation of 
concerns between writing an application and specifying its QoS.  

Binding templates serve as abstract placeholders for inter-component communica-
tion bindings. A wide and extensible set of binding templates is supported including 
request-reply, multicast, publish-subscribe, workflow etc (see Fig. 2b). Binding tem-
plates are specified in terms of roles and message ordering constraints as described in 
detail in [15] and, like tasks, can be decorated with QoS annotations. Each binding 
template can be realised by (mapped to) a potentially wide range of concrete tech-
nologies (as supported by the interaction services module—see Fig. 1). For example, 
for components that will share a common node, a request-reply template could be 
realised as ‘vtables’ or as local IPC links; or, where the components will run on sepa-
rate nodes, as TCP/IP connections or VME links. The precise mapping is selected by 
the decomposer as discussed in section 3.2.1. 

Rather than define a fixed set of QoS parameters for use in QoS annotations, we 
support, for reasons of generality and extensibility, an extensible set of QoS ontolo-



790 W. Cai et al. 

 

gies that can be defined for specific areas of applicability. Each QoS ontology is a 
‘pluggable’ entity that defines a vocabulary for QoS annotations, For example, a QoS 
ontology suitable for use with the ‘transcode stream’ task mentioned above might 
offer the following vocabulary: frame_size, frame_rate: integer. On the other hand, a 
simple QoS ontology for a request-reply binding template might offer: connectivity: 
{high-speed, medium-speed, low-speed}. As well as specifying a vocabulary, QoS 
ontologies are responsible for mapping QoS annotations to underlying pools of re-
sources that are dedicated to individual tasks and bindings as discussed in the next 
section. 

3.2   The Framework in Detail 

The goal of the resource management framework is to place the application’s con-
stituent components on some appropriate set of physical computational nodes, and 
then to manage their ongoing execution. This involves the following steps: i) mapping 
components to configurations of virtual nodes called virtual clusters, ii) finding and 
negotiating the use of appropriate physical nodes and interconnecting with which to 
underpin virtual clusters, and iii) maintaining the QoS of the application at runtime in 
the face of fluctuating resource needs and resource provision.  

3.2.1   Mapping Components to Virtual Clusters 
Given an application description as defined in section 3.1, the virtual cluster builder 
(see Fig. 2a) is responsible for generating a list of candidate virtual clusters, each of 
which represents a possible physical infrastructure that could viably support the appli-
cation. Virtual clusters could, for example, represent a set of processes on a machine, 
CPUs on a VME bus, islands of VME clusters, or machines randomly located in the 
global Internet. 

The first step is that the task mapper derives the resource requirements of each of 
the application’s tasks. To do this, it relies on the above-mentioned pluggable QoS 
ontologies which map QoS specifications expressed in their particular vocabularies to 
lower-level resource ontologies. As an example, the ‘transcode stream’ QoS ontology 
discussed in section 3.1 might map to a ‘buffer processing’ resource ontology with a 
vocabulary of buffer_pool_size, and number_of_high_priority_threads. Resource 
ontologies (which are hosted by the resource mapper) work analogously to QoS on-
tologies, but they be more general than a typical QoS ontology’s so that they can 
underpin multiple QoS ontologies. In addition their vocabularies further map to the 
much lower-level expression: either concrete OS-level resources, or the vocabularies 
of further resource ontologies. So, extending the above example, the ‘buffer process-
ing’ resource ontology might map to some quantity of memory, and a pool of threads 
with a given OS-level priority.  

Following task and resource mapping, the decomposition mapper (with help from 
the network resource mapper—which is the network counterpart of the above-
described resource mapper) generates a list of virtual cluster definitions that could 
potentially support the required resources according to various possible application 
decompositions. Rather than prescribe a fixed policy for decomposition, the decom-
poser accepts plug-in decomposition heuristics which are principally guided by three 
factors: 



 The Gridkit Distributed Resource Management Framework 791 

 

1. the resource requirements of each task (as derived above);  
2. the set of available realisations of the binding templates specified in the applica-

tion description; 
3. the QoS annotations on the binding templates. 

As an example, the goal of a particular decomposition heuristic might be to try to 
employ as few nodes as possible, and to depend on no more than low-speed connec-
tivity between these nodes. This assumes the availability of well-resourced nodes that 
are each capable of supporting several tasks. The binding template information comes 
into play when it must be decided how to distribute the various tasks over multiple 
nodes. Likely ‘lines of cleavage’ can be identified where the components participating 
in one task are connected to components in an adjacent task only by a small number 
of bindings with ‘relaxed’ QoS requirements. For example, given the illustrative QoS 
ontology of section 3.1, a simple decomposition heuristic might try to map two adja-
cent tasks whose inter-task bindings were all “low speed”, to two virtual nodes with a 
minimal interconnect (e.g. the global Internet). On the other hand, tasks whose inter-
task bindings were “medium speed” or high speed” might need to be mapped to a 
common virtual node (or perhaps to two virtual nodes in a tightly-coupled cluster).  

Overall, then, the output of the virtual cluster builder is a set of candidate virtual 
clusters. One of these candidate virtual clusters will eventually be selected and con-
cretized to an appropriate infrastructure of physical clusters/ nodes/ interconnects etc. 
as explained below. When this concretization has been successfully performed, the 
rest of the candidate virtual clusters are discarded; however, the ‘winning’ virtual 
cluster is retained as a first-class entity throughout the subsequent runtime of the ap-
plication as it plays a role in runtime adaptation (see section 3.2.3).  

3.2.2   Finding and Negotiating Resources 
Having derived a set of candidate virtual clusters, the co-allocator (see Fig. 2) is next 
invoked to locate appropriate sets of physical computational nodes with which to 
concretize candidate virtual clusters, and to negotiate the co-allocation of resources on 
these. The finder, which is part of Gridkit’s resource discovery framework (see Fig. 
1), is pluggable in terms of the mechanisms it uses for finding nodes: for example, a 
peer-to-peer search protocol could be used [14]; or alternatively, one could choose a 
simpler strategy such as querying a fixed set of available hosts for their current load-
ing, or even querying a static central database of nodes à la Condor-G [8]. Having 
located a set of potentially suitable nodes, the co-allocator’s negotiator confirms (or 
otherwise) the suitability of candidate physical nodes in supporting nodes from the 
virtual cluster. This is done by negotiating with each candidate’s local resource man-
ager (see Fig. 2a). Both end-system resources and the necessary network resources 
required by the concrete binding realization are considered in the negotiation.  

The local resource management architecture is an extension of the work reported in 
[7]. In outline, the task manager is responsible for allocating resource pools to each of 
the application’s tasks that will run on the machine, and for managing tasks at runtime 
(see below). The size and kind of these resource pools are determined by the resource 
mappers as discussed above. Separate instances of the task manager are created for 
each application running on the node.  



792 W. Cai et al. 

 

3.2.3   Managing QoS at Runtime 
At runtime, all application requests for resources (e.g. memory allocation, thread 
creation, or requests for abstract resources such as matrix containers that are under-
stood by the framework) trap to the currently executing (runtime) task. Requests are 
then satisfied from the resource pools that were dedicated to the task when it was first 
instantiated.  

QoS adaptation is triggered when the per-application task manager observes re-
source consumption or availability in some task falling outside acceptable thresholds 
that were determined during the QoS/ resource mapping phase. At this point, the task 
manager consults a plugged-in policy which specifies one or more of the following 
actions in some specified order:  

• transfer resources from other tasks owned by the application;  
• request more resources from the local operating system;  
• negotiate with other task managers on the same machine (i.e. those associated 

with other applications) to borrow resources; or 
• report to the parent virtual cluster, asking the latter to find new computational 

nodes on which to re-execute the affected task.  

To support the latter action, the parent virtual cluster is also equipped with a plug-
in policy capability to guide its subsequent actions. 

A final avenue for QoS adaptation is an application-wide QoS renegotiation re-
quested at the level of the global resource manager. In such cases, a revised applica-
tion description is submitted and the mapping process is (selectively) restarted to 
attempt to meet the revised QoS requirements. In the absence of migratable compo-
nents, this inevitably involves restarting certain application components. A deeper 
discussion of the fundamental research on which our runtime QoS management ap-
proach builds is available in [1]. 

3.3    Deployment Issues 

The modular and configurable nature of the framework enables several deployment 
options in networked environments. One is to run the global resource manager on a 
small number of gateway machines, and to run the local resource manager on a much 
larger set of machines that are willing to contribute towards executing applications. 
Another option is to run both the global and local managers on some or all machines. 
Here, the global managers can interoperate in a peer-to-peer style in which an original 
application description is decomposed by global managers into sub-descriptions that 
can be delegated to other global managers (and so on recursively). This can result in 
faster deployment and also facilitate cooperation between peer virtual organisations. 
Beyond these two major options refinements are possible which leverage the underly-
ing dynamic loading capabilities offered by OpenCOM [6]). For example, one can 
refine the first option to support just-in-time instantiation of the local manager on nodes 
as they are discovered by the co-allocator. Or, one can refine the second by dynamically 
instantiating the global functions on discovered nodes that know of distributed resources 
in their area but which do not wish to directly contribute themselves.  

At a more fine-grained level, it is necessary to consider the deployment of the vari-
ous plug-ins that are accepted by the framework. They would be the province of Grid 



 The Gridkit Distributed Resource Management Framework 793 

 

infrastructure experts with application-domain knowledge. Key plug-ins such as QoS 
and resource ontologies and decomposition heuristics would be expected to be produced 
relatively rarely, and be well documented and widely used by application developers, by 
this way to facilitate the evolution of the resource management framework. 

4   Related Work 

Apart from the Globus/ GRAM approach discussed in section 1, several researchers 
have attempted to alleviate the limitations identified in this paper. Condor-G [8] has 
been extensively used in the Globus context and provides a substantial instantiation of 
Globus/ GRAM. However, Condor-G supports only coarse-grained and concrete 
resource types, is statically configured and non-extensible, and has serious limitations 
in terms of adaptation: all it can do is migrate or restart jobs in the case of failures. 
ERDOS [4], has similar limitations in terms of resource types and configuration. In 
terms of adaptation it has a per-machine local ‘resource’ agent which monitors execu-
tion and reports exceptions to a global ‘system manager’. However, this has the fol-
lowing drawbacks: i) adaptation is coarse-grained in that resource managers are per-
machine rather than per-application (so that conflicting needs between applications 
are difficult to reconcile), and ii) local resource managers have no autonomy: all ad-
aptation decisions are centrally made. Another feature of ERDOS is its notion of 
‘units of work’. These are superficially similar to our tasks; but in fact ERDOS units 
of work are equivalent to ‘components’: there is no orthogonality between the two 
concept as there is in our approach. GRMS [12] is a system with similar benefits and 
limitations to ERDOS. It is of interest in supporting on-the-fly querying of a fixed set 
of available hosts, thus obtaining more up to date information than Condor-G. How-
ever, there is no scope to configure other possible mechanisms such as peer-to-peer 
resource discovery. 

More recently, [13] describes a resource management framework for ‘interactive 
Grids’. This still suffers from resource type and lack of configurability, but it does 
have a more sophisticated local resource management scheme that features agents 
such as resource sensors for monitoring purposes and an enforcement agent for fulfill-
ing QoS specifications. However, the work is limited in not supporting decomposi-
tion: each application can only run on a single computational node. A final piece of 
related work is research on the automatic decomposition of applications into work-
flows [5]. This takes an approach related to our decomposition mapper, but it lacks 
any support in the other areas addressed by our work or by the other systems dis-
cussed above. 

In sum, the state of the art can fairly be characterised as lacking in i) fine-grained 
and abstract notions of QoS specification and resource provision, ii) plug-in con-
figurability and extensibility, and iii) fine-grained runtime adaptation. 

5   Conclusions and Future Work 

We have discussed an approach to distributed resource management in the context of 
the Gridkit middleware platform. Our resource management framework promotes the 



794 W. Cai et al. 

 

use of application-tailored abstract QoS specification which drives the allocation and 
adaptation of fine-grained and application-defined abstract resources. Furthermore, to 
better support individual applications and deployment environments, the framework is 
capable of being flexibly configured, extended and run-time reconfigured by means of 
plug-ins in the following areas: i) QoS ontologies, ii) resource ontologies, iii) applica-
tion decomposition heuristics, iv) resource adaptation policies, and v) resource loca-
tion strategies. In addition, it supports flexible and fine-grained runtime adaptation. 
And, finally, it supports the task concept which enables highly flexible mappings of 
applications onto distributed infrastructures, and also facilitates runtime adaptation. 
We believe that these features provide a foundation for a future QoS-driven and po-
tentially autonomic resource management facility for the Grid. 

Future work is planned on two fronts: first we will exercise and evaluate our 
framework by using it to support existing Grid applications. These include a distrib-
uted visualisation scenario from our partners at Oxford Brookes University, and a 
dynamic computationally-steered chemistry application from the RealityGrid project 
[3]. Second, we plan to explore autonomic self-management in Gridkit. This will 
build on the inherent openness of the (component-based) platform but will require 
additional frameworks that deal with areas such as monitoring, recovery strategy de-
ployment, and recovery strategy selection. We have carried out initial explorations in 
this area and believe that Gridkit provides a highly promising context for these ideas. 

References 

1. Blair, L., Blair, G.S., Andersen, A., Coulson, G., Sanchez Ganedo, D., “Supporting Dy-
namic QoS Management Functions in a Reflective Middleware Platform”, IEE Proceed-
ings Software, Vol 147, No 1, pp. 13-21, 2000. 

2. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H., 
Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and 
Implementation of OpenORB v2”, IEEE DS Online, Special Issue on Reflective Middle-
ware, Vol. 2, No. 6, 2001. 

3. Brooke, J.M., Coveney, P.V., Harting, J., Jha, S., Pickles, S.M., Pinning R.L., Porter, 
A.R., “Computational Steering in RealityGrid”, Proc. UK e-Science All Hands Meeting, 
2003, http://www.nesc.ac.uk/events/ahm2003/AHMCD. 

4. Chatterjee, S., Sabata, B., Brown, M., “Adaptive QoS Support for Distributed, Java-based 
Application” In Proceedings of the IEEE International Symposium on Object-Oriented 
Real-Time Distributed Computing (ISORK), St-Malo, France,1999.  

5. Cicerre, F., Madeira, E., Buzato, L., “A Hierarchical Process Execution Support for Grid 
Computing”, 2nd Intl Workshop on Middleware for Grid Computing, Toronto, Canada, 
October 2004. 

6. Clark, M., Blair, G.S., Coulson, G., Parlavantzas, N., “An Efficient Component Model for 
the Construction of Adaptive Middleware”, Proc. IFIP Middleware 2001, Heidelberg, 
Germany, November 2001. 

7. Duran-Limon, H., Blair G.S., “Reconfiguration of Resources in Middleware”, 7th IEEE 
International Symposium on Object-oriented Real-time Dependable Systems (WORDS 
2002), San Diego, CA, January 2002 

8. Frey, J., Tanenbaum, T., Livny, M., Foster, I., Tuecke,S., “Condor-G: A Computation Man-
agement Agent for Multi-Instructional Grids”, Cluster Computing, Vol 5, pp237-246, 2001. 



 The Gridkit Distributed Resource Management Framework 795 

 

9. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J., “ICENI: 
Optimisation of Component Applications within a Grid Environment”, Parallel Comput-
ing, Vol 28, No 12, pp1753-1772, 02.  

10. The Globus Project, “Resource Management: The Globus Perspective”, presentation at 
GlobusWorld 2003, available at http://www.globus.org/, 2003. 

11. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W, Duce, D., Cooper, C., 
“GRIDKIT: Pluggable Overlay Networks for Grid Computing”, to appear in Proc. Dis-
tributed Objects and Applications (DOA’04), June 2004. 

12. Huang, J., Wang, Y., Cao, F. “On Developing Distributed Middleware Service for QoS- 
and Criticality-Based Resource Negotiation and Adaptation”, Special issue on Operating 
Systems and Services, Journal of Real-Time Systems,1998. 

13. Kumar, R., Talwar, V., Basu, S., “A Resource Management Framework For Interactive 
Grids”, 1st Intl Workshop on Middleware for Grid Computing, Rio de Janeiro, Brazil, 
June 2003.  

14. Pallickara, S., Fox, G., “NaradaBrokering: A Distributed Middleware Framework and Ar-
chitecture for Enabling Durable Peer-to-Peer Grids”, Proc. IFIP/ACM/USENIX Middle-
ware 03, Rio de Janeiro, Brazil, April 2003. 

15. Parlavantzas, N., Coulson, G., Blair, G.S., “An Extensible Binding Framework for Com-
ponent-Based Middleware”, Proc. Enterprise Distributed Object Computing Conference 
(EDOC 2003), Brisbane, Australia, Sept. 2003. 

16. Szyperski, C., “Component Software: Beyond Object-Oriented Programming”, Addison-
Wesley, 1998. 



Stochastic Approach for Secondary Storage
Data Access Cost Estimation

Lukasz Dutka1 and Jacek Kitowski1,2

1 Academic Computer Center CYFRONET AGH, Cracow, Poland
2 Institute of Computer Science, AGH-UST, al.Mickiewicza 30,

30-059, Cracow, Poland
phone: (+48 12) 6173964, fax: (+48 12) 6338054

{dutka, kito}@agh.edu.pl

Abstract. This paper is a summary of experimental results in the do-
main of cost estimations of data access to data stored in the secondary
storage. It mainly discusses technical and development issues based on
implementation prepared for EU CrossGrid project. The proposed solu-
tion is an extension of research in the field of optimization of data access
for grid environment, published previously elsewhere. It is important to
mention, that the presented solution might seem very simple in compari-
son with already available ones based on the analytical secondary storage
simulation approach, but in contrast to them this method can give precise
predictions even if the information about the secondary storage internal
architecture is uncertain and incomplete.

1 Introduction

Certain scientific applications from domains such as High-Energy Physics, Flood
Crisis Team Support, Biomedical Research, developed within EU funded projects,
like Crossgrid and European Data Grid [1, 2] are expected to produce Tera- or
even Petabytes of data that are analyzed and evaluated by scientists all over the
globe. In order to achieve high level of availability and fault tolerance, as well as
minimal access time for these large data volumes, data replication is applied very
frequently. Several grid projects have implemented data replication systems that
handle these requirements partially. The task of a replica management system
is not only to keep track of the replicas but also to select those replicas that
can be accessed by an application with a minimal response or transfer time. In
typical data grids large amounts of replicated data are stored in different storage
systems with access latencies ranging from seconds to hours; the latter relates
to data residing on a tape that is not mounted yet. Thus, it is necessary to
provide specific tools to predict the access time of data intensive jobs in such
heterogeneous environments.

This paper focuses on cost estimation of access to the secondary storage (e.g.,
constructed of hard drives including disk arrays, SAN drives, etc.). It extends our
previous studies on usage of the tertiary storage in grids [3, 4]. So, in the reported
work we do not deal with long access times but, instead, with the heterogeneity

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 796–804, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Stochastic Approach for Secondary Storage Data Access Cost Estimation 797

Database
Storage

NAS

Replica Manager
EDG Reptor 

Applications Portal

HSM

Componen ts 
are  kinds of 

plug-ins

Componen ts are grouped b y types but they d iffer from each ot her by specia lization. The ru le based system t akes the decisio n whi ch particular 
type component is the  best in a con text. 

Applications

Applications

Unified Data Access Layer based on Component-Expert Architecture

Componen t Type 
TID1

Component Type 
TID1 Component Type 

TID1

Component T ype 
TID1

Component Type 
TID2 Component T ype 

TID1

Component Type 
TID3 Component T ype 

TID1

Component T ype 
TID1

Component Type 
TID4

Unified Data Access  Cost Estimation Unified Data Access  via GridFTP Protocol

Fig. 1. Overview of Unified Data Access Layer approach

User 
Interface

Resource
Broker

Computation
Element

Replica Catalog 
for VO

EDG Optor

Storage Node

Storage Node

HSM Server
Castor

HSM Server
UniTree

Storage 
Node

Disk
Drives

Database

Disk
Cache

Automatic 
Tape 

Library

Disk
Cache

Magnetooptic
Library

Disk
Array

Database

NAS 
Storage

Automatic
Tape

Library

UI runs
application

RB submits
jobs

RB submits
jobs

CE gets 
the best replica

CE get
the best replica

Replica Manager

Resource Broker Application

Replica Catalog

GridFTP Server

Storage Element

Data Access Estimator

Component-Expert Subsystem

GridFTP Server

Storage Element

Data Access Estimator

Component-Expert Subsystem

GridFTP Server

Storage Element

Data Access Estimator

Component-Expert Subsystem

CE connects to 
the selected by RM node

RM gets all replicas
for a particular data

RM gets estimation
of internal availability

RM gets estimation

RM gets estimation
of internal availability

NFS

FTP

UDAL

UDAL

U
D

A
L

Computation
Element

Application

Fig. 2. Example of UDAL deployment in EU CrossGrid Project [9]

of storage devices and different efficiency of machines controlling access to those
devices, that make the estimation process difficult.

The estimator for the secondary storage described in this paper is a com-
ponent for Unified Data Access Layer (UDAL) (see Fig. 1) compatible with
Component-Expert Architecture [5, 6, 7, 8]. It simply can be understood as a



798 L. Dutka and J. Kitowski

plug-in to UDAL automatically selected by semi-intelligent infrastructure when
necessary. See example of UDAL usage for the CrossGrid Project [9] in Fig. 2.

The paper is organized as follows. In Section 2 we provide an overview of our
approach to data access cost estimation for the secondary storage. Experimental
results are shown in Section 3, we conclude the paper and provide some insight
into future work in Section 4.

2 Data Access Cost Estimation for Secondary Storage

Due to heterogeneity of storage devices used for construction of the secondary
storage as well as due to complexity of software controlling those devices, it is
difficult, and in some cases even not possible, to design estimator based on sim-
ulation approach similar to that one for tertiary storages [3, 10, 11]. It assumes
that we are able to simulate behavior of hardware and software. Taking into
account the secondary storage based on Storage Area Network (SAN) devices,
it is not possible to predict future load since requests can come from the entire
SAN network; moreover, the grey-box approach [3, 10, 11] used for simulation
of the tertiary storage is usually limited in use for SAN. Additionally, since,
the Grid is considered as a very dynamic environment with highly fluctuating
fabric infrastructure and distributed management, a simple method is required
for predicting access cost of different kinds of grid storage in order to make a
proper selection of replicas, which are going to be used as input data for calcu-
lations. Analytical models in such a fuzzy environment are hard to be used due
to the dynamics and uncertain states. Most of the analytical models are based
on detailed disk drive simulators widely discussed by Ruemmler & Wilkes [12],
Kotz [13] or Ganger [14]. Another popular approach, maybe a bit closer to the
one we present within this paper, is extracting disk parameters by microbench-
marking presented by Talagala [15] or Worthington [16]. However, in both cases
these approaches cannot be involved in data access costs prediction for produc-
tion systems since their algorithms are too complex to be involved for estimations
on-demand as well as the state of data allocation is not taken into account.

Active experiments, like probing (contrary to the passive ones and to the
static analytical models [17, 18, 19] – often mentioned in state of the art), that
are based on a typical approach taken from the control theory (identification of
the models) seem to be more appropriate, since they allow the user to get the
performance information in a current state for a given data size. Moreover, such
an approach can take into account current loads and the available bandwidth
in the grid which could be useful for automatic replica selection or creation.
Another important feature is to consider disk subsystems, for which the set
of parameters needed for the analytical description of the performance have not
been defined yet, as well as the subsystems with partial failure (e.g. with number
of bad tracks increasing or need for frequent heads repositioning).

Taking into account those issues, we decided to start research on the approach
which we call ’probing’, contrary to simulation used for the tertiary storage.
Obviously, in most real cases it is not possible to probe access cost to all blocks



Stochastic Approach for Secondary Storage Data Access Cost Estimation 799

Table 1. Number of required probing retries to predict access cost

Min. number retries Max. number retries

less then 1MB 1000 2000
1MB - 100MB 50 100
more then 100MB 40 70

which files are consisted of, due to tight limitation for the whole time of operation
execution. We assumed that the estimation time should be within 0.5s range. So
probing must be done for selected number of disk blocks only. However, it has
been verified, that simple reading of first x number of blocks is inappropriate –
unpredictable buffering and caching algorithms realized by operating systems as
well as by devices make estimations obtained in this way useless.

Therefore, we introduce a statistical approach based on random selection of
representation of blocks of data to probe, in order to obtain a representation of
the access time to the entire data. This approach can produce accurate estima-
tions useful for the short-term usage. From the practical point of view, in the
secondary storage case, the most important factor, which we want to predict,
is the data transfer bandwidth from a disk device to memory of the machine
controlling this particular device. Contrary to the tertiary storage, the latency
is not as important since, the secondary storage usually can provide data in less
then 10ms. Paradoxically, the case of small and very small files is more difficult
to assess, since probing of access cost can usually lead to buffering data by the
operating system, that influences significantly the estimation results. However,
the system buffering decision is hard to predict. The situation is even more com-
plicated, when we deal with more intelligent disk arrays which can offer some
read-ahead and other features for efficiency improving. To solve that problem
we decided to bind parameters of the stochastic experiment with the file size.
Basing on deep analysis of Linux file buffering approach and some more popular
disk arrays providing I2O functionality we constructed a table of minimum and
maximum retries (limitations of probe events), selected heuristically, required to
perform on the file in order to get most accurate estimation (see Table 1).

Our estimation algorithm looks as follows:

// select randomly number of retries between
// min and and max from table
retry=minRetries+(maxRetries-minRetries)*rand()/(RAND_MAX+1.));

// size of sample block should be less then 1MB
if (currentFileSize<1024*1024){

maxBlockSize = currentFileSize;
}else{

maxBlockSize = 1024*1024;
}



800 L. Dutka and J. Kitowski

ftime(&t_start); // start stopper

for (int x=0;x<retry;x++){
// select randomly size of the probed block.
// Value between 1 and maxBlockSize
sampleSize=1+maxBlockSize*rand()/(RAND_MAX+1.0));
if (sampleSize >currentFileSize){

sampleSize = currentFileSize;
}

// select randomly start position of probed block
sampleOffset=((currentFileSize-sampleSize)*rand()

/(RAND_MAX+1.0));

lseek(fd, sampleOffset, SEEK_SET);
lBytesRead+=read(fd, buff, sampleSize);

}//for

ftime(&t_current); // stop stopper

//total time of reading lBytesRead bytes is t_diff
t_diff = computeTimeDiff(t_start, t_current);

To summarize the algorithm above, does the following steps:

– Select randomly number of probing retries.
– Define maximal size of probing blocks for the experiment, which obviously

must be lower then the entire file size.
– Starting stopwatch.
– In the loop repeating the following actions:

• Select randomly size of the probed block. It should be between 1 byte
and previously determined maximal size.

• Select randomly start position for reading of data. Simply, it must be
between beginning of the file end minus current block size we are going
to read.

• Reading of data and storing number of read bytes in a global variable.
– Stopping stopwatch.
– Computation of time spent for the experiment, what can be directly used

for calculation of the most important factor - data bandwidth.

3 Experimental Results

In the following section we provide experimental results of the data access cost
estimation using the estimator described in Section 2 and deployed on two differ-
ent machines zeus04 and zeus25 located in CYFRONET-AGH (Poland) [20],



Stochastic Approach for Secondary Storage Data Access Cost Estimation 801

where zeus04 was fully under our control and zeus25 was a production Stor-
age Element for CrossGrid infrastructure, being used simultaneously by different
users during the experiment.

The zeus04 machine was equipped with one single hard disk drive and zeus25
had a hard disk drive and a disk array connected to it using NFS. The disk array
was also shared by other machines in zeus cluster, which was composed of 30
nodes. Both machines provided access to their files through GridFTP server. For
real cost measurements execution time of the following command

zeusXX~\$~ globus-url-copy gsiftp://zeusXX//FileName.dat
file:///dev/null

was adopted.
The command above was always executed on the same machine from which

data was transferred outside, since the estimator estimates only the access cost
inside storage elements (for global access cost estimation issues see [3, 4]).

Using that hardware configuration we performed an experiment on verifi-
cation of accuracy of the estimations. Since, the experiment was made on the
production hardware environment, it was necessary to perform each step sev-
eral times. Thus, we executed every single test 100 times for calculation of the
average errors.

Tables 2, 3 and 4 present gathered results for bandwidth estimations for
different devices.

We can see that the absolute error for the experiments is less then 10%
considered as a very good result. Comparison of results for HDD and NFS shows
higher accuracy obtained for the latter case. This feature is probably caused by
lower involvement of the operating system in data buffering/caching in this case
in comparison with the case considering pure HDD drive.

Another important conclusions is that the accuracy of estimations depends
on the size of files. Obviously, the bigger files got less accurate estimations, due
to buffering performed by the operating systems. Some blocks of the processed
file are buffered, while some are not, which results in faster or slower access
then estimated using only on some random subset of blocks. Additional reason

Table 2. Experimental results for files located on zeus25 HDD drive

Average Estimated Bandwidth Average Real Bandwidth Absolute Error

f1KB.dat 356.20 MB/s 380.23 MB/s 6.32 %
f1MB.dat 164.76 MB/s 159.11 MB/s 3.55 %
f100MB.dat 19.24 MB/s 20.29 MB/s 5.17 %
f1GB.dat 19.00 MB/s 21.02 MB/s 9.61 %

The cost estimation experiments have been performed on a set of files,
f1KB.dat, f1MB.dat, f100MB.dat, f1GB.dat with sizes: 1KB, 1MB, 100MB and
1GB, respectively. That set of files was replicated into the zeus04 and zeus25
hard disk drives as well as into the SAN device connected to zeus25 via NFS
protocol.



802 L. Dutka and J. Kitowski

Table 3. Experimental results for files located on zeus25 NFS SAN drive

Average Estimated Bandwidth Average Real Bandwidth Absolute Error

f1KB.dat 281.12 MB/s 278.62 MB/s 0.90 %
f1MB.dat 123.57 MB/s 128.15 MB/s 3.57 %
f100MB.dat 15.66 MB/s 14.96 MB/s 4.67 %
f1GB.dat 12.92 MB/s 12.64 MB/s 2.22 %

Table 4. Experimental results for files located on zeus04 HDD drive

Average Estimated Bandwidth Average Real Bandwidth Absolute Error

f1KB.dat 159.46 MB/s 161.39 MB/s 1.19 %
f1MB.dat 136.37 MB/s 147.09 MB/s 7.29 %
f100MB.dat 24.15 MB/s 22.97 MB/s 5.13 %
f1GB.dat 23.41 MB/s 21.34 MB/s 9.68 %

for results discrepancy is file fragmentation, more evident for bigger files. It
is important to remark that the huge transfers obtained for the smallest files
described in the tables above, are thanks to the operating system cache. Moreover
we can see that even though, the prediction are very precise.

4 Conclusions

In this paper we thoroughly described our approach for estimation of data access
cost for data stored in the secondary storage.

Active experiments, like probing, that are based on a typical approach taken
from the control theory (identification of the models) seem to be more appro-
priate to get the performance information in a current state for a given data
size. Additional advantages of the approach are: consideration of current loads
and the available bandwidth in the grid (useful for automatic replica selection
or creation), assessment of grid storage subsystems for which the parameters are
unavailable or uncertain as well as the subsystems with partial failure, difficult
to follow analytically. For the long-term development of the approach one can
also see the possibility of implementation of experience management/learning
approach in order to extend precision of the subsystem performance prediction
in a real grid environment. Even if data size is small making use of the disk
cache, this fact is taken into account by appropriate organization of probing.

Summing up, in our opinion the accurate prediction of the access cost to
the secondary storage achieved in our experiments shows that even so simple to
implement method can be very effective in practice, and the analytical models
should be used for environments where the probing approach is not feasible like
the tertiary storage. A kind of proof of concept, presented in this paper, requires
more work and testing performed in production environment, which is planned
to be completed on grid testbeds available.



Stochastic Approach for Secondary Storage Data Access Cost Estimation 803

Acknowledgements

The work described in this paper was supported in part by the European Union
through the IST-2001-32243 project “CrossGrid”. AGH grant is also
acknowledged.

References

1. Crossgrid - development of grid environment for interactive applications, 2001. EU
Project no.: IST-2001-32243, http://www.crossgrid.org.

2. The European DataGrid Project. http://www.edg.org.

3. L. Dutka, R. Slota, D. Nikolow, and J. Kitowski. Optimization of Data Access
for Grid Environment. In 1st European Across Grids Conference, Lecture Notes
in Computer Science, no. 2970, pages 93–102, Universidad de Santiago de Com-
postela, Spain, February, 13-14 2003. Springer.

4. K. Stockinger, H. Stockinger, L. Dutka, R. Slota, D. Nikolow, J. Kitowski. Access
Cost Estimation for Unified Grid Storage Systems. In 4th International Work-
shop on Grid Computing (Grid2003), Phoenix, Arizona, November 17 2003. IEEE
Computer Society Press.

5. L. Dutka and J. Kitowski. Application of Component-Expert Technology for Selec-
tion of Data-Handlers in CrossGrid. In D. Kranzlmüller, P. Kacsuk, J. Dongarra,
and J. Volkert, editors, Proc. 9th European PVM/MPI Users’ Group Meeting, vol-
ume 2474 of Lecture Notes on Computer Science, pages 25–32. Springer, Sept. 29
- Oct. 2 2002.

6. L. Dutka and J. Kitowski. Flexible Component Architecture for Information WEB
Portals. In A. Bogdanov J. Dongarra A. Zomaya Y. Gorbachev P. Sloot, D. Abram-
son, editor, Proc. Computational Science - ICCS 2003 International Conference,
Lecture Notes in Computer Science, no. 2657, pages 629–638, Saint Petersburg
Russian Federation, Melbourne Australia, June 2 - 4 2003.

7. L. Dutka and J. Kitowski. Expert Technology in Information Systems Development
Using Component Methodology. In Proc. of Methods and Computer Systems in
Science and Engng., pages 199–204, Cracow, Nov.19-21 2001. ONT. (in Polish).

8. L. Dutka, R. Slota, and J. Kitowski. Component-Expert Architecture as Flexible
Environment for Selection of Data-handlers and Data-Access-Estimators in Cross-
Grid. In M. Turala M. Bubak, M. Noga, editor, Proceedings Cracow Grid Workshop
’02, pages 201–209, Cracow, Poland, December 11-14 2002 2002.

9. The CrossGrid Project. http://www.crossgrid.org.

10. D. Nikolow, R. Slota, M. Dziewierz, and J. Kitowski. Access Time Estimation
for Tertiary Storage Systems. In R. Feldman B. Monien, editor, Euro-Par 2002
Parallel Processing, 8th International Euro-Par Conference, volume 2400 of Lecture
Notes on Computer Science, pages 873–880, Paderborn, Germany, August 27-30
2002. Springer.

11. D. Nikolow, R. S�lota, and J. Kitowski. Data access time estimation for hsm systems
in grid environment. In Proceedings of the Cracow Grid Workshop, December 2002.

12. Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Com-
puter, 27(3):17–28, March 1994.

13. David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation
model of the HP 97560 disk drive. Technical report, 1994.



804 L. Dutka and J. Kitowski

14. Gregory R. Ganger and John S. Bucy. The disksim simulation environment, Jan-
uary 24 2003.

15. N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-
based exctraction of local and global disk characteristics. web, 1999.
http://www.cs.wisc.edu/ remzi/Postscript/disk.pdf.

16. B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-line extraction of
SCSI disk drive parameters. In Proceedings of the 1995 ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems,
pages 146–156, Ottawa, Canada, May 15–19 1995.

17. J.S. Bucy and G.R. Ganger. The DiskSim Simulation Environment Version 3.0
Reference Manual. School of Computer Science Carnegie Mellon University, Pitts-
burgh, 2003.

18. J. Schindler and G.R. Ganger. Automated Disk Drive Characterization. Techni-
cal report, School of Computer Science Carnegie Mellon University, Pittsburgh,
December 1999. CMU SCS Technical Report CMU-CS-99-176.

19. E. Bachmat J. Schindler. Analysis of methods for scheduling low priority disk
drive tasks. In Proceedings of SIGMETRICS 2002 Conference, Marina Del Rey,
California, June 2002.

20. Academic Computer Center - CYFRNET AGH, Poland.
http://www.cyfronet.krakow.pl.



A Cluster-Based Dynamic Load Balancing
Middleware Protocol for Grids

Kayhan Erciyes1,2 and Reşat Ümit Payli3

1 Izmir Institute of Technology, Computer Eng. Dept.,
Urla, Izmir 35430, Turkey

2 California State University San Marcos,
Computer Science Dept. San Marcos CA 92096, U.S.A

kerciyes@csusm.edu
3 Computational Fluid Dynamics Laboratory,
Purdue School of Engineering and Technology,

Indiana University-Purdue University,
Indianapolis, Indiana 46202, U.S.A

rpayli@iupui.edu

Abstract. We describe a hierarchical dynamic load balancing protocol
for Grids. The Grid consists of clusters and each cluster is represented
by a coordinator. Each coordinator first attempts to balance the load
in its cluster and if this fails, communicates with the other coordinators
to perform transfer or reception of load. This process is repetaed peri-
odically. We show the implementation and analyze the performance and
scalability of the proposed protocol.

1 Introduction

Computational Grids consist of heterogenous computational resources, possibly
with different users, and provide them with remote access to these resources [1],
[2], [3]. The Grid has attracted reserachers as an alternative to supercomputers
for high performance computing. One important advantage of Grid computing is
the provision of resources to the users that are locally unavailable. Since there are
multitude of resources in a Grid environment, convenient utilization of resources
in a Grid provides improved overall system performance and decreased turn-
around times for user jobs [4]. Users of the Grid submit jobs at random times.
In such a system, some computers are heavily loaded while others have available
processing capacity. The goal of a load balancing protocol is to transfer the
load from heavily loaded machines to idle computers, hence balance the load at
the computers and increase the overall system performance. Contemporary load
balancing algorithms across multiple/distributed processor environments target
the efficient utilization of a single resource and even for algorithms targetted
towards multiple resource usage, achieving scalability may turn out to be difficult
to overcome.

A major drawback in the search for load balancing algorithms across a Grid
is the lack of scalability and the need to acquire system-wide knowledge by

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 805–812, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



806 K. Erciyes and R.Ü. Payli

the nodes of such a system to perform load balancing decisions. Scalability is an
important requirement for Grids like NASA‘s Information Power Grid (IPG) [5].
Some algorithms have a central approach [6], yet others require acquisition of
global system knowledge. Scheduling over a wide area network requires transfer
and location policies. Transfer policies decide when to do the transfer [7] and this
is typically based on some threshold value for the load. The location policy [8]
decides where to send the load based on the system wide information. Location
policies can be sender initiated [9] where heavily loaded nodes search for lightly
loaded nodes, receiver initiated [10] in which case, lightly-loaded nodes search
for senders or symmetrical where both senders and receivers search for partners
[11]. Load balancing across a Grid usually involves sharing of data as in an
MPI (Message Passing Interface) scatter operation as in [12], [13]. MPICH-G2,
is the a Grid-enabled implementation of MPI that allows a user to run MPI
programs across multiple computers, at the same or different sites, using the
same commands that would be used on a parallel computer [14].

We propose a protocol to perform load balancing in Grids dynamically where
an ordinary node does not need to have a global system wide knowledge about
the states of other nodes in the Grid. The protocol is semi-distributed due to the
existence of local cluster center nodes called the coordinators. We show that the
protocol designed is scalable and distributed as the coordinators communicate
and synchronize asynchronously.

The paper is organized as follows: In Section 2, the proposed protocol includ-
ing the coordinator and the node algorithms is described with the analysis. In
Section 3, the implementation of the protocol using an example is explained and
Section 4 contains the concluding remarks along with discussions.

2 The Protocol

For load balancing in grids, we propose the architecture shown in Fig. 1 where
nodes form clusters and each cluster is represented by a coordinator similar to
[15]. Coordinators are the interface points for the nodes to the ring and perform
load transfer decisions on behalf of the nodes in their clusters they represent.
They check whether load can be balanced locally and if this is not possible, they
search for potential receivers across the Grid. Load can be specified in many
different ways. One common approach is the count of the processes waiting in
the ready queue of the processor. The only resource required by a ready process
to execute is the processor. When the count value is detected to be higher than
the upper threshold, we say that the node is HIGH, otherwise when the number
of processes in the ready queue is below a lower threshold, the node is LOW
meaning it can accept load from the other nodes. A ready queue at a node
can have a value in between these two thresholds in which case the node is
considered MEDIUM. We also assume that only non-preemptive transfers are
possible which would indicate that only processes that have not started execution
in the host node can be transferred along with their data. For the protocol, we
will concentrate on the mechanism to decide when and where the transfer of load



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 807

n n

n

n

n

n n

n

C

C
C

Fig. 1. The Load Balancing Model for a Grid

should be performed rather than how. It should also be noted that the protocol
will work equally for sharing of data across the Grid for parallel applications as
in scattering operations.

2.1 Coordinator Algorithm

The coordinator is responsible to monitor local loads, initiate transfer from
HIGH to LOW nodes if there are local matches and search for LOW nodes
across the Grid if there are no local matches. Its state diagram is depicted in
Fig. 2.

IDLE

WAIT

WAIT

Xfer_NAK

Coord_Xfer/

WAIT
POLL

XFER
WAIT

WAIT
XLD

WAIT
INAK

INLD

XAK

LOW

MED

Node_State

LOW

HIGH
/ Xfer_Req

Xfer_OK /

In_Load
/ X_Load

/Xfer_Req
Xfer OK Coord Xfer

X_Load
/ In_Load

X_ACK
/ In_ACK

In_ACK
/ X_ACK

Coord_Poll

Fig. 2. Coordinator Algorithm State Machine



808 K. Erciyes and R.Ü. Payli

Process Coordinator;

1. Begin

2. While TRUE

3. Wait for Time_Out;

4. Send Coord_Poll messages to nodes,

5. Receive Loads from nodes;

6. If there are local matches

7. Send Coord_Xfer to HIGH nodes;

8. Else

9. Send Xfer_Request message to next Coordinator;

10. If Xfer_OK received Send Coord_Xfer to HIGH node;

11. If Load is received Xfer Load to next Coordinator;

12. If Xfer_ACK Send Xfer_ACK to HIGH node;

13. Else Send Coord_Xfer to HIGH Node;

14. End.

Fig. 3. Coordinator Algorithm Pesudocode

It is awaken by a timer interrupt and sends a Coord Poll message to every
node in its cluster. When it receives the loads, it checks whether there are any
local matching nodes. If there is a match, it sends Coord Xfer message to
HIGH node to initiate transfer. Otherwise, it sends a Xfer Request message to
the next coordinator in the ring and waits for a reply. If it receives the original
message back, there are no matches and the next period is waited. If there is
a remote match (Xfer OK), the coordinator initiates transfer from the local
node by sending Coord Xfer. When it receives the load from the local node, it
transfers this to the target coordinator which then passes the load to the target
node. If transfer is error free, the target node responds by Xfer ACK which
is passed along the coordinators to the source node. The pseudocode for the
coordinator algorithm is depicted in Fig.3.

2.2 Node Algorithm

Thenode process sends its load to the coordinator when it receives the Coord Poll
message from the coordinator. If its load is HIGH, it waits for initiation of trans-
fer from the coordinator. When it receives this initiation (Coord Xfer), it sends
the excessive load to the specified receiver and then waits for acknowledgement.
If there is an error in transfer, the process is repeated as shown in Fig.4. If its
load is LOW, it will wait until a transfer from the HIGH node or a timeout.

2.3 Analysis

Let us assume k, m, n and d are upperbounds on the number of clusters, nodes
in a cluster in the network, nodes in the ring of coordinators and the diameter
of a cluster respectively.



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 809

IDLE

WAIT
LOAD

Coord_Poll,
LOW

Time_Out

Load_OK

Xfer_ACK

Xfer_NAK
Load_ERR

Coord_Poll,

Coord_Poll,

MED

HIGH

WAIT
XFERWAIT

ACK

Coord_Xfer
/ Xfer_Load

Time_Out

Xfer_ACK

/

/

Load_ERR
/ Xfer_Load

Fig. 4. Node Algorithm State Machine

Theorem 1. The total time for a load transfer is between 4dT + L and (4 +
k)dT + L where T is the average message transfer time between adjacent nodes
and L is the actual average load transfer time.

Proof. A node transfers its state to the coordinator in d steps in parallel with
the other nodes and assuming there is a match of LOW-HIGH nodes in the local
cluster, the coordinator will send Coord Xfer message to the HIGH node in d
steps. Then there will be L time for the actual load transfer. The HIGH and
LOW nodes also perform a final handshake to confirm delivery of load in 2d
steps. The total minimum time for load transfer is then the sum of all of these
steps which is 4dT + L. In the case of a remote receiver, the messages for load
transfer have to pass through k hops resulting in (4 + k)dT + L time.

Corollary 1. The total number of messages exchanged for load transfer is O(k).

Proof. As shown by Theorem 1, the maximum total number of messages required
for a remote receiver will be (4 + k)d. Assuming d is approximately unity, the
message complexity of the algorithm is O(k).

Corollary 2. The protocol described achieves an order of magnitude reduction
in the number of messages exchanged for load transfer with respect to a similar
protocol that does not use clusters.

Proof. Assuming k=m, that is, the maximum number of clusters in the Grid
equals the maximum number of nodes in a cluster, the total number of messages



810 K. Erciyes and R.Ü. Payli

exchanged would be in the order of O(k2) for a similar protocol that does not
use any hierarchical cluster structure. Therefore, the number of messages using
our approach provides an order of magniude decrease in the number of messages
transferred.

3 An Example Operation

An example operation of the model is depicted in Fig.5. The following are the
sequence of events :

1. All of the nodes in clusters 1, 2 and 3 inform their load states to their cluster
coordinators C1, C2 and C3. There are no LOW nodes in Cluster 1, there is
one HIGH and one LOW node in Cluster 2 and 1 LOW and two MED nodes
in Cluster 3. This is shown in Fig.5(a).

2. The coordinator for Cluster 1, C1, forms a request message Xfer Req and
sends it to the next coordinator on the ring, C2.

3. C2 has a local match between its two nodes (n23 and n21) and has no other
receivers. It therefore passes the message immediately to its successor C3. It
also sends Coord Xfer message to n21 to initiate local load transfer.

4. C3 has a potential receiver (n32) which has reported LOW load. It therefore
replies by changing the message Xfer Req to Xfer OK and sends this to
C1. Steps 2,3 and 4 are shown in Fig.5(b).

n

n12

11

33

n
31

n

C 1

n21

MED

HIGH

LOW MED 23n

22
n

MED

MED

n
13

n
32

n

n12

11

33

n
31

n

C
C 1 3

n21 22
n

n
13

n
32

n

n12

11

33

n
31

n

C

2

C 1 3

n21

23n

22
n

13

n
13

n
32

n

n12

11

33

n
31

n

C

C 2

C 1 3

n21

23n

22
n

Load

n
13

n
32

HIGH

LOW

HIGH

2C

Xfer_Req
13

Xfer_Req
13

Xfer_OK
13

Coord_Xfer

Load
Load

Load

13

13

23
n

Xfer_OK

C

Xfer_OK

Xfer_OK
13

13

Load

Coord_Xfer

(a) (b)

(d)(c)

Fig. 5. An Example Operation of the Protocol



A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids 811

5. C1 receives the reply message for R13 and sends the Coord Xfer message to
n13 which then sends its load to C1.

6. C1 now transfers the load to C3 which transfers the load to n32. Steps 5 and
6 are shown in Fig.5(c).

7. n32 sends Xfer ACK message to its coordinator C3 which passes this to C1

which then forwards it to n13. This step is shown in Fig.5(d).

4 Discussions and Conclusions

We proposed a framework and a protocol to perform dynamic load balancing
in Grids. The Grid is partitioned into a number of clusters and each cluster
first tries to balance the load locally and if this is not possible, a search for
potential receivers is performed across the Grid using a sender-initiated method.
We showed that the proposed protocol is scalable and has significant gains in the
number of messages and the time perform load transfer. We have not addressed
the problem of how the load should be transferred but we have tried to propose
a protocol that is primarily concerned on when and where the load should be
transferred. In fact, it may be possible just to transfer data part of the load by
employing copies of a subset of processes across the nodes in the Grid. Load
balancing across a Grid, in a general sense, would involve transferring of data
for parallel applications.

The coordinators have an important role and they may fail. New coordinators
may be elected and any failed node member can be excluded from the cluster.
The recovery procedures can be implemented using algorithms as in [16] which
is not discussed here. Our work is ongoing and we are looking into implement-
ing the proposed structure in a Grid with various load simulations. Another
research direction would be the investigation of the proposed model for real-
time load balancing across the Grid where load balancing decisions on where
and when to do the transfer and the actual load transfer should be performed
before a pre-determined soft or hard deadlines. Yet another area of concern is
keeping the copies of a subset of processes at nodes (shadow processes) to ease
load transfer.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int. Journal of High Performance Computing Applications,
15(3), (2001), 200-222.

2. Foster, I.: What is the Grid ? A Three Point Checklist, Grid Today, 1(6), (2002).
3. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infras-

tructure, Morgan Kaufmann, San Fransisco, CA 1999.
4. Arora, M., Das, S., K., Biswas, R.: A De-centralized Scheduling and Load Balanc-

ing Algorithm for Heterogeneous Grid Environments, Proc. of Int. Conf. Parallel
Processing Workshops, (2002), 499-505.



812 K. Erciyes and R.Ü. Payli

5. Johnston, W. E., Gannon, D., Nitzberg, B.: Grids as Production Computing En-
vironments : The Engineering Aspects of NASA‘s Information Power Grid. Proc.
8th Int. Sym. High Performance Distributed Computing, (1999), 197-204.

6. Akay, O., Erciyes, K.: A Dynamic Load Balancing Model For a Distributed System.
Journal of Mathematical and Computational Applications ,Vol.8, 2003, No:1-3.

7. Eager, D. L., Lazowska, E. D., Zahorjan, J.: A Comparison of Receiver-initiated
and Sender-initiated Adaptive Load Sharing, Performance Evaluation, 6(1), (1986),
53-68.

8. Kumar, V. , Garma, A., Rao, V.: Scalable Load Balancing Techniques for Parallel
Computers, Journal of Parallel and Distributed Computing, 22(1), (1994), 60-79.

9. Liu, J., Saletore, V. A.: Self-scheduling on Distributed Memory Machines, Proc. of
Supercomputing, (1993), 814-823.

10. Lin, H., Raghavendra: A Dynamic Load-balancing Policy with a Central Job Dis-
patcher, IEEE Trans. on Software Engineering, 18(2), (1992), 148-158.

11. Feng, Y., Li, D., Wu, H., Zhang, Y.: A Dynamic Load Balancing Algorithm based
on Distributed Database System, Proc. 8th Int. Conf. High Performance Comput-
ing in the Asia-Pasific Region, (2000), 949-952.

12. Genaud, S. et al.: Load-balancing Scatter Operations for Grid Computing, Parallel
Computing, 30(8), (2004), 923-946.

13. David, R. et al.: Source Code Transformations Strategies to Load-Balance Grid
Applications, LNCS, Springer Verlag, 2536, (2002), 82-87.

14. MPICH-G2: A Grid-enabled Implementation of the Message Passing Interface,
Journal of Parallel and Distributed Computing, 63(5), (2003), 551 - 563.

15. Erciyes, K, Marshall, G.: A Cluster Based Hierarchical Routing Protocol for Mobile
Networks, LNCS, Springer Verlag, 3045(3), (2004), 518-527.

16. Tunali, T, Erciyes,K., Soysert, Z.: A Hierarchical Fault-Tolerant Ring Protocol
For A Distributed Real-Time System, Special issue of Parallel and Distributed
Computing Practices on Parallel and Distributed Real-Time Systems, 2(1), (2000),
33-44.



Reconfigurable Scientific Applications
on GRID Services

Jesper Andersson, Morgan Ericsson, and Welf Löwe

Software Tech. Group, MSI,
Växjö universitet,

351-95 Växjö, Sweden
{jesan, mogge, wlo}@msi.vxu.se

Abstract. This paper proposes a runtime environment for dynamically
changing, parallel scientific applications. This kind of applications is mo-
tivated by the LOFAR/LOIS project aiming at a multidisciplinary re-
search platform for natural scientists and engineers. The dynamic infras-
tructure in turn is than mapped to Grid Services environments.

1 Introduction

LOFAR (LOw Frequency ARray),1 is a new generation, multi-purpose radio in-
frastructure aiming at multi-disciplinary research of astronomers, cosmologists,
space and atmospheric physicists, climatologists, cosmic particle physicists, ra-
dio scientists, wireless communication developers and IT researchers. It consists
of geographically digital receptor units connected to computing facilities with
a high-speed network. Units are distributed over distances of 400 km; any unit
will produce data at a rate of 2 Gbits/s, resulting in a total system data rate of
25 Tbits/s. The Swedish initiative LOIS (LOFAR Outrigger In Scandinavia)2

aims, among others, at extending and enhancing the IT infrastructure capabili-
ties of LOFAR.

The data received by the sensors are processed in scientific applications.
Therefore, applications must be deployed to a computation infrastructure. Since
applications can be deployed and/or removed dynamically and the computation
infrastructure might change as well, runtime support for dynamic changes is re-
quired, as well. Such a runtime support functionality must perform the actual
reconfigurations in a robust way. We propose a dynamic service infrastructure
to solve these problems.

Grid Services have been established as runtime environments for scientific
applications. The present paper evaluates how such established environments
can be utilized to implement our new dynamic service infrastructure.

1 http://www.lofar.org
2 http://www.lois-space.org

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 813–822, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



814 J. Andersson, M. Ericsson, and W. Löwe

2 General Requirements of (LOIS-) Application

This section defines the concrete application environment that our research is
embedded in. It defines some basic notions and roles, describes usage scenarios
and, thereby, establishes requirements on a dynamic service architecture running
on a Grid Service infrastructure. It also justifies our assumptions and constraints
and serves as an example.

The kind of basic hardware infrastructure we are discussing consist of

– a number of sensors generating a stream of input values,
– a number of computation processors. These are referred to as nodes. Some

nodes are connected to sensors receiving the input values. The latter are
referred to as input nodes.

– an interconnection network allowing for communication between the nodes.

This is hardware infrastructure potentially managed by a Grid Service infras-
tructure.

On this Grid Service infrastructure, we execute the virtual experiments, i.e.
applications processing data from the sensors. These applications are data par-
allel programs. Their input are either sensor input values or the output of other
applications. If the input of an application a is the output of an application
a′, a is called data-dependent on a′. It is denoted by a′ → a. Applications are
stateless, data driven, functions defined by task graphs.

The whole system to be executed is composed of a set of applications and their
connections according to the data dependencies between them. The configuration
of such a system is defined by:

– its set of applications,
– the data dependencies, and
– quality of services parameters

Since such a configuration itself defines a task graph, the whole system is an
application, too.

Continuing, the configuration may change over time. These changes are trig-
gered by different sources.

User Triggered: The user in our scenario is in charge of a certain experiment,
i.e. controls a certain set of applications. User interactions are adding and remov-
ing applications. Adding new applications requires (i) connecting its input to the
input values or to the output of running applications and, (ii) setting the quality
of service parameters.

A typical scenario in this category is that a user adds a new experiment and
necessary intermediate computations to the system and removes it after gaining
the results.

Application Triggered: Some applications are detectors, recognizing certain
patterns in the processed data that requires reconfiguration, for instance adding
or removing applications and/or changing their quality of service parameters.



Reconfigurable Scientific Applications on GRID Services 815

A typical scenario is the detection of an interesting sensor activity requiring an
increased sampling rate. This leads to changed quality of service requirements and
might lead to the situation where some on-line applications must be postponed
and computed off-line. Their required data is then stored in the database, and
their input is connected to a new application, a database daemon.

System Triggered: The complexity of applications might be input data depen-
dent. Certain input might lead to load peaks in these applications. Also, hardware
might fail. In order to guarantee the required quality of services, the runtime en-
vironment itself needs to reconfigure the applications.

A typical scenario is load balancing on sub-application level, i.e. redistributing
some tasks in the data-parallel applications or postponing applications to off-line
computations.

These changes are controlled by a dynamic service infrastructure, which is de-
scribed in Section 3.1.

3 Architecture

This section describes the Dynamic Service Infrastructure (DSI), a reference
architecture introducing dynamism to a static composition scenarios. It further
shows how the DSI can be instantiated to solve the problem described in the
previous sections. The DSI is further discussed in [3].

3.1 Dynamic Service Infrastructure – DSI

The DSI is a composite instantiation, influenced by architectural patterns pro-
posed by [2]. The resulting architecture separates conceptual concerns from phys-
ical representation. The physical representation is the currently running system,
while the conceptual architecture rather describes the structure and composition
of the system. This conceptual architecture is needed in order to reason or reflect
about the running system.

Conceptual Architecture. The conceptual architecture has two aspects: control
and processing, as depicted in Figure 1. The control architecture is concerned
with monitoring and, if needed, evolving the architecture to suit new require-
ments and/or constraints. The processing architecture captures the core behav-
ior of a configuration of connected applications, i.e., it serves as a (high-level)
description of the deployed system.

The processing architecture contains three basic component types; Appli-
cation, Connector, and Configuration. These components and the relationships
are depicted in figure 1. An Application is a container component where compu-
tations are performed. All interactions with a Application goes through a typed
interface. A Connector captures component interactions. The typed end-points of
a Connector connects to Application interface points. A Configuration is a compo-
sition of Application and Connector components. Some engineering tasks require
hierarchical configurations where a Configuration contains other configurations.



816 J. Andersson, M. Ericsson, and W. Löwe

Configuration

Connector Application

1

0..*

1

1..*

1

*

-connects to

* *

Coordinator

Generator

*

*

Validator Probe

Actuator

1

*

1

1..*

*

*

* *

*

*

Processing

Control

Fig. 1. Conceptual Architecture

The control architecture consist of five component types; Probe, Actua-
tor, Generator, Validator, and Coordinator. The Probe and Actuator are the
bridging points where control connects to processing. A Probe is a configurable
monitoring process that monitor processing components and generate events
that are communicated back to its Coordinator. The Coordinator component is
the decision maker in the service architecture, responsible for coordination and
delegation of control tasks. A Coordinator is goal-driven and can be employed
on different levels in the architecture. The top-most Coordinator component
strives for fulfilling the quality of service requirements posed by the different ap-
plications, while other Coordinator instances are responsible for coordination of
sub-architecture (applications). In this process they employ different Generator
and Validator components, for instance for creating new application configu-
rations or rule-sets for coordination control and monitoring. The meta-data is
provided by the processing architecture elements described above. The Coor-
dinator use Actuator components to directly affect application configurations
and/or application component instances.

This control architecture provide provisioning for the requirement discussed
in previous sections. Reconfiguration and evolution is supported by Coordina-
tor, Generator, and Validator components. For external initiation, (i.e Con-
structive Architecture style [2]), Probe and Actuator components are exported
and included in external management applications. Application triggered re-
configurations are supported by the connecting Probe and Actuator components
to Application and Connector entities in the processing architecture. For sys-
tem level initiation, coordination is supported on different levels. Coordinator



Reconfigurable Scientific Applications on GRID Services 817

components present in different applications connect to Coordinator entities on
the system level. The network of Probe and Actuator instances also work on this
level. Making these entities available for both on-line and off-line reconfiguration
creates a highly flexible environment.

Physical Architecture. The principle tasks of the physical architecture is to deal
with management of dynamic reconfigurations and events. In the most general
case, the physical architecture can be responsible for the evolution of the system,
i.e. the generation of new configurations on the fly. In most computation applica-
tion, one could not expect a 1-to-1-mapping between the conceptual architecture
and a working implementation architecture, which means that the generation of
mappings turn into a costly activity. In our current setting this is not feasible,
but we would not like to rule that out as impossible in the future.

Inordertoperformarobust,fine-graineddeployment, therun-timecoordinators
must have access to meta-information describing the current conceptual level
ant its mapped implementation. This information describe a Configuration of
Application and Connector instances at different levels. The run-time system
provide a modification language for the actual execution of a re-configuration
of the implementation as well as a language for conceptual modifications. These
includes primitives for the fundamental activities such as creation and connection.

The second assigned task is event management. Events generated externally
(e.g a new schedule arrives) and internally (e.g increased sample rate) will be re-
sponded to proper actions taken. This is governed by a coordinator application.
This coordinator is also responsible for feeding information back to the concep-
tual coordinator, for instance forwarding events that initiates a new lookahead
schedule.

3.2 Mapping (LOIS-) Application to DSI

In order to use the DSI to run systems with requirements given in Section 2, it
needs to be instantiated with a component and composition model, and with a
strategy for mapping a conceptual to a physical architecture.

Components and Composition. A component is a data parallel synchronous
program without any data distribution. For simplicity, it is assumed that the
programs operate on a single array, a. The size of an input a, denoted by |a|, is
the length of the input array a.

Array a is either the array of input values or the output of another component.
Note that in our scenarios, the number of input values is fixed. We may assume
that the output size of an application is a function of the input size. By induction,
it follows that the input size is fixed for all applications in our systems.

A component can be modelled by a family of taskgraphs Gx = (Vx, Ex, τx)
where τx is the execution time on the target machine. Scientific applications can
automatically be compiled to such a family of task-graphs [10].

To this end, composition of components can be done by defining a program
using these components and assigning the output array of one component to the



818 J. Andersson, M. Ericsson, and W. Löwe

Fig. 2. Conceptual Architecture

input of another. This system is also a data-parallel program and can therefore
be compiled and scheduled just like the individual components.

Mapping Conceptual to Physical Architecture. The process of mapping
from conceptual to physical architecture is the process of translating the com-
posed application to a family of task graphs and schedule these to the infras-
tructure. This process is triggered by certain events. Adding/removing an appli-
cation/component requires a complete re-translation and re-scheduling

The processes of mapping from conceptual to physical architecture is a schedul-
ing problem. This scheduling is triggered by certain events. Most of these events
require a re-translation and a rescheduling and most be handled online.

Figure 2 sketches the complete process of mapping a simple, composed ap-
plication to a task graph that is scheduled to two computational nodes.

In order to schedule a family of task graphs to the infrastructure a machine
model to derive execution and communication costs from is needed. One such
model is the LogP [4] model. In addition to the computation costs τ , it models
communication costs with parameters Latency, overhead, gap, and the number
of processors, P . At most �L/g� messages can be in transmission on the network
at any time.

The computation of an optimum scheduling, using LogP or simpler machine-
models is known to be NP-hard. While there exists good approximations and
heuristics, for instance [9], these are still to slow, given that certain events require
online processing. One way of addressing this issue is to perform a lookahead
scheduling [8], that is compute new schedules before they are actually needed.
With lookahead scheduling, the frequency at which change events can be tol-
erated is the inverse of the delay for computing the lookahead schedules. This
delay can be reduced by performing composition on task graph level instead of
application level and using predefined schedules for the task graphs.

A task graph representation of an application/component is trivial to reuse,
since the functionality of an application/component does not change. Given the
nature of the composition it is also easy to do composition on task graph level.

Infrastructure

Task Graphs

Composed Application



Reconfigurable Scientific Applications on GRID Services 819

A problem, however, is that while task graphs are trivial to reuse, the schedules
of a task graph are not. Optimum schedules of individual task graphs (or their
approximations) are, in general, not part of the optimal schedule for a composed
system (or its approximation).

This problem is approached by modelling task graphs as malleable tasks
and systems with malleable task graphs. A malleable task is a task that can
be executed on p = 1 . . . P processors. Its execution time is described by a
non-increasing function τ of the number of processors p actually used. For
each task graph the schedules sp can be pre-computed for p = 1 . . . P and
τ(p) = TIME (sp). A malleable task graph is recursively defined as a task graph
over malleable tasks, i.e. nodes are ordinary task graphs or malleable task graphs
and edges are the data-dependencies between them. How malleable task graphs
can be scheduled is discussed in [8]. This scheduling needs only be done once for
each malleable task graph.

4 Grid Services and DSI

This section shows how the DSI can be implemented using Grid computing. The
section starts by defining a somewhat simplified, yet realistic Grid computing
environment, and then shows how the DSI would map to it.

4.1 Grid Services

A grid is compromised of a wide array of heterogeneous resources. The role of
the grid environment is to make sure that these resource interact and behave in
a well-known and consistent way. This is achieved via a Grid framework. One
such (conceptual) framework is the OGSA, the Open Grid Service Architecture
[6], which brings service-orientation to the Grid world, by using an extended and
refined Web Service model.

In order to implement the DSI using Grid computing some assumptions on
the Grid framework are necessary. The major assumption is that there exists a
central job management/load balancing service, that is replaceable. This service
will be referred to as the coordinator service. It is further assumed that there
is a replaceable factory service and some sort of packet management service.
The Grid framework should also support the Web Services Notification Specifi-
cation [7]. These assumptions are realistic, and all the required components can
for instance be found in the gLite [1] grid middle-ware.

It is further assumed that a node represent a heterogeneous computational
resource, that is anything from a sensor to a massive parallel computer, and that
one grid service, representing a computational task, is running per node.

4.2 Mapping DSI to Grid Services

The OSGA specifies, as stated above, a number of services to manage the Grid
environment and jobs executing within. While these services are not a 1:1 match
with the components of the DSI, it is still possible to create a mapping.



820 J. Andersson, M. Ericsson, and W. Löwe

According to the DSI, the processing architecture consists of a configura-
tion and a set of applications and connectors. These applications are in turn
described by a configuration and a set of connections and components (applica-
tions), in a recursive way. The applications and connectors resides in a packet
manager service. This packet manager service can be seen as a more advanced
version of for instance BSD ports collection or Gentoo Portage. Initially, the
packet manager service has access to basic components matching typical opera-
tions found in a task graph. The set of connectors will vary a lot depending on
the setting, but must include the required interprocess communication protocols,
but local and remote. Examples could be shared memory, MPI, and so on. A
SOAP/Grid Service connector must also be included to allow for message pass-
ing between different computational nodes. A skeleton Grid service component,
implementing the basic WS-Notification, life-cycle management, and so on, must
also be included. The set of components will grow with every requested composite
component.

The main component of the control architecture is the coordinator, which
is charge of the scheduling and deployment. This is typically the job of any
job/task management service or load balancing service in the Grid environment.
Any such service with a reasonable API should be able to be replaced by the
coordinator service. The generator and validator components are also part of
such a job manager.

The probe and actuator are implemented as part of the Grid services. This
can be coupled with the event management system, implemented using WS-
Notification.

A shown in Section 3.2, the scheduling of an application to an infrastructure
creates clusters of tasks to be executed on a node by decomposing an application
according to quality of service and data constraints. Every such cluster of tasks
is represented by one Grid service. The creation of such a cluster is handled
by the factory and packet manager services, and initiated by the Coordinator
service.

4.3 Reconfiguration

As stated above, the job of the scheduler is to partition the task graph to compu-
tational nodes, that is create a set of Grid services. This is done by the scheduler
creating a configuration and deliver it to the factor service. The configuration
contains a set of services mapped to nodes, where each service is described as a
set of components and connectors. The factory queries the packet manager for
the components needed and deploys the composed pieces of software on the as-
signed nodes. The packet manager caches all composed services and keeps track
of all running instances of a service, in order to avoid re-deployment of identical
services.

The scheduling remains unchanged from the general LOIS case. We do as-
sume that the entire system is rescheduled without consideration of running
system. It would be possible to use heuristics in form cost penalties when switch-
ing communication-type to encourage the use of an existing configuration. The



Reconfigurable Scientific Applications on GRID Services 821

scheduling will be more complex given the different layers, that is the scheduling
of tasks within a node could be just as complex as the scheduling of task clusters
to nodes. Another issue is that a machine model describing the Grid environ-
ment must be developed. [5] presents a experimental study of LogP parameters
using the Web Service model. This work can easily be extended to suit a Grid
scenario.

5 Conclusions and Future Work

This paper discussed the application scenario of LOIS, a radio and data network
for scientific applications, i.e. systems of data-parallel applications requiring high
performance. Additionally, applications could be added/removed dynamically.
In our scenario, the system architecture could even change due to the results
of applications. A solution to address both the performance and the flexibility
problem is the Dynamic Service Infrastructure (DSI) proposed in this paper and
its implementation on top of a Grid Services environment.

The implementation of the DSI on top of a Grid environment is an interesting
result since it, at least theoretically, shows how LOIS could utilize Grid resources
and contribute to existing Grid resources. Another result is that the dynamic
properties of the DSI can be reused by any Grid application as long as the basic
assumptions regarding applications and development models hold.

Much work remains to be done. The results presented here are mostly the-
oretical. A implementation of the components described here is underway, even
if not all of them are currently in a Grid environment.

Another problem is the scheduling and machine models for Grid services.
Work is ongoing on defining a multi-paradigm scheduling policy that can han-
dle the scheduling required, and initial experiments are carried out to define a
machine model for Grid/Web services that is both simple and realistic enough.

References

1. EGEE middleware architecture. Technical report, Enabling Grid for e-Science in
Europe, 2004.

2. J. Andersson. A classification of dynamic software architectures. Technical report,
Department of Computer Science, Växjö universitet, 2003.

3. J. Andersson, M. Ericsson, and W. Löwe. An adaptivehigh-performance service
architecture. In Software Composition Workshop (SC) at ETAPS’04. Electronic
Notes in Theoretical Computer Science (ENTCS), 2004.

4. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.
In 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPOPP 93), pages 1–12, 1993. published in: SIGPLAN Notices (28) 7.

5. Morgan Ericsson. Web Services and the LogP machine model – An experimental
study. In 3nd Nordic Conference on Web Services, 2004.

6. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The physiology of the grid.
Technical report, The Globus Alliance (www.globus.org), 2002.



822 J. Andersson, M. Ericsson, and W. Löwe

7. S. Graham and P. Niblett. The web-services notification specification 1.0. Technical
report, Akamai Technologies, Computer Associates International, Fujitsu Labora-
tories of Europe, Globus, Hewlett-Packard, IBM, SAP AG, Sonic Software, TIBCO
Software, 2002.

8. W. Löwe J. Andersson, M. Ericsson and W. Zimmermann. Lookahead Scheduling
for Reconfigurable GRID Systems. In 10th International Euro-Par Conference,
2004.

9. W. Löwe and W. Zimmermann. Scheduling balanced task-graphs to logp-machines.
Parallel Computing, 26(9):1083–1108, 2000.

10. Wolf Zimmermann and Welf Löwe. An approach to machine-independent parallel
programming. In CONPAR ’94, Parallel Processing, volume 854 of LNCS, pages
277–288. Springer, 1994.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 823 – 830, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Geographic Information Systems Grid∗ 

Dan Feng1, Lingfang Zeng1, Fang Wang1, 
Degang Liu2, Fayong Zhang2, Lingjun Qin1, and Qun Liu1 

1 Key Laboratory of Data Storage System, Ministry of Education, 
School of Computer, Huazhong University of Science and Technology, Wuhan, China 
2 GIS Software Development & Application Research Centre, Ministry of Education, 

Info-engineering College of China University of Geoscience, Wuhan, China 
dfeng@hust.edu.cn, zenglingfang@tom.com 

Abstract. GIS Grid (geographic information systems grid) is a combination of 
geographic information systems and grid technology. Existing non-standardized 
multi-sources and multi-scales data have a shortage of spatial information 
shared in either internal and external organizations or departments, especially in 
national or global applications. It is very important and difficult to store 
massive spatial data for GIS Grid. And efficient metadata management and data 
access methods should be studied. At the same time, GIS Grid should provide 
users with just the services and data they need, without having to install, learn, 
or pay for any unused functionalities. With the integration of web service and 
other middleware/toolkit, which support the creation of Grid infrastructures and 
applications, it is possible to dynamically assemble applications from GIS Grid 
for use in a variety of client applications. 

1   Introduction 

In the past forty years, although fast development of geographical information and 
computer-science integrated technology demonstrates that spatial information is 
widely used in people’s everyday lives. GIS (geographic information systems) [1,2,3] 
is important aspects of spatial data infrastructure, and it also is a powerful, advanced, 
intelligent, integrated software system. GIS systematically combines such sciences as 
graphics, image, geology, geography, remote sensing, mapping, artificial intelligence 
and computer science. GIS are used in many fields, including geology, petroleum, 
ocean, remote sensing, urban and regional planning, cadastral registration, water 
supply systems, communication facility management, gas, transportation, electric 
power, agriculture and irrigation works, fire and epidemic control, land resources, 
disaster monitoring, regional crops, trading, transportation, tourism, ecology and 

                                                           
∗  This paper is supported at Huazhong University of Science and Technology by the National 

Basic Research Program of China (973 Program) under Grant No. 2004CB318201, National 
Science Foundation of China No.60273074, No.60303032, Huo Yingdong Education 
Foundation No.91068 and at China University of Geoscience by High Technology Research 
and Development Program of China No.8001AA135170, plus industrial support from 
WUHAN ZONDY INFO-ENGINEERING CO., LTD. 



824 D. Feng et al. 

 

environment and population subsystems. The role of GIS in these applications is to 
provide the users and decision makers with effective tools for solving the complex 
and usually ill- or semi-structured spatial problems. The computer-based systems are 
designed to support the capture, management, manipulation, analysis, modeling, 
manipulation, retrieval, analysis, and display of spatially referenced data. But, 
traditional GIS is used in the limitative organizations or limited region based on many 
kinds of systems (e.g. AUTOCAD, ARC/INFO, MAPINFO, MAPGIS etc.), and 
spatial data, come from multi-sources and multi-scales (e.g. remote sensing, 
electronic thermometer total station, global position system etc.), lack for 
collaborations and resource sharing among different organizations or regions. 

Grid [4,5], is a new class of infrastructure, promises to make it possible for public 
application collaborations to share resources on an unprecedented scale, and for 
geographically distributed groups to work together or individual to conveniently live. 
Grid coordinates resources that are not subject to centralized control and uses 
standard, open, general-purpose protocols and interfaces to deliver nontrivial qualities 
of service (QoS). Grids have moved from the obscurely academic to the highly 
popular, such as Compute Grids, Data Grids [6], Science Grids, Knowledge Grids, 
Commodity Grids, Bio Grids, Resource Grid, Service Grid, Information Grid and 
Sensor Grids. 

GIS Grid integrates the traditional GIS software, database software and data 
analysis software into an ideal platform. Therefore, GIS Grid creates an ideal 
environment for the comprehensive assessment and analysis of multi-sources geology 
data. It is mainly used by regional planners, managers and general users. GIS Grid 
integrates a series of application systems, such as urban planning, communication 
network management, water supply management, gas network management, 
municipal management, power network management, cadastre management, land use 
programming, land information management, global position system (GPS) 
navigation and monitor, environment protection and supervision. 

2   Spatial Object-Based Storage 

Spatial information resources such as remote sensing, digital maps, and paper maps 
are collected from different organizations or departments. Statistics data, including 
agriculture, forest, earthquake hazard, ore, hydrogeology, ecology, transportation, 
population, tourism, and trade, are the composition of different application systems. 
Spatial data are multi-terabyte and require massive storage system. The architecture 
of spatial data is objects, fundamental containers that house both application data and 
an extensible set of object attributes. Traditional storage systems, such as DAS, NAS 
and SAN, are unsatisfied with these requirements. 

Fortunately, for GIS Grid, new storage architecture is emerging. OBS (object-
based storage) [7,14,17] is the foundation for building massively parallel storage 
systems that leverage commodity processing, networking, and storage components to 
deliver unprecedented scalability and aggregate throughput in a cost-effective and 
manageable package. And OBS can be extended in WAN (wide area network) for its 
high scalability (Figure 1). 



 Geographic Information Systems Grid 825 

 

In OBS, spatial objects are decomposed into a set of storage objects and distributed 
across one or more OBSDs (Object-based Storage Devices) [15,16]. Each OBSD 
includes local processing capabilities, local memory for data and attribute caching, 
and its own network connection. And much of the traditional storage allocation 
activity can be offloaded from the file system layer. So a key performance bottleneck 
present in current storage systems (e.g. NAS) is removed. 

With object attribute scalability, abundance clues are obtained to guide or direct in 
the solution of active application (AA), and AA realizes by dynamic 
loading/unloading some method using JVM (java virtual machine) technology. AA 
has a method pool filled with active application methods regarded to be useful by one 
or more of the management policies. Most popular methods such as read with 
filtering, write with encryption and hot spot migration are initially registered to the 
method pool. AA also has a policy pool. A new policy registered into the policy pool 
has to contact corresponding method in case they are not already registered. AA 
ensures that the registered methods are called by storage system according to its 
environment. Those policies themselves are just descriptions of how to implement 
system management function and specify system states and how to response to them. 
For GIS Grid, those policies will ensure that the best ones for the current workload or 
performance are triggered. AA triggers the policy depending on statistics, which are 
useful for enforcing credential-based access and QoS policies, and supporting 
dynamic data redistribution for cross-OBSD load balancing. OBS mirrors the scale-
out architecture of GIS Grid, providing a balanced growth model that adds network 
bandwidth and processing capability in step with capacity increments to ensure 
scalability. 

3   Metadata Management and Spatial Data Access 

In GIS Grid, user’s application may be very complex. For example, a decision-maker 
of a city, he must acquire the assistant information offered by the planning 
organization and other organizations, such as economic developing zone, urban 
planning bureau, land administration bureau, academy of planning & surveying, 
archives of urban construction, water supply general company, gas company, electric 
power company and telecom general company. Taking the city’s geographical map as 
background, the decision-making process must be supported by GIS Grid. 

3.1   Metadata Management in GIS Grid 

Massive spatial information system design technology is complicated work based on 
different information sources and demands. For GIS Grid, spatial data standards are 
very important for system establishment, which may result in considerable duplication 
or hard data transfer burden. Existent spatial data standards and drafts (e.g. ISO/TC 
211, FGDC) are widely used in spatial metadata management. 

Figure 1 shows several types of metadata [10] that may be used to manage spatial 
objects. At the OBSD level, physical metadata includes information about the 
characteristics of objects on physical storage device, which is inode-like information. 
Based on physical metadata, OBSD provides object interface, which is different from  
 



826 D. Feng et al. 

 

WAN
Organization Metadata Server

OBS in WAN OBS in WAN...

OBSD OBSD OBSD

OBS Metadata Server

...

OBS

OBSD OBSD OBSD

OBS Metadata Server

...

OBS

Other Organizations

GIS Grid

Physical
Metadata

GIS Grid Metadata Server

 

Fig. 1. Massive spatial data management in GIS Grid 

traditional file systems or database management systems. OBS metadata is in the 
second level. Object IDs are identifiers for object data that may be striped in several 
OBSDs in one OBS. And OBS metadata is often organized in DFS (distributed file 
system). Organization metadata is above the OBS level, and is managed by LDAP 
(lightweight directory access protocol). The top level is GIS grid metadata, which is 
managed by database with powerful queries. 

3.2   Spatial Data Access for GIS Grid 

Spatial object access is the process of identifying spatial objects of interest to the user. 
MS (metadata services) [8,9,10] is defined as services that maintain mappings 
between Object ID and object storage, and respond to queries about those mappings 
for above-mentioned four levels. MS play a key role in the publication and the 
discovery and access of spatial object. Figure 2 shows a modified version application 
services originally given in [11] by Alameh. Spatial data are based on the value of 
descriptive attributes. Typically, MS forms one component of a series of object 
accesses in a GIS grid. 

In figure 2, Portrayal service [12] assembles and portrays an ortho-image from 
several imagery access services. And to integrate other spatial information, it provides 
interfaces for Web Services to implement specified spatial service requirements. 
Portrayal service also is used to deal with spatial information synthetically according 
to users’ requirements and their characters. Web mapping service (WMS) provided by 
distributed places and GIS manufacturers, such as ESRI’s ArcIMS service, MapInfo’s 
MapXtreme service, MapGIS IMS, returns a map corresponding to pre-specified 
rectangular geographic extent and pixel dimensions for a given area. Web mapping 
service is required by portrayal service or integrative service. It also provides services 
for mobile clients, e.g. LBS (location based service) and GPS services. Integrative 
services, which multi-party providers usually supply, bundle predefined services and 



 Geographic Information Systems Grid 827 

 

present them to the client as one. Integrative services perfectly join MIS (management 
information system) or OA (office automation) with GIS, which integrate the 
transactions of design, construction, maintenance and professional analysis of many 
organizations or departments and provide the related branches with professional, 
multi-demand and multi-aim services. Those disposal also include making and editing 
legend of thematic map, automatic topological maintenance, routes analyzing, cash 
analyzing, cutting down, three-dimension analyzing, statistical analyses and so on. 

web
feature
service

address
matching
service

metadata
service

integrative
service

web
mapping
service

portrayal
service

Browsers Mobile clients MIS&OA

Open Grid Services Infrastructure (OGSI) interfaces

 

Fig. 2. Different services in GIS Grid 

There are some scenarios for LBS and GPS service in GIS Grid. Some people 
want to travel from one place to another by driving bus themselves. There is only one 
thing to do: input their whither.  GIS Grid first provide web mapping service. With 
help of metadata service, address matching service optimize and list all the cities, 
towns, roads and mileages etc. All that will be carried out by their cars’ GPS. 
Specially, integrative service offer all concerned hotels, travel industry sites, 
sceneries’ introductions etc. Also GIS Grid gives their some references about the 
journey cost. Here, objects are a series of site entities which are concerned 
geographical information. And these distributed objects are stored in OBSDs. 

4   GIS Grid Services 

Using international and national standards or drafts will be a popular way for GIS 
Grid forming. Table 1 shows GIS Grid services protocol layers and related standards 
[12]. Open GIS Consortium (OGC) sponsors consensus-based development of 
interoperable GIS web services interfaces. Open Grid Service Infrastructure (OGSI) 
defines web services. Every Grid service is a web service [13]; it uses Web Service 
Definition Language (WSDL) as the mechanism to describe the public interfaces of 
Grid services. 



828 D. Feng et al. 

 

GIS Grid services follow OpenGIS Web Services Architecture (OWSA) [12] and 
OGSI for creating, managing, and exchanging information among organizations. GIS 
Grid services also provide human interaction to manage user interfaces, graphics, and 
to present compound documents. The development, manipulation, and storage of 
metadata, conceptual schemas, and datasets are managed by information management 
service. Specific tasks or work-related activities are supported by workflow services. 
Processing services perform large-scale computations. Communication services 
encode and transfers spatial data across networks and system management services 
manage system components, applications, networks and access control. Therefore, it 
is easy to integrate existing non-standardized multi-sources and multi-scales data 
(Users need not to know the details of their realization and the platforms they run) 
with the developments according to GIS Grid services. Now most developing tools 
which support those services protocol stack, particularly, the Java 2 Platform, 
Enterprise Edition (J2EE), built by Sun Microsystems and other industry players, and 
Microsoft .NET, built by Microsoft Corporation all are based on Web Service. 

Table 1. GIS Grid services protocol stack 

Protocol layers Dominant protocol standards 
Service integration & workflow WSFL etc. 
Service discovery UDDI, OGC-Catalog etc. 
Service description OGSI, OWSA, WSDL 
Service HTTP, SOAP, COM, CORBA, 

J2EE, SQL 
Binding OGC SF, Coverage, Coordinate 

transform, WMS 
Data format, schema and semantics HTML, OGC-GML, OGC-

WKT/WKB, XML/S 
Data representation & encoding ASCII, XML, ASN.1/DER 
Communication protocols TCP/IP, FTP, SSL, SMTP 

GIS Grid service work like the following descriptions and require in point 
technologies: As provider, GIS Grid creates, assembles, and deploys services using 
the programming language, middleware, and platform of the provider's own choice. 
GIS Grid service defines the web service in WSDL. Web service needs to invoke 
other heterogeneous distributed web geographic information systems (WebGIS). 
WebGIS provide application services to different operations. GIS Grid interface 
registers the service in Universal Description, Discovery, and Integration (UDDI) 
registries. GIS Grid interface deals with users’ require, if the require relate to spatial 
information, spatial service or other spatial application system function, it calls related 
functions or services to handle it. UDDI enables developers to publish web services 
and that facilitates their software to search for services offered by others. Prospective 
users find the service by searching a UDDI registry. These users' applications bind to 
web service and invoke the service's operations using Simple Object Access Protocol 
(SOAP). SOAP offers an XML format for representing parameters and return values 
over HTTP. It is the communications protocol that all web services use. 



 Geographic Information Systems Grid 829 

 

5   Conclusion 

85% data are related with geographic information in the world. Today, digital earth is 
on the way. A concept of GIS Grid is first presented in this paper. The storage and 
access mode about spatial object is provided. And Grid GIS service is also studied by 
contrasting and utilizing OGSI. With the help of grid technology, GIS is evolved from 
the traditional model of single application, in which spatial data is tightly coupled 
with the system used to create them, to an increasingly distributed model based on 
independently provided, specialized, interoperable Grid web services. This evolution 
will be fueled by factors such as GIS Grid’s growing role in future, spatial data’s 
increasing availability and inherent conduciveness to reuse. 

Reference 

1. “GIS Standards and Standardization: A Handbook”. United Nations Economic and Social 
Commission for Asia and Pacific, New York (1998) 

2. Shanzhen Yi, Lizhu Zhou, Chunxiao Xing, Qilun Liu, Yong Zhang. “Semantic and 
interoperable WebGIS”. Proceedings of the Second International Conference on Web 
Information Systems Engineering (2001) 42-47 

3. Yongping Zhao, D.A. Clausi, “Design and establishment of multi-scale spatial information 
system based on regional planning and decision making”. Geoscience and Remote Sensing 
Symposium, 2001. IGARSS '01 (2001) 1965-1967 

4. I. Foster, “What is the Grid? A Three Point Checklist”. GRID Today, July 20, 2002. 
Access from http://www.globus.org/research/papers.html 

5. I. Foster, “The Grid: A New Infrastructure for 21st Century Science”. Physics Today, 
(2002) 42-47 

6. The CERN DataGrid Project, http://www.cern.ch/grid/ 
7. Intel Corporation, “Object-Based Storage: The Next Wave of Storage Technology and 

Devices”, January 2004, accessible from http://www.intel.com/labs/storage/osd/ 
8. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke. “The Data Grid: Towards 

an Architecture for the Distributed Management and Analysis of Large Scientific 
Datasets”. Journal of Network and Computer Applications (2001) 187-200 

9. S.A. Brandt, E.L. Miller, D.D.E.Long, Lan Xue. "Efficient metadata management in large 
distributed storage systems". 20th IEEE/11th NASA Goddard Conference on Mass Storage 
Systems and Technologies (2003) 290-298 

10. G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail, L. 
Pearlman. “A Metadata Catalog Service for Data Intensive Applications”. Proceedings of 
Supercomputing 2003 (SC2003) 

11. N. Alameh. "Chaining geographic information Web services". Internet Computing (2003) 
22-29 

12. “OpenGIS Web Services Architecture”, document OGC 03-025, Open GIS Consortium, 
Jan. 2003, access from: http:// http://www.opengis.org/ 

13. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. 
Sandholm, P. Vanderbilt, D. Snelling. “Open Grid Services Infrastructure (OGSI) Version 
1.0”. Global Grid Forum Draft Recommendation (2003) 

14. M. Mesnier, G.R. Ganger, and E. Riedel, “Object-based storage”, Communications 
Magazine, IEEE, Vol 41, Issue: 8, pp. 84–90, Aug. 2003. 



830 D. Feng et al. 

 

15. SNIA, Object-Based Storage Devices (OSD) workgroup, January 2004, accessible from 
http://www.snia.org/osd 

16. Dan Feng, Ling-jun Qin, Ling-Fang Zeng, Qun Liu, "a Scalable Object-based Intelligent 
Storage Device", Proceedings of the Third International Conference on Machine Learning 
and Cybernetics, Shanghai, 26-29 August 2004,pp 387-391 

17. Ling-Fang Zeng, Dan Feng, Ling-jun Qin, "SOSS: Smart Object-based Storage System", 
Proceedings of the Third International Conference on Machine Learning and Cybernetics, 
Shanghai, 26-29 August 2004,pp 3263-3266 



Tools for Distributed Development and
Deployment on the Grid

Ariel Garćıa, Marcus Hardt, and Harald Kornmayer

Forschungszentrum Karlsruhe, Institut für wissenschaftliches Rechnen,
Postfach 3640, 76021 Karlsruhe, Germany
{garcia, hardt, kornmayer}@iwr.fzk.de

Abstract. The development and deployment of middleware and appli-
cations in a grid environment spread over many institutions is a complex
challenge. The management of the development process is of key im-
portance for the successful completion of the software components. This
paper presents the measures taken and the experience gained within the
EU project CrossGrid. After briefly presenting the infrastructure, the de-
velopment procedures and the supporting tools are described in detail.
The CrossGrid “common directory” approach allows an effective, cen-
trally managed configuration of distributed resources. The experience of
the CrossGrid integration team is discussed.

1 Introduction

The integrated and collaborative usage of a distributed infrastructure of com-
puters, networks, and potentially also scientific instruments is nowadays called
a Grid [1]. Thereby Grids are different from local clusters because the connected
resources are owned and managed by multiple different organizations. Further-
more, not only the resources are distributed, but also the the developers in most
Grid projects are spread over several institutions in different countries. These
border conditions make the development process in a Grid project challenging
concerning the management of the software development, its deployment and
the maintenance of the distributed system.

The standard procedure of Grid middleware development starts with software
development on local resources (workstations, clusters), including local tests.
Afterwards, the software needs to be deployed on the distributed infrastructure
for testing. The test conditions are not managed centrally and they will be
influenced by changes on the distributed resources, since they are under the
control of local site and network administrators and their policies. For this reason
testing is a complex problem. After testing, the software has to be deployed on
the production system. But even if there is no central control of the resources,
all steps of the development process must be coordinated and managed. It is
important for an effective development that all these steps have a short time
scale.

The EU funded project CrossGrid [2] ports four societally important, novel
applications to a Grid environment. These applications require interactivity from

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 831–839, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



832 A. Garćıa, M. Hardt, and H. Kornmayer

the Grid middleware. Therefore CrossGrid also develops a set of middleware tools
that allow a human to interact frequently with the applications. All the devel-
opment is done on a testbed spread over 9 European countries, including new
member states. This paper describes the development process in CrossGrid. Ad-
ditionally, it presents all the tools developed and used by the CrossGrid consor-
tium to support the development, deployment and maintenance of the software
on the project’s testbeds.

2 The CrossGrid Testbed

CrossGrid is developing interactive Grid applications in the domains of medi-
cal surgery planning, flood crises support systems, high energy physics analysis
and environmental prediction systems. All CrossGrid applications use the Mes-
sage Passing Interface (MPI) standard [3]. Moreover, CrossGrid provides Grid
development tools and Grid middleware components to ease the migration of
applications to a Grid environment.

The infrastructure for these developments is distributed across 16 sites in
9 countries [4]. All these sites are running the CrossGrid middleware, which
is based on the middleware from the European Data Grid (EDG) project [5],
currently taken over by the LHC Computing Grid [6] and called LCG-2. It is
based on the Globus Toolkit [7] version 2 middleware. Most sites use the Linux
distribution Red Hat 7.3, except one which is using Mandrake 8. As usual in
grids running EDG-derived middleware, the services present at each site are
the Compute Element (CE), the Storage Element (SE), the User Interface (UI)
and a number of Worker Nodes (WN). For the installation and configuration an
LCFG [8] server is used. Additionally, several central servers are required. The
Replica Location Service (RLS) takes care of the data management, while the VO
server is needed for user authorization. The Resource Broker (RB) schedules job
requests based on resources’ status information from the Information Catalogue
(IC) to sites that fit the jobs’ description. This Resource Broker contains Cross-
Grid modifications which make it capable of submitting MPI jobs to multiple
CPUs at one site (MPICH-P4) or spread over many sites (MPICH-G2). Cross-
Grid provides an easy access to the grid via the Roaming Access Server (RAS),
which serves a java applet able to run on any client machine. This java applet is
called the Migrating Desktop (MD), and communicates with the RAS server in
order to access the Grid. Interactive steering of jobs is done via the so called Job
Submission Services (JSS), which are also deployed inside the RAS machine.

At the beginning of the project, a big effort was invested in setting up testbeds
and all the supporting tools. A separate testbed was used to evaluate preliminary
middleware releases. The resources of this evaluation testbed were added to the
production testbed once a stable middleware emerged. After the successful instal-
lation of the LCG-1 release, it was recognized that development of middleware
and applications on the same testbed introduced too many side effects, and was
slowing down the development process. Every test of a new middleware component
affected the stability of the testbed, thus conflicting with application development.



Tools for Distributed Development and Deployment on the Grid 833

Fig. 1. The CrossGrid testbed

In order to separate both kinds of development and to decrease the time of
the middleware improvement cycle, the CrossGrid testbed was split in two. One
was focused on fast development, deployment and testing of middleware, the
other on offering production level services for application developers. A virtual
Chinese wall between them was introduced. Therefore, a second instance of each
of the central services had to be installed. Every site is forced to live on only one
side of this Chinese Wall.

The development testbed consists of 5 sites supporting fast middleware deploy-
ment and testing. The effort imposed on a developer for getting a new package
into this testbed is kept as low as possible. I.e., only packaging and basic re-
quirements must be fulfilled. This enables a short deployment cycle of down to
a couple of hours.

The production testbed is intended to be more stable. All middleware compo-
nents have to be tested and validated prior to their deployment. This testbed is
supported by 13 sites and is therefore more powerful.

3 Distributed Development

All 21 partners of the CrossGrid project take part in the development process.
A common grid system can only be achieved by coordinated efforts. Clear and



834 A. Garćıa, M. Hardt, and H. Kornmayer

comprehensible development guidelines are as essential as an organized com-
munication between different members of the project. The tools used within
CrossGrid to support the development process and to ensure a proper software
quality are described in this chapter.

3.1 Development Rules

To control the divergent forces in a heterogeneous project like CrossGrid a com-
prehensive set of guidelines for developers are of outstanding importance. There-
fore the Developers’ Guide from the EDG project [5] has been adapted and mod-
ified to fulfill the needs of CrossGrid. The CrossGrid Developers’ Guides [9, 10]
define the processes and the responsibilities within the whole development pro-
cess, covering the phases of application development, coding style, testing, de-
ployment, integration and release.

3.2 Communication Tools

During the project different communication tools were used. At the beginning of
the project, managed mailing lists where set up for organizational issues using
the Majordomo [11] tool. But the utility of these lists was limited to distributing
managerial information only. The audience of the lists was too big to discuss
all the technical details of the project. To allow the developers to setup their
task-specific mailing lists, the GridPortal server [12] – based on the Savannah
software [13] – was used.

Developers at different sites autonomously started to use instant messaging
tools of various flavours to solve problems during the integration of different
components. No central control was established to ensure the availability of all
CrossGrid developers. This resulted in small groups of developers using instant
messaging tools, although the utility was quite high.

From the beginning of the project the freely available VRVS system [14] was
used for running audio/video conferences. These were necessary and useful for
having a broader discussion of all aspects of the project. When the integra-
tion of all components to a common system became the most important issue,
weekly VRVS integration meetings were scheduled to report on the status of the
software components, the testbed sites and the releases. These audio/video con-
ferences helped in avoiding problems between different software parts in advance.
Communication continued on a dedicated mailing list.

3.3 Development Tools

Because of the many different programming languages used in CrossGrid no
common development tool was recommended. But to ensure a collaborative and
distributed development some central resources like a software repository, a bug
tracking system and a standard build environment for the software had to be
provided.

The GridPortal server [12] is offering some of these central development ser-
vices. It is accessible via a standard web browser. Organized in projects or small
groups of developers the following tools were used by CrossGrid:



Tools for Distributed Development and Deployment on the Grid 835

CVS: The Concurrent Versions System [15] is a client-server based versioning
tool and is used as the central software repository of all CrossGrid components.
CVS allows distributed development to ensure different developers can work on
the same source code at the same time. In the case of a conflict the developers
are forced to solve it before the changes are accepted.

Bug Tracker: The Savannah bug tracker allows any user to submit bug re-
ports to the developers of the corresponding software component by using the
“trouble ticket” metaphor. Everybody involved is informed by email about
changes to the ticket. If the problem remains unsolved for more than 30 days
an email reminder is sent to all involved project members. This tool proved to
be useful during the integration and testing phase of the components.

Webspace: To exchange additional information about a software component,
the GridPortal server provides webspace for publishing documents and binary
packages.

The standard build environment of CrossGrid is based on the autobuild [16]
tool developed by the EDG project. It takes the source code of every package out
of the software repository and runs a standardized build procedure to produce
installable packages (tar.gz, src.tar.gz, rpm and srpm). A build failure results in
a notification to the developers. The build environment is centrally managed and
based on a standard testbed node. This prevents undocumented modifications
of the build procedure. The build process is started every 4 hours and the results
are available on a GridPortal web page. Many software dependencies were found
by the autobuild procedure. This resulted in an improvement of the software
quality.

4 Deployment

Deployment of a complex software system like the CrossGrid middleware and
tools on a heterogeneous system requires a fast and lightweight roll-out process.
The CrossGrid software is available as rpm packages [17] from the GridPortal
server. Not only the download of the software packages, but also the site config-
uration must be as automated as possible. Additionally, the software versions of
the development and the production testbeds will be different. In this chapter
the CrossGrid configuration and deployment approach is described in detail.

4.1 Testbed Configuration

To automate the configuration as much as possible, and to control the installed
releases at all sites, CrossGrid uses the LCFG [8] installation and configuration
tool. The configuration of each site is split in two parts – a site dependent part
and a part common to all sites.

The site dependent configuration contains local parameters like IP-addresses,
etc., and is derived from common template files.



836 A. Garćıa, M. Hardt, and H. Kornmayer

The common CrossGrid configuration contains the software package lists and
the configuration that is required by the middleware. It is mandatory to be used
at every site, and it is kept inside the so called common directory.

Since CrossGrid is based on the EDG middleware, which is evolving inside
the LCG project, it has to follow the changes of the underlying middleware.
To manage the development within CrossGrid, the common directory approach
was extended. A copy of the LCG-configuration files was placed into the LCG
subdirectory of the common directory. Wherever this configuration needed to be
altered, it was overwritten by an appropriate file inside the CrossGrid subdirec-
tory of the common directory. CrossGrid sites use the include-mechanism of the
LCFG tool in order to accomplish this.

For managing the differences between the CrossGrid development and pro-
duction testbeds, CrossGrid uses different CVS branches of the same files. This
allows an easy migration of tested software from the development to the produc-
tion testbed.

The CrossGrid common directory configuration approach has the following
advantages:

– The same set of basic configuration files is used at every site.
– The difference between CrossGrid base and local configuration at a given site

is clearly documented.
– The ongoing development of the “EDG/LCG Middleware” can be coped

with by mirroring their configuration into the CrossGrid common directory
in CVS.

– A CrossGrid version can be trivially defined by putting a CVS tag on the
common directory.

For deployment CrossGrid uses only binary rpm packages, because all hard-
ware components are i386 based. These packages are autobuilt and published on
GridPortal. To automate the deployment process, CrossGrid developed the tool
cg-lcfg-go [18] for site administrators. It provides the following functionality:

– update the configuration files from CVS on the LCFG server.
– download missing RPMs to the local package cache.
– install and update required RPMs on the LCFG server.
– compile profiles for all managed clients.

This tool substantially eases the update and maintenance work, allowing a site
to update to a new release in just a few minutes with high reliability.

Although the deployment process was highly automated, the CrossGrid in-
tegration team recognized that it is unavoidable to control the software that
is actually installed at each site. The presentation of the current site status is
essential and a webpage automatically publishing this information was installed
in the GridPortal. Additionally, a tool to monitor the differences between the
installed and required packages for every testbed node was developed.



Tools for Distributed Development and Deployment on the Grid 837

4.2 Test and Validation Procedure

The CrossGrid testbed was split in two parts in order to get one environment
for development and one stable environment for running and developing applica-
tions. To ensure good software quality on the production testbed, a procedure for
testing and validating software components was introduced [19]. Each software
component that needs to be installed on the production testbed must success-
fully pass this process. This is an important part of the whole development and
integration process of CrossGrid.

To migrate a software component from the development to the production
testbed, developers ask for a test and validation process. Information like depen-
dencies, configuration, installation files, network requirements and behaviour of
the software must be provided. The test and validation request is assigned to a
test person, who installs the software at his site. After installation he tests the
functionality of the software and the stability of his site. If problems occur they
are reported in the bugtracker (Section 3.3). Depending on the severity of the
problems which turned up, the test request can pass, pass with minor issues,
be rejected with major issues or completely fail. If the package passed the pro-
cedure, the software is allowed to be installed on the production testbed. This
procedure minimizes the probability of an unstable production testbed.

5 Discussion

The CrossGrid project offered the chance to collect experiences in development
of grid middleware, the deployment in a complex grid environment and the
maintenance of a distributed testbed. In this section the lessons learned will be
discussed.

5.1 Developers Guide

The maintenance of a distributed system like the CrossGrid environment takes
some effort, especially when the integration of different middleware components
and applications starts. The developers of the components need to have a com-
mon view of the system to reduce the number of side effects to a minimum.
Therefore the knowledge of the testbed setup and deployment procedures is es-
sential. The developers must understand their limitations in a distributed system
as compared to their local cluster. It is of the same importance, that the site
administrators and integration team members provide a lightweight infrastruc-
ture to support the development and the testing of software components. All the
development cycles must be as short as possible.

Therefore developers need to have a short and easy to read Developers Guide,
which describes the development, the packaging and the installation of software
on a testbed. Also the testing and the quality assurance methods must be trans-
parent. The CrossGrid Developers Guide is a collection of best practices, with
experience gained by EDG and CrossGrid. In each project such a Guide must



838 A. Garćıa, M. Hardt, and H. Kornmayer

be published as early as possible and updated frequently in order to prevent the
development of undeployable software.

Centrally managed guidelines make the development of Grid middleware
and applications more effective. The release and deployment of software within
CrossGrid was much easier after those guidelines were accepted by all project
members.

5.2 Deployment

The management of the testbed was very important during the development and
testing of CrossGrid middleware and applications. Dividing the testbed in two
parts and introducing a standardized Test and Validation procedure increased
the overhead for the developers, but after the acceptance of both testbeds and the
new procedures development and testing was much easier and better organized.

The dedicated autobuild system proved to be useful to provide the developers
with a fast response time regarding packaging and deployment.

The introduction of a fast deployment method made the whole development
more effective. With the common directory approach CrossGrid provided a mech-
anism to keep a centralized control of the software to be installed in a distributed
testbed. The installation of a new release can be performed in a minimal time.

The CrossGrid integration team benefited a lot from the tools developed for
controlling the deployed software at different sites. The webpage showing the
current status of each site has positively influenced the deployment speed of
the testbed releases. This, together with the tools developed for simplifying the
testbed upgrades, was the base to reducing the deployment time from around
10 days to one day. This deployment time was achieved in the CrossGrid devel-
opment testbed, where site administrators are aware of the changes, and release
cycles happen more often. The deployment on the production takes a little longer
– up to 3 days. The grid deployment is controlled by the integration team. Sites
not updating within one week are removed from the CrossGrid environment and
mentioned on the websites. This occurred rarely and was related to a temporary
lack of manpower at the site.

6 Conclusion

Grids are distributed environments overcoming institutional and enterprise bor-
ders. Similarly, the development of middleware and applications is often done in
developer teams spread over different locations. The development process must
take this into account by providing clear guidelines for developers and a cen-
tralized, managed packaging and deployment process. The organization of the
development and the maintenance of a grid system is of essential importance for
success. Effective tools for development, deployment and monitoring are avail-
able from grid projects like CrossGrid.

Grid systems are not self-organizing. They need to be developed and tested
under managed, well defined conditions. A big effort is necessary to ensure that



Tools for Distributed Development and Deployment on the Grid 839

all developers and administrators follow these guidelines. Coordinated commu-
nication in a distributed grid environment needs a sufficient integration team
with full support from all partners including the project management.

Acknowledgement

The authors thank all members of the CrossGrid project, and especially Jesus
Marco, Jorge Gomes and Mario David for their support. Further thanks to the
think tank of Workpackage 7.

CrossGrid was funded by the EC under IST-2001-32243.

References

1. I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

2. The CrossGrid Project: http://www.crossgrid.org
3. Message Passing Interface Forum, MPI: A Message Passing Interface Standard,

June 1995, http://www.mpi-forum.org
4. Gomes, J. Marco, et al., “First Prototype of the CrossGrid Testbed”, Proc. Across-

Grids Conf., Santiago, February 2003; ISBN 3-540-21048-2 Lecture Notes in Com-
puter Science 2970: 67-77, 2004.

5. The DataGrid Project: http://www.edg.org
6. The LHC Computing Grid Project: http://lcg.web.cern.ch
7. The Globus Project: http://www.globus.org
8. The Local Configuration software: http://www.lcfg.org
9. The CrossGrid Developers’ Guide:

http://gridportal.fzk.de/websites/crossgrid/iteam/devguide/devguide-html

10. Marian Bubak et al., CrossGrid deliverable D5.2.3, Full Description of the Cross-
Grid Standard Operational Procedures and Specification of the Structure of De-
liverables, 2002

11. The Majordomo software: http://www.greatcircle.com/majordomo
12. The CrossGrid central software repository and development server, GridPortal:

http://gridportal.fzk.de

13. The Savannah software: http://gna.org/projects/savane
14. The Virtual Rooms VideoConferencing System: http://www.vrvs.org
15. CVS Documentation: http://www.cvshome.org
16. Autobuild entry page:

http://savannah.fzk.de/autobuild/i386-rh7.3-gcc3.2.2

17. Autobuilt RPMs:
http://savannah.fzk.de/distribution/crossgrid/autobuilt

18. cg-lcfg-go:
http://cvs.fzk.de/cgi-bin/viewcvs.cgi/crossgrid/crossgrid/wp4/config

/cg-wp4-lcfg-server-files/cg-lcfg-go

19. Jorge Gomes et al., “CrossGrid Deliverable D4.1 Appendix D:
Middleware Test Procedure”

20. CVS Documentation: http://www.loria.fr/~molli/cvs/doc/cvstoc.html



DNS-Based Discovery System
in Service Oriented Programming

Maurizio Giordano

Istituto di Cibernetica “E. Caianiello” - C.N.R
m.giordano@cib.na.cnr.it

http://www.ais.cib.na.cnr.it/m.giordano

Abstract. Service Oriented Programming (SOP) is an emerging para-
digm for grid computing and distributed applications development. SOP
models an application as a composition of services, i.e. software compo-
nents either local or remotely provided by third-party organizations. In
SOP service information, like location and interface description, is often
stored in registries (like UDDI) distributed in internet. Before using a
service, applications need to know in advance its endpoint address or
the location of the registry where to look for service information. In this
scenario, dynamic discovery of service registry as well as inter-registry
co-operation would be a very desirable feature. This paper proposes an
approach for service discovery based on DNS messaging. It provides ap-
plications with DNS-based querying mechanisms to publish and discover
on the network either the location of service registries or the endpoints
of web services. This approach was implemented in a middleware sys-
tem that uses the Multicast DNS technology and the DNS-based Service
Discovery specification to provide respectively the communication in-
frastructure and a standard naming convention for service registries and
web services advertisement and retrieving in a LAN.

1 Introduction

The growth of internet and the emerging e-business have imposed a service
oriented approach in the development of distributed applications. Companies
are realizing that they can achieve significant cost savings by outsourcing parts
of their IT infrastructure to outside service providers. Indeed decentralization
allows potentially the access to a huge amount of resources available in internet.

IT infrastructure decomposition into services occurs also inside the enterprise.
Frequently the enterprise infrastructure grows up integrating different applica-
tions developed in incompatible programming models and software systems. In
other cases, the enterprise forces the infrastructure decomposition to privilege
the insulation of application modules from the underlying computing platform.

In grid computing [11] a set of resources that are not subject to centralized
control can be combined to provide services to users that need them. The idea
of making available hardware and software resources through the network in

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 840–850, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

.



DNS-Based Discovery System in Service Oriented Programming 841

large-scale computing environments raises problems of resource discovery, re-
source interoperability, security. The new service oriented paradigm seems to be
a promising approach for the Grid to address these problems, supported by the
development of new industrial technologies.

Therefore Service Oriented Programming (SOP) [4, 5] is an emerging pro-
gramming model to develop distributed applications for enterprise IT infrastruc-
tures and computational grids. SOP models applications in terms of services, i.e.
software components that communicate via message exchange using the web as
a “transport” medium. In this scenario, Web Services [18] is an emerging tech-
nology for the development of large-scale service oriented distributed systems.

Service oriented applications use services that can be either local or provided
by third-party organizations. Service providers are software infrastructures, for
instance application servers, exposing on the network software components (ser-
vices) to be used by external applications. Service information is often stored in
registries (UDDI [30] and ebXML [10]) distributed in internet. Registries store
and publish several data describing services, like location, access methods and
communication protocol. They are also used to classify services in taxonomies.

Before binding and invoking a service, applications need to know in advance
either the location, the interface description and the binding protocols for that
service, or the location of registries maintaining and publishing this information.
In the second case applications can query registries and gather the required
service information. In this context, dynamic discovery of service registry as
well as inter-registry co-operation would be a very desirable feature.

In this work we propose an approach to provide applications with mechanisms
based on DNS messaging for service publishing and discovery on the network.
The main advantage of this approach is the use of existing, widely accepted and
consolidated DNS technologies and APIs to accomplish service advertisement
and dynamic discovery. In this scenario applications use DNS to discover in
internet services location and interface constraints. Moreover applications can
query DNS servers to be notified of the presence of service registries in the
network, and then query and retrieve service information from them.

Service information is stored on DNS servers according to the DNS-based Ser-
vice Discovery (DNS-SD) [6] specification, that is a way to use DNS records and
APIs to store and query information beyond host address-to-name translations,
in particular information on hardware and software systems (services).

In this work we present an implementation of this approach based on the
Multicast DNS (mDNS) [7] technology and the DNS-SD specification, which
provide respectively the communication infrastructure and a naming convention
for services advertisement and retrieving on the network. The implementation is
restricted to a LAN. Nevertheless the service discovery approach here presented
has not this limitation, since it can also be adopted in unicast DNS client-server
systems using Dynamic DNS-update [31] features for service information storing.

The rest of the paper is so organized: section 2 introduces the service discovery
problem in service oriented programming presenting motivations for this work;
section 3 describes the architectural approach and the implementation of our



842 M. Giordano

system; section 4 makes a comparison of our approach with some related works;
the same section reports some concluding remarks.

2 Service Discovery

Web Services [18] is an emerging technology that differs from other approaches,
like CORBA [22] and Java RMI [26], in focusing on simple and internet-based
standards to address heterogeneous and distributed computing. Web Services
is a Service Oriented Programming technology for the design of application as
composed by a core system and software services linked and used on demand.

The big software companies are investing a lot of efforts and money to push
SOP as the new programming model for web-based distributed applications. In
fact, many vendors are selling software products, like application servers and
web application development frameworks with built-in functionalities to sup-
port web services development and life-cycle, from service publishing/providing
(server-side), to service binding/execution (client-side). Examples of these frame-
works are Microsoft .NET [21], SUN J2EE [24], and IBM WebSphere [16].

Web Services working groups [18] defined several XML-based standards for
service interface definition (WSDL [8]), discovery (UDDI [30]) and binding pro-
tocols (SOAP [13]). These specifications do not provide technical solutions to
some open issues, like service advertisement and dynamic discovery on the net-
work. Before using a web service, applications need to know the service location,
interface constraints and protocol; they get these data by processing the service
WSDL file previously localized in internet. Since WSDL files are often stored
and published by registries (UDDI and ebXML [10]) distributed in internet, ap-
plications can find services only on registries whose location is known in advance.

A desirable feature of service oriented applications is to make the interaction
with external services independent from their location and implementation. One
approach is the naming-service facility, i.e. a mapping between an application-
level naming convention and the physical location and implementation of ser-
vices. An example is the Java Naming and Directory Interface technology [25],
that provides a set of naming/directory services to make Java applications trans-
parently access resources (databases and file servers). A limit of this approach
is the application dependency on Java programming language and environment.

Another approach to service dynamic resolving and binding on the network is
service brokering [17]: proxy objects (brokers) distributed on the network store
service information and advertise it upon application requests. A typical problem
with these solutions is the use of proprietary protocols. Other service brokering
solutions, like JINI [27] and SLP [15], are not scalable to the requirements for
massive brokerage of services in internet or they are tied up with some language.

1 “Web Services” is the technology acronym; in the rest of the document we call “web
service” any software component (service) developed with this technology.

2 An “application server” is a software framework that provides a complete environ-
ment for web application development, maintenance and support.

1

2



DNS-Based Discovery System in Service Oriented Programming 843

Other approaches, like e-speak [12] (discussed in section 4), use distributed
directory systems and related protocols, like LDAP [20], to build a virtual-
shared distributed information space to guarantee to applications an unique
service/resource naming domain dynamically reconfigurable and re-mappable
on the specific entity locations.

3 The Proposed Architecture

We propose to use existing, widely accepted and consolidated DNS technologies
and APIs to achieve service advertisement and dynamic discovery in internet.
The advantage of relying on DNS messaging to accomplish these tasks is twofold:

1. Portability - Everyone in internet uses the DNS. There by applications do
not need to be compliant with proprietary protocols and/or integrate spe-
cific software solutions to access the service information lookup and storing
facilities: they simply need to communicate with DNS servers in internet
through DNS-based messaging.

2. Scalability - This is by far the most important issue for service discovery
in wide-area network distributed applications. Although at the moment our
experimentation is limited to LAN environments, we expect a service discov-
ery system based on the traditional unicast DNS client-server architecture
could benefit from the DNS scalable behavior in WAN settings.

We developed a software system, named DNS-based Service Discovery Architec-
ture (DNS-SDA), to provide DNS-based service registration and lookup facilities
to applications. By using DNS-SDA, applications are enabled to dynamically
gather information on services, in particular service location, interface ports and
communication protocols, regardless of the service type. Before describing the
system architecture we list here some assumptions and the design strategies:

– UDDI-based service repository - Service information, like interface,
communication protocol and binding endpoints are described in WSDL [8]
documents (files). The service description documents can be stored and clas-
sified in UDDI registries. UDDI [30] is the de facto standard specification
for distributed web-based information registries of web services. In our archi-
tecture service information, in the form of WSDL documents, can be either
retrieved by querying UDDI repositories or localized directly on the network
by means of the WSDL file URLs. The service provider can be an applica-
tion container (like the Apache Axis framework [3]) that exposes (and maps)
under certain URIs the service software components.

– DNS-based service discovery - DNS records are used to store either
UDDI registry information, like UDDI server address and protocol, or web
services information, like WSDL document URL. Once created, DNS records
are registered as entries on DNS server databases, and can be queried using
DNS APIs (available in several programming languages) and packet formats.



844 M. Giordano

With this approach any application can interact with DNS servers to per-
form service advertisement and discovery. We adopt the DNS-SD [6] naming
convention to enumerate instances of service registries or web services.

– Plug-in & web service implementation - We designed DNS-SDA as a
self-contained software component with methods implementing service infor-
mation registration and querying. The DNS-SDA software component com-
municates with applications via DNS messaging and can be integrated into
applications in a multi-tier architecture design. We have also wrapped up
the component into a web service, providing a WSDL description of the
DNS querying functions. Applications supporting Web Services protocols,
independently from the underlying computing platform, may access the ser-
vice advertisement/discovery system using the DNS-SDA web service on
demand.

Services and UDDI registries are enumerated and advertised on the network
with names following the DNS-based Service Discovery (DNS-SD) [6] conven-
tion and defined in subsection 3.1. This naming is composed by a prefix, i.e.
the unique name of the repository (or service) instance, and a dot-separated
suffix that groups repository (or service) instances according to the internet
domain and supported protocols. Names and associated resource descriptions
(like, IP address, port number, and key-value pairs) are stored in form of DNS
resource records (DNS-RR) [14] that can be queried and managed through DNS
messaging. DNS message exchange may rely on a traditional DNS client-server
architecture in a WAN, or on a DNS sender-responder symmetric infrastructure
based on the Multicast DNS (mDNS) [7] technology which is limited to a LAN.
More details on the mDNS architecture are reported in subsection 3.2.

The current DNS-SDA implementation (see figure 1) uses the mDNS tech-
nology as communication infrastructure: each host in a LAN runs its own DNS
responder (server) listening on a host port and communicating over the multicast
UDP/IP address. The system implementation is configured as a decentralized
and symmetric DNS system limited to a LAN, where each host may play the
role of both DNS responder and DNS sender.

Our service discovery approach can be implemented using traditional unicast
DNS client-server infrastructure working in WAN environments: remote stor-
ing of service information on DNS servers, external to the local LAN, can be
achieved via DNS special messages, namely Dynamic DNS-update [31] requests.
Information about services and UDDIs can be packed in DNS-SD records and
remotely saved on DNS servers in internet. However, the majority of DNS server
deployments restrict (for obvious security reasons) the ability to update DNS
records completely or to only a few known hosts.

In figure 1 we present an application of DNS-SDA, with a configuration of
two application servers and one client: each application server runs on a differ-
ent host: the topmost one hosts a UDDI application, for instance the opensource
JUDDI [1] software running in the Apache Tomcat container, while the appli-
cation server at the bottom is a web services container, for instance the Apache
Axis framework [3]. In this system configuration service information, in the form



DNS-Based Discovery System in Service Oriented Programming 845

Fig. 1. The DNS-based Service Discovery Architecture

of WSDL files, may be stored in UDDI registries, or it can be accessed through
the service WSDL URLs provided and published by the web service container.

3.1 DNS-Based Service Discovery

DNS-based Service Discovery (DNS-SD [6]) is a naming convention to enumerate
and classify available software and hardware services (and resources), like web
servers, ftp servers and UDDI servers, in the network using special DNS resource
records [19], namely DNS SRV records [14]. While DNS-SD specification is a
draft on the IETF standards track, there are several DNS-based implementations
adopting this specification for network resource discovery [29, 23].

Service instances are grouped by type and domain. This information together
with service instance name and optional key-value pairs are all stored in DNS
SRV records. Any application looking for a service type in a searching domain
can use standard DNS messaging to query DNS SRV records and discover the
list of service instances of that type and belonging to the specified domain.

A service type is a dot-separated pair of names with format <prot1>.<prot2>,
normally interpreted as the service protocols (in the protocol stack order). For ex-
ample, by querying DNS SRV records with the name http. tcp.example.com.
applications discover all service instances using HTTP over TCP protocol in the
example.com domain (i.e. web servers). The assumption is that a service name
identifies several instances of the same service, i.e. same interface and capability.

In our approach we used this naming convention to enumerate and advertise
on the network UDDI registry servers, i.e. repositories for the classification, pub-
lishing and storing of web services information. Those registries can be queried
for service discovery in the UDDI API specification adopting the SOAP [13]



846 M. Giordano

protocol for message exchanging. To denote a set of UDDI registries in our
<domain> we used the name uddi. soap.<domain>. A client could query the
DNS for PTR records of uddi. soap.<domain> and would be returned a list of
named instances of UDDI servers. In the example of figure 1 the messaging is:

PTR: uddi. soap.example.com -> SRV:My JUDDI. uddi. soap.example.com

-> SRV:My JWSD. uddi. soap.example.com

A client application could then display the list of discovered UDDI servers. As-
suming the client wants to use the “My JUDDI” registry [1], it can resolve that
DNS SRV record associated to the UDDI registry instance, thus retrieving the
UDDI server URI from the record description field:

SRV:My JUDDI. uddi. soap.example.com -> http://myhost.example.com/juddi/

The client application uses the http://myhost.example.com/juddi/ URI to
contact the UDDI server; then it starts querying the registry exchanging mes-
sages in the UDDI API packet format and using the SOAP transport protocol.

We used DNS-SD naming convention also to enumerate and advertise on
the network web service descriptor files (WDSL). To denote them we used the
name wsdl. soap.<domain>. A client could query the DNS for PTR records of
wsdl. soap.<domain> and would be returned a list of named WSDL files. An
example of DNS message exchange for web services discovery could be:

PTR: wsdl. soap.example.com -> SRV:My Service. wsdl. soap.example.com

SRV:My Service. wsdl. soap.example.com ->

http://myhost.example.com/axis/MyService.wsdl

3.2 mDNS

Multicast DNS (mDNS) [7] is a joint work of the IETF Zero Configuration
Networking [32] and DNS Extensions [9] working groups. The idea behind mDNS
is to allow a group of hosts on a LAN, without using conventional unicast DNS
servers, to co-operatively manage a collection of DNS resource records allowing
client applications on the same LAN to query those records. As we have seen
before, DNS SRV records can be used to keep information on general services
provided either by hardware devices and software components on the network.

mDNS reserves the DNS namespace, named .local., for use by clients in
the LAN. A client application connects to the mDNS multicast IPv4 address,
then sends queries and receives responses to port 53 via DNS-based messaging.

mDNS architecture is based on senders and responders. A sender is any
software sending a query to the mDNS multicast address. A responder is any
software that listens to (but not necessarily responds to) a query on the same
address. The mDNS architecture is symmetric since any responder may also be
a sender, while a software not configured as responder cannot be a sender.

A sender sends to the multicast address DNS queries for any type of resource
record (e.g. A, PTR, SRV, etc.) in the .local. domain. A responder must answer



DNS-Based Discovery System in Service Oriented Programming 847

a multicast query only for the name for which it is authoritative. Differently from
traditional DNS, a responder is not authoritative for subdomains of the domain
of competence.

With reference to the first example of DNS messaging in the previous subsec-
tion, if a responder is authoritative for the domain name uddi. soap.local.,
when it receives a multicast DNS query for a PTR record it responds with a pair
of SRV records giving information about two UDDI registries. The same records
can be registered in a different domain name, named uddiv2.0. soap.local.,
for which it is authoritative another mDNS responder on the same LAN.

In our approach DNS SRV records keep information about web services or
UDDIs and are managed in a mDNS environment, i.e. mDNS is the communica-
tion infrastructure for DNS-SDA. The main limitation of mDNS is its applicabil-
ity to local-area network. Moreover we expect that new applications in the future
will use multicast DNS as a communication infrastructure, thus producing and
amount of traffic beyond the mDNS conventional one. DNS-SD is not limited to
mDNS since DNS-SD is orthogonal to mDNS; the DNS-SD convention can also
be adopted with traditional unicast DNS client-server infrastructure in a WAN.

4 Related Works and Concluding Remarks

Today UDDI [30] is the leading technology for web service information registries
for storing, classification and retrieval of services in order to support the design
and the interoperability of several software applications in grid–like distributed
computing and enterprise IT infrastructure development.

The main architectural change in the UDDI version 3.0 specification is the
concept of “UDDI federation” for registry interaction, i.e. the facility to group
registries in an affiliation by choosing appropriate policies. The main purpose
of a UDDI federation is twofold: 1) to guarantee a global namespace for the
management of UDDI entity keys in a hierarchical organization of registries: 2)
to support controlled redundancy of core data structures among registries, in
order to make consistent multiple copies of the same service information stored
in a distributed global registry.

While UDDI technically allows the interoperability of registries, it does not
directly support it: in fact UDDI specification leaves policies and implemen-
tations of the registry interaction to the registry operators. Also with UDDI
federated in groups, mechanisms and strategies to propagate registry querying
throughout the UDDI federation have to be designed and implemented in the
application or in middleware systems offering service discovery support.

In service oriented programming model the availability of dynamic discovery
mechanisms for service registry location is a very desirable feature. In fact, before
using a remote service, applications have to find that service information in either
a centralized public registry (URB) or in some private registries distributed in
internet whose location has to be known in advance.

In grid environments, like Globus Toolkit v.3 [28], services are discovered
by querying an Index Service. The Index Service maintains a registry of local



848 M. Giordano

grid services. the Service Data Aggregation mechanism of GTK3 allows to im-
plement an inter-registry co-operation mechanism: service data coming from an
Index Service in a GTK container can be subscribed and notified to Index Ser-
vices in other containers. Although this mechanism can be implemented using
the GTK Index Services capabilities, the main limitation of this approach is
the static configuration of inter-registry communication topology among OGSA
islands.

In our approach service registry owners and service providers can use DNS
infrastructure and messaging to enter the community announcing their presence
in the network, the availability of offered services and their descriptions. This can
be achieved in a way similar to how we register in the DNS a new computer for
hostname-to-address resolution. Client applications get a service entry without
knowing in advance the location of the owning registry. Once identified a set
of registries, a client can query them for service retrieving. In this scenario the
service search space is enlarged beyond the private registry space.

A similar approach is adopted by e-speak [12] from HP. E-speak consists
of Service Framework Specification, e-services Village and the e-speak Service
Engine. E-speak goal is to implement cross-compatibility between different IT
infrastructures sharing the use of e-speak services. E-speak service discovery
operations are implemented in a service separated out of the core functionality.
E-speak Service Engine can take a service query and search all known repositories
for required service descriptions. The e-speak mechanisms for service registra-
tion, notification and discovery are based on LDAP [20]. E-speak allows to group
different e-speak engines. Different groups in a network use LDAP to share the
service information (groups are combined in an abstract community).

A limitation of e-speak is that it does not have protocols using standard
technologies for the maintenance of its groups. The match making specifica-
tion and the interfaces for e-speak is planned to be made UDDI compliant
by HP. Another limitation of e-speak is that every software application join-
ing the e-speak community (e-services Village) have to support the e-speak
platform.

Our approach shares some aspects of the e-speak architecture in designing
the lookup engine as a separate service from the core functionalities. In fact
in our system the service registry or provider lookup facility is implemented as
a new component that can be either included in the application as a middle-
ware layer that provides a defined API, or wrapped up to build a web service
exposing methods for service discovery to be bound and invoked by external
applications.

Our approach differs from e-speak in the adopted protocols for service ad-
vertisement and lookup. E-speak uses LDAP as low-level protocol for service
information and grouping system, while it defines a proprietary protocol that
applications need to support to interact with the e-speak service system.

In our approach we use the DNS as high-level protocol for service information
publishing and retrieving. Since the DNS is widely used in internet, there is no
need to be compliant with proprietary protocols to access the service information



DNS-Based Discovery System in Service Oriented Programming 849

lookup and publishing facility. Software systems can publish their service infor-
mation in DNS records stored on DNS servers and available for consultancy.At
the same time, applications can query DNS records in the network for service
entries discovery, like common web browsers do in resolving hostnames.

We offer to applications a DNS-based API for service registration and lookup.
We think that service discovery facilities should be implemented as a separate
software component to be plugged into applications in a multi-tier architecture
design or used as an external service. Other related and critical services, like
authentication and security, could be added to the system in a similar way.

References

1. Apache Web Service Project: JUDDI. http://ws.apache.org/juddi/
2. Apache Jakarta Project: Tomcat. http://jakarta.apache.org/tomcat
3. Apache Web Service Project: Axis. http://ws.apache.org/axis/
4. Bieber G., Carpenter J.: Introduction to Service-Oriented Programming.

http://www.openwings.org/download.html. (2004)
5. Sillitti A., Vernazza T., Succi G.: Service Oriented Programming: A New Paradigm

of Software Reuse. LNCS 2319:269–280. (2002)
6. Cheshire S., Krochmal M.: DNS-Based Service Discovery (Internet Draft). Apple

Computer, Inc. http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt. (2004)
7. Cheshire S., Krochmal M.: Multicast DNS (Internet Draft). Apple Computer, Inc.

http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt. (2004)
8. Chinnici R., Gudgin M., Moreau J., Weerawarana S.: Web Services Description

Language (Vers. 1.2 working draft). http://www.w3.org/TR/wsdl12. (2003)
9. DNS Extension Charter. http://ietf.org/html.charters/dnsext-charter.html

10. ebXML: Enabling A GlobalElctronic Market. http://www.ebxml.org/
11. Foster I. et al.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

Intern. J. Supercomputer Applications. 15(3). (2001)
12. Graupner S. et al.: e-Speak an XML document interch. engine. LNCS 2215. (2001)
13. Gudgin M., Hadley M., Mendelsohn N., Moreau J., Nielsen H.: SOAP Version 1.2

Part 1: Messaging Framework. http://www.w3.org/TR/soap12-part0/. (2003)
14. Gulbrandsen A. et al.: A DNS RR for specifying the location of services. Network

Working Group RFC-2782. http://www.faqs.org/rfcs/rfc2782.html. (2000)
15. Guttman E.: Service Location Protocol: Automatic Discovery of IP Network Ser-

vices. IEEE Internet Computing. 3(4):71–80. (1999)
16. IBM WebSphere. http://www-306.ibm.com/software/info1/websphere/
17. Jagatheesan A., Helal S.: Sangam: Universal Interop Protocols for E-Service Bro-

kering Communities using Private UDDI Nodes. IEEE symp. Computer and Com-
munications - ISCC’03. (2003)

18. Kreger, H.: Web Services Conceptual Architecture (WSCA 1.0). http://www-
4.ibm.com/software/solutions/webservices/. (2001)

19. Mockapetris. P.: Domain names - implementation and specification. Network Work-
ing Group RFC-1035. http://www.faqs.org/rfcs/rfc1035.html. (1997)

20. Lightweight Directory Access Protocol (v3). Network Working Group RFC-2251.
http://www.ietf.org/rfc/rfc2252.txt. (1997)

21. Microsoft .NET. http://www.microsoft.com/net



850 M. Giordano

22. Vinoski, S.: CORBA: Integrating Diverse Applications Within Distributed Hetero-
geneous Environments. IEEE Communications Magazine. (1997)

23. Porchdog software. Howl. http://www.porchdogsoft.com/products/howl/. (2004)
24. Sun Microsystems: Java 2 Platform, Enterprise Edition. http://java.sun.com/j2ee/
25. Sun Microsystems: Java Naming and Directory Interface.

http://java.sun.com/products/jndi
26. Sun Microsystems: Java RMI. http://java.sun.com/products/rmi
27. Sun Microsystems: JINI. http://www.jini.org
28. The Globus Toolkit. http://www-unix.globus.org/toolkit. (2004)
29. The mod zeroconf site. http://www.temme.net/sander/mod zeroconf/. (2004)
30. UDDI.org, UDDI Version 3.0 Published Specification. http://uddi.org/pubs/uddi-

v3.00-published-20020719.htm. (2002)
31. Vixie P. et al.: Dynamic Updates in the Domain Name System. Network Working

Group RFC-2136. http://www.ietf.org/rfc/rfc2136.txt. (1997)
32. Zero Configuration Networking. http://www.zeroconf.org/



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 851 – 860, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Experiences with Deploying Legacy Code Applications  
as Grid Services Using GEMLCA1,2  

A. Goyeneche1, T. Kiss1, G. Terstyanszky1, G. Kecskemeti1, T. Delaitre1, 
 P. Kacsuk2, and S.C. Winter1 

1 Centre for Parallel Computing, Cavendish School of Computer Science, 
University of Westminster,115 New Cavendish Street, London, W1W 6UW 

2 MTA SZTAKI Lab. of Parallel and Distributed Systems, 
H-1518 Budapest, P.O. Box 63, Hungary 
gemlca-discuss@cpc.wmin.ac.uk 
www.cpc.wmin.ac.uk/gemlca/ 

Abstract. One of the biggest obstacles in the wide-spread industrial take-up of 
Grid technology is the existence of a large amount of legacy code programs that 
is not accessible as Grid Services. On top of that, Grid technology challenges 
the user in order to intuitively interconnect and utilize resources in a friendly 
environment. This paper describes how legacy code applications were trans-
formed into Grid Services using GEMLCA providing a user-friendly high-level 
Grid environment for deployment, and running them through the P-GRADE 
Grid portal. GEMLCA enables the use of legacy code programs as Grid ser-
vices without modifying the original code. Using the P-GRADE Grid portal 
with GEMLCA it is possible to deploy legacy code applications as Grid ser-
vices and use them in the creation and execution of complex workflows. This 
environment is tested by deploying and executing several legacy code applica-
tions on different sites of the UK e-Science OGSA testbed. 

1   Introduction 

There are many efforts all over the world to provide new Grid middleware concepts 
for constructing large production Grids. As a result, the Grid community is in the 
phase of producing third generation Grid systems that are represented by the OGSA 
(Open Grid Services Architecture) [1] and WSRF (Web Services Resource Frame-
work) [2] standards. On the other hand relatively little attention has been paid to how 
end-users can survive in the rapidly changing world of Grid generations. The primary 
goal of our research is to construct a high-level Grid application environment where 
the end-users can: 

                                                           
1  The work presented in this paper was initially supported by EPSRC funded project (Grant 

No: GR/S77509/01): A proposal to evaluate OGSA/GT3 on a UK multisided testbed.  
2  The integration of GEMLCA, P+Grade and other Grid tools and projects is currently sup-

ported by “CoreGrid”, network of excellence in “Foundations, Software Infrastructures and 
Applications for large scale distributed, Grid and Peer-to-Peer Technologies”. 



852 A. Goyeneche et al. 

 

– Deploy and use any legacy code as Grid Services. 
– Use these Grid Services in order to easily and conveniently create complex Grid 

applications. 

In an ideal Grid environment users would be able to access Grid Services through a 
high-level user-friendly Grid portal. More than that, users would not only be capable 
of using such services, they could dynamically create and deploy new services, and 
also construct complex Grid workflows in a convenient and efficient way. All these 
services can be either specifically designed Grid Services, or legacy code programs 
deployed as Grid Services. 

Some of these objectives are achieved by an integrated high-level Grid execution 
environment [3] consisting of Grid Execution Management for Legacy Code Archi-
tecture (GEMLCA) and the P-GRADE Grid portal. GEMLCA enables legacy code 
programs written in any language (Fortran, C, Java, etc.) to be easily deployed as a 
Grid Service without any user effort. The integration of GEMLCA with the P-
GRADE Grid portal results in an OGSA-based Grid portal. Using this integrated 
solution legacy codes can be deployed as Grid Services and accessed by authorized 
users from the portal. As a consequence, legacy codes (either sequential or parallel 
ones) can be used as workflow components to build complex Grid applications. 

In the current paper the integrated GEMLCA & P-GRADE Grid portal is presented 
describing experiences deploying and running different legacy applications as Grid 
Services.  

2 Deploying Legacy Code Applications on the Grid 

Many currently available industrial and scientific applications were written well before 
Grid computing or service-oriented approaches appeared. The incorporation of these 
legacy code programs into service-oriented Grid architectures with the smallest possi-
ble effort is a crucial point in the widespread industrial take-up of Grid technology. 

There are several research efforts aiming at automating the transformation of leg-
acy code into a Grid Service. Most of these solutions are based on transforming leg-
acy code applications into Web Services outlined in [4] using Java wrapping in order 
to generate stubs automatically. One example is presented in [5], where the authors 
describe a semi-automatic conversion of programs written in C into Java using Java 
Native Interface (JNI). After wrapping the native C application with the Java-C 
Automatic Wrapper (JACAW), MEdiation of Data and Legacy Code Interface tool 
(MEDLI) is used for data mapping in order to make the code available as part of a 
Grid workflow. 

Different non-wrapping approaches are presented in [6] and [7] but these solutions 
only define the principles of legacy code transformation, and do not specify an envi-
ronment or tool to do the automatic conversion. 

GEMLCA is based on a different principle. Instead of wrapping the application 
GEMLCA hides it behind a set of Grid Services leaving the legacy code untouched. 
The Grid Services layer communicates with the client in order to submit service re-
quests, manages input and output parameters, and contacts a local job manager 
through Globus MMJFS (Master Managed Job Factory Service) to submit the compu-
tational jobs. To deploy a legacy application as a Grid Service there is no need for the 



 Experiences with Deploying Legacy Code Applications as Grid Services 853 

 

program source code and not even for the C header files as in case of JACAW. The 
user only has to provide the program attributes and parameters. The legacy code can 
be written in any programming language and can be not only a sequential but also a 
parallel MPI or PVM code that uses a job manager like Condor, and where wrapping 
can be difficult. 

3   GEMLCA 

GEMLCA is a Grid architecture with the main aim of exposing legacy code programs 
as Grid Services without reengineering the original code, and offering a user-friendly 
interface. 

GEMLCA has been designed [8] as a three-layer architecture: the first (front-end) 
layer, offers a set of Grid Service interfaces that any authorized Grid client can use in 
order to contact, run, and get the status and any result back from the legacy code. This 
layer hides the second (core) layer, which deals with each legacy code environment 
and their instances as Grid legacy code processes and jobs. The final (back-end) layer 
is related to the Grid middleware where the architecture is being deployed. The pre-
sent implementation is based on GT3 and is currently migrated to GT4. 

GEMLCA conceptual architecture is shown in Figure 1 where we can identified a 
Grid client, a GEMLCA Resource which is composed of a set of Grid Services that 
provides a number of Grid interfaces in order to control the life-cycle of the legacy 
code execution and a Grid Host Environment provided by the deployment of Globus 
Toolkit 3 (GT3).  

 

Fig. 1. GEMLCA functional architecture 

In order to access a legacy code program, the user invokes the GEMLCA Grid 
Service client which creates a legacy code instance with the help of the legacy code 
factory. Following this, the GEMLCA Resource submits the job to the compute server 
through GT3 MMJFS using a particular job manager. 

GEMLCA is been designed using three layers that encapsulate and divide the front 
end and core functionality with the Grid Host Environment dependant layer. At this 
time, a GEMLCA version using a GT3 Grid Host Environment is available where a 
GT4 dependant version is been under development and testing. 



854 A. Goyeneche et al. 

 

4   The Integrated GEMLCA P-GRADE Portal 

The P-GRADE Grid portal is a workflow-oriented portal which main goal is to enable 
users to manage the whole life-cycle of creating and executing complex applications 
in the Grid. This is achieved allowing users to edit, execute and monitor Grid work-
flows composed of various types of Workflow components (sequential programs, 
MPI, PVM). 

Our goal, as it was mentioned in the Introduction, was to enable end-users to de-
ploy legacy codes as Grid Services, and use them as components of workflows with 
the least possible effort. The integration of GEMLCA with the P-GRADE portal pro-
duces a high-level Grid toolkit environment that achieves this goal. The integration 
has been done through the creation and use of a number of Grid clients.  

In order to create a GEMLCA component in a workflow, the portal user is able to 
select a GEMLCA Resource and the required legacy code program which has  already 
been deployed on the resource. To achieve this, the Grid GEMLCA client, embedded 
in the portal, allows the selection of a GEMLCA Resource and a legacy code applica-
tion from the list returned. This client also allows the change of input parameters and 
upload of input files. 

Once the workflow is completed and saved, the workflow manager, Condor DAG-
man [9], is used in order to manage GEMLCA jobs. In case of GEMLCA, the DAG-
Man’s PRE, POST, and job submission scripts were modified. The PRE-script has 
been changed in order to call a GEMLCA client that creates an instance of the legacy 
code process returning a Grid Service Handle (GSH). Such GSH is used by a further 
GEMLCA client for setting its parameters, uploading input files using GridFtp and 
finally submitting the GEMLCA job. The POST-script has also been changed in order 
to download and make output files available to the user, and destroy the GEMLCA 
jobs. Alternatively, the output files will be transferred into the next legacy code envi-
ronment of the workflow if it is required. 

Another GEMLCA client is used for checking the status of the legacy code process 
and jobs in order to let the user know the status of the workflow and each of its  
components. 

5   Legacy Code Deployment with GEMLCA 

5.1   Legacy Code Program Deployment Using the P-Grade Grid Portal 

Most of the solutions to expose legacy code programs as Grid Services require access 
to the source code. In contrast, in GEMLCA the only significant effort to be done is to 
create a Legacy Code Interface Description (LCID) file  in XML format. The LCID 
file consists of three sections: the first section – “environment” - contains the name of 
the legacy code and its binary file, job manager to be used (Condor and Fork are sup-
ported in the current version of GEMLCA), maximum number of jobs allowed to be 
submitted from a single legacy code process, and minimum and maximum number of 
processors to be used; the second section – “description” - describes the legacy code 
in simple text format; the third section – “parameters” - exposes the list of parameters  
defining for each of them its name, friendly name, type (input or output), order, status 



 Experiences with Deploying Legacy Code Applications as Grid Services 855 

 

(compulsory or optional), file, command line, and the regular expression to be used as 
input validation. 

Some users, without basic GEMLCA and XML knowledge, may find difficult to 
learn how to manually create LCID files. To support them, the generation of LCIDs 
and the deployment of legacy code applications have been automated using a new 
Admin Grid Service in the GEMLCA Resource and a new Grid portal interface. 

The Admin Grid Service can be accessed through the GEMLCA Administration 
Portlet which is integrated into the P-GRADE Grid portal, and offers a number of 
interfaces in order to create the legacy code program deployment environment and its 
LCID file.  

The Portlet, based on the Document Type Definition file stored in the GEMLCA 
Resource provided by one of the Admin Grid Service interfaces, creates and presents 
a deployment Web form on the fly. If the legacy code description provided by the 
user is correct, the Admin Grid Service is used to create the legacy code deployment 
environment and its LCID file, and Grid FTP is used to upload the legacy code pro-
gram and its input files. After this point the legacy code is published and available as 
a Grid Service. 

The GEMLCA Administration Portlet hides the syntax and structure of the LCID 
file from users. As a result, users do not have to know LCID specific details. For 
example, they do not have to be familiar with possible modifications in legacy code 
description after new GEMLCA releases. 

5.2   Internal Legacy Code Deployment Description 

Besides the use of the P-Grade Grid portal, a legacy code program can be also de-
ployed manually by the GEMLCA Resource administrator or any general user with 
access to the GEMLCA Recourse server. 

The general user is allowed to deploy legacy code programs within the user’s home 
folder. Any deployed program could only be used through GEMLCA by the Grid 
users which are locally mapped to the local general user. These legacy codes are con-
sidered “private” to a set of Grid users.  On the other hand, the GEMLCA Resource 
administrator can also deploy a “public” legacy code program that is available to any 
Grid user mapped in that Grid host. This technique implements the GEMLCA au-
thorization of legacy codes.  

After deciding whether a legacy code will be available to either a set of users (pri-
vate) or anyone (public) in a given GEMLCA Resource, a folder within the base de-
ployment folder has to be created that gives a unique private or public identification. 
The legacy code can be uploaded into this folder from the portal, manually copied or 
linked from any place in the server without changing the program’s internal folder 
structure. The input files can also be copied or linked into this folder, or made avail-
able using a full path folder. Finally, to make the legacy code available the LCID file 
has to be created.  

6   Deployment Examples 

In this section the deployment of three legacy codes are described: MadCity traffic 
simulator [10], GAMESS-UK [11] and MultiBayes [12]. These programs were devel-



856 A. Goyeneche et al. 

 

oped by the University of Westminster, the Daresbury Laboratory, and the University 
of Reading, respectively. The objective of these deployments is to publish these leg-
acy codes as Grid Services in order to be available for external Grid users. In each 
example, the challenge faced is presented together with the solution implemented.  

At the end of the chapter a list of constraints that have to be considered before de-
ploying a program as a GEMLCA service is included. The constraints are based on 
the experience of deploying the previously mentioned legacy codes. 

6.1   MadCity Traffic Simulator 

In this example, a workflow for analysing urban car traffic on road was created that 
consists of three different components: a Manhattan road network generator, a traffic 
simulator, called MadCity, and a traffic analyser.  

The Manhattan road network generator creates MadCity compatible car networks 
that are used as inputs for the simulator. MadCity is a discrete time-based traffic 
simulator that simulates car traffic on a road network, and shows how individual ve-
hicles behave on roads and at junctions. Finally, the traffic analyser compares the 
traffic density of several simulations of a given city and presents a graphical analysis. 

The main objective of this case study was to analyze and test the following points: 

 Use of several GEMLCA Resources in a single workflow. 
 Execute several legacy codes as Grid Services in parallel in a single and  

multiple  GEMLCA Resources. 
 Schedule the workflow and synchronize the Grid Services executions. 
 Transfer files from one Grid Service to another in the same GEMLCA Re-

source and between different GEMLCA Resources. 
 Display intermediate and final results in the portal. 

In order to meet these objectives, the workflow is configured to use five GEMLCA 
Resources each one deployed on the UK OGSA testbed sites, and one server where 
the P-GRADE portal is installed. The first GEMLCA Resource is at the University of 
Westminster (UK), and runs the Manhattan road network generator (Job0), two traffic 
simulator instances (Job3 and Job6) and the final traffic density analyzer (Job7). Four 
additional GEMLCA Resources are installed at the following sites: SZTAKI (Hun-
gary), University of Portsmouth (UK), the CCLRC Daresbury Laboratory (UK), and 
University of Reading (UK). One instance of the simulator is executed on each of 
these sites, respectively Job1, Job2, Job4 and Job5 (see Figure 2). 

The MadCity network and turn files are used as input to each traffic simulator in-
stance. In order to analyse the different behaviour of these instances, each one was set 
with different initial number of cars per street junction, one of the input parameters of 
the program. The output file of each traffic simulation is used as input file to the traf-
fic analyser.  

The described workflow was successfully created and executed from the P-
GRADE portal installed at the University of Westminster. The workflow execution 
graph is shown in Figure 3. 



 Experiences with Deploying Legacy Code Applications as Grid Services 857 

 

 

 

 

 

 

 

 

 

 

 

 
6.2   GAMESS-UK 

GAMESS-UK is an ab initio molecular electronic structure program for performing 
SCF-, DFT-, and MCSCF-gradient calculations using a variety of techniques for post 
Hartree-Fock calculations. 

The sequential version of GAMESS-UK, which has a complex folder structure   
with multiple files, was deployed. The application is an executable binary file that has 
one command line input parameter: a string that specifies the full path and name of 
the input file containing the program execution configuration. The “.in” file extension 
is internally added to this input file before reading it. The application is launched by a 
set of Bourne shell scripts that uses a number of ASCII text files to configure the 
application. Besides the standard and error outputs the legacy code generates two files 
where GEMLCA sends the final results. 

Fig. 2. Workflow graph for analysing road traffic

Fig. 3. Workflow execution graph



858 A. Goyeneche et al. 

 

The challenge of this deployment was to test GEMLCA with a complex structured 
legacy code and with run-time constrains, such as the input file implicit name in the 
input command line parameter, and the requirement of a full path definition in it. 

The GAMESS-UK Grid Service was published using the $GEMLCAJOBPATH 
dynamic variable in order to set the input command line parameter, i.e. 
$GEMLCAJOBPATH/c2001_a. This variable is replaced at the time of running each 
job by the location of the volatile job environment that the job uses. The final input 
parameter defined in the LCID was set as a non-command line input file with the 
extension “in”, i.e. c2001_a.in. Therefore, this file is included in each job environ-
ment but not listed as command-line parameter, given that another restriction of the 
legacy code is that it only accepts one and only one command line parameter. 

 The legacy code was successfully deployed using two GEMLCA Resources 
loaded at the University of Westminster and Daresbury Laboratory and tested from 
the P-Grade Gird portal running at University of Westminster. 

6.3   MultiBayes 

MultiBayes is an application developed at the School of Animal and Microbial Sci-
ences at University of Reading and used in the Phylogenetic Tree Construction. It 
generates a Monte Carlo Markov Chain sample of trees from DNA sequences of 
genes common to a group of species. 

The serial version of MultiBayes, which consists of an executable dynamically 
linked binary that accepts an input file as a parameter and creates three output files 
with the results, was deployed as GEMLCA Grid Service. 

This legacy code was not as restrictive as GAMESS-UK but it presented a chal-
lenge to GEMLCA concerning the synchronisation between the P-Grade Grid portal 
and the GEMLCA Resources at the time of getting results due to its large output files. 
As a result, the P-Grade Grid portal workflow management post-script had to be 
tuned in order to cope with the Grid file transfer of results and their presentation. 

The legacy code was successfully deployed at the University of Westminster as a 
GEMLCA Resource, and used from the P-Grade Grid portal also running at Univer-
sity of Westminster. 

6.4   Legacy Code Deployment Restrictions 

Testing GEMLCA by deploying legacy codes with different level of complexity and 
requirements led to a number of GEMLCA improvements that extended the list of 
programs to be deployed as GEMLCA Grid Services. The improvements were 
achieved modifying the GEMLCA core behaviour and adding new capabilities to the 
LCIDs. 

Even after these improvements there are some constraints that have to be consid-
ered when selecting the legacy code to be deployed as GEMLCA Grid Service: 

 The first and most important constraint is that the legacy code has to accept in-
put parameters from the command line. Consequently, any legacy code with a 
user interface that accepts input data during the execution cannot be considered 
as a GEMLCA Grid Service. 



 Experiences with Deploying Legacy Code Applications as Grid Services 859 

 

 The legacy code has to write its results into a file or standard/error outputs in 
order to expose them to Grid users. Any other results stored in a different way, 
for example in external databases, could not be displayed. To avoid this prob-
lem a script should be attached to the legacy code program to write its output 
into local files. 

 GEMLCA creates a volatile job environment where input files are uploaded 
before the legacy code is executed and output files are expected to be created. 
This environment is deleted when the Grid client destroys the job or when the 
Grid Service life-time expires. Another constraint to be considered is that the 
folder containing the input and output files have to be set dynamically. A leg-
acy code with a pre-defined output file folder cannot be used because a Grid 
Service may be used by different users at the same time producing problems in 
the creation of output files. 

 When an input parameter name is related to an output parameter, and a Grid 
client changes the input parameter name, it has to modify the output parameter 
name in order to let the portal know its new name. 

7   Conclusions 

In this paper the deployment of three legacy code applications as Grid Services using 
GEMLCA have been described. All deployments had different challenges that pro-
duced as a result, on top of the deployment of these programs, several improvements 
in GEMLCA. These changes enhanced the Grid architecture in order to guarantee its 
main objective, the deployment of legacy code without changing the program code, 
and also to increase the number of legacy codes programs to be accepted. 

This exercise also produced a list of restriction that have to be considered when se-
lecting a program to be deployed in GEMLCA. These restrictions are basically forced 
by the multi-user environment that has to be considered in Grid computing, and also 
the Grid object-oriented approach that does not make a full interactive program the 
best option for deployment. 

Finally, with these examples, we demonstrated that the Grid environment com-
posed of the integration of GEMLCA with the P-GRADE Grid portal enables Grid 
users to deploy legacy code applications, and to use them as Grid Services through a 
high-level user-friendly environment. 

References 

1. I. Foster, C. Kesselman, J. M. Nick, S. Tuecke. The Physiology of the Grid An Open Grid 
Services Architecture for Distributed Systems Integration. 2002. 

  http://www.globus.org/research/papers/ogsa.pdf 
2. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, S. 

Tuecke. From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring 
and Evolution Version 1.1 May, 2004,  

   http://www-106.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf 



860 A. Goyeneche et al. 

 

3. P. Kacsuk , A. Goyeneche , T. Delaitre , T. Kiss , Z. Farkas , T. Boczko: High-level Grid 
Application Environment to Use Legacy Codes as OGSA Grid Services, 5th IEEE/ACM 
International Workshop on Grid Computing, November 8, 2004, Pittsburgh, USA  

4. D. Kuebler, W. Eibach: Adapting legacy applications as Web services, IBM Developer 
Works, http://www-106.ibm.com/developerworks/webservices/ 

5. Y. Huang et al., ”Wrapping Legacy Codes for Grid-Based Applications”, Proceedings of 
the 17th International Parallel and Distributed Processing Symposium, workshop on Java 
for HPC), 22-26 April 2003, Nice, France. ISBN 0-7695-1926-1 

6. T. Bodhuin, and M. Tortorella, ”Using Grid Technologies for Web-enabling Legacy Sys-
tems”, Proceedings of the Software Technology and Engineering Practice (STEP), Soft-
ware Analysis and Maintenance: Practices, Tools, Interoperability workshop September 
19-21, 2003, Amsterdam, The Netherlands. 

7. B. Balis, M. Bubak, and M. Wegiel, ”A Framework for Migration from Legacy Software 
to Grid Services”, Cracow Grid Workshop ’03, Cracow, Poland, December 2003. 

8. T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss, G.Z.Terstyanszky and S.C. Winter. 
GEMLCA: Grid Execution Management for Legacy Code Architecture Design., Conf. 
Proc. of the 30th EUROMICRO conference, Special Session on Advances in Web Com-
puting, August, 2004, Rennes, France, 

9. Condor DAGman, http://www.cs.wisc.edu/condor/dagman/ 
10. A Gougoulis, G. Terstyanszky, P Kacsuk, S C Winter: Creating Scalable Traffic Simula-

tion on Clusters, PDP2004 Conf. Proceedings of the 12th EuroMicro Conference on Paral-
lel and Distributed and Network-Based Processing, La Coruna, Spain 11-13th February, 
2004. 

11. GAMESS-UK, CCLRC, http://www.cse.clrc.ac.uk/qcg/gamess-uk/ 
12. MultiBayes, University of Reading, http://www.ams.rdg.ac.uk/ 



A Framework for Job Management

in the NorduGrid ARC Middleware

Henrik Thostrup Jensen, Josva Kleist, and Jesper Ryge Leth

Danish Center for Grid Computing & Aalborg University, Denmark
{htj, kleist, leth}@cs.aau.dk

Abstract. This paper presents a framework for managing jobs in the
NorduGrid ARC middleware. The system introduces a layer between the
user and the grid, and acts as a proxy for the user. Jobs are continuously
monitored and the system reacts to changes in their status, by invoking
plug-ins to handle a certain job status. Unlike other job management
systems, our is run on the client side, under the control of the user. This
eliminates the need for the user to share a proxy credential, which is
needed to control jobs. Furthermore the system can be extended by the
user, as it is designed as a framework. This gives the users the possibility
to adapt and extend it, to their needs.

1 Introduction

Computational grids, such as LCG2 [20], Grid3 [22], and NorduGrid ARC [9] are
now finding everyday use, and grid technology is aiding research in areas such
as physics, biology, nano technology, and computer science among others.

In large grids it is inevitable that resources from time to time fail, which may
result in the failure of jobs, in which case the user will have to take action. Even
without failures, the user might have to modify jobs, e.g., to move a job from
one site to another with more free resources.

This poses new challenges for monitoring and reacting to state change of
jobs, as the actions to perform depend on the type of job and cannot easily be
generalized.

In this paper, we present the Job Manager1 for managing jobs on NorduGrid
ARC grids. The Job Manager runs on a machine trusted by the user, and is
constructed such that the user can tailor the manager to fit specific needs for
controlling jobs on a grid, by plugging in handlers for different situations. The
system acts as a layer between the user and the grid, i.e., the users interaction
with the grid happens through the Job Manager.

The paper is organized as follows: Section 2 presents work related to the Job
Manager. Hereafter the NorduGrid project and ARC middleware is presented in
Section 3; followed by reasoning for why the Job Manager is needed in 4. Section

1 The Job Manager should not be mistaken for the Job Manager of Globus GRAM or
in the Prospero Resource Manager.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 861–871, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



862 H.T. Jensen, J. Kleist, and J.R. Leth

5 describes the architecture of the Job Manager. Section 6 outlines possible uses
for the Job Manager, and Section 7 concludes and presents future work.

2 Related Work

The concept of introducing a layer between the user and resource for man-
aging jobs, has also been investigated by the Grid Service Provider [6] of the
PROGRESS Project [5], and the EDG Resource Broker [17]. Both of these pro-
vides a job submission service to the grid for their users to submit jobs through.

The goal of the Grid Service Provider is to move functionality away from the
client side, making grid user interfaces easier to develop and create. The typical
user interface in PROGRESS is a web portal, and the Grid Service Provider
provides a job submission service over a secure HTTP connection, making it
easy for browsers to use.

The EDG resource broker is an integrated part of the EU datagrid archi-
tecture. It handles tasks related to job submission, such as file staging and
brokering. Several resource brokers can co-exist and by creating a tuplespace
between job submission services and the brokers a load balancing system has
been created [17].

Dedicated job management on the grid is not a new concept either. The
GEMS system [24], introduces a daemon to run locally on the resources, along-
side the LRMS. This daemon is capable of monitoring hardware and software
errors. In case of failure GEMS can restart the job, or migrate it to another site.
To migrate a job, proxy credentials of the user are needed. These credentials are
stored on a MyProxy server [19], and when submitting a job, the credential of
the user is passed to GEMS. This architecture asserts that no resources will be
compromised or have dishonest administrators for the credentials to be secure.

The Job Manager takes another approach by placing the system under the
control of the user. This gives the user the possibility of modifying it to his or
her own needs. Furthermore no proxy credentials has to be propagated to other
sides, eliminating a potential security hazard.

3 NorduGrid

This section gives an outline of the NorduGrid project and the grid middleware
it produces: The Advanced Resource Connector (ARC). The architecture and
subsystems of ARC is described.

3.1 The NorduGrid Project

The NorduGrid project is a research and development project, launched in May
2001 with the goal of building a grid infrastructure suitable for production-level
research tasks. The project develops and maintains a free grid middleware called
the Advanced Resource Collector (ARC) [9], formerly known as the NorduGrid



A Framework for Job Management in the NorduGrid ARC Middleware 863

middleware. Using this middleware, a testbed was started in may 2002 and has
since august 2002 been in continuous operation and development. In November
2003 the testbed was considered stable and went to production level status. The
grid it constitutes has continuously been growing and today consists of over 40
sites, providing over 5000 CPUs and 40 TB of data storage.

3.2 The ARC Middleware

The ARC middleware, here from referred to as ARC, is basically a distributed
batch system, in which the user submits jobs directly to the resources. The user
discovers resources by querying the ARC information system, where after each
resource is queried for information necessary to do brokering which is also done
on the client side. The user prepares a job description, which is uploaded to the
resource found best suited, along with any local input files.

For a resource to be on an ARC grid it must run a set of daemons on a front-
end machine. These daemons provides a set of grid services, and interfaces with
the LRMS. An important design criteria in the ARC middleware is that software
installation is only necessary on the front-end machine, no modification of the
nodes should be necessary. This allows administrators to remain in control of
their resources, while providing them to the grid. The rest of this section explains
the different subsystems in ARC middleware.

ARC is build upon on the Globus Toolkit [2], however several components
has been replaced or extended. The Grid Resource Allocation and Management
(GRAM) [11] has been replaced by the grid-manager [15], which acts a gateway
to the local LRMS system. The grid-manager supports the following LRMS:
OpenPBS, PBSPro, Torque, Condor, Easy, SGE, and fork; the last being pri-
marily for testing purposes. The grid-manager also handles staging of input and
output files, i.e., it fetches input files needed by the job and uploads output
files to storage elements after job completion. To authenticate to storage ele-
ments the grid-manager uses GSI proxy certificates [3], which the user supplies
during job submission. Alternatively the user can fetch the output files from
the cluster itself, since the grid-manager is run in combination with a GridFTP
server [21].

The ARC GridFTP server [15] is not the standard provided from Globus.
It does use the Globus GridFTP libraries though, but its structure has been
rewritten to allow a plug-in structure, which allows the server to be used for
job submission, where the grid-manager picks up the job submission files from
a local job submission directory. A GACL plug-in [18] for fine grained access
control lists is also provided. Finally a file plug-in provides a virtual directory,
which does not have to reflect the layout on the file system.

The user interacts with an ARC grid, through a command line interface which
supports submission of jobs, querying of the information system, copying of files
etc. This interface is the primary way for a user to interact with the grid. Whereas
grids such as EDG uses broker gateways [17], ARC users submits jobs directly to



864 H.T. Jensen, J. Kleist, and J.R. Leth

resources; no third party is involved2. For this to work, the client needs access to
brokering information and a local broker to find a suitable resource for the jobs
to be submitted. This information is obtained by querying the ARC information
system.

The ARC information system [16] is build upon the Globus MDS system [12],
but does not use any of its caching abilities, and the LDAP schema provided by
Globus been replaced with another suited to describe clusters. The information
system is a multi-rooted tree, three levels deep. The two top layers consist of
Grid Index Indices Servers (GIIS), and at lowest level the resources, i.e., cluster
or storage elements. The resources contacts GIIS servers in the middle layer and
provides them with their contact information. These GIIS servers again provides
the top GIIS servers with their contact information (i.e., not the resources). The
contact information propagation uses soft state registration, so if a resource falls
out, it disappears from the grid after a timeout. The user can contact the top
GIIS servers, where it can find contact information to the second layer GIIS
servers. These again can be contacted for resource contact information, where
after the resources can be queried for brokering information and a resource can
be selected, by using a local broker.

Having selected a resource, a job description is prepared in xRSL3 [23], an
extension of RSL [1], which has been extended to support the architecture of
ARC. The job description is submitted to the resource by uploading it to the
GridFTP server of the resource, where the job plug-in will place the job de-
scription in a spool directory from which the grid-manager will pick it up. The
GridFTP server will return a number to the user, which is appended to the URL
of the GridFTP server, resulting in a string of the form:

gsiftp://grid.aau.dk:2811/jobs/1929610975219842091410212

This is known as a jobid, which is used as a future reference for the job, e.g.,
for cancellation or retrieval of output files.

4 Motivation

As mentioned in the previous, the user submits a job directly to a computing
element. While this has worked reasonably well in ARC, it also means, that there
is no one, except the user, to monitor jobs.

As long as the number of jobs stays small this is not a problem, but a user
cannot manually handle thousands of jobs, which is not an uncommon amount
of jobs to run on a grid. This means that there is a need for a system, which
can monitor and control jobs on the grid. Such a system will be using the proxy
credential of the user and should therefore be under the control of the user; run-
ning on a machine on which the user trust, so distribution of proxy credentials
is minimized.

2 This is not strictly true, since the grid-manager has various plug-ins, e.g., for ac-
counting purposes, that may contact other sites, before starting the job.

3 Should not be mistaken with XRSL, a resource specification language in XML.



A Framework for Job Management in the NorduGrid ARC Middleware 865

Since users of the grid have different requirements and therefore want different
actions taken for their jobs, it is important that a job management system is
configurable, so users are able to define how jobs are handled. These requirements
lean toward a framework where users can mix and match between existing ways
of handling jobs and can plug in their own job “handlers” if necessary. Examples
of such are resubmission of failed jobs, moving jobs that have been in queue to
long or downloading job output files to the local workstation of the user.

It is clear that, such a system would automatize many trivial tasks for a grid
user, which is not otherwise possible without providing a grid service with a
proxy credential. Furthermore it gives the user the ability to create his or her
own plug-ins for handling jobs thus providing a very flexible system. The next
section describes such a job managing system, which we have developed for ARC.

5 Job Manager Architecture

This section describes the architecture of the Job Manager. However first, a small
example of how the Job Manager works is given; also the choice of implementa-
tion language is argued for.

As mentioned in Section 1, the Job Manager introduces a layer between the
user and the grid, meaning that when a user interacts with the grid, it happens
through the Job Manager, like in the following example.

The user submits a job by invoking an RPC call to the the Job Manager
containing the job description. The RPC call happens over a GSI connection to
ensure privacy and that no other can interact with the Job Manager. The RPC
server puts the job description in a database and marks the description, indicat-
ing that the job should be submitted. The status updater regularly iterates over
all jobs in the database, updating their status, and handle them accordingly.
It also discovers new jobs in the database and pass the job description to the
handler module, which defines how to handle the job; the usual action for a new
job being submission. This may seem as a lot of work to submit a job, but this
scheme allow every action done to a job to be redefined.

The Job Manager is written in Python [13], a high level object oriented
language. The reason for this was ease and speed of development compared to C
and C++ the implementation languages of the Globus Toolkit and ARC. When
using high level languages speed is often a concern, however the Job Manager is
not compute intensive, but I/O bound, since it will usually be waiting for the
network. Python is also highly portable and code written on one architecture
usually runs on other platforms, with no or minimal porting effort.

Having given a brief example of how the Job Manager works and argued
for implementation language, the internal architecture will be described. The
architecture of the Job Manager is composed of four components: A GSI RPC
server for client communication, a database for job descriptions and information,
a status updater for refreshing the status of jobs, and finally a handler module
which defines the actions that should be performed on the jobs. The following
four sections describes each module.



866 H.T. Jensen, J. Kleist, and J.R. Leth

5.1 RPC Server

The RPC server is the main access to the Job Manager. Through this, the user
can submit jobs, cancel them, get the status of jobs, set policies, etc. The RPC
server should only allow the user who started the Job Manager to connect. This
is achieved by making the RPC call over a GSI connection which only allow a
user the correct certificate and belonging private key to connect.

The Job Manager uses the SOAP RPC server provided by the pyGlobus
project [7], since it uses GSI connections and allows per user authentication.
Also SOAP [14] is a standardized and widely used protocol; however any RPC
protocol which can run over a GSI connection could be used.

5.2 Job Database

The Job Manager uses a database for keeping job information. Using a database
ensures persistence and consistency in the case of crash. Furthermore it reduces
the complexity of writing the Job Manager and plug-ins, by removing the need
for explicit locking of the job descriptions when reading and writing; instead
transactions is used.

The Job Manager uses the Zope Object Database [10], since it integrates
well into Python and is very lightweight compared to a full scale DBMS. The
database is accessed transparently through a Python associative array, wherein
all the keys and the mapped values are in the database.

With this scheme for accessing data, the natural way to store job descriptions
is to give each job a key, which maps to its description. This key is created
by making a hash of entropy collected from the system. The jobid, assigned
to a job when submitted, cannot be used as key since a job can have several
“instances”, by being resubmitted, or moved, thus making it non persistent.
The key is returned to the client, and must be used as identifier for the job
between the Job Manager and client.

The database holds the following information about a job: Job description,
job description type, and an associative array. Description is the job description
received from the client and type is the type of the job description. Currently the
only supported description type is xRSL. The remaining information about the
job is kept in the associative array, which handlers can use for keeping informa-
tion about the job. Using this scheme there is a minimal set of assumptions on
what information the handlers will store, since they can store basically anything.

5.3 Status Updater

The task of the status updater is to update status information of jobs and invoke
the handler module. The status information of jobs is pulled continuously from
the information system at a regular interval, which can be defined by the user.
If the retrieved information about the job is new it will be updated, and the
handler will be invoked. If the status is not new, i.e., the job is in the same
state as last checked, the handler will still be invoked. This is done since the
Job Manager also reacts to no changes. This is useful, e.g., when a job has been



A Framework for Job Management in the NorduGrid ARC Middleware 867

in queue for a long period of time, and should be moved. For this scheme to
work, the time of job submission must be kept, and the handler compare the
submission time to the current time, before any action is taken.

The algorithm of the status updater is as follows:

jobids = List()

foreach job in database

if job is active

foreach submission in job

jobids.add(submission.jobid)

job_status = GetJobStatus(jobids)

foreach job in database

foreach submission in job

if submission.jobid in jobids

if job_status[submission.jobid] != submission.status

submission.status = job_status[jobid]

new_status = true

else

new_status = false

handler.invoke(submission, new_status)

First all the jobids of active jobs are collected. Only jobids from jobs which has
one or more submissions are collected, so the status of finished jobs will not
be retrieved. After collecting the jobids the status of them are pulled from the
information system. Hereafter the submissions are once again iterated over and
their status updated.

The reason for this scheme, is to have the transaction as short as possible
when updating the status, and to make as few queries as possible, by only calling
the GetJobStatus function once for each site, even if several jobs are given for it.

When using this algorithm, some states of the job may be skipped. E.g.,
the job may run for so short time that the first retrieved state indicate that
the job has finished. This must be taken into account when writing handlers,
however usually it will not have any effects, because states that can be skipped
are usually the ones which the job should be in as short time as possible, i.e.,
queued or running. The states which we want to be sure to notice can usually
not be skipped, since they are end states, e.g., finished or failed.

5.4 Handler Module

As mentioned earlier, the status updater regularly invokes the handler module.
When invoked the task of the handler module is to see if any action should
be done to the job, and if so, which. These decisions and actions are defined
via plug-ins to the handler module, which we call handlers. The Job Manager
supplies some common handlers, but all handlers can be redefined or omitted.



868 H.T. Jensen, J. Kleist, and J.R. Leth

An important design criteria of the interface between the status updater and
the handler module, is that the status updater does not know how jobs should be
handled. Vice versa the handler module does not know how status information
is retrieved or when it will be invoked.

It should be possible to mix and match handlers depending on the need of
the user. Additionally, it should also be possible for the user to write handlers
and plug them into the Job Manager.

Given these requirements, handlers should be separate and be able to plug
into the Job Manager at runtime. Since Python already loads libraries at run-
time, it has the functionality needed, and is also easy to use. For the ability
to mix and match handlers we use mixins [8]. Using mixins, each handler is
defined by a class, with a method being the code of the handler for a specific
status. Additionally a top class, which provides the main handler interface and
empty handlers (i.e., methods) for all the states are provided. On run time a
new class is made by inheriting from the top class and different handler classes,
possibly user provided. An instance of this class is then created. This object
constitutes the handler. This scheme limits the system to only have one handler
per job state. Having more than one handler per job state can quickly become
confusing, so we do not regard this as a problem. If necessary the limitation
can be overcome by having a handler inheriting from another, and reusing its
functionality.

The handler exports one method, called invoke. It takes two arguments: The
submission object, from which the status can be read, and a boolean indicating
whether the status is new. When the method is called the job is queued in the
handler object. This queue acts as a work queue, from which the handler can
take work. The reason for this strategy is to allow the status updater to have its
own thread and further isolate the status updater and the handler, by having a
simple and small interface between them. There is a typical producer-consumer
relationship between the two.

Due to the construction of the status updater, jobs usually arrive in batches.
Handling all the jobs in parallel could easily overload the machine if the number
of jobs is high, and handling them in sequence could possibly take a lot of time
due to timeouts. Therefore the Job Manager uses a thread pool, and invokes
each handler in a separate thread.

6 Uses for the Job Manager

This section presents possible uses for the Job Manager. We have already men-
tioned examples of such: Output file downloader, resubmission and job move-
ment. The downloader retrieves the output files of a finished job to the local
machine. This means that a scientist can submit jobs before going home, and
have the output files locally available the next day. The resubmitter can re-
submit a job in the case of failure, submitting the job to another site. Various
failure reasons and how to react to them could be integrated in the handler. The
job mover can move, i.e., cancel and submit a job, in the case that it has been



A Framework for Job Management in the NorduGrid ARC Middleware 869

too long in queue. The handler could query the information system for more
available resources, and only move in the case that a better site is found.

Besides the three examples, the Job Manager could cope with disappearing
sites, by providing a handler for the jobs which status did not get retrieved.
Since it is not uncommon for sites to be gone for a small period of time, such
a handler should only submit the job again if the cluster has not responded for
a longer period of time. Finally the Job Manager could be used as a part of a
production system, e.g., the ATLAS Data Challenges [4], which requires running
and monitoring several thousand jobs.

The Job Manager can also be used to build new user interfaces upon. Since
the Job Manager provides a SOAP interface, instead of the multitude of protocols
used by ARC, it should be more simple to do so. Such a construction also allows
changes in the grid architecture, since the user can continue to use the SOAP
interface. Finally multi-grid support could be build into the Job Manager, while
still providing a single interface to the user, making a gateway for multiple grids.

7 Conclusion and Future Work

In this paper we have presented a framework for job monitoring. The system
works by continuously monitoring jobs, and reacts to changes in their state by
performing actions on the jobs. Since the Job Manager is run under the control
of the user, it is possible for the user to define what actions should be done
to jobs, by plugging in so called handlers. The system also eliminates the need
for the sharing of proxy credentials since it is designed to run locally or on a
machine that the user trusts.

The current status of the implementation is that the Job Manager is able
to perform basic job manipulation tasks and react to status changes in jobs.
Working on the implementation has revealed that the current ARC user interface
is only suitable for the existing command line interface. In order to finish the Job
Manager implementation, we are working on making a client library for ARC,
making it possible to develop new application interfaces.

Future work on the Job Manager could be to make cooperative Job Managers,
since they are currently a single point of failure, an undesirable feature, e.g., if
the Job Manager would be used in a production system.

We would like to thank Niels Elgaard Larsen, Jakob Langaard Nielsen and
Anders Wäänänen for providing us with valuable input, as well the people on the
nordugrid-discuss mailing list for answering questions regarding the middleware.

References

1. The Globus Alliance. The globus resource specification language rsl v1.0. http://
www-fp.globus.org/gram/rsl spec1.html, May 2000.

2. The Globus Alliance. The globus toolkit. http://www-unix.globus.org/toolkit/,
September 2004.



870 H.T. Jensen, J. Kleist, and J.R. Leth

3. The Globus Alliance. Grid security infrastructure (gsi). http://www-
unix.globus.org/security/, April 2004.

4. Nektarios Ch. Benekos and Armin Nairz. Welcome to the atlas data challenges.
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/DC/, June 2003.

5. Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurek, and Malgorzata Wol-
niewicz. Progress – access environment to computational services performed by
cluster of sun systems. http://progress.psnc.pl/English/ cgw02.pdf, December
2002.

6. Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurek, and Malgorzata Wol-
niewicz. Grid service provider: How to improve flexibility of grid user interfaces?
http://progress.psnc.pl/English/petersburg progress.pdf, June 2003.

7. Joshua Boverhof. Python globus (pyglobus). http://www-itg.lbl.gov/gtg/projects/
pyGlobus, September 2004.

8. Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Meyrowitz,
editor, Proceedings of the Conference on Object-Oriented Programming: Systems,
Languages, and Applications / Proceedings of the European Conference on Object-
Oriented Programming, pages 303–311, Ottawa, Canada, 1990. ACM Press.

9. The NorduGrid Collaboration. Nordugrid general information. http://
www.nordugrid.org/about.html, September 2004.

10. Zope Corporation. Zope object database. http://zope.org/Products/ZODB3.2,
June 2004.

11. Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. A Resource Management Architecture for Metacomput-
ing Systems. Lecture Notes in Computer Science, 1459:62–??, 1998.

12. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A directory service for configuring high-performance distributed computations. In
Proc. 6th IEEE Symp. on High Performance Distributed Computing, pages 365–
375. IEEE Computer Society Press, 1997.

13. The Python Software Foundation. What is python?
http://python.org/doc/Summary.html, October 2004.

14. Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and
Henrik Frystyk Nielsen. Soap version 1.2 part 1: Messaging framework.
http://www.w3.org/ TR/soap12-part1/, June 2003.

15. A. Konstantinov. The nordugrid grid manager and gridftp server - description
and administrators manual. http://www.nordugrid.org/ documents/GM.pdf, July
2003.

16. Balazs Konya. The nordugrid information system. http://www.nordugrid.org/
documents/ng-infosys.pdf, September 2002.

17. William Lee, Steve McCough, Steven Newhouse, and John Darlington.
Load-balancing eu-datagrid resource broker. http://www.doc.ic.ac.uk/∼nfur/
iceni/AHM2003/ edg.pdf, September 2003.

18. Andrew McNab. Gacl - a grid acl manipulation library. http://www.gridpp.ac.uk/
authz/gacl/, November 2003.

19. J. Novotny, S. Tuecke, and V. Welch. An online credential repository for the grid:
Myproxy, 2001.

20. LHC Computing Grid Project. Lhc computing grid project (lcg) homepage.
http://lcg.web.cern.ch/lcg/, December 2003.



A Framework for Job Management in the NorduGrid ARC Middleware 871

21. The Globus Project. Gridftp universal data transfer for the grid, September 2000.
22. The Grid2003 Project. Grid3. http:// www.ivdgl.org/grid2003/, October 2004.
23. O. Smirnova. Extended resource specification language.

http:// www.nordugrid.org/documents/xrsl.pdf, October 2003.
24. S. Tadepalli, C. J. Ribbens, and S. Varadarajan. Gems: A job management system

for fault tolerant grid computing. In High Performance Computing Symposium
2004, pages 59–66. J. Meyer (ed.), Soc. for Modeling and Simulation Internat.,
San Diego, CA, 2004.



Data Management in Flood Prediction

Ondrej Habala, Marek Ciglan, and Ladislav Hluchy

Institute of Informatics, Slovak Academy of Science,
Dubravska cesta 9,

845 07 Bratislava, Slovakia
{ondrej.habala, marek.ciglan, hluchy.ui}@savba.sk

Abstract. In this paper we present the data management tasks and
tools used in a flood prediction application of the CROSSGRID 1 project.
The application consists of a computational core - a cascade of three
simulation stages, a workflow manager, two user interfaces and a data
management suite. The project is based on the Grid technology, espe-
cially the Globus toolkit 2.4 and 3.2 and the EU DataGrid project. The
paper begins with brief introduction to the application, its architecture
and used technology. Most of the rest of the paper then describes in de-
tail the various data management problems of the application and their
solutions. The paper is concluded with a brief description of planned
future work.

1 Introduction

Flood prediction became in recent years a serious problem (not only) throughout
Europe. Floods have caused severe damage in most European countries and their
prevention, or at least damage mitigation was seen as a very much desired re-
search result. Therefore as one of the testing applications of the CROSSGRID[4]
project was chosen a flood prediction application from Slovakia.

The rest of the paper briefly introduces the project CROSSGRID and the
used Grid technology. Then there is an overview of the flood prediction applica-
tion (FloodGrid), followed by the description of the constructed data manage-
ment suite. The conclusion of the paper describes our plans for future work in
this area. Grid computing emerged in recent years as a specialised track of dis-
tributed computing, with focus on large-scale distributed applications and mas-
sive, yet user-friendly resource sharing. The term Grid was coined in the 1990s
and points toward the creation of a new network of interconnected resources,
available on demand via the Internet - just as electricity is available through
the power grid today. Vision of the Grid infrastructure was described[1] in 1999
and since then numerous scientific and some industrial projects based on the
Grid technology emerged. Most of these projects develop the Grid middleware -

1 This work is supported by EU 5FP CROSSGRID IST-2001-32243 RTD project and
the Slovak Scientific Grant Agency within Research Project No. 2/3132/23.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 872–879, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Data Management in Flood Prediction 873

a software layer implementing the vision and interfacing the various distributed
resources to their users. Perhaps most known and most used is the middleware
suite developed in the Globus Alliance[2], the Globus Toolkit[3]. This toolkit
contains several modules, each implementing of its features - secure authorisa-
tion and authentication, job submission, information directory and data transfer.
The contents of the toolkit went through serious development and its program-
ming paradigm shifted over the years considerably. Yet we are concerned mainly
with the second generation, which is the base of the CROSSGRID project and
which uses custom protocols, based on UDDI, HTTP and FTP.

The project CROSSGRID started in 2002 and will end in the beginning of
2005. It is funded by the EU IST Directorate and developed by 21 partners from
11 European countries.

The main objective of CROSSGRID is to extend the Grid environment in
Europe, especially for interactive applications, which did not receive enough
attention in previous Grid software releases. The project is based on the second
generation of the Globus Toolkit (Globus 2.4). It develops parts of middleware,
as well as several application on which it can be tested. One of these applications,
developed in the Task 1.2 of the Workpackage 1 of the project is the FloodGrid
application.

2 FloodGrid Architecture

The grid prediction application of CROSSGRID, called FloodGrid aims to
connect together several potential actors interested in flood prediction - data
providers, infrastructure providers and users. The schema of a virtual organiza-
tion supported by FloodGrid is illustrated in Fig. 1. The application has been in
detail described before[5] and we will only state the most important facts about
it, before focusing our view fully on the used data management suite.

The application’s core is a cascade of several simulation models. At the be-
ginning of the cascade is a meteorological prediction model (the ALADIN[7] and
MM5[8] models are used), which receives its boundary conditions from outside of
the cascade and computes temperature and precipitation predictions. These are
then used in the second stage of the cascade - the hydrological model (HSPF[9]),
which (based on precipitation data and watershed model) computes flow volume
in selected points of the target river basin. This is then processed in the last
stage of the cascade, in a hydraulic model - FESWMS[10]. This model uses ac-
tual terrain model to compute water flow in the area. Where the water hits area
outside of the river basin, a flood is expected. All above mentioned outputs are
visualized and available in nearly-interactive manner to the user.

The computational core is interfaced to the environment and to FloodGrid
users by several other components. Most noticeable is the FloodGrid portal[6],
which provides quite comfortable user interface (UI) to the whole application.
Another UI, the Migrating Desktop is developed as a stand-alone Java applica-
tion. The prediction cascade is controlled by a workflow service (based on more
recent Globus 3.2) and the data management suite delivers the necessary data,



874 O. Habala, M. Ciglan, and L. Hluchy

Fig. 1. Virtual organization for flood prediction

as well as catalogues, stores and replicates all computed results. This data man-
agement suite, its responsibilities and technical details are described in the rest
of this paper.

3 Data Management

A problem solving environment of such a scale as is the FloodGrid application
requires that its data be taken care of by a specialised software suite. This data
management suite has:

– To enable delivery and storage of input data from sources outside of the
PSE.

– To store all the computed (output) data, which has to be stored.
– To catalog all existing data and provide effective search facilities.
– To enable quick and straightforward access to all available data.

The data management software of FloodGrid is equipped with facilities that sup-
port all these goals. The rest of this chapter describes the facilities for transport
of input data, for data cataloguing and lookup, for data storage and replication.
The chapter ends with description of future development of data management
software of FloodGrid.

3.1 Data Management Tasks in FloodGrid

General scheme of data management operations in FloodGrid is shown in Fig.
2. Only the most important operations are shown there.



Data Management in Flood Prediction 875

Fig. 2. Scheme of data management tasks in FloodGrid

As we can see, the Slovak Hydrometeorological Institute (SHMI) in Bratislava
provides the input data of FloodGrid - radar and satellite images, measurement
stations data and input data for both ALADIN and MM5 (input data of hydro-
logical and hydraulic stages of flood prediction are computed inside the Flood-
Grid simulation cascade). Measurement stations data is stored in a RDBMS; all
other data is just flat files. The measurement stations are graphically displayed
in the FloodGrid portal, and also the metadata interface of FloodGrid portal
requires transfer of metadata to/from the storage. While the measurement sta-
tions data ends its journey in the portal, the metadata is often used to find
suitable data for a simulation job. Because of this connection between metadata
and job definition document, also the workflow service and its connection to por-
tal is displayed, although this part of the PSE is not incorporated in the data
management suite described herein (therefore it is grey in Fig. 2).

The files with ALADIN and MM5 inputs are transferred (via a replica man-
agement software described later) to computational node when a job requires
them. Files produced in the job are transferred back; their metadata descriptions
are registered in the metadata service (also described later in this chapter).

3.2 Sources of Input Data

The input data of our flood prediction problem solving environment is divided
into these groups:

– Radar images
– Satellite photos
– Measurement stations data



876 O. Habala, M. Ciglan, and L. Hluchy

– ALADIN boundary conditions
– MM5 input data

All this data was, or is currently provided by SHMI. Transport of some of this
data was implemented, deployed and tested for some time and then disabled
because of SHMI Internet connection bandwidth considerations. Because all the
transfers can be enabled anytime when needed, we will formulate our description
in present tense to avoid confusion.

3.3 Transport of ALADIN Boundary Conditions and MM5 Input

Data

The most important input data of our FloodGrid application is the ALADIN
and MM5 input data, which is needed for the simulation cascade. All other
simulated data is derived from one of these two sources. The data is computed
at SHMI and transferred daily - uploaded to a computer inside the FloodVO. At
this computer it is annotated with metadata and registerd with both replication
suite and metadata service. Then it is ready to be used by a simulation job.

ALADIN and MM5 inputs are actually representation of the same physi-
cal values. MM5 inputs are currently computed at SHMI from ALADIN data
(this may change in the future and MM5 input data may become independent
from ALADIN input data; because of this the data is transferred separately, not
computed in the FloodGrid application). Both ALADIN and MM5 are meteoro-
logical models, which can be used partly interchangeably. Anyway, we use them
both because of their different internal implementation and abilities. Meteoro-
logical expert may find ALADIN more useful in some simulations, while in other
the choice may be MM5.

3.4 Transport of Radar Images, Satellite Photos and Measurement

Stations Data

This data can be considered ‘complementary’ to the ALADIN and MM5 in-
put datasets. While it is not necessary for the simulation cascade, it may be
very useful for hydrometeorological experts. The satellite and radar images pro-
vide both short-term weather information, on different scale and resolution. The
measurement stations data is a source of real data, with which the computed
ALADIN, MM5 and other inputs can be compared. If an expert wants to review
a past situation, it is always better to have the real measured data than rely
just on simulations. As was shown in Fig. 2, the measurement stations data are
transferred to the portal, where they are available in the form of a graph.

3.5 Replica Management

The actual storage and maintenance of a coherent dataset collection is performed
by a replica management software. It keeps track of the datasets, potentially
stored at multiple places duplicitly (replicated). The creation of replicas of a
single dataset may be well used for better security and protection against an



Data Management in Flood Prediction 877

unwanted loss of the dataset because of a sudden storage device failure, as well
as for better access to the file by making it more local to the place which requires
it. Altough the term replica management may be pertinent to several areas dis-
tributed computing research, we deal mainly with the Grid and Grid computing
paradigm. For the Grid, a replica management suite has been developed in the
European DataGrid Project[13]. The software developed in work package 2 of
the DataGrid[14] covers the registration, lookup, transfer and replication tasks of
a mature replica management suite, with sufficiently distributed control. Its last
implementation is based on the modern paradigm of web services and OGSA[11]
architecture. Anyway, it is lacking a modern and scalable metadata repository.

3.6 Metadata Production and Storage

The metadata production and storage tasks are handled by three different com-
ponents of the FloodGrid data management system. Metadata is produced by
a set of specialised programs and scripts, which extract important values from
datasets (both transferred from outside of FloodGrid and computed). The meta-
data is then stored in the metadata database - a RDBMS, interfaced with the rest
of the FloodGrid via the metadata service. While we find it useless to describe
the metadata extraction methods, which vary from one type of dataset to other
and are not very complicated in general, we focus our view on the two remaining
components of FloodGrid metadata system - the service and database.

3.7 Metadata Service

The metadata service (named org.crossgrid.wp12.metadata.service) is an OGSI-
compliant[12] web service. It enables its user to add, remove, edit metadata
descriptions of files (identified by a GUID) as well as to find registered files with
certain properties. The service interface exports these methods:

– AddObject
– RemoveObject
– ModifyObject
– FindObject
– ShowStructure

The *Object methods allow the user to work with metadata description of a
file - he/she may add a description, remove or change it or find a file (a set of
files) by its (partial) description. The ShowStructure method is not connected
to a file, but rather to the whole database. Because the system is modular and
the metadata service can be used to access any database conforming to some
rules (described below), this method is necessary for the service user to properly
display stored data. This method shows all available metadata items, their types
and allowed or available values (in case of enumerations).

The service is accessible either by a client library,available in the Java 2 pro-
gramming language, or by a visual interface implemented in the FloodGrid portal.



878 O. Habala, M. Ciglan, and L. Hluchy

3.8 Metadata Database

The metadata database is a structure, which supports:

– Metadata items of types String, Integer, float, date (datetime) and geometry
- geometrical shape (point, line, rectangle, polygon).

– closed enumerated sets
– open (modifiable) enumerated sets.

The structure of the database is not hardwired into the metadata system; it
is defined in a table and can be modified anytime. Simple restart of the meta-
data service is then needed to access the new structure. Enumerated sets are
implemented via indirection and are very useful for example for string values,
where frequent use of identical values is expected (like names of users, for ex-
ample). Instead of storing multiple copies of the same string, only a reference
to another table - holding all the defined strings - is stored. In addition, such a
set of values can be locked, so the user is forced to choose only from predefined
values.

3.9 Typical Data Management Usage Scenario

To better illustrate the use of the metadata suite, described in this chapter, we
wil present a usage scenario, which shows the coordination of single modules of
the suite.

Let us imagine a case, where the user wants to simulate a weather prediction
for certain time and area. He/she logs into the FloodGrid portal and starts
the task by locating the input data for his/her simulation. He/she accesses the
metadata lookup portlet, enters the file description (in this case type of file -
ALADIN or MM5 input data, date and geographical location of the data). The
metadata lookup gives him one or more files. He accesses the files’ descriptions
and chooses the right one. He clicks on its GUID and a set of physical location
URLs is displayed. He chooses one of these URLs for the job definition document.
Second option (currently under development) would be to just enter the GUID
in the job definition document. The job could then access the most convenient
replica, depending on where it would be started.

After providing the job definition document via the workflow portlet (de-
scribed elsewhere), the job can be submitted. Once the job is executed on a
computational node, all input data is downloaded (see Fig. 5) and computation
can begin. Produced output data is registered and uploaded to Grid storage
(CopyAndRegister function of the edg-rm replica management tool). Metadata
is extracted (using the metadata extraction scripts) and sent back to the work-
flow service for registration into the metadata service. The upload of metadata
to the workflow service is necessary because the computational nodes are not
equipped with the software necessary for metadata service access. The cycle is
now closed - new data is in the Grid, annotated and ready to be found and used
in another computational job.



Data Management in Flood Prediction 879

4 Future Development of Data Management Software in
FloodGrid

We mentioned several ‘under development’ pieces of software in previous chapter.
For example one such future enhancement not only of the data management
suite, but of the whole PSE will be better integration of replication software
with simulation jobs. The user will not have to find and select the physical file
URL, the software will do it automatically based on the chosen GUID.

Another modifications are expected in the metadata service. The current
prototype is witout GSI security - this will change. Also a method of distribution
of the (potentially widely used) metadata service is considered. More metadata
services could cooperate in a transparent way - users would ‘write’ metadata to
their local service, but lookups will be done in all available networked services.
Support for more data types is also considered, altough to date such need has
not arisen.

References

1. Foster, I. Kesselman, C., The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc., 1999.

2. The Globus Alliance. Available on: http://www.globus.org/.
3. Foster, I., Kesselman, C., Globus: A Metacomputing Infrastructure Toolkit. Intl J.

Supercomputer Applications, 11(2):115-128, 1997.
4. EU 5FP project CROSSGRID. Available on:http://www.eu-crossgrid.org.
5. Hluchy, L. Astalos, J. Habala, O. Tran, V. D. Simo, B., Concept of a Problem

Solving Environment for Flood Forecasting. Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS 2474, Springer Verlag, 2002.

6. The FloodGrid Portal. Available on:https://portal.ui.sav.sk:8443/flood/.
7. The International ALADIN Project. Available on:

http://www.cnrm.meteo.fr/aladin/.
8. Grell, G., Dudhia, J., Stauffer, D., A Description of the Fifth-Generation

Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR. Available on:
http://www.mmm.ucar.edu/mm5/documents/mm5-desc-doc.html.

9. Hydrological Simulation Program-Fortran. Available on:
http://water.usgs.gov/software/hspf.html.

10. FESWMS - Finite Element Surface Water Modeling System. Available on:
http://www.bossintl.com/html/feswms.html.

11. Foster, I. Kesselman, C. Nick, J. M. Tuecke, S., The Physiology of the Grid. An
Open Grid Services Architecture for Distributed Systems Integration. Available
on: http://www.globus.org/research/papers/ogsa.pdf.

12. Tuecke, S. Czajkowski, K. Foster, I., Open Grid Services Infrastructure 1.0. Avail-
able on: http://www.ggf.org/ogsi-wg.

13. The DataGrid Project web site. Available on: http://www.eu-datagrid.org.
14. Kunszt, P. Laure, E. Stockinger, H. Stockinger, K., Advanced Replica Management

with Reptor. In 5th International Conference on Parallel Processing and Applied
Mathematics, Czestochowa, Poland, September 7-10. Springer Verlag, 2003.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 880 – 890, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Adaptive Task Scheduling in Computational  
GRID Environments 

Manuel Hidalgo-Conde, Andrés Rodríguez, Sergio Ramírez, and Oswaldo Trelles1 

Computer Architecture Department, University of Malaga, 
Campus de Teatinos, E-29071 Malaga, Spain 

{mhc, andresr, serr, ots}@ac.uma.es 

Abstract. In this work we present the design and development of an adaptive 
task scheduling model which enables the definition and exploitation of a 
framework especially suitable for managing environments of intensive 
computing load. The framework supplies queuing mechanisms, priority-based 
scheduling and resources allocation strategies, load monitoring, and implements 
fault tolerance procedures. Buffering strategies have been used to reduce idle 
time for load reposition and to take advantage of I/O overlapping, increasing 
efficiency in the use of resources. Several tests have been performed using 
applications from the bioinformatics domain for which adaptive strategies have 
shown their ability to produce a noticeable reduction on execution time. 

1   Introduction 

The spread of GRID technology has promoted the development of distributed 
frameworks for high performance computing, by means of the intelligent integration 
of disperse and heterogeneous computational resources through high speed networks. 
Nowadays, GRID computing [1] most probably represents the new generation of 
web-based technology. 

Grid technology began to be used in the middle 90’s to reference a distributed 
computing environment oriented to solve heavy CPU tasks in science and 
engineering [2]. The Grid provides consistent and low-expensive access to installed 
computers with dramatic impact on CPU-power capabilities. Access to advanced 
computational capabilities allows broad classes of new applications to emerge, and to 
carry out significantly large tasks opening up new capabilities for knowledge 
generation. 

This new computing capability becomes of special interest in the bioinformatics 
application domain. Current bioinformatics is mainly characterized by: (a) services 
and data are frequently replicated in several servers; (b) data collections are 
impressive and grow at exponential rates nurtured by technological breakdowns such 
as sequencing and gene expression monitoring technologies; (c) the park of installed 
hardware in traditional wet labs is traditionally conformed by collections of PCs. Thus 
Grid technology appears as the natural alternative to provide computational power in 
this scientific community. 
                                                           
1  To whom correspondence should be addressed. 



 Adaptive Task Scheduling in Computational GRID Environments 881 

 

Nowadays, Globus [3] is the most used middleware for computational Grids 
implementation (i.e. NSF´s Teragrid [4], NASA´s Information Power Grid [5], etc.). 
Condor [6, 7] is another good alternative mainly focused in distributed owned 
computing resources. In the bioinformatics arena IRISgrid [8] propose a national 
bioinformatics Grid in Spain, and myGrid is the equivalent European proposal which 
includes a nice prototype —Taverna [9] — to facilitate the description of workflows. 

Several proposals have addressed the task scheduling problem in Grid 
environments. Nimrod-G [10] issues the distribution of multiple runs of the same 
process with different parameters, under static Grid configuration, not being able to 
incorporate new resources when they become available. This problem is solved by  
GRaDS scheduler [11] by adapting dynamically the strategy when new resources are 
available in the Grid, using information continuously received from the grid nodes. 
Finally, Condor-G modifies the standard Condor scheduler to incorporate new 
machines —external to the Grid— connected by Globus. None of these schedulers 
incorporates fault tolerance concerns, neither dynamic load balancing as a function of 
the real capacity of each component of the Grid, issues, both, that are the central 
aspects of this work. 

Several exercises have been implemented as initial set of experiments to 
demonstrate the ability of the proposal to adapt load distribution and support fault 
tolerance, and to evaluate the effectiveness of the scheduling strategy. 

 

 

Fig. 1. General architecture of the Grid, formed by several nodes and a master service. The 
internal management of each cluster is performed with Condor, and a Globus/Condor interface 
allows the control of clusters 

2   System and Methods 

The Grid model we have devised has the following characteristics: 

1. The general Grid architecture is composed of several nodes, which at the same 
time can form an internal sub-Grid (see Figure 1). 



882 M. Hidalgo-Conde et al. 

 

2. Tasks to be solved are queued in a pool from which the scheduler has access to 
them. Tasks arrive to the queue from the upper module which is able to solve data 
dependencies (identified by the use of the same file names) between tasks. 

3. Our model is able to distribute a given task between different nodes available in the 
Grid. To perform this task the model use a specific splitting-module associated to 
the task. Un-divisible tasks or tasks that do not have the associated splitting-
module are considered as unitary tasks. 

4. The scheduler maintains a dynamic control of the Grid configuration, being able to 
incorporate new resources at any moment. 

5. Fault tolerance mechanisms allow the detection of machines which do not respond 
to the assigned task. Under this scenario the task is re-scheduled. 

6. Dynamic task distribution is governed in a by-demand fashion. The system 
maintains a record of the quality level of the service (response time) used to fine-
tuning the distribution parameters. 

7. Idle time —for load reposition— is avoided by sending new tasks in advance 
(buffering strategy) 

    The model has been implemented as follows (see Figure 2): 

1. Globus and Condor have been used for inter- and intra-nodes connection 
respectively. 

2. Workflows pre-processing module. 
 

blast

(query,db)

frags
(query,DB[i])

blast
(query[i],DB)

frags

(query,db)

12.1
52.6

0.7
0.2
0.034.2JobConsumer[0]

JobConsumer[1]

JobConsumer[2]

Testim Pfallo

T_2

T_1[i]

T_2[i]

T_1

TASK

DEPENDENCE

ERROR

JobConsumer

Task buffer

DataPool

SPLITTING

DataPool

RESOLUTION

(Interactive/automatic)

LIST

RECOVERY

SCHEDULER

SERVICE REQUEST

blast

(query,db)

frags
(query,DB[i])

blast
(query[i],DB)

frags

(query,db)

blast

(query,db)

frags
(query,DB[i])

blast
(query[i],DB)

frags

(query,db)

12.1
52.6

0.7
0.2
0.034.2JobConsumer[0]

JobConsumer[1]

JobConsumer[2]

Testim Pfallo

T_2

T_1[i]

T_2[i]

T_1

TASK

DEPENDENCE

ERROR

JobConsumer

Task buffer

DataPool

SPLITTING

DataPool

RESOLUTION

(Interactive/automatic)

LIST

RECOVERY

SCHEDULER

SERVICE REQUEST

 
 

Fig. 2. The System Architecture is shown. Work requests are analyzed to solve data 
dependencies and divided in individual requests. The scheduler works over this pool of tasks 
and uses a map of services. When available, a “splitting” process can be applied over large 
tasks. The configuration-module dynamically traces resources. It works in close collaboration 
with the fault tolerance module who is in charge of the pending tasks, and it is able to re-insert 
tasks to be re-scheduled 

 



 Adaptive Task Scheduling in Computational GRID Environments 883 

 

3. Splitting tasks module. 
4. Configuration module. 
5. Fault tolerance module. 
6. Scheduling module (dynamic on demand). 
7. Buffering module for in-advance tasks. 

 
The proposed Grid scheduling architecture is shown in Figure 3. As can be 

observed, the scheduler distributes tasks (Jobs) to the different JobConsumers (JC), 
each of one representing an available machine. This machine can be a node, with 
Globus external interface for a Condor cluster. In this case the interface transfers the 
job to the internal node. The JC maintains the record of the pending jobs and the 
machines on charge of it. Since a JC can represent a whole node, a buffering 
technique has been implemented, to send work in advance. Each JC uses a buffer as 
large as the number of jobs that can be active in a given instant for that JC. When a 
given job ends its position in the buffer becomes free and a new job can be launched 
without delay for job reposition from the scheduler. 

 

Job Job

FragsServiceLL FragsServiceLL

JobConsumer JobConsumer

DataCollector

DataPool Scheduler

 

Fig. 3. The scheduling module architecture. The DataCollector module, in charge of recovering 
the task-output, informs the scheduler with the statistics of the task. The scheduler drives the 
DataPool module to distribute the load (biological sequences in this case) to the JobConsumers 

Although we have been using the buffering technique since our first works in 
multiprocessors [12, 13], in this case we have additionally observed the employment 
of I/O overlapping in the same machine, which is in fact important because 
bioinformatics applications are mostly I/O bounded. 

The scheduler can work in two different ways: (a) for un-divisible or atomic tasks 
(tasks of reduced CPU cost or tasks only available in this model) or (b) it can be 
assisted by a process in charge of dividing tasks (splitter). This case is becoming 
frequent for very long tasks in bioinformatics (i.e. genomes comparison that can be 
divided at gene level comparison). In this case, a splitter process could divide the data 
base (genome) in different sectors to be distributed to the JC. 

Whenever possible, sending large datasets through the network has been avoided 
due to the high impact in efficiency. Since datasets in bioinformatics are frequently 
replicated in the servers, the scheduler does not send the sequences but an identifier  
 



884 M. Hidalgo-Conde et al. 

 

(in general, the database name, and pointers to define the partial set of data to be 
processed; i.e. “process n sequences from the database x starting at point i”). 

The scheduler module also maintains the state of the configuration. In particular, it 
is important to detect inactivity in the service with pending tasks. In this case, their 
tasks are re-inserted in the task-pool (at the beginning) as a whole (unitary) tasks. 
New machines are simply inserted in the node-pool and immediately become 
available to receive jobs. 

Load distribution is performed in a dynamic and adaptive fashion as fast as new 
tasks are demanded by nodes. The current configuration is used to know the 
computational power available at that time. The system evaluates the CPU cost of 
each task and adjusts predictions when the tasks are reported from the services. Load 
size is computed as a function of the tasks CPU cost and the quality of the service, 
estimated as the historic response time (a configurable parameter). 

With some more detail the load distribution is estimated as follows: Using the 
splitting strategy, a heavy task (such as the querying by content of a DNA database) is 
divided in a number of sub-tasks. The length of the task is determined as a number of 
sequences involved in the task (atomic units) and is computed dynamically as a 
function of the available resources in each JC. 

To determine the load allocation for a given node the JC records information about 
the number of atomic tasks sent to the nodes. When a process ends and sends the 
results back to the corresponding JC, it is able to detect the response time. The JC 
send this information to the DataPool and to the Scheduler, who maintain the updated 
record of the average speed observed in each service (in units/sec) corresponding to 
each JC (vi), and the global average speed in the system (vglobal). 

When a given JC requests more data to the DataPool, the DataPool asks to the 
scheduler the optimal number of atomic units to be sent to the JC. The scheduler 
computes this value (Q) based on the initial task size sent to the JC (Qinic), the average 
speed of the JC and the global average speed of the system: 

inic
global

i Q
v

v
Q =  (1) 

    This distribution scheme benefits those JobConsumers which response is faster 
than the global average velocity (vi>vglobal), increasing the number of units to be 
distributed to them.  On the other hand, for JobConsumers under the average velocity 
(vi<vglobal), the number of tasks to be processed goes down. 

To compute the average speed of execution (in units/sec) the recent history is given 
more weight than the old one. This average speed is computed in the JobConsumer (at 
the end of the completion of every task), as: 

)1(' dvdvv execii −⋅+⋅=  (2) 

where vi correspond to the new average speed, v'i is the previous value and d (decay) 
is a configurable value (by default is 0.8) related to how fast the older values are 
forgotten by the system, and thus it controls the velocity of adaptation of the 
scheduler to the changes in the quality of the service (measured as response time). 



 Adaptive Task Scheduling in Computational GRID Environments 885 

 

3   Results 

In this section, we present the initial results of the proposed implementation. 

3.1   The Framework 

The general architecture used on the tests is composed of the following nodes: 

lac-69.ac.local.uma.es A cluster of five Pentium IV 1.7 GHz machines with 
128 Mb of RAM memory, belonging to the educational laboratories of the 
Computer Architecture Department at The University of Malaga. These 
laboratories are in a domain that is different from the other machines 
(ac.local.uma.es). A Globus interface will be installed in one of the 
machines (lac-69), which will distribute the jobs to the other machines through 
Condor. 

chirimoyo.ac.uma.es A server with two Intel Xeon processors, Hyperthreading 
technology, 2.4 GHz and 1 Gbyte of RAM memory. 

cierzo.ac.uma.es A Pentium III workstation, 1 GHz and 256 Mb of RAM 
memory. 

tierra.es A Pentium II 233 MHz workstation with 186 Mb of RAM memory, 
placed outside Malaga University’s domain and at about thirty kilometres from it. 

    On these computers, Globus Toolkit version 2.4 (http://www.globus.org) has been 
installed. Globus together with the Java CoG kit (http://www-unix.globus.org/cog) 
enables us to make the most of the grid possibilities for the submission of jobs and the 
secured and authenticated data transfer between nodes. 

In the educational laboratory, Condor toolkit (www.cs.wisc.edu/condor) has been 
installed. The node lac-69 will have the Globus Toolkit installed together with the 
jobmanager-condor. Thus, jobs arriving through Globus will be sent to the Condor 
scheduler. The configuration used in the tests is described in Figure 1 and is 
equivalent to a heterogeneous network with clusters scheduled by Condor and central 
control under Globus. 

3.2   The Application 

Bioinformatics deals with applying information technology to the sciences of life. On 
these, high performance technologies development has produced the appearance of 
data at a growth rate that was not even imaginable before. This has opened a new 
behavioural paradigm on this area that tries to approach the analysis of whole 
organisms (genomes) instead of genes or isolated products. This fact takes to a 
disturbed growth of computing necessities. 

On the other hand, this kind of massive analysis needs the combination of multiple 
tools in a workflow. These require of diverse data collections available in specific 
places. Thankfully, this model of workload is perfectly projected on a distributed 
computing structure, as the majority of the problems are divisible in big high-
computational-demand process and independently executable (very gross grain). 

Among the implemented applications, we will describe the searching of similar 
fragments between sets of biological sequences. This is an application that has been 



886 M. Hidalgo-Conde et al. 

 

developed in our installations [14] and is suitable for the use of a splitter that divides 
the global task in several partial tasks and then must integrate the results. This 
application will include the particular cases of indivisible applications like proprietary 
code —BLAST [15]— that would not be subject to modification. 

The Frags procedure implements a mechanism of data mining in biological 
sequences and is oriented to the searching of low-level signals (short sequence 
fragments) that are present in several sequences. This accumulation is what 
strengthens the signal and gives it a biological sense. 

The application compares one query sequence against all the sequences present in a 
database via an exhaustive signal searching (see Figure 4). A signal is defined as a 
sequence fragment that is present in the query sequence and any sequence of the 
database and reaches a maximum score (based on a residue-similarity table). 

Our implementation receives one file of query sequences that must be compared 
against the whole database (see Figure 5). The results of this signal searching are used 
in the elaboration of association rules which main utility is the prediction of protein 
functions [16]. 

In the infrastructure offered by the Grid, the Frags service is presented as a service 
accessible through a call to an executable program (fragsxml.exe) that receives an 
XML document in the standard input with all the necessary parameters for Frags 
execution (including beginning and count in database, IniDB and FinDB), as well as 
the query sequences to what the service is required to be applied. In case the server 
does not have a local copy available, the sequences of the data base can be obtained 
through a new service call (getSequences) to another node of the grid (see Figure 5). 
In the current configuration, only the computers in the cluster with Condor have the 
database locally installed. The rest of the machines will have to access to a new 
service to obtain the sequences to process with the corresponding associated delay. 

 

 
 

Fig. 4. Signal searching strategy used by Frags: (1) when comparing two sequences local 
fragments show the similarity between the sequences; (2) these small fragments are organized 
by their position in the query sequence and (3) are ordered. A segmentation process allows 
detect the accumulations (4) and the border refinement is applied in (5) and (6) to obtain the 
signal 



 Adaptive Task Scheduling in Computational GRID Environments 887 

 

FragsServ

- QuerySeqs
- FragsParams

Scheduler.class

- QuerySeqs
- FragsParams

FragsServLL

- QuerySeqs
- FragsParams
- IniDB
- FinDB

fragsxml.exe

- QuerySeqs
- FragsParams
- dbfile

getSequences

- index
- count

FragsServLL

- QuerySeqs
- FragsParams
- IniDB
- FinDB

fragsxml.exe

- QuerySeqs
- FragsParams
- dbfile

 

Fig. 5. Sketch of Frags service in the grid. The servers implementing the Frags service can 
access the other machines in the Grid to obtain the sequences to process from the database 
without having to neither transfer nor store the whole database 

Next, the results obtained in several tests based on the execution of the Frags 
service will be presented. First, we studied the effect of the in-advance delivery of 
jobs (buffering). We employed a database with 8000 sequences (one tenth of the real 
case) and divided it in equally sized blocks of 125, 200… sequences. Next, the 
number of jobs sent in advance has been taken as a parameter and response times 
have been measured. To be able to detect the results of this experiment in a better 
way, only one of the computers has been used (the server chirimoyo). 

In Figure 6 –in the left- the time spent to process the database varying the buffer 
size is represented. As it can be noticed, the execution time is significantly reduced 
when we increase the buffer size as the effect of at least three causes: (a) the removal 
of the delay for task waiting; (b) the advantage of concurrent task execution with a 
strong component of input-output and (c) a lesser cost associated to the number of 
tasks to distribute (controlled by the block size). The decrease has a limit in which the 
increasing of the buffer size does not mean any improvement due to the overload that 
this causes to the operating system. 

Next, we studied the effect of the initial load size, that has influence on the service 
set-up time and on the time the scheduler needs to adapt to the components behaviour 
to reach the optimum load distribution. In Figure 6 –right hand side- this influence 
over the total execution time is showed. In this case, the parameter is the number of 
sequences sent to each node on the first executions. 

 



888 M. Hidalgo-Conde et al. 

 

 

Fig. 6. In the left, the execution time for the Frags application over a 8000 sequences database 
against the buffer size used and using blocks of different size. Shorter lines are due to a lesser 
number of available tasks as we vary the block size. The computer used (chirimoyo) is a two-
processors computer, for this reason the first reduction is due to the use of the second CPU, 
while the reductions observed for 2 and 4 tasks can be associated to the overlapping of the I/O. 
The reductions —lighter— when reaching 8 tasks can be associated to the removal of the 
waiting time for load stabilization. In the right hand side, the Influence on execution time of 
initial task size. First, a better response time of the proposed scheduler as the load is nearer to 
the optimal load can be observed. Second, adaptive scheduling always has a better performance 
than fixed scheduling. For very little initial loads the execution time grows due to the delay 
introduced by communications 

Accordingly, wheater the initial load is too small, the scheduler looses much time 
in communication with nodes. For very big initial load, the scheduler does not have 
time enough to adapt to the configuration and the slower nodes worsen the system 
performance. Comparing these results to the results obtained using a non-adaptive 
scheduler, the smaller the initial load, the bigger the improvement obtained with the 
adaptive scheduler. In the optimal case of a 1000 sequences initial load, the adaptive 
scheduler spent 230 seconds to process the whole database while the faster computer 
in the grid spent 1086 seconds. 

The next step is checking the behaviour of the scheduler in the processing of a 
database of a larger size (8000 sequences). The time spent by the faster computer in 
the grid was 1086 seconds. We will see how this time can be drastically reduced by 
the adaptive management of the scheduler. 

The scheduler will adapt the load distribution according to the response times of 
each node in the grid. As it can be appreciated in Figure 7, the response of the cluster 
lac-69 (composed of five workstations with a local copy of the database) receives 
more load due to the fact that its response is faster that the other nodes. On the 
contrary, the node ‘tierra’ receives little load as it presents a much lesser yield than 
the rest of the nodes and could worsen the global system’s performance. 

To test the fault-tolerance module, network breakdowns have been simulated by 
the use of timeouts —if a task takes too much time, the task is aborted—. This causes  
 



 Adaptive Task Scheduling in Computational GRID Environments 889 

 

the effect that can be appreciated in Figure 6, where the processing of the fragments 
of the database that could not be processed in other nodes produce the falls that can be 
appreciated in lac-69’s graph. 

0

50

100

150

200

250

300

350

400

450

500

1

1
1

2
1

3
1

4
1

51 6
1

7
1

8
1

9
1

1
0

1

1
11

1
21

1
31

14
1

1
5

1

1
61

1
71

1
8

1

1
91 20

1

2
1

1

2
21

Number of executions

N
u

m
b

er
 o

f 
se

q
ue

nc
es

lac-69

chirimoyo

cierzo

tierra

0

50

100

150

200

250

300

350

400

450

500

1

1
1

2
1

3
1

4
1

51 6
1

7
1

8
1

9
1

1
0

1

1
11

1
21

1
31

14
1

1
5

1

1
61

1
71

1
8

1

1
91 20

1

2
1

1

2
21

Number of executions

N
u

m
b

er
 o

f 
se

q
ue

nc
es

lac-69

chirimoyo

cierzo

tierra

0

50

100

150

200

250

300

350

400

450

500

1

1
1

2
1

3
1

4
1

51 6
1

7
1

8
1

9
1

1
0

1

1
11

1
21

1
31

14
1

1
5

1

1
61

1
71

1
8

1

1
91 20

1

2
1

1

2
21

Number of executions

N
u

m
b

er
 o

f 
se

q
ue

nc
es

lac-69

chirimoyo

cierzo

tierra

 
Fig. 7. Number of executions and size (number of sequences) of the task sent by the scheduler 
for the nodes lac-69, chirimoyo, cierzo and tierra. The strong falls that can be observed in lac-
69’s graph are due to the fact that the error-recovery module assigns the sequences that could 
not be processed in other node to the first node that becomes available 

4   Discussion 

We have presented an adaptive scheduling model for the grid including task splitting 
and being able to adapt to the resource availability, with the capability of detection of 
new nodes as well as the erroneous operation of the present nodes. This scheduling 
policy has been applied to the resolution of a biologic problem on the bioinformatics 
area as it is the searching of common fragments between a set of query sequences and 
a data base. 

Several experiments have been carried out in order to analyze each strategy 
component individually and to evaluate their influence on the efficiency 
improvement. The results obtained when adjusting parameters such as task buffer 
size, task size and initial number of tasks to distribute have been presented. These 
results have been compared to the results obtained using a static scheduling scheme 
with very encouraging results. 

Acknowledgements 

This work has been partially financed by the Genoma-España Foundation in the 
project GV5-Bioinformática Integrada of the Instituto Nacional de Bioinformática. 



890 M. Hidalgo-Conde et al. 

 

References 

1. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable  virtual 
organizations. Supercomputer Applications, 2001. 
http://www.globus.org/research/papers/anatomy.pdf. 

2. Foster, I. and Kesselman, C. (1998). The Grid: Blueprint for a New Computing 
Infrastructure. Morgan Kaufmann, 1 edition. 

3. Foster, I. et al. The Globus Project: A Status Report. In Proceedings of the Seventh 
Heterogeneous Computing Workshop (1998) (www.globus.org) 

4. TeraGrid: http://www.teragrid.org/userinfo/docs/TeraGrid-Data-Primer.pdf 
5. NASA information power Grid Project: 

http://www.globus.org/presentations/retreat98/power_grid/ 
6. Condor: High Throughput Computing (http://www.cs.wisc.edu/condor) 
7. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In Fran Berman, Geoffrey 

Fox, and Tony Hey, editors, Grid 
8. Área temática de bioinformática, 2003. Available at 

http://irisgrid.rediris.es/doc/biogrid.pdf. 
9. R. Stevens, A. Robinson y C. A. Goble. myGrid: Personalised Bioinformatics on the 

Information Grid. In proceedings of 11th International Conference on Intelligent Systems 
in Molecular Biology, 29 June - 3 July 2003. Brisbane, Australia. Bioinformatics Vol. 19 
Suppl. 1 2003.  ( http://www.ebi.ac.uk/mygrid/ ) 

10. Abramson, D. et al. (2000) “High performance parametric modelling with Nimrod/G: 
Killer application for the global Grid?”. In proceedings of the Seventh International 
Symposium on High Performance Distributed Processing Symposium (IPDPS’00) 

11. Berman, F.; et al. (2001). The GrADS Project: Software support for high-level Grid 
application development. International Journal of Supercomputer Applications 15, 4 
(2001),327-344. 

12. Trelles-Salazar, O.; Zapata. E. and Carazo, J.M., (1994) “Mapping Strategies for 
Sequential Sequence Comparison Algorithms on LAN-based Message Passing 
Architectures”, High Performace Computing and Networking (HPCN-Europe'94), 
Munich-Deutschland  

13. Trelles-Salazar, O. Zapata, E.L. and Carazo J.M. (1994), “On an efficient parallelization of 
exhaustive sequence comparison algorithms”; Computer Applications in BioSciences 
10(5):509-511 

14. Rodriguez, A. Pérez-Pulido, A:, Thode,G.; Carazo,JM. y  Trelles,O. (2000); “Mining Low-
level similarity signals from sequence databases”, High Performance Computers Applied 
to BioInformatics and Computational Biology. 4th Conference on Systematics, cybernetics 
and Informatics, SCI'2000; Orlando, Florida, USA. 

15. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.; (1997), 
“Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs”; Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 

16. Pérez, A.J.; Thode, G. and Trelles, O. (2004); “AnaGram: protein function assignment”; 
Bioinformatics Vol. 20 no. 2 2004, pages 291-292 



Large-Scale Computational Finance Applications
on the Open Grid Service Environment

Ronald Hochreiter, Clemens Wiesinger, and David Wozabal

Department of Statistics and Decision Support Systems, University of Vienna

Abstract. In this paper we review the central concepts of the Open Grid
Service Environment, which represents an abstract service stack and was
introduced to design workflow-based problem solving environments. So
far, it has been used to model large-scale computational finance prob-
lems as abstract workflows with meta-components and instantiate such
workflows with different components based on semantic matching. In this
paper we continue by presenting two further examples from the field of
computational finance, which substantiate the need for Grid technologies
and take a closer look at the implementational issues and apply the con-
cepts of Enterprise Service Busses for parallel process orchestration. The
CCA (Common Component Architecture) and its convergence to Web
service specifications is the key technology for integrating heterogeneous
components, with which one has to deal with in the financial sector.

1 Introduction

In a recent paper [1], we provided an overview of the next generation technology
for the adaptation of the AURORA Financial Management System [2], which
is a component-based computational financial management system allowing for
solving many real-world - hence large-scale - investment problems. While in ear-
lier papers, we focused on the modeling aspect of financial decision problems, we
are now presenting solutions for the implementational issues of such large-scale
financial workflows. The AURORA sub-project High Performance Computing
in Finance is a part of the AURORA project (Advanced Models, Applications
and Software Systems for High Performance Computing) funded by the Austrian
Science Fund (FWF), whose research focus has been shifted to Grid computing
during the last years. The core of the AURORA project is actively involved in
various Grid projects and provides an ideal infrastructure for application groups
to Grid-enable applications and thus being able to instantiate huge real-world
models and solve problems of unprecedented size and complexity.

In a recent article in Grid Today [3], it is argued that the financial services
sector will be a driving force in the application of Grid technologies. Especially
the recent additional set of regulatory constraints for the financial industry, like
Basle II, forces large financial companies, like BNP Paribas, to create their own
Grid applications. In this context, the AURORA Financial Management System
has also been adopted to make use of the available Web- and Grid technologies.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 891–899, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



892 R. Hochreiter, C. Wiesinger, and D. Wozabal

This paper is organized as follows. In section 2 we review the most important
facts of the Open Grid Service Environment presented in [1], which represents
the basic concept, on which the implementational issues described in this pa-
per are based upon. Section 3 provides two examples from the field of opera-
tions research and computational finance, namely large-scale portfolio selection
and asset liability management. Both problems are generally solvable on clus-
ters, however, we present extensions, which necessitated recently, where a Grid
solution is inevitable to calculate numerical results computationally in reason-
able time and quality. Section 4 describes the enabling technologies, namely the
Common Component Architecture (CCA) and the Vienna Grid Environment
(VGE). Section 5 concludes the paper with a summary and an outlook of future
developments.

2 Open Grid Service Environment

In [1] an abstract framework of a distributed system for use in computational fi-
nance was proposed. The core of the considerations given in that paper is an inte-
grated service stack (the OGSE Service stack), which is an extension of the W3C
Web Service Stack (see figure 1). The view on the service stack is application-
centric from top down and Grid-centric from bottom up. Application-centric
services support wrapping existing code into components and deal with prob-
lem specific data. Grid-centric services ensure the compatibility to underlying
low level network facilities and handle workflow enactment on specific computa-
tional resources as well as discovery and allocation of these resources.

Though the system is designed to be used as an financial management system
it can act as an unified framework for a broad range of application classes, such as
decision support systems for e.g. Power and Energy Systems and Supply Chain
Management.

The system is designed to integrate and orchestrate software of different
origins over a network/Grid. The atomic unit of the system is a component.
Components exist as

– abstract component descriptions (called meta-components), which clearly
define input and output parameters,

– and concrete (interchangeable) implementations, which follow these (meta)
specifications.

To run a task, the user (e.g. a financial engineer, more generally a decision
taker) orchestrates different components to a workflow. Workflows and compo-
nents exist in abstract and concrete form. Meta-workflows consist of general
meta-components and act as abstract problem descriptions. Concrete instantia-
tions of meta-workflows are workflows of components matching the meta com-
ponents specified in the abstract description of the workflow. By this way it
is possible to formulate different concrete workflows that match one specified
meta-workflow, if various concrete components exist.



Large-Scale Computational Finance Applications 893

Model/Service
Matching

Descriptions
(Problem,
Data, and

Semantic

Markup Language
(XML)

Model)

Grid−type Environment
Interfaces & Infrastructure

Grid

Applications & Interfaces

Foundation

en
ha

nc
ed

 b
y 

S
em

an
ti

cs
W

eb
 S

er
vi

ce
 S

ta
ck

Workflow Orchestration

Workflow Enactment

Service Description

Service Repository

Service Messaging

Ontologies

Engineering
Financial

SCM ... Energy Models
Complex PSE

Complex PSE Application Programming Interface

Complex PSE Interface to Grid−type Environment O
pe

n 
G

ri
d 

S
er

vi
ce

 E
nv

ir
on

m
en

t (
O

G
S

E
)f

or
 C

om
pl

ex
 P

S
E

Fig. 1. OGSE Stack for complex problem solving applications

The flexibility of such a system originates from the interchangeability of im-
plementations through the high level description of components and workflows
in the meta-layer. Real-life examples substantiating that such a system supports
the needs of financial engineers for accomplishing complex tasks in the field of
financial modeling have been presented in [1]. The usage of this abstract and
concrete information supports

– a semi-automatic component selection and orchestration,
– and a matchmaking service ((financial) model/service matching), which en-

ables the user to specify a problem abstractly and receive a proposition of a
possible solution to the respective problem in the form of a concrete work-
flow.

In this paper the focus is laid on describing the component and Grid archi-
tecture of the system and presenting examples that illustrate and motivate the
Grid design decisions.

3 Large-Scale Computational Finance

As already indicated in the introduction, the area of Financial Engineering is one
of the driving forces of Grid technologies. We consider the sub-area of investment
management and take a closer look at two rather different instances of this



894 R. Hochreiter, C. Wiesinger, and D. Wozabal

sub-area. In both cases the financial modeler aims at representing the future
uncertainty of the real world as close as possible in her financial model. The more
realistic the model becomes, the more computing power is necessary to obtain
valuable decisions in reasonable time. Although even huge singular problems
can be solved on rather small cluster computing infrastructures, inventions of
new complex iterative techniques as well as regulatory constraints imposed on
financial companies motivate and necessitate the use of Grid technologies.

Another issue is that the set of (financial) data used for calculations of opti-
mal decisions is getting larger. While at the beginning of computational portfolio
management - during the 1960s and 1970s - monthly historical data was con-
sidered, it is common to use even minute-based data e.g. for high-frequency
intra-day trading.

3.1 Single-Stage Auto- elective Portfolio Management

In the first case we consider the well-known single-stage portfolio investment
management problem, which was introduced in the early 1950s by Nobel-laureate
H. M. Markowitz [4]. The basic task is to solve the bi-criteria optimization
problem

maximize in x : F(x, ξ) = E(x, ξ) − λρ(x, ξ)
subject to E(x, ξ) ≥ μ

x ∈ X
(1)

i.e. finding an optimal portfolio x by maximizing a functional F(x, ξ) of the ex-
pected wealth E(x, ξ) and the inherent risk ρ(x, ξ) of the portfolio. X represents
a set of organizational and regulatory constraints, while μ is the minimal ex-
pected return requested by the decision maker. Due to the fact that the decision
depends on the (uncertain) developments of the specific assets represented by a
random variable ξ, such problems can become computationally intractable when
realistically many possible realizations of (uncertain) data is considered. The
constraint set X as well as specific risk measures ρ(x, ξ) may additionally in-
duce non-linearities and/or even non-convexities into the optimization problem,
which require computationally intensive heuristic solution techniques to finally
solve the respective problems.

Even when extending these problems to the two-stage case [5] or if a huge
set of data is considered, such problems are solvable on a reasonable sized clus-
ter. In many cases there exists no real decision basis for selecting the under-
lying risk measure ρ(x, ξ). For that reason, adaptive methods have been pro-
posed, which select the currently best risk measure from a set of risk measures
R = {ρ1(x, ξ), ρ2(x, ξ), . . . , ρn(x, ξ)} automatically. The choice is basically based
on the analysis of the short-term history of underlying uncertain factors (asset
prices, interest rates, . . . ). However, even for a reasonable small set of different
risk measures, a complete backtesting procedure requires an enormous amount
of different optimization runs, most likely with different optimization techniques
and a strict control of the workflow, i.e. the optimization results have to be
compared and a decision has to be incorporated into subsequent selections.

S



Large-Scale Computational Finance Applications 895

The application of such a methodology clearly raises the need for a Grid
solution, because the workflow for solving such a complex iterative process in-
volves the execution of many heterogeneous algorithms, which can be spread
over clusters or other similar (network) architectures.

In Figure 2 the Parallel Process Workflow Variation pattern is applied to
this single-stage auto-selective portfolio management problem schematically. In
chapter 4 the implementational structure, to which such components can be
added, will be described.

Parallel Process
Rules Tier Data Selection

Portfolio Optimization

Selection Process

Process Execution Results

Measure Selection

Interaction / Resolution

Single−stage

Financial Engineer

Results
Intermediate

Fig. 2. Parallel Process Workflow Variation Pattern: Automatic Risk Measure Selec-
tion

3.2 Multi-stage Stochastic Asset Liability Management

In the second case, we focus on multi-stage stochastic asset and liability manage-
ment problems. A theoretical treatment of the underlying class of optimization
problems can be found in [6]. Such problems have successfully been solved over
the Grid in [7]. However, recently such models have been applied to value single
pension fund contracts for insurance companies. If the company is aiming at
solving and optimizing an enterprise-wide investment strategy, every contract
has to be calculated. For a large insurance company, tens of thousands of con-
tracts have to be optimized, while communication is still necessary in order to
summarize the results for generating the overall investment strategy. See Figure
3 for an outline of the workflow from data to decisions. There is also a tight
interplay between financial modelers and the decision taker, which is important
from a decision support system perspective.

Still, these calculations can be conducted in parallel to a large extent. Al-
though the underlying model - and the problem in general - is different compared



896 R. Hochreiter, C. Wiesinger, and D. Wozabal

Mortality Tables

Mathematical Programmer

Financial Model
Mortality and Value

Econometric Models

Tree Coupling

Mortality Tree Setup

Historical Data

Preprocessed Data

Scenario Set/Tree

Decision

Financial Manager

Scenario Generation

Optimization

Financial Modeler

Fig. 3. Pension-fund optimization workflow - From data to decision

to the auto-selective portfolio management from a financial engineering point of
view, the implementation applying the Parallel Process Workflow Variation pat-
tern like in chapter 3.1 looks quite similar from a computer science point of
view.

4 Implementational Issues and Technology Convergence

A problem solving environment (PSE), such as the AURORA Financial Manage-
ment, often consists of component technology, due to the fact that such a system
allows users to bring together a variety of computational tools to solve costly
computational tasks in a domain-specific application. In general [8], a component
is an independent unit of code that follows behavior rules and implements inter-
faces (ports). Additionally, components require an integration framework which
is an implementation of a plug-in like environment for component interaction
including creation, connection, manipulation, and destruction. The component
architecture itself describes a common specification of a set of interfaces and rules
for a component-to-component and a component-to-framework interaction. The
Common Component Architecture (CCA) Forum is currently specifying and de-
veloping such a standard component architecture for high-performance comput-
ing, which matches our requirements for a component-based high-performance
application in finance in many ways. Basic features that drove the decision to
adopt the CCA are:

– the minimalistic and extensible view on CCA components.
– SIDL [9] as a programming-language-independent interface definition lan-

guage used to describe component interfaces. Component descriptions using



Large-Scale Computational Finance Applications 897

SIDL can be used by repositories and by a proxy generator to provide the
component stubs element of communication ports.

– the language interoperability through the Babel project [10].
– the looser coupling approach between the caller (user) and callee (provider)

component through ports which converges with the web service paradigm.

According to the CCA specification [11], the common component architec-
ture consists of a slowly evolving core specification and a continuously expanding
default ports section. Relevant core interfaces are an unique component identity
(ComponentID), a ”plain” Port (inherited by every default and developer de-
fined port), a Component interface to set Services, and the Services construct
to manage all the component’s ports. Default ports include, amongst others,
the GoPort to start the component-based workflow and a BuilderService to cre-
ate, introspect, connect, and destroy components. Several implementations of
the CCA specification exist, like Ccaffeine [12], XCAT3 [13] and SCIRun2 [14].
SCIRun2 supports distributed computing through distributed objects and sug-
gests a meta-component model to integrate different component models. This
concept is somewhat similar to the concept of the OGSE.

The granularity of components is dictated by the complexity of an application
architecture and by performance considerations. As an example of complexity,
frameworks may themselves appear as components in order to connect to com-
ponents in other frameworks. As an example of performance considerations in
financial workflow applications presented in section 3.1. Figure 2 describes the
granularity of financial management components schematically, but it can be
seen that such workflows ideally suit into such a structure.

The core of a component integration framework is the enterprise service bus
(ESB) which supports/implements a service oriented architecture (SOA), see [15]
and [16]. Such a solution should meet a minimum set of capabilities according
to communication, integration, and service interaction found in [16].

For all underlying communication paradigms: message passing, RPC, notifi-
cation, shared spaces, message queuing, and publish/subscribe and its differences
in the three decoupling dimensions - time (no need for an active participation in
the interaction at the same time), space (the interaction partners do not need to
know each other), and synchronization (partners are not blocked while producing
and consuming events and can perform concurrent activities) see [17].

Such a prototype solution of a service-oriented environment for software-
components, that targets most of the Grid-infrastructural issues described above,
is the Vienna Grid Environment (VGE) [18] developed by another sub-project
of AURORA dealing with runtime systems for scientific computing. In short, the
VGE is a service-oriented Grid infrastructure based on standard Web Services
technologies that is developed in Java and requires Tomcat and Axis to host
both infrastructure and financial services. Basically, the enabling of existing
financial software on the VGE is pretty simple and requires an installation as
described in the VGE user guide (see [19] and [20]). Thus, VGE services are used
to encapsulate native applications.



898 R. Hochreiter, C. Wiesinger, and D. Wozabal

A first prototype for the single-stage auto-selective portfolio management (as
presented in Chapter 3.1) was implemented on the VGE. Due to the lack of a
specific workflow engine, the two basic components (data selection and portfo-
lio optimization with different risk measures ρ(x, ξ) were tested without semi-
automatic selection and iterative features. The first impression looks promising.
Both components use heterogeneous technologies, i.e. data selection is based on
Python scripts and e.g. ρ(x, ξ) = CVaRα (Conditional Value at Risk [21]) opti-
mization is modeled with MatLab/Octave scripts and solved with a dedicated
Linear Programming Solver (SoPlex [22]), and it was possible to integrate them
seamlessly into a common component system.

5 Conclusion

In this paper, we extended the scope of the Open Grid Service Environment
from modeling concepts for large computational finance applications to concrete
implementational issues. We took a look at two heterogeneous financial appli-
cations, whose implementation is homogeneous, due to the application of the
mergence of the enterprise service bus and parallel process orchestration pat-
terns. The enterprise service bus is an ideal framework for an implementation
of service oriented architectures. Furthermore, the CCA Specification (Common
Component Architecture), and its convergence to the Web service paradigm, as
a standard component architecture for high-performance computing has proven
to be successfully applicable for the implementation of large-scale computational
finance applications on the Open Grid Service Environment. The complementary
application of a service-oriented environment for software-components, like the
VGE, enabled the development of a promising prototype for implementing the
system. Our development of this prototype is intended to close the gap between
the basic (single) usage of financial components and an user-controlled finan-
cial workflow as depicted in Figure 2. The completion of this task outlines the
next step in the ongoing development of the AURORA Financial Management
System.

References

1. Wiesinger, C., Giczi, D., Hochreiter, R.: An Open Grid Service Environment for
large-scale computational finance modeling systems. In Bubak, M., Albada, G.,
Sloot, P., Dongarra, J., eds.: International Conference on Computational Science
2004. Krakow, Poland. Part I. Volume 3036 of Springer Lecture Notes in Computer
Science., Springer (2004) 83–90

2. Pflug, G.C., Swietanowski, A., Dockner, E., Moritsch, H.: The AURORA finan-
cial management system: Model and parallel implementation design. Annals of
Operations Research 99 (2000) 189–206

3. Harris, D.: Will financial services drive Grid adoption? Grid Today 3 (2004)
4. Markowitz, H.M.: Portfolio selection. Journal of Finance 7 (1952) 77–91
5. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale

systems. Operations Research 43 (1995) 264–281



Large-Scale Computational Finance Applications 899

6. Ruszczynski, A., Shapiro, A., eds.: Stochastic Programming. Volume 10 of Hand-
books in Operations Research and Management Science. Elsevier (2003)

7. Linderoth, J.T., Wright, S.J.: Decomposition algorithms for stochastic program-
ming on a Computational Grid. Computational Optimization and Applications 24
(2003) 207–250

8. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker,
S., Smolinski, B.: Toward a common component architecture for high-performance
scientic computing. 8th IEEE International Symposium on High Performance
Distributed Computing (1999)

9. Cleary, A., Kohn, S., Smith, S., Smolinski, B.: Language interoperability mech-
anisms for high-performance scientific applications. SIAM Workshop on Object-
Oriented Methods for Inter-operable Scientific and Engineering Computing, York-
town Heights, NY (1998)

10. Dahlgren, T., Epperly, T., Kumfert, G. Leek, J.: Babel Users’ Guide. Center For
Applied Scientic Computing Lawrence Livermore National Laboratory. Livermore,
California, USA (2004)

11. Kumfert, G.: Understanding the CCA standard through Decaf (updated for CCA
0.6.1 and Babel 0.8.4). UCRL-MA-148390 (2003)

12. Allan, B., Armstrong, R., Wolfe, A., Ray, J., Bernholdt, D., Kohl, J.: The CCA
core specification in a distributed memory SPMD framework. Concurrency and
Computation: Practice and Experience 14 (2002) 323–345

13. Krishnan, S., Gannon, D.: XCAT3: a framework for CCA components as OGSA
services. In: High-Level Parallel Programming Models and Supportive Environ-
ments. (2004) 90–97

14. Zhang, K., Damevski, K., Venkatachalapathy, V., Parker, S.: SCIRun2: a CCA
framework for high performance computing. In: High-Level Parallel Programming
Models and Supportive Environments. (2004) 72–79

15. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services Architecture. http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/ (2004)

16. Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R.,
Adams, J., Verschueren, P.: Patterns: Implementing an SOA Using an Enterprise
Service Bus. IBM Redbooks (2004)

17. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35 (2003) 114–131

18. Benkner, S., Brandic, I., Engelbrecht, G., Schmidt, R.: VGE - a service-
oriented environment for on-demand supercomputing. In: Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (Grid 2004). (2004) 11–18

19. Benkner, S., Brandic, I., Engelbrecht, G., Schmidt, R.: VGSE user manual.
http://www.par.univie.ac.at/project/vge/ (2004)

20. Benkner, S., Brandic, I., Engelbrecht, G., Schmidt, R.: VGCE user manual.
http://www.par.univie.ac.at/project/vge/ (2004)

21. Rockafellar, R., Uryasev, S.: Optimization of Conditional Value-at-Risk. The
Journal of Risk 2 (2000) 21–41

22. Wunderling, R.: Paralleler und Objektorientierter Simplex-Algorithmus. PhD
thesis, ZIB technical report TR 96-09, Berlin (1996)



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 900 – 910, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Localized Communications of Data Parallel Programs  
on Multi-cluster Grid Systems1 

Ching-Hsien Hsu, Tzu-Tai Lo, and Kun-Ming Yu 

Department of Computer Science and Information Engineering, 
Chung Hua University, Hsinchu, Taiwan 300, R.O.C 

chh@chu.edu.tw 

Abstract. The advent of widely interconnected computing resources introduces 
the technologies of grid computing.  A typical grid system, the cluster grid, 
consists of several clusters located in multiple campuses that distributed globally 
over the Internet.  Because of the Internet infrastructure of cluster grid, the 
communication overhead becomes as key factor to the performance of 
applications on cluster grid.  In this paper, we present a processor reordering 
technique for the communication optimizations of data parallel programs on 
cluster grid.  The alignment of data in parallel programs is considered as example 
to examine the proposed techniques.  Effectiveness of the processor reordering 
technique is to reduce the inter-cluster communication overheads and to speedup 
the execution of parallel applications in the underlying distributed clusters.  Our 
preliminary analysis and experimental results of the proposed method on 
mapping data to logical grid nodes show improvement of communication costs 
and conduce to better performance of parallel programs on different hierarchical 
grid of cluster systems. 

1   Introduction 

One of the virtues of high performance computing is to integrate massive computing 
resources for accomplishing large-scaled computation problems.  The common point 
of these problems has enormous data to be processed.  Due to cost-effective, clusters 
have been employed as a platform for high-performance and high-availability 
computing platform.  In recent years, as the growth of Internet technologies, the grid 
computing emerging as a widely accepted paradigm for next-generation applications, 
such as data parallel problems in supercomputing, web-serving, commercial 
applications and grand challenge problems. 

Differing from the traditional parallel computers, a grid system [7] integrates 
distributed computing resources to establish a virtual and high expandable parallel 
platform.  Figure 1 shows the typical architecture of cluster grid.  Each cluster is 
geographically located in different campuses and connected by software of 
computational grids through the Internet.  In cluster grid, communications occurred 
when grid nodes exchange data with others via network to run job completion.   These 

                                                           
1 The work of this paper was supported by NCHC, National Center for High Performance 

Computing and NSC, National Science Council of Taiwan, under grant number 
NCHC-KING-010200 and NSC-93-2213-E-216-028, respectively. 



 Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems 901 

 

communications are usually classified into two types, local and remote.  If the two grid 
nodes belong to different clusters, the messaging should be accomplished through the 
Internet.  We refer this kind of data transmission as external communication.  If the two 
grid nodes in the same space domain, the communications take place within a cluster; 
we refer this kind of data transmission as interior communication.  Intuitionally, the 
external communication is usually with higher communication latency than that of the 
interior communication since the data should be routed through numbers of layer-3 
routers or higher-level network devices over the Internet.  Therefore, to efficiently 
execute parallel applications on cluster grid, it is extremely critical to avoid large 
amount of external communications. 

PC Cluster A

PC Cluster D 

PC Cluster B 

PC Cluster C  

Cluster Grid

Internet

 

Fig. 1. The paradigm of cluster grid 

In this paper, we consider the issue of minimizing external communications of data 
parallel program on cluster grid.  We first employ the example of data alignments and 
realignments that provided in many data parallel-programming languages to examine 
the effective of the proposed data to logical processor mapping scheme.  As researches 
discovered that many parallel applications require different access patterns to meet 
parallelism and data locality during program execution.  This will involve a series of 
data transfers such as array redistribution.  For example, a 2D-FFT pipeline involves 
communicating images with the same distribution repeatedly from one task to another.  
Consequently, the computing nodes might decompose local data set into sub-blocks 
uniformly and remapped these data blocks to designate processor group.  From this 
phenomenon, we propose a processor-reordering scheme to reduce the volume of 
external communications of data parallel programs in cluster grid.  The key idea is that 
of distributing data to grid/cluster nodes according to a mapping function at data 
distribution phase initially instead of in numerical-ascending order.  We also evaluate 
the impact of the proposed techniques.  The theoretical analysis and experimental 
results show improvement of volume of interior communications and conduce to better 
performance of data alignment in different hierarchical cluster grids. 

The rest of this paper is organized as follows.  Section 2 briefly surveys the related 
works.  In section 3, we formulate the communication model of parallel data 
partitioning and re-alignment on cluster grid.  Section 4 describes the 
processor-reordering scheme for communication localization.  Section 5 reports the 
performance analysis and experimental results.  Finally, we conclude our paper in 
section 6. 

 



902 C.-H. Hsu, T.-T. Lo, and K.-M. Yu 

 

2   Related Work 

Clusters have been widely used for solving grand challenge applications due to their 
good price-performance nature.  With the growth of Internet technologies, the 
computational grids [4] become newly accepted paradigm for solving these 
applications.  As the number of clusters increases within an enterprise and globally, 
there is the need for a software architecture that can integrate these resources into 
larger grid of clusters.  Therefore, the goal of effectively utilizing the power of 
geographically distributed computing resources has been the subject of many research 
projects like Globus [6, 8] and Condor [9].  Frey et al. [9] also presented an agent-based 
resource management system that allowed users to control global resources.  The 
system is combined with Condor and Globus, gave powerful job management 
capabilities is called Condor-G. 

Recent work on computational grid has been broadly discussed on different 
aspects, such as security, fault tolerance, resource management [9, 2], job scheduling 
[17, 18, 19], and communication optimizations [20, 5, 16, 3].  For communication 
optimizations, Dawson et al. [5] and Zhu et al. [20] addressed the problems of 
optimizations of user-level communication patterns in local space domain for 
cluster-based parallel computing.  Plaat et al. analyzed the behavior of different 
applications on wide-area multi-clusters [16, 3].   Similar researches were studied in 
the past years over traditional supercomputing architectures [12, 13].  For example, 
Guo et al. [11] eliminated node contention in communication phases and reduced 
communication steps with schedule table.  Y. W. Lim et al. [15] presented an efficient 
algorithm for block-cyclic data realignments.  Kalns and Ni [14] proposed the 
processor mapping technique to minimize the volume of communication data for 
runtime data re-alignments.  Namely, the mapping technique minimizes the size of data 
that need to be transmitted between two algorithm phases.  Lee et al. [10] proposed 
similar algorithms, the processor reordering, to reduce data communication cost.  They 
also compared their effects upon various conditions of communication patterns. 

The above researches give significant improvement of parallel applications on 
distributed memory multi-computers.  However, most techniques only applicable for 
parallel programs running on local space domain, like single cluster or parallel 
machine.  For a global grid of clusters, these techniques become inapplicable due to 
various factors of Internet hierarchical and its communication latency.  In this paper, 
our emphasis is on dealing with the optimizations of communications for data parallel 
programs on cluster grid. 

3   Preliminaries 

3.1   Problem Formulation 

The data parallel programming model has become a widely accepted paradigm for 
parallel programming on distributed memory multi-computers.  To efficiently execute 
a parallel program, appropriate data distribution is critical for balancing the 
computational load.  A typical function to decompose the data equally can be 
accomplished via the BLOCK distribution directive. 



 Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems 903 

 

It has been shown that the data reference patterns of some parallel applications 
might be changed dynamically.  As they evolve, a good mapping of data to logical 
processors must change adaptively in order to ensure good data locality and reduce 
inter-processor communication.  For example, a global array could be equally allocated 
to a set of processors initially in BLOCK distribution manner. As the algorithm goes 
into another phase that requires to access fine-grain data patterns, each processor might 
divide its local data into sub-blocks locally and then distribute these sub-blocks to 
corresponding destination processors.  Figure 2 shows an example of this scenario.  In 
the initial distribution, the global array is evenly decomposed into nine data sets and 
distributed over processors that are selected from three clusters.  In the target 
distribution, each node divides its local data into three sub-blocks evenly and 
distributes them to the same processor set in grid as in the initial distribution.  Since 
these data blocks might be needed and located in different processors, consequently, 
efficient inter-processor communications become major subject to the performance of 
these applications. 

 
I n i t i a l  D i s t r i b u t i o n  

C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

A  B  C  D  E  F  G  H  I  

T a r g e t  D i s t r i b u t i o n  

C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  C l u s t e r 1 C l u s t e r 2 C l u s t e r 3 C l u s t e r 1 C l u s t e r 2 C l u s t e r 3  

P 0  P 1  P 2 P 3 P 4  P 5  P 6  P 7  P 8  P 0  P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 0 P 1 P 2 P 3 P 4 P 5 P 6  P 7  P 8  

a 1  a 2  a 3 b 1 b 2  b 3  c 1  c 2  c 3  d 1  d 2 d 3 e 1 e 2 e 3 f 1 f 2 f 3 g 1 g 2 g 3 h 1 h 2 h 3 i 1  i 2  i 3  
  

Fig. 2. Data distributions over cluster grid 

To facilitate the presentation of the proposed approach, we assume that a global 
array is distributed over processors in BLOCK manner at the initiation.  Each node is 
requested to partition its local block into K equally sub-blocks and distribute them over 
processors in the same way.  The second assumption is that each cluster provides the 
same number of computers involved in the computation. 

Definition 1: The above term K is defined as partition factor. 

For instance, the partition factor of the example in Figure 2 is K=3. (Block A is 
divided into a1, a2, a3, B is divided into b1, b2, b3, etc.) 

Definition 2: Given a cluster grid, C denotes the number of clusters in the grid; ni is 
the number of processors selected from cluster i, where 1 ≤ i ≤ C; P is the total number 
of processors in the cluster grid. 

According to definition 2, we have P =
=

C

i
in

1
.  Figure 2 has three clusters, thus C = 

3, where {P0, P1, P2} ∈ Cluster 1, {P3, P4, P5} ∈ Cluster 2 and {P6, P7, P8} ∈ Cluster 3, 
we also have n1 = n2 = n3 = 3 and P = 9. 



904 C.-H. Hsu, T.-T. Lo, and K.-M. Yu 

 

3.2   Communication Cost Model 

Because the interface of interconnect switching networks in each cluster system might 
be different; to obtain accurate evaluation, the interior communication costs in clusters 
should be identified individually.  We let Ti represents the time of two processors both 
reside in Cluster-i to transmit per unit data; mi is the sum of volume of all interior 
messages in Cluster-i; for an external communication between cluster i and cluster j, Tij 
is used to represent the time of processor p in cluster i and processor q in cluster j to 
transmit per unit data; similarly, mij is the sum of volume of all external messages 
between cluster i and cluster j.   According to these declarations, we can have the 
following cost function, 

)(
,1,1

ij

C

jiji
ij

C

i
iicomm TmmTT ×+×=

≠==
                                                    (1) 

Due to various factors over Internet might cause communication delay; it is difficult 
to get accurate costs from the above function.  As the need of a criterion for 
performance modeling, integrating the interior and external communications among all 
clusters into points is an alternative mechanism to get legitimate evaluation.  Thus, we 
totted up the number of these two terms to represent the communication costs through 
the whole running phase for the following discussions.  The volume of interior 
communications, denoted as |I| and external communications, denoted as |E| are 
defined as follows, 

| I | = 
=

C

i
iI

1

                                                                              (2) 

| E | = 
≠=

C

jiji
ijE

,1,
                                                                    (3) 

    Where Ii is the total number of interior communications within cluster i; Eij is the 
total number of external communications between cluster i and cluster j. 

4   Communication Localization 

4.1   Motivating Example 

Let us consider the example in Figure 2.  In the target distribution, processor P0 divides 
data block A into a1, a2, and a3.  Then, it distributes these three sub-blocks to processors 
P0, P1 and P2, respectively.  Since processors P0, P1 and P2 belong to the same cluster 
with P0; therefore, these are three interior communications.  Similar situation on 
processor P1 will generate three external communications; P1 divides its local data 
block B into b1, b2, and b3.  It distributes these three sub-blocks to P3, P4 and P5, 
respectively.  However, as processor P1 belongs to Cluster 1 while processors P3, P4 
and P5, belong to Cluster 2.  Thus, this results three external communications.  Figure 3 
summarizes all messaging patterns of the example into a communication table.  The  
 



 Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems 905 

 

messages {a1, a2, a3}, {e1, e2, e3} and {i1, i2, i3} are interior communications (the 
shadow blocks).  All the others are external communications.  Therefore, we have | I | = 
9 and | E | = 18. 

 
 D P  
 

S P  
P 0  P 1 P 2  P 3 P 4  P 5 P 6 P 7  P 8

P 0  a 1  a 2  a 3        
P 1     b 1  b 2  b 3     
P 2        c 1  c 2  c 3  
P 3  d 1  d 2  d 3        
P 4     e 1  e 2  e 3     
P 5        f 1  f 2  f 3  
P 6  g 1  g 2  g 3        
P 7     h 1  h 2  h 3     
P 8        i 1  i 2  i 3  
 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

  

Fig. 3. Communication table of data distribution over cluster grid 

Figure 4 illustrates a bipartite representation to show the communications that 
given in the above table.  In this graph, the dashed arrows and solid arrows indicate 
interior and external communications, respectively.  Each arrow contains three 
communication links.   

Source 
P 0    P 1    P 2    P 3   P 4  P 5   P 6   P 7   P 8 

 
P 0    P 1    P 2    P 3   P 4  P 5   P 6   P 7   P 8 

         Target 
In terior com m unication

E xternal com m unication

 

Fig. 4. Interior and external communications using bipartite representation 

4.2   Processor Reordering Data Partitioning 

The processor mapping techniques were used in several previous researches to 
minimize data transmission time of runtime array redistribution.  In a cluster grid 
system, the similar concept can be applied.  According to assumptions in section 3.1, 
we proposed the processor reordering technique and its mapping function that is 
applicable to data realignment on cluster grid.  In order to localize the communication, 
the mapping function produces a reordered sequence of processors for grouping 
communications into local cluster.  A reordering agent is used to accomplish this 
process.  Figure 5 shows the concept of processor reordering technique for parallel data 
to logical processor mapping.  The source data is partitioned and distributed to 
processors into initial distributions (ID(PX)) according to the processor sequence 
derived from reordering agent, where X is the processor id and 0 ≤ X ≤ P-1.  To 



906 C.-H. Hsu, T.-T. Lo, and K.-M. Yu 

 

accomplish the target distribution (TD(PX’)), the initial data is divided into K 
sub-blocks and realign with processors according to the new processors id X’ that is 
also derived from the reordering agent.  Given distribution factor K and processor grid 
(with variables C and ni), for the case of K=ni, the mapping function used in reordering 
agent is formulated as follows, 

F(X) = X’ = CX / +(X mod C) * K                                                    (4) 

We use the same example to demonstrate the above reordering scheme.  Figure 6 
shows the communication table of messages using new logical processor sequence.  
The initial distribution of source data is allocated by the sequence of processors’ id, 
<P0, P3, P6, P1, P4, P7, P2, P5, P8> which is derived from equation 4.  To accomplish the 
target distribution, P0 divides data block A into a1, a2, a3 and distributes them to P0, P1 
and P2, respectively.  These communications are interior.  For P3, the division of initial 
data also generates three interior communications; because P3 divides its local data B 
into b1, b2, b3 and distributes these three sub-blocks to P3, P4 and P5, respectively; 
which are in the same cluster with P3.  Similarly, P6 sends e1, e2 and e3 to processors P6, 
P7 and P8 and causes three interior communications.  Eventually, there is no external 
communication incurred in this example in Figure 6. 

 

 

Reordering Agent 

SCA(x) 

Generate 
new Pid 

Realignment 
ID(Px)  

DCA(x) 

Determine 
Target Cluster 

Designate 
Target Node 

SCA(x) 
SCA(x) 

ID(Px) 

Partitioning 
Data 

Master Node 

Alignment/
Dispatch 

DCA(x) 
DCA(x) 
TD(PX’) 

Source 
Data 

 

Fig. 5. The flow of data to logical processor mapping 

 
D P  

 

S P  
P 0  P 1  P 2 P 3  P 4 P 5  P 6 P 7 P 8  

P 0  a 1  a 2  a 3        
P 3     b 1  b 2 b 3    
P 6        c 1  c 2  c 3  
P 1  d 1  d 2 d 3        
P 4     e 1  e 2  e 3     
P 7        f 1  f 2  f 3  
P 2  g 1  g 2 g 3        
P 5     h 1  h 2 h 3    
P 8        i 1  i 2  i 3  
 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

  

Fig. 6. Communication table with processor reordering 



 Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems 907 

 

The bipartite representation of Figure 6’s communication table is shown in Figure 
7. All the communication arrows are in dashed lines.  We totted up the 
communications, then have | I | = 27 and | E | = 0.  The external communications are 
mostly eliminated. 

5   Performance Analysis and Experimental Results 

5.1   Performance Analysis 

The effectiveness of processor reordering technique in different hierarchy of cluster 
grid can be evaluated in theoretical.  This section presents the improvements of volume 
of interior communications for different number of clusters (C) and partition factors 
(K). 

For the case consists of three clusters (C=3), Figure 8(a) shows that the processor 
reordering technique provides more interior communications than the method without 
processor reordering.  For the case consists of four clusters (C=4), the values of K vary 
from 4 to 10.  The processor reordering technique also provides more interior 
communications as shown in Figure 8(b).  Note that Figures 8 and 9 report the 
theoretical results which will not be affected by the Internet traffic.  In other words, 
Figure 8 is our theoretical predictions. 

So urce 
P 0               P 3     P 6    P 1                   P 4    P 7       P 2     P 5         P 8  

 
P 0                       P 1     P 2     P 3    P 4         P 5       P 6     P 7     P 8 

Target  

Fig. 7. Bipartite representation with processor reordering 

N um be r of  inte r ior c om m unic a tion, C =3

0

50

1 00

1 50

2 00

2 50

3 00

3 50

3 4 5 6 7 8 9 1 0K =

|I
 |

w ith o u t  re o rd e rin g
w ith  re o rd e rin g

 

N u m b e r  o f  in t e r io r  c o m m u n ic a t io n ,  C = 4

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

4 5 6 7 8 9 1 0K =

|I
 |

w it h o u t  re o rd e r in g
w it h  r e o rd e rin g

 

Fig. 8. The number of interior communications (a) C=3 (b) C=4 



908 C.-H. Hsu, T.-T. Lo, and K.-M. Yu 

 

5.2   Simulation Settings and Experimental Results 

To evaluate the performance of the proposed technique, we have implemented the 
processor reordering method and tested on Taiwan UniGrid in which 8 campus clusters 
ware interconnected via Internet.  Each cluster owns different number of computing 
nodes.  The programs were written in the single program multiple data (SPMD) 
programming paradigm with C+MPI codes. 

Figure 9 shows the execution time of the methods with and without processor 
reordering to perform data realignment when C=3 and K=3.  Figure 9(a) gives the 
result of 1MB test data that without file system access (I/O).  The result for 10MB test 
data that accessed via file system (I/O) is given in Figure 9(b).  Different combinations 
of clusters denoted as NTI, NTC, NTD, etc. were tested.  The composition of these 
labels is summarized in Table 1. 

Table 1. Labels of different cluster grid 

Label Cluster-1 Cluster-2 Cluster-3 Label Cluster-1 Cluster-2 Cluster-3 

NTI NCHC NTHU IIS NCI NCHC CHU IIS 

NTC NCHC NTHU CHU NCD NCHC CHU NDHU 

NTH NCHC NTHU THU NHD NCHC THU NDHU 
  

In Figure 9(a), we observe that processor reordering technique outperforms the 
traditional method.  In this experiment, our attention is on the presented efficiency of 
the processor reordering technique instead of on the execution time in different 
clusters.  Compare to the results given in Figure 8, this experiment matches the 
theoretical predictions.  It also satisfying reflects the efficiency of the processor 
reordering technique.  Figure 9(b) presents the results with larger test data (10 MB) 
under the same cluster grid.  Each node is requested to perform the data realignments 
through access file system (I/O).  The improvement rates are lower than that in Figure 
9(a).  This is because both methods spend part of time to perform I/O; the ratio of 
communication cost becomes lower.  Nonetheless, the reordering technique still 
presents considerable improvement. 

C= 3,  K = 3, without I/O

0

2

4

6

8

10

12

14

16

18

N TI N TC NTH N CI N CD N HD

S
ec

on
d

without reordering

with reordering

       

C =3 ,  K =3 ,  with I /O (10 M B)

0

5

10

15

20

25

30

35

40

45

50

NTI NTC NTH NCI NCD NHD

Se
co

nd

with o ut  reo rd errin g

with  reo rdering

 
(a)                              (b) 

Fig. 9. Execution time of data realignments on cluster grid when C = K = 3 



 Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems 909 

 

6   Conclusions and Future Works 

In this paper, we have presented a processor reordering technique for localizing the 
communications of data parallel programs on cluster grid.  Our preliminary analysis 
and experimental results of re-mapping data to logical grid nodes show improvement 
of volume of interior communications.  The proposed techniques conduce to better 
performance of data parallel programs on different hierarchical grid of clusters 
systems.  There are numbers of research issues remained in this paper.  The current 
work of our study restricts conditions in solving the realignment problem.  In the 
future, we intend to devote generalized mapping mechanisms for parallel data 
partitioning.  We will also study realistic applications and analyze their performance on 
the UniGrid.  Besides, the issues of larger grid system and analysis of network 
communication latency are also interesting and will be investigated. 

References 

1. Taiwan UniGrid, http://unigrid.nchc.org.tw 
2. O. Beaumont, A. Legrand and Y. Robert, ”Optimal algorithms for scheduling divisible 

workloads on heterogeneous systems,” Proceedings of the 12th IEEE Heterogeneous 
Computing Workshop, 2003. 

3. Henri E. Bal, Aske Plaat, Mirjam G. Bakker, Peter Dozy, and Rutger F.H. Hofman, 
“Optimizing Parallel Applications for Wide-Area Clusters,” Proceedings of the 12th 
International Parallel Processing Symposium IPPS'98, pp 784-790, 1998. 

4. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta and K. Vahi, “The role 
of planning in grid computing,” Proceedings of ICAPS’03, 2003. 

5. J. Dawson and P. Strazdins, “Optimizing User-Level Communication Patterns on the Fujitsu 
AP3000,” Proceedings of the 1st IEEE International Workshop on Cluster Computing, pp. 
105-111, 1999. 

6. I. Foster, “Building an open Grid,” Proceedings of the second IEEE international 
symposium on Network Computing and Applications, 2003. 

7. I. Foster and C. K., “The Grid: Blueprint for a New Computing Infrastructure,” Morgan 
Kaufmann, ISBN 1-55860-475-8, 1999. 

8. I. Foster and C. Kessclman, “Globus: A metacomputing infrastructure toolkit,” Intl. J. 
Supercomputer Applications, vol. 11, no. 2, pp. 115-128, 1997.  

9. James Frey, Todd Tannenbaum, M. Livny, I. Foster and S. Tuccke, “Condor-G: A 
Computation Management Agent for Multi-Institutional Grids,” Journal of Cluster 
Computing, vol. 5, pp. 237 – 246, 2002. 

10. Saeri Lee, Hyun-Gyoo Yook, Mi-Soon Koo and Myong-Soon Park, “Processor reordering 
algorithms toward efficient GEN_BLOCK redistribution,” Proceedings of the 2001 ACM 
symposium on Applied computing, 2001. 

11. M. Guo and I. Nakata, “A Framework for Efficient Data Redistribution on Distributed 
Memory Multicomputers,” The Journal of Supercomputing, vol.20, no.3, pp. 243-265, 
2001. 

12. Florin Isaila and Walter F. Tichy, “Mapping Functions and Data Redistribution for Parallel 
Files,” Proceedings of IPDPS 2002 Workshop on Parallel and Distributed Scientific and 
Engineering Computing with Applications, Fort Lauderdale, April 2002. 



910 C.-H. Hsu, T.-T. Lo, and K.-M. Yu 

 

13. Jens Koonp and Eduard Mehofer, “Distribution assignment placement: Effective 
optimization of redistribution costs,” IEEE TPDS, vol. 13, no. 6, June 2002. 

14. E. T. Kalns and L. M. Ni, “Processor mapping techniques toward efficient data 
redistribution,” IEEE TPDS, vol. 6, no. 12, pp. 1234-1247, 1995. 

15. Y. W. Lim, P. B. Bhat and V. K. Parsanna, “Efficient algorithm for block-cyclic 
redistribution of arrays,” Algorithmica, vol. 24, no. 3-4, pp. 298-330, 1999. 

16. Aske Plaat, Henri E. Bal, and Rutger F.H. Hofman, “Sensitivity of Parallel Applications to 
Large Differences in Bandwidth and Latency in Two-Layer Interconnects,” Proceedings of 
the 5th IEEE High Performance Computer Architecture HPCA'99, pp. 244-253, 1999. 

17. Xiao Qin and Hong Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time 
Jobs in Heterogeneous Systems,” Proceedings of the 30th ICPP, Valencia, Spain, 2001. 

18. S. Ranaweera and Dharma P. Agrawal, “Scheduling of Periodic Time Critical Applications 
for Pipelined Execution on Heterogeneous Systems,” Proceedings of the 30th ICPP, 
Valencia, Spain, 2001. 

19. D.P. Spooner, S.A. Jarvis, J. Caoy, S. Saini and G.R. Nudd, “Local Grid Scheduling 
Techniques using Performance Prediction,” IEE Proc. Computers and Digital Techniques, 
150(2): 87-96, 2003. 

20. Ming Zhu, Wentong Cai and Bu-Sung Lee, “Key Message Algorithm: A Communication 
Optimization Algorithm in Cluster-Based Parallel Computing,” Proceedings of the 1st IEEE 
International Workshop on Cluster Computing, 1999. 



VIRGO: Virtual Hierarchical Overlay Network
for Scalable Grid Computing

Lican Huang

School of Computer Science, Cardiff University,
Cardiff CF24 3AA, UK

lican.huang@cs.cardiff.ac.uk

Abstract. This paper presents a virtual hierarchical overlay network–
VIRGO for scalable Grid computing. This virtual hierarchical overlay
network is self-organizing and decentralized, with an effective lookup
protocol for routing messages. It contains an n-tuple replicated virtual
tree structured network that differs from DHT-based P2P networks and
random unstructured networks cached by least-recently used (LRU) and
minimum difference (MinD)replacement strategies. It retains the partial-
match query and robust aspects of unstructured P2P and the advantage
of effective routing and guaranteed searching of structured P2P. The time
complexity, space complexity and message-cost of VIRGO is O(logN),
where N is the total number of nodes in the network. Since LRU and
MinD replacement strategies are used for caching route nodes, VIRGO
is also a load-balanced network.

1 Introduction

Although client/server technology has been successful in many IT fields, such as
WWW (HTTP), FTP and Web services, it has many shortcomings. It is unscal-
able, with a single point of failure and does not fully use resources at the network
edge. P2P technology is now considered the next generation computing model.
It is scalable, with efficient use of resources, and processing power at the edge
of the network. There are two types of P2P technologies. Industrial P2P appli-
cations such as FreeNet[1] use an unstructured approach which routes nodes by
a ”flooding” algorithm. This has the advantages of partial-match querying and
robustness, but may cause excess network traffic, and lacks guaranteed search.
The structured approach is mostly based on Distributed Hash Table(DHT) tech-
nologies such as Pastry [2], CAN [3], and CHORD[4], and is effective in time
complexity, but lack partial-match query capability and locality aspects, which
limits their use in Grid computing.

At present, most Grid systems are designed according to the Client/Server
(C/S) model other than the P2P model: Globus[5](GT3)and Web Services[6]
are representative of the C/S approach. C/S technology has scalability problem.
Iamnitchi et al.[7] use P2P technology in Grid computing, and JXTA[8] gives
another P2P platform, but they do not yet achieve a complete solution.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 911–921, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



912 L. Huang

In this paper, we present a virtual hierarchical overlay network using P2P
technology for scalable Grid computing – VIRGO. VIRGO is a hybrid of struc-
tured P2P and unstructured P2P. It contains a virtual group tree overlay topol-
ogy[9] and a random netlike topology cached by least-recently used (LRU)and
minimum difference(MinD) replacement strategies. It is equally effective in rout-
ing messages as structured P2P, but retains the partial-match query and ro-
bustness aspects of unstructured P2P. The time complexity, space complex-
ity and message-cost of the VIRGO lookup protocol is O(logN), where N is
the total number of nodes in the network. Due to the LRU and MinD re-
placement strategies for caching route nodes, VIRGO is also a load-balanced
network. In addition to Grid computing, VIRGO can also be used in Dis-
tributed Domain Name Systems,distributed search engines, file sharing, and
so on.

2 VIRGO-Virtual Hierarchical Overlay Network

The VIRGO virtual hierarchical overlay network is a hybrid of unstructured
P2P and structured P2P technologies, and combines the advantages of both.
In a virtual hierarchical overlay network, there is a core network that consists
of stable servers that can access the Internet, and a surrounding circle of thin
computers. Machines (called ”clients”) in the surrounding circle connect via a
node (called the entrance node)to the core machines by Client/Server technology,
whereas the core machines use P2P technology to interact among themselves.
This strategy can make the network stable because when nodes join or leave
only nodes in the core circle are required to be considered.

The virtual hierarchical overlay network consists of a prerequisite virtual
group tree, which is similar to that described in the author’s previous paper[9],
and random connections cached by least-recently used and minimum distance
replacement strategies. The virtual group tree is virtually hierarchical, with one
root-layer, several middle-layers, and many leaf virtual groups. Among the nodes
of the lower layer virtual groups, N-tuple gateway nodes in each group are cho-
sen to form upper-layer groups, and from the nodes of these upper-layer groups
to form upper-upper-layer groups in the same way, and this way is repeated
until one root-layer group is formed. Random connections cached in a node’s
routing table are maintained by least-recently used (LRU)and minimum differ-
ence(MinD) replacement strategies. The LRU strategy gives a greater chance to
frequently requested nodes. The MinD strategy gives a greater chance to nodes
with differing top prefixes in domain names; this makes VIRGO a distributed
network. With randomly cached connections, the netlike VIRGO avoids conges-
tion in the root node of the virtual tree topology, but keeps the advantages of
effective message routing in treelike networks.

In the virtual hierarchical overlay network, every Group has a unique group
name, such as Science.Biology.Botony, that indicates the group’s location in the



VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing 913

Fig. 1. Two tuple Virtual Hierarchical Overlay Network

group tree. The members of a group are nodes with unique Domain Names such
as Science.Biology.Botany.BT2(see Figure 1). The network in Figure 1 is a 2-
tuple replicated virtual tree(The nodes with the same character in different layers
are actually the same node). For example, BT3,BI1 in the root group come from
the same second layer group Science.Biology. The routing table contains route
nodes that are classified as ’TREE’, ’LRU’ and ’MinD’ types. Every routing node
has an ID and its gateway upmost layer, and exists within these groups from
bottom layer to gateway upmost layer. BT1(3)means that the node is named as
BT1 whose gateway upmost layer is in the third layer.

2.1 Definitions

Definition 1. User (denoted by user) is the role which accesses the virtual
hierarchical overlay networks.

Definition 2. Client host (denoted by cli) is an apparatus (such as desktop
computer, PDA, mobile computer, etc), that is used by users to log into the
virtual hierarchical overlay network.

Definition 3. Node(denoted by p) is a basic element in the virtual hierarchical
overlay network. Every node has a Domain Name, as in DNS, and an Internet
IP Address. Gateway (denoted by gn) is a node role which takes part in routing
functions in several different layers of virtual groups. A gateway node is a node
that is not only in a low-level group, but also is in an upper-level group. Entrance
(denoted by ent) is an entrance point of a node for users to log into the virtual
hierarchical overlay network.



914 L. Huang

Definition 4. Domain name(denoted by DomainName) is an hierarchical
domain classification according to the purpose of the network. It is similar to
DNS (for example, science.computer.network.Grid). Domain Name Length is
the total layers of the Domain Name. In the above example, the length is 4.
Every node has a unique Domain Name, and all nodes share a common first
prefix (science in the above example). Gateway uppermost layer(denoted by
GUL) is the uppermost virtual group layer that the gateway is in. The layers are
ordered from root layer which is labelled as level 1.

Definition 5. Virtual group(denoted by V G) is formed virtually by the gate-
ways nodes. V Gα denotes virtual group with name α. The Group Name is part
of the node’s domain name, eg. in the above example, science, science.computer,
science.computer.network are group names.

Definition 6. N-tuple virtual group tree (denoted by NV GT ) is a hierar-
chical tree formed by virtual groups. Among the nodes of the lower layer virtual
groups, N-tuple gateway nodes in each group are chosen to form upper-layer
groups, and from the nodes of these upper-layer groups to form upper-upper-
layer groups in the same way, and this way is repeated until a root-layer group
is formed.

3 Lookup Protocol

The lookup protocol for the virtual hierarchical overlay network is based on the
strategy that among nodes in the routing table the node with the minimum dis-
tance to the destination node is chosen as the next hop on the route. The strate-
gies of LRU and MinD are used for caching route nodes to solve computational
and message congestion existing in the tree structure. Figure 1 shows the users
using a client via entrance node BT1 (named Science.Biology.Botony.BT1) to re-
quest the entities of the destination node named Science.Computer.Network.AI3.
The route path of this example is as follows. BT1 − > Net1 (because Net1 has
the minimum distance to destination AI3 in BT1’s routing table); then Net1− >
AI1 ( or AI2) ; then AI1( or AI2)− >AI3.

To explain the lookup protocol in detail, we first give some brief definitions.

Definition 7. Node entity(denoted by NE)is the node’s Identification and
status. It consists of the Domain Name, IP address, and GUL of the node.

Definition 8. Item of route table(denoted by IRT )is the record of route
table(denoted by routetable). It consists of Node entity(NE), time of last use,
and type. Type is classified as TREE, LRU and MinD. The node of TREE
type is the node in the virtual tree network; a node of LRU type is cached by
a least recently-used replacement strategy; and a node of MinD type is cached
by a minimum difference replacement strategy. The items in the route table
are ordered in alphabetical dictionary order by keyword of the node’s Domain
Name.



VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing 915

Definition 9. Query message(denoted by QUERY MESSAGE)is a request
message by a client. It includes the domain name of requested node and requested
entities such as keywords, etc. Result message(denoted by RESULTMESSAGE
) contains the requested result and the node entity of the related destination node.
Join message (denoted by JOINMESSAGE) is sent by a node applying to
join the network. Left message (denoted by LEFTMESSAGE) is sent by a
node to signal its departure from the network. Failure message (denoted by
FAILUREMESSAGE) is sent by a node that is aware of a failure of commu-
nication with a gateway node.

Some primitives and functions are listed in Table 1, and several details are as
follows.

Table 1. Primitives and Functions

Names of Primitives and Functions and their Descriptions

sender.send (message, receiver) sender sends message to receiver

sender.send(message,receiver ∈ Set) sender sends message to all the receivers belong to a Set

macthNodeInRouteTable(DomainName) check if the node is in the route table

RouteTableUpdate(NE) update route table with node NE

RouteTableReplacement(NE, type) replace NE item of route table

RouteTableAdd(NE,type) add NE to route table

RouteTableDelete(NE,type) delete NE from route table

lookup location(DomainName) find the node’s location

LengthOfSamePrefix(DomainName, DomainName) length of shared prefixes between two nodes

LengthOfDomainName(DomainName) the length of DomainName

hopDistance2object(DomainName) the theoretical hops from the node to the destination node

selectRouteNodeFromRouteTable(DomainName) choose next hop node from route table

checkupQueryEntities(QUERYMESSAGE) check if the node has the entities queried

iscachesizeful(type) check if cached size in route table is full

The theoretical number of hops from a node to a destination node is cal-
culated by the function hopDistance2object, whose details are described in the
following pseudocode and Figure 2.

Function p.hopDistance2object(QUERYMESSAGE.DomainName)

if LengthOfSamePrefix(p.DomainName, QUERYMESSAGE.DomainName) ==1

return LengthOfDomainName(QUERYMESSAGE.DomainName)+p.GUL -2;

elseif p.GUL ≤ LengthOfSamePrefix(p.DomainName, QUERYMESSAGE.DomainName)

return LengthOfDomainName(QUERYMESSAGE.DomainName) -

LengthOfSamePrefix(p.DomainName, QUERYMESSAGE.DomainName);

else

return LengthOfDomainName(QUERYMESSAGE.DomainName)+p.GUL -

2*LengthOfSamePrefix(p.DomainName,QUERYMESSAGE.DomainName) ;



916 L. Huang

Fig. 2. Hop distance

The node with the minimum number of hops to the destination node is cho-
sen as the next hop in the route. If there are more than one node with the same
minimum number of hops in the route table, a random route node is chosen.

Function p.selectRouteNodeFromRouteTable(QUERYMESSAGE.DomainName)

gnSet =Minimum(p.hopDistance2object(gni ∈ RouteTable, qmessage.DomainName));

return routeP = random(gnSet);

Function lookup location locates the destination node by the minimum hops

Function p.lookup location(QUERYMESSAGE)

routeP = p.selectRouteNodeFromRouteTable(QUERYMESSAGE.DomainName);

if LengthOfSamePrefix(routeP.DomainName,QUERYMESSAGE.DomainName)==

LengthOfDomainName(QUERYMESSAGE.DomainName) {
RESULTMESSAGE= routeP.checkupQueryEntities(QUERYMESSAGE);

routeP.send(RESULTMESSAGE,ent); }
else {

p.send(QUERYMESSAGE,routeP);

if (message sending is successful) routeP.lookup location(QUERYMESSAGE);

else { delete routeP from p.routetable; p.lookup location(QUERYMESSAGE); } }

The lookup protocol queries the request entities and updates the cached LRU
and MinD nodes in the route table. The algorithm used by the lookup protocol
is as follows:

Step 1 cli.send (QUERYMESSAGE, ent)

Step 2 ent.lookup location(QUERYMESSAGE.DomainName)

Step 3 ent.send(RESULTMESSAGE, cli);

Step 4 if ent.macthNodeInRouteTable(RESULTMESSAGE.ObjectNode.NE.DomainName)

ent.RouteTableUpdate(RESULTMESSAGE.ObjectNode.NE);



VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing 917

else {
if ent.iscachesizeful(LRU)

ent.RouteTableReplacement(RESULTMESSAGE.ObjectNode.NE, LRU);

else ent.RouteTableAdd(RESULTMESSAGE.ObjectNode.NE,LRU);

if ent.iscachesizeful(MinD)

ent.RouteTableReplacement(RESULTMESSAGE.ObjectNode.NE,MinD);

else ent.RouteTableAdd(RESULTMESSAGE.ObjectNode.NE,MinD);}
There exists a simple way to implement the RouteTableReplacement function

for the MinD portion of the route table by sorting route nodes by the Domain
names in alphabetical dictionary order.

4 Maintenance of Virtual Hierarchical Overlay Network

The maintenance of the virtual group tree, initialisation of the virtual tree net-
work, the joining of new nodes, the departure of nodes, and the collapse of
gateway nodes are all issues that need to be dealt with.

When a first node creates a new VIRGO network, it sets its own NE, which
includes Domain Name, IP, GUL(value as 1) and type(value as TREE).

When a new node Pjoin joins, it first finds out the gateway node PgroupToJoin

which shares the maximum prefix length. The next steps are as follows.

1. Pjoin.send(JOINMESSAGE, PgroupT oJoin)

2. PgroupT oJoin.send(JOINMESSAGE, pi ∈ joinGroup);

3. (pi ∈ joinGroup).send(pi.APPROV EMESSAGE, Pjoin);

(pi ∈ joinGroup).RouteTableAdd(Pjoin.NE, TREE);

4. Pjoin.RouteTableAdd(pi ∈ joinGroup.NE,TREE);

5. repeat step 2 to 4 in upper layer groups until replicated nodes no less than n-tuple or root group.

When a node Pdpt leaves the network, it will notify all the members of the
virtual groups from the GUL to the bottom layer. These members will update
their route tables. Each group will select a node to replace this left node’s
gateway role. The main steps in a node’s departure from the network are as
follows.

1. Pdpt.send(LEFTMESSAGE, pi ∈ leftgroup);

2. (pi ∈ leftgroup).RouteTableDelete(Pdpt.NE,TREE);

3. choose preplacenode to replace the left node’s role;

4. repeat step 1 and 3 in lower layer groups until to the bottom layer group of left node Pdpt.

Nodes may fail or depart without warning. Node Pfail is considered to have
failed when node Pnotice fails to communicate with node Pfail. Then node Pnotice

sends the FAILUREMESSAGE to all the members in the groups from Pfail’s
GUL to the bottom layer. And every group chooses a node to replace Pfail’s
gateway role.

1. Pnotice.send(FAILUREMESSAGE, pi ∈ failgroup);

2. (pi ∈ failgroup).RouteTableDelete(Pfail.NE,TREE);

3. choose preplacenode to replace Pfail’s role;

4. repeat step 1 and 3 in lower layer groups until to the bottom layer group of Pfail.



918 L. Huang

5 Analysis of Lookup Protocol

5.1 Connection

Theorem 1. For an N-tuple virtual group tree, for any two nodes there exists
a route path all the time with high probability.

Proof: Suppose the time required to replace a failed or departing gateway node
is Tr seconds, and the failure or departure frequency of a node in Tr is F (p, Tr).
The tree path length of the node to another node is Length, and Pf is the prob-
ability that a route path between two nodes fails to exist for all time. Due to
the Ntuple replicated gateway nodes, we have:

Pf = F (p, Tr)Ntuple ∗ (Length − 1) (1)

If Tr is 60 seconds, and each node fails on average 10 times per day, then
F (p, Tr) = 10*60/(24*60*60) =1/144. And if N-tuple is 6, and Length is 10, so
Pf is (1/144)6 ∗ 9 < 10−11.

This extremely small failure probability only affects performance because
nodes can wait Tr time to route again, or the user may make the request once
more.

5.2 Complexity

If the message is routed along the tree path, then every hop will reduce the
distance from the destination node. Because the route table contains TREE
portion, every hop reduces the distance from destination node by at least one
hop. Therefore,

hops(a,b) and message cost < length(a) + length(b)-1 (2)

time complexity = O(L) (3),

where L is the tree depth.
Because the gateway existing from root layer to bottom layer groups has the

maximum route nodes in the route table, we have:

items of route table = L*N tuple*nvg +Max MinD + Max LRU (4)

space complexity = O(L) (5),

where nvg is number of virtual groups, Max MinD is the maximum number
of MinD records in the route table, and Max LRU is the maximum number of
LRU records in the route table.

Suppose all leaf virtual groups have the same number of nodes, nvg and all
non-leaf virtual groups have the same number of nodes, nvg ∗ n tuple , then
the number of layers L is lognvgN , where N is the total size of the network.
So,



VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing 919

time complexity and message cost = O(log N) (6)

space complexity = O(log N) (7)

If the network has total number 108 nodes and 100 nodes per virtual group,
then the routing hops to the destination is less than 8 ( 2* log100108 = 8 ).

Because VIRGO’s lookup strategy is different to other DHT P2P systems,
partial-query is possible and has the same time complexity by registering the
contents in nodes according to the classification of domain names.

By using a LRU strategy for caching route table, routing to destination node
can be partly reduced to just one hop.

RecordHitRate(RHR): The probability of caching a destination node in the
LRU portion of route table. The number of LRU cached route table records in the
route table is denoted by RLRU . Entuser is the number of users via an entrance
node. N(ent, user, t) is the number of nodes requested by a user via entrance
during the time which covers a whole process from requesting information and
getting the result back.

Due to the LRU replacement strategy, only recent nodes of interest during
a short period need to be cached. Within this short period, N(ent, user, t) is
small. We have the following formula:

RHRent = RLRU/(
⋃Entuser N(ent, user, t))(8)

Supposing Entuser is 100, N(ent, user, t) is 10, and RLRU 500, then RHRent

= 500/100 ∗ 10 = 0.5. This means that half of requests just need one hop.
Because formula (8) has no relation with the whole number of Grid sys-

tem, a large scale system has the same Record Hit Rate. For mobile users, if
we cache the nodes of interest in user’s owner nodes, and after attaching en-
trance node, user first sends request to its owner, then we can obtain the same
formula.

5.3 Load Balance

For P2P systems load balance is a very important issue. Because the load on the
root layer node is the highest message load among all nodes in the network, we
here only analyze the root node’s message load.

We use two strategies to solve the load balance problem. The first is the
LRU caching strategy as in the above section. The chance of routing a message
through the root node is less than 1 − RHRent. The second is the minimum
difference (MinD) replacement strategy. To explain in detail,we first give some
definitions.

MinDRecordHitRate(MinDRHR): The probability of caching the shorter
distance node in a node’s MinD portion of the route table than the nodes in
its TREE route table. The number of MinD cached records in the route table is
denoted by RMinD. Pmsg(user, t): The probability of the user’s sending requested
message at time t, which follows a Poisson distribution, is small. So, we have
formula 9.



920 L. Huang

Rootmsg(t) = Pmsg(user, t)∗Nuser∗(1−RHRent)∗(1−MinDRHR)L−1/n tuple(9),

where NUser is the total numer of users in the Grid system.
Supposing RHRent =0.2, MinDRHR=0.99, NUserent = 1010 , the number

of nodes is 108,N tuple is 6, nvg is 100,and Pmsg(user, t)= 0.00001, then L =
log100(108) = 4. So, Rootmsg(t) = 0.00001 ∗ 1010 ∗ 0.8 ∗ 0.013/6 = 0.013.

How many of RMinD are needed to make MinDRHR larger than 0.99 ? If
there is route A in the route table which shares the first two prefixes with the
destination node, then the next hop will bypass the nodes in the root layer
and go directly to route A according to the selectRouteNodeFromRouteTable
function and Figure 2. If the route table covers all of the first two prefixes in
domain name space, then the request can route to a node in the cached MinD
portion which has shorter distance than the nodes in the TREE portion of the
route table. That is, the lookup protocol will bypass the root layer nodes for all
destination nodes. So, the cache size of RMinD only needs to be equal to the
number of second layer virtual groups. Because the route nodes with different
first two prefixes of domain names are randomly chosen from the huge number
of nodes, there are no specific nodes with high traffic load. As Figure 1 shows,
the MinD portions of the route tables in node Science.Biology.Botany.BT1 and
Science.Biology.Botany.BT3 include Science.Computer.Network.Net3 and Sci-
ence.Computer.AI.AI1, respectively. Therefore, BT1 and BT3 will locate the
destination node AI3 by bypassing the root layer nodes. BT1 will directly route
to Net3, whereas BT3 will route to AI1. So there are no specific nodes with high
traffic load.

6 Conclusion

This paper presents a virtual hierarchical overlay network – VIRGO, that merges
an n-tuple replicated virtual tree structured network and a random cached un-
structured network by least-recently used (LRU)and minimum difference(MinD)
replacement strategies. It is self-organizing and decentralized, with an effective
lookup protocol for routing messages and a load balanced network. It retians
the advantage of partial-match querying and the robustness of unstructured
P2P networks, and the advantage of effective routing and guarantee search of
structured P2P. The time complexity, space complexity, and message-cost for
VIRGO are O(logN) (N being the total number of nodes in the network). It
can also be used in fields such as Distributed Domain Name System, distributed
search engines, and file shares.

(The author thanks prof. David W. Walker for modifying the paper)

References

1. freenet,2004. http://freenet.sourceforge.net/
2. Rowstron, A. and Druschel, P., ”Pastry:Scalable, distributed object location and

routing for large-scale peer-to-pear systems”, In Proceedings of IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware), 2001



VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing 921

3. Ratnasamy,S., Francis, P., Handley, K., Karp,R. and Shenker, S. , ”A scalable
content-addressable network”, In Proceedings of ACM SIGCOMM 2001

4. Stoica,I. Morris,R., Karger,D., Kaashoek,F.M. and Balakrishnan, H., ”Chord: a scal-
able peer-to-peer lookup service for internet applications”, In Proceedings of ACM
SIGCOMM2001

5. Foster,I. and Kesselman,C., ”Globus: A Metacomputing Infrastructure Toolkit”,
International Journal of Supercomputer Applications, 11(2): 115-128, 1997

6. Web service, 2004. http://www.w3.org/TR/ws-arch/
7. Iamnitchi, A., and Foster, I., ”On Fully Decentralized Resource Discovery in Grid

Environments”, International Workshop on Grid Computing 2001
8. jxta, 2004 http://www.jxta.org/
9. Huang Lican, Wu Zhaohui and Pan Yunhe, ”Virtual and Dynamic Hierarchical

Architecture for e-Science Grid”, International Journal of High Performance Com-
puting Applications, 17(3):329-347, 2003



A Monitoring Architecture for Control Grids

Alexandru Iosup1, Nicolae Ţãpuş1,�, and Stéphane Vialle2,��

1 Politehnica University of Bucharest,
Splaiul Independentei 313, Bucharest, Romania

{AIosup, NTapus}@cs.pub.ro,
2 Supélec, 2 Rue Edouard Belin, 57070 Metz, France

Stephane.Vialle@metz.supelec.fr

Abstract. Monitoring systems are nowadays ubiquitous in complex en-
vironments, such as Grids. Their use is fundamental for performance
evaluation, problem spotting, advanced debugging and per-use account-
ing. Building such systems raises challenging issues, like data gather-
ing from Grid components, low intrusiveness, ease of use, adaptive data
visualization, fault-tolerance and self-maintenance. This paper presents
a new layered architecture, named Toytle, specifically designed to ad-
dress these issues in the context of control Grids. All their components,
from computing and network resources to complete physical processes
with soft time constraints, can be monitored with Toytle. The architec-
ture’s layers, namely the distributed core, the hierarchical connections
and the local monitors, have been designed to ensure scalability, high-
speed sampling and efficient dealing with large data bursts. The future
Toytle implementation will adapt existing tools and also create entirely
new modules.

Keywords: control Grids, monitoring architecture.

1 Introduction

From the traditional computational and data Grids to the recent peer-to-peer
and semantic Grids [2], there are many types of Grids and Grid applications that
one can see nowadays. One of the most interesting examples is the emerging of
control Grids, a special case of service grids [8], offering users the ability to
control remote resources, including applications, computers and non-standard
physical devices, in standardized ways. In general, control Grids serve as in-
frastructure for interdisciplinary projects, and are often used for applications
adapted from the cluster and multicluster environments [16, 6]. As possible sce-
narios we mention mobile robotics applications [12] and intrusion detection sen-
sors management, from the physical processes having soft time constraints field,
and low-cost local collaborative environments [3], from government/academia.

� This work was partially supported by the RoGrid national programme [15].
�� This work was partially supported by the ACI-GRID programme.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 922–931, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



923

One of the perennial activities for deploying and maintaining complex envi-
ronments is monitoring. In particular, monitoring control Grids is a demanding
task [10]. First, the nature of the resources can be truly heterogeneous, from
computing and storing resources to mobile devices and even mobile robots. Sec-
ond, given the applications often encountered in control Grids, the locality of
available resources ranges from constrained (e.g. clusters) to mid-range (e.g.
inter-country). Finally, all these resources must be put together in concerted
applications, which must be monitored in full. Techniques for monitoring large
cluster environments already exist [9] and methods for monitoring computa-
tional Grids have already been developed [18]. Yet, it has not been established
whether any of these two, or a combination, can be used in the case of control
Grids, especially with physical processes having soft time constraints.

This work addresses the issues related to monitoring control Grids, with
a threefold contribution. First, it identifies the requirements of control Grids
monitoring (see Sect.2). Second, it introduces an architecture that focuses on the
identified requirements (see Sect.3). Third, it emphasizes a number of research
issues related to the architecture and concerning distributed monitoring data
aggregation, storage and retrieval (see Sect.4). We also put our results in the
perspective of related work (see Sect.5) and present our conclusions (see Sect.6).

2 Monitoring Control Grids

Monitoring inGrid environments typically results in dealing with Grid-awareness,
scalability and standards-based communication [4]. In addition, ensuring low in-
trusiveness on the monitored machines, presenting relevant data in meaningful
ways, and guaranteeing degrees of fault-tolerance, should also be enforced.

Monitoring control Grids raises additional problems, like:

• gathering data from all Grid components (network, hosts and devices, mid-
dleware and applications),

• dealing with large ”bursts” of information, especially for sensors fields, where
data acquisition is performed simultaneously and periodically,

• performing high-speed sampling, as non-standard devices must be monitored
in full, with many parameters being measured frequently,

• keeping the monitoring system lowly-intrusive, as the monitored resources
may be sensitive to perturbations.

Even more, as control Grids are, in general, interdisciplinary projects, with
most of the people involved having low technical skills, if some at all, the instal-
lation and management of monitoring tools are extremely important.

3 A Layered Architecture for Monitoring Control Grids

We have designed a new monitoring architecture, named Toytle, which addresses
the main issues of monitoring control Grids and their respective applications (e.g.
physical processes with soft time constraints).

A Monitoring Architecture for Control Grids



924 A. Iosup, N. Ţãpuş, and S. Vialle

Client

ML

ML

ML

Client

Server

sensor

sensor

sensor

M

M

M LM

LM

M

M
M

M

LM

ML

ML

Clients

Client

Server
sensor
sensor

Servers w/
sensors

Monitoring data

Distributed 
Core

Hierarchical 
Connections

Local 
Monitors

Fig. 1. The Toytle monitoring architecture components: distributed core, hierarchical
connections and local monitors

3.1 Overview

The Toytle architecture is structured in three layers (see fig. 1):

1. Distributed core layer - a complex core with near cross-bar connections
between nodes that provides high-level monitoring services to the user;

2. Hierarchical connections layer - a fairly light hierarchical structure that
connects the local monitors to the distributed core, through data federation
and piping;

3. Local monitors layer - a very light and lowly-intrusive set of monitors (i.e.
not just sensors) that gather data from locally available sensors and perform
some simple filtering on it.

The three layers cooperate for seamless monitoring services, in a hybrid, near
cross-bar core/N-level hierarchical connections structure. By near cross-bar we
mean that nodes inside the core have links to each other, resembling to some
extent to a full cross-bar interconnection. By N-level hierarchical connections we
mean the nodes that are not part of the core form a tree-like structure, with as
many levels as needed.

It can be easily noticed that this architecture allows gathering data from all
Grid layers data gathering. The hierarchical connections lead to a highly scal-
able approach; the data obtained from multiple large geographical areas (thus,
multiple hierarchical trees) can be gathered in a distributed core, with ease of
access added together with some degree of fault tolerance. The local monitors
are light-weigth and correspond to the requirements of control Grids.

3.2 The Distributed Core Layer

The distributed monitoring core deals with issues like data gathering, storage,
replication and visualization. Having a horizontal structure (see fig.2), with nodes



925

1 2

n

Hierarchical connections
and local monitors

4

Hierarchical connections
and local monitors

3

Hierarchical connections
and local monitors

distributed core

Consumer
Directory
Service

dynamic link
creation

Fig. 2. The Toytle architecture distributed core layer. The nodes within the core can
maintain permanent contact (thick connection lines between nodes) or just be able to
communicate with one another (thin connection lines between nodes)

distributed according to geographical or problem-wise needs, this module tackles
issues like adaptive system balancing, fault-tolerance, self-maintenance, Grid
data access and user control.

The monitoring core nodes are able to transparently balance the monitoring
system use. First, when a user tries to connect to a core node, given that the
contacted node is too crowded, it will be automatically relocated to another core
node. Second, data summarization should be performed by the least charged core
node that has access to that data. For both these tasks, the core should also be
self-monitoring.

Fault-tolerance is ensured through data replication. Data storage is performed
per-node or per-system in one or more repositories. Recent data is stored in
cache-like memory buffers, for faster access. Recent data replication is performed
transparently for the user between core nodes. Data visualization allows for both
resource- and application- oriented views. The monitoring core is self-maintained,
so that node insertion and failure are dealt with transparently to the user. A
link failure between two core nodes (see the cross in fig.2) can be transparently
replaced by another link creation (see the link between nodes 1 and 2 in fig.2).

Also, in the event that the core node that was maintaining the connection
with a lower-layer node (a root monitor from the hierarchical connections layer)
falls, the core should transparently relocate the now broken connection to an-
other core node. In other words, as long as the core contains at least one node,
data is available to the users, and as long as several nodes are active at the core
level, data federation is optimized for speed issues.

User control of the monitoring system is done through the specification of
monitoring levels for all four categories of (control) Grids monitoring data: host,
network, middleware and user applications. Every characteristic monitored by

A Monitoring Architecture for Control Grids



926 A. Iosup, N. Ţãpuş, and S. Vialle

the monitoring system has a type and a monitoring level associated with it.
Once the monitoring level for the characteristic’s type has been surpassed, that
characteristic becomes monitored and its data starts reaching the core, thus
being available to the user. The higher the monitoring level is, the larger the
size of data gathered and summarized at the core level gets.

Since the number of core nodes typically does not exceed 1− 2% of the total
number of resources in the monitored Grids, the near cross-bar interconnection
at this level does not raise scalability issues. The amount of extra data space
required for replication depends on the replication strategy (see Sect. 4, data
consistency and data replication paragraph) and on the filtering options em-
ployed by the user. The low number of core nodes makes this extra-resource
usage affordable. The fact that the core nodes are not light does not interfere
with the low intrusiveness requirement of control Grids, as the core nodes do
not actually run on the monitored system’s machines.

Finally, in order to comply with the GGF GMA (e.g. consumer / producer /
directory architecture), information about the monitoring core’s data type and
actual data location can be obtained from a monitoring directory. Also, standard
data representations, both with size reduction (e.g. XDR [5]) and scheme self-
definition (e.g. XML) targets, are offered.

3.3 The Hierarchical Connections

The hierarchical connections layer of the monitoring system performs data gath-
ering and summarizing. It is also responsible for ensuring hierarchical monitoring
connections, while keeping the monitored system’s load at a minimum, and for
transmitting changes in monitoring levels to the local monitors.

The vertical connection structure (see fig.3) allows for efficient data-
summarization, aiming to reduce the load of the monitoring system. Each mon-
itoring hierarchy top node is linked with one or more monitoring core nodes.
As long as at least one of its nodes is active, the hierarchical connections layer
continues to perform as a link between the core and the local monitors. This
fault tolerance target is designed to be performed transparently to the user.

Temporary data recovery, in the context of low intrusiveness, is offered through
backups on fixed-size (e.g. using a round-robin storage strategy) databases. As
for the core layer, standard data representations, both with size reduction and
scheme self-definition targets, are offered at this layer.

3.4 The Local Monitors

The local monitors layer performs all the data acquisition and simple on-the-fly
filtering. At this level, locally-close monitors are connected in horizontal struc-
tures (see fig.4), with important benefits like node insertion and failure being
dealt with transparently to the user. Data from all of the Grid components,
network, hosts, middleware and applications, can be acquired at this level.

Fault-tolerance is ensured through data advertisements. Each local monitor
advertises its data and sends it to other local monitors, so that exact replicas of
that data can be temporarily found on other places than the origin, at any time.



927

Consumer

Local Monitor

Monitor

Distributed core layer

Core node

Local monitors layer

Local Monitor

Monitor Monitor

Monitor

Monitor Monitor

Fig. 3. The Toytle architecture hierarchical connections layer. Monitors form an N-level
hierarchical structure. Monitors can store data in local databases. Note that consumers
cannot directly access nodes at this level

Simple filtering should be performed at this level. By simple we mean filtering
characteristics with thresholds and data correlation. Filtering with thresholds is
done by setting certain limits, called thresholds, such that if a characteristic
goes over the threshold, it gets immediately reported. Filtering by data corre-
lation means not only defining thresholds for any given characteristic, but also
combinations of thresholds for combinations of characteristics. For example, the
condition could be that CPU load is less than 50% and available RAM is under
10% of the total RAM. Filtering by any of the these means should be done on all
Grid data targets: network, hosts, middleware and especially user applications.

Consumer

Sensor

Distributed core layer

Core node

Local monitors layer

Sensor

Local Monitor

SensorSensor

Monitor

Filter

Fig. 4. The Toytle architecture local monitors layer. Local monitors and sensors form
a 1-level hierarchical structure. Note that consumers cannot directly access nodes at
this level

A Monitoring Architecture for Control Grids



928 A. Iosup, N. Ţãpuş, and S. Vialle

Two different data pruning methods are used at this level: derived data prun-
ing and monitoring level pruning. Derived data pruning means that data that
can be derived from other available data is not transmitted trough the hierarchi-
cal connections layer. Pruning according to a specified monitoring level means
that each characteristic has a verbose level and must be acquired once the mon-
itoring level reaches it. In any case, the low-intrusiveness requirement is that
generated traffic for data transfers should be less than 1% of the theoretical
bandwidth of the link (e.g. 0.1Mbps for a 10Mbps Ethernet connection, 1Mbps
for a 100Mbps Fast Ethernet connection, and 10Mbps for a 1000Mbps Gigabit
Ethernet connection).

The sampling rate of this level must be of at least 10 samples/second. This
targeted sample rate has been derived from the normal local area network round-
trip time (the time needed for a single packet to get from a source to a destination
and back), which is nowadays just below 0.1s. A recommended sample rate
should be, however, around 20 samples/second (twice the minimum rate).

This layer also sends data to the upper layer in standard data formats, like
XDR and XML. We emphasize that a compact and portable data transfer stan-
dard, like XDR, must be used at this level, because of the sheer size of the
monitoring data.

3.5 Towards Implementing the Monitoring Architecture

Our first attempts of implementing the monitoring architecture focused on find-
ing existing open-source monitoring tools, which may be minimally modified in
order to integrate within Toytle. This approach allows us to focus on the novel
aspects of the Toytle architecture, instead of dealing with already solved issues.

SNMP v2(c)/3 [13] is a flat structure standard for monitoring, which can deal
with a large number of network device types, thus being an obvious candidate
for the local monitors layer. Unfortunately, our tests on NET-SNMP, a renowned
SNMP package, indicate that both its response latency and its generated traffic
are too high for our mission.

Ganglia [9] has a hierarchical, tree-like, structure and is well-suited for high-
speed data aggregation. The mechanisms employed by Ganglia for fault-tolerance,
namely auto-managed multicast channel and periodic heart-beat signal, cover
very well our requirements in these areas, at the local monitors level. Our tests
show that Ganglia should be improved with adequate user data definition, a com-
pressed data exchange protocol within the tree, fault-tolerance, and enhanced
data filtering. Therefore, Ganglia is a very good candidate for future integration
at the hierarchical connections and local monitors layers.

4 Research Issues

In this section we identify a number of open research issues concerning the
distributed monitoring data aggregation, storage and retrieval, all in the context
of the Toytle monitoring architecture.



929

Core Connectivity Factor Impact. At the extremes, the core can have either ring
or full-mesh topologies. In-between, peer-to-peer connectivity and data lookup
strategies may be applied [14], to ensure certain performance guarantees. There-
fore, the performance of the system with various core topologies remains to be
established.

Data Consistency and Data Replication. In order to ensure geographical and
administrative scalability, several data consistency models can be used for the
core layer. Beside the traditional strict consistency, the conit-based continuous
consistency model [20] seems to be a promising alternative. Further issues re-
garding replica granularity, replica placement, and user characteristics must be
studied for the devise of an adequate data replication strategy.

Data Query Language. The information stored by the monitoring service may
be retrieved using targeted queries. It is debatable whether the large amounts of
data, with bursty behavior, should be accessible through a standard language,
like SQL, or through a customized one.

Adaptive Caching. The low/middle layers of the proposed monitoring architec-
ture deal with repeated data transfers. Is storing data within a fixed-size (round-
robin) table enough, or should there be an option for dynamically-sized disk
(scratch) tables? Should there be a memory caching before writing to disk? We
believe that such questions must find their answers in the context of real-world
control Grids applications.

5 Related Work

There has been extensive work within the field of monitoring parallel and dis-
tributed systems. Recently, much interest has been put into monitoring Grid
systems. A good survey on Grid monitoring can be found in [4]. However, we
claim that nowadays monitoring systems cannot address in full monitoring con-
trol Grids and applications running in such environments.

Two monitoring systems are very close to our view on the monitoring core.
First, Astrolabe [17] addresses peer-to-peer distributed information manage-
ment, with special focus on scalability, but uses full-scale gossiping (everyone
gets to know everything), which may render the system impractical for real-time
data aggregation. Second, MonALISA [11] has a flat structure and is well suited
for data visualization and high-speed sampling, but lacks core connections and
is not open-source, both of which issues are vital for our purposes.

Systems like DataGrid’s GRM/Prove [7] and NetLogger lack a lowly intru-
sive multi-level monitoring hierarchy. The NWS [19] system cannot be used with
”bursty” applications and is not suitable for fast changing data sets. Systems
like R-GMA and MDS are too resource-demanding and/or slow-paced to be

1 NetLogger, http://www-didc.lbl.gov/NetLogger
2 R-GMA, http://www.r-gma.org
3 Monitoring and Discovery Service, http://www.globus.org/mds/

1

2 3

A Monitoring Architecture for Control Grids



930 A. Iosup, N. Ţãpuş, and S. Vialle

effective for the case of control Grids. CrossGrid’s OCM-G [1] leaves up to the
user to collect the data and share it between the nodes that request it, thus being
impractical for control Grids. The GrADS Autopilot [18] toolkit is targeted at
automatic performance monitoring and applications steering in the context of
computational Grids, thus having a different focus than ours.

6 Conclusions and Future Work

This paper has presented a layered monitoring architecture, named Toytle, specif-
ically designed for addressing the special requirements of control Grids. The ar-
chitecture is a hybrid near cross-bar core/N-level hierarchical connections mon-
itoring architecture, that aims at satisfying the most important requirements of
control Grids. High speed data gathering and federation, scalability, program
lightness (in terms of monitored system’s resource consumption), low intrusive-
ness (in terms of monitored system’s performance degradation) and easy deploy-
ment are targeted by this architecture. The architecture’s three layers, namely
the distributed core, the hierarchical connections and the local monitors, ensure
a good degree of modularity, while still offering the advantages of architectural
compactness.

For the future, we plan to develop new modules for the core layer, as well as
adapting Ganglia to the hierarchical connections and the local monitors layers.
This will lead to a complete implementation of Toytle, and will give us a good
platform for addressing the research issues presented in Sect.4. Also, testing
the complete implementation of Toytle against an existing Grid mobile robotics
application will help identifying possible improvements to this monitoring
architecture.

References

[1] B. Balis, M. Bubak, W. Furnika, T. Szepieniec, R. Wissmueller, and M. Radecki.
Monitoring Grid applications with Grid-enabled OMIS monitor. In Proceedings
of the First European Grids Conference, AxGrid 2003, Santiago de Compostela,
Spain, pages 230–239. Springer Verlag, February 2003.

[2] F. Berman, A. Hey, and G. Fox. Grid Computing: Making The Global Infrastruc-
ture a Reality. Wiley Publishing House, 2003. ISBN: 0-470-85319-0.

[3] G. Fox. Experience with distance education 1998-2003. Collection of resc.,
http://grids.ucs.indiana.edu/ptliupages/publications/disted/.

[4] M. Gerndt, R. Wismueller, and Z. Balaton et al. Performance tools for the grid:
State of the art and future. Technical report, APART WP3, 2004.

[5] Network Working Group. eXternal Data Representation (XDR), August 1995.
IETF RFC 1832.

[6] A. Iosup and S. Vialle. Mobile robot navigation and self-localization system:
Parallel and distributed experiments. In The Dagstuhl Workshop on Plan-Based
Control of Robotic Agents, Dagstuhl, Germany, June 2003.

[7] P. Kacsuk. Parallel program development and execution in the grid. In IEEE
International. PARELEC’02, Warszaw, Poland, pages 131–141, September 2002.



931

[8] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of Grid
resource management systems for distributed computing. Software Practice and
Experience, 32(2):135–164, February 2002.

[9] M. Massie, B. Chun, and D. Culler. The Ganglia distributed monitoring system:
Design, implementation, and experience. Parallel Computing, 30(7):817–840, July
2004.

[10] Zs. Nemeth, G. Gombas, and Z. Balaton. Performance evaluation on Grids: Di-
rections, issues, and open problems. In Proceedings of the 12th Euromicro Confer-
ence on Parallel, Distributed and Network-Based Processing (PDP’04), A Coruna,
Spain, pages 290–297. IEEE Computer Society Press, February 2004.

[11] H.B. Newman, I.C. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu. MonALISA: A
distributed monitoring service architecture. In CHEP 2003, La Jola, California,
March 2003.

[12] F. Sabatier, A. De Vivo, and S. Vialle. Grid programming for distributed remote
robot control. International Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE-2004), June 2004. (to appear).

[13] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2 (3rd Ed.). Wiley
Publishing House, 1998. ISBN: 0-201-48534-6.

[14] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, and M.F. Kaashoek. CHORD:
A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM
Transactions on Networking, 11:17–32, 2003.

[15] N. Tapus, V. Cristea, M. Burcea, and V. Staicu. RoGrid towards a Romanian
computational Grid. In Proceedings of the 14th International Conference on Con-
trol Systems and Computer Science (CSCS14), Romania, July 2004.

[16] N. Tapus, E. Slusanschi, and T. Popescu. Distributed rendering engine. In Proc.
of the NATO Advanced Research Workshop on Adv. Environments, Tools, and
Applications for Cluster Computing, pages 207–215. Springer-Verlag, 2002.

[17] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining.
ACM Transactions on Computer Systems, 21(2):164–206, May 2003.

[18] J.S. Vetter and D.A. Reed. Real-time performance monitoring, adaptive control,
and interctive steering of computational grids. The International Journal of High-
Performance Computing Applications, 14:357–366, Winter 2000.

[19] R. Wolski. Experiences with predicting resource performance on-line in com-
putational grid settings. ACM SIGMETRICS Performance Evaluation Review,
30(4):41–49, 2003.

[20] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous con-
sistency model for replicated services. ACM Transactions on Computer Systems,
20(3):239–282, 2002.

A Monitoring Architecture for Control Grids



Mobile-to-Grid Middleware: Bridging the Gap
Between Mobile and Grid Environments

Hassan Jameel1, Umar Kalim1, Ali Sajjad1,
Sungyoung Lee1, and Taewoong Jeon2

1 Department of Computer Engineering, Kyung Hee University,
1, Sochen-ri, Giheung-eup, Yongin-si, Gyeonggi-do, 449-701, South Korea

{hassan, umar, ali, sylee}@oslab.khu.ac.kr
2 Department of Computer & Information Science, Korea University, Korea

jeon@selab.korea.ac.kr

Abstract. Currently, access to Grid services is limited to resourceful
devices such as desktop PCs but most mobile devices (with wireless net-
work connections) cannot access the Grid network directly because of
their resource limitations. Yet, extending the potential of the Grid to a
wider audience promises increase in flexible usage and productivity. In
this paper we present a middleware architecture1 that addresses the is-
sues of job delegation to a Grid service, support for offline processing, se-
cure communication, interaction with heterogeneous mobile devices and
presentation of results formatted in accordance with the device specifica-
tion. This is achieved by outsourcing the resource intensive tasks from the
mobile device to the middleware. We also demonstrate through formal
modeling using Petri nets that the addition of such a middleware causes
minimum overhead and the benefits obtained outweigh this overhead.

1 Introduction

Grid [18] computing permits participating entities connected via networks to
dynamically share their resources. Extending this potential of the Grid to a
wider audience, promises increase in flexibility and productivity, particularly for
the users of mobile devices who are the prospective consumers of this technology.

Consider a teacher who wants to augment his lecture with a heavy simulation
test. He uses his PDA to access a Grid service and submit the request. The service
after executing the request compiles the results which are then distributed to
the mobile devices of the registered students of that course. Similarly a doctor
on the way to see his patient, requests a Grid medical service to analyze the
MRI or CT scans of the patient from his mobile device. By the time he meets
his patient; the results would be compiled and presented on his mobile device to
facilitate the treatment.

1 This research work has been supported in part by the Korea Ministry of Information
and Communications’ ITRC program in joint collaboration with Information and
Communications University, Korea.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 932–941, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Mobile-to-Grid Middleware: Bridging the Gap 933

The clients that interact with the Grid middleware to accomplish a task
are required to use client end libraries. These libraries are relatively resource
intensive considering the limitations of mobile devices. Conceiving a distributed
system that uses these libraries directly will not be a practical mobile system
because of the resource demands.

Moreover, most of the conventional distributed applications are developed
with the assumption that the end-systems possess sufficient resources for the
task at hand and the communication infrastructure is reliable. For the same
reason, the middleware technologies for such distributed systems usually deal
with issues such as heterogeneity and distribution (hence allowing the developer
to focus his efforts on the functionality rather than the distribution).

The issues that primarily affect the design of a middleware for mobile sys-
tems are: mobile devices, network connection, and mobility. Firstly, due to the
tremendous progress in development of mobile devices, a wide variety of devices
are available which vary from one to another in terms of resource availability.
Secondly, in mobile systems, network connections generally have limited band-
width, high error rate and frequent disconnections due to power limitations,
available communication spectrum and user mobility. Lastly, mobile clients usu-
ally interact with various networks, services, and security policies as they move
from one place to another.

Considering the assumptions and characteristics of conventional middleware
technologies it is quite evident that they are not designed to support mobile
systems adequately. Instead, they aim at a static execution platform (where the
host location is fixed) and the network bandwidth does not vary. Hence, given
the highly variable computing environment of mobile systems, it is mandatory
that modern middleware systems are designed that can support the requirements
of mobile systems such as dynamic reconfiguration and asynchronous communi-
cation.

In this paper:

– We present an architecture for a middleware (Section 2) enabling heteroge-
neous mobile devices access to Grid services by providing support for dele-
gation of jobs to the Grid, secure communication between the client and the
Grid, off-line processing, adaptation to network connectivity issues and pre-
sentation of results in a form that is in keeping with the resources available
at the client device.

– We demonstrate (Section 3) that the addition of such a middleware causes
minimum overhead and the benefits obtained by it outweigh this overhead.

2 Architecture Details

The middleware service is exposed as a web service to the client applications.
The components of the middleware service (as shown in Figure 1) are discussed
succinctly as follows:



934 H. Jameel et al.

Fig. 1. Deployment model and the architecture

2.1 Discovery Service

The discovery of the middleware by mobile devices is managed by employing a
UDDI registry [6], [7]. Once the middleware service is deployed and registered,
other applications/devices would be able to discover and invoke it.

2.2 Communication Interface with the Client Application

The interface advertised to the client application is the communication layer be-
tween the mobile device and the middleware. This layer enables the middleware
to operate as a web service and communicate via the SOAP framework [8].

Adaptation to Disconnected Operations. The advertisement of the mobile-
to-Grid middleware as a web service permits the development of the architecture
in a manner that does not make it mandatory for the client application to remain
connected to the middleware at all times while the request is being served.

We focus on providing software support for offline processing at the client de-
vice. For this we consider two kinds of disconnections; intentional disconnection,



Mobile-to-Grid Middleware: Bridging the Gap 935

where the user decides to discontinue the wireless connection and unintentional
disconnection, which might occur due to variation in bandwidth, noise, lack of
power etc. This is made possible by pre-fetching information or meta-data only
from the middleware service. This facilitates in locally serving the client ap-
plication at the device. However, requests that would result in updates at the
middleware service are logged (so that they may be executed upon reconnection).

To establish the mode of operation for the client application, a connection
monitor is used to determine the network bandwidth and consequently the con-
nection state (connected or disconnected). Moreover, during execution, check-
points are maintained at the client and the middleware in order to optimize
reintegration after disconnection.

2.3 Communication Interface with the Grid

The communication interface with the Grid provides access to the Grid services
by creating wrappers for the API advertised by the Grid. These wrappers in-
clude standard Grid protocols such as GRAM [9], MDS [10], GSI [11] etc which
are mandatory for any client application trying to communicate with the Grid
services. This enables the middleware to communicate with the Grid, in order
to accomplish the job assigned by the client.

2.4 Broker Service

The broker service deals with initiating the job request and steering it on behalf
of the client application. Firstly the client application places a request for a job
submission. After determining the availability of the Grid service and authoriza-
tion of the client, the middleware downloads the code (from the mobile device
or from a location specified by the client e.g. an FTP/web server). Once the
code is available, the broker service communicates with Grid’s GRAM service
to delegate the job.

A status monitor service (a subset of the broker service) interacts with GRAM
to determine the status of the job. The status monitor service then communicates
with the Knowledge Management module to store the results. The mobile client
may reconnect and ask for the (intermediate/final) results of its job from the
status monitor service.

2.5 Knowledge Management

The knowledge management layer of the system is used to manage the relevant
information regarding both the client and Grid applications and services. The
main function of this layer is to connect the client and Grid seamlessly as well
as to introduce the capability of taking intelligent decisions such as downscaling
the results according to device profile, based on the information available to the
system.



936 H. Jameel et al.

2.6 Information Service

This module interacts with the wrapper of the GLOBUS toolkit’s API for in-
formation services (MDS [10]). It facilitates the client application by managing
the process of determining which services and resources are available in the Grid
and also monitors resources such as CPU load, free memory etc.

2.7 Security

The Grid Security Infrastructure is based on public key scheme mainly deployed
using the RSA algorithm [12]. However key sizes in the RSA scheme are large
and thus computationally heavy on handheld devices such as PDA’s, mobile
phone’s, smart phones etc [13]. We employ the Web Services Security Model [14]
to provide secure mobile access to the Grid. This web services model supports
multiple cryptographic technologies.

The Elliptic Curve Cryptography (ECC) based public key scheme can be used
in conjunction with Advanced Encryption Standard(AES) for mobile access to
Grid which provide the same level of security as RSA and yet the key sizes are
a lot smaller [13].

Communication between the user and middleware is based on security policies
specified in the user profile. According to this policy different levels of security
can be used e.g. some users might just require authentication, and need not want
privacy or integrity of messages.

3 Petri Net Model of the System and Its Analysis

In this section we model the interaction between the mobile client and the mobile
grid middleware service. Our goal is to estimate the delay caused by the com-
munication between the client and middleware service as well as the additional
processing done by it. This delay should be within acceptable limits so that the
mobile client user is not at a disadvantage as compared to a normal Grid user as
far as time is concerned. We use the time to completion of the whole process as
an index of performance of our middleware communication architecture. We keep
the time taken by Grid processing constant as our results will be bench marked
against it. The communication is modeled by using non-Markovian Stochastic
Petri nets [2] [3]. We follow an approach similar to the work done by Antonio
Puliafito et al [1].

To make the Petri Net model in Figure 2, we modeled the following sequence
of operations between the middleware and mobile client:

A mobile client first sends a request(send req uddi) to a UDDI registry to dis-
cover an existing middleware service. The UDDI registry returns(send resp uddi)
the URI(Uniform Resource Indicator) of the middleware service to the mobile
client. The client then sends a request(send req) to the middleware service which
includes a URI of its ontology file and a URI of the code to be executed on its
behalf. The middleware retrieves the code (retrieve code) and the ontology file
(retrieve ont) at the same time and then executes the code (code exec). The



Mobile-to-Grid Middleware: Bridging the Gap 937

code execution includes requests to the Grid, and thus the rest of the job is
done by the Grid. We just simulate it as an immediate transition , as this time
would be the same as in the case of a normal Grid user. Upon receiving the
results, the middleware scales down the results accord-ing to the device pro-
file in the ontology file (result downscaling) and sends the results to the mobile
device (send result). This concludes the communication session. Initially , the
place Ready contains a token and at the end of the session the token is in place
(end session).

Fig. 2. Petri net model; communication between the client and the middleware

3.1 Parameters Used in the Petri Net Model

In order to make our model simple, we do not consider secure communication
as well as disconnected operation. To evaluate the Petri Net model in Figure 2,
we used the following numerical parameters which are consistent with the ones
used in [1]. We give a description of the parameters as follows:

Size of a request (Dreq): The mobile client sends two types of requests, one
to the UDDI (service type request) and one to the middleware service (URIs for
the ontology and code files) . The size of these requests can safely be assumed
to be small.

Size of the reply (Dmin,Dmax): This depends upon the type of data requested
by the mobile client which could be merely a small numerical value (as large as
Dreq) or a little bigger image file. So we have two extremes of data sizes.

Size of the ontology (Dont) and code (Dcode): The ontology file is an XML
document and we can safely assume its size to be ≤ 10 KB.

Mean processing time for downscaling the results (1/λscale): We fix this
time as an exponentially distributed random time whose exact value depends
upon the specific application.

Throughput of the communication network (Thlow,Thhigh): We assume
two kinds of transmission rates in the network. The wireless network has been



938 H. Jameel et al.

assumed to have lower throughput (Thlow), where as the Grid and the mid-
dleware service are assumed to be connected with high speed link indicated by
(Thhigh).

We use the above mentioned parameters to describe the distributions associ-
ated with the transitions in the Petri Net model, depicted in Table 1.

Table 1. Parameters used in the Petri Net model

Transition Name Type Expression

send req uddi Deterministic (Dreq/Thlow)
send resp uddi Deterministic (Dmin/Thlow)

send req Deterministic (Dreq/Thlow)
retrieve ont Deterministic (Dont/Thhigh)
retrieve code Deterministic (Dcode/Thhigh)

code exec Immediate -
results downscaling Exponential (λscale)

send result Uniform [Dmin,Dmax]/Thlow

3.2 Numerical Evaluation of the Petri Net

We assigned the following numerical values to these parameters as shown in
Table 2 for the evaluation of the Petri Net. These values are consistent with the
ones used by [1].

Table 2. Numerical Values used for the Parameters

Parameter Description Value

Dreq Dimension of client request 1 KB
Dmin Minimum amount of Data 1 KB
Dmax Maximum amount of Data 30 KB
Dont Dimension of ontology 10 KB
Dcode Dimension of code 40 KB
λscale Results scale down rate 4 req/s
Thhigh Throughput of wired network 1 Mbps

The firing rate of the results downscaling transition has been fixed to λscale=4
requests/sec. This factor is not only application dependent but also dependent on
the computational power of the computer containing the middleware. However
a value of 4 req/sec is a reasonable approximation as used in [1]. We assume
a high speed link in the wired network as it constitutes the Grid network and
assign a value of Thhigh=1 Mbps.

Based on these values, we evaluated the Petri Net described in Figure 2 by
using the WebSPN [4] [5] tool with which we can associate exponential as well as
non-exponential firing rates to the transitions. Figure 3a shows a graph of time



Mobile-to-Grid Middleware: Bridging the Gap 939

to completion (t)versus the throughput (Thlow) of the wireless network ranging
from 10Kbps to 1Mbps. The values of the transitions are shown in Table 3.
The values for the send result transition has been depicted as [a,b] to show the
minimum (a) and maximum (b) value of the uniform distribution.

Table 3. Numerical Values used for the Parameters

Thlow send send send req retrieve retrieve results send
req uddi resp uddi send req ont code downscaling result

K bits/sec sec sec sec sec sec req/sec sec

10 0.8 0.8 0.8 0.08 0.32 4 [0.4, 24.0]
20 0.4 0.4 0.4 0.08 0.32 4 [0.4, 12.0]
50 0.16 0.16 0.16 0.08 0.32 4 [0.16, 4.8]
100 0.08 0.08 0.08 0.08 0.32 4 [0.08, 2.4]
200 0.04 0.04 0.04 0.08 0.32 4 [0.04, 1.2]
500 0.016 0.016 0.016 0.08 0.32 4 [0.016, 0.48]
1000 0.008 0.008 0.008 0.08 0.32 4 [0.008, 0.24]

Let’s see the affect if we fix the result size to 1KB and the other values
the same as in Table 3. We can do that by making send result a deterministic
transition with firing rate Dmin/Thlow. After evaluating the Petri Net with
this value, we obtain a graph shown in Figure 3b. The graph shows no notable
distinction with varying Thlow.

We can conclude by studying the two graphs that except for the two obvious
parameters, namely the wireless network throughput and the result size, the time
to completion is not severely affected by the middleware to client communication
and even with low throughput and considerably large result set, the time taken
by the middle-ware to mobile device communication is within acceptable limits,
only in the order of a few seconds in the worst case.

Fig. 3. (a) Time to completion (t) vs Throughput of the wireless network Thlow. (b)
Time to completion (t) vs Throughput of the wireless network Thlow with result size
= 1 KB



940 H. Jameel et al.

4 Related Work

Various efforts have been made to solve the problem of mobile-to-Grid middle-
ware. Signal [15] proposes a mobile proxy-based architecture that can execute
jobs submitted to mobile devices, so in-effect making a grid of mobile devices.
A proxy interacts with the Globus Toolkit’s Monitoring and Discovery Ser-
vice to communicate resource availability in the nodes it represents. The proxy
server and mobile device communicate via SOAP and authenticate each other
via the generic security service (GSS) API. The proxy server analyzes code
and checks for resource allocation through the monitoring and discovery ser-
vice (MDS). After the proxy server deter-mines resource availability, the
adaptation middleware layer component in the server sends the job request to
remote locations. Because of this distributed and remote execution, the mo-
bile device consumes very little power and uses bandwidth effectively. Also
their efforts are more inclined towards QoS issues such as management of al-
located resources, support for QoS guarantees at application, middleware and
network layer and support of resource and service discoveries based on QoS
properties.

In [16] a mobile agent paradigm is used to develop a middleware to allow
mobile users’ access to the Grid and it focus’s on providing this access transpar-
ently and keeping the mobile host connected to the service. Though they have to
improve upon the system’s security, fault tolerance and QoS, their architecture
is sufficiently scalable. GridBlocks [17] builds a Grid application framework with
standardized inter-faces facilitating the creation of end user services. They advo-
cate the use of propriety protocol communication protocol and state that SOAP
usage on mobile devices maybe 2-3 times slower as compared to a proprietary
protocol. For security, they are inclined towards the MIDP specification version
2 which includes security features on Trans-port layer.

5 Conclusion and Future Work

In this paper we identified the potential of enabling mobile devices access to
the Grid. We focused on providing solutions related to distributed computing in
wireless environments, particularly when mobile devices intend to interact with
grid services. An architecture for a middleware layer is presented which facilitates
implicit interaction of mobile devices with grid services. This middleware is based
on the web services communication paradigm. It handles secure communication
between the client and the middleware service, provides software support for
offline processing, manages the presentation of results to heterogeneous devices
(i.e. considering the device specification) and deals with the delegation of job
requests from the client to the Grid. We also demonstrated that the addition
of such a middleware causes minimum overhead and the benefits obtained by it
outweigh this overhead.

In future we intend to provide multi-protocol support to extend the same
facilities to devices that are unable to process SOAP messages. Moreover, we



Mobile-to-Grid Middleware: Bridging the Gap 941

will continue to focus on handling security, improving support for offline pro-
cessing and presentation of results depending upon the device. Along with this
implementation we intend to continue validating our approach by experimental
results.

References

1. Puliafito, A., Riccobene, S., Scarpa, M.: Which paradigm should I use?: An
analytical comparison of the client-server, remote evaluation and mobile agents
paradigms’, IEEE Concurrency and Computation: Practice & Experience, vol. 13,
pp. 71-94, 2001.

2. Bobbio, A., Puliafito, A., Telek, M.: A modeling framework to implement preemp-
tion policies in non-Markovian SPNs. IEEE Transactions on Software Engineering,
vol. 26, pp. 36-54, Jan. 2000.

3. Telek, M., Bobbio, A.: Markov regenerative stochastic Petri nets with age type gen-
eral transitions. Application and Theory of Petri Nets, 16th International Confer-
ence (Lecture Notes in Computer Science 935). Springer-Verlag, pp. 471-489, 1995.

4. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: A WEB-accessible Petri
Net Tool. International Conference on WEB based Modeling and Simulation, San
Diego, California, pp. 137-142, 11-14 January 1998.

5. WebSPN 3.2: http://ing-inf.unime.it/webspn/
6. Hoschek, W.: Web service discovery processing steps. http://www-

itg.lbl.gov/ hoschek/publications/icwi2002.pdf
7. UDDI specification: www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
8. SOAP Framework: W3C Simple Object Access Protocol ver 1.1, World Wide Web

Consortium recommendation, 8 May 2000; http://www.w3.org/TR/SOAP/
9. GT3 GRAM Architecture:

www-unix.globus.org/developer/gram-architecture.html
10. Czajkowski, K., Fitzgerald, S., et al.: Grid Information Services for Distributed

Resource Sharing. Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

11. Welch, V., Siebenlist, F., et al.: Security for Grid services. HPDC, 2003.
12. Welch, V., Foster, I., et al.: X.509 Proxy Certificates for dynamic delegation. Pro-

ceedings of the 3rd Annual PKI R&D Workshop, 2004.
13. Gupta, V., Gupta, S. et al.: Performance Analysis of Elliptic Curve Cryptogra-phy

for SSL. Proceedings of ACM Workshop on Wireless Security - WiSe 2002 pages
87-94, Atlanta, GA, USA, September 2002, ACM Press.

14. Giovanni, D., Maryann, H., et al.: Security in a Web Services World; A Pro-
posed Architecture and Roadmap, 2002, IBM and Microsoft Corp. A joint security
whitepaper from IBM Corporation and Microsoft Corp. April 7, 2002, Version 1.0.

15. Hwang, J., Aravamudham, P.: Middleware Services for P2P Computing in Wire-
less Grid Networks. IEEE Internet Computing vol. 8, no. 4, July/August 2004,
pp. 40-46.

16. Bruneo, D., Scarpa, M., et al.: Communication Paradigms for Mobile Grid Users.
Proceedings 10th IEEE International Symposium in HPDC, (2001).

17. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm
18. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable

Virtual Organizations, Int’l J. Supercomputer Applications, vol. 15, no. 3, 2001,
pp.200-222.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 942 – 951, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Role of N1 Technology in the Next Generation  
Grids Middleware  

Krzysztof Zielinski, Marcin Jarzab, and Jacek Kosinski 

Institute of Computer Science, University of Science and Technology,  
Al. Mickiewicza 30, 30-059 Krakow, Poland 

{kz, mj, jgk}@agh.edu.pl 
http://www.ics.agh.edu.pl 

Abstract. This paper addresses problem of the middleware for   Next Genera-
tion Grid construction and presents how two important concepts such as virtual-
ization and provisioning could satisfy  some major requirements of these sys-
tems. A vision of  NGG is presented and requirements set on middleware layer 
are analyzed. Next an enabling technology for NGG is considered . The concept 
of virtualization and provisioning of  grid resources is explained. Finally  case 
study illustrating N1 technology application usage is presented. 

1   Introduction 

There is no doubt that a grid technology will be a very hot area of research and devel-
opment performed by IT industry and academia during next five years. It is evident 
from research programs planned by scientific institutions founding research activity 
like EU IST and declared by major industry companies such as IBM, SUN, HP, Ora-
cle,  BEA, Veritas and many others.  A coherency of the IT industry strategy  and  
academia should create synergy  effect that would result with speed-up of standardi-
zation processes and maturity of the available grid technology. 
    Now a day is observed  a gap between commercially available grid solutions and 
that built and exploited by research communities. The wide acceptance of Web Ser-
vices [12] as technology for exposing services over internet is not a panacea on exist-
ing problems. Also SOA [11] paradigm is not powerful enough to resolve  complex 
task of grid resources management, allocation and software configuration manage-
ment.  The required solution needs more innovative approach related to middleware 
construction which would exploit a full potential of new operating systems and ad-
vance networking technology. 
    This paper addresses problem of the middleware for   Next Generation Grid (NGG) 
[1] construction and presents how two important concepts such as virtualization and 
provisioning could satisfy  some major requirements of these systems.   These  con-
cepts  built a foundation of  N1 [3] technology recently released by SUN.   
    The structure of the paper is as follows. In Section 2 a vision of  NGG is presented 
and requirements set on middleware layer are analyzed. Next in enabling technology 
for NGG is considered in Section 3. Finally in Section 4 is presented a case study 
illustrating N1 technology application usage and power of the virtualization and pro-
visioning techniques employed by this solution. The paper is ended with conclusions. 



 Role of N1 Technology in the Next Generation Grids Middleware 943 

 

2   NNG Vision 

The NGG report 2004 [2]  has identified new additional requirements that have arisen 
in the light of one more year of experience of the experts working in the Grids do-
main. In particular, the shortcomings of existing Grids middleware  are much better 
understood, and despite the development directions concerning OGSA [13] providing 
some integration with services-oriented architectures, it is becoming clearer that ap-
plications in the Grids environment require a greater range of services than can be 
provided by the combination of currently evolving Grids middleware and existing 
operating systems. 
    According to [1] NGG will virtualizes the notion of distribution in computation, 
storage and communication over unlimited resources. A Grid will be a virtual, perva-
sive organization with specific computational semantics. It performs a computation, 
solves a problem, or provides service to one single client or to millions of clients. 
Grids will pervade into everyday life, sometimes in the form of ambient intelligence. 
Grid may consist of millions of interconnected nodes. A Grid node is an atomic unit 
forming an abstraction over resources, entailing what is hidden by the interfaces it 
provides. Nodes may provide new services, functions, or even new concepts that are 
unknown to clients. The semantics of such services, functions or concepts are defined 
by semantic description languages or ontology’s. Nodes can organize, on the fly, into 
a group in order to provide functionality and behavior that none of its individual 
members has. The new “sociology” for a specific service can be transient, persistent, 
or a combination of both. Any new organization of nodes can be made available to 
every client of the Grid system.  
    The self-organizing capabilities of nodes aim at establishing higher robustness 
and lower costs for systems management. These capabilities are provided through a 
small, common set of facilities, such as highly scalable protocols for communica-
tion and membership management. A new ecology of computers, data entities and 
communication links will interconnect, interact, interoperate, interfunction syntacti-
cally and semantically in a societal way. The dynamics of a Grid manifested by 
Autonomic Computting Computing [10] concepts i.e. self-configuration, self-
optimization, self-healing and self-protection will allow more freedom for new 
potential services. 
    A key aspect of Grids is the capability to negotiate with agents to provide a collec-
tion of services and facilities that satisfies the end-user requirement for a price within 
a certain time. This requires a common understanding of the services and facilities, 
which necessitate semantic interoperability and a mechanism of assurance to ensure 
delivery of service trust, provenance, accountability, auditability, traceability. 
    The next generation Grid will have some mandatory architectural properties: 

• Simplicity to allow for easy life cycle management and smooth evolution, 
• Subsidiary of control and management, and scalability of services, 
• Resilience, through redundant, self-organizing components to minimize 

points of failure, 
• Transparency to allow many virtual organizations to run over it, 
• Straightforward administration and trouble-free configuration management. 

 



944 K. Zielinski, M. Jarzab, and J. Kosinski 

 

Describing the programming vision of NGG  the report [2] directly points out that  to 
harness the power of an NGG without being overwhelmed by its complexity, abstrac-
tion mechanisms must be provided. Those mechanisms will keep all the intricacies of 
resource allocation and scheduling, data movement, synchronization, error handling, 
load balancing, etc. transparent to the user and developer. A Grid will possess abstrac-
tion layers, presented at the user interface by an agent controlled by metadata, itself 
interacting with other agents (and metadata) representing the other entities in other 
Grids via brokers. Future generations of Grids should be programmed through generic 
and problem-specific abstractions, supported by an appropriate programming envi-
ronment. In order to achieve the ambitious goal of making all the technical and struc-
tural aspects of a Grid transparent, one needs to study and adapt existing program-
ming models to the Grid context – which may require the definition of new program-
ming models, combining parallel and distributed programming practices in a coherent 
way. 

3   NNG Enabling Technologies 

The vision of NGG  presented by the EC Expert Group Report [2] is still far from 
implementation. Fortunately the presented concept are very much inline of  IT indus-
try effort undertaken by major software and hardware vendors. The NGG concept in 
many points is coherent with utility computing model present by SUN [9] and other 
companies.  
    Successful utility computing programs involve a fusion of technologies, business 
models and infrastructure management techniques. Specifically, utility computing 
accomplishes the goal of greater IT resource flexibility, efficiency and value genera-
tion through intelligently matching IT resources to meet business demand on a pay-
for-use basis. Intelligently matching refers to the combination of technologies, busi-
ness processes or applications, and services that will solve a company’s specific IT 
problems. Business demand recognizes that a company’s business is dynamic and IT 
is strategic in enabling its success. The pay-for-use principle creates real-time connec-
tions between IT costs and real-world value. 
    Several new technologies have enabled this concept and are making it a reality. The 
technologies are called provisioning, virtualization, and pooling of resources. 

 
Provisioning means making hardware and software available on an as-needed basis. 
It is the ability to allocate or re-allocate a broad variety of computing resources – 
including servers, middleware, applications, storage systems and network interfaces 
to the applications and systems that need them. Provisioning [8] addresses the tasks 
needed to deploy and activate a service. Whether it's a new operating system or appli-
cation upgrade, provisioning moves, adds and changes things in a structured, repeat-
able process. It is a more-efficient form of change management and capacity  
planning. 
 
Virtualization is a form of resource management, which manipulates devices, storage 
address spaces, and data objects. Virtualization makes these resources more useable 
and  more effective by aggregating resources together, subdividing resources, and 



 Role of N1 Technology in the Next Generation Grids Middleware 945 

 

providing resource substitutions.The most convincing example of virtualization  is an 
operating system which virtualizes computer resources. It is a first elementary exam-
ple building the ground for higher layer of virtualization.  This idea could be applied  
to grid resources such as computer networks communication, computational nodes 
and storages.  
    The abstraction level provided by standard operating systems is not sufficient for 
contemporary powerful computational nodes. For example Solaris 10 feature, such as 
Zones [6] formerly N1 Grid containers  splits machine into many different operating 
instances, having own IP addresses, booting capabilities, resources control and 
accounting, each retaining full security. Zones facilitate the re-provisioning or 
dynamic partitioning of individual pooled resources, thus offering a pooled 
environment, with dynamic partitioning of the servers which with no doubt offer a 
great value for NGG concept. 
 
Pooling of resources  means that  services are running on a pool of assets, with appli-
cations being shifted from one computer (or part of a computer) to another as demand 
dictates. This situation raises a host of interoperability and configuration management 
challenges. 

4   N1 Technology Case Studies 

N1 Grid [3] is Sun's vision, architecture, products and services for optimizing network 
computing. With the ultimate goal of “managing N computers as 1,” N1 Grid com-
prises solutions designed and built with a common set of architectural principles un-
derlying everything. N1 Grid spans the entire range of network computing. It starts 
with virtualization technology that delivers “N1 Grid in a box”. Building on this foun-
dation, the N1 Grid System provides all the services for managing heterogeneous 
environments, eliminating the complexity of these processes. When fully imple-
mented, N1 Grid will automate the tasks of resource configuration and dynamic pro-
visioning of capacity to meet fluctuations in the customer's computing load. 
    In following sub-sections we will describe our experience with N1 Provisioning 
Server, N1 Provisioning System used for virtualization and services provisioning  in 
the environment of Sun Fire B1600 Blade System Chasis with 48 Sun Fire B100s 
Blade Servers and Sun Fire B10n Content Load Balancer and Sun Fire B10s SSL 
Proxy accelerator. At the time of writing this article the Solaris 10  was still in beta 
release, so we decided to install Solaris 9 on our Blades and that’s why advanced 
resource management features i.e. Zones are not presented. 

4.1   N1 Virtualization Techniques – Case Study 

The N1 Provisioning Server [4] software provides a comprehensive infrastructure 
automation solution. This solution enhances the management, visibility, and control 
of the Sun Fire Blade System. The software allows the complete design configuration, 
deployment, and management of multiple secure, independent, logical server farms. 
    These task can be managed using the Control Center, the main component of N1 
Provisioning Server software. Control Center is the user interface that enable user to 
deploy and manage and control logical server farms in a N1 environment.  



946 K. Zielinski, M. Jarzab, and J. Kosinski 

 

    Every N1 resources are located at an I-Fabric (Infrastructure Fabric) which com-
bines storage, networking and computing resources into a contiguous infrastructure 
that user can deploy and manage to meet changing requirements. An I-Fabric inte-
grates otherwise individual, heterogeneous servers, networks, infrastructure devices 
and storage into a coordinated, automated fabric. This fabric enables management, 
deployment, and redeployment of logical server farms and is made up of three func-
tional areas:   

• Control plane – The control plane consists of the N1 Provisioning Server soft-
ware and the associated server hardware on which the software is deployed. 

• Fabric layer – The fabric layer contains the networking infrastructure and 
switching fabric. This layer enables the software in the control plane to dynami-
cally create, manage, and change the networking and security boundaries of 
logical server farms. These limits are being realized through creation of dynamic 
VLANs.  

• Resource layer – The resource layer consists of infrastructure resources such as 
blade servers, load balancers and SSL accelerators.  

    An I-Fabric devices are controlled and managed by the N1 Provisioning Server 
Software. The N1 Provisioning Server software comprises two primary components: 
the N1 Provisioning Server and the Control Center: 

• The N1 Provisioning Server is the core automation component and provides the 
interface between the Control Center and the physical infrastructure resources. 

• The Control Center is the web browser-based graphical user interface (GUI) that 
enables design, configuration, and management of logical server farms, see ex-
ample depicted in Fig 1. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Control Center Editor – the tool for logical farm creation 

    The N1 Provisioning Server provides the services required to manage and deploy 
logical server farms within an I-Fabric, which ensure logical-to-physical mappings 

 



 Role of N1 Technology in the Next Generation Grids Middleware 947 

 

between a logical server farm and the physical resources that are assigned to the 
server farm. 
    The Control Center is the user interface to the control plane software that is used to 
deploy and manage logical server farms. The Control Center enables to do the follow-
ing tasks: 

• Design arbitrary network topology, including subnet configurations, 
• Configure and provision servers, load balancers and SSL accelerators, 
• Select OS image version for  the given Blade node, 
• Check for availability of requested resources. 

 
Using Control Center software the logical farm depicted in Fig. 1 has been success-
fully deployed and activated. It has been used for provisioning case study presented in 
the following section. 

4.2   N1 Provisioning – Case Study 

N1 Provisioning System [5] is a software platform that automates the deployment, 
configuration, and analysis of distributed applications. It enables organizations to 
manage applications as distinct units, rather than as great set of installation files, thus 
provides these benefits: 

• Centralized control over deployments and configurations,  
• Greater coordination among system administrators, 
• Increased productivity through automation. 

N1 Provisioning System provides an object-model to define a set of Components and 
Plans for system configuration, service provisioning, and application deployment 
automation. The N1 provisioning system includes a component library with templates 
for the most common components in Internet data centers. Operators can capture all 
the relevant configuration data in a "Gold Server" a.k.a.  reference server so that its 
configuration can be replicated to other servers in a grid. 

 
 

Fig. 2. An overview of N1 Service Provisioning System Architecture 



948 K. Zielinski, M. Jarzab, and J. Kosinski 

 

    The N1 Provisioning System architecture (Fig. 2) includes a Master Server, which 
stores component models and operations plans in a secure repository; Remote Agents 
(RA), are installed on each managed server and perform Execution plans on these 
servers; and a central console from which IT operators run commands and perform 
analysis.  
    In our study we present the deployment process of JIMS (JMX-based Infrastructure 
Monitoring System) [14] application for Grid Infrastructure monitoring. Monitored 
resources are computational nodes,  storage, network interfaces. JIMS exposes pa-
rameters like CPU load, number of processes, memory usage, file system statistics, 
network interface utilization for the outside world. The main components of JIMS 
architecture depicted in Fig. 3 are: 

•  Monitored Station (MS) - station (WN - Worker Node) which is being 
monitored by JIMS. There are gathered information in domains like units of 
time spent in user mode, system mode and idle mode, memory utilization; 
buffers, cache sizes. 

• Monitoring Agent (MA) – process on Monitored Station responsible for 
gathering information and exposing it through JMX/RMI based connectors 
to Management Station. 

• Management Station – station which performs management role in monitor-
ing the whole Grid infrastructure. Responsible for starting and stopping 
JIMS services and monitoring agents on Management Stations through 
JMX/RMI interfaces. 

• SOAP Gateway – one of services of Management Station. Acts as proxy be-
tween station and client applications, translating requests from SOAP to 
JMX/RMI.  

• Monitoring Console – station which is used by system administrator to ob-
tain information about monitored resources. Current version of JIMS sup-
ports Java Swing GUI, HTML and CLI (Command Client Interface) clients. 

 

 
 

           Fig. 3. An overview of JIMS architecture 

    The N1 Service Provisioning System automates the installation and configuration 
process of JIMS application. This can be performed in the following activities assum-
ing that, the operating system is Solaris 9. 
 



 Role of N1 Technology in the Next Generation Grids Middleware 949 

 

Activity 1. JIMS must be installed on a Gold Server manually. The installation proce-
dure involves several steps performed as a root user:  

• creation of cgjims system group and cgjims system user assigned to cgjims 
group, 

• creation of directory $installPath in which JIMS is to be installed, 
• extraction of JIMS bundle into the $installPath installation directory, 
• changing owner of the $installPath/var/log/jims directory to the already cre-

ated cgjims user and group. 

    By default manual installation process installs all JIMS components including 
Monitoring Agent, SOAP Gateway and Monitoring Console. In this example it’s as-
sumed that Gold Server acts as a Management Station with installed Monitoring 
Agent.  

Table 1. N1 Provisioning System Execution plan used for installation of JIMS 

1. <component xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' 
2.          platform='Solaris 9' name='Jims-INSTALL' version='4.1' 
3.   xsi:schemaLocation='http://www.sun.com/schema/SPS compo-
nent.xsd' 
4.   xmlns='http://www.sun.com/schema/SPS'> 
5. <extends> 
6.  <type name='container'></type> 
7. </extends> 
8. <varList> 
9.  <var name='installPath' default='/opt'></var> 
10. </varList> 
11. <componentRefList> 
12.       <componentRef name='ref1'> 
13.          <componentn ame='Jims-Cg' path='/' version='1.0'></component> 
14.      </componentRef> 
15. </componentRefList> 
16. <controlList> 
17.      <control name='run_post_install'> 
18.         <execNative userToRunAs='root'> 
19.  <outputFile name='install_jims.out'></outputFile> 
20.  <errorFile name='install_jims_error.out'></errorFile> 
21.  <inputText><![CDATA[chown -R cgjims:cgjims 
22.                                          :[installPath]/cg/var/log/jims;]]></inputText> 
23.  <exec cmd='sh'></exec> 
24.         </execNative> 
25.      </control> 
26. </controlList> 
27.    </component> 

Activity 2. In this activity we must create Components and Execution plans which will 
describe JIMS installation. Our experimental grid environment consists of five SUN 



950 K. Zielinski, M. Jarzab, and J. Kosinski 

 

blades which names starts with b100s1gb prefix and N1 Master Server. Host 
b100s1gb acts as an Gold Server with already installed and running JIMS. Hosts 
b100s1gb-1, b100s1gb-2, b100s1gb-3, b100s1gb-4 are destination hosts on which 
JIMS Monitoring Agents are to be installed using N1 Provisioning System. To install 
JIMS following steps are need to be performed by N1 Provisioning System  
administrator: 

• Components and Execution plans creation: Jims-Cg directory component 
which contains information about Gold Server repository with JIMS installa-
tion bundle; Jims-INSTALL container component which is a set of Jims-Cg 
component and Execution plan applied to directory component. Execution 
plan is featured  by an XML script shown in Table1; line 9 specifies install-
Path variable which specifies the target directory for JIMS installation, lines 
16-26 depict post installation step named run_post_install, which aim is to 
only changing the owner of $installPath/var/log/jims directory. 

• Invoking Execution plan (Table 1) on Jims-INSTALL component; includes 
coping of Jims-INSTALL to destination hosts to directory specified by in-
stallPath variable and invoking run_post_install procedure described in the 
Execution plan. 

 
    After these activities whole JIMS infrastructure is installed and ready for obtaining 
monitoring resources in our experimental environment SUN B1600 Blade Chasis with 
five SUN Fire Blade servers.  

5   Summary 

The  presented  analysis of  N1 technology  fundamental assumptions and NGG re-
ports proposed by  group of experts shows the convergence the main concepts and 
ideas. There is evident that NGG could not be developed  only by exploiting the SOA 
paradigm and relay only on the Web Services.  The grid technology requires more 
fundamental system services built into lower layer middleware and operating systems.  
The virtualization and provisioning concept illustrated by N1 SUN Microsystems 
technology illustrates the constructive step in this direction.  

References 

1. Next Generation Grid(s) European Grid Research 2005 – 2010 Expert Group Report Mon-
day, 16th June 2003 

2. Next Generation Grids 2 Requirements and Options for European Grids Research 2005-
2010 and Beyond Expert Group Report July 2004 

3. N1 Grid System, http://wwws.sun.com/software/n1gridsystem/ 
4. N1 Provisioning Server Blades Edition, 

   http://wwws.sun.com/software/products/provisioning_server/index.html 
5. N1 Provisioning System, 

http://wwws.sun.com/software/products/service_provisioning/index.html 
6. Solaris 10 zones, http://wwws.sun.com/software/solaris/10/inside.jsp 



 Role of N1 Technology in the Next Generation Grids Middleware 951 

 

7. SUN Fire B1600 Blade Platform, http://www.sun.com/servers/entry/blade/b1600/ 
8. Bill Gassman, Provisioning IT Services, Gartner Group, October 2002 
9. Utility Computing , Business White Paper SUN Microsystems, March 2004 

10. Autonomic Computing  IBM Perspective on the State of Information Technology 
11. Service Oriented Architecture (SOA) description available at O’Reilly WebServices, 

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html  
12. WebServices community web page, http://www.webservices.org 
13. Open Grid Service Architecture (OGSA) Specification, http://www.globus.org/ogsa 
14. JIMS (JMX-based Infrastructure Monitoring System),   

http://www.eu-crossgrid.org/Seminars-INP/JIMS_monitoring_system.zip 



Optimizing Grid Application Setup
Using Operating System Mobility

Jacob Gorm Hansen and Eric Jul

Danish Center for Grid Computing,
University of Copenhagen, Denmark

Abstract. This paper is about optimizing Grid application setup by
allowing a user to configure a Grid application on her own PC and there-
after migrating the entire application onto the Grid where the Grid sys-
tem replicates the application including the operating system instance
onto the assigned nodes within the Grid. We use this strategy to de-
velop a new Minimal Configuration Grid model (MCG). Configuration
is simplified because the user does it on her own machine. Cluster admin-
istration is simplified because only a minimal software base is required:
No OS nor any shared libraries need be present; they are simply migrated
to each node. We have built a prototype MCG based on Intel x86 and
the Xen Virtual Machine Monitor.

1 Introduction

Current Grid systems rely on static allocation of jobs to clusters. A Grid user
submits a job by proving an application program and a data set which typically
are subsequently run on some cluster in the Grid. With such a scheme, there are
numerous configuration problems, e.g., the cluster machines must run one of a
specific set of operating systems and must have certain libraries present to run
the user’s specific application. On the cluster side, the local cluster administrator
must configure and maintain the OS and the numerous libraries. Besides these
configuration problems, current Grid system most often assign jobs to clusters
non-preemptively, so if, e.g., scheduling a job requiring 64 nodes on a 256 node
cluster, it may be necessary to let some nodes idle until there are 64 nodes
available.

In this paper, we address the problems of configuration and non-preemption
in Grid systems by introducing a much more dynamic mechanism, that of OS
migration, to allow more optimal Grid application setup and dynamic reconfig-
uration. Our intent is to make job configuration easier for the Grid application
writer by allowing the writer to freely configure not only the Grid application
itself, but also the writer’s choice of operating system. We also intend to reduce
the software base necessary on each cluster node thus reducing the maintenance
task of the cluster administrator and, at the same time, increasing security by
reducing the trusted software base necessary.

Our solution uses virtual machines thus allowing the concurrent execution of
several independent Grid application jobs while enhancing security by providing

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 952–960, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Optimizing Grid Application Setup Using Operating System Mobility 953

isolation between jobs and the possibility of running multiple independent ap-
plications and even independent operating systems on a single machine. We use
our implementation of a self-migrating version of Linux, running on top of the
Xen Virtual Machine Monitor [1].

We have built a prototype, called Minimal Configuration Grid (MCG), to
demonstrate the viability of our ideas. The model includes a low-level token
mechanism for secure distribution of usage rights.

1.1 Background

Modern Grid facilities comprise a set of well-provisioned and well-connected
machines that are offered to Grid users. In many cases, an entire cluster is
dedicated to a single Grid application. There have been recent proposals to use
Virtual Machine technology to enable the sharing of Grid resources [2], providing
each user with the illusion of having her the machines to herself.

While the motivation for process migration has been transparent balancing
of load across cluster-nodes, the techniques necessary for implementing OS mi-
gration introduce new possibilities such as network forking where a running OS
replicates itself onto a new node on the Grid. Such network forking is greatly
eased by the presence of OS migration facilities and is possible with some atten-
tion, e.g., to consistency issues.

By migrating entire OS instances we can, in effect, introduce preemption into
Grid scheduling systems that previously had none.

1.2 Virtual Machines and Migration

A Virtual Machine Monitor (VMM) is a thin layer interposed between one (or
more) OSes such that each OS has its own (virtual) machine which appears to
the OS as the actual machine.

Process migration, a hot topic in systems research during the 1980s [3, 4, 5,
6, 7], has seen very little use for real-world applications. [8] surveys the possible
reasons for this, e.g., the problem of residual dependencies which means that a
migrated process still retains dependencies on the machine from where it mi-
grated. In contrast, OS migration does not suffer from the residual dependency
problem, because all state is encapsulated within the migrating OS image.

Our migration facility is built on top of the Xen VMM and works as follows:
Each virtual machine runs a version of Linux that has migration facilities added
and that can migrate itself to another machine, we call this facility self-propelled
migration [9].

1.3 Minimal Configuration Grid

Our approach is to use the concept of Operating System Migration in the context
of Grid systems to build our new model of Grid computing, called Minimum
Configuration Grid.

The basic idea is for a user to configure the user’s own favorite version of
an operating system and make the user’s Grid application run on the OS. The
user submits the job directly to a Grid-node as packaged OS image, or migrates



954 J.G. Hansen and E. Jul

entire running operating system instance including the user’s application to the
node.

Furthermore, the Grid can use the migration facility to replicate the OS
instance so that the job continues to execute on a number of nodes.

Our results show that, for realistic usage scenarios, it is entirely possible to
migrate a production-class operating system between machines on a LAN, with
minimal service disruption, typically incurring interruption times down into the
50 − 100ms range.

1.4 Contributions

The contributions of this paper are:

– A model, Minimum Configuration Grid, that provides an easy and effective
way of handling configuration problems both for Grid users and Grid Cluster
administrators.

– A novel Linux/Xen-based implementation of self-propelled replication.
– A low-level token mechanism that allows secure distribution of usage rights.
– Experimental verification that our proposed replication techniques can be

effectively and efficiently applied to Grid Computing.

2 Background

2.1 Preemption

With Grid-computing growing in popularity, the limitations of the current gener-
ation of job-control software are becoming apparent. The lack of preemptability
(e.g., the ability to seamlessly move a running process to either disk or another
machine without having to restart it) quickly leads to suboptimal load config-
urations, because it is impossible to correctly guess in advance the behavior of
submitted jobs.

2.2 Configuration

Vast amounts of time is spent on the Grid Community trying to agree on stan-
dard configurations for computing nodes, so that jobs may be submitted across
clusters at different institutions. Because such standards have to describe both
hardware as well as complex software configurations (type of OS, kernel mod-
ules for access to network file systems, installed shared libraries, user ids and so
forth) and interfaces, deviations are likely. Even if a single software configuration
were to be mandated across all institutions, making sure all nodes everywhere
are always up to date with the current version of the standard seems like an
impossibility.

With OS migration, the need for a common standard is not removed, but
because an operating system for a Grid node expects little more than access to a
network interface, access to a number of raw disk blocks and memory pages, this



Optimizing Grid Application Setup Using Operating System Mobility 955

interface is greatly simplified. All that needs to be specified is a protocol for boot-
strapping and migrating operating systems, with the rest of the choices being
left up to the user. The operating system is then viewed as simply a component
of the user’s application, in line with a shared library. Because the operating
system, in contrast to the normal user process, is entirely self-contained, and
because all access to external resources is already abstracted by standardised
and fault-tolerant protocols, such as TCP/IP, NFS, or iSCSI, the residual de-
pendency problem of traditional process migration systems is likewise solved.

2.3 Virtual Machine Monitors

The Xen [1] Virtual Machine Monitor is a x86-based VMM that allows multiple
commodity operating systems to share conventional hardware in a safe and re-
source managed fashion without sacrificing either performance or functionality.
Xen provides an idealized virtual machine abstraction that allows OSes such as
Linux, BSD, and Windows XP to be ported to it with minimal effort.

In our Minimal Configuration Grid, Xen is used for enforcing isolation be-
tween different user applications sharing the same physical hardware.

3 Migration Architecture

Given a VMM-based system and, for example, a Linux guest OS instance running
on top of the Xen hypervisor, and a wish to migrate the Linux guest OS to
another machine with a similar VMM, we have a number of choices of how to
proceed. Our goal is simple; somehow copy the contents of entire virtual machine
containing the Linux instance to an empty virtual machine at the destination
host, minimising hiccup-time, and with no overlap of execution when viewed
from the outside, and in a fail-safe way that will allow us to restore execution on
the originating machine, if there is a network partition or other error preventing
the migration.

Because live OS migration demands detailed introspection and control of
both address space layout and exception handling of the migrating OS, this
functionality can only be placed either inside the VMM, or in the guest OS. We
have chosen to use an unmodified version of Xen, so that the entire migration
is implemented in the guest-OS which in our case is Linux. A typical OS has
all the facilities needed for migration, e.g., a TCP/IP stack, fine-grained control
of virtual memory, etc. Therefore, it is possible for a guest operating system to
perform its own migration. This also simplifies the VMM because it no longer
needs to support a full set of migration facilities, for instance it does not need
to implement a TCP/IP stack. This has implications for security, as a simpler
functionality and smaller implementation of the VMM will make it easier to
verify for correctness.

3.1 Self-propelled Migration

Traditional process migration has focused on transparent migration, that is,
migrating processes that are unaware that their are being migrated, in order



956 J.G. Hansen and E. Jul

to allow any process to be migrated. For OS migration, such transparency is
not necessarily an advantage. In practice only a few different operating systems
are needed by most popular applications, and it may be realistic to modify
each of these to support their migration. We therefore propose the concept of
self-propelled OS mobility as a viable alternative to transparent OS mobility.
Self-propelled OS mobility means that the OS not only participates in its own
migration, it actually performs the migration itself. There are a number of ben-
efits to self-propelled migration:

– The operating system has close to perfect knowledge of what constitutes its
own state including the state of the processes that it runs.

– Much effort has already been put into making popular operating systems
efficient at handling the types of operations that are involved in migration,
e.g., memory management handling and transmission of large amounts of
data over the network.

– The operating system can make better informed decisions during migration,
e.g. by rate-limiting processes with large working sets.

– The opportunities for performing other operations such as checkpointing and
forking are much better. The operating system can make the often trivial,
but essential changes to, e.g., a forked version of itself.

One disadvantage of self-propelled migration is that each OS must be ex-
tended to support it; however, once an OS has been extended with self-migration
support, the implementation can be ported across multiple VMMs.

From the use of the pre-copy technique in NomadBIOS [10], we know that it is
possible to identify the working set of a running operating system, i.e., the pages
that are frequently modified during a pre-copy delta cycle, and that this set is both
considerably smaller than the full OS. We can start a migration by using pre-copy,
and conclude it by using a small buffer for storing the remaining working set by
means of copy-on-write. Our self-migration technique thus becomes:

1. Retract all writable page mappings and copy the full OS state to the tar-
get machine. Log page frame numbers of modified pages in the page-fault
handler.

2. Retract and copy every page that was modified during the last copy.
3. Repeat above step until working set is sufficiently small.
4. Repeat once more, this time making backup copies of any modified pages

upon write-fault, and keep the backups in the snapshot buffer.
5. Conclude by copying the backed up pages in the snapshot buffer to their

original positions in the image on the target host.

4 Minimum Configuration Grid

4.1 Cluster Configuration

From an administrator perspective, cluster configuration is usually handled using
specially crafted tools, cloning a common operating system image (for instance a



Optimizing Grid Application Setup Using Operating System Mobility 957

popular Linux distribution) onto the harddrives of all nodes. While the process
of adding a new node to the network is often fairly automated, the base installa-
tion on each node is heavy-weight, often consisting of hundreds of megabytes of
persistent state, and so continued maintenance of this persistent state, including
the task of keeping all nodes in sync, is cumbersome.

With our system, nodes run only a minimal operating system, with no per-
sistent state on node harddrives. Only the Xen VMM, augmented with a simple
mechanism for receiving cryptographic tokens as payment for use, and a small
unprivileged bootstrapping executable, reside on each cluster node. All remain-
ing system software and configuration data, for instance, a Linux kernel with a
file system populated with shared libraries, executables and configuration files,
is supplied by the end-user.

Compared to the current generation of systems, the cluster administrator is
relieved of the burden of having to maintain a set of complex OS installations,
including the maintenance of cluster-wide state, such as login and password
databases.

4.2 Payment for Use

Our self-migration system would work fine in a system without payment. How-
ever, we can readily add a mechanism to provide payment for use. Because one
of our overall goals is simplicity, we have designed our resource payment system
with a simple analogy in mind, namely that of Laundromats. From a customer
viewpoint, Laundromats are simple, stand-alone devices that feed on Laundro-
mat tokens. Even though Laundromat sometime fail to deliver the expected
service, most customers are still willing to use them, in spite of a small risk of
token loss.

For a token-system to withstand abuse, it must be resistant to the following
classes of attack:

Counterfeiting. An attacker should not be allowed to spend home-minted to-
kens.

Double Spending. It should not be possible to spend a token more than once.

There is a number of ways of preventing counterfeiting of tokens. One way
is to sign all tokens with the public key of the entity minting the tokens, and
have all nodes trust the signature of that entity. Another, and perhaps simpler,
method is to use a one-time password scheme, based on a one-way hash function
H(), which is what we are suggesting. The initial boot-token purchased from and
signed by the token-vending service, contains the outermost value Tn in a hash-
chain Hn(T0),Hn−1(T0), . . . , H(T0). The rest of the chain is kept as a secret
at the token-vending service, and these secrets are only released if the customer
pays for them, e.g. using a credit-card or some other form of real-world currency.

During execution, or when attempting to expand its resource allowance, new
token-values Tn, Tn−1, . . . , T0 are fed to the VMM on a node by means of a
special system call. Token authenticity is simple to verify, by checking that the
newly presented token hashes to the previously accepted one.



958 J.G. Hansen and E. Jul

Because new tokens are minted for each customer-node combination, and
because the use of a one-way hash function imposes an ordering of tokens, tokens
can only be spent at the node for which they have been minted, and only once.
The customer will not purchase an entire chain of tokens at once, but rather
purchase tokens little by little, in response to demand from his application and
to verification of its progress.

4.3 Security

The security of the system hinges on the isolation properties of the underlying
Virtual Machine Monitor (VMM). The problem with most VMMs is, that while
they may securely isolate a number of unprivileged guest VMs, it is common
to have a privileged host VM running for management purposes. The host VM
will usually be sufficiently powerful to pose a danger to the integrity of the guest
VMs, in that it has the ability to destroy them or inspect or modify their address
spaces. Apart from the VMM itself, which we need to trust, we do not wish to
run any code which has privileges over other VMs if it can be avoided, which is
one of the main guidelines for our various design choices.

It is clear that we do need some privileged functionality, in order to instanti-
ate new VMs, but the actual network stack which is handling the arrival can be
created on demand, i.e. upon receival of the first network packet of a new con-
nection initiation. By augmenting connection setup with a cryptographic token,
as described in section 4.2, and then instantiate the receiving TCP stack, we
can handle most of the setup of new VMs and the receival of migrations with-
out having to resort to privileged code. Only token verification, which is possible
with fixed-length buffers and very basic cryptographic algorithms (e.g. a one-way
hash function and secret shared between token vendor and Grid node), need to
reside inside the VMM or in a privileged VM.

Once a token has been verified, a new VM is instantiated. This VM contains
a very basic UIP [11]-derived TCP/IP stack, which handles receiving and final
setup of the incoming OS, which will take over the new VM for its own purpose.
With this approach, and under the assumption that the underlying hardware and
VMM can be trusted, and with the use of the correct cryptographic protocols,
it becomes possible to guarantee the integrity of guest VMs.

5 Evaluation

5.1 Bandwidth Test

We measure the overhead of our migration mechanism by looking at the through-
put loss of a bandwidth metering test running inside a migrating operating sys-
tem. From the resulting graph in figure 1, we see that while performance drops
during migration, the migrating OS is still able to sustain almost 80% perfor-
mance. This test is performed across a pair of server-class 2GHz Xeon machines,
connected via Gigabit Ethernet.



Optimizing Grid Application Setup Using Operating System Mobility 959

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50  60  70  80

M
bi

t/s

Seconds elapsed

self-propelled
’bw_a.dat’

Fig. 1. iPerf bandwidth measure of a Linux VM self-migrating to an equally configured
host. The first small drop in performance, at t = 16s, is due to migration being initiated,
and the final drop, at t = 56s, is downtime resulting from execution switching to the
new host

5.2 Responsiveness Tests

The purpose of the two remaining tests is to assess service disruption to inter-
active server processes, when migrating an OS to a different host.

In these tests, we are migrating between an identical pair of workstation-
class machines, with 2.4 GHz Pentium 4 CPUs. The machines are connected via
switched 100Mbit Ethernet, with Intel EEPro1000 interfaces.

In figure 2 and figure 2, we see that it is possible to migrate both a streaming
video server, as well as a quake 2 game server, with minimal disturbance to users.
Downtime in this case is about 100ms. Other tests run across a Gigabit network
indicate that with improved network bandwidth it may be reduced below 50ms.

 0

 0.05

 0.1

 0.15

 0.2

 5  10  15  20  25  30

R
es

po
ns

e 
tim

e 
(s

)

Seconds elapsed

A

C

Video streaming
’7.dat’

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0  5  10  15  20  25  30  35

R
es

po
ns

e 
tim

e 
(s

)

Seconds elapsed

Quake2 Client A
’host1.dat’

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0  5  10  15  20  25  30  35

R
es

po
ns

e 
tim

e 
(s

)

Seconds elapsed

Quake2 Client B
’host2.dat’

Fig. 2. Left: Downtime experienced when migrating a VLC streaming video server.
Final migration occurs at t = 25s. Right: Downtime experienced when migrating Quake
2 interactive game server with two clients. Final migration occurs at t = 25s

6 Conclusions and Further Work

We have presented a new model for Grid Computing: Minimal Configuration
Grid. Our model lets Grid application writers configure their application on
their own machines, start up their applications, and when everything is running
submit their application to the Grid. The model includes a simple mechanism
for resource payment and accounting, it minimizes the trusted computing base
of the cluster nodes, reducing configuration complexity and increasing security.



960 J.G. Hansen and E. Jul

In future work, we plan to expand the prototype onto a 32 node cluster and
measure a number of different Grid applications.

References

1. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In Proceedings of the nineteenth ACM symposium on Operating Systems Principles
(SOSP19), pages 164–177. ACM Press, 2003.

2. Renato J. Figueiredo, Peter A. Dinda, and Jos A. B. Fortes. A case for grid
computing on virtual machines. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, page 550. IEEE Computer Society, 2003.

3. Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mo-
bility in the emerald system. ACM Trans. Comput. Syst., 6(1):109–133, 1988.

4. Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. In
Proceedings of the ninth ACM Symposium on Operating System Principles, pages
110–119. ACM Press, 1983.

5. Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote
execution facilities for the V-system. In Proceedings of the tenth ACM Symposium
on Operating System Principles, pages 2–12. ACM Press, 1985.

6. Fred Douglis and John K. Ousterhout. Transparent process migration: Design
alternatives and the Sprite implementation. Software - Practice and Experience,
21(8):757–785, 1991.

7. A. Barak and O. La’adan. The MOSIX multicomputer operating system for high
performance cluster computing. Journal of Future Generation Computer Systems,
13(4-5):361–372, March 1998.

8. Process migration. ACM Comput. Surv., 32(3):241–299, 2000.
9. Jacob G. Hansen and Eric Jul. Self-migration of operating systems. In Proceedings

of the 11th ACM SIGOPS European Workshop (EW 2004), pages 126–130, 2004.
10. Jacob G. Hansen and Asger K. Henriksen. Nomadic operating systems. Master’s

thesis, Dept. of Computer Science, University of Copenhagen, Denmark, 2002.
11. Adam Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of the first

international conference on mobile applications, systems and services (MOBISYS
2003).



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 961 – 971, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

GriddLeS Enhancements and Building Virtual 
Applications for the GRID with Legacy Components  

Jagan Kommineni and David Abramson 

School of Computer Science and Software Engineering, 
Monash University, Caulfield 

Australia, 3800 
{jagan, davida}@csse.monash.edu.au 

Abstract.  The GriddLeS (Grid Enabling Legacy Software) middleware is a 
novel software layer that allows previously separate legacy applications to be 
coupled in a software workflow over the grid without any changes to the appli-
cation source code. We have previously tested GriddLeS on a number of appli-
cations, including a small atmospheric sciences workflow in which weather and 
climate models are coupled. In this paper we describe a number of enhance-
ments to the previous implementation [1][2] that improve its performance sig-
nificantly. Specifically, the new implementation improves the performance 
when small blocks are written over high latency networks. The paper also de-
scribes a much larger atmospheric sciences workflow than previously reported, 
that couples multiple global climate models, regional weather models and pollu-
tion models in one virtual application. 

1   Introduction 

To study increasingly complex scientific phenomena of scientific and engineering ap-
plications, many new techniques have been developed, ranging from parallel comput-
ing to grid computing. Each innovation often requires significant modification to ap-
plications to suit new capabilities of the underlying platforms [3][4]. This has slowed 
down the acceptance and widespread use of new technologies such as MPI [3]. These 
new techniques often require rewriting an application, which is both costly and error 
prone. Thus, there is a desire to run applications over the grid without significant 
modification to the source code. Accordingly, some recent proposals based on stan-
dard internet and web infrastructure [5][6][7][8][9] try and leverage existing applica-
tions, and minimize the programming overheads in reusing existing code.  

Platform neutral protocols for fundamental services like job launching and security 
are readily available for grid applications [10][11][12][13][14][15]. It is important to 
abstract various grid capabilities so that users can gain access easily without requiring 
detailed knowledge about the underlying runtime mechanism, with little or no modifi-
cations to applications and further, these abstractions should fullfill application-level 
needs and expectations [6][16][17][18].  

Many scientific applications [19][20]  which require data transmission from one 
application to another in a pipeline. Traditionally these applications run on a single 
machine sequentially and pass data between them by conventional files. Normally, the 



962 J. Kommineni and D. Abramson 

 

last application has to wait until the completion of all previous applications because of 
data dependencies. However, by pipelining these applications and building a virtual 
application, it is possible to produce results much earlier as each application produces 
the output progressively. The downstream application can start much earlier than the 
completion of the previous one. Further enhancements are possible by running differ-
ent components of the virtual application on various high performance computing sys-
tems.  

2   The Current Implementation of GriddLeS  

The primary use of the GriddLeS environment is to connect applications in a pipeline 
over the grid and enable access to various resources such as remote files, local files 
and processes, with a unified interface very similar to the standard POSIX interface. 
Figure 1 shows some of the different communication patterns that are possible. An 
application process communicates with files through a web service. The web service 
acts as a connection point between application processes. That is, inter-process com-
munication occurs by redirecting IO traffic to the web service, which inturn commu-
nicates to the file system. The decision about which IO mode is to be used can be de-
layed until runtime when the files are opened, and need not be coded into the 
application. It is also possible to copy an entire file from a remote location and this 
can be opened as a local file. Upon knowing the list of input and output files, the ap-
plication user enters details such as location of files and mappings in a configuration 
file. The GriddLeS environment then maps these details at runtime and executes the 
virtual application. It is also possible to change the mode of transfer and location of 
files dynamically by closing and reopening files. 

 

 

Fig. 1. GriddLeS communication Model 

GriddLeS uses FILE IO operations to support inter-process communication and has 
synchronization inplace when the applications are pipelined. In POSIX, the binding 
between the physical name of the file in the file system and its file object (inode), oc-
curs when an open call is executed. In the POSIX interface, the metadata of the file is 
communicated with the stat structure returned from one of the stat, fstat and lstat sys-
tem calls. The stat interface also gives a hint to the application about the ideal block 
size for the file operations. 

GriddLeS resolves the physical name of a file by using a special naming service, 
the GriddLeS Name Service (GNS). When the system receives an open call, it assigns 



 GriddLeS Enhancements and Building Virtual Applications for the GRID 963 

 

a unique identifier very similar to a file descriptor. In the case of local files it is actu-
ally a real file descriptor and in all other cases it is a fictitious one. GriddLeS also ob-
tains the metadata of the file from one of the stat, fstat and lstat system calls and re-
cords this information in a specially created hash table with reference to the file 
descriptor. In all other cases, GriddLeS mimics metadata with a fictitious local file 
and modifies its metadata to suit the requirements [1][2]. GriddLes also modifies a 
preferred block size according to its requirements. 

3   GriddLeS Implementation Enhancements 

To improve the communication efficiency between the applications, we have made a 
number of enhancements as follows. 

 
1. Restructure and generalize the grid buffer service.  
2. Add a new file status service to improve efficiency. 
3.  Buffer up small blocks to improve performance when network latency is high. 
4.  Allow sending and receiving systems to use different block sizes. 

  
Our first implementation of GriddLeS used separate web services for ASCII and 

Binary data types. A trapped write system call receives binary data independent of the 
original application data type and passes this data to the web service. On the other 
hand, a trapped read system call receives binary data from the web service and passes 
it over to the application module, and the application module handles differences be-
tween data types. In the present implementation we use a common web service to act 
on both ASCII and binary types of data in a unified way. This eliminates overhead in 
data conversions for ASCII type data.  We also eliminated separate web services for 
file operations by combining the functionality into the GridBuffer web service.   

We have added a separate File Status service and it is especially beneficial to 
reader applications. Before sending the request for data to the GridBuffer web service, 
the reader application checks the File Status service on the availability of the data. If 
the data is available then the reader application issues a request for that data. If the 
data is not available, the reader application check repeatedly for the status until the 
data is available at the web service by using a special intelligence mechanism. With 
this mechanism it is possible to increase the time interval between calls to the status 
web service, when there is no change in status between consequent calls. In the previ-
ous implementation all requests from both readers and writers were queued at the web 
service. This was expensive for the GridBuffer web service to maintain synchroniza-
tion. This was especially important when the web service was serving many readers 
and writers at the same time. The Java runtime does not give any guarantee to bring 
back a specific request from the pool of synchronized requests. Sometimes this may 
lead to a deadlock situation between reader and writer. In the present implementation, 
reader requests are not pooled at the web service. This makes the web service respond 
quickly and avoids deadlock.  

In the present implementation we introduced a proxy to help build larger buffers 
before they are transmitted across the network. This technique is useful when the 
components of virtual application are distributed to machines in which there is a high 



964 J. Kommineni and D. Abramson 

 

latency between them. For example in our previous case studies, we received poor 
performance coupling applications between Melbourne (Australia) and Cardiff (UK). 
The proxy has improved this performance dramatically, as is reported later in the pa-
per. In POSIX, the stat interface allows the operating system to provide an indication 
about an ideal block size for the file I/O. Most operating systems will give an ideal 
block size of about 4KB or 8KB. Applications usually send data to files based on this 
block size. However when the application flushes its data, the data length will be even 
smaller than the block size. Theoretically once GriddLeS receives data from the ap-
plication, it can send data to the remote node, however there are some performance 
implications for the remote file I/O protocol. This results in very large number of 
connections in a short amount of time. This also consumes considerable of resources 
on both ends and network devices such as address resolution, on top of the large la-
tency penalties of each activity. We present a case study (case 1 of section 4) by 
changing block size and measuring time taken to transmit the data. The other signifi-
cant advantage with this approach is that applications are completely separated from 
network related problems. In the event of network problems the proxy can be re-
started without affecting the application process.  

4   Experimentation and Discussions 

We used a number of machines to perform experiments as shown in Table 1.  

Table 1. Machines List 

Name Address and Details Country Name Address and Details Country 
  
 dione 

dione.csse.monash.edu.au  
Pentium 4, 1500 MHz, 
Redhat Linux 7.3 

 
AU 

  
 brecca 

brecca-2.vpac.org  
200 Intel Xeon,  
2.8 GHz, Redhat Linux 
7.3, 124 Node Cluster 

 
AU 

  
 mahar 

mahar.csse.monash.edu.au 
Intel Pentium 4, 3 GHz,  
Debian Linux 2.4.22 
50 Node Cluster 

 
 

AU 

   
 freak 

freak.ucsd.edu  
Athlon Processor,  
700 MHz,i386,  Debian 

 
US 

  
 dragon 

dragon.vpac.org 
Intel Pentium 4, 1.70 GHz, 
Red Hat Linux 8.0 

 
AU 

  
 bouscat 

bouscat.cs.cf.ac.uk 
Pentium 3,  1 GHz,  
Red Hat Linux 7.2 

 
UK 

Case 1. Effect of Block size on data transfer time  
 

In this experiment we study the effect of block size on the data transmission time. We 
consider a proxy script, which reads the data from one file with a block size of 4096 
bytes and writes to another file with much bigger block size. The GriddLeS environ-
ment is used to configure the experiment. The wall clock times to run the experiments 
are recorded in Table 2 against block size. In all these cases we transfer the total file 
(binary data) of size 20MB. 

From the results as shown in Table 2 the block size significantly influences the 
communication time, especially when grid nodes are separated with a high latency  
 



 GriddLeS Enhancements and Building Virtual Applications for the GRID 965 

 

network. On the other hand, if the block size is very big, the writer application needs 
to wait until the buffer is filled; this may delay the reader application getting access to 
the data. 

 

Table 2. Effect of block size (in bytes) on data transmission time (in min:sec)  

Block size  dragon-dione time  dragon-freak time  dragon-bouscat time  

4096     1:15    50:23 1:21:11 
10240     1:13    27:07    51:09 
20480     0:41    16:52    32:09 
40960     0:39    10:11    22:01 
61440     0:39    07:04    16:56 
102400     0:38    05:29    13:44 
204800     0:37    03:54    07:59 
307200     0:36    03:13    07:47 
409600     0:36    03:00    07:03 
512000     0:36    02:49    06:51 

 

The results indicate the increase in block size beyond 204800 may not improve 
performance significantly, hence we adopted block size of 204800 in the future ex-
periments whenever the proxy is involved.  

Case 2. Atmospheric Models  
 

In this case study we consider various atmospheric models and demonstrate the per-
formance of the new system. We also show a much larger atmospheric sciences case 
study than has been presented before [2]. A global climate model (GCM) [19] is a 
computer model derived from mathematical equations based upon the laws of physics 
for representing the atmosphere, oceans, land and sea-ice to simulate the behaviour of 
the climate system. All Global climate models capture large scale features like deserts 
and tropics very well, but have difficulty in capturing small scale features like cy-
clones and thunder storms because they occur on a smaller scale than the grid used. A 
regional climate model (RCM) [20] with horizontal resolution of 100 km or less, is 
able to simulate regional weather pattern better than most GCMs. Since topographic 
features strongly influence regional temperature and rainfall, more detailed features 
are likely to give a better prediction with RCM. An RCM needs metrological informa-
tion at its grid nodes from the fine resolution stretched GCM. A fine resolution 
stretched GCM requires metrological information at its grid nodes from the coarse 
resolution GCM which inturn gets metrological information from a uniform resolu-
tion GCM. The CIT (California Institute of Technology) Model is a photochemical air 
quality model [21] and has been designed to estimate the formation and transport of 
photochemical air pollution. The RCM predictions are used by CIT model to drive the 
process of pollutants transport and depositions, and to provide radiation, temperature 
and moisture fields for the simulation of chemical transport process.  

The column heading “with Files” for tables 4 and 5 indicates the results are ob-
tained when models run sequentially using conventional files that are copied from one  
 



966 J. Kommineni and D. Abramson 

 

system to another. The words “with Buffers” in a column heading for tables 4 and 5 
indicate that the results are obtained by connecting models using GriddLeS middle-
ware. The GriddLes middleware acts as a communication mechanism between the 
applications. To achieve this the normal IO primitives in conventional languages have 
been overloaded so that they support interprocess communication as well as file op-
erations. This makes the individual components behave as if they are operating in a 
conventional file system, but in fact they are sending and receiving data across a dis-
tributed grid infrastructure. 

Case 2a.  Global and Regional Models with proxy 
 

In this case, as shown in Figure 2, we consider a Global Climate Model and a Re-
gional Weather Model and run over grid nodes where the network latency is varied 
from local to very distant as shown in Table 3. In this experiment all the machines 
are single CPU Linux machines. We run this experiment for the range of time steps 
from 960 to 1920 and the results are printed at every 60th time step in all the test 
cases.  

 

 
 

Fig. 2. Global and Regional Model pipeline 

 
Table 3. Latency Measurements 

 
Data size in bytes Node 1 Node 2 Round trip time (ms) 

64 dragon dione 2.13 
64 dragon freak 196 
64 dragon bouscat 330 

 

We run the Global Model (CCAM), cc2lam (a small conversion program) and the 
proxy on dragon as independent processes and the Regional (DARLAM) on another 
machine. The proxy reads the data produced by cc2lam and writes into another file 
with a much bigger block size (204800).  

The results shown in Table 4, indicate that it is possible to hide the entire network 
latency even though the latency between two grid nodes is significant and we are able 
to gain performance very similar to low latency network connections. This is possible 
because the application execution and data transfer occur in parallel. The proxy is es-
pecially advantageous in the case of distant systems. The results without the proxy did 
not give much improvement in performance in comparison with the conventional 
methods. This is due to more communication overheads because of the large numbers 
of connections with smaller block sizes. 

 
 



 GriddLeS Enhancements and Building Virtual Applications for the GRID 967 

 

Table 4. Models run between high latency grid nodes 
 

             960 time steps 1440 time steps 1920 time steps 
    With Buffers  

 
Model 

 
Ma-
chine 

with 
Files Proxy No Proxy 

With 
Files 

With 
Buffers  

With 
Files 

With 
Buffers 

C-CAM 
cc2lam 
F Copy  
Proxy 
Darlam 

dragon 
dragon 
dragon 
dragon 
dione 

1:01:31 
1:01:57 
1:03:34 
    - 
1:30:53 

1:04:41 
1:05:13 
      - 
1:05:47 
1:10:39 

1:05:10 
1:13:44 
    - 
    - 
1:15:22 

1:33:57 
1:34:14 
1:36:39 
    - 
2:17:20 

1:37:01 
1:40:14 
      - 
1:40:51 
1:42:15 

2:03:32 
2:04:12 
2:07:17 
    - 
3:01:29 

2:09:32 
2:10:02 
    - 
2:10:39 
2:21:45 

C-CAM 
cc2lam 
F Copy 
Proxy 
Darlam 

dragon 
dragon 
dragon 
dragon 
freak 

1:01:31 
1:01:57 
1:06:46 
    - 
1:34:12 

1:04:28 
1:05:06 
     - 
1:05:41 
1:16:07 

1:05:21 
1:29:11 
     - 
     - 
1:30:28 

1:33:57 
1:34:14 
1:41:17 
    - 
2:22:07 

1:36:17 
1:37:50 
    - 
1:39:20 
1:42:10 

2:03:32 
2:04:12 
2:13:22 
     - 
3:08:14 

2:11:18 
2:11:53 
     - 
2:14:06 
2:17:00 

C-CAM 
cc2lam 
F Copy 
Proxy 
Darlam 

dragon 
dragon 
dragon 
dragon 
bouscat 

1:01:31 
1:01:57 
1:10:22 
     - 
2:14:06 

1:04:47 
1:05:16 
     - 
1:10:55 
1:23:36 

1:05:33 
1:52:21 
      - 
      - 
2:10:28 

1:33:57 
1:34:14 
1:46:51 
    - 
3:22:27 

1:36:28 
1:36:33 
    - 
1:41:59 
2:16:33 

2:03:32 
2:04:12 
2:20:47 
     - 
4:28:15 

2:10:37 
2:10:44 
     - 
2:16:04 
2:39:57 

Case 2b. Multi-model Pipeline application running on different systems 
 

In this experiment, we consider all five models running on various systems. The first 
global model uses a uniform grid spacing of 300km, whereas the other global models 
vary the resolution of the grid to give more accuracy in the area under consideration 
(i.e., non-uniform grids of spacing 60km to 800km and 6km to 6000km). The RCM 
uses a uniform grid of 6km x 6km over the region of 100km x 100km. The regional 
model produces an output which, in turn is used by the CIT model. 

From the examples shown here, it is clear that GriddLeS allows us to create a vir-
tual application using existing atmospheric models with almost no modifications. The 
composed virtual application consists of a number of atmospheric models, Global cli-
mate models  with both uniform and non-uniform grid spacing, a regional model 
(DARLAM) and a pollution model (CIT) and their interfaces, run in a pipeline in a  
grid environment. Traditionally, these models have been run sequentially on the same 
computer. Binary data of about 72 MB  (for every 480 time steps when results are 
printed at every 60th time step) is passed between them by using conventional files. 
These models also use many other local files specific to each model. Most of these 
models are computationally intensive and it is possible to overlap computation by 
connecting these models with GriddLeS runtime and transferring data at the same 
time when the model is performing other parts of the computation. Downstream ap-
plications in a pipeline can start much earlier than their counterpart in sequential runs. 
 

 

Fig. 3. Virtual Application 



968 J. Kommineni and D. Abramson 

 

The synchronization between models and data transmission from one model another 
is handled by the GriddLeS runtime automatically, without the user’s involvement.   

The present virtual application consists of 9 independent processes running on 5 
different grid nodes located over 4 different organizations as shown in Figures 3 and 
Table 5. We used a proxy whenever there is a need to transmit data from one machine 
to another. The proxy script runs as a stand alone process independent of the rest of 
the application processes.  Currently, all of the nodes in particular virtual application 
obtain their configuration information from a central node which runs a GriddLeS 
Name Service (GNS). The GNS tables contain a number of entries – one per file. 
Each entry holds information about whether the file is found locally, whether it is re-
mote or whether it pertains to a remote pipe. At present, these entries are written 
manually by a user when they configure a virtual application. However, in the future, 
we plan to use a workflow generation tool like Kepler [22] or Triana [23] to do this. 

We used globus [10] middleware to submit jobs to different grid nodes. All jobs 
were submitted at the same time. The GriddLeS runtime can handle the rest of the ac-
tivity.  Reader applications will be blocked if there is not sufficient data, however 
writer applications will continue execution without any interruptions. Eventually this 
will also be replaced by a grid workflow tool. 

In this experiment the various models are distributed to different computing sys-
tems as shown in Table 5. In the case of sequential runs, files are copied over to the 
next system after the completion of the current model execution using the scp com-
mand. In the case of buffers, all models are distributed and run in parallel at the same 
time. Operations such as synchronization between the models and data transfer from 
one node to another are performed at runtime automatically, without the user interac-
tion. The results indicate that the application with GriddLeS runs much faster than its 
counterpart with conventional files.  

 
Table 5. Models Distributed on to different machines 

 
Model Model run 

location  
Results 
location  

With 
Files 

With 
Buffers 

Global dione dione 03:25    06:13 

Interface dione dione 03:46    06:29 

File Copy (scp) dione dragon 04:51        - 

Proxy dione dragon       -    07:04 

Global dragon dragon 10:26     11:20 

Interface dragon dragon 10:44    11:42 

File Copy (scp) dragon brecca-2 10:55        - 

Proxy dragon brecca-2        -    12:12 

Global (CCAM)  brecca-1 brecca-2 27:21    24:37 

Interface (cc2lam) brecca-1 brecca-2 27:37    24:46 

Regional(Darlam) brecca-2 brecca-2 35:15    27:55 

Interface brecca-2 brecca-2 35.26     27:57 

File Copy (scp) brecca-2 mahar 35:46        - 

Proxy brecca-2 mahar        -    28:22 

CIT mahar mahar 1:06:10    48:15 



 GriddLeS Enhancements and Building Virtual Applications for the GRID 969 

 

5   Conclusions 

In this paper we have discussed enhancements to the GriddLeS runtime environment 
that enables programs to run as components of a grid application (virtual application) 
without changes to the source code of underlying components, which are themselves 
applications. These legacy applications were written in Fortran programming lan-
guage and were designed without any knowledge of the distributed computing envi-
ronment. We have shown the simplicity of stitching individual components to make a 
complex virtual application. 

One of the most significant achievements from the experiments is that for a special 
class of problems where execution is more significant, the latency can be hidden 
completely, even though the applications run over grid nodes which are separated by 
high latency network. The performance improvements in these cases are very similar 
to low latency network connections. GriddLeS makes use of existing software like 
Globus [10], bypass[5], JWSDP [24] from Sun and gsoap[25][26] amongst others. 
This is viewed as a complement to existing grid middleware to deploy existing appli-
cations over to the grid environment without source modification. 

Acknowledgements 

The authors would like to acknowledge the work of CSIRO Scientists, in particular 
Drs. Jack Katzfey, Martin Cope and John L. McGregor who provided Atmospheric 
Sciences case studies. This work is supported by Australian Research Council and 
Hewlett Packard under and ARC Linkage grant. 

References 

[1] J. Kommineni, “Grid Applications: A Seamless Approach with Web Services”, The 
APAC Conf. and Exhibition on Advanced Computing, Grid Applications and eResearch 
Royal Pines Resort Gold Coast, Queensland Australia. 29 September - 2 October, 2003. 

[2] D. Abramson, and J. Kommineni, “An Atmospheric Sciences Workflow and its Imple-
mentation with Web Services”, The International Conference on Computational Sciences, 
ICCS04, Ktakow Poland, June 6 – 9, 2004. 

[3] M. Snir,  S. Otto, S.  Huss-Lederman, D. Walker, and D. Dongarra, MPI: The Complete 
Reference, Published by the MIT Press, 1995. 

[4] J. J. Dongarra, and D. W. Walker, “MPI: A Standard Message Passing Interface”, Super-
computer 1996, pp. 56-68. 

[5] D. Thain, and M. Livny, “Multiple Bypass: Interposition Agents for Distributed Comput-
ing”, Journal of Cluster Computing, Volume 4, 2001, pp. 39-47. 

[6] D. Abramson, and J. Kommineni, “A Flexible IO Scheme for Grid Workflows”, IPDPS-
04, Santa Fe, New Mexico, April 2004. 

[7] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Ken-
nedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski, “The 
GrADS Project: Software Support for High-Level Grid Application Development”, Inter-
national Journal of High Performance Computing Applications, Winter 2001 (Volume 15, 
Number 4), 2001, pp. 327-344. 



970 J. Kommineni and D. Abramson 

 

[8] G. Allen, D. Angulo, T. Goodale, T. Kielmann, A. Merzky, J. N., J. Pukacki, M. Russell, 
T. Radke, (Ed Seidel, J. Shalf, I. Taylor),  “GridLab: Enabling Applications on the Grid: 
A Progress Report”, In 3rd International Workshop on Grid Computing in conjunction 
with Supercomputing 2002,  LNCS Vol. 2536, 2002, pp. 39-45. 

[9] Y. Huang, I. J. Taylor, D. W. Walker, and R. Davies, “Wrapping Legacy Codes for Grid-
Based Applications”, in Proceedings of the 17th International Parallel and Distributed 
Processing Symposium (Workshop on Java for HPC), held 22-26 April 2003 in Nice, 
France, ISBN 0-7695-1926-1. 

[10] I. Foster, and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, Interna-
tional Journal of Supercomputer Applications, 11(2), 1997, pp. 115-128. 

[11] I. Foster, and C. Kesselman, (editors), The Grid: Blueprint for a New Computing Infra-
structure, 2nd Edition, Morgan Kaufmann, 2004. ISBN: 1-55860-933-4. 

[12] Condor DAGman, http://www.cs.wisc.edu/condor/ 
[13] S. Chapin, J. Karpovich, and A. Grimshaw, “The Legion Resource Management System”, 

Proceedings of the 5th Workshop on Job Scheduling Strategies for Parallel Processing, 
April 1999. (http://legion.virginia.edu/ ). 

[14] R. Buyya, D. Abramson, and J. Giddy,  “An Economy Driven Resource Management Ar-
chitecture for Global Computational Power Grids”, International Conference on Parallel 
and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, 
USA, June 26 – 29, 2000. 

[15] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid”, in Fran Berman, An-
thony J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastruc-
ture a Reality, John Wiley, 2003. ISBN: 0-470-85319-0. 

[16] D. Thain, and M. Livny, “Bypass: A tool for building split execution systems”, In the 
Proceedings of the Ninth IEEE Symposium on High Performance Distributed Computing, 
Pittsburg, Pennsylvania, August 1-4, 2000,  pp. 79-85. 

[17] D. Thain, and M. Livny, “Parrot: Transparent User-Level Middleware for Data-Intensive 
Computing, Workshop on Adaptive Grid Middleware”, New Orleans, Louisiana, Septem-
ber 2003. 

[18] D. Cheriton,  “UIO: A Uniform I/O system interface for distributed systems”, ACM 
Transactions on Computer Systems 5(1), 1987, pp. 12-46. 

[19] J. L McGregor, and J. J. Katzfey, “NWP experiments with a variable-resolution confor-
mal-cubic primitive equations model”, In: Research activities in atmospheric and oceanic 
modeling, A. Staniforth (editor). (CAS/JSC Working Group on Numerical Experimenta-
tion Report; 27; WMO/TD - no. 865) [Geneva], 1998. 

[20] J. J. Katzfey, and J. L. McGregor, “Verification and evaluation of storm tracks in regional 
climate simulations over Australia”, In 10th Sym. on Global Change Studies: preprints, 
Dallas, Texas. Boston: American Meteorological Society, 1999, pp. 384-386. 

[21] K. J. Tory,  M. E. Cope, G. D. Hess, S. H. Lee, and N. Wong, “The use of long-range 
transport simulations to verify the Australian Air Quality Forecasting System. In: Model-
ling and predicting extreme events”: extended abstracts of presentations at the fourteenth 
annual BMRC Modelling Workshop, BMRC, Melbourne, A. J. Hollis, and P. J. Meighen 
(editors) (BMRC Research Report, 90) Melbourne: Bureau of Meteorology Research 
Centre., 2002,  pp. 19-23. 

[22] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock, “Kepler: Towards 
a Grid-Enabled System for Scientific Workflows”, In the Workflow in Grid Systems 
Workshop in GGF10 - The Tenth Global Grid Forum, Berlin, March 2004. 



 GriddLeS Enhancements and Building Virtual Applications for the GRID 971 

 

[23] S. Majithia, I. Taylor, M. Shields, and I. Wang, “Triana as a Graphical Web Services 
Composition  Toolkit”, in Proceeding of the UK e-Science Programme All Hands Meet-
ing 2003, held 2-4 September 2003 in Nottingham, UK, edited by S.J.Cox. 

[24] Jwsdp-1.3, “Java Web Service Toolkit”  http:// java.sun.com/webservices, 2003. 
[25] R. van Engelen, “The gSOAP toolkit”,http://www.cs.fsu.edu/~engelen/soap.html, 2003. 
[26] R. van Engelen, K. Gallivan, G. Gupta, and G. Cybenko,  “XML-RPC agents for distrib-

uted scientific computing”, In IMACS’2000 Conference, Lausanne,  2000. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 972 – 981, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Application Oriented Brokering in Medical Imaging: 
Algorithms and Software Architecture∗  

Mario Rosario Guarracino1, Giuliano Laccetti2, and Almerico Murli1,2 

1 Institute for High Performance Computing and Networking - Naples branch, 
National Research Council, Italy 

2 Department of Mathematics and Applications,  
University of Naples Federico II, Naples, Italy 

Abstract. This paper describes algorithms and software architecture of a re-
source broker designed in the context of MedIGrid,  a medical imaging applica-
tion for the management, visualization and reconstruction on grids of medical 
images produced by PET/SPECT medical instruments. The broker allows the 
discovery and selection of suitable clusters of workstations for the execution of 
parallel image reconstruction algorithms. The proposed algorithms and software 
architecture are general with respect to possible application domains and are po-
tentially useful in different grid environments. 

1   Introduction 

Grids are distributed platforms in which heterogeneous machines can be accessed 
through a single interface. The underlying computational model is a distributed envi-
ronment in which hardware, software and configuration resources, belonging to dif-
ferent organizations, can be shared among authorized users. Resources dynamically 
publish ads about their current status in proper registries and periodically update such 
information. Resources are shared between users; each institution manages and ad-
ministers its own resources autonomously. A user can use available resources within 
the policy that are set by owning institution. 
    In that context the term broker refers to a tool with a set of functionalities that en-
able discovery and selection of resources in a distributed computing environment for 
one particular application, with specific needs. Discovery and selection are accom-
plished by a match between application and user’s needs, and information obtained in 
the registries. Let us suppose a user wants to run his SPMD application on a set of 
computing resources, using an input data set and storing the results in a database. The 
user requirement is to have the results back within a specified period of time; an ap-
plication requirement could be, for example, a given operating system. In the outlined 
computational model, the  broker needs to  discover in  the registers resources capable 

                                                           
∗  This work has been partially supported by Italian  Ministry of Education, University and Re-

searh (MIUR), within the activities of the WP9 workpackage “Grid Enabled Scientific Li-
braries”  coordinated by  A. Murli, part of the MIUR FIRB RBNE01KNFP  Grid.it Project 
“Enabling Platforms for High-Performance Computational Grids Oriented to Scalable Vir-
tual Organizations”. 



 Application Oriented Brokering in Medical Imaging 973 

 

 
Fig. 1. Application manager workflow 

of solving the problem and to select one of them to satisfy user requests. This example 
shows needed information regards hardware requirements (a minimum amount of main 
memory, connection network bandwidth, ...), software requirements (a particular operat-
ing system, pre-installation of a particular software, ...) and configuration requirements 
(existence of a distributed file system among the computing elements, ...). Once the re-
sources have been selected, they need to be monitored to check if they are delivering the 
required computational power, in order to ensure user requirement are met. An actual 
Performance Contract will be defined as described in [5]. If that is not the case, a re-
scheduling phase can take place, in which the broker  is again in charge to find new re-
sources that can in principle solve the problem. In case of application rescheduling, part 
of the previous elaboration can be probably reused; since initial conditions are different, 
broker output will be, in general, different. This situation is depicted in Figure 1. 
    Our interest in grid computing brokering is motivated by a previous work on MedI-
Grid [2], a distributed application for the management, processing and visualization of 
biomedical images that integrates a set of software and hardware components, or, more 
specifically, a set of grid collaborative applications useful to nuclear doctors. It results 
from the interaction of scientists devoted to the design and deployment of new tomo-
graphic reconstruction techniques, researchers in the field of distributed and parallel ar-
chitectures and physicians involved in neural medicine. The main drawback of recon-
struction methods is that they are  so computationally intensive that cannot be employed 
on conventional machines.  MedIGrid uses MedITomo [3], a parallel software for re-
construction of SPECT images based on a conjugate gradient computational kernel. The 
medical doctor selects, within the volume of acquired data, the slices of interest and ini-
tializes parameters related to the accuracy of the reconstruction process. That means the 
computational cost of a single reconstruction only depends on the  number slices to be 
reconstructed and iterations to be performed, which makes it possible to model the ex-
pected execution time over different computing resources. 

resources 
selection 

network 

performance 
database 

contract  
development 

application 
execution 

violation 
management 

resources performance  
contract monitoring 

application 

data 
store 
load

end 

rescheduling 

application 
stop/restart 

application 
& user info 



974 M.R. Guarracino, G. Laccetti, and A. Murli 

 

    On the other hand, high performance computing technology can be employed in 
SPECT devices  only to an extent which is determined by the overall cost of the sys-
tem and its localization in ad hoc places. Delocalization of acquisition instruments 
from processing power and storage facilities seems a viable way to overcome such 
difficulties. Indeed, end-users of such applications are not “experts” of distributed 
computing management; it becomes mandatory to hide as much as possible difficul-
ties related to use of high performance geographically distributed platforms and to 
manage, catalogue and process this huge amount of data. Moreover, using computa-
tional grid technology can solve problems related to authentication, dynamic alloca-
tion and other aspects connected to remote resources access.  
    Finally, the application of the tomographic concept to Nuclear Medicine data led to 
powerful new techniques such as Single Photon Emission Computed Tomography 
(SPECT) and Positron Emission Tomography (PET). The introduction of these tech-
niques represents the core of Nuclear Medicine methodologies. In all cases, the aim is 
to  obtain the spatial distribution of the physical quantity to be imaged from the meas-
ured data (the so-called raw data) (see, again, [2]). 
    Since that experience, situation has much evolved and, although it realized an 
economy of thought, software tools now available in Globus  middleware 
(http://www.globus.org) open new scenarios for the medical community to collabo-
rate and share resources, information and knowledge. The application can now take 
advantage of information provided by the user, previous executions and network 
monitors to discovery and select computing resources that can reconstruct raw data 
acquired by PET/SPECT medical instruments within a given period of time. There-
fore, it has become necessary to introduce algorithms and software architecture for 
brokering resources for the application and it is more and more urgent as size, users 
and number of available grid testbeds increase, since the application can efficiently 
perform only if available resources can be selected with respect to users needs. 
    There are basically two approaches for the brokering problem: 

1. Application oriented approach: the broker is embedded in the application and it 
tries to minimize the execution time of a single application execution on a set of 
potentially shared resources. The information is application dependant and the 
use of the broker in another application is not straightforward.  

2. Runtime scheduling: the scheduler tries to maximize the overall system perform-
ance, considering the performance of  the single application. The scheduler takes 
care of the different applications running at the same time on the system, trying  
to optimize resource utilization. 

The first approach is used, for example, in the GrADS project [8], in which the 
scheduler uses a performance model of the application to decide the mapping of the 
single application components to the discovered resources. An example of the second 
approach is Prophet [15], a run time scheduling effort which targets heterogeneous 
systems and includes parallel applications with inter processor communications. In 
present scenario the notion comes of meta-scheduler [13], which allows to request re-
sources from more than one machine for a single job [12]. It may perform load bal-
ancing of workloads across multiple systems, in which case each system would then 
have its own local scheduler to determine how its job queue is processed. It requires 
advance reservation capability of local schedulers. In those strategies either informa-



 Application Oriented Brokering in Medical Imaging 975 

 

tion about the underling environment is passed to the application or application in-
formation is passed to the runtime support. In both cases solution is application 
dependent and it is difficult to use in different setting.  
    In the following we describe MedIBroker, a grid broker targeted to clusters. It is a 
tool to search a grid testbed and find a cluster that can be used to run an SPMD image 
reconstruction application within a given period of time. It tries  to couple the previ-
ously described approaches merging application information with one related to the 
computing environment. The broker  is application oriented and it uses information 
about the computing environment that is provided by registers and a history database 
of application runs. The strategy has the advantages of application oriented brokering, 
that is relieving the runtime support from a task that can be resource and time con-
suming; moreover it provides hints on resource management that are application spe-
cific but do not require any knowledge about the application itself, which makes it 
portable to different applications.  

2   State of the Art 

The discovery and selection algorithms have already been investigated in metacom-
puting environments. A review can be found for example in [7]. Those topics assume 
a key role even in a grid computing environment, and they have to be investigated as 
well. In the following we try to summarize a certain number of grid computing pro-
jects in which a broker has been developed. It does non mean to be exhaustive in any 
way, but rather to give an idea of the efforts devoted to the topic in major projects 
around the world, providing, in Table 1, URLs for other interesting projects. See also 
[8] for further details. 

Table 1. Brokers in grid software projects 

Cactus PSE http://www.cactuscode.org/ 
DISCOVER Telecollaboration http://tasslweb.rutgers.edu/discover/main.php 

Entropia Application support http://www.entropia.com 
EuroGrid Integration http://www.eurogrid.org/ 

GRB Framework http://sara.unile.it/grb/ 
GridLab Toolkit http://www.gridlab.org/ 
Griphyn petabyte data grid http://www.griphyn.org/index.php 
GridPort Portal development tool http://gridport.sourceforge.net/ 
Narada Broker http://www.naradabrokering.org/ 
Nimrod Parameter swapping http://www.csse.monash.edu.au/~davida/nimrod/ 
Unicore IDE http://www.unicore.org/forum.htm 
GridSim Scheduling simulator http://www.buyya.com/gridsim/ 

Apples (Application Level Scheduler) [6] is a software package that allows the 
scheduling and deployment of medium or large scale parameter sweep applications 
over computational grid resources. It interfaces with many grid middleware for job  
submission, data movements, and resource monitoring. Its broker is targeted to those 
problems and selects resources from available ones. 



976 M.R. Guarracino, G. Laccetti, and A. Murli 

 

Condor-G [9] manages both a job queues resources from one or more sites where 
those jobs can execute. It communicates with these resources and transfers files to and 
from these resources using Globus mechanisms. Condor-G uses the GRAM protocol 
for job submission, and it runs a local GASS server for file transfers. Condor-G is not 
a simple replacement for the Globus toolkit's globusrun command in that it allows the 
submission of many jobs at once, the monitoring of those jobs with a convenient in-
terface,  the notification when jobs complete or fail, and the management of Globus 
credentials which may expire while a job is running.  

GrADS [14] takes its steps from Apples project and it implements a software ar-
chitecture to support monitoring and performance adaptability on grids. Monitoring is 
intended as the capability to sense application performances during its execution, 
while adaptability is the ability to dynamically change computing resources during  
the elaboration, in order to maintaining an a priori agreed level of performance.  

DataGrid [10] is an EU project for a software infrastructure for next generation 
high energy physics experiments. The workload management section of DataGrid  has 
the goal of defining and implementing an architecture for distributed scheduling and 
resource management in a grid environment. This infrastructure tries to cope with an 
unpredictable, chaotic workload generated by relatively large numbers of independent 
users in contrast to the supercomputing environments that have been the target of 
most previous meta-computing projects.  

Netsolve, and its evolution GridSolve, aim is to implement the middleware to 
bridge simple application program interfaces, which are usually provided by problem 
solving environments, and the set of services provided by grid middleware software 
tools. Netsolve can take advantage of Condor tools to discover and manage available 
resources [1]. 

Ninf-G is an implementation of GridRPC [11] programming model on top of 
Globus. It provides the ability to run applications on grid, with a stub mechanism to 
remotely run executables, providing application programming interfaces and registra-
tion mechanisms that enable to register software components within the Globus Meta-
data Directory Service.  

3   MediBroker 

The broker has mainly two functions: discovering and selecting resources in a test-
bed that can better fulfill application and user requirements. In the first step, a 
search in the information system results in the discovery of a set of available ma-
chines. This phase provides the characteristics of resources found, some of which, 
such as CPU speed and operating system type, can be considered static, and others 
that can vary during time, such as CPU load  and memory utilization.  A static 
property  is one  for which the probability it changes in the period between its ac-
quisition and use is low.  

Discovery procedure takes as input static characteristics describing the needed re-
sources and performs a search in the register as outlined in Algorithm 1.  

 



 Application Oriented Brokering in Medical Imaging 977 

 

Procedure discovery (OS type, MEM-size-test, register)  
list=empty 
 
for machine in register 

 MEM_avail = Mds-Memory-Ram-availMB 

 if (MEM_avail   >= MEM-size-test  && 

 OS type == Mds-Os-type) 

          Add machine to list 
       end if 
 end for 
return list 

Algorithm 1. Discovery 

    The input data are operating system type on which we want the application to run, 
the minimum amount of memory, and the Globus MDS server to search. The proce-
dure returns a list of available clusters that match the requirements. This strategy 
works for a small number of resources since its complexity grows linearly with the 
number of resources. An alternative solution could relay in a user list of resources, 
dynamically updated by the broker, which have been successfully used to solve the 
problem. The broker is targeted to homogeneous clusters with all processors of the 
same family, although each cluster could have different processor speeds. If a cluster 
has groups of CPUs of different families, each of those has to be considered as a dif-
ferent cluster.  The assumption clusters always have the required number of nodes, 
and they all have the same workload, makes the software architectures for validation 
simpler, although, in standard Globus distribution, a tool to accomplish the task, 
namely Glue (http://www.globus.org/mds/glueschema.html), is already available. On 
the other hand, a different solution to those problems would be to register a valid 
LDIF file in MDS with the information about the cluster we want to be advertised by 
the information system. In this way we can register, for example, the total number of 
nodes available in the cluster, the minimum and maximum memory and CPU utiliza-
tion of nodes, which can be used to speed up the selection phase. 

Selection algorithm, shown in Algorithm 2, returns either a machine that, given 
its actual status, can execute the application within Application-time (found=true) or 
the information no resource is available (found=false). 
    The input parameters are taken from the performance database and consist of the 
CPU frequency of cluster nodes on which the tests have been performed, their CPU 
utilization at the moment of tests, memory footprint of the job, number of nodes on 
which it has been processed and its execution time. For a dynamic property, such as 
CPU utilization, the geometric mean with respect to the last 15 minutes is considered, 
and its behavior will be monitored during application execution by the monitoring 
subsystem.  

 



978 M.R. Guarracino, G. Laccetti, and A. Murli 

 

Procedure Selection( CPU_frequency,  CPU-percentage-usage, MEM-size-test, p, Tb (p), 

                                   Application-time, OS type, register) 
found=false 
selected=null 
list=discovery(OS type, MEM-size-test, p, register) 
while (next machine in list &&! found) 

 CPU_speed = MDS-Cpu-speedMHz 

 CPU_free    = MDS-Cpu-Free-15minX100 
 MEM_free   = Mds-Memory-Ram-freeMB 
 if (MEM_free   >0 && CPU_free   >0) then 
    ΔCPU =(2−CPU_free) CPU_speed/CPU_frequency  

   ΟMEM = (MEM_size_test -    MEM_free) / (MEM_size_test) 

                  Tf (p)= Tb (p) *(α∗ΔCPU +β*ΟMEM ) 
 end if 
 if (Tf (p) + WT(p) < Application-time) then 

           found=true 
          selected=machine 
       end if 
end while 
return selected 

Algorithm 2. Selection 

    The other parameters are the application time, which is the maximum wall-clock 
time the user can wait, the operating system required and the register name. The algo-
rithm uses the long term scheduling expected waiting time WT(p) to take into account 
the time the job will be in the queue before being executed.  

The selection algorithm currently uses a greedy algorithm to choose the first ma-
chine that can complete the job within the application time request. This strategy al-
lows the selection of a resource without an exhaustive search. Other selection algo-
rithms can be considered. For example, a next-fit algorithm could be implemented, in 
which the selection starts from the last selected resource and chooses the next avail-
able. Which approach is best will depend on the exact sequence of resource requests. 
The proposed algorithm is not only the simplest but usually the best and the fastest as 
well. On the other hand, the next-fit tends to discover machines at the end of the list, 
which produces a better workload balance. In the algorithm, new performance figures 
are not incorporated in the database, to be taken into account for following runs. The 
latter strategy could provide better estimates, and, in order to limit the size of the da-
tabase, an exponential mean of the results could be stored.  

The performance model takes into account the timing of a previous execution of 
the application, together with the characteristics of  the cluster CPUs on which it run 
and the memory footprint of the application: 

Tf (p)= Tb (p) *(α∗ΔCPU +β*ΟMEM ), 

which consists of two terms, one related to the CPU effects, the other to the memory 
ones. If the performance database  contains a run which  refers to processors  with  



 Application Oriented Brokering in Medical Imaging 979 

 

different CPU clock, the information is processed and the new execution time is sup-
posed to be proportional to: 

ΔCPU = (2-CPU_free) CPU_ speed/CPU_frequency, 

where the numerator represents the speeding up factor of the discovered CPU, with 
respect to its workload, and the denominator the one in the performance database.  

Current selection phase assumes, as the discovery one, that all CPUs are from the 
same processor family. Furthermore, it is supposed performance information con-
tained in the database has been obtained on a machine with sufficient memory.  

Without a performance model of the application, taking into account its communi-
cation and computational complexity, it is not possible to forecast how a variation in 
CPU usage, network speed or latency can affect application performance at runtime. 
The present broker selects the most promising resources among the available ones. 
The runtime analysis of performance achieved by application is demanded to monitor-
ing subsystem, as it will be seen in the sequel. 

 

 

 

 

 

 
 

Fig. 2. Software architecture of MedIGrid 

Software architecture of MedIGrid is composed of three layers: core services, 
which is based on Globus toolkit, collective services, including the resource broker, and 
application manager, in which there are all application specific software components. 
Discovery algorithm in MedIBroker uses security modules (GSI) to access the informa-
tion system (MDS) and provides information to Globus resource allocation manager 
(GRAM), regarding  available computing resources. It uses performance statistics (Per-
formance) together with user’s and reconstruction modules requirements to select avail-
able ones. MedIGrid application manager instantiates requests to underlying layer com-
ponents in order to run user’s jobs, which are submitted via a user portal and post-
processed with a set of plug-ins [4]. Figure 2 shows all such software compponents or-
ganized into layers and the resource broker components are inside the dotted line. 

4   Experiments and Concluding Remarks 

The experiments have been designed to assess the validity of the model for perform-
ance prediction, in case of variable processor utilization;  we decided  to  measure the 
execution time in an environment in which the workload could be injected in a con-
trolled way. Overload software package has been implemented to load a multicom-

Collective Services 
 
 Discovery   Selection Scheduling Contracts Monitoring 

Application manager
 
 Coordination Processing Interaction   Notification   Error handling 

Core Services 
 
        GSI      I/O     GRAM      MDS     GASS 



980 M.R. Guarracino, G. Laccetti, and A. Murli 

 

puter with a given percentage  of CPU utilization  for  a given period of time.  The 
program is also capable to maintain a specified main memory utilization, but this fea-
ture has not been used, since the memory footprint of the reconstruction program has 
never exceeded 1MB. 

0

10

20

30

40

50

60

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

p=4 actual p=4 expected p=8 actual

p=8 expected p=16 actual p=16 expected

 

Fig. 3. Execution times in second 

    Tests have been performed on a Beowulf cluster, located in Naples at ICAR-CNR, 
consisting of 16 Pentium 4 1.5 GHz, with 512MB RAM, connected with a Fast 
Ethernet network. Each node runs a RedHat 9 distribution, Linux kernel 2.4.20, gcc 
compiler 2.96, mpich 1.2.5; MedIBroker has been implemented on Globus 2.4. Tests 
have been run on idle workstations during daily operation time; timing, in seconds, re-
fers to wall clock time.  
    Discovery and selection procedures are implemented with bash scripts and C pro-
grams. Measurements refer to the execution time of MedITomo [3], the parallel soft-
ware for 2D+1 reconstruction of SPECT images. It is based on a conjugate gradient 
computational kernel, which is executed on each slice of the data volume in sequen-
tial and results are updated via a collective gather operation. Then, the kernel has a 
fixed execution profile in the sense that the amount of data is the same for each job 
instance. Figure 3 shows the execution time of MedITomo on P = 4, 8 and 16 proc-
essors, when CPU utilization increases from 0 to 100%. Results show the expected 
execution are predicted with a relative error of less then 0.1.  
    In conclusion, first results have been presented, and more testing is needed to com-
pletely validate the performance prediction model. Further, the model does not de-
scribe different network technologies and variable traffic. The broker only selects 
nodes within a single cluster. In future it will be investigated how  MedIBroker can be 
recruit distributed computing elements for a really distributed computation. This re-
quires a major shift in reconstruction algorithms and techniques, which need to be  



 Application Oriented Brokering in Medical Imaging 981 

 

tailored for the different computing paradigm. Nevertheless, the availability of such a 
tool would greatly influence the exploitation of new algorithms, since it would pro-
vide an easy to use environment in which it is possible to test new algorithms. 

References 

[1] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, C. Fabianek, T. Hiroyasu, E. Meek, M. 
Miller, K. Sagi, K. Seymour, Z. Shi, and S. Vadhiyar Users' Guide to NetSolve V2.0, 
2002. 

[2] M. Bertero, P. Bonetto, L. Carracciuolo, L. D'Amore, A. Formiconi, M. R. Guarracino, G. 
Laccetti, A. Murli and G. Oliva, “MedIGrid: a Medical Imaging application for 
computational Grids”, in Proceedings of IPDPS 2003, IEEE Computer Society Press, 
April 2003. 

[3] P. Boccacci, P. Calvini, L. Carracciuolo,  L. D'Amore, and A. Murli, “Parallel Software 
for 3D SPECT imaging based on the 2D + 1 approximation of collimator blur”,  Ann. 
Univ. Ferrara, Sez. VII, Sc. Mat., vol. XLV, 1-0, 2000. 

[4] P. Bonetto, G. Comis, A.R. Formiconi, and M.R. Guarracino, “A new approach to brain 
imaging, based on an open and distributed environment, in Proceedings of 1st 
International IEEE EMBS Conference on Neural Engineering, March 2003. 

[5] P. Caruso, G. Laccetti and  M. Lapegna, “A Performance Contract System in a Grid 
Enabling, Component Based Programming Environment”, this volume. 

[6] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS Parameter Sweep 
Template: User-Level Middleware for the Grid”, in Proceedings of SC 2000, November 
2000.  

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke, “A 
Resource Management Architecture for Metacomputing Systems”, in Proceedings of 
IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-
82, 1998. 

[8] H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Dongarra, C. 
Liu, L. Yang, D. Angulo, and I. Foster, Scheduling in the Grid Application Development 
Software Project, Resource Management in the Grid, Kluwer, 2003. 

[9] J. Frey, T. Tanenbaum, I. Foster, M. Livny, and S. Tuecke, “Condor-G: A Computation 
Management Agent for Multi-Institutional Grids”, in Proceedings of the Tenth IEEE 
Symposium on High Performance Distributed Computing (HPDC10), August, 2001. 

[10] W. Lee, S. McGough, S. Newhouse, and  J. Darlington, Load-balancing EU-DataGrid 
Resource Brokers, Proceedings of UK e-Science All Hands Meeting 2003. 

[11] H Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova, “GridRPC: 
A Remote Procedure Call API for Grid Computing”, Submitted to the Workshop on Grid 
Computing, Baltimore, MD, 18th November 2002.  

[12] M. Roehrig W. Ziegler, and P. Wieder, “Grid Scheduling Dictionary of Terms and 
Keywords”, Grid Scheduling Dictionary WG, Global Grid Forum, November 2002. 

[13] S. Vadhiyar, and J. Dongarra, “A meta-scheduler for the Grid”, in Proceedings of the 11th 
IEEE Symposium on High-Performance Distributed Computing, July 2002.  

[14] S. Vadhiyar, and J. Dongarra, “GrADSolve—a grid-based RPC system for parallel 
computing with application-level scheduling”, in Journal of Parallel and Distributed 
Computing, v. 64, n. 6, pp 774-783, 2004.  

[15] Weissman, J. Prophet, “Automated scheduling of SPMD programs in workstation 
networks”, Concurrency: Practice and Experience, vol. 11, n. 6, 1999. 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 982 – 992, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Performance Contract System in a Grid Enabling, 
Component Based Programming Environment* 

Pasquale Caruso1, Giuliano Laccetti2, and Marco Lapegna2 

1 Institute of High Performance Computing and Networking, Naples branch, 
National Research Council – via Cintia Monte S. Angelo, 80126 Naples, Italy 

2 Department of Mathematics and Applications, 
 University of Naples Federico II – via Cintia Monte S. Angelo, 80126 Naples, Italy 

Abstract. In these years, grid computing is probably the most promising  ap-
proach  for building large scale and cost effective applications.  However, this 
very popular approach  needs  a sophisticated  software infrastructure to address 
several requirements.  One of these requirements is the ability to sustain a pre-
dictable  performance in front to the fluctuations  related to the dynamic nature 
of a grid.  In this paper we describe design and realization  of a Performance 
Contract System, a software infrastructure that manages the computational ker-
nel of a grid  application with the aim  to  face such aspect of the grid comput-
ing, as well as the strategies and the experiences to integrate it in a grid-
enabling component-based programming  environment still under development. 

1   Introduction 

As stated in [7], a Grid is  a  system that “… coordinates resources that are not subject 
to centralized control, … using standard, open, general purpose protocols and inter-
faces,… to deliver non trivial qualities of services”.  That means  that a Grid infra-
structure is built on the top of a collection of disparate and distributed  resources 
(computers, databases, network, software …) with functionalities  greater than the 
simple sum of those addends [8].  The “added value”  is a software architecture aimed 
to deliver good Quality of Service (QoS), so a stronger attention has been recently 
given on the technologies enabling it (see for example [10]).  Inside this software in-
frastructure, a significant part, known as  Performance Contracts System,  is devoted 
to the aspects related  to the response time and to the delivered performance. Grid top-
ics related to  performance contract systems have been widely studied in the last 
years, mainly in the GraDS project (see for example  [1,2]). Other papers (see [15])  
report studies about   the forecast of the performances in distributed computing envi-
ronment, by using algorithms simulating an ideal customer, opportunely defined by 
means of some rules of behavior,  in terms of use of the resources.  A Performance 

                                                           
* This work has been partially supported by Italian  Ministry of Education, University and Re-

search (MIUR) within the activities of the WP9 workpackage  “Grid Enabled Scientific Li-
braries” , coordinated by A. Murli, part of the MIUR FIRB  RBNE01KNFP Grid.it project 
“Enabling Platforms for High-Performance Computational Grids Oriented to Scalable Vir-
tual Organizations”. 



 A Performance Contract System 983 

 

Contract of an application for a computational grid  by means of the computational  
cost of the algorithm is defined in [19] and then it is checked  and validated.  

Approaches that make use of statistical data , on the other hand,  are introduced  in 
[13,22 ]. Results related to the development of performance contracts based on the fit-
ting of runtime data are reported, finally, in [16]. With regard to  the run time moni-
toring, several  tools for distributed applications are available and  they  will be 
shortly described in Section 4 [ 18,20,27]. A statistical analysis that, instead of check-
ing   all the software modules of the application, uses  only some meaningful sections 
of the application itself, is developed in [17]. 

This paper is therefore organized  as follows: in Section 2 we outline our  Perform-
ance Contracts System and its role in a grid application; in Section 3 we introduce the 
software environment in which the Performance Contract System will be integrated; 
finally, in Section 4, we  show some computational results about  the definition of the 
performance contract and the related monitoring of a parallel routine that is part of a 
medical imaging application.  

2   The Role of a Performance Contract System in a  
     Grid Application 

One of the aspects of grid computing is the simple and transparent use of the compu-
tational resources of a distributed system [8]. To such aim it is “mandatory”, in some 
way,   the presence of several  software units, that are  side by side to the  application. 
Among  the tasks of such software modules there are, for example, the selection of the 
resources, the development of the performance contract, its monitoring and the man-
agement of  possible violations of the contract itself. The module that manages all ac-
tivities is the  Application Manager (AM), whose outline (or workflow) is  depicted in 
Fig. 1.  Its main software component are: 

1. Resource broker. This component selects the computational  resources on the ba-
sis of information about  the application (e.g. the dimension of the problem), the 
user (e.g. the time to solution, that is the maximum amount of  time to complete 
the application), the state of the grid (e.g. resources available in that moment) and  
finally, information about previous executions (e.g. performances caught up on a 
machine already used).  See [6,14] for an example of  selection of the computa-
tional  resources. 

2. Contract developer. This component has in charge the definition of the Perform-
ance Contract on the basis of the resources selected in step 1 without other input 
from the user. These information are combined with those related  to  the compu-
tational features of the application (e.g.  the computational cost) as well as to the 
performance of previous executions (e.g. stored in a “historical performance da-
tabase”); more details  related to these aspects are reported in the sequel. 

3. Monitor of the application.  This is a key software item for a reliable grid-enabled 
application, because the actual performance can be very different from that one 
specified in the Performance Contract. The dynamic nature of distributed re-
sources not under the same centralized control, can do these values very different 
among them. Some existing tool for the monitoring of distributed application are 
shortly described in the next Section. 



984 P. Caruso, G. Laccetti, and M. Lapegna 

 

4. Manager of the violation policy. This is the software item aimed to take the suit-
able actions in case of violation of the Performance Contract. Typical actions are 
the migration of the application on other resources, redefinition of the terms of 
the contract or  the addition of other computational resources. See [23] for an ex-
ample of migration strategy. 

 

 

 

 

 

 

 

 

Fig. 1. Workflow of the Application Manager 

A Performance Contracts System is the set of all software units  of the Application 
Manager related to the performance contract and its monitoring. The definition of a 
Performance Contract is not a new one (see for example [26]), but in a grid environ-
ment it assumes a key role.  A performance contract can be defined as a forecast of 
the performances of an application on  given  computational  resource. More pre-
cisely,  assigned: 

• some computational  resources (e.g. processors,  memories,  networks...) 
• with given capability  (e.g. computation speed, memory bandwidth...) 
• and an application with given characteristics (e.g. dimension of the problem, 

amount of I/O, number of operations..)  
a Performance Contract states  

• the achievement of  a fixed  performances 

There are several way to express a Performance Contract  depending on  the kind 
of application. Typical examples are the attainment of F operations/sec,  the execution 
of I  iterations/sec, transfer of B bytes/sec or the time necessary to compute a compu-
tational step (e.g. one  frame in a image reconstruction problem). Obviously the 
choice among them depends on the features of the application. 

Once selected the computational  resources, the definition of the performance  con-
tract is essentially based on the following information: 

1. use of a performance model based on the features of the application and of 
the selected computational resources.  To be realistic,  the definition of the 
model must take into account the computational cost of the algorithm, as 

resource 
selection 

application  
& user info  

Network

performance
database 

contract 
development

application
 execution 

violations 
management 

resources performance
contract monitoring

application

data 
store
load 

end 

Stop/restart
application 



 A Performance Contract System 985 

 

well as the workload of the resources, the fraction of peak performance actu-
ally obtainable, values of benchmarks, and so on. Such approach can be de-
fined Performance Model Approach, and it is used,  for  example, in [19]. 

2. use of data related  to the performances  of previous executions.  As an ex-
ample, it is  possible to  use a database in which, for every computational re-
source selected in the  time, average  performances  actually obtained, and 
the standard deviation (that can be used as estimate of the eventual deviation 
from the average value), are stored. The described approach can be defined 
Historical Approach Performance, and it is used, for example, in [22]. 

As previously said, because of the dynamic nature of a computational grid, during 
the execution of the application it is  necessary to periodically check the actually ob-
tained performances in order to compare them  with those ones stated in the contract. 
Such monitoring  is carried out by means of  a suitable tool defined as  process moni-
tor: a sufficiently frequent check allows to take suitable actions (e.g..  migrating from 
a resource overloaded to another one, with the definition  of a new contract; adding 
new computing resources, …). Tools like Automated Instrumentation and Monitoring 
System (AIMS) [27], Autopilot [20], Paradyn [18] or the commercial tool  Vampir 
make this control.  We note that  all of them are based  on the concept of instrumenta-
tion  of the code, that is  on the insertion of calls to library functions able to capture 
given information from  the running code and to transmit them to a process monitor or 
a visualization tool.  

3   A Grid-Oriented Component Based Programming Environment 

Component programming model is a well known paradigm to develop applications. 
This approach, that can be considered as an evolution of the object-oriented model, 
that allow to build applications by binding independent software modules (the com-
ponents) that interact with other components means of well defined interfaces (the 
ports) according a set of specific rules of the programming environment (the frame-
work). The separation  of the support code  implemented into the framework from the 
application code into the components  allows to the user to focus the attention  on the 
application, avoiding to deal with environment dependent details [5]. 
    Because the components describing the application can be implemented  onto  
separate hardware and software environments, the component programming model is 
also a very promising approach to develop grid oriented programming environments 
[11,12 ]. So a new grid oriented component based programming environment is one 
of the goals of Grid.it  Italian research project  [24], where  we are currently working 
to integrate a Performance Contracts System into the  programming environment.  

As already mentioned, the key role of the framework is to shade the details of the 
programming environment, by exposing   only the services required to implement the 
components. In a grid oriented programming environment, therefore, beyond to the 
classical services related to the cycle life of the components (instantiation, resource 
allocation, …), the framework has to provide   more sophisticated grid oriented ser-
vices like  resources discovery, remote data access as well the actions concerning the 
application structuring and rescheduling. As already said in Section 2, in a grid en-
abled application, these services are in charge of the  Application Manager, that in 



986 P. Caruso, G. Laccetti, and M. Lapegna 

 

this context has a natural implementation in the framework. It is important to note that 
the  middleware  Globus [9] will be integrated  in the framework in order to address 
the problems related to the access of the geographically distributed resources.  In the 
Grid.it  programming model, the components are  supplied with several types  of 
ports [24]: 

1. Remote Procedure Calls (RPC) interfaces. These are the classical CCA-like ports 
mainly for client-server applications [5].  These interfaces define the kind of ser-
vices that the component provides or uses. 

2. Stream interfaces. This kind of interfaces allows the unidirectional communica-
tion of a data stream between two components. This kind of interfaces allows  a 
better use of the bandwidth in case of high latency  networks. 

3. Events interfaces. These  interfaces  are used for the interaction of the compo-
nents with the framework. The asynchronous events of a computational grid (e.g. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

configuration ports              RPC/streams ports   events ports 
 

Fig. 2. Integration of the Performance Contract System in to the Grid.it environment 

 
the failure of resources) can be  communicated to the components through these 
interfaces in order to take eventual actions for the rescheduling of the application 
on different resources. 

4. Configuration interfaces. These interfaces allow to the Application Manager  to  
access and to modify information and data inside the components and can be 
used for the reconfiguration steps (e.g. stop and restart of the application on other 
resources). 

In order  to integrate the Performance Contracts System, described in Section 2, 
into the Grid.it programming environment we firstly note that,   while the application 
can be developed assembling the components directly by using the RPC or the 
streams interfaces, the software units composing the Performance Contract Systems  
(monitor and contract developer) and all related files and data structure can be di-

contr. devel. 

 

monitor 
framework 

C2C1

C3



 A Performance Contract System 987 

 

rectly implemented in the framework interacting with the application through the 
configuration interfaces  
    In Fig. 2 is shown an example of application with three components (namely C1, 
C2 and C3). The components exchanges their  data by means of the streams port 
(black line) while the monitor and the contract developer access the data into the 
components by means the configuration ports (dotted lines). 

More precisely, referring to the integration of the monitor  in the environment, it 
is possible to add the components with proper scripting annotation, specific for the 
application (e.g. number of floating point operations in each iteration, number of 
communications,…), reporting which  data have to be monitored. These information 
are accessed by the monitor through the configuration ports and are combined with 
the information directly acquired from the middleware implemented in the frame-
work (e.g. number of processors to be use, kind of networks,…) and/or from the per-
formances database, in order to define the Performance Contract. Through the same 
ports, the components provide to the monitor the run time  values of the data to be 
monitored, in order to realize  the  monitoring process. In such a way the monitor can 
be  based on a general purpose and application-independent template depicted in  
Fig. 3. An analogous approach can be used for the Performance Contract Developer. 

 
 Acquire from the components the data to be monitored through the configura-

tion interfaces 
 Acquire from the middleware the features of the resources to be use 
 Acquire from the Performance Contract the values  to be monitored 
 Define the step time to get run time data from the components 
 For each step time  

• Get run time values of the data to be monitored through the configu-
ration interfaces 

• Test the values with the Performance Contract 
• if violation occurs apply violation policies 

 endfor 
 

Fig. 3. Template for a general purpose monitor for grid applications 

4   Computational Experiments 

Our experiments were carried out on a preliminary version (ASSIST-CL 1.2) of the 
Grid.it environment [25]. The ASSIST programming model is based on a combination 
of the concepts of structured parallel programming and component-based program-
ming. An ASSIST program is structured as a graph, where the nodes are the compo-
nents and the edges are the component abstract interfaces, defined in terms of typed 
I/O streams. The basic unit of an ASSIST program is a component named  parmod 
(parallel module), which allows to represent different forms of parallel computation. 
The user interface of the ASSIST environment is a coordination language, named 
ASSIST-cl.  

A layered software architecture has been implemented  to support the above pro-
gramming model on the target hardware architectures, including SMPs, MPPs, and 
NOWs. An ASSIST-cl code is compiled and then it is loaded and run onto the target 



988 P. Caruso, G. Laccetti, and M. Lapegna 

 

architecture by a Coordination Language Abstract Machine (CLAM). The CLAM is 
decoupled from the target hardware by a run-time support, named  Hardware Ab-
straction Layer Interface (HALI), which currently exports functionalities from the un-
derling software layers. The ASSIST compiler translates ASSIST-cl source code into 
C++/HALI processes and threads, using predefined implementation templates.  In 
running this code, the CLAM uses all the facilities provided by HALI, making no as-
sumptions on the existence of other software running on the same nodes and compet-
ing to use the same resources.  Finally the ACE library supplies  standard routines to 
exchange data between processing elements with different architectures [21]. This is 
the layer of software that will be substituted  with the middleware Globus in the 
Grid.it programming environment (see also the following Fig. 4). 

To monitor the contract, we used the Autopilot library . This  is a software envi-
ronment  for the adaptive run time control of geographically distributed applications. 
Such package is  constituted by software items that  allow to communicate data of  
programs in execution to a process  monitor. Such software items are said sensors.  
Usually the sensors are used to capture the data related to the effective performance 
of the computational kernel to be monitored, in order to compare them with those 
stated in the Performance Contract. Further it is possible to use separate  sensors in 
each process of a distributed application, so that the monitor is able to determine ex-
actly which component of the application eventually causes the violation. Further, 
Autopilot is able  to modify the value of variables of the executing applications, by 
means of the so-called actuator : the presence of the actuators is fundamental  for 
example in a migration  step. It is important to note also that Autopilot library does 
not introduce significant overhead in the software environment [20] and it uses the 
same Globus middleware that will be used in the Grid.it environment. In the follow-
ing  Fig. 4 the software architecture to realize our experiments is shown. In such an 
architecture it should be noted the role of the Autopilot library used to realize the 
monitor process, in accordance with  Fig. 2. 
 

 
 
 
 
 
 

 

Fig. 4. Software architecture of ASSIST whit the Autopilot library 

    The computational kernel we used for our tests  is based on the Coniugate Gradi-
ent (CG) algorithm, implemented in a routine of the  the parallel library Meditomo 
realized to be used in the medical imaging application MediGrid [3,4],  that  recon-
structs 64 independent bi-dimensional images,using 10 iterations of CG for every 
image, for a total of 640 iterations. Features of the matrices involved are: sparsity, 

not structure ness, order n =103. For this problem we developed a parmod for the re-

ASSIST-cl application

CLAMAutopilot 

HALI

Globus 

grid  resources

framework 

ACE



 A Performance Contract System 989 

 

PTPT ⋅≅1

construction of the 64 images, where the workload  among the processors is distrib-
uted dynamically by using a farm: a parallel construct available in ASSIST. With 
this construct,  each of the 64 images appearing on the input stream of the parmod is 
processed, independently from the other ones,  by the first free processor. 

As previously mentioned, and following a consolidate way, to define  a contract it 
is necessary to know something about the past, in the sense of a historical database 
containing info regarding performances of previous executions.  

Table 1. executions time for the reconstruction of  the 64 images 

 P=1 P=2 P=4 P=8 P=12 
exec time without I/O  (TP) 2494 1261 629 313 234 

 

Table 1 shows  a very simple example of record of such database, reporting the 
execution time TP,  in seconds on P processors, of the computational kernel on a 
dedicated Linux Beowulf  cluster with 12  Pentium 2 processors running at 550 
MHz, connected by a Fast Ethernet switch at 100 Mbit/sec. We emphasize that such 
a times does not consider the  I/O phases before and after each conjugate gradient.  
Such a values confirm however the natural parallelism of our problem, because we 
found that                   . 

On the basis of these data, and referring to the definition given in Section 2, we 
can define the Performance Contract as follow:  

• given  P processors (the computational resources) 
• able to execute the given  application in 2494/P secs (the capability of the re-

sources) 
• and an application based on 640 iterations of the Coniugate Gradient  
• the Performance Contract, expressed in term of  seconds for one iteration, es-

tablishes that  
• one iteration  of the conjugated gradient has to be  be executed in 

2494/640=3.9  seconds independently from  the number of processors P. 

The monitored data are those ones defined in the Performance Contract, that is the 
execution  time (Wall Clock Time) of one iteration  of the conjugated gradient. By 
integrating the Autopilot sensors in the routine, we were  able to carry out a set of 
experiments on the Beowulf machine,  accessing runtime  by means of the monitor, 
the Wall Clock Time  of the execution of one iteration of the conjugated gradient 
every 40 seconds. After 150 seconds, one of the four processors (Node 1) has been 
overloaded by a process, stranger to the application, that engages the CPU for ap-
proximately 120 seconds before ending. Such overload is aimed to simulate the dy-
namical nature of the computational environment,  in order to check if the perform-
ance contracts system, in this case, is able  to finding the violation of the contract.  

In Figure 5 the results of our test are reported, where on the x-axis is reported the 
time and on the y-axis is reported the execution time for one iteration of the Conju-
gate Gradient as caught by the monitor in 4 processors. Further is reported the value 
of the Performance Contract (PC). It can be view that, when the nodes of the Beo-
wulf are not overloaded with other applications, the monitored values of the execu-



990 P. Caruso, G. Laccetti, and M. Lapegna 

 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

20 60 100 140 180 220 260 300 340
time(seconds)

ti
m

e 
(s

ec
s)

 f
o

r 
1 

it
er

at
io

n
 o

f 
th

e 
C

G

node1 node2 node3 node4

tion time agree with those stated in the Performance Contract. Moreover it is possible 
to observe that when the Node1 is overloaded with other applications, the actual 
value of the execution time is very different from that received from the monitor. 
Such first experiments confirm that our performance contracts system  is able  to de-
fine a realistic contract, able to preview the performance of the application in normal 
situation, and also to find violations of the contract itself. Such results are encourag-
ing for future developments of the aspects  related to the performance contracts sys-
tem, as for example,   the definition  and implementation of suitable   strategies to 
face violations of the contract itself. 

 
 
 
 
 
 
 
 
 
  
 

 
 
 
 

 

Fig. 5. Results of the monitoring process 

References 

1. R. Aydt, C. Mendes, D. Reed, F. Vraalsen - Specifyng and Monitoring GRADS contracts 
- available to the URL http://hipersoft.cs.rice.edu/grads/publications/grid2001.pdf 

2. F. Berman, To Chien, K. Cooper, J. Dongarra,    I. Foster, D. Gannon, L. Johnson, K. 
Kennedy, C. Kasselman, J. Mellor-Crummey, D. Reed, L. Torczon, R. Wolsky - The 
Grads Project: Software support for High Performance Grid Applications -  Int. Journal 
on High Performance Applications. Vol 15 (2001), pp.  327-344. 

3. M. Bertero,P.Bonetto, L.Carracciuolo, L.D’Amore, A.Formiconi, M.Guarracino, 
G.Laccetti, A.Murli, and G.Oliva – A Grid-Based RPC System for Medical Imaging - Par-
allel and Distributed Scientific and Engineering Computing: Practice and Experiences, 
Advances in Computation: Theory and Practice, vol. 15, Y.Pan and L.Yang (eds.), 2004, 
pp. 189-204. 

4. P. Boccacci, P. Calvini, L. Carracciuolo, L, D’Amore, A. Murli - Parallel Software for 3D 
SPECT imaging based on the 2D + 1 approximation of collimator blur – Ann. Univ. 
Ferrara, sez. VII, Sci. Mat. Vol. XLV, 2000 

5. CCA Forum Home page. http://www.cca-forum.org 

PC 

contract violation



 A Performance Contract System 991 

 

6. K. Cooper et al.  – New Grid Scheduling and Rescheduling Methods in GraDS Project – 
available at  URL http://citeseer.ist.psu.edu/697420.html 

7. I. Foster - What is the Grid? A three point checklist  - available at URL http://www-
fp.mcs.anl.gov/~foster/Article/WhatIsTheGrid.pdf 

8. I. Foster , C.Kesselman  - The Grid: Blueprint for a New Computing Infrastructure - Mor-
gan and Kaufman  1998 

9. I. Foster ,  C.Kesselman - Globus: a metacomputing infrastructure toolkit - Int. Journal on 
Supercomputing Application, vol. 11 (1997), pp. 115-128 

10. I. Foster, C. Kesselman, J. Nick, S. Tuecke – The Physiology of the Grid: an Open Grid 
Services Architecture for Distributed Systems Integration. Global Grid Formum, 2002 

11. N. Furmento, W. Lee, A. Mayer, S. Newhouse, J. Darlington - ICENI: An Open Grid Ser-
vice Architecture Implemented with Jini  – Supercomputing 2002 

12. M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley : XCAT 
2.0: A Component-Based Programming Model for Grid Web Services.. Technical Report-
TR562, Department of Computer Science, Indiana University. Jun 2002.  

13. J. Gehring, T. Reinefeld - MARS, framework for minimizing the job execution time in a 
metacomputing environment- Future Generation Computer Systems, vol. 12 (1996), pp. 
87-99 

14. M.R.Guarracino, G.Laccetti, A.Murli – Application Oriented Brokering in Madical Imag-
ing: Algorithms and Software Architecture – this volume 

15. N. Kapadia, J. Fortes, C. Brodley - Predictive Application Modeling Performance in a 
Computational Grid Environment - Eighth IEEE Int. Symp. On High Performance Dis-
tributed Computing (1999), pp. 47-54 

16. C.  Lu, D. Reed - Compact Application Signature for Parallel and Distributed Scientific 
Codes - Proc. of Supercomputing 2002,  (SC2002), Baltimore 

17. C. Mendes, D. Reed - Monitoring Large Systems via Statistical Sampling -  Proc. LACSI 
Symposium, Fe Saint, 2002 

18. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Bruce Irvin, K. Karavanic, K. 
Kunchithapadam, T. Newhall - The Paradyn Parallel Performance Measurement  Tools - 
IEEE Computer vol. 28 (1995) pp. 37-46 

19. F. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, S. Vadhiyar -  Numeri-
cal Libraries and the Grid: The GrADS Experiment with ScaLAPACK,  - Technical report 
UT-CS-01-460, 2001 

20. R. Ribler, J. Vetter, H. Simitci, D. Reed - Autopilot: Adaptive Control of Distributed Ap-
plications -  Proc. of  High Performance Distributed Computing Conference, 1998, pp. 
172-179 

21. D.C.Schmidt, T. Harrison, E. Al-Shaer – Object Oriented components for high speed net-
work programming – in proc. of 1st  conf. on OO technology and systems (1995) 

22. W. Smith, I Foster V. Taylor. - Predicting application run times using historical informa-
tion. - Proc. Of the IPPS/SPDP' 98 workshop on job scheduling strategies for parallel 
processing (1998) 

23. S. Vadhiar and J. Dongarra – A performance oriented migration framework for the grid - 
Proceedings of the 3st International Symposium on Cluster Computing and the Grid, 2003 

24. M. Vanneschi – High Performance Grid Programming Environments:  The Grid.it 
ASSIST Approach , invited lecture, ICCSA 2004.  

25. M. Vanneschi – The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications – Parallel Computing, vol. 28 (2000), pp. 1709-1731 



992 P. Caruso, G. Laccetti, and M. Lapegna 

 

26. F.Vraalsen, R. Aydt, C. Mendes, D. Reed – Performance contracts: predicting and moni-
toring application behaviour – Proc. IEEE/ACM Second Intern. Workshop on Grid Com-
puting, Denver, 2001, Springer Verlag  LNCS, vol. 2242, pp. 154-165 

27. J. C. Yan, M. Schmidt and C. Schulbach. "The Automated Instrumentation and Monitor-
ing System (AIMS) -- Version 3.2 Users' Guide". NAS Technical Report. NAS-97-001, 
January 1999 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 993 – 1001, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A WSRF Based Shopping Cart System 

Maozhen Li1,2, Man Qi3,2, Masoud Rozati4, and Bin Yu1 

1 School of Engineering and Design,  
Brunel University, 

Uxbridge, UB8 3PH, UK 
{Maozhen.Li, Bin.Yu}@brunel.ac.uk  

2 Dept. of Computer Science,  
Guangxi University of Technology, 

Liuzhou, Guangxi, 545006, P.R.China 
3 Dept of Computing,  

Canterbury Christ Church University College, 
Canterbury, Kent, CT1 1QU, UK 

4 ANSARI GmbH,  
Friedrich-Ebert-Damm 160, 

D-22047 Hamburg, Germany 
rozati@gmx.net 

Abstract. Web Services Resource Framework (WSRF) is a set of specifications 
that represents a convergence point of the Web services and the Grid services 
communities. This paper presents our early experience with WSRF. A shopping 
cart system has been implemented with WSRF supported Globus toolkit 3.9.2 
(GT3.9.2). Based on the system, the performance of the WSRF core in GT3.9.2 
has also been evaluated.  

1   Introduction 

Based on Web services [1], Open Grid Services Architecture (OGSA) [2] becomes 
the de facto standard for building services-oriented Grid systems [3]. In the context of 
OGSA, a Grid service is a Web service with the following major extensions: 

 A Grid service can be a transient service that can be dynamically created 
and explicitly destroyed. 

 A Grid service is a stateful service that is associated with service data. 
 Clients can subscribe to Grid services for notifications of events of  

interest.  

OGSA merely defines what interfaces are needed, but does not specify how these 
interfaces should be implemented. It is the Open Grid Service Infrastructure (OGSI) 
[4] that defines how to technically implement these interfaces.  

However, the Web services community has recently criticized the work on the ex-
tension of standard Web services in OGSI mainly because the OGSI specification is 
too heavy with everything in one specification, and it does not work well with  



994 M. Li et al. 

 

existing Web services and XML tooling [5]. In January 2004, the Globus Alliance [6] 
and IBM in conjunction with HP introduced the WSRF [7] to resolve this issue.  

WSRF represents a convergence point of the Web services (WS) and Grid services 
communities. It introduces the concept of WS-Resource to model Web services with 
stateful resources [8]. WSRF is a set of specifications of which the following ones 
have been drafted: 

 WS-ResourceLifetime [9] defines mechanisms for service requestors to re-
quest Web services to destroy associated WS-Resources immediately or 
after certain time. 

 WS-ResourceProperties [10] defines the means by which the definition of 
the properties of a WS-Resource may be declared as part of a Web service 
interface. 

 WS-Notification [11] defines mechanisms for event subscription and noti-
fication using a topic-based publish/subscribe pattern.  

 WS-BaseFaults [12] defines an XML Schema for base faults, along with 
rules to specify how these faults types are used and extended by Web ser-
vices. 

 WS-ServiceGroup [13] defines a means by which Web services and WS-
Resources can be aggregated or grouped together. 

 
WSRF has been receiving more and more attentions from both Web services and 

Grid services communities since its first draft drew up in Jan. 2004. Work to fully 
implement WSRF specifications is still ongoing. For example, it is expected that a 
WSRF based Globus toolkit 4 (GT4) [14] will be available in Jan. 2005.  

In this paper, we present our experience with WSRF based on the implementation 
of a shopping cart system with GT3.9.2 [15], an early work of GT4. Based on the 
system, the performance of the WSRF core in GT3.9.2 has also been evaluated. 

The remainder of the paper is organised as follows. Section 2 presents the shopping 
cart system. Section 3 evaluates the performance of WSRF from the aspects of WS-
Resource creation/destruction, service invocation, and WS-Resource property access. 
The evaluation has been performed using one computer and using two computers 
connected by a local area network. Section 4 concludes the paper and gives a discus-
sion on the reliability of GT3.9.2. 

2   A WSRF Based Shopping Cart System 

In this section, we present a shopping cart system implemented with GT3.9.2. This 
prototype system is used for the performance evaluation of the WSRF core in 
GT3.9.2. 

The shopping cart system supports multiple clients to access services. As shown in 
Fig. 1, a client uses SOAP [16] to access a shopping cart service through its interface 
defined in WSDL [17]. The cart is a stateful WS-Resource. The main components 
implemented in the system are described below. 

 
 



 A WSRF Based Shopping Cart System 995 

 

 

Fig. 1. A WSRF based shopping cart system 

2.1   Cart  

The Cart is a stateful WS-Resource that keeps the identifier of picked articles as well 
as the desired quantity of them. It has two properties: total price of the articles and the 
number of articles. We store the Cart and its properties in a file to make it a persistent 
WS-Resource (PersistentCart) in case of a failure. The cart ID, which is transparent to 
the client, is embedded in the WS-Resource qualified endpoint reference of the Cart 
and will be carried along in all message exchanges between the client and the server. 

 

 

Fig. 2. The Cart class 

As shown in Fig. 2, the Cart class implements org.globus.wsrf.ResourceProperties 
interface for an access of resource properties, org.globus.wsrf.ResourceIdentifier 
interface for resource identification, org. globus.wsrf.ResourceLifeTime interface for 
resource lifetime management. In addition, the Cart also implements 
org.globus.wsrf.TopicListAccessor interface for resource notification. 

2.2   Cart Service 

The Cart service (cartService) is the actual Web service component in the system. The 
cartService exposes two operations through its public interface: 

- addArticle 
- removeArticle 

In addition, cartService provides two methods for creating and destroying the Cart 
WS-Resource and works as a factory service for the WS-Resource. 



996 M. Li et al. 

 

2.3   Cart Home 

The stateful resources are deployed in GT3.9.2 container as Java Naming and Direc-
tory Interface (JNDI) [18] resources. A JNDI resource has a home class that is re-
sponsible for the creation and location of that resource. The Cart WS-Resource home 
class (CartHome) should implement the org.globus.wsrf.impl.ResourceHomeImpl 
interface. The create() method of the CartHome class is called whenever a request to 
create a new instance of this resource is received. Fig. 3 shows the sequences to create 
a resource. 

 

 

Fig. 3. Sequences to create a resource 

2.4   Cart Client 

A client uses the automatic generated stubs to locate the Cart Web service and send 
requests to create a WS-Resource and invoke operations upon it. GT 3.9.2 generates 
helper classes such as ServiceNameAddressingLocator that finds and returns the ser-
vice proxy object using the service address (URI). In the shopping cart system, the 
CartPortType class is the proxy of cartService at the client side. Fig. 4 shows how a 
client uses CartServiceAddressingLocator to find the CartPortType and then request it 
to create a Cart WS-Resource. 

To subscribe to a notification, the client should implement the org.globus. 
wsrf.NotifyCallback interface. The notification workflow at the client side is de-
scribed as follows: 

 The client receives an instance of NotificationConsumerManager and then 
invokes it. This object listens for incoming notifications. 

 The client calls the subscribe() method of the Cart Web service. The sub-
scription request contains the topic name of interest and the topic dialect the 
name uses. (GT 3.9.2 currently only supports SimpleTopicDialect) 

 The public method deliver() will be called back whenever a notification is 
received.  



 A WSRF Based Shopping Cart System 997 

 

 

Fig. 4. Sequences for requesting a Cart service 

3   Performance Evaluation  

We have constructed two experimental environments for the evaluation of the WSRF 
based shopping cart system implemented with GT3.9.2. In the first environment, the 
Cart client and Cart service were deployed on the same computer (Intel Pentium III 
850MHz, Windows 2000 Professional, 512 MB RAM). In the second environment, 
the Cart client and Cart service were deployed on two computers connected by a local 
area network with a bandwidth of 100Mbps. The client computer is an Intel Pentium 
III 550MHz with a memory of 256MB running Windows 2000 Professional. The 
server computer is an Intel Pentium III 850MHz with a memory of 512MB running 
Windows 2000 Professional. For our tests, we considered the single-server/multiple-
clients situation as shown in Fig.5.  

 
     

Fig. 5. Multiple clients access a single Cart service 



998 M. Li et al. 

 

The response time of the following four operations have been measured using vari-
able number of clients: 

- The creation of the Cart WS-Resource (CreateCart method) 
- The destruction of the Cart WS-Resource (Destroy method) 
- The invocation of the Cart service (addArticle method) 
- The access of the Cart WS-Resource property (GetProperty method) 

    Clients can subscribe to the Cart service for notification of events of interest. The 
Cart service published two notification topics: ARTICLE_COUNT and 
TOTAL_PRICE. Clients who were interested in getting notified of changes of these 
values subscribed to these topics. 

3.1  Performance Evaluation on One Computer Without Notifications 

In this evaluation, the clients and the Cart service were deployed on one computer. 
The clients did not subscribe to the Cart service for any notifications. 

As shown in Fig. 6, the creation of the Cart WS-Resource is the most time consum-
ing step in the shopping cart system. This is because the initiations of WS-Resource 
need more time than other operations. Another reason is that we created a file for each 
Cart WS-Resource to make it persistent. When the number of clients tested is below 
100, the time taken to invoke the Cart service and the time taken to access the WS-
Resource property is roughly the same. However, as number of clients goes beyond 
100, the time taken to invoke the Cart service is getting longer than that of the access 
of the WS-Resource property. Again, this can be explained due to file access in the 
AddArticle() method. The destruction of the Cart WS-Resource needs the least time 
among the four operations. 

 

 

Fig. 6. Performance evaluation on one computer without notifications 

3.2  Performance Evaluation on One Computer with Notifications 

In this evaluation, the clients and the Cart service were deployed on one computer. 
The clients subscribed to the Cart service for notifications of events of interest.  

As shown in Fig. 7, the use of notifications increases the overhead of the four op-
erations. Again the creation of the cart WS-Resource is the most time-consuming 
operation among the four operations. However, compared with the evaluation de-



 A WSRF Based Shopping Cart System 999 

 

scribed in Section 3.1, the major difference here is that for a large number of clients, 
the destruction of the Cart WS-Resource needs significantly more time than before. 
Unlike previous tests without notification, we have experienced out of memory errors 
for 100+ clients. For example, in the test of 200 clients, 66% of the destruction re-
quests were failed either due to the socket timeout or out of memory errors happened 
at the client side. Almost all tests with more than 200 clients in this evaluation were 
failed. 

 

 

Fig. 7. Performance evaluation on one computer with notifications 

3.3  Performance Evaluation in a LAN Without Notifications 

In this evaluation, the clients and the Cart service were deployed on two computers 
connected by a 100Mbps local area network (LAN). The clients did not subscribe to 
the Cart service for any notifications. 

As shown in Fig. 8, Similar to the evaluation described in Section 3.1, the time to 
create the Cart WS-Resource is the most time-consuming step among the four opera-
tions, and the destruction of the Cart WS-Resource needs the least time. However, 
compared with the evaluation described in Section 3.1, the time taken for each of the 
four operations performed in the LAN is less because the clients and the Car service 
were deployed on two computers using more resources than using only one computer. 

 

 
 

Fig. 8. Performance evaluation in a LAN without notifications 



1000 M. Li et al. 

 

3.4  Performance Evaluation in a LAN with Notifications 

In this evaluation, the clients and the Cart service were deployed on two computers 
connected by a 100Mbps local area network (LAN). The clients subscribed to the Cart 
service for notifications of events of interest. 

As shown in Fig. 9, the use of notifications increases the overhead of the four op-
erations. However, compared with the tests performed on one computer with notifica-
tions as described in Section 3.2, the overhead incurred by notifications in a LAN is 
less in each of the four operations. 

 

Fig. 9. Performance evaluation in a LAN with notifications 

4   Conclusions 

In this paper, we have presented a WSRF based shopping cart system implemented 
with GT3.9.2. Based on the system, we have evaluated the performance of WSRF in 
terms of WS-Resource creation and destruction, WS-Resource property access and 
Web services invocation. From the tests we know that, among the four operations, the 
creation of WS-Resource is the most time-consuming step, as it needs more time for 
initiations. Tests performed in a LAN have a better performance than that of the tests 
performed on one computer. The use of notifications increases the overhead of the 
four operations performed on one computer and in a LAN as well; however, the over-
head incurred in a LAN is less than the overhead incurred on one computer as more 
computing resources are used.  

The evaluation results have also shown a reliable container in GT3.9.2. Almost 
none of the tests performed at the server side crashed or incurred any errors. How-
ever, the client side incurred some errors when it had high load for opening connec-
tions for a large number of clients. When the number of clients went beyond 500, 
almost every destruction request ended up with a “socket read timeout” error at the 
client side. On the other hand, when the server had a high load, the notification call-
backs were rarely received by clients even though they have subscribed to the events 
of interest. 



 A WSRF Based Shopping Cart System 1001 

 

References 

1. Web Services, http://www.w3.org/2002/ws/ 
2. Foster, I., Kesselman, C., Nick, J., and Tuecke, S.: The Physiology of the Grid: An Open 

Grid Services Architecture for Distributed Systems Integration, June 2002, 
http://www.globus.org/research/papers/ogsa.pdf 

3. Foster, I. and Kesselman, C. (ed.): The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, USA, 1999. 

4. OGSI Working Group, http://www.Gridforum.org/ogsi-wg/ 
5. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T., Snelling, D., 

Tuecke, S.: From Open Grid Services Infrastructure to WS-Resource Framework: Refac-
toring & Evolution, Version 1.0, Feb. 2004. 

   http://www-106.ibm.com/developerworks/library/ws-resource/gr-ogsitowsrf.html 
6. Globus, http://www.globus.org 
7. Czajkowski, K., Ferguson, D. F., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., 

Tuecke, S., Vambenepe, W.: The WS-Resource Framework, Version 1.0, March 2004, 
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf 

8. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann, F., 
Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawarana, S.: Mod-
elling Stateful Resources with Web Services, Version 1.1, March 2004.  

   http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf 
9. Frey, J., Graham, S., Czajkowski, K., Ferguson, D. F., Foster, I., Leymann, F., Maguire, 

T., Nagaratnam, N., Nally, M., Storey, T., Sedukhin, I., Snelling, D., Tuecke, S., Vam-
benepe, W., Weerawarana, S.: Web Services Resource Lifetime, Version 1.1, March 2004, 
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourcelifetime.pdf 

10. Graham, S., Czajkowski, K., Ferguson, D. F., Foster, I., Frey, J., Leymann, F., Maguire, T., 
Nagaratnam, N., Nally, M., Storey, T., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, 
W., Weerawarana, S.: Web Services Resource Properties, Version 1.1, March 2004, 
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf 

11. Web Services Notification,  
   http://www-106.ibm.com/developerworks/library/specification/ws-notification/ 

12. Tuecke, S., Czajkowski, K., Frey, J., Foster, I., Graham, S., Maguire, T., Sedukhin, I.,  
Snelling, D., Vambenepe, W.: Web Services Base Faults, Version 1.0, March 2004, 
http://www-106.ibm.com/developerworks/library/ws-resource/ws-basefaults.pdf 

13. Graham, S., Maguire, T., Frey, J., Nagaratnam, N., Sedukhin, I., Snelling, D., Czajkowski, 
K., Tuecke, S., Vambenepe, W.: WS-ServiceGroup Specification, Version 1.0, March 
2004, http://www-106.ibm.com/developerworks/library/ws-resource/ 

14. GT4, http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/GT4Facts/index.html 
15. GT3.9.2, http://www-unix.globus.org/toolkit/downloads/development/ 
16. SOAP, http://www.w3.org/TR/soap 
17. WSDL, http://www.w3.org/TR/wsdl 
18. JNDI, http://java.sun.com/products/jndi/ 



Grid Access Middleware for Handheld Devices

Saad Liaquat Kiani1, Maria Riaz1, Sungyoung Lee1,
Taewoong Jeon2, and Hagbae Kim3

1 Computer Engineering Department, Kyung Hee University,
Giheung, Yongin, Gyeonggi 449-701, Korea
{saad, maria, sylee}@oslab.khu.ac.kr

2 Department of Computer & Information Science, Korea University, Korea
jeon@selab.korea.ac.kr

3 School of Electrical & Electronic Engineering, Yonsei University, Korea
hbkim@yonsei.ac.kr

Abstract. Grid technology attempts to support flexible, secure, coor-
dinated information sharing among dynamic collections of individuals,
institutions, and resources. The use of Grid services requires a resource-
ful workstation, specialized software installed locally and expert inter-
vention. Mobile handheld devices in general do not posses enough com-
putational and communication assets to meet the criteria for utilizing
the Grid infrastructure services. We present the design of a middleware
approach that aids handheld devices in this regard by wrapping the com-
putational and resource intensive tasks in a surrogate and shifting them
to a capable machine for execution1. Reduction in computational burden
at the handheld device is analyzed in a test scenario.

1 Introduction

Grid [1] computing harnesses the abundant spare, and sometimes dedicated com-
putational resources in a globally distributed computing environment and puts
them to effective and optimal use. Grid setup is clearly a value addition to any
organization, commercial or research. One of the main motivations behind the
Grid infrastructure is to provide ”a hardware and software infrastructure that
provides dependable, consistent, pervasive and inexpensive access to high-end
computational capabilities” [2]. Grid infrastructure has been put to use in ar-
eas like high energy physics [3], bio-medicine [4], aerospace and earth sciences,
health-care [5] etc and is continuing to evolve and expand. Similar technology
adoption trends are seen at the smaller scale. With ever decreasing costs and in-
creasing functionality of small sized chips, mobile handheld devices e.g., Personal
Digital Assistants (PDA) and smart phones, are becoming mainstream now. For
a mobile user, a PDA takes place of his home/office PC while he is on the move;
he can not only use the internet and check emails through wireless connectivity

1 This work is supported in part by the Korea Ministry of Information and Commu-
nications’ ITRC program in joint collaboration with ICU Korea.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1002–1011, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Grid Access Middleware for Handheld Devices 1003

but can also write documents, play games, find street maps, make reservations
at hotels and restaurants and perform similar utility tasks. A broad spectrum
of internet services has become available for a mobile user. Grid and mobile
computing however remain two disjoint phenomenons as yet, keeping users of
both technologies from utilizing some propitious mutual benefits. While mobile
elements will improve in absolute ability, they will always be resource-deprived
relative to their static counterparts (desktops/workstations). In [6], the author
argues that for a given cost and level of technology, considerations of weight,
power, size and ergonomics will exact a penalty in computational resources such
as processor speed, memory size, and disk capacity. These devices do not have
enough resources in effect to utilize the Grid services comprehensively. The po-
tential benefits of facilitating mobile devices in interacting with Grid services in
the numerous fields are:

– Health care: A physician submitting digital charts to mammography Grid
services [7] for analysis

– Emergency medical services: Submitting vital characteristics, medical his-
tory of a trauma patient to Grid services for identification

– Research: A physicist who needs to see graph plots of data produced as
a result of high energy collisions between atoms and sub-particles on his
PDA. The amount of information in data-stores, from which graphs are to
be generated, will be in the range of several gigabytes or even tera bytes

– Weather: Forecasting and analyzing local weather conditions, storm forma-
tions while on the move

– Geology: Geologists sampling rocks and terrain and using handheld devices
to submit data to Grid services for analysis

All these domains represent scenarios where a user wants to execute a re-
source intensive task at a location where computation resources are not available
at hand. With ever increasing mobility of users and greater adoption of hand-
held devices, job submission to the Grid through handheld devices presents a vi-
able solution for maximizing efficiency. Constraints that hinder handheld devices
from such interactions include limited network bandwidth, CPU power, memory
(small network buffers) and intermittent connectivity. Keeping the limitations in
mind, we aim to define a middleware approach that will allow handheld devices,
e.g. PDA units, to interact with Grid services while inducing minimal burden on
the device itself. We demonstrate a solution based on Jini Network Technology’s
[8] Surrogate Architecture [9] which provides a network framework in which a
device can deploy a client or a service on a device other than itself. Since we
are stepping in a new realm of Grid access through handheld devices, many de-
sign and performance challenges need to be considered and countered. In the
domain of Grid infrastructure, where services and data resources are replicated
across geographical boundaries [10, 11], communication costs can be minimized
by careful selection of intermediate network. The communication mechanisms
involved in job submission, execution and resource access are optimized at three
levels: 1) Selection of the host to which the device will submit the job/task for
execution, 2) Resource access by the surrogate during execution and 3) filtering



1004 S.L. Kiani et al.

and optimization of intermediate results that are to be transferred to the device
from the remote machine. One possible approach for facilitating handheld de-
vice interaction with the Grid is to narrow down the criteria for Grid access and
make it less resource hungry; but doing so will also take away several benefits.
How can a resource constrained device be configured and supplemented with
software based techniques to make it Grid-interaction capable? A handheld de-
vice wishing to host a service and unable to do so can be allowed to delegate this
task to a relatively powerful machine (desktop, server). Conversely, if the inter-
action with remote Grid services proves too much for limited local resources of a
handheld device, it can deploy the actual client functionality at an intermediate
machine and receive the results in a form that is in keeping with its hardware
resources. This second scenario has a greater probability of being used in real
world applications and is the focus of our research. The ’service’ or ’client’ pro-
cess, transferred from the device, is called a ’surrogate’ (The term ’surrogate’
is used to describe an entity that performs some action on behalf of another
entity). The middleware component at intermediate machine, which provides
the execution environment and access to extensive resources for the handheld
device’s surrogate, is called the ’Gateway Surrogate Host’ or simply ’Host’. An
interconnect mechanism, defined as ”logical and physical connection between the
surrogate host and a device” [12], also needs to exist. A handheld device that
can communicate over IP (wireless or wired) can be programmed to shift its task
processing to a host capable machine. An overview of our middleware approach
is presented in Sect. 2. Section 3 deals with the communication mechanisms and
the proposed optimizations in the middleware. Prototype implementation and
test results are presented in Sect. 4. We conclude our discussion in Sect. 5 and
also list relevant related work.

2 The Grid Access Middleware Architecture

A handheld mobile device having wired/wireless connectivity can utilize the
functionality of its more capable computing peers for resource demanding tasks
such as Grid service access, with the device itself only managing less intensive
tasks like displaying the tailored results. The main concept driving our approach
is to shift the 1) access to generic Grid services and 2) intensive task processing,
from a resource constrained handheld device to a resource rich system (i.e. the
Surrogate Host). This is to be achieved by wrapping the access and processing
mechanisms in a ’surrogate’ module and transferring to the host. Consider the
example of a physicist provided in Sect. 1, where he needs to see graph plots, on
his PDA, of data produced as a result of high energy collisions between atomic
particles. The amount of information in data-stores from which graphs are to be
generated will be in the range of several gigabytes or even tera bytes. Analysis
of such data for the plotting of graphs is not a job for the handheld device.
Moreover, the handheld device may have reduced network bandwidth, further
diminishing the prospects of a successful remote analysis by the user. By utilizing
the Jini Surrogate Architecture based middleware support, one can ’pack’ the



Grid Access Middleware for Handheld Devices 1005

functionality for data-stores’ access mechanisms and graph plotting routines in
a surrogate and transfer this surrogate to a host machine. The host machine will
provide the surrogate with necessary resource rich execution environment and
network connectivity. The surrogate is able to communicate back to the device
(PDA) through available interconnects e.g. IP, USB, Bluetooth etc. In this way,
the aforementioned tasks of service access and intensive processing can be shifted
from the handheld device to a more appropriate host machine, with the device
only managing less intensive tasks of displaying the tailored results returned by
its surrogate. Figure 1 shows the middleware framework which consists of three
distinct stacks deployed at the Gateway Surrogate Host, the Device and the
surrogate. These are discussed one by one in the subsequent paragraphs.

2.1 Gateway Surrogate Host

Major technical hurdles make it impossible for Devices to exploit the benefits
made available by the computational and data Grids, including the ability to ex-
ecute applications whose computational requirements exceed local resources and
reduction in job turn around time through workload balancing across multiple
computational facilities. Gateway Surrogate Host is the middleware component
that aids the Device to overcome these hurdles by accepting tasks, packed as
surrogates, for execution. The middleware provided at these hosts consists of
three main sub-modules. Host Adapter sub-module offers an interface to client
devices for accessing the Gateway Surrogate Host. It enables the initial commu-
nication between the device and the host so that both can agree on the transfer of
surrogate after authenticating the device and its corresponding surrogate. Once

Fig. 1. Grid Access Middleware Stacks at the Device, Surrogate and Host



1006 S.L. Kiani et al.

the surrogate is available at the host, it is delivered to the Execution Engine
sub-module. It consists of a Surrogate Wrapper that exposes the functionality
of the surrogate that is required to facilitate surrogate’s execution at the host.
Dispatcher allocates a separate thread for the execution of the surrogate from
a thread pool and then activates the surrogate. Resources required for surro-
gates’ execution are resolved and handled by the Resource Manager module.
These include memory and disk space, JVM (form Java based surrogates, as is
the case with our implementation), network resources etc. The Access Gateway
sub-module provides interface to the external resources e.g. discovery of avail-
able Grid services and resources. A Gateway Surrogate Host announces relevant
attributes including, but not restricted to:

– ID, Location, Currently hosted surrogates etc
– Network address and Discovery/Listening port for incoming Device/Client

requests
– Available/Allocated Resources e.g. CPU, Memory, Storage, Network

throughput
– Environment e.g. Java VM availability and version, SOAP/WSDL [13, 14],

XML parser etc
– Grid services available through this Surrogate Host
– Proximity to service and client side

Advertising these attributes allows clients to locate appropriate hosts based
on their location, network proximity and other desired features. This is further
elaborated in section 3.1. Administrator of a host can restrict the number of
surrogates that are allowed to execute, restrict memory, bandwidth allocation
etc on per surrogate basis. Security policies can be configured based on pub-
lic/private key pairs and digital certificates. The Gateway Surrogate Host is an
extension of the basic Surrogate Host with added functionality for Grid access
through the Access Gateway. It overcomes the major technical hurdles that keep
the Devices from exploiting the benefits made available by the computational
and data Grids [13, 14] by providing an interface to the Devices on one hand
and to the Grid services on the other.

2.2 Device Stack

At the Device, a lightweight middleware stack is provided for facilitating coor-
dination with its exported surrogate. The stack consists of a Surrogate Handler
module which has three sub modules for providing services complementary to
the middleware at the Gateway Surrogate Host. Registration Handler discovers,
selects and registers with the Host, and transfers the surrogate. Once the surro-
gate is transferred, Keep Alive Monitor keeps track of the status of the surrogate.
Data Handler retrieves the results from the surrogate-side corresponding module,
and makes them available to the application executing at the device. Surrogate
to be transferred can be stored at the Device itself or at a URL accessible store
e.g. a web server or an FTP server.



Grid Access Middleware for Handheld Devices 1007

2.3 Generic Surrogate

A generic surrogate for Grid service access contains the following features:

– Client authentication based on public/private key pairs
– Generic functionality to communicate and interact using WSDL/SOAP for

web service based Grid services
– Persistency safe i.e. to be put to persistent storage if its functionality is

periodic
– Migration - To be able to stop and save current execution, mark restore

points and migrate to a different Surrogate Host

Functionality of the generic surrogate is incorporated at the top layer of
the surrogate stack as shown in Figure 1, along with the specific logic of the
extended Surrogate. Moreover, the surrogate has complementary modules for
communicating with the middleware stack at the Device. The downloadable
Surrogate can be located in the file system of the Device or at a URL accessible
store e.g. a web server or FTP server. Some clients may be void of any Surrogates.
These clients/devices are still able to use other deployed surrogates if they can
provide valid credentials as rightful owner or users.

3 Discovery and QoS

There is a critical requirement for the clients/devices to be able to discover
available Gateway Surrogate Hosts. Absence of a discovery mechanism has the
potential to pose as a single point of failure. For reasons of efficiency and fault
tolerance, multiple discovery techniques are provided in the architecture. The
foremost method of discovery is multicast announcements from Gateway Surro-
gate Hosts. This automatically provides for locating ’nearby’ hosts to the devices
(as multicast is often geographically limited to a network boundary by most ad-
ministrators). HTTP based discovery is provided as a supplement. All available
Gateway Surrogate Hosts register with a web service hosted on a known location.
Client devices/applications can inquire about a particular host by submitting
appropriate parameters to this service over HTTP.

The surrogate paradigm will function most efficiently when the network de-
lays between the device/client and surrogate are minimal. Moreover, efficiency
also depends on the proximity of surrogate to the service being accessed. Since
the user may be mobile with respect to the Gateway Surrogate Host and Grid
resources, support is needed in the architecture to optimize the proximity based
parameters. Each Gateway Surrogate Host will keep track of its access qual-
ity towards known/available Grid service hosts/networks. On the other hand,
before deploying a surrogate, client side application can determine its network
connectivity and temporal efficiency with a specific host. This procedure poses a
certain one time per start-up burden, but offers better QoS relative to a scenario
where such optimizations are left to good luck.



1008 S.L. Kiani et al.

4 Implementation Overview

The authors have provided a bare-bones implementation of the proposed ar-
chitecture. Before this design is tested for actual Grid service interaction, it
is necessary to validate its viability in a general scenario which involves con-
siderable CPU, memory and network utilization. Simple Network Management
Protocol [15] is a widely accepted and utilized way of monitoring network entities
and we have chosen to verify our approach by monitoring a remote server for
14 system statistics periodically, through a handheld device. Handheld device
has network connectivity through a wireless LAN interface. A desktop machine
is configured to act as a Gateway Surrogate Host. A Surrogate has been coded
for the handheld device with the functionality of monitoring the remote server
through SNMP queries and adjusting the results to be sent back to the De-
vice. The results of these queries are to be displayed at the handheld device in
the form of dynamic line, bar and pie charts/graphs. Performance of the device
and the impact of our executing system will be measured and the benefits and
shortcomings of the approach will be highlighted.

Fig. 2. (a) Main window of the client application executing on the device (b) Remote
host’s CPU usage statistics by category (user, system, idle) over a period of time, as
seen on the device

The Gateway Surrogate Host module has been implemented by modifying
and extending the Surrogate Host provided with the reference implementation
of Jini Surrogate Architecture specification. The extensions include addition of
useful attributes to be announced, additional discovery mechanism and addition
of an SNMP agent. IBM’s J9 VM for java is used to implement the surrogate



Grid Access Middleware for Handheld Devices 1009

Fig. 3. (Left) Comparison between number of values at the Host and values sent to
the Device; (Right) Comparison between size of intermediate results at the Host and
size of results at Device

for the handheld device and contains classes which implement the task that
the Device wishes to execute. Moreover, it contains the ’device-to-surrogate’
interconnect implementation which, in the case of this scenario, is based on IP
Interconnect Specification.

4.1 Performance Measurements

Measurements taken to analyze the performance of the Device during the course
of execution are presented in Table 1.

Table 1. Result parameter count and size comparison at Gateway Surrogate Host
and Device

Query Type Number of val-
ues received at
Host

Intermediate
result size at
Host (bytes)

Number of
values sent
to Device

Result size
sent to Device
(bytes)

CPU Usage 22 132+ 3 24+2
CPU Avg. Load 3 24+ 3 24+2
HDD Utilization 12 48+ 3 16+2
RAM Utilization 17 68+ 3 16+2
Network I/O 2 16 2 16+2
Total 56 288+ 14 106

The size of result object depends on the type of values stored in the fields.
The 14 statistical values are received in 5 ’Result’ objects and amount to, on



1010 S.L. Kiani et al.

average, 62 bytes of results per 5 seconds with additional 44 bytes after every
minute. An interesting comparison is made by considering the number of result
parameters and their size as retrieved by the surrogate (executing at the Gate-
way Surrogate Host) with the corresponding values at the Device. A significant
amount of information can be condensed by applying intermediate calculations
and filtration of values at the surrogate module.

It can be observed that the number of parameters is reduced by 75 percent (4
times reduction) when transferring results to the Device. Similarly, more than
64 percent of the data has been filtered out in intermediate calculations and
trimming at the surrogate. This performance markup is in addition to the com-
munication reduction achieved by careful selection of host machine and resources
access mechanisms throughout the surrogate’s lifetime, as explained earlier. The
burden on PDA has been reduced to a few hundred bytes of data and graph
formation.

5 Conclusion and Related Work

Research and development for facilitating handheld held devices to interact with
Grid services is in early stages. Signal [16] proposes a mobile proxy-based ar-
chitecture that can execute jobs submitted to mobile devices, in-effect making
a grid of mobile devices, but this approach may affect the fault tolerance of the
system as the mobile device hosting the proxy also has to deal with the adverse
conditions of a mobile/wireless environment. Moreover, the proxy has to sched-
ule the jobs submitted to it by other mobile devices. In our case, the middleware
has far more resources at its disposal, so the scheduling can be more flexible
and concurrent. GridBlocks [17] builds a Grid application framework with stan-
dardized interfaces facilitating the creation of end user services. They argue that
SOAP usage at mobile devices may be 2-3 times slower than a proprietary com-
munication protocol, but the advantages of using SOAP (such as overcoming
device heterogeneity) may be far more profitable than its limitation.

A solution based on Jini Surrogate Architecture to access Grid services is
demonstrated in this paper. In the proposed approach, a resource constraint de-
vice wishing to access a resource-demanding service is allowed to delegate this
task to a relatively powerful machine (desktop, server). Specifically, CPU inten-
sive, network oriented tasks can be efficiently delegated to such systems when
network connectivity is available. In case of intermittent connectivity, applica-
tions and services requiring on-demand or periodic network access can benefit
from this approach. The implementation has been tested for a moderately inten-
sive task. We intend to extend and implement the architecture to interact with
existing Grid services and analyze the performance of our framework. These in-
clude HTTP discovery, client authentication, and surrogate migration support.
A notable constraints suffered by our approach include the requirement of Java
virtual machine at the device. Furthermore, at present we have not addressed the
notions of client/surrogate authentication and authorization and are the focus
of our future work.



Grid Access Middleware for Handheld Devices 1011

References

1. Foster, I.: What is the Grid? A Three Point Checklist. In: GRIDToday (2002)
2. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.

In: Morgan Kaufmann Publishers, San Fransisco (1999)
3. Bunn J., Newman H.: Data-intensive Grids for High-Energy Physics. In: Berman,

F., Fox, G.E., Hey, A.J.C. (eds.): Grid Computing: Making the Global Infrastruc-
ture a Reality, Wiley (2002). 859-906

4. Hastings, S., Kurc, T., Langella, S., Catalyurek, U., Pan, T., Saltz, J.: Image
Processing for the Grid: A Toolkit for Building Grid-enabled Image Processing
Applications. In: 3rd International Symposium on Cluster Computing and the
Grid, May 12 - 15, 2003, Tokyo, Japan.

5. Breton, V.: Health Grid. In: International Symposium on Grid Computing 2003,
Academia Sinica, Taipei, Taiwan (2003)

6. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceed-
ings of the 15th Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia (1996)

7. Amendolia, S.R., Brady, M., McClatchey, R., Mulet-Parada, M., Odeh, M.,
Solomonides, T.: MammoGrid: Large-Scale Distributed Mammogram Analysis. In:
Proceedings of the XV111th Medical Informatics Europe conference (MIE’2003).
St Malo, France May 2003. Volume 95 of Studies in Health Technology and Infor-
matics, pp 194-199 IOS Press, Amsterdam.

8. Sun Microsystems, Inc.: JiniTM Architecture specification.
http://www.sun.com/jini/specs/

9. Sun Microsystems, Inc.: JiniTM Technology Surrogate Architecture Specification.
http://surrogate.jini.org/sa.pdf (2003)

10. S. Vazhkudai, S., Tuecke, S., Foster, I.,:Replica Selection in the Globus Data Grid.
In: Proceedings of the first IEEE/ACM International Conference on Cluster Com-
puting and the Grid (CCGRID 2001), IEEE Computer Society Press,( 2001) 106-
113,

11. Lee, B., Weissman, J.B.: Dynamic Replica Management in the Service Grid. In:
High Performance Distributed Computing 2001 (HPDC-10”01), San Francisco,
California (2001) p. 0433

12. Sun Microsystems, Inc.: JiniTM Technology IP Interconnect Specification.
http://ipsurrogate.jini.org (2001)

13. Lee, S., Gerla, M.: Dynamic Load-Aware Routing in Ad hoc Networks. In: Proceed-
ings of The Third IEEE Symposium on Application-Specific Systems and Software
Engineering Technology (ASSET 2000), Richardson Texas (2000)

14. Godfrey, B., et al.: Load Balancing in Dynamic Structured P2P Systems. In: IEEE
INFOCOM 2004, Addis Ababa, Ethiopia (2004)

15. Stallings W.: SNMP, SNMPv2, SNMPv3, and RMON1 and RMON2. 3rd Edition
Addison-Wesley, California (1999) 71-82

16. Hwang, P. Aravamudham Middleware Services for P2P Computing in Wireless
Grid Networks. In: IEEE Internet Computing vol. 8, no. 4, July/August 2004, pp.
40-46

17. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm



An Extendable GRID Application Portal

Jonas Lindemann and Göran Sandberg

LUNARC, Center for Technical and Scientific Computing, Lund University
jonas.lindemann@byggmek.lth.se

http://www.lunarc.lu.se

Abstract. To attract users from a wide range of scientific areas it is
important to provide a variety of ways to access the Lunarc resources.
Providing good user interfaces for all categories of users is a key factor for
a high use of resources. One way of doing this is by providing access to
common applications through a web-based portal. Existing grid portals
are often geared toward’s providing access to the features of the middle-
ware instead of providing interfaces to existing applications. Lunarc has
adopted a more application oriented approach providing dedicated user
interfaces for each application using the grid middleware as an infras-
tructure for the implementation. The users as application experts can
extend the portal themselves using an easy to use software development
kit (SDK) for plugins.

1 Introduction

As more research areas need more computational resources, it is very important
to provide easy access to these resources, both via web-based interfaces and from
the command-line. Currently, most users of the Lunarc resources use command-
line tools for accomplishing tasks. For other scientific areas this way of accessing
a system can be very unfamiliar. To complement the existing command-line-
based user interfaces for the Lunarc resources it was decided to implement a
web-based portal to provide easy access to commonly used applications.

At first it was thought that existing grid portals could be used. Unfortunately,
most existing grid portals have a focus on providing access to the specific features
of the middleware instead of the applications. To change the focus back to the
users and application, the Lunarc Application Portal has been developed. In this
portal the application is the focus of the user interface and the grid middleware
is the infrastructure for achieving this goal.

There exists today a number of frameworks for implementing grid-portals,
gridsphere[1], CrossGrids[2], GridBlocks[3] and many more. These are often de-
signed in a very general way providing many rich features to the grid-middleware.
The underlying applications are often specified as an option on the job submis-
sion form. The user is also often required to have technical knowledge of many
grid features to submit a job to the grid. To remedy this one can argue that
these portals can be extended. This is true, but adding functionality to many of
these portals often require deep knowledge of object-oriented concepts and web

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1012–1021, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



An Extendable GRID Application Portal 1013

development, which limits the development of application specific extensions to
experts in these areas, adding an extra layer between the application developer
and the portal end user. At Lunarc, a different approach has been taken. In-
stead of focusing on all the possibilities in the grid-middleware the focus has
been on how to make an application available to the end-user in an easy and
effective way, so that the user can take advantage of the resources available on
the grid.

To make a web portal useful the users must be involved in the process of
creating the interfaces used. Many of our users are application experts in that
they often develop their own simulation software. To make these users involved in
the development of the application portal the portal also provides an easy to use
Python-based software development kit. With this kit users can develop plugins
in an easy way without extensive knowledge in object-oriented programming or
libraries.

2 User Interface

A web-based user interface was chosen, as it can be accessed from most plat-
forms. It also eliminates the need for any installations on the client side. Web
applications are also a familiar concept that most users are able to handle.

The user interface for the Lunarc application portal is shown in figure 1,
The interface is divided in two parts, a menu bar and a work area. Forms and
status messages are shown in the workarea when the user selects functions from
the menu. To support the user, the main categories in the menu are ordered
so that it reflects the users normal workflow. Drop down menus are used to
give the user interface the look and feel of an normal window-based application.

Fig. 1. Lunarc Application Portal



1014 J. Lindemann and G. Sandberg

Fig. 2. Progress messages

Effort has been taken to provide rich feedback whenever possible, for example
providing status messages for operations that take a long time to complete, see
figure 2.

There are 7 main menus: Information, Authorisation, Session, Preferences,
Create, Manage and Monitor. The “Information”-menu contains information on
how to get started with the portal, a user’s guide and a guide for writing plug-
ins for the portal. The “Authorisation”-menu contains functions requesting cer-
tificates and requesting access to the Lunarc grid systems. The “Preferences”-
contains special user preferences, such as default email address, preferred clusters
etc. The most important menus are the“Create”, “Manage”and“Monitor”. From
the “Create” menu different job types can be created. Each menu is provided by
a special application plugin responsible for providing the application with a user
interface and the procedure for submitting the job on the grid. The “Manage”-
menu handles already created jobs and jobs running on the grid resources. The
“Monitor”-menu contains functions for monitoring running jobs and the monitor
the status of the Lunarc clusters.

The main activities in the portal are creating job definitions, submitting jobs,
monitoriing and retrieving results from the jobs as shown in figure 3.

Fig. 3. Portal workflow

2.1 Job Definitions

Before a job can be submitted to the grid a job definition must be created. A
job definition is a directory on the portal server containing the needed input files
and the settings for the job. The job definition also contains results retrieved
from the job after successful completion. Job definitions are created from the
“Create”-menu. When the user selects a job definition type a form is shown
with the needed attributes for the application type. Figure 4 shows the needed
attributes for a simple ABAQUS simulation. Job definitions are managed from



An Extendable GRID Application Portal 1015

the “Manage”-menu. From this menu job definitions can be submitted to the
grid, modified and results can be viewed, see figure 5.

Fig. 4. ABAQUS application attributes

Fig. 5. Manage job definitions

2.2 Managing Running Jobs

Jobs that have been submitted to grid resources are also managed from the
“Manage”-menu. When selecting “Manage/Running jobs...” a list of all jobs sub-
mitted to the grid are shown along with the operations that can be performed on
them, such as getting results (Get), killing a running job and cleaning a deleted
job, see also figure 6.

Fig. 6. Manage running jobs



1016 J. Lindemann and G. Sandberg

2.3 File Handling

File handling is an important part of an application portal as most application
often generate a large amount of output files. The Lunarc Application portal
implements a simple web-based file manager to handle viewing and downloading
of generated result files. The user interface of the file manager is similar to the
those found in normal window-based user interfaces. As seen in figure 7 there
are functions for downloading individual files and compressing the entire folder
and downloading it as a .tar.gz-file.

Fig. 7. Documentation provided by the portal

2.4 Documentation

To ease the learning curve, the portal provides it own documentation form the
“Information”-menu, see figure 8. 3 main documents are provided: A getting
started manual, a user’s guide and a programmer’s guide. The getting started
manual describes briefly how to get started with the portal. The user’s guide
provides more detailed information on all the functions of the portal. The pro-
grammer’s guide provides information on how to write plugins for extending the
portal with additional application user interfaces. The “Information”-menu also
provides information about any extra software needed, such as compression and
proxy tools.

Fig. 8. Documentation provided by the portal



An Extendable GRID Application Portal 1017

3 Implementation

The technical implementation aspects of the Lunarc Application portal is focused
on creating a lightweight and easily extendable portal. An important aspect
of this is not to reinvent the wheel. Existing software packages and tools are
used as much as possible. The Lunarc Application Portal is implemented in
Python [4] using the WebWare application server [6]. The application server is
hosted in the Apache web server [5]. Job submission and management is done
using the NorduGrid/ARC grid middleware [7]. The architecture is illustrated
in Figure 9.

Fig. 9. Application architecture

The WebWare is an object-oriented multithreaded application server capable
of handling multiple user web sessions. Each page on the server is represented by
a Python class. The application server can be integrated into the Apache Web
server by using a cgi-bin version or using the faster mod webkit apache module.
This also the method used in the Lunarc Application portal.

3.1 Grid Middleware

The application portal uses the ARC middleware for job submission, manage-
ment and monitoring. The portal currently interfaces with the grid middleware
by calling the existing command line tools provided by ARC, as there are no
python bindings. This approach can be complicated and fragile as the output
from the command line tools needs to be parsed. Later versions of the portal
will use ARCLib, a library with SWIG generated bindings for many script lan-
guages. Using this library will enhance the stability and reduce the complexity of
interfacing with the ARC middleware. The ARCLib will be released with future
ARC releases.

Currently the interface to ARC is implemented in the python module pyARC
using the DN, Proxy and Ui classes. The DN class is just a simple class for parsing



1018 J. Lindemann and G. Sandberg

a Distinguished Name (DN). The Proxy class implements a class for handling a
proxy. The main ARC interface is implemented in the Ui class.

3.2 Web Implementation

There are two major base classes in the Lunarc Application portal. The Lunar-
cPage class defines the basic layout of all other pages in the portal. All pages
requiring a login are derived from the SecurePage class. This class is in turn
derived from the LunarcPage. SecurePage derived pages will check that the user
has provided a valid proxy, if not the user is provided with a dialog to select it.
When this is done the actual page is shown.

In the session directory user preferences are stored in files using the pickle()
and unpickle() functions. Created jobs and uploaded files are stored in special
job directories with the job_xxxx where xxxx indicates the name of the job.

3.3 Adding Functionality Using Plugins

One of the reasons for choosing Python as the implementation language is to
make it easier for user groups to create their own custom application inter-
faces. Extending the portal in this way requires the plugin-author to provide
two classes. One class derived from the JobPage-class implementing the needed
user interface for the plugin. A second class derived from the Task-class im-
plementing the needed procedures for setting up a job for submission to grid
resources, see figure 10.

Fig. 10. Implementing extension classes

The following code excerpt shows how the setup-method for the AbaqusTask
class is implemented:



An Extendable GRID Application Portal 1019

def setup(self):

# Get directory and attributes

taskDir = self.getDir()

attribs = self.getAttributes()

self.addInputFile(attribs["inputFile"])

# Create abaqus env file

envFile = file(os.path.join(taskDir,"abaqus_v6.env"), "w")

envFile.write(abaqusEnvFileTemplate %

{"licenseServer":attribs["licenseServer"]})

envFile.close()

# Create shell script

jobIdentifier, ext = os.path.splitext(attribs["inputFile"])

shellFile = file(taskDir+"/run.sh", "w")

shellFile.write(abaqusShellTemplate %

{"jobIdentifier":jobIdentifier})

shellFile.close()

# Create XRSL file

xrslFile = LapJob.XRSLFile(self)

xrslFile.setFilename(taskDir+"/job.xrsl")

xrslFile.write()

The JobPage is responsible for defining the needed user interface for the ap-
plication. This is done using the python module LapWeb, which contains classes
for defining user interface components. An excerpt from the the onCreateNewJob-
Form is shown below:
def

onCreateNewJobForm(self, task):

form = LapWeb.Form(self, "testform", "AbaqusJobPage",

"Create a Abaqus job")

attribs = task.getAttributes()

xrslAttribs = task.getXRSLAttributes()

form.addFile("Input file", "inputFile", "")

form.addText("License server", "licenseServer",

attribs["licenseServer"])

form.addSeparator()

form.addText("CPU time (s)", "cpuTime", xrslAttribs["cpuTime"])

form.addText("Job name", "jobName", xrslAttribs["jobName"])

form.addText("Email notification", "email", xrslAttribs["notify"])

return form



1020 J. Lindemann and G. Sandberg

4 Security

One of the more complicated procedures when using grid-based resources is
security. Before the event of the grid, to use a cluster all that was needed was a
user name and a password. This model works well on a single resource, but in a
larger context, problems with password security becomes apparent. To remedy
this, grid middleware uses a different security model based on private keys and
certificates. To access grid resources the user must have a signed certificate.
In addition to this, his grid ID must be added to the sites that he has been
authorised to run at.

4.1 Certificate and Proxy Handling

The solution adopted by the Lunarc Application Portal is described below:

1. The user applies for an account on the Lunarc systems.
2. Generate private key and certificate request using the ARC GRID middle-

ware (grid-cert-request). This is preferable done on the users own system.
3. The certificate request is sent to the NorduGrid CA for signing.
4. The signed certificate is installed on the client system.

The above solution requires the ARC GRID middleware to be installed on
the client system. If the client system is not supported, a special version of the
grid-cert-request tool has been developed to make it possible for users to generate
a request and a private to be able to log in to the portal.

Access to the portal is done through a GRID proxy. This proxy is gener-
ated using the grid-proxy-init command line tool or using the special GUI proxy
generation tool from the Java CoG 1.1 toolkit [8]. Future version of the por-
tal will probarbly use a MyProxy[9] server for authentication instead of using a
proxy-based login.

4.2 Access to Resources

Access to Lunarc grid resources goes through a special application from where
the user requests access. The user also has to supply his existing Lunarc account,
so that his usage will be logged correctly. When all information has been checked,
the user is added to the Lunarc VO and the NorduGrid VO.

5 Conclusions

Not all scientific groups share the same computing culture. To some groups
command line tools and classical HPC usage is very unfamiliar. A web-based
portal can complement the existing command line user interface to give more
groups access to computational resources.

By focusing on application functionality instead of middleware functionality,
users will recognise the application interfaces instead of having to learn the



An Extendable GRID Application Portal 1021

details of job submission before being able to submit a job. In this model grid
middleware is the infrastructure for achieving this goal.

The success of a web portal depends greatly on the acceptance of the users.
This requires that the architecture of the portal is flexible and adaptable to
user needs. This is achieved by using a Python-based lightweight application
server reusing existing component and tools such as the ARC middleware and
by providing users means of extending the portal themselves using a plugin-based
approach.

References

1. gridphere portal framework, http://www.gridsphere.org/gridsphere/gridsphere,
2005

2. Developing new Grid components, http://www.crossgrid.org/main.html, 2005
3. GridBlocks, http://gridblocks.sourceforge.net, 2005
4. Python, http://www.python.org, (2004)
5. The Apache HTTP Server Project, http://httpd.apache.org, (2004)
6. Python Web Application Toolkit, http://www.webwareforpython.org, (2004)
7. Advanced Resource Connector ARC, http://www.nordugrid.org, (2004)
8. Java CoG Toolkit, http://www.cogkit.org, (2004)
9. MyProxy Online Credential Repository, http://grid.ncsa.uiuc.edu/myproxy, 2005



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1022 – 1031, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Task Replication and Fair Resource Management 
Scheme for Fault Tolerant Grids 

Antonios Litke, Konstantinos Tserpes, Konstantinos Dolkas, and  
Theodora Varvarigou 

Department of Electrical and Computer Engineering,  
National Technical University of Athens, 

9, Heroon Polytechniou Str, 15773 Athens, Greece  
{ali, tserpes, dolkas, dora}@telecom.ntua.gr 

http://telecom.ece.ntua.gr/ 

Abstract. In this paper we study a fault tolerant model for Grid environments 
based on the task replication concept. The basic idea is to produce and submit to 
the Grid multiple replicas of a given task, given the fact that the failure prob-
ability for each one of them is known a priori. We introduce a scheme for the 
calculation of the number of replicas for the case of having diverse failure prob-
abilities of each task replica and propose an efficient resource management 
scheme, based on fair share technique, which handles the task replicas so as to 
maintain in a fair way the fault tolerance in the Grid. Our study concludes with 
the presentation of the simulation results which validate the proposed scheme. 

1   Introduction 

Grid can be an appropriate solution for many computational intensive and grand scale 
applications ranging from scientific, industrial and engineering field. It is also an 
emerging solution for utility and pervasive computing. However, Grids as all the large 
scale distributed platforms are prone to failures, which restrain it to become a reliable 
execution platform for high performance and distributed applications. So the fault 
tolerance feature is of vital importance. By the term fault tolerance we denote the 
ability of the Grid system to perform correctly in the presence of faults.  

Fault tolerance is of big importance in Grid computing, as the emerging grid-
oriented applications have a significantly increased size and complexity from the 
traditional ones. Experience has shown that systems with interacting and complex 
activities are inclined to errors and failures. Thus, Grid computing is not expected to 
be fault free, despite the fact that individual techniques such as fault avoidance and 
fault removal [1] may additionally be applied to its resources. The fault tolerance 
feature is introduced in the Grid systems in order to enhance them with the appropri-
ate reliability, which is mandatory in the context of diverse, dependable and cross-
organizational environments. The reliability in Grid comprises the probability of all 
grid applications to be executed fully with no errors in the grid computing environ-
ment. As applications scale to take advantage of a Grid’s vast available resources, the 
probability of failure is no longer negligible and must be taken into account. 



 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1023 

 

There are various approaches to make grid computing fault tolerant [1],[2],[3]. The 
basic however are the checkpoint recovery and the task replication. The former is a 
common method of ensuring the progress of a long-running application by taking a 
checkpoint, i.e., saving its state on stable storage periodically. A checkpoint recovery 
is an insurance policy against failures. In the event of a failure, the application can be 
rolled back and restarted from its last checkpoint—thereby bounding the amount of 
lost work to be recomputed. Task replication is another common method that aims to 
provide fault tolerance in distributed environments by scheduling redundant copies of 
the tasks, so that to increase the probability of having at least a simple task executed. 
A brief overview of the options in the fault tolerant computing on the Grid can be 
found in [2].  

There has been a variety of implementations that have addressed the problem of 
fault tolerance in Grid and distributed systems. Globus [15] provides a heartbeat ser-
vice to monitor running processes to detect faults. The application is notified of the 
failure and expected to take appropriate recovery action. Legion [16] provides mecha-
nisms to support fault tolerance such as checkpointing. Other Grid systems like 
Netsolve [17], Mentat [18] and Condor-G [19] have their failure detection mecha-
nisms and their failure recovery mechanisms. They provide a single user-transparent 
failure recovery mechanism (e.g. retrying in Netsolve and in Condor-G, replication in 
Mentat). The difference between these systems and our proposed scheme relies on the 
fact that the one presented here addresses the fault tolerance as a metric that is ad-
justed in a fair way for all the Grid users. Moreover it applies to all Grid environ-
ments and is especially beneficial for low workload jobs in unreliable environments, 
such as Mobile Grids [20], which consist of mobile resources (hosts and users) con-
nected by wireless links and forming arbitrary and unpredictable topologies.  

In this paper we study a fault tolerant model for Grid environments based on the 
task replication concept. The basic idea is to produce and schedule in the Grid infra-
structure multiple versions (replicas) of a given task, based on the fact that the failure 
probability for each one of them is known a priori. The replication model that is 
adopted is based in static replication [4] meaning that when a replica fails it is not 
substituted by a new one. The failure of a task replica is based on aspects that concern 
the task itself and not the resource on which it is going to be executed. This approach 
implies that the Grid infrastructure remains unchanged concerning its topology and 
total computational capacity, and independent from the faults that occur in the Grid 
environment. The introduction of task replicas causes an overhead in the workload 
that is allocated for execution to the Grid environment. Moreover, scheduling and 
resource management are important in optimizing Grid resource allocation, and de-
termining its ability to deliver the negotiated QoS and provide fair access to all users 
[5][3]. The basic idea that is applied in this study is to address the additional overhead 
caused by the task replicas in the Grid system with a fair scheme of resource man-
agement that will provide a fair share of computational resources to the Grid users 
[8][9].  

The remainder of this paper is structured as follows: Section 2 provides the prob-
lem formulation for the fault tolerance and task replication in the Grid and the nota-
tion that will be used. Section 3 provides the task replication model for tasks’ whose 
failure probability is a random function. In section 4 we describe the need for adopt-
ing a mechanism for the efficient handling of the additional load that has been caused 



1024 A. Litke et al. 

 

by the replicas and which is based on the max min fair share scheme, aiming to sat-
isfy as many as possible users with the available resources. Finally, in section 5 we 
present the simulation results of the developed scheme and conclude, in section 6, 
with a discussion on future work as well as on potential improvements and enhance-
ments on our proposed scheme. 

2   Notation and Problem Formulation 

We consider that a set of M processors forms a Grid infrastructure. Each processor 
has a fixed computational capacity denoted as { }Mjc j ,...,2,1, ∈ , thus the total com-

putational capacity of the Grid is 
=

=
M

j
jcC

1

. We also consider a set of N different 

tasks { }NiTi ,...,2,1, ∈   to be assigned to the Grid for execution. We assume that the 

tasks are non-preemptable and non-interruptible [10]. This means that a task cannot 
be broken into smaller sub-tasks or modules and it has to be executed as a whole on a 
single processor. Additionally as soon as a task starts its execution on a processor, it 
cannot be interrupted and it consumes the whole processor computational capacity as 
long as it is executed. 

Each task iT  has an execution time iET  and a deadline iD . The execution time 

corresponds to the time interval that the execution of iT  lasts if it is executed in a 

processor of unitary capacity 1=c . The deadline of the task represents the latest time 
at which the Grid has to deliver the results to the user. It is a quantity specified by the 
end-user who is willing to pay for the Grid resources used. During a task execution on 
the Grid, various errors might occur causing task failure. In this study we will deal 
with those cases that are based upon the distributed systems fault model, which in-
cludes omission, timing and arbitrary faults [12]. These kinds of errors are commonly 
met in distributed systems as well as in Grid environments.  We will omit other types 
of failures such as hardware failures [2][4][13], etc. 

We define the failure probability  iPf  of a task iT , which is the probability that 

the task fails to be executed on the Grid. Respectively, success probability iPs  is the 

probability that the task iT  concludes its execution within the Grid system, providing 

the presumable results. The correlation between failure probability and success prob-
ability is: 

ii PsPf −= 1 . (1) 

At this point we introduce the concept of workload. Workload { }Niwi ,,2,1, Κ∈ is 

the computational capacity that is required by a task iT  in order to be executed in 

unitary time on a given resource. For simplicity reasons we have focused only on 
computational capacity and we have omitted other parameters such as communication 
delays, disk input/output delays etc. Moreover, in our study we have reduced the 
computational capacity into unitary, when referring to the workload, in order to treat 
the resources as homogeneous simplifying thus the presented model. However, the 



 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1025 

 

extended scheme incorporating various heterogeneous resources can be derived in the 
same manner. The workload is equal to the inversed execution time iET , and can be 

written as: 

1)( −= ii ETw . (2) 

Task replicas are generated and assigned to the Grid for execution. The term rep-
lica or task replica is used to denote an identical copy of the original task. By produc-
ing task replicas, a low probability of task failure can be achieved. We assume that 

im  replicas –denoted by iik mkT ,,1, Κ= - of a task  iT  are produced and are placed 

among other tasks and replicas that are to be submitted for execution. Given the fail-
ure probability  ikPf  of each one of the  im  replicas ikT of task iT , the failure prob-

ability is defined as: 

∏
=

=
im

k
iki PfPf

1

. (3a) 

The above corresponds to the probability of the event “all task replicas fail”. Re-
spectively, the success probability iPs  is equal with the probability of the event “at 

least one task replica succeeds” and is given by the equation: 

∏
=

−=−=
im

k
ikii PfPfPs

1

11 . (3b) 

It can be assumed that the similarity of the replicas implies that the variations of 
the failure probabilities of each one of them cannot be large. Given that assumption, 
we can define two bounds for the failure probability ikPf   of each replica ikT , namely 

iu  and il  are the maximum and the minimum value that ikPf  can take for each of the 

replicas of iT . These two bounds can be either estimated by the Grid user or can be 

statistically determined by the previous history of the system according to the relative 
tasks that have been already submitted. Alternatively, prediction models can be ap-
plied for the estimation of the failure probabilities based on the individual task fea-
tures in a similar way as described in [14].  

In order to guarantee a low failure probability our scheme produces as many task 
replicas as needed so as to satisfy the constraint of success probability. We now de-
fine a probability threshold δ , which denotes the probability that each task (includ-
ing its replicas) will not finish its execution. We can write: 

δ≤iPf . (4) 

where δ  is a constant between 0 and 1. 

3   Task Replication Model 

We will present a way to calculate the number of replicas that is required in order to 
secure a fault tolerant operation of the Grid for all cases. We will distinguish between 



1026 A. Litke et al. 

 

two cases that will be examined in this section. In the first case it is assumed that two 
different positive numbers  ii lu ,  bound the failure probability  ikPf  of a replica ikT . 

In the second case  ikPf  is unbounded and it can take random values, so a simple 

algorithm is used to produce replicas in order to follow inequality (4).  
First case: iii uPfl <<   

The failure probability ikPf   for each replica of a task   can be bounded by two 

positive real numbers ii lu , . From (3a) and (4) we have: 

δ≤≤ ii m
i

m
i ul , (5) 

and in the sequel:  

( )
( )

( )
( )≤≤

i
i

i
i u

m
u

m
log

log

log

log δδ
. (6) 

In the simple case of a constant failure probability constFPf ii == , it becomes: 

  

( )
( )≤

i
i F

m
log

log δ
. (7) 

Second  Case: ikPf  is a function of k. 

We use a simple algorithm to specify the number of the needed replicas for each 
task. The idea is to produce a replica of a task each time the failure probability is 
bigger than δ . The replication procedure stops when inequality (4) holds true for a 
given number of replicas im . The proposed algorithm computes the number of repli-

cas to be produced for a task iT  in order to reduce the failure probability iPf at least 

bellow the value δ .  
The replication procedure for both cases takes place in the Grid middleware, which 

is responsible for keeping the level of fault tolerance for the whole Grid environment. 
This approach does not make necessary any communication between the replicated 
tasks themselves. The presented scheme, however, does not exclude any parallel pro-
gramming applications from being executed on the specific platforms, since it does 
not comprise a constraint to these tasks. Moreover, although the failure probability is 
attached to tasks, this assumption does not affect the generality of our approach, since 
in the second case, where the failure probability is a random function of k, we can 
assign to k values that are dependent to the resource itself.      

4   Efficient Fault Tolerant Mechanism with Fair Share 

We assume that the workload of each task is the sum of the workloads of its replicas, 

which can be written as  
=

=
im

k
iki ww

1

 or 1iii wmw ⋅= , since every replica is identical 



 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1027 

 

to the primary task which was assigned by the user. In this way every task can be 
considered as a virtual task, comprising as the set of itself and all of its replicas and 
which has a workload equal to an integral multiple of the original’s workload.  

We propose a max min fair share mechanism for the management of the fault tol-
erant feature of each task, by reducing in a fair way the replicas of each task. It is 
important to clarify the difference between the demanded capacity  id  and the capac-

ity provided by the Grid which will be symbolized with ia . In our case we will con-

sider as required capacity the workload iw . The number of replicas actually allowed 

by the Grid is other than the one required ( im ) to guarantee the fault tolerance of the 

Grid. We denote the number finally assigned replicas as in . This fact raises the need 

to determine the new number of replicas that actually can be assigned in order to have 
the maximum possible probability threshold δ  which utilizes the total of the Grid 
capacity so as to satisfy the tasks’ deadlines. We will apply a max min fair share tech-
nique [8][9] to determine the fair share that can be allocated at each task. 

The main idea of this scheme is that all users submitting their jobs in the Grid are 
allocated an equal share of the computational resources for the execution. Although 
many schemes can be adopted for the efficient handling of Grid resources, we deal in 
this study with the fair share model which is a decent way to share resources without 
having prioritized and weighted clients.  In case where a specific job does not require 
all its assigned computational power, the remaining part is being distributed evenly to 
the remaining users in a recursive way. In order to classify the tasks that are submitted 
in the Grid according to the required computational power, we need to define the 
quantity of demanded capacity id  which, in our case, corresponds to the work-

load iw . We will refer to that amount as fair share x .  

The demanded capacity for every task is compared with the fair share x . If the 
task’s computational capacity allocated is bigger than or equal to the fair share, then it 
is considered as a satisfied task. In the other case, the task is classified as unsatisfied 
(the capacity given is smaller than the fair share). In the sequel the fair share is being 
recalculated. The new fair share accrues from the capacity U , which is remaining to 
be shared among the unsatisfied tasks. This algorithm runs iteratively until either all 
tasks are satisfied with the demanded capacity, or there is no remaining capacity U  
to be distributed. The proposed scheme assigns in a fair way the total capacity of the 
Grid to the virtual tasks that are submitted for execution. The virtual tasks that have 
received no sufficient resources for their execution can either be scheduled in a later 
phase having as disadvantage the deviation from the given deadline iD . 

5   Simulation Results 

The proposed efficient fault tolerant mechanism has been implemented in C++ and 
evaluated against a set of tasks. In the following table we present the tasks that have 
been used for the evaluation of the proposed scheme.  The tasks have been selected so 
as to provide a main separation between “reliable tasks” with a low failure probability  

iPf  between 0 and 0.15 and those that have a higher failure probability between 0.2 



1028 A. Litke et al. 

 

and 0.35. The failure probabilities of the individual tasks have been randomly gener-
ated between each of the two values respectively. The workload of each original task 
ranges between 1 and 100 computational units. By this way, a mean value of 50 com-
putational units can be assigned to each one of the original tasks, which in turn leads 
to a “hard” scenario, given the fact that the produced replicas will augment the de-
manded capacity overall. As fault tolerance threshold δ  we have selected the value 
of 0.05. This threshold has been selected so as to provide a high degree of reliability, 
higher than the mean value of the “reliable” tasks. 

Table 1. Input provided for the simulation results of the proposed fault tolerant scheme 

Fault tolerance threshold  =0.05 

No of 
tasks 

No of “reli-
able” tasks 

Grid's  
Capacity 

C 

% of 
satisfied 

tasks 

30 20 1500 80% 

50 30 2500 52% 

100 50 5000 63% 

200 120 10000 85% 

500 300 25000 65% 

1000 400 50000 88.2% 

 
 
Figure 1 shows the relation of the workload generated for each iT   before and after 

the use of the max min algorithm. Figure 2 depicts the relation between the failure 
probability  iPf   before and after the use of the max min fair share algorithm for each 

virtual task. Examining the presented results, we can see that in some cases there is 
not enough workload assigned to a virtual task, leading to the incapability of the pro-
cedure to provide service even to a single replica. This fact is clearly depicted in Fig. 
2 where the failure probability after the max min fair share algorithm reaches to 1, 
which is interpreted as a complete failure to serve the certain task which actually 
means its rejection from the fault tolerant Grid and, consequently, its deviation from 
the user specified deadline. This rejection, although undesired, does not imply ineffi-
ciency of the proposed scheme, since the basic motivation of the work is to construct 
a mechanism of providing a fault tolerant Grid for both “reliable” and “less reliable” 
tasks and not to guarantee the achievement within the given deadline. 

The result analysis in Fig. 1 shows that even in the case where the tasks are equally 
distributed among “reliable” and “less reliable”, the tasks that are finally blocked are 
3, while less than 10% of the tasks have a failure probability between 0.2 and 0.3. 
Again, the majority of the tasks, comprising the 80% of the total tasks assigned, is 
successfully scheduled in the Grid with a failure probability less or equal to 0.05, 
although their initial failure probability was significantly higher before applying the 
proposed scheme. 

 



 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1029 

 

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Task i

w
(i

) Demanded

Assigned

 

Fig. 1. The case of 50 different tasks with 30 reliable ones and fault tolerance threshold  = 
0.05. The respective workloads of the virtual tasks as resulted for the demanded and assigned 
case for  = 0.05 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Task i

P
f(

i) Before MaxMin

After MaxMin

 

Fig. 2. The case of 50 different tasks with 30 reliable ones and fault tolerance threshold  = 
0.05. The failure probability for each task before and after the max-min fair share technique 

From the workload perspective the maximum deviation between the primary de-
manded and the eventually assigned workload to each set of tasks ranges between 
43.43% of the demanded workload in the set of the 1000 tasks and 77,54% in the set 



1030 A. Litke et al. 

 

comprising of 500 tasks. The largest number of not satisfied tasks in terms of work-
load is presented in the set of 50 tasks. In particular, 24 out of 50 tasks are not pro-
vided with the required amount of workload by the proposed mechanism. The average 
percentage of the deviations in the demanded workload of the 50 tasks set is 17.09%, 
a rather small number, if we consider the overall required satisfaction level of fault 
tolerance threshold. Some results of special interest are those of the biggest set of 
1000 tasks. In that case, 88.2% of the tasks are satisfied in terms of assigned workload 
while at the same time the average deviation of the assigned workload is 2.89% of the 
demanded workload. 

6   Conclusions 

In this paper we have studied a task replication scheme that applies max-min fair 
share resource management for providing fault tolerance in Grids. The main contribu-
tion of this work relies in performing task replication by using the proposed algorithm 
which is designed for the case of having diverse failure probabilities between a task 
and its replicas, and in the handling of the fault tolerance fair share for the efficient 
assignment of the tasks in the Grid. The scheme has been implemented and validated 
for a variety of tasks with a diverse set of failure probabilities for the given tasks and 
their replicas. It showed that in cases where we have tasks equally distributed among 
“reliable” ones and “less reliable” ones, a fault tolerant Grid can be achieved by hav-
ing rejected only a small number of tasks resulting in their deviation from their dead-
lines. The other tasks and their replicas are successfully scheduled in the Grid provid-
ing thus a high degree of fault tolerance. The presented results although in a prelimi-
nary form, are indicative for the evaluation of the proposed scheme. The approach 
that is presented can be further improved by taking into consideration the deviation 
from the deadline for each task and assuming this deviation as a criterion for  
prioritized scheduling. 

References 

1. M.R. Lyu,, Software Fault Tolerance, John Wiley & Sons – Chichester, 1995 
2. J. B. Weissman. Fault Tolerant Computing on the Grid: What are My Options? HPDC 

1999 
3. F. Wang, K. Ramamritham, J.A. Stankovic. Determining redundancy levels for fault toler-

ant real-time systems, IEEE Trans. Computers, vol 44, issue 2,  1995, pp. 292-303 
4. A. Nguyen-Tuong. Integrating Fault-Tolerance Techniques in Grid Applications, PhD Dis-

sertation, University of Virginia, August 2000 
5. Scheduling Working Group of the Grid Forum, Document: 10.5, September 2001 
6. K. Ramamritham, J.A.Stankovic, and P.-F. Shiah. Efficient Scheduling Algorithms for 

Real-time Multiprocessor Systems, IEEE Trans. on Parallel and Distributed Systems, 
vol.1, no.2, 1990, pp.184-194 

7. L. E. Jackson and G. N. Rouskas. Deterministic Preemptive Scheduling of Real Time 
Tasks, IEEE Computer, vol. 35, no. 5, 2002, pp. 72-79 

8. A. Demers, S. Keshav and S. Shenker, Design and Analysis of a Fair Queuing Algorithm, 
Proc. of the ACM SIGCOMM, 1989 



 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1031 

 

9. D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 1992. The section on max-min 
fairness starts on p.524 

10. J.Y-T. Leung and M.L. Merrill, A Note on Preemptive, Scheduling of Periodic, Real-Time 
Tasks, Information Processing Letters, 11, no. 3, 1980, pp. 115-118 

11. M. L. Dertouzos and A.K.-L. Mok, Multiprocessor On-line scheduling for Hard Real Time 
Tasks, IEEE Trans. on Software Eng., vol. 15, no. 12, 1989, pp. 1497-1506 

12. A. S. Tanenbaum, M. van Steen, Distributed Systems: Principles and Paradigms, Prenctice 
Hall, Computer Science, 2002 

13. T. Varvarigou, J. Trotter, Module replication for fault-tolerant real-time distributed sys-
tems, IEEE Transactions on Reliability, vol. 47, no. 1, 1998, pp. 8-18 

14. N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvarigou and E. Varvarigos, A 
Combined Fuzzy -Neural Network Model for Non-Linear Prediction of 3D Rendering 
Workload in Grid Computing, IEEE Trans. on Systems Man and Cybernetics, Part-B (ac-
cepted for publication) 

15. The Globus project. http://www-fp.globus.org/hbm/ 
16. A. Nguyen-Tuong, and A.S. Grimshaw, “Using Reflection to Incorporate Fault-Tolerance 

Techniques in Distributed Applications,” Computer Science Technical Report, University 
of Virginia, CS 98-34, 1998. 

17. H. Casanova, J. Dongarra, C. Johnson and M. Miller, “Application-Specific Tools”, in I. 
Foster and C. Kesselman (eds.), The GRID: Blueprint for a New Computing Infrastructure, 
Chapter 7, pp. 159–180, 1998 

18. A.S. Grimshaw, A. Ferrari and E.A. West, “Mentat”, in G.V. Wilson and P. Lu (eds.), 
Parallel Programming Using C++, Chapter 10, pp. 382–427, 1996 

19. F.C. Gartner, “Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous 
Environments”, ACM Computing Surveys, Vol. 31, No. 1, 1999 

20. “Access to Knowledge through the Grid in a Mobile World” (AKOGRIMO) Integrated 
Project FP6-2003-IST-004293. http://www.akogrimo.org/ 

 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1032 – 1039, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

CrossGrid Integrated Workflow Management System 

Martin Maliska, Branislav Simo, and Ladislav Hluchy 

Institute of Informatics, Slovak Academy of Science 
{martin.maliska, branislav.simo, hluchy.ui}@savba.sk 

Abstract. This paper describes a workflow management system that was 
implemented according to the requirements of a Flood forecasting application 
[1] developed in the CrossGrid project [2]. The flood forecasting application 
contains several simulation models (meteorological, hydrological, hydraulic) 
implemented as the grid jobs. A need for a cascade execution of these models 
has been a motivation for creating workflow management system capable of 
executing of a cascade of simulations in the CrossGrid testbed. First 
implementation of the workflow system has been tied to the portal user 
interface, but currently has been decoupled as a standalone grid service, which 
can be used by the two user interfaces developed in the project. 

1   Introduction 

During the development of the Flood forecasting application[1] in the CrossGrid[2] 
project we have faced the problem of running a cascade of simulations comprising the 
application in the project testbed in an automatic way, so that the user will not have to 
submit each job separately and make the coupling of the input and output files by hand. 
    The application focuses on the prediction of floods, which are considered as serious 
problem, causing a lot of damages with many people threatened or even killed. 
Among the methods that can help to mitigate consequences of floods is a prediction 
of such an event. Our prediction system consists of several simulation models – 
meteorological, hydrological and hydraulic, which form the base of a simulation 
cascade. The cascade is actually a workflow. The meteorological model computes the 
precipitation in the target area, which is then processed by hydrological model for 
run-off computation and finally the hydraulic model computes the flow of the water in 
the river bed and surrounding area. More detailed description can be found in [1]. We 
are cooperating with experts from Slovak Hydro-Meteorological Institute, which 
provide us with data for the models and the relevant know-how. 
    These simulation models are computationally intensive and when several experts 
will need to run different scenarios, e. g. in the time of possible crisis or parameter 
studies during model calibration, the computers in the grid will provide the requested 
processing power. 
    Our task is to integrate these models so they can be executed as cascade. Each 
model has several parameters and because every model needs to be calibrated and a 
calibration has to be carried out for each target area, there should be a way how to 
easily run specific model(s) or the whole cascade with modified parameters for the 
same situation (time, space). An expert could also decide to stop the execution of 



 CrossGrid Integrated Workflow Management System 1033 

 

current cascade after he checked the results computed so far and to execute the rest  of 
the cascade with changed parameters or to execute a completely new run of another 
cascade. These are the key features which affected the design of our application.  
    In the context of the CrossGrid project, two different user interfaces have been 
implemented. The first one is a portal interface based on the portlets using Velocity[3] 
as a template engine. The second one is plug-in for Migrating Desktop – a Java client 
developed in CrossGrid. 
    The workflow grid service and user interfaces using it as a back end service are 
described in the following chapters. 

2   Overview of Existing Workflow Management Systems 

Several projects use workflows, because they offer them high level abstraction in 
building the applications. Nowadays, a research is focused on using workflows for 
execution of grid jobs, web services and grid services. 
    This research has led to development of various workflow description languages 
(WDLs). The WDLs have different restrictions for describing a workflow and 
different features. The projects like Cactus[5], Condor[6] and Unicore[7] use direct 
acyclic graph (DAG) to describe a workflow. The Unicore has implemented several 
features to eliminate disadvantages of DAG – it supports conditional and loop 
execution. An XML based WDL like GJobDL[8], GSFL[9], WSFL[10], SCUFL[11] 
and their derivation TaskGraph[12] models separately control flow and data flow. 
Most of them – GSFL, WSFL, SCUFL support nesting of workflow definitions. 
    The Pegasus[13] is an example of system which  produces a concrete workflow 
from an abstract workflow description. Complete workflow management system P-
GRADE[14] based on Condor offers tools for editing, debugging and monitoring of 
the workflows, performance analysis, distributed checkpointing and dynamic 
loadbalancing. The Fraunhofer Grid[8] uses Petri-nets for visualisation of a workflow 
and translates it to the GjobDL and have both explicit and implicit fault management. 
Another workflow framework for grid application deployment is GridAnt[15] -  
Apache’s Ant based toolkit that specifies taks for compilation, software installation, 
data transfer and grid applications. 

3   Why Another Workflow Management System 

As it has been already mentioned, we needed a workflow system that would: 

• be able to process our workflows in an interactive way, so that a user could 
monitor its status and the results during execution, 

• not be overly complicated,  
• be easily integrated with the middleware developed in CrossGrid and 

DataGrid[16], especially the job submission service and resource broker,  
• support different types of jobs – grid jobs, local jobs to be processed on the 

server (quick tasks not needing the grid), java tasks to be performed as part 
of the workflow processing, 

• allow integration with the portal user interface. 



1034 M. Maliska, B. Simo, and L. Hluchy 

 

After reviewing the requirements we have decided to implement the workflow engine 
by ourselves. The last requirement made us to implement the first version of the 
engine as a part of the portal. It has worked well but it turned out that such tight 
coupling with the portal is not scalable and the engine cannot be used by other 
applications. Therefore we decided to implement it as a standalone grid service using 
the Globus GT3 toolkit[17]. This implementation is now accessible from both the 
portal and the workflow plug-in for Migrating Desktop (described later). 

 

 
Fig. 1. Workflow service architecture 

4   Implementation 

The FloodGrid application consists of several simulation models implemented as the 
grid jobs that are coupled by input and output data. This cascade of models can be 
easily expressed as a set of activities with exactly defined order of execution – a 
workflow. A grid service was implemented to provide functionality capable of 
processing of the workflows as a part of the Flood forecasting application. This 
service has four modules: service interface, workflow execution and monitoring, grid 
access layer and database access layer. Figure 1 presents architecture of the service. 
    Instead of using a workflow description language, we decided to simply store 
information about the workflow templates, their content and instances to a database. 
    A workflow consists of several jobs (activities), it is also possible to compose the 
workflow from several sub-workflows. Dependencies between the jobs (activities) are 
described by relationships between database tables. The jobs are configurable by 
input and output parameters. The parameters are bounded to the resources (the files, 
the directories or the variables). A sharing of resource between several parameters is 
restricted so only one of the parameters can be an output parameter.   

Service interface 

Grid 
access 
layer 

Database
access 
layer 

Workflow 
monitoring 

and 
execution 

My 
SQL 

Torque 

CrossGrid 
infrastructure



 CrossGrid Integrated Workflow Management System 1035 

 

    Every job has to have its own class inherited from class AbstractTask, which name 
is stored in database for each job. Inherited class must implement methods for 
determining two basic states of job – isAborted(), isFinished() and of course method 
run() that should contains implementation of what job have to do. There is one default 
implementation of AbstractTask used for executing the grid jobs – GridTask. This 
implementation uses a job attribute param_string to obtain name of a script file of the 
job that would be executed in grid. 

4.1   Service Interface 

The workflow service provides interface which allows these types of operations: 

• create, clone, run, remove workflow instance, 
• modify job parameters, 
• query list of workflows and workflow instances, 
• determine current job status, 
• basic operations for manipulating with grid proxy certificates. 

4.2   Workflow Monitoring and Execution 

The workflow service contains two main threads responsible for execution and 
monitoring of the workflows – a JobMonitoringThread and an ExecutionThread. 
While there are multiple instances of the ExecutionThread – each running workflow 
has its own instance, there is only one instance of the JobMonitoringThread. The 
JobMonitoringThread is used to monitor state of the grid jobs, other types of jobs are 
not monitored by it. It has its own queue of running jobs, periodically checks a state 
of the all jobs from the queue and informs the appropriate GridTask object, which 
belongs to the monitored job. This job object has to decide if any change of a state 
occurs and whether this change is so important that the ExecutionThread owning the 
job needs to be informed about it. Map of the ExecutionThreads searchable by 
workflow ID is stored in the JobMonitoringThread. 
    An explanation about how the ExecutionThread works will be shown on detailed 
description of steps that are executed when the method runWorkflow() is called. At 
the beginning, tree of the jobs will be created, strictly speaking – tree of the objects 
that contain implementations of the jobs will be created. Every job object will known 
all its successors and predecessors and can manipulate with information about the job 
that belongs to this object stored in the database. Next step is to prepare the root job 
objects to ready-to-run state and enqueue it to the ExecutionThread queue of the job 
objects with changed state. After the notification about a queue size change, the 
ExecutionThread will wake up, if it sleeps, and process the objects from queue. A 
decision what to do with the job object will ExecutionThread made by determining 
the state of job. When the job is in state ready-to-run, the job will be executed. 
Finished job will cause that the job object will be removed from the 
JobMonitoringThread queue and a counter of unfinished jobs will be decreased. 
Aborted job results in cancellation of the all running jobs according to the workflow. 
Life cycle of ExecutionThread will end when the counter of unfinished jobs will drop 
to zero value. 



1036 M. Maliska, B. Simo, and L. Hluchy 

 

4.3   Database Access Layer 

All operations that manipulate with information about the workflows stored in 
database are encapsulated in database access layer. An interface for communication 
with this layer is provided by PersistenceLayer class. It uses object to relational 
database mapping tool Torque[18] instead of direct access to database. Another 
mapping mechanism is used for transformation of Torque database objects to objects 
used by the grid service interface. This mechanism is provided by DBtoWSMapper 
class. 

4.4   Grid Access Layer 

Grid access layer is an entry point to the CrossGrid infrastructure. A main class, 
GridTools, of this layer supplies methods for submitting a job for execution, getting 
job status and canceling execution of the job. All these operations are covered by 
accessing a CrossGrid job submission service. The job submission service uses a job 
description language (JDL) to specify a grid related information for submitting the 
job, for example: arguments, input and output sandbox, job type, standard output and 
input.  
 

 
Fig. 2. Screenshot of a portal user interface 

5   User Interfaces 

During implementation of CrossGrid tools and services, two user interfaces - Portal 
and Migrating Desktop were developed. According to a need of integration with the 



 CrossGrid Integrated Workflow Management System 1037 

 

CrossGrid tools, the FloodGrid application was designed to be easily developed with 
support of both user interfaces. Workflow grid service provides unified interface that 
these user interfaces uses to manipulate with workflows. 

5.1   FloodGrid Application Portal 

Portal user interface has been built upon the Jetspeed[4] portal by using Velocity[3] 
template portlets. The flood application portal contains a portlet for manipulating with 
proxy certificate, workflow template portlet, workflow portlet, visualization portlet 
and metadata portlet. Figure 2 captures FloodGrid portal during a work with 
workflow portlet. 
    Workflow template portlet displays a list of workflow templates and allows user to 
select one which a workflow instance will be created from. Created instance and other 
workflow instances created by user can be monitored by workflow portlet. 
    This portlet can be used to explore the jobs belonging to a workflow instance and 
their parameters could be modified. It is possible to view results produced by each job 
by browsing output directories of the jobs. This functionality is covered by 
visualization portlet. To reflect a need of application for describing results, metadata 
support was implemented and its user interface provides metadata portlet, which 
support this operations: creation, modification, querying. 

5.2   FloodGrid Plugin for Migrating Desktop 

Migrating Desktop is a java based user interface developed in CrossGrid which 
emulates desktop environment for grid users. Every application that wants to be 
integrated to Migrating Desktop has to be implemented as migrating desktop plugin. 
Functionality of FloodGrid plugin is similar to the FloodGrid portal. Our plugin 
consists of these panels: workflow template panel, workflow panel, jobs panel, 
parameters panel and info panel. Workflow template panel and workflow panel 
operate in similar way as appropriate portlets on the portal except that content of a 
workflow is shown in a separate panel. Information panel shows relevant information 
about currently selected object (workflow template, workflow instance, job).  
Metadata operations are placed on separate tab on tabbed pane. 

6   Future Work 

We want to focus our effort on making stable version of portal working inside of 
OGCE[19] and to customize this environment so it will express the needs of expert or 
common users that will use our application. 
    Another big task is to improve fault tolerance and upgrade error reporting to the 
higher level. Cooperation between replica management provided by CrossGrid tools 
and our metadata management system has to be done so metadata system can work 
properly. 
    Although we did not expect a lot of new workflow templates and jobs in our 
application, it should be nice to have a workflow creation tool. We will decide to 
adopt an existing one or to develop new one that will fit our needs. 

 



1038 M. Maliska, B. Simo, and L. Hluchy 

 

 
Fig. 3. Migrating Desktop plugin interface 

References 

[1] Hluchy L., Astalos J., Dobrucky M., Habala O., Simo B., Tran V.D.: Flood Forecasting 
in a Grid Environment. In: Proc. of 5-th Intl. Conf. on Parallel Processing and Applied 
Mathematics PPAM'2003, R.Wyrzykowski et.al. eds., 2004, LNCS 3019, Springer-
Verlag, pp. 831-839, ISSN 0302-9743, ISBN 3-540-21946-3. September 2003, 
Czestochowa, Poland.  

[2] CrossGrid - Development of Grid Environment for Interactive Applications. IST-2001-
32243. http://www.crossgrid.org (visited November, 2004) 

[3] Velocity Template Engine, http://jakarta.apache.org/velocity/, (visited November, 2004) 
[4] Jetspeed portal framework, http://portals.apache.org/jetspeed-1/, (visited November, 

2004) 
[5] Cactus project, www.cactuscode.org, (visited November, 2004) 
[6] The Condor project, www.cs.wisc.edu/condor/, (visited November, 2004) 
[7] The UNICORE project, http://unicore.sourceforge.net/ajo.html, (visited November, 

2004) 
[8] Hoheisel, A., Der, U.: An XML-based Framework for Loosely Coupled Applications on 

Grid Environments. In: P.M.A. Sloot et al. (Eds.): ICCS 2003. LNCS 2657, Springer-
Verlag, pp. 245–254 

[9] S.Krishnan, P.Wagstrom, G.von Laszewski GSFL: A Workflow Framework for Grid 
Services 

[10] Technology Report: Web Services Flow Language (WSFL), 
http://xml.coverpages.org/wsfl.htm, (visited November, 2004) 



 CrossGrid Integrated Workflow Management System 1039 

 

[11] MyGrid project homepage workflow section, 
http://twiki.mygrid.org.uk/twiki/bin/view/Mygrid/WorkFlow#XScufl_workflow_definition, 

[12] Triana project, http://www.triana.co.uk/, (visited November, 2004) 
[13] Planning for Execution in Grids, http://pegasus.isi.edu/, (visited November, 2004) 
[14] P_GRADE, http://www.lpds.sztaki.hu/pgrade/, (visited November, 2004) 
[15] The GridAnt, http://www-unix.globus.org/cog/projects/gridant/, (visited November, 

2004) 
[16] The DataGrid project, http://eu-datagrid.web.cern.ch/eu-datagrid/, (visited November, 

2004) 
[17] The Globus Alliance, http://www.globus.org/, (visited November, 2004) 
[18] Torque, http://db.apache.org/torque/, (visited November, 2004) 
[19] Open Grid Computing Environment (OGCE), http://www.collab-ogce.org/nmi/index.jsp, 

(visited November, 2004) 



Load Balancing by Changing the Graph
Connectivity on Heterogeneous Clusters

Kalyani Munasinghe1,2 and Richard Wait2

1 Dept. of Computer Science,
University of Ruhuna, Sri Lanka

2 Dept. of Information Technology,
Uppsala University, Sweden

{kalmun, richard}@it.uu.se

Abstract. This paper examines the problem of adapting parallel ap-
plications on a cluster of workstations. The cluster is assumed to be a
heterogeneous, multi-user computing environment so that efficient load
balancing within the application must take external factors into account.
At any time the users of the network are competing for resources. Perfor-
mance of a particular processor, as a component in the parallel (message
passing) computation, depends on both static factors, such as the pro-
cessor hardware, and dynamic factors, such as the system load and the
activities of other users. For each processor, the external factors can be
condensed into a single parameter, the load index, which is a normalised
measure of the current spare capacity of the processor available to the
application.

Numerical experiments show the efficiency of the load balancing
strategies on a finite element application with a domain decomposition
and the effect on overall computation time.

1 Introduction

Shared cluster networks provide a useful platform for parallel applications be-
cause of their cost performance ratio. The cluster environment can offer high
performance if resources are managed efficiently. One of the problems in achiev-
ing high performance in clusters is that resources may not be fully under control
of the individual application. In this environment, parallel programs may be
competing for resources with other programs and may be subject to resource
fluctuation during execution. In such a system, an important issue is to find
effective techniques that distribute the tasks of a parallel program appropri-
ately on processors. One problem is how to schedule the tasks among proces-
sors to achieve goals such as minimizing execution time or maximizing resource
utilization.

For example, an irregular finite element mesh, may be partitioned into sub-
domains and each subdomain assigned to a single processor. Assuming that the

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1040–1047, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Load Balancing by Changing the Graph Connectivity 1041

computational effect is proportional to the size of the subdomain, two questions
arise:

1. What is the optimal size for each subdomain?
2. How can the problem domain be partitioned into such subdomains?

On a homogeneous cluster of dedicated processors (e.g. Beowulf [2]) with a
fixed problem size, the partition may be uniform and static.

For some irregular grid applications, the computational structure of the prob-
lem changes from one computational phase to another. For example, in an adap-
tive mesh, areas of the original graph are refined in order to model the problem
accurately. This can lead to a highly localized load imbalance in subdomain
sizes. Alternatively, load imbalance may arise due to variation of computational
resources. For example in a shared network of workstations, computing power
available for parallel applications is dynamically changing. The reasons may be
that the speed of machines are different or there are other users on some part of
the cluster, possibility with higher priority. The partitioning has to be altered
to get a balanced load. We propose an algorithm which reduces the load imbal-
ance by local adjustments of current loads to reduce the load spike as quickly
as possible and to achieve a load balance. It is assumed that the connections for
data transfers between the processors are determined by the data locality but
data movement should be kept as low as possible. The load balance is adjusted
in general by migrating data to adjacent processors with modifications to the
connectivity where necessary.

2 Background

2.1 Some Definitions

Let p be the number of processors. The processor graph is represented by a
graph (V,E) with |V | = p vertices and |E| edges. Two vertices i and j form
an edge if processors i and j share a boundary of the partitioning. Hence the
processor graph is defined by the topology of the data subdomains. As the edges
of the processor graph are defined by the partitioning of the domain, when the
partition changes the graph topology may change. Each vertex i is associated
with a scalar li, which represents the load on the processor i.
The total load is

L =
p∑

i=1

li (1)

The average load per processor is

l̄ =
1
p
L (2)

and we can define the vector, b, of load imbalances as

bi = li − l̄ (3)



1042 K. Munasinghe and R. Wait

This definition is based on the assumption that in order to achieve a perfect
balanced computation, all the loads should be equal. If however the processor
environments are heterogeneous and corresponding to each processor there is a
load index αi which can be computed using current system and/or processor
information, then the ideal load l̃i is defined as

l̃i = αi
1∑
j αj

L (4)

Load difference from the ideal load can be defined as

di = li − l̃i (5)

A processor is therefore overloaded if di > 0. These simple definitions assume
that the computation can be broken down into a large number of small tasks
each of which can be performed on any processor for the same computational
cost. This is not necessarily true as for example in a finite element computation,
the cost of the computation might depend on the number of edges between
subdomains in addition to the cost proportional to the size of the subdomains.
So the total distributed computational cost is not necessarily equal after any
redistribution of the data.

A processor is highly overloaded if the load difference is excessive

di > cli(for some constant c < 1)

typically c ≈ 0.3 was used in the experiments, a partition is balanced if no
processor is overloaded.

In order to reduce any unnecessary fragmentation of data, data will in general
only be moved between contiguous subdomains. It is assumed that any processor
is equally accessible from all other processors.

3 Related Work

Different techniques have been proposed for adapting parallel applications run-
ning on clusters. Different dynamic load balancing and migration strategies have
been proposed.

There are many studies dealing with the problem of load balancing for dis-
tributed memory systems. Some work [6] assume that the processors involved
are continuously lightly loaded, but commonly the load on a workstation varies
in an unpredictable manner.

There are algorithms exist for scheduling parallel tasks. The Distributed Self
Scheduling (DSS) [7] technique uses a combination of static and dynamic schedul-
ing. During the initial static scheduling phase, p chunks of work are assigned to
the p processors in the system. The first processor to finish executing its tasks
from the static scheduling phase designates itself as the centralized processor
and it stores the information about which tasks are yet to be executed, which



Load Balancing by Changing the Graph Connectivity 1043

processors are idle and dynamically distributes the tasks to the processors as
they become idle.

Alessandro [3] introduced a method to obtain load balancing through data
assignment on a heterogeneous cluster of workstations. This method is based on
modified manager-workers model and achieves workload balancing by maximiz-
ing the useful CPU time for all the processes involved.

Dynamic load balancing scheme for distributed systems [5] considers the het-
erogeneity of processors by generating a relative performance weight for each
processor. When distributing the workload among processors, the load is bal-
anced proportional to these weights.

The AppLes approach [1] uses parameterizable application and system spe-
cific models to predict application performance using a given set of resources.
Using these models and forecasts of expected resource load, an AppLeS agent
selects a resource set and an application schedule by evaluating candidate map-
pings. The mapping with the best expected performance is implemented on the
target resource management system.

Many methods proposed in the literature to solve the load balancing problem
are applicable to adaptive mesh computation. One of the earliest schemes was
an iterative diffusion algorithm [4]. At each iteration, new load is calculated by
combining the original load and the load of neighbouring processors. The advan-
tage of this approach is, it requires local communication only, but the problem is
its slow convergence. Several scratch-remap [8] and diffusion based [9] adaptive
partitioning techniques have also been proposed. These different approaches are
better for different system environments and different computational environ-
ments. In our approach, we try to identify sharp increases and to reduce them
quickly as possible without necessarily achieving a perfect load balance.

4 Repartitioning with Minimum Data Movement

In this section, we describe our proposed approach. It operates on the processor
graph which describes the interconnection of the subdomains of a mesh that has
been partitioned and distributed among the processors.

We assume that an overloaded node initiates the load balancing operation
whenever it detects that it is overloaded.

An important feature of our approach is to capture the need for the processor
load to adapt very quickly to external factors for example, a key press or a mouse
click may indicate that machine is no longer available. This is useful assuming
we can use workstations only if the owner not using it and we need to move load
when ever the owner returns. A subdomain is then deleted and the corresponding
processor emptied of all load. If at a later time, the processor becomes available
again a new subdomain may be created, possibly in another part of the graph.

If a processor is to be removed then the load has to be distributed onto neigh-
bouring processors that are lightly loaded. The neighbouring processors are de-
fined by the subdomain connectivities. The load to be distributed of partitioned
into sections that are proportional to the load differences di of the neighbours



1044 K. Munasinghe and R. Wait

that are not already overloaded. The redistribution has two phases, the data
partition and the data movement. The partitioning uses a greedy algorithm. In
a typical finite element computation with an unstructured mesh distributed as
subdomains, the partitioning starts from the subdomain boundaries adjacent to
the lightly loaded neighbours and reallocates the old subdomain into appropri-
ately sized sections. The mesh data is then transferred to the new subdomains,
the processor connectivities are modified to take account of the new subdomain
topology and the processor is released.

Those processors that are overloaded to a lesser degree, i.e. that need to shed
some load but will remain as part of the computational cluster with a nontrivial
load after the redistribution, also redistribute load to their lightly loaded neigh-
bours using a similar greedy approach selected parts of the subdomain to be
redistributed starting from the boundaries. These modifications may also result
in changes to the subdomain topology and hence to the processor connectivities.

Additional processors, when available, may be (re)introduced at the point in
the processor graph were the data movement is greatest.

5 Experimental Results

The experiments were performed on the problem of using the finite element
method on an unstructured grid. Here we assumed that the computation is
element based so that the load to be redistributed can be considered as reparti-
tioning of the elements into subdomains, i.e. partitioning the dual graph.

Our proposed algorithm was implemented in C and MPI on 8 Sun worksta-
tions connected by 100 Mb/s Ethernet. All Suns share a common file server and
all files are equally accessible from each host due to the implemented NFS (Net-
work File System). Unix provides a large amount of statistical information that
can be used to describe a workload. Here we used a simple load sensor which
uses Unix commands to collect the system information. The load sensor calcu-
lates percentage of unused CPU of each machine. Here we used a combination
of processor speed and unused CPU amount as a load index. For loosely coupled
linux clusters that do not incorporate NFS it same results can be gathered us-

Table 1. System Information

Processor Speed Mb/s Unused CPU Load Index

1 300 99 29700

2 360 92 33120

3 333 99 32967

4 450 70 31500

5 333 99 32967

6 300 99 29700

7 450 71 31950

8 333 98 32634



Load Balancing by Changing the Graph Connectivity 1045

Table 2. Initial Distribution

Processor 1 2 3 4 5 6 7 8

Load 540 540 604 540 444 617 540 495

subdomains by ordering triangles

Fig. 1. Original Grid

Table 3. Test1: Running Times in milliseconds

Initial Partition With Load Balance

16.7276
iteration 1 2.51483
iteration 2 2.35808
iteration 3 2.31213

ing software agents. In our environment, some machines can only be used if the
owner is not using it and the processes should be moved if the user returns before
they finish. If a mouse is moved or a key pressed, we need to move application
workload from that particular machine and this information overides the normal
load index. In order to determine when such a machine can be returned to the
cluster, it is necessary to identify inactive time of a machine, this is achieved by
a simple script in the background which gives the idle time of the machine.

The table 4 gives a typical snapshot of the system information on each ma-
chine in the cluster used in the experiments.

The experiment illustrated is a small finite element calculation, the initial
partitioning of the grid into subdomains is shown in figure 1. The sizes of the
subdomains are shown in table 5, the mean size is 540.

The finite element solution was computed iteratively, the times given in table
5 are for one iteration with the initial distribution and the first three iterations
with a load balancing step between each iteration.

In the second experiment, the initial load was modified so that it was more
unbalanced an the results shown in figure 2 illustrate how quickly the load on



1046 K. Munasinghe and R. Wait

1 2 3 4 5 6 7 8
300

350

400

450

500

550

600

650

700

750

800
Inital load
Iteration1
Iteration 2
Iteration 3

Fig. 2. Test2:Reduction of Load Spike

subdomains by ordering triangles

Fig. 3. Test3: Grid after removing one processor

Table 4. Test3: Redistribution of load

Processor 1 2 3 4 5 6 7 8

Load 737 618 618 619 539 588 601 0

a heavily overloaded node is reduced, again a single load balancing step was
allowed after each iteration.

The results of the third experiment, in figure 3, show the redistribution of the
load if one processor is removed, the distribution of the load is given in table 5
shows how the load is removed from the processor that is no longer available, it is
not necessarily distributed evenly as the load indices of the machines may vary.

In the fourth test, the additional processor was reintroduced after several it-
erations when the load had become evenly balanced between the other processors
(assuming equal load indices in this case).



Load Balancing by Changing the Graph Connectivity 1047

Table 5. Test4: Reintroduction a processor

Processor 1 2 3 4 5 6 7 8

Iteration 1 618 618 617 617 629 618 603 0
Iteration 2 618 540 617 540 540 540 540 385
Iteration 3 540 540 540 540 540 540 540 540

Table 6. Different Load Index

Load Index Run time

Processor speed x Unused CPU 2.51483
Unused CPU 6.2142

The final results in table 5 illustrate how the timings depend on the choice
of load index.

6 Conclusions

Assuming that a single overloaded node has a greater effect on overall efficiency
than a single underloaded node, we have presented an approach to load balancing
that attempts to reduce an imbalance due to a load spike as quickly as possible.
The experimental results show a performance improvement with the approach.
According to the experimental results, we can see that the load index also plays
an important role. Our future work includes experimenting on larger clusters
with larger data sets.

References

1. http://www.-cse.ucsd.edu/users/breman/apples.html/.
2. http://www.beowulf.org/.
3. Alessandro Bevilacqua, A dynamic load balancing method on a heterogeneous cluster

of workstations, Informatica 23 (1999), no. 1, 49–56.
4. G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Par-

allel and Distributed Computing 7 (1989), 279–301.
5. Zhilling Lan and Valerie E. Taylor, Dynamic load balancing of SAMR applications

on distributed systems, Scientific Programming 10 (2002), 319–328, no. 21.
6. C. K. Lee and M. Hamdi, Parallel image processing application on a network of

distributed workstations, Parallel Computing 26 (1995), 137–160.
7. J. Lin and V. A. Saletore, Self scheduling on distributed memory machines, Super-

Computing (1993), 814–823.
8. L. Oliker and R. Biswas, Plum: Parallel load balancing for adaptive structured

meshes, Parallel and Distributed Computing 52 (1998), no. 2, 150–177.
9. Kirk Schloegel, George Karypis, and Vipin Kumar, Multilevel diffusion schemes for

repartitioning of adaptive meshes, Journal of Parallel and Distributed Computing
47 (1997), no. 2, 109–124.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1048 – 1055, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Threat Model for Grid Security Services* 

Syed Naqvi and Michel Riguidel 

Graduate School of Telecommunications, 
ENST, 46 Rue Barrault, 75634 Paris Cedex 13, France 

{naqvi, riguidel}@enst.fr 

Abstract. The grid computing paradigm involves both the availability of 
abundant computing resources, and the storage of increased amounts of 
valuable data. Such information systems heavily rely upon the provision of 
adequate security. It is imperative that techniques be developed to assure the 
trustworthiness of these environments. Formal verification provides the tools 
and techniques to assess whether systems are indeed trustworthy, and is an 
established approach for security assurance. When using formal verification for 
security assessment one of the most important concerns should be to be precise 
about the threat model. A comprehensive threat model is indispensable for the 
simulations of a grid security model. This article presents a survey of the 
various threat models and discusses how and when these threat models may be 
inappropriate for use in the grid computing environments. Then a fine-grained 
threat model for grid computing is presented.  

1   Introduction 

The report of a survey conducted by the Computer Science Department of Virginia 
Tech among members of the grid community [1] states that more than half of the 
respondents believe that existing grid security solutions do not provide adequate 
services for collaborative grid communities. The reasons given ranged from the lack 
of an underlying threat model to the complexity and expense of inter-site trust 
relationships that are currently required. 

A threat model is used to describe a given threat and the harm it could do a system 
if it has a vulnerability; whereas a ‘threat vector’ is the method a threat uses to get to 

the target. The construction of the threat model is an essential and critical phase in the 
construction of the overall security model for a system; the threat model is one of the 
factors that feeds into the security model, which then takes and analyses the costs and 

                                                           
*  This research is supported by the European Commission funded project SEINIT (Security 

Expert Initiative) under reference number IST-2002-001929-SEINIT. The overall objective 
of the SEINIT project is to ensure a trusted security framework for ubiquitous environments, 
working across multiple devices and heterogeneous networks, in a way that is organization 
independent (inter-operable) and centered around an end-user. Project webpage is located at 
www.seinit.org. 



 Threat Model for Grid Security Services 1049 

 

benefits of defending against each listed threat. In the evolution of computational 
grids, security threats were overlooked in the desire to implement a high performance 
distributed computational system. So far, the grid technology has been little used 
except by a certain kind of public (mainly academics and government researchers). 
This public benefit greatly from being able to share resources on the grid, and have no 
intention of harming the resource owners or fellow users. This is all about to change. 
The number of people who know about the grid is growing fast, as are the worthwhile 
targets for the potential attackers.  

The growing size and profile of the grid require comprehensive security solutions 
as they are critical to the success of the endeavor. A comprehensive security system, 
capable of responding to any attack on grid resources, is indispensable to guarantee its 
anticipated adoption by both the users and the resource providers. The conception of a 
comprehensive security model for the grid requires a realistic threat model. Without 
such a threat model, security designers risk wasting time and effort implementing 
safeguards that do not address any realistic threat to the grid. Or, just as dangerously, 
they run the risk of concentrating their security measures on one threat while leaving 
the grid architecture dangerously exposed to others. 

This paper is organized in the following manner: an overview of the grid-specific 
security requirements is presented in section 2. A concise description of the related 
work is given in section 3. Our proposed threat model is elaborated in section 4. 
Finally, some conclusions are drawn in section 5 along with an account of our future 
directions. 

2   Grid-Specific Security Requirements 

Current Grids provide a consistent set of security services based on X.509, PKI, or 
Kerberos authentication, proxy certificates to carry the user authentication to remote 
resources, and a set of secure communication primitives based on the IETF GSS-API: 
secure telnet, remote shell, and secure ftp are provided by using these services. 
However, the scope of the computations and the data spread across the Grid require 
an in-depth security mechanism to effectively handle the Grid-specific security 
requirements. A concise account of these Grid-specific security requirements, 
identified in [2], are given below: 

2.1   Authentication  

The main requirements for authentication include scalability, trust across different 
Certification Authorities and timeliness of revocation. Although the technology for 
authentication is quite well-established, it is still not matured to be integrated into 
emergent Grid environments. 

2.2   Authorization  

In a Grid context, the potentially large numbers of users and resources with differing 
management and policies does not permit the use of general access rights. Scalability 



1050 S. Naqvi and M. Riguidel 

 

becomes an important factor when considering authorization mechanisms within a 
Grid environment, especially due to its dynamic nature. 

2.3   Revocation  

Revocation is vital for both authentication and authorization. For a Grid to be 
trustworthy it must support an instant withdrawal of access rights. Such dynamic 
mechanism of revocation is an important part of manageability.  

2.4   Confidentiality  

Confidentiality within a Grid is not just concerned with data that is stored upon a 
resource; it also extends to the privacy requirements of the actual users and resources, 
to protect the deducibility of data, and to ensure consistence of confidentiality in data 
replication process within the Grid. 

2.5   Distributed Trust 

Distributed trust is also closely bound up with but broader than authorisation. Since 
the driving application of many grids requires users to be able to compile and run 
arbitrary code, this ability is built into that trust model. The trust status of a remote 
system or user is hard to determine so is the communications medium. Yet a grid 
must be constructed from such components, in a dynamic fashion. 

2.6   Integrity 

The data from some projects may not be confidential, but huge datasets from very 
expensive experiments cannot easily be re-generated. They must be beyond reproach. 
This becomes a grid problem when copies or subsections of those data are managed 
automatically and stored at dispersed, separately managed locations. Integrity 
requirements also extend to the mechanisms by which users’ rights are delegated. 

2.7   Non-repudiation 

Non-repudiation is not a security aspect that has been considered in any detail within the 
grid, but it will become important as the grid technology matures and is used by 
applications involving financial exchanges. If accessing resources starts costing money, 
then both parties must be assured that the other fulfils their duty; in the cases where one 
party fails, proof of commitment is necessary to formally resolve the dispute. 

Beside the abovementioned security services, a comprehensive security 
mechanism for the Grid should also include some reliable means of providing 
abstraction of the underlying security services. 

3   Related Work 

To our knowledge, there is no threat model that addresses the grid-specific threats 
paradigm. In the report of the Accelerated Trustworthy Internetworking Workshop 



 Threat Model for Grid Security Services 1051 

 

[3], the Trusted Computing Group remarked that “Threat models are missing – 
leading to inappropriate application of security mechanisms.”  

UK e-Science sponsored project DAME (Distributed Aircraft Maintenance 
Environment) [4] has a security workgroup which is working to develop threat 
models for the DAME system. They are studying established software dependability 
techniques and seeking to establish a methodology for dependability analysis in 
distributed Grid systems. Their long-term objective is to identify the main threats and 
risks in deployed systems such as DAME, and to access the efficiency of the 
OGSA/OGSI security models for managing these risks. 

The project SHARP (Secure High Available Resource Peering) [5] defines a threat 
model that is limited to authentication and authorization. Other features such as 
confidentiality are not addressed.  

The Denali project [6] of the University of Washington assumes a light threat 
model with no consideration of the covert channels between virtual machines. 

Some threat models [7, 8, 9] for P2P systems have been developed; however, they 
can not be directly applied to the grids, as they do not address a number of grid-
specific threats which arise from the resource sharing phenomenon of the grids. 

4   The Proposed Threat Model 

Various threats covered in this model can be broadly classified as: 

1. Threats to the grid resources when the data/applications are in the non-
critical state. 

2. Threats to the grid resources when the data/applications are in the critical 
state. 

3. Threats from the grid. 

Some threats to the grid resources remains ostensibly the same regardless of 
data/applications state (critical or not); however, their nature and extent widely varies. 
These threats are elaborated in sections 4.1 and 4.2. The threats from the grid pose 
risks to the society – this is a social problem that has to be addressed to protect the 
grid resources from being misused by the ill-intention people who may use the 
enormous computing power for malicious purposes. The threats from the grid 
resources are detailed in section 4.3. 

4.1   Threats to the Grid Resources When the Data/Applications are in the 
Non-critical State 

A certain number of threats are always posed to the grid resources even if the data 
and/or applications are in the non-critical state (i.e. the data across these resources are 
not being exchanged and there is no application running over it). These static threats 
are discussed in this section. 

4.1.1   Threats to Integrity 
These threats are directly related to the physical infrastructure as the integrity of the 
replica files and other stored data is dependent on the integrity of the grid hardware. 



1052 S. Naqvi and M. Riguidel 

 

The physical infrastructure of a grid is not confined in a single administrative domain 
where some centralized intrusion detection mechanism may be employed. The grid 
resources are spread over the countries and hence they have multiple threats of 
physical intrusion by malicious intruders, accidents like fire, short-circuits or 
electrical surges, natural hazards such as earthquakes and floods. 

4.1.2   Threats to Confidentiality 
Threats of  viruses, worms, and trojan horses have serious implications for the grid 
resources as their broader scope and the extent of damage make them more attractive 
to developers of the malicious codes. Apart from these threats, the unauthorized 
disclosure of information without changing the state of the system is a serious threat 
to the confidentiality because it is hard to detect. It would not result in any 
modification to any information contained in the grid resources as neither the 
operation nor the state of the system is changed. 

4.1.3   Threats to Availability 
These include threats of preventing or delaying authorized access to grid resources. In 
the time-critical applications any delay or denial of access to the services inflicts 
heavy losses and that is why the availability of computing resources, even if there is 
no application running, is crucial. Other threats to availability are the failure of 
computing resources and the power interruption. 

4.1.4   Threats to Access Control 
If the authentication and authorization mecha- nisms of a grid are not strong enough 
to properly handle the access control then unauthorized persons can get access to its 
resources that will put the overall security of the grid architecture at stake.  

4.2   Threats to the Grid Resources hen the Data/Applications Are in the 
Critical State 

The threats to a grid are more severe when the data and/or applications are in the 
critical state (i.e. applications are running over it and data being exchanged across its 
resources). These threats are discussed in this section. 

4.2.1   Threats to Integrity 
These include alteration of grid data and threats to robust- ness. A malicious subject 
may gets involved in the grid applications in order to destroy or replace the actual 
data on its resources. The grid applications are data-critical applications and any 
misadventure to the data will cause havoc to their functioning. Threats to robustness 
target the replica files and backup servers so as to interrupt the smooth running of the 
grid applications in the case of any anticipated failure of a grid component. 

4.2.2   Threats to Confidentiality 
These threats include eavesdropping and masque-rading. The potential targets of these 
threats are temporary files and transit data items. A number of shared resources in a 
grid provides a fertile ground for launching such attacks from a weak node. In these 

w



 Threat Model for Grid Security Services 1053 

 

threats a malicious subject tries to silently observe the resources to obtain classified 
data/information. The scope of the applications running over a grid may require 
absolute confidentiality especially in the situations where privacy violation is 
irreversible like medical applications. 

4.2.3   Threats to Availability 
These threats include denial of service (DoS) and buffer overflow. They result in the 
prevention of authorized access to resources or the delaying of time-critical 
operations. The availability of grid resources is severely threatened by the distributed 
denial of service (DDoS) where the attack begins by exploiting a vulnerability in one 
computer system and making it the DDoS master. It is from the master system that 
the intruder identifies and communicates with other systems that can be 
compromised. 

4.2.4   Threats to Communications 
These are the threats to the transportation of data across the grid resources. The 
presence of security gaps exacerbate the security of the communication mediums. The 
security gaps are introduced in any secure path going through one or more 
middleboxes that need to perform some processing on passing data packets. These 
middleboxes include Network Address Translation (NAT) gateways, packet or 
content filters, proxy firewalls, and Wireless Application Protocol (WAP) gateways. 
In the grid context, security gaps could surface, particularly in cases where some grid 
resources and nodes exist in a local network behind a firewall. Another threat to 
communication channels is the use of passive wire tapping to observe information 
being transmitted over a communications line. 

4.3   Threats from the Grid Resources 

The enormous amount of computing power of computational grids may be exploited by 
the ill-intention people for their malicious designs. The results of such computations 
will be used against the society and hence there is a strong need to counter these 
menaces. Unlike the accidental threats that exist with no premeditated intent, these 
threats from the grid are the intentional threats that exist with deliberate intentions. 

One of the planned uses of the new tera scale grid [10] is to simulate terrorist 
attacks to help government agencies prepare for worst-case scenarios [11]. However, 
this is the point of great concern because the same amount of resources can be used 
by the terrorists to simulate their designs. Moreover, other illicit activities like cloning 
etc. can be flourished by using the abundant computing powers of grid. These threats 
from the grid resources to the society can neither be ignored nor their exploitation be 
ruled out. 

4.4   Simulations of the Threat Model 

A wide variety of simulating tools for the grid have been developed around the world. 
They include OptorSim [12], ChicagoSim [13], SimGrid [14], GridSim [15], 
EDGSim [16], GridNet [17] etc. However, the available range of these simulators 
does not provide any support for the simulations of grid security functionalities. This 



1054 S. Naqvi and M. Riguidel 

 

situation has obliged us to first develop modules in a programming language to 
perform grid security simulations. We are currently working on the development of 
simulation modules to evaluate the performance of grid security functionalities by 
using our proposed threat model. 

5   Conclusions and Future Plans 

Developers and users should be aware of the main threats in each area of grid 
security, and should develop, deploy and use grid technology in such a way that 
security in depth is established as far as possible. 

It is important to remember that security is a process, the threat picture is always 
changing, and threat analysis needs to be continuously updated. In other words, grid 
infrastructure should be subject to constant review and upgrade, so that any security 
loophole can be plugged as soon as it is discovered. The growth in the grid 
community should lead to improvements as larger number of users will find the 
loopholes faster, and more developers will be available to fix them and release 
patches. 

We are currently working on the development of simulation modules to evaluate 
the performance of grid security functionalities by using our proposed threat model. 
We shall formulate scenarios for the threats mentioned in this model so that they can 
be simulated and the performance of the model be evaluated. Finally, based on the 
simulation results, necessary changes will be made in the security threats model. 

References 

1. Lorch M., Kafura D., Grid Community Characteristics and their Relation to Grid Security, 
Technical Report TR-03-20, Computer Science, Virginia Tech., June 2003 

2. Broadfoot P. and Martin A., A Critical Survey of Grid Security Requirements and 
Technologies, Technical Report PRG-RR-03-15, Oxford University Computing 
Laboratory, August 2003. 

3. Final Conference Report, The Accelerating Trustworthy Internetworking Workshop 
(ATI2004), April 2004 http://gtisc.gatech.edu/ati2004/ATI_Report_FINAL_4-25-04.pdf 

4. Jackson T., Austin J., Fletcher M., Jessop M., Delivering a Grid enabled Distributed 
Aircraft Maintenance Environment (DAME), Proceedings of UK e-Science All Hands 
Meeting 2003 (AHM2003), Nottingham, UK, September 02-04, 2003 

5. Fu Y., Chase J., Chun., Schwab S., and Vahdat A., SHARP: An Architecture for Secure 
Resource Peering, Proceedings of the 19th ACM Symposium on Operating Systems 
Principles, Bolton Landing, NY, August 2003 

6. Whitaker A., Shaw M., and Gribble S., Denali: Lightweight Virtual Machines for 
Distributed and Networked Applications, University of Washington Technical Report 
February 02, 2001 

7. The Cascade Project –  Media Networks Laboratory, Department of Computer Science, 
Stony Brook University  http://www.mnl.cs.sunysb.edu/project/cascade 

8. DeFigueiredo D., Garcia A., and Kramer B., Analysis of Peer-to-Peer Network Security 
using Gnutella, University of California Report, December 2002 



 Threat Model for Grid Security Services 1055 

 

9. Condie T., Kamvar S., Garcia-Molina H., Adaptive Peer-to-Peer Topologies, Proceedings 
of the Fourth IEEE International Conference on Peer-to-Peer Computing, Zurich, 
Switzerland, August 25-27, 2004 

10. The TeraGrid Project  –  http://www.teragrid.org 
11. Shread P., New Terascale Grid to Simulate Terrorist Attacks, Grid Computing Planet, June 

12, 2002 http://www.gridcomputingplanet.com/news/article.php/3281_1365171 
12. Cameron D., Carvajal-Schiaffino R., Millar P., Nicholson C.,  Stockinger K., and Zini F., 

OptorSim: A Grid Simulator for Replica Optimisation, UK e-Science All Hands 
Conference 31 August - 3 September 2004. 

13. Ranganathan K. and Foster I., Identifying Dynamic Replication Strategies for a High 
Performance Data Grid, Proceedings of the International Grid Computing Workshop, 
Denver, Colorado, USA, November 2001. 

14. Legrand A., Marchal L., Casanova H., Scheduling Distributed Applications: The SimGrid 
Simulation Framework, Proceedings of the 3rd IEEE/ACM International Symposium on 
Cluster Computing and the Grid 2003 (CCGrid2003), May 12-15, 2003, pp 138-145 

15. Buyya R. and Murshed M., GridSim: A Toolkit for the Modeling and Simulation of 
Distributed Resource Management and Scheduling for Grid Computing, The Journal of 
Concurrency and Computation: Practice and Experience, Wiley Press, May 2002. pp 1-32 

16. EDGSim: A Simulation of the European DataGrid. http://www.hep.ucl.ac.uk/~pac/ 
EDGSim 

17. Lamehamedi H., Shentu Z., Szymanski B., and Deelman E., Simulation of Dynamic Data 
Replication Strategies in Data Grids. Proceedings of the International Parallel and 
Distributed Processing Symposium 2003 (IPDPS2003), April 22-26, 2003 



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1056 – 1065, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Loosely Coupled Application Model for Grids 

Fei Wu and K.W. Ng 

Dept. of Computer Science and Engineering,  
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 

{fwu, kwng}@cse.cuhk.edu.hk 

Abstract. Scheduling distributed applications effectively and efficiently on 
Grid environments is difficult because of the dynamic and heterogeneous char-
acteristics of the Internet. In this paper, we propose a loosely coupled applica-
tion model for building distributed applications on Grids. We assume that a 
Grid application is composed of a group of independent modules. Each module 
performs either a remote service request or local processing. Different modules 
in such an application exchange information by explicitly described data that 
can be understood by both the application and the Grid environment. Each 
module is triggered by its input data, and finally it produces some output data. 
All information exchanges are completed transparently as they are carried out 
by the Grid management system. We call a module in such an application a 
loosely coupled module (LCM). A loosely coupled application can be defined 
by the combination of dependent or independent LCMs. By the loosely coupled 
application model, Grid applications can be built by employing discrete and 
heterogeneous resources on the Internet. The loosely coupled relationships 
among different LCMs can guarantee the robustness of the application. Parame-
ters are defined in the application model so that application schedulers in the 
Grid environment can efficiently implement application scheduling by design-
ing appropriate scheduling algorithms based on these parameters.  

1   Introduction 

The main goal of Grid computing [1] [2] [3] [4] is to effectively organize various 
computational resources distributed on the Internet to provide computing facilities to 
users as a large virtual computer. A Grid application can dynamically compose a large 
number of resources across the environment and implement its computations with 
high performance. The two most important features that distinguish a Grid from tradi-
tional distributed systems are heterogeneous resources and the dynamic network. 
Traditional distributed and parallel applications are hard to be scheduled on Grid 
environments because they presume a homogeneous and stable execution environ-
ment. The ease of development of Grid applications is a key problem to make the 
Grid a mature platform for general-purpose computing. While many studies on the 
development of Grid applications have been put forward, a common opinion is that 
current tools and languages are insufficient to develop effective and efficient applica-
tions for the Grid environment. Many issues must be tackled to bridge the gap be-
tween Grid applications and Grid environments, such as interoperability, adaptability, 



 A Loosely Coupled Application Model for Grids 1057 

 

service discovery, application performance, large-scale data transfer, robustness, 
security, schedulability, etc. [5] [6]. Among these issues, robustness, adaptability and 
schedulability are deemed to be especially important because they promise the valid-
ity of Grid applications and guarantee the availability and performance of Grid  
environments. 

In this paper, we propose a loosely coupled application model to guarantee the ro-
bustness, adaptability and schedulability of Grid applications. A loosely coupled ap-
plication is composed of some independent software components and the correspond-
ing data set that the components will process. Different components exchange infor-
mation by explicitly described data in the data set. When running on a Grid, different 
components of such applications can be scheduled flexibly according to the runtime 
status of Grid resources. In this application model, the robustness of a Grid applica-
tion can be guaranteed from two aspects: applications are composed in a loosely cou-
pled style so as to reduce the effect on the whole applications when a partial error 
occurs; the necessary knowledge about Grid applications are known by the environ-
ment so that remedial actions can be applied to ensure applications can be executed 
correctly. As the modules in such loosely coupled applications are more independent 
than in tradition manners, adaptability and schedulability of these applications are 
much increased. The rest of this paper is organized as follows: Section 2 gives the 
definitions of loosely coupled applications and their properties; Section 3 describes 
the scheduling problems of loosely coupled applications; some future work will be 
outlined in Section 4, and finally, a conclusion of this work will be given.  

2   The Loosely Coupled Application Model 

2.1   Loosely Coupled Applications 

A Grid application is a distributed application consisting of a number of components 
that runs in a Grid environment. The dependencies between different components can 
be an important factor that influences the performance of the application. In Grid 
environments, if the dependencies among components are weak, any partial failure 
will produce a smaller influence on the whole execution of the application. A strong 
dependency increases the probability of application failures and at the same time, the 
communication load. For distributed applications, the dependencies can be repre-
sented by data exchange. Suppose that A and B are two related modules in an applica-
tion. If module A and module B know the internal information of each other, they can 
exchange data by data sharing or synchronized message passing. We call such rela-
tionship tightly coupled. The message passing model is a typical example of this 
class. If module A knows B’s interface and they communicate by asynchronous mes-
sages, we call it moderately coupled. Some implementations of distributed objects and 
Web services fall into this style. If modules A and B do not know each other, and their 
produced and required data are coordinated by a third-party unit or system, we say 
that the two components are loosely coupled. The messages in such a situation are 
called loosely coupled messages. These three kinds of relationships are shown in 
Figure 1. 
 



1058 F. Wu and K.W. Ng 

 

 

Fig. 1. Relationships between application modules. The last case shows a loosely coupled 
relationship between module A and module B 

By such loosely coupled relationships, the influence among modules is much re-
duced. Partial failures won’t cause the whole application to crash. Once execution 
resumption mechanisms are introduced, the application can complete its computation 
successfully even when normal errors or exceptions occur. Thus the robustness of the 
application can be guaranteed. The loosely coupled structure also reduces the diffi-
culty of resource co-allocation since the resource allocation for one module affects 
little on the resource allocation for another module.  

We define a loosely coupled module (LCM) as an individual module of a distrib-
uted application that can be scheduled independently onto remote or local resources. 
It can be either a remote service request or local processing. A LCM communicates 
with other parts of the application by loosely coupled messages. A loosely coupled 
application (LCA) is a distributed application that contains LCMs. How to schedule 
LCMs is an important part of work in the scheduling of the whole application. For 
convenience, in the rest of the paper, when we say scheduling of loosely coupled 
applications, we actually indicate scheduling of a group of LCMs. 

The loosely coupled application model is part of our framework of Service-based 
Heterogeneous Distributed computing (SHDC) [7]. In our framework, implementing 
such loosely coupled applications mainly involves three aspects of work. On the ap-
plication level, each component can be designed independently, and communication 
among these components is completed by either file exchanging or explicit messages. 
On the system level, tools are needed to administrate various services, schedule appli-
cations and coordinate data communication. On the SHDC framework level, services 
in the Internet are organized into a P2P network and distributed applications are 
scheduled by the cooperation of different peers [8]. Moreover, powerful description 
methods are required to enable an application and the system to understand each 
other. The descriptions shall have the ability to describe the necessary semantic con-
tents of applications so that they can be scheduled rightly by system-level tools.  

2.2   The Loosely Coupled Application Model 

We define a loosely coupled application as a set M containing n modules: M0, M1, …, 
Mn-1. Each module Mi is composed of 5 elements: {attributei, {inputmsgpi, …, 



 A Loosely Coupled Application Model for Grids 1059 

 

inputmsgqi}, {outputmsgjk, …, outputmsgjm}, {termpi, … termqi}, Li}. Attributei holds 
the attributes of the corresponding component such as its functionality, execution 
requirements. The attribute element provides the necessary information of a compo-
nent so that it can be scheduled onto proper resources. The element inputbufpi holds 
messages received from module Mp (0 p n-1) but Mi hasn’t processed the messages 
by internal computation steps. The element outputbufik holds messages that Mi wants 
to send to module Mk (0 k n-1) but the messages haven’t been delivered out. The 
term element is used to monitor input messages to ensure they conform to the re-
quirement of the corresponding modules. When any exception occurs on the input 
messages, the corresponding events will be issued by the term element so that the 
exceptions can be dealt with. A key function of the term element is to solve the non-
response problems in an asynchronous system. It can satisfy the acceptable period of 
time of receiving a message. When the deadline reaches and the message has still not 
arrived, an exception event can be issued. Another element is the logic element L 
which monitors the output messages. It is used to produce communication events to 
transfer the output messages to other modules. It is useful especially when implement-
ing logic controls among a group of components: when the output satisfies some con-
ditions the data transfer can be re-directed by element Li. This loosely coupled appli-
cation model is a state-based model. Each state of module Mi contains three sets: 
{inputmsgpi …inputmsgqi}, {outputmsgik…outputmsgim}, {termpi … termqi}. The at-
tribute element and the logic element are not included in Mi’s state since they are 
predefined and unchangeable. The state set Qi contains a distinguished subset of ini-
tial states and a distinguished subset of terminal states. In an initial state every in-
putmsgpi must be empty.  

The module Mi’s states, except for the outputmsgi (because in an asynchronous sys-
tem, the computation will be triggered by the input, the output will not influence the 
state transition), comprise the accessible states of Mi.  When the transition function 
accepts an input value of the accessible state of Mi, it produces a value of the accessi-
ble state of Mi as output in which outdated data in inputbufi is cleared. It also pro-
duces as output at most one incident message to every other module in M. Each step 
processes the necessary messages waiting to be delivered to Mi and results in a state 
change and at most one message to be sent to every other module. When there is an 
input message inputmsgij or an output message outputmsgpq, we say that module j is 
dependent on module i, or module q is dependent on module p, denoted by DEP(i,j) 
and DEP(p,q) respectively.  

There are five kinds of normal events in the system. One kind is a computation 
event, denoted computation(i), representing a computation step of module Mi in 
which Mi’s transition function is applied to its current accessible state. When a com-
ponent finishes its computation, a finishcomputation(i) event will be created denoting 
that the computation result is ready to be further used. Another kind of events is a 
delivery event, denoted delivery(i,j,m), representing the delivery of message m from 
module Mi to Mj. The fourth kind of events is exception events, denoted termexcep-
tion(p,i,m), representing that module Mi cannot receive (or accept) message m from 
module Mp according to the setting of termpi due to either a network exception or a 
computation error or a service fault. The fifth kind of events is communication events, 
denoted communication (i,j,m), representing that module Mi will send message m to 
module Mj. 



1060 F. Wu and K.W. Ng 

 

A configuration is a vector  

C = (q0, … ,qn-1) 

where qi is a state of module Mi. The states of the outputmsg variables in a configura-
tion represent the messages that are in transit on the communication channels. An 
initial configuration is a vector (q0, … qn-1) such that each qi is an initial state of Mi. 
The behavior of a system over time is modeled as an execution, which is a sequence 
of configurations alternating with events. An execution is a (finite or infinite) se-
quence of the following form: 

C0, 1,C1, 2,C2, 3,… 

where each Ck is a configuration and each k is an event. If the execution is finite 
then it must end in a configuration. Furthermore, several conditions must be satisfied: 

1. If k = delivery(i,j,m), then m must be an element of outputmsgij in Ck-1. The 
only changes in going from Ck-1 to Ck are that m is added to inputmsgji in Ck. In an-
other word, a message is delivered only if it is arrived and the only change is to copy 
the message from the sender’s outgoing message buffer to the recipient’s incoming 
message buffer. 

2. If k = computation(i), then the only changes in going from Ck-1 to Ck are that Mi 
changes state according to it’s transition function operating on Mi’s accessible states 
in Ck-1 and Mi will not be accepting any input messages during the computation time 
to ensure the computation can be rightly implemented. 

3. If k =finishcomputation(i), then the only changes in going from Ck-1 to Ck are 
that Mi changes state according to its transition function and the output messages are 
produced and ready for further communication. At the same time, the set of input 
messages specified by Mi’s transition function are removed from outputmsgpi in Ck. 

4. If k = termexception(i,p,m), then the only changes in going from Ck-1 to Ck are 
that either a communication request is sent out to re-transfer messages m from module 
Mp (when the termexception event is caused by a network failure) or the state of Mp is 
set to it’s initial state (when the termexception event is caused by a computation fail-
ure), and then reset the term settings relevant to module Mp in Ck.  

5. If k = communication(i,j,m), the system doesn’t change its state. Moreover, the 
message m is supposed to be still accessible after the communication events and de-
livery events occur to ensure the application’s robustness. After the asynchronous 
message m has been sent from Mi to Mj, a delivery event will be produced. 

We assume that all events are produced by a unified application controller or can 
be notified to the controller before the next actions. Thus all of the events in the 
model can be arranged into an event queue by a unified time. We use time(q) to de-
note the time that event q occurs. 

The execution time of a module Mi at phase k is: 

execT(iphaes-k)= time(finishcomputation(iphaes-k))-time(computation(iphaes-k)) 

The transfer time of a message m from module Mi to Mj at phase k is: 

transT(i,j,mphaes-k)= time(delivery(i,j,mphaes-k))-time(communication( i,j,mphaes-k)) 

 



 A Loosely Coupled Application Model for Grids 1061 

 

The execution time of the application is: 

T= max {time(delivery (i,j,m))} 

0<=i,j<=n-1, m is any possible message that carries the results of the computation. 
The unstable network status and heterogeneous Internet services are two important 

characteristics of Grid environments. The robustness of an application becomes a 
basic requirement. The loosely coupled application model proposed here emphasizes 
the fault-tolerant issue in two aspects. One of the functions of the terms in the model 
can be used to solve the problems of asynchronous messages passing. With these 
terms, network faults and service faults can be detected, the corresponding data can be 
re-delivered and necessary application modules can be re-scheduled. Communication 
between different applications modules are implemented by buffered asynchronous 
message passing. Each output buffer is reserved until the data in the buffer has been 
dealt with by the next step in the computation successfully. This buffer mechanism 
may lead to some storage waste, but can guarantee computations to be executed accu-
rately even when a network fault or a service fault occurs. 

The termexception event is the key to detect a network or resource exception. The 
termexception events are created by the constraints of input messages. Application 
designers can set term elements to ensure the input messages satisfy some conditions. 
When a message cannot satisfy a condition, a termexception event will be created. 
Usually a term element termi is in such a form: 

termi: {message m; condition c; actions} 

It implies that when message m cannot satisfy condition c, the following actions 
will be issued. Usually those actions are to create some termexception events. The 
condition c can be any conditions to restrict the messages, such as message size, mes-
sage precision, etc. Moreover, one important function of the term element is to limit 
the arrival times of messages. Actually this functions like a timer. When an appointed 
message has not arrived during the prescribed time period, the corresponding events 
will be created to inform the system or other modules.  

Suffering from the explicit message communication, applications designed in this 
model might meet problems for some uncertain messages. For an example, if one 
component in the application is defined as: 

 
component A 
{ 
… 
if (condition1) then send message m to component B; 
if (condition2) then send message m to component C; 
… 
} 
 
To deal with the uncertain messages, the logic element can be introduced to imple-

ment control logics at the component-level. Each logic element Li is in such a format: 

Li: {message m; condition c; actions} 

in which m is a message, c is a logic expression, actions are usually communication 
events. When message m satisfies the condition c, the actions will be issued. 



1062 F. Wu and K.W. Ng 

 

To apply the logic element to the above example (suppose components A, B and C 
are included in modules Mi, Mj and Mk respectively): 

 
component A 
{ 
… 
produces message m; 
… 
} 
L0: {m; condition1; communication(i,j,m)} 
L1: {m; condition2; communication(i,k,m)} 
 
By producing communication events according to conditions at runtime, the 

loosely coupled application model can implement complex logic controls such as 
branches and loops at the component-level. In this way, the modularization of each 
component is largely enhanced. The complexity of the design of each component is 
reduced and the schedulability of the whole application is improved. 

Initiation;
While (N<100)
{
Service request (S1, data);
Service response (S1, data1);
if exp(data1) terminate;
Service request (S2, data1);
Service response (S2, data)
}
terminate;

 

Fig. 2. An example application implemented by Web services and the loosely coupled model. 
The implementation by LCMG is more modularized than by Web services. It introduces only 
two modules and at most 200 data communications. The implementation of Web services style 
may cause 200 possible service requests and 400 possible data communications 

This loosely coupled application model is based on services. Also there are other 
service-based models such as Web services and Grid services. The most important 



 A Loosely Coupled Application Model for Grids 1063 

 

difference between this model and other work is that modules of an application in our 
model are absolutely loosely coupled: each module only interacts with the outside 
world by reading or writing predefined format of messages; different modules do not 
need to know each other even when they are dependent; the global execution flow is 
understandable to the system  so that various exceptions can be caught and dealt with; 
applications’ robustness can be guaranteed. Distributed applications in the loosely 
coupled model are well modularized and each module in the applications is compara-
tively independent. By Web services or Grid services methods, services are called 
from programs, and application developers must face various exceptions caused by 
the network or services. But in our model, each module in an application can be de-
signed independently, and can be developed in any programming languages, software 
or hardware tools and remote services. As long as the interfaces of the modules are 
correctly designed, the application can be scheduled by the Grid management system 
efficiently. Moreover, data caching is an important feature of the model. Input and 
output can be cached on the server side, and they can be transferred to any other 
server by the direction of the application scheduler dynamically. By using proper 
scheduling algorithms, the communication cost can be dramatically reduced, and at 
the same time, applications can be executed with better performance. We give an 
example application that implemented by Web services and LCMG respectively in 
Figure 2. 

3   Schedule of Loosely Coupled Applications 

The procedure of mapping an application onto computing resources according to some 
rules to implement the computation is called task scheduling. The objective of task 
scheduling is to order the execution of applications so that task precedence require-
ments are satisfied and a minimum schedule length is provided. Task scheduling is one 
of the most important subjects that have been extensively studied in parallel computing 
and distributed computing. The loosely coupled application model we proposed in our 
framework largely weakens the relationship between different application components, 
and provides an explicit structure to increase the schedulability of Grid applications. 
The efficiency and effectiveness of scheduling algorithms can largely influence the 
performance of the application. There are many scheduling algorithms based on vari-
ous computing platforms. But traditional scheduling algorithms are mostly based on 
shared-memory systems or a cluster of workstations, they cannot be used on such het-
erogeneous scheduling problems. In this section, we present the definition of schedul-
ing a loosely coupled application onto a heterogeneous distributed system.  

We define a heterogeneous distributed system D as: D = {S, C, T, P}, where T is 
the attribute set of services; S is a finite set of services, each element Si represents a 
service that can be employed by applications, for ∀ Si ∈ S, Si = {Ti | Ti ⊆ T}; C is a 
communication cost matrix, for ∀ 1 <= i, j <=N, Cij ∈ C, Cij is the communication 
cost between service Si and Sj, and P is a set of dependency functions describing the 
dependence relationship between different services, for ∀ Pi ∈ P, Pi = fi(Sr0, …Srk), 
denoting that service Si is dependent on services Sr0, Sr1, … and Srk, and there is a 
function fi() that can be used to compute the influence on performance that services 
Sr0 to Srk have on Si. 



1064 F. Wu and K.W. Ng 

 

A loosely coupled distributed application DA is defined as: DA = {MODULE, 
DATA, T, COST}, where MODULE is a finite set of n modules, DATA is a finite set 
of data, T is a finite set of attributes, COST is a finite set of functions to predict the 
performance of modules. For ∀ 0<j<n+1, MODULEj ∈ MODULE, MODULEj = 
{(inputj, outputj, costj, ATj )| inputj ⊆ DATA, outputj ⊆ DATA, costj ∈ COST, ATj ⊆ 
T}. In this definition, inputj is the set of data module MODULEj requires. Once inputj 
is ready, the module MODULEj can start its execution. While outputj is the set of data 
the module MODULEj produces. The function of costj is used to approximately 
evaluate the computation cost of MODULEj. ATj contains attributes of the module.  

A general schedule scheme is a map from the task graph to the target system: f: DA 
 D × [0, ∝]. f(i) = ( Sj ,ti ) means module MODULEi is scheduled onto service Sj, 

and its predictable start time is ti. A module MODULEi can be scheduled onto service 
Sj if ATi ⊆ Tsj. The time that all modules complete execution and return results is 
called the Schedule Length (SL). One of the aims of a scheduling algorithm is to 
reduce SL to as small a value as possible. Such a task scheduling problem is shown to 
be NP-complete [9]. As a Grid environment may contain a huge number of resources 
or services, it is impossible for the scheduling algorithm to map a loosely coupled 
distributed application based on all possible resources that can satisfy the applica-
tion’s requests. How to select appropriate resources and make better scheduling 
schemes is an important issue for ensuring both client’s and system’s performance. 

We can use the definitions of the loosely coupled application model to define some 
parameters such as adaptability and schedulability to implement various scheduling 
algorithms for Grid applications. For example, we give a simple definition of adapta-
bility below. Suppose there are limited services in the environment, the number of the 
services is N. For any module Mi in an application that contains n modules 
(0<=i<=n), if there are K services that can satisfy the requirements of module Mi, we 
denote the adaptability of module Mi as adaptability(Mi) = (K-1)/N. For those mod-
ules that can only be scheduled onto one resource, the adaptability is always 0. The 
parameter of adaptability can be used in scheduling algorithms for applications to 
achieve better performance or for the system to keep its usability. For example, we 
can give a simple insufficient resource first algorithm based on the adaptability of 
each module. This algorithm schedules modules with lower adaptability first to avoid 
potential resource conflicts in later computations. 

while (there are un-scheduled modules) 
{ 

while (there are ready-for-scheduling modules) 
{ 

select a module with lowest adaptability: Mi; 
if (there is available resources to schedule Mi) 

   { 
schedule Mi; 

      mark Mi as scheduled; 
       } 
    } 
} 



 A Loosely Coupled Application Model for Grids 1065 

 

4   Conclusions 

In this paper, we have introduced a loosely coupled application model which can be 
used to model Grid applications. Comparing to other models, this application model is 
powerful to model Grid applications more directly and efficiently; and at the same time 
it can guarantee the robustness, adaptability, and schedulability of Grid applications. 

Acknowledgements 

The work described in this paper was partially supported by the following grants: 
RGC Competitive Earmarked Research Grants (Project ID: 2150348, RGC Ref. No.: 
CUHK4187/03E ; Project ID: 2150414, RGC Ref. No.: CUHK4220/04E). 

References 

1. M. Baker, R. Buyya and D. Laforenza, “Grids and Grid Technologies for Wide-Area Dis-
tributed Computing”, Software - Practice and Experience 32(15): 1437-1466 (2002). 

2. I. Foster, and C. Kesselman, (Eds.), The Grid 2: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann, 2004. 

3. I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid", International Journal 
on Supercomputing Applications 15(3):200-222, 2001. 

4. I. Foster, C. Kesselman, J.M. Nick, and S. Tueche. “The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration”, Open Grid Service Infra-
structure WG, Global Grid Forum, June 2002. 

5. C. Lee and D. Talia, “Grid programming models: current tools, issues and directions”, in 
Grid Computing – Making the Global Infrastructure A Reality, F. Berman, G.C. Fox, and 
A.J.G. Hey, (Eds.), John Wiley, 2003. 

6. D. Bader, et al., “The Role and Requirements of Grid Programming Models”, www-
unix.Gridforum.org/mail_archive/ models-wg/pdf00002.pdf 

7. F. Wu and K.W. Ng, “A Toolkit to Schedule Distributed Applications on Grids”, Fourth 
International Network Conference, pp. 11-18, UK, 2004. 

8. F. Wu and K.W. Ng, “SHDC: A Framework to Schedule Loosely Coupled Applications on 
Service Networks”, Grid and Cooperative Computing - GCC 2004: Third International 
Conference, Wuhan, China, October 21-24, 2004. 

9. R.L. Graham. "Bounds on multiprocessing anomalies." SIAM Journal of Applied Mathemat-
ics , 17(2): 416-429, 1969 



A Locking Protocol for a Distributed Computing
Environment

Jaechun No1 and Hyoungwoo Park2

1 Dept. of Computer Software,
College of Electronics and Information Engineering,

Sejong University, Seoul, Korea
2 Supercomputing Center,

Korea Institute of Science and Technology Information,
Daejeon city, Korea

Abstract. The need for distributed file systems has been growing for
decades to provide clients with efficient and scalable high-performance
accesses to stored data. The clients physically share storage devices con-
nected via a network like GigaEthernet or Fibre Channel and, on those
clients, distributed file systems take responsibility for providing coordi-
nated accesses and consistent views of shared data. In such a distributed
computing environment, one of the major issues affecting in achieving
substantial I/O performance and scalability is to build an efficient lock-
ing protocol. In this paper, we present a distributed locking protocol
that enables multiple nodes to simultaneously write their data to dis-
tinct data portions of a file, while providing the consistent view of client
cached data, and conclude with an evaluation of the performance of our
locking protocol.

Keywords: locking protocol, distributed file system, distributed com-
puting, MPI-IO.

1 Introduction

Distributed file systems have been developed for decades to provide clients with
efficient and scalable high-performance accesses to stored data. The clients are
physically connected to one or more servers via a network like GigaEthernet or
Fibre Channel [1, 2, 3, 4, 5, 7, 10, 11, 12], and, on those clients, distributed file sys-
tems take responsibility for providing coordinated accesses to remotely stored
data and for providing consistent views of client cached data. In such a dis-
tributed computing environment, one of major considerations affecting in achiev-
ing substantial I/O performance and scalability is to build an efficient locking
protocol.

One of the general locking protocols for a distributed environment is to pro-
vide a token-based lock manager, as described in [1, 2, 3, 7]. The basic idea behind
the token-based lock manager is that before a client performs file data or meta-
data operations, it requires a related lock from the lock server. If there is no

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1066–1075, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A Locking Protocol for a Distributed Computing Environment 1067

conflicting request to the lock, or the client is the only requester to the lock, the
lock server then grants the lock to the client.

A locking protocol to support data consistency and cache coherency has a
significant effect on generating high performance I/O. For example, large-scale
scientific applications in physics, chemistry, biology, and other sciences generate
huge amounts of data and utilize them for data analysis, visualization and so
on. In order to achieve high-performance I/O, many such applications use par-
allel I/O methods where multiple client nodes simultaneously perform their I/O
operations. MPI-IO is among those parallel I/O methods.

MPI-IO [8, 15] is specifically designed to enable the optimizations that are
critical for high-performance parallel I/O. Examples of these optimizations in-
clude collective I/O, the ability to access noncontiguous data sets, and the ability
to pass hints to the implementation about access patterns, file-striping parame-
ters, and so on. In order to achieve high I/O performance using MPI-IO on top
of distributed file systems, the file system must provide the ability to lock a file
per data section to have multiple concurrent writers to a file.

However, many of the locking protocols integrated with distributed file sys-
tems are based on a coarse-grained method [1, 2, 4, 5] where only a single client
at any given time is allowed to write its data to a file, while the other clients
are waiting for the current node to finish its write operation even when the oth-
ers would write to the different data portions of the same file. This drawback
significantly degrades I/O performance in many scientific applications where
supporting parallel write operations happens to be proved generating high I/O
bandwidth [6, 8, 9, 13].

In this paper, we present a distributed locking protocol based on multiple
reader/single writer semantics for a data portion to be accessed. In this scheme,
a single lock is used to synchronize concurrent accesses to a data portion of a
file. However, several nodes can simultaneously run on the district data sections
in order to support data concurrency. We conclude our paper by discussing
performance evaluation of our locking protocol.

2 Design Motivation

Our main objectives in developing a distributed locking protocol were to provide
high-performance parallel I/O, to minimize the communication latency occurred
during the lock negotiation steps, and to utilize local lock services as much as
possible.

– High-performance I/O. We designed the distributed locking protocol ca-
pable of allowing multiple concurrent writers to the same file to achieve
high performance I/O. Also, the locking protocol provides data consistency
between the data stored in the storage device and the data stored in the
client-side cache. On top of the distributed file system integrated with this
locking protocol, many data-intensive applications can generate high I/O
bandwidth using parallel I/O libraries, such as MPI-IO, the I/O interface



1068 J. No and H. Park

defined as part of the MPI-2 standard [8, 15] as the standard, portable API
for I/O in parallel applications.

– Low communication latency. We designed the locking protocol to re-
duce the network overhead taking place during the lock negotiation steps
with Global Lock Manager (GLM). All the lock requests coming from the
client nodes are evenly distributed on multiple GLMs. Moreover, in order
to minimize the number of callback messages necessary to revoke and re-
lease a lock, we grouped all the client nodes into several node groups. If
GLM finds the node group where the lock holder belongs to it then sends a
lock revocation message to the node group. After the lock holder completes
the corresponding callback function to release the requested lock, it sends
back an acknowledge to GLM to grant the lock to the requesting client node.

– Use of local lock service. We designed the locking protocol to utilize
local lock service as much as possible in order not to incur communication
overhead with GLM. In order to use the local lock service to the maximum
extents, we designed the distributed lock scheme using the lazy-revocation
or sticky lock method [2] to retain privileges on data sections even in the
absence of active processes on a client node. If process on a node accesses to
the smaller data section than the section controlled by an already acquired
lock and if the requesting lock mode does not conflict with the mode of
the acquired lock, the lock held is then split and the lock of the requesting
data section, called childlock, is returned to the process. However, the lock
information of a childlock needs not be stored in GLM.

3 Implementation Details

3.1 Overview

Figure 1 illustrates the distributed lock interface that is integrated with dis-
tributed file systems. Applications issue I/O requests using local file system
interface, on top of VFS layer. Before performing an I/O request, each client
should acquire an appropriate distributed lock from GLM in order to maintain
data consistency between the cached data on clients and the remote, shared data
on servers. The lock request is initiated by calling the lock interface, snq clm lock.

As mentioned in section 2, in order to reduce the communication latency
occurring at the lock acquire step, we grouped the client nodes into several node
groups. In the current implementation, an eight bit integer is used to denote node
groups. When a client acquires an appropriate lock to perform I/O operation,
the bit corresponding to the node group where the client belongs to is set to 1.
Also, if a client requests a lock to GLM, GLM first locates the node group where
the lock holder belongs to and then sends a callback message to the nodes of the
node group. When the lock holder receives the callback message, it releases the
requested lock and sends back an acknowledge to GLM to grant the lock to the
requester.



A Locking Protocol for a Distributed Computing Environment 1069

INTERCONNECTION NETWORK

.....

NODE 0

.....

NODE k-1

NODE GROUP 

Network
Interface

Global Lock
Table

Server Lock Interface

glm_lock

glm_unlock

glm_promote

glm_demote

glm2llm_callback

GLM0

Network
Interface

Global Lock
Table

Server Lock Interface

glm_lock

glm_unlock

glm_promote

glm_demote

glm2llm_callback

GLMn-1

application

VFS Layer

Client Lock Interface
(snq_clm_lock)

Network
Interface

Local Lock
Table

applicationapplication application

VFS Layer

Client Lock Interface
(snq_clm_lock)

Network
Interface

Local Lock
Table

applicationapplication

Fig. 1. A distributed lock interface

Figure 2 represents a hierarchical overview of the locking construct with two
client nodes and one GLM. The lock modes that we provide for are SHARED
for multiple read processes and EXCLUSIVE for a single write process. The lock
structure consists of three levels: metalock, datalock, and childlock. The met-
alocks, inode0 on node A and inode1 on node B in Figure 2, synchronize accesses

inode1

0
2999

0
100

3000
5999

100
599

600
699

NODE B

inode0

0
999

0
100

1000
1999

100
199

800
899

NODE A

3000
5999

inode0

0
999

1000
1999

inode1

0
2999

GLM (Global Lock Manager)

metalock

datalock

childlock

Fig. 2. A hierarchical overview of distributed locking protocol



1070 J. No and H. Park

to files and the value of a metalock is an inode number of the corresponding file.
Below the metalock is a datalock responsible for coordinating accesses to a data
portion. For example, on node A, metalock inode0 is split into two datalocks
associated with the data sections 0-999 and 1000-1999 in bytes and, on node
B, two datalocks below inode1 are associated with the data sections 0-2999 and
3000-5999 in bytes. In order to grant a datalock, the lock mode of the higher lock
(metalock) must be SHARED, meaning that a file is shared between multiple
clients.

The lowest level is a childlock that is of a split datalock. As mentioned in
section 2, given that a datalock is granted, the datalock can be split further
to maximize local lock services as long as the data section to be accessed by a
requesting process does not exceed the data section of the datalock held. In other
words, in Figure 2, the datalock for the data portion 0-999 is split into three
childlocks that control accesses to the data portions 0-100, 100-199, and 800-
899, respectively. The childlock is locally granted and therefore the requesting
process needs not communicate with GLM to obtain the childlock. However, the
childlock is granted only when the lock mode of a childlock is compatible with
that of the higher datalock. The datalock and childlock are found by comparing
the starting file offset and data length being passed from the local file interface.

GLM contains the global lock information consisting of a list of the locks that
each GLM is responsible for serving. In Figure 2, GLM contains the metalocks,
inode0 and inode1, and the datalocks of the data portions 0-999, 1000-1999, 0-
2999, and 3000-5999 held by node A and node B. GLM also contains the node
group information indicating those groups where the lock holders belong to.

3.2 Function Calls

Figure 3 represents the functions to be called to serve the lock request, lock
release, and lock grant operations. The lock request operation is started by
calling snq clm lock in the local file interface to read or write data. Once process
finishes its I/O operation, snq clm unlock is called to wake up a sleeping process,
if any, blocked while waiting for the lock to be released.

If the requesting lock exists in the local lock table or the data portion to
be accessed does not exceed the data portion of an already acquired lock then
the request is immediately satisfied and the lock is returned to process. If the
requesting lock does not exist in the local lock table, indicating that either it is
already held by a different node or the lock is requested at the first time, then
llm2glm lock is called to communicate with GLM. If the requesting lock mode is
EXCLUSIVE, then llm2glm promote is called to upgrade the lock mode.

GLM receives the lock service request and then calls glm lock or glm promote
to grant a lock or to upgrade lock mode. Glm lock and glm promote both call
a callback invoke function, glm2llm callback, to send an appropriate callback
message to remote clients. Glm2llm callback invokes send callback msg that sends
a message to the node group where the lock holder belongs to. After invoking
send callback msg, glm2llm callback is blocked until it is woken up by glm unlock
or by glm demote. Glm unlock is a function to be called to update the global



A Locking Protocol for a Distributed Computing Environment 1071

snq_clm_lock

llm2glm_lock

llm2glm_promote

glm_lock

glm_promote

glm2llm_callback
send_callback_

msg
llm_callback

llm2glm_unlock

llm2glm_demote

glm_unlock

glm_demote

NODE A

NODE B

GLM

acknowledge

acknowledge

wake up

lock request

lock request

lock grant

lock grant

Fig. 3. Steps to acquire a distributed lock

information of the lock that has been released on a remote lock holder and
glm demote is of the lock that has been downgraded on a remote lock holder.

On a client node, once a callback message is received, the lock interface calls
llm callback to release or to downgrade the lock requested. The lock release oper-
ation is performed by calling llm2glm unlock and the lock downgrade operation
is performed by calling llm2glm demote. After completing its intended opera-
tion, each function sends back an acknowledge to GLM to grant the lock to the
requesting node.

4 Performance Evaluation

We measured the performance of the distributed locking protocol on the ma-
chines that have Pentium3 866MHz CPU, 256 MB of RAM, and 100Mbps of
Fast Ethernet. The operating system installed on those machines was RedHat 9.0
with Linux kernel 2.4.20-8. On top of Linux kernel, we installed SANique cluster
file system[14] which is a Linux-based software solution in a SAN environment.
The performance results focused on the time to obtain locks by performing lock
revoke, downgrade, and upgrade operations. The time to invalidate client cached
data and to write dirty data to disk was not included in the evaluation.

Figures 4 and 5 represent the time to obtain the locks with the exclusive
mode in write operations and with the shared mode in read operations, as the
number of clients increases from 4 to 16. Also, in Figure 4, one machine was
configured as a GLM and, in Figure 5, four machines were configured as GLMs.
When four machines were configured as GLMs, each lock request is given to a



1072 J. No and H. Park

0

4

8

12

16

20

4 8 16

EXCLUSIVE
SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients

Fig. 4. Time overhead to acquire a dis-
tributed lock using one GLM. Each client
read or wrote 1Mbytes of data to the dis-
tinct section of the same file

0

4

8

12

16

20

4 8 16

EXCLUSIVE
SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients

Fig. 5. Time overhead to acquire a dis-
tributed lock using four GLMs. Each
client read or wrote 1Mbytes of data to
the distinct section of the same file

GLM, according to round robin fashion. All clients read or wrote 1Mbyte of data
to the distinct portions of the same file. In this case, the lock requested by each
client is newly created on GLM and returned to the requesting client, causing
no callback message to be sent to the remote lock holder.

Figures 6 and 7 show the time to obtain the locks with the exclusive mode
and with the shared mode, while moving each client’s data section to access to
the one given to the neighbor at the previous step. Figures 6 and 7 both illustrate
that the overhead of the lock revocation is significant with the exclusive mode
because only a single client is allowed to write to a data section at any given
time. With the shared mode, there is no need to contact the remote lock holder
since a single lock can be shared between multiple nodes. With the shared lock
mode, GLM just increases a counter denoting the number of shared lock holders
before granting the lock.

Figures 8 and 9 show the elapse time to acquire locks, while changing the
number of clients running on each node from 1 to 4. The total number of clients
on every nodes was 16. As did in Figures 6 and 7, we changed the data access
range of each client to the one given to the neighbor at the previous step. In this
experiment, with two clients running on the same node, the callback message
is sent to the remote lock holder every two I/O operations to revoke a lock.
With four clients, the callback message is sent the remote lock holder every four
I/O operations, resulting in the lock negotiation overhead decrement, compared
to two clients on each node. According to this experiment, we could see that
the dominating performance factor with 16 clients is the network overhead to
contact the remote lock holder.



A Locking Protocol for a Distributed Computing Environment 1073

0

10

20

30

40

50

60

4 8 16

EXCLUSIVE
SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients

Fig. 6. Time to acquire a distributed lock
using one GLM. A client’s data section is
shifted to the one given to the neighbor at
the previous step

0

10

20

30

40

50

60

4 8 16

EXCLUSIVE

SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients

Fig. 7. Time to acquire a distributed
lock using four GLMs. A client’s data
section is shifted to the one given to the
neighbor at the previous step

0

10

20

30

40

50

60

1(1x16) 2(2x8) 4(4x4)

EXCLUSIVE
SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients per node

Fig. 8. Time overhead to acquire a dis-
tributed lock using one GLM as a function
of number of clients running on each node.
A client’s data access range is shifted right
at each step

0

10

20

30

40

50

60

1(1x16) 2(2x8) 4(4x4)

EXCLUSIVE
SHARED

T
i
m
e
 
(
m
s
e
c
)

Number of clients per node

Fig. 9. Time overhead to acquire a dis-
tributed lock using four GLMs as a
function of number of clients running
on each node. A client’s data access
range is shifted right at each step



1074 J. No and H. Park

0

5

10

15

20

25

25 50 75 100

EXCLUSIVE
SHARED

Lock Locality Ratio (%)

T
i
m
e
 
(
m
s
e
c
)

Fig. 10. Time to obtain a distributed lock as a function of lock locality ratio, using
four clients with four GLMs

Figure 10 shows the effect of childlocks exploiting locality in the lock requests.
The lock locality ratio means how often childlocks are taken; if lock locality
ratio is of 25%, then 25% of total datalocks are childlocks needed to access to
the smaller data portion than that of an already acquired datalock. If the lock
locality ratio is of 100%, then all the locks are childlocks that do not incur
communication overhead with GLM and remote lock holders. Figure 10 shows
that, with the exclusive lock mode, the more childlocks are generated, the smaller
time is taken to serve a lock request due to the drop in time to negotiate with
GLM and remote lock holders. With the shared lock mode, however, the time to
take a lock flattens out at about 9 msec because the remote shared lock holders
need not give up the lock requested, allowing to have multiple lock holders with
the shared mode. We believe that, however, more performance measurements
must be conducted to verify the effect of lock locality.

5 Conclusion

Concurrent accesses to the same file frequently occur in a distributed computing
where allowing parallel write operations significantly improves I/O bandwidth.
However, most distributed client-server file systems support a coarse-grained
locking protocol in which all the concurrent write operations to a file are seri-
alized even when the data sections being written are different between writers.
In this paper, we presented a distributed locking protocol with which several
nodes can simultaneously write to the distinct data portions of a file, while
guaranteeing a consistent view of client cached data. The distributed locking
protocol has also been designed to exploit locality of lock requests to minimize



A Locking Protocol for a Distributed Computing Environment 1075

communication overhead with GLM and remote lock holders. As a future work,
we plan to integrate the locking scheme with a SAN-based cluster file system,
called SANique, developed by MacroImpact company.

References

1. Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Recovery in the Calypso file
system. ACM Transactions on Computer Systems, 14(3):287–310, August 1996

2. Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A
Scalable Distributed File System. In Proceedings of the Symposium on Operating
Systems Principles, 1997, pages 224–237

3. Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed Virtual Disks.
In Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems, Cambridge, MA, 1996, pages
84–92

4. Kenneth W. Preslan, Andrew P. Barry, Jonathan E. Brassow, Grant M. Erickson,
Erling Nygaard, Christopher J. Sabol, Steven R. Soltis, David C. Teigland, and
Matthew T. O’Keefe. A 64-bit Shared Disk File System for Linux. In Proceedings
of Sixteenth IEEE Mass Storage Systems Symposium Seventh NASA Goddard
Conference on Mass Storage Systems & Technologies, March 15-18, 1999

5. Steven R. Soltis and Thomas M. Ruwart and Matthew T. O’Keefe. The Global File
System. In Proceedings of the Fifth NASA Goddard Conference on Mass Storage
Systems, 1996

6. Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, Alice Koniges.
MPI-IO/GPFS, an Optimized Implementation of MPI-IO on top of GPFS. In
Proceedings of Supercomputing, November 2001

7. F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large Comput-
ing Clusters. In Proceedings of the First Conference on File and Storage Technolo-
gies(FAST), pages 231–244, Jan. 2002

8. Rajeev Thakur and William Gropp. Improving the Performance of Collective Op-
erations in MPICH. In Proceedings of the 10th European PVM/MPI Users’ Group
Conference (Euro PVM/MPI 2003), September 2003

9. Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing Noncontiguous Ac-
cesses in MPI-IO. Parallel Computing, (28)1:83-105, January 2002

10. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A Parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, GA, October 2000

11. K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dynamic function placement
for data-intensive cluster computing. In Proceedings of the 2000 USENIX Annual
Technical Conference, 2000

12. P. J. Braam. The Lustre stroage architecture. Technical Report available at -
http://www.lustre.org, Lustre, 2002

13. Jaechun No, Rajeev Thakur, and Alok Choudhary. High-Performance Scien-
tific Data Management System. Journal of Parallel and Distributed Computing,
(64)4:434-447, April 2003

14. MacroImpact Inc., SANique CFS. A SAN Based Cluster File System, Version 2.1,
Technical Report, August 2002

15. William Gropp and Ewing Lusk and Rajeev Thakur. Using MPI-2: A dvanced
Features of the Message-Passing Interface, MIT Press, 1999, Cambridge, MA



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1076 – 1085, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Grid-Based SLA Management 

James Padgett, Karim Djemame, and Peter Dew 

Informatics Institute, School of Computing, University of Leeds, 
Leeds LS2 9JT, United Kingdom 

{jamesp, karim}@comp.leeds.ac.uk 

Abstract. This paper presents an architecture for specifying, monitoring and 
validating Service Level Agreements (SLA) for use in Grid environments. 
SLAs are an essential component in building Grid systems where commitments 
and assurances are specified, implemented and monitored. Targeting compute 
resources, an SLA manager reserves resources for user applications requiring 
resources on demand. Methods for automated monitoring and violation capture 
are discussed showing how Service Level Objectives (SLO) can be validated. A 
SLA for a compute service is specified and experiments carried out on the 
White Rose Grid. Results are presented in the form of a SLA document and 
show the violations that were captured during task execution. 

1   Introduction 

Grids [1] offer scientists and engineering communities high performance computa-
tional resources supporting virtual organisations. In Grid environments, users and re-
source providers often belong to multiple management domains. Users need commit-
ments and assurances on top of the allocated resources (this is sometimes referred to 
as Quality of Service), and it is the resource providers responsibility to deal with erro-
neous conditions, fail over policies etc. A key goal of Grid computing is to deliver the 
commitments and assurances on top of the allocated resources which include for ex-
ample availability of resources (compute resources, storage etc), security and network 
performance (latency, throughput) [2]. 

Commitments and assurances are implemented through the use of Service Level 
Agreements (SLA), which determine a contract between user and Grid Service pro-
vider. A SLA is defined as an explicit statement of the expectations and obligations 
that exist in a business relationship between the user and the Grid Service provider. A 
formalised representation of commitments in the form of a SLA document is required, 
if information collection and SLA evaluation are to be automated. At any given point 
in time many SLAs may exist, and each SLA in turn may have numerous objectives 
to be fulfilled.  

In the context of a Grid application, consolidation of management information is 
required when resources are spread across geographically distributed domains. SLAs 
may be distributed, and their validation depends on local measurements. With this is 
mind, the paper presents an SLA management architecture with automated SLA nego-
tiation, monitoring and policing mechanisms. The current Open Grid Services Archi-
tecture (OGSA) [3] specification defines SLA management as a high level service 



 Grid-Based SLA Management 1077 

 

supporting SLAs within the Grid. Thus, a Grid user accessing Grid services on de-
mand and with quality of service (QoS) agreements enabling commitments to be ful-
filled is a primary requirement. The user can specify a SLA which will guarantee re-
sources, provide job monitoring and record violations if they are detected. The SLA 
document records agreement provenance allowing for auditing mechanisms after it 
has terminated. 

The structure of the paper is as follows: in section 2, the Grid SLA management 
architecture is presented. In section 3 an SLA specification for a compute service is 
outlined. Section 4 details the interaction between the SLA manager and a resource 
broker. In section 5 the monitoring engine and violation capture mechanism are de-
montrated. Section 6 presents some experiments involving a performance evaluation 
of the SLA Manager, and discusses the experimental results obtained on the White 
Rose Grid [4]. Related work is described in section 7, followed by a conclusion and 
discussion on future work. 

2   Service Level Agreement Management Architecture 

The SLA Management Architecture (Figure 1) defines an SLA Manager that runs in 
parallel with Grid Services to provide SLA management in environments such as the 
DAME Diagnostic Portal [5]. A client uses portal access to invoke Grid services 
which have time or performance requirements for their execution. 

Fig. 1. SLA Management Architecture 

2.1   SLA Management Interaction 

Once the SLA Manager has instantiated an agreement and the Grid Service task is 
executing, interactions between the SLA Manager and the Grid Service task are main-
tained throughout the agreement life cycle to enforce the SLA guarantees.  



1078 J. Padgett, K. Djemame, and P. Dew 

 

2.2   Automated SLA Negotiation 

The SLA Manager provides SLA negotiation using the Service Negotiation and Ac-
quisition Protocol (SNAP) [6]. It provides a protocol for the negotiation and reserva-
tion of resources in order to guarantee the SLA based on a set of task requirements. 
These requirements are formally captured in a number of Service Level Objectives 
(SLO). The type of reservations made can be resource based or service based and will 
be executed through the Reservation Engine. The first iteration of which will imple-
ment performance-based Service Level Objectives. Further development will see the 
functionality enhanced. Once an agreement has been reached the Service Level 
Agreement is formalised into an SLA document. The SLA is offered to all parties for 
signing before being stored in the SLA repository where it can be accessed whenever 
validation is needed. The SLA Customiser has the ability to change the SLA docu-
ment after the agreement has been signed; for changes in state or recording violations. 

2.3   Automated SLA Monitoring 

Once a SLA has been agreed and the resources have been reserved, the Grid task can 
begin execution. The SLA management engine is tasked with automated monitoring 
of the metrics needed to enforce the guarantees in the Service Level Objectives. It 
uses an external Grid Monitoring Service [7] to select the Grid monitoring tools 
which will be needed to monitor the SLA, such as Net Logger [8] and the Network 
Weather Service [9]. Tools such as these enable the SLA management engine to 
automatically monitor the SLOs based on dynamic resource information. 

2.4   Automated SLA Policing 

The SLA policing engine will adapt a task execution using a number of adaptation 
outcomes, examples of which include modifying the TTL (time to live), resource re-
negotiation, migration and termination. The adaptation feedback control mechanism 
will determine which of these outcomes is appropriate for a given situation. It will do 
this either in response to or to prevent violation of a SLO. The method used to adapt 
the Grid task is recorded in the SLA and based on the policies of the Grid resource. 
Adaptation has the potential to significantly improve the performance of applications 
bound with SLAs. An adaptive application can change its behaviour depending on 
available resources, optimising itself to its dynamic environment. For example, when 
resource load changes, a Grid system could seek to improve the quality of its compute 
resources or re-locate to another compute resource. To support adaptation feedback 
control, mechanisms for decision making are to be implemented using Fuzzy Control 
[10], however mathematical modelling, knowledge-based heuristics and reflection 
could be used. 

3   SLA Specification 

The SLA Document is XML based, whereas the SLA is represented internally by a 
content tree made up of Java objects. The SLA Manager supports a number of service 



 Grid-Based SLA Management 1079 

 

guarantees through differentiated classes of service; best effort, best effort with adap-
tation, reservation, reservation with adaptation. 

3    Example: Specification for a Compute Service 

An example SLA for a Compute service is specified in Table 1. It gives indication of 
the components which make up the SLA generated by the SLA Manager. 

Table 1. SLA Specification of a compute service 

Component Observation 
Purpose A Grid job guaranteeing task requirements 
Parties Consumer, resource broker & compute resource 
Scope Compute service 
Service Level 
Objective (SLO) 

Ensure availability of resources satisfying task re-
quirements for the duration of the Grid service task 

SLO Attributes CPU count, type, speed, usage. OS and OS version 
Service Level In-
dicators (SLI) 

For each SLO attribute, its value is a SLI 

Exclusions Adaptation / reservation may not be included 
Administration SLO’s met through resource brokering / adaptation 

    The SLO’s represent a qualitative guarantee such as CPU, RAM or HDD SLA. 
They comprise a set of SLI parameters which represent quantitative data describing 
the level of the SLO guarantee, such as CPU_COUNT or RAM_COUNT. The SLI 
values may take a number of forms, two which will be used are (1) a parameter distri-
bution where the value of the SLI must be in a range or (2) a list where the parameter 
must equal a definite value  

3.    SLA Negotiation 

The task requirements are based on the natural language definition given in Table 1. 
They are represented internally as a SLA content tree based and governed by a 
schema document. The negotiation engine parses the SLA content tree into an un-
signed SLA document. This is passed to a resource broker which attempts to match 
the resource requirements by gathering information about the available Grid re-
sources. A reservation decision is made based on the permissions and the suitability 
of the resource given the requirements. The SLA is signed by the SLA manager on 
behalf of the provider after which it is offered to the user for signing. 

4   Resource Reservation 

The SLA manager automates the SLA life cycle from negotiation to termination. An 
SLA document is specified in XML. The heterogeneous nature of XML makes it suit-
able for the SLA document in a service oriented architecture allowing the document 
to traverse the Grid along with the task execution. The SLA manager can be executed 

.1

2



1080 J. Padgett, K. Djemame, and P. Dew 

 

on all Grid resources as a high level Grid Service within any OGSA compliant mid-
dleware. It parses SLA documents and configures the SLA Management system for 
the task execution. Once parsed the SLA manager un-marshalls the SLA document 
into objects which represent the content and organisation of the SLA. The architecture 
allows an SLA document to be updated as the Grid execution is progressing, allowing 
for violations to be captured and recorded as they are detected. 

 

Fig. 2. Compute Service SLA Specification and Interation with Resource Broker 

The SLA Manager's negotiation engine is able to interface with a resource broker 
providing reservations for different types of Grid resources as shown in Figure 2. It 
uses a resource broker to provision resources needed to fulfil the SLA. The example 
used in this work is the SNAP-based resource broker [11] which provides reservations 
for compute resources. This is similar to the Task Service Level Agreement (TSLA) 
defined within the SNAP framework which represents an agreement that specifies the 
desired performance of the task [6] where a task represents a job submission, execu-
tion or Grid service invocation. The SLA manager enters into an agreement with the 
resource broker service which provides a reservation guarantee, but it is the individual 
brokers which form the reservation agreements with the local Grid resources.  

5   Automated Monitoring 

5.1   Grid Measurement Tool 

A Grid Information Service [12] (GIS) provides resource and service information 
from local Grid Monitoring Tools [13] that interface with low level Information Ser-
vice Providers. The ability to use a number of low level Information Service Provid-
ers means that the Service can be used as a homogeneous interface to a number of 
Grid Monitoring Tools such as those mentioned in section 2.3. The use of a Grid 
Monitoring Tool (GMT) compliant with the Grid Monitoring Architecture (GMA) [7] 
allows a publish / subscribe mechanism to query resource information. To demon-
strate the concept of automated monitoring of SLA’s within a Grid - the Globus 
Monitoring and Discovery System (MDS) is used. 



 Grid-Based SLA Management 1081 

 

5.2   Monitoring Engine 

The monitoring engine automates the SLA monitoring process. It matches SLO’s to 
relevant Grid monitoring tools so that validation can be made against performance 
measurement data. A Grid integrates heterogeneous resources with varying quality 
and availability, this places importance on the ability to dynamically monitor the state 
of these resources and deploy reliable violation capture mechanisms. 

 

Fig. 3. Monitoring and Policing Mechanism 

    The monitoring engine launches a number of monitoring threads [Mx] correspond-
ing to a SLI within each SLO (Figure 3). The threads periodically compare the meas-
ured value [mx] taken from the Grid Information Service [12] [mdsx] with the value 
listed in the SLI, [slix]. When a violation is detected a violation object is created and 
passed to the policing engine.  

5.3   Capturing Violations 

The monitoringThreads compare the observed value [mx] with that expressed in the 
SLA, [slix]. If a violation occurs a dateTime stamp is added to the SLOx and the vio-
lated value of [slix] is recorded. The violation is represented as a violation object. It is 
passed to the policing engine and the SLA Customiser so that the violation can be re-
corded within the SLA document.  

6   Experiments 

6.1   Overview 

The SLA Manager is expected to provide a managed Grid execution with guarantees 
over best effort execution through resource reservation, automated monitoring and 



1082 J. Padgett, K. Djemame, and P. Dew 

 

adaptation. Experiments are conducted as a proof of concept test of the SLA Manager 
in a production Grid environment; the White Rose Grid [4]. Once a SLA has been 
specified, the objectives are to: (1) Show the SLA manager can specify a SLA for a 
Grid compute service; (2) Test the effectiveness of the monitoring engine and the 
Grid monitoring tool; and (3) Determine if the violation capture mechanism is reliable 
and can keep pace with the monitoring engine.  
    The White Rose Grid was used, consisting of resources at the University of Leeds, 
Sheffield and York. The resources are configured with Solaris OS 5.8, Globus 3.0 
middleware and MDS2.2 Grid information system. Communication occurs over a fast 
ATM network, called YHMAN. Network bandwidth and latency are not guaranteed 
within the SLA. 

6.2   Experimental Design 

Experimental Scenario 
A user wants to execute a DAME Grid compute service task called, eXtract Tracked 
Orders (XTO) [14] with task requirements which they want formalising in a SLA. 
They would like guarantees on service performance to guarantee a time for comple-
tion of the task. The SLA Manager will take these requirements, specify a SLA, 
launch the Grid service, monitor its execution and record any violations. Two SLO’s 
are specified: (1) the amount of RAM with an SLI of 3100MB; and (2) the free 
CPU_LOAD with a SLI of 0.25. The XTO Grid service is executed and monitored for 
a period of 130 seconds. Both SLO’s are perturbed 80 seconds into the execution by 
two additional processes which are CPU and RAM intensive. The monitoring engine 
will launch two monitoring thread entries within the MDS: Mds-Memory-Ram-Total-
freeMB and Mds-Cpu-Total-Free-5minX100.  

6.3   Performance Results and Discussion 

The experiments involve the submission and monitoring of the XTO Grid Service 
given a set of task requirements. Those requirements are to guarantee a minimum 
amount of free memory and CPU load on the compute resource. The monitoring 
threads sample MDS entries Mds-Memory-Ram-Total-freeMB and Mds-Cpu-Total-
Free-5minX100 at each time interval from start to finish. Figure 4 shows the amount 
of free RAM and CPU_LOAD respectively during the task execution. 

Mds-Memory-Ram-Total-freeMB vs Time

2900

2950

3000

3050

3100

3150

3200

1 2 3 4 5 6 7 8 9 10 11 12 13

Time [x10] (s)

M
ds

-M
em

or
y-

R
am

-T
ot

al
-f

re
eM

B
 (M

B
)

Mds-Cpu-Total-Free-5minX100

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Time [x10] (s)

M
ds

-C
pu

-T
ot

al
-F

re
e-

5m
in

X
10

0

 
 

Fig. 4. Graph showing disturbance of free memory on a White Rose Grid resource 



 Grid-Based SLA Management 1083 

 

    Figure 5 is the SLA after task completion. The monitoring engine successfully cap-
tures a timeStamp and value for each violation. 

Fig. 5. SLA documents showing violations to RAM_COUNT and CPU_LOAD 

7   Related Work 

There have been a number of attempts at defining an SLA management architecture 
for both Web and Grid services. Architectures from Hewlett-Packard Laboratories 
[15] and IBM T.J. Watson Research Center [16] concentrate on service level agree-
ments within commercial Grids. The service level agreement language used is that 
presented by Ludwig et al in [17]. The Global Grid Forum have defined WS-
Agreement [18]; an agreement-based Grid service management specification designed 
to support Grid service management. Two other important works are automated SLA 
monitoring for Web services [19] and analysis of service level agreements for Web 
services [20]. Contract negotiation within distributed systems have been the subject of 
research where business-to-business (B2B) service guarantees are needed [21]. The 
mapping of natural language contracts into models suitable for contract automation 
[22] exist but has not been applied to Grid environments, nor has it been applied as a 
SLA. An approach for formally modelling e-Contracts [23] exists at a higher level 
than the research in [17]. Automated negotiation and authorisation systems for the 
Grid already exist [24] but involve no monitoring or policing ability post agreement.   

8   Conclusion and Future Work 

A formalised representation of commitments in the form of a SLA is required be-
tween users and service providers in order for QoS to be implemented in a Grid envi-
ronment. SLA management is important in formalising QoS implementations within 
Grid services. Making simplifying assumptions regarding the task requirements, this 
work considers a SLA for a compute service, a mechanism for reserving resources 
and an automated monitoring / violation capture mechanism. The experiments were 
conducted in a Grid environment, the White Rose Grid. They show the SLA Manager 
is capable of negotiating and monitoring an SLA for a Grid compute service given a 



1084 J. Padgett, K. Djemame, and P. Dew 

 

set of task requirements. The monitoring engine / violation capture mechanism is ef-
fective at detecting and recording violations within the SLA.  

The SLA Management architecture has provision for three types of SLA guaran-
tees: performance, usage and reliability. The work presented here is targeting service 
performance; service usage and reliability will be the subject of further research. 

Future work will centre on the implementation of a fuzzy controller for adaptation 
feedback control. It provides a methodology for implementing a more human heuris-
tic control system by capturing qualitative control experience and applying it to the 
control algorithm. It is employed here in preference to a classic control method as 
they are inappropriate for Grid environments due to their heterogeneous nature. The 
use of a Fuzzy control technique is especially suited to this problem – where produc-
ing an accurate mathematic model for use in conventional control would be difficult. 

Acknowledgements 

The work reported in this paper was partly supported by the DAME project under UK 
Engineering and Physical Sciences Research Council Grant GR/R67668/01. We are 
also grateful for the support of the DAME partners, including the help of staff at 
Rolls-Royce, Data Systems & Solutions, Cybula, and the Universities of York, Shef-
field and Oxford. 

References 

[1] Berman, F., Grid computing : making the global infrastructure a reality. Chichester: 
Wiley. 2003. 

[2] Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations. International Journal of High Performance Computing Applica-
tions, 2001. 15: p. 200-222. 

[3] Foster, I., et al., The Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration, The Globus Project, June 22. 

[4] The White Rose Grid [Online], White Rose Consortium, Available from World Wide 
Web: http://www.wrgrid.org.uk/  

[5] Foster, I. and C. Kesselman, The Grid 2 : blueprint for a new computing infrastructure. 
Amsterdam ; Oxford: Morgan Kaufmann : Elsevier Science. 2004. 

[6] Czajkowski, K., et al. SNAP: A Protocol for Negotiating Service Level Agreements and 
Coordinating Resource Management in Distributed Systems. IN: Job scheduling strate-
gies for parallel processing. D.G. Feitelson, L. Rudolph, and U. Schwiegelshohn. 2002. 
Edinburgh: Berlin. 

[7] Tierney, B., et al., A Grid Monitoring Architecture, Global Grid Forum, August 27. 
[8] Gunter, D., et al. NetLogger: A Toolkit for Distributed System Performance Analysis. 

IN: Modeling, analysis and simulation of computer and telecommunication systems. 
2000. San Francisco, CA: IEEE Computer Society. 

[9] Wolski, R., N.T. Spring, and J. Hayes, The network weather service: a distributed re-
source performance forecasting service for metacomputing. Future Generations Com-
puter Systems, 1999. 15(5-6): p. 757-768. 

[10] Passino, K. and S. Yurkovich, Fuzzy control. Menlo Park, Calif. ; Harlow: Addison-
Wesley. 1998. 



 Grid-Based SLA Management 1085 

 

[11] Haji, M., et al. A SNAP-based Community Resource Broker using a Three-Phase Com-
mit Protocol. IN: Proceedings of the 18th IEEE International Parallel and Distributed 
Processing Symposium. 2004. Santa Fe, USA. 

[12] Schopf, J.M., A General Architecture for Scheduling on the Grid. Journal of Parallel and 
Distributed Computing, 2002(Special Issue on Grid Computing). 

[13] Balaton, Z., et al., Comparison of Representative Grid Monitoring Tools, Laboratory of 
Parallel and Distributed Systems, Hungarian Academy of Sciences, Budapest, Hungary, 
March 2000. 

[14] Nadeem, S., P. Dew, and K. Djemame, XTO Grid Services on the White Rose Grid: Ex-
periences in building an OGSA Grid Application, DAME Technical Report, Informatics 
Institute, University of Leeds, UK,  

[15] Sahai, A., et al. Specifying and Monitoring Guarentees in Commercial Grids through 
SLA. IN: 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid. 
2003. Tokyo: IEEE Computer Society. 

[16] Leff, A., J.T. Rayfield, and D.M. Dias, Service-Level Agreements and Commercial 
Grids. IEEE Internet Computing, 2003. 7(4): p. 44-50. 

[17] Ludwig, H., et al. A Service Level Agreement Language for Dynamic Electronic Ser-
vices. IN: Advanced issues of E-commerce and web-based information systems. 2002. 
Newport Beach, CA: IEEE Computer Society. 

[18] Andrieux, A., et al., Web Services Agreement Specification (WS-Agreement), Global Grid 
Forum, July 26. 

[19] Jin, L., V. Machiraju, and A. Sahai, Analysis on Service Level Agreement of Web Ser-
vices, HPL-2002-180, HP Laboratories,  

[20] Sahai, A., et al., Automated SLA Monitoring for Web Services, HPL-2002-191, HP Labs,  
[21] Goodchild, A., C. Herring, and Z. Milodevic, Business contracts for B2B, Distributed 

Systems Technology Center (DSTC), Austrailia, 2000. 
[22] Milosevic, Z. and R.G. Dromey. On Expressing and Monitoring Behaviour in Contracts. 

IN: Enterprise distributed object computing. 2002. Lausanne, Switzerland: IEEE Com-
puter Society.  

[23] [Marjanovic, O. and Z. Milosevic. Towards Formal Modeling of e-Contracts. IN: Enter-
prise distributed object computing. 2001. Seattle, WA: IEEE Computer Society. 

[24] Lock, R. Automated contract negotiations for the grid. IN: Postgraduate Re-
search Conference in Electronics, Photonics, Communications & Networks, and 
Computing Science. 2004. University of Hertfordshire, UK: EPSRC 

 



A Heuristic Algorithm for Mapping Parallel
Applications on Computational Grids

Panu Phinjaroenphan1, Savitri Bevinakoppa1, and Panlop Zeephongsekul2

1 School of Computer Science and Information Technology,
2 School of Mathematical and Geospatial Sciences,

RMIT University, GPO Box 2476V, Melbourne Australia
{pphinjar, savitri}@cs.rmit.edu.au, panlopz@rmit.edu.au

Abstract. The mapping problem has been studied extensively. How-
ever, algorithms which were designed to map a parallel application on a
computational grid, such as MiniMax, FastMap and genetic algorithms
have shortcomings. In this paper, a new algorithm, Quick-quality Map
(QM), is presented. Experimental results show that QM performs better
than the other algorithms. For instance, QM can map a 10000-task par-
allel application on a testbed of 2992 nodes in 6.35 seconds, and gives
the lowest execution time whereas MiniMax and a genetic algorithm, re-
spectively, take approximately 1700 and 660 seconds, but produce 1.34
and 6.60 times greater execution times than QM’s.

1 Introduction

Computational grid has been introduced as a distributed computing paradigm
that is able to interconnect heterogeneous networks and a large number of nodes
regardless of their geographical locations [1]. This paradigm provides an access to
tremendous computational power that can be harnessed for various applications.
Parallel applications are developed to solve implementations of computational
intensive engineering or scientific problems that require such power.

The main aim of solving such problems with a parallel application is to reduce
the execution time. As a computational grid involves a large number of nodes,
one of the challenging problems that needs to be addressed is to decide the
destination nodes where the tasks of the application are to be executed. This
process is formally known as the mapping problem [2].

Unfortunately, the mapping problem is known to be a non-deterministic poly-
nomially bounded (NP) complete problem [3], which means that the problem is
intractable and very time consuming. Hence, heuristic algorithms have been em-
ployed to solve the mapping problem. Two of these algorithms are MiniMax [4]
and FastMap [5] which have the same scope as the heuristic algorithm adopted in
this paper. Genetic algorithms (GAs) are another approach that can be applied
to this problem. However, those algorithms have shortcomings, as these will be
discussed in the next section.

In this paper, a new mapping algorithm, Quick-quality Map (QM), is pre-
sented. Experimental results from the evaluation of QM compared with MiniMax

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1086–1096, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A Heuristic Algorithm for Mapping Parallel Applications 1087

[4] and a genetic algorithm show that QM performs better than the other al-
gorithms. For example, when mapping a 10000-task parallel application on a
testbed of 2992 nodes, QM gives the best solution. The mapping time of QM
is 6.35 seconds whereas MiniMax and GA take about 1700 and 660 seconds,
respectively.

2 Background and Related Work

In the literature, the mapping problem has been studied extensively. Researchers
often focus on the specific models of parallel applications and parallel systems,
and concentrate on optimising a particular metric. These three features then are
used to differentiate between the studies of the mapping problem.

A parallel application is usually modelled by a graph. Task Interaction Graph
(TIG) and Task Precedence Graph (TPG) – also known as Directed Acyclic
Graph (DAG), are the traditionally tools used. A DAG is used to model a paral-
lel application that the tasks have order of executions whereas a TIG a parallel
application that the tasks are simultaneously executable [6]. In both models,
there can be computational costs associated with the tasks (vertices), and com-
munication costs with the communications (edges) between the tasks.

In this paper, the parallel systems are broadly categorised into modern and
legacy systems. An example of a legacy system is the Massively Parallel Proces-
sors (MPP) node. Such node often consists of many processors. It is not uncom-
mon to assume that users can assign a particular task to a particular processor.
The network topology that links the processors together is static, such as torus
and hypercube. Examples of modern systems are a cluster and a computational
grid. Nodes and networks are two major resources. In general, users can only
assign a task to a node, and the operating system takes care of which processor
will execute the task if that node has more than one processor. The specific net-
work topology is not assumed. A graph is also used to model a parallel system
with computational costs associated with the processors/nodes (vertices), and
communication costs with the links (edges) between the processors/nodes.

Two major optimised metrics are communication and execution times (or
costs). The choice of which metric to optimise depends on the assumptions of
the application and system models. The model of the application studied in this
paper is a TIG and its associated costs are heterogeneous. The parallel system
is a computational grid, and the costs associated with the nodes and networks
are also heterogeneous. The metric to be optimised is the execution time of
the application. In the literature, MiniMax [4] and FastMap [5] are the two
algorithms which have the same scope as the process considered in this paper.

MiniMax is a suit of heuristic algorithms [4] consisting of three steps: graph
coarsening, initial partition and refinement.

In the first step, the application graph is coarsened until the number of tasks
falls below a predefined threshold. Coarsening is an approach of producing a new
application graph with less number of tasks by merging a task with one of its
neighbours to form a new task (see Fig.1 for an example).



1088 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

1

1 1 1

1 1

1 1

1 1

11

1 1 1

1 1 1

1 1 1 4

3

2

3

2

1

12

2 2

2

1

1

1

1

1

2

1

27 5

Fig. 1. An example of graph coarsening. After coarsening the application graph three
times the number of tasks is reduced from 9 (finest) to 2 (coarsest)

In the second step, the coarsest application graph is mapped on the system
with the graph growing algorithm. The algorithm maps high cost tasks to low
cost nodes. The limitation is the algorithm can function only when the number
of nodes is less than the number of tasks. Otherwise, a form of node selection is
needed. This raises the issue of how to select the nodes since it is necessary to
map tasks on nodes before judging whether the nodes should be chosen.

In the final step, the application graph is un-coarsened to produce the finer
graph. During each un-coarsening to the finest graph, the execution time of the
application is iteratively optimised with the vertex migration algorithm. The
performance of the algorithm is the issue in this step as the complexity grows
polynomially with both the numbers of tasks and nodes [7].

FastMap is also a suit of heuristic algorithms [5]. The optimisation is a
genetic algorithm. A serious problem with FastMap is the assumption that all
clusters have the same number of nodes. This is often not the case in real envi-
ronments.

Genetic Algorithms (GAs) are a well-known optimisation technique. Braun
et at. [8] studied the efficiencies of eleven algorithms by mapping independent
tasks (zero on all communication costs) on heterogeneous parallel systems. A GA
is among those algorithms and has shown to be one of the most efficient. Never-
theless, the high numbers of tasks and nodes can result in a massive search space.
Thus, the computational cost of applying GAs could be prohibitively expensive,
which significantly reduces their merit.

3 The Mapping Models

This section explains the models used to formulate the mapping problem.

3.1 The Parallel Application Model

An application is modelled as a weighted undirected graph G = (V,E,WV , WE),
where V is a finite set of vertices, and E a finite set of edges. An edge e ∈
E is an unordered pair (vx, vy), where vx, vy ∈ V . V represents the tasks of
application G, |V | is the number of tasks, WV (v) the computational cost of task
v, evxvy

represents the communication between tasks vx and vy (i.e. vx and vy



A Heuristic Algorithm for Mapping Parallel Applications 1089

are neighbours), and WE(evxvy
) is the communication cost between tasks vx and

vy. This model is the same as the ones used in MiniMax [4] and FastMap [5].

3.2 The Computational Grid Model

A computational grid is modelled by a three-level-tree. The levels are grid (g),
cluster (c) and node (n) levels. Let G′ = (V ′, E′,W ′

V , W ′
E) be a three-level-tree

representing a computational grid. V ′ represents the nodes in G′, |C ′| and |V ′|
are the numbers of clusters and nodes in G′, respectively, and W ′

V (v′) is the
computational cost of node v′. E′ is a finite set of undirected edges. An edge
e′ ∈ E′ is an unordered pair (v′

x, v′
y) ∈ V ′, ev′

xv′
y

represents the communication
between nodes v′

x and v′
y, and W ′

E(ev′
xv′

y
) is the communication cost between

nodes v′
x and v′

y.
A computational grid with a three-level-tree is specified according to the fol-

lowing rules. All nodes are in the same node level. When nodes can communicate
to one another with the same communication cost, they can be grouped into the
same cluster. A real cluster that has its nodes linked with the same network
technology and medium is an example of a cluster in this model. An individual
node is considered as a cluster of one node. All participating clusters (also the
nodes) are in the same grid level and communicate through the grid network.

3.3 The Mapping Functions

When a parallel application, G, is mapped on a computational grid, G′, the
execution time of the application, ET (G), is the execution time of the slowest
node in G′; i.e.,

ET (G) = ET (v′) (1)

where ET (v′) is the execution time of the slowest node v′. ET (v′) is the sum of
the computational and communication times of the tasks mapped on v′; i.e.,

ET (v′) =
N∑

i=1

WV (vi)W ′
V (v′) +

N∑
i=1

Mvi∑
j=1

WE(evivj
)W ′

E(e′v′v′
j
) (2)

where vi is the ith task mapped on node v′, N the number of tasks mapped on
node v′, vj the jth neighbour of task vi, Mvi

the number of neighbours of task
vi, and v′

j the node on which task vj is mapped (see Fig.2 for an example).

Fig. 2. A 2-task parallel application mapped on a grid modelled by a three-level-tree



1090 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

4 QM Algorithm

Unlike the other algorithms that optimise the execution time of the slowest node,
QM instead optimises the execution time of each task. The core idea is that each
task is iteratively mapped on a new node such that the execution time of the
task is lower than its current execution time. Given v as a task mapped on node
v′, the execution time of task v, ET (v), is equal to the execution time of node
v′, ET (v′); that is,

ET (v) = ET (v′) (3)

The flows of QM algorithm are shown in Fig.3. The first step is to coarsen the
application graph until the number of tasks is less than a threshold. Each task
in the coarsest graph is mapped on a randomly chosen node, which becomes
the current node of the task. The execution times of all chosen nodes are then
calculated using (2). In this step, each task has its own execution time, which is
equal to the execution time of its current node.

Iteratively, a better node for each task is searched. In the case that more
than one such node exist, the task is mapped on the best node, which is the
node that gives the task the lowest execution time. However, not all nodes in
the environment need to be considered.

Let c′ be a cluster in G′, v′
x the node in cluster c′ such that its execution

time, ET (v′
x), is lowest. If more than one such node exist, the node with the

lowest computational cost, W ′
V (·), is considered to be v′

x. Let V ′
y be a set of

nodes in cluster c′ that their computational costs, W ′
V (V ′

y), are less than the
computational cost of v′

x, W ′
V (v′

x). Let v be a task to be mapped, and V ′
z a set

of nodes in cluster c′, which the neighbours of task v are mapped on (see Fig. 4
for an example).

00. QM (G, G′)
01. while (|V | ≥ threshold)
02. G = coarsen G;
03. for (i = 0; i < |V |; i = i + 1)
04. v′

r = randomly choose a node in G′;
05. map vi on v′

r;
06. update execution times of all nodes in G′;
07. do
08. for (i = 0; i < � max

log10 |V |+1
�; i = i + 1)

09. for (j = 0; j < |V |; j = j + 1)
10. v′

b = find the best node in G′;
11. if (v′

b is found)
12. map vj on v′

b;
13. update execution times of P (vj), v′

b, N(vj);
14. update v′

x and V ′
y of relevant clusters;

15. while (G = un-coarsen G is applicable)

Fig. 3. QM algorithm



A Heuristic Algorithm for Mapping Parallel Applications 1091

Fig. 4. Nodes in the cluster according to proposition 1

Proposition 1. If the best node v′
b for task v exists in cluster c′, then either

v′
b = v′

x or v′
b ∈ (V ′

y ∪ V ′
z ) is true.

Proof. Given the condition v′
b �= v′

x and v′
b /∈ (V ′

y ∪ V ′
z ) is true. Thus, before

mapping task v, the execution times and computational costs of nodes v′
b and

v′
x in (4) and (5) are true.

ET (v′
b) ≥ ET (v′

x) (4)

W ′
V (v′

b) > W ′
V (v′

x) (5)

If the given condition is true, then the comparison of the execution time between
nodes v′

b and v′
x after mapping task v in (6) must hold.

ET ′(v′
b) < ET ′(v′

x) (6)

where ET ′ denotes the execution time after the mapping. (6) is equal to

ET (v′
b) + WV (v)W ′

V (v′
b) < ET (v′

x) + WV (v)W ′
V (v′

x) (7)

However, (6) is false since ET (v′
b)−ET (v′

x) ≥ 0 and W ′
V (v′

x)−W ′
V (v′

b) < 0.
Hence, the given condition v′

b �= v′
x and v′

b /∈ (V ′
y ∪ V ′

z ) is false.

It can be seen that the number of nodes that each task needs to consider is
reduced significantly without any impact on the mapping solution.

If the best node v′
b for task vj is found, vj is mapped on the best node, and the

execution times of all relevant nodes are updated. These nodes are the previous
node of vj , P (vj), the best node, v′

b, and all the nodes on which the neighbours
of task vj are mapped, N(vj). v′

x and V ′
y of the relevant clusters also need to be

updated. The relevant clusters are the ones that the relevant nodes belong to. If
the best node is not found, the task is remained on its current node.

Then, the application graph is un-coarsened, and the same optimisation is
applied. This procedure is repeated until the application graph cannot be un-
coarsened. The current nodes of the tasks are then the mapping solution.

Two parameters that have effect on the performance of the algorithm are
threshold and the number of iterations for a task to find the best node. To avoid



1092 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

the degrade in performance, the number of iterations is reversely proportional
to the number of tasks (i.e. � max

log10 |V |+1�). Preliminary experiments showed that

threshold =
√|V | and max = 13 gave promising results.

5 Experiments

In the experiments, app-1, app-2 and app-3 consists of 100, 2500 and 10000 tasks
representing small, medium and large scale parallel applications, respectively,
are mapped on ten grid testbeds. The topology of the applications is the two-
dimensional circular Cartesian. The number of neighbours of each task, and the
computational and communication costs are randomly varied from 1 to 4. The
testbeds are generated with different numbers of clusters and nodes (as shown
in Table 1). In each cluster, the number of nodes is randomly varied from 1 to
64. The computational and communication costs are randomly varied from 1 to
10. All the costs in the application graphs and testbeds are the same as the ones
used in MiniMax [4] and FastMap [5].

Table 1. The specifications of the grid testbeds

G′ grid-10 grid-20 grid-30 grid-40 grid-50 grid-60 grid-70 grid-80 grid-90 grid-100

|C′| 10 20 30 40 50 60 70 80 90 100

|V ′| 359 615 914 1228 1679 1842 2535 2684 2915 2992

QM, MiniMax and a genetic algorithm (GA) are the experimented algo-
rithms. It is preferable to compare FastMap with these algorithms. However, we
are unable to do so due to incomplete information of the algorithm on how to
calculate the execution time of the tasks during a mapping step.

There are two versions of QM: QM-1 and QM-2. QM-1 searches all nodes to
find the best node, but does not coarsen the application graph. QM-2 searches
the nodes according to proposition 1, and coarsens the application graph.

Since MiniMax cannot function if the number of tasks is less than the num-
ber of nodes (i.e. |V | < |V ′|), in such situation, |V | nodes are selected from
the testbed. Three selecting algorithms are employed, and hence there are four
versions of MiniMax: MiniMax-1, MiniMax-2, MiniMax-3 and MiniMax-4.

MiniMax-1 selects |V | nodes as to minimise their total communication cost.
This selection algorithm is used to select the nodes for Cactus (an astrophysics
application) [7]. MiniMax-2 selects |V | nodes that have the lowest computational
costs while MiniMax-3 randomly selects |V | nodes. MiniMax-4 functions in the
situation that |V | ≥ |V ′|, and no node selection is required. The GA implemented
is the same as the one used in [8].

The experiments are conducted on a 2.8 GHz Pentium-4 computer, and the
presented results are an average of 10 runs. Fig.5, Fig.6 and Fig.7 show the
quality (the lower the execution time the higher the quality), and performance



A Heuristic Algorithm for Mapping Parallel Applications 1093

(the lower the mapping time the higher the performance) of the experimented
algorithms when mapping app-1, app-2 and app-3 on the testbeds, respectively.

In Fig.5, QMs are better than the other algorithms in terms of quality. QM-2,
which coarsens the application graph, gives the better solutions than QM-1 while
GA is the worst. Note that MiniMax-4 is not applicable since the number of tasks
(i.e. |V | = 100) is less than the number of nodes in all testbeds. Also notice that
selecting algorithms have effects on the quality of the solutions. Random selection
(MiniMax-3) is the worst; however, it is not conclusive between MiniMax-1 and
MiniMax-2. In terms of performance, GA takes much longer time than the other
algorithms. MiniMax-3 is the fastest while QM-2 has only little overhead over
MiniMax-3’s. Notice that QM-1 is slower than QM-2 since QM-1 searches for
the best node from all nodes in the environment.

In Fig.6, MiniMax-4 is applicable when mapping the application on grid-10
to grid-60 since the number of tasks (i.e. |V | = 2500) is more than the numbers
of nodes in these testbeds. In terms of quality, QM-2 outperforms the other
algorithms, and GA is the worst. In terms of performance, GA appears to be the
worst. However, when mapping the application on grid-50 and grid-60, MiniMax-
4 takes the longest time. This is due the large number of tasks (i.e. |V | = 2500)
and the sharp increase in the number of nodes (from 1228 in grid-40 to 1679 and
1842 in grid-50 and grid-60, respectively). QM-2 is the fastest, and both QMs
are faster than all MiniMax algorithms in all mapping cases.

In Fig.7, QM-2 still outperforms the other algorithms. In terms of quality,
MiniMax-4 can produce the solutions with the quality close to QM-2’s while GA

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

20

40

60

80

ex
ec

ut
io

n 
tim

e 
(u

ni
ts

)

Quality Evaluation

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

0.5

1

1.5

2
x 10

7

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (large scale)

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

0.5

1

1.5

2

x 10
5

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (small scale)

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

Fig. 5. The quality and performance of QM, MiniMax and GA when mapping app-1



1094 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

200

400

600

ex
ec

ut
io

n 
tim

e 
(u

ni
ts

)

Quality Evaluation

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

0.5

1

1.5

2

2.5
x 10

8

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (large scale)

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

2

4

6

8

10
x 10

6

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (small scale)

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

Fig. 6. The quality and performance of QM, MiniMax and GA when mapping app-2

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

500

1000

1500

2000

2500

ex
ec

ut
io

n 
tim

e 
(u

ni
ts

)

Quality Evaluation

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

1

2

3
x 10

9

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (large scale)

grid−10 grid−20 grid−30 grid−40 grid−50 grid−60 grid−70 grid−80 grid−90 grid−100
0

0.5

1

1.5

2

x 10
7

m
ap

pi
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Performance Evaluation (small scale)

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

QM−1
QM−2
MiniMax−1
MiniMax−2
MiniMax−3
MiniMax−4
GA

Fig. 7. The quality and performance of QM, MiniMax and GA when mapping app-3



A Heuristic Algorithm for Mapping Parallel Applications 1095

is still the worst. In terms of performance, GA takes the longest time to map the
application on grid-10 to grid-60 whereas MiniMax-4 is the slowest algorithm
when mapping the application on grid-70 to grid-100. This is also due to the
large number of tasks (i.e. |V | = 10000), and the sharp increase in the number
of nodes (from 1843 in grid-60 to 2535 in grid-70). QM-2 is still the fastest.

When considering both the quality and the performance, QM-2 performs
better than the other algorithms. For example, QM-2 can map app-3 (10000
tasks) on grid-100 (2992 nodes) in 6.35 seconds, and gives the lowest execution
time while GA and MiniMax-4, respectively, take approximately 660 and 1700
seconds, but produce 6.60 and 1.34 times greater execution times than QM’s.
From the results of QM-1 and QM-2, it is conclusive that considering the best
node according to proposition 1 improves the performance significantly while
graph coarsening is a major key to improve the quality of the mapping solutions.

6 Conclusions

The existing algorithms to map parallel applications on computational grids,
such as MiniMax, FastMap and genetic algorithms have shortcomings. In this
paper, a new mapping algorithm is presented. The core idea is to map each task
to a new node that gives a lower execution time to the task than its current node.
The technique to coarsen the application graph is also employed. Experimental
results show that QM performs better than the other algorithms, and graph
coarsening is a major key to improve the quality of the mapping solutions.

Future work aims at deploying the algorithm in real environments. However,
unrealistic assumptions hinder the deployment. These problems are currently
being investigated [9].

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scal-
able virtual organisations. International Journal of Supercomputer Applications 15
(2001)

2. Bokhari, S.: On the mapping problem. IEEE Transaction on Computers C-30
(1981) 207–214

3. Ullman, J.: Np-complete scheduling problems. Computer and System Sciences 10
(1975) 434–439

4. Kumar, S., Das, S., Biswas, R.: Graph partitioning for parallel applications in het-
erogeneous grid environments. In: International Parallel and Distributed Processing
Symposium (IPDPS 2002). (2002) 66–72

5. Sanyal, S., Jain, A., Das, S., Biswas, R.: A hierarchical and distributed approach
for mapping large applications onto heterogeneous grids using genetic algorithms.
In: IEEE International Conference on Cluster Computing. (2003) 496–499

6. Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31 (1999)



1096 P. Phinjaroenphan, S. Bevinakoppa, and P. Zeephongsekul

7. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selection
framework for grid applications. In: 11th IEEE International Symposium on High
Performance and Distributed Computing (HPDC 2002), Edinburgh, Scotland (2002)

8. Braun, T., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson,
J., Theys, M., Yao, B.: A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. Journal of
Parallel and Distributed Computing 61 (2001) 810–837

9. Phinjaroenphan, P., Bevinakoppa, S., Zeephongsekul, P.: A method for estimating
the execution time of a parallel task on a grid node. In: European Grid Conference.
(2005)



A Bypass of Cohen’s Impossibility Result

Jan A. Bergstra1,2 and Alban Ponse1

1 University of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

2 Utrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

Abstract. Detecting illegal resource access in the setting of grid com-
puting is similar to the problem of virus detection as put forward by
Fred Cohen in 1984. We discuss Cohen’s impossibility result on virus
detection, and introduce “risk assessment of security hazards”, a notion
that is decidable for a large class of program behaviors.

Keywords: Malcode, Program algebra, Thread algebra, Virus, Worm.

1 Introduction

Grid computing poses many challenges which are known from computer science,
though now at an integrated level. For semantic work about the grid it is hard
to reach that level of integration as well. An example of semantic work on grid
computing is in [8], in which the authors Nemeth and Sunderam point out that
convincing definitions of what constitutes a grid are still hard to obtain. They
set out to provide a definition, and in the preparation of the formal work a table
is presented with a comparison of grids and conventional distributed systems. It
is stated in their Table 1 that in a grid, access to a node may not imply access
to all of its resources and that users working from another node may have little
information on accessible resources.

We will study this aspect in particular under the assumption that a node
takes the responsibility to prevent illegal access to resources by tasks it accepts
to execute. We try to find a simplest possible model for this issue and use thread
algebra in combination with program algebra. These techniques were introduced
in [2] and [1], respectively. (The single thread version of thread algebra is named
polarized process algebra, see [1]). This leads to the preliminary conclusion that
a fair amount of phenomena in concurrent processing may be understood and
formalized along those lines, in particular phenomena where non-determinism
is immaterial. It seems to be the case that many characteristic aspects of grid
computing can be analyzed using the paradigm of strategic interleaving as put
forward in [2]. That means that instead of taking a combinatorial explosion of
different runs into account, a limited portfolio of interleaving strategies may
be used to characterize vital phenomena, including issues concerning thread
mobility and access control. Deterministic strategies inherit from planning theory
as discussed in [6].

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1097–1106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1098 J.A. Bergstra and A. Ponse

It appears that detecting illegal resource access is formally very similar to
the problem of virus detection as put forward by Cohen in 1984. There is a
vast amount of literature on virus detection, and opinions seem to differ wildly.
Many authors agree that malcode contains all others, and that both a virus and
a worm can replicate. Furthermore, a worm is more autonomous than a virus.
Some authors claim that a virus can only replicate as a consequence of actions
of users, and that sound education and awareness can protect users from acting
with such effect. So, a virus uses a user for its replication; that user may or may
not be a victim of the virus’ harmful action at the same time. Unclear is if each
of these users must be a human one or if background processes in a machine can
also be “used” as users.

This paper focuses on virus detection and discusses two fundamental ques-
tions. First, we consider Cohen’s result about the impossibility of a uniform
algorithm (or tool) for detecting (forecasting) viruses in programs [5]. This is
done in the setting of the program algebra PGA [1]. Then, we define a different
notion of testing — security hazard risk assessment — with which the occur-
rence of security hazards is decidable for a large class of program behaviors.
However, if divergence (the absence of halting) is considered also as a security
hazard, decidability is lost.

The paper is organized as follows: in Section 2 and 3 we introduce some basics
of program algebra and the setting in which we will analyze code security risks.
Then, in Section 4, we consider Cohen’s impossibility result and some related
issues. In Section 5 we introduce our notion of security hazard risk assessment.
The paper is ended with some conclusions.

2 Basics of Program Algebra

Program algebra (PGA, [1]) provides a very simple notation for sequential pro-
grams and a setting in which programs can be systematically analyzed and
mapped onto behaviors. Program behaviors are modeled in thread algebra. Fi-
nally, we consider some other program notations based on program algebra.

The Program Algebra PGA. In PGA we consider basic instructions a, b, ... given
by some collection B. Furthermore, for each a ∈ B there is a positive test in-
struction +a and a negative test instruction −a. The control instructions are
termination, notation !, and (relative) jump instructions #k (k ∈ N). Program
expressions in PGA, or shortly PGA-programs, have the following syntax:

– each PGA-instruction is a PGA-program,
– if X and Y are PGA-programs, so is their concatenation X;Y ,
– if X is a PGA-program, so is its repetition Xω.

The behavior associated with the execution of PGA-programs is explained below.
Instruction congruence of programs has a simple axiomatization, given in Table 1.
The axioms PGA1-4 imply Unfolding, i.e. the law Xω = X;Xω, and PGA2-4
may be replaced by Unfolding and the proof rule Y = X;Y ⇒ Y = Xω.



A Bypass of Cohen’s Impossibility Result 1099

Table 1. Axioms for PGA’s instruction sequence congruence

(X; Y ); Z = X; (Y ; Z) (PGA1)
(Xn)ω = Xω for n > 0 (PGA2)

Xω; Y = Xω (PGA3)
(X; Y )ω = X; (Y ; X)ω (PGA4)

Table 2. Equations for behavior extraction on PGA

|!| = S
|a| = a ◦ D

|+a| = a ◦ D
|−a| = a ◦ D

|!; X| = S
|a; X| = a ◦ |X|

|+a; X| = |X| � a � |#2; X|
|−a; X| = |#2; X| � a � |X|

|#k| = D
|#0; X| = D
|#1; X| = |X|

|#k+2; u| = D
|#k+2; u; X| = |#k+1; X|

Thread Algebra. Execution of PGA-programs is modeled in thread algebra. Given
B, now considered as a collection of actions, it is assumed that upon execution
each action generates a Boolean reply (true or false). Now, behavior is specified
in thread algebra by means of the following constants and operations:

Termination. The constant S represents (successful) termination.

Inaction. The constant D represents the situation in which no subsequent behav-
ior is possible. (Sometimes the special thread D is called deadlock or divergence.)

Post Conditional Composition. For each action a ∈ B and threads P and Q, the
post conditional composition P � a � Q describes the thread that first executes
action a, and continues with P if true was generated, and Q otherwise.

Action Prefix. For a ∈ B and thread P , the action prefix a ◦ P describes the
thread that first executes a and then continues with P , irrespective of the
Boolean reply. Action prefix is a special case of post conditional composition:
a ◦ P = P � a � P .

Behavior Extraction: From Program Algebra to Thread Algebra. The behavior
extraction operator |X| assigns a behavior to program X. Instruction sequence
equivalent programs have of course the same behavior. Behavior extraction is
defined by the thirteen equations in Table 2, where a ∈ B and u is a PGA-
instruction.

Some examples: |(#0)ω| = |#0; (#0)ω| = D and, further taking action prefix
to bind stronger than post conditional composition,

|−a; b; c| = |#2; b; c| � a � |b; c|
= |#1; c| � a � b ◦ |c|
= |c| � a � b ◦ c ◦ D
= c ◦ D � a � b ◦ c ◦ D.



1100 J.A. Bergstra and A. Ponse

In some cases, these equations can be applied (from left to right) without ever
generating any behavior, e.g.,

|(#1)ω| = |#1; (#1)ω| = |(#1)ω| = . . .

|(#2; a)ω| = |#2; a; (#2; a)ω| = |#1; (#2; a)ω| = |(#2; a)ω| = . . .

In such cases, the extracted behavior is defined as the thread D.
It is also possible that behavioral extraction yields an infinite recursion, e.g.,

|aω| = |a; aω| = a ◦ |aω|,
and therefore, |aω| = a ◦ |aω| = a ◦ a ◦ |aω| = a ◦ a ◦ a ◦ |aω| · · ·. In such cases the
behavior of X is infinite, and can be represented by a finite number of behavioral
equations, e.g., |(a; +b;#3;−b;#4)ω| = P and

P = a ◦ (P � b � Q),
Q = P � b � Q.

The program notations PGLB and PGLC. The program notation PGLB is ob-
tained from PGA by adding backwards jumps \#k and leaving out the repeti-
tion operator. For example, the thread defined by PGLB-program +a; \#1;+b
behaves as (+a;#4;+b;#0;#0)ω, i.e., as P in P = P � a � b ◦ D.

This is defined with help of a projection function pglb2pga that translates
PGLB-programs in a context-dependent fashion. For a PGLB-program X we
write |X|pglb = |pglb2pga(X)| (see further [1]).

The language PGLC is the variant of PGLB in which termination is modeled
implicitly: a program terminates after its last instruction has been executed and
that instruction was no jump into the program, or it terminates after a jump
outside the program. The termination instruction ! is not present in PGLC. For
example,

|+a;#2; \#2;+b|pglc = |+a;#2; \#2;+b; !; !|pglb

= |(+a;#2;#6;+b; !; !;#0;#0)ω|
= P

for P = b ◦ S � a � P (see [1] for precise definitions of |X|pglc and |Y |pglb.)

3 Detecting Access to a Forbidden Resource

In this section we introduce the setting in which we will analyze code security
risks. We now consider a thread algebra with actions in “focus-method” notation,
i.e., actions of the form f.m where f is the focus and m the method. A forbidden
resource is a resource that may not be accessed by threads of ordinary security
clearance. A focus containing a forbidden resource is called a high risk focus.
The state of affairs in which a thread plans to access a forbidden resource is
called a security hazard.



A Bypass of Cohen’s Impossibility Result 1101

Let P be some thread that uses communication with the following typical
resources He, Hf and Hg:

P
e−−→ He (external focus)

f ↓ ↘ g Hg (low risk focus, no security hazard)

Hf (high risk focus, security risk)

The reply of a basic instruction e.m will be determined by the resource He. Like-
wise, instructions with focus f or g communicate with Hf and Hg, respectively.

Now, execution is secure if no f.m is called until termination or first call of
some e.m (to the external focus).

A thread can have low risk actions (secure execution expected) and high risk
actions (insecure execution expected). For example,

S — a low risk behavior (no security hazard),
f.m ◦ S — a high risk behavior (security hazard),
f.m ◦ S � g.m � g.m ◦ S — risk depends on Hg (potential security hazard).

Suppose in some network, a site C receives the description p in some pro-
gramming language PGLX of a thread P = |p|pglx to be run at C. Then

P � sctest.ok � S

formalizes a way for C to run P only if its security has been cleared: the test
action sctest.ok (security clearance test) models this type of testing, yielding
true if P is secure. In terms of the above modeling, such type of testing may be
performed by a secure resource like Hg with focus sctest (thus Hsctest).

Alternatively, one can consider a test resource Hasctest (alternative security
clearance test) which produces true in

P � asctest.ok � S

if P has a security hazard. This resource may be implemented by always return-
ing false. Consequently, the better option is to require that if in

P � asctest.ok � Q

the test asctest.ok yields false, the security of thread Q is guaranteed. In the next
section we show that such a seemingly natural test action is self-contradictory; in
Section 5 we propose a variant of sctest.ok that is not manifestly self-contradictory.



1102 J.A. Bergstra and A. Ponse

4 Security Hazard Forecasting

In this section we consider a security hazard forecasting tool and establish a
formal correspondence between security hazard detection (a thread plans to
access a forbidden resource) and the virus detection problem put forward by
Fred Cohen in 1984.

Let SHFT be a Security Hazard Forecasting Tool with focus shft, thus a
resource that forecasts a security hazard. As assumed earlier, a security hazard
is in our simple setting a call (action) f.m for some m. Furthermore, let shft.test
be the test that uses SHFT in the following way: in

P � shft.test � Q,

the action shft.test returns true if P has a security hazard, and false if Q has no
security hazard.

Theorem 1. A Security Hazard Forecasting Tool cannot exist.

Proof. Consider S � shft.test � f.m ◦ S. If the test action shft.test returns false,
then f.m ◦ S will be performed, which is a security hazard; if true is returned,
then S is performed and no security hazard arises. �

The particular thread used in the proof above illustrates the impossibility of
predicting that a thread (or a program) contains a virus, a general phenomenon
that was described in Cohen’s famous 1984-paper [5] and that will be further
referred to as Cohen’s impossibility result. For the sake of completeness, we recall
Cohen’s line of reasoning. In the pseudo-code below (taken from [5]), D is a
decision procedure that determines whether a program is (contains) a virus,
~D stands for its negation, and next labels the remainder of some (innocent)
program:

program contradictory-virus:=
{1234567;

subroutine infect-executable:=
{loop:file = get-random-executable-file;
if first-line-of-file = 1234567 then goto loop;
prepend virus to file;
}

subroutine do-damage:=
{whatever damage is to be done}

subroutine trigger-pulled:=
{return true if some condition holds}



A Bypass of Cohen’s Impossibility Result 1103

{if ~D(contradictory-virus) then
{infect-executable;
if trigger-pulled then do-damage;
}

goto next;
}
}

In PGLC, the program contradictory-virus can be represented by the follow-
ing term CV:

CV = #8; Pre;#3;−shft.test(CV); \#8; Next

where Pre abbreviates the six instructions that model the security hazard:

Pre = file:=get-random-executable-file;
+first-line-of-file=1234567; \#2; prepend;
+trigger-pulled; do-damage

and Next models the remainder of the program. Applying behavior extraction
on this program yields

|CV|pglc = |Next|pglc � shft.test(CV) � |Pre;#3;−shft.test(CV); \#8; Next|pglc

= |Next|pglc � shft.test(CV) � |Pre; Next|pglc

So, S � shft.test� f.m◦S is indeed a faithful characterization of Cohen’s impos-
sibility result.

We note that even with the aid of universal computational power, the problem
whether a thread has a security hazard (issues an f.m call) is undecidable. This
problem can be seen as a variant of the unsolvability of the Halting Problem,
i.e., Turing’s impossibility result.

Cohen’s impossibility result needs the notion of a secure run (no security
hazards), as well as a secure program or behavior (a thread that will have secure
runs only). So, Cohen’s impossibility result emerges if:

– secure runs exist,
– secure threads exist,
– there is a full match between these two,
– forecasting is possible.

Now there is a difficulty with forecasting: if shft.test returns false one hopes
to proceed in such a way that the security hazard is avoided (why else do the
test?). But that is not sound as was shown above. Thus we conclude: this type of
security hazard forecasting is a problematic idea for the assessment of security
hazards.

main-program:=



1104 J.A. Bergstra and A. Ponse

5 Security Hazard Risk Assessment

In this section we introduce a security hazard risk assessment tool, taking into
account the above-mentioned considerations. This tool turns out to be a much
more plausible modeling of testing the occurrence of security hazards. However,
if we add divergence (the absence of halting) as a security risk, the tool can not
exist.

The following security hazard risk assessment tool SHRAT with focus shrat
may be conceived of as assessing a security hazard risk. In

P � shrat.ok � Q

the test action shrat.ok returns true if P is secure, and false if P is insecure (then
P is avoided and Q is done instead). This is a more rational test than shft.test
because it tests only a single thread (its left argument). Using an external focus
e, the test action shrat.ok in

(P1 � e.m � P2) � shrat.ok � Q

yields true because e.m is seen as an action that is beyond control of security
hazard risk assessment.

For testing shrat.ok actions we can employ backtracking: at P � shrat.ok�Q,

1. Temporarily remove thread (or loaded program),
2. Place P instead

3. Execute1 until

⎧⎨
⎩

S or D or e.m ⇒ backtrack if possible, otherwise true,
f.m ⇒ backtrack if possible, otherwise false,
P ′ � shrat.ok � Q′ ⇒ restart 1 with P ′ � shrat.ok � Q′,

The backtracking in this algorithm may require the testing of threads that are
no direct subthreads of the original one, e.g., in

(P1 � shrat.ok � P2) � shrat.ok � Q

first the leftmost shrat.ok action is evaluated. If this yields false (so P1 contains
a security hazard), then P2 � shrat.ok � Q is evaluated. For finite threads this is
a terminating procedure and not problematic.

Evaluation of shrat.ok actions can be extended to a larger class of threads.
A regular thread P1 over B is defined by a finite system of equations over P =
P1, ..., Pn (for some n ≥ 1) of the following form:

P1 = F1(P )
...

Pn = Fn(P )

with Fi(P ) ::= S | D | Pi,1�ai�Pi,2 for Pi,j ∈ {P1, ..., Pn} and ai ∈ B. Consider
P1 � shrat.ok � Q, thus F1(P ) � shrat.ok � Q. Again we can decide the outcome

1 Here “execute” means that upon a test action a, both branches should be inspected.



A Bypass of Cohen’s Impossibility Result 1105

of the test action shrat.ok by doing a finite number of substitutions, linear in n.
(Loops and divergence are not considered security hazards.) This leads to the
following result:

Theorem 2. For regular threads, the tool SHRAT is possible.

We give a simple example: if

P1 = P2 � a � P1

P2 = P1 � f.m � P1 (= f.m ◦ P1),

then shrat.ok in (P2 � a � P1) � shrat.ok � Q yields true if it does in both
P1 � shrat.ok � Q and P2 � shrat.ok � Q. Obviously, it does not in the latter
case, so this thread equals Q. A slightly more complex example (including the
evaluation of the various shrat.ok tests):

P1 = P2 � shrat.ok � S (true)
P2 = P3 � a � P4

P3 = P2 � shrat.ok � P6 (true)
P4 = P7 � shrat.ok � P8 (false)
P5 = a ◦ P2

P6 = f.m ◦ P2

P7 = f.m ◦ P2

P8 = a ◦ S.

Omitting the shrat.ok-tests, thread P1 has behavior P as defined in

P = a ◦ P � a � a ◦ S.

Thus, evaluation of the reply of shrat.ok is decidable for regular threads. We
conclude that Cohen’s impossibility result does not apply in this case; apparently,
that result is about forecasting. Of course, the decidability of the evaluation of
shrat.ok actions is lost if a Turing Tape is used as a resource.

Divergence Risk Assessment. If we consider divergence as a security hazard, say
by focus drat and resource DRAT (a Divergence Risk Assessment Tool), we have
a totally different situation: in the thread defined by

P = P � drat.ok � S

we then obviously want that the test action drat.ok returns the answer false. It is
well-known that in general, DRAT cannot exist, as it is equivalent with solving
the Halting Problem.

Now, involving divergence as a security hazard in shrat.ok actions, we also
find that in

P = P � shrat.ok � f.m ◦ S

the test should yield false (otherwise divergence). However, this yields a problem:
in

P = P � shrat.ok � S

this goes wrong: the halting problem (Turing’s impossibility result) wins, and
hence the backtracking model is not suitable anymore.



1106 J.A. Bergstra and A. Ponse

6 Conclusions

In [3], we provide a formal treatment of the (potential) interaction of a thread
P with resources He, Hf and Hg. Notation for that situation is

((P/eHe)/fHf )/gHg or equivalently, P/eHe/fHf/gHg.

In the present paper we considered all communications of P with a resource Hh

implicit and wrote P instead. In other words, an expression like P � h.m � Q as
occurring in this paper is considered to abbreviate

(P � h.m � Q)/hHh,

and this type of interaction is formalized in [3]. In [4] we provide a process
algebraic semantics of threads (P � h.m � Q)/hHh.

In [7] it is stated that in order to constitute a grid, a network must implement
the Globus GRAM protocol. This is a far more constrained definition than the
concept based definitions that occur in [8]. We do not use that characterization
because it is too complex for a brief theoretical paper.

How do our results relate to GRAM? Secure resource allocation on the grid
requires an underlying theoretical basis. What we put forward is that under a
very simple definition of a resource allocation risk, Cohen’s impossibility result
need not constrain the options for automatic detection as much as one might
think. On the contrary, if security risk avoidance is adapted as a strategy, Cohen’s
impossibility result disappears.

References

1. J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal of
Logic and Algebraic Programming, 51(2):125–156, 2002.

2. J.A. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving. Com-
puting Science Report 04-35, Eindhoven University of Technology, Department of
Mathematics and Computing Science, November 2004.

3. J.A. Bergstra and A. Ponse. Combining programs and state machines. Journal of
Logic and Algebraic Programming, 51(2):175–192, 2002.

4. J.A. Bergstra and A. Ponse. Execution architectures for program algebra. Logic
Group Preprint Series 230, Dept. of Philosophy, Utrecht University, 2004.

5. F. Cohen. Computer viruses - theory and experiments, 1984. http://vx.netlux.
org/lib/afc01.html. Version including some corrections and references: Computers
& Security 6(1): 22-35, 1987.

6. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, 1:25-39, 2003.

7. S. Hwang and C. Kesselman. A flexible framework for fault tolerance in the grid.
Journal of Grid Computing, 1(3):251-272, 2003.

8. Zs. Nemeth and V. Sunderam. Characterizing grids: attributes, definitions, and
formalisms. Journal of Grid Computing, 1:9-23, 2003.



Mapping Workflows onto Grid Resources
Within an SLA Context

Dang Minh Quan and Odej Kao

Department of Computer Science, University of Paderborn, Germany

Abstract. The mapping of workflows on Grid resources differs from
mapping a single job, as dependencies between the subjobs has to be
considered and resolved. This is a major task, if underlying Service Level
Agreements (SLAs) have to be satisfied, which define the deadline for the
entire workflow but also allow flexibility while assigning the subjobs to
resources. Therefore, new requirements regarding selection of optimal re-
source destination and satisfying multiple time constraints are important
issues, which are not completely addressed by existing methods.

This paper presents a method which performs an efficient and precise
assignment of workflow subjobs to Grid resources with respect to SLAs
and subjob dependencies. The quality of the created results is evaluated
with a number of experiments and compared to the results of existing
planning tools.

1 Introduction

The mapping of jobs to suitable resources is one of the core tasks in Grid Com-
puting. A substantial research in this area led to a number of methods, which
allow the specification of job requirements, the description of available resources
and the matching in order to find an appropriate execution platform [1, 2, 3].
However, the majority of the research is related to the mapping of singular jobs,
which do not exhibit dependencies to other jobs regarding input/output data.
The mapping of workflows, where a single job is divided into several subjobs, is
the next research step. Demands for Grid-based workflows result from many sci-
entific and business application, where data or suitable resources are distributed
over multiple administrative domains. Thus, supporting workflows in Grid en-
vironments increases the applicability of Grid Computing for a large number of
processes.

An intuitive approach of treating each subjob as an independent job and its
mapping with the traditional methods reaches the limits in case of SLA-based
processing. An SLA defines the start and end time of the workflow execution,
which has to be considered within the execution chain. Thus, the subjobs has
to be mapped in a way, that the final workflow deadline will be reached, regard-
less of the actual execution resource for the subjobs and the time needed for
the transmission of output/input data between the subjobs. Thereby, two main
problems arise. Firstly, for each subjob involved in the workflow the start and

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1107–1116, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



1108 D.M. Quan and O. Kao

end time has to be computed and verified with respect to the global deadline.
According to results the corresponding time slots on the selected resources have
to be reserved. For this purpose we assume that the user provides the maximal
runtime of each subjob and that the underlying resource management system
(RMS) supports advance reservations such as CCS [5]. Queuing-based RMS are
not suitable, as no information about the starting time is provided. Secondly,
the selection of the Grid resources should be based on a minimal cost for the
resource usage. For this purpose well-known models such as the flexible job shop
scheduling [4, 7] are applied, which minimize the runtime of the workflow. In this
paper, time is computed in slots, where each slot corresponds to a-priori defined
time period. Reserved resources include number of CPUs, required memory size,
availability of experts etc. An extension to other devices, software licenses, and
other related resources is straightforward.

This paper is organized as follows. Section 2 presents a formal problem state-
ment. Section 3 and 4 describe the related work and the proposed algorithm
respectively. Empirical measurements and comparisons with existing planning
methods are subject of Section 5.

2 Formal Problem Statement

The formal specification of the described problem includes following elements:

– Let K be the set of Grid RMSs. This set includes a finite number of RMSs
which provide static information about controlled resources and the current
reservations/assignments.

– Let S be the set of subjobs in a given workflow including all subjobs with
the current resource and deadline requirements.

– Let E be the set of connections (edges) in the workflow, which express the
dependency between the subjobs and the necessity for data transfers between
the jobs.

– Let Ti be the set of time slots for the subjob Si, Si ∈ S.
– Let Ki be the set of resource candidates of subjob Si . This set includes all

resources which can run subjob Si, Ki ∈ K.

Based on the given input, a feasible and possibly optimal solution is sought,
which allows the most efficient mapping of the workflow in a Grid environment
with respect to the given global deadline. The required solution is a set defined as

Subjob 0

Subjob 5

Subjob 4

Subjob 3

Subjob 6Subjob 2Subjob 1
800 700

700

500 300

200

200

300

900

200

Fig. 1. A sample workflow

Table 1. RMSs resource reservation

ID ID hpc CPUs mem exp start end

31 2 128 256000 8 0 1000000

23 0 128 256000 9 0 1000000

30 1 128 256000 6 0 1000000



Mapping Workflows onto Grid Resources Within an SLA Context 1109

Table 2. Resource requirements for sub-
jobs

Sj ID CPU mem exp runtime earliest latest

0 51 59700 1 21 5 35

1 62 130030 3 45 27 57

2 78 142887 4 13 57 87

3 128 112933 4 34 28 66

4 125 171354 2 21 28 65

5 104 97560 3 42 27 62

6 45 117883 1 55 71 101

Table 3. Connections

From To Transfer time Data

0 1 1 636

0 3 2 638

0 4 2 892

0 5 1 192

1 2 2 401

2 6 1 300

3 6 1 200

4 6 2 200

5 6 1 271

R = {(Si, kij , til)|Si ∈ S, kij ∈ Ki, til ∈ Ti} (1)

A feasible solution must satisfy following conditions:

– For all Ki �= 0 at least one RMS exists which can satisfy all resource require-
ments for each subjob.

– The earliest start time slot of the subjob Si ≤ til ≤ the latest start time slot
of Si. Each subjob must have its start time slot in the valid period.

– The dependencies of the subjobs are resolved and the execution order re-
mains unchanged.

– Each RMS provides a profile of currently available resources and can run
many subjobs of a single flow both sequentially and parallel. Those subjobs
which run on the same RMS form a profile of resource requirement. With
each RMS kij running subjobs of the Grid workflow, with each time slot in
the profile of available resources and profile of resource requirements, the
number of available resources must be larger than the resource requirement.

In the next phase the feasible solution with the lowest cost is sought. The cost
of a Grid workflow in this specific example is defined as a sum of four factors:
compute time, memory usage, cost of using experts knowledge and finally time
required for transferring data between the involved resources. If two sequent
subjobs run on the same RMS, the cost of transferring data from the previous
subjob to the later subjob neglected.

An example of a specific instance of the described problem is presented in
Figure 1 and Tables 1-3. Figure 1 visualizes the sequence of subjobs, the corre-
sponding parameter are summarized in Table 3, where the data to be transferred
between subjobs as well as the estimated duration of each task is presented. Ta-
ble 2 describes the resource requirements and the range of valid start time slots
of each subjob. Information about the available resources of the three involved
RMS, which will execute the flow, is presented in Table 1.

Considering the RMS’s ability to run several subjobs in parallel and the
evaluation of resource profiles increases the complexity of the flexible job shop



1110 D.M. Quan and O. Kao

3 Related Work

Cao et al. presented an algorithm that maps each subjob separately on individual
Grid resources [2]. The algorithm processes one subjob at a time, schedules it to
a suitable RMS with start time slot not conflicting the dependency of the flow.
The selection of the destination resources is optimised with respect to a minimal
completion time. When applying this strategy to the specified problem, each
subjob will be assigned separately to the cheapest feasible RMS. This strategy
allows fast computation of a feasible schedule, but it does not consider the entire
workflow and the dependencies between the subjobs.

The mapping of Grid workflows onto Grid resources based on existing plan-
ning technology is presented in [1]. This work focuses on coding the problem
to be compatible with the input format of specific planning systems and thus
transferring the mapping problem to a planning problem. Although this is a
flexible way to gain different destinations, significant disadvantages regarding
the time-intensive computation, long response times and the missing considera-
tion of Grid-specific constraints appeared. The latter is the main cause that the
suggested solutions often do not express the expected quality.

The described problem can also be seen as a special case of the well known
job shop scheduling problem [4, 7]. For solving this problem, two main methods
– complete and incomplete method – exist. A complete method explores sys-
tematically the entire search space, while the incomplete (non-exact) method
examines as rapidly as possible a large number of points according to selective
or random strategy. Local search is one of the most prominent examples for this
approach, which is realized by a number of methods such as Tabu Search [11, 12],
Simulated Annealing [8], GA [6] etc. However, with the appearance of resource
profiles, the evaluation at each step in local search is very hard. If the problem
is big with highly flexible variable, the classical searching algorithm need very
long time to find a good solution.

4 Planning Algorithm for Workflows

The proposed algorithm for mapping workflows on Grid resources uses Tabu
search to find the best possible assignment of subjobs to resources. In order to
shorten the computation time caused by the high number of resource profiles to
be analysed and by the flexibility while determining start and end times for the
subjobs, several techniques for reducing the search space are introduced.

The core algorithm requires a specification of the workflow and subjob re-
quirements as well as the description of the available resources as input. This
information is necessary in order to resolve the dependencies in the workflow
and is stored in a file. The properties of the involved RMS are contained in a
database.

scheduling problem. It can be shown easily that the optimal mapping of Grid-
based workflows as described above is a NP hard problem.



Mapping Workflows onto Grid Resources Within an SLA Context 1111

This input information is processed according to the following algorithm
steps:

1. Based on the description in the database, all RMS are selected, which fulfil
the requirements of at least one subjob.

2. Computation of the earliest start time and latest start time for each subjob
by analysing the input workflow with traditional graph techniques.

3. Removing requirement bottlenecks. This task aims to detect bottlenecks
with a large number of resource requirements, which can reduce the possible
start/end times of a subjob. Based on this information subjobs are moved
to other sites with more available resources in order to gain a longer time
span for the positioning of the subjobs in the workflow.

4. Definition of the solution space by grouping all RMS candidates, which have
enough available resources to start the subjobs within the determined slack
time and to run the subjob until it is completed. This task is performed
by establishing a connection with the site and retrieving the current and
planned schedule.

5. The gained search space is evaluated with respect of the contained number of
feasible solutions (large or small number of possible solutions). Subsequently,
an initial solution is created.

6. Starting with the initial solution, a Tabu search is applied in order to in-
crease the quality of the solution and to find the best possible and feasible
assignment.

In following the individual algorithm steps are described in detail.

4.1 Resolving Requirement Bottlenecks

The generated requirement and resource profiles show those time slots, where
a large number of resources is required, but not available. A sample of such
situation is shown in Figure 2(a) on an example of required and available CPU
instances. At each possible time slot, the total number of available CPUs over all
involved RMS and the total number of required CPU as sum of the requirements
of all subjobs possibly running in this time slot are computed. The contribution
of each subjob in the profile is computed from the earliest start time to latest
possible deadline. Figure 2(a) shows that at period 28-55 or 78-84 the number
of required CPUs is larger than in other profile periods. This leads to a signifi-
cantly reduced number of feasible start times and thus reduces the probability
for finding an optimal solution or even a good solution. Therefore, the peak
requirements have to be reduced by moving selected jobs to other time slots.
Furthermore, by reducing the number of parallel running jobs on the same site,
the probability for cost-effective execution of two subsequent jobs on the same
site with a low communication effort increases.

For resolving the requirement bottleneck the profiles of the required resources
and the available resources are compared as shown in Figure 2(b). At each time
slot, we define J as the set of m subjobs running at that time slot and R as the



1112 D.M. Quan and O. Kao

CPU requirement profile

5 27 84 99

52
45

166

542
497
471

t

55 71 155

384
CPU free

(a) Relation between available and required CPUs

5 25 56 72 86 100

1
0.9
0.8

0.73

0.08

155

(b) Rate profile of the
sample

Fig. 2. Profiles of the sample

rate

0 t1 t2

t

sj1

sj22

rate

0 t1 t2

t

sj1
sj2

(a) Moving subjobs

rate

0 t1 t2

t

sj1

sj2

rate

0 t1 t2

t

sj1 sj2

(b) Adjusting subjobs

Fig. 3. Removing possible requirement bottlenecks

set of n possible resource candidates for J . Subsequently, following measures can
be computed.

TotalCPUrequire :=
∑

i=1,m Ji.CPUreq with Ji ∈ J (2)
TotalMEMrequire :=

∑
i=1,m Ji.memreq with Ji ∈ J (3)

TotalEXPrequire :=
∑

i=1,m Ji.EXPreq with Ji ∈ J (4)

TotalCPUavail :=
∑

j=1,n Rj .CPUavail
mj

m with Ji ∈ J, mj ≤ m (5)

Totalmemavail :=
∑

j=1,n Rj .memavail
mj

m with Ji ∈ J, mj ≤ m (6)

TotalEXPavail :=
∑

j=1,n Rj .expavail
mj

m with Ji ∈ J, mj ≤ m (7)

The parameter Ji.CPUreq, Ji.memreq, and Ji.EXPreq represent the number
of required CPUs, the size of needed memory (in MB), the required experts for
supervision of the of subjob Ji respectively. Finally, mj is the number of subjobs
which Rj can run simultaneously.

rate :=
TotalCPUrequire

TotalCPUavail
+ Totalmemrequire

Totalmemavail
+ TotalEXPrequire

TotalEXPavail

3
(8)

The removal of the requirement peak is performed by adjusting the start
time slot or the end time slot of the subjobs and thus by moving out of the



Mapping Workflows onto Grid Resources Within an SLA Context 1113

bottleneck area. One possible solution is shown in Figure 3(a), where either the
latest finished time of subjob1 is set to t1 or the earliest start time of subjob2 is
set to t2. The second way is to adjust both subjobs simultaneously as depicted
in Figure 3(b). A necessary prerequisite here is that after adjusting, the latest
completion time - earliest start time is larger than the total runtime.

4.2 Initial Solution

The algorithm for determining the initial solution is based on a fail-first heuristic
and the forward checking algorithm [10]. According to the Greedy strategy for
each subjob under investigation, an RMS with the minimal cost is selected and
assigned as described in the following four steps:

1. Determine the subjob in the workflow with the smallest number of RMS
candidates, which can execute the subjob according to the provided specifi-
cation.

2. If the set with RMS candidates for this job is empty, than assign one ran-
domly selected RMS and mark the assignment as conflict. Otherwise, assign
the RMS with the minimal cost to that subjob.

3. Repeat the process with the next subjob, until all subjobs are assigned.
4. Resolve the marked conflicts.

In case of conflicts, the Tabu search is modified in order to find a conflict-free
and thus a feasible solution. The application of the Tabu search for finding at
least one feasible solution is performed analogously with the one described in
Section 4.3. Solely the cost function has to be replaced by function based on the
number of remaining subjob conflicts in the workflow. If this is possible, the first
found feasible solution is declared as initial solution and the mapping process
proceeds with the Tabu search for the best solution. Otherwise the owner of the
workflow is notified, that the workflow can not be executed according to the
given conditions and rejected until new specification is submitted.

4.3 Tabu Search

The Tabu search is well-known method for finding feasible and best possible
solutions for NP hard problems. In order to adapt Tabu search to the problem
of workflow mapping, following parameters are set. The configuration Rt ∈ R is
any feasible assignment of the set R = {(Si, kij , til)|Si ∈ S, kij ∈ Ki, til ∈ Ti}.
However, at this step for each Si only one til is available leading to kij as a
single variable factor. In the next step the neighbourhood to be evaluated is
determined. Let Rt be a feasible configuration in R, then the neighbourhood
N(Rt) consists of all R′

t, where R′
t is a feasible configuration and Rt differs from

R′
t at a single variable. The considered cost function is computed as stated in

Section 2.
Subsequently, the created configuration is evaluated. In every iteration the

most suitable candidate in the neighbourhood N(Rt) is selected and the feasibil-
ity of the new configuration is checked. This is a compute-intensive step, as the



1114 D.M. Quan and O. Kao

resource and job profiles (see Figure 2) have to be compared before determining
the total processing cost. The Tabu tenure goes with each instance of resource
in the solution space, thus after each move, the solution space is scanned and
the Tabu list is updated. In order to consider very promising configurations, a
simple aspiration criterion is applied. The Tabu status of a move is removed if
the move leads to the solution with the lower cost than the best configuration
found so far. The pseudo-code of the Tabu search algorithm is found in following:

begin {
Get initial solution from previous step
while(num_move < max){

Select the best configuration from the current neighbourhood
Update the Tabu list
if (cost( ) > cost( ) )

<---
num_move+=1 }}

5 Performance Evaluation

Planning systems emerged as an effective and power tool for mapping Grid work-
flows to Grid resources[1]. Therefore, a sample planning-based method will be
used as a basis for the comparison of the solution quality. A suitable data mod-
els were produced and given as input to a planning system and to the proposed
algorithm. The planning method was selected from the list of systems, which
participated in the international AI planning contests. Preliminary evaluations
showed that solely Metric-FF [9] – well-known planner with very high perfor-
mance – can handle fully the required Planning Data Description Language
(PDDL 2.1) [13] and can solve the workflow mapping problem.

The hardware used for the experiments is rather standard and simple (Pen-
tium 4 2,8Ghz, 1GB RAM, Linux Redhat 9.0). All necessary information about
the resource requirements and resource specifications/reservations used in the ex-
periments are on the web site wwwcs.upb.de/cs/ag-kao/en/persons/dang minh/
experiment1.html.

The goal of the experiment is to measure the feasibility of the solution, its
cost and the time needed for the computation. For this purpose three different
scenarios with increasing complexity level were analysed. The performance mea-
surements started with a low-level experiment and a workflow with 7 subjobs
and 3 RMSs as shown in Section 2. The total number of time slots is 138. The
problem is coded in PDDL 2.1 and run using a simplified algorithm, where the
feasibility check of resources is performed only at the start slot and the end slot
of each subjob. The result of this experiment is presented in Table 4.

A second experiment is based on a Grid workflow presented in Figure 4,
which includes 10 subjobs, 12 RMSs and 40 time slots. The results are presented
in Table 5, where faster computation and slightly lower cost of the solution by
the proposed algorithm were observed. Moreover, a significant difference in the



Mapping Workflows onto Grid Resources Within an SLA Context 1115

Table 4. Results of the simple level experiment

Metric-FF New method

Subjob RMS TS start RMS TS start

0 RMS0 35 RMS2 5

1 RMS1 57 RMS2 27

2 RMS1 87 RMS2 57

3 RMS0 66 RMS1 28

4 RMS2 65 RMS1 65

5 RMS0 28 RMS0 62

6 RMS0 101 RMS2 101

Runtime 6.33 sec < 1 sec

Cost 171343.52 152870.61

Subjob 0

Subjob 5

Subjob 4

Subjob 1

Subjob 9Subjob 7Subjob 3
97 97

196

90 89

99

85

84

96

193

Subjob 2 Subjob 6

Subjob 8
292

89

277

197 189

Fig. 4. Intermediate level flow

Table 5. Intermediate level flow

Metric-FF New Method

Subjob RMS Start RMS Start

0 RMS5 14 RMS1 14

1 RMS0 36 RMS1 34

2 RMS0 33 RMS1 29

3 RMS5 34 RMS1 32

4 RMS5 21 RMS1 20

5 RMS0 21 RMS1 21

6 RMS3 40 RMS2 35

7 RMS0 37 RMS1 35

8 RMS0 32 RMS1 32

9 RMS0 43 RMS1 43

Runtime 67.13 sec < 1 sec

Cost 38802.96 38615

required memory space was noticed, as Metric FF used about 500MB for the
computation.

Finally, the last model contains 20 randomly selected jobs together with
randomly selected requirements for CPU, memory, etc. Unfortunately, it was
not possible to find a feasible solution with Metric-FF, as the existing memory
was not sufficient while the proposed algorithm created a solution in a less than
a second.

6 Conclusion

This paper presented a method which performs an efficient and precise assign-
ment of workflow subjobs to Grid resources with respect to SLAs defined dead-



1116 D.M. Quan and O. Kao

proposed algorithm creates solution of equal or better quality than well-known
planning system Metric-FF and needs significantly shorter computation time
and less main memory. The latter is a decisive factor for the applicability of the
method in real environments, because large scale workflows can be planned and
assigned efficiently.

Future work sets a strong focus on the network transfer rates, as the transfer
time has a major impact on the possible starting and ending time slots for every
subjob. If it is possible to predict the network performance, the planning process
and the required reservations can be executed more precisely.

References

1. E. Deelman, J. Blythe, Y.Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda: Mapping Abstract Complex
Workflows onto Grid Environments, Journal of Grid Computing, Vol 1, no. 1, pp.
25-39, 2003.

2. J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd: GridFlow: Workflow Management for
Grid Computing, Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the
Grid, Tokyo, Japan, pp. 198-205, 2003.

3. R. Lovas, G. Dzsa, P. Kacsuk, N. Podhorszki, D. Drtos: Workflow Support for
Complex Grid Applications: Integrated and Portal Solutions, Proc. 2nd European
Across Grids Conference, Nicosia, Cyprus, 2004.

4. J. W. Barnes, J. B. Chambers : Flexible Job Shop Scheduling by Tabu
Search,Technical Report Series,Graduate Program in Operations Research and In-
dustrial Engineering. The University of Texas at Austin, ORP96-09, 1996.

5. M. Hovestadt, O. Kao, A. Keller, A. Streit: Scheduling in HPC Resource Manage-
ment Systems: Queuing vs. Planning, Proc. 9th Workshop on JSSPP at GGF8,
LNCS 2862, pp. 1-20, 2003.

6. I. Kacem, S. Hammadi, P. Borne: Approach by Localization and Multi-objective
Evolutionary Optimization for Flexible Job-Shop Scheduling Problems, IEEE
Transactions on Systems, Man, and Cybernetics. Part C, Vol 32. N1, pp. 1-13, 2002.

7. S. Dauzere-Peres, J. Roux, J.B. Lasserre: Multi-resource shop scheduling with
resource flexibility, European Journal of Operational Research, Vol 107, pp.
289-305, 1998.

8. N. Sadeh, Y. Nakakuki: Focused Simulated Annealing Search: An Application to
Job Shop Scheduling, Annals of Operations Research, Vol 60, pp. 77-103, 1996.

9. J. Hoffmann: Extending FF to Numerical State Variables, Proc. 15th European
Conference on Artificial Intelligence, Lyon, France, 2002.

10. V. Kumar: Algorithms for constraint-satisfaction problems: a survey, AI Magazine,
Vol 13 n.1, pp.32-44, 1992.

11. F. Glover: Tabu search Part I, ORSA Journal on Computing, pp. 190-206, 1989.
12. F. Glover: Tabu search Part II, ORSAJournal on Computing, pp. 4-32, 1990.
13. M. Fox, D. Long: PDDL2.1: An extension of PDDL for expressing temporal

planning domains, Journal of AI Research, Vol 20, pp. 61-124, 2003.

lines and subjob dependencies. The performance evaluation showed that the



iShare - Open Internet Sharing Built
on Peer-to-Peer and Web

Xiaojuan Ren and Rudolf Eigenmann

Purdue University, School of ECE,
West Lafayette, IN, 47907, USA
{xren, eigenman}@purdue.edu

Abstract. This paper presents design concepts and implementation
overview of an Internet-sharing system, iShare. iShare supports end users
as well as providers of Internet resources in disseminating, accessing and
using these resources, in a way that allows open participation. A fully
decentralized organization allows providers to simply post their resources
on any web page, imposing no restrictions on resources attributes, admin-
istrative rules, and access protocols. Underneath its user surface it em-
ploys peer-to-peer information dissemination, advanced resource match-
ing, open migration, and automatic service portal mechanisms. In ad-
dition to the qualitative comparison with related work, we evaluate the
system in terms its efficiency of resource discovery and job execution.

1 Introduction

Internet-sharing systems harness the rapidly growing, worldwide resources of
computer, network, and information systems. Advanced sharing technology bears
tremendous potential in creating synergy among the users – both providers and
end users – of machine platforms, networks, computer applications, software
services, and information. We envision that future end users will be able to
quickly learn about the availability of world-wide resources and to employ them
as if they were located nearby, without download, installation, or maintenance
effort. Providers of resources will be able to easily offer new software, hardware,
or data to the community. In doing so, they will be able to define their own rules
and create business or open source models, akin to today’s economic principles.

In this paper we present design concepts and implementation overview of
an Internet-sharing system, iShare1, which serves as a research platform in pur-
suit of this vision. iShare facilitates sharing of three types of resources: programs
(software tools, computational applications), machines (computers, devices), and
data (documents, data bases). While much technology exists today for the shar-
ing of data, the focus of iShare’s initial thrust is on technology for sharing ex-
ecutable programs (a.k.a. services – we will use the two terms interchangeably)
and their underlying compute platforms.

1 It is based upon work supported in part by the U. S. National Science Foundation
under Grants No. 9974976-EIA, 0103582-EIA, and 0429535-CCF.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1117–1127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1118 X. Ren and R. Eigenmann

iShare extends the concepts of the PUNCH [7, 6] network computing system,
which became operational in 1995 at Purdue University and has since served a
large user community (over 3000 users in 35 countries) in computational nan-
otechnology, computer architecture and parallel programming. Both iShare and
PUNCH have a strong end-user orientation. They 1) provide the means to dis-
seminate, access and use networked resources and 2) they populate the infras-
tructure with services for the community. This orientation distinguishes the sys-
tems from related work in areas such as Grid computing and Web services. While
these areas are pursuing goals similar to the original PUNCH project, their cur-
rent focus is on developing the underlying technology, programming support,
and standards for exploiting computational resources. iShare was motivated by
an observed limitation of PUNCH, which it shares with many related efforts:
populating the infrastructure with additional resources is limited by eligibility
requirements and administrative procedures. For example, machines may only be
added if they adopt certain administrative procedures; and programs may only
be added after they become “grid-enabled”. Furthermore, the new resources may
need to be registered in or approved by a central organization before they be-
come visible to the community. Removing these barriers would enable Internet
resources to be shared in a truly open and scalable manner.

iShare addresses these issues by taking an open publication approach, which
imposes no restrictions on participating resources. A web-posting mechanism
publishes new resources and a fully distributed peer-to-peer mechanism supports
resource discovery. Powerful resource matching mechanisms serve to map pro-
gram resources onto fitting platforms. While iShare builds on existing standards
and middleware technology, protocol plug-ins allow new protocols and standards
to be added, satisfying the needs of resources posted in the future.

The remainder of this paper is organized as follows. Section 2 presents the
design concepts and implementation of iShare. Section 3 provides evaluation
results. We discuss related work in Section 4, followed by conclusions in Section 5.

2 The iShare Architecture

An Internet-sharing system can be characterized in terms of 1) its user model,
2) the semantics and type of the resources it can support, 3) the information dis-
seminated about resources and activities at remote sites, and 4) the mechanisms
that support the use of these resources at remote sites. This section elaborates
on iShare’s design concepts and implementations in these four areas.

The system architecture is shown in Figure 1(b). For space reasons, several
important iShare components were left out of this paper – most notably iShare’s
authentication and trust mechanism (building on state-of-the-art techniques)
as well as facilities for exchanging experience and bridging across diverse user
communities. An extended version of this paper describes these components [5].



iShare - Open Internet Sharing Built on Peer-to-Peer and Web 1119

ser  ayer 

Resource Usa e 
Monitorin /Profilin  

Resource   Allocation 

In ormation issemination 

 
esource Sem

antics 

emote 
esource 

se 

Fig. 1. The End User View and the Structure of iShare

2.1 User Model

Supporting a Resource Provider User Class. Internet-sharing systems pro-
vide their user communities with facilities to discover and make use of resources
created and maintained at remote sites. In addition to its end users, iShare con-
siders providers of resources as an important user class. Resource developers take
advantage of the ease with which resources can be made available to end users.

The basic iShare functionality for resource providers supports 1) creating re-
source descriptors, 2) publishing and removing resources, and 3) optionally start-
ing and configuring advanced iShare services. Publication of a new resource is
fully autonomous and does not require user interaction with any iShare “admin-
istrator”. To end users, the published resources appear organized into discipline-
specific Cyberlabs. Providers define (as a resource attribute) the Cyberlabs in
which they wish to “place” the new resource. The core functionality for end
users is to run the discovered, remote programs, using local files and displays as
input/output.

Providing iShare Functionality Within Common Work Environments.

Web portals provide convenient user interfaces to many Internet-sharing systems.
However, advanced users often prefer to work within their common environment,
such as a Unix Shell or Windows desktop. The iShare user functionality is ac-
cessible via an API, which allows different user interfaces to be built. Our initial
design includes a Windows-based interface, as shown in Figure 1(a) and we are
exploring iShare Unix Shell functionality.

2.2 Resource Semantics and Types

Resource Description with RDF. An important issue in Internet-sharing
systems is the clear description of resources. Resource providers must define the
semantics about what is shared, who is allowed to share, and how sharing occurs.



1120 X. Ren and R. Eigenmann

iShare adopts RDF as the resource description language for consistent encoding
of resource attributes. RDF aims to specify semantics for data in a standardized
interoperable manner [1] and provides a rich data model for describing objects.

iShare supports three types of resources at an equal level: software services
(programs), service platforms (machines), and data. An important program at-
tribute is that of a pinned or roaming service. Pinned services are applications
running only on a specific platform, whereas roaming applications can execute
on any matching platform. Machines are published as available hosts for roam-
ing services. They might be individual machines or locally managed sub-systems
(e.g., a network of workstations managed by Condor [9]).

Autonomy in Defining Resource Attributes. An important design concept
is that resources can define their own rules of usage. Thus, a machine may offer
services under its own administrative procedures and access protocols. iShare will
find matching programs and platforms. Protocols that are not available initially
may be plugged in, making the system incrementally more powerful.

To support the autonomy in defining local access rules, the standardized
metadata definition must be extensible enough to support plug-in protocols. In
our initial design, we formalized the metadata to include the common attributes
of access protocols in widely used local management systems such as Condor [9]
and PBS [10]. The metadata includes recompiling/relinking operations, submis-
sion syntax and user-commands. For example, accessing and utilizing a Condor
pool involves relinking programs to utilize advanced features like checkpointing,
creating a “submission files” with predefined syntax, and starting job running
via specific commands: condor submit. All this information must be described
as resource access protocols. The information is then used for creating service
portals, which hide the details from end users.

2.3 Information Dissemination

Decentralized Organization Built on P2P and Web. The information
to support network-accessible computing is incremental and distributed in the
sense that it is created from items at different locations and items available at
different points in time. The incremental and distributed nature of the infor-
mation makes it infeasible to collect and maintain it at a centralized location
in a scalable manner. Thus, a decentralized scheme is essential for reliable and
efficient information management. A key idea of iShare’s decentralized structure
is that a provider of resources can post their availability on any web page. Re-
source metadata is derived from these postings and inserted into a P2P network.
While the World Wide Web affords unprecedented access to resource descrip-
tors, metadata distributed in the P2P network improves discovery of and access
to resources.

To publish a new resource, the publisher specifies the publication URL via the
user layer configuration. Resource descriptors are posted on this URL manually
or automatically through iShare’s resource publishing tool. The involved web
servers serve as a repository to resource description documents and are managed



iShare - Open Internet Sharing Built on Peer-to-Peer and Web 1121

by the individual resource publishers. The P2P network in iShare consists of all
participant nodes. An iShare node could be a host serving a published software
service, a host published as an accessible machine resource, or the workstation
from which an end user accesses iShare.

Information Naming, Publication and Discovery. Resources in iShare are
hierarchically categorized into Cyberlabs, as shown in Figure 2. The resources in
one lab are semantically related in their functionalities. Resources are described
by metadata, which form a tree representing the hierarchical name space. In-
stead of maintaining central directory service for the tree, iShare distributes
the hierarchical name space to the underlying P2P network, which supports the
publication and discovery process.

Electronics 

   Cyber ab 

Computational  
      Biolo y 

   Biosequences  Neurodynamics 

ata 
   achines 

So t are 
Applications 

 Computational Resources  
ith ierarchical   Semantics   

     Semantically Related Resources  
Co located on a Structured P2P Overlay 

Cyber ab 
Computational Biolo y 

Electronics 

 

Computational  
Biolo y 

Biosequences 
Neurodynamics 

Biosequences 

Data Machine
Software 
 Applications 

222   vvveeerrrlllaaayyy   

A user interested 
in iose uences  

1

2  

3  

Fig. 2. Resources are organized in a hierarchical tree, which is mapped to a P2P overlay.
The big circle represents a P2P overlay, with arrows indicating P2P routing messages
to discover resources

Information disseminated in iShare includes resource descriptions, job ex-
ecution profiles, resource-usage information, and user profiles. Each piece of
information is linked to a specific resource. Thus it could be also mapped to
the hierarchical structure described above. An item in the hierarchical space
is mapped to a peer node by the hashing value of the item’s prefix path. The
current implementation of the P2P network is built on a structured overlay net-
work, Pastry [3]. A shared data item is distilled into standardized metadata and
inserted with Pastry’s (route (msg, key)) API. Requests for data are routed with-
out requiring any knowledge of where the corresponding data items are stored.

To achieve fault tolerance, each publication operation creates a few replicas.
The discussion of the replication and fault tolerance is beyond the scope of this
paper, and details could be found in [4]. A local resource cache is designed to keep
recently-used metadata. Successful end-user discovery operations will update
the cache. Mechanisms to maintain cache consistency are described in [4]. The



1122 X. Ren and R. Eigenmann

impact of caching on resource discovery latency is evaluated in Section 3. Load
balancing related to the size of data stored on each peer is currently exploited
and will be presented in a future paper.

2.4 Remote Resource Use

Mechanisms for the remote use of resources are at the core of most Internet-
sharing systems. They include the functionality for matching discovered software
services with execution platforms, employing suitable protocols for remote job
execution, and connecting user input/output. iShare builds on a large number
of contributions in this area. Two features distinguish iShare’s remote resource
use: support for roaming services and automatic creation of service portals.

Resource Allocation for Roaming Services. Roaming services are pro-
grams that pick the best combination of service replica and matching platform
for every invocation. Our concepts include advanced resource matching and open
migration of the service to the matching platform. Advanced matching needs to
consider the option that services whose program source code was included in
the publication may be recompiled and assigned to a different platform. De-
cision making for such matching in heterogeneous environments involves repli-
cation and caching strategies for service binaries and performance prediction
techniques that consider possible recompilation. Open migration installs a ser-
vice on a potentially unreliable platform. This involves monitoring, safeguarding
mechanisms, and possibly relocating the service.

Automatic Creation of Service Portals. A service portal establishes the
user interface to a remote program. It is mapped to the native job running en-
vironment at run-time. The challenges are to create this interface automatically
from the service description and generate it in the user’s preferred software en-
vironment. Service portals may be batch-oriented or fully interactive. They sup-
port plug-in access protocols by automatically generating job submission files
and keeping track of site- and application-specific information.

3 Evaluation

Of the four areas of contributions, as described in Section 2, this section provides
quantitative evaluations of the information dissemination (in terms of the latency
of resource discovery) and the remote resource use techniques (in terms of the
efficiency of job execution). For qualitative evaluations of the user model, and
resource semantics components we refer to [5].

3.1 Efficiency of Resource Discovery

We simulated the P2P based resource discovery, iDiscover, on a GT-ITM router
network using the transit-stub model [2]. The size of the IP network is 1050



iShare - Open Internet Sharing Built on Peer-to-Peer and Web 1123

Basic Pastry Routin

0

2

4

8

10

12

14

1

1000 2000 3000 4000 5000 000 7000 8000 9000 10000

Nodes

Av
er

a
e 

ho
ps

 p
er

 d
is

co
ve

ry
No Cache e=2
e= e=10
e=20 e=30
e=100 e=1000

Fig. 3. Average number of hops per discovery. e is the normalized cache expiration
time (cache expiration time/average request period)

routers, 50 of which are used in transit domains and the remaining 1000 in
stub domains. To test the scalability of iDiscover, we simulated several iShare
testbeds with the number of nodes ranging from 500 to 10,000. We assume the
iShare nodes are uniformly attached to the routers.

In the experiment, we measured the effect of caching on discovery latency with
different normalized cache expiration time e (e = cache expiration time/average
request period). Each discovery operation starts from searching the root “Cy-
berlab”. One out of five nodes in the P2P network was randomly chosen to
initiate the search request. Figure 3 plots the discovery response time with e
ranging from 2 to 1,000. The figure shows that the discovery latency increases
very slowly with the total number of nodes. We also see that with fair expiration
time (e = 6), the response time is reduced by 10.37% on average compared to a
discovery without local cache. The measurement results for cache hit rates are
analyzed in [4]. Compared with the basic Pastry message routing, the resource
discovery takes only a factor of 2-4 times longer, while supporting searches of
resources with specific functionalities.

3.2 Efficiency of Remote Job Execution

In this section, we compare the efficiency of remote job execution in iShare
with that in SSH-based remote access. The goal is to show that iShare provides
advanced network computing environment with acceptable costs in performance.

Remote access to computing services is commonly provided via explicit login
to remote platforms (via REXEC, RSH and SSH). These mechanisms have sev-
eral limitations [7], such as users having to manually identify and select remote
machines as well as being exposed to site- and platform-specific idiosyncrasies.
iShare addresses these limitations by decoupling the computing environment
perceived by users from the underlying physical environment. After getting the
required access (e.g., account/password, certificate or public/private keys), end
users can start an arbitrary job by interacting with the service portal. iShare
translates and maps the user inputs automatically to the native service interface.



1124 X. Ren and R. Eigenmann

namomos

script

QT Cart

polaris

molctoy 

cntiv

schred

tunprob

iShare

0 20 40 0 80 100 120 140

Pr
o

ra
m

s

Time (s)

Fetch RDF
Parse RDF
Create irtual Interface
Authentication

Process Input
Run Pro ram
Process Output

Fig. 4. Remote job execution through iShare and standard SSH

In iShare, the job execution includes the steps to fetch resource descriptor
(from Web or local cache), parse the descriptor, create the service portal, au-
thenticate, transfer input files, execute the program (including input processing
and environment configuration) and process output. We chose a set of pinned
services on a machine accessed via SSH. After getting accesses to these services,
we ran them on iShare’s built-in SSH client and monitored the time spent at
each of the above steps. To test the efficiency of the standard SSH, we manually
coded Shell scripts to run each of these programs on the same remote machine
with standard ssh and scp commands. A ssh agent is started manually to provide
the authentication similar to iShare’s single sign-on mechanism (end users only
need to input a password once). The efficiency difference between the public key
authentication and password authentication is ignored in this experiment.

Figure 4 shows the results for running a set of programs in iShare and with
the manually-coded scripts. The time for parsing RDF descriptors and creating
service portals is less than one second. The SSH-based job submission in iShare
performs similar to the standard SSH protocol. The standard SCP protocol
outperforms the iShare’s built-in file transfer protocols. The reason is that file
I/O operations involved in SCP cause more overhead in iShare, because it is
implemented with high level programming language (Java). Optimization of data
transfer will be considered in future work.

4 Related Work

The research community is exploring a variety of approaches for constructing
software infrastructures for Internet-sharing. On-going research can be divided
into five categories with different foci and goals. The first category includes
global standardization efforts for grid computing, represented by GGF [19]
and NMI [18]. The focus of the second category is to provide application pro-
grammers a set of tools to harness “Grid” resources, e.g., to distribute mas-
sively parallel applications with message-passing. Examples of such work include
Globus [8] and GridLab [11]. Work in the third category aims to develop “Grid-
enabled” domain-specific applications. Active projects include EuroGrid [12],



iShare - Open Internet Sharing Built on Peer-to-Peer and Web 1125

CrossGrid [13]. Work in the fourth category is geared towards providing end
users (and resource providers) with the means to disseminate, access and use
networked resources. Related work in this category includes active software web
portals such as PUNCH [7] and NCSA-portals [14]; and web service techniques
such as IBM WebSphere Application Servers [15]. The work in the fifth category
is motivated by using P2P techniques to manage and share globally distributed
resources. Active research includes large-scale file sharing systems [16] and com-
pute cycle sharing [17].

iShare belongs to the forth category, which differs from the other four cate-
gories by its user-orientation, its network accessibility to executable programs,
its focus on “single-platform” rather than parallel applications and its support
for generic instead of domain-specific programs. Within this category, we intro-
duce the related work in end-user-oriented Internet-sharing systems and compare
iShare in terms of the design concepts in Section 2.

User Model: Software web portals provide end users direct access to unmodified
software tools via standard Web browser. However, they don’t provide any open
functionalities to resource providers. Most often, adding a new tool on a web
portal has to involve the portal developers’ administration. iShare solves this
problem by decentralized web-posting and P2P message routing. Web service
techniques enable users to build Web-based applications using preferred object
model, programming language and platform. Service developers publish service
descriptions to a central information location. This differs from iShare’s support
for unmodified applications with no programming requirement and decentralized
resource publication.

Resource Semantics: Both web portals and web services target software appli-
cation resources that are bound to fixed machine resources. iShare’s roaming
services combine program and machine resources provided by different commu-
nities, thus offering a more flexible and open environment for resource sharing.
Resource descriptions in web portals exist as static web pages containing docu-
mentations for specific programs. These web pages are manually maintained by
portal administrators. Web services use WSDL for service interface specification
and the specification is registered to a central UDDI registry. The RDF lan-
guage adopted in iShare focused on semantics specification rather than syntax
specification in WSDL. iShare’s resource description supports autonomy on the
definition of access protocols, while in web portals and web services, standard
access protocols are required.

Information Dissemination: Resource discovery is not a critical issue in web
portals, because all application resources are listed explicitly on web pages linked
through the portal’s main web page. In web services, users locate the services
from the UDDI registry via SOAP. In contrast to the centralized structures in
the two systems, iShare disseminates information via posting on individual web
pages and registering to a P2P network. There is no central registry server or
storage space in the whole iShare system.



1126 X. Ren and R. Eigenmann

Remote Resource Use: The remote job execution in web portals and web ser-
vices is supported by standardized protocols. They can be secured with HTTP
basic authentication, HTTPS and SSL encryption, and digital signature. iShare
supports plug-in protocols defined by individual providers via learning from the
resource descriptions. The initial design of iShare supports commonly used au-
thentication protocols such as SSH. Future work will extend iShare’s security
implementation to also support the Grid Security Infrastructure.

5 Conclusions

We have presented the design concepts and a implementation prototype of iShare
- an Internet-sharing system built on P2P technology and the Web. iShare differs
from related work in its user functionality for both providers and end users, its
autonomy in defining and controlling local resources, its P2P-based information
dissemination mechanisms and its support for roaming services and dynamic
service portal creation. The evaluation results on resource discovery and remote
execution confirm that iShare is able to deliver scalable and efficient Internet-
based computing.

References

1. K. Selcuk Candan, H. Liu, R. Suvarna: Resource Description Framework: Metadata
and Its Applications. ACM SIGKDD Exploration Newsletter, 3 (2001) 6–19

2. Ellen Zegura, Kenneth Calvert, Samrat Bhattacharjee: How to Model an Internet-
work. Proc. IEEE INFOCOM, (1996)

3. A. Rowstron, P. Druschel: Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-scale Peer-to-peer Systems. Proc. IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), (2001) 329–350

4. Xiaojuan Ren, Zhelong Pan, Rudolf Eigenmann, Y. Charlie Hu: Decentralized and
Hierarchical Discovery of Software Applications in the iShare Internet Sharing
System. Proc. PDCS, (2004)

5. Xiaojuan Ren, Rudolf Eigenmann: iShare – Internet Sharing of Programs, Machine
and Data. Technical Report ECE-HPCLab-04203, High-Performance Computing
Laboratory, Department of ECE, Purdue University, (2004)

6. Insung Park, Nirav H. Kapadia, Renato J. Figueiredo, Rudolf Eigenmann, et. al.:
Towards an Integrated, Web-executable Parallel Programming Tool Environment.
Proc. Supercomputing Conference, (2000)

7. Nirav H. Kapadia, Jose A. B. Fortes: PUNCH: An Architecture for Web-enabled
Wide-area Network-computing. Cluster Computing, 2 (1999) 153–164

8. I. Foster, C. Kessleman: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications, 11(2) (1997)

9. Litzkow M. J, Livny M, Mutka M. W: Condor - A Hunter of Idle Workstations.
Proc. ICDCS, (1988) 104–111

10. R. Henderson, D. Tweten: Portable Batch System: External Reference Specifica-
tion. Technical Report, NASA Ames Research Center, (1996)



iShare - Open Internet Sharing Built on Peer-to-Peer and Web 1127

11. Gabrielle Allen, Kelly Davis, K. N. Dolkas, N. D. Doulamis, et. al.: Enabling Ap-
plications on the Grid - A GridLab Overview. International Journal of High Per-
formance Computing Applications, (2003)

12. Christian Hoppe, Pallas GmbH D. Mallmann, F. Julich: EUROGRID - European
Testbed for GRID Applications. GRIDSTART Technical Bulletin, (2002)

13. Marian Bubak, Maciej Malawski, Katarzyna Zajac: The CrossGrid Architecture:
Applications, Tools, and Grid Services. AxGrids, (2003)

14. http://www.ncsa.uiuc.edu/AboutUs/FocusAreas/ScientificPortalsExpedition.html
15. Supporting Open Standards for Web Services and the Java Platform.

ftp://ftp.software.ibm.com/software/webserver/appserv/v5/G325-1971-00.pdf
16. KazaA. http://www.kazaa.com/us/index.htm
17. D. Anderson, et. al.: Internet Computing for SETI. ASP Conference Series, 2000.
18. NFS MiddleWare Initiative. http://www.nsf-middleware.org/
19. Global Grid Forum. http://www.ggf.org/



A Service-Based Architecture for Integrating

Globus 2 and Globus 3

Manuel Sánchez1, Óscar Cánovas2, Diego Sevilla2,
and Antonio F. Gómez-Skarmeta1

1 Information Engineering and Communications Department
2 Computer Engineering Department, University of Murcia, Spain

{msc, skarmeta}@dif.um.es
{ocanovas, dsevilla}@ditec.um.es

Abstract. During the past few years, Grid Computing has matured in
terms of programming models and available tools. Some tools like the
Globus Toolkit version 2 (GT2) are used in many international high per-
formance distributed computing projects. Recently, the OGSA standard
(Open Grid Services Architecture) has been defined, proposing a radi-
cally new philosophy compared to that of GT2. Analyzing the evolution
of the scientific community working on Grid Computing, we foresee a
progressive shift of current developments to this new standard, that al-
ready has a reference implementation: GT3. This paper describes the
analysis and design of an architecture of OGSA Grid Services that aims
to integrate both platforms seamlessly, allowing remote job invocation
from GT3 to GT2 holding all the security properties, and transparent
for the user.

1 Introduction and Motivation

The computing power and storage needed in scientific environments grow day
by day, exceeding that offered by traditional computers. Thus, a new paradigm
called Grid Computing emerged with the goal of sharing resources among dy-
namic organization coalitions in a coordinated, secure, and flexible way. Orga-
nizations belonging to the Grid can decide to share part of their resources in a
controlled fashion, conforming Virtual Organizations[12].

Nowadays, the Globus Toolkit[2] is widely accepted as a de-facto standard
for building Virtual Organizations, being GT2 the most widely used version.
However, since the publication of OGSA (Open Grid Services Architecture)[11]
in 2002, Globus is adapting to the emerging Grid Service concepts. Thus, a
new version, GT3, appeared based on this paradigm, which implements all its
functionality by means of Grid Services and standard interfaces, making the
development of Grid applications easier.

In terms of security, as described in[13], the new version of GSI (Grid Security
Infrastructure)[6], included in GT3, provides several advantages, such as the use
of IEEE/GGF compliant proxy certificates[16], or the use of the SOAP standard

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1128–1138, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A Service-Based Architecture for Integrating Globus 2 and Globus 3 1129

(Simple Object Access Protocol)[4] and the recent WS-Security specifications[3]
to exchange authentication and authorization information.

Although both GT2 and GT3 try to ease the development of distributed
computing applications, they have rather different mechanisms for accessing re-
sources. While GT2 is based mainly on command line tools and scripts since it
was designed for batch execution, in GT3, resources are not accessed directly,
but by means of grid services, which are executed on the resources and perform
a particular task.

Given the wide deployment of GT2, there are a lot of applications that rely on
this Globus version. Although GT3 distributions contain an updated GT2 imple-
mentation, the migration process to GT3 does not seem to be a straightforward
task: This new version involves a complete change in the operation manner which
is incompatible with the previous version. Moreover, a number of organizations
using both versions of Globus would want to make them interoperate. In order
to achieve that integration, we have to define the elements needed to satisfy two
main goals. First, the system must be able of processing the requests sent from
GT3 clients, interpreting them, and building an equivalent request to be sent
to the GT2 nodes. It is worth noting that this process must be transparent to
the GT3 client: it should be able to use GT2 nodes as if they were OGSA grid
services. Secondly, given that the request must be translated from GT3 into GT2
by, as we will show, an intermediate element that might not be trusted by both
parties (for example, when the integration service is offered by a third party), it
is necessary to protect the job submitted for execution to guarantee end-to-end
security.

In this paper we propose an architecture based on grid services that achieve
the described integration. This architecture is based on digitally signed jobs,
allowing secure usage of GT2 resources by GT3 clients. It is composed, on one
hand, by grid services local to GT3 clients, that is, hosted by their organization,
and on the other hand, by external services hosted by third parties providing
the integration service.

Similar work has been done in the GRIP project[15]. Among the main results
of this project we can find some kind of interoperability between Globus and
UNICORE, and the promotion of standards for interoperability in the GGF.

This paper is structured as follows. First, Section 2 provides a brief overview
of the two different GT versions related to our work. Then, Section 3 describes
the proposed architecture for performing the integration, that is, the different
architectural elements, their relationships, and the mechanism based on digital
signature that is used to protect the integrity of the submitted jobs. Section 4
shows the relevant details of the implementation. Finally, we conclude with our
remarks and some future directions derived from this work.

2 Background

Nowadays, we can find several platforms for Grid Computing providing dif-
ferent sets of capabilities. Globus Toolkit is the most widely adopted, and is



1130 M. Sánchez et al.

being used in several European research projects [5, 9, 8]. In the last two years,
UNICORE[10] has also emerged as an alternative toolkit for Grid Computing,
as can be seen from the several existing initiatives which are trying to integrate
Globus and UNICORE in a seamlessly manner[15].

2.1 Globus Toolkit 2

Globus Toolkit[2] is a computing platform composed by applications and libraries
for the management, discovery and monitoring of resources. GT2 provides an
uniform access interface to the computing resources, either independent nodes
or a whole cluster of workstations using different operating systems. One of the
main elements of GT2 is GRAM (Globus Resource Allocation Manager), which
is responsible for accepting job submissions and hiding the specific details of
the platform executing those jobs. In an upper layer we can also find DUROC
(Dynamically-Updated Request On-line Co-allocator), a meta-manager responsi-
ble for the coordination of several GRAMs in order to execute complex tasks
(composed of other jobs).

Remote execution is guided by a resource specification language (RSL). By
means of RSL, users specify the job to be launched and some related execution
parameters, such as the number of processors involved or required memory.

2.2 Globus Toolkit 3

GT3 represents a completely different approach from GT2, as it uses Grid Ser-
vices as its core. Grid services are specialized Web Services that include some
new features, such as persistence, management of notifications, and use of ser-
vice data elements. GT3 grid services must be run in a service container, and
remote invocations make use of SOAP. Grid services are self-described by means
of WSDL (Web Service Description Language) documents, which must be ob-
tained by clients in order to access them. Complexity is reduced by means of
client and server stubs, which are intermediate software elements derived auto-
matically from the WSDL description. Therefore, details about SOAP and other
technological elements are hidden from the developer’s point of view.

Two of the most important novelties in GT3 are service data and notifica-
tions. The former allow the programmer to add structured data to the services,
which can be accessed through a well defined interface. Then, service data can
be used to expose the grid service internal state or metadata. Notifications are
used by a grid service or notification source to notify changes in its state to any
subscribed client or notification sink. Notifications are closely related to service
data, because a client is not subscribed to a whole grid service, but to a specific
service data belonging to the service.

The Java CoG Kit[1], in turn, offer a Java framework for accessing GT2
programs and services. In general, Commodity Grid (CoG) kits allow users,
developpers and administrators to access the grid from a higher-level framework.



A Service-Based Architecture for Integrating Globus 2 and Globus 3 1131

2.3 Security Mechanisms for Globus: GSI

Both GT2 and GT3 use the security services provided by GSI (Globus Security
Infrastructure)[6]. GSI makes use of X.509 certificates for authentication pur-
poses, and TLS for establishing confidential channels. It also supports different
authorization policies, delegation of privileges, and can also be integrated with
other local security systems being used in the organization.

3 Proposed Architecture

3.1 Requirements for the Integration of GT2 and GT3

The integration of both versions of Globus has a set of requirements derived
from the intrinsic internal architectural organization of both platforms. First,
intermediate elements with support for both GT2 and GT3 are necessary. Sec-
ond, a RSL request must be built that describes the job execution request made
by the user. Also, the code, input data, and output data must be transmitted. It
would also be desirable that the client, the intermediate element, and the GT2
nodes in charge of the final execution could be located in different administrative
domains, thus not having to belong to the same organization. Shielding the user
of the details of GT2 (such as the RSL specification or the use of the GRAM
protocol) is also desirable. Finally, the semantics of the execution stated by the
GT3 client must be preserved along all the process, that is, the architecture must
guarantee that neither the code nor the input or output data has been forged,
as well as that the identity of the caller is not supplanted by any other entity.

3.2 The Elements of the Proposed Architecture

We have proposed a generic architecture with three different administrative do-
mains, as shown in Figure 1. First, the domain of the GT3 client that wants to
execute a job in a GT2 cluster. For the sake of simplicity, we suppose that this
domain is composed exclusively of GT3 nodes, possibly connected to other GT3
nodes on different sites conforming a Virtual Organization. Second, an interme-
diate administrative domain exists to host the integration service, thus having
to support both versions of Globus. This intermediate element can be seen as an
enterprise (organization) dedicated to offer interconnection among Grids. The
last administrative domain in the picture is the destination one, in which the
execution of the job will be performed, composed of one or more GT2 nodes.

The main elements participating in the integration are the following:

– GT2Gateway Service. To avoid GT3 users having to explicitly build the
GT2 RSL request, an OGSA service is introduced that builds this specifica-
tion from the data given by the user (executable file, parameters, data files,
etc.) This service is also responsible for signing the RSL and all the files on
behalf of the user and for verifying the signed output generated by the GT2
nodes, in order to guarantee end-to-end integrity and authentication. The



1132 M. Sánchez et al.

GT3 Client

Intermediate GT3/GT2 Server

GT2 Server

User
Certificate

Client
Stub

Application

Server
Stub

GTBridge
Service

Container

GT2
GRAM

Params.
Files

SOAP
HTTP
GSI

HTTP
GSI

Proxy 1

RSL
Files

Sign

Server
Stub

GT2Gateway
Service

Container

Client
Stub

RSL
Files

Sign

Proxy 2

Proxy 1 Local GT3 Server

SOAP

HTTP
GSI

RSL
Files

Sign

Proxy 2

Organization 1

Organization 2

Organization 3

Exec.

Proxy 2

notification

notification

GT2
Nodes list

Fig. 1. Architecture of the proposed solution

GT2Gateway service must be running in the local domain to which the user
belongs, because this service has to build and sign the whole description of
the job. Besides, this service acts as a notification source for the client. We
can find a similar approach to provide job integrity by means of job signing
in UNICORE[10].

– GTBridge Service. This service offers two main functions: First, it is re-
sponsible for maintaining a list of GT2 nodes (or set of nodes) that are
available to be used from GT3. This way, the user should first check this list
(for example, using the Index Service) to see what nodes are available before
interacting with the GT2Gateway service. And second, once the RSL is built,
it receives from the GT2Gateway service the Job description, input files and
executables, and the certificates needed to verify the signature, as we will
see later. From this point on, the request has been converted into the GT2
format, and therefore it can be submitted to a GT2 GRAM server of other
administrative domain. After executing the job, the results are collected by
this service, and put in knowledge of the client.

– GT2 GRAM with digital signature support. The functionality of the
GT2 GRAM server must be augmented (in form of a plug-in) in such a
way that allows us to interpret digitally signed job descriptions. For that
purpose, the RSL must indicate that this particular job is protected using
a digital signature, making it to be interpreted by the modified GRAM. It



A Service-Based Architecture for Integrating Globus 2 and Globus 3 1133

is worth noting that this extension can be added without changing the base
Globus installation in the node. Once the job is executed, the results are also
protected against integrity attacks by means of a digital signature.

Finally, we also have to assure end-to-end security. Although GSI guarantees
a secure communication between the entities in homogeneous environments, the
introduction of an intermediate entity (the integration service) makes it neces-
sary to deeply analyze the security implications of the integration.

3.3 The Integrity Problem

The proposed solution could have the problem of having to trust an external
entity (the mediator) to which the execution of jobs is delegated. This external
entity could modify the jobs before sending them for execution or even imper-
sonate the user sending out jobs for execution without the user’s knowledge.
To overcome this problem, the job description is signed with the user’s private
key. This way the destination GT2 node can check the authenticity of the data
received. Therefore, management of proxy certificates and private keys involved
in the process is of paramount importance.

The Globus Security Infrastructure is based on the use of restricted user
proxy certificates. These certificates are issued by the user for a temporal user-
controlled key pair, and can be used to delegate operations to other elements
of the system in a secure and controlled way (those delegation chains are not
bounded). As can be seen in Figure 1, the GT3 client first generates a proxy that
will be used by the GT2Gateway service to sign the job description. After that,
this service generates another proxy, that will be sent, jointly with the signed job,
to the GTBridge service. This second proxy, together with its certificate chain,
will be used by the GTBridge service to contact the GT2 node and execute the
job on behalf of the user. As the job description is signed with the first proxy,
which is not accessible by the intermediate service, the contents of the job cannot
be modified. Moreover, the use of the second proxy will allow executing the job
on behalf of the user, thus applying the security policies mapped to that specific
user (known as “grid mapping” in Globus). Also note that the architecture of
GT3 imposes that a proxy certificate must be created for each service invocation.

4 Implementation of the Proposed Architecture

Once we have analyzed the main elements of our architecture, and having in mind
the requirements imposed by such approach, we provide some details related to
the implementation and operation of those elements.

4.1 Operation Steps

Figure 2 shows the main steps involved in the execution of GT2 jobs that have
been submitted from a GT3 client.



1134 M. Sánchez et al.

3: execGT2 (resource, exec, params, files, proxy)
4: getServiceData (GTBridgeData)

5: subscribe (GTBridgeOut)

2: subscribe (OutUrl)

7: exec (rsl, resource, signature, proxy)

8: globus-job-run (rsl, signature, proxy)

12: signedOutput
13: notify (GTBridgeOut)

15: notify (OutUrl)

1: getServiceData (GT2Nodes)

 : GT3 Client  : GT2Gateway  : GTBridge  : GT2 GRAM

6: Creates the RSL and signs
everything

9: Verifies the signature
10: Execs the job
11: Signs the output

14: Gets the output and verifies
the signature

Fig. 2. System interaction

1. A client obtains the information about the available GT2 nodes from the
service data elements managed by GTBridge. Optionally, the client can del-
egate to GT2Gateway the selection of a specific set of nodes.

2. The client subscribes to the OutUrl notification of the GT2Gateway service
to be notified about how to get the results when the job has been executed.

3. After the selection of nodes, the client sends to the GT2Gateway the name
of the program, any input files or parameters, an identifier of the selected
GT2 node and a proxy certificate generated from the user certificate.

4. GT2Gateway gets the URL where GTBridge will leave the signed job from
the GTBridgeData service data to add it to the RSL which it is building.

5. Then, this service subscribes to the GTBridgeOut notification of the GT-
Bridge related to the availability of results derived from the job execution.

6. GT2Gateway builds the RSL document that describes the job, including a
random identifier which will be used by the GT2 node as a reference for the
client session. On the other hand, GT2Gateway creates a second proxy from
the proxy certificate submitted by the user. Finally, the RSL job description,
and its related input files, are digitally signed by GT2Gateway making use
of the private key associated to the first proxy certificate.

7. GT2Gateway uses the GTBridge service to request the remote execution in
the GT2 node, providing the RSL description, its related files, the digital
signature, and the new proxy certificate.

8. GTBridge uses the interface provided by the Java CoG Kit to submit the
job to the target GT2 node.

9. The target GT2 node checks whether it is processing a signed job (which
is specified in the RSL description in order to differentiate unsigned jobs



A Service-Based Architecture for Integrating Globus 2 and Globus 3 1135

submitted by other GT2 nodes from GT3-originated jobs). It also verifies
that the RSL description is properly signed using the first user proxy. Fur-
thermore, the proxy used for authentication purposes must also be the last
element of the trusted chain of certificates presented by the user.

10. Using the grid mapping policy, the user is mapped into a local user, and the
job is executed according to that user’s constraints.

11. Once the job has finished its execution, the GT2 node digitally signs the
standard output and any other output files derived from the job execution
with the host private key.

12. Next, the GRAM server sends the signed execution output to the GTBridge.
13. GTBridge specifies the URL where the signed output is available in the

appropriate service data, triggering the notification to GT2Gateway Service.
14. Finally, GT2Gateway makes use of those service data elements in order to

obtain the different outputs.
15. The output will be considered valid after verifying that the related digital

signature is valid and that the signer certificate belongs to the GT2 Node.
In that case, the GT3 client will be notified about the availability of results.

As we can see from these steps, clients are not aware of any operation re-
lated to RSL descriptions or digital signatures. The main goal is to achieve an
integration as seamless as possible, which might be replaced by a different im-
plementation in a transparent manner.

4.2 Some Details About the GT3 Services

Our OGSA services are specified using GWSDL, including definitions of some of
the different service data elements used for notification purposes. Those services
implement some OGSA standard interfaces, such as NotificationSource or
Factory, in order to deal with each request in an independent and persistent
manner. Figure 3 shows part of the GWSDL of GT2Gateway.

Digital signatures follow the PKCS#7 [14] standard, since this type of doc-
ument contains information about the signature, the data being protected, and
the certificates composing the verification chain.

4.3 Some Details About the Plug-in for the GT2 GRAM Server

The GT2 GRAM server should be extended for three reasons. First, it must
be able to understand the new RSL attributes for digital signature support.
Second, it has to verify the different user proxies and digital signatures. Fi-
nally, it must deal with the different results derived from job executions, also
signing the different outputs in order to protect them from an external modi-
fication or forgery. Everything has been implemented as a plug-in for the Job
manager.

To do this, when the GRAM receives a new job, it checks if it is a signed job.
In this case, first of all, the GRAM gets the location (URL) of the signed file
from the received RSL document. Then, it makes use of the Globus GASS API



1136 M. Sánchez et al.

<types>
<xsd :e l ement name=”runGT2OutputMessage”>

<xsd:complexType/>
</ xsd : e l ement>
<xsd :e l ement name=”runGT2InputMessage”>

<xsd:complexType>
<xsd : sequence>

<xsd :e l ement name=”exec” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”params” type=” tn s : s t r i n gA r r ay”/>
<xsd :e l ement name=” re sou r c e ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=” f i l e s ” type=” tn s : s t r i n gA r r a y”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd : e l ement>
</ types>

<gwsdl :portType name=”GT2GPortType”
extends=” og s i :G r i dS e r v i c e o g s i :N o t i f i c a t i o nS ou r c e ”>

<operat ion name=”runGT2”>
<input message=”tns:runGT2InputMessage”/>
<output message=”tns:runGT2OutputMessage ”/>
<f a u l t name=”Fault ” message=” ogs i :Fau l tMessage ”/>

</ operat ion>
<sd : s e rv i c eData name=”GT2Nodes”/>
<sd : s e rv i c eData name=”OutUrl ”/>

</gwsdl :portType>

Fig. 3. GT2Gateway service definition.

to fetch this file. Once this is done, the digital signature, the certification chain
and the RSL can be verified. Finally, when the job has been executed, the files
generated in the execution are signed using the host private key, and included
in a new PKCS#7 document. This document is transferred to the GTBridge
Service using again the Globus GASS API.

4.4 State of the Implementation and Tests

We have tested the architecture allowing users to execute a file compressor using
the GT2/GT3 integration service. A GUI to submit jobs to the GT2 node has
also been developed, so that the user can specify the GT2 node to send the job,
the needed files, and the command to be executed in the target node. Once the
execution ends, the user is notified and can get the generated files using the same
tool. This test bench is a starting point to prove the feasibility of the proposal,
as we intend to extend it to support the new WSRF specification.

5 Conclusions and Future Directions

In this paper we outline the need for a real integration of GT3 and GT2 nodes in
order to achieve a progressive shift of current developments to the OGSA frame-
work in a seamlessly manner. We propose an architecture based on intermediate
services which make use of digital signature mechanisms and proxy certificates
to provide integrity and authentication security services.



A Service-Based Architecture for Integrating Globus 2 and Globus 3 1137

We are currently working on the extension of our architecture by adding
new operations related to the life-cycle of jobs, such as monitoring, migration,
etc.

Furthermore we are currently implementing an automated mechanism for
smart selection of GT2 nodes guided by some parameters such as computational
load, network bandwidth or economic costs.

Although the new Globus Toolkit version (GT4), based on the new WSRF[7]
specification, is in an advanced state of development, our work can be easily
adapted to that version, as both GT3 and GT4 are conceptually equivalent,
except for some changes of syntax and terminology.

References

1. CoG Kits home page. http://www.cogkit.org.
2. Globus toolkit home page. http://www.globus.org.
3. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, C. Kaler,

J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Na-
garatnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Services Security
(WS-Security). Version 1.0, 2002.

4. Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access
Protocol (SOAP) 1.1, 2000.

5. Marian Buback, Jesus Marco, Holger Marten, Norbert Meyer, Marian Noga, Pe-
ter A.M. Sloot, and Michal Turala. CROSSGRID - Development of grid environ-
ment for interactive applications, 2002.

6. R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, and C. Kesselman.
A national-scale authentication infrastructure. IEEE Computer, pages 60–66, 2000.

7. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke. From Open Grid Services Infrastructure to WS-Resource Frame-
work: Refactoring & evolution, 2004.

8. F. Donno, V. Ciaschini, D. Rebatto, L. Vaccarossa, and M. Verlatto. The World-
Grid transatlantic testbed: a successful example of Grid interoperability across EU
and U.S. domains. In Proceedings of the Conference for Computing in High Energy
and Nuclear Physics, 2003.

9. F. Donno, L. Gaido, A. Ghiselli, F. Prelz, and M. Sgaravatto. DataGrid prototype
1. EU-DataGrid collaboration. In Proceedings of TERENA Networking Conference,
2002.

10. D. Erwing, H. Ch. Hoppe, S. Wesner, M. Romberg, P. Weber, E. Krenzien, P. Lind-
ner, A. Streit, H. Richter, H. Stuben, V. Huber, S. Haubold, and E. Gabriel. UNI-
CORE Plus Final Report, 2003.

11. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid. An
Open Grid Services Architecture for Distributed Systems integration, 2002. Draft.

12. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid. enabling scalable
virtual organizations. Supercomputer Applications, 2001.

13. J. Gawor, S. Meder, F. Siebenlist, and V. Welch. GT3 Grid Security Infrastructure
Overview, 2003. Draft.



1138 M. Sánchez et al.

14. RSA Laboratories. PKCS#7: Cryptographic Message Syntax, Version 1.5, 1993.
An RSA Laboratories Technical Note.

15. M. Rambadt and P. Wieder. UNICORE - Globus: Interoperability of Grid infras-
tructures. In Proceedings of Cray User Group, 2002.

16. S. Tuecke, D. Engert, I. Foster, V. Welch, U. Chicago, M. Thompson, L. Pearlman,
and C. Kesselman. Internet X.509 Public Key Infrastructure Proxy Certificate
Profile, 2003. Internet Draft.



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1139 – 1142, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The CampusGrid Test Bed at Forschungszentrum 
Karlsruhe 

Abstract. A central idea of Grid Computing is the virtualization of heterogene-
ous resources. To meet this challenge the Institute for Scientific Computing 
(IWR), has started the project CampusGrid. Its medium term goal is to provide 
a seamless IT environment supporting the on-site research activities in Physics, 
Bioinformatics, Nanotechnology and Meteorology. The environment will in-
clude all kinds of HPC resources: vector computers, shared memory SMP serv-
ers and clusters of commodity components, InfiniBand-Clusters as well as a 
shared high-performance SAN storage solution and a global file system. The 
paper shows the ideas, the test-bed and informs about the current project status 
and scheduled development tasks. This is associated with reports on other ac-
tivities in the fields of Grid computing and high performance computing at IWR 
and D-Grid. 

1   Introduction 

It is a medium term goal to realize the project CampusGrid at FZK to support the on-
site research activities in physics, bioinformatics, nanotechnology and meteorology. 
We cooperate with industrial partners and international institutions to test and discuss 
the functionality, robustness and scalability of such a seamless IT environment. The 
CampusGrid project aims at building a virtual computer with 

• CPUs of various types, running different operating systems 
• distributed and shared memory 
• a global high performance file system 

The environment will be based on a middleware layer which uses Grid technolo-
gies to implement secure single sign-on, job management and allocation of resources. 
This middleware layer may be assembled from the wide range of existing or currently 
developed Grid middleware solutions which will be adapted and improved in order to 
match our specific requirements. For instance, the middleware needed on each re-
source of the CampusGrid must support our heterogeneous hardware and should be as 
light-weight as possible. For compatibility, all resources of the CampusGrid should be 
accessible as OGSA compliant Grid services. Our close cooperation with international 

Frank Schmitz and Olaf Schneider 

Forschungszentrum Karlsruhe, Institut of Scientic Computing (IWR),  
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen 

Grid projects as well as industrial partners – hardware manufacturers and software 
developers – guarantees a progressive and competitive solution. 



1140 F. Schmitz  O. Schneider and 

 

Modern application packages often include parts well suited for cluster comput-
ing as well as serial components which require vector processors to achieve accept-
able performance. The processing of experimental data typically results in a com-
plex computational scheme where the user divides the job into subtasks and submits 
them to the available computing resources. By use of an intelligent brokerage and 
scheduling mechanism the CampusGrid software will choose the optimum comput-
ing platform for each subtask with respect to resource workload and user con-
straints. This will allow for the complementary use of high performance vector 
computers, large SMP systems and clusters built from commodity hardware (with 
or without high performance interconnect) in the same job. At the same time em-
phasis is put on the implementation of a unique working area with high perform-
ance access for all CampusGrid users. Access to online storage in an effective way 
and improved communication between hundreds or thousands of nodes in High 
Throughput Computing (HTC) clusters will benefit from technological standards 
like iSCSI and Infiniband. Both options will be studied in order to optimize the 
dataflow between the CampusGrid components. The results of these studies are of 
special interest also for the rapidly scaling storage area networks of the GridKa 
environment. 

It is the overall long term vision to allow the seamless integration of all kind of re-
sources in a Grid, CPUs and data archives as well as on-site experiments, measuring 
devices and facilities like the synchrotron radiation source ANKA 
(www.fzk.de/anka). Efficient use of such a computational environment will also re-
quire adaptations of the application software which will be demonstrated by selected 
packages of scientific and industrial partners who evaluate the CampusGrid under 
production conditions. 

2   Status Quo and Project Progress 

For many years, IWR has been operating a wide range of different computers which 
are optimally tailored to their respective use, like vector computers (VPP5000), clus-
ters of SMP computers (IBM-SP Power3/Power4) and clusters of commodity proces-
sors. In its responsibility for the CampusGrid Project, IWR plans to harmonize het-
erogeneous hardware platforms by a software layer starting in 2004. For this purpose, 
the concept of grid computing will be applied to the existing installations. A manda-
tory first step is the administration of the users and access rights by a common user 
administration in the Windows based "active directory with services for Unix". An-
ther step is the implementation of global data storage, i.e. all data inventories may be 
accessed and changed in the same way by each computer connected. As an ad hoc 
solution the corresponding environment “Globale Datenhaltung und Benutzerverwal-
tung” has already been deployed. Now we are in the process of evaluating the hard- 
and software environment for the CampusGrid project. 

 
 



 The CampusGrid Test Bed at Forschungszentrum Karlsruhe 1141 

 

Evaluation criteria:
• availability of native

clients for each platform
• scalability
• performance
• cost

VPP5000
UXP/V,NQS, FPFS

Power 4 p630/p655
AIX, LL, GPFS

IA32 Cluster
Linux, PBS, NFS

st
at

us
 q

uo
: p

ro
du

ct
io

n 
en

vi
ro

nm
en

t
pr

od
uc

tiv
e 

gr
id

 e
nv

iro
nm

en
t

Components:

resource broker, monitoring
and job scheduling

central user administration
and authentication

accounting

compute server and cluster

shared file system

CampusGrid
Virtualization of a
heterogeneous
HPC environment

Grid-ready applications using 
heterogeneous resources via 
standard interfaces (WSRF)

Document repository for 
more information
http://gridportal.fzk.de
select CampusGrid

In 2004:
Testbed which combines

• cluster of Xeon and Opteron
processors connected 
through Infiniband

• p630 node and a SX6i by NEC
• NEC SX5 (8 processors)

for application porting

SAN-FS

SAM-QFS

StorNext FS

Oracle10G

NEC GFS

Lustre

Sistina GFS

CXFS

PVFS

GPFS

2004

2005

2007

2006

In 2004:
Selection of a file system and 
storage management software

AFS

 
 
 
 
 
 
 



1142 F. Schmitz  O. Schneider and  

 

The active Testbed for SNFS looks like: 
 

IBM xSeries 335

SNFS-MetaDataserver

Sunfire V20z

IBM eServer e325
IBM p630 Power4

IBM xSeries 335

Sunfire V20z

Cisco MDS 9506

Infinicon InfinIO 7000

FibreChannel

Infiniband

Blade Center
Currently operating:
ADIX StorNextFS
Coming soon:
SAN-FS  



A Model for Flexible Service Use and Secure
Resource Management

Ken’ichi Takahashi1, Satoshi Amamiya2, and Makoto Amamiya2

1 Institute of Systems & Information Technologies/KYUSHU,
2-1-22 Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan

takahashi@isit.or.jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,

6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
{roger, amamiya}@al.is.kyushu-u.ac.jp

Abstract. Grid computing is promissing as an infrastructure that al-
lows users to use distributed computer resources by simple connecting a
computer to the network without special operation; just like connecting
to the electricity, water or gas grid. In this paper, regarding resources as
services, we propose a new architecture for realizing an environment in
which users can use services that are in various locations through their
portable terminals. In this architecture, a service is managed by an agent,
which has two resource management spaces named the Public Zone and
the Private Zone. The Public Zone is a space for realizing flexible pub-
lic service use. The Private Zone is a space for protecting private user
information. Moreover, agents are organized in a group called the com-
munity and are managed independently in each community. Thus, we
realize both of flexible service use while protecting private information.

1 Introduction

Grid computing is promissing as an infrastructure that allows users to use dis-
persed computer resources by simply connecting a computer to the network
with no special operation; just like connecting to the electricity, water or gas
grid. SETI@home[5] and distributed.net[1] are the two well-known grid comput-
ing projects. These projects try to search for extraterrestrial intelligence or carry
out cryptographic analysis by using CPU resources connected to the Internet. In
these projects, a resource is a CPU resource. But a resource is not only a CPU
resource, but also data and a service. If we regard a resource as a service, we
will be able to realize an environment that allows users to use services provided
in various locations through their portable terminals. For example, if a user is
in the laboratory, he can use the printer and the copy machine in the laboratory
through his portable terminal; if he is in his house, he can use the television, and
the audio player there and so on. In this way, users will be able to use services
which are based on their locations. To realize such an environment, the following
functions are required.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1143–1153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1144 K. Takahashi, S. Amamiya, and M. Amamiya

Service-Use Mechanism. Each service has a method for its use. For exam-
ple, when we use a telephone, first, we pick up the telephone receiver and put
in coins and dial. In a same way, we must get the method for using a service
and use the service according to the method appropriate to it.

Protection of Private Resources. In the real world, various services are
provided in exchange for resources/information like money and e-mail address.
So, when a user receives a service, he may have to provide some private infor-
mation. But users don’t want to unconditionally make their own information
public. Therefore, it is necessary to protect their resources/information.

Decentralized Service Management. In this environment, there are count-
less services. So it is difficult to manage and dispatch resources to users in a
centralized way. Therefore, we need a mechanism for managing resources in a
group depending on the location and/or other indicators.

The availability of a service-use mechanism depends on the degree of pro-
tection of private resources. If a user does not provide all his information, the
services he can use are limited; if he provides more information, he may be
able to use more services. Therefore, we need to balance these two functions. In
this paper, we propose a new architecture based on two agent systems, named
KODAMA[6] and VPC[3]. In this architecture, a service is managed by its agent,
which has two resource management spaces named the Public Zone and the
Private Zone.

The Public Zone is a space for realizing flexible public service use. The Private
Zone is a space for protecting private user information. Moreover, agents are
organized in a group called the community and are managed independently in
each community. Thus, we realize the flexible service use and the protection of
private information.

2 The Public Zone and the Private Zone

In this section, we introduce the Public Zone and the Private Zone. In our
architecture, agents have a Public Zone and a Private Zone. The Public Zone is
for flexible public service use. The Private Zone is for the protection of private
resources. An overview of our architecture is shown in Fig. 1.

The Public Zone manages public resources. A public resource is a resource,
like a service or information. Public resources are open to the public. A public
resource has a public policy which consists of a method for its service use and a
specification of attributes. A user agent acquires a public policy from the service
provider agent and uses its service by behaving according to its method.

A Security Barrier exists between the Public Zone and the Private Zone. The
Security Barrier has functions for restricting access to private resources and for
restricting communications of a program which accesses private resources.



A Model for Flexible Service Use and Secure Resource Management 1145

Public
Policies

Private
Policies

Security Barrier

To other agents

install

Public
Policy

From other agents

Public Zone

register

access

Private Zone

Client

interaction

access

access

Private
Services

Private
Services

Public
ResourcesPrivate
Services

Private
Services

Public
Resources

Private
Services

Private
Services

Private
ResourcesPrivate
Services

Private
Services

Private
Resources

Agent

Fig. 1. An Overview of the Public and Private Zone Model

The Private Zone manages private resources. An agent cannot directly access
private resources, but must access them through the Public Zone. A private
resource has a private policy which consists of a method for accessing its resources
and attributes governing access permission. Private policies are registered with
the Security Barrier. The Security Barrier monitors access to private resources
and communications of a program which has accessed private resources.

2.1 Public Policies and Private Policies

Each resource has a public policy or a private policy both of which consist of a
method and attributes. A method is implemented by a program called the client
program. The details of the client program are introduced at Sect. 2.3. Attributes
consist of common attributes and characteristic attributes.

The common attributes are composed of owner, type, description and
agent attr. The owner attribute is the name of the agent which generated the
policy. The type attribute shows whether the policy is a public policy or a pri-
vate policy. The description attribute gives an explanation of the resource. The
agent attr is the list of attributes of the agent which managed the policy.

The characteristic attributes of a public policy are dependency and commu-
nication. The dependency attribute shows what resources are needed for using
the resource. The dependency attribute is defined as the list of description at-
tributes of the public policy. When an agent wants to use its resource, the agent
must gather resources specified in the dependency attributes in advance. The
communication attribute shows whom it is necessary to communicate with for
using the resource. The value of the communication attribute can be any one of
no communication, owner only or agent list. No communication means that no
communication is required. Owner only means that it requires only communica-
tions with the resource provider. Agent list is defined as the list of agent name
and means that it requires only communications with agents specified in its list.



1146 K. Takahashi, S. Amamiya, and M. Amamiya

The characteristic attributes of a private policy are access and allowable com-
munication. The access attribute specifies attributes of programs which are per-
mitted the access the private resource. The allowable communication attribute
specifies communications allowed to the client program which accesses the pri-
vate resource. The value of the communication attribute can be any one of al-
low all, agent list, owner only and deny communication. Allow all permits only
communications with agents specified in the communication attribute of the
client program. Agent list permits only communications with agent specified
in its list. Owner only permits only communications with the distribution origin
(represented by the owner attribute) of the client program. Deny communication
denies all communication.

2.2 The Security Barrier

The Security Barrier is prepared for the protection of private resources between
the Public Zone and the Private Zone in each agent. All the access must be
done through the Security Barrier. The Security Barrier forbids the access from
other agents and also checks the access from programs in the Public Zone. In this
architecture, each private resource has a private policy. The private policy is reg-
istered with the Security Barrier. The Security Barrier protects private resources
by restricting the access to private resources and restricting communications of
the client program.

When the client program accesses to a private resource, the access is checked
by the Security Barrier. The Security Barrier compares the common attribute
(owner, description and agent attr) of the client program and the access at-
tributes of the private resource. If the access is accepted, the Security Barrier
returns its value and registers the client program with the access-list; if it is re-
jected, IllegalAccessException happens. After that, the Security Barrier monitors
the communication of the client program in the access-list. When the client pro-
gram communicates with other agent, the Security Barrier compares the commu-
nication partner and the allowable communication attributes of the private pol-
icy. Then, if its communication is allowed, the client program can communicate;
if it is rejected, IllegalAccessException happens. In this way, the Security Barrier
protects private resources by restricting the access and the communication.

2.3 The Client and the Service Program

In this architecture, each service is provided by one agent. A user agent uses
a service by communicating with the service provider agent according to the
method for use of the service. But methods for service use are different for each
service. Therefore, it is difficult to implement an agent which is able to ab initio
use various services. Therefore, we define the service program and the client
program as a pair.

A service provider agent sets up a service program and a client program (as
a part of the public policy) in its Public Zone. A user agent acquires a client
program from a service provider agent and invokes it in its Public Zone. Then,



A Model for Flexible Service Use and Secure Resource Management 1147

Table 1. Additional Methods for the Service and the Client Program

Result accessToPublicResource(service desc)
Call a client/service program specified in service desc on the Public Zone
and return its result

Result accessToPrivateResource(service desc) throws IllegalAccessException
Call a client/service program specified in service desc on the Private Zone
and return its result

void inform(agt name, method, par, res method) throws IllegalAccessException
Send an invocation of the method(par) to agt name.
When the agent receives a response, it invokes the res method(response)

Result accessTo(agt name, method, par) throws IllegalAccessException
Send an invocation of the method(par) to agt name and suspend the program.
When the agent receives a response, the program works again

void reply(Result res)
Send res back

the service is actualized by communications, guided by the client program and
the service program, between the service provider and user. The service and
client program are implemented in Java with additional methods as shown in
Table 1.

3 Decentralized Service Management

In an environment with a lot of services, it is difficult to manage and dispatch
resources to users in a centralized way. Therefore, a decentralized service man-
agement mechanism is required. For that, we define the community. Each com-
munity manages agents in its community independently. Each community has a
portal agent which is the representative of each community. A portal agent has
tax policies that are obligations imposed on agents in its community. Agents are
able to use services provided in the community to the extent that they fulfill
their obligation.

3.1 The Tax Policy

The tax policy is the obligation imposed on agents who have joined a community.
The tax policy is designed for checking the qualification to join the community
and/or for obligating to provide the service. The tax policy consists of a client
program and attributes. The attributes are the same as for the public policy.
When agents join a community, they must install the client program specified
in the tax policy in their Public Zone.

When an agent joins a community, it receives tax policies from the portal
agent of the community. The agent installs the client programs in its own Public
Zone and notifies that to the portal agent. If the community needs to check



1148 K. Takahashi, S. Amamiya, and M. Amamiya

Public Zone

Security BarrierClient

Public
Policy

Security Barrier

1,2.Request 
the resource list
and receive it 3,4. Request a policy

and receive it
Public Zone
User Agent

Resource
List

Portal Agent

Resource
List

Portal Agent

Service Provider Agent

Public
Resource

Fig. 2. The Steps for Obtaining a Client Program

the qualification to join the community, the portal agent accesses to the client
program in the agent’s Public Zone. Then, the client program accesses resources
of the agent for checking the qualification to join the community3 and returns its
result. As the result, the portal agent sends a participation permission/refusal
notification message. If the agent receives a participation permission notification
message, the agent joins the community. Moreover, agents in the community
provide the services specified in the tax policies to other agents in the community.

3.2 The Registration of the Service

The portal agent manages resources provided by agents in the community. When
an agent joins the community, it sends owner and description attributes to the
portal agent. The portal agent registers them in the resource table, allowing an
agent to find resources by querying to the portal agent.

3.3 Service Use

An agent acquires a client program from a service provider agent and uses a
service. The steps for obtaining a client program are shown in Fig. 2.

1. A user agent sends a resource list request message to a portal agent.
2. The portal agent returns the resource list (which consists of owner and de-

scription attributes).
3. The user agent finds necessary resources from the resource list.
4. The user agent requests a public policy from the service provider agent

(indicated by the owner attribute in the resource list).
5. The service provider agent returns the requested public policy.
6. The user agent installs the client program detailed in the received public

policy.

3 A method for checking the qualification is not shown in this paper, because it depends
on applications.



A Model for Flexible Service Use and Secure Resource Management 1149

HomeDir

Printer
Home Directory Agent

Printer Agent

HomeDir

Printer

register

MPU_Simu
Member
_Check

Tax policy

LabA Community

LabB Community

UserX Agent
Public

Private

DirLoginPass=***
LabID=***

UserY Agent
Public

Private

Resource
List

Portal Agent

HomeDir

Printer Home Directory Agent

Printer Agent

HomeDir

Printer

register

MPU_SimuMember
_CheckTax PolicyResource

List

HomeDir

Printer Home Directory Agent

Printer Agent

HomeDir

Printer

register

MPU_SimuMember
_CheckTax PolicyResource

List

LabID=***

Fig. 3. The Application Overview

In this way, an agent acquires a client program. Subsequently, the user agent
acquires public policies indicated in the dependency attribute of the received
public policy. Finally, the user agent invokes the client program.

4 An Application Example

In this section, we show an application example in which a member of a labora-
tory makes use of services provided in the laboratory. In the example, we assume
that sensors for detecting user’s location are installed in the laboratory and no-
tify the user agent of the community name corresponding to each user’s location.
We also assume that the problems of tapping, spoofing and masquerading have
been solved by importing technologies of encryption, digital signature, Public
Key Infrastructure and so on.

4.1 The System Structure

The application overview is shown in Fig. 3.
In this application, there is a printer agent and a home directory agent in the

LabA community and the LabB community. A printer agent provides a printer
services. A home directory agent provides home directory access services for
users who have a login password. Also, LabA is simulating MPU (MicroProcessor
Unit) processes that requires more CPU power. Accordingly, the portal agent
of the LabA community has a tax policy (MPU Sim) which supplies the CPU
resources for the simulation, and a tax policy (Member Check) which confirms
whether agents are members of its laboratory or not.

UserX/userY are members of LabA/B, repectively. They have a LabID with
the following attributes:

owner="UserX/Y", type="private", agent_attr=attribute of userX/Y,
description="Belonging to laboratory",



1150 K. Takahashi, S. Amamiya, and M. Amamiya

Home Directory Agent

Printer Agent

MPU_Simu
Member
_Check

Tax Policy

Portal Agent
LabA 
Community

UserX Agent

Security Barrier
register2a.access

Mem_Check

MPU_Simu
1. install

2. user confirmation

3.join

access=...
com=“owner_only”

Private Zone

Public Zone

LabID=***LabID=***

1. install

Fig. 4. The Behavior when the UserX agent Enters the LabA community

access=agent_attr:{owner="portal of LabA/LabB"},
allowable_communication="owner_only"

. Also, userX has a HomeDirLoginPass with the following attributes:

owner="UserX", type="private", agent_attr=attributed of userX,
description="Home directory login password",
access=agent_attr:{owner="Home Directory Agent"},
allowable_communication="owner_only".

4.2 Behavior When Entering the Laboratory

The behavior when userX enters LabA is shown in Fig. 4. When userX visits
LabA, its community name (LabA) is notified to his agent by sensors. The agent
then receives tax policies (MPU Simu, Member Check) from the portal agent of
the LabA community and installs their client programs in its own Public Zone;
the portal agent accesses Member Check installed in userX’s Public Zone and
tries to confirm whether he is a member of LabA. The Member Check program
tries to access the LabID. Then, the access is allowed because attributes of LabID
are access=agent_attr:{owner="portal of LabA"}, allowable_communica-
tion="owner_only". As the result, the confirmation succeeds. After that, the
userX agent receives a participation permission notice message and joins the
LabA community. On the other hand, even if userY tries to join the LabA com-
munity, he can not join because attributes of his LabID are Access=agent_attr:
{owner="portal of LabB"}.

And agents in the LabA community have the MPU Simu program in their
Public Zone, because MPU Simu is specified in the tax policy of the LabA com-
munity. Therefore, agents in the LabA community supply the CPU resources for
the MPU simulation. In this way, we can simulate MPU processes using CPU
resources of other agents through their MPU Simu program.



A Model for Flexible Service Use and Secure Resource Management 1151

Printer service
Home dir access service

execute refresh

User InterfaceHome Directory Agent

Printer Agent

Portal Agent

LabA Community

Public Zone

Printer

UserX Agent

6. communicate
3.intall

2. select1. display

4. display

5. operate

Resource
List

HomeDir
HomeDir

Printer
Printer

File name: 

Number of copies:

Page range: All

.ps

Pages: 

Printer
BrowsFile name: 

Number of copies:

Page range: All

.ps

Pages: 

Printer
BrowsFile name: 

Number of copies:

Page range: All

.ps

Pages: 

Printer
Brows

1

test

Fig. 5. The Behavior when a User Agent Uses a Service

4.3 Service Use in the LabA Community

The behavior involved in using a service in the LabA community is shown in
Fig. 5. A user agent receives the resource list. The user agent shows its description
attributes to the user. If the user selects a service he wishes to use, the user agent
acquires the public policy and invokes the appropriate client program.

For example, when userX enters LabA, ”Printer service” and ”Home dir ac-
cess service” are shown on his portable terminal. If he selects ”Printer service”,
his agent acquires the Printer policy and invokes its client program. This results
in the interface for ”Printer service” being shown on his portable terminal, and he
uses the printer through this interface. Also, if he wishes to use ”Home dir access
service”, his agent acquires the HomeDir policy and invokes its client program.
Then, the HomeDir client program tries to access the HomeDirLoginPass. Here,
attributes of the HomeDirLoginPass are Access=agent_attr:{owner="Home
Directory Agent"}, Allowable_Communication="owner_only". Therefore, the
HomeDir client program accesses the HomeDirLoginPass and tries to authenti-
cate. If its authentication succeeds, userX can access his home directory; if it
fails, he cannot. Of course, only programs generated by the Home Directory
agent can access the HomeDirLoginPass .

4.4 The Evaluation of Our System

Service-Use Mechanism. We have defined pairs of service programs which
are executed by a service provider agent and client programs which are executed
by a user agent. A service provider agent provides service programs to user
agents. Therefore, by getting client programs from service provider agents, user
agents make use of various services. In the application example, if a user agent
does not know a method for the service use in advance, he can use services by
getting appropriate client programs from their service provider agents.

We also defined the tax policy, which is the obligation imposed on members
of the community. Agents in the community must provide services specified in



1152 K. Takahashi, S. Amamiya, and M. Amamiya

tax policies. In the application example, the portal agent confirms whether an
agent is a member of the laboratory or not by the Member Check program, and
the agents supplies the CPU resources for MPU simulation by the MPU Simu
program.

Protection of Private Resources. We defined two resource management
spaces, the Public Zone and the Private Zone. The Public Zone is a space for
flexible public service use. The Private Zone is a space for protecting private
resources. All the access to resources in the Private Zone is examined by the
Security Barrier according to each private policy. In the application example,
we showed that only programs permitted by the private policy can access the
LabID and the HomeDirLoginPass.

Decentralized Service Management. We introduce the community, which
manages agents independently. In the application example, we defined the LabA
and LabB community, each of which manages agents independently.

5 Related Work

UDDI (Universal Description, Discovery and Integration) , WSDL (Web Services
Description Language) and SOAP (Simple Object Access Protocol) are three key
specifications for implementing dynamic web service integration. UDDI offers
users a unified and systematic way to find service providers through a centralized
registry of services. WSDL is designed to describe the capabilities of any Web
Service. SOAP is an XML-based protocol for messaging and Remote Procedure
Calls (RPC). Because WSDL description is an interface for RPC or messaging,
users must program to use its service. In our architecture, by getting a method
for each service, user can use services without programming.

Many researchers are trying to develop security systems for Digital Rights
Management and Trusted Computing[2, 4]. However, most of them are prin-
cipally based on the client-server model or domain-specific distributed environ-
ments. Therefore, it is difficult to cover widely distributed environments in which
there are a lot of services.

6 Summary

In this paper, we introduced a new architecture which has two resource man-
agement spaces: one is the Public Zone for flexible public service uses based on
the acquisition of client programs; the other is the Private Zone where private
resources are protected under the supervision of the Security Barrier. There-
fore, a user agent can use various services while protecting private resources.
Future work will clarify the details of the public/private policy attributes and
the details of the client/service programs through practical application of the
architecture.



A Model for Flexible Service Use and Secure Resource Management 1153

References

1. distributed.net. http://distributed.net/.
2. J. S. Erickson. Fair Use, DRM, and Trusted Computing. Communication of ACM,

Vol. 46(4), pp. 34–39, 2003.
3. T. Iwao, Y. Wada, M. Okada, and M. Amamiya. A Framework for the Exchange

and Installation of Protocols in a Multi-Agent System. CIA2001, pp. 211–222,
September 2001.

4. L. Kagal, T. Finin, and A. Joshi. Trust-Based Security for Pervasive Computing
Environments. IEEE Computer, Vol. 34(12), pp. 154–157, 2001.

5. SETI@home. http://setiathome.ssl.berkeley.edu/.
6. Guoqiang Zhong, et al. The Design and Implementation of KODAMA System.

IEICE Transactions INF.& SYST., Vol. E85-D, No. 4, pp. 637–646, April 2002.



Online Performance Monitoring and Analysis of Grid
Scientific Workflows�

Hong-Linh Truong1 and Thomas Fahringer2

1 Institute for Software Science, University of Vienna
truong@par.univie.ac.at

2 Institute for Computer Science, University of Innsbruck
Thomas.Fahringer@uibk.ac.at

Abstract. While existing work concentrates on developing QoS models of busi-
ness workflows and Web services, few tools have been developed to support the
monitoring and performance analysis of scientific workflows in Grids. This paper
describes a Grid service for performance monitoring and analysis of Grid scientific
workflows. The service utilizes workflow graphs and various types of performance
data including monitoring data of resources, execution status of activities, and per-
formance measurement obtained from the dynamic instrumentation, to provide a
rich set of monitoring and performance analysis features. We store workflows and
their relevant information, devise techniques to compare constructs of different
workflows, and support multi-workflow analysis.

1 Introduction

Recently many interests have been shown in exploiting the potential of the Grid for
scientific workflows. Scientific workflows [12] are normally more flexible and diverse
than production and administrative business workflows. As the Grid is diverse, dynamic
and inter-organizational, even with a particular scientific experiment, there is a need
of having a set of different workflows because (i) one workflow mostly is suitable
for a particular configuration of underlying Grid systems, and (ii) available resources
allocated for a scientific experiment and their configuration are changed in each run on
the Grid. This requirement is a challenge for the performance monitoring and analysis of
workflows (WFs) because very often the client of performance tools wants to compare
the performance of different WF constructs with respect to the resources allocated in
order to determine which WF construct should be mapped onto which topology of the
underlying Grid. Therefore, multi-workflow analysis, the analysis and comparison of
the performance of different WF constructs, ranging from the whole WF to a specific
construct (e.g. a fork-join construct), is an important feature. Moreover, the performance
monitoring and analysis of Grid scientific workflows must be conducted online. Even
though numerous tools have been developed for constructing and executing scientific
workflows on the Grid, e.g. [9, 14, 4], there is a lack of tools that support scientists to

� The work described in this paper is supported by the European Union through the IST-2002-
511385 project K-WfGrid.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1154–1164, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Online Performance Monitoring and Analysis of Grid Scientific Workflows 1155

monitor and analyze the performance of their workflows in the Grid. Most existing work
concentrates on develop QoS models of business workflows and Web services [8, 3, 1].

To understand the performance of WFs on the Grid, we need to collect and analyze
a variety of types of data relevant to the execution of the WFs from many sources. In
previous work, we have developed a middleware which supports services to access and
utilize diverse types of monitoring and performance data in a unified system named
SCALEA-G [16]. This paper presents a Grid performance analysis service for scientific
WFs. The analysis service, utilizing the unified monitoring middleware, collects moni-
toring data from the WF control and invocation services, and performance measurements
obtained through the dynamic instrumentation of WF activities, and uses WF graphs to
monitor and analyze the performance of WFs during the runtime. Relevant data of WFs
including WF graphs and performance metrics are stored, and we develop techniques
for comparing the performance of different constructs of WFs.

The rest of this paper is organized as follows: Section 2 outlines the Grid performance
analysis service. Performance analysis for WFs is presented in Section 3. We illustrate
experiments in Section 4. Section 5 discusses the related work. Finally we summarize
the paper and outline the future work in Section 6.

2 Grid Performance Analysis Service

Figure 1 presents the architecture of the Grid monitoring and performance analysis ser-
vice for WFs. The WF is submitted to the Workflow Invocation and Control (WIC) which
locates resources and executes the WF. Events containing execution status of activities,
such as queuing, processing, and information about resources on which the activities
are executed will be sent to the monitoring tool. The Event Processing processes these
events and the Analysis Control decides which activities should be instrumented, mon-
itored and analyzed. Based on information about the selected activity instance and its
consumed resources, the Analysis Control requests the Instrumentation and Monitoring
Control to perform the instrumentation and monitoring. Monitoring and measurement

Grid Performance
Analysis Service

SCALEA-G
Middleware

MS: Monitoring Service, IS: Instrumentation Service, AI: Activity Instance

Workflow
Invocation and

Control

Workflow
Applications

Compute Resource

MS IS AI

Compute Resource

MS IS AI

Compute Resource

MS IS AI

Compute Resource

MS IS AI

Event
Processing

Analysis
Control

Instrumentation
and Monitoring

Control

Fig. 1. Model of monitoring and performance analysis of workflow-based application



1156 H.-L. Truong and T. Fahringer

data obtained are then analyzed. Based on the result of the analysis, the Analysis Con-
trol can decide the next step. The performance monitoring and analysis service uses
SCALEA-G as its supportive monitoring middleware. The monitoring service (MS) and
Instrumentation Service (IS) are provided by SCALEA-G [16].

3 Performance Monitoring and Analysis of Grid Workflows

3.1 Supporting Workflow Computing Paradigm

Currently we focus on the WF modeled as a DAG (Direct Acyclic Graph) because
DAG is widely used in scientific WFs. A WF is modeled as a DAG of which a node
represents an activity (task) and an edge between two nodes represents the execution
dependency between the two activities. An invoked application of an activity instance
may be executed on a single or multiple resources.

We focus on analyzing (i) fork-join model and (ii) multi-workflow of an application.
Figure 2(b) presents the fork-join model of WF activities in which an activity is followed
by a parallel invocation of n activities. There are several interesting metrics that can be
obtained from this model such as load imbalance, slowdown factor, and synchronization
delay. These metrics help to uncover the impact of slower activities on the overall per-
formance of the whole structure. We also concentrate on fork-join structures that contain
structured block of activities. A structured block is a single-entry-single-exit block of
activities. For example, Figure 2(c) presents structured blocks of activities.

a0 a1 a2

(a)

a1(1)

a2

a1(2)

a0

... a1(n)

(b)

...

a1(1,m)

a1(1,1)

a1(1,2)

a2

...

a1(2,m)

a1(2,1)

a1(2,2)

...

...

...

...

...

a1(n,m)

a1(n,1)

a1(n,1)

a0

(c)

Fig. 2. Multiple workflows of an workflow-based application: (a) Sequence workflow, (b) Fork-
join workflow, and (c) Fork-join of structured blocks of activities



Online Performance Monitoring and Analysis of Grid Scientific Workflows 1157

A workflow-based application (WFA) can have different versions, each represented
by a WF. For example, Figure 2 presents an application with 3 different WFs, each may
be selected for execution on specific underlying resources. When developing a WFA, we
normally start with a graph describing the WF. The WFA is gradually developed in a step-
wise refinement that creates a new WF. In a refinement step, a subgraph may be replaced
by another subgraph, resulting in a set of different constructs of the WF. For example,
the activity a1 in Figure 2(a) is replaced by set of activities {a1(1), a1(2), · · · , a1(n)}
in Figure 2(b).

We focus on the case in which a subgraph of a DAG is replaced by a another subgraph
in the refined DAG. This pattern occurs frequently when developing WFs. Let G and H
be DAG of WF WFg and WFh, respectively, of a WFA. G and H represent different
versions of the WFA. H is said to be a refinement of G if H can be derived by replacing
a subgraph SG of G by a subgraph SH of H . The replacement can be controlled by the
following constraints:

– Every edge (a, b) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge (a, c) ∈ H ,
∀c ∈ SH satisfies no d ∈ H such that (d, c) ∈ SH .

– Every edge (b, a) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge (c, a) ∈ H ,
∀c ∈ SH satisfies no d ∈ H such that (c, d) ∈ SH .

SH is said to be a replaced refinement graph of SG. Note that SG and SH may not be a
DAG nor a connected graph. For example, consider the cases of Figure 2(a) and Figure
2(b). Subgraph SG = {a1} is replaced by subgraph SH = {a1(1), a1(2), · · · , a1(n)};
both are not DAG, the first is a trivial graph and the latter is not connected graph.
Generally, we assume that a subgraph SG has n components. Each component is either
a DAG or a trivial graph. Comparing the performance of different constructs of a WFA
can help to select and map WF constructs to the selected Grid resources in an optimal
way.

Graph refinement is a well-established field and it is not our focus. We do not con-
centrate on the determination of refinement graphs in WFs, rather, the WF developers
and/or WF construction tools are assumed to do this task. In this paper, (ai, aj) indicates
the dependency between activity ai and aj , and pred(ai) and succ(ai) denote sets of the
immediate predecessors and successors, respectively, of ai.

3.2 Activities Execution Model

We use discrete process model [13] to represent the execution of an activity a. Let P (a)
be the discrete process modeling the execution of activity a. A P (a) is a directed, acyclic,
bipartite graph (S, E, A), in which S is a set of nodes representing activity states, E is
a set of nodes representing activity events, and A is a set of edges representing ordered
pairs of activity state and event. Simply put, an agent (e.g. WIC, activity instance) causes
an event (e.g. submitted) that changes the activity state (e.g. from queuing to processing),
which in turn influences the occurrence and outcome of the future events (e.g. active,
failed). Figure 3 presents an example of a discrete process modeling the execution of an
activity.

Each state s is determined by two events: leading event ei, and ending event ej such
that ei, ej ∈ E, s ∈ S, and (ei, s), (s, ej) ∈ A of P (a). To denote an event name of P (a)



1158 H.-L. Truong and T. Fahringer

initializing submitted queuing active processing completed

Fig. 3. Discrete process model for the execution of an activity. � represents an activity state, ©
represents an activity event

we use ename(a). We use t(e) to refer to the timestamp of an event e and tnow to denote
the timestamp at which the analysis is conducted. Because the monitoring and analysis
is conducted at the runtime, it is possible that an activity a is on a state s but there is no
such (s, e) ∈ A of P (a). When analyzing such state s, we use tnow as a timestamp of
the current time of state s. We use → to denote the happened before relation between
events.

3.3 Intra-activity and Inter-activity Performance Metrics

Performance data relevant to a Grid WF are collected and analyzed at two levels: activity
and workflow level.

Activity Level. Firstly, we dynamically instrument code regions of the invoked applica-
tion of the activity. We capture performance metrics of the activity, for example its exe-
cution status, performance measurements of instrumented code regions (e.g. wall-clock
time, hardware metrics), etc. Performance metrics of code regions are incrementally
provided to the user during the execution of the WF. Based on these metrics, various
analysis techniques can be employed, e.g. load imbalance, metric ratio. We extend our
overhead analysis for parallel programs [15] to WFAs. For each activity, we analyze
activity overhead. Activity overhead contains various types of overheads, e.g. commu-
nication, synchronization, that occur in an activity instance.

Secondly, we focus on analyzing response-time of activities. Activity response time
corresponds to the time an activity takes to be finished. The response time consists
of waiting time and processing time. Waiting time can be queuing time, suspending
time. For each activity a, its discrete process of execution model, P (a), is used as the
input for analyzing activity response time. Moreover, we analyze synchronization delay
between activities. Let consider a dependency between two activities (ai, aj) such as ai ∈
pred(aj). ∀ai ∈ pred(aj), when ecompleted(ai) → esubmitted(aj), the synchronization
delay from ai to aj , Tsd(ai, aj), is defined as

Tsd(ai, aj) = t(esubmitted(aj)) − t(ecompleted(ai)) (1)

If at the time of the analysis, esubmitted(aj) has not occurred, Tsd(ai, aj) is com-
puted as Tsd(ai, aj) = tnow − t(ecompleted(ai)). Each activity associates with a set of
the synchronization delays. From that set, we compute maximum, average and mini-
mum synchronization delay at aj . Note that synchronization delay can be analyzed for
any activity which is dependent on other activities. This metric is particularly useful for
analyzing synchronization points in a WF.



Online Performance Monitoring and Analysis of Grid Scientific Workflows 1159

Workflow Level. We monitor and analyze performance metrics that characterize the
interaction and performance impact among activities. Interactions between two activities
can be file exchanges, remote method invocations or service calls. In the analysis phase,
we compute load imbalance, computation to communication ratio, activity usage, and
success rate of activity invocation, average response time, waiting time, synchronization
delay, etc. We combine WF graph, execution status information and performance data
to analyze load imbalance for fork-join model. Let a0 be the activity at the fork point.
∀ai, i = 1 : n, ai ∈ succ(a0), load imbalance Tli(ai, s) in state s is defined by

Tli(ai, s) = T (ai, s) −
∑n

i=1 T (ai, s)
n

(2)

We also apply load imbalance analysis to a set of selected activities. In a WF, there
could be several activities whose functions are the same, e.g. mProject activities in
Figure 4, but are not in fork-join model.

3.4 Multi-workflow Analysis

We compute slowdown factor for fork-join model. Slowdown factor sf is defined by

sf =
maxn

i=1(Tn(ai))
T1(ai)

(3)

where Tn(ai) is the processing time of activity ai in fork-join version with n activities
and T1(ai) is the processing time of activity ai in the version with single activity. We
also extend the slowdown factor analysis to fork-join structures that contain structured
block of activities. In this case, Tn(ai) will be the processing time of a structured block
of activities in a version with n blocks.

For different replaced refinement graphs of WFs of the same WFA, we compute
speedup factor between them. Let SG be a subgraph of WF WFg of a WFA; SG has
ng components. Let Pi =< ai1, ai2, · · · , ain > be a critical path from starting node to
the ending node of the component i, Ci, of SG. The processing time of SG, Tcp(SG),
is defined by

Tcp(SG) = max
ng

i=1(Tcp(Ci)), Tcp(Ci) =
n∑

k=1

T (aik) (4)

where T (aik) is the processing time of activity aik. Now, let SH be the replaced refine-
ment graph of SG, SG and SH are subgraphs of WF WFg and WFh, respectively, of
a WFA. Speedup factor sp of SG over SH is defined by

sp =
Tcp(SG)
Tcp(SH)

(5)

The same technique is used when computing the speedup factor between WFg and
WFh.

In order to support multi-workflow analysis of WFs, we have to collect and store dif-
ferent DAGs of the WF, performance data and machine information into an experiment



1160 H.-L. Truong and T. Fahringer

repository powered by PostgreSQL. Each graph is stored with its associated performance
metrics; graph can be DAG of the WF or a subgraph. We use a table to represent relation-
ship between subgraphs. Currently, for each experiment, the user can select subgraphs,
specifying refinement relation between two subgraphs of two WFs. The performance
tool uses data in the experiment repository to conduct multi-experiment analysis.

4 Experiments

We have implemented a prototype of the Grid performance analysis service with WIC
is based on JavaCog [10]. JGraph [6] and JFreeChart [5] are used to visualize WF
DAGs and performance results, respectively. In this section, we illustrate experiments
of different WFs of the Montage application in the Austrian Grid [2].

Montage [11] is a software for generating astronomical image mosaics with back-
ground modeling and rectification capabilities. Based on the Montage tutorial, we de-
velop a set of WFs, each generates a mosaic from 10 images without applying any back-
ground matching. Figure 4 presents experimental WFs of the Montage application. In
Figure 4(a), the activitytRawImage andtUncorrectedMosaic are used to transfer
raw images from user site to computing site and resulting mosaics from computing site
to user site, respectively. mProject reprojects input images to a common spatial scale.
mAdd coadds the reprojected images. mImgtbl1 is used to build image table which
is accessed by mProject, mAdd. In WFs executed on multiple resources, we have
several subgraphs tRawImage → mImgtbl1 → mProject1 → tProjectedImage,
each subgraph is executed on a resource. The new tProjectedImage activity is
used to transfer projected images produced by mProject to the site on which mAdd
is executed. When executed on n resources, the subgraph mImgtbl2 → mAdd →
tUncorrectedMosaic is allocated on one of that n resources.

We conduct experiments on sites named GUP (University of Linz), UIBK (University
of Innsbruck), AURORA6 (University of Vienna) and VCPC (University of Vienna) of
the Austrian Grid. Due to the space limit, we just present a few experiments of online
performance analysis of Montage WFs.

Figure 5 presents the performance analysis GUI when analyzing a Montage WF
executed on two resources in UIBK. Performance analysis component retrieves profiling
data through the dynamic instrumentation of invoked applications. The left-pane shows
the DAG of the WF. The middle-pane shows the dynamic code region call graph (DRG)
of invoked applications of activities. We can examine the profiling data of instrumented
code region on the fly. The user can examine the whole DRG of the application, or
DRG of an activity instance. By clicking on a code region, detailed performance metrics
will be displayed in the right-pane. We can examine historical profiling data of a code
region, for example window Historical Data shows the execution time of code region
computeOverlap executed on hafner.dps.uibk.ac.at. The user also can
monitor resources on which activities are executed. For example, the window Forecast
CPU Usage shows the forecasted CPU usage of hafner.dps.uibk.ac.at.

Figure 6(a) presents the response time and synchronization delay analysis for activity
mImgtbl2 when the Montage WF, presented in Figure 4(c), is executed on 5 machines,
3 in AURORA6 and 2 in GUP. The synchronization delay from tProjectedImage3, 4,



Online Performance Monitoring and Analysis of Grid Scientific Workflows 1161

tRawImage

mImgtbl1

mProject1

mImgtbl2

mAdd

tUncorrectedMosaic

(a)

tRawImage1

mImgtbl11

mProject11

tRawImage2

mImgtbl12

mProject12

tProjectedImage1 tProjectedImage2

mImgtbl2

mAdd

tUncorrectedMosaic

(b)

tRawImage1

mImgtbl11

mProject11

...

...

...

tRawImagen

mImgtbl1n

mProject1n

tProjectedImage1 ... tProjectedImagen

mImgtbl2

mAdd

tUncorrectedMosaic

(c)

Fig. 4. Experimental workflows of the Montage application: (a) workflow executed on single
resource, (b) workflow executed on two resources, and (c) workflow executed on n resources

Fig. 5. Online profiling analysis for WF activities

5 to tImgtbl2 are very high. This causes by the high load imbalance between mProject
instances, as shown in Figure 6(b). The two machines in GUP can process significantly
faster than the rest machines in AURORA6.

Over the course of the WF development process, subgraph named
mProjectedImage which includes tRawImage → mImgtbl1 → mProject1 in
single resource version is replaced by subgraphs of tRawImage → mImgtbl1 →



1162 H.-L. Truong and T. Fahringer

(a) (b)

Fig. 6. Analysis of Montage executed on 5 machines: (a) response time and synchronization delay
of mImgtbl, (b) load imbalance of mProject

Fig. 7. Speedup factor for refinement graph ProjectedImage of Montage WFs

mProject1 → tProjectedImage in a multi-resource version. These subgraphs
basically provide projected images to the mAdd activity, therefore, we consider
they are replaced refinement graphs. We collect and store performance of these
subgraphs in different experiments. Figure 7 shows the speedup factor for the subgraph
mProjectedImage of Montage WFs executed on several experiments. The execution
of mProjectedImage of the WF executed on single resource in LINZ is faster
than that of its refinement graph executed on two resources (in AURORA6 or UIBK).
However, the execution of mProjectedImage of WF executed on 5 resources, 3 of
AURORA6 and 2 of LINZ, is just very slightly faster than that executed on 5 resources
of AURORA6. The reason is that the slower activities executed on AURORA6 resources
have a significant impact on the overall execution of the whole mProjectedImage
as presented on Figure 6(b).

5 Related Work

Monitoring of WFs is an indispensable part of any WfMS. Therefore it has been discussed
for many years. Many techniques have been introduced to study quality of service and



Online Performance Monitoring and Analysis of Grid Scientific Workflows 1163

execution of the WF on distributed systems, e.g. in [1]. We share them many common
ideas and concepts with respect to performance metrics and monitoring techniques of
the WF model. However, existing works concentrate on business WFs and Web services
processes while our work targets to scientific WF executed on Grids. We support dynamic
instrumentation of activity instances and online monitoring and performance profiling
analysis of WFs, and integrate resources monitoring with WF monitoring.

Most effort on supporting the scientist to develop Grid workflow-based applications
concentrates on WF language, WF construction and execution systems, but not focuses
on monitoring and performance analysis of the Grid WFs. P-GRADE [7] is one of a few
tools that supports tracing of WF applications. Instrumentation probes are automatically
generated from the graphical representation of the application. It however limits to MPI
and PVM applications. Our Grid WF monitoring and performance analysis service sup-
ports monitoring execution of activities and online profiling analysis. Also the dynamic
instrumentation does not limit to MPI or PVM applications.

6 Conclusion and Future Work

This paper introduces a Grid performance analysis service that can be used to monitor
and analyze the performance of scientific WFs in the Grid. The Grid performance anal-
ysis service which combines dynamic instrumentation, activity execution monitoring,
and performance analysis of WFs in a single system presents a dynamic and flexible
way to conduct the performance monitoring and analysis of scientific WFs. We be-
lieve techniques for comparing performance of subgraphs of WFs and for supporting
multiple-workflow analysis are very useful for optimizing WF structures and mapping
WF constructs onto selected underlying Grid resources.

In the current prototype, we manually instrument WIC in order to get execution status
of activities. We can extend WF specification language with directives specifying moni-
toring conditions. These directives will be translated into code used to publish the status
to the monitoring middleware. WIC can also offer an interface for the monitoring service
to access that status. Meanwhile, the process of analysis, monitoring and instrumentation
is controlled by the end-user. The future work is to automate that process.

References

1. Andrea F. Abate, Antonio Esposito, Nicola Grieco, and Giancarlo Nota. Workflow perfor-
mance evaluation through wpql. In Proceedings of the 14th international conference on
Software engineering and knowledge engineering, pages 489–495. ACM Press, 2002.

2. AustrianGrid. http://www.austriangrid.at/.

performance model of WFs, e.g., [8, 3], and to support monitoring and analysis of the

3. Jorge Cardoso, Amit P. Sheth, and John Miller. Workflow quality of service. In Proceedings
of the IFIP TC5/WG5.12 International Conference on Enterprise Integration and Modeling
Technique, pages 303–311. Kluwer, B.V., 2003.

4. Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, Kent
Blackburn, Albert Lazzarini, Adam Arbree, and Scott Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, 1:25–39, 2003.



1164 H.-L. Truong and T. Fahringer

5. JFreeChart. http://www.jfree.org/jfreechart/.
6. JGraph. http://www.jgraph.com/.
7. P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton, and G. Gombas. P-

GRADE: a Grid Programming Environment. Journal of Grid Computing, 1(2):171–197,
2003.

8. Kwang-Hoon Kim and Clarence A. Ellis. Performance analytic models and analyses for
workflow architectures. Information Systems Frontiers, 3(3):339–355, 2001.

9. Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL : A Workflow Frame-
work for Grid Services. Technical Report, Argonne National Laboratory, 9700 S. Cass Av-
enue, Argonne, IL 60439, U.S.A., July 2002.

10. G. Laszewski, I. Foster, J. Gawor, and P. Lane. A java commodity grid kit. Concurrency and
Computation: Practice and Experience, 13(643-662), 2001.

11. Montage. http://montage.ipac.caltech.edu.
12. Munindar P. Singh and Mladen A. Vouk. Scientific workflows. In Position paper in Reference

Papers of the NSF Workshop on Workflow and Process Automation in Information Systems:
State-of-the-art and Future Directions, May 1996.

13. John F. Sowa. Knowledge Representation: logical, philosophical, and compuational founda-
tions. Brooks/Cole, Pacific Grove, CA, 2000.

14. The Condor Team. Dagman (directed acyclic graph manager).
http://www.cs.wisc.edu/condor/dagman/.

15. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis Tool for Par-
allel Programs. Concurrency and Computation: Practice and Experience, 15(11-12):1001–
1025, 2003.

16. Hong-Linh Truong and Thomas Fahringer. SCALEA-G: a Unified Monitoring and Perfor-
mance Analysis System for the Grid. Scientific Programming, 2004. IOS Press. To appear.



WebGrid: A New Paradigm for Web System�

Liutong Xu1, Bai Wang1, and Bo Ai2

1 School of Computer Science and Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

{xliutong, wangbai}@bupt.edu.cn
2 Information Systems Division of China Unicom, Beijing 100032, China

aibo@chinaunicom.com.cn

Abstract. World Wide Web is one of the most important applications
on the Internet. Net surfers can browse the Web pages by tracing the links
embedded in the hypertexts. However, one will be stuck when there are
no hyperlinks or the hyperlinks are broken. This paper proposes a new
paradigm for Web system called WebGrid, which consists of a dynamic
collection of Web servers that work cooperatively. WebGrid synchronizes
the Web contents that are usually stored in the underlying database
systems in order to provide a uniform view of all resources. Net surfers
can retrieve all resources in the WebGrid through one local Web server.
The paper addresses WebGrid architecture and some related concepts.
Key issues such as the WebGrid topology, the resource synchronization
mechanism and strategy, as well as the Web site customization are also
discussed in the paper.

1 Introduction

Computing paradigms have been evolved a lot since computer had been invented.

– 1st phase: Computer invented. All computations are run on the local com-
puter systems. There are no connections among different computer systems
just as there were no roads in our world at the very beginning. It is impossible
to utilize the computing power of some remote computer systems.

– 2nd phase: Internet invented. Computers are connected by network. There
are roads among the computer systems. Therefore, computations could be
scheduled to run on some remote computer systems. However, you can do
nothing if you do not know how to get to the destination.

– 3rd phase: Web invented. Hyperlinks in the Web pages are just like the
signposts that will guide you surfing on the Internet. In many situations, it
is not necessary to know the destination addresses of the interested resources.
If you are interested in something, you may click on the related links in the
hypertext and you will get there.

� This work is supported by the National Natural Science Foundation of China (Grant
No. 90104024), and China National Science Fund for Distinguished Young Scholars
(Grant No. 60125101).

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1165–1174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1166 L. Xu, B. Wang, and B. Ai

However, with the rapid development of the Internet application, the number
of the Web sites and pages are growing up exponentially. What would happen
if there were no signposts somewhere? Net surfers will be lost in the Web world
with such an astronomical amount of Web pages.

A simplest approach to solve the problem is to set up appropriate sign-
posts where necessary in the Internet. All these signposts together constitute
a roadmap of the Web world. This brings a new computing paradigm.

– 4th phase: Grid computing. A complete roadmap never makes you lost. The
Internet with the roadmap serves as a grid - a virtual supercomputer. Com-
putations now run on grid.

This paper proposes a new paradigm called WebGrid. It unites a dynamic
collection of Web servers to constitute a Web community and builds a roadmap
for it. The resources in the WebGrid are well organized and the roadmap serves
as a directory service. The goal of WebGrid is to realize the resource sharing
among different Web sites and to give a unified resource view to the browsers. In
the WebGrid, one can logon to one local Web server and retrieve all resources.
For those non-local resources, the local server will retrieve the resources on behalf
of the client from some remote Web servers and send them back to the client.

The remainder of this paper is organized as follows. Section 2 is about related
work; section 3 proposes a WebGrid system and defines its architecture; section
4 addresses some key issues in WebGrid and detailed discussions; and section 5
presents some conclusions.

2 Related Work

World Wide Web is one of the most successful and popular ways to retrieve
information on the Internet. Hypertext transfer protocol [1] brings up great
convenience for the information retrieval on the Internet. People can trace the
Web pages by clicking on the links in the hypertexts. On the other hand, we all
had experienced trouble in finding information that we were interested in. The
followings are some of the reasons:

– Sometimes you do not know the addresses where the resources are located,
and you cannot find any hyperlinks that lead there.

– Not all information is linked properly. Sometimes the links are broken, es-
pecially those cross-site links.

– You would get no responses from the Web servers, because of the heavy
workloads of the server or the network traffic jams.

Many efforts are done in order to leverage the performance of Web servers,
to reduce the response time, to fasten the access speed.

Caching and mirror. Many organizations and ISPs have set up Web caching
systems [7] or mirror sites over the different areas of the world in order for
net surfers to visit their Web sites locally. Caching and mirror mechanisms can



WebGrid: A New Paradigm for Web System 1167

speed up access to the Web servers, and balance the servers’ workloads across
the Internet. However, they cannot solve the problems of improper or broken
cross-site links. Therefore, it cannot achieve resource sharing across Web sites
from different organizations.

Search engine. If one has fewer knowledge about what one wants, search
engine such as Google [5] seems to be a good choice. Google has a copy of
all the world’s Web pages and hopes net surfers to take it as a portal site to
retrieve all the information on the Internet. Infomall project [6] in China has
the similar goal with more than 700 million Web pages in its archive. However,
almost everyone has experienced trouble with some search engines. Sometimes
you get no results, sometimes you get flooded by tremendous amount of irrelevant
or garbage information. In addition, the web pages in Google’s database do
not reflect the most up-to-date information. Moreover, the centralized search
mechanism and database will lead to a bottleneck in practice.

The Semantic Web [2]. Its goal is to establish machine understandable Web
resources. Researchers plan to accomplish this by creating ontology and logic
mechanisms and replacing HTML with markup languages such as XML, RDF,
OIL, and DAML. That means the semantic Web will rebuild radically rather than
integrate conveniently the existing Web systems. Moreover, because the semantic
Web, the semantic/knowledge grid [10] focus on semantics and reasoning, there
is still a long journey to go before they will be widely deployed.

Grid technology [4] is to provide computing power as utility and realize the In-
ternet scale resources sharing. Researchers hope to design some kind of generic
grid infrastructures or platforms, and then to develop grid applications upon
these platforms. On the other hand, our efforts focus on integrating some suc-
cessful applications on the Internet to form application grids, such as FTPGrid
[8]. In fact, the grid technology is a good approach to reconstruct the Web sys-
tem. Nowadays, most of Web servers on the Internet have adopted dynamic
Web technologies, which means most of information are stored in the underlying
database systems. If we can construct a data grid [3] to store all information of
some related Web sites, then all the Web sites can be reconstructed based on
the data grid. In this paper, we are going to unite the Web servers to consti-
tute a Web grid system - WebGrid. Obviously, retrieving information in a well
organized WebGrid is always better than searching in a chaotic Web world.

3 The WebGrid System

With the rapid development of the Internet applications, more and more Web
servers have adopted dynamic Web page technologies, which means Web infor-
mation are stored in the underlying database systems. However, fewer resources
are shared among these Web servers. The goal of WebGrid is to achieve informa-
tion sharing and fully utilize the Web resources that are stored in different Web
sites. A WebGrid consists of a dynamic collection of geographically distributed
Web servers (also called grid node). The unified view of all Web resources is
established by synchronizing the underlying database systems. Thus, one can



1168 L. Xu, B. Wang, and B. Ai

browse all information of these Web servers easily without following a series of
hyperlinks jumping back and forth.

3.1 Two Typical Scenarios

What does WebGrid look like? Let us look at two scenarios. Here we take news
Web site for example. Normally, all news agencies have their own Web sites. The
journalists write news reports and publish on their news Web sites.

A Traditional Web Scenario. If you want to read some daily news reported
by CNN, for example, you must logon to the CNN Web site. If you want to read
news reported by BBC, then you must logon to the BBC Web site. As shown in
Fig. 1. However, if you have never heard of some news agency, Fox for example,
then there is no way for you to read Fox news. You cannot connect to it or
even you do not know how and what to search. In addition, you may read many
reprints of the same pieces of reports on the different sites in the traditional Web
scenario.

A WebGrid Scenario. Suppose that the most important mass media such as
CNN, BBC, Fox, CCTV, etc. have agreed on sharing their news reports. Now,

Fig. 1. A traditional Web scenario

Fig. 2. A WebGrid scenario



WebGrid: A New Paradigm for Web System 1169

they synchronize their news reports databases to form a virtual news database.
All these Web sites together form a NewsGrid, as shown in Fig. 2, a virtual
unified news Web server. Now, you only need to logon one of the Web sites in
the NewsGrid, and can browse all reports.

3.2 WebGrid Architecture

The original Web adopted so-called two tiers Browser/WebServer architecture.
Recently more and more Web sites are adopting dynamic Web technology and
information is stored in the underlying database systems. This is three tiers
Browser/WebServer/DatabaseServer architecture. If we unite a group of Web
servers by integrating the underlying database systems, we get a virtual database
and further a virtual Web server or a WebGrid. Fig. 3 describes the WebGrid
architecture. The two lower tiers construct a grid tier. Therefore, it can also be
viewed as two tiers Browser/Grid architecture. People can browse a WebGrid
conveniently just as browsing a traditional Web site, because the underlying
database systems are transparent to the WebGrid users.

A Virtual Database

Browser

Database
Server

Web Server

Browser

Database
Server

Web Server

Synchronization

Metadata

Fig. 3. WebGrid architecture

3.3 Metadata

The metadata takes an important role in the grid environment. It addresses
important information about the grid resources, such as name, ID, owner, de-
scription, locations, etc. In the NewsGrid, for example, the resources are mainly
the news reports, the metadata may include:

– ID, title, description, length
– Type: political, financial, entertainment, or sports, etc.
– Region: such as domestic or international
– Authority or not
– Locations: multiple copies of resources are stored in the WebGrid. Therefore,

Web resource may have multiple locations either in local database or in
remote databases, or in file systems

– Timestamp: used for updating
– etc.

In the WebGrid, unified and consistency metadata is necessary to give a
uniform view of all the resources.



1170 L. Xu, B. Wang, and B. Ai

Authority Resource. Because WebGrid consists of many Web servers, the
Web resources are owned by different organizations. The resources will be clas-
sified into two categories: authority and non-authority. The resources that have
important or historical values are called authority resources and should be kept
in the archives. The resources such as those in caches or for temporal use are
non-authority and may be deleted upon the limitation of the local storages and
the replacement policies.

Whether the resources are authority or not is site-relevant. Every Web site
may have its own policies to identify some of its resources as authority or non-
authority. For example, the news reports written by CNN journalists are author-
ity to the CNN Web sites, but non-authority to the CCTV Web sites, and vice
versa.

3.4 The Way WebGrid Works

WebGrid adopts so-called browser/grid architecture. Web browsers only need to
connect to one local Web server, and then they can get access to all resources
in the WebGrid.

Take NewsGrid for example. If someone in China wants to read news about
the tsunami/earthquake occurred recently in Indian Ocean islands, he/she can
logon to CCTV Web site. The server will return a Web page containing the
related news reports that are generated from the news database. Some of them
are reported by CCTV, others by CNN or CBS. If the report is reported by
CCTV or it is reported by CNN but it has been requested previously and has
been cached in the local database system, then the Web server will access the
report from the local database and return to the browser. If it is a CBS report
and there is no cached copy, then the Web server will retrieve on behalf of the
browser the corresponding news report from some remote database systems, and
then return the requested report to the browser. At the same time, the report
will be cached in the local database system for subsequent requests.

4 Key Issues in the Implementation of WebGrid

A WebGrid consists of a dynamic collection of geographically distributed Web
servers (grid nodes) that work cooperatively as a single one. For WebGrid to be
a reality, some key issues must be solved.

The resource management is the key issue in the grid environment. In the
WebGrid environment, the resource management is mainly about the synchro-
nization of the Web resources that are stored in the underlying database systems
and of the metadata that describe the Web resources. Because of the complex-
ity of the WebGrid topology, the neighborhood-based policy is introduced to
simplify the synchronization. The metadata will be synchronized completely in
order to give a unified view of all the resources, while the Web resources only
need to be partially synchronized. Other issues in WebGrid include access relay



WebGrid: A New Paradigm for Web System 1171

and caching, join and leave of a Web server, customization of individual Web
servers, etc.

4.1 WebGrid Topology and Neighborhood

WebGrid is directly built upon the existing Web sites that may cover wide area
over the Internet. Therefore, its topology is quite complicated. The resource
management in such an environment will become very difficult. In order to sim-
plify the resource management, we introduce the concept of neighborhood. The
resource management in the WebGrid will be based on the neighborhood.

Distance. The neighborhood is measured by some kind of distances. Distance
between two grid nodes can be any one or combination of the followings (perhaps
with some kind of weights):

– network hops, network bandwidth capacity, real data transfer rates (which
varies dynamically with time), round-trip time, data transfer costs, etc.

For a specific Web site (node), other Web sites can be classified into three
types, according to the distance between the two sites.

– Near Neighbor : a node with relatively short distance from the node
– Distant Neighbor : a node with quite long distance from the node
– Non-Neighbor : a node that is too far from the node

Neighborhood Topology. In the WebGrid, every grid node has its own neigh-
borhood.

– Every grid node keeps the topology information about its neighborhood,
including near neighbors and sometimes distance neighbors.

– Every grid node manages resource sharing and information synchronization
by exchanging information with neighboring nodes.

– Because the synchronization is based on neighborhood, it can be imple-
mented in a decentralized manner. Therefore, the WebGrid is scalable from
a small organization to the Internet scale.

4.2 Resource Synchronization

WebGrid consists of many Web sites distributed geographically over the Internet.
The resource management in the WebGrid is implemented by synchronizing the
underlying databases. The WebGrid topology is very complicated. Therefore,
in order to simplify and achieve the decentralized resource management in the
WebGrid, every Web site synchronizes its resources only with its neighboring
sites. The metadata describe the information about all resources stored on the
geographically distributed Web servers, so it is necessary to have a complete
metadata to present a unified resource view to all Web browsers. On the other
hand, it is not necessary for all Web servers to keep a complete copy of all



1172 L. Xu, B. Wang, and B. Ai

resources in the WebGrid, or it will become a mirroring mechanism and obviously
consume too many storage resources. In fact, each Web server only need to store
the authority resources and those resources that are frequently accessed by the
local browsers.

Therefore, different synchronization mechanisms are used in WebGrid for
different purposes:

Topology Information Exchange. In WebGrid, all resource synchronization
is based on neighborhood, so the neighborhood topology information are ex-
changed and updated periodically among the neighboring nodes.

Metadata Synchronization. Metadata must be synchronized completely to
present a unified view of the WebGrid resources. However, the metadata syn-
chronization does not mean to have identical copies of metadata at all Web
sites. Some attributes about the resources may be different for different Web
sites. The resources may be local or authority to some Web sites, but remote or
non-authority to other Web sites.

Resource Synchronization. The Web resources in the WebGrid are all stored
in the underlying databases. It is not necessary to synchronize completely all
these databases. Only the resources that are requested frequently by the local
browsers are needed to be synchronized from its neighboring sites to the lo-
cal server. While those resources that are not so frequently requested will be
retrieved on demand from some neighboring nodes.

Information Update. We all experienced the delayed update in information
or the broken links. In the WebGrid, the owners of the resources take the re-
sponsibility to update information or links in hypertexts. When new information
is inserted or some information is updated in the local database, it will trigger
metadata resynchronization with its neighbor sites, and then spread over the
whole WebGrid. Therefore, the metadata are kept up to date.

4.3 Access Relay and Caching

Because the partial synchronization mechanism is used in the WebGrid, some-
times the resources that a browser requested are not stored in the local database
system. At that time, the local Web server will access the resources from some
remote database systems according to metadata, and then send the resources
back to the browser. This access relay mechanism combined with the partial
synchronization mechanism forms the key foundation of the WebGrid system.
In other words, any requests to the non-local resources will trigger a data repli-
cation process to implement the resource synchronization. A proper data repli-
cation strategy such as [9] is used in order to support fragmented replication
from multiple source sites.



WebGrid: A New Paradigm for Web System 1173

The resources retrieved from the remote database systems will be stored
temporally on the local database system in order to speed up the response time
for possible subsequent requests. Usually, the temporal copies of the resources
will be marked up as non-authority, which means the resources could be deleted
after certain period. The period depends on how frequently the resources have
been accessed in the most recent period and the local site’s storage limitation.

4.4 Join and Leave of Web Servers

In the dynamic environment of WebGrid, it is quite often that some servers will
join in or leave from a grid. If a Web server joins into a WebGrid, the newcomer
should first synchronize metadata from its neighbor Web servers. When a Web
server leaves, all the resources including those authority resources stored on the
server will become unavailable. The neighboring nodes will update their topology
information and metadata periodically. In addition, the WebGrid could also keep
several copies of such authority resources on other nodes upon certain policies.

4.5 Customization

Although the WebGrid has a unified view of all the resources, the Web sites in the
WebGrid can still have different appearances. That means each Web site can be
customized based on some site-specific information such as private information,
language setting, layout and color designing, and preference list of information
stored in the local database, etc.

For example, in the NewsGrid above, the news reports may be divided into
two classes: domestic and international. Of course, it depends on the countries
that the Web sites reside. The events happened in the US would be listed in
the domestic news in CNN or CBS Web sites, but listed in the international
news in BBC or CCTV Web sites. The reports about Chinese Spring Festival
are domestic to CCTV Web site and international to CNN and BBC Web sites.
CCTV will put the political news at the most significant place in the layout,
while CNN might put the financial news at that place.

4.6 Advantages of WebGrid

If we unite a collection of Web servers to form a WebGrid, we may experience
many benefits. The advantages include:

– Convenient access: The underlying technology of WebGrid is transparent to
the Web browsers, so net surfers can browse the WebGrid as if they were
browsing the traditional Web sites.

– Unified view: All resources are integrated to form a unified view of all Web
sites. The neighborhood-based synchronization mechanism realizes decen-
tralized resource management, and therefore WebGrid is scalable.

– Load balance: Every Web server in the WebGrid can be considered as a cache
of other Web servers. Therefore, the access load will be distributed evenly
over the whole WebGrid.



1174 L. Xu, B. Wang, and B. Ai

– Fast access: Local access will provide much higher access speed.
– Reduce network traffic: Many remote accesses are replaced by the local ac-

cesses, so the network traffic on the backbone will be reduced.
– Customization: Each Web server may be customized to have different layout,

language, color, preferences, etc.

5 Conclusions

This paper presented a new paradigm for Web system - WebGrid, which con-
sists of a dynamic collection of geographically distributed Web servers working
cooperatively for all Web browsers. People can browse the WebGrid as if they
are browsing the traditional Web system.

WebGrid makes it possible for the Web browsers to get a convenient and a
high-speed access to all resources in the WebGrid through a local Web server.
The neighborhood-based synchronization mechanism simplifies the resource man-
agement in WebGrid. The complete synchronized metadata and the partial syn-
chronization mechanism for the Web contents give a global view of the WebGrid,
and reduce the storage costs by storing Web resources only on their authority
servers and some hotspot servers. WebGrid can radically reduce the traffic on
the network, because the same resources will not be transferred back and forth
frequently on the backbone of the Internet. In WebGrid, every Web server may
be customized to fit its local browsers’ preferences.

References

1. Berners-Lee, T., Fielding, R., and Frystyk, H.: Hypertext Transfer Protocol -
HTTP/1.0. IETF, RFC 1945. http://www.ietf.org/rfc/rfc1945.txt (1996)

2. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web. Scientific Amer-
ican. 284(5)(2001) 34 43

3. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S.: The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets. J. Network and Computer Applications. 23 (2001)

4. Foster, I. and Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco (2003)

5. Google. http://www.google.com
6. Infomall Project. http://www.infomall.cn
7. Wessels, D. and Claffy, K.: Internet Cache Protocol (ICP), version 2. IETF, RFC

2186. http://www.ietf.org/rfc/rfc2186.txt (1997)
8. Xu, L. and Ai, B.: FTPGrid: A New Paradigm for Distributed FTP System. In:

Li, M. et al (Eds.): Grid and Cooperative Computing. Lecture Notes on Computer
Science, Vol. 3033. Springer-Verlag, Berlin Heidelberg (2004) 895-898

9. Xu, L., Wang, B. and Ai, B.: A Strategy for Data Replication in Data Grids. In:
Proc of the 2004 Int. Conf. on High Performance Computing and Applications.
Shanghai. To appear in LNCSE, Springer-Verlag (2005)

10. Zhuge, H.: China’s E-Science Knowledge Grid Environment. IEEE Intelligent Sys-
tems. 19(1) (2004) 13-17

-



Dynamic Failure Management for Parallel
Applications on Grids

Hyungsoo Jung, Dongin Shin, Hyeongseog Kim, Hyuck Han,
Inseon Lee, and Heon Y. Yeom

School of Computer Science and Engineering,
Institute of Computer Technology,

Seoul National University,
Seoul, 151-742, Korea

{jhs, dishin, hskim, hhan, inseon, yeom}@dcslab.snu.ac.kr

Abstract. The computational grid, as it is today, is vulnerable to node
failures and the probability of a node failure rapidly grows as the size
of the grid increases. There have been several attempts to provide fault
tolerance using checkpointing and message logging in conjunction with
the MPI library. However, the Grid itself should be active in dealing with
the failures. We propose a dynamic reconfigurable architecture where the
applications can regroup in the face of a failure. The proposed architec-
ture removes the single point of failure from the computational grids and
provides flexibility in terms of grid configuration.

1 Introduction

Grid computing is an emerging computing paradigm which utilizes a hetero-
geneous collection of computers in different domains connected by networks[1].
There are computational grid which is mainly for high performance comput-
ing and data grid where enormous amount of data are spread out throughout
the grid. Though the grid has attracted much attention for its ability to utilize
ubiquitous computational resources while providing a single system view, most
of grid-related studies have been concentrated on the static resource manage-
ment. The dynamic resource management, especially the fault tolerance has not
been discussed enough in the grid research area. The grid, being an instance of
distributed systema, has inherent failure factors; the system consists of a num-
ber of nodes, disks and network lines which can fail independently. Although
the failure rate of a single component could be acceptable, the overall system
reliability of the system consisting of various components can be suprisingly low
if all the components should be in working order for the overall system to be
functional. To increase the reliability of the system, it is essential to provide
some form of fault tolerance. Also, the grid, being a collection of various nodes
and clusters, should be able to cope with changing configuration due to failures.

In this paper, we propose a framework for dynamic failure management for
the computational grid where parallel programs are executing on Globus. The

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1175–1182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1176 H. Jung et al.

most important issue in providing fault tolerance is that there should not be
a single point of failure. We have achieved this goal using different strategies
at different levels accordingly. At the lowest level, where the application pro-
grams are concerened, we have employed checkpointing and message logging to
store the applications’ consistent global states so that the failed process can be
restarted on another node without losing the entire computation. Checkpointing
and rollback recovery is a well-known technique for fault tolerance, which is an
operation to store the state of a process into stable storage so that the process
can resume its previous states at any time [2]. At the next level, where the appli-
cation processes are managed, state machine approach[3] is employed by active
replication of cluster managers.

Although several stand-alone checkpoint toolkits are present 1, they are not
adquate for parallel applications since they cannot restore the communication
context: for examble, sockets or shared memory content would be wiped out.
Since parallel processes communicate with each other by message passing, the
communication channels should be restored as well as the process states. In
this paper, we concentrate on the channel reconstruction for parallel processes
restored from checkpoints.

2 Related Works

Several implementations of the fault tolerance have been proposed, which ex-
ploits the dynamic process management of PVM [4] or LAM-MPI [5, 6, 7]. Such
parallel programming environments allow flexible change of the process group,
that is to say, the processes can leave and join the process group dynamically.
However, these implementations are based on the indirect communication model
where the messages are transferred via intermediates like daemons. Each process
is not required to know the physical addresses of the other processes. A process
only needs to know its corresponding daemon to communicate and channel re-
construction can be easily done by reconnecting the local daemon. However,
indirect communication imposes a large message delay which undermines the
biggest advantage of MPI, the performance.

MPICH-G2 proposed by Argonne National Laboratory [8] is a grid-enabled
MPICH that runs on Globus middleware [1]. To the best of our knowledge,
MPICH is the most popular MPI implementation for its good performance and
portability. Each MPI process is aware of the physical channel information and
it can send messages to the target process directly. Once the process group set
is fixed at the initialization, no additional process can join the group. Hence, a
process failure results in total failure and the job has to be resubmitted from
the beginning. Actually original MPI (ver 1.x) specifies only the static process
management.

1 For more information about the checkpointing toolkits available on Internet, we
would like to recommend the web site, http://www.checkpointing.org



Dynamic Failure Management for Parallel Applications on Grids 1177

To cope with this, we proposed MPI Rejoin() [9] for dynamic MPI process
management. The rejoin operation enables the failed process to rejoin the ex-
isting group after recovery by updating the corresponding entry of the channel
table with the new physical address. It is the foundation of MPICH-GF [10],
which is our fault tolerant implementation of MPICH for the Grid system run-
ning Globus. The MPICH-GF provides fault tolerance by using checkpoint and
roll-back recovery in conjunction with the message logging.

However, failure detection and recovery also should be handled in fault tol-
erant fashion. To detect the failure and coordinate the recovery, a hierarchical
process managers are employed: the central manager which has total control
over all other processes and the local managers to deal with each application
processes.

The rest of this paper is organzied as follows. In Section 3 and Section 4,
we describe the communication mechanism of MPICH-G2 and the MPICH-
GF architecture respectively. We prsents the design and implementation of
MPI Rejoin() in Section 5. We also show the experimental results in Section 6.
In the final section, we conclude and propose future works.

3 Communication Mechanism of MPICH-G2

Good portability of MPICH can be attributed to the abstraction of low-level
operations, the Abstract Device Interface (ADI), as shown in Figure 1. An ADI’s
implementation is called a virtual device. Especially MPICH with a grid device
globus2 is called MPICH-G2 [8]. Just for reference, our MPICH-GF has been
implemented as the unmodified upper MPICH layer and our own virtual device
ft-globus based on globus2.

The communication of MPICH-G2 is based on non-blocking TCP sockets
and active polling. In order to accept a request for channel construction, each
MPI process opens a listener port and registers it on the file descriptor set
with callback function to poll it. On the receipt of a request, the receiver
opens another socket and accepts the connection. Then both processes enter
the await instruction state where they exchange the metadata of the connection
points. During this channel construction, the process with the larger rank ID as-

Collective Operation
Bcast(), Barrier(), Allreduce() ...

MPI
Implementation

Point−to−point operation
Send()/Recv(), Isend()/Irecv(), Waitall()...

ft−globusADI . . .ch_shmem ch_p4 globus2

Fig. 1. Architecture of the MPICH



1178 H. Jung et al.

handle

channel 0

channel 1

channel i

channel n

...

...

hostname

port number

lan id

tcp_miproto_t  channel

localhost id

handle

...

commworld

file descriptor

context

...

Fig. 2. Description of MPI COMM WORLD

sumes the role of a master whether it is a sender or a receiver. Every process gets
to know the listener ports for all processes after initialization. The initialization
in MPICH-G2 consists of two main procedures: the rank resolution and the ex-
change of listener information. Rank is the logical process ID in the group that is
determined through the check-in procedure. Check-in procedure is performed in
two phases: the intra check-in in local nodes and the inter check-in in global area.
This is done with the help of hierarchical manager system, which is described in
the next section. After the check-in procedure, the master process with rank 0
becomes aware of other processes’ ranks and broadcasts it. Then, each process
creates the listener socket and exchanges its address with the siblings processes
to construct the MPI COMM WORLD.

Figure 2 presents MPI COMM WORLD, the data structure containing the listener
and channel information for all processes. The ith entry contains the channel
information of process with rank i as follows:

– hostname and port are the phyiscal address of the listener.
– handle constains the file descriptor information of the target channel. If the

channel has not constructed yet, the value is null.
– lan ID and localhost ID are the network domain information.

4 MPICH-GF

MPICH-GF [10] is our own fault tolerant MPICH implementation on grids that
is originated from MPICH-G2. It supports coordinated checkpointing, sender-
based message logging and the optimistic receiver-based message logging [2] in
order to guarantee consistent recovery. We have implemented those recovery al-
gorithms based on the user-level checkpoint library and the process rejoining
module described in Section 5. Our MPICH-GF implementation is achieved at
the virtual device level only and it does not require any modification of applica-
tion source code or the MPICH sublayer upon ADI. It also guarantees that both
blocking and non-blocking in-transit messages during checkpointing are never



Dynamic Failure Management for Parallel Applications on Grids 1179

Application Source

MPICH−GF

USER Manager
Central

TCP/IP

Local
Manager

MPI App.

Gatekeeper

Internet

Fig. 3. Process management architecture of Globus

lost. MPICH-GF is aided by the hierarchical management system which is re-
sponsible for the failure detection and the process recovery. The central manager
and the local managers in Figure 3 are based on Globus resource co-allocator
and GRAM job managers [11] repectively.

5 Design of MPI Rejoin

We have devised MPI Rejoin() function in order to allow the recovered pro-
cess be recognized as the previous process instance. MPI Rejoin() was designed
based on the MPI Init() which is called at the beginning of the MPI appli-
cation to initialize the MPI communication information. The major difference
is that we want to retain survived processes’ communication information intact
while updating infortion regarding the restored process’ communication channel.
MPICH-G2 has many reference variables related to the system level information
as shown in Table 1. These variables are used by select() system call for non-
blocking TCP communication. The variables except the final entry constains the
input arguments and return values of select() system call.

The read / write callback functions are stored in “globus l io fd table”. Since
these sytem level information are not valid any more in a new process instance,
they should be re-initiated in order to prevent a recovered process from access-
ing the invalid file descriptors. Then, the new physical address of the restored
process should be notified to the other processes. Figure 4 shows the rejoin pro-
cess incurred by calling MPI Rejoin(). After reopening the listener socket, the
restored process sends its new listener information (Table 2) to the local man-
ager. Then the local manager forwards this information to the central manager.
The central manager collects all channel update information from the restored
processes and finally broadcasts them. On the receipt of the update information,
the survived processes update the corresponding entries of their MPI COMM WORLD.



1180 H. Jung et al.

Table 1. Reference variables

globus l io read fds

globus l io write fds

globus l io except fds

globus l io active read fds

globus l io active write fds

globus l io active except fds

globus l io highest fd num set

globus l io select count

globus l io fd num set

globus l io fd table

(3) broadcast

 process  process
Survived

(4) new commworldchannel info.(1) Inform new listner info.

Manager
Central

Manager Manager
Local Local

Recovered

(3) broadcast

(2) forward new listner info.

(4) new commworldchannel info.

Fig. 4. Protocol between Manager and Processes

Table 2. Rejoin message format

global rank hostname port number lan id localhost id
(4 Bytes) (256 Bytes) (10 Bytes) (4 Bytes) (40 Bytes)

The values of handle in those entries are set to null, which makes the processes
to reconstruct the channel.

6 Experimental Results

We have tested our implementation using a testbed of eight computers: Four
with Intel Pentium 800 MHz processor and four with Intel Pentium 2.0 GHz
processor. All of them have 128 MB RAM with Linux-2.4.12 OS and Globus



Dynamic Failure Management for Parallel Applications on Grids 1181

�������	�
����

���

���

���

���

���

���

���

���

���

� � �

�������������	�



��
�
�
�
�
�
�
	


�
�
�


�����������������
�����	�
���������
�������������
��������

Fig. 5. Rejoin Overhead

toolkit 2.2 installed. The NAS Parallel Benchmark applications were used to
verify our implementation. Since we are only interested on the performance of
recovery process and there is little difference between different applications, we
only presents the results from running LU application. All the other applica-
tions show similar behavior when recovering. In this experiment, the number of
processes varies from two to eight.

The “rejoin” cost per single failure is presented in Figure 5. In order to
evaluate the “rejoin” cost, we have measured the “Update info. send time”,
“Broadcasting time” and “Propagation delay”. “Update info. send time” is the
time for the recovering process to initialize the communication channel and send
the new channel information to the local manager. It was measured after the
recovering process was re-launched and restored by reading the checkpoint file.
It contains the reference variable re-initialization overhead, new listener port
creation overhead and the communication overhead to the local manager. Since
this cost is not influenced by the number of processes which participate in the
current working group, it should not vary according to the number of processes
and the result matches with the expectation. The “Broadcasting time” was mea-
sured at the central manager as the time between receiving the recovering pro-
cess’ channel update informatioin and receiving the acknowledgement from all
proceses in current working group. Figure 5 shows that “Broadcasting time”
increases as the number of processes increases. After all processes in current
working group receive the update signal from the central manager, they mod-
ify “MPID COMM WORLD” and send the acknowledgement for notificatoin of
channel update complete at each process to central manager. “Propagation de-
lay” contains the message delay from central manager to local manager, from
local manager to central manager and from local manager to MPI process. This
overhead is pretty small and almost constant. As shown in Figure 5, only “Broad-
casting time” is influenced by the number of processes.



1182 H. Jung et al.

7 Conclusion

We have presented the design and implementation of dynamic process manage-
ment using process rejoining for MPICH on grids. The proposed operation is the
basis of providing fault tolerance and it can also be used for task migration for
message passing processes. While most of previous works adopt the indirect com-
munication for the convenience of the channel reconstruction, our MPICH-GF
supports the direct communication model for good performance. In order to re-
spect the communication characteristic, our implementation is accomplished at
the virtual device layer. However, it was still accomplished at user level without
modifying the Linux kernel. We have evaluated the cost of MPI Rejoin() with
varying process group size and show that the cost increases as the number of
processes increases. We expect that on-demand channel updating would be more
efficient since each parallel process tends to communicate with specific adjacent
processes. On-demand in this context means that the process specifically ask the
channel information when needed instead of central manager broadcasting the
information to all the processes.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications 15 (2001)

2. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34 (2002)
375–408

3. Schneider, F.B.: The state machine approach: a tutorial. (1986)
4. Menden, J., Stellner, G.: Proving properties of pvm applications - a case study

with cocheck. In: PVM/MPI 1996. (1996) 134–141
5. Li, W.J., Tsay, J.J.: Checkpointing message-passing interface (MPI) parallel pro-

grams. In: Proceedings of the Pacific Rim International Symposium on Fault-
Tolerant Systems (PRFTS). (1997) 147–152

6. Fagg, G.E., Dongarra, J.: FT-MPI: Fault tolerant MPI, supporting dynamic ap-
plications in a dynamic world. In: PVM/MPI 2000. (2000) 346–353

7. Louca, S., Neophytou, N., Lachanas, A., Evripidou, P.: Portable fault tolerance
scheme for MPI. Parallel Processing Letters 10 (2000) 371–382

8. Foster, I., Karonis, N.T.: A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems. In: Proceedings of SC 98, ACM Press (1998)

9. Kim, S., Woo, N., Yeom, H.Y., Park, T., Park, H.: Design and implementation
of dynamic process management for grid-enabled MPICH. In: Proceedings of the
10th European PVM/MPI Users’ Group Conference. (2003)

10. Woo, N., Yeom, H.Y., Park, T., Park, H.: MPICH-GF, transparent checkpointing
and rollback-recovery for grid-enabled MPI processes. In: Proceedings of the 2nd
Workshop on Hardware/Software Support for High Performance Scientific and
Engineering Computing. (2003)

11. Foster, I., Kesselman, C.: The globus project: A status report. In: Proceedings of
the Heterogeneous Computing Workshop. (1998) 4–18



 

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1183 – 1192, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Novel Intrusion Detection Method for Mobile  
Ad Hoc Networks 

Ping Yi*, Yiping Zhong, and Shiyong Zhang 

Department of Computing and Information Technology Fudan University,  
Shanghai, 200433, China 

Pyi_edu@yahoo.com.cn 

Abstract. The mobile ad hoc networks are particularly vulnerable to intrusion, 
as its features of open medium, dynamic changing topology, cooperative rout-
ing algorithms. The traditional way of protecting networks with firewalls and 
encryption software is no longer sufficient and effective for those features, be-
cause no matter how secure the mobile ad hoc networks, its is still possible the 
nodes are compromised and become malicious. In this paper, we propose a 
novel intrusion detection approach for mobile ad hoc networks by using finite 
state machine. We construct the finite state machine (FSM) by the way of 
manually abstracting the correct behaviours of the node according to the routing 
protocol of Dynamic Source Routing (DSR). The monitor nodes cooperatively 
monitor every node’s behaviour by the FSM. Our approach can detect real-time 
attacks without signatures of intrusion or trained data.  Finally, we evaluate the 
intrusion detection method through simulation experiments. 

1   Introduction 

Mobile Ad Hoc Networks are the collection of wireless computer, communicating 
among themselves over possible multi-hop paths, without the help of any infrastruc-
ture, such as base stations or access points. Nodes in mobile ad hoc network collabo-
ratively contribute to routing functionality by forwarding packets for each other to 
allow nodes to communicate beyond direct wireless transmission range, hence practi-
cally all nodes may act as both hosts and routers. Mobile ad hoc networks require no 
centralized administration or fixed network infrastructure and can be quickly and 
inexpensively set up as needed. They can thus be used in scenarios where no infra-
structure exists, such as military applications, emergent operations, personal elec-
tronic device networking, and civilian applications like an ad-hoc meeting or an ad-
hoc classroom. 

With more and more application, security for mobile ad hoc networks becomes in-
creasingly important. A lot of secure solutions for mobile ad hoc networks have been 
proposed by far. But most of them are key management and authentication [1][2][3], 

                                                           
*  He is a Ph.D. candidate at the department of Computing and Information Technology, Fudan 

University. His research interests are network security and mobile computing. Phn: +86-21-
65643187, E-mail: pyi_edu@yahoo.com.cn 



1184 P. Yi, Y. Zhong, and S. Zhang 

 

secure routing protocol[4][5]. Most of those are prevention techniques. The preven-
tion methods, such as encryption and authentication, used in mobile ad hoc networks 
can reduce attacks, but hardly eliminate them. When nodes roam in a hostile envi-
ronment with relatively poor physical protection, they have probability of being com-
promised. The compromised nodes may launch attacks within the networks. Encryp-
tion and authentication can not defend against compromised nodes, which carry the 
private keys. In addition, a perfect protective security solution is for all practical pur-
poses impossible and no matter how many intrusion prevention measures are inserted 
in a networks, there are always some weak links that one could exploit to break in. 
Intrusion detection should be the second wall of defence for security in mobile ad hoc 
networks. 

This paper analyzes some of the vulnerabilities, specifically discussing attacks 
against DSR that manipulate the routing messages. We propose a solution based on 
finite state machines intrusion detection to detect attacks on DSR. 

First, we design the distributed and cooperative intrusion detection architecture, 
which are composed of distribute monitor nodes. Intrusion detection in mobile ad hoc 
networks must be carried out in a distributed fashion because of the absence of infra-
structure and the centre administration. Each network monitor node runs independ-
ently and monitors all nodes in its zone to find the local intrusions. To track some 
moving node, they may exchange information with neighbour monitors. Considering 
resource constraint, only some nodes in mobile ad hoc networks are selected as net-
work monitors. We describe an algorithm which the nodes can periodically, randomly 
and fairly elect a monitor node for the entire zone. 

Secondly, we propose a finite state machine (FSM)-based intrusion detection sys-
tem which can detect attacks on the DSR routing protocol. In the FSM-based intru-
sion detection, the correct behaviours of critical objects are manually abstracted and 
crafted as security specifications, and this is compared with the actual behaviour of 
the objects. The technique may detect previously unknown attacks, while exhibiting a 
low false positive rate. Network monitors trace data flow on every node and audit 
every forwarding packet by finite state machines. If some node behaves in an 
incorrect manner, he will be found and some alarm will be sent out. 

The rest of the paper is organized as follows. In section 2, we survey the related 
work in intrusion detection for mobile ad hoc networks. We introduce some back-
ground knowledge, such as Intrusion Detection System (IDS), Dynamic Source Rout-
ing and some attacks for DSR in section 3. In section 4, we describe the proposed 
approach. In section 5, we evaluate the effect of our intrusion detection approach. 
Finally, we discuss summarize the paper in section 6. 

2   Related Work 

Zhang and Lee describe a distributed and cooperative intrusion detection model [9]. 
In this model, an IDS agent runs at each mobile node, and performs local data collec-
tion and local detection, whereas cooperative detection and global intrusion response 
can be triggered when a node reports an anomaly. The main contribution of the paper 
is that it presents a distributed and cooperative intrusion detection architecture based 
on statistical anomaly detection techniques. However, the design of actual detection 



 A Novel Intrusion Detection Method for Mobile Ad Hoc Networks 1185 

 

techniques, their performance as well as verification were not addressed in the article. 
Zhang and Lee describe its experiments and performance in [6].Oleg Kachirski and 
Ratan Guha propose a distributed intrusion detection system based on mobile agent 
technology [7]. In contrast to the above architecture, the agents in [7] do not run on 
every node and they can be dynamically increased and decreased according to the 
resource of networks. Its architecture is aimed to minimize costs of network monitor-
ing and maintaining a monolithic IDS system. 

R. S. Puttini et al propose a distributed and modular architecture for IDS [10], and 
a signatures-based approach is propose to detect two kinds of intrusion.  The architec-
ture may not detect unknown attack. Yi-an Huang and Wenke Lee address a coopera-
tive intrusion detection system for ad hoc networks [11].  In the paper, a set of rules is 
presented to identify the attack type or misbehaving nodes. But the author seems to 
ignore the attack of modification. 

Bo Sun et al present a intrusion detection agent model which utilizes a Markov 
Chain based anomaly detection algorithm to construct the local detection engine [12]. 
P. Albers et al present a general intrusion detection architecture using agent [13]. In 
the architecture, the agents choose to use Simple Network Management Protocol 
(SNMP) data located in management information bases (MIB) as the audit source. S. 
Bhargava and D.P. Agrawal present the intrusion detection and intrusion response 
model for ad hoc networks [15]. Wang Weichao et al present the detection of false 
destination sequence numbers carried in RREQ packet [16]. 

3   Background 

3.1   Overview of DSR [8] 

The Dynamic Source Routing (DSR) is an entirely on-demand ad hoc network routing 
protocol, which composed of two parts: Route Discovery and Route Maintenance. In 
DSR, whenever a node needs to send a packet to some destination for which does not 
currently have a route to that destination in its Route Cache, the node initiates Route 
Discovery to find a route. The initiator broadcast a ROUTE REQUEST packet to its 
neighbours, specifying the target and a unique identifier from the initiator. Each node 
receiving the ROUTE REQUEST, if it has recently seen this request identifier from 
the initiator, discards the REQUEST. Otherwise, it appends its own node address to a 
list in the REQUEST and rebroadcasts the REQUEST. When the ROUTE REQUEST 
reaches its target node, the target sends a ROUTE REPLY back to the initiator of the 
REQUEST, including a copy of the accumulated list of addresses from the 
REQUEST. When the REPLY reaches the initiator of the REQUEST, it caches the 
new route in its Route Cache. The intermediate node also sends a ROUTE REPLY, if 
it has a route to the destination. 

Route Maintenance is the mechanism by which a node sending a packet along a 
specified route to some destination detects if that route has broken. If, after a limited 
number of local retransmissions of the packet, a node in the route is unable to make 
this confirmation, it returns a ROUTE ERROR to the original source of the packet, 
identifying the link from itself to the next node as broken. The sender then removes 
this broken link from its Route Cache; for subsequent packets to this destination, the 



1186 P. Yi, Y. Zhong, and S. Zhang 

 

sender may use any other route to that destination in its Cache, or it may attempt a 
new Route Discovery for that target if necessary. 

3.2   Vulnerabilities and Attacks for DSR 

DSR does not address security concerns, so it allows intruders to easily launch vari-
ous kinds of attacks by modifying the route information. In DSR, some critical fields 
such as source address, destination address, address list, are very important and any 
misuse of these fields can cause DSR malfunction. An intruder may make use of the 
following ways against DSR. 

• Impersonate a node S by forging a ROUTE REQUEST with its address as the 
originator address. 

• When forwarding a ROUTE REQUEST, insert, delete and modify the address 
list. 

• Impersonate a node D by forging a ROUTE REPLY with its address as a desti-
nation address. 

• Selectively, not forward certain ROUTE REQUEST, ROUTE REPLY and data 
messages. 

• Forge a ROUTE ERROR pretend it is the node in the route and send it to the 
initiator. 

The above attacks can result in the following consequences.  

• Blackhole: All traffic are redirected to a specific node, which may not forward 
any traffic at all. 

• Routing Loop: A loop is introduced in a route path. 
• Network Partition: A connected network is partitioned into k subnets where 

nodes in different subnets cannot communicate even though a route between 
them actually does exist. 

• Sleep Deprivation: A node is forced to exhaust its battery power. 
• Denial-of-Service: A node is prevented from receiving and sending data pack-

ets to its destinations. 

4   FSM-Based Detection for DSR  

4.1   Algorithm of Voting Monitor 

The resources of battery power, CPU, memory in nodes are limited, and it is not effi-
cient to make each node a monitor node. As a result, we may select some nodes as 
monitors to monitor the entire networks in order to save networks resource. The net-
work monitor is the node which monitors the behavior of nodes within its monitor 
zone. The monitor zone is 1-hop vicinity of the monitor. 

The process of voting monitor should is fairness and randomness. By fairness, we 
mean that every node should have a fair chance to serve as a monitor. Note that fair-
ness has two components, fair election, and equal service time. We currently do not 
consider differentiated capability and preference and assume that every node is 



 A Novel Intrusion Detection Method for Mobile Ad Hoc Networks 1187 

 

equally eligible. Thus, fair election implies randomness in election decision, while 
equal service time can be implemented by periodical fair re-election. The randomness 
of the election process can guarantee the security. When some monitor node is com-
promised, it may not carry out the normal monitoring function and can launch certain 
attacks without being detected because it is the only node in the zone that is supposed 
to run the IDS and its IDS may have been disabled already. But after a service period, 
another node may be selected as monitor. At that time, the intrusion will be found by 
the normal monitor node.   

The algorithm is composed of two parts, namely selection phase and maintain 
phase. In selection phase, the monitor is selected by competition. At first there is no 
monitor in networks. After a period, any node may broadcast the packet “I am moni-
tor” and become a monitor. The packet can not be forwarded. Any node who receives 
the announcement becomes a monitored node and can not broadcast the announce-
ment. When a monitor is selected, the selection phase is finished and go to the main-
tain phase.  In maintain phase, the monitor broadcast the announcement periodically 
to keep up its monitor role. After a period, the monitor will terminate its monitor work 
and a new selection phase will begin. In order to insure fairness and randomness of 
selection, the predecessor can not take part in the process of selection, unless it is the 
only node in the entire zone. 

node
Monitor

 

Fig. 1. monitor and its monitor zone 

The monitors or nodes may move out of the zone due to dynamic topology. If any 
node does receive the announcement packet overtime, it can start to selection process 
and declare that itself is a monitor. Figure 1 shows monitors and their monitor 
zone.When two monitors move next to each other over an extended period of time, 
one whose ID is bigger will lose its role of monitor. As a result, whenever a monitor 
hears announcement messages from another monitor, it sets some time to expire.  
When expired, it will check if it is still in contention with the monitor, by checking if 
the monitor is still in its neighbor.  If so, it compares its own ID with that of the other 
monitor's. The one with a smaller ID will continue to act as monitor.  The one with a 
bigger ID gives up its role as monitor. 

4.2   Finite State Machine Constraints 

A monitor employs a finite state machine (FSM) for detecting incorrect behavior in a 
node. It maintains a FSM for each data flow in each node. In DSR, a node can receive 



1188 P. Yi, Y. Zhong, and S. Zhang 

 

and forward four kinds of packets, i.e. ROUTE REQUEST, ROUTE REPLY, 
ROUTE ERROR and DATA. We firstly address how to deal with ROUTE 
REQUEST flow. 

Fig. 2. The finite state machine constraints when received packet of ROUTE REQURE 

Fig. 3. The finite state machine constraints when received packet of ROUTE REPLY, ROUTE 
ERROR, DATA 



 A Novel Intrusion Detection Method for Mobile Ad Hoc Networks 1189 

 

Figure 2 shows the constraints of ROUTE REQUEST.  The start state is 1. When 
the node receives a packet, FSM go to state 2. If the packet is ROUTE REQUEST, 
FSM go to state 3. If it is the target of the ROUTE REQUEST, the node returns a 
ROUTE REPLY to the initiator of the ROUTE REQUEST. FSM go to state 4 and 
check the packet of ROUTE REPLY according as routing protocol. If some fields of 
ROUTE REPLY are maliciously modified, FSM goes to state alarm1 and alert modi-
fication alarm, otherwise, FSM goes to terminal state 7. If this node has recently seen 
the same ROUTE REQUEST, it discards the packet and FSM goes to terminal state 
7.  If the node forwards the ROUTE REQUEST, FSM goes to state 5 and checks the 
forwarded packet according as routing protocol. If some fields of ROUTE 
REQUEST are maliciously modified, FSM goes to state alarm1 and alert modifica-
tion alarm, otherwise, FSM goes to terminal state 7.  If the packet has not been for-
warded after a specified time, FSM goes to state 6. At that time the node may move 
out of the zone of the monitor and the monitor can not hear it forward the packet. 
Therefore the monitor inquire neighbor monitor whether it has forwarded the packet. 
If neighbor has received the packet, he will send it packet to the monitor for com-
parison. FSM goes to state 5. If no neighbor has received the packet, FSM goes to 
state Alarm2 and alert the alarm of drop packet. If neighbor monitor inquire about 
the packet, the monitor send the packet to neighbor to neighbor for comparison and 
FSM goes to terminal state 8. 

We use the same FSM for three kinds of packets, i.e. ROUTE REPLY, ROUTE 
ERROR, DATA, for they are disposed at the same process. Figure 3 shows their 
FSM. The start state is 1. When the node receives a packet, FSM go to state 2. If the 
packet is one of the three packets, FSM go to state 3. If it is the target of the packet, 
FSM goes to terminal state. If neighbour monitor inquire the packet and the packet is 
sent to neighbour, FSM also goes to terminal state. If the node forwards the packet, 
FSM goes to state 4 and check the forwarded packet according as routing protocol. If 
some fields of the packet are maliciously modified, FSM goes to state alarm1 and 
alert modification alarm, otherwise, FSM goes to terminal state. When the node does 
not forward the packet within a period time, the monitor will inquire its neighbour 
monitors. If some neighbour received the packet, it will send it to the monitor for 
comparison and FSM goes to state 4. Otherwise FSM goes to state Alarm2. 

Figure 2 and figure 3 show the process when a node receives a packet. Figure 4 
shows the process when a node sends a packet. And the packet is not heard by the 
monitor, Otherwise the process is figure 2 or figure 3. The start state is 1. When the 
node receives a packet, FSM go to state 2. Then, if the packet is originated packet, 
FSM goes to state 6. The monitor compares the source address of packet with the 
address of the node which has sent the packet. If two addresses are marching, FSM 
goes to terminal state. Otherwise, FSM goes to state Alarm3 and alert impersonation 
alarm. It implies that the node is impersonating another node. If the packet is for-
warded packet, FSM goes to state 3. In originated packet, the node address is source 
address and the node address is in address list in forwarded packet. Because the moni-
tor does not see the packet, it inquires neighbour monitors for the packet. FSM goes to 
state 4. If no neighbour received the packet once, FSM goes to Alarm4, the node may 
fabricate a packet. 



1190 P. Yi, Y. Zhong, and S. Zhang 

 

Fig. 4. The finite state machine constraints when node sends a packet 

If some neighbour received the packet, it will send the packet to the monitor. FSM 
goes to state 5 and checks the forwarded packet according as routing protocol. If some 
fields of packet are maliciously modified, FSM goes to state alarm1 and alert modifi-
cation alarm, otherwise, FSM goes to terminal state.   

5   Experimental Results 

To study the feasibility of our intrusion detection approach, we have implemented 
intrusion detection in a network simulator and conducted a series of experiments to 
evaluate its effectiveness. We used the wireless networks simulation software, from 
Network Simulator ns-2 [17]. It includes simulation for wireless ad-hoc network in-
frastructure, popular wireless ad-hoc routing protocols (DSR, DSDV, AODV and 
others), and mobility scenario and traffic pattern generation. 

Our simulations are based on a 1500 by 300 meter flat space, scattered with 50 
wireless nodes. The nodes move from a random starting point to a random destination 
with a speed that is randomly chosen. The speed is uniformly distributed between 0-
20m/sec. As the destination is reached another random destination is targeted after a 
pause time. The MAC layer used for the simulations is IEEE 802.11, which is in-
cluded in the ns-2. The transport protocol used for our simulations is User Datagram 
Protocol (UDP). Each data packet is 512 bytes long. The traffic files are generated 
such that the source and destination pairs are randomly spread over the entire net-
work. The number of sources is 10 in the network. The scenario files determine the 
mobility of the nodes. The mobility model used random way point model in a rectan-
gular field. Duration of the simulations is 900 seconds.  

The simulations have been performed with malicious node created in the network 
and DSR protocol integrated with our intrusion detection model. By the analysis of 



 A Novel Intrusion Detection Method for Mobile Ad Hoc Networks 1191 

 

section 2, we simulate 4 types of attack. Attack 1 is illegal modification which the 
intruder illegally inserts, deletes, and modifies the address list when the intruder for-
wards a packet. Attack 2 is to drop packets which the intruder does not forward any 
packets and only receives packets. Attack 3 is impersonation which the intruder im-
personate another node send some packets, such as ROUTE REQUEST, ROUTE 
REPLY and ROUTE ERROR. Attack 4 is fabrication which the intruder forges some 
packets which are not sent by the initiator. Table 1 show that detection rates and false 
alarms rates. The detection rate of attack 3 is highest. The main reason may be that 
the monitor directly compares the source address of packet with the address of the 
node which has sent the packet and the monitor need not the information from other 
monitor. The detection rate of attack 2 is lowest. The main reason may be that the 
monitor has to get information from the other monitor before it makes a judgment. 
We can draw a conclusion which our approach can detect the intrusion efficient with 
low false alarm rate from the simulation result. 

Table 1.  Detection performance  

Attack type Detection rate False alarm rate 
Attack 1 91.3% 2.9% 
Attack 2 83.7% 5.7% 
Attack 3 97.4% 1.3% 
Attack 4 88.5% 7.2% 

6   Conclusion 

We propose a FSM-based intrusion detection system that can detect attacks on the 
DSR. In the system, firstly we propose an algorithm of selecting monitor for distrib-
uted monitoring all nodes in networks. Secondly, we manually abstract the correct 
behaviors of the node according as DSR and compose the finite state machine of node 
behavior. Intrusions, which usually cause node to behavior in an incorrect manner, 
can be detected without trained date or signature. Meanwhile, our IDS can detect 
unknown intrusion with fewer false alarms. As a result, we propose a distributed net-
work monitor architecture which traces data flow on each node by means of finite 
state machine. 

References 

1. Lidong Zhou, Zygmunt J. Haas Securing ad hoc networks IEEE Networks Special Issue 
on Network Security November/December, 1999 

2. Srdjan Capkun, Levente Nuttyan, Jean-Pierre Hubaux, Self-organized public-key Man-
agement for mobile ad hoc networks, IEEE Transactions on mobile computing, Vol.2, 
No.1, January-March, 2003 

3. Aldar Chan, Distributed Symmetric Key Management for Mobile Ad hoc Networks, IEEE 
INFOCOM'04, Hong Kong, March 2004 



1192 P. Yi, Y. Zhong, and S. Zhang 

 

4. Yih-Chun Hu, David B. Johnson, and Adrian Perrig SEAD: Secure Efficient Distance 
Vector Routing for Mobile Wireless Ad Hoc Networks in Proceedings of the 4th IEEE 
Workshop on Mobile Computing Systems & Applications (WMCSA 2002), pp. 3-13, 
IEEE, Calicoon, NY, June 2002  

5. Yih-Chun Hu, Adrian Perrig, David B. Johnson. Ariadne: A secure On-Demand Routing 
Protocol for Ad hoc Networks in Proceedings of the MobiCom 2002, September 23-28, 
2002, Atlanta, Georgia, USA  

6. Yongguang Zhang & Wenke Lee, Intrusion Detection Techniques for Mobile Wireless 
Networks, Mobile Networks and Applications, 2003 

7. Oleg Kachirski, Ratan Guha, Intrusion Detection Using Mobile Agents in Wireless Ad 
Hoc Networks, IEEE Workshop on Knowledge Media Networking (KMN’02) 

8. David B. Johnson, David A. Maltz, Yih-Chun Hu, The Dynamic Source Routing Protocol                   
for Mobile Ad Hoc Networks (DSR), Internet-Draft, draft-ietf-manet-dsr-09.txt, 15 April 
2003, http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt 

9. Yongguang Zhang & Wenke Lee, Intrusion Detection in Wireless Ad-Hoc Networks in 
Proceedings of The Sixth International Conference on Mobile Computing and Networking 
(MobiCom 2000), Boston, MA, August 2000 

10. R. S. Puttini, J-M. Percher, L. Mé, O. Camp, R. de Sousa Jr., C. J. Barenco Abbas, L. J. 
Garcia Villalba. A Modular Architecture for Distributed IDS in MANET, Proceedings of 
the 2003 International Conference on Computational Science and Its Applications (ICCSA 
2003), Springer Verlag, LNCS 2668, San Diego, USA,  2003 

11. Yi-an Huang, Wenke Lee, A Cooperative Intrusion Detection System for Ad Hoc Net-
works, 2003 ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN '03) , 
Fairfax, VA, USA, October 31,  2003 

12. B. Sun, K. Wu, and U.W. Pooch, Routing Anomaly Detection in Mobile Ad Hoc Net-
works, Proceedings of 12th International Conference on Computer Communications and 
Networks (ICCCN 03), Dallas, Texas, October 2003, pp. 25-31 

13. P. Albers, O. Camp, J.-M. Percher, B. Jouga, L. Mé, and R. Puttini. Security in Ad Hoc 
Networks: a General Intrusion Detection Architecture Enhancing Trust Based Ap-
proaches. In Proceedings of the First International Workshop on Wireless Information 
Systems (WIS-2002), Apr. 2002 

14. Denning D.E. An intrusion detection model, IEEE Transactions on Soft- ware Engineer-
ing, SE-13:222–232, 1987 

15. S. Bhargava and D.P. Agrawal, Security Enhancements in AODV Protocol for Wireless 
Ad Hoc Networks, Vehicular Technology Conference, 2001, vol. 4, pp. 2143-2147 

16. Weichao Wang, Yi Lu, Bharat, K. Bhargava, On Vulnerability and Protection of Ad Hoc 
On-demand Distance Vector Protocol, in Proceedings of 10th IEEE International Confer-
ence on Telecommunication (ICT), 2003. 16. 

17. http://www.isi.edu/nsnam/ns/ 



Author Index

Abramson, David 961

Adams, D.L. 30

Afgan, Enis 691

Ai, Bo 1165

Aiello, A. 600

Albayrak, Sahin 1

Alexandrov, Vassil N. 434

Aloisio, Giovanni 506

Alpdemir, M. Nedim 444

Amamiya, Makoto 1143

Amamiya, Satoshi 1143

Andersson, Jesper 813

André, Françoise 538

Anglano, Cosimo 630

Anguita, Davide 620

Arantsson, Bardur 702

Astalos, J. 98, 285

Badia, Rosa M. 111

Bal, Henri 671

Balaton, Zoltán 193

Balos, Kazimierz 711

Bangalore, Purushotham V. 691

Ba�la, Piotr 364

Beckman, Nels 68

Belloum, A.S.Z. 154

Benedyczak, Krzysztof 364

Benfenati, Emilio 464

Benkner, Siegfried 661

Bergstra, Jan A. 1097

Bernardo, L. 98

Bevinakoppa, Savitri 226, 1086

Biskupski, Bartosz 671

Blair, Gordon 786

Bluj, M. 98

Boisrobert, Loic 6

Bölöni, Ladislau 721

Boullón, M. 731

Brandic, Ivona 661

Broeckhove, Jan 384

Buisson, Jérémy 538

Bunn, Julian 78

Byrom, Rob 751

Cabaleiro, J.C. 731
Cafaro, Massimo 506
Cai, Guoyin 40
Cai, Wei 786
Cano, D. 98
Canonico, Massimo 630
Cánovas, Óscar 1128
Cardinale, Yudith 741
Caruso, Pasquale 982
Cecchini, R. 285
Chadwick, D.W. 265
Chen, Jiaxun 557
Childs, Stephen 88, 404, 761
Cho, Kum Won 771
Ciglan, Marek 778, 872
Coghlan, Brian 88, 98, 275, 285,

354, 404, 751, 761
Cooke, Andy 751
Corbalán, Julita 111
Cordenonsi, Roney 751
Cornwall, Linda 751
Cotronis, Y. 98
Coulson, Geoff 786
Cowles, R. 285
Craig, Martin 751
Crichton, Daniel J. 68
Crouch, Stephen 59

David, M. 98
DC2 Production Team 30
de Laat, Cees 589
de Ridder, A. 154
De Vivo, Amelia 344
Delaitre, T. 851
Demchenko, Yuri 589
Dew, Peter 1076
Diaz, I. 98
Dikaiakos, Marios D. 98, 211, 516
Dittamo, Cristian 16
Djaoui, Abdeslem 751
Djemame, Karim 1076
Doallo, R. 731
Dolkas, Konstantinos 1022
Duan, Rubing 454



1194 Author Index

Duncan, Alastair 751
Dutka, Lukasz 796

Eftichidis, George 516
Eigenmann, Rudolf 1117
Engelbrecht, Gerhard 661
Epema, D.H.J. 640
Epicoco, Italo 506
Epting, U. 285
Erciyes, Kayhan 805
Ericsson, Morgan 813

Fahringer, Thomas 122, 454,
527, 1154

Fassi, Farida 30, 98
Feng, Dan 823
Fernández, Alvaro 424
Fernández, C. 98
Fernández, Enol 424
Fernandes, Alvaro A.A. 444
Fiore, Sandro 506
Fisher, Steve 751
Fleming, Peter J. 334
Floros, E. 98
Fontán, J. 98
Foster, Ian 495
Frangi, Alejandro F. 6

Gao, Kun 557
Garbacki, Pawe�l 671
Garćıa, Ariel 98, 831
Garibaldi, J. 651
Genovese, T. 285
Gervasi, Osvaldo 16
Ghanbari, S. 681
Giordano, Maurizio 840
Glover, Kevin 444
Gombás, Gábor 193
Gomes, J. 98, 285
Gómez-Skarmeta, Antonio F. 1128
Gommans, Leon 589
González, P. 731
González de la Hoz, Santiago 30, 98
Goossens, Luc 30
Goyeneche, A. 851
Grace, Paul 786
Graschew, Georgi 1
Gray, Alasdair 751
Greenhalgh, Chris 444
Groen, D. 98

Groep, D. 285
Gualandris, Alessia 237
Guan, Yanning 40
Guarracino, Mario Rosario 972
Gug, M. 285
Gusev, Marjan 548

Habala, Ondrej 778, 872
Han, Hyuck 1175
Hansen, Jacob Gorm 952
Hanushevsky, A. 285
Hardt, Marcus 98, 831
Helm, M. 285
Hernández, Emilio 741
Herrera, J. 315
Hertzberger, L.O. 154
Heymann, Elisa 98, 424
Hicks, Steve 751
Hidalgo-Conde, Manuel 880
Hluchy, Ladislav 778, 872, 1032
Hochreiter, Ronald 891
Hoekstra, Alfons G. 245
Hong, Sung Je 394
Hsu, Ching-Hsien 900
Hu, Yincui 40
Huang, Lican 911
Huedo, E. 315
Humphrey, Marty 50
Hung, Terence 296

Iosup, Alexandru 922

Jafar, Samir 323
Jakimovski, Boro 548
Jameel, Hassan 932
Jarzab, Marcin 942
Jensen, Henrik Thostrup 861
Jensen, J. 285
Jeon, Taewoong 932, 1002
Ji, Yongchang 721
Ji, Youquan 557
Jul, Eric 952
Jung, Hyungsoo 1175

Kacsuk, Péter 434, 851
Kaiser, Silvan 1
Kalim, Umar 932
Kaliszan, Damian 414
Kanellopoulos, C., 98, 285



Author Index 1195

Kao, Odej 1107
Kecskemeti, G. 851
Kelsey, D. 285
Kenny, Eamonn 88, 404
Kenny, Stuart 275, 751
Kiani, Saad Liaquat 1002
Kim, Byung Joon 394
Kim, Chongam 771
Kim, Hagbae 1002
Kim, Hyeongseog 1175
Kim, Jong 394
Kim, Kyong Hoon 394
Kim, Young Gyun 771
Kirtchakova, Lidia 23
Kiss, T. 851
Kitowski, Jacek 474, 796
Kleist, Josva 861
Ko, Soon-Heum 771
Kocak, Taskin 721
Kojima, Isao 144
Komerički, Hrvoje 200
Kommineni, Jagan 961
Kornmayer, Harald 98, 831
Kosinski, Jacek 942
Kozankiewicz, Hanna 610
Krings, Axel 323
Krishnakumar, K. 651
Kvaløy, Tor Arne 184

Labarta, Jesús 111
Laccetti, Giuliano 972, 982
Laganà, Antonio 16
Lapegna, Marco 982
Lara, V. 98
Lason, P. 98
Laucelli, Marco 6
Lawenda, Marcin 414
Leake, Jason 751
Lee, Bu-Sung 296
Lee, Inseon 1175
Lee, Sungyoung 932, 1002
Lelieveldt, Boudewijn P.F. 6
Leth, Jesper Ryge 861
Lewis, Gareth J. 434
Lezzi, Daniele 506
Li, Maozhen 993
Lim, H.W. 255
Lindemann, Jonas 1012
Litke, Antonios 1022
Liu, Degang 823

Liu, Meiqun 557
Liu, Qun 823
Llorente, I.M. 315
Lo, Tzu-Tai 900
Löwe, Welf 813
Lozano, Julio 30
Luo, Ying 40
Lyttleton, Oliver 751

MacLaren, J. 651
Magowan, James 751
Malek, Sam 68
Maliska, Martin 1032
Mango Furnari, M. 600
Maran, Uko 464
March, Luis 30
Marco, J. 98
Marco, R. 98, 285
Marinescu, Dan C. 721
Marosi, Csaba Attila 193
Mart́ın, M. 731
Mart́ınez, D.R. 731
Martins, J. 98
Massarotti, A. 600
Mastroianni, Carlo 132
Mathy, Laurent 786
Matijašević, Maja 200
Mattmann, Chris A. 68
Medvidovic, Nenad 68
Melab, N. 305
Meybodi, M.R. 681
Meyer, Norbert 414
Mezmaz, M. 305
Middleton, Robin 751
Mikic-Rakic, Marija 68
Mirto, Maria 506
Mošmondor, Miran 200
Mocavero, Silvia 506
Mohamed, H.H. 640
Montero, R.S. 315
Morajko, Anna 424
Moreau, Luc 495
Mouriño, J.C. 731
Mukherjee, Arijit 444
Munasinghe, Kalyani 1040
Murli, Almerico 972

Na, Jeong-su 771
Naqvi, Syed 1048
Nawrocki, K. 98



1196 Author Index

Neilson, I. 285
Ng, Hee-Khiang 296
Ng, Kam-Wing 578, 1056
Nicoud, S. 285
Nikolow, Darin 474
No, Jaechun 1066
Nowiński, Aleksander 364
Nowiński, Krzysztof S. 364
Nutt, Werner 751
Nyczyk, P. 98

O’Callaghan, David 88, 285,
354, 404, 751, 761

Oinn, Tom 444
Okoń, Marcin 414
Ong, Yew-Soon 296
Ordas, Sebastian 6
Otenko, O. 265
Oudenaarde, Bas 589
Ouelhadj, D. 651
Ozieblo, A. 98

Padee, A. 98
Padgett, James 1076
Pahlevi, Said Mirza 144
Pandžić, Igor 200
Park, Hyoungwoo 1066
Paton, Norman W. 444
Paventhan, Arumugam 374
Payli, Reşat Ümit 805
Pazat, Jean-Louis 538
Pena, T.F. 731
Phinjaroenphan, Panu 226, 1086
Podhorszki, Norbert 751
Poggi, Arianna 620
Politou, Eugenia 485
Portegies Zwart, Simon 237
Ponse, Alban 1097
Poulard, Gilbert 30
Power, David 485
Prodan, Radu 454, 527
Puente, Jesús 6

Qi, Man 993
Qin, Jun 454
Qin, Lingjun 823
Qu, Xiangli 567
Quan, Dang Minh 1107
Quesnel, D. 285
Quigley, Geoff 88, 404, 761

Rajtar, Tomasz 414
Rakowsky, Stefan 1
Ramı́rez, Sergio 880
Ren, Xiaojuan 1117
Riaz, Maria 1002
Riguidel, Michel 1048
Rivera, F.F. 731
Rivieccio, Fabio 620
Robshaw, M.J.B. 255
Roch, Jean-Louis 323
Rodero, Ivan 111
Rodŕıguez, Andrés 880
Rodŕıguez, D. 98
Roelofs, Theo A. 1
Romberg, Mathilde 23, 464
Rongen, Erik 184
Rozati, Masoud 993

Sabatier, Fabrice 344
Sajjad, Ali 932
Sakellariou, R. 651
Salt, Jose 30, 98
Sandberg, Göran 1012
Sánchez, Javier 30, 98
Sánchez, Manuel 1128
Scapolla, Anna Marina 620
Schaeffner, I. 285
Schlag, Peter M. 1
Schmidt, Rainer 661
Schmitz, Frank 1139
Schneider, Olaf 1139
Schuldt, Heiko 173
Schuller, Bernd 23, 464
Senar, Miquel Ángel 98, 424
Sevilla, Diego 1128
Shamardin, L. 285
Shenfield, Alex 334
Shin, Dongin 1175
Siddiqui, Mumtaz 122
Sild, Sulev 464
Simo, Branislav 1032
Simpson, Andrew 485
Sinnott, R.O. 265
Sipos, Gergely 434
Skita�l, �Lukasz 474
Skorin-Kapov, Lea 200
Skow, D. 285
Slaymaker, Mark 485
Sloot, Peter M.A. 184, 245
Snijders, Martin 589



Author Index 1197

Song, Young Duk 771
Sova, M. 285
Sphyris, Angelos 516
Steenberg, Conrad 78
Stell, A.J. 265
Stencel, Krzysztof 610
Stok�losa, Dominik 414
Stroiński, Maciej 414
Subieta, Kazimierz 610
S�lota, Renata 474

Takahashi, Ken’ichi 1143
Takeda, Kenji 374
Talbi, E.-G. 305
Talia, Domenico 132
Tang, Jiakui 40
Tang, Yuhua 567
Ţãpuş, Nicolae 922
Taylor, Paul 751
Terstyanszky, G. 851
Tipney, Hannah 444
Tirado-Ramos, Alfredo 98, 184, 237
Tokmakoff, Andrew 589
Trelles, Oswaldo 880
Truong, Hong-Linh 1154
Tserpes, Konstantinos 1022
Tsouloupas, George 98, 211
Turgut, Damla 721

van Assen, Hans C. 6
van Buuren, Rene 589
Vanmechelen, Kurt 384
Varrette, Sébastien 323
Varvarigou, Theodora 1022
Velusamy, Vijay 691
Verta, Oreste 132
Vialle, Stéphane 344, 922
Villazón, Alex 454
Vinter, Brian 702
Voeckler, Jens 495

Wäänänen, A. 285
Wait, Richard 1040
Walk, John 751
Walsh, John 88, 354,

404, 761
Walters, Robert John 59

Wang, Bai 1165
Wang, Fang 823
Wang, Jianqin 40
Wang, Weinong 164
Wang, Yanguang 40
Wasson, Glenn 50
Watson, Paul 444
Wieczorek, Marek 454
Wiesinger, Clemens 891
Wilde, Michael 495
Williams, Roy 78
Wilson, Antony 751
Winter, S.C. 851
Wislicki, W. 98
Wolniewicz, P. 98, 285
Wozabal, David 891
Wroński, Micha�l 364
Wu, Fei 1056
Wurz, Manfred 173
Wypychowski, Jaros�law 364

Xia, Qi 164
Xing, Wei 98, 285, 516
Xu, Liutong 1165
Xue, Yong 40

Yang, Hua 516
Yang, Ruijun 164
Yang, Xuejun 567
Yeom, Heon Y. 1175
Yeung, Wai-Kit 786
Yi, Ping 1183
Yu, Bin 993
Yu, Chiu-Man 578
Yu, Kun-Ming 900

Zeephongsekul, Panlop
226, 1086

Zeng, Lingfang 823
Zhang, Fayong 823
Zhang, Shiyong 1183

Zhao, Yong 495
Zhong, Shaobo 40
Zhong, Yiping 1183
Zhou, Haifang 567
Zielinski, Krzysztof 711, 942


	Frontmatter
	Telemedical Applications and Grid Technology
	Statistical Modeling and Segmentation in Cardiac MRI Using a Grid Computing Approach
	A Grid Molecular Simulator for E-Science
	Application Driven Grid Developments in the OpenMolGRID Project
	ATLAS Data Challenge 2: A Massive Monte Carlo Production on the Grid
	High Throughput Computing for Spatial Information Processing (HIT-SIP) System on Grid Platform
	The University of Virginia Campus Grid: Integrating Grid Technologies with the Campus Information Infrastructure
	M-Grid: Using Ubiquitous Web Technologies to Create a Computational Grid
	GLIDE: A Grid-Based Light-Weight Infrastructure for Data-Intensive Environments
	HotGrid: Graduated Access to Grid-Based Science Gateways
	Principles of Transactional Grid Deployment
	Experience with the International Testbed in the CrossGrid Project
	eNANOS Grid Resource Broker
	GridARM: Askalon's Grid Resource Management System
	A Super-Peer Model for Building Resource Discovery Services in Grids: Design and Simulation Analysis
	Ontology-Based Grid Index Service for Advanced Resource Discovery and Monitoring
	Grid Service Based Collaboration for VL-e: Requirements, Analysis and Design
	A Fully Decentralized Approach to Grid Service Discovery Using Self-organized Overlay Networks
	Dynamic Parallelization of Grid--Enabled Web Services
	Automatic Composition and Selection of Semantic Web Services
	Grid Application Monitoring and Debugging Using the Mercury Monitoring System
	Interactive Visualization of Grid Monitoring Data on Multiple Client Platforms
	GridBench: A Workbench for Grid Benchmarking
	A Method for Estimating the Execution Time of a Parallel Task on a Grid Node
	Performance of a Parallel Astrophysical N-Body Solver on Pan-European Computational Grids
	Introducing Grid Speedup $\Gamma$ : A Scalability Metric for Parallel Applications on the Grid
	A Dynamic Key Infrastructure for {\sc Grid}
	Experiences of Applying Advanced Grid Authorisation Infrastructures
	Towards a Grid-wide Intrusion Detection System
	International Grid CA Interworking, Peer Review and Policy Management Through the European DataGrid Certification Authority Coordination Group
	Grid Enabled Optimization
	Towards a Coordination Model for Parallel Cooperative P2P Multi-objective Optimization
	A Grid-Oriented Genetic Algorithm
	A Probabilistic Approach for Task and Result Certification of Large-Scale Distributed Applications in Hostile Environments
	A Service Oriented Architecture for Decision Making in Engineering Design
	A Grid Architecture for Comfortable Robot Control
	The Grid-Ireland Deployment Architecture
	UNICORE as Uniform Grid Environment for Life Sciences
	MyGridFTP: A Zero-Deployment GridFTP Client Using the .NET Framework
	On Using Jini and JXTA in Lightweight Grids
	Ticket-Based Grid Services Architecture for Dynamic Virtual Organizations
	Heterogeneity of Computing Nodes for Grid Computing
	Effective Job Management in the Virtual Laboratory
	Workflow Management in the CrossGrid Project
	Workflow-Oriented Collaborative Grid Portals
	Contextualised Workflow Execution in MyGrid
	Real World Workflow Applications in the Askalon Grid Environment
	OpenMolGRID: Using Automated Workflows in GRID Computing Environment
	Implementation of Replication Methods in the Grid Environment
	A Secure Wrapper for OGSA-DAI
	XDTM: The XML Data Type and Mapping for Specifying Datasets
	iGrid, a Novel Grid Information Service
	A Grid-Enabled Digital Library System for Natural Disaster Metadata
	Optimising Parallel Applications on the Grid Using Irregular Array Distributions
	Dynamic Adaptation for Grid Computing
	Improving Multilevel Approach for Optimizing Collective Communications in Computational Grids
	Rough Set Based Computation Times Estimation on Knowledge Grid
	A Behavior Characteristics-Based Reputation Evaluation Method for Grid Entities 
	Dynamic Policy Management Framework for Partial Policy Information
	Security Architecture for Open Collaborative Environment
	An Experimental Information Grid Environment for Cultural Heritage Knowledge Sharing
	Implementation of Federated Databases Through Updatable Views
	Data Mining Tools: From Web to Grid Architectures
	Fault-Tolerant Scheduling for Bag-of-Tasks Grid Applications
	The Design and Implementation of the KOALA Co-allocating Grid Scheduler
	A Multi-agent Infrastructure and a Service Level Agreement Negotiation Protocol for Robust Scheduling in Grid Computing
	Towards Quality of Service Support for Grid Workflows
	Transparent Fault Tolerance for Grid Applications
	Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over Highly Heterogeneous Grids
	Grid Resource Broker Using Application Benchmarking
	The Grid Block Device: Performance in LAN and WAN Environments
	WS-Based Discovery Service for Grid Computing Elements
	Rapid Distribution of Tasks on a Commodity Grid
	Modeling Execution Time of Selected Computation and Communication Kernels on Grids
	Parallel Checkpointing on a Grid-Enabled Java Platform
	Fault Tolerance in the R-GMA Information and Monitoring System
	Deployment of Grid Gateways Using Virtual Machines
	Development of Cactus Driver for CFD Analyses in the Grid Computing Environment
	Striped Replication from Multiple Sites in the Grid Environment
	The Gridkit Distributed Resource Management Framework
	Stochastic Approach for Secondary Storage Data Access Cost Estimation
	A Cluster-Based Dynamic Load Balancing Middleware Protocol for Grids
	Reconfigurable Scientific Applications on GRID Services
	Geographic Information Systems Grid
	Tools for Distributed Development and Deployment on the Grid
	DNS-Based Discovery System in Service Oriented Programming
	Experiences with Deploying Legacy Code Applications as Grid Services Using GEMLCA,
	A Framework for Job Management in the NorduGrid ARC Middleware
	Data Management in Flood Prediction
	Adaptive Task Scheduling in Computational GRID Environments
	Large-Scale Computational Finance Applications on the Open Grid Service Environment
	Localized Communications of Data Parallel Programs on Multi-cluster Grid Systems
	VIRGO: Virtual Hierarchical Overlay Network for Scalable Grid Computing
	A Monitoring Architecture for Control Grids
	Mobile-to-Grid Middleware: Bridging the Gap Between Mobile and Grid Environments
	Role of N1 Technology in the Next Generation Grids Middleware
	Optimizing Grid Application Setup Using Operating System Mobility
	GriddLeS Enhancements and Building Virtual Applications for the GRID with Legacy Components
	Application Oriented Brokering in Medical Imaging: Algorithms and Software Architecture
	A Performance Contract System in a Grid Enabling, Component Based Programming Environment
	A WSRF Based Shopping Cart System
	Grid Access Middleware for Handheld Devices
	An Extendable GRID Application Portal
	A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids
	CrossGrid Integrated Workflow Management System
	Load Balancing by Changing the Graph Connectivity on Heterogeneous Clusters
	Threat Model for Grid Security Services
	A Loosely Coupled Application Model for Grids
	A Locking Protocol for a Distributed Computing Environment
	Grid-Based SLA Management
	A Heuristic Algorithm for Mapping Parallel Applications on Computational Grids
	A Bypass of Cohen's Impossibility Result
	Mapping Workflows onto Grid Resources Within an SLA Context
	iShare -- Open Internet Sharing Built on Peer-to-Peer and Web
	A Service-Based Architecture for Integrating Globus 2 and Globus 3
	The CampusGrid Test Bed at Forschungszentrum Karlsruhe
	A Model for Flexible Service Use and Secure Resource Management
	Online Performance Monitoring and Analysis of Grid Scientific Workflows
	WebGrid: A New Paradigm for Web System
	Dynamic Failure Management for Parallel Applications on Grids
	A Novel Intrusion Detection Method for Mobile Ad Hoc Networks
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




