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Preface

The ongoing success of the Intelligent Data Engineering and Automated Learn-
ing (IDEAL) conference series reflects the continuing need for intelligent ap-
proaches to understanding relationships in the massive data sets which confront
the modern researcher.

From its origins in Hong Kong in 1998, this focus upon the nature of the data
has been the unifying theme of the conference, allowing it to become a key forum
for researchers to present novel approaches to data engineering and learning, and
to provide a particularly valuable opportunity for cross-disciplinary exchange of
ideas in emerging application areas. This breadth and continual evolution may be
seen in this year’s programme, with sessions devoted to data mining and knowl-
edge engineering, bioinformatics, agent technologies and financial engineering,
together with the traditional focus on learning algorithms and systems.

This volume in the Lecture Notes in Computer Science series contains ac-
cepted papers presented at IDEAL 2005, held in Brisbane, Australia, during
July 6–8, 2005. The conference received 167 submissions from throughout the
world, which were subsequently refereed by the Programme Committee and ad-
ditional reviewers. The vast majority of submissions received three independent
reviews, and for some borderline submissions an additional, fourth review was
commissioned prior to the decision being made.

In the end, 76 papers were judged to be of sufficient quality for acceptance
and inclusion in the proceedings, with a smaller set of these articles to be con-
sidered for inclusion in planned special issues of a number of major journals –
continuing a practice from recent IDEAL conferences. At the time of writing,
this arrangement had been confirmed with the International Journal of Neural
Systems, and discussions were well advanced with two other publications.

Happily, IDEAL 2005 also enjoyed a fine list of keynote speakers, with talks
by Adam Kowalczyk, Geoff McLachlan, and Mehran Sahami bringing an ideal
mix of theoretical innovation and application focus.

We would like to thank the International Advisory Committee and the Steer-
ing Committee for their guidance and advice, and we would particularly like to
acknowledge the work of our Programme Committee members and additional
reviewers who performed admirably under tight deadline pressures. It has been
a pleasure to work with a publisher such as Springer, and we thank them for
their ongoing professionalism and attention to detail.

We were fortunate to receive support from two Australian research organi-
zations for paper prizes (The Australian Research Council Centre for Complex
Systems) and student travel grants (The Australian Research Council Network
in Complex Open Systems). This support allowed us to recognize outstanding
contributions to the programme, and to give opportunities to young researchers
that they might not otherwise receive, and we are grateful to these sponsors.



VI Preface

Finally, we would like to acknowledge the efforts of our colleagues on the
conference Organizing Committee, administrative support from the University of
Queensland, and our respective institutions for allowing us the time to undertake
this task. We trust that you will enjoy the papers in this volume.

May 2005 Marcus Gallagher
James Hogan

Frederic Maire
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EXiT-B: A New Approach for Extracting
Maximal Frequent Subtrees from XML Data�

Juryon Paik1, Dongho Won1, Farshad Fotouhi2, and Ung Mo Kim1

1 Department of Computer Engineering, Sungkyunkwan University,
300 Chunchun-dong, Jangan-gu, Suwon,
Gyeonggi-do 440-746, Republic of Korea

quasa277@gmail.com, dhwon@dosan.skku.ac.kr, umkim@ece.skku.ac.kr
2 Wayne State University, Detroit, MI, USA

Abstract. Along with the increasing amounts of XML data available,
the data mining community has been motivated to discover the useful
information from the collections of XML documents. One of the most
popular approaches to find the information is to extract frequent sub-
trees from a set of XML trees. In this paper, we propose a novel al-
gorithm, EXiT-B, for efficiently extracting maximal frequent subtrees
from a set of XML documents. The main contribution of our algorithm
is that there is no need to perform tree join operation during the phase
of generating maximal frequent subtrees. Thus, the task of finding max-
imal frequent subtrees can be significantly simplified comparing to the
previous approaches.

1 Introduction

Along with the rapidly increasing volume of XML data, it becomes a new chal-
lenge to find useful information from a set of XML trees. In order to make the
information valuable, it is important to extract frequent subtrees occurring as
common trees embedded in a large collection of XML trees. In this paper, we
present a novel algorithm EXiT-B (Ex tract maXimal frequent subT rees with
B inary code) for efficiently finding frequent subtrees, especially maximal fre-
quent subtrees, from a set of XML documents. The proposed algorithm not only
reduces significantly the number of rounds for tree pruning, but also simplifies
greatly each round by avoiding time-consuming tree join operations. Toward this
goal, our algorithm represents each node label of a XML tree as binary coding,
stores them in a specially devised data structure, and correctly finds all maximal
frequent tree patterns by expanding frequent sets incrementally.

The rest of this paper is organized as follows. We begin by reviewing some
related works in Section 2. We continue in Section 3 with a description of some
notations and definitions used throughout the paper. Then, we present our new
algorithm EXiT-B in Section 4, and report experimental results in Section 5.
Finally, Section 6 concludes the paper.
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment)

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Juryon Paik et al.

2 Related Works

The various works for mining frequent subtrees are described in [2, 7–9]. Wang
and Liu [8] considered mining of paths in ordered trees by using Apriori [1]
technique. They propose the mining of wider class of substructures which are
subtrees called schemas. Asai et al. [2] proposed FREQT for mining labeled
ordered trees. FREQT uses rightmost expansion notion to generate candidate
trees by attaching new nodes to the rightmost edge of a tree. Zaki [9] proposes
two algorithms, TreeMiner and PatternMatcher, for mining embedded subtrees
from ordered labeled trees. PatternMatcher is a level-wise algorithm similar to
Apriori for mining association rules. TreeMiner performs a depth-first search for
frequent subtrees and uses the scope list for fast support counting. Termier et
al. [7] developed TreeFinder which uses a combination of relational descriptions
for labeled trees and θ-subsumption notion to extract frequent subtrees. Other
recent works describe how to mine frequent graph patterns [3, 4]. Such graph
mining algorithms are likely to be too general for tree mining as pointed out
in [9].

The common problems of the previous approaches are identified as follows:
They represent each node of a XML tree as a labeled character string. This
causes increasing the number of tree pruning operations greatly, thus generating
large number of candidate sets during the mining phase. Furthermore, each tree
pruning round during generating candidate sets requires to perform expensive
join operations. Therefore, as the number of XML documents increases, the
efficiency for extracting frequent subtrees deteriorates rapidly since both the
cost of join operations and the number of pruning rounds add up.

3 Preliminaries

In this section, we briefly introduce some notions of tree model for mining XML
data.

Definition 1 (Subtree). We denote a tree as T = (N, E) where N is a set of
labeled nodes and E is a set of edges. We define that a tree S = (NS , ES) is a
subtree of T , denoted as S � T , iff NS ⊆ N and for all edges (u, v) ∈ ES, u is
an ancestor of v in T .

Definition 1 preserves the ancestor relation but not necessarily the parent rela-
tion.

Let D = {T1, T2, . . . , Ti} be a set of trees and let |D| be the number of trees in
D. Then, we define minimum support and maximal frequent subtree as follows:

Definition 2 (Minimum Support). Given a set of trees D, and a subtree S
in D, the frequency of S in D, freqD(S), is defined as ΣT∈DfreqT (S) where
freqT (S) is 1 if S occurs in T and 0 otherwise. The support of S in D,
supD(S), is the percentage of the trees in D that contain S. We denote it by
supD(S) = freqD(S)

|D| . Then, minimum support σ is defined as the percentage
which satisfies supD(S) ≥ σ.
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Definition 3 (Maximal Frequent Subtree). Given some minimum support
σ, a subtree S is called maximal frequent iff:

i) the support for S is not less than a value of σ, i.e., supD(S) ≥ σ.
ii) there exists no any other σ-frequent subtree S′ in D such that S is included

in S′.

The subtree S is just called a σ-frequent subtree if it satisfies only the first
property. Note that every frequent subtree can be derived from the maximal
frequent subtrees by the fact that all subtrees of maximal frequent subtrees are
also frequent.

Computer Retailer

Desktop Laptop

Brand Model Price Model Price

PriceWatch

Desktop

Company QuickInfor

Brand Price Model

Desktop

Model

Price

OS

Computer Retailer

Desktop Laptop

Brand Model Price Model Price

PriceWatch

Desktop

Company QuickInfor

Brand Price Model

Desktop

Model

Price

OS

(a) Input: A set of trees D (b) Output: A max-
imal 2

3
-frequent sub-

tree

Fig. 1. Maximal Frequent Subtree Extracted from D

Example 1. An example of a set of input trees D with various nesting of labels is
shown in Fig. 1(a). For instance, the nesting of the Desktop differs in trees T1, T2

and T3. Fig. 1(b) shows an example of maximal frequent subtrees extracted from
D. Its minimum support σ is 2

3 .

4 Overview of EXiT-B

In this section, we present a new algorithm EXiT-B for efficiently extracting
maximal frequent subtrees from a given set of trees. EXiT-B algorithm is outlined
in Fig. 2. It consists of three functions; The first function is to represent each tree
by a set of bit sequences through assigning an n-bit binary code to each node
label and concatenating the codes on the same path. The second function is to
create and maintain a specially devised data structure called PairSet to avoid
join operations entirely and reduce the number of candidates. The third function
is to extract maximal frequent subtrees incrementally based on the n-bit binary
codes stored in the PairSet. We omit the pseudo codes of three functions due to
lack of space.

4.1 Representing Tree as Bit Sequences

Typical methods of representing a tree are an adjacency list [3], adjacency matrix
[4], or character string [2, 5, 9]. Extracting frequent subtrees by using those
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Fig. 2. Algorithm EXiT-B Consisting of Three Functions

methods requires expensive join operations. Thus, to avoid the unnecessary join
expense, we adopt binary coding method for representing the tree.

Let L be a set of labeled nodes in a set of trees D. A function genBitSeq
works as follows; First, it assigns an unique n-bit binary code randomly to each
labeled node. Note that it must assign the same n-bit code to the nodes labels
with the same name. Let |L| be a total number of labeled nodes in L. Then, the
value of n is �log2 |L|�. Secondly, it concatenates sequentially all the n-bit binary
codes on the same path from the root to each leaf node in a tree. We call the
concatenated n-bit binary codes for each path by a bit sequence (bs). Referring
Fig. 2 again, BS denotes a set of bit sequences derived from a single tree in D.
Similarly, SBS denotes a collection of BSs derived from a set of trees D.

4.2 Generating PairSets

Definition 4 (Key). Given a SBS, let Kd be a collection of n-bit binary codes
assigned on the nodes at depth d in every tree in D. We assume that depth of
root node is 0. We call each member in Kd by a key.

At this point, note that there may exist some nodes labeled with the same names
in D. Thus, for each key, we need to correctly identify the list of trees to which
the key belongs.

Definition 5 (PairSet). A PairSet, [P ]d, is defined as a set of pairs (kd, tid)
where kd is a key in Kd and tid is a list of tree indexes to which kd belongs.

According to some minimum support, a collection of PairSets is classified into
two sets.
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Fig. 3. Binary Code Representation and PairSets

Definition 6 (Frequent Key). Given some minimum support σ and a pair
(kd, tid), the key kd is called frequent if |tid| ≥ σ × |D|.
Definition 7 (Frequent Set). Given a PairSet, [P ]d, a pair in [P ]d is called
frequent set if its key is frequent. Otherwise, it is called candidate set. We
denote frequent set and candidate set by [F ]d and [C]d, respectively.

The initial frequent sets correspond to the frequent subtrees with only one node
commonly occurring in D. Thus, we need to further extend these frequent sets
incrementally to find final maximal frequent subtrees. For this purpose, we in-
troduce an operation called cross-reference.

Cross-Reference: Let FS = {[F ]0, [F ]1, . . . , [F ]d} be a set of initial frequent
sets and CS = {[C]0, [C]1, . . . , [C]d} be a set of initial candidate sets. The ith
round (for i = 1, 2, . . . d) of the cross-reference consists of the following two
steps:

– Step 1 (Pruning phase). Difference ([C]i−1 vs. [F ]i) and
([C]i vs. [F ]i−1 through [F ]0)

– Step 2 (Merging phase). Union ([C]i vs. [C]i−1)

We refer to the reader to the paper [6] for a detailed explanation of cross-
reference as well as for the efficiency of using PairSet structure in order to
mine XML documents.

Example 2. Fig. 3(a) shows a collection of BSs derived from a set of trees D
in Fig. 1(a). Fig. 3(b) presents all three kinds of PairSets generated from SBS.
For instance, we know that the key 0010 in [P ]1 corresponds to the ‘Desktop’
nodes at depth 1 in both T1 and T2. The frequent set and candidate set placing
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in right side of Fig. 3(b) are derived from all PairSet [P ]d. The last picture
Fig. 3(c) shows the final results after applying cross-reference operation over
the two sets in Fig. 3(b).

4.3 Constructing Maximal Frequent Subtrees

To derive maximal frequent subtrees from the final frequent sets, we need to
notice the following two facts: Firstly, some of the final frequent sets may be
empty. For example, the frequent set [F ]0 and [F ]3 in Fig. 3(c) do not have any
elements. An empty frequent set at depth d indicates that there does not exist
any n-bit binary code satisfying the minimum support at depth d. Thus, we do
not need to consider those empty frequent sets for constructing maximal frequent
subtrees. Secondly, although each frequent set has a hierarchical structure, not
every key in the frequent set has connected each other in tree structures. In other
words, some n-bit binary codes in different frequent sets have edges between them
and some have not. It is required to decide whether an edge exists between two
keys being in different frequent sets. A minimum support is used to make an
edge between them. The following theorem shows that our algorithm EXiT-B
correctly extracts all the frequent subtrees from a given set of trees.

Theorem 1 (Correctness of EXiT-B) Given a set of trees D, EXiT-B al-
ways generates all the frequent subtrees from D.

Proof. Let [F ]i and [F ]j be arbitrary nonempty frequent sets, for i < j. Let
(ki, tki) be a pair in [F ]i and (kj , tkj ), (ej , tej ) pairs in [F ]j . Let x and y be a
tree-id in tkj and tej , respectively, for x �= y. We assume that either |tki ∩ tkj |
or |tki ∩ tej | are greater than σ ×D. Then, we can consider the following three
cases:

– case I (x ∈ tki and y /∈ tki): kj is the only child node of ki. Then,
A subtree Sf1 = (NSf1 , ESf1) is built,

where NSf1 = {ki, kj} and ESf1 = {(ki, kj)}.

– case II (y ∈ tki and x /∈ tki): ej is the only child node of ki. Then,
A subtree Sf2 = (NSf2 , ESf2) is built,

where NSf2 = {ki, ej} and ESf2 = {(ki, ej)}.

– case III (x ∈ tki and y ∈ tki): Both kj and ej are children nodes of ki.
Then,

A subtree Sm = (NSm , ESm) is built with all pairs of [F ]i and [F ]j ,
where NSm = {ki, kj , ej} and ESm = {(ki, kj), (ki, ej)}.

In each case, the built subtree is frequent because all of its paths are frequent.
However, not every subtree is maximal since it does not satisfy the second con-
dition of Definition 3. �
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5 Evaluation

Experimental Setting. Our experiments were run on a AMD Athlon 64 3000+
2.0 GHz, with 1GB RAM running Windows XP. The algorithm was implemented
in Java.

Two synthetic data set, S15 and T10K, were tested. These data sets were
generated by using the method, tree generator, described in [7]. The generator
mimics three target frequent trees reflecting predefined parameters. The parame-
ters used in the tree generation include number of labels N = 100, the parameter
of probability ρ = 0.2 including a target frequent tree at each node, the maxi-
mum number of perturbation δ = 25, the maximum fanout of a node in a tree
f = 5, and the maximum depth d = 3, the minimum support σ (σ = 0.15 for
S15) and the total number of trees in the data set T (T = 10000 for T10K).

We evaluated EXiT-B over the most generic algorithm for tree mining, FSM
(Frequent Structure Mining) termed in [9]. The basic idea behind FSM is to
identify frequent subtrees through a repeated process of enumerating and prun-
ing candidate subtrees. Two variations of EXiT-B algorithm were compared to
examine the effect of binary code representation.

(a) Scalability: Data set S15 (b) Efficiency: Data set T10K

Fig. 4. Execution Time

Performance Comparison. The execution time for data set S15 with vary-
ing number of input trees is shown in Fig. 4(a). It can be seen that EXiT-B
algorithm demonstrates a dramatic improvement over the generic frame FSM.
This is because the bottlenecks of FSM, which are generations of thousands
of candidate subtrees and expensive join operations, are significantly reduced
in EXiT-B. Both variations of EXiT-B outperform the FSM, however, EXiT-
B with binary representation shows much better execution time than EXiT-B
with string representation. Fig. 4(b) shows the execution time for data set T10K
with changing minimum support. The execution time decreases as the minimum
support increases in two graphs, but there is significant time difference between
EXiT-B and FSM. We stopped to run FSM after minimum support 0.1 since
the running time exceeds several hours.
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6 Conclusion

We presented an efficient algorithm, EXiT-B, for extracting all maximal frequent
subtrees from a collection of XML trees. Unlike the previous approaches, the
EXiT-B represents each node of a XML tree as binary coding, stores them in a
specially devised structure, and correctly finds all maximal frequent subtrees by
expanding frequent sets incrementally. The beneficial effect of the EXiT-B is that
it not only reduces significantly the number of rounds for tree pruning, but also
simplifies greatly each round by avoiding time consuming tree join operations.
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Abstract. The application of Ontologies for the definition and interoperability
of complementary taxonomies has been well-recognised within the Modelling
& Simulation (M&S) community. Our research pertaining to the specification
of Synthetic Environment (SE) representational semantics has proposed the use
of an Synthetic Environment Data Representation Ontology (sedOnto), which is
modeled using W3C’s Web Ontology Language(OWL). The vocabulary specified
in sedOnto is based the SEDRIS Data Representation Model (DRM), which is a
technological framework for SE data interchange and interoperability.
In this paper, we present STOWL – SEDRIS To OWL Transform that automates
the transformation of a SEDRIS based SE to a Web-Ontology based representa-
tion scheme in the OWL language. The target representation scheme, which shall
be based on sedOnto, is in actuality an instantiation of the SE data representation
terminology as specified by sedOnto. Such a transformation has many perceived
advantages: It enhances SE interoperability by utilizing a Web-Ontology based
approach for the specification of SE representation data, is consistent with ex-
isting industry based SE representation standards, namely SEDRIS, and that the
representation scheme facilitates ontological reasoning over SE objects; a facility
that is not directly supported by the SEDRIS DRM.

1 Introduction

The application of Ontologies for solving interoperability problems has been widely
recognised across multiple domains. Ontologies, by virtue of the shared conceptualiza-
tion that they provide, may be communicated between people and application systems
thereby facilitating interchange, interoperability and common understanding. An ontol-
ogy typically consists of a hierarchical description of important concepts in a domain,
along with descriptions of the properties of each concept. The degree of formality em-
ployed in capturing these descriptions can be quite variable, ranging from natural lan-
guage to logical formalisms, but increased formality and regularity clearly facilitates

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 9–16, 2005.
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machine understanding [1]. Ontologies are increasingly being applied in the Modelling
& Simulation (M&S) domain, with the eXtensible Modelling and Simulation initiative
(XMSF) recommending the use of ontologies to allow the definition and approval of
complementary taxonomies that can be applied across multiple XMSF application do-
mains. As specified in the XMSF charter, this would involve the use of such XML based
technologies such as XML Schema, RDF, OWL etc. [2]

In this paper, we propose the use of Ontological formalisms as the basis of Synthetic
Environment (SE) representational semantics. The work reported herein is in continuum
with our previous research pertaining to the construction of a SE representation ontol-
ogy called sedOnto [3]. sedOnto is based on a ISO/IEC standard, namely SEDRIS,
which is a technological framework for the successful representation and interchange
of environmental data sets. In this paper, we propose and implement a necessary exten-
sion to sedOnto called STOWL – SEDRIS TO OWL Transform, which is the automation
of the transformation of a SEDRIS based SE to a OWL ontology based form. More pre-
cisely, the resulting OWL representation scheme shall be based on sedOnto and will
consist of instance data relevant to the vocabulary defined in it. Such a transformation
has many perceived advantages: (a) Utilisation of the OWL/RDF (XML) serialisation
syntax enables web-based sharing of SE data semantics thereby contributing toward the
XMSF goal of web-enabled simulation systems. (b) Since the representation scheme
is based on a ISO/IEC standard, it is practically applicable in industrial settings such
as Defence and/or Environmental simulation systems where SEDRIS is mostly used.
(c) Most importantly and in line with our envisaged application, existing OWL based
reasoners may be applied so as to perform ontological reasoning in the SE domain.

2 sedOnto: A Synthetic Environment Data
Representation Ontology

sedOnto – Synthetic Environment Data Representation Ontology [3] is an ontology to
be used within the M&S domain for the representation of data pertaining to a SE. We
leverage existing standards for SE representation by ‘web-enabling’ the SEDRIS Data
Representation Model (DRM), which is widely adopted within the M&S community
for the representation of SE data. The DRM is an object-oriented model, and provides a
unified method for describing all data elements, and their logical relationships, needed
to express environmental data in a seamless manner across all environmental domains.
sedOnto is represented using the the Web Ontology Language [4]. More specifically, we
utilize the OWL DL subclass of the OWL language for the representation of sedOnto;
driven by the fact that tool builders have already developed powerful reasoning systems
that support ontologies constrained by the restrictions required by OWL DL, the best
example here being RACER [5]. It must be emphasized that sedOnto formalizes the
same terminology for SE representation as is specified in the SEDRIS DRM. Whereas
the SEDRIS DRM is a UML based specification of the various SE representation classes
(and their relationships), sedOnto is a mapping of the same in the OWL language.

Fig. 1, an extract from sedOnto, consists of OWL statements necessary for the def-
inition of the DRM class Model. Models within the DRM are used to represent some
generic environmental entity that can be referenced many times in a transmittal (a SE
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Fig. 1. Definition For Class Model in sedOnto

database) to create many instances of representations of similar environmental entities
[6]. The class definition in Fig. 1 makes a number of important assertions such as: (a)
Model has a certain attribute (datatype property), (b) Model is a subclass of another
class (subsumption relationship), (c) Model aggregates objects of other classes (aggre-
gation relationship) etc. Note that not all properties, both datatype or object, have been
specified in the Model class definition in Fig. 1. The actual definition in sedOnto for
a Model is too large to be included in its entirety in Fig. 1. For an in depth coverage
of sedOnto, we direct interested readers to [3], which presents the sedOnto construc-
tion methodology along with potential applications of our proposed approach, namely
– Terminological reasoning over SE objects and Web-based Sharing of SE transmittal
semantics.

3 STOWL: Sedris to OWL Transform

In this section, we present the design and implementation of STOWL – SEDRIS To
OWL Transform, which is the automation of the transformation of a SEDRIS based SE
or SEDRIS transmittal to a Web-Ontology based form. The resulting OWL based repre-
senting scheme will be based on sedOnto and in actuality shall be an instantiation of it.
Specifically, sedOnto represents the ‘Terminology’ or TBOX whereas the automatically
transformed SEDRIS transmittal represents the ‘Assertions’ or ABOX1. To make things
clear, the precise situation is illustrated in Fig. 2. Note that although in different forms,
the shaded boxes in Fig. 2 represent the same terminology for SE representation.

1 The formal semantics of OWL are based on Description Logic (DL), which distinguishes
between an ontology (the TBox) and instance data (the ABox) relevant to the ontology
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Fig. 2. sedOnto & STOWL – A Unified View

3.1 Restricted Views from the DRM

The DRM is massive in that it encompasses every structural element likely to be used
for the representation of a SE pertaining to any domain. Indeed, applications with dif-
fering requirements would be interested in different aspects of a SE transmittal. For
instance, an application with a task to reason about the topology or connectedness of
the various objects present in the transmittal would be interested in the FeatureTopolo-
gyHierarchy present in it whereas one concerned with visualisation of those objects in
the GeometryHierarchy.

STOWL uses the concept of a Restricted View so as to extract and transform the
relevant information of interest. This is achieved by the specification of a DRM class
factory that maintains a repository of the various DRM classes currently within the
required view. With this setup, the actual transformer simply performs a depth-first
traversal of the DRM class hierarchy whilst delegating object extraction and initialisa-
tion to the DRM class factory, which conditionally performs the necessary extraction
and initialisation.

3.2 A Transformation Walkthrough

Providing a Web-Ontology based view of a SEDRIS DRM based transmittal is the
essence of STOWL. In Fig. 2, it can be seen that the input to STOWL consists of a
SEDRIS transmittal, which is semantically coupled to the SEDRIS DRM, whereas its
output is a OWL document consisting of instance data for the terminology defined in
sedOnto. In this section, we present a illustrative walkthrough of the transformation
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process for sample transmittal data. We utilize the definition for class Model from se-
dOnto, previously discussed in section 2 (see Fig. 1).

STOWL Input. Various SE transmittals freely available from [6] have been used for
testing STOWL. For the purposes of this walkthrough, we use one such transmittal,
namely anywhere_ruby.stf. Whilst the details being unimportant here, it must be added
anywhere_ruby.stf is a fictitious Model for a town square that could exist anywhere.

STOWL Output Extract. The output of the transformation process is a valid OWL/
RDF document expressed using the XML serialization syntax. It basically consists of
two inseparable parts – the Instance Ontology Template, which is the document pream-
ble consisting of the ontology definition and Instance Data, which consist of the actual
instance data for the terminology present in sedOnto. Fig. 3 consist of an extract from
the output generated by STOWL for input anywhere_ruby.stf.

Instance Ontology Template. All output instance data is associated to a OWL on-
tology model. The instance ontology template is the generic specification for such a
ontology. Loosely speaking, the Instance Ontology Template consists of the standard
namespace declarations required in any OWL ontology and a OWL:imports statement
asserting the fact that the instance ontology in question imports the vocabulary defined
in sedOnto. The namespace declarations and the ontology itself is required to be em-
bedded inside a RDF element2. Other instance data (such as the one in Fig. 3) would
follow the namespace declarations and import directive.

Instance Data (ABox). The OWL extract in Fig. 3 consists of instance data for the
class Model defined in sedOnto (see Fig. 1). The Model instance, which corresponds
to one of the models present in the transmittal anywhere_ruby.stf, makes the follow-
ing assertions: (a) hasGeometryModel: The Model has a GeometryModel instance
(given by the relative URI “#instance_GeometryModel_57404368")associated with it.
Note that hasGeometry is a subproperty of a another object property called hasCom-
ponent thereby giving it the intended interpretation of a aggregation relationship, i.e.,
Model aggregates objects of class GeometryModel. (b) hasDynamicModelProcess-
ing: This Model represents something that can move within the environment defined
by the transmittal in which it is present. (c) hasClassificationData: This Model ag-
gregates an instance of the class ClassificationData (given by the relative URI “#in-
stance_ClassificationData_57405136"). Instances of this class are used within the
source transmittal to provide thing-level semantics for the Models being represented.
In this case, it can be seen in Fig. 3 that the ClassificationData associated to this Model
has an attribute (given by the hasEDCSClassification relationship) that assign a EDCS3

code of 145 to this Model. Within SEDRIS, this code has been defined to be a building;
using the symbolic constant ECC_BUILDING.

2 Since every valid OWL document has a valid RDF model
3 The Environmental Data Coding Specification (EDCS) provides a mechanism to specify the

environmental “things" that a particular data model construct (from the DRM) is intended to
represent
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Fig. 3. Model Extract: Apartment Building

Unique Instance Names. As can be seen in Fig. 3, the Model instance itself and
every object related to Model through a object property has a resource name that is
unique. This is necessary because most instance objects are related to many other ob-
jects through various relationships. By having unique instance names, such references
can be resolved to the same instance object instead of having to reproduce instance data
multiple times under different heads (ie., URI’s). Such instance names are generated by
concatenating the string “instance_$DRM_CLASS_NAME_" with a unique Sort ID that
is maintained by the SEDRIS implementation for every object present in the transmittal.
Uniqueness and absence of redundant data is therefore guaranteed.

Data Completeness and Validation. Within the scope of the restricted view that
STOWL is working on, the resulting OWL instance data generated by it is Complete.
This means that every defining element of a certain DRM Class – all its attributes and re-
lationships with other classes in the DRM – is transformed into the target representation
scheme. The transformation is complete so that a two way transform would in principle
be possible. The only exception to this is a scenario in which one of the classes defining
elements (say its attribute or another component object) lies outside of the restricted
view. Validation here refers to the process of performing the following three types of
tests on the transformed model (and sedOnto): (a) Maintenance Tests: Check whether
or not facet (property) constraints are being maintained. (b) OWL DL Tests: Perform
OWL DL language tests to determine whether or not all OWL language elements in
use belong to its DL class so as to qualify the resulting ontology as a OWL DL one. (c)
Sanity Tests: Check the integrity of the ontology by performing tests such as whether
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or not redundant classes have been used in the range of a property, domain of a sub-
property has only narrowed the one in its super-property etc. Note that all the three tests
are being performed through the Protege Ontology development environment in use by
the Protege-OWL plugin.

3.3 Design Overview

STOWL Phases. The design overview for STOWL is shown Fig. 4. STOWL basically
involves the use of SEDRIS and Semantic Web based technologies. Implementation
has been done using both C++ and Java, with integration involving the use of Java
Native Interface. The following are the important components that make up STOWL:
(a) Transmittal Import: Involves import of the synthetic environment represented in
the SEDRIS Transmittal Format (STF) using the SEDRIS read API. The import layer
constructs a object-oriented view, similar to the DRM, of the imported transmittal.(b)
sedOnto Import: Import our SE representation ontology, sedOnto, using the Jena 2
Ontology API. (c) JNI Bridge: Data imported from a transmittal is provided to the
transformer as input with the JNI bridge acting as link between the two. (d) OWL
Transform: This refers to the actual transformation engine. Starting at the root of the
DRM class hierarchy, this involves a depth-first traversal of the input transmittal. (e)
Instance Ontology Export: This again involves use of the Jena Ontology API, albeit
not directly, for serialisation of the transformed model.

Fig. 4. STOWL – Design Overview

Implementation Details. For the construction of sedOnto, we have utilised version
3.1 of the SEDRIS DRM and Protege, which is a open-source development environ-
ment for ontologies and knowledge based systems4. We utilize the C++ based SEDRIS
SDK (release 3.1.2) [6] for importing SEDRIS transmittals. For purposes of importing
sedOnto and exporting the transformed transmittal to the OWL serialization syntax, we

4 Protege: http://protege.stanford.edu
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have utilized the JENA 2.1 Ontology API 5. The export layer also utilizes Kazuki6,
which is a library for generating an object oriented interface for instance objects from
an OWL Ontology file.

4 Conclusion and Further Work

We propose a novel approach involving the use of ontological primitives for the spec-
ification of Synthetic Environment Representational Semantics. A prototype, namely
STOWL, has been implemented to automate the creation of the desired representation
scheme. The paper also presented the design and implementation details for STOWL
alongwith a illustrative walkthrough of the transformation.

The use of a industry based standard (SEDRIS) as the basis of our SE ontology
makes our approach practically applicable in industrial settings such as Defence and/or
Environmental Simulation systems where SEDRIS is generally used. Moreover,
sedOnto and STOWL are also in line with the broader research goals within the Model-
ing & Simulation community for the development of Web-Enabled Simulation systems
(XMSF). By mapping the SEDRIS DRM to the OWL language, we make explicit the
SE representational semantics of the DRM using a language, which unlike UML is
inherently suitable to do so. The logical basis of the language means that automated
reasoning procedures can be utilized to perform ontological reasoning over SE objects
– subsumption, satisfiability, equivalence, retrieval [7] etc. Currently, work pertaining
to the applications of sedOnto and STOWL, viz Web based sharing of SE representa-
tional semantics and Terminological reasoning over SE objects [3], is in progress. We
are extending a description logic based reasoner, namely RACER [5], so as to be able
to provide synthetic environment specific query answering capabilities.
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Abstract. In this article, we investigate the problem of checking con-
sistency in a hybrid formalism, which combines two essential formalisms
in qualitative spatial reasoning: topological formalism and cardinal di-
rection formalism. Instead of using conventional composition tables, we
investigate the interactions between topological and cardinal directional
relations with the aid of rules that are used efficiently in many research
fields such as content-based image retrieval. These rules are shown to be
sound, i.e. the deductions are logically correct. Based on these rules, an
improved constraint propagation algorithm is introduced to enforce the
path consistency.

1 Introduction

Combining and integrating different kinds of knowledge is an emerging and chal-
lenging issue in Qualitative Spatial Reasoning (QSR), content-based image re-
trieval and computer vision, etc. Gerevini and Renz [1] has dealt with the com-
bination of topological knowledge and metric size knowledge in QSR, and Isli et
al. [2] has combined the cardinal direction knowledge and the relative orientation
knowledge.

To combine topological and directional relations, Sharma [3] represented
topological and cardinal relations as interval relations along two axes, e.g., hor-
izontal and vertical axes. Based on Allen’s composition table [4] for temporal
interval relations, Sharma identifies all of the composition tables combining topo-
logical and directional relations. But his model approximated regions with Min-
imal Boundary Rectangles (MBRs), and if a more precise model (e.g., in this
paper) is used, his composition tables will not be correct. We base our work on
the same topological model as Sharma’s, and a different directional model from
his, which is more general and thereby, is more practical.

In this paper, we detail various interaction rules between two formalisms and
we are also devoted to investigating the computational problems in the formalism
combining topological and cardinal directional relations.

In the next section, we give the background for this paper. The interaction
rules are introduced in section 3, which are used to implement our new path
consistency algorithm in section 5 after some definitions and terminologies are
prepared in section 4. In section 6, the conclusion is followed.
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2 Background

We first introduce the two formalisms of topological and cardinal directional
relations, respectively. The region considered in this paper is a point-set home-
omorphic to a unit disk in Euclidean space R

2.

2.1 Topology Formalism

Topology is perhaps the most fundamental aspect of space. Topological relations
are invariant under topological transformations, such as translation, scaling, and
rotation. Examples are terms like neighbor and disjoint [6]. RCC8 is a formal-
ism dealing with a set of eight jointly exhaustive and pairwise disjoint (JEPD)
relations, called basic relations, denoted as DC, EC, PO, EQ, TPP , NTPP ,
TPPi, NTPPi, with the meaning of DisConnected, Extensionally Connected,
Partial Overlap, EQual, Tangential Proper Part, Non-Tangential Proper Part,
and their converses. Exactly one of these relations holds between any two spatial
regions. In this paper, we will focus on RCC8 formalism.

2.2 Cardinal Direction Formalism

Goyal and Egenhofer [8] introduced a direction-relation model for extended
spatial objects that considers the influence of the objects’ shapes. It uses the
projection-based direction partitions and an extrinsic reference system, and con-
siders the exact representation of the target object with respect to the reference
frame. The reference frame with a polygon as reference object has nine direction
tiles: north (NA), northeast (NEA), east (EA), southeast (SEA), south (SA),
southwest (SWA), west (WA), northwest (NWA), and same (OA, i.e., the min-
imum bounding rectangle). The cardinal direction from the reference object to
a target is described by recording those tiles into which at least one part of the
target object falls. We call the relations where the target object occupies one
tile of the reference object single-tile relations, and others multi-tile relations.
We denote this formalism by CDF(Cardinal Direction Formalism) for brevity. It
should be noted that Sharma [3] did not consider the kind of multi-tile relation
and the intermediate relations, i.e., NW, NE, SE and SW.

3 Interaction Rules Between RCC8 and CDF

The internal operations, including converse and composition, on RCC8 can be
found in [10]. The internal operations on CDF have been investigated in [9] and
[11]. In order to integrate these two formalisms, we must investigate interaction
rules between them. These rules are very useful to improve the spatial reason-
ing and can be the complement of the present composition tables. The spatial
reasoning based on rules is more efficient and extended easily in the future as
Sistla et al. [5] indicated.
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The notation and representation of these rules are similar to [5], i.e. each rule
will be written as r :: r1, r2, · · · , rk, where r is called the head of the rule, which
is deduced by the list r1, r2, · · · , rk called the body of the rule.

To facilitate the representation of the interaction rules, we denote a ba-
sic cardinal direction (i.e., single-tile or multi-tile relation) relation by a set
SB, which includes at most nine elements, i.e. the nine single-tile cardinal di-
rection relations. For example, a relation O:S:SE:SN (multi-tile relation) can
be denoted by {O,S,SE,SN }. The general cardinal direction relation (i.e., a
basic cardinal direction relation or the disjunction of basic cardinal direction
relations) can be regarded as a superset GB, whose element is the kind of
set SB. So we have the relation: SB ∈ GB. The universal relation is the set
BIN = {O, N, NE, E, SE, S, SW, W, NW}, and the universe, i.e. the set of all
possible cardinal relations, is denoted by U.

Now, we present a system of rules for deducing new spatial relations from
existing ones.

3.1 Rules for Deducing CDF Relations from RCC8 Relations
(RCC8 → CDF)

Assume that there exists some RCC8 relation between two regions A and B and
we want to know the potential cardinal direction relations between them, we
show the deduction rules in three cases and give their proofs if necessary.

From the RCC8 relation A DC B, we can not specify the CDF relation
between them, i.e.,

A U B :: A DC B, (1)

where U is the universe of possible CDF relations between two non-empty and
connected regions.

This rule is obvious, because the DC relation is the least restricted relation
between two regions.

Let x denote any relation symbol in {EC, PO, TPPi, NTPPi}. We have the
following rule for each x. Because this rule is difficult to represent, we adopt
first-order logic and the notations for CDF.

∀SB ∈ GB(A, B), O ∈ SB :: A x B (2)

Let x denote any of the relation symbols in {TPP, NTPP, EQ}. We have
the following rule for each such x.

A O B :: A x B (3)

3.2 Rules for Deducing RCC8 Relations from CDF Relations
(CDF → RCC8)

In this section, we will investigate the rules deducing RCC8 relation between
any two regions A and B from the CDF relation between them in three cases.
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Let y denote any relation symbol in {DC, EC, PO, TPP, NTPP, EQ, TPPi}
(i.e., NTPPi). We have the following rule.

A y B :: A O B (4)

Let x denote a cardinal direction relation which is a multi-tile relation at
least including O and another single-tile relation, for example {O:N:NE}. Let y
denote the relation set {DC, EC, PO, TPPi, NTPPi}, which means y can be
anyone of these relations. We have the rule below.

A y B :: A x B (5)

Let x denote any of the cardinal direction relations which do not contain O.
Another rule can be described as follows.

A DC B :: A x B (6)

3.3 Rules for Deducing Relations from the Composition of RCC8
and CDF Relations (RCC8 ◦ CDF)

We will discuss these rules in three cases.
Let x denote any of the relation symbols in {TPP, NTPP}, y any CDF

relation and z the induced CDF relation. The rule is described as follows.

A z C :: A x B, B y C, (7)

Where, if y is a single-tile CDF relation, z equals y, and if y is a multi-tile CDF
relation, z is any subset of y.

This rule is similar to the above except that x is anyone of the relation
symbols in {TPPi, NTPPi}. So we have the relation A⊇B. It follows that the
rule can be described as follows.

A z C :: A x B, B y C, (8)

where z is any superset of y, i.e. y is the subset of z.
This rule is obvious, so we present it directly.

A y C :: A EQ B, B y C (9)

The rules for deducing RCC8 relations from the composition of RCC8 and CDF
relations can be derived by combining the above rules (7)-(9) and rules (4)-(6).

3.4 Rules for Deducing Relations from the Composition of CDF
and RCC8 Relations (CDF ◦ RCC8)

The rules are presented in three cases as follows
Let x denote any single-tile CDF relation and y denote the deduced CDF

relation. The rule is described as follows.

A y C :: A x B, C {TPP, NTPP} B, (10)
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Where, if x is any of the relation symbols in {NW, NE, SE, SW}, y equals x, and
if x is N (respectively S, E or W), y is any subset of {NW, N, NE} (respectively
{SW, S, SE}, {NE, E, SE} or {SW, W, NW}).

Using the above methods, we can also verify the following rule.

A y C :: A x B, C {TPPi, NTPPi} B, (11)

Where, if x is SW (respectively NW, NE or SE), y is any subset of {W, SW, S,
O}(respectively {N, NW, W, O}, {N, NE, E, O}, or {E, SE, S, O}), and if x is
N (respectively S, E or W), y is any subset of {N, O} (respectively {S, O}, {E,
O} or {W, O}).

Let x denote any CDF relation. This rule is obvious. We just describe it
directly as follows.

A x C :: A x B, B EQ C (12)

The rules for deducing RCC8 relations from the composition of CDF and
RCC8 relations can be derived by combining the above rules (10)-(12) and rules
(4)-(6).

3.5 Composite Rules

The advocation of the rules in this section is motivated by such situations where
given the relations A N B, B PO C, C N D, what is the relation between A and
D? We can not find the answer using the above rules and we should find more
powerful rules.

Sharma [3] verified and extended [? ]’s inference rule:

A x D :: A x B, B y C, C x D .

In this paper, we adapt this rule to our model and investigate its properties.
Let R denote any of the RCC8 relation symbols in {EC, PO, TPP, NTPP,
TPPi, NTPPi, EQ}, x and y denote any single-tile CDF relation and z denote
the deduced CDF relation, respectively. These rules are discussed in three cases.

A z D :: A x B, B R C, C y D, (13)

where x is N (respectively S, W, or E), y is any of the relation symbols in {NW,
N, NE}(respectively {SW, S, SE}, {NW, W, SW}, or {NE, E, SE}) and then
z is any subset of {NW, N, NE}(respectively {SW, S, SE}, {NW, W, SW}, or
{NE, E, SE}).

Using the above methods, we can validate the following two rules.

A z D :: A x B, B R C, C y D, (14)

where x is any of the relation symbols in {NW, NE}(respectively {SW, SE},
{NW, SW}, or {NE, SE}), y is N (respectively S, W, or E) and then z is any
subset of {x, N}(respectively {x, S}, {x, W}, or {x, E}), i.e., when x is NE and
y is N, then z is any subset of {NE, N}.

A z D :: A x B, B R C, C y D, (15)
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where x is NW (respectively SW, NE, or SE), y equals x, and then z is NW
(respectively SW, NE, or SE).

4 Preliminary

Definition 1. Binary Constraint Satisfaction Problem (BCSP)
If every one of the constraints in a Constraint Satisfaction Problem (CSP) in-
volves two variables (possibly the same) and asserts that the pair of values as-
signed to those variables must lie in a certain binary relation, then the constraint
satisfaction problem is called Binary Constraint Satisfaction Problem.

Definition 2. We define an RCC8-BCSP as a BCSP of which the constraints
are RCC8 relations on pairs of the variables. The universe of a RCC8-BCSP
is the set R

2 of regions anyone of which is a point-set homeomorphic to a unit
disk. Similarly we can define CDF-BCSP as a BCSP of which the constraints are
CDF relations on pairs of the variables and the universe is the set R

2 of regions
anyone of which is a point-set homeomorphic to a unit disk, and RDF-BCSP as
a BCSP of which the constraints consist of a conjunction of RCC8 relations and
CDF relations on pairs of the variables and the universe is the set R

2 of regions
anyone of which is a point-set homeomorphic to a unit disk.

A binary constraint problem with n variables and universe U can be simply
viewed as an n-by-n matrix M of binary relations over U : the relation Mij (in
row i, column j) is the constraint on < xi, xj >.

Let M and N be n-by-n matrices of binary relations. We have definitions as
follows:

Definition 3.

(M ◦N)ij = (Mi0 ◦N0j)∩ (Mi1 ◦N1j)∩ ...∩ (Min−1 ◦Nn−1j) = ∩
k<n

Mik ◦Nkj .

Let M2 = M ◦M .

Definition 4. An n-by-n constraint matrix M is path-consistent if M ≤M2.

M is path-consistent just in case Mij ⊆Mik ◦Mkj . We must note that path
consistency is the necessary, but not sufficient, condition for the consistency of
a BCSP.

5 Path Consistency in RDF-BCSP

To enforce the path consistency in RDF-BCSP, we must consider the interactions
between the RCC8 component and CDF component in RDF-BCSP in addition
to the internal path consistency in RCC8-BCSP and CDF-BCSP, respectively.

We devise a constraint propagation procedure Dpc() for enforcing path con-
sistency in RDF-BCSP, which is adapted from the path consistency algorithm
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described in [4]. Our algorithm employs two queues RCC8-Queue and CDF-
Queue, which are initialized to all pairs (x, y) of the RCC8-BCSP and CDF-
BCSP variables, respectively, verifying x ≤ y (the variables are supposed to be
ordered). The algorithm removes pairs of variables from the two queues in par-
allel or in turn. When a pair 〈X, Y〉 of variables of RCC8-BCSP (respectively
CDF-BCSP) is removed from RCC8-Queue (respectively CDF-Queue), firstly
the RCC8 (respectively CDF) relation on 〈X, Y〉 is converted to the CDF (re-
spectively RCC8) relation on 〈X, Y〉 according to the rules (1)-(3) (respectively
(4)-(6)). If the resulting CDF (respectively RCC8) relation on 〈X, Y〉 is different
from the original relation on 〈X, Y〉, the pair of variables will be entered to the
CDF-Queue (respectively RCC8-Queue); Then this CDF (respectively RCC8)
relation on the pair 〈X, Y〉 is used to update the CDF (respectively RCC8) re-
lations on the neighboring pairs of variables (pairs sharing at least one variable)
according to the prerequisites in the rules provided by section 3. If a pair is
successfully updated, it is entered into RCC8-Queue (respectively CDF-Queue),
if it is not already there, in order to be considered at a future stage for prop-
agation. This propagation procedure is common with Allen’s algorithm, what’s
different is that the RCC8 (respectively CDF) relation on every pair of variables
will be used to refine the relevant relations according to these rules provide by
section 3.

The algorithm loops until it terminates if the empty relation, indicating in-
consistency, is detected, or if RCC8-Queue and CDF-Queue become empty, in-
dicating that a fixed point has been reached and the input RDF-BCSP is made
path consistent.

Theorem 1. The constraint propagation procedure Dpc() runs into completion
in O(n3) time, where n is the number of variables of the input RDF-BCSP.

Proof. The number of variable pairs is O(n2). A pair of variables may be placed
in queue at most a constant number of times (8 for a pair of RCC8 variables,
which is the total number of RCC8 atoms; and 218 for a pair of CDF variables,
which is the total number of CDF basic cardinal direction relations. Every time
a pair is removed from queue for propagation, the procedure performs O(n)
operations. ��

6 Conclusions

In this paper, we have combined two essential formalisms in qualitative spatial
reasoning, i.e., RCC8 and cardinal direction formalism. The interaction rules
have been given and they can be embedded into the propagation algorithm to
enforce the consistency of BCSP based on the new hybrid formalism. The other
combinations of formalisms in QSR should be investigated in the future, and the
modeling and computational problems in Fuzzy QSR should be also interesting.
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Abstract. In the task of classification, most learning methods are suit-
able only for certain data types. For the hybrid dataset consists of nom-
inal and numeric attributes, to apply the learning algorithms, some at-
tributes must be transformed into the appropriate types. This procedure
could damage the nature of dataset. We propose a model tree approach
to integrate several characteristically different learning methods to solve
the classification problem. We employ the decision tree as the classifica-
tion framework and incorporate support vector machines into the tree
construction process. This design removes the discretization procedure
usually necessary for tree construction while decision tree induction itself
can deal with nominal attributes which may not be handled well by e.g.,
SVM methods. Experiments show that our purposed method has better
performance than that of other competing learning methods.

1 Introduction

In the real world, the datasets usually include both of the (unordered) nominal
(or discrete) attributes and the numeric (or continuous) attributes. We name this
kind of datasets as hybrid datasets. Most learning algorithms for classification are
only suitable for certain specified data types. When the undesired data types are
encountered in the dataset, conventionally we transform them into appropriate
types so that the learning algorithm can be proceeded [1–4]. E.g., numeric data
need a discretization process before the typical decision tree induction can be
applied and SVM works on the space of numeric data only. Sometimes the type
transformation is artificial and results in changing of the dataset nature.

To overcome this problem we employ a novel model tree approach which
a decision tree (DT) framework, combining with SVMs [5, 6] will be used for
the classification of hybrid sets. During the tree construction, the SVMs play
a role of replacing the discretization procedure and providing a possible way of
extending a univariate decision to a multivariate decision. In an internal node,
before the tree splitting, SVM will help to generate a synthetic Boolean attribute
based on the numeric attributes of current training examples in this node, rather

� Research partially supported by Taiwan National Science Council Grant # 93-2213-
E-011-036
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than discretize the numeric attributes regardless of their interdependencies [1,3].
When we choose the “best” splitting attribute we consider the original nominal
attributes as well as the synthesized Boolean attribute. If the synthetic Boolean
attribute is chosen as the splitting attribute, it means that the decision node has
a multivariate decision implicitly. Therefore, this strategy extends the ability of
DTs to include multivariate decisions. On the other hand, SVM itself can not
naturally deal with nominal data without creating any artificial encodings. Thus,
our proposed model tree, combining the power of DT and SVM, will be suitable
to solve the classification problem for hybrid datasets.

2 Decision Tree Induction with Hybrid Data Types

DT methods [7,8] are used widely in the fields of machine learning and data min-
ing. A DT consists of internal and external nodes where an internal node with
several branches represents alternative choices to make based on the (discrete)
values of selected attribute and an external node (a leaf) is usually associated
with a single class label. A prediction is done following the path from the tree
root to a leaf, by several branch choices according to given attribute values. The
typical DT construction adopts the top-down, divide-and-conquer strategy to re-
cursively build the classification tree [8]. DTs have some advantages such as easy
to interpret, efficient to generate and capable of coping with noisy data [9,10].
However, DTs are notorious to be unstable (i.e., high variance). Often a small
change in the training set results in different trees and produces inconsistent
classification results for the same test set. The instability is inherent because
the effect of an error on a top split will be propagated down to all of the splits
below [11]. Some approaches have been proposed by combining multiple mod-
els to improve the accuracy and stability of DT prediction, such as bagging or
boosting [12–14]. Some examples of DT induction are ID3, C4.51, C5.02 [8,12]
and CART [7]. We shall discuss two issues related to DT induction.

2.1 Incorporating Continuous-Valued Attributes

Many real world classification tasks involve nominal and numeric attributes. For
numeric attributes, DT can not be adopted directly unless they are discretized
in advance, i.e., partitioning each of the continuous attributes into disjoint in-
tervals [1]. E.g., an attribute X can be separated as X ≤ c and X > c for the
binary DT. The strategies of discretization are usually categorized by (1) being
supervised or unsupervised, (2) being global or local, and (3) being static or
dynamic, three options [1,2,4,8,3]. Most choices are heuristically or empirically
decided. Also, for many of the discretization approaches, the number of intervals
is decided arbitrarily. These can lead to low prediction accuracies or inefficient
tree structures, for datasets with hybrid data types or only the numeric data
1 Some MDL-based discretization for continuous attributes is adopted in certain ver-

sions
2 A variant of AdaBoost is implemented
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type [15,1,4,8]. While many DT inductions are more satisfied with discrete at-
tributes than continuous ones, we adopt SVM for classification in the subspace
spanned by those continuous attributes. In Sec. 4, a combined classifier from DT
and SVM will be introduced to deal with datasets with hybrid types.

2.2 Univariate and Multivariate Decision Trees

The classical approach for building a DT, such as C4.5, uses an orthogonal (or
axis-parallel) partition at each decision node, so called univariate method [8].
Opposite to that, CART [7] allows for the option of multivariate decisions. For
instance, one check simultaneously involving two attributes X1 and X2, such as
X1+X2 ≤ 6.5, may be operated in a decision node. Clearly, there are cases where
multivariate approach can work efficiently (producing trees with few nodes), but
not for the univariate approach3 [17,7,9,18–21,10]. We introduce SVM for being
capable of multivariate consideration at a node. Other than using a SVM in
each decision node in [17], we adopt the machine only for continuous attributes.
For discrete attributes, the regular ID3 algorithm is applied. By that, we take
advantage of powerful SVM for classification, while not losing the readability of
DT induction. Further discussion is in Sec. 4.

3 Support Vector Machines

We are given a training dataset S = {(x1, y1), . . . , (xm, ym)} ⊆ Rn × R, where
xi ∈ Rn is the input data and yi ∈ {−1, 1} is the corresponding class label. The
aim of SVM is to find the optimal separating hyperplane with the largest margin
from the training data. Here, “optimal” is used in the sense that the separating
hyperplane has the best generalization for the unseen data based on statisti-
cal learning theory [6]. This can be achieved by solving a convex optimization
problem given as follows:

min
(w,b,ξ)∈Rn+1+m

C
∑m

i=1 ξi + 1
2‖w‖22

s.t. yi(w′xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . , m,

(1)

where C is a positive control parameter and weights the tradeoff between the
training error and the part of maximizing the margin. We have to point out here,
due to the nature of SVM it is more suitable for numeric data type.

In smooth support vector machine (SSVM) [22], the SVM model (1) is
changed slightly and converted into a unconstrained minimization problem by
utilizing the optimality conditions. These give the SVM reformulation defined
as follows:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(1 − yi(w′xi + b))2+ +
1
2
(‖w‖22 + b2), (2)

3 For the multivariate case, the separating hyperplane do not need to be linear [16]
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where the plus function x+ is defined as x+ = max{0, x}. In SSVM, the plus
function x+ is approximated by a smooth p-function, p(x, α) = x + 1

α log(1 +
e−αx), α > 0. By replacing the plus function with a very accurate smooth ap-
proximation p-function gives the smooth support vector machine formulation:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(p(1− yi(w′xi + b), α))2 +
1
2
(‖w‖22 + b2), (3)

where α > 0 is the smooth parameter. The objective function in problem (3) is
strongly convex and infinitely differentiable. Hence, it has a unique solution and
can be solved by using a fast Newton-Armijo algorithm [22]. This formulation
can be extended to the nonlinear SVM by using the kernel trick. We will not
use the nonlinear SSVM in our proposed method because the nonlinear SSVM
tends to overfit the small portion of training dataset in the training process.

In next section, we employ the linear SSVM to deal with the numeric at-
tributes and to generate the corresponding synthetic Boolean attribute for the
training examples at each node.

4 Model Trees

With the description in the previous sections, we know DTs and SVMs have
their own characteristics to deal with different classification problems:

1 Most DTs require a discrete feature space.When a DT encounters numeric
attributes, a discretization procedure is applied beforehand to divide each
single numeric attribute into many distinct intervals.

2 On the other hand, SVMs are suitable for the classification of numeric data.
If datasets contain the nominal attributes, some strategies such as encoding
(usually artificial) are applied to transform the nominal attributes into a
series of binary attributes and SVMs treat the values of binary attributes as
the integers, 0 and 1.

To flexibly choose the most appropriate method for different types of attributes
and to overcome the limitation of univariate decision for numeric attributes in
DT induction, we propose a new approach which adopts SVM training in the
process of DT construction. At each node, we use a SVM classification in the
subspace spanned by the (whole) numeric attributes to replace the used-to-be-
necessary discretization procedure. Simultaneously, the SVM represents the pos-
sible multivariate decision to improve the efficiency of univariate method. After
the SVM is built, this “multivariate” decision can be considered and competed
with the other nominal attributes, based on information gain, gain ratio or other
goodness criteria. Below, we give the modeling process in detail.

4.1 Building Model Trees

Suppose an example in the hybrid dataset is expressed as the form (xNOM ,
xNUM , y), where xNOM , xNUM and y represent all of the nominal attributes, all
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of the numeric attributes and the associated class label, respectively. Moreover,
we use the notation, xSV MB , to represent the synthesized Boolean attribute
whose value is assigned at each node by the SSVM classifier, built from the part
of numeric attributes and training labels. Afterwards, the gain ratio criterion is
employed to decide the best attribute among all of the nominal ones and the
synthesized SVM attribute. That is, in each node, we do the following steps:

Step 1 Using (xNUM , y) to build xSV MB . The process consists of three parts.
The first work is to search the appropriate weight parameter for the linear
SSVM classifier. That is to say, we split xNUM of training examples into
training set and validation set following the stratification and then decide
the appropriate weight parameter by them. The second work is to retrain
the SSVM classifier by means of the chosen parameter and (xNUM , y) of
training examples. Finally, we use the retrained SSVM classifier, denoted
by f(xNUM ), to generate the corresponding xSV MB according to xNUM

of each training example. If f(xNUM ) > 0, the value of xSV MB is True;
otherwise is False. After the process is finished, training examples are
transformed to the new form, (xNOM , xSV MB , y).

Step 2 Using the gain ratio to select the most appropriate splitting attribute
from xNOM or xSV MB . The split with the highest value of gain ratio
will be selected as the attribute. After the splitting attribute is decided,
the dataset is partitioned into two or more subsets accordingly. Note that
in order to avoid the case that our method always chooses the synthetic
Boolean attribute generated via the SSVM, we confine ourselves in the
linear SSVM. Besides, the weight parameter used in SSVM is determined
by a tuning procedure to avoid the overfitting risk.

If one attribute of xNOM is selected, it means that not only the nominal attribute
is more distinguishing than xSV MB but also the decision is univariate. Oppo-
sitely, if xSV MB is selected, it shows that the linear combination of all numeric
attributes has better chance to separate the examples and the decision node is
multivariate implicitly. The process is repeated recursively until any stopping
criterion is met.

5 Experiments

In this section, we test our method on three benchmark datasets from the UCI
repository4 to evaluate its performance. In order to get a fair result, we repeat
four rounds tenfold cross-validation procedure for each experiment. Furthermore,
two popular classification methods, Naive Bayes (NB) and k-nearest-neighbor (k-
NN), are employed to provide the baseline accuracies. Three series of experiments
are performed. First, the classification error rates from different views (different
parts of attributes) are presented. Then we present the final comparison results
from NB, k-NN, C4.5, SSVM and our model tree method. In our experiments, we

4 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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choose three hybrid datasets, Cleveland heart disease, Australian and German
that include both of the nominal and numeric attributes from the UCI repository.
They are summarized in Table 1.

Table 1. Summary of Datasets

Dataset Instances # of nominal attr. # of numeric attr. Majority error

Heart 270 7 6 44.44%
Australian 690 8 6 44.49%
German 1000 13 7 30%

In NB approach, for nominal attributes, NB counts the frequencies as the
probabilities P (y) and P (xi|y), for attribute value xi and class label y; and for
numeric attributes, it assumes that the data follows a Gaussian distribution,
hence; the probability of the attribute value can be estimated by the probability
density function. Finally, the class of the test example is assigned by the pos-
terior probability. In k-NN, for nominal attributes, the distance is zero if the
attribute value is identical, otherwise the distance is one; for numeric attributes,
the Euclidean distance is applied directly. We discuss three series of experiments.

Different views: nominal attributes. In the first series, only nominal attributes
are extracted from the dataset. Three learning methods, NB, k-NN and C4.5 are
performed. Appropriate parameter tuning is done for each learning algorithm if
there is a need. In this series, k-NN is the most questionable method. Because
it can not reflect the actual distance among different nominal values. The result
is shown in Table 2(a).

Different views: numeric attributes. In the second series, only numeric attributes
are extracted. There are five learning methods, NB, k-NN, C4.5, linear SSVM
and Nonlinear SSVM performed. Appropriate parameter tuning is done if there
is a need. In C4.5, the values of the numeric attributes are divided into two
intervals in the local discretization procedure. The result is shown in Table 2(b).
From the first two series, we discover that the results of nominal attributes are
significantly better than the numeric counterparts. Also, it shows that the linear
SSVM performs better than all other methods.

Different methods: all attributes. In the third experiment, we compare the error
rates of different methods for hybrid datasets. Because SSVM can only deal with
the numeric attributes, we encode the nominal attributes into a series of Boolean
attributes for SSVM. For example, if the nominal attribute has three possible
values, we encode them as 001, 010 and 100. In model trees, we use the minimum
instances as the early stopping criterion. The number of minimum instances is
determined by a tuning procedure. The final results are shown in Table 3. The
model tree and linear SSVM have the similar accuracies. Moreover, comparing
model trees with C4.5, we find that model trees outperform C4.5 in the Heart
and German, and have the similar accuracy in the Australian.
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Table 2. Classification based only on nominal or numeric attributes (error rates %)

Classification Method
Dataset Naive k-NN C4.5

Bayes

Heart 21.02 19.81 24.54
Australian 13.73 13.33 14.42
German 25.68 28.20 27.25

(a) only nominal attributes

Classification Method
Naive k-NN C4.5 Linear Nonlinear
Bayes SSVM SSVM

23.33 22.87 25.83 21.76 29.63
28.55 25.83 23.80 23.04 24.35
29.08 33.70 30.13 28.77 28.90

(b) only numeric attributes

Table 3. Classification for hybrid datasets (error rates %)

Classification Method
Dataset Naive k-NN C4.5 Linear Nonlinear Model

Bayes SSVM SSVM trees

Heart 16.02 17.78 21.67 13.98 29.81 15.65
Australian 22.90 13.33 13.26 13.38 23.88 12.61
German 25.25 25.95 26.55 24.38 28.98 24.67

6 Conclusion

We employed DT as the classification framework and incorporated the SVM
into the construction process of DT to replace the discretization procedure and
to provide the multivariate decision. The main idea of our proposed method
was to generate a synthetic Boolean attribute according to the original numeric
attributes and the synthetic Boolean attribute represented the discriminability
of the numeric attributes. Hence, the multivariate decision could be taken into
account during the selection of next splitting attribute. Finally, the experiment
results showed that model tree has better accuracy than the conventional DT
C4.5. We noted that our method can not avoid the inherent instability of DTs.

Our model tree was not just designed for the SVM method only. Any learn-
ing methods appropriate to apply to numeric attributes such as Fisher’s linear
discriminant function or neural networks could be adopted to form a synthetic
Boolean attribute and the rest induction procedure is the same. We could also
accept more than one such synthesized attribute; thus, more than one learning
algorithm at a time under the framework of DTs. We have to point out that
designing a good tuning process to avoid the overfitting risk is extremely impor-
tant. Otherwise, DTs tend to choose the synthetic Boolean attribute induced
by the learning algorithm which has the overfitting drawback as the splitting
attribute. One design is to apply MDL principle to balance between nominal
attributes and the synthetic attribute(s), or between the synthetic attributes
generated from different learning methods. With the help from characteristi-
cally different learning methods, we could build a classifier which can deal with
data of hybrid types successfully.
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Abstract. For statistical modelling of multivariate binary data, such
as text documents, datum instances are typically represented as vec-
tors over a global vocabulary of attributes. Apart from the issue of high
dimensionality, this also faces us with the problem of uneven impor-
tance of various attribute presences/absences. This problem has been
largely overlooked in the literature, however it may create difficulties
in obtaining reliable estimates of unsupervised probabilistic representa-
tion models. In turn, the problem of automated feature selection and
feature weighting in the context of unsupervised learning is challenging,
because there is no known target to guide the search. In this paper we
propose and study a relatively simple cluster-based generative model for
multivariate binary data, equipped with automated feature weighting ca-
pability. Empirical results on both synthetic and real data sets are given
and discussed.

1 Introduction

In text mining tasks, such as Information Retrieval (IR), classification and clus-
tering, text data or documents are usually represented as high-dimensional vec-
tors over a global vocabulary (a bag of words). This representation brings the
problem of high dimensionality and in addition, the observation features may be
of uneven importance. However, high dimensionality and uninformative features
typically deteriorate the performance of machine learning methods.

A lot of research has been devoted to dimensionality reduction, feature se-
lection and feature weighting techniques for high-dimensional data, such as text
[2–4]. This is, how to decide which attributes of the data are relevant or impor-
tant under some criterion. However, these works consider a supervised setting,
namely text classification. In this case, class labels are available and these can
be used in the formulation of a criterion for selecting good features. Information
Gain (IG) and Mutual Information (MI) are widespread term-goodness criteria
that work well with text classification [3, 5]. However class labels are indispens-
able.

Clustering is arguably the most important unsupervised learning problem,
the goal of which is to discover a natural grouping in a set of patterns or points
without knowledge of any class labels. Class labels are not given, at the same
time not all features are important, some features may be redundant, some may
even harm the clarity of the structure in the data.
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Filter methods such as principal component analysis (PCA) [11], factor anal-
ysis and random projection [10] select features prior to clustering. They are in
fact dimensionality reduction methods involving some kind of feature trans-
formation prior to clustering. However, these are completely unrelated to the
clustering objective.

There are very few approaches that build feature assessment as an integral
part of an unsupervised objective. Law et al. [1] estimated feature saliency by
modeling relevant features as conditionally independent Gaussians given the
class variable, while common features are assumed to be identically distributed
for all clusters. Due to the Gaussian building block, this is not directly applicable
to discrete data such as text. Dy and Brodley [8] introduced a wrapper framework
incorporating model selection with feature selection by a cross-projection crite-
rion normalisation scheme. Vaithyanathan and Dom [9] construct a hierarchical
model by making assumptions that noise and useful features are conditionally
independent and all parameter sets are independent on each level. In fact these
two assumptions are rather limited. The hierarchical aspect models by Barnard
et al.[6], closely related to Hofmann’s Cluster-Abstraction Model (CAM) [7],
propose that components are modeled by the horizontal structure while features
are modeled by the vertical structure (aspects). They don’t consider this model
for analysing the individual data attributes however.

We propose a generative model for cluster-based feature analysis, specifically
formulated for multivariate binary data. There is no previous work in this setting.
Binary data arises in several domains including those where digital repositories
are involved. Our model is in principle somewhat related to both [1] and [6],
however it is simpler than those. The selection of a common distribution com-
ponent is assumed to depend neither on the cluster index as in [6] nor on the
features themselves as in [1]. Under this simplified framework, a multivariate
Bernoulli is employed as a discrete data representation. The data conditions
which favour good generalisation are systematically examined. Empirical results
are given on both synthetic and real data, showing that the algorithm is able to
find uninformative attributes simultaneously with clustering the data.

2 Model Formulation

2.1 Notation

Let yn denote a T -dimensional multivariate binary observation, and ytn its t-th
component, t = 1, · · · , T . θk is the set of parameters of the k-th of K cluster
components of the model, further λ denotes a common component. The prob-
ability that an observation comes from any of the K clusters is denoted by ρ,
and α1, . . . , αK will denote the individual prior probabilities of these clusters.
Let Θ ≡ {α1, . . . , αK , θ1, . . . ,θK , λ, ρ} denote the full parameter set.

2.2 Model

The proposed model assumes the following generative process for each data point
yn:
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1. Choose zn ∼ Multinomial (α);
2. For each of the T features wt:

– Choose φ ∼ Bernoulli (ρ);
– If φ = 1, choose either a presence (1) or an absence (0) event for wt from

θtk ≡ P (ytn|zn, φ = 1); Else (φ = 0) from λt ≡ P (ytn|zn, φ = 0).

The likelihood of a datum point yn under the above model is the following:

p(yn|Θ) =
K∑

k=1

αk

T∏
t=1

p(ytn|Θ)

=
K∑

k=1

αk

T∏
t=1

[
ρθytn

tk (1− θtk)1−ytn + (1− ρ)λytn

t (1− λt)1−ytn

]
(1)

2.3 Model Estimation

For estimating (1), the EM algorithm is used. This produces a sequence of esti-
mates using the two alternating steps below.

– E-step: the posteriors, that is the expected value of the latent variables
(zn and φ) associated with each observation given the current parameter
estimates are calculated

rkn ≡ P (zn = k|yn)

∝ αk

T∏
t=1

[
ρθytn

tk (1− θtk)(1−ytn) + (1− ρ)λytn

t (1− λt)(1−ytn)
]

(2)

rtkn ≡ P (zn = k, φ = 1|ytn)

=
ρθytn

tk (1 − θtk)(1−ytn)

ρθytn

tk (1− θtk)(1−ytn) + (1− ρ)λytn

t (1− λt)(1−ytn)
× rkn (3)

r
′
tkn ≡ P (zn = k, φ = 0|ytn) = rkn − rtkn

– M-step: the parameters are re-estimated as follows,

α̂k =
∑

n rkn∑
nk rkn

=
∑

n rkn

N
∝
∑

n

rkn (4)

θ̂tk =
∑

n ytnrtkn∑
n rtkn

(5)

λ̂t =
∑

n ytn

∑
k r

′
tkn∑

nk r
′
tkn

=
∑

n ytn −
∑

k

∑
n ytnrtkn

N −∑n

∑
k rtkn

(6)

ρ̂ =
∑

n

∑
k

∑
t rtkn∑

n

∑
k

∑
t(rtkn + r

′
tkn)

=
∑

n

∑
k

∑
t rtkn

N × T
(7)
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2.4 Feature Saliency Definition

Here, feature saliency is defined as the probability of a feature being informative
for clustering, averaged over N data points:

1
N

N∑
n=1

P (φ = 1|ytn) =
1
N

N∑
n=1

K∑
k=1

rtkn (8)

Algorithm analysis and efficiency. Similarly to all other Bernoulli mixtures,
the scaling of the algorithm is O(N × T ×K). The algorithm has some limita-
tions, one is that the ρ may be over-estimated because in general, it is easier to
explain the distribution of a feature by a mixture rather than a single common
distribution. Secondly, it may inherit the limitation of mixture models, whose
impressive performance is restricted to low dimensional data. A more thorough
experimental study is presented in the sequel.

3 Experiments

3.1 Results on Synthetic Data

We generated several synthetic data sets of varying size and varying proportion
of uninformative features. In each generated data set, 4 clusters were present,
over a vocabulary of 100 features.

Structure identification. In this experiment, 100 data points have been gener-
ated over 100 features, out of which 60 are uninformative. To avoid local optima,
the model estimation was repeated 40 times and the estimated model with the
best in-sample log likelihood was selected. Fig.1 shows the estimated feature
saliencies – indeed the 40 informative features, that define the four true clusters,
have been identified. It can also be seen that the frequency of occurrences in the
original data set would have been misleading for determining which features are
important. Further, for completeness, different densities of 1-s in the uninforma-
tive features from 0.2 to 0.8 were also tested, all provided similar satisfactory
results.

Generalisation. Here we use the out-of-sample data likelihood as a criterion.
This is a measure of how good a probabilistic model is in terms of estimating
the probability of the data under the assumption that the model is the true
generator of both the training data and the testing data.

In this experiment, datasets of the same vocabulary size but varying propor-
tion of uninformative features, and varying training size are generated. Further,
at the generation, K = 4, vocab size=100, the proportion of uninformative fea-
tures ranges across 0.2, 0.4, 0.6, 0.8.

– Large training set : This dataset contains N = 10, 000 points. A number of
7, 000 of the total points are used for training, the remaining 3, 000 are for
testing. Out-of-sample likelihood, as calculated on testing data, is shown in
the right plot of Fig.2.
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Fig. 1. The upper left plot is the posterior probability of informativeness for each
observation ytn. Darker means higher probability. The lower left plot is the Feature
Saliency of each feature computed by averaging P (φ = 1|t, n, ytn) over data points. The
upper right plot is the data itself containing clear structures as well as uninformative
features. The lower right plot is the average frequency of presences of each feature
across the data points

– Medium and small training set : The setting is similar to that in the previous
experiment, but the number of points is, 1, 000 and 100 respectively. Ten fold
cross-validation is used. Mean±1 standard error are reported vs. different
model orders and these can be seen in the middle and left plots of Fig.2
respectively.

Observations from the experiment. From the comparative assessment of the pro-
posed approach with a simple Bernoulli mixture, we see that both models are
able to recognize the correct number of clusters, except in the case when too few
data points are available. On the large training set, the performance of these two
models is comparable. On medium size training set, the advantage of the pro-
posed approach becomes noticeable and the difference in performance becomes
statistically significant in the experiment with the small sample size. So it ap-
pears that the proposed model has the potential to handle the limited training
data settings better than the simple mixture. When training data is abundant,
the proposed model may not have any advantage in terms of generalisation, how-
ever, as we have seen earlier, its built-in feature-weighting mechanism offers an
additional data explanatory ability that simple mixtures do not have.
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Fig. 2. Comparison of generalisation performance of the proposed model (fs mixB) and
simple Bernoulli mixture (s mixB), on generated data sets of varying size

3.2 Results on Real Data

Generalisation. Two binary data sets are chosen for testing the proposed
model on real data.

– 5 Newsgroups : We apply the model on text document data from five news-
groups of the 20 Newsgroups corpus1: alt.atheism, sci.crypt, sci.med, sci.space
and soc.religion. christian. 3,750 documents over a vocabulary of 1,218 words
were taken. These documents were indexed by removing stop words and ap-
plying Porter Stemming. Infrequent terms were also removed. The data has
been split into a training set of 3,250 documents and an independent test
set of 1,500 documents.

– Advertisement data2: This data was collected to predict whether or not im-
ages are advertisements. Each data point represents an image. The data for
our experiment consists of 3,279 images over 1,554 binary attributes. This is
split into a training set of 1,640 and a test set of 1,639 instances.

As we can see from Fig.3, the proposed model outperforms the simple Bernoulli
mixture on both these data sets. Indeed, from the data characteristics it is clear
that we have relatively sparse training set in both real cases, compared to the
dimensionality of the data. Also we have noticed that in both cases the out-of-
sample data likelihood of the two models peak at a model order higher than
the true number of components. Finally, it can be noticed that the difference in
performance appears to be greater in the case of the Adverts data, compared to
that observed on the Newsgroups data set. In the light of the observations made
from the synthetic data experiments, this may be caused by the smaller training
set size in the case of the Adverts data.

1 Available from http://www.cs.cmu.edu/˜textlearning
2 Available from UCI machine learning repository
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Fig. 3. Comparison of generalisation performance on real data: 5 newsgroups and ad-
verts data. In both cases, the proposed model performs better than the simple mixture
of Bernoulli

Finding non-discriminative terms. Now, we apply the model on a small text
document collection in order to visually illustrate in more details the workings of
our approach on text data. We use four newsgroups of the 20 Newsgroups corpus:
sci.crypt, sci.med, sci.space and soc.religion. christian. In this experiment, there
are 384 documents over a dictionary of 100 terms selected with the aid of class
labels, using Infogain feature selection.

It can be seen from the Fig.4 that most of the 100 features are found to be in-
formative, even though, some less informative terms can also be recognised. The
top 10 most uninformative term presences selected by our algorithm are: peopl,
word, system, accept, space, faith, love, agre, kei, comput, govern. Obviously,
words such as people, system can appear in any topic and are not necessarily
specific to just one.

It can also be noted, that interestingly, for text data, in average, term pres-
ences have been found more informative than term absences (See Fig.4, lower
left, first two plots). This is a novel insight that motivates the study of event
models that concentrate on term presences only, such as the multinomial event
model. There are also uninformative term absences, meaning terms whose omis-
sion is not due to the topical content.

4 Conclusions and Future Work

We have presented a simple cluster based generative model for multivariate bi-
nary data, equipped with automated feature weighting capability. The model is
able to improve over the Bernoulli mixture model in the case of two medium
size real-world data sets considered. A number of extensions are currently under
study. The combination of feature selection with model selection will be inves-
tigated in the future. Comparisons with a multinomial version of the model for
ad-hoc retrieval and classifications are also underway. Finally, the extension of
the model by introducing a continuous (Dirichlet) prior will hopefully endow the
proposed model with the ability to deal with really high dimensional data sets.
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Abstract. It is known that no single descriptor is powerful enough to encompass
all aspects of image content, i.e. each feature extraction method has its own view
of the image content. A possible approach to cope with that fact is to get a whole
view of the image(object). Then using machine learning approach from user’s
Relevance feedback to obtain a reduced feature. In this paper, we concentrate
on some points about Biased Discriminant Analysis / Kernel Biased Discrimi-
nant Analysis (BDA/KBDA) based machine learning approach for CBIR. The
contributions of this paper are: 1. using generalized singular value decomposition
(GSVD) based approach solve the small sample size problem in BDA/KBDA and
2. using histogram intersection as a kernel for KBDA. Experiments show that this
kind of kernel gets improvement compare to other common kernels.

1 Introduction

Content-Based Image Retrieval (CBIR) has gained more and more attention in the last
few years. The main aim of CBIR is to search for similar images in a given database
based on an expressive representation of its images. The process of finding these expres-
sive information is known as “Feature Extraction”. It is known that no single descriptor
is powerful enough to encompass all aspects of image content, i.e. each feature extrac-
tion method has its own view of the image content. A possible approach to cope with
that fact is to get a whole view of the image(object).

Relevance feedback (RF) [16] has been proven as an effective solution to improve
performance of CBIR. Relevance feedback with only positive (i.e., relevant) examples
can be cast as a density estimation. While with both positive and negative training exam-
ples it becomes a classification problem, but with the following characteristics: 1) Small
sample issue. 2) Asymmetry in training sample. 3) Real time requirement [16]. Because
of small sample size, it is difficult to get a true distribution of the negative (irrelevant)
images from such few negative samples. Biased discriminant analysis (BDA) [15] has
been proven successful to deal with this problem. This approach assumes that image re-
trieval is a (1+x)-class problem, which means there are an unknown number of classes
in the database, but use is only interested in the relevant class, rather than a 2-class prob-
lem which assumes all the irrelevant images belong to the same class. It is reasonable

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 63–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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while it is difficult or inconvenient to get plenty of both, positive and negative samples
for training. Kernel biased discriminant analysis (KBDA) [15] is a kernel version of
BDA, which extend the application of BDA using a nonlinear kernel mapping.

To solve the BDA or KBDA, one always meets the Small-Sample-Size (SSS) prob-
lem, because the number of samples is always far smaller than the dimensionality of the
feature. There are many methods to solve SSS problem [3, 7]. In this paper, we use the
generalized singular vector decomposition method [6] to solve it.

The choice of kernel function for KBDA is another important problem. Some kernel
functions also need several parameters. Zhou [14] proposed a kernel alignment based
approach to get the optimal parameters, but parameter tuning still makes the online
learning unfeasible. In this paper, we use histogram intersection kernel which needn’t
use any parameters, and compare the performance with other common kernels (such as
RBF kernel, Linear kernel, etc...)

2 Feature Combination from Histograms of Local Features

2.1 Haar-Integral Feature

Siggelkow et al. [10, 11] used rotation- and translation-invariant color and texture fea-
ture histograms for image retrieval. These features are based on the invariant integration
described in [9]. Experimental results have shown that these features demonstrate a very
good capability in retrieving images.

The idea of constructing invariant features is to apply a nonlinear kernel function
f(I) to the gray value image, I, and to integrate the result over all possible rotations
and translations ( Haar integral over the Euclidean motion), i.e.,

IF (I) =
1

2πMN

∫ M

r=0

∫ N

c=0

∫ 2π

θ=0

f(g(r, c, θ)I)dθdrdc (1)

where IF (I) is the invariant feature of the image, M, N are the dimensions of the
image and g is an element in the transformation group G (which consists in our case of
rotations and translations).

The above equation suggests that invariant features are computed by applying a
nonlinear function, f , on the neighborhood of each pixel in the image, then summing
up all the results to get a single value representing the invariant feature.

Much of the local information is lost by summing up the local results. This makes
the discrimination capability of the features very weak. In order to preserve the local in-
formation, Siggelkow et al. [10, 11] replaced the integration (

∫M

r=0

∫ N

c=0) by histogram-
ming.

We can construct our overcomplete feature set of histogram features from different
color space(in this paper, we use RGB,rgb,HSV,HMMD) and different local invariant
features(such like histogram of gradient magnitude, histogram of morphological filtered
image, etc.). The dimensionality of the feature we used in this paper is 4567.
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3 BiasMap Revisited

[14, 15]

3.1 Biased Discriminant Analysis (BDA)

BDA wants to solve an optimal discriminative transform matrix Wopt:

Wopt = arg max
w

|WT SyW |
|WT SxW | , (2)

where Sx and Sy are the scatter matrix estimates:

Sx =
1

Nx

Nx∑
i=1

(xi −mx)(xi −mx)T , Sy =
1

Ny

Ny∑
i=1

(yi −mx)(yi −mx)T (3)

{xi, i = 1, . . . , Nx} are the positive examples, and {yi, i = 1, . . . , Ny} are the negative
examples. Each element of these sets is a vector of length n, which is the dimension of
the feature. mx is the mean vector of the sets {xi}.

3.2 Kernel BDA

We can apply the original linear algorithm in a feature space, F . Using nonlinear map-
ping

φ : C −→ F | x −→ φ(x), (4)

where C is a compact subset of R
n, linearly non-separable configurations become

separable in F .
Using φ to denote quantities in the new feature space, we rewrite the objective

function in (2) as:

Wopt = arg max
w

|WT Sφ
y W |

|WT Sφ
xW | , (5)

where

Sφ
x =

1
Nx

Nx∑
i=1

(φ(xi)−mφ
x)(φ(xi)−mφ

x)T , Sφ
y =

1
Ny

Ny∑
i=1

(φ(yi)−mφ
x)(φ(yi)−mφ

x)T

(6)
Through the evaluation of a kernel matrix Kwith components k(xi, xj) = φ(xi)T

φ(xj), we can avoid the huge computing. More details may be found in [15].

4 Generalized Singular Value Decomposition (GSVD) Method
to Solve the BDA/KBDA

It is well known that, the optimal solution w to BDA corresponds to the largest eigen-
value for the eigenvalue problem

S−1
x Syw = λw. (7)
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However, in RF the size of the training set is much smaller than the dimension of
the feature vector, thus the scatter matrix Sx becomes singular. It may cause the SSS
problem. There are several methods to solve this problem, such as the regularization
method, the null-space method, etc.

In this paper, we use the generalized singular value decomposition (GSVD) method
to solve the problem [5, 6].

Regardless of the singularity of Sx, GSVD solves a generalized eigenvalue problem

Syw = λSxw (8)

and without forming the products Sx, Sy explicitly.
The scatter matrices defined in (2) can be expressed as

Sy = HyHT
y and Sx = HxHT

x , (9)

where

Hx = [x−mxeT
x ] ∈ R

n×Nx , Hy = [y −mxeT
y ] ∈ R

n×Ny ,

x = [x1, x2, . . . , xNx ] ∈ R
n×Nx , y = [y1, y2, . . . , yNy ] ∈ R

n×Ny ,

ex = [1, 1, . . . , 1] ∈ R
1×Nx , ey = [1, 1, . . . , 1] ∈ R

1×Ny (10)

We can get an optimal solution of w using GSVD method. Details may be found
in [6].

For, KBDA, we define

KΦ
y = (Ky −KxIy

Nx
), KΦ

x = (Kx −KxIx
Nx

) (11)

Then we can get the solution using the algorithm introduced in [5].

5 Kernel Selection

There are many types of kernel functions. Table 1. are some common kernels used for
SVM [13].

Table 1. Common kernels used for SVM

Linear Kernel k(x, x′) = 〈x, x′〉
Laplacian RBF Kernel k(x, x′) = exp(−γ‖x − x′‖)
Gaussian RBF Kernel k(x, x′) = exp(−γ‖x − x′‖2)

Polynomial Kernel k(x, x′) = (〈x, x′〉 + 1)d

Kernels can be viewed as similarity measures [8]. We can use any kind of similarity
measure to define our own kernel for a specific problem.
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5.1 Histogram Intersection

Recently [1], proposed a kernel function of histogram intersection. The performance
is better than other kernel functions used in SVM in image classification. Histogram
intersection can be defined as follows [12]. We denote with A and B the histograms
of images Aim and Bim. Both histograms consist of m bins, and the i-th bin for i =
1, . . . , m is denoted with ai and bi, respectively. Let us assume that Aim and Bim have
the same size (N pixels); by construction we have

∑m
i=1 ai = N and

∑m
i=1 bi = N .

Then,

kint(A, B) =
m∑

i=1

min{ai, bi} (12)

In [1], the authors proved that histogram intersection kint is a Mercer’s kernel [4]
by represent A with an N ×m-dimensional binary vector A defined as

A = (

a1︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

N−a1

,

a2︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

N−a2

, . . . ,

am︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

N−am

)

and similarly B with B. Then the histogram intersection kint(A, B) in (12) can be
readily seen to be equal to the standard inner product between the two corresponding
vectors A and B:

kint(A, B) = A · B. (13)

6 Experiments

6.1 Image Database

We choose WANG1000 database1 [2] for our experiments. It is a subset of the Corel
database of 1000 images which have been manually selected to be a database of 10
classes(e.g. ‘Africa’, ‘beach’, ‘monuments’, ‘food’. . . ) of 100 images each. The images
are subdivided into 10 classes such that it is almost sure that a user wants to find the
other images from a class if the query is from one of these 10 classes. This is a ma-
jor advantage of this database because due to the given classification it is possible to
evaluate retrieval results.

We selected 20 queries randomly from the image database. Each query consists of
3 positive and 3 negative samples. We compare the performances of using different
kernel functions in KBDA and BDA. For KBDA, we choose histogram intersection,
linear, laplacian RBF kernel, gaussian RBF kernel and polynomial kernel.

6.2 Performance Evaluation

For each query we can get groundtruth data from the class they belong to. That means,
each positive training samples have 100 images from the same class as their groundtruth

1 http://wang.ist.psu.edu
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data. We must mention here that some images from the same class are visually dissimi-
lar but semantically belong to the same class. The precision P and recall R are defined
as:

P =
Number of relevant images retrieved

Total number of images retrieved
,

R =
Number of relevant images retrieved

Total number of relevant images
.

These two values are often combined into a so called PR-graph. But we cannot get a
averaged PR-graph of the total 20 queries easily because different queries may have
different recall values. If we use Nret-R-graph, we can cope with it. Nret is the number
of the first N returned images. This graph shows the recalls as a function of Nret. We
can also use another performance measure normalized area under the Nret-R-graph
(NAUG):

NAUG =
Area under the Nret-R-graph

Area under the groundtruth Nret-R-graph

Because the area under the groundtruth Nret-R-graph is not 1, we use the equation
above to get a normalized area.

Fig. 1. Average recall of 20 queries as a function of images returned to the user

6.3 Retrieval Results

The retrieval results are shown in Table 2. and Fig. 1. From the results we can see
that, the performance using histogram intersection kernel is better than the other kernel
types. KBDA based approach always better than BDA based approach.

In this paper, we only give the results using different kernel types for KBDA. In [15],
the authors gave the comparison results between KBDA and SVM.
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Table 2. Results of normalized area under the Nret-R-graph(NAUG) of different BDA/KBDA
methods

Kernel type NUAG(%)

KBDA,histogram intersection kernel 88.95
KBDA,linear kernel 85.01
KBDA,2-nd deg polynomial kernel 84.92
KBDA,4-th deg polynomial kernel 84.72
KBDA,Laplacian RBF kernel(γ = 0.1) 86.36
KBDA,Laplacian RBF kernel(γ = 1) 85.84
KBDA,Gaussian RBF kernel(γ = 0.1) 86.13
KBDA,Gaussian RBF kernel(γ = 1) 86.17
BDA 69.42

7 Conclusion

In this paper, we construct a overcomplete feature set using different histogram-based
invariant features. Using BDA/KBDA based feature fusion approach to reduce the fea-
ture dimensionality. To solve the SSS problem, we use GSVD based approach. A his-
togram intersection kernel is used for KBDA. Experiment results show that this kind of
kernel has advantage than other common kernels for image retrieval.
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Abstract. Automatic image annotation has attracted much attention
recently, due to its wide applicability (such as image retrieval by seman-
tics). Most of the known statistical model-based annotation methods
learn the joint distribution of the keywords and the image blobs decom-
posed by segmentation or gride approaches. The effects of these methods
suffer from the sparseness of the image blobs. As a result, the estimated
joint distribution is need to be “smoothed”. In this paper, we present a
topic-based smoothing method to overcome the sparseness problems, and
integrated with a general image annotation model. Experimental results
on 5,000 images demonstrate that our method can achieves significant
improvement in annotation effectiveness over an existing method.

1 Introduction

In traditional image databases, image queries are evaluated based on manually
obtained annotations. With the increasing amount of images, manual annotation,
which suffers from low efficiency, high labor intensity and human perception
subjectivity, can hardly guarantee the labelling integrity. Since, users are more
familiar with semantic queries (semantic labelling-based) than content-based
queries. Therefore, automatic image semantic annotation is attracting more and
more research interest [1–11].

Most known statistical model-based image annotation techniques assume
that each image can be described by a small vocabulary of blobs, which are the
sub regions of images decomposed by segmentation [6] or grid [10] approaches.
Similar to using words to describe documents in text retrieval, blobs can be used
as the basic units to describe images. Based on this a statistical model between
the semantic labels and the blobs can be established to perform the automatic
annotation [6, 7, 10].

Generally, the number of blobs of an image is small [6, 7]. The sparsity of
blobs will lead to the problem of “zero” probability in the process of the mod-
elling, causing lower precision of the annotation model. In statistical modelling,
“smoothing” techniques are usually exploited to solve the zero probability prob-
lem. In this paper, we propose a smoothing method based on a layered topic
image model. The basic idea is that the probability of the events observed in
a training image can be reinforced by evaluating the probability of the events
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observed in those training images with the same topic, and the probability of
the events occurred in the whole training set.

The specific contribution of this paper includes:

1. An n-gram language model-based image annotation framework based on the
image document model is presented.

2. A topic-based smoothing method is presented to improve the effectiveness
of the image annotations.

Experiments have been carried out using the test data set that was also used
in [6, 7]. Compared with CMRM [7], the topic-based smoothing method can
improve the image annotations significantly. The rest of this paper is organized
as follows. Section 2 provides background and related work. Section 3 intro-
duces the concept of image document. In Section 4, the general n-gram langauge
mode based image annotation is presented, Section 5 provides our topic-based
smoothing method. Experimental results are presented and analyzed in Sec-
tion 5. Section 6 concludes the paper.

2 Related Work

Recently, researches have focused on statistical models: Mori et al. [10] proposed
co-occurrence image annotation model. Images were segmented into sub-regions
with a grid approach. With the training set, the semantic keywords are labelled
to the whole image(all blobs), and the distribution of each blob with respect
to keywords is estimated. Duygulu et al. [6] proposed some translating-based
image and object labelling models. Unlike the co-occurrence method, Duygulu
used image segmentation methods to analyze and decompose the images into
sub-regions(blobs). Language modelling approaches are adopted and Expected-
Maximum(EM) algorithm is used to perform the image labelling. Blei and Jordan
[4] extended the Latent Dirichlet Allocation (LDA) Model and proposed the
Correlation LDA model to relate the keyword and the image. Barnard et al. [1]
proposed an hierarchical aspect model to labelling images. Jin et al. [8] estimate
the word-to-word correlations in image annotations. Other methods such as SVM
[5], LSA and PLSA [9] have all been exploited in the image annotation methods.

Cross-Media Relevance Model (CMRM) proposed by Jeon et al. [7] is another
image annotation method based on language model. According to CMRM, there
is an implicit relevance model of each image. In other words, the distribution of
image blobs and semantic keywords follow the same relevance model. Under this
assumption, one image blob may have more than one corresponding (relevant)
keywords, and one keyword may have more than one corresponding (relevant)
blobs. Therefore, the semantic meaning of image can be estimated by the cal-
culation the joint distribution of blobs and keywords. Underlying the CMRM
method is uni-gram language model.

3 Image Document

From language’s point of view, a document is composed of words, Similarly, im-
age can also be described with visual “words” – image element units. That is to
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say, an image can be considered as a “document” with visual words. There are
several ways to get the image visual words, such as using the grid approach to
get the sub regions of an image [10]. Duygulu et al. [6] used the image segmen-
tation approach to segment the image into a few subregions. For convenience,
we will call these subregions as “blobs” in this paper. Ideally, these image blobs
should correspond to some semantic objects, and could be used as words to de-
scribe images. Apparently, a blob vocabulary should be constructed so that each
database image could be described with a few blobs appear in the vocabulary,
just like the text document should be composed of some words in a word vocab-
ulary. We adopted the method of [6] to construct the blob vocabulary. With the
blob vocabulary and the annotations, we can describe an image from 3 points
of view: the blobs, the annotations, and the relevance between blobs. Thus we
have the following definition of Image Document:

Definition 1. (Image Document) Let W denote the set of all words oc-
curred in the training set, and B denote the set of all the blobs occurred in
the training set, namely, B is the blob vocabulary. For a given image I, the
corresponding image document D can be described by (BD, WD, RD), where
BD represents the set of blobs occurred in image I, BD = {b1, b2, b3, . . . , bm},
where b1, b2, . . . , bm ∈ B; WD denotes the set of keywords occurred in image I,
WD = {w1, w2, w3, . . . , wn}, where w1, w2 . . . , wn ∈ W ; RD denotes the set of
relevance pairs of blobs in image I.

4 Image Annotation Model

The task of image annotation is to seek the appropriate semantic keywords for
the image in light of certain annotation models. Thus, the foundation of image
annotation is the modelling of the relevance between images and annotations
based on the training set learning. Inspired by [7], we proposed the n-gram
language model based image annotation framework in the followings sections.

4.1 N-Gram Based Image Annotation Model

For an unlabelled image I, let D denote the corresponding image document,
D = (BD, ∅, RD). For ∀w ∈ W , the goal of image annotation is to label the
image by those top N keywords of the largest p(w|I)s. It is difficult to compute
p(w|I) directly, but we can calculate the P (w|BD) for approximation.

P (w|I) ≈ P (w|BD) (1)

According to the formula of conditional probability we have

P (w|BD) =
P (w, BD)
P (BD)

(2)

Similar to [7], we use the training set T of annotated images to estimate the
joint probability of observing the word w and the blobs of BD in the same image,
and then marginalize the distribution with respect to w. We have
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P (w, BD) =
∑
J∈T

P (J)P (w|WJ )P (BD|BJ ) (3)

, where WJ and BJ denote the set of keywords and the set of blobs of the image
document of J respectively. For simplicity, in the formulas in the rest paper, we
still use J to represent WJ and BJ .

In order to calculate P (BD), we need to estimate the relevance between the
blobs of BD. Therefore, we have the following definition:

Definition 2. (The Relevance of Blobs) For a given image document D =
(BD, WD, RD), let R(i, D) denote the set of relevance blobs, and R(i, D) =
{y|(bi, y) ∈ RD, y ∈ {b1, b2, . . . , bk, . . . , bi−1}, bk ∈ BD, k = 1, 2, . . . , i− 1}. Then
we have

P (BD) = P (b1)× P (b2|R(2, D))× P (b3|R(3, D))
× . . .× P (bm|R(m, D)) (4)

Combining equ.3 and equ.4, we have

P (w, BD) =
∑
J∈T

P (J)× P (w|J) × P (b1|J)× P (b2|R(2, D), J)

× . . .× P (bm|R(m, D), J) (5)

equ.5 is a general image annotation model. According to various definitions of
the R(m, D), different annotation models will be given:

uni-gram annotation model: |R(m, D)| = 0
bi-gram annotation model: |R(m, D)| = 1
n-gram: annotation model: |R(m, D)| = n

For convenience, we use uni-gram model in our experiment.

4.2 Topic-Based Smoothing and Probability Evaluation

Language model-based image annotation assumes that there is a general rele-
vance model of blobs and keywords for every image [7]. Due to the sparsity of the
blobs and keywords of the image, the accuracy of the statistical models learned
from the training data is hard to be guaranteed. A typical phenomenon is that
there are a large number of zero probabilities in the model, and therefore, it is
difficult to estimate the joint probabilities of blobs and keywords. In the lan-
guage model approaches, smoothing techniques are used to deal with the “zero
probabilities”. To tackle this problem, we propose a layered image model, which
consists of a general image layer, a topic image layer and an individual image
layer. In this paradigm, an image can be viewed in a 3-layered hierarchy:

1. General image layer: At the general view, any given image will have some
statistical features commonly inherited by all images, and these general sta-
tistical features can be obtained based on entire training image set;
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2. Topic image layer: Images can be classified into some semantic topics. Thus
for a given image, some commonly statistical characteristics which can be
estimated from the set of images with the same semantic topic can be applied
to the image.

3. Individual image layer: Every image should have some “unique” statistical
characteristics which can be estimated from the image itself.

The essence of the 3-layered image model is to utilize the inheritance prin-
ciple in an IS-A hierarchy in data modelling which allows lower level concepts
to inherit the properties of higher level concepts. With this image model, we
proposed the Topic-Based Smoothing method, namely that the probabilities of
the events which cannot be observed in the given image can be estimated via the
events observed in the topic layer and even in the general image layer. Therefore,
the goal of model smoothing will be achieved. Therefor in our smoothing method
proposed here, the corresponding probabilities of the blobs or keywords of image
J can be calculated as follows:

P (.|J) = λ1Pindividual(.|J) + λ2Ptopic(.|C(J))
+(1− λ1 − λ2)Pgenearl(.|T ), (6)

where C(J) denotes the set of images with the same topic to J , and T denotes
the entire training image set. λ1,λ2 are smoothing parameters, which represent
the weights of the individual layer and the topic layer respectively.

Fig. 1. Layered image model

Fig.1 gives some visual illustrations of the layered image model.
According to our annotation model, the core of the annotation scheme is

to compute the P (w, BD). For the training set of N images, let P (J) denote
the probability of image J observed in image set, assume P (J) = 1/N . P (w|J)
denotes the weighted average probability of the keyword w observed in the 3-
layered model of image J : the individual image, the topic layer, and the general
layer. Applying equ.6, we have
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P (w|J) = λ1
#(w, J)
|WJ | + λ2

#(w, C(J))
|WC(J)| + (1− λ1 − λ2)

#(w, T )
|WT | (7)

where #(w, J) represents the number of occurrences of w in WJ (the value is 0
or 1) and |WJ | represents the number of keywords of WJ .

Correspondingly, with respect of the topic layer, we have:

#(w, C(J)) =
∑

X∈C(J)

#(w, X) |WC(J)| =
∑

X∈C(J)

|WX |

and with respect of general layer, we have:

#(w, T ) =
∑
X∈T

#(w, X) |WT | =
∑
X∈T

|WX |

Let P (b|J) denote the probability of blob b occurred in the topic image model
of J . Then:

P (b|J) = μ1
#(b, J)
|BJ | + μ2

#(b, C(J))
|BC(J)| + (1− μ1 − μ2)

#(b, T )
|BT | , (8)

where #(w, J) denotes the number of occurrence of b in BJ (in terms of indi-
vidual image layer) and |BJ | represents the number of elements of BJ .

Accordingly, with respect to topic layer, we have:

#(b, C(J)) =
∑

X∈C(J)

#(b, X) |BC(J)| =
∑

X∈C(J)

|BX |

and with respect of general layer:

#(b, T ) =
∑
X∈T

#(b, X) |BT | =
∑
X∈T

|BX |

According to equ.7 and equ.8, we can calculate the P (w, BD) for ∀w ∈ W
by equ.5. Thus, the top N keywords with the largest probabilities P (w, BD) are
used to form WD, namely the corresponding image of D will be labelled by WD.

5 Experiment and Analysis

5.1 Experiment Data Set

The data set of [6, 7] is used to compare the performance of different models.
The data set consists of 5,000 images from 50 Corel Stock Photo cds. Each cd
includes 100 images on the same topic. Normalized cut segmentation is used to
construct the image document. Each image was also assigned with 1-5 keywords.
Overall there are 371 words and 500 blobs in the data set. We divided the data
set into 2 parts – with 4,500 images as the training set, and 500 images as the
test set.
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For the CMRM, we used the parameters provided in [7](keyword parameter
is 0.9, blob parameter is 0.1). There are 4 parameters used in our topic-based
smoothing method, λ1 = 0.1 and λ2 = 0.9 are keywords smoothing param-
eters, which represent the weights of the individual layer and the topic layer
respectively; μ1 = 0.1, μ2 = 0.9 are blobs smoothing parameters respectively.
The number of keywords annotated in the experiment is set to 5 for all the
annotation models.

5.2 Experiment Result

As the authors stated that the CMRM model [7] was more effective than some
of the known methods. The experimental methods of [7] is adopted in this paper
to make the experimental results comparable. The 500 images used as the test
data set are divided into 50 topics, 10 images per topic. The CMRM [7] and
our method are used to perform annotations. After annotation, the keywords-
based image retrieval is performed [7] to estimate the effectiveness of the image
annotation. Among the 273 possible keywords, only some of them can retrieve
more than one relevant image. The number of such type of keywords varies for
different models. Specifically, CMRM model that can retrieve multiple relevant
images has 65 keywords that can retrieve multiple relevant images, topic-based
smoothing has 77, The union of the above 2 keyword sets has less than 90
unique keywords. table 2 shows the retrieval precision and recall of 10 keywords
randomly selected from the 90 keywords in the corresponding models.

Table 1. The comparisons of annotation models by precision and recall

The number Average Average
of success precision recall
keywords

CMRM 65 25.56% 27.53%

LaM 77 32.93% 40.98%

Precision = (auto annotation ∩ manual annotation)/(auto annotation)
Recall = (auto annotation ∩ manual annotation)/(manual annotation)
The average performance of the 90 keywords based image retrieval using the

corresponding image annotation methods is given in Table 1. The experimental
results show that the annotation performance of topic-based smoothing method
is better than CMRM [7]

6 Conclusion

To overcome the spareness problem of the relevance language model based image
annotaion, we proposed the topic-based smoothing method based on the layered
image model. Experimental results show that compared with the CMRM model,
our method can improve the annotation effectiveness significantly.
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Abstract. The focused crawler is a topic-driven document-collecting
crawler that was suggested as a promising alternative of maintaining
up-to-date Web document indices in search engines. A major problem
inherent in previous focused crawlers is the liability of missing highly
relevant documents that are linked from off-topic documents. This prob-
lem mainly originated from the lack of consideration of structural in-
formation in a document. Traditional weighting method such as TFIDF
employed in document classification can lead to this problem.
In order to improve the performance of focused crawlers, this paper pro-
poses a scheme of locality-based document segmentation to determine
the relevance of a document to a specific topic. We segment a docu-
ment into a set of sub-documents using contextual features around the
hyperlinks. This information is used to determine whether the crawler
would fetch the documents that are linked from hyperlinks in an off-topic
document.

1 Introduction

Traditional Web crawlers have been faced with problems in collecting documents
mainly due to dynamic changes in the structure and the size of Web documents,
which makes it difficult to maintain up-to-date document indices in search en-
gines. Current Web crawlers heavily rely on classical search algorithms such as
breadth-first or depth-first search, and as a result, it takes a fair amount of time
for search engines to periodically index all linked Web pages. In order to reduce
this time, many technical tricks are applied, but most of them are ad-hoc.

Some search engines dealing with specific topics, such as CiteSeer and yellow
page search in Yahoo, are not interested in the entire Web documents but a
subset of them relating to the topics. In contrast to the exhaustive crawler that
is interested in collecting the entire documents, focused crawlers aim to collect
a subset of documents that are relevant to specific topics. While traversing the
Web, focused crawlers assign a relevance score to each document. If the score
is below the threshold value, the Web page is thrown away and the hyperlinks
in this document are not used in subsequent traversal. This prevents focused
crawlers from wasting time with irrelevant documents.
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However, there are some problems in current focused crawlers. Proper as-
signment of credit to Web documents becomes more critical for focused crawlers.
Without a reliable credit assignment mechanism, the volume of Web documents
that a focused crawler can gather would be small. Existing focused crawlers
adopt the method of text classification to assign a proper credit to a document.
But since the current focused crawlers use text classifiers that are not consid-
ering Web document structure, the crawlers can miss some relevant documents
linked by hyperlinks from an off-topic document.

In this paper, we propose a new focused crawler adopting a scheme of docu-
ment segmentation to overcome this problem. Document segmentation divides a
document into several sub-documents using hyperlinks. Text classifier analyzes
documents not as a whole but as a set of small documents. In our point of view,
a document consists of sub-topics, which have implicit relations among them. A
set of these sub-topics is combined to explain a more general topic. The overall
topic of a document is not always the same as sub-topics in the document. In
this paper we use this intuitional fact for extracting on-topic hyperlinks from
off-topic documents.

2 Related Work

Early studies on focused crawler including FishSearch[1], SharkSearch[2], and
the work in[3] use traditional information retrieval algorithms such as term fre-
quency (TF) and/or inverse document frequency (IDF). In addition, [3] uses
some heuristics such as the page rank and the number of in-links. A key char-
acteristic of these studies is the re-ordering of document fetching that assigns
the rank to each page based on its degree of relevance. These systems have one
thing in common that they do not employ any classification algorithm to identify
on-topic documents.

Charabati[4] is the first to adopt a classification algorithm in focused crawler.
This study assigns a class score to every URL extracted from a page. But its
major problem is that the focused crawler is unable to reach on-topic pages that
are linked from off-topic pages. Context graph-based crawler [5] and Cora [6]
try to solve the problem by generating context graphs that are used to calculate
distance and by developing a reinforcement learning algorithm, respectively, but
the results are not satisfactory.

3 Problem Statement

Focused crawlers extract relevant hyperlinks from an on-topic document and
pursue them in order to collect interesting documents only. Current focused
crawlers assign a credit to a document, and extract all hyperlinks from it to
follow up if the credit exceeds the predefined threshold. But this might lead to
a problem as shown in Fig. 1.

Figure 1 shows an off-topic document which is classified as an irrelevant doc-
ument by the classifier but linked to a set of on-topic documents. In this case we
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Fig. 1. Off-topic document which leads to relevant documents

may miss some on-topic documents linked from the off-topic document. Existing
focused crawlers have not solved this problem. We claim that the assignment of
a credit to a document as a whole causes this problem. A document may consist
of several sub-topics which have implicit relations among themselves. Current
classifiers that are employed in most focused crawlers ignore sub-topic struc-
ture and assume that a document deals with a single explicit topic. But this
assumption is not always true especially for a Web page that contains various
link information.

Fig. 2. An example of an off-topic document

As an example, consider a document shown in Fig. 2. This document shows a
list of papers for the topic of document classification. But each paper description
represents a different type of classification methods. A focused crawler which is
interested in the topic of Bayesian method tries to determine whether this doc-
ument is relevant to the topic using an existing classifier that employs TFIDF
or some other statistical methods. If we use TF as measurement of feature ex-
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traction, we get the features such as Document(11), . . ., Classification(9), and
Bayesian(1). Even though this document contains an on-topic hyperlink, the
focused crawler would regard this page as an off-topic document because the
target term Bayesian occurs only once and other features prevail in terms of
TF.

This phenomenon is due to ignoring the structure of Web documents and
lump all features together in a document. Web documents dealing with a topic
may consist of some related sub-topics as shown in Fig. 2. Note that all sub-
topics in a document do not necessarily explain the same theme. In the focused
crawling, features that are lumped together as a bag of words affect the per-
formance of a classifier. A motivation of this paper is that the consideration of
Web document structure by properly segmenting a document into sub-topics
can enhance the performance. In Fig. 2, there are five sub-topics denoting dif-
ferent document classification approaches. A crucial problem of current focused
crawlers can be reduced if we can properly segment a document and assign a
credit not to the whole document but to each of the hyperlinks in a document.

4 Classification and Crawling

4.1 Document Segmentation

The purpose of document segmentation is to identify useful segments around a
hyperlink. A useful segment is a set of words or phrases which well represent
the content of a page associated with a hyperlink. Segmenting a document is a
difficult task, and we use some heuristics in which useful segments are located
using contextual information around the hyperlinks and the anchor texts in
them.

Our task of documentation segmentation proceeds in two phases. In the first
stage, the sentence containing a hyperlink is extracted as complete as possible.
We do not use the technique of NLP to analyze the sentence, but use simple
method of stacking tokens until the sentence period or one of predefined HTML
tags is reached. In the second phase, a set of tokens occurred before and after
the hyperlink are extracted. The number of tokens that need to be extracted is
specified manually. We set this number to 10 in this paper.

4.2 Collecting a Set of Features

We collect features from two different sources. The first source is the training
examples. To select features from the training examples, we assess the usefulness
of a feature by the χ2-measure [8] which is a well-known statistical value used
in document classification. In our experiment the χ2-measure extracts better
features than other measures such as TFIDF, entropy, or mutual information.
The χ2-measure can be written as

χ2 =
N(Nr+Nn− −Nr−Nn+)2

(Nr+ + Nr−)(Nn+ + Nn−)(Nr+ + Nn+)(Nr− + Nn−)
(1)
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where N is the total number of training examples, Nr+ and Nn+ are the number
of relevant and irrelevant documents in which the term occurs, respectively, and
Nr− and Nn− are the number of relevant and irrelevant documents in which the
term does not occur, respectively. We use top 5% features to stand for a class.

Fig. 3. Range of parent nodes, and the anchor text and HDs in a parent node

The second source of feature extraction is the anchor text of a hyperlink that
links to a training document and the hyperlink descriptors in a parent node.
Figure 3 shows a graph explaining the relation between training examples and
their parent nodes which point to training examples by using hyperlinks. We
collect features from the layer N(training examples) and the layer N-1(parent
nodes). Each parent node is comprised of the hyperlink descriptors(HD) and
the anchor text that are used as features. In order to collect features from the
parent nodes, the crawler should perform backward visiting. We use google’s
page-specific search service to obtain pages which point to the training examples.

4.3 Classifier and Parameter Estimation

The Naive Bayes classifier is commonly used in text categorization because it
is easy to implement and provides well-studied mathematical background. This
classifier predicts the most-likely class with the maximum posterior value by us-
ing the features extracted from a new instance that are compared with the given
features extracted from the training examples. An instance (a document in this
case) is represented by a vector of extracted features as −→di =< f1, f2, · · · , fn >.
With a set of extracted features from instances, the Naive Bayes classifier can
be written as

Cest = arg max
cj∈C

P (cj)
∏
k

P (fk|cj) (2)

where cj is a class from a set of predefined classes C = {c1, c2, · · · , cm}.
P (cj) and P (fk|cj) are calculated by using term frequencies from the training

examples. In this paper we use m-estimate [7] instead of classical and robust
maximum likelihood estimation to prevent the probability from being zero. The
m-estimate can be written as

nc + tp

n + t
(3)
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where n denotes the total frequency of feature occurrences in the training exam-
ples, nc represents the frequency of feature occurrences in a class, t is the sample
size, and p is a weight for the sample size.

4.4 Crawling

After learning and gathering a set of topics, the focused crawler starts traversing
with classifiers from seed pages. In the initial stage, the focused crawler put
seed pages for each class to the class stack. To identify on-topic hyperlinks, the
focused crawler pops a page from the stack and fragmentizes it into a set of
sub-documents using the document segmentation heuristics. Each segment is
comprised of a hyperlink, its anchor text, and HDs. Classifiers evaluate each
sub-document using the anchor text and HDs to determine if the extracted
hyperlink in the sub-document is on-topic. Classifiers use a predefined threshold
as the criterion to evaluate sub-documents. The sub-document which does not
satisfy the predefined threshold is not associated with any class. The document
satisfying the threshold is assigned a class with the maximum class score. If a
hyperlink is assigned a class, it is pushed into the class stack and processed in
subsequent cycles. The crawler repeats the task of downloading and classification
until the class stack becomes empty.

5 Experimental Results

Performance evaluation of the focused crawler is difficult and subjective since
there are no test-beds to evaluate the performance. Typically the precision and
recall measures that are popular in information retrieval are used. In this paper
we claim that the focused crawler using document segmentation reduces the loss
of on-topic Web pages, which means that the recall is higher than traditional
focused crawlers.

To show the improvement of performance, we have implemented three dif-
ferent focused crawlers and carried out experiments to compare them: (1) tradi-
tional focused crawler using naive classifier, (2) focused crawler using document
segmentation without extracting features from parent Web pages, and (3) fo-
cused crawler using document segmentation with extracting features from parent
Web pages. The third experiment is done to examine the impact of the anchor
text and HDs in parent Web pages.

We have used 10 Web documents related to the topic of CORBA for train-
ing the classifier. A seed page is “http://www.omg.org/gettingstarted/corbafaq.
htm”. Our focused crawler gathered 8822 documents on the net. The threshold
is set to 0.76 based on experiments. A segmented document that is assigned
the credit above the threshold by the classifier is accepted as a link to an on-
topic document. If the credit of a segmented document is under the threshold,
our crawler does not use a hyperlink in the segmented document to download a
linked document.

Figure 4 shows that as the number of features increases, the precision is get-
ting low due to impure features that interfere with the classifier. But our crawler
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Fig. 4. Experimental result: Precision

Fig. 5. Experimental result: Recall

shows better performance than traditional crawlers. Figure 5 shows the recall
measure according to the number of features. Our focused crawler also shows
better performance than traditional crawler that mainly resulted from the fact
that our crawler identifies on-topic documents linked from off-topic documents.
In short, these results support our claim that the document segmentation affects
the classification performance.

6 Conclusions

In this paper we have proposed a focused crawler with document segmentation
to reduce the loss of on-topic Web pages. Our experiment shows that the model
we proposed improves the performance of focused crawler by evaluating on-
topic segment by considering the anchor text and contextual information around
hyperlink. Since we analyze each hyperlink and its contextual information, we
can reduce the loss of on-topic hyperlinks in an off-topic document. Without the
consideration of features in a parent node, our focused crawler is more efficient
than traditional focused crawler using naive classifier.

To increase the classifier accuracy, we plan to investigate other credit assign-
ment functions and feature selection methods for naive classifier.
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Abstract. In this paper, we propose an intelligent grading system us-
ing heterogeneous linguistic resources. We used latent semantic kernel as
one resource in former research and found that a deficit of indexed terms
gave rise to performance bottleneck. To solve this, we expand answer pa-
pers, written by students and instructors, by utilizing one of widely used
linguistic resources, WordNet. We supplement the papers with words
semantically related to indexed terms of papers. The added words are
selected from the synonyms and hyponyms on WordNet. And to get rid
of the criterion decision problem, we use partial score of each question
and evaluate the correlation coefficient between grading results of the
proposed approach and human instructors. The proposed approach in
this research achieves maximally 0.94 correlation coefficient to instruc-
tors, which is 0.06 higher than that of the former research.

1 Introduction

Bang et al. [1] developed a short essay-typed exam grading system running in an
Internet environment. However, the system must employ human instructors to
grade the answer papers submitted, and it requests high cost and unpredictable
response time. Kim et al. [2] hired information retrieval based methodologies,
called as latent semantic kernels [3], to mark the papers automatically and
promptly. Even though they reported a promising sign of performance results,
a deficit of indexed terms, used for constructing the semantic kernel, brought
about performance bottleneck, which captures a half out of total grading errors.
So we utilize another heterogeneous linguistic resources to supplement above
researches.

In this research, we expand the answer papers written by students and in-
structors, by supplementing the papers with words similar to those existing in
the papers. The similar words are defined as those located in the same and/or the
nearest nodes on WordNet, known as the most widely used ontology information
of word meaning. By utilizing WordNet information as well as existing linguistic
knowledge discovered by latent semantic kernel, and by employing partial scores
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of each answers, which alleviates exertion to find out the optimum criterion,
the correlation coefficient between the grading results from instructors and the
suggested system, was grown up to 0.94 from 0.88.

The rest of this paper is composed of the following way. Section 2 explains the
existing intelligent grading system based on the latent semantic kernel. WordNet
and its application for this system are described in section 3. Section 4 shows
the experimental results and its evaluation, and concluding remarks are given in
section 5.

2 Intelligent Grading System

The intelligent grading system of the research [2] was based on the latent se-
mantic kernel proposed by [3]. Similarity between papers written by students
and instructors is estimated after replacing a student paper with a query, q, and
instructor papers, a model paper, with documents, d, on the following model.

sim(d, q) = cos(PT d, P T q) =
dT PPq

|PT d||PT q| , (1)

where P is a matrix transforming documents from an input space to a feature
space. A kernel function k(d, q) =< φ(d), φ(q) > uses the matrix P to replace
φ(d) with PT d. To find P , the term-document matrix A is first built and then
the matrix is transformed by singular value decomposition (SVD) like

A = UΣV T , (2)

where Σ is a diagonal matrix composed of nonzero eigenvalues of AAT or AT A,
and U and V are the orthogonal eigenvectors associated with the r nonzero
eigenvalues of AAT and AT A, respectively. The original term-document matrix
(A) has size of m × n. One component matrix (U), with m × r, describes the
original row entities as vectors of derived orthogonal factor value, another (V ),
with n × r, describes the original column entities in the same way, and the
third (Σ) is a diagonal matrix, with r × r, containing scaling values when the
three components are matrix-multiplied, the original matrix is reconstructed.
The singular vectors corresponding to the k (k ≤ r) largest singular values are
then used to define k-dimensional document space. Using these vectors, m × k
and n× k matrices Uk and Vk may be redefined along with k× k singular value
matrix Σk. It is known that Ak = UkΣkV T

k is the closest matrix of rank k to
the original matrix A. And Uk is replaced with P . Landauer et al. [4] explains
more details of above SVD-based methods, latent semantic analysis (LSA).

After receiving answer papers from students, the system transforms answer
papers into vectors. And then it estimates the similarity between the vectors for
answer papers and stored vectors representing model papers written by instruc-
tors, by using the above Latent Semantic Kernel. Finally the system determines
the correctness of the papers by using a criterion which is determined heuristi-
cally. The whole structure of the grading system is described in figure 1. More
details are explained in [2]
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Fig. 1. Whole structure of intelligent grading system

3 Paper Expansion with WordNet

WordNet is an online lexical reference system whose design is inspired by current
psycholinguistic theories of human lexical memory [5]. We expanded both an-
swer papers written by students and instructors by Hangul (Korean characters)
WordNet [6]. Figure 2 shows the structure of paper expansion module by using
WordNet.

For paper expansion, the system extracts noun terms from input papers with
a Hangul morphological analyzer[7]. The extracted terms are used to search their
synonym and hyponym words from WordNet. The synonym words are included
in their own synsets and the hyponym words are located in the nodes only
adjacent to themselves. ‘hyponym’ is a subordinate categorization of a given

Fig. 2. Structure of Paper Expansion Module with WordNet
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term. For example, a term ‘car’ has a same synset with ‘automobile’ and is also
hyponym word of ‘vehicle’. Table 1 shows examples of expanded terms by using
Hangul WordNet.

Table 1. Examples of Term Expansion. The first column shows input terms to be
expanded and the second column shows their synonym and hyponym terms. The words
in parenthesis are English-translated terms of given Korean terms

given terms expanded terms

moon-je (problem) bool-oon (misfortune), bool-haeng (unhappiness)
go-nan (trouble) go-saeng (privation), jae-nan (misfortune)
yo-ri (cooking) goop-gi (roasting), tui-gi-gi (frying)

gyung-young (management) ji-hui (command), gwan-ri (management)

Figure 3 shows the whole structure of the proposed intelligent grading system
in this research. When a question is given to the student, model papers for the
question, which are written by instructors, are prepared to be transformed into
vectors (di). And after receiving a student paper, the system also transforms the
paper into a vector (q). The student and model papers, then, are ready to be
expanded by using WordNet. The system retrieves words similar to noun terms
in the vectors from WordNet and the retrieved words are inserted into the paper
vectors. The Expanded vectors in this phase are represented as ‘Expanded q’
and ‘Expanded di’ in figure 3. And finally the semantic kernel helps to calculate
the similarities between the student paper and the model papers expanded.

4 Experimental Results

4.1 Data and Methods

For the experiments, we extracted thirty descriptive questions from a book
named ‘Proverbs’ (in Korean ‘Ko-Sa-Seong-Eo’) [8]. One hundred students were
connected to the grading system and took exams and about 3,000 descriptive
exam answer papers were built. We collected 38,727 articles from a Korean news-
paper site, one of the largest newspaper companies in Korea, for corpus data,
which will be used for construction of the semantic kernels. And we extracted
40,376 indexed terms from the corpus by using the Hangul morphological ana-
lyzer. And for the construction of Uk of section 2, we decided k to 200 empirically.

Kim et al. [2] used a criterion to determine whether an answer paper is
correct or not. And the criterion was decided heuristically. However, instead of
criterion, we employ the similarity value. In detail, for each student, we calculate
the similarity value of each question, partial scores, then compare the total scores
with total scores marked by instructor itself. To check out performance improve-
ment, we employ three methods to compare each other. At first, LSA1 means
the methods exactly same as [2], giving 1 points to the answer if the similarity is
higher than criterion and 0 point otherwise. And LSA2 employ the partial score
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Fig. 3. An Intelligent Grading System using Semantic Kernel and WordNet

of each answer. The partial score comes from the similarity value itself. And
finally, ELSA (Expanded LSA) employs paper expansion using WordNet and it
also uses the partial scores. And for the evaluation of similarity between grading
results from instructor and the three methods, we consider both an answer sheet
for thirty questions and an answer for one question as base units of data.

Figure 4 shows an user interface of an intelligent grading system. The system
gives a question randomly selected out of thirty questions and outputs scores for
the question after receiving an answer from a student.

4.2 Evaluation

We evaluate the similarity of scoring results from instructors and three methods,
that is, LSA1, LSA2, and ELSA. Pearson’s correlation coefficient [9] is used to
evaluate similarity between two variables. The coefficient ranges from -1.0 to
1.0. Positive coefficient reflects a direct relationship between two variables, and
a negative coefficient reflects an inverse.

In table 2, ELSA, combination of latent semantic kernel and WordNet, shows
the highest similarity to instructors. It shows up to 0.94 coefficient value, when
each answer paper sheet of one student is considered as a data unit. However,
when the data unit is broken down into each answers for a question, the coeffi-
cient value was decreased to 0.66. From the fact, we can infer that the intelligent
grading system can make better display of its human-like grading capability
when the final scoring results are computed by summing up scores of large num-
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Fig. 4. An user interface of an intelligent grading system

Table 2. Correlation coefficient between score by instructors and those by three meth-
ods. Each number in the cell means the correlation coefficient value. In the second row,
the experimental data are answer papers of 100 students, and each paper has thirty
questions, that is the score of each paper is up to thirty points. On contrary, the data
of the third row mean 3,000 answers, which have up to 1 point

LSA1 LSA2 ELSA

100 answer paper sheets 0.88 0.91 0.94
3,000 questions 0.57 0.62 0.66

ber of answers. And human instructors gave only 0 or 1 point to each answer
and this made score differences more.

We can classify the reason of failure of 0.06 into three categories. One is from
the failure of Hangul morphological analysis, 12%, the second 20% is caused from
the deficit of the indexed terms, decreased from about 50% before, and the final
68% is from the limitation of the methodologies used in this research. And we also
found out the main reason of last category is from very humble answer papers.
Many of student papers were seemed to leave out noun keywords containing
main ideas of given proverbs and had just predicates and their modifier words
instead.

5 Concluding Remarks

This research proposed an intelligent grading system trying to recover a deficit of
indexed term problem caused in the former researches. The system integrated the
former latent semantic kernel and WordNet. By combining two heterogeneous
methodologies and by employing partial scoring, the system could improve its
correlation coefficient from 0.88 to 0.94. It also shows that if data are bundles
of answers than the system plays a role very similar to human beings.
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For the future work, we should extend types of examinations. The questions of
this research need just one-sentence answers. We should find the way to test the
similarity when the question needs multiple sentences, even to a letter. And we
should find out the way to reflect the syntactic structure of answers to grading,
and finally integrate semantic structure and syntactic structure, in order to make
the system to be elaborate.
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Abstract. In many data mining projects the data to be analysed con-
tains personal information, like names and addresses. Cleaning and pre-
processing of such data likely involves deduplication or linkage with other
data, which is often challenged by a lack of unique entity identifiers. In
recent years there has been an increased research effort in data linkage
and deduplication, mainly in the machine learning and database commu-
nities. Publicly available test data with known deduplication or linkage
status is needed so that new linkage algorithms and techniques can be
tested, evaluated and compared. However, publication of data containing
personal information is normally impossible due to privacy and confiden-
tiality issues. An alternative is to use artificially created data, which has
the advantages that content and error rates can be controlled, and the
deduplication or linkage status is known. Controlled experiments can be
performed and replicated easily. In this paper we present a freely avail-
able data set generator capable of creating data sets containing names,
addresses and other personal information.

1 Introduction

Finding duplicate records in one, or linking records from several data sets are
increasingly important tasks in the data preparation phase of many data min-
ing projects, as often information from multiple sources needs to be integrated,
combined or linked in order to allow more detailed data analysis or mining. The
aim of such linkages is to match all records related to the same entity, such as
a patient or customer. As common unique entity identifiers (or keys) are rarely
available in all data sets to be linked, the linkage process needs to be based on
the existing common attributes.

Data linkage and deduplication can be used to improve data quality and
integrity, to allow re-use of existing data sources for new studies, and to reduce
costs and efforts in data acquisition. In the health sector, for example, linked
data might contain information that is needed to improve health policies, and
that traditionally has been collected with time consuming and expensive survey
methods. Businesses routinely deduplicate and link their data sets to compile
mailing lists, while in taxation offices and departments of social security data

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 109–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



110 Peter Christen

Table 1. Data sets used in recent publications

Data set Publication

Cora [16] [16] (2000), [7] (2002), [2, 3] (2003), [12] (2004)
Restaurant [22] [7, 22] (2002), [2, 3] (2003), [20] (2004)
Citeseer [2] [21] (2002), [2, 3] (2003)
Proprietary or confidential [24] (2000), [7, 10, 21, 22] (2002), [20, 23] (2004)
Artificially generated data [1, 6, 14] [14] (1995), [10] (2002), [1] (2003), [12] (2004)

linkage can be used to identify people who register for benefits multiple times
or who work and collect unemployment money. Another application of current
interest is the use of data linkage in crime and terror detection, which increasingly
rely on the ability to quickly bring up files for a particular individual that may
help to prevent crimes or terror by early intervention.

As data linkage and deduplication is often dealing with data sets that contain
(partially) identifying attributes (like names, addresses, or dates of birth), it can
be difficult for a researcher to acquire standard data for testing and evaluation of
new linkage algorithms and techniques. For a user, it is challenging to learn how
to use and customise data linkage systems effectively without data sets where
the linkage status is known. An alternative is the use of artificially generated
data, which we will discuss in the following section.

2 Data Linkage, Deduplication and Artificial Data

Computer-assisted data (or record) linkage goes back as far as the 1950s, and
the theoretical foundation has been provided by [11] in 1969. The basic idea is to
link records by comparing common attributes, which include person identifiers
(like names and dates of birth) and demographic information (like addresses).

In recent years, researchers started to explore machine learning and data
mining techniques to improve the linkage process. Clustering [5, 10, 16], active
learning [21, 22], decision trees [10, 22], graphical models [20], and learnable
approximate string distances [2, 3, 8, 17, 23, 24] are some of the techniques
used.

In these publications various data sets (some publicly available, others pro-
prietary or even confidential) were used in experimental studies, as shown in
Table 1. This variety makes it difficult to validate the presented results and
to compare new deduplication and linkage algorithms with each other. Tuning
of parameters can result in high accuracy and good performance for a certain
algorithm on a specific data set, but the same parameter values might be less
successful on other data or in different application areas.

There is clearly a lack of publicly available real world data sets for dedupli-
cation and data linkage, which can be used as standard test beds (or test decks)
for developing and comparing algorithms, similar to data collections used in in-
formation retrieval (TREC) or machine learning (UCI repository [4]). However,
because many real world data sets contain personal information, privacy and
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confidentiality issues make it unlikely that they can be made publicly available.
Using de-identified data, where e.g. names and addresses are encrypted or re-
moved, is not feasible either, as many linkage algorithms specifically work on
name and address strings [6, 11].

Artificially generated data can be an attractive alternative. Such data must
model the content and statistical properties of comparable real world data sets,
including the frequency distributions of attribute values, error types and distri-
butions, and error positions within these values. Typographical errors have been
analysed in a number of studies [9, 13, 19], and are important issues in the areas
of error correction in text [15] and approximate string matching [13]. One of the
earliest studies [9] found that over 80% of typographical errors were single errors,
either an insertion, deletion or substitution of a character, or transposition of
two adjacent characters. Substitutions were the most common errors, followed
by deletes, then inserts and finally transpositions, followed by multiple errors.
Similar results were reported by others [13, 15, 19].

Names and addresses are especially prone to data entry errors. Different
error characteristics will occur depending upon the mode of data entry [15], for
example manually typed, scanned, or via automatic speech recognition. Optical
character recognition [13, 19] (scanning) will lead to substitution errors between
similar looking characters (e.g. ‘q’ and ‘g’), while keyboard based data entry can
result in wrongly typed neighbouring keys. Data entry over the telephone will
mainly lead to phonetical errors, which seem to occur more likely towards the end
of names [19]. While for many regular words there is only one correct spelling,
there are often different written forms of proper names, for example ‘Gail’ and
‘Gayle’. Additionally, names are often reported differently by the same person
depending upon the organisation they are in contact with, resulting in missing
middle names, initials only, or even swapped name parts.

Artificially generating duplicate records based on real world error distribu-
tions will result in data sets that have characteristics similar to real world data.
A first such data generator (called DBGen or UIS Database Generator)1 that al-
lows the creation of databases containing duplicates records was presented in [14].
It uses lists of names, cities, states, and postcodes, and provides a large number
of parameters, including the size of the database to be generated, percentage and
distribution of duplicates, and the amount and types of errors introduced. An
improved generator is described in [1], that allows for missing attribute values
and increased variability in the set of possible values generated.

3 A Probabilistic Data Set Generator

We have developed a data set generator based on ideas from [14] and improved in
several ways. Our generator can create data sets containing names and addresses
(based on frequency tables), dates, telephone and identifier numbers (like social
security numbers). It is implemented as part of the Febrl [6] data linkage system,
and freely available under an open source software license. A user can easily
modify and improve the generator according to her or his needs.

1 Available from: http://www.cs.utexas.edu/users/ml/riddle/data.html
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A user specified number of original records are generated in the first step,
and in the second step duplicate records are created based on these original
records by randomly introducing errors. Each record is given a unique identifier
as can be seen in Figure 1. This allows the evaluation of error rates (false linked
non-duplicates and non-linked true duplicates).

Original records are randomly created using frequency look-up tables for name
and address attributes (like given- and surname; street number, name and type;
locality, postcode, state or territory). These frequency tables can be compiled
for example by using publicly available electronic telephone directories, or by
extracting frequencies from data sets at hand, as shown in Section 4. For date,
telephone and identifier number attributes, a user can specify the range (e.g.
start and end date, or number of telephone digits).

Duplicate records are generated next based on the original records and ac-
cording to the following parameters.

– The total number of duplicate records to be generated.
– The maximum number of errors to be introduced into one attribute in a record.
– The maximum number of errors to be introduced into one record.
– The maximum number of duplicate records to be created based on one original

record.
– The probability distribution (either uniform, Poisson, or Zipf) of how many dupli-

cates are being created based on one original record.

Duplicate records are created by randomly selecting an original record (which
has so far not been used to create duplicates), followed by randomly choosing the
number of duplicates to be created for it, and then randomly introducing errors
according to user specified probabilities. A additional probability distribution
specifies how likely attributes are selected for introducing errors (it is possible
to have attributes with no errors at all). The following types of errors can be
introduced.

– If an attribute value from an original record is found in a look-up table with
misspellings (for example of real typographical errors), then randomly choose one
of it’s misspellings.

– Insert a new character at a random position into an attribute value.
– Delete a character at a random position from an attribute value.
– Substitute a character in an attribute value with another character. Substitution is

based on the idea of keying errors, where the substituted character will more likely
be replaced with a randomly chosen neighbouring character in the same keyboard
row or column, than with another character (that is not a keyboard neighbour).

– Transpose two adjacent characters at a random position in an attribute value.
– Swap (replace) the value in an attribute with another value (similar to when a

value was randomly created when the original records were generated).
– Insert a space into an attribute value and thus splitting a word.
– Delete a space in an attribute value and merge two words (this is obviously only

possible if an original attribute value contains at least two words).
– Set an attribute value to missing (with a user definable missing value).
– Given an original attribute value is missing (or empty), insert a randomly chosen

new value (similar to when creating the original records).
– Swap the values of two attributes in a record (e.g. surname with given name).
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REC_IDENT, GIVEN_NAME, SURNAME, STR_NUM, ADDRESS_1, ADDRESS_2, SUBURB, POSTCODE
rec-0-org, james, whiteway, 2, maribyrnong ave, aird, red hill, 2611
rec-1-org, mitchell, devin, 26, knox st, chelvy, holder, 2606
rec-2-dup-0, james, sayl, 73, chauncy cres, , watson, 2913
rec-2-dup-1, jame, , 73, chauncy cres, , watson, 2913
rec-2-dup-2, jaems, salt, 73, chauncy pl, , watson, 2913
rec-2-org, james, salt, 73, chauncy cres, , watson, 2913
rec-3-org, mitchell, polmear, 341, fitchett st, , o’connor, 2605
rec-4-dup-0, isaad, white, 15, tyrrell circ, tagarra, rivett, 2906
rec-4-dup-1, isaac, wiglht, 15, tyrrell circ, , rivett, 2906
rec-4-org, isaac, white, 15, tyrrell circ, , rivett, 2906
rec-5-dup-0, elle, webb, 5, burnie pl, , bruce, 2617
rec-5-org, elle, webb, 3, burnie pl, , evatt, 2617

Fig. 1. Generated example data set with 6 original and 6 duplicate records, a maximum
of 3 duplicates per record, and maximum 2 errors per attribute and per record

Following studies on real world typographical errors [15, 19], single character
errors (inserts, deletes, etc.) are more likely introduced in the middle or towards
the end of attribute values when the duplicate records are created.

4 Experimental Study

In order to evaluate the generation of artificial data, we conducted a study
using the New South Wales Midwives Data Collection (MDC) [18]. We extracted
175,211 records from the years 1999 and 2000. The eight attributes used in our
study were the mother’s name (given- and surname), address (street number
and name, locality and postcode) and date of birth, as well as the baby’s date
of birth. The data set contained 5,331 twin and 177 triplet births (which were
assumed to be duplicates in the attributes describing the mother). Additional
duplicates were from mothers giving birth twice (or even three times) within
the two years period (possibly recorded with changed names and addresses).
Unfortunately we did not have access to the duplication status.

We first extracted frequency tables for the attributes listed above, and then
generated three artificial data sets using these tables, containing 5%, 10% and
20% duplicates, respectively. Table 2 shows the average frequencies and standard

Table 2. Average frequencies and standard deviations of attribute values in MDC data
sets (original and generated with given percentage of duplicates)

Attribute Original Generated 5% Generated 10% Generated 20%

Surname 3.5 / 16.6 4.3 / 17.6 3.9 / 16.4 3.4 / 14.4
Given name 5.0 / 45.9 6.3 / 49.8 5.8 / 46.4 5.2 / 41.8
Street number 12.3 / 125 15.9 / 138 16.1 / 139 3.4 / 137
Street name 2.4 / 5.4 3.0 / 5.7 2.9 / 5.8 2.6 / 5.1
Postcode 224 / 337 167 / 294 154 / 284 138 / 267
Locality 55.7 / 123 30.5 / 91.6 21.9 / 76.8 14.7 / 60.7
Mother date of birth 16.6 / 12.1 16.6 / 12.1 16.6 / 12.1 16.6 / 12.1
Baby date of birth 240 / 42.1 225 / 62.8 225 / 63.8 224 / 64.4
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Fig. 2. Selected MDC sorted frequency distributions (log-scale on horizontal axis)

deviations of the attributes in the original and generated data sets, and Figure 2
shows a selection of the corresponding sorted frequency distributions.

As can be seen all three generated data sets have frequency distributions as
well as standard deviations similar to the original data set. Different error types
were introduced into the various attributes. These were mainly typographical er-
rors in the attributes containing name strings, while in the date attributes values
were mainly swapped with another value from the corresponding frequency table
(resulting in nearly consistent average frequencies and standard deviations). For
most attributes an increased percentage of duplicates resulted in smaller average
frequencies and standard deviations, as the number of different attribute values
was increased by the introduction of typographical and other errors.
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5 Discussion and Outlook

We have discussed the issues and problems associated with real world test data
for deduplication and data linkage, and presented a freely available data set gen-
erator. Improvements on our generator include the relaxation of the independent
assumption, i.e. instead of creating attribute values independently, use frequency
distributions for value combinations. Similarly, the introduction of errors and
modifications could be based on statistical dependencies between attributes. For
example, if a person moves, most of her or his address attributes (like street
number and name, postcode and locality) will change. Another interesting ex-
tension would be to generate groups of records representing households (useful
for generating census style data). Further fine-tuning the methods of how errors
and modifications are introduced (for example character substitution based on
scanning errors of handwritten forms) is another area of possible improvements.
We are also planning to do further comparison studies, specifically we are in-
terest in comparing the deduplication and linkage outcomes for real world and
artificially created data, to see if similar error rates are achieved. Artificially
generated data can also be useful for research in the areas of approximate string
comparisons as well as correcting errors in text.

Acknowledgements

This work is supported by an Australian Research Council (ARC) Linkage Grant
LP0453463 and partially funded by the NSW Department of Health. The author
would like to thank William Winkler, Tim Churches and Karl Goiser for their
valuable comments.

References

1. Bertolazzi, P., De Santis, L. and Scannapieco, M.: Automated record matching
in cooperative information systems. Proceedings of the international workshop on
data quality in cooperative information systems, Siena, Italy, January 2003.

2. Bilenko, M. and Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. Proceedings of the 9th ACM SIGKDD conference, Washington
DC, August 2003.

3. Bilenko, M. and Mooney, R.J.: On evaluation and training-set construction for
duplicate detection. Proceedings of the KDD-2003 workshop on data cleaning,
record linkage, and object consolidation, Washington DC, August 2003.

4. Blake, C.L. and Merz, C.J.: UCI Repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/∼mlearn/MLRepository.html

5. Chaudhuri, S., Ganti, V. and Motwani, R.: Robust identification of fuzzy dupli-
cates. Proceedings of the 21st international conference on data engineering, Tokyo,
April 2005.

6. Christen, P., Churches, T. and Hegland, M.: A parallel open source data linkage
system. Proceedings of the 8th PAKDD, Sydney, May 2004.



116 Peter Christen

7. Cohen, W.W. and Richman, J.: Learning to match and cluster large high-
dimensional data sets for data integration. Proceedings of the 8th ACM SIGKDD
conference, Edmonton, July 2002.

8. Cohen, W.W., Ravikumar, P. and Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. Proceedings of IJCAI-03 workshop on informa-
tion integration on the Web (IIWeb-03), pp. 73–78, Acapulco, August 2003.

9. Damerau, F.: A technique for computer detection and correction of spelling errors.
Communications of the ACM, vol. 7, no. 3, pp. 171–176, March 1964.

10. Elfeky, M.G., Verykios, V.S. and Elmagarmid, A.K.: TAILOR: A record linkage
toolbox. Proceedings of the ICDE’ 2002, San Jose, USA, March 2002.

11. Fellegi, I. and Sunter, A.: A theory for record linkage. Journal of the American
Statistical Society, December 1969.

12. Gu, L. and Baxter, R.: Adaptive filtering for efficient record linkage. SIAM inter-
national conference on data mining, Orlando, Florida, April 2004.

13. Hall, P.A.V. and Dowling, G.R.: Approximate string matching. ACM computing
surveys, vol. 12, no. 4, pp. 381–402, December 1980.

14. Hernandez, M.A. and Stolfo, S.J.: The merge/purge problem for large databases.
Proceedings of the ACM SIGMOD conference, May 1995.

15. Kukich, K.: Techniques for automatically correcting words in text. ACM computing
surveys, vol. 24, no. 4, pp. 377–439, December 1992.

16. McCallum, A., Nigam, K. and Ungar, L.H.: Efficient clustering of high-dimensional
data sets with application to reference matching. Proceedings of the 6th ACM
SIGKDD conference, pp. 169–178, Boston, August 2000.

17. Nahm, U.Y, Bilenko M. and Mooney, R.J.: Two approaches to handling noisy
variation in text mining. Proceedings of the ICML-2002 workshop on text learning
(TextML’2002), pp. 18–27, Sydney, Australia, July 2002.

18. Centre for Epidemiology and Research, NSW Department of Health. New South
Wales Mothers and Babies 2001. NSW Public Health Bull 2002; 13(S-4).

19. Pollock, J.J. and Zamora, A.: Automatic spelling correction in scientific and schol-
arly text. Communications of the ACM, vol. 27, no. 4, pp. 358–368, April 1984.

20. Ravikumar, P. and Cohen, W.W.: A hierarchical graphical model for record linkage.
Proceedings of the 20th conference on uncertainty in artificial intelligence, Banff,
Canada, July 2004.

21. Sarawagi, S. and Bhamidipaty, A.: Interactive deduplication using active learning.
Proceedings of the 8th ACM SIGKDD conference, Edmonton, July 2002.

22. Tejada, S., Knoblock, C.A. and Minton, S.: Learning domain-independent string
transformation weights for high accuracy object identification. Proceedings of the
8th ACM SIGKDD conference, Edmonton, July 2002.

23. Yancey, W.E.: An adaptive string comparator for record linkage RR 2004-02, US
Bureau of the Census, February 2004.

24. Zhu, J.J., and Ungar, L.H.: String edit analysis for merging databases. KDD-2000
workshop on text mining, held at the 6th ACM SIGKDD conference, Boston,
August 2000.



{adewale,alhajj}@cpsc.ucalgary.ca 

















silviacb@ee.furg.br, wirlau@yahoo.com.br, mauricio.mata@furg.br 

{matheus,mezzadri}@cpgei.cefetpr.br 



=
−



−



+











Classification by Instance-Based
Learning Algorithm

Yongguang Bao1, Eisuke Tsuchiya2, Naohiro Ishii2, and Xiaoyong Du3

1 Aichi Information System, Japan
baoyg@yahoo.com.cn

2 Department of Information Networking Eng., Aichi Institute of Technology, Japan
eisuke@hm.aitai.ne.jp, ishii@in.aitech.ac.jp

3 School of Information, Renmin University of China, China
duyong@mail.ruc.edu.cn

Abstract. The basic k-nearest-neighbor classification algorithm works
well in many domains but has several shortcomings. This paper proposes
a tolerant instance-based learning algorithm TIBL and it’s combining
method by simple voting of TIBL, which is an integration of genetic
algorithm, tolerant rough sets and k-nearest neighbor classification algo-
rithm. The proposed algorithms seek to reduce storage requirement and
increase generalization accuracy when compared to the basic k-nearest
neighbor algorithm and other learning models. Experiments have been
conducted on some benchmark datasets from the UCI Machine Learning
Repository. The results show that TIBL algorithm and it’s combining
method, improve the performance of the k-nearest neighbor classifica-
tion, and also achieves higher generalization accuracy than other popular
machine learning algorithms.

1 Introduction

Classification is a primary data mining method. Given a set of classes, it assigns
an input vector x to one of those classes. Classification has been applied in many
applications, such as the credit approval, pattern recognition, part classification
in computer vision, and so on. Many inductive learning algorithms have been
proposed for classification problem. For example, ID3, C4.5, k-Nearest Neighbor
(KNN), Naive-Bayes, IB, T2, Neural-network, association rules etc are devel-
oped. However, improving accuracy and performance of classifiers are still at-
tractive to many researchers. In this paper, we focus on the k-nearest-neighbor
classification method. The k-nearest neighbor method is one of the most com-
mon instance-based learning algorithms. To classify an unknown object, it ranks
the object’s neighbors among the training data and then uses the class labels of
the k nearest neighbors to predict the class of the new object.

In this paper, we use tolerant rough set and GA to create the suitable mode
and feature weight for kNN based on the training data firstly, and then apply
kNN to classification. Specifically, we use tolerant rough set to measure the qual-
ity of the training objects and the classification power of a subset of attributes,

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 133–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and GA algorithm to find the optimal tolerant rough relation, i.e. determine
the optimal weights for each attribute and similarity threshold. It also means
that we find the optimal tolerant rough relations between objects that provide
as small classification error as possible.

2 Tolerant Rough Sets

Let R = (U, A ∪ {d}) be a decision table, where U is a set of elements (objects,
examples), A is a set of condition attributes, d is the decision attribute. Each
attribute a ∈ A has a set of values Va, called domain of the attribute, and let
r(d) be the number of decision values.

We say that two objects x and y are similar with respect to the subset Q
of attributes when the attribute values Q(x) and Q(y) satisfy Q(x)RQ Q(y),
denoted as xRQ y. Furthermore, we say that two objects x and y are similar
with respect to all attributes A, if Q = A, xRQ y, denoted as xΓA y.

A tolerance set TS(x) of an object x with respect to subset Q is defined as
follows:

TS(x) = {y ∈ U : xRQ y}
TS(x) contains all objects which has tolerant relation with x.

Now we use a distance function and a similarity threshold to define a tolerant
relation. Let the distance with respective to the subset Q of attributes between
two objects x and y be DQ(x, y). We define the tolerance relation as

xRQ y iff DQ(x, y) ≤ t(Q)

where t(Q) is a similarity threshold with respect to the subset Q, whose value is
in the interval of [0,1].

The k-nearest neighbor algorithm is based on assumption that similar objects
have similar classes. This assumption means the objects in the tolerant set have
the same class in the opinion of tolerant rough sets. By the definition of tolerant
set, we can get the four different cases as shown in Figure 1. In the cases of
(a) and (b), we say the object x is center point, which is consistent with the
assumption of kNN, that is the objects in the tolerant set TS(x) have the same
class. In the case of (c), the most of objects in the TS(x) have the same class
as x, we say the object x is good border point. In the case of (d), the most of
objects in the TS(x) have the different class from x, we say the object x is noise
point, which is unsuitable to use for kNN.

3 Genetic Algorithm

When we apply the GA to determine the optimal feature weighting/selection
and similarity threshold, the inputs into the GA are the information table R =
(U, A ∪ {d}) and the distance type. The output from the GA is a set of optimal
features weight ωi and threshold values t(A).

For constructing the fitness function, let’s see the different case of tolerant set
in Figure 1. The positive region consists of trivial lower approximation set (Figure
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shows it has the same class as x.

shows it has the different class from x.

Fig. 1. Four different cases of tolerant set

1(a)) and untrivial lower approximation set (Figure 1(b)). If we take γ(ΓA, {d})
as fitness simply, that will lead t(A) near to 0, then it is meaningless. So we
divide γ(ΓA, {d}) into two parts as follows and denote it as Criterion1(ΓA).

card(∪{TS(x) : ∃is.t.TS(x) ⊆ Yiandcard(TS(x)) > 1})
card(U)

+ε× card(∪{TS(x) : ∃is.t.TS(x) ⊆ Yiandcard(TS(x)) = 1})
card(U)

where ε is a coefficient, 0 ≤ ε < 1, and card() denotes the cardinality of a set.
We can see Criterion1(ΓA) ≤ γ(ΓA, {d}).

If two chromosomes have the same Criterion1((A) value, we prefer the one
with many untrivial positive region. And based on [2], we hope the center points
of untrivial positive region are as many as possible. That will be valuable to
the accuracy. In the last, we hope t(A) is as larger as possible. Considering the
above discussion, we use a ranking technique, which is one of a number of ranking
criteria, instead of an absolute fitness. The first criterion in ranking chromosomes
is Criterion1(ΓA).

4 A Tolerant Instance-Based Learning Algorithm (TIBL)

We use tolerant rough set to measure the classification power of attributes and
GA algorithm to find the optimal tolerant rough relation, i.e. determine the
optimal feature weighting/selection and similarity threshold. Then we use the
tolerant rough set to select a set of objects from the initial training data. Finally,
we use the KNN to classify new objects. Now, we describe our algorithm in detail
in Figure 3. For convenience, we denote DTS(x) = {y ∈ TS(x) : d(x) = d(y)}
in the following. Let U be all of training instances and PRUNE be the flag of
pruning for reduction points (RP).
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Fig. 2. Tolerant instance-based learning algorithm

5 Experimental Results for TIBLs

For evaluating the classification generalization accuracy of our algorithm, the
TIBL algorithm was implemented and tested on 30 benchmark datasets from
the UCI Machine Learning Repository [3].

In the process of simulation, the most common normalized Euclidean distance
(the absolute distance) is used for linear or continuous attributes and the overlap
metric is used for nominal attributes.

DA(X, Y ) =

√√√√ n∑
i=1

ωi × d(xi, yi)2 (
n∑

i=1

ωi = 1, ωi ≥ 0)
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5.1 Comparison of TIBLs with KNN

The KNN algorithm is a basic k-nearest neighbor algorithm that uses k=3 and
majority voting. The KNN algorithm uses the same type of distance function
type as TIBL, and its accuracy is shown in column “KNN” of Table 1.

The “FS” column shows what percent of the features A is retained and
subsequently used for actual classification of the test set. For the analysis of
TIBL, we give the results of TIBL in the case of using all instances, center points,
center points and good border points, respectively. The “ALL” column shows
the accuracy using 100% of the instances in the training set for the classification.

The “CP” column and the following “size” column show the accuracy and
storage requirements using center points only. Other ”size” columns show what
percent of the training set is retained and subsequently used for actual classifi-
cation of the test set. For the “KNN” column, 100% of the features and 100%
of the instances in the training set are used for the classification.

The “CP/p” column means the accuracy of using the pruned center points,
the “CBP” column means the accuracy of using center points and good bor-
der points, and the “CBP/p” column means the accuracy of using pruned cen-
ter points and good border points. The average of storage requirements of all
datasets, which considers the feature reduction and object reduction simultane-
ously, are shown near the bottom of the table.

As can be seen from Table 1, each case raises the average generalization
accuracy on these datasets when compared with the basic KNN. In the case
of ALL, TIBL reduces storage requirements from 100% to about 60.97% and
increases the average accuracy 79.72% to 83.48%. This indicates that the feature
weighting/selection determined by GA is very efficient. In most cases, center
points and good border points are the only parts of all objects. On the average, in
the case of CP, TIBL uses the 58.80% objects (center points), reduces storage to
about 33.81%, and gets 85.14% accuracy. After pruning, CB/p reduces objects to
about 28.27%, reduces the storage to about 18.43%, and gets 84.99% accuracy.
When using the center points and good border points (CBP), TIBL gets the
highest average generalization accuracy 85.03% by using 89.24% objects. And
in the case of CBP/p, TIBL uses the 41.38% objects, reduces storage to about
27.17%, and gets 84.82% accuracy.

6 A Combined Algorithm of TIBLs

To Improve the accuracy in the classification, the operation of classifiers as
a decision committee, is needed. A committee as the final classifier, here, is
composed of TIBL classifiers as committee members, each of which makes its
own classifications that are combined to create a single classification result of
the whole committee. A combined algorithm flow of the TIBLs is shown in Fig.4.
The TIBL computations are carried out for 10 times, in which the weights are
computed by the GA algorithm.
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Table 1. Generalization accuracy of TIBL and the basic KNN

DataSet FS ALL CP (size) CP/p (size) CBP (size) CBP/p (size) KNN

Bridges 74.33 62.75 62.25 36.37 62.03 21.61 59.94 68.37 60.67 33.22 52.47
Flag 55.40 54.14 60.22 50.87 58.78 36.27 61.80 74.35 59.61 47.11 50.01
Glass 54.95 76.46 76.89 65.36 77.09 44.72 78.89 90.52 78.19 51.49 70.10
Heart 72.43 77.91 80.67 40.73 80.60 29.28 81.12 83.31 81.38 54.38 79.43
Cle 74.05 76.65 82.29 39.42 82.35 28.68 80.37 82.40 80.91 55.37 78.97
Hun 44.46 91.27 92.74 72.02 93.12 14.77 91.74 93.74 91.83 18.26 78.45
LB 48.57 83.81 87.96 57.79 87.84 27.08 89.29 89.16 89.50 44.59 73.42
Swi 44.54 95.21 96.49 77.04 96.49 25.18 96.49 97.97 96.49 33.95 92.07
Hepat 62.59 80.60 82.52 60.36 83.08 34.58 81.88 89.16 81.70 50.87 80.50
Iris 78.27 95.56 95.96 70.01 96.40 25.62 95.16 96.11 95.64 33.75 96.00
Promo 21.60 82.93 82.20 65.28 81.98 39.99 82.71 92.07 82.18 52.96 79.88
Voting 71.18 95.74 95.64 35.95 95.64 17.29 96.12 95.72 95.97 37.53 93.35
Wine 66.89 97.46 98.39 61.90 97.65 34.87 97.36 98.31 96.68 50.00 96.29
Zoo 68.47 98.17 97.77 90.09 96.76 15.77 97.51 98.18 96.76 15.86 95.10

Average 59.84 83.48 85.14 58.80 84.99 28.27 85.03 89.24 84.82 41.38 79.72

Storage 60.97 33.81 18.43 53.08 27.17 100.0

Table 2. Example of combined result in Promol

instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

result 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0
correct 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
error × × ×

The values in the columns in Fig.4(a), show the classes of instances by TIBL
computations. The classes are summed and voted as shown in Fig.4(b); 3 for the
class 0, 7 for the class 1 and 0 for the class 2. Then, the class 1 is determined
for the instance 1 as shown in Fig.4(c) are summed as shown in Table. 2, as an
example.

The data is composed of 16 instances in Table. 2. The TIBL computations
with 10 times are combined in the classification of the 0 class with 3 times, and
that of the 1 class with 7 times. Thus, the final classification in the instance
1, becomes the 1 class by voting the majority of 7 times of 1. The class of the
instance 1, is given as the class 1 in the data which is shown in the column,
“correct” in Table. 2. Then, the there is no error between the classified result,
class 1, and the given class 1 in the data. But, in the instance 5, the TIBL
computations with 10 times, are combined in the classification of the 0 class
with 6 times and that of the 1 class with 4 times. Thus the final classification
in the instance 5, becomes the 0 class by voting the majority of 6 times of 0. In
this instance, we have error × in Table. 2.

The combined results in the UCI data, are shown in Table. 3. The bold
numerals show the maximum value among the combined computation results
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Fig. 3. Flow of combined algorithm

Table 3. Accuracy by the combined algorithm

DataSet ALL CP CP/p CBP CBP/p

Bridges 0.6457 0.5982 0.6046 0.5872 0.5816
Bupa 0.6314 0.5829 0.5833 0.6115 0.6023
Echoc 0.8858 0.8975 0.8958 0.8750 0.8883
Flag 0.5335 0.5858 0.5860 0.5943 0.5991
Glass 0.7697 0.7980 0.7985 0.7890 0.7948
Heart 0.7840 0.8293 0.8269 0.8160 0.8141
Heartcle 0.7672 0.8247 0.8233 0.8171 0.8149
Hearthun 0.8840 0.8957 0.8950 0.8914 0.8922
Heartlb 0.8376 0.8829 0.8795 0.8862 0.8839
Heartswi 0.9508 0.9680 0.9680 0.9680 0.9680
Hepat 0.8020 0.8317 0.8317 0.8350 0.8337
Iris 0.9533 0.9600 0.9573 0.9600 0.9573
Promo 0.8850 0.8935 0.8930 0.8935 0.8930
Wine 0.9783 0.9846 0.9858 0.9846 0.9858
Zoo 0.9838 0.9844 0.9698 0.9844 0.9698

by the combined algorithm of TIBLs. These values by the combined algorithm
show that the accuracy is improved than the respective TIBL computations.

6.1 Comparison of TIBLs with Other Machine Learning Algorithms

In order to see how TIBL compares with other extensions of the nearest neigh-
bor algorithm, we compare TIBL with IB1-4 [5] (four instance-based learning
algorithms) and IDIBL system [7]. IB1 is a simple nearest neighbor classifier
with k = 1. IB2 prunes the training set.

The results of these comparisons are presented in Table 4. For C4.5 we give
the result of using tree, pruned tree and rules. For IDIBL, we just use the results
reported by Wilson [5].The average values of the combined computations by
TIBLs, are shown in Table 3, in which, the average are computed among ALL,
CP, CPP, CBP and CBPP in Table 4.

The highest accuracy achieved for each dataset is shown in bold type.
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Table 4. Generalization accuracy of TIBL and several well-known algorithms

DataSet C4.5 IB Bayes BP IDIBL (size) CBP Comb.

Tree P-Tree Rule IB1 IB2 (size)

Bridges 68 65.3 59.5 53.8 45.6 38.94 66.1 67.6 63.2 34.89 59.9 60.4
Flag 59.2 61.3 60.7 63.8 59.8 21.21 52.5 58.2 57.7 32.07 61.8 57.8
Glass 68.3 68.8 68.6 70 66.8 14.3 71.8 68.7 70.6 38.68 78.9 79
Heart 73.3 72.1 80 76.2 68.9 13.5 75.6 82.6 83.3 24.28 81.1 81.4
Hepat 77.7 77.5 78.8 80 67.8 14.41 57.5 68.5 81.9 18.43 81.9 82.7
Iris 94.7 94.7 94.7 96 92.7 3.85 94.7 96 96 10.15 95.2 95.8
Promo 73.3 71.9 79.1 81.5 72.9 7.34 78.2 87.9 88.6 21.8 82.7 89.2
Voting 95.4 97 96.1 92.3 89.9 5.49 95.9 95 95.6 11.34 96.1 95.8
Wine 94.1 94.1 92.9 96 91.6 4.44 94.4 98.3 93.8 8.74 97.4 98.4
Zoo 91 91 91.4 96.4 97.5 20.05 97.8 95.6 92.2 22.22 97.5 97.8

Average 79.1 79.54 80.07 81.09 75.49 15.41 78.46 77.84 82.33 24.55 83.33 83.83

7 Conclusions

The proposed method TIBL in this paper is a tolerant nearest neighbor algo-
rithm, which improves the performance of the k-nearest neighbor. It is based
on genetic algorithm, tolerant rough sets and the k-nearest neighbor algorithm.
For the better classification, it is important to find the optimal tolerant relation
between objects that provide as a small classification error as possible.
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Abstract. Estimating the correct location of electric current source
with the brain from electroencephalographic (EEG) recordings is a chal-
lenging analytic and computational problem. Specifically, there is no
unique solution and solutions do not depend continuously on the data.
This is an inverse problem from EEG to dipole source. In this paper we
consider a method combining backpropagation neural network (BPNN)
with nonlinear least square (NLS) method for source localization. For in-
verse problem, the BP neural network and the NLS method has its own
advantage and disadvantage, so we use the BPNN to supply the initial
value to the NLS method and then get the final result, here we select the
Powell algorithm to do the NLS calculating. All these work are for the
fast and accurate dipole source localization. The main purpose of using
this combined method is to localize two dipole sources when they are
locating at the same region of the brain. The following investigations are
presented to show that this combined method used in this paper is an
advanced approach for two dipole sources localization with high accuracy
and fast calculating.

1 Introduction

A pervasive problem in neuroscience is determining active regions of the brain,
given potential measurements at the scalp . The computer era allowed the de-
velopment of method for quantifying brain electrical signals and thus further
refining our investigative tools. So it gives a way to find the active regions of
brain source. In the process of detecting the active regions of the human brain,
it is often required to estimate the location and strengths of biopotential sources
inside a volume of tissue, based on the potential field measured over the periph-
ery of that volume (inverse problem of electrophysiology).

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 171–178, 2005.
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To calculate the source parameters from the potential field measured over the
scalp, some advanced methods have been used, such as Moving Dipole, Music,
Dipole Tracing, and LORETA. But most of these methods have several limita-
tions. First, it is computationally expensive, and suffers from model complexity.
It may take long computational time. Second problem with these iterative meth-
ods is their being model dependent. Their needing large number of electrodes to
avoid local minima can be pointed out as the third shortcoming of these meth-
ods. Due to restrictions mentioned above, recently, artificial neural networks are
introduced in source localization as an optimization tool. However, in the case of
two dipoles global source localization, using neural work to do the computation
is not a good choice and the classical technique has its own disadvantage, it
needs long calculating time and suitable initial value to get accuracy solution.
So in this paper a combined method is given, her the method combined the BP
neural network with Nonlinear Least Square Method [1, 2].

Our study is to set up a method to localize the brain source when there
are two dipoles in the same region of human brain, the method is combining
BPNN with nonlinear least square method. It is to improve the disadvantage
of BPNN introduced above and avoid the long calculating time. In this paper,
we do the computation with the EEG data from 32 electrodes arrangement of
a 10-20 system, discuss how to combine the BPNN and nonlinear least square
method, explain the simulation EEG data generation, and also investigate the lo-
calization accuracy from combined method. Moreover, the noise signal influence
and calculation time are illustrated at last.

2 Method

The results reported in this paper are based on the following models commonly
found in literature: (a) the human brain is represented by the four-concentric-
shell model , and (b) the biopotential sources are represented by moving current
dipoles [3]. Each dipole is parameterized by its location vector and the dipole
moment vector. In order to do localize sources in global human brain, we set up
the combined method. The block diagram of the system employed in this study
is shown in Fig. 1.

Fig. 1. System of the combined method. The output of BPNN is used as the initial
values for the NLS algorithm
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2.1 Forward Calculating Method

Quasistatic approximations of Maxwell’s equations gave the relationship between
neural current dipole sources and the EEG data they produced. Generally, for
m sensors and n current dipoles, the vector of measured data at one time can
be expressed as:

V =

⎡⎢⎣ V1

...
Vm

⎤⎥⎦ =

⎡⎢⎣ g(q1, r1) . . . g(q1, rn)
...

. . .
...

g(qm, r1) . . . g(qm, rn)

⎤⎥⎦
⎡⎢⎣m1

...
mn

⎤⎥⎦ (1)

Where V is the column vector of the surface potential Vj(j = 1. . . m), which is the
measured potential in jth electrode. [q1. . .qm] is locations for m electrodes, here
m is 32. [r1. . . rn] and [m1. . .mn] are both concatenations of the parameters for
n dipoles (n = 2), locations and moments. In Eq.1, the vector qj (j = 1. . . m)
represents the 3-dimensional location of the jth electrode. The vector rL (L
= 1. . . n) represents the 3-dimensional location of the Lth current dipole, and
mL represents the corresponding 3-dimensional dipole moment. The g(qj , rL)
represents the gain transfer vector for n dipoles, relating the dipole point to the
electrode point and g(qj , rL) is defined from the head model. Note that the
dipole location parameters are nonlinearly related to measurement potential [4].

First of all, theoretical calculation described in (1) is computed for current
dipoles placed in a hemisphere brain of concentric 4-phere head model with 32
EEG channels. But before this step, the source model, head model and electrode
configuration method must be set up.

2.2 Source Model, Head Model and Electrode Configuration

The current dipole, because of its simplicity and physical appropriateness, is
adopted in this study as a source model. Each dipole is composed of six param-
eters, i.e. the position parameter: r = [rx ry rz]T and the moment parameter: m
= [mx my mz]T. In this study, the human brain is represented by concentric 4-
sphere model with the radii and conductivities for the inner brain, cerebrospinal
fluid layer, the skull layer and the scalp layer respectively, as shown as Fig. 2(a).
32 EEG electrodes are placed on the surface of the scalp with the radius of
8.8 cm, where the locations of 32 sensors are indicated as shown as the figure.
Fig. 2(b) shows the coordinate system used for the basic EEG formulas. When a
dipole on z-axis, the potential on the surface of concentric 4-sphere head model
referenced infinity is given by Cuffin and Cohen(1979). Other dipole locations
are found by applying rotation transform to the basic formulas [5].

2.3 Inverse Calculation Method

In the following we briefly describe the inverse computation methods used in our
work, i.e. the BPNN and the Powell algorithm.
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Fig. 2. (a): 4 - concentric spheres head model with radii b, c, d and r and conductivities
σ1, σ2, σ3and σ4(Cuffin and Cohen 1979). (b): EEG coordinate system for a dipole on
z’-axis in a spherical head model. An arbitrary dipole location can be generated with
standard coordinate transformations

Neural Network Based Techniques. When a source model and a head model
have been assumed, the nest step is to calculate the inverse solution for the loca-
tion of the source in the model. If there are two dipole sources in the hemisphere
brain, BPNN is not a good choice to localize the brain source when two dipole
sources are in the same region. To get better location accuracy, the brain has to
be divided into two regions (left and right) and each region is assumed to hold
one dipole source to get better location accuracy. In this study the purpose is to
localize the global brain source in the hemisphere, so the BPNN is not used to
get the final source locations but only to be selected to supply the initial value
to the nonlinear least square algorithm. Fig. 3 describes the general strategy
used in this paper to train/test neural networks and also shows the structure of
neural network. To get better results for the initial values, we set the training

Fig. 3. Strategy used in neural network source localization and the structure of neu-
ral network. The left is the Strategy used in neural network source localization. Input
vector V = {Vi,j |j = 1, 2, . . . m} denotes potentials calculated at m = 32 electrode
locations for the dipole pair ′i′. The output vector r = [x1,iy1,iz1,ix2,iy2,iz2,i] param-
eterized the location of ith dipole pair. And the right figure is the structure of neural
network
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region in head model with the radius of b (b = 7.9cm), and then make a smaller
region as the testing region, it is 6.9cm [6].

Classical Technique (Powell Algorithm). The classical method for the in-
verse problem is a direction set method, used to minimize the cost function in
order to get the global minimum, and then calculates the correct solutions. Same
as other minimization algorithms, Powell algorithm is also used to minimize the
cost function. In order to estimate the location of dipole sources in the brain
from EEG data, we assume Vmeas and Vcal express the measured potential and
theoretical potential calculated by (1). Then the n dipoles at chosen location
can be estimated from a standard nonlinear minimization of the sum-squared
residual, as the following:

Jn = (Vmeas −Vcal)T (Vmeas −Vcal) (2)

The moments of dipoles are given by the so-called ”normal equation”:

Mn = G+Vmeas (3)

Where G+ is known as ”Moore-Penrose pseudoinverse” of the matrix G.

G+ = (GT G)−1GT (4)

From (2) (3) and (4), the residual Jn can be expressed as:

Jn = VT
meas(I−GG+)Vmeas (5)

Here I denotes the m×m identify matrix [7].

3 Results and Discussion

In the simulation using the method combining BPNN with Powell algorithm,
there are three steps: simulation data generation, initial value calculating with
BPNN and finial dipole parameters computation using Powell algorithm with
the initial value from BPNN.

In the following EEG data generation, two restrictions are imposed. Firstly,
the pairs of dipole are placed randomly in the head model, and the distance
between each pair of dipole is set to be large than 2cm. Secondly, the angles
of moments are generated randomly and the constant strength is 0.8. For EEG
data used in the simulation, we generate five groups, without noise, with 5%,
10%, and 30% white noise respectively. Here 5%, 10%, 30% white noise means
the same percent of root mean square value of the EEG data.

In the BPNN implementation, we trained neural networks with 2 hidden lay-
ers, first hidden layer having 72 neurons and the second having 60 neurons. The
number of neurons in the input and output layers were fixed by the number of
electrodes (32) and the parameters of the dipole model (6: the location param-
eters of two dipoles). During the net works training and testing, we find it is
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better to use BPNN to calculate one parameter of dipole than to use net works
to calculate the total dipole parameters in the same time. In our study, two
dipoles are placed in the brain and only use BPNN to get the position parame-
ters of dipoles, so we apply 6 same net works for two dipole positions calculating,
one net work will work for one location parameter. The sizes were chosen by a
trial-and-error process, aiming to get the maximum possible generalization re-
sults. The training procedure was done until the minimum error rate to a test
data set was observed. In Table 1, the position error of BPNN output is shown,
gotten from different EEG data (without noise, with 5%, 10% and 30% white
noise). From the result of BPNN, we can know that the position error between
the calculated and the target location is big, so this result is not suitable to be
as the finial solution for two brain sources localization in our study. Here the
BPNN is only used to get the initial value for the following Powell algorithm.

Table 1. Location accuracy from BPNN with different noise

non-noise 5% 10% 30%

Position Error(cm) 3.3144 3.3298 3.3315 3.3337

After getting the initial value from BPNN, in order to bring the location
accuracy up and find the correct moment result, we insert initial value to the
Powell algorithm for the final solution of two brain sources localization from the
same BPNN testing EEG data generated before. The two dipoles localization
accuracy from combined method is shown in Table 2, including position error
and moment error. From the final results, we can conclude that the accuracy of
location and direction localization by the combined method used in this paper
is taken to a higher level than only by BPNN. On the other hand, the noise in
EEG signal also affects the localization accuracy, where larger noise makes bigger
position and moment error. Comparing the results from BPNN and the combined
method, we find that the noise signal in EEG data make the bigger influence over
the calculating by Powell algorithm than by BPNN. That is because that the
computing process of neural network is only to set up the relationship between
the input and output signal. But the classical non-linear algorithm is the iteration
computation, the intruder in the input signal will make the direct effect on the
accuracy of finial result.

Table 2. Location accuracy from BPNN with different noise

non-noise 5% 10% 30%

Position Error(cm) 0.7433 0.7957 0.8095 0.9772

Moment Error(deg) 0.2458 0.2446 0.2635 0.3043

Next let us discuss the distribution of error for localization as shown as Fig.
4. About the location accuracy gotten from combined method, average position
error is 0.8cm around and max error is about 10cm. The combined gets the
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Fig. 4. The distribution of position errors and moment errors. (a) shows the distribu-
tion of position errors by BPNN from different EEG signal (without noise, with 5%,
10%, 30% insert noise). (b) and (c) show the distribution of localization accuracy using
the combined method, including the position errors and moment error

average moment error about 0.25 degree and max error about 1.5 degree. In
BPNN calculating, some pairs of dipoles locating near the brain boundary cause
the large position error. For Powell algorithm, some conditions will make the
finial localization accuracy go down, such as the distance between the initial
value and target position, noise percent in EEG signal and the location of brain
sources. Bad initial value, high percent noise signal and pairs of dipole locating
near the brain boundary will produce large position and moment errors.

In training the BPNN used here, long computing time is needed. But for the
trained networks, it can output the results within few milliseconds. Using the
combined method to obtain the localization results, it takes about 25 seconds
(DELL PC with Pentium4 1.5GHz CPU). But this time is still much less then
using Powell algorithm to do the computing with random initial value or from
other initial value calculating methods.

In our work, BPNN can not localize multiple brain sources successfully. How
to extend neural networks method for multi-dipoles is therefore become impor-
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tant, because it will save much calculating time. On the other hand, how to
increase the localization accuracy is a important study in the future, maybe it
depends on EEG signal noise reduction and complex head models.

4 Conclusions

In this paper, we proposed a method combing BPNN with Powell algorithm for
two dipole sources localization based on 32 channel EEGs. The properties of this
combined method were investigated. The accuracy of initial value and the finial
localization result are given. Also discuss the reason of the large position error
appearance.

The average position error and moment error obtained from computer sim-
ulation proved that this combined method can localize the brain sources with
high accuracy for two dipole case. And the calculating time in the simulation is
acceptable. Maybe the method used in this paper is useful in clinical application.
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Abstract. Gaussian processes have been favourably compared to back-
propagation neural networks as a tool for regression. We show that a
recurrent neural network can implement exact Gaussian process infer-
ence using only linear neurons that integrate their inputs over time,
inhibitory recurrent connections, and one-shot Hebbian learning. The
network amounts to a dynamical system which relaxes to the correct so-
lution. We prove conditions for convergence, show how the system can act
as its own teacher in order to produce rapid predictions, and comment
on the biological plausibility of such a network.

1 Introduction

Multi-layer Perceptron (MLP) neural networks are powerful models of broad ap-
plicability, able to capture non-linear surfaces of essentially arbitrary complexity.
However such networks have their drawbacks, two of which we highlight here.
Firstly, the learning algorithm is generally believed to be implausible from a bi-
ological point of view, for example in requiring synapses to act bi-directionally,
and being very slow to train. Secondly, there is no uncertainty model in a neural
network implemented in this way: given an input, the network produces an out-
put directly, and nothing else. This is undesirable – the real world is dominated
by uncertainty, and predictions without uncertainty are of limited value.

Gaussian process regression is not based on any biological model, but provides
an explicit uncertainty measure and does not require the lengthy ‘training’ that
a neural network does. While techniques for obtaining uncertainty from a neural
network exist [9], [6] they are additions to the architecture, whereas Gaussian
processes have uncertainty as a fundamental component arising naturally from
a Bayesian formulation. Indeed, predictions made by neural networks approach
those made by Gaussian processes as the number of hidden units tends to infinity.
There are good arguments for Gaussian processes being considered a replacement
for supervised neural networks [7].

Here we show that neural networks can themselves implement Gaussian pro-
cess regression, in a way that has interesting parallels with neural circuitry.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 195–202, 2005.
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2 Gaussian Process Regression

Suppose we are given training data D consisting of input patterns {x1,x2 . . .xn},
each of which is a vector, paired with their associated scalar output values t =
{t1, t2 . . . tn}. MLP networks can be thought of as imperfectly transforming this
data into a set of representative weights. The actual data is not directly involved
in making predictions for a new target t given a new input vector x. The process
of training the network (setting the weights) is slow, but the predictions are fast.

Gaussian processes make predictions in a way that is fundamentally different
to MLP networks. Rather than capturing regularities in the training data via a
set of representative weights, they apply Bayesian inference to explicitly compute
the posterior distribution over possible output values t given all the data D and
the new input x. This process involves C, a covariance matrix generated using
a covariance function Cov(x, x′; Θ) where Θ are hyper-parameters. Although a
variety of other alternatives are possible [13], a typical form for the covariance
function is

Cov (x,x′) = θ1 exp
(
− (x− x′)2

2θ2
2

)
+ θ3 δx,x′ .

θ1 determines the relative scale of the noise in comparison with the data. θ2

characterises the distance in x over which t is expected to vary significantly. θ3

models white noise in measurements and δ is the delta function.
Essentially, the covariance matrix determines the scale and orientation of

a Gaussian distribution amongst the variables t. The task of regression is to
find the distribution P (t|D,x,C, Θ), conditioning on the n input-output pairs
corresponding to the training data, together with the new input. For a Gaussian
process this conditioning process can be done analytically, resulting in a 1-D
Gaussian distribution characterised by the following (see e.g. [2] for a derivation):

mean = kT C−1t, variance = κ− kT C−1k . (1)

Here Cij = Cov (xi,xj) and k is the vector of individual covariances kj =
Cov (xj ,x) between the new input x and each of those in the data set. κ is
Cov (x, x), a constant for stationary convariance functions. For the above it is
θ1 + θ3.

3 Gaussian Processes as Neural Networks

In this section we show how relatively simple neural circuitry could carry out
the operations required for Gaussian process inference.

Firstly, notice that the vector k can be thought of as the output of a layer of
radial basis function (RBF) units, given input pattern x. Each RBF unit arises
from a previously observed input vector, and calculates its response to the new
input using a Gaussian receptive field centered on the original vector, just as so-
called “grandmother cells” [4] show peak activity for a particular input pattern,
and progressively less response the greater the difference between the current
stimulus and this pattern.
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The primary task appears at first to be inversion of C, but this is not strictly
necessary - it is sufficient to find kT C−1. Thus the problem can be reformulated
as follows: given a matrix C and a vector k, we wish to find C−1k. Supposing
that C−1k = g, pre-multiplying by C gives k = Cg. The problem then reduces
to iteratively improving g until the difference between Cg and k is sufficiently
small. Gibbs [2] defines a measure Q = gT.(k− 1

2Cg), the gradient of which is:

∇gQ = (k−Cg) . (2)

This gradient is zero at the solution to our problem. Gibbs uses a conjugate
gradient routine to locate the solution. However for our purposes note that since
∇2

gQ = −C < 0, g can be iteratively improved by simply taking a small step in
the direction of the gradient,

Δg = η(k−Cg) . (3)

In the Appendix we show that this algorithm converges on the exact solution,
and we derive an optimal value for η.

The change to each component of g is a linear function of itself at a previous
time-step, which suggests a network of linear neurons that integrate their inputs
over time. The input needs to be k−Cg, so we have direct input of k together
with inhibitory recurrent connections between all the g neurons, with weights
−Cij . The change to the neuron’s output activity is simply the sum of these,
times a constant η. Once this network converges we have only to take the dot
product with the vector of targets (equation 1), which is easily achieved via a
second layer of weights whose values are set to their respective target outputs
(Figure 1).

Fig. 1. A network architecture that implements Gaussian process regression. It con-
verges on the mean m of the predicted output distribution, given input x. Connections
from k to g have weights of 1, recurrent connections have weights −Cij , and those
from g to the output m have weights t. In this case the input is a 3-dimensional vector
and inference is carried out on the basis of 4 input-output pairs

The rate of convergence depends on the choices for hyperparameters, as
shown in Figure 2 for a representative range of outcomes. θ2 plays a crucial
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role, as it effectively determines the expected number of datapoints involved in
each prediction. If θ2 is small then the new input is unlikely to be close to any
previous data and therefore k ≈ 0, or it may be close to just one previous input,
in which case only one element of k is significantly non-zero. Larger values of θ2

make both k and C less sparse, and intuitively one can see that this will require
more iterations to take account of the corresponding interrelationships.
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Fig. 2. The rms error between g and kT C−1 after 10 iterations of the dynamics. We
used 100 data points chosen at random from within a 10-dimensional hypercube. θ1

was fixed at 2.0 and the convergence rate for various values of θ2 and θ3 explored. Each
vertex is an average over 100 independent runs. The rate parameter η was set to the
value derived in the Appendix

The various connections in the system need to be set to particular values
in order for this procedure to work. Firstly, the RBF units must each be cen-
tered on a unique input pattern. We don’t address exactly how this might be
implemented here, but one can imagine a constructive process in which a novel
input pattern xn+1 triggers the recruitment of a new cell whose output is, and
remains, maximal for that pattern. By thinking of the network in this construc-
tive manner it is also clear how the other connections might be set: another new
cell gn+1 is similarly recruited, and receives input from xn+1 with a synaptic
weight of one. Its weights both to and from any other g cell, say gi, need to
be −Cov(xi,xn+1), which is simply the value taken by ki for the current input.
Indeed this is locally available as the instantaneous1 value of gi, amounting to
a form of (anti) Hebbian learning. Finally the synaptic weight from gn+1 to the
“output” must be set to tn+1, which we may assume is the output cell’s cur-
rent value. In this way a network is both constructed and “learned” by local
mechanisms as input-output pairs are presented to it.

The variance of the prediction is given by the expression kT C−1k. Part of
this (kT C−1) has already been calculated by the network which determines the

1 i.e. the value gi takes, prior to being perturbed by the recurrent neural dynamics
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Fig. 3. A 1-dimensional example for illustrative purposes. There are 5 data points
(squares). Predictions were then made by running the dynamics for 100 iterations, for
a range of inputs. The dashed line is the mean and vertical bars indicate one standard
deviation of the uncertainty, calculated as described in the text

mean, so we can reuse the previous calculation and essentially get the variance
for (almost) no added cost. All that remains is to find the dot product of the
g vector with k. Initially this seems like a trivial problem, but from a biolog-
ical perspective it poses some difficulty. A possible mechanism is suggested by
the process known as shunting inhibition, proposed as a possible mechanism for
neurons to divide numbers [1] in which the output of one neuron inhibits the
transmission of charge between two other neurons. As the elements of k are be-
tween 0 and 1, computing kT C−1k can be considered to be scaling the elements
of kT C−1 by the elements of k, a task to which shunting inhibition seems ideally
suited. Against this, some precise wiring is now required, as the ith k neuron
must gate the effect of the ith g neuron on the output.

3.1 Faster Predictions over Time

The inference mechanism described here is very fast to learn (one-shot Hebbian),
but is slow in making predictions due to the iterative process by which it arrives
at the solution. However, we can use the iterative algorithm to generate “targets”
with which to learn a second, single layer forward-feed network which runs in
parallel with the Gaussian process mechanism and attempts to learn weights
corresponding to C−1. Given k this secondary network can then directly compute
kTC−1 in a single pass (see Figure 4). One can think of the inversion network
as an oracle, which generates training data for the direct network given the
raw inputs. We have shown experimentally and analytically [5] that this process
converges exponentially quickly to the correct solution.

4 Discussion

A multi-layer perceptron neural network has Gaussian process behaviour when
the number of hidden neurons tends to infinity, provided weight decay is em-
ployed [9]. We have argued that the converse is also true in the sense that the
calculations required to calculate the expected output can be carried out by a
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Fig. 4. Schematic representation of a parallel network that produces fast predictions
and is trained on targets provided by the slower iterative process. The output of the
k neuron is used as an input to the neurons labeled a on the “direct” path. They use
the target of the g neurons (shown by the dotted line) to adjust their weights. Another
possibility (not investigated further here) would be to learn a direct linear mapping
from k to m′

simple neural network. In effect an infinite number of hidden units in a feed-
forward architecture can be replaced by a merely finite number, together with
recurrent connections and the ability to accumulate activity over time.

Recovery from intermittent errors can be shown to be exponentially fast [5].
This leads to the appealing property that accuracy improves exponentially with
time: early results are rough, later results become exact.

However there are some difficulties with our proposal. Calculating the correct
variance is considerably more problematic than finding the mean. While shunt-
ing inhibition is a potential mechanism for achieving this, it does require some
rather precise neural wiring. Similarly, we have avoided dealing with the set-
ting of hyperparameters Θ. While there are several possible avenues that might
be pursued [5] they all appear to involve further additions to the architecture
described here.

There is an interesting relationship between the algorithm presented here
and a neural architecture suggested for faithful recoding of sensory input data
by the visual cortex[14], [15]. Essentially the Daugman algorithm minimizes the
difference between sensory input and internal template-based models by step-
wise gradient descent. The dynamics are similar to those we describe except that
there is feedback from the equivalent of the g layer (the internal model) back
to the k layer (the sensory input), rather than recurrent connections within g.
Perfoming this simplistic gradient descent on Q = − 1

2 (g − Ck)T (g − Ck) is
dimensionally inconsistent [6]. Fortunately, this is not a fatal problem and can
be remedied by premultiplying Q by its curvature, which is simply C−1 [5]. This
leads to the remarkable conclusion that our algorithm is actually a covariant
form of the biologically inspired algorithm proposed by Daugman.
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Appendix

Here we prove that our algorithm is correct using infinite series, which clarifies
the conditions under which the inversion converges, and leads to a technique to
force otherwise non-convergent matrices to converge. We start by assuming the
value of g at time zero is 0. Then, at time t, gt = gt−1 + kT −Cgt−1 which is
gt−1(I−C) + kT . The closed form for g at time t is then

g(t) = kT
t−1∑
i=0

(I−C)i .

Multiplying both sides by (I −C), subtracting from g(t), and right-multipling
by C−1 yields

g(t) = kT
(
I− (I−C)t

)
C−1 (4)

Taking the limit as t→∞ gives g(t) = kT C−1, as required. In order for g(t) to
converge, we must assume that limn→∞(I−C)n = 0. Making use of the eigen-
decomposition theorem [11] we can rewrite I−C in terms of the matrix D which
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has the eigenvalues of I−C along its diagonal so that I−C = P−1DP , and
since (P−1DP )n = P−1DnP all that remains is to show that

lim
n→∞P−1DnP (5)

is defined and finite. Because D is diagonal, [Dn]ij = [D]nij and so we conclude
that if for all eigenvalues λi of I−C, |λi| < 1 then this is simply the zero matrix,
which is defined, and finite. Otherwise, the limit is infinite, and therefore the
algorithm fails. In general, |λi| �< 1, but we can force the condition by introducing
a new parameter, η, as follows. If gt = gt−1 + ηkT − ηCgt−1 then by a similar
process to which equation 4 was derived, we have

g(t) = ηkT
(
I− (I− ηC)t

)
(ηC)−1 (6)

If we choose η such that the eigenvalues of I−ηC are of magnitude less than one,
then equation 5 will converge, and ultimately equation 6 will converge also. It is
an identity that the eigenvalues λ of I+αM are 1+αλ [10], and the eigenvalues
of a positive definite matrix are all positive or zero [12], therefore by letting α
be − 1

max λ , we guarantee that all eigenvalues of I−C are of magnitude equal to
or less than one. Imposing the condition that θ3 is non-zero effectively prevents
the matrix from being ill-conditioned. The largest eigenvalue of C is strictly
less than the maximal row sum (for a symmetric matrix) [8], which in turn is
bounded by N(θ1 + θ3), for a matrix having N columns.

ηestimate = |N(θ1 + θ3) + 1|−1 (7)

Equation 7 gives a tractable way to approximate an appropriate value of η. Em-
pirical evidence suggest that using the estimate described in equation 7 indeed
has similar performance to using the inverse of the largest eigenvalue of I−C,
which appears to be optimal.
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Abstract. Gaussian mixture modelling is a powerful tool for data analy-
sis. However, the selection of number of Gaussians in the mixture, i.e., the
mixture model or scale selection, remains a difficult problem. In this pa-
per, we propose a new kind of dynamic merge-or-split learning (DMOSL)
algorithm on Gaussian mixture such that the number of Gaussians can
be determined automatically with a dynamic merge-or-split operation
among estimated Gaussians from the EM algorithm. It is demonstrated
by the simulation experiments that the DMOSL algorithm can auto-
matically determine the number of Gaussians in a sample data set, and
also lead to a good estimation of the parameters in the original mixture.
Moreover, the DMOSL algorithm is applied to the classification of Iris
data.

1 Introduction

Many problems in data analysis, especially in clustering analysis and classifi-
cation, can be solved through Gaussian mixture model [1]. Actually, several
statistical methods have been proposed for Gaussian mixture modelling (e.g.,
the EM algorithm [2] and k-means algorithm [3]). But it is usually assumed that
the number k of Gaussians in the mixture is given in advance. However, in many
cases, this key information is not available and the selection of an appropriate
number of Gaussians must be made with the parameter estimation, which is a
rather difficult task [4].

The traditional approach to this task is to choose a best k∗ via some selection
criterion, such as the Akaike’s information criterion [5] or its extensions. How-
ever, these methods incur a large computational cost since we need to repeat
the entire parameter estimation process independently at a number of different
values of k. Moreover, all these criteria have their limitations and often lead to
a wrong result.

Recently, a new kind of automated model selection approach has been devel-
oped using the idea that an appropriate number of Gaussians can be automat-
ically allocated during the parameter learning, with the mixing proportions of
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the extra Gaussians attenuating to zero. From the Bayesian Ying-Yang (BYY)
harmony learning theory, the gradient-type harmony learning algorithms [6]-[7]
have been proposed via the maximization of a harmony function on the archi-
tecture of the BYY system for Gaussian mixture. The simulation experiments
showed that these algorithms can make model selection automatically with pa-
rameter estimation on Gaussian mixture. Moreover, from the point of view of
penalizing the Shannon entropy of the mixing proportions on maximum likeli-
hood estimation (MLE), an entropy penalized MLE iterative algorithm was also
proposed to make model selection automatically with parameter estimation on
Gaussian mixture [8]. However, an obvious drawback of this approach is that the
initial value of k cannot be smaller than the number of actual Gaussians in the
sample data. Although we can always select k to be large enough, the algorithms
may lead to a wrong result when the initial value of k is much larger than the
number of actual Gaussians in the sample data.

On the other hand, the EM algorithm is an efficient algorithm for Gaussian
mixture modelling when the number of actual Gaussians is given in advance.
But it often suffers from local convergence. In order to overcome this problem,
a split-and-merge operation was introduced in the EM algorithm so that the
EM algorithm can probably escape a local solution [9]-[10]. In these revised
EM algorithms, the split and merge operations on the estimated Gaussians are
forced to come together in each phase. Moreover, a greedy EM algorithm was
also proposed to search the number of actual Gaussians in the sample data by
increasing k step by step from k = 1 [11].

In the current paper, we further propose a dynamic merge-or-split learning
(DMOSL) algorithm for Gaussian mixture modelling such that the merge and
split operations can be dynamically and independently conducted on the esti-
mated Gaussians in each phase of the learning process. In this way, the number
of actual Gaussians in the sample data can be automatically detected no matter
when the initial value of k is larger or smaller than the number of actual Gaus-
sians in the sample data. It is demonstrated by the simulation experiments that
the DMOSL algorithm can automatically determine the number of actual Gaus-
sians in a data set, with a good estimation of the parameters in the actual mix-
ture. Moreover, the DMOSL algorithm is applied to the classification of Iris data.

2 The DMOSL Algorithm

Given a sample data set from an original mixture with k∗ Gaussians and a
initial number k, we can use the (conventional) EM algorithm to get k estimated
Gaussians with the associated parameters. If k > k∗, some estimated Gaussians
cannot match the actual Gaussins and should be merged into one Gaussian. On
the other hand, if k < k∗, some estimated Gaussians also cannot match the
actual Gaussians and should be split into two or more Gaussians. The main idea
of the DMOSL algorithm is to construct a merge criterion and a split criterion
for the estimated Gaussians so that the merge-or-split operation can be added
to the EM algorithm dynamically and independently. According to this idea, we
now propose the DMOSL algorithm in the following subsections.
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2.1 Gaussian Mixture Model

We begin to introduce the Gaussian mixture model as follows:

P (x|Θ) =
k∑

i=1

αiP (x|mi, Σi), αi ≥ 0,

K∑
i=1

αi = 1, (1)

where

P (x|mi, Σi) =
1

(2π)
d
2 |Σi| 12

e−
1
2 (x−mi)

T Σ−1
i

(x−mi) (2)

and where k is the number of Gaussians or components in the mixture, x denotes
a sample vector and d is the dimensionality of x. The parameter vector Θ consists
of the mixing proportions αi, the mean vectors mi, and the covariance matrices
Σi = (σ(i)

pq )d×d which are assumed positive definite.
For a sample data set S = {xt}Nt=1 from the Gaussian mixture, we define

the posteriori probability of a sample xt over the j-Gaussian or component as
follows.

P (j|xt; Θ) =
αjP (xt|mj , Σj)

P (xt|Θ)
=

αjP (xt|mj , Σj)∑k
i=1 αiP (xt|mi, Σi)

. (3)

According to these posteriori probabilities, we can divide the sample points into
k clusters corresponding to the k Gaussians in the mixture by

G[j] = {xt : P (j|xt; Θ) = max
i=1,···,k

P (i|xt; Θ)}. (4)

2.2 The Merge and Split Criteria

We further introduce the merge and split criteria on the estimated Gaussians
after the EM algorithm has converged. Actually, via the estimated parameters,
we can obtain the clusters G[j]. For the merge or split operation, we first check
whether the sample points in two or more neighboring clusters are subject to a
Gaussian distribution. If they are, we think the corresponding estimated Gaus-
sians should be merged. Furthermore, we check whether the sample points in
each remaining G[j] (excluding these ones to be merged) are subject to a Gaus-
sian distribution. If they are not, the estimated Gaussian should be split.

Specifically, we give the merge and split criteria as follows.
Merge Criterion: For the i−th and j−th estimated Gaussians, we introduce
the following merge degree:

Jmerge(i, j; Θ) =
Pi(Θ)T Pj(Θ)
‖Pi(Θ)‖‖Pj(Θ)‖ (5)

where Pl(Θ) is an N-dimensional vector consisting of posterior probabilities of
the sample points over the l−th Gaussian, and ‖ ·‖ denotes the Euclidean vector
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norm. Clearly, when the two estimated Gaussians should be merged together,
Pi(Θ) and Pj(Θ) should be similar at a ceratin degree so that Jmerge(i, j; Θ) will
be high. According to this merge degree and a threshold value α > 0, we have
the merge criterion: if Jmerge(i, j; Θ) ≥ δ, these two Gaussians will be merged
together, otherwise, they will not.

In the simulation experiments, we found that Jmerge has a relationship with
N . So, by experience, we set δ = 0.004N1/2 in the following experiments.
Moreover, we also found in the simulation experiments that if the two esti-
mated Gaussians should not be merged, Jmerge becomes very small ( in general,
Jmerge(i, j; Θ) < 10−3). Therefore, the merge degree is reasonable.
Split Criterion: We use the Srivastav method [10] to check the normality for
the sample points in each remaining cluster. In fact, via the singular value de-
composition, the Srivastav method turns the test of multivariate normality into
the test for a number of independent normal variables. For the test of univari-
ate normality, we implement the Kolmogorov-Smirnov test. For the j−th esti-
mated Gaussian (remaining from the merge criterion), according to the Srivastav
method, if the sample points in G[j] are not subject to a normal distribution, it
will be split into two Gaussians; otherwise, there will be no need for the split on
this estimated Gaussian.

2.3 The Procedure of the DMOSL Algorithm

With the above preparations, we can now present the procedure of the DMOSL
algorithm. Structurally, the DMOSL algorithm consists of a number of phases.
At the beginning phase, we set k as the best possible estimation of the number
of actual Gaussians in the sample data. With this initial k, the EM algorithm is
conducted to get the estimated Gaussians. Then, the DMOSL algorithm turns
into the second phase. In this or the sequential phase, according to the obtained
Gaussians or clusters, we check whether the merge or split operation is needed.
If a merge or split operation is needed, we can use the mathematical method
proposed in [10] to put the two estimated Gaussians into one or split one esti-
mated Gaussian into two, with the parameters being modified. Starting from the
obtained and modified parameters in the new Gaussian mixture setting, the EM
algorithm is further conducted to the new estimated Gaussians for the following
phase. In this way, the model selection will be made dynamically and automati-
cally during the learning phases via the merge and split operations. Finally, the
DMOSL algorithm will be halted when there is no need for the merge or split
operation on the estimated Gaussians.

For the fast convergence, we also add a component eliminating mechanism
to the DMOSL algorithm on the mixing proportions obtained from the EM
algorithm. That is, if αj < 0.01, the j−th Gaussian will be eliminated directly.
Clearly, this component eliminating operation can be considered as an additional
merge operation.

Concretely, the procedure of the DMOSL algorithm is given as follows.
Step 1 Initialization: set the initial value of k, t = 0, and the initial parameters
Θ0 in the Gaussian mixture.
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Step 2 At phase t, we perform the EM algorithm starting from the parameters
obtained from the last phase after the merge and split operations if t > 0 or from
the initial parameters if t = 0. After the EM algorithm has converged, we get Θt

at the t−th phase. According to Θt, we can get the estimated Gaussians and the
corresponding clusters G[j]. If there is no need for the merge or split operation
on the estimated Gaussians, the DMOSL algorithm is halted. Otherwise, we go
to the next step.
Step 3 Merge operation: we compute Jmerge(i, j; Θt) for i, j = 1, · · · , k and
i �= j. and sort them in a descend order. If these exists any Jmerge(i, j; Θt) that
is no less than δ, i.e., Jmerge(i, j; Θt) ≥ δ, we merge these two Gaussians into a
new Gaussian i′. The parameters of this new Gaussian are computed as follows.

αi′ = αi + αj ; (6)
mi′ = (αimi + αjmj)/αi′ ; (7)
Σi′ = (αiΣi + αjΣj + αimim

T
i + αjmjm

T
j − αi′mi′m

T
i′ )/αi′ . (8)

It can be found in the experiments that sometimes Σi′ may not be positive. In
this special case, we can use the covariance matrix of the sample data in G[i] and
G[j] instead. If one estimated Gaussian can be merged into two or more estimated
Gaussians, we merge the two estimated Gaussians with the highest merge degree.
When a merge operation is implemented, k is automatically decreased by one,
i.e., k = k − 1.
Step 4 Split operation: after the merge operation, there are certain estimated
Gaussians remained. For each remaining estimated Gaussian, we check whether
it should be split according to the split criterion. If it should be, say the i-th
Gaussian, we split it into two Gaussians i′ and j′ as follows.

From the covariance matrix Σj , we have its singular value decomposition
Σj = USV T , where S is a diagonal matrix with nonnegative diagonal elements
in a descent order, U and V are two (standard) orthogonal matrices. Then, we
further set A = U

√
S (refer to [10] for the derivation), and get the first column

A1 of A. Finally, we have the parameters for the two split Gaussians as follows.

αi′ = αi ∗ γ, αj′ = αi ∗ (1− γ); (9)

mi′ = mi − (αj′/αi′)1/2μA1; (10)

mj′ = mi + (αi′/αj′)1/2μA1; (11)
Σi′ = (αj′/αi′)Σi + ((β − βμ2 − 1)(αi/αi′) + 1)A1A

T
1 ; (12)

Σj′ = (αi′/αj′)Σi + ((βμ2 − β − μ2)(αi/αj′) + 1)A1A
T
1 , (13)

where γ, μ, β are all equal to 0.5.
When a split operation is implemented, k is automatically increased by one,

i.e., k = k + 1.
Step 5 We let t = t + 1 and return to Step 2.

We finally give some remarks on the DMOSL algorithm. (1). The split crite-
rion or operation is based on the test of the normality on the sample points in
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the resulted clusters G[j]. Actually, only when the number of the sample points
from each actual Gaussian is large enough and the actual Gaussians are sepa-
rated in a certain degree, this normality test can be reasonable and lead to a
correct result. Hence, the DMOSL algorithm can be only suitable for the sample
data set in which the actual Gaussians have a large number of sample points
and are separated in a certain degree. (2). The split criterion is based on the
statistical test and the merge criterion is based on the merge degrees between
two estimated Gaussians through a threshold value selected by experience. The-
oretically, there exists a small probability of the error on the DMOSL algorithm.
(3). In Step 4, for consideration of robustness, we can add a checking step on the
two split Gaussians to make sure whether this split operation is really necessary.
If the two split Gaussians i′ and j′ on the data set G[i] should be merged under
the merge criterion on these two Gaussians only, we abandon the split operation.
Otherwise, we keep the split operation. However, it is found in the experiments
that this checking step is hardly active.

3 Experimental Results

In this section, several simulation experiments are carried out to demonstrate
the DMOSL algorithm for automated model selection as well as parameter es-
timation on seven data sets from Gaussian mixtures. Moreover, we apply the
DMOSL algorithm to the classification of Iris data.

3.1 Simulation Experiments

We conducted several experiments on seven sets of samples drawn from a mixture
of four or three bivariate Gaussians densities (i.e., n = 2). As shown in Fig. 1,
each data set of samples is generated at different degree of overlap among the
clusters (Gaussians) and with equal or unequal mixing proportions of the clusters
in the mixture.

Using k∗ to denote the number of actual Gaussians in the sample data or the
original mixture, we implemented the DMOSL algorithm on these seven data
sets with different initial values such as k < k∗, k = k∗ and k > k∗. The other
parameters were initialized randomly within certain intervals.

Typically, we give the experimental results of the DMOSL algorithm on the
sample data set (d) in which k∗ = 4. For k = k∗ = 4, the DMOSL algorithm
was halted immediately with no merge or split operation and the result is shown
in Fig. 2. In this and the following figures, T represents the number of merge
and split operations in each phase, k is the initial number of Gaussians, k′ is
the changing number of estimated Gaussians in each phase of the algorithm. For
k = 1, the DMOSL algorithm first split one Gaussian into two Gaussians and
then split two into four, see Fig.3 for k′ = 2. On the other hand, when k = 8, the
8 estimated Guassians merged into 4 Gaussian only in one phase, and we show
the results in Fig.4 for k′ = 8. From these figures, we can observe that, through
the dynamic merge or split operations, the DMOSL algorithm can make model
selection automatically on the sample data set and at the same time lead to a
good estimation of the parameters in the original mixture.
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Fig. 1. Seven sets of sample data used in
the experiments

Fig. 2. k∗ = 4, k = 4, k′ = 4, T = 0
(stopped)

Fig. 3. k∗ = 4, k = 1, k′ = 2, T = 2 (2
split operations)

Fig. 4. k∗ = 4, k = 8, k′ = 8, T = 4 (4
merge operations)

The further experiments of the DMOSL algorithm on the other sample sets
had been also made successfully for the automated model selection and param-
eter estimation in the similar cases. Since the DMOSL algorithm can escape the
local solution with the merge or split operation, it outperforms the conventional
EM algorithm. It also outperforms the split-and-merge EM algorithms given in
[9]-[10] since it has the ability of automated model selection. As compared with
the automated model selection algorithms in [6]-[8],[11], the DMOSL algorithm
has no limitation for the initial value of k and converges more quickly in the
general case.

3.2 Experiments on Classification of Iris Data

We further apply the DMOSL algorithm to the classification of the Iris data1

which is a typical real dataset for testing the classification algorithm. The Iris
data set consists of 150 4-dimension data from three classes: Iris Versicolor, Iris
1 Retrieved from http://www.ics.uci.edu/ mlearn/MLRepository.html
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Virginca and Iris Setosa. Each class contains 50 samples. We implemented the
DMOSL algorithm on the Iris data with k = 1−8. When k = 1−4, the DMOSL
algorithm can detect the three classes correctly, with the classification accuracy
over 96.65%. However, when k = 5 − 8, the DMOSL algorithm always leads
to 4 or 5 Gaussians in which three major Gaussians can be located the actual
classes approximately, while one or two abundant small Gaussians cannot be
eliminated. The reason may be that the number of samples in the Iris data is
not large enough and each class cannot match a Gauussian well so that some
small Gaussians cannot be eliminated when k is much larger than k∗ = 3.

4 Conclusions

We have investigated the automated model selection and the parameter esti-
mation on Gaussian mixture modelling via a dynamic merge-or-split learning
(DMOSL) algorithm. The DMOSL algorithm is constructed with a merge or
split operation on the estimated Gaussians from the EM algorithm. It is demon-
strated by the simulation experiments that the DMOSL algorithm can auto-
matically determine the number of actual Gaussians in the sample data, also
with a good estimation of the parameters in the original mixture. The DMOSL
algorithm can be also successfully applied to the classification of Iris data.
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Designing an Optimal Network
Using the Cross-Entropy Method
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Abstract. Consider a network of unreliable links, each of which comes
with a certain price and reliability. Given a fixed budget, which links
should be bought in order to maximize the system’s reliability? We in-
troduce a Cross-Entropy approach to this problem, which can deal ef-
fectively with the noise and constraints in this difficult combinatorial
optimization problem. Numerical results demonstrate the effectiveness
of the proposed technique.

1 Introduction

One of the most basic and useful approaches to network reliability analysis is to
represent the network as an undirected graph with unreliable links. Often, the
reliability of the network is defined as the probability that certain nodes in the
graph are connected by functioning links.

This paper is concerned with network planning, where the objective is to
maximize the network’s reliability subject to a fixed budget. More precisely,
given a fixed amount of money, the question is which links should be purchased,
in order to maximize the reliability of the purchased network. Each link has a pre-
specified price and reliability. This Network Planning Problem (NPP) is difficult
to solve, not only because it is a constrained integer programming problem,
which complexity grows exponentially in the number of links, but also because
for large networks the value of the objective function – that is, the network
reliability – becomes difficult or impractical to evaluate [1, 2].

We show that the Cross-Entropy (CE) method provides an effective way to
solve the NPP. The CE method is a new method for discrete and continuous
optimization. It consists of two steps which are iterated:

1. generate random states in the search space according to some specified ran-
dom mechanism, and

2. update the parameters of this mechanism in order to obtain better scoring
states in the next iteration. This last step involves minimizing the distance
between two distributions, using the Kullback-Leibler or Cross-Entropy dis-
tance; hence the name.

A tutorial introduction can be found in [3], which is also available from the
CE homepage http://www.cemethod.org. A comprehensive treatment can be
found in [4].

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 228–233, 2005.
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The rest of the paper is organized as follows. In Section 2 we formulate
the network planning in mathematical terms. In Section 3 we present the CE
approach to the problem. In Section 4 we consider a noisy version of the CE
method [5, 6], where the network reliability is estimated (rather than evaluated)
using graph evolution techniques [7–9]. We conclude with a numerical experiment
in Section 5 that illustrates the effectiveness of our approach.

2 Problem Description

Consider a network represented as an undirected graph G(V , E), with set V of
nodes (vertices), and set E of links (edges). Suppose the number of links is
|E| = m. Without loss of generality we may label the links 1, . . . , m. Let K ⊆ V
be a set of terminal nodes. With each of the links is associated a cost ce and
reliability pe. The objective is to buy those links that optimize the reliability of
the network – defined as the probability that the terminal nodes are connected
by functioning links – subject to a total budget Cmax. Let c = (c1, . . . , cm)
denote vector of link costs, and p = (p1, . . . , pm) the vector of link reliabilities.

We introduce the following notation. For each link e let xe be such that xe = 1
if link e is purchased, and 0 otherwise. We call the vector x = (x1, . . . , xm) the
purchase vector and x∗ the optimal purchase vector. Similarly, to identify the
operational links, we define for each link e the link state by ye = 1 if link e is
bought and is functioning, and 0 otherwise. The vector y = (y1, . . . , ym) is called
the state vector. For each purchase vector x let ϕx be the structure function of
the purchased system. This function assigns to each state vector y the state
of the system (working = terminal nodes are connected = 1, or failed = 0).
Next, consider the situation with random states, where each purchased link e
works with probability pe. Let Ye be random state of link e, and let Y be the
corresponding random state vector. Note that for each link e that is not bought,
the state Ye is per definition equal to 0. The reliability of the network determined
by x is given by

r(x) = E[ ϕx(Y )] =
∑

y

ϕx(y) Pr{Y = y} . (1)

We assume from now on that the links fail independently, that is, Y is a
vector of independent Bernoulli random variables, with success probability pe

for each purchased link e and 0 otherwise. Defining px = (x1p1, . . . , xmpm), we
write Y ∼ Ber(px). Our main purpose is to determine

max
x

r(x) , subject to
∑
e∈E

xece ≤ Cmax . (2)

Let r∗ := r(x∗) denote the optimal reliability of the network.

3 The CE Method

In order to apply the CE method to the optimization problem (2), we need
to specify (a) a random mechanism to generate random purchase vectors that
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satisfy the constraints, and (b) the updating rule for the parameters in that
random mechanism.

A simple and efficient method to generate the random purchase vectors is as
follows: First, generate a “uniform” random permutation π = (e1, e2, . . . , em) of
edges. Then, in the order of the permutation π, flip a coin with success probabil-
ity aei to decide whether to purchase link ei. If successful and if there is enough
money available to purchase link ei, set Xei = 1, that is, link ei is purchased;
otherwise set Xei = 0. The algorithm is summarized next.

Algorithm 1 (Generation Algorithm)

1. Generate a uniform random permutation π = (e1, . . . , em). Set k = 1.
2. Calculate C = cek

+
∑k−1

i=1 Xeicei .
3. If C ≤ Cmax, draw Xek

∼ Ber(aek
). Otherwise set Xek

= 0.
4. If k = m, then stop; otherwise set k = k + 1 and reiterate from step 2.

The usual CE procedure [4] proceeds by constructing a sequence of reference
vectors {at, t ≥ 0} (i.e., purchase probability vectors), such that {at, t ≥ 0}
converges to the degenerate (i.e., binary) probability vector a∗ = x∗. The se-
quence of reference vectors is obtained via a two-step procedure, involving an
auxiliary sequence of reliability levels {γt, t ≥ 0} that tend to the optimal reli-
ability γ∗ = r∗ at the same time as the at tend to a∗. At each iteration t, for
a given at−1, γt is the (1− ρ)-quantile of performances (reliabilities). Typically
ρ is chosen between 0.01 and 0.1. An estimator γ̂t of γt is the corresponding
(1 − ρ)-sample quantile. That is, generate a random sample X1, . . . ,XN using
the generation algorithm above; compute the performances r(X i), i = 1, . . . , N
and let γ̂t = r(�(1−ρ)N	), where r(1) ≤ . . . ≤ r(N) are the order statistics of the
performances. The reference vector is updated via CE minimization, which (see
[4]) reduces to the following: For a given fixed at−1 and γt, let the j-th compo-
nent of at be at,j = Eat−1 [Xj | r(X) ≥ γt]. An estimator ât of at is computed
via

ât,j =
∑N

i=1 I{r(Xi)≥γ̂t}Xij∑N
i=1 I{r(Xi)≥γ̂t}

, j = 1, . . . , m, (3)

where we use the same random sample X1, . . . ,XN and where Xij is the j-th
coordinate of Xi.

The main CE algorithm for optimizing (2) using the above generation algo-
rithm is thus summarized as follows.

Algorithm 2 (Main CE Algorithm)

1. Initialize â0. Set t=1 (iteration counter).
2. Generate a random sample X1, . . . ,XN using Algorithm 1, with a = ât−1.

Compute the (1 − ρ)-sample quantile of performances γ̂t.
3. Use the same sample to update ât, using (3).
4. If some stopping criterion is met then stop; otherwise set t = t + 1 and

reiterate from step 2.
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4 Noisy Optimization

As mentioned in the introduction, for networks involving a large number of links
the exact evaluation of the network reliability is in general not feasible, and
simulation becomes a viable option. In this section we show how the CE method
can be easily modified to tackle noisy NPPs.

In order to adapt Algorithm 2, we again, at iteration t, generate a random
sample X1, . . . ,XN according the Ber(ât−1) distribution. However, the corre-
sponding performances (network reliabilities) are now not computed exactly, but
estimated by means of Monte Carlo simulations. An efficient approach to net-
work reliability estimation is to use Network Evolution [7]. This works also well
for highly reliable networks. The idea is as follows: Consider a network with
structure function ϕ and reliability r as defined in (1). Assume for simplicity
that all the links are bought, that is x = (1, 1, . . . , 1). Now, observe a dynamic
version of the network G(V, E) which starts with all links failed and in which
all links are being independently repaired; each link e has an exponential repair
time with repair rate λ(e) = − log(1 − pe). The state of e at time t is denoted
by Ye(t) and, similar to before, the states of all the links is given by the vector
Y (t). Then, (Y (t)) is a Markov process with state space {0, 1}m. Let Π denote
the order in which the links become operational. Note that the probability of
link e being operational at time t = 1 is pe. It follows that the network reliability
at time t = 1 is the same as in (1). Hence, by conditioning on Π we have

r = E[ϕ(Y (1))] =
∑

π

Pr{Π = π}Pr{ϕ(Y (1)) = 1 |Π = π}, (4)

The crucial point is that from the theory of Markov processes it is possible to
calculate the probability G(π) = Pr{ϕ(Y (t)) = 0 |Π = π} in terms of convo-
lutions of exponential distribution functions. Hence, we can estimate r by first
drawing a random sample Π1, . . . , ΠN , each distributed according to Π , and
then estimating r as

r̂ =
1
K

K∑
i=1

G(Πi) . (5)

5 Numerical Experiment

To illustrate the effectiveness of the proposed CE approach, consider the 6-node
fully-connected graph with 3 terminal nodes given in Figure 1. The links costs
and reliabilities are given in Table 1. Note that the direct links between the
terminal nodes have infinite costs. We have deliberately excluded such links to
make the problem more difficult to solve. The total budget is set to Cmax = 3000.

Note that for a typical purchase vector x the network reliability r(x) will
be high, since all links are quite reliable. Consequently, to obtain an accurate
estimate of the network reliability, or better, the network unreliability r̄(x) =
1−r(x), via conventional Monte Carlo methods, would require a large simulation
effort. The optimal purchase vector for this problem – which was computed by



232 Sho Nariai, Kin-Ping Hui, and Dirk P. Kroese

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

Fig. 1. Network with 3 terminal nodes, denoted by black vertices

Table 1. Link costs and reliabilities

i ci pi i ci pi i ci pi

1 382 0.990 6 380 0.998 11 397 0.990
2 392 0.991 7 390 0.997 12 380 0.991
3 ∞ 0.992 8 395 0.996 13 ∞ 0.993
4 ∞ 0.993 9 396 0.995 14 399 0.992
5 320 0.994 10 381 0.999 15 392 0.994

brute force – is equal to x∗ = (1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1) which yields a
minimum network unreliability of r∗ = 7.9762× 10−5.

We used the following parameters for our algorithm: the sample size in Step 2
of the CE algorithm N = 300; the sample size in (5) K = 100; the initial purchase
probability â0 = (0.5, . . . , 0.5); the rarity parameter ρ = 0.1. The algorithm stops
when max(min(ât, 1− ât)) ≤ β = 0.02, that is, when all elements of ât are less
than β, away from either 0 or 1. Let T denote the final iteration counter. We
round âT to the nearest binary vector and take this as our solution â∗ to the
problem. As a final step we estimate the optimal system reliability via (5) using
a larger sample size of K = 1000.

Table 2 displays a typical evolution of the CE method. Here, t denotes the
iteration counter, γ̂t the 1−ρ quantile of the estimated unreliabilities, and ât the

Table 2. A typical evolution of the CE algorithm with N = 300, K = 100 ρ = 0.1,
and β = 0.02

t γ̂t ât

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1 4.0e-03 0.66 0.69 0.15 0.15 0.62 0.48 0.59 0.64 0.38 0.62 0.52 0.38 0.15 0.41 0.62
2 2.6e-04 0.69 0.63 0.05 0.05 0.72 0.21 0.88 0.71 0.33 0.75 0.58 0.26 0.05 0.38 0.77
3 1.4e-04 0.67 0.75 0.01 0.01 0.78 0.11 0.89 0.89 0.12 0.76 0.57 0.22 0.01 0.44 0.77
4 1.0e-04 0.76 0.76 0.00 0.00 0.89 0.03 0.97 0.90 0.06 0.83 0.43 0.11 0.00 0.41 0.84
5 8.1e-05 0.79 0.88 0.00 0.00 0.97 0.01 0.99 0.97 0.02 0.90 0.15 0.03 0.00 0.33 0.95
6 6.7e-05 0.94 0.96 0.00 0.00 0.97 0.00 1.00 0.99 0.01 0.97 0.07 0.01 0.00 0.10 0.99
7 6.3e-05 0.98 0.99 0.00 0.00 0.99 0.00 1.00 1.00 0.00 0.99 0.02 0.00 0.00 0.03 1.00
8 5.8e-05 0.99 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.01 0.00 0.00 0.01 1.00
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purchase probability vector, at iteration t. The important thing to notice is that
ât quickly converges to the optimal degenerate vector a∗ = x∗. The estimated
network unreliability was found to be 8.496× 10−5 with relative error of 0.0682.
The simulation time was 154 seconds on a 3.0GHz computer using a Matlab
implementation.

In repeated experiments, the proposed CE algorithm performed effectively
and reliably in solving the noisy NPP, which constantly obtained the optimal
purchase vector. Moreover, the algorithm only required on average 9 iterations
with a CPU time of 180 seconds.
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Generating Predicate Rules
from Neural Networks
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Abstract. Artificial neural networks play an important role for pattern
recognition tasks. However, due to poor comprehensibility of the learned
network, and the inability to represent explanation structures, they are
not considered sufficient for the general representation of knowledge. This
paper details a methodology that represents the knowledge of a trained
network in the form of restricted first-order logic rules, and subsequently
allows user interaction by interfacing with a knowledge based reasoner.

1 Introduction

Artificial neural networks (ANN) are a powerful general purpose tool applied to
classification, prediction and clustering tasks. A recognised drawback of neural
networks is an absence of the capability to explain the decision process in a
comprehensive form. This can be overcome by reformation of numerical weights
representing network into the symbolic description known as Rule extraction.
Previous researchers have successfully extract the learned knowledge in a propo-
sitional attribute-value language [1]. While this is sufficient for some applications,
but for many applications the sheer number of propositional rules often makes
their comprehension difficult.

A means to generate fewer general rules that are equivalent of many more
simple rules in propositional ground form is necessary. A further reason to use a
predicate, rather than a propositional calculus, is the greater expressiveness of
the former. Predicate rules allow learning of general rules as well as learning of
internal relationships among variables.

This paper presents an approach which extracts rules from a trained ANN
using a propositional rule-extraction method. It further enhances the expressive-
ness of generated rules with the introduction of universally quantified variables,
terms, and predicates, creating a knowledge base equivalent to the network.

2 The Methodology

Given a set of positive training examples E+, a set of negative examples E− and
a hypothesis in the form of the trained neural network ANN, the task is to find
the set of rules consisting of n-ary predicates and quantified variables KR such
that: ANN ∪ KR |= e+

i , ∀e+
i ∈ E+ and ANN ∪ KR �|= e−i , ∀e−i ∈ E−.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 234–241, 2005.
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The methodology includes four phases:(1) Select and train an ANN until it
reaches the minimum training and validation error; (2) Start pruning the ANN to
remove redundant links and nodes, and retrain; (3) Generate the representation
consisting of a type-hierarchy, facts and predicate rules; and (4) Interface the
generated knowledge base with a knowledge base (KB) reasoner to provide user
interface.

2.1 Phase 1: ANN Training and Phase 2: Pruning

A feedforward neural networks is trained for the given problem. When the ANN
learning process completes, a pruning algorithm is applied to remove redundant
nodes and links in the trained ANNs. The remaining nodes and links are trained
for a few epochs to adjust the weights.

2.2 Phase 3: Rule Extraction

The next task is interpretation of the knowledge embedded in trained ANNs
as symbolic rules. Following is the discussion of generalisation inference rules
required to implicate specific to general relationship in this phase [5]:

1. θ-subsumption: A clause C θ-subsumes (�) a clause D, if there exists a
substitution θ such that Cθ ⊆ D. C is known as the least general generalisa-
tion (lgg) of D, and D is specialisation of C if C � D and, for every other
E such that Eθ ⊆ D, it is also the case that Eθ ⊆ C [6]. The definition is
extendible to calculate the least general generalisation of a set of clauses.
The clause C is the lgg of a set of clauses S if C is the generalisation of each
clause in S, and also a least general generalisation.

2. Turning constants into variables: If a number of descriptions with differ-
ent constants are observed for a predicate or a formula, these observations
are generalised into a generic predicate or formula. E.g., if a unary predicate
(p) holds for various constants a, b, ..l then the predicate p can be generalised
to hold every value of a variable V with V being either of a, b, ..l.

3. Counting arguments: Constructive generalisation rules generate inductive
assertions during learning that use descriptors, originally not present in the
given examples. The CQ count quantified variables rule generates descriptors
#V cond, representing the number of Vi that satisfy some condition cond, if
a concept descriptor is in the form of ∃V1, V2, .., Vl · p(V1, V2, .., Vk). The CA
count arguments of a predicate rule generates new descriptors #V cond, by
measuring the number of arguments in the predicate that satisfy some condi-
tion cond, if the descriptor is a predicate with several arguments,
p(V1, V2, ..) [5].

4. Term-rewriting: This reformulation rule transforms compound terms in
elementary terms. Let p be an n-ary predicate, whose first argument is
a compound term consisting of t1 and t2, and the n − 1 arguments are
represented by a list A. The rules to perform such transformation are:
p(t1 ∨ t2, A)↔ p(t1, A) ∨ p(t2, A)
p(t1 ∧ t2, A)↔ p(t1, A) ∧ p(t2, A)
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The generalisation algorithm. The method of mapping predicate rules from
propositional expressions, summarised in Figure 1, is an automatic bottom-up
processing utilising Plotkin’s lgg concept [6]. This is defined as the task of finding
a generalised rule set represented in the subset language of first-order logic such
that KR+ |= C+

1 ∨ ... ∨ C+
n and KR− |= C−

1 ∨ ... ∨ C−
n , where KR+ and KR−

are knowledge representations that cover all positive (C+
i ) and negative (C−

i )
conjunctive expressions respectively.

1. Search for a DNF expression equivalent to the neural network.
2. Generate a single-depth type-hierarchy by input-space mapping,

with attributes as concepts, and values as sub-concepts.
3. Perform a symbol mapping for predicates to convert each conjunctive

expression into a ground fact (such as Nodename#1 #2, hidden1 1
or output1 2, or simply p 1, p 2, .., p n).

4. Utilise the fact definitions to create specific clauses (clauses with constants,
C1,C2,..,Cn).

5. For all specific clauses do
5.1 Search for any two compatible clauses C1 and C2.

Let C1 ≡ {l1, .., lk} and C2 ≡ {m1, .., mk}
where each li, mi has same predicate and sign.

5.2 If such a pair C1 and C2 exists do
5.2.1 Determine a set of selections, S(C1, C2) := {(l1, m1), .., (lk, mk)}
5.2.2 Compute a new word symbol to hold the two k-ary predicates

word1 := Temp(l1, .., lk), word2 := Temp(m1, .., mk)
5.2.3 let θ1 := ∅, θ2 := ∅, q1 := word1 and q2 := word2

5.2.4 While q1 	= q2 do
• Search arguments of q1 and q2

• find t1 ∈ q1 and t2 ∈ q2 such that t1 and t2 are occurring at the
same position in q1 and q2 and t1 	= t2 or one of them is a
variable.

• Replace t1 and t2 with a new variable X whenever they occur
in the same position of q1 and q2.

• Let θ1 := θ1 ∪ {t1/X}, θ2 := θ2 ∪ {t2/X}
5.2.5 A rule with predicates and variables is generated

(word1 = q1σ1, word2 = q2σ2)
6. Return the knowledge representation consisting of rules in the subset

language of first order logic, facts and a type-hierarchy.

Fig. 1. The process to generate the formalism of predicate rules

In this representation, definitions of predicates and terms are same as those
in first-order logic except that terms are function free. The explicit negation
of predicates is allowed in describing the goal concepts to avoid ‘negation-by-
failure’. A fact is an instantiated/ground predicate if all its predicate variables
are constant. There is a single-depth type-hierarchy corresponding to input space
of an ANN, in which attributes are concepts, and their values are sub-concepts.

During the process of converting conjunctive expressions into ground facts:
(1) If a conjunctive expression contains only one value per attribute, it results
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in one fact; (2) If a conjunctive expression contains more that one value for an
attribute, it results in multiple fact by transforming the expression according to
‘term-rewriting rule of generalisation’. Minimisation procedures such as (1) dele-
tion of duplicated instances of facts, (2) replacing specific facts by more general
ones and (3) deleting redundant entities in compatible facts-same predicate sym-
bol and sign, are applied to remove the redundant facts or entities in facts. The
fact definitions are utilised to express specific rules. These specific rules are now
expressed as clauses (disjunction of literals) by applying the logical equivalence
law, P ⇒ Q ≡ ¬P ∨Q.

Plotkin’s ‘θ-subsumption rule of generalisation’ [6] is utilised to compute the
mapping of literals of specific clauses to general clauses. To compute the gener-
alisation of two clauses, literals must represent each possible mapping between
the two clauses. The mapping is done by forming a set of pairs of compati-
ble literals (i.e. same predicate symbol and sign) from the two clauses (in the
same way as is done for Plotkin’s concept of selection [6,8]). The set of se-
lections of two clauses C1 = {l1, .., lk} and C2 = {m1, .., mk} is defined as:
S(C1, C2) := {(li, mj)|∀li ∈ C1 ∧ mj ∈ C2 ∧ compatible}. For computing the
least general generalisation (lgg) of two clauses, the lgg of two literals requires
to be computed first, and then the lgg of two terms (function free). The lgg of
two clauses C1 and C2 is defined as:

lgg(C1, C2) = lgg(S(C1, C2)) = lgg(Temp(l1, .., lk), T emp(m1, .., mk))
lgg(l1, m1) = p(lgg(t1, s1), .., (tn, sn))
A substitution θ = {X/t1, X/t2} uniquely maps two terms to a variable X in

compatible predicates by replacing all occurrences of t1 and t2 with the variable
X, whenever they occur together in the same position. This ensures that θ is the
proper substitution of t1 and t2. The size of the set of selections of two clauses
C1, C2 can be at most i× j, where i is the number of literals in C1 and j is the
number of literals in C2. In general the resulting lgg of two clauses contains a
maximum of i× j literals, many of which may be redundant and can be reduced
by applying Plotkin’s equivalence property.

The lgg of two incompatible literals is undefined [6]. If there is a rule (with
constants) left alone in the original set that does not have a pair with which to
generalise this rule, is not reduced and just mapped in the appropriate format.

An example. We use a simple example of Monk1 (consisting of six attributes
and 432 patterns) to illustrate the rule generalisation process. The decision rule
for membership of the target class (i.e. a monk) is: (1) Head shape = Body shape,
or (2) Jacket color = red. After training and pruning of an ANN over this prob-
lem, the input space is: Head shape ∈ {round, square, octagon}, Body shape ∈
{round, square, octagon}, and Jacket color ∈ {red, not-red}. A rule-extraction
algorithm is applied to extract the knowledge of the ANN in propositional rules
form. The DNF (disjunctive normal form) expression representing the output
node having high output is:
1. (Head shape = round ∧ Body shape = round) ∨
2. (Head shape = square ∧ Body shape = square) ∨
3. (Head shape = octagon ∧ Body shape = octagon) ∨
4. (Jacket color = red) ∨
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The extracted DNF expression indicating the low output for the output node is:
5. (Head shape = round ∧ Body shape = square) ∨
6. (Head shape = round ∧ Body shape = octagon) ∨
7. (Head shape = square ∧ Body shape = round) ∨
8. (Head shape = square ∧ Body shape = octagon) ∨
9. (Head shape = octagon ∧ Body shape = round) ∨
10. (Head shape = octagon ∧ Body shape = square).

Each conjunctive expression is expressed as a ground fact. The first three
expressions having the same arguments are mapped to the same predicate sym-
bol: monk1(round, round), monk1(square, square), and monk1(octagon,octagon).
The fourth expression is inferred as monk2(red). Likewise expressions 5 to 10 in-
dicating a different category (low output) are mapped to a new predicate symbol
monk3 with their corresponding values.

A concept definition -monk(Head shape, Body shape, Jacket color) or monk
(X, Y, Z)- for the output node (the consequent of rules) is formed by collecting
dependencies among attributes (associated within facts). The specific inference
rules including the ground facts are:
1. monk(round, round, Z) ⇐ monk1(round, round)
2. monk(square, square, Z) ⇐ monk1(square, square)
3. monk(octagon,octagon, Z) ⇐ monk1(octagon,octagon)
4. monk(X, Y, red) ⇐ monk2(red)
5. ¬monk(round, square, Z) ⇐ monk3(round, square)
6. ¬monk(round, octagon, Z) ⇐ monk3(round, octagon)
7. ¬monk(square, round, Z) ⇐ monk3(square, round)
8. ¬monk(square, octagon, Z) ⇐ monk3(square, octagon)
9. ¬monk(octagon, round, Z) ⇐ monk3(octagon, round)
10. ¬monk(octagon, square, Z) ⇒ monk3(octagon, square)

The algorithm discussed in Figure 1 iterates over the rules to find two com-
patible rules. Let us take the compatible rules 5 to 10 to show the process of
finding a lgg rule. On applying the logical equivalence law, P ⇒ Q ≡ ¬P ∨Q,
the rules 5 & 6 are transformed into:
1. ¬monk3(round, square) ∨ ¬monk(round, square, Z)
2. ¬monk1(round,octagon) ∨ ¬monk(round,octagon, Z)

A new word symbol Temp is utilised to form two k-ary predicates to hold the
set of selections generated from rules 5 and 6. Considering two choices for each
antecedent, the set of selections of two rules contains a maximum of 2n literals.
These two clauses have two selections with consequent predicate.
1. Temp(¬monk3(round,square),¬monk(round,square,Z))
2. Temp(¬monk3(round,octagon),¬monk(round,octagon,Z))

The θ-subsumption proceeds with the following steps:
1. Temp(¬monk3(round,Y),¬monk(round,Y,Z))
2. Temp(¬monk3(round,Y),¬monk(round,Y,Z))
resulting in the inference rule:
• ¬monk(round,Y,Z)⇐monk3(round,Y) with θ = [Y/square] or [Y/octagon]
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This lgg rule is further θ-subsumpted with the rest of the compatible rules
7,8,9,10, resulting in the following rule: ∀ X,Y,Z ¬monk(X,Y,Z) ⇐ monk3
(X,Y)

The algorithm also finds an inference rule out of three compatible rules 1, 2
& 3: ∀ X,Z monk(X,X,Z) ⇐ monk1(X,X)

For rule 4, the algorithm does not find any other compatible rule. This rule
will therefore be: ∀ X,Y,Z monk(X,Y,Z) ⇐ (Z == red)

It can be observed that these generated rules are able to capture the true
learning objective of the Monk1 problem domain i.e. the higher order propo-
sition that (Head shape = Body shape) (rule 1 & 2) rather than yielding each
propositional rule such as Head shape = round and Body shape= round etc.

2.3 Phase 4: User Interaction

The generated knowledge base is interfaced with a KB reasoner that allows user
interaction and enables greater explanatory capability. The inference process is
activated when the internal knowledge base is operationally loaded and consulta-
tion begins. For example, if the query monk(square, square, not-red) is posed, the
KB system initiates and executes the appropriate rules and returns the answer
true with the explanation:
• monk(square,square,not-red)⇐ monk1(square, square)

3 Evaluation

The methodology is successfully tested on a number of synthetic data sets such as
Monks, Mushroom, Voting, Moral reasoner, Cleveland heart and Breast cancer
from UCI machine learning repository and real-world data sets such as remote
sensing and Queensland Railway crossing safety. The results are compared with
symbolic propositional learner C5 and symbolic predicate learner FOIL [7].

Tables 1 and 2 report the relative overall performance of predicate rule-
sets utilising different algorithms. The average performance is determined by
separately measuring the performance on each data set, and then calculating
the average performance across all data sets, for each rule set. Several neural
network learning techniques such as cascade correlation (CC), BpTower (BT)
and constrained error back propagation (CEBP) are utilised to build networks.
This is to show the the applicability of predicate (or restricted first-order) rule-
extraction to a variety of ANN architectures. The included results are after the
application of pruning algorithm (P) to reduce the input space. The proposed
rule extraction techniques LAP [4] and RulVI [3] are applied on the cascade
and BpTower ANNs. The Rulex [2] technique is applied to extract rules from
the trained CEBPNs.

Table 1 shows that the accuracy of the generated predicate rules very much
depends on the rule-extraction algorithm that has been employed to extract
the propositional expressions from the trained ANN. The expressiveness of the
extracted propositional expressions is enhanced by introducing variables and
predicates in rules without the loss of accuracy or of fidelity to the ANN solution.
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Table 1. The relative average predictive accuracy of predicate rules over 10 data sets

Predicate rules Accuracy (%) Accuracy (%) Fidelity (%)
using Training Testing to the network

LAP
PCC 98.28 95.05 99.04
PBT 98.21 95.15 98.88

RuleVI
PCC 97.65 89.57 98.27
PBT 97.59 84.71 96.87

Rulex CEBPN 96.41 89.51 93.23

C4.5 96.99 94.05
Foil 97.1 83.98

Table 2. The relative average comprehensibility of predicate rules over 10 data sets

No of Conjunctive expressions No of Predicate rules

LAP
PCC 64 28
PBT 63 21

RuleVI
PCC 39 18
PBT 48 24

Rulex CEBPN 4.6 4

C4.5 10
Foil 8

If the relevance of a particular input attribute depends on the values of other
input attributes, then the generalisation algorithm is capable of showing that
relationship in terms of variables (as in Monk1). Otherwise the generalisation
algorithm simply translates the propositional rules into predicate form without
significantly reducing the number of rules.

The generalization accuracy (when moving from training to test data) of
FOIL is worse than our system. The generalization accuracy even becomes worse
when the data has noise. Our method performed (in terms of accuracy and
comprehensibility) better than symbolic learners when small amount of data
(less than 100 patterns) is available for training. When a large number of data is
available for training, symbolic learners performed better. Our system preformed
better than FOIL when the distribution of patterns among classes is uneven.

The algorithmic complexity of this methodology depends upon the core al-
gorithms used in different phases. The generalisation algorithm used in phase 3
requires O(l ×m2), where l is the number of clauses according to the DNF ex-
pression equivalent to the trained ANN and m is the total number of attributes
in the problem domain. However, application of the pruning algorithm in phase
2 significantly reduces the total number of attributes.

4 Conclusion

We presented a methodology which comprehensively understands the decision
process of an ANN, and provides explanations to the user by interfacing the net-
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work’s output with a KB reasoner. The powerful advantage of ANNs, the ability
to learn and generalise, is exploited to extract knowledge from a set of examples.
Even though ANNs are only capable of encoding simple propositional data, with
the addition of the inductive generalisation step, the knowledge represented by
the trained ANN is transformed into a representation consisting of rules with
predicates, facts and a type-hierarchy. The qualitative knowledge representa-
tion ideas of symbolic systems are combined with the distributed computational
advantages of connectionist models.

The logic required in representing the network is restricted to pattern match-
ing for the unification of predicate arguments and does not contain functions.
Despite this fact, the predicate formalism is appropriate for real-life problems as
shown in experiments. The benefit in using such a logic to represent networks
is that (1) knowledge can be interactively queried leading to an identification
of newly acquired concepts, (2) an equivalent symbolic interpretation is derived
describing the overall behaviour, and (3) a fewer number of rules are relatively
easier to understand.
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Input: learning set with N learning samples 
Number of iterations: t=1,2,…T 
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Abstract. Curve detection is a basic problem in image processing and
has been extensively studied in the literature. However, it remains a
difficult problem. In this paper, we study this problem from the Bayesian
Ying-Yang (BYY) learning theory via the harmony learning principle
on a BYY system with the mixture of experts (ME). A gradient BYY
harmony learning algorithm is proposed to detect curves (straight lines
or circles) from a binary image. It is demonstrated by the simulation
and image experiments that this gradient algorithm can not only detect
curves against noise, but also automatically determine the number of
straight lines or circles during parameter learning.

1 Introduction

Detecting curves (straight line, circle, ellipse, etc.) is one of the basic problems
in image processing and computer vision. In the traditional pattern recognition
literature, there are two kinds of studies on this problem. The first kind of
studies use the generate-and-test paradigm to sequentially generate hypothetical
model positions in the data and test the positions (e.g., [1]). However, this kind
of methods are sensitive to noise in the data. The second kind of studies are
Hough Transform (HT) variations (e.g.,[2]). They are less sensitive to noise, but
their implementations for complex problems suffer from large time and space
requirements and from the detection of false positives, although the Random
Hough Transform (RHT) [3] and the constrained Hough Transform [4] were
proposed to improve these problems. In the field of neural networks, there have
also been some proposed learning algorithms that can detect curves in an image
(e.g., [5]-[6]).

Proposed in 1995 [7] and systematically developed in past years [8]-[9],
Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical learn-
ing framework not only for understanding several existing major learning ap-
proaches but also for tackling the learning problem with a new learning mecha-
nism that makes model selection automatically during parameter learning [10].
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Specifically, the BYY harmony learning has been already applied to detecting
the best number k∗ of straight lines via a selection criterion J(k) on the mixture
of experts (ME) in [8]. However, the process of evaluating the criterion incurs a
large computational cost since we need to repeat the entire parameter learning
process at a number of different values of k.

In this paper, we implement the BYY harmony learning on an architecture
of the BYY system with the ME via a gradient harmony learning algorithm so
that the curve detection can be made automatically during parameter learning
on the data from a binary image, which is demonstrated by the simulation and
image experiments for both straight lines and circles.

2 Gradient Harmony Learning Algorithm

A BYY system describes each observation x ∈ X ⊂ Rn and its corresponding
inner representation y ∈ Y ⊂ Rm via the two types of Bayesian decomposition
of the joint density p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y), being called
Yang machine and Ying machine, respectively. Given a data set of x, the aim of
learning on a BYY system is to specify all the aspects of p(y|x), p(x), q(x|y), q(y)
with a harmony learning principle implemented by maximizing the harmony
functional:

H(p||q) =
∫

p(y|x)p(x)ln[q(x|y)q(y)]dxdy − lnzq, (1)

where zq is a regularization term. The details are referred to [8]-[9].
The BYY system and harmony learning can also be applied to supervised

leaning tasks of mapping x → y based on a given data set {xt, yt}Nt=1, when
a model variable l = 1, · · · , k is introduced [9]. In this case, x denotes the in-
put patters, l denotes the inner representation of x, and y denotes the output.
Likewise, we take into account another Ying-Yang pair:

p(x, y, l) = p(l | x, y)p(y | x)p(x), q(x, y, l) = q(y | x, l)q(x, l), (2)

q(x, l) =

{
q(x | l)q(l), for a Ying−dominated system;
p(l | x)p(x), for a Yang−dominated system.

(3)

Here, we only consider the Ying-dominated system and specify the BYY system
with the following architecture:

p(l | x, y) =
∑

j

P (j | x, y)δ(j − l), p(y|x) =

{
δ(y − yt), x = xt

not care, otherwise
,

p(x) =
1

N

N∑
t=1

δ(x − xt), q(l) =
∑

j

αjδ(j − l),

k∑
l=1

αl = 1, αl ≥ 0, P (l | x, y) = q(y | x, l)q(x | l)αl/

k∑
j=1

q(y | x, j)q(x | j)αj ,
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where δ(x) is the δ-function. Then, we get the following alternative ME model
for mapping x −→ y implied in the BYY system:

q(y | x) =
∑

l

q(y | x, l)P (l | x), P (l | x) = q(x | l)αl/

k∑
j=1

q(x | j)αj . (4)

Letting the output of expert l be fl(x, θl), we have the following expected
regression equation:

E(y | x) =

∫
yq(y | x)dy =

∑
l

fl(x, θl)P (l | x). (5)

That is, E(y | x) is a sum of the experts weighted by the gate functions P (l | x),
respectively.

We now ignore the normalization term (i.e., set zq = 1), substitute these
components into Eq.(1), and have

H(p‖q) =
1

N

N∑
t=1

k∑
l=1

q(yt | xt, l)q(xt | l)αl

k∑
j=1

q(yt | xt, j)q(xt | j)αj

ln(q(yt | xt, l)q(xt | l)αl), (6)

where

q(y | x, l) =
1√
2πτl

e
− (y−wT

l
x−bl)

2

2τ2
l , q(x | l) =

1

(2π)
n
2 σn

l

e
− ‖x−ml‖2

2σ2
l ,

σl = edl , τl = erl , αl = eβl/

k∑
j=1

eβj .

By the derivatives of H(p‖q) with respect to the parameters wl, bl, rl, ml, dl

and βl, respectively, we have the following gradient learning algorithm:

Δwl =
η

N

N∑
t=1

U(l | xt, yt)
(yt − wT

l xt − bl)

e2rl
xt, (7)

Δbl =
η

N

N∑
t=1

U(l | xt, yt)
(yt − wT

l xt − bl)

e2rl
, (8)

Δrl =
η

N

N∑
t=1

U(l | xt, yt)
(yt − wT

l xt − bl)
2 − e2rl

e2rl
, (9)

Δml =
η

N

N∑
t=1

U(l | xt, yt)
(xt − ml)

e2dl
, (10)

Δdl =
η

N

N∑
t=1

U(l | xt, yt)
(xt − ml)

2 − ne2dl

e2dl
, (11)

Δβl =
η

N

N∑
t=1

k∑
j=1

U(j | xt, yt)(δjl − αl), (12)
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where

U(l | xt, yt) = P (l | xt, yt)(1 +

k∑
j=1

(δjl − P (j | xt, yt)) ln(q(yt | xt, j)q(xt | j)αj),

δjl is the Kronecker function, and η is the learning rate which is usually a small
positive constant.

The above gradient BYY harmony learning algorithm is designed for straight
line detection. Here, a set of black points {xt}Nt=1 (xt = [x1t, x2t]T ) are collected
from a binary image with each point being denoted by its coordinates [x1, x2].
Suppose that wT

l x + bl = 0, l = 1, · · · , k are the parametric equations of all the
straight lines to be detected in the image. For each point x, if wT

l x + bl = 0,
we let L(x) = l. Then, the mapping between x and y implemented by the BYY
system is just y = wT

L(x)x + bL(x). For each point in {xt}Nt=1, it is supposed to
be on some straight line (at most disturbed by some noise) and we always set
yt = 0. We train the ME model implied in the BYY system on the sample set
{xt, yt}Nt=1 via this gradient BYY harmony learning algorithm and lead to the
result that each expert will finally fit a straight line wT

l x + bl = 0 with the
mixing proportion αl representing the proportion of the number of points on
this straight line over N , i.e., the number of all the black points in the image.

As for circle detection, we can use fl(x, θl) = (x− cl)T (x− cl)−R2
l , Rl = ebl

instead of fl = wlx + bl in the above model and derivations for the output
of each expert in the ME model. Hence, the gradient BYY harmony learning
algorithm is modified by replacing the first three learning rules Eqs (7)-(9) with
the following ones:

Δcl = −2
η

N

N∑
t=1

U(l | xt, yt)
(yt − (xt − cl)

T (xt − cl) + R2
l )

e2rl
(xt − cl), (13)

Δbl = −2
η

N

N∑
t=1

U(l | xt, yt)
(yt − (xt − cl)

T (xt − cl) + R2
l )

e2rl
e2bl , (14)

Δrl =
η

N

N∑
t=1

U(l | xt, yt)
(yt − (xt − cl)

T (xt − cl) + R2
l )

2 − e2rl

e2rl
. (15)

3 Experimental Results

In this section, several experiments are carried out for both straight line and
circle detection with the gradient BYY harmony learning algorithm. On the one
hand, we make some simulation experiments to demonstrate that the algorithm
can detect the straight lines or the circles automatically. On the other hand, we
apply the algorithm to the strip line detection and the container recognition.

3.1 Automated Detection on the Straight Lines and Circles

Using k∗ to denote the true number of curves in the original image, we im-
plemented the gradient algorithm on data sets from binary images always with
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k ≥ k∗ and η =0.1. Here, k is the number of experts in the ME model. Moreover,
the other parameters were initialized randomly within certain intervals. In all
the experiments, the learning was stopped when |ΔH | < 10−6.

During the BYY harmony learning process, some mixing proportions of the
experts can be reduced to a very small number. In this case, (− lnαl) will become
very large. However, as shown in the mathematical expressions of the gradient
algorithm, it is always regulated by αl so that αl lnαl will tend to zero. Therefore,
the gradient algorithm will always converge to a reasonable solution and cannot
diverge to infinity.

The experimental results on the straight line and circle detections are given in
Fig.1 (a), (b), respectively, with the parameters listed in Table 1, 2, respectively.
From Fig.1(a) and Table 1, we find that the four straight lines in the binary
image are successfully detected, with the mixing proportions of the other four
straight lines reduced below 0.001, i.e., these straight lines are extra and should
be discarded. That is, the correct number of straight lines have been detected
from the image. Likewise, from Fig.1(b) and Table 2, we find that the two circles
are successfully detected, while the mixing proportions of the other two extra
circles become less than 0.001.
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Fig. 1. The experiments results of model selection by the gradient BYY harmony
learning algorithm. (a). The straight line detection; (b). The circle detection

In the above experiments, since we generally don’t know the number of
curves(straight lines or circles) in an image, we can overestimate it with k. In
this way, k is larger than the number k∗ of curves in the image. However, since
the BYY harmony learning makes the ME model as simple as possible, the gra-
dient BYY harmony learning algorithm will automatically detect the k∗ curves
by forcing the mixing proportions of k − k∗ experts to be zero or a very small
number, i.e., discarding these ones from the image.

The further experiments on the other binary images had been also made suc-
cessfully for the straight line and circle detection in the similar cases. Especially,
as for circle detection, when the two circles are intersectant or separate, the
gradient algorithm will converge faster to a reasonable solution. Hence, we can
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Table 1. The empirical result of the straight line detection on the data set from Figure
1(a), with k=8 and k*=4

l αl w1lx1 + w2lx2 + bl = 0

1 0.0008 1.2070x1 − 0.7370x2 − 0.2235 = 0
2 0.0007 −1.0329x1 + 0.9660x2 − 0.0455 = 0
3 0.2319 −0.9778x1 − 1.0217x2 − 0.9814 = 0
4 0.0009 −0.8693x1 + 1.1155x2 − 0.2002 = 0
5 0.2369 1.0181x1 − 0.9816x2 + 1.0813 = 0
6 0.2542 −0.9597x1 − 1.0387x2 + 1.0772 = 0
7 0.2737 1.0114x1 − 0.9885x2 − 1.0370 = 0
8 0.0008 −0.7057x1 + 1.2256x2 − 0.2659 = 0

Table 2. The empirical result of the circle detection on the data set from Fig.1 (b),
with k=4 and k*=2

l αl (x1 − c1l)
2 + (x2 − c2l)

2 = Rl
2

1 0.3413 (x1 − 0.0125)2 + (x2 + 0.0097)2 = 0.96882

2 0.0005 (x1 − 0.3559)2 + (x2 + 0.5241)2 = 3.82182

3 0.0005 (x1 + 0.1751)2 + (x2 + 0.0323)2 = 14.46212

4 0.6577 (x1 − 0.0142)2 + (x2 + 0.0016)2 = 2.18822

conclude that the gradient BYY harmony learning algorithm can automatically
determine the number of curves in the image. In addition, it can be observed
that this kind of curve detection is noise resistant.

3.2 Strip Line Detection

We further applied the gradient BYY harmony learning algorithm to the strip
line detection and make a comparison with the HT method. As shown in Fig.
2(a), the original image contains a thick letter W and we need to identify each
thick, linear pattern from it. The algorithm was implemented to solved this strip
line detection problem with k = 8. As shown in Fig. 2(b), it detects the four
strip lines correctly, with the four extra lines being canceled automatically.

As compared with the results of the HT method on this image which are
shown in Fig. 2(c)&(d) for processing with and without the preprocessing of edge
detection, respectively, the gradient BYY harmony learning algorithm performs
much better, since the main skeleton of the original image is not outlined by the
HT method.

3.3 Container Recognition

Automated container recognition system is very useful for customs or logistic
management. In fact, the gradient BYY harmony learning algorithm can be ap-
plied to assisting to construct such a system. Container recognition is usually
based on the captured container number located at the back of the container.
Specifically, the container shown in Fig.3(a), can be recognized by the num-
bers “A123456” ,“B456123” and “654321C”. The recognition process consists of
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Fig. 2. The experiments results on the strip line detection. (a). The original image; (b).
The result of the strip line detection by the gradient BYY harmony learning algorithm;
(c). The strip line detection by the HT method with the preprocessing of edge detection;
(d). The strip line detection by the HT method without the preprocessing of edge
detection

two steps. The first step is to locate and extract each rectangular area in the
raw image that contains a series of numbers, while the second step is to actu-
ally recognize these numbers via some image processing and pattern recognition
techniques.

For the first step, we implemented the gradient BYY harmony learning al-
gorithm to roughly locate the container numbers via detecting the three strip
lines through the three series of the numbers, respectively. As shown in Fig.3(b),
these three strip lines can locate the series of numbers very well. Based on the
detected strip lines, we can extract the rectangular areas of the numbers from
the raw image. Finally, the numbers can be subsequently recognized via some
image processing and pattern recognition techniques.

4 Conclusions

We have investigated the curve detection problem from the BYY harmony learn-
ing system and theory. The straight line and circle detections from a binary im-
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Fig. 3. The experiments results on container recognition. (a). The original image; (b).
The result of the gradient BYY harmony learning algorithm

age have been converted to a supervised learning task on the mixture of experts
implied in a BYY system. In help of a gradient learning algorithm derived, a
number of experiments have demonstrated that the number of straight lines or
circles can be correctly detected automatically during parameter learning with
a good estimation of each curve against noise.
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Abstract. Although genetic algorithm-based decision tree algorithms
are applied successfully in various classification tasks, their execution
times are quite long on large datasets. A novel decision tree algorithm,
called Real-Coded Genetic Algorithm-based Linear Decision Tree Algo-
rithm with k-D Trees (RCGA-based LDT with kDT), is proposed. In
the proposed algorithm, a k-D tree is built when a new node of a linear
decision tree is created. The use of k-D trees speeds up the construction
of linear decision trees without sacrificing the quality of the constructed
decision trees.

1 Introduction

Decision trees are tree structures which classify an input sample into one of
its possible categories. At each non-leaf node, the associated decision function is
used to select the appropriate child node. In univariate decision trees, the decision
function depends on only one of the input attributes. CART [2] and C4.5 [12] are
example univariate decision tree algorithms. In linear decision trees, the decision
function is a linear combination of input attributes, which is equivalent to a half-
plane in the attribute space. CART-LC [2], OC1 [11], LMDT [3] and Ltree [6]
are example linear decision tree algorithms.

Genetic algorithms (GAs) were introduced by Holland [9]. GAs are stochastic
optimization algorithms inspired by the principles of natural selection and ge-
netics. A population of chromosomes is maintained. Each chromosome is either
a binary string or a vector of real numbers. It represents a candidate solution
to a problem. A fitness function is used to evaluate the quality of the solution
represented by each chromosome. Offspring chromosomes are generated using
selection, mutation and recombination operators.

A k-D tree [1] recursively subdivides a d-dimensional space into 2 subspaces.
There are 2 children at each non-leaf node of a k-D tree. One of the attributes
is used to divide a d-dimensional space at each non-leaf node.

In univariate decision tree algorithms, large decision trees with poor gener-
alization may be constructed on datasets whose input attributes are correlated.
Linear decision tree algorithms are usually more suitable for these datasets. The
problem of finding the optimal linear decision tree is an NP-complete problem
[7]. In BTGA [5] and OC1-GA [4], GAs are applied to find the optimal half-plane

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 264–271, 2005.
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at each internal node. Although these GA-based linear decision tree algorithms
have better scalability to the dimensionality of a dataset [4], their execution times
are quite long on a large dataset. A novel decision tree algorithm, called Genetic
Algorithm-based Linear Decision Tree Algorithm with k-D Trees (RCGA-based
LDT with kDT), is proposed. In the proposed algorithm, GAs are employed to
search for the optimal half-plane at each internal node. The proposed algorithm
is a real-coded genetic algorithm (RCGA), using a vector of real numbers to rep-
resent a half-plane because the search space is multidimensional and continuous.
k-D trees can be applied to speed up the construction of linear decision trees
without sacrificing the quality of the constructed decision trees.

The rest of the paper is organized as follows. In section 2, the algorithm to
build a linear decision tree is discussed. In section 3, we describe how to find
the optimal half-plane at each internal node using GAs. In section 4, we discuss
how to build a linear decision tree with the aid of k-D trees. In section 5, the
performance of RCGA-based LDT with kDT was evaluated and compared. A
conclusion is given in the last section.

2 Induction of Linear Decision Trees

Before a linear decision tree is constructed, a set of input samples is divided
into two disjoint subsets, called training set and testing set. The training set is
applied to construct a decision tree. A constructed decision tree should minimize
the number of misclassifications on the testing set, instead of the training set.
The following shows the algorithm of the procedure createLDT(). The procedure
createLDT() outlines the steps to create a new node and its descendants of an
RCGA-based LDT with kDT. To construct an RCGA-based LDT with kDT,
the procedure createLDT() accepts the training set as the parameter.

– PROCEDURE createLDT
– INPUT A set Sh of training samples
– OUTPUT A new node Nh

1. IF the training samples in the set Sh belong to one single class or the depth
of the node Nh from the root is greater than or equal to d0, THEN Nh is
declared as a leaf node and go to step 6.

2. Construct a k-D tree using the set Sh.
3. Find the optimal half-plane

∑d
i=1 w′

ixi > w′
0, where w′

i, i = 1, 2..., d, is
the coefficient of xi and w′

0 is the constant term, using GAs such that the
impurity reduction is maximized after dividing the set Sh into 2 disjoint
subsets R′

h and L′
h.

4. IF the impurity reduction is less than g0, THEN Nh is declared as a leaf
node and go to step 6.

5. Invoke createLDT(R′
h) and createLDT(L′

h), and skip step 6.
6. Determine the class label associated with the node Nh.
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3 Evolving the Optimal Half-Plane
Using Genetic Algorithms

The following outlines the steps to evolve the optimal half-plane using a GA
after a new node Nh of a linear decision tree is created:

1. Initialize a population P of L chromosomes.
2. Evaluate the fitness values of all chromosomes in P .
3. Let T be the number of generations, τ be the current generation number.
4. FOR τ = 1 TO T

(a) Let wbest be the best chromosome in P .
(b) Select L chromosomes from P (with replacement) using the roulette

wheel selection method. The selected chromosomes are replicated to the
mating pool M .

(c) The mating pool M undergoes arithmetical crossover [8] and another
population M ′ is generated.

(d) The population M ′ undergoes mutation (see Section 3.3) and another
population M ′′ is generated.

(e) Evaluate the fitness values of all chromosomes in M ′′.
(f) Let wworst be the worst chromosome in M ′′.
(g) Set P = M ′′ \ {wworst} ∪ {wbest}.

5. The chromosome wbest is chosen to divide the set Sh of training samples
arriving at the node Nh into two disjoint subsets.

An elitist strategy is employed to ensure the best chromosome in the current
generation is preserved in the next generation.

3.1 Population Initialization

Each chromosome is a (d+1)-dimensional vector of real numbers. A chromosome
w = (w0, w1, w2..., wd) represents the following half-plane:

w1x1 + w2x2 + ... + wdxd > w0 such that w2
1 + w2

2 + ... + w2
d = 1 (1)

where wi, i = 1, 2..., d, is the coefficient of xi and w0 is a real constant. Each
candidate half-plane is a perpendicular bisector between a pair of randomly
selected training samples of two different classes.

3.2 Fitness Evaluation

The fitness value of each chromosome equals the impurity reduction when the
corresponding half-plane is applied to divide a set of training samples into two
disjoint subsets. In this paper, the impurity of a set of samples is measured by
entropy. Suppose S is the set of training samples arriving at a node of a decision
tree. The entropy of the set S is defined as:

E(S) = −p1 log2 p1 − p2 log2 p2 − ...− pC log2 pC (2)
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where C is the number of classes and pi, i = 1, 2..., C, is the ratio of the number
of training samples of the set S for class i to that of the set S. Suppose SR is the
set of training samples arriving at node Nh such that (1) is satisfied, the fitness
value of the corresponding chromosome is given by:

E(S)− |SR|
|S| × E(SR)− |S \ SR|

|S| × E(S \ SR) (3)

The details of finding the number of training samples of the set SR for each class
will be described in section 4.

3.3 Mutation

When a chromosome w = (w0, w1, w2..., wd) representing the half-plane in (1)
undergoes mutation, the value of wi, i = 0, 1, 2..., d, is modified with a fixed
probability pm. When the value of wi, i = 1, 2..., d, is mutated, it is set to zero
or modified by Gaussian mutation [10]. When the value of w0 is mutated, it is
modified by Gaussian mutation.

4 Induction of Linear Decision Trees Using k-D Trees

In this paper, k-D trees are applied to speed up the induction of a linear decision
tree. After a new node Nh of a linear decision tree is created, a k-D tree is
constructed before the optimal half-plane is found. Each node of a k-D tree
store the statistics of a subset of training samples. Suppose the node NQ of a
k-D tree stores the statistics of the set SQ ⊆ Sh of training samples. Here are
the characteristics of the node NQ:

– The extreme values (the maximum and the minimum values) of each input
attribute of the set SQ is stored.

– The number of training samples of the set SQ for each class is stored.
– If NQ is the root node of a k-D tree, the statistics of the set Sh are stored.

Otherwise NQ has two child nodes, each of which stores the statistics of one
of the two disjoint subsets of the set SQ.

– The set SQ is not necessarily homogeneous.

In subsection 3.2, the fitness value of the chromosome representing the half-
plane in (1) depends on the number of training samples satisfying (1) for each
class. Intuitively, the number of training samples satisfying (1) for each class can
be evaluated by considering whether each training sample lies on the positive
side of the half-plane. Alternatively, a k-D tree can be constructed so that it is
necessary to consider a subset of training samples only. At each node of a k-D
tree, the extreme values of each input attribute of a subset of training samples
are stored. The smallest hyperrectangle containing this subset can be determined
using the extreme values of each input attribute. If the whole hyperrectangle lies
on the positive side (or the negative side) of the half-plane, all the training sam-
ples inside the hyperrectangle must also lie on the positive side (or the negative
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side) of the half-plane. The computational time can be greatly reduced if the
hyperrectangle contains a sufficient number of training samples.

The following shows the algorithm of the procedure createKDT(), which out-
lines the steps of creating a new node (and the descendants) of a k-D tree. The
procedure createKDT(Sh, 0) is invoked to construct a k-D tree.

– PROCEDURE createKDT
– INPUTS
• A set of training samples SQ = {x(1)

Q ,x(2)
Q ...,x(|SQ|)

Q }, where x(i)
Q =

(x(i)
Q,1, x

(i)
Q,2..., x

(i)
Q,d, c

(i)
Q )T , i = 1, 2..., |SQ|, x

(i)
Q,1, x

(i)
Q,2..., x

(i)
Q,d, are the in-

put attributes and c
(i)
Q is the class label of the sample x(i)

Q .
• An integer k′ ∈ {1..., d}.

– OUTPUT A pointer to a new node NQ of a k-D tree.

1. Initialize the vector yQ = (yQ,1, yQ,2..., yQ,d), where yQ,i, i = 1, 2..., d, is the
minimum value of the ith input attribute of the set SQ of training samples.

2. Initialize the vector zQ = (zQ,1, zQ,2..., zQ,d), where zQ,i, i = 1, 2..., d, is the
maximum value of the ith input attribute of the set SQ of training samples.

3. IF |SQ| < nQ OR yQ = zQ, THEN NQ is declared as a leaf node and return
the pointer to NQ.

4. Set k = k′ + 1 such that the kth input attribute is used to partition the set
SQ into 2 disjoint subsets.

5. WHILE yQ,k = zQ,k

Set k = ((k + 1) mod d) + 1.
6. Set γ = 1

|SQ|
∑|SQ|

j=1 x
(j)
Q,k

7. Set XQ,L = XQ,R = φ
8. FOR i = 1 TO |SQ| DO

IF x
(i)
Q,k ≤ γ, THEN Set XQ,L = XQ,L ∪ {x(i)

Q }
ELSE Set XQ,R = XQ,R ∪ {x(i)

Q }
9. Set ΓQ,L = createKDT(XQ,L, k) and ΓQ,R = createKDT(XQ,R, k), where

ΓQ,L and ΓQ,R are pointers to the child nodes of NQ.

The following shows the algorithm of the procedure processKDT(), which out-
lines the steps to evaluate the number of training samples satisfying the half-
plane in (1) for each class.

– PROCEDURE processKDT
– INPUTS

1. A node NQ of a k-D tree.
2. A set of training samples SQ = {x(1)

Q ,x(2)
Q ...,x(|SQ|)

Q }, where x(i)
Q =

(x(i)
Q,1, x

(i)
Q,2..., x

(i)
Q,d, c

(i)
Q )T , i = 1, 2..., |SQ|, x

(i)
Q,1, x

(i)
Q,2..., x

(i)
Q,d are the in-

put attributes and c
(i)
Q is the class label of the sample x(i)

Q .
3. A (d + 1)-dimensional vector w = (w0, w1, ..., wd)T which represents the

half-plane in (1).



Induction of Linear Decision Trees with RCGA and kDT 269

– INPUT/OUTPUT
A C-dimensional vector rh = (rh,1, rh,2..., rh,C), where rh,i, i = 1, 2..., C, is
the number of training samples for class i arriving at a node of a decision
tree such that (1) is satisfied and C is the number of possible classes.

1. If the node NQ is the root node of a k-D tree, set rh,i = 0, i = 1, 2..., C.
2. IF |SQ| ≤ 2, THEN

(a) FOR i = 1 TO |SQ| DO
IF
∑d

j=1 wjx
(i)
Q,j > w0, THEN set r

h,c
(i)
Q

= r
h,c

(i)
Q

+ 1.

(b) Return.
3. Initialize the set SQ,i, i = 1, 2, ..., C, of training samples for class i in the set

SQ.
4. Define yQ,i and zQ,i, i = 1, 2..., d as the minimum and the maximum values

of the ith input attribute of the set SQ respectively.
5. Initialize the hyperrectangle HQ = [yQ,1, zQ,1]× [yQ,2, zQ,2]× ...× [yQ,d, zQ,d].
6. IF HQ lies on the positive side of the half-plane in (1) (i.e.

∑d
j=1[yQ,j(|wj |+

wj) + zQ,j(|wj | − wj)] > 2w0), THEN set rh,i = rh,i + |SQ,i|, i = 1, 2, ..., C

ELSE IF the half-plane in (1) cuts the hyperrectangle HQ (i.e.
∑d

j=1[yQ,j

(|wj | − wj) + zQ,j(|wj |+ wj)] > 2w0), THEN
IF the node NQ is a non-leaf node, THEN
(a) Let XQ,L and XQ,R be the sets of training samples arriving at the left

and the right child nodes of the node NQ respectively.
(b) Let ΓQ,L and ΓQ,R be the pointers to the child nodes of the node NQ.
(c) Invoke the procedure processKDT(ΓQ,L, XQ,L, w, rh) and the procedure

processKDT(ΓQ,R, XQ,R, w, rh).
ELSE FOR i = 1 TO |SQ| DO
IF
∑d

j=1 wjx
(i)
Q,j > w0, THEN set r

h,c
(i)
Q

= r
h,c

(i)
Q

+ 1.

5 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated in terms
of validation accuracy and execution time. A variant of the proposed algorithm,
called RCGA-based LDT, is also included for performance comparison in this
section. RCGA-based LDT is very similar to RCGA-based LDT with kDT, ex-
cept that no k-D tree is applied to facilitate the construction of linear decision
trees. Four datasets were chosen for performance comparison. All the experi-
ments were executed on an Intel P4 2.4GHz machine under Linux platform.

The first dataset, called ADS1, is an artificial dataset with 1000 samples.
ADS1 is a three-class problem. Two straight lines are used to separate the sam-
ples into three classes. Each sample is a two-dimensional vector (x1, x2), where
x1, x2 ∈ [0, 1000]. If a sample satisfies (4), it is labeled as class 1. If a sample
violates (4) but satisfies (5), it is labeled as class 2. If a sample satisfies neither
(4) nor (5), it is labeled as class 3.

− 0.1x1 + 0.9x2 > 400 (4)
0.2x1 − 0.8x2 < 350 (5)
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ADS2 and ADS3, are artificial datasets with 10,000 and 100,000 samples
respectively. The class boundaries of ADS2 and ADS3 are identical to that of
ADS1.

A real life dataset, called SPOT, is a satellite image taken by SPOT satellite.
88,992 pixels of the satellite image are labeled with one of the twelve possible
classes. Each labeled pixel has five numeric input attributes, including the in-
tensities of four spectral bands and the height above the sea level.

The validation accuracy of RCGA-based LDT with kDT is compared with
that of various decision tree algorithms, including C4.5, OC1, Ltree, OC1-GA,
OC1-ES [4], BTGA and RCGA-based LDT. The number of generations and the
population size for OC1-GA, BTGA, RCGA-based LDT and RCGA-based LDT
with kDT are 500 and 20 respectively. The parameters for each decision tree
algorithm (except number of generations and population size, if applicable) are
adjusted so as to maximize its validation accuracy.

Table 1. Comparison of Validation Accuracies (%) of Various Decision Tree Algorithms

Algorithm ADS1 ADS2 ADS3 SPOT

C4.5 96.4 ± 0.7 98.74 ± 0.12 99.632 ± 0.018 89.17 ± 0.09
OC1 98.1 ± 0.6 99.59 ± 0.13 99.750 ± 0.013 88.47 ± 0.13
Ltree 98.3 ± 0.3 98.76 ± 0.25 99.131 ± 0.079 89.16 ± 0.07

OC1-GA 98.4 ± 0.6 99.31 ± 0.13 99.680 ± 0.017 88.80 ± 0.09
OC1-ES 98.6 ± 0.5 99.60 ± 0.13 99.710 ± 0.026 88.75 ± 0.09
BTGA 99.3 ± 0.3 99.81 ± 0.06 99.900 ± 0.026 87.61 ± 0.64

RCGA-based LDT 99.4 ± 0.3 99.88 ± 0.03 99.924 ± 0.004 89.43 ± 0.14
RCGA-based LDT with kDT 99.4 ± 0.3 99.88 ± 0.03 99.924 ± 0.004 89.43 ± 0.14

Table 1 shows the average and the standard deviation of the validation ac-
curacies of various decision tree algorithms on ADS1, ADS2, ADS3 and SPOT
when 2-fold cross-validation is applied over 10 runs. According to the one-sided
t-tests, RCGA-based LDT and RCGA-based LDT with kDT outperform the
others on all the datasets in terms of validation accuracy at 95% confidence
interval.

Since RCGA-based LDT and RCGA-based LDT with kDT outperform the
others in terms of validation accuracy, their execution times were compared.
Table 2 shows their execution times on ADS1, ADS2, ADS3 and SPOT when
2-fold cross-validation is applied over 10 runs.

RCGA-based LDT with kDT run faster than RCGA-based LDT on all the
datasets. The execution times on the artificial datasets show that the speed-up
of RCGA-based LDT with kDT with respect to RCGA-based LDT increases as
the size of a dataset increases.

6 Conclusion

In this paper, a novel decision tree algorithm, where a k-D tree is constructed
before searching for the optimal linear decision function at each internal node
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Table 2. Comparison of Execution Times (in seconds) of RCGA-based LDT and
RCGA-based LDT with kDT

Dataset RCGA-based LDT RCGA-based LDT with kDT

ADS1 2.43 ± 0.02 0.57 ± 0.01
ADS2 23.43 ± 0.16 2.39 ± 0.18
ADS3 246.8 ± 0.8 11.47 ± 0.13
SPOT 1903.3 ± 32.4 760.7 ± 5.9

of a decision tree, is introduced. The proposed algorithm constructs a better
linear decision tree when compared with other linear decision tree algorithms.
The proposed algorithm uses k-D trees to speed up the construction of linear
decision trees without sacrificing the quality of the constructed decision trees.
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Bearing Similarity Measures
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Abstract. The neural representation of space in rats has inspired many
navigation systems for robots. In particular, Self-Organizing (Feature)
Maps (SOM) are often used to give a sense of location to robots by
mapping sensor information to a low-dimensional grid. For example, a
robot equipped with a panoramic camera can build a 2D SOM from
vectors of landmark bearings. If there are four landmarks in the robot’s
environment, then the 2D SOM is embedded in a 2D manifold lying
in a 4D space. In general, the set of observable sensor vectors form a
low-dimensional Riemannian manifold in a high-dimensional space. In a
landmark bearing sensor space, the manifold can have a large curvature
in some regions (when the robot is near a landmark for example), mak-
ing the Eulidian distance a very poor approximation of the Riemannian
metric. In this paper, we present and compare three methods for measur-
ing the similarity between vectors of landmark bearings. We also discuss
a method to equip SOM with a good approximation of the Riemannian
metric. Although we illustrate the techniques with a landmark bearing
problem, our approach is applicable to other types of data sets.

1 Introduction

The ability to navigate in an unknown environment is an essential require-
ment for autonomous mobile robots. Conventional Simultaneous Localization and
Mapping (SLAM) involves fusing observations of landmarks with dead-reckoning
information in order to track the location of the robot and build a map of the
environment [1]. Self Organizing (Feature) Maps (SOM) are capable of repre-
senting a robot’s environment. Sensor readings collected at different locations
throughout the environment make up the training set of the SOM. After train-
ing, self-localization is based on the association of the the neurons of the SOM
with locations in the environment [2,3]. Robustness to noise in the sensors can
be achieved with probabilistic methods such as Extended Kalman Filters [4–7]
or Particle Filters [8–10].

Navigation systems based on range sensors such as radar, GPS, laser or ul-
trasonic sensors are significantly more expensive than navigation systems relying
only on vision [11–13]. An omni-directional vision sensor is composed of a digital
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camera aiming at a catadioptric mirror. Although it is not straightforward to
obtain distance estimations from omni-directional images due to the shape of the
mirror, the bearings of landmarks relative to the robot are reasonably accurate
and easy to derive from omni-directional images [14–16].

The Euclidean metric is the default distance used in most neural network
toolboxes. Unfortunately, using this distance to train a SOM on a data-set of
landmark bearing vectors collected at different locations uniformly distributed
throughout the environment does not produce a grid of neurons whose associated
positions in the environment are evenly distributed.

This is not very suprising as the Euclidian distance gives the same impor-
tance to all the components of the sensor vectors (here landmark bearings). It is
intuitively clear that is not the right thing to do. The further a landmark is from
the robot the larger the importance of its bearing becomes, as the bearing of a
near landmark changes more wildly than the bearing of a far landmark when
the robot is in motion. Therefore, we should give a relatively large weight to a
far landmark and a relatively small weight to a near landmark. But, what values
should these weights take? How to determine them in practice? In this paper,
we provide answers to those questions.

Section 2 relates three landmark bearing vector metrics to probabilistic clas-
sifiers. In the same section, we present numerical experiments comparing these
metrics. Section 3 outlines a method for estimating the intrincic metric of a
Riemannian manifold of sensor inputs. Section 4 concludes this paper.

2 Similarity Measures for Bearing Vectors

In this section, we present three different methods to assess the similarity be-
tween two vectors of landmark bearings. The movitation of this project was to
give a robot a sense of location and distance by building a SOM. The input
vectors of the SOM are vectors of landmark bearings. Figure 1 illustrates the
environment of the robot. In this example, the robot roves in a room equipped
with 3 landmarks. The robot collects training sets by performing random walks.
For a 2×3 rectangular grid SOM, we could expect that the neurons of a trained
SOM would be uniformely distributed. That is, the neurons should end up at the
centres of the rectangular cells of Figure 1. Experiments with real and simulated
robots show that the SOM fails to spread uniformly (with respect to the ground)
if the Euclidian distance is used in sensor space.

To better understand the causes of the failure of the SOM to spread uni-
formly, we have investigated the shapes of the cells induced by bearing vector
prototypes corresponding to regularly spaced observations on the ground. Ob-
servations were collected throughout the environment of Figure 2. The ground
is partitioned into 15 = 3× 5 equal size grid cells. The average direction to each
landmark in each cell are represented by the arrows at the centres of the cells.
The length of an arrow represents the importance of the pointed landmark. The
computation of this importance value is explained later in the paper.

The 15 = 3× 5 mean vectors of landmark bearings in the different cells play
the role of SOM neurons. The corresponding Voronoi diagram computed with
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l
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Fig. 1. A toy model of a robot environment

the Euclidian distance on the bearing vectors is shown in Figure 3. We observe
that with the Euclidian distance a large proportion of points get assigned to an
incorrect cell centre. In this context, the localization problem can indeed be cast
as a classification problem. Given a new bearing vector x, determining the cell in
which the observation was made reduces to computing the probabilities P (i|x)
that the obervation has been made in the different rectangular cells i of Figure 2.

A Naive Bayes classifier provides a principled way to assign weights to the
different landmarks. Recall that a Naive Bayes classifier simply makes the as-
sumption that the different features x1, . . . , x4 of the input vector are condition-
ally independent with respect to class i. That is, P (x1, . . . , x4|i) = P (x1|i) ×
. . . × P (x4|i). With this class conditioned independence hypothesis, the most
likely cell i is determined by computing argi maxP (x1|i)× . . .×P (x4|i). Let μji

be the mean value of xj observed in cell i, and let σji be the standard deviation
of xj (the bearing of landmark j) observed in cell i. Then, we have

P (xj |i) =
1√

2πσji

e
− (xj−μji)

2

2σ2
ji

For the classification task, we compute the Naive Bayes pseudo-distance be-
tween the input vector x and μi the bearing vector prototype of cell i;

− log(
∏
j

P (xj |i)) =
∑

j

(xj − μji)2

2σ2
ji

+ θi (1)

where θi =
∑

j log(
√

2πσji).
For this pseudo-distance, the weight of the bearing of a landmark j is deter-

mined by the standard deviation of the sample collected in the cell. The right
hand side of Equation 1 is in agreement with our intuition that the further a
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Fig. 2. An environment partitioned into 15 = 3×5 equal size grid cells. The four large
dots are the landmarks

landmark j is, the more significant the difference (xj − μji)2 becomes. Indeed
the further the landmark is, the larger 1

2σ2
ji

is.
Figure 4 shows the Voronoi diagram induced by Naive Bayes pseudo-distance

on landmark bearing vectors is more in agreement with the Euclidian distance
on the ground (compare Figures 3 and 4).

Further improvement in the accuracy of the localization can be obtained
by estimating the covariance matrices of the sensor vector random variable in
the different cells of Figure 2. Let Ci denote the covariance matrix of the n-
dimensional bearing vectors collected in cell i. The general multivariate Gaussian
density function for a sensor vector x observed in cell i is given by

P (x|i) =
1

(2π)
n
2 |Ci| 12

e−
1
2 (x−μi)

T C−1
i

(x−μi) (2)

The Mahalanobis distance is obtained by taking the negative logarithm of
Equation 2. The Mahalanobis distance has been successfully used for a wide
range of pattern recognition and data mining problems. It has been also extended
to mixed data [17]. In robotics, the Mahalanobis distance has proved useful for
the data association problem [18,19]. In previous work, the covariance matrix
was used differently. It was used to model the noisy sensors. That is, given the
Cartesian coordinates of the robot and the landmarks, measuments are repeated
(without moving the robot) to estimate the noise in the sensors. Our approach is
fundamentally different. The covariance matrix of the bearing vectors collected in
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7 8 9
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13 14 15

Fig. 3. Voronoi diagram computed with the Euclidian distance on the bearing vectors.
The induced partition is quite different from the ideal partition of Figure 1. In par-
ticular, observation vectors corresponding to points close to the centre of cell 1 are
incorrectly assigned to cell 2

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Fig. 4. Voronoi diagram computed with the Naive Bayes classifier weighted distance
on the bearing vectors. About 250 observations per cell were made for the evaluation
of the statistical parameters of the Gaussian distributions
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Fig. 5. The best classification is achieved with the Mahalanobis distance

a given cell i provides us with some information on the geometry of the manifold
around this point in sensor space.

Figure 5 shows the classification results when using the Mahalanobis dis-
tance. Our experimental results (in simulation) show that the Euclidean dis-
tance achieves a classification accuracy of 92.17% percents, whereas the Naive
Bayes distances achieves a classification accuracy of 97.14% percents. However,
the best results are achieved with the Mahalanobis distance which reaches an
accuracy of 99.32%.

3 Strategy for Approximating the Riemannian Manifold

It is desirable to automatically build the partition of Figure 2. Unfortunately, a
training set of observations does not allow us to directly compute the covariance
matrices (assuming we have only access to bearing information). Morevover, we
already saw that using a standard SOM training algorithm is not an option
(failure to spread the neurons evenly with respect to the ground). A possible
strategy is to consider the weighted complete graph G whose vertices are the
bearing vectors of a training set T and whose edge-weigths are the Euclidian
distance between the bearing vectors. Unfortunately, methods that build an
auxiliary graph based on the k-nearest neighbors (like [20]) fail to build a proper
grid for manifolds that have significantly different curvatures in orthogonal di-
rections (the k nearest neighbors will be along the same direction). To address
this problem, we build a graph Gθ obtained from G by removing all edges whose
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weights are larger than θ, (or equivalently setting the weights of those edges to
∞). We then compute a grid-like subgraph H of Gθ by imposing constraints
on the relative positions of the neighbors. Preliminary experiments have shown
that it is possible to compute H by simulating annealing using a fitness function
based on the discrepancy of the degrees of the vertices of H (the desired degree
is 4). A suitable representation of H for this search is as a union of a set of
cycles of length 4 of Gθ. From H , we can then estimate the distance between
two bearing vectors on the manifold by computing the length of a shortest path
in H . This work will be presented in a forthcoming paper.

4 Conclusion

In this paper, we have highligthed the differences between three natural similarity
measures for bearing vectors. We have demonstrated the clear superiority of the
Mahalanobis distance for localization based on bearings problems. We have also
sketched a method for approximating the distance on the Riemannian manifold
defined by a training set of sensor vectors. The approach presented in this paper
is generic and not limited to localization from landmark bearing problems.
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INPUT Data = {d
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, d
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3
…d

n
}  /*data items set */ 

 k      /*number of desired clusters */ 
OUTPUT k      /*set of desired clusters*/   
BEGIN 
 Call Function Construct_Tree ( Data )  
 /* Through binary tree insertion operation [3]  */ 
 Assign initial values for means m

1
, m

2
, m

3
,.. m

k
 and   

 Arrange them in order with respect to each dimension 
 /* One sorted list for each dimension */ 
 Assign the initial values to X

lower
, X

Higher
, Y

Lower
 and Y

Higher
 

 REPEAT 
 Call Function Cluster (Root_Node )  
 /* given in Figure 2 / 
 Calculate new means of clusters 
 UNTIL   (convergence criteria is meet) 
END 



→ → → →



Function Cluster (Node *node) 
BEGIN 
 IF node->left_Y_Pointer NOT NULL 
 Call Function Cluster (node->left_Y_Pointer )  
 Initialize XLower and XHigher 
 END_IF 
 IF node->left_X_Pointer NOT NULL 
 Call Function Cluster ( node->left_X_Pointer )  
 END_IF 
 Define near_XPoint and near_YPoint as Point  
 WHILE TRUE 
 IF data item at node is closer to XLower 
 Assign XLower to near_XPoint 
 Break  
 ELSE 
 IF XHigher is the last Item is the means list sorted wrt X Di-

mension 
 Assign XHigher to near_XP 
 Break   
 ELSE 
 Assign the value of XHigher to XLower  
 Assign next higher order mean value to XHigher  
 END_IF 
 END_IF 
 END_WHILE 
 WHILE TRUE 
 IF data item at node is closer to YLower 
 Assign YLower to Near_YPoint 
 Break   
 ELSE 
 IF YHigher is the last Item is the means list sorted wrt Y Di-

mension 
 Assign YHigher to near_YP 
 Break   
 ELSE 
 Assign the value of YHigher to YLower  
 Assign next higher order mean value to YHigher  
 END_IF 
 END_IF 
 END_WHILE 
 IF near_XP is equal to near_YP 
 Assign the data item to the cluster having mean near_XP 
 /* near_XP and near_YP are same Points*/ 
 ELSE 
 Find the closer Point to the data item at the node between 

near_XP and near_YP 
 IF the data item at the node is closer to near_XP 
 Assign the Data Item to the cluster having mean near_XP   
 ELSE 
 Assign the Data Item to the cluster having mean near_YP 
 END_IF 
 END_IF 
 IF node->right_X_Pointer NOT NULL 
 Call Function Cluster ( node->right_X_Pointer )  
 END_IF 
 IF node->right_Y_Pointer NOT NULL 
 Initialize XLower and XHigher 
 Call Function Cluster (node->left_Y_Pointer )  
 END_IF 
END 





= =

−+−+−=





Cluster Analysis of High-Dimensional Data:
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Abstract. Normal mixture models are often used to cluster continu-
ous data. However, conventional approaches for fitting these models will
have problems in producing nonsingular estimates of the component-
covariance matrices when the dimension of the observations is large rela-
tive to the number of observations. In this case, methods such as principal
components analysis (PCA) and the mixture of factor analyzers model
can be adopted to avoid these estimation problems. We examine these
approaches applied to the Cabernet wine data set of Ashenfelter (1999),
considering the clustering of both the wines and the judges, and com-
paring our results with another analysis. The mixture of factor analyzers
model proves particularly effective in clustering the wines, accurately
classifying many of the wines by location.

1 Introduction

In recent times much attention has been given in the scientific literature to the
use of normal mixture models as a device for the clustering of continuous data;
see, for example, McLachlan and Peel (2000b). With this approach, the observed
data y1, . . . yn, are assumed to have come from the normal mixture distribution,

f(y; Ψ) =
g∑

i=1

πiφ(y; μi, Σi), (1)

where φ(y; μ, Σ) denotes the p-variate normal density function with mean μ
and covariance matrix Σ. Here the vector Ψ of unknown parameters consists of
the mixing proportions πi, the elements of the component means μi, and the
distinct elements of the component-covariance matrix Σi. The normal mixture
model (1) can be fitted iteratively to an observed random sample y1, . . . , yn by
maximum likelihood (ML) via the expectation-maximization (EM) algorithm of
Dempster et al., (1977); see also McLachlan and Krishnan (1997). Frequently, in
practice, the clusters in the data are essentially elliptical, so that it is reasonable
to consider fitting mixtures of elliptically symmetric component densities. Within
this class of component densities, the multivariate normal density is a convenient
choice given its computational tractability.

Under (1), the posterior probability that an observation with feature vector
yj belongs to the ith component of the mixture is given by

τi(yj) = πiφ(y; μi, Σi)/f(yj ; Ψ) (2)

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 302–310, 2005.
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for i = 1, . . . , g. The mixture approach gives a probabilistic clustering in terms of
these estimated posterior probabilities of component membership. An outright
partitioning of the observations into g nonoverlapping clusters C1, . . . , Cg is
effected by assigning each observation to the component to which it has the
highest estimated posterior probability of belonging. Thus the ith cluster Ci

contains those observations assigned to the ith component.
The g-component normal mixture model (1) with unrestricted component-

covariance matrices is a highly parameterized model with 1
2p(p + 1) parameters

for each component-covariance matrix Σi (i = 1, . . . , g). In order for a non-
singular estimate of a component-covariance matrix to be obtained, effectively
(p + 1) observations need to be assigned to that component. Hence problems
arise in the fitting of normal mixtures with unrestricted component-covariance
matrices, especially if p is large relative to the number of observations n. In mi-
croarray experiments, for example, p can be several thousand while n may be no
greater than 100 or so. This represents an extreme case; there can be problems
for p as small as, say, 20 if n is not relatively large. Hence in practice, there is a
need for methods that can handle the analysis of high-dimensional data.

Banfield and Raftery (1993) introduced a parameterization of the component-
covariance matrix Σi based on a variant of the standard spectral decomposition
of Σi (i = 1, . . . , g). A common approach to reducing the the number of di-
mensions is to perform a principal component analysis (PCA). But projections
of the feature data yj onto the first few principal axes are not always useful
in portraying the group structure; see McLachlan and Peel (2000a, Page 239).
This point was also stressed by Chang (1983), who showed in the case of two
groups that the principal component of the feature vector that provides the best
separation between groups in terms of Mahalanobis distance is not necessarily
the first component.

Another approach for reducing the number of unknown parameters in the
forms for the component-covariance matrices is to adopt the mixture of fac-
tor analyzers model, as considered in McLachlan and Peel (2000a, 2000b). In
this paper, we present an example to demonstrate further the differences be-
tween using principal components and mixtures of factor analyzers to cluster
high-dimensional data. The example concerns the Cabernet wine data set of
Ashenfelter (1999). In this data set, 32 judges ranked 46 wines from nine differ-
ent countries on a scale of 1 to 46. All the information about the wines is known,
but the judges refused to be identified.

2 Mixtures of Factor Analyzers

Factor analysis is commonly used for explaining data, in particular, correlations
between variables in multivariate observations. It can be used also for dimension-
ality reduction, although the method of PCA is more widely used in this role.
However, the effectiveness of these two statistical techniques is limited by their
global linearity. A global nonlinear approach can be obtained by postulating a
finite mixture of linear submodels (factor analyzers) for the distribution of the
full observation vector Yj . That is, with the mixture of factor analyzers model,
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we can provide a local dimensionality reduction method by assuming that the
distribution of the observation Yj can be modelled by (1), where

Σi = BiB
T
i + Di (i = 1, . . . , g), (3)

where Bi is a p × q matrix of factor loadings and Di is a diagonal matrix (i =
1, . . . , g). The parameter vector Ψ now consists of the elements of the μi, the Bi,
and the Di, along with the mixing proportions πi (i = 1, . . . , g− 1), on putting
πg = 1 −∑g−1

i=1 πi. Unlike the PCA model, the factor analysis model (3) enjoys
a powerful invariance property: changes in the scales of the feature variables in
yj , appear only as scale changes in the appropriate rows of the matrix Bi of
factor loadings.

We can represent an original data point yj in q-dimensional space by plotting
the estimated conditional expectation of each factor given yj and its component
membership, that is, the (estimated) posterior mean of the factor Uij (i =
1, . . . , g; j = 1, . . . , n), where Uij is the latent factor corresponding to the jth
observation in the ith component (see Section 8.7.4 in McLachlan and Peel,
2000b).

It can be seen that the mixture of factor analyzers model provides a way
of controlling the number of parameters through the reduced model (3) for the
component-covariance matrices. It thus provides a model intermediate between
the independent and unrestricted models. The adequacy of the fit of a mixture of
factor analyzers with q factors can be tested using the likelihood ratio statistic,
as regularity conditions hold for tests on the value of q for a fixed number of
components g. The model can be fitted by using the alternating expectation–
conditional maximization (AECM) algorithm, whereby the single M-step of the
EM algorithm is replaced by a number of computationally simpler conditional
maximization (CM) steps and where the specification of the complete data is
allowed to be different on each CM-step.

If the number of factors q is chosen sufficiently small relative to the number
of observations n, then there will be no singularity problems in fitting a mixture
of factor analyzers for equal component-covariance matrices. For unrestricted
component-covariance matrices, there may still be some problems if the clusters
are small in size; in which case, they can be avoided by specifying the diagonal
matrices Di to be the same.

3 Clustering of Wines

The list of wines is given in Table 1, with the numbering of the wine in the first
column and the ranking of the wine in the final column. In the scatter plots, the
wine numbers are prefixed by a two letter ISO country code, or by CA or WA
when the wine is from California or Washington.

For these data there is interest in two clustering problems: the clustering of
the wines on the basis of the (judges’) scores and the clustering of the judges
on the basis of their scores for the wines. We consider first the former problem,
by fitting a mixture of g = 2 factor analyzers with q = 2 factors to the n = 46
wines on the basis of the p = 32 scores of the judges.
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Table 1. List of wines with ranking in final column

1 Quilced Creek Cab. Sauv. ’95 21
2 Chateau Latour ’95 43
3 l’Ermita, Palacios (Priorat) ’95 36
4 Chateau Ceval-Blanc ’95 29
5 Ornellaia ’94 39
6 Harlan Napa Valley Cab. Sauv. ’94 11
7 Gallo Northern Sonoma Cab. Sauv. ’94 14
8 Mitchelton Victoria Print Shiraz ’95 24
9 Quintessa of Rutherford ’95 33
10 Grans Muralles, Torres ’96 20
11 Chateau Kefraya Comte de M Cuvee ’96 10
12 Dalla Valle Napa Valley Maya ’94 6
13 Grace Family Vineyard Napa Valley Cab. Sauv. ’94 18
14 Henry Lagarde Lujan de Cuyo Syrah ’95 45
15 Dave Nichol Stag’s Leap Hillside Reserve Cab. Sauv.’91 37
16 Chateau Pichon-Longueville, Comtesse de Lalande5 28
17 Ridge Vineyards Monte Bello Red Table Wine ’95 17
18 Plaisir de Merle Paarl Cab. Sauv.’95 41
19 Stag’s Leap Wine Cellars Napa Valley Cab. Sauv.,Cask 23 ’95 4
20 Arietta Napa Valley Red Table Wine ’96 9
21 Sassicaia ’94 34
22 Caymus Vineyard Napa Valley Cab. Sauv. ’95 5
23 Chateau Lefite ’95 40
24 Chateau Le Pin ’95 NR
25 Longridge Hawkes Bay Merlot ’95 46
26 Plumpjack Napa Valley Cab. Sauv. ’95 13
27 Clark-Clauden Napa Valley Cab. Sauv. ’95 1
28 Staglin Napa Valley Cab. Sauv., reserve ’95 12
29 Chateau Margaux ’95 23
30 Araugo napa Valley Cab. Sauv., Eisele Vineyard ’94 3
31 Brant family Vineyard Napa Valley Cab. Sauv. ’95 22
32 Chateau Los Boldos Cab. Sauv. Vieille Vignes ’97 32
33 Beringer Napa Valley Cab. Sauv., Bancroft Vineyard ’94 2
34 Cogin Napa Valley Cab. Sauv., Herb Lamb Vineyard ’94 27
35 Penfold’s Cab. Sauv., Bin 707 ’90 25
36 Ridge Vineyards Geyersville Red Table Wine ’95 16
37 Screaming Eagle Napa Valley Cab. Sauv. ’95 8
38 Martinelli Jackass Hill Zinfandel ’94 35
39 Chateau Petrus ’95 26
40 De Lille Cellars Chaleur Estate Red Table Wine ’94 19
41 Turley Napa Valley Zinfandel, Aida Vineyard ’95 42
42 Chateau hout-Bion ’95 31
43 Lionetti Cab. Sauv. ’95 7
44 Forman Winery Napa Valley Cab. Sauv. ’94 15
45 Tarapaca Maipo Valey Zavala Red Table Wine ’96 30
46 Chateau Mouton-Rothschild ’95 38
47 Veramonte Primus Casablanca Valley Merlot ’96 44
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A test of the value of the number of components g corresponding to the
number of clusters in the data can be based on the likelihood ratio statistic
λ. However, regularity conditions do not hold for −2 logλ to have its usual
(asymptotic) null distribution of chi-squared with degrees of freedom d equal to
the difference between the number of parameters under the null and alternative
hypotheses. Thus we adopted a resampling approach (McLachlan, 1987). On
the basis of B = 19 replications of −2 logλ, we rejected the null hypothesis
H0 : g = 1 versus of the alternative H1 : g = 2 at the 5% level. The null
hypothesis of a single normal component was rejected also using the Bayesian
information criterion (BIC) since it was found that

− 2 logλ > d log(n) (4)

The case of unequal unrestricted component-covariance matrices was consid-
ered but rejected on the basis of BIC in favour of a common covariance matrix
for the components. In the latter case, we can fit a mixture of two p = 32 di-
mensional normal components to the n = 46 wines, but we decided to work
with a mixture of factor analyzers to keep the number of parameters down to
a reasonable level compared to n. With the fitting of a mixture of g = 2 factor
analyzers and q = 2 factors and equal component-covariance matrices, the wines
fall into two clear groups. To illustrate the separation between the two clusters
we plot the first canonical variate of the 46 wines in Figure 1. As there are only
two groups, the canonical space is one-dimensional.

20 30 40 50 60 70 80

Fig. 1. First canonical variate of the 46 wines. Napa Valley wines are represented by
triangles and other wines by circles

The choice of q = 2 factors was taken after the test of this value versus q = 3
was not significant according to the likelihood ratio statistic with null distribu-
tion taken to be chi-squared with 60 degrees of freedom. Although regularity
conditions do not hold for the likelihood ratio test on the number of components
g, they do for the number factors q for a given g. More specifically, for the test
of the null hypothesis that H0 : q = q0 versus the alternative H1 : q = q0 +1, the
likelihood ratio statistic −2 logλ under H0 is asymptotically chi-squared with
d = g(p− q0) degrees of freedom.
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Fig. 2. Plot of the first two principal components of a PCA on the 46 wines. Here CA
indicates California, WA indicates Washington, and any other two letter code is an
ISO country code. The ellipses indicate the two groups given by fitting a mixture of
two normals with equal covariance matrices to the PCs. Napa Valley wines are in bold

It is of interest to compare the clustering obtained using mixtures of g = 2
factor analyzers (q = 2 factors) with that obtained using a mixture of two nor-
mals fitted to the first two PCs. To this end, we display in Figure 2 a scatter plot
of the first two PCs with the wine labels and implied clustering obtained fitting
a mixture of two bivariate normals to these PCs. For comparative purposes, we
give the clustering obtained by mixtures of factor analyzers in the space of the
first two PCs in Figure 3. The larger cluster obtained using mixtures of factor
analyzers contains 14 of the 16 Napa Valley wines from California, while the
smaller cluster obtained using mixtures of normals fitted to the first two PCs
contains 12 of the 16 Napa Valley wines.

4 Cluster Analysis of Judge Scores

Young (2005) indicated that “there are three judges (16, 26, 31) that march to
the beat of a different drummer.” These atypical judges were detected with the
PowerMV program of Liu et al. (2005) using an R/G plot of the outer product
of the right and left eigenvectors.
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Fig. 3. Clusters obtained by mixtures of factor analyzers together with Napa Valley
and Bordeaux wines

A plot of the estimated posterior means of the (unobservable) factors from
fitting a single factor analysis model with q = 2 factors also suggests that these
judges (plus judge 15) are quite distinct from the others in their scores. The plot
is given in Figure 4.

It is of interest to consider the clustering of the 32 judges on the basis of
their scores for 46 wines. For this clustering problem, we now have n = 32 and
p = 46. Using equal covariance matrices and fitting g = 2 factor analyzers with
q = 2 resulted in two clusters each of size 16, placing judges 16 and 26 in one
cluster and judge 31 in the other.

A resampling approach with B = 19 replications, as above, showed that the
test of g = 1 versus g = 2 groups was significant at the 5% level.
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component factor analysis of the judge scores in the wine data set
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Abstract. We propose universal clustering in line with the concepts of
universal estimation. In order to illustrate the model of universal clus-
tering we consider family of power loss functions in probabilistic space
which is marginally linked to the Kullback-Leibler divergence. The model
proved to be effective in application to the synthetic data. Also, we con-
sider large web-traffic dataset. The aim of the experiment is to explain
and understand the way people interact with web sites.

1 Introduction

Clustering algorithms group empirical data according to the given criteria into
several clusters with relatively stable and uniform statistical characteristics.

In this paper we consider prototype-based or distance-based clustering model.
The corresponding solution may be effectively approximated using k-means al-
gorithm within Clustering-Minimization (CM) framework [1]. This algorithm
includes 2 main steps. Initially, we have to choose k prototypes. The correspond-
ing empirical clusters will be defined in accordance to the criteria of nearest
prototype measured by the distance Φ. Respectively, we will generate initial k
clusters (Clustering step). As a second Minimization step we will recompute
centroids or cluster centers using data strictly from the corresponding clusters.
Then, we can repeat Clustering step using new prototypes obtained from the
Minimization step as a centroids. Above algorithm has monotonical descending
property. As a direct consequence, it will reach local minimum in a finite number
of steps.

Recently, the Divisive Information-Theoretic Feature Clustering algorithm
in probabilistic space Pm was proposed by [2]. It provides an attractive ap-
proach based on the Kullback-Leibler (KL) divergence. As it is outlined in [3],
the probabilistic model can be extremely useful in many applications including
information retrieval and filtering, natural language processing, machine learning
from text and in related areas.

According to [4] and [5], in practice, however, an exact form of a loss func-
tion is difficult to specify. Hence, it is important to study a domination criterion
simultaneously under a class of loss functions. Respectively, we introduce the
� This work was supported by the grants of the Australian Research Council
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family of power loss function in probabilistic space with KL-divergence as a
marginal limit. As it is demonstrated in the Sect. 4, universal clustering may
be effectively used in application to such important problem as determination
of the number k of significant clusters in the sample. For example, [6] proposed
G-means algorithm which is based on the Gaussian fit of the data within partic-
ular cluster. Usually [7], attempts to estimate the number of Gaussian clusters
lead to a very high value of k. Most simple criteria such as AIC (Akaike Infor-
mation Criterion [8]) and BIC (Bayesian Information Criterion [9], [10]) either
overestimate or underestimate the number of clusters which severely limits their
practical usability.

2 Prototype-Based Approach

Suppose that X := {x1, . . . , xn} is a sample of i.i.d. observations drawn from
probability space (X ,A, P) where probability measure P is assumed to be un-
known.

We denote by Q ∈ X k a codebook as a set of prototypes q(c) indexed by the
code c = 1..k where k is a clustering size.

Following [11] we estimate actual distortion error

%(k)[Q, Φ] := E Φ(x‖Q)

by the empirical error

%(k)
emp[Q, Φ] :=

1
n

n∑
t=1

Φ(xt‖Q) (1)

where Φ(x‖Q) := Φ(x, q(f(x))), Φ(·, ·) is a loss function, and

f(x) := argmin
c∈{1..k}

Φ(x, q(c)). (2)

Above rule will split the given sample X into k empirical clusters: Xc := {xt :
f(xt) = c}, X = ∪k

c=1Xc,Xi ∩Xc = ∅, i �= c.
The algorithms within CM -framework have a heuristical nature. Respec-

tively, their performance depends essentially on the selection of initial settings if
number of clusters is bigger than one. Bhatia [12] proposed an adaptive technique
that grows clusters without regard to initial selection of cluster representation or
cluster seeds. As such, the technique can identify k clusters in an input data set
by merging existing clusters and by creating new ones while keeping the number
of clusters constant.

3 Probabilistic Framework

We work in a probabilistic setting where data-objects are probabilistically char-
acterized by attributes or classes. We denote by Pm the m-dimensional prob-
ability simplex or probabilistic space of all m-dimensional probability vectors,
and assume that the probabilities
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pit = P (i|xt), p(xt) = {p1t, · · · , pmt},
m∑

i=1

pit = 1, t = 1..n,

represent relations between observations xt and attributes i = 1..m, m ≥ 2.
Accordingly, we define the clustering model (Pm, KL) with Kullback-Leibler di-
vergence:

KL(v,u) :=
m∑

i=1

vi · log
vi

ui
= 〈v, log

v
u
〉, v,u ∈ Pm. (3)

3.1 Power Loss Functions in Probabilistic Space

Monograph [13], pp. 56-57, introduced an important class of f -divergences which
we formulate using slightly different notations:

Df (v,u) :=
m∑

i=1

vif

(
ui

vi

)
where f is a convex function and f(1) = 0.

Important examples of smooth f -divergences are given by the α-divergence
D(α) := Df(α) for a real number α, which is defined by

f (α)(t) =

⎧⎨⎩1−
√

t1+α if |α| �= 1;
t log t if α = 1;
− log t if α = −1

(4)

where second and third lines correspond to KL(u,v) and KL(v,u), respectively.
The most important here first line corresponds to

D(α)(v,u) = 1−
m∑

i=1

√
v1−α

i u1+α
i . (5)

However, there are two problems associated with above definition: first, di-
vergence (5) is not marginally linked to the second or third lines in (4); sec-
ond, divergence (5) may be negative if α < −1 or α > 1 (at the same time
D(α)(v,v) = 0 ∀v ∈ Pm, ∀α ∈ R).

In order to overcome above problems we consider 2 families of loss functions

LΦγ(v,u) :=
m∑

i=1

v1+γ
i u−γ

i − 1, 0 < γ <∞; (6)

RΦγ(v,u) := 1−
m∑

i=1

v1−γ
i uγ

i , 0 < γ < 1. (7)

Proposition 1. The loss functions (6) and (7) are non-negative and equal to 0
if and only if v ≡ u.
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Above statement may be proved using the method of mathematical induction.
Based on the above Proposition, we can define a new family of loss functions

as an average of (6) and (7)

Φγ(v,u) :=
1
2

(LΦγ(v,u) + RΦγ(v,u)) , 0 < γ < 1. (8)

Note, that the KL-divergence may be regarded as a marginal limit in relation
to the family of loss functions (8):

lim
γ→0

Φγ(v,u)
γ

= KL(v,u).

Minimizing
∑

xt∈Xc
Φγ(p(xt), q) =

∑m
i=1

(
Aic(γ)q−γ

i −Aic(−γ)qγ
i

)
, Aic(γ) =∑

xt∈Xc
p1+γ

it , as a function of q ∈ Pm we formulate iterative algorithm for the
computation of centroids in the sense of the loss function (8) with fixed value of
the parameter γ > 0

qi(c, j + 1) ∝ 1+γ

√
Aic(γ) + Aic(−γ)q2γ

i (c, j) (9)

where j is a sequential number of iteration, initial values of centroids may be
computed using k-means for the loss function (6):

qi(c, 1) ∝ 1+γ
√

Aic(γ), 0 ≤ γ <∞,

where q(c, j) = {q1(c, j), · · · , qm(c, j)}, c = 1..k, are vectors of centroids.

Remark 1. According to [5], it seems rather natural to investigate the situation
where the estimator is the same for every loss from a certain set of loss functions
under consideration. Comparing clustering results for different input parameters
γ we can make an assessment of the stability of clustering: the smaller fluctuation
of the centroids indicates the higher quality of clustering.

3.2 Extension to the Euclidean Space

Similar to the Sect. 3.1 we can define universal clustering in R
m with the follow-

ing family of exponential loss functions: Φγ(v,u) := ϕγ(v−u) where v,u ∈ R
m,

and γ ∈ R
m
+ is m-dimensional regulation parameter,

ϕγ(v) :=
m∑

i=1

cosh(γi · vi)−m, (10)

and corresponding centroids:

q
(γ)
i (c) =

1
2γi

log

∑
xt∈Xc

eγixti∑
xt∈Xc

e−γixti
(11)

where components (11) represent a unique k-means solution for the loss function
(10).

Remark 2. In accordance with an essential property
limγ→0

1
γ2 (cosh(γ · v)− 1) = v2 the family of loss functions (10) is marginally

linked to the classical Euclidean metric.
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Fig. 1. Probabilistic 3D-synthetic data, n = 3000 with 6 clusters; random selection of
the cluster seeds; centroids were re-computed using CM algorithm with loss function
(8), γ = 0.09 + 0.13 · (i − 1), i = 1..8; symbol � marks centroids which correspond to
γ = 0.09; ∗ marks centroids which correspond to γ = 1.0, other centroids are marked by
bold black dots ·; (a): k=5; (b): k=6; (c): k=7; (d): behavior of the distance between
consecutive codebooks in (9) which was computed as a sum of absolute differences
between corresponding components

4 Experiments

The sample of the 3D-probabilistic data was generated using the following pro-
cedure.

As a first step, the cluster code c was drawn randomly according to the
probabilities p, see Table 1, using standard uniform random variable. Then, we
used the multinomial logit model in order to generate coordinates of the 3D-
probability data: vi ∝ exp {bci + ecr},

∑3
i=1 vi = 1, where r is a standard normal

random variable.
By definition, the family of power loss functions (8) is marginally linked to

the KL-divergence if γ → 0. By the increase of γ we will increase the power of
diversification. Respectively, any centroid, which corresponds to a non significant
empirical cluster will move around. On the other hand, centroids of the “strong”
empirical clusters will be stable. Table 2 demonstrates correct selection of the
number of clusters k = 6.
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Table 1. Simulation coefficients for the 3D-synthetic data, see Figure 1

Cluster Coefficients Probabilities

c b1 b2 b3 e p

1 1 -1 -1 0.5 0.15
2 -1 1 -1 0.5 0.15
3 -1 -1 1 0.5 0.15
4 -0.4 -0.4 -0.8 0.4 0.25
5 -0.4 -1.9 -0.4 0.3 0.15
6 -1.9 -0.4 -0.4 0.3 0.15

Table 2. 3D-probabilistic synthetic data: determination of the clustering size k where
D is defined in (12), used parameters: γ0 = 0.002, δ = 0.01, τ = 20, C = 1000

k: 3 4 5 6 7 8 9

D: 0.6478 0.0263 0.0045 0.0011 0.8535 0.9264 2.7150

k: 10 11 12 13 14 15 16

D: 0.8041 1.9056 0.1474 0.3063 0.9377 5.0651 12.1121

The second experiment was conducted using a large Web navigation msnbc
dataset. This dataset comes from Internet Information Server msn.com for the
entire day of September, 28, 1999 [14]. The dataset [15] includes n = 989818
sequences of events with lengths ranging from 1 to 12000.

Each sequence in the dataset corresponds to page views of a user during that
twenty-four hour period. Each event in the sequence corresponds to a user’s
request for a page. In total, there are 4698794 events.

The page categories were developed prior to investigation. There are m = 17
particular web categories. The number of pages per category ranges from 10 to
5000.
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Analysis of the msnbc data had revealed the following general properties: 1)
users have tendency to stay within particular category; 2) transitions from one
category to another are relatively rare.

Respectively, we considered an ultimate simplification of the model by ignor-
ing 1) dependencies between subsequent events and 2) length of the sequence of
events for any particular user. As a result, we reduced the given variable-length
data to the fixed length data where any user is represented by the m-dimensional
probability vector of the frequencies of m categories.

The aim of this experiment is to explain and understand the way people
interact with web sites, explore human behavior within internet environment.
Briefly, we observed that the table of centroids in the case of k = 8 demonstrates
clearly user’s preferences. Detailed numerical and graphical illustrations may be
found in [1].

Also, the paper [1] introduced clustering regularisation based on the balanced
complex of two conditions: 1) significance of any particular cluster; 2) difference
between any 2 clusters. Subject to some input regulation parameters the corre-
sponding system detected the interval 34 ≤ k ≤ 47 as the most likely range for
the number of significant clusters in msnbc. Another solution for the same task
may be found using principles of universal clustering.

A Pentium 4, 2.8GHz, 512MB RAM, computer was used for the compu-
tations. The overall complexity of a CM cycle is O(k · n · m). The computer
conducted computations according to the special program written in C. The
computation time for one CM cycle in the case of 51 clusters was 110 seconds.

5 Concluding Remarks

The proposed in the paper universal clustering represents a promising direction.
We can make an assessment of quality of clustering using set of codebooks as a
function of regulation parameter. The quality function may be computed as a
decreasing function of the fluctuation of codebooks.

Besides, it will be important to consider the following cyclic procedure: 1)
create a new cluster (forward move) where a new prototype may be defined
as a function of existing prototypes so that the corresponding cluster will split
existing clusters with bigger number of elements and smaller uniformity; 2) make
an assessment of any particular cluster as a component within the complex of
k + 1 clusters; 3) remove the cluster which is the most insignificant (backward
move). Comparing previous and current codebooks we will test stability of the
existing clustering configuration. Go to the first step if convergence test is not
fulfilled, alternatively, stop the algorithm.
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Abstract. A circular Self-Organising Map (SOM) based on a temporal
metric has been proposed for clustering and characterising gene expres-
sions. Expression profiles are first modelled with Radial Basis Functions.
The co-expression coefficient, defined as the uncentred correlation of the
differentiation of the models, is combined in a circular SOM for grouping
and ordering the modelled expressions based on their temporal proper-
ties. In the proposed method the topology has been extended to tempo-
ral and cyclic ordering of the expressions. An example and a test on a
microarray dataset are presented to demonstrate the advantages of the
proposed method.

1 Introduction

The DNA microarray has become a useful high throughput experiment for the
study of genomics in molecular biology. With the DNA Microarray experiment
it is possible to gather mRNA expression levels for thousands of genes at the
same time [1]. The information obtained can be studied and analysed to identify
the genetic changes associated with diseases, drug treatments, stress response
and stages in cellular processes among others.

The absolute intensity of gene expression is often not important. Instead,
the relative change of intensity characterised by the shape of the expression
profile is regarded as characteristic and informative. Modelling the profiles can
provide more generalised and smoothed characterisation of gene expressions,
while reducing noise and overcoming uneven sampling problems [2]. Rather than
directly comparing the profiles, the models can be differentiated to capture the
shape characteristics. An appropriate metric for measuring the similarities of the
expression profiles is critical to the success of further analysis such as clustering.
To evaluate the similarity of the gene expressions based on their shapes and the
distribution of time points, a shape similarity metric was introduced in [3] and
further generalised and defined in [4].

Based on this shape metric, in this paper we propose a circular SOM for
clustering gene expression profiles in order to extract temporal relationships
among clusters. The SOM is an unsupervised learning algorithm, which uses
a finite grid of nodes to map and relate the input data [5]. Each node has an
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associated weight vector which, after learning, will come to represent a number of
original input vectors. In the learning process, the nodes that are topographically
close to the winner in the grid up to a certain geometric neighbourhood, will be
activated to learn from the same input. Therefore, on the trained map similar
data points are likely to be projected to nearby nodes. The map can be used to
show the spatial relationships amongst data with respect to the nodes, hence,
different grid structure can reveal different relationships. We identified that the
circular structure can provide temporal characters of sequential data, such as
time orders and periodicity, when an appropriate temporal metric is used. SOMs
have been used for clustering, including gene expressions, predominately based
on rectangular grid and Euclidean distance [6]. Time characteristics cannot be
naturally represented by rectangular grid and Euclidian distance.

2 SOM for Temporal Sequences

Several attempts have been made to include the order of temporal sequences in
the SOM [7]. Temporal sequence processing involves the modelling of temporal
relations and recognition of patterns among data items that are vectors of a time
series.

A common approach is to visualise the trajectories on SOMs. Succeeding
best matches can be connected through paths called trajectories which are then
visualised on the map. The idea is to keep track of the best matches as a function
of time by describing the trajectory that the sequence elements follow in the
topographic map. Other methods are based on the adaptation of the learning
algorithm, as is the case of the hypermap architecture [8]. The idea is to recognise
a pattern that occurs in the context of other patterns in sequential phases. The
context around the pattern is first used to select a subset of nodes in the network,
from which the best-matching node is then identified on the basis of the pattern
part.

Other typical approaches are based on modifications of the learning topology
by introducing recurrent connections, e.g. Temporal Kohonen Maps (TKM) [9]
or Recurrent SOM (RSOM) [10, 11], or by using several hierarchical layers of
SOMs, e.g. [12]. In TKM the participation of earlier input vectors in each unit
is represented by using a recursive difference equation which defines the current
unit activity as a function of the previous activations and the current input
vector. In the RSOM, which is a modification of the TKM, the scalar node
activities of the TKM are replaced by difference vectors defined as a recursive
difference equation of the new input, the previous difference vectors, and the
weight vectors of the units. One potential problem with the recurrent models is
stability.

In the case of temporal gene expression clustering, the data items presented
to the map are not a spatial vector, but a sequence with time order in itself. They
are time-series corresponding to the expression levels over time of a particular
gene. Therefore, if a common 2-D SOM is used, the trained map can then be used
to mark the trajectories of the expressions of the genes for comparison. In [13],
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a self-organising latent lattice is proposed to identify pairs of genes with similar
co-expressions. The co-expression of a pair of genes x and y is represented by
a vector whose elements are the difference of present expression levels x(t) and
y(t), and differences of slopes at present t, past t−1 and future t+1. All possible
combinations of genes and their resulting sequence of vectors are selected to find
out meaningful pairs of correlated genes. The vectors are mapped to the lattice
and the patterns of trajectories of different pairs are compared. Similar trajectory
patterns on the lattice may imply similar co-regulation patterns. There can be
as many as millions possible pairs to examine and only pair-wise relations rather
than group relations or clusters are revealed.

We approach the temporal extension of the SOM from another aspect, i.e.
the similarity metric. If the similarity metric considers temporal properties, then
the neurons in the resultant map will exhibit temporal relationships. As time is
one dimension, 1-D SOM is more appropriate. In addition, a circular, i.e. closed
1-D SOM, can further detect cyclic temporal characteristics.

3 Modelling with Radial Basis Functions

Radial basis functions have a single hidden layer, where the nodes are Gaussian
kernels, and a linear output layer. The radial basis function has the form:

f(x) =
nr∑
i=1

wiφ(‖ci − x‖) + b (1)

where x is the input vector, φ(·) is a Gaussian function kernel, ‖ · ‖ denotes the
Euclidean norm, wi are the weights of the second layer, ci is the vector of the
centre of the ith kernel, and nr is the total number of kernels.

The modelling of gene expressions time-series with RBFs using the orthog-
onal least squares (OLS) method was introduced in [2]. The OLS learning al-
gorithm [14] allows the selection of the centres in a rational procedure. Each
selected centre maximises the increment to the explained variance of the desired
output. This method considers all kernels to have an equal width, however, this
is inadequate when time sampling points are not evenly distributed, which com-
monly occurs in microarray gene expressions. In order to improve the approxi-
mation, the OLS learning algorithm is complemented with a heuristic search for
the optimal width for each of the candidate centres [2].

4 Co-expression Coefficient

In [3] the advantages of using the derivatives of modelled profiles for the com-
parison of shapes are illustrated. In [4], the co-expression coefficient is defined as
the correlation coefficient of the first order differentiations of the modelled pro-
files. However, the correlation coefficient does not consider vertical shifts which,
in the case of positive and negative derivatives, are important to identify. If the
uncentred correlation coefficient is used instead, the mean is not subtracted and
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the sign of the derivative is preserved. Therefore, the co-expression coefficient,
ce, can be generalised as:

ce(x, y) =
∫

x′y′dt√∫
x′2dt

∫
y′2dt

, (2)

where x′ and y′ are first order time-differentiations of modelled gene expressions
x(t) and y(t), respectively. It can be easily shown that the metric satisfies, −1 ≤
ce(xα, xβ) ≤ 1, ∀αβ and ce(xα, xα) = 1, ∀α.

5 Circular SOM

In order to use the SOM based on the co-expression coefficient, the dot-product
SOM is adopted and trained with norm one normalised data. When the dot-
product is defined as the similarity metric between the input data and the
weights, the learning equations should be modified accordingly by selecting the
maximum of the dot-product as the winner node and by normalising the new
weights at each step.

Figure 1 (a) shows the structure of the circular SOM. The proposed co-
expression coefficient varies from -1 to 1 corresponding to negative and positive
similarities. In the resulting circle, the nodes opposite to each other (e.g. nodes
1 and 5) contain the most dissimilar profiles, and the nodes on two sides of
a particular node will exhibit opposite trend in similarity (in this case it is
time shift, leading or lagging). Figure 1 (b) presents the clustering results on
artificial temporal dataset generated from y = sin(x − aπ/8) + δ, where a =
0, 2, 4, 6, 8, 10, 12, 14, respectively, 0 ≤ x ≤ 2π and δ is Gaussian noise with zero
mean and the standard deviation 0.5. The circular SOM is able to cluster the
artificial profiles according to the different time/phase properties. Furthermore,
it automatically orders the profiles according to their temporal characteristics,
such that smaller phase shifts are closer on the SOM than larger phase shifts,
and opposite temporal patterns are found in opposite extremes. In the case

(a) Circular SOM (b) Clustering results

Fig. 1. (a) Circular SOM (b) Clustering results of the artificial temporal dataset
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of unknown number of clusters, the Bayesian information criterion (BIC) [15]
can be used to validate or detect the underlying number of groups. This is
particularly appropriate as the SOM is approximating Gaussian mixtures [16].

5.1 Yeast Cell Cycle Dataset

The temporal expression of the yeast culture synchronised by α factor arrest in
[17] is used to illustrate the proposed method. Eight hundred cell-cycle-regulated
genes of the Yeast Saccharomayces cerevisiae were identified by microarray hy-
bridisation. The yeast cells were sampled every 7 minutes for 119 minutes, pro-
ducing 18 sampling points. Among the 800 genes 511 have no missing values
and are available1. In [17], the genes are grouped based on their periodicity and
classified according to different cell cycle phases, M/G1, G1, S, G2 and M. As
benchmark data, we used the 71 genes which have being identified as cell-cycle-
regulated by traditional biological methods and are available from this dataset.

The two datasets (511 and 71 genes) are modelled using RBFs and the mod-
elled profiles were differentiated. The BIC is used to validate the number of
clusters, however, when using circular SOM, the number of clusters has a low
impact in the performance of the algorithm. Each node presents the smaller
distance only to its two neighbouring nodes in a chain ordered fashion, this im-
plies that characteristic traits are split or merged with larger or fewer number
of clusters without changing the order or relation between them.

A five-node circular SOM has been verified for the 71 genes dataset. In the
case of the 511 genes dataset, the BIC value does not show a significant change
after eight clusters, therefore, circular SOM of eight nodes is used to cluster
this dataset. Figure 2 presents the resulting SOMs and prototype profiles of the

(a) 71 genes dataset (b) 511 genes dataset

Fig. 2. Circular SOMs summarising the clustering results. The time series plots corre-
spond to the cluster mean expressions and the times correspond to the cluster mean
peak times

1 The dataset is available from http://cellcycle-www.stanford.edu
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Fig. 3. Clustering results of modelled profiles for the 71 genes dataset

Fig. 4. Clustering results of modelled profiles for the 511 genes dataset

clusters. It can be easily seen that topology exists in the profiles. The topo-
logical order here refers to the time shift. It demonstrates that the proposed
method is able to group profiles based on their temporal characteristics and can
automatically order the groups based on their periodical properties. Figures 3
and 4 plot all the expression profiles clustered to these five or eight groups. In
each plot the horizontal axis denotes time [mins] and the vertical axis denotes
expression level (log2 ratio). Tables 1(A) and 2 present the distribution of the
genes in each cluster among the cell cycle phases. Similar to [3], the genes were
classified based on their peak times compared to the peak times described in [17]
for each phase. In both datasets, the genes in each cluster belong mainly to one
phase or the two adjacent phases. The genes identified as cell-cycle-regulated by
traditional biological methods can be used to evaluate the performance of the
proposed technique. Table 1 (B) shows the distribution of these genes among
the cell cycle phases identified by biological methods, over the clusters obtained.
The tables show high relevance between clustered and predefined phase groups.

6 Conclusions

Gene expression time-series can be modelled with RBFs to obtain smoother,
generalised expressions which can be (evenly) resampled and differentiated. The
co-expression coefficient is defined as cosine of the first order derivative of the
modelled profiles to quantify shape information. In this paper we have incorpo-
rated the co-expression coefficients into a circular SOM for clustering temporal,
cyclic gene expressions. It is shown that it is able to include automatically tem-
poral characteristics of cyclic data in the clustering. The results indicate that
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Table 1. Clustering results of the 71 genes dataset versus five cell cycle phases defined
in [17] (A) and identified by traditional biological methods (B)

A B

Cluster M/G1 G1 S G2 M M/G1 G1 S S/G2 G2/M

I(15) 13 1 0 0 1 11 2 0 0 2
II(8) 0 0 0 4 4 0 0 0 4 4

III(14) 0 1 13 0 0 0 6 6 2 0
IV(23) 0 26 0 0 0 1 22 0 0 0
V(11) 5 6 0 0 0 1 8 0 0 2

Table 2. Clustering results of the 511 genes dataset versus five cell cycle phases defined
in [17]

Cluster M/G1 G1 S G2 M

I(47) 0 0 27 20 0
II(57) 1 31 22 3 3
III(72) 0 69 3 0 0
IV(81) 7 73 0 1 0
V(51) 33 15 3 0 0
VI(58) 42 6 1 0 8
VII(61) 14 1 2 12 32
VIII(85) 1 3 1 73 7

the proposed method is a useful technique for gene expression and general time
series temporal characterisation.
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Abstract. Recently, there has been a considerable research activity in
extending topographic maps of vectorial data to more general data struc-
tures, such as sequences or trees. However, the representational capa-
bilities and internal representations of the models are not well under-
stood. We rigorously analyze a generalization of the Self-Organizing Map
(SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as
a non-autonomous dynamical system consisting of a set of fixed input
maps. We show that contractive fixed input maps are likely to produce
Markovian organizations of receptive fields on the RecSOM map. We de-
rive bounds on parameter β (weighting the importance of importing past
information when processing sequences) under which contractiveness of
the fixed input maps is guaranteed.

1 Introduction

Several modifications of the self-organizing map (SOM) [2] to sequences and/or
tree structures have been proposed in the literature. For comprehensive reviews,
see [3, 4]. Modified versions of SOM that have enjoyed a great deal of interest
equip SOM with additional feed-back connections that allow for natural pro-
cessing of recursive data types. Typical examples of such models are Temporal
Kohonen Map [5], recurrent SOM [6], feedback SOM [7], recursive SOM [1],
merge SOM [8] and SOM for structured data [9]. However, the representational
capabilities and internal representations of the models are not well understood
[3, 10, 11].

In this paper we concentrate on the Recursive SOM (RecSOM) [1], because
RecSOM transcends the simple local recurrence of leaky integrators of earlier
models and it has been demonstrated that it can represent much richer dynamical
behavior [11]. We propose to study the RecSOM model as a non-autonomous
dynamical system with internal dynamics driven by a stream of external inputs.
It is argued that contractive fixed input maps are likely to produce Markovian
organizations of receptive fields on the RecSOM map.
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2 Recursive Self-organizing Map (RecSOM)

In the RecSOM model [1], Each neuron i ∈ {1, 2, ..., N} in the map has two
weight vectors associated with it:

– wi ∈ R
n – linked with an n-dimensional input s(t) feeding the network at

time t
– ci ∈ R

N – linked with the context

y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN(t− 1))

containing map activations yi(t− 1) from the previous time step.

The output of a unit i at time t is computed as yi(t) = exp(−di(t)), where1

di(t) = α · ‖s(t)−wi‖2 + β · ‖y(t− 1)− ci‖2. (1)

In eq. (1), α > 0 and β > 0 are model parameters that respectively influence the
effect of the input and the context upon neuron’s profile. Both weight vectors
can be updated using the same form of learning rule [1]:

Δwi = γ · hik · (s(t)−wi), (2)
Δci = γ · hik · (y(t − 1)− ci), (3)

where k is an index of the best matching unit at time t, k = argmini∈{1,2,...,N}
di(t), and 0 < γ < 1 is the learning rate. Neighborhood function hik is a Gaussian
(of width σ) on the distance d(i, k) of units i and k in the map:

hik = e−
d(i,k)2

σ2 . (4)

The ‘neighborhood width’ σ decreases in time to allow for forming topographic
representation of input sequences.

3 Contractive Fixed-Input Dynamics in RecSOM

Under a fixed input vector s ∈ R
n, the time evolution of (1) becomes

di(t + 1) = α · ‖s−wi‖2 + β · ‖
(
e−d1(t), e−d2(t), ..., e−dN (t)

)
− ci‖2. (5)

After applying a one-to-one coordinate transformation yi = e−di , eq. (5)
reads

yi(t + 1) = e−α‖s−wi‖2 · e−β‖y(t)−ci‖2
, (6)

or, in the vector form:
y(t + 1) = Fs(y(t)). (7)

1 ‖ · ‖ denotes the Euclidean norm



Recursive Self-organizing Map as a Contractive Iterative Function System 329

Given a fixed input s, we aim to study the conditions under which the map
Fs becomes a contraction. Then, by the Banach Fixed Point theorem, the au-
tonomous RecSOM dynamics y(t+1) = Fs(y(t)) will be dominated by a unique
attractive fixed point ys = Fs(ys).

A mapping F : R
N → R

N is said to be a contraction with contraction
coefficient ρ ∈ [0, 1), if for any y,y′ ∈ R

N ,

‖F(y)− F(y′)‖ ≤ ρ · ‖y− y′‖. (8)

F is a contraction if there exists ρ ∈ [0, 1) so that F is a contraction with
contraction coefficient ρ.

We denote the Gaussian kernel of inverse variance η > 0, acting on R
N , by

Gη(·, ·), i.e. for any u,v ∈ R
N ,

Gη(u,v) = e−η‖u−v‖2
. (9)

Denote by Gα(s) the collection of activations coming from the feed-forward
part of RecSOM,

Gα(s) = (Gα(s,w1), Gα(s,w2), ..., Gα(s,wN )). (10)

Then we have the following theorem:

Theorem 1. Consider an input s ∈ R
M . If for some ρ ∈ [0, 1),

β ≤ ρ2 e

2
‖Gα(s)‖−2, (11)

then the mapping Fs (7) is a contraction with contraction coefficient ρ.

Sketch of the proof: The proof is rather lengthy and complicated. Due to space
limitations, we refer the reader to [12]. The proof follows the worst case analysis
of the distances ‖Fs(y) − Fs(y′)‖ between the Fs-images of y,y′, under the
constraint ‖y− y′‖ = δ:

Dβ(δ) = sup
y,y′;‖y−y′‖=δ

‖Fs(y)− Fs(y′)‖.

The analysis is quite challenging, because Dβ(δ) can be expressed only im-
plicitly. Nevertheless, one can prove that, for a given β > 0, the function
Dβ : R

+ → (0, 1) has the following properties:

1. limδ→0+ Dβ(δ) = 0,
2. Dβ is a continuous monotonically increasing concave function of δ.

3. limδ→0+
dDβ(δ)

dδ =
√

2β
e .

Therefore, we have the following upper bound:

Dβ(δ) ≤ δ

√
2β

e
. (12)
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Writing (6) as
yi(t + 1) = Gα(s,wi) ·Gβ(y, ci),

we get that if

δ2 2β

e

N∑
i=1

G2α(s,wi) ≤ ρ2 δ2, (13)

then Fs will be a contraction with contraction coefficient ρ. Inequality (13) is
equivalent to

2β

e
‖Gα(s)‖2 ≤ ρ2. (14)

Q.E.D.
Corollary 1. Consider a RecSOM fed by a fixed input s. Define

Υ (s) =
e

2
‖Gα(s)‖−2. (15)

Then, if β < Υ (s), Fs is a contractive mapping.

4 Experiments

We illustrate our results on natural language data used to demonstrate RecSOM
in [1]. The data is a corpus of written English, the novel “Brave New World” by
Aldous Huxley. In the corpus we removed punctuation symbols, upper-case let-
ters were switched to lower-case and the space between words was transformed
into a symbol ‘-’. The complete data set (after filtering) comprised 356606 sym-
bols. Letters of the Roman alphabet were binary-encoded using 5 bits and pre-
sented to the network one at a time. RecSOM with 20 × 20 = 400 neurons was
trained for two epochs using the following parameter settings: α = 3, β = 0.7,
γ = 0.1 and σ : 10→ 0.5. Radius σ reached its final value at the end of the first
epoch and then remained constant to allow for fine-tuning of the weights.

We constructed a map of the neurons’ receptive fields (RFs) (shown in fig-
ure 1). Following [1], RF of a neuron is defined as the common suffix of all
sequences for which that neuron becomes the best-matching unit. Note that the
RF map contains regions in which RFs are topographically ordered with respect
to the most recent symbols.

Let us consider, how the character of the RecSOM fixed-input dynamics (7)
for each individual input symbol s ∈ A (coded as n-dimensional input vector
s ∈ R

n) shapes the overall organization of the map. In order to investigate
the fixed-input dynamics (7), we initialized context activations y(0) in 10,000
different positions within the state space (0, 1]N . For each initial condition y(0),
we checked asymptotic dynamics of the fixed input maps Fs by monitoring L2-
norm of the activation differences (y(t) − y(t − 1)) and recording the limit set
(after 1000 iterations).

Figure 2 illustrates asymptotic regimes of the fixed-input RecSOM dynam-
ics (7) in terms of map activity differences between consecutive time steps. We
observed a variety of behaviors. For some symbols, the activity differences con-
verge to zero (attractive fixed points); for other symbols, the differences level at
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Fig. 1. Receptive fields of RecSOM trained on English text. Dots denote units with
empty RFs
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Fig. 2. Fixed-input asymptotic dynamics of RecSOM after training on English text.
Plotted are L2 norms of the differences of map activities between the successive itera-
tions. Labels denote the associated input symbols (for clarity, not all labels are shown)

nonzero values (periodic attractors of period two, e.g. symbols ‘i’, ‘t’, ‘a’, ‘-’).
Fixed input RecSOM dynamics for symbols ‘o’ and ‘e’ follows a complicated
a-periodic trajectory.

For each input symbol s, the autonomous dynamics y(t) = Fs(y(t − 1))
induces a dynamics of the winner units on the map:

is(t) = argmax
i∈{1,2,...,N}

yi(t) (16)

The dynamics (16) is illustrated in figure 32.
2 For each of the 10,000 initial conditions y(0), we first let the system (7) settle down

by preiterating it for 1000 iterations and then mark the map position of the winner
units is(t) for further 100 iterations
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Fig. 3. Dynamics of the winning units on the RecSOM map induced by the fixed-input
dynamics. The map was trained on a corpus of written English (“Brave New World”
by Aldous Huxley)

When the fixed-input dynamics for s ∈ A is dominated by a unique attractive
fixed point ys, the induced dynamics on the map, (16), settles down in neuron is,
corresponding to the mode of ys, is = argmaxi∈{1,2,...,N} ys,i. The neuron is will
be most responsive to input subsequences ending with long blocks of symbols s.
Receptive fields of neurons on the map will be organized with respect to closeness
of neurons to the fixed input winner is. Assuming a unimodal character of the
fixed point ys, as soon the symbol s is seen, the mode of the activation profile
y will drift towards the neuron is. The more consecutive symbols s we see, the
more dominant the attractive fixed point of Fs becomes and the closer the winner
position is to is. In this manner, a Markovian suffix-based RF organization is
created.

As evident in figure 3, for symbols s with dynamics y(t) = Fs(y(t − 1))
dominated by a single fixed point ys, the induced dynamics on the map settles
down in the mode position of ys. However, some autonomous dynamics y(t) =
Fs(y(t − 1)) of period two (e.g. s ∈ {n, h, r, p, s}) induce a trivial dynamics on
the map driven to a single point (grid position). In those cases, the points y1, y2

on the periodic orbit (y1 = Fs(y2), y2 = Fs(y1)) lie within the representation
region (Voronoi compartment) of the same neuron. Interestingly enough, the
complicated dynamics of Fo and Fe translates into aperiodic oscillations between
just two grid positions. Still, the suffix based organization of RFs in figure 1 is
shaped by the underlying collection of the fixed input dynamics of Fs (illustrated
in figure 3 through the induced dynamics on the map).

Theoretical upper bounds on β (eq. (15)) are shown in figure 4. Whenever
for an input symbol s the bound Υ (s) is above β = 0.7 (dashed horizontal line)
used to train RecSOM (e.g. symbols ‘j’, ‘q’, ‘x’), we can be certain that the fixed
input dynamics given by the map Fs will be dominated by an attractive fixed
point. For symbols s with Υ (s) < β, there is a possibility of a more complicated
dynamics driven by Fs. Indeed, the theoretical bounds Υ (s) for all symbols s
with asymptotic fixed-input dynamics that goes beyond a single stable sink are
below β = 0.7. Obviously, Υ (s) < β does not necessarily imply more complicated
fixed input dynamics on symbol s.
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Fig. 4. Theoretical bounds on β for RecSOM trained on the English text

5 Discussion

Assume that for each input symbol s ∈ A, the fixed-input RecSOM mapping Fs

(7) is a contraction with contraction coefficient ρs. Set ρmax = maxs∈A ρs. For
a sequence s1:n = s1...sn−2sn−1sn over A and y ∈ (0, 1]N , define

Fs1:n(y) = Fsn(Fsn−1(...(Fs2(Fs1(y)))...))
= (Fsn ◦ Fsn−1 ◦ ... ◦ Fs2 ◦ Fs1)(y). (17)

Then, if two prefixes s1:p and s1:r of a sequence s1...sp−2sp−1sp...sr−2sr−1sr...
share a common suffix of length L, we have

‖Fs1:p(y)− Fs1:r (y)‖ ≤ ρL
max

√
N, (18)

where
√

N is the diameter of the RecSOM state space (0, 1]N .
For sufficiently large L, the two activations y1 = Fs1:p(y) and y2 = Fs1:r (y)

will be close enough to have the same location of the mode3,

i∗ = argmax
i∈{1,2,...,N}

y1
i = argmax

i∈{1,2,...,N}
y2

i ,

and the two subsequences s1:p and s1:r yield the same best matching unit i∗
on the map, irrespective of the position of the subsequences in the input stream.
All that matters is that the prefixes share a sufficiently long common suffix.
We say that such an organization of RFs on the map has a Markovian flavour,
because it is shaped solely by the suffix structure of the processed subsequences,
and it does not depend on the temporal context in which they occur in the
input stream. Obviously, one can imagine situations where (1) locations of the
modes of y1 and y2 will be distinct, despite a small distance between y1 and
y2, or where (2) the modes of y1 and y2 coincide, while their distance is quite

3 Or at least mode locations on neighboring grid points of the map
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large. This is the price to be paid for discontinuity of the best-matching-unit
operation. However, in our extensive experimental studies, we have registered
only a negligible number of such cases.

We suggest the theory of non-autonomous dynamical systems as a possible
framework for studying representations of temporal structures in SOMs endowed
with recursive processing mechanism. Contractive fixed input maps are likely
to produce Markovian organizations of receptive fields on the RecSOM map.
Periodic or aperiodic dynamics of Fs can result in a ‘broken topography’ of RFs
and embody a potentially unbounded memory structure.
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Abstract. The elastic net and related algorithms, such as generative topographic
mapping, are key methods for discretized dimension-reduction problems. At their
heart are priors that specify the expected topological and geometric properties of
the maps. However, up to now, only a very small subset of possible priors has
been considered. Here we study a much more general family originating from
discrete, high-order derivative operators. We show theoretically that the form of
the discrete approximation to the derivative used has a crucial influence on the
resulting map. Using a new and more powerful iterative elastic net algorithm,
we confirm these results empirically, and illustrate how different priors affect the
form of simulated ocular dominance columns.

1 Introduction

The elastic net was originally introduced as a continuous optimisation method for the
traveling salesman problem (TSP) [1]. The basic idea is to represent a tour in continuous
city space by a collection of linked centroids (the elastic net) that optimizes a trade-off
between matching the given cities and keeping the sum of squared link lengths small.
This trade-off is biased towards short nets at first and is slowly reversed until only the
matching term matters – a deterministic annealing algorithm. From a dimension reduc-
tion perspective [2], the elastic net is a probabilistic model (Gaussian mixture) with a
specific type of prior (the sum of squared link lengths) that models a high-dimensional
city space in terms of a low-dimensional, discretized space. It is thus related to latent-
variable models such as the generative topographic mapping [3], and can be seen as a
probabilistic self-organising map (SOM) [4]. The elastic net has also been applied to
modeling ocular dominance and orientation maps [5, 6], by interpreting the net cen-
troids as the preferred stimuli of points in a discretized primary visual cortex and using
the training set of “cities” as a sample of the continuous stimulus space. Biologically,
the learning rule can be interpreted in terms of Hebbian learning and the prior in terms
of an intracortical connectivity function. In this context, Dayan [7] suggested the use
of more general quadratic forms for the intracortical connectivity prior. Here we define
the generalized probabilistic model and analyse by theory and simulations the effect of
different discrete priors on the structure of the resulting cortical maps.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 335–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 The Generalized Elastic Net

Given a collection of centroids {ym}Mm=1 ⊂ R
D and a scale parameter σ ∈ R

+, con-
sider a Gaussian-mixture density p(x) =

∑M
m=1

1
M p(x|m) with x|m ∼ N (ym, σ2ID).

Expressing the centroids as a D ×M matrix Y = (y1, . . . ,yM ), define a smoothing,
or neighborhood-preserving, prior on the centroids p(Y; β) ∝ exp (−β

2 tr
(
YT YS

)
)

where β is a regularisation hyperparameter and S is a (semi)positive definite M ×M
matrix. This prior can also be seen as a Gaussian process prior, with matrix S the in-
verse of the Gaussian process covariance matrix. Without the prior, the centroids could
be permuted at will with no change in the model, since the variable m is just an index.
The prior can be used to convey the topological (dimension and shape) and geometric
(e.g. curvature) structure of a manifold implicitly defined by the centroids – i.e., as if the
centroids resulted from discretizing a continuous latent variable model with a uniform
density in a latent space of dimension L (the “cortex”), a nonparametric mapping from
latent to data space (defined by the centroids Y) and an isotropic Gaussian noise model
in data space of dimension D (the “stimuli space”) [8].

Given a training set expressed as a D × N matrix X = (x1, . . . ,xN ), we are
interested in deterministic annealing algorithms that minimize the energy function

E(Y, σ) = −σ
N∑

n=1

log
M∑

m=1

e−
1
2‖xn−ym

σ ‖2 +
β

2
tr
(
YT YS

)
(1)

over Y for fixed σ, starting with a large σ and tracking the minimum to a small value
of σ. E is derived from the log posterior of the full model. We call the first term the
fitness term, arising from the Gaussian mixture p(X|Y, σ), and the second term the
tension term, arising from the prior p(Y). The multiplication of the fitness term by σ
downweights the fitness term with respect to the tension term as σ decreases. We do this
because (1) one can find good solutions to combinatorial optimisation problems such
as the TSP (which require σ → 0); and (2) if considered as a dynamical system for
a continuous latent space, the evolution of the net as a function of σ and the iteration
index models the temporal evolution of cortical maps [5, 6]. We also investigate the
behavior of the model for a larger range of β values than has previously been possible,
thanks to the new algorithm we introduce in Sect. 5.

To apply the elastic net to practical problems such as the TSP or cortical map mod-
eling, S should incorporate some knowledge of the problem being modeled. S speci-
fies the expected topological and geometric structure of the solutions. Here, we fix the
topology, i.e., the neighborhood relationship in the net, to be one or two dimensions,
with open or periodic boundary conditions, and focus on the way that S represents pri-
ors on curvature. The prior has a crucial impact on the final solutions. For instance,
in the application of the elastic net to ocular dominance, it helps determine the (em-
pirically testable) width of the ocular dominance stripes. The next section studies this
in an idealized, continuum limit; Sect. 4 considers the unexpectedly dramatic effect of
discretization; Sect. 5 presents the new elastic net algorithm which allows us to study
a much wider range of conditions; and Sect. 6 uses this algorithm to verify and extend
our theoretical results. In Sect. 3–4 we assume an M × 1 vector y def= YT , since the
tension term separates in a sum of D terms, one per dimension in R

D (stimulus space).
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3 Regularisation of a Continuous Elastic Net

In a 1D continuous setting for which y = (ym) becomes a real function of a real
variable y = y(t), consider a tension term of the smoothness functional type:

β

2

∫ ∞

−∞
(Dy(t))2 dt =

β

2

∫ ∞

−∞
((s ∗ y)(t))2 dt. (2)

D is a differential operator and s a kernel, e.g. for the pth-order derivativeDp = dp

dtp and
s = dpδ

dtp where δ is the delta function. Such operators characterize the metric properties
of y, such as its curvature. Note that a basis of the nullspace of Dp is {1, t, . . . , tp−1}.
When the fitness term is also quadratic, such as

∫
(y − g)2 dt for fixed g, regularisation

problems like this can be approached from the point of view of function approxima-
tion in a Hilbert space – e.g. of the functions y having derivatives up to order p that
are square-integrable, i.e., with seminorm

∫ ‖·‖2. This is the case for spline regression.
In our case, the fitness term is not quadratic but results from Gaussian-mixture den-
sity estimation; however, we can still gain insight in the Fourier domain. By applying
Parseval’s theorem to the continuous tension term (2) with pth-order derivativeDp and
calling ŷ the Fourier transform of y, we can see that the tension energy is the same in
both domains:

β

2

∫ ∞

−∞

(
dpy

dtp

)2

dt =
β

2

∫ ∞

−∞
|(i2πk)pŷ(k)|2 dk =

β

2

∫ ∞

−∞
(2πk)2p |ŷ(k)|2 dk

since the Fourier transform of dpy
dtp is (i2πk)pŷ(k). This means that Dp is acting as a

high-pass filter whose cutoff frequency increases monotonically with p; see Fig. 1(A).
Therefore, high-frequency functions will incur a high penalty and the minima of the
energy will likely have low frequencies – subject to the effect of the fitness term.

Regularization is therefore straightforward in the continuous case. How this extends
to the discrete case is the topic of the rest of the paper.

4 Discrete Nets: Construction of S, Analysis of the Tension Term

We consider S = DT D where D is obtained from a translationally invariant (convo-
lution) filter that we represent via a stencil. The stencil approximates a derivative via
a finite-difference scheme, so S has a zero eigenvalue associated with the eigenvector
of ones. This implies that S will not be positive definite so the prior will be improper,
and that the tension term will be invariant to rigid motions of the net (note the fitness
term is invariant to permutations of Y but not to rigid motions of it). We thus have a
differential prior tr

(
YT YS

)
=
∥∥DYT

∥∥2 in terms of the Frobenius norm.
In 1D, we write a stencil as ς = (. . . , ς−2, ς−1, ς0, ς1, ς2, . . . ), so that the rows of

the D matrix result from successively shifting ς and padding with zeros at the ends. We
have DT y = ς ∗ y. If M is large and ς has only a few nonzero coefficients, D will be
sparse. For example, for M = 7 and periodic boundary conditions (b.c.):

ς = (a b c d e) D =

⎛⎜⎝
c d e 0 0 a b
b c d e 0 0 a
a b c d e 0 0
0 a b c d e 0
0 0 a b c d e
e 0 0 a b c d
d e 0 0 a b c

⎞⎟⎠ y =

⎛⎜⎝
y1

...

y7

⎞⎟⎠ .
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With periodic b.c., D is a circulant matrix. When other types of b.c. are used, e.g. for
nets with non-rectangular shapes or holes, D will be in general a quasi-Toeplitz matrix
(dmn = dn−m except at a few elements). In elastic nets of two or more dimensions,
D is circulant or quasi-Toeplitz by blocks. The original elastic net model [1, 2, 5] is
obtained by using a stencil (0,−1, 1); in 1D the tension term simplifies to the sum of
squared lengths β

2

∑
m ‖ym+1 − ym‖2.

Compared with the continuous case, the discrete case has an extra degree of free-
dom since the pth derivative can be represented by many different stencils differing
in truncation error. If the goal is accuracy at a reasonable computation cost (as in the
numerical solution of PDEs), then one seeks stencils having few nonzero coefficients
and high-order truncation error. For example, both (0,−1, 1) (forward-difference) and
(− 1

2 , 0, 1
2 ) (central-difference) approximate the first derivative, but with linear and qua-

dratic error, respectively, so the latter is preferred. Surprisingly, in the elastic net (where
accuracy is not the goal) it turns out that stencils of the same order can result in nets
of completely different characteristics. In particular, the highest frequency components
can fail to be penalized, giving rise to a “sawtooth” solution (Fig. 3), which is phys-
ically unreasonable. Here, we give a characterisation of discrete differential stencils.
The basic idea is that we can understand the tension term in terms of the eigenspace of
S, and that the latter coincides for periodic b.c. with the Fourier spectrum of the stencil,
i.e., the eigenvectors are (co)sinewaves in a bounded, discrete frequency interval.

For periodic b.c., D and S are circulant. The mathematical analysis of 1D nets is
straightforward; we state the main results without proof (full details appear in [9]).
Many of them carry over to the L-dimensional case. Assume the net has M centroids
(where M is even, for simplicity).

The eigenvectors of S are discrete plane waves vmn = cos
(
2π m

M n
)

and wmn =
sin
(
2π m

M n
)
. Unlike the continuous case, the discrete frequency m is upper bounded by

M
2 . This highest frequency corresponds to a sawtooth wave (1,−1, 1,−1, . . . , 1,−1)T ,

which plays a significant role with certain stencils. S has M
2 distinct eigenvalues νm

(since νm = νM−m for m = 1, . . . , M − 1) which are real nonnegative. The power
spectrum of the stencil ς is equal to the eigenspectrum of S, i.e., |ς̂κ|2 = νκ where
ς̂κ =

∑M−1
m=0 ςme−i2π κ

M m is the discrete Fourier transform of ς . ν0 = 0 is associated
with the constant eigenvector v0 = (1, . . . , 1)T ; and νM

2
is associated with the sawtooth

eigenvector vM
2

= (1,−1, 1,−1, . . . , 1,−1)T .
By decomposing the net in the eigenvector basis of S as a superposition of plane

waves, it becomes clear that frequency m contributes a tension-term penalty propor-
tional to νm. Thus, given a stencil, its power spectrum gives the penalty for each fre-
quency of the net. The constant eigenvector of ones is the sampled version of a constant
net and incurs zero penalty since ν0 = 0 for a differential operator. However, since the
rest of eigenvalues are nonzero in general, eigenvectors of the form vmn = nm for fixed
m ∈ Z

+, corresponding to a monomial tm, are not nullified by D in the circulant case
(but they can be nullified in the nonperiodic b.c. case).

A stencil ς has zero power at the sawtooth frequency iff
∑

m even ςm =
∑

m odd ςm =
0. We call sawtooth stencil a stencil satisfying this condition. The convolution of any
stencil with a sawtooth stencil is also sawtooth. For sawtooth stencils, the highest fre-
quency incurs no penalty in the tension term, just as the zero-frequency wave (the con-
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stant net) does – unlike the continuous case, where a wave of frequency m has an
average penalty proportional to m2p.

Applying p times a first-order stencil ς results in a pth-order stencil with matrix Sp.
The family of ς consists of all such stencils for p ≥ 1. We give specific results for two
families that are particularly important; see Fig. 1(B,C).

Forward-difference family. This is defined by the first-order forward-difference stencil
ς = (0,−1, 1). The pth-order derivative stencil has eigenvalues νm =

(
2 sin

(
π m

M

))
2p.

The stencils are not sawtooth. The first four stencils are:

p Finite difference scheme Error term Stencil

1 y′
m ≈ ym+1−ym

h −y′′(ξ)h
2 (0, 1, 1)

2 y′′
m ≈ ym+2−2ym+1+ym

h2 −y′′′(ξ)h (0, 0, 1, 2, 1)

3 y′′′
m ≈ ym+3−3ym+2+3ym+1−ym

h3 −yiv(ξ)3h
2 (0, 0, 0, 1, 3, 3, 1)

4 yiv
m ≈ ym+4−4ym+3+6ym+2−4ym+1+ym

h4 −yv(ξ)2h (0, 0, 0, 0, 1, 4, 6, 4, 1)

Figure 1(B) shows that the forward-difference family forms a progression with p similar
to that of the continuous case where the curves slope up more slowly for larger p. Even
though the nullspace is strictly that of the constant wave, since the only null eigenvalue
is ν0, as p increases there are ever more near-zero eigenvalues for the low frequencies.
Thus, in this family low frequencies are practically not penalized for high p.

Central-difference family. This is defined by the first-order central-difference stencil
ς =
(− 1

2 , 0, 1
2

)
. The pth-order derivative stencil has eigenvalues νm = sin2p

(
2π m

M

)
.

All stencils are sawtooth. The stencil of order p can be obtained from the forward-
difference stencil of order p by intercalating 0 every two components and dividing by
2p. Fig. 1(C) shows that this family also has a progression with decreasing slopes at
low frequencies, but since every one of its stencils is a sawtooth stencil, both the low
and high frequencies are not penalized. As M grows, more frequencies are allowed and
the net approaches the continuum limit. However, for the central-difference family the
sawtooth frequency remains unpenalized.

5 Annealing Algorithms for Parameter Estimation

Existing algorithms for optimizing the elastic net energy function include gradient de-
scent [1] and matrix iteration methods (Gauss-Seidel in [5]). However, for large β, the
step size required for convergence of gradient descent becomes very small, and the ma-
trix iteration methods may occasionally diverge. We therefore developed a new, more
powerful, iteration scheme. For constant σ, we look for stationary points:

∂E

∂Y
= − 1

σ
(XW −YG) + βY

(
S + ST

2

)
= 0 =⇒ YA = XW (3)

with weight matrix W = (wnm) and invertible diagonal matrix G = diag (gm)

wnm
def=

e−
1
2‖ xn−ym

σ ‖2∑M
m′=1 e

− 1
2

∥∥∥ xn−y
m′

σ

∥∥∥2 gm
def=

N∑
n=1

wnm A def= G + σβ

(
S + ST

2

)
.
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The weight wnm is also the responsibility p(m|xn) of centroid μm for generating point
xn, and so gm is the total responsibility of centroid μm. The matrix XW is then a
list of average centroids. Since S will typically be sparse (with a banded or block-
banded structure), we can solve the system YA = XW efficiently and robustly without
inverting A by computing (with prior reordering if desired) the Cholesky factorisation
A = LLT , where L is lower triangular with nonnegative diagonal elements. Y is then
obtained by solving two triangular systems by Gaussian elimination.

The Cholesky factorisation [10] is stable for symmetric semipositive definite ma-
trices and terminates in O(1

3M3) for dense A but much faster for sparse A, since L
preserves the banded structure. Naturally, since W and G depend on Y, the method
should be iterated. The algorithm can be seen as an EM algorithm, so it converges with
linear order. Thus, although compared with conventional gradient descent, it requires
slightly more computation time per step (which is always dominated by the computa-
tion of W), it generally requires fewer iterations to converge. This and its reliability
render it preferable.

6 Simulation Results for Cortical Map Modeling

In cortical map modeling [5, 6], the nets first develop uniform retinotopy, and then at a
bifurcation of the energy, ocular dominance (OD) and orientation (OR) maps emerge.
There, the maps are waves of a specific frequency κ∗ for a range of β values. This fre-
quency κ∗ results from a trade-off between the fitness term pushing for high frequencies
and the tension term penalizing frequency m proportionally to βνm. The analysis of the
tension term alone indicates that the frequency κ∗ should decrease with β and increase
with the stencil order p, given the progression of the eigenvalue curves towards passing
higher frequencies with increasing p. This is confirmed by our simulations (Fig. 2; only
OD is shown). In [11], we show that these differential priors correspond to Mexican-
hat lateral interactions with p oscillations (excitatory vs inhibitory); and that for p > 1
the geometric relations between the OD and OR maps (e.g. intersection angles) do not
match those of the biological maps that have been observed so far.

The elastic nets resulting from the central-difference family very often contain saw-
tooth patterns. Such sawtooth patterns may take all the net or part of it, and can appear
superimposed on a lower-frequency wave for some values of σ (see Fig. 3). One can
also understand why this happens by noting that the tension term decouples in two, one
for the even centroids and the other for the odd centroids. Other well-known stencils
are also sawtooth, for example in 2D the quadratic-error Laplacian∇2

× = 1
2

(
1 0 1
0 −4 0
1 0 1

)
.

7 Discussion

The behavior of the generalized elastic net is determined by the joint effect of the fit-
ness and tension terms of its energy function. Our separate analysis of the tension term
provides insight into the structure of the minima of the energy and makes explicit the
discrepancies between the continuous and the discrete formulations of the net. This
analysis paves the way for further work in the generalized elastic net, such as the study
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Fig. 1. 1D power spectrum associated with the derivative of order p of a continuous function,
P (k) = (2πk)2p, k ∈ R

+; and for discrete nets with stencils (normalized by total power) from
the forward- and central-difference families, Pκ

def
= |ς̂κ|2, κ = 0, . . . , M/2

Fig. 2. Selected subset of ocular dominance map simulations with a 2D net with the forward-
difference family and open b.c. Except for p and β, all other parameters and the initial conditions
are the same. The stripes are narrower for low β and high p

Fig. 3. Sawtooth stencils. Left: 1D nets in a stimulus space of (retinotopy, ocular dominance),
open b.c., with a non-sawtooth stencil above and a sawtooth one below. Right: 2D sawteeth in
ocular dominance with 3rd-order stencil ς = 1

2
(−1, 2, 0,−2, 1); cf. Fig. 2
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of other stencil types, nonperiodic b.c., and the analysis of bifurcations from the Hes-
sian of E and the character of the emergent nets. It also applies to other problems for
which a discretized version of a quadratic smoothness regularizer is used, e.g. in com-
puter vision, image processing or inverse problems. The model can also be used for
unsupervised learning. We can extract MAP estimates for both Y and σ (perhaps with
a prior on σ) with an EM algorithm, again based on Cholesky factorization; or perform
Bayesian inference on β to attain good generalisation to unseen data (e.g. [12]).

Can differential priors be used with the SOM and GTM? This is tricky for the SOM,
since it is not defined through an objective function. However, it may be possible to
introduce them in the learning rule (similarly to momentum terms). Since GTM defines
a continuous mapping, differential priors can, in principle, be used exactly. However,
this is practically cumbersome, so that they may be more conveniently approximated
by discrete stencils as here.

Difference schemes have been used extensively in the numerical solution of differ-
ential equations [13]. In this context, the concerns regarding the choice of difference
scheme are: accuracy (whether the truncation error is of high order, which will mean a
faster convergence), stability (whether the approximate solution converges to the true
one as the step size tends to zero) and sparsity (whether the scheme has few nonzero
coefficients, for computational efficiency). In our context of differential priors with a
discrete net, accuracy and stability are not so relevant, while whether the stencil is for
instance sawtooth is crucial.
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Abstract. This paper presents a highly parallel implementation of a
new type of Self-Organising Map (SOM) using graphics hardware. The
Parameter-Less SOM smoothly adapts to new data while preserving the
mapping formed by previous data. It is therefore in principle highly
suited for interactive use, however for large data sets the computational
requirements are prohibitive. This paper will present an implementation
on commodity graphics hardware which uses two forms of parallelism
to significantly reduce this barrier. The performance is analysed experi-
mentally and algorithmically. An advantage to using graphics hardware
is that visualisation is essentially “free”, thus increasing its suitability
for interactive exploration of large data sets.

1 Introduction

One of the consequences of the explosion of data collection size and dimensional-
ity is the need for unsupervised approaches to analysis and, in particular, dimen-
sionality reduction. The Self-Organising Map (SOM) is an unsupervised learning
technique capable of mapping a high dimensional input space to a lower (gen-
erally two-dimensional) output space such that the topology of the input space
is preserved in the output space. This allows intuitive exploration of the data in
an easily comprehensible 2D map that preserves neighbourhood relations.

For large, high dimensional data sets, or for applications where interactive
use of the SOM is required, training times become an issue. This has led to the
development of specific hardware implementations such as [1]. However, in order
to find widespread application as, for example, an interactive web search tool,
custom hardware solutions are obviously infeasible.

Driven primarily by the games industry the speed and programmability of
commodity graphics hardware have been developing apace - performance in-
creases outstripping Moore’s Law by approximately a factor of 3:1[2]. Over the
last few years the graphics processing unit (GPU) has not surprisingly been gain-
ing interest as an inexpensive high performance platform for non-graphics cen-
tric computation. General Purpose computation on Graphics Processing Units
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(GPGPU) is a burgeoning field. GPU is suited particularly to implementations
which exploit the parallelism of the graphics rendering pipeline, and which match
the single instruction multiple data (SIMD) format at some point in their exe-
cution.

A recent development, the Parameter-Less Self-Organising Map (PLSOM)
[3, 4], markedly decreases the number of iterations required to get a stable and
ordered map. It also has two features which make it highly suited to interactive
use: plasticity preservation and memory. These mean that it handles well being
retrained with new data which may be greater than the range of the previously
used data (plasticity) or smaller than the range of previous data (memory).

These factors made it an ideal candidate for an efficient parallel implemen-
tation, which we present here. We seek to demonstrate the suitability of the
PLSOM for parallelisation and graphics hardware implementation, and a signif-
icant theoretical and actual performance superiority of this implementation. We
have not provided a reference implementation of the standard SOM - for the
reasons already given our focus is on the PLSOM - however we do discuss briefly
how they relate.

We start with the theoretical basis of the Parameter-Less SOM in Section
2, then provide an introduction to using graphics hardware for general purpose
computation in Section 3. Section 4 contains the fusion of these elements in
terms of implementation and algorithmic complexity. Experimental setup for
performance testing and empirical results are presented in Section 5. We con-
clude by commenting briefly on the potential for sophisticated visualisation and
interactive use.

2 The Parameter-Less SOM

The Self-Organising Map [5, 6] is an algorithm for mapping (generally) low-
dimensional manifolds in (generally) high-dimensional input spaces. The SOM
achieves this through unsupervised training, but one of the major problems have
been selecting and tuning annealing schemes, since it must be done empirically
in the absence of a firm theoretical basis. There is no need for a learning rate
annealing scheme or neighbourhood size annealing schemes with the Parameter-
Less SOM. The PLSOM, which is similar to the SOM in structure but differs in
adaption algorithm, consists of an array of nodes, N . The nodes are arranged
in a grid in output space so that one can calculate the distance between two
given nodes. During training, an input in the form of a k-dimensional vector x
is presented to the PLSOM. The winning node at timestep t, c(t), is the node
with an associated weight which most closely resembles the input, c(t) is selected
using Equation 1.

c(t) = arg min
i

(||x(t) −wi(t)||) (1)

where wi(t) is the weight vector associated with node i at timestep t. Then
the weights are updated using Equations 4-5. The basic idea is to move the
weight nodes associated with nodes close to c towards the input x. How much to
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move the weight vector of a given node i depends on the distance from i to c (in
output space) and the neighbourhood function. The scaling of the neighbourhood
function (the neighbourhood size) determines how a node which is far away from
c is affected. A small neighbourhood size means relatively few nodes, close to c,
are affected while a large neighbourhood function will lead to updates on more
nodes further away from c. The weight update is scaled by a variable ε which is
calculated according to Equations 2 and 3.

ε(t) =
||wc(t)− x(t)||

ρ(t)
(2)

where ρ(t) ensures that ε(t) ≤ 1.

ρ(t) = max(||x(t) −wc(t)||, ρ(t− 1)),
ρ(0) = ||x(0)−wc(0)|| (3)

ε is used to scale the weight update in two ways; directly, as part of Equation 4
and indirectly as part of Equation 5.

Δwi(t) = ε(t)hc,i(t)[x(t) −wi(t)] (4)

where Δwi(t) is the change in the weight associated with node i at timestep t
and hc,i is the neighbourhood function given in Equation 5.

hc,i(t) = e
−d(i,c)2

Θ(ε(t))2 (5)

where e is the Euler number, d(i, c) is the Euclidean distance from node i to
node c in output space and Θ(ε(t)) is given by Equation 6.

Θ(ε(t)) = β ln(1 + ε(t)(e− 1)) (6)

where β is a scaling constant related to the size of the network. For a n-by-m
node network one would usually select β according to Equation 7:

β =
m + n

2
(7)

The PLSOM achieves faster ordering, is independent of input space distribution,
eases application and has a firmer theoretical basis.

3 Programmable Graphics Hardware

Commodity graphics hardware is designed primarily for real time approximation
of lighting for 3D scenes. In the quest for more realistic approximations, recent
graphics hardware has allowed programming of the graphics operations directly
using programs that are referred to as shaders.

Through the careful construction of graphics commands, we can adapt the
hardware to perform calculations, much like a co-processor. The graphics hard-
ware expects polygons that are defined by their edge vertices. Each polygon is
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transformed into fragments, which are multi-valued cells. We will refer to the
collection of fragments as streams, in keeping with parallel computation termi-
nology. Each fragment is processed by a fragment shader, also referred to as a
kernel. As part of the hardware process, fragments are written to the framebuffer
as pixels, ready for display to the user.

Control over the execution of the process remains with the CPU, since the
CPU must instigate any instance of the stream operations. This is achieved
by rendering a quadrilateral, which passes four vertices that bound the stream
output, causing an instance of the kernel to be invoked for each element within
the output stream. In our implementation we re-use the contents of the frame
buffer as input, which under the architecture of the GPU means passing it to
the fragment program as a texture.

The architecture of the graphics hardware is SIMD both as a vector processor
and as a stream processor. As a vector processor each instruction can operate on
up to four components of a vector simultaneously. As a stream processor the same
program, or kernel, is executed for every element in the stream concurrently.

4 GPU Implementation of the PLSOM

There are two strategies to parallelising the self-organising map - vectorisation
and partitioning [7] - and these essentially correspond to the two SIMD charac-
teristics just mentioned. Vectorisation is the use of a vector-processor to operate
on the (k-dimensional) components of each input in parallel. Partitioning of the
map is done to allocate different processors to different sections; on which they
can execute identical kernels. So by using graphics hardware we are well posi-
tioned to take advantage of both these optimisations. It should be possible to
extend the algorithm given below to a standard SOM with very little modifica-
tion: the only real difference is that way that the neighbourhood is chosen.

4.1 Self-organising Map Kernels

We focus on a single weight update for the whole map, that is to say a single value
of t for Equations 1-6. This computation maps itself well to the stream paradigm
and requires three separate kernels which we denote computeDist<>,findMin<>
and updateWeights<>.

If we extract di = ||x(t)−wi(t)|| from Equation 1 and formulate it as a single
operation for the whole map, we have the distance vector d = ||x(t)−w(t)||, and
computeDist< x,w > becomes our first kernel. The weight update is also easily
treated as a stream operation using kernel updateWeights< w, c, ε >. Provided
c(t) is available for Equation 4 this approach should lead to significant speedup.
Therefore our main focus is to construct a kernel which can be used to find
arg mini(d) in an efficient manner.

Finding the maximum or minimum value of a set in parallel, and with only
localised knowledge of state, can be achieved by iterating many local finds on ever
smaller sets. This divide-and-conquer style of operation is termed a reduction
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Fig. 1. Reduction Kernels

operation in the GPGPU literature. There are a number of implementation issues
to be considered. With each iteration of the kernel operation we modify the
coordinates of the quad we render to reduce the bounds of the stream each
time. Eventually we are left with a one pixel buffer which is our desired value.
Each time the kernel executes, the stream output is copied from its destination
into a texture ready for input to the next stream operation. The kernel itself is
relatively simple: it gathers a small number of values from the input texture and
outputs the minimum value.

Given that our initial set size is N , we only require q = �logηN� iterations,
where η is the size of the local sub-sets (and therefore the reduction factor). We
term this operation findMin< dj >, where dj represents the vector of values in
the input stream at iteration j, j = 1 . . . q, ie d1 = d and |dq| = 1 . The nature
of this reduction process is expressed in Figure 1.

4.2 Algorithm Analysis

Using these three stream operations leads to a concise algorithm:
1: d← computeDist < x,w >
2: q ← ceil(logηN)
3: for all j ← 1, 2, . . . , q do
4: dj+1 ← findMin < dj >
5: end for
6: c← dq

7: updateWeights < w, c, ε >

Assuming a number of processors equal to the number of nodes in the map, we
have two standard stream operations - computeDist<> and updateWeights<>
- with constant order time complexity, plus �logηN� iterations of findMin<>,
which is essentially η compare instructions. This would result in a time com-
plexity T = η�logηN� which is O(logN).

However, in reality we have a limited number of processors, these being the
twelve parallel pixel shader pipelines on our GeForce 6800 graphics card. With
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P processors our time complexity is

T (N) = k

⌈
N

P

⌉
+

q−1∑
i=0

η

⌈
ηi

P

⌉
(8)

where k is the number of (constant order) instructions in computeDist and up-
dateWeights combined. This is O(N/P ) which demonstrates clearly the extent
to which partitioning parallelism is exploited. Until some point N >> P , we
should see roughly logN growth.

4.3 Higher Dimensions

Our treatment so far has ignored the issue of what happens when we have greater
than four dimensions. Arbitrary dimensions can be modelled using a 3D texture,
with 4 dimensions to each z coordinate. The winning node is now found using
a 2-step reduction. First the dimension distance is reduced to a scalar for each
node, then the 2D coordinate and scalar distance are reduced as above. In our
3D texture, the x,y dimension are the 2D SOM grid, the z dimension is all
the dimensions of that node. The graphics hardware’s two SIMD characteristics
are both utilised heavily in this situation indicating that similar performance
advantages can be expected. Future work will explore this avenue.

5 Training Speed on Various Platforms

In order to give an estimation of the benefit of using programmable graphics
hardware for PLSOM training we implemented the same training algorithm on 3
different platforms. In addition to a basic CPU implementation on a desktop and
a GPU implementation using an NVIDIA graphics card on that same machine,
we also tested a semi-parallelised implementation on a supercomputer.

– Target machine 1: A Coretech desktop with a 3.0 GHz Pentium 4 CPU
and 1G RAM. Compiler: MSVC running in debug configuration with no
optimisations. Operating system: Windows XP.
Graphics Hardware: Albatron GeForce 6800 with 12 parallel pipelines.

– Target machine 2: The Queensland Parallel Supercomputing Foundation
(QPSF) SGI Altix (64 bit) 3700 Bx2 supercomputer with 64 Intel Itanium
2 (1500Mhz) processors (although we only used 6 for our test) and 121 GB
RAM. Compiler: icpc, the Intel parallelising C++ compiler. Optimisation
level 3, parallelisation enabled. Operating system: 64-bit GNU/Linux.

For the test we trained an m-by-m node network with 2-dimensional input.
The map is presented with 1000 inputs that are randomly generated, uniformly
distributed in the unit square. The inputs are presented sequentially. The test
program was written in C++ for the two non-GPU versions, a combination of
C++ and Cg for the graphics implementation, and the code was functionally
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Table 1. Execution Times 1000 Map Updates (Seconds)

number of Desktop Super Graphics
nodes computer computer card

729 3.93 0.24 1.67

4096 22.03 0.59 1.71

6561 36.37 1.18 1.72

16384 88.42 2.95 1.72

59049 317.80 11.51 3.32

236196 1278.04 69.26 6.65

531441 - 157.13 14.51

1048576 - 291.67 31.43

identical. Table 1 shows the execution times for 1000 map updates on these
platforms.

Figure 2 shows the execution time growth rates of the PLSOM on the su-
percomputer and the GPU. This observed data indicates an time complexity of
O(N)) for the GPU and the supercomputer after a critical point, however prior
to this the GPU exhibits logN growth as suggested in section 4.2. The parallelism
of the graphics card is unable to overcome certain hardware-specific overheads
until a certain point, however it is never slower than the desktop implementation
in our experiments and it quickly overtakes the supercomputer performance. At
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a map size of 1024 ∗ 1024 nodes we can see a 90% performance improvement of
the GPU over the supercomputer.

This performance superiority cannot be directly translated to high dimen-
sional data sets, however as we mentioned in section 4.3 both forms of paral-
lelism would be heavily used in such an implementation and we plan to look at
this in future work.

6 Discussion and Conclusion

In this paper we have described an implementation of the Parameter-Less Self
Organising Map on commodity graphics hardware and provided an empirical per-
formance analysis. As noted by [7] a desirable application of high speed training
and re-training of the self-organising map is interactive analysis of web search
results. Given this, inexpensive commodity graphics hardware is an ideal way to
provide the computational power required, especially given that while the GPU
is busy, the CPU is free for other tasks. Additionally, the visualisation capabil-
ities of graphics hardware are ‘on-tap’ during the computational process - the
execution times for the graphics card included displaying the weight matrix to
the screen every ten iterations. This combination of superior visualisation power
and what is essentially a tool for visualising higher-dimensional spaces seems
synergetic.
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Abstract. Novelty detection involves identifying novel patterns. They
are not usually available during training. Even if they are, the data quan-
tity imbalance leads to a low classification accuracy when a supervised
learning scheme is employed. Thus, an unsupervised learning scheme is
often employed ignoring those few novel patterns. In this paper, we pro-
pose two ways to make use of the few available novel patterns. First, a
scheme to determine local thresholds for the Self Organizing Map bound-
ary is proposed. Second, a modification of the Learning Vector Quanti-
zation learning rule is proposed so that allows one to keep codebook
vectors as far from novel patterns as possible. Experimental results are
quite promising.

1 Introduction

In a typical binary classification problem, a model is trained with two classes
of data and discriminates a new input pattern as either one of the two classes.
However, in practice, there are situations where patterns from one class are too
rare or difficult to obtain. For example, it is practically impossible to obtain pat-
terns such as counterfeits in currency validation problems, let alone to construct
a classifier based on them. In these cases, therefore, the novelty detection frame-
work [1] is employed where a model learns characteristics of normal patterns in
a given training dataset and detects novel patterns that are much different from
the normal ones. In a geometric sense, the model generates closed boundaries
around the normal patterns [2].

Various methods have been proposed for novelty detection tasks [3]-[5]. Most
of them utilize only normal data during training, since they do not assume that
novel data exist in their training processes, with a few exceptions [6]-[9]. But,
in many cases, there exist, if few, novel patterns in the training data. Although
they are not sufficient to train a binary classifier, they can help determine the
boundaries around the normal class. It is experimentally shown that one can
achieve a higher classification performance by utilizing information on novel
data during training [6], [7], [9].

In novelty detection, generalization is to characterize patterns from the nor-
mal class while specialization is to exclude patterns from all other classes [10]. A
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balance between the two concepts is critical to classification performance. Even
though novelty detectors are able to generalize from normal data, most of them
cannot specialize from data, but from a particular internal bias, since they ig-
nore novel data. In this sense, using novel data during training helps a novelty
detector specialize also from data.

In this paper, two approaches are proposed, which can be applied to situations
where a few novel patterns exist in the training data. The first approach is a
self-organizing map (SOM-L) concerned with determining local thresholds, i.e.
one for each “cluster”. The second one is a one-class learning vector quantization
(LVQ) which utilizes the novel data to update its codebooks lest they should lie
within boundaries surrounding the normal class. Just as the SOM-L, the one-
class LVQ (OneLVQ) determines its thresholds based on both classes of data.
Eventually, it is expected that the two methods generate more accurate and
tighter boundaries than other methods trained with the normal class only.

The proposed approaches, the SOM-L and the OneLVQ, are described in
the next Section. In Section 3, they are applied to an artificial and real-world
datasets, and compared with other novelty detectors. In Section 4, conclusions
and future research directions are discussed.

2 Proposed Approaches

2.1 Self-organizing Maps for Novelty Detection

Suppose a training dataset X = {(xi, yi)|i = 1, 2, . . . , N} is given, where xi ∈
R

d is an input pattern and yi ∈ {+1,−1} is its class label. The normal (or
target) and the novel (or outlier) classes are denoted as T = {xi|yi = +1} and
O = {xi|yi = −1}, respectively. In general, the number of normal patterns is
much greater than that of novel ones, i.e. |T| ' |O|. For a conventional SOM
[11], only the normal patterns are used. A SOM generates a set of codebooks
W = {wk|k = 1, 2, . . . , K}, K ( N , to describe the normal data.

After updating the codebooks, the codebook vector m(x) of an input pattern
x and the Voronoi region Sk of each codebook wk are defined as follows,

m(x) = wk ⇐⇒ x ∈ Sk, if ‖wk − x‖2 < ‖wl − x‖2, ∀l �= k. (1)

Given a test pattern z, one will reject it as novel if the Euclidean distance
(or quantization error) e(z) between z and m(z) is greater than some threshold,
or accept it as normal otherwise. A conventional SOM employs one “global”
threshold, so let us denote it as a SOM-G. Usually, only one threshold is defined
for all the codebooks to separate normal and novel, no matter which codebook
is closest to z. The threshold is determined according to the pre-determined
fraction, θ, of the normal patterns to be rejected. That is,

e(z) = ‖z−m(z)‖2 ≤ r2, (2)

where
∑

xi∈T I{e(xi)>r2}
N = θ and I{·} is an indicator function.
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2.2 Determination of Local Thresholds for a SOM

While some codebooks lie in dense lumps of input patterns, others lie in regions
where patterns are sparsely scattered. If a single global threshold is applied for
all the codebooks as in (2), some codebooks may be responsible for too large
regions or too many normal patterns may be located outside of the boundaries.
For that reason, it is desirable to set different thresholds for different codebooks.

In this subsection, a method for setting thresholds are presented, which re-
sembles the support vector data description (SVDD) [9]. When the codebook
update is finished, each training pattern belongs to the corresponding Voronoi
region Sk, which also has the codebook vector wk. For each Voronoi region, a
hypersphere with a center at wk and a minimal radius is obtained, so that it
surrounds as many normal patterns and as few novel patterns as possible. Thus,
an “optimization” problem can be considered as follows,

min Ē(rk) = r2
k + C1

∑
yi=+1

εi + C2

∑
yi=−1

ξi, (3)

subject to ‖xi −m(xi)‖2 ≤ r2
k + εi, ∀xi ∈ Tk,

‖xi −m(xi)‖2 ≥ r2
k − ξi, ∀xi ∈ Ok,

εi, ξi ≥ 0, ∀i, (4)

where Tk = T∩Sk and Ok = O∩Sk. On one hand, a hypersphere with a large
radius can surround many normal patterns, but may increase the possibility
of false acceptance. On the other hand, a hypersphere with a small radius can
exclude many novel patterns, but may reject more normal patterns than desired.
Therefore, two positive constants, C1 and C2 are introduced to control the trade-
off between the radius rk and the errors, εi and ξi. The solution r∗k of (3) can
be found by an exhaustive search with |Tk| computations. Ultimately, a small
threshold is found for a codebook in a dense region, a large threshold for one in
a sparse region.

(r∗k)2 = e(xu), where u = argmin
xi∈Tk

Ē
(
e(xi)

)
. (5)

For each codebook, the optimal threshold can be found independently. A test
pattern z is classified as normal (z ∈ T) if satisfying (6), or as novel (z ∈ O)
otherwise.

‖z−wq‖2 ≤ (r∗q )2. (6)

For a SOM-L, a conventional SOM is trained, but local thresholds such as
(6) are used to classify a new test pattern.

It should be mentioned that local thresholds can be determined in other ways,
among which the most well-known is by adopting a mixture model to generate a
probability density function. To apply this sort of approach, however, one should
be able to estimate the density of the novel class or explicitly assume it to follow
some distribution as discussed in [8]. That is not only difficult, but also too risky,



362 Hyoung-joo Lee and Sungzoon Cho

since we focus on a situation where only a handful of novel data exist. So we have
adopted the proposed method that does not make a distributional assumption
on the novel class.

2.3 Modified LVQ Learning Rule

The OneLVQ is based on the LVQ learning rule. For the original LVQ, the
codebooks represent all of the classes and a pattern is classified as a class to which
the nearest codebook belongs. However, unlike the original LVQ, the OneLVQ
assigns the codebooks to only one class, i.e. the normal class, an attribute from
which the name, one-class LVQ, came.

When novel patterns are included in the training data, a modified error
function can be defined as

E =
∫

y‖x−m(x)‖2dxdy ∼= 1
N

∑
i

yi‖xi −m(xi)‖2

=
1
N

∑
k

[ ∑
xi∈Tk

‖xi −m(xi)‖2 −
∑

xi∈Ok

‖xi −m(xi)‖2
]
. (7)

Minimizing this error forces the codebooks to be located as close to the normal
patterns and as far away from the novel patterns as possible, leading to a different
learning rule from that of the original LVQ. Given an input pattern x,

wk ←
⎧⎨⎩wk if x /∈ Sk

wk + η(x−wk) if x ∈ Tk

wk − η(x−wk) if x ∈ Ok

. (8)

According to this rule, if x does not belong to the Voronoi region Sk that wk

represents, wk remains unchanged. If x does belong to Sk, wk moves toward x
if x is normal, or moves away from x otherwise. That is, the normal patterns
pull their codebook vectors while the novel patterns push away their codebooks.
The codebook update in (8) is iterated until the error function does not improve
or the maximum number of iteration is reached.

A OneLVQ is initialized by a conventional SOM and trained by the learning
rule in (8). For classification, like the SOM-L, local thresholds (6) are used.

3 Experimental Results

3.1 Artificial Dataset

In order to demonstrate the novelty detection capabilities of the SOM-L and
the OneLVQ, an experiment is conducted on a simple two-dimensional artificial
dataset. A horseshoe-shaped dataset is learned by three novelty detectors, the
SOM-G, the SOM-L, and the OneLVQ. Their decision boundaries are shown in
Fig.1. The “true” boundaries of the normal and the novel regions are represented
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(a) True boundaries (b) SOM-G

(c) SOM-L (d) OneLVQ

Fig. 1. Decision boundaries by three novelty detectors on the horseshoe-shaped data

by the solid curves and the broken curves, respectively. An important assumption
in a novelty detection problem is that novel patterns may appear in regions other
than the regions where novel data exist in the training set. Novel data are given
in the training set at O1 and they may also appear at O2 and O3 despite not
being in the training set. Each model classifies the lighter area as normal, and
the darker area as novel. The parameters are experimentally set. The SOM-
G correctly classifies O2 and O3 outside of the normal region as novel, but
misclassifies O1 in the normal region as novel. The SOM-L correctly classifies
O1, but fails to recognize a large part of the normal region. On the other hand,
the OneLVQ correctly classifies all of O1, O2, and O3, indicating that it is more
productive to utilize the novel data during training than to ignore them.

3.2 Rätsch’s Benchmark Datasets

Another set of experiments were conducted on six benchmark datasets, Banana,
Breast Cancer, Diabetes, German, Heart, and Titanic, all of which were reported
in [12] and available at http://ida.first.fraunhofer.de/∼raetsch/. Each
dataset consists of 100 splits of training and test sets, of which 30 splits are
used in this experiment. Since all of the datasets are for binary classification
problems, they were transformed into the novelty detection context. At first,
for each split of each dataset, the common class of the two was assigned as the
normal class, and the rare class as the novel class. Then a number of novel data
were randomly sampled so that the number of the novel data should be 10% of
that of the normal data in the training dataset.

As a classification performance criterion, the area under receiver operating
characteristic (AUROC) was used. This value was calculated from an ROC curve
that plots true rejection rates (TRR) over false rejection rates (FRR) from 1 to
50%. The experimental results are shown in Table 1, where the AUROC values
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Table 1. Average AUROC values on six benchmark datasets (%). * indicates a statis-
tically significant difference with a significance level of 5%

Dataset
Input

Gauss Parzen SOM-G AANN OneSVM SVDD SOM-L OneLVQ
Dim

Banana 2 16.25 42.73* 41.06 39.00 39.87 40.44 40.93 41.85
Breast-cancer 9 24.11 24.92 26.83 25.89 22.22 23.34 27.17 27.86

Diabetes 8 25.23 27.36 27.27 25.30 23.91 25.84 27.40 28.47*
German 20 19.90 21.45 22.48 20.31 18.70 19.65 23.90 24.83*
Heart 13 31.69 31.11 33.36 26.86 23.68 30.77 33.38 35.09*

Titanic 3 28.43 28.11 28.45 28.01 27.62 27.89 28.55 28.75

of eight novelty detectors over 30 splits are listed by their mean values. The
OneLVQ provides the highest AUROC values for most datasets and for Dia-
betes, German, and Heart datasets, its AUROC values are significantly higher
than other methods with a significance level of 5%. The SOM-L came second
to the OneLVQ in most cases. This difference seems due to the way that the
codebooks are updated, since it is the only difference between the two methods.
On the other hand, the fact that the SOM-L, on the whole, was better than
the SOM-G allows us to conclude that employing local thresholds rather than
a global one is effective. The one-class support vector machine (OneSVM) and
the SVDD resulted in AUROC values comparable to that of the Gaussian den-
sity estimator (Gauss), indicating that the solutions found by the two support
vector-based methods were basically hyperellipsoids. The Parzen density estima-
tor (Parzen) was the best for Banana dataset, which is two-dimensional, but not
much better than the Gaussian method for other datasets. The auto-associative
neural network (AANN) exhibited poor performances.

3.3 Keystroke Pattern Datasets

As real-world problems, we applied novelty detectors to a set of keystroke pattern
datasets. The objective is to characterize a user’s password-typing patterns and
to detect potential impostors’ password-typing patterns so that a computer sys-
tem can be protected against intrusions. 21 users typed their own passwords gen-
erating the normal class of data, and to simulate potential intrusion attempts, 15
“impostors” typed the 21 users’ passwords. In all, 21 datasets were constructed
for 21 users. For each user’s password, 76 to 388 normal patterns were collected
for training and 75 for test and 75 novel patterns were also collected. For a more
detailed description of these datasets, see [13]. In these experiments, 50 normal
patterns and 5 novel patterns were sampled for training. The 75 normal patterns
for test and the rest of 70 novel patterns consisted of the test set. Ten different
training and test sets were randomly sampled for each password to reduce a
sampling bias. The dimensionality of each dataset was reduced to about a half
via principal component analysis with 80% of variance retained.

In Table 2, false rejection rates (FRR) and false acceptance rates (FAR) of
seven novelty detectors for the 21 passwords are listed by their mean values.
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Table 2. Average FRR and FAR values for 21 password datasets (%)

Password
Parzen SOM-G AANN OneSVM SVDD SOM-L OneLVQ

FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR
90200jdg 99.07 0.57 51.73 6.29 86.80 1.14 23.07 8.57 18.00 10.00 28.67 7.29 31.47 7.29

ahrfus 88.00 89.87 0.00 19.07 0.14 68.00 0.00 11.47 0.29 10.13 0.71 7.47 2.14 8.00 2.29
anehwksu 92.67 0.00 24.13 5.14 68.67 1.86 15.73 7.29 14.80 8.14 11.20 12.43 12.93 8.29

autumnman 100 0.00 16.40 0.00 43.20 0.00 18.93 0.00 14.67 0.00 7.60 0.00 6.80 0.00
beaupowe 48.13 0.00 12.67 3.00 25.33 8.29 9.20 19.29 9.07 12.57 3.47 13.57 6.67 12.14
c.s.93/ksy 98.67 0.00 16.53 0.00 63.07 0.00 15.47 0.00 11.87 0.00 7.60 0.00 8.13 0.00
dhfpql. 85.73 0.29 18.27 8.00 70.40 2.00 13.20 9.14 13.73 8.57 10.13 13.29 9.73 12.71

dirdhfmw 97.60 0.14 18.93 5.86 45.60 5.43 12.27 9.57 11.87 8.71 5.07 13.86 6.27 11.71
dlfjs wp 98.40 0.00 24.27 1.14 64.27 0.57 22.27 1.00 19.07 1.57 12.67 2.86 12.00 1.71
dltjdgml 94.00 0.00 8.67 0.00 57.20 0.00 4.93 0.14 3.33 0.57 2.80 0.14 2.67 0.00
drizzle 89.87 0.00 23.33 2.71 39.87 2.14 14.80 2.86 13.47 3.57 9.07 9.29 7.87 9.29

dusru427 82.00 0.00 12.93 0.00 33.60 0.00 15.87 0.14 15.07 0.00 4.67 0.14 4.93 0.00
i love 3 94.93 0.00 10.40 9.71 49.47 4.71 7.20 11.43 6.00 12.14 5.20 14.14 6.27 12.00
love wjd 99.47 0.00 30.67 3.71 64.53 1.43 28.80 6.57 27.07 8.43 21.07 8.43 14.67 10.00
loveis. 82.53 0.00 16.53 0.29 58.93 0.43 13.47 0.43 13.20 0.86 8.53 6.14 9.07 1.14

manseiii 80.27 0.00 14.53 2.43 48.67 1.29 13.20 5.43 12.27 6.00 10.53 5.00 7.33 4.29
rhkdwo 76.40 0.43 30.80 3.14 76.93 0.43 18.40 9.14 17.07 9.43 13.20 10.14 12.67 6.14
rla sua 79.73 0.00 13.07 2.57 57.20 0.14 8.40 3.71 7.20 2.29 5.20 10.14 6.40 4.71

tjddmswjd 99.73 0.00 16.93 3.71 51.07 3.57 16.40 2.71 15.20 3.71 7.60 9.14 11.07 4.86
tmdwnsl1 87.73 0.00 28.40 0.71 58.13 0.43 15.73 2.86 14.80 3.14 11.33 5.14 9.87 5.29
yuhwa1kk 96.00 0.00 12.00 0.00 47.07 0.00 11.60 0.00 8.00 0.00 5.73 0.00 4.80 0.00
Average 89.18 0.07 20.01 2.79 56.10 1.61 14.78 4.79 13.14 4.78 9.47 6.82 9.51 5.42

The parameters were set using five-fold cross validation. Compared to the SOM-
G, the OneSVM, and the SVDD, the OneLVQ, on average, provides markedly
lower FRRs and slightly higher FARs. Compared to the SOM-L, the OneLVQ
has approximately equal FRRs but slightly lower FARs. The Parzen and the
AANN rejected almost all patterns regardless of their classes. For the Parzen
method, it is well-known that density estimation is difficult when applied to a
high-dimensional dataset with a small number of patterns. The AANN could
not avoid overfitting, since it had to estimate too many weights for the given
number of data. The OneLVQ exhibits good applicability to practical domains,
performing well with only 55 training data.

It should be stressed that among the novelty detectors, only the OneLVQ
and the SVDD utilize the novel data during training. Aside from that property,
the former is equivalent to the two SOM-based approaches and, to some extent,
the latter to the OneSVM. Considering that the OneLVQ and the SVDD, on
average, outperformed at least slightly their counterparts, it can be said that
utilizing information on the novel class improves novety detection performance.

4 Conclusions and Discussion

This paper focuses on how to utilize, if they exist, the novel data and presents
two novelty detection methods, the SOM-L and the OneLVQ. We have proposed
the procedure for the two models to determine thresholds for which the trade-off
between FRR and FAR is considered. For the OneLVQ, the error function and
the learning rule of the original LVQ were modified to utilize information on the
novel class as well as the normal class.
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The experiment on a simple artificial dataset showed that the OneLVQ can
resolve serious problems which may arise when considering only the normal data.
When applied to the six benchmark datasets and the keystroke pattern datasets,
both of the proposed methods show their competence as novelty detectors. Es-
pecially the OneLVQ performs better than other widely-used novelty detectors.

A few points and future directions have to be addressed. First, it is difficult
to determine the parameters, K and (C1, C2), all of which play pivotal roles in
training. To the best of our knowledge, they can be determined empirically by
techniques such as cross-validation. When one class has an insufficient number of
data, however, this may not be the best way. Note that the number of codebooks
should be chosen as to minimize the classification error, rather than to maximize
the goodness-of-fit to the data, since the ultimate goal is to detect novel patterns
correctly. Second, a more efficient initialization procedure is desired. Third, it
demands an investigation on how many novel patterns are needed for a OneLVQ
to be productive. Finally, it can be pointed out that despite being named from
the SOM, the SOM-G and SOM-L have little to do with the original purpose of
the SOM. Instead, they keep and use only the codebooks from the SOM.
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12. Rätsch, G., Onoda, T., Müller, K.R.: Soft Margins for AdaBoost. Machine Learning

42(3) (2001) 287-320
13. Yu, E., Cho, S.: Keystroke Dynamics Identity Verification - Its Problems and Prac-

tical Solutions. Computer and Security 23(5) (2004) 428-440



Huilin.Ye@newcastle.edu.au 





• 

• 

• 
• 

• 





• 

• 









bozic@eunet.yu 

{guanglan,vladimir}@i2r.a-star.edu.sg 



∈ ∈

∈



−∈ ∈

→ =⇔> −=⇔<

⋅=
≤≤

ρ

 
 

ΦΦ=

( )

=

==

=≤≤

−=

αα

αααα

=

+= α

α



= ∈ ∈ ∈

σ

σ

σ σ









j.hallinan@imb.uq.edu.au 

















Matching Peptide Sequences with Mass Spectra
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Abstract. We study a method of mapping both mass spectra and se-
quences to feature vectors and the correlation between them. The method
of calculating the feature vector from mass spectra is presented, together
with a method for representing sequences. A correlation metric compar-
ing both representations is studied. It shows strong correlation between
two representation for the same peptides. It also demostrates that the
effect of correlation is increased by using the longer sequences induced
from the theoretical mass spectra. The method provides a promising step
towards de novo sequencing.

1 Introduction

One of the most challenging problems in proteomics is to map mass spectra to
corrsponding peptide sequences. We try to identify the mapping by extracting
features from both mass spectra and the corrsponding sequences. We further use
the features to find the maximum likelihood between the mass spectra and the
corrsponding sequences.

The classic approaches identify the sequences from the mass spectra. This
approach has been studied by many researchers such as Mascot [1, 2], SEQUEST
[3, 4]. In the case of Mascot, a probability-based scoring system is used to match
database sequences to the search data. The scoring system calculates the like-
lihood between the experimental mass spectrum and the theoretical mass spec-
trum. SEQUEST uses a filter to select the first 500 sequences from the database,
and then compares the experimental spectral peaks with the theoretical mass
spectrum using the cross-correlation.

Another approach to determine the sequences from the mass spectra is known
as de novo peptide sequencing. The most distinguish feature of de novo sequenc-
ing is that it searches for a sequence without recourse of the database. This
feature is most useful when the sequence is not contained in the database. De
novo sequencing was first proposed by Dancik et. al. [5]. A dynamical program-
ming approach has been investigated by Chen et. al. [6] and Bafna et. al. [7].

The mapping between the sequences and the mass spectra is investigated in
this paper. In Section 2 we review the method of generating the theoretical mass
spectrum from a given sequence. In Section 3 we present the feature vector which
extracts feature from both sequences and mass spectra. The result is shown in
Section 4 and in Section 5 we review the method of measuring the distance of
binary vectors. In Section 6 conclusions are given.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 390–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Theoretical Mass Spectrum

Proteins and their component peptides are linear molecules, consisting of re-
peating units with an identical backbone, −NH − CH(R) − CO−, but differ-
ing in the nature of the side chain, R. Every side chain corresponds to one of
20 different, naturally occurring amino acids. The protein retains an unreacted
amino group NH+

3 at one end, known as the N-terminus, and an unreacted
carboxyl group COO−, known as the C-terminus at the other end. The re-
peated unit is joined by combining the amino group and carboxyl group, i.e.
NH+

3 + COO− −→ CO −NH + H2O.
Fragmentation in the mass spectrometer results in cleavage of different bonds,

most usefully at the CO − NH bond generating a series of ions of increasing
mass. The mass difference between consecutive pairs reveals the identities of the
consecutive amino acids. The exception occurs when the mass of the amino acids
are identical, such as isoleucine and leucine. In practice, cleavage also occurs at
many of the other bonds generating complicated spectra dominated by several
ion series [8, 9]. The mobile proton model has been developed and refined by
many researchers as a means to understand how peptides fragment in the gas
phase. This has been recently reviewed and used to explain the formation of
these various peptide ion series [10, 11]. In a recent work, this model has been
expanded to classify 5, 500 mass spectra into different categories dependent on
the number of charges on the parent peptide ion of each mass spectra and the
putative location and mobility of the proton [12]. If the proton is located at the
N-terminus, the cleavage leads to fragments of type an and bn ions. The masses
of the an, bn can be described by [13],

Nn =
n∑

i=1

aai + N + o, (1)

where Nn is {an, bn}, aai the mass of the ith amino acid from the N-terminus,
N is the mass of the N-terminus and o is the mass offest of the series. If the
proton is retained on the C-terminus, the cleavage leads to fragments of type yn

ions. The masses of the yn can be described by Equation (2).

yn =
n∑

i=1

aai + C + o, (2)

where aa the mass of an amino acid from the C-terminus, C is the mass of the
C-terminus and o is the mass offest of the series. The primary structure of the
ions series are shown in Figure 1.

3 Feature Extraction of Sequences and Mass Spectra

A sequence is represented as a 19× 19 dimensional matrix of 2-mers substrings
starting from the second amino acid of both ends of the sequence [14]. For the
sequence ADDRESS, a 2-mers substrings matrix is shown in Table 1.
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Fig. 1. The molecular formula of the a, b, y ion series

Table 1. Numerical representation of the sequence ADDRESS

A R N D C Q E G H I K M F P S T W Y V

A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A mass spectrum can be viewed as multiple sequences with various lengths. In
order to find all the sequences from the mass spectrum, a graph is constructed as
follows: each node represents an amino acid resulting from the distance between
the ith peak and the jth peak and the node is denoted as (i, j). Each edge
connects two nodes together labelled as (i, j), (j, k). The root node (j, k) of each
sequence is found by checking whether the node (i, j), for i < j, exists. Once
the root node is found, all the sequences beginning to the root node can be
found by a traversal tree algorithm. For examples, for a sequence ADDRESS,
the sequence has b and y ions as shown in 2, then a graph is created as shown in
Table 2 and the corresponding sequences are DDRES and SERDD, respectively.
All of the sequences induced from a mass spectrum are represented as a 19× 19
dimensional matrix of 2-mers substrings. The result of the induced sequences
DDRES and SERDD are shown in Table 3.
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Table 2. A graph of peaks representing mass spectrum of ADDRESS

peak no 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 D 0 0 0 0 0 0 0 0 0 0

2 0 0 0 S 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 D 0 0 0 0 0 0 0

4 0 0 0 0 0 0 E 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 R 0 0 0 0 0

7 0 0 0 0 0 0 0 0 R 0 0 0 0

8 0 0 0 0 0 0 0 0 0 E 0 0 0

9 0 0 0 0 0 0 0 0 0 0 D 0 0

10 0 0 0 0 0 0 0 0 0 0 0 S 0

11 0 0 0 0 0 0 0 0 0 0 0 0 D

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Numerical representation of ADDRESS from the b and y ions

A R N D C Q E G H I K M F P S T W Y V

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The traversal tree algorithm can be described as follows: Let f denote the
forward traveling from the parent node to child node, b denote the backward
traveling from the child node to parent node and c denote the cross traveling
from one node to another node at the same level. A path contains all connected
nodes from the root node to the current node. If the current state is f , the
algorithm travels from the current node to another node by {f, c, b} respectively.
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If the current state is b, the algorithm travels from the current node to another
node by {c, b} respectively. If the current state is c, the algorithm travels from
the current node to another node by {f, c, b} respectively. The traversal tree
algorithm is summarized in Figure 3. When the algorithm fails to travel from
the current node forward to another node, the sequence is read from the path.
The algorithm is terminated when the root node reaches from any child node.
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Fig. 2. The theoretical mass spectrum of
the sequence ADDRESS using b and y se-
ries plus one noisy peak, the intensity of
the peaks are chosen randomly
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Fig. 3. The state diagram for the traver-
sal tree algorithm, 1, 2, 3 show the trav-
elling priority from one state to another
state

4 Correlation Metric for Feature Vectors

In order to measure the correlation of 19 × 19 dimensional binary matrix, the
matrix is reorganized as a 361×1 binary vector. The contingency table is defined
4. The entities of the contingency table is define as

Mxy
00 =

N∑
i=1

I(xi = 0, yi = 0) (3)

Mxy
10 =

N∑
i=1

I(xi = 1, yi = 0) (4)

Mxy
01 =

N∑
i=1

I(xi = 0, yi = 1) (5)

Mxy
11 =

N∑
i=1

I(xi = 1, yi = 1) (6)

My
0 = Mxy

00 + Mxy
10 (7)

My
1 = Mxy

01 + Mxy
11 (8)

Mx
0 = Mxy

00 + Mxy
01 (9)
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My
0 = Mxy

10 + Mxy
11 (10)

M = Mxy
00 + Mxy

10 + Mxy
01 + Mxy

11 (11)

A correlation metric to measure the similarity between two representations
can be defined as Equation (12) with different values of δ and λ [15] as shown
in Table 5.

d =
Mxy

11 + δMxy
00

Mxy
11 + δMxy

00 + λ(Mxy
10 + Mxy

01 )
(12)

Table 4. The contingency table

x = 0 x = 1

y = 0 Mxy
00 Mxy

10 My
0

y = 1 Mxy
01 Mxy

11 My
1

Mx
0 My

0

Table 5. Correlation functions of feature vectors

name δ λ

Jaccard 0 1

Tanimoto 1 2

Simple Matching 1 1

Dice 0 0.5

5 Result

The mass spectra were downloaded from the Open Proteomics Database [16]. A
in-house database is created to store and query the data. The database contains
all of the spectrum from three different files 021112.EcoliSol37.1.sequest.zip, 4-
23-03.sequest.zip and 6-04-03-YPD-test.sequest.zip corresponding to different
mass spectrum from three species known as Escherichia coli, Mycobacterium
smegmatis and Saccharomyces cerevisiae respectively. 1000 unique sequences
with length smaller than 12 amino acids are selected from the in-house database.

The sequences are used to generate the a, b and y series theoretical mass spec-
tra, and then both sequences and theoretical mass spectra are feature extracted
to 361-dimensional feature vectors using the procedures described in Section 3.
Figure 4 shows the histogram of the various correlations for theoretical mass
spectra and sequences. It can be seen that the correlation tends to 1 indicating
strong correlation or matching between two representations. Figure 5 is similar
to Figure 4 but using only the longest induced sequences from the theoretical
mass spectra. It can be seen that the number of sequences greater than the upper
margin is higher than that using all of the induced sequences theoretical mass
spectra.

6 Conclusion

In this paper, a method of representing both sequences and mass spectra is
presented. The calculation of the representation of sequences are straight forward
and the traversal tree algorithm is used to calculate the representation of the
mass spectra. The result shows strong correlations between sequences and the
corresponding mass spectra. In addition, such a correlation is increased with
long sequences induced from the theoretical mass spectra.
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Fig. 4. The correlation between feature
vector from a, b and y ion series and the
feature vector from all of the induced se-
quences
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Abstract. This paper proposes a multi-population χ2 test method for
informative gene selection of a tumor from microarray data based on the
statistical multi-population χ2 test with the sample data being grouped
evenly. To test the effectiveness of the multi-population χ2 test method,
we use the support vector machine (SVM) to construct a tumor diagno-
sis system (i.e., a binary classifier) based on the identified informative
genes on the colon and leukemia data. It is shown by the experiments
that the constructed diagnosis system with the multi-population χ2 test
method can 100% correctness rate of diagnosis on colon dataset and
97.1% correctness rate of diagnosis on leukemia dataset, respectively.

1 Introduction

With the rapid development of DNA microarray technology, we can now get
the expression levels of thousands of genes via one single experiment. Certainly,
these gene expression profiles or simply called microarray data provide important
and detailed evidences to health state of human tissues for tumor analysis and
diagnosis. Mathematically, the microarray data corresponding to a tumor can
be represented by a matrix A = (aij)n×m, where the i−th row represents
the i−th gene, the j−th column represents the j−th sample, and the element
aij represents the expression level of the i−th gene in the j−th sample. Many
microarray data sets are now available on the web.

In tumor diagnosis, each sample can be identified as “tumorous” or “normal”,
and it is expected to construct a binary classifier as a diagnosis system to classify
them as correctly as possible. Clearly, this is just a problem of supervised binary
classification. However, as there are always thousands of genes in a microarray
chip, the microarray data are generally complete, but may be redundant since
some irrelevant genes can be involved. The existence of irrelevant genes not only
increases the computational complexity, but also impairs the efficiency of the
diagnosis system with the noise. In order to achieve a higher diagnosis accuracy,
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we should first select the informative or related genes that are discriminative
between the tumor and normal or two kinds of tumor phenotypes. Meanwhile,
the informative genes provide clues to medical or biological studies.

The problem of informative gene selection or discovery has been studied ex-
tensively in the past several years. In 1999, Golub et al. [1] proposed a kind of
discrimination measurement or criterion on the genes via a simple statistic sim-
ilar to t statistic. In their experiments, 50 most informative genes were selected
and used to construct the tumor classifier with a good result on the leukemia
data set. Later on, some other ranking criteria were proposed sequentially, such
as F statistic method [2], mutual information scoring method [3], Markov blan-
ket method [4], etc.. Moreover, the experiments carried out by Brown et al. [5],
Dudoit[6], Furey et al. [7] and Guyon et al. [8] have shown that the support
vector machine (SVM) [9] is one optimal choice for constructing the classifier or
tumor diagnosis system on a microarray data set.

However, there exist two serious problems in former methods. On the one
hand, these methods require a user-specified threshold on the number of in-
formative genes. That is, they select the top k genes as the informative ones.
However, it is often difficult for a user to specify such a parameter. Certainly, we
can use the SVM to test the best number for k, but the testing process incurs a
large computational cost. On the other hand, some methods use the t-statistic or
its variations as the selection criteria. The t-statistic requires that the data fol-
lows the normal (or Gaussian) distribution. However, the assumption of normal
distribution often does not hold in gene expression data [10]. In order to solve
these problems, Deng et al. [10] proposed a rank sum test method that utilizes a
significance level to select informative genes through the rank sum test (as a typ-
ical non-parametric statistical method) with the quality guarantee in statistics.
It was shown by the experiments that the rank sum test method considerably
improves the performance of tumor diagnosis on the colon and leukemia data.

In this paper, we further propose a non-parametric statistical test method,
called the multi-population χ2 test method, to select informative genes from
a microarray data. It is based on the statistical multi-population χ2 test with
the sample data being grouped evenly. It is shown by the experiments that
the constructed diagnosis system with the multi-population χ2 test method can
100% correctness rate of diagnosis on colon dataset and 97.1% correctness rate
of diagnosis on leukemia dataset, respectively.

2 Multi-population χ2 Test Method
and Tumor Diagnosis System via SVM

We begin to introduce the multi-population χ2 test [11]. Suppose that there
are k populations, denoted by X1, · · · , Xk, with their cumulative distribution
functions denoted by F1(x), · · · , Fk(x), respectively. From each population, we
have collected a number of samples and the whole samples from these k pop-
ulations, denoted by the sample set A, are divided into r exclusive groups or
subsets A1, · · · , Ar such that A =

⋃r
i=1 Ai, Ai ⊂ A, Ai ∩ Aj = ∅(i �= j). Our
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aim is to test the hypothesis H0 : F1(x) = · · · = Fk(x), i.e., the identity of the
distributions of these k populations.

In order to do so, we define the number nij as the number of samples from
the i−th population in the j−th group, with ni . =

∑r
j=1 nij , n. j =

∑k
i=1 nij

and n =
∑k

j=1 n. j =
∑k

i=1 ni .. We then calculate the statistic χ2
n by

χ2
n =

k∑
i=1

r∑
j=1

(nij − ni.p̂j)2

ni.p̂j
(1)

where p̂j = n. j
n (j = 1, 2, · · · , r). In fact, it has been proved in statistics[11]

that the distribution of χ2
n approximates χ2((k − 1)(n− 1)) as n → ∞. So, we

can use this statistic to test the hypothesis of identical distributions of the k
populations via a given significance level α. That is, according to α, we get the
rejection field (χ2

α((r−1)(k−1)), +∞) or the threshold value χ2
α((r−1)(k−1)).

If χ2
n > χ2

α((r− 1)(k− 1)), we reject the hypothesis H0; otherwise, we accept it.
Clearly, the multi-population χ2 test is non-parametric.

We now consider how to utilize the multi-population χ2 test for informative
gene selection. From the perspective of statistics, the distribution of expression
level of one informative gene for a tumor should be quite different between the
normal and tumorous samples. That is, this difference can be checked or proved
by a statistical hypothesis test method. In this way, we can apply the multi-
population χ2 test to informative gene selection on the microarray data collected
from both tumorous and normal tissues. In this case, the number of populations
is just 2. Correspondingly, the hypothesis becomes H0 : F1(x) = F2(x), where
F1(x) and F2(x) represent the cumulative distribution functions of expression
level on the normal and tumorous samples, respectively. However, there exists
one problem: how are these samples (or sample values at one gene) divided into
groups (or subsets as described above)? It is clear that the number of groups
should be neither too large nor too small. In fact, a small number of groups
makes the division too rough, with certain differences being obscured, whereas
a large number of groups makes the division too precise, with an exaggerated
interference from noise. Therefore, the number of groups should be proper to
the total number of samples, which will be further discussed in the following
experiments. On the other hand, the number of samples in each group should
also be neither too large nor too small. One particular idea is that, we can divide
the samples evenly so that each group approximately has the same number of
samples, which will be detailed in the following experiments. After the samples
are divided into a number of groups, we can use the multi-population χ2 test to
select the informative genes only if the hypotheses on these genes are rejected.

To test the effectiveness of the multi-population χ2 test method for infor-
mative gene selection, we build a tumor diagnosis system (i.e., a binary clas-
sifier) using the support vector machine (SVM). It has been derived from the
optimal classification problem in the sample space with a finite number of sam-
ples under the statistical learning theory. Actually, there are many softwares
of SVM available on the web and we will use the version OSU SVM 3.0 in
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the toolbox of MATLAB (It can be downloaded from http://eewww.eng.ohio-
state.edu/ ˜ maj /osu svm). Three types of kernel functions are used for compar-
ison in our experiments: (1). Linear kernel function (no kernel); (2). RBF kernel
function K(x, xi) = exp{− |x−xi|

σ2 }; and (3). 3-order Polynomial kernel function
K(x, xi) = [(x · xi) + 1]3.

3 Experimental Results and Comparisons

3.1 The Experimental Results on the Colon and Leukemia Datasets

In our experiments, we use the multi-population χ2 test method to select the
informative genes for both the colon and leukemia data sets, and then apply the
SVM to constructing a tumor diagnosis system with the identified informative
genes on the colon and leukemia data sets. Before the experiments, we normalize
each microarray data set column by column with zero mean and unit variance,
which can eliminate some possible noises in the data set.

A. The Experimental Results on the Colon Data Set
The colon cancer data set1 contains the expression profiles of 2000 genes from 22
normal tissues and 40 tumorous tissues. In most of our experiments, we use the
training set (22 normal and 22 tumorous) and the test set (18 tumorous) provided
by the web site. The parameters in the SVM are set as u PolySVC(�,�,3,0.001)
for the 3-order polynomial kernel function, and u RbfSVC(�,�,0.01,100) for the
RBF kernel function.

To utilize the multi-population χ2 test method, we now group the samples
evenly. On each gene, we first put the 22 normal and 40 tumorous expression
values together. Suppose that we expect each group to contain 9 sample values.
Then, we select six real numbers according to which the whole real region R
can be divided into 7 intervals. By adjusting these six numbers properly, we can
divide the 62 sample values into seven groups that contain 9, 9, 9, 9, 9, 9, and 8,
respectively. In this way, the 62 sample values at each gene are grouped evenly,
with each group containing almost 9 sample values.

From Table 1, we can find that the SVM with the multi-population χ2 test
method can lead to a very good classification accuracy on the colon data set
when the significance level is 0.001 or 0.01 and the number of sample values per
group is properly selected. From the perspective of kernel functions, the 3-order
polynomial function performs best with the two 100% classification accuracies (at
α = 0.001), which outperform the SVM on the original colon data set. Actually,
the classification accuracies of the SVM with the three kernel functions on the
original colon data set are 94.4%, 94.4%, 94.4%, respectively.

In order to illustrate the potential relation between the number of sample
values per group and the classification effectiveness, we provide the average clas-
sification accuracies over the three kernel functions and the number of sample
values per group under the significance level 0.001 in Table 2.
1 retrieved from
http://microarray.princeton.edu/oncology/affydata/index.html
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Table 1. The result on the colon data set

Kernel Functions # α = 0.1 α = 0.05 α = 0.01 α = 0.001

8 88.9% / 408 88.9% / 265 94.4% / 95 94.4% / 21
Linear 9 88.9% / 415 88.9% / 254 94.4% / 93 94.4% / 19

10 88.9% / 409 88.9% / 276 94.4% / 87 94.4% / 29

8 94.4% / 408 94.4% / 265 94.4% / 95 94.4% / 21
RBF 9 94.4% / 415 94.4% / 254 94.4% / 93 94.4% / 19

10 94.4% / 409 94.4% / 276 94.4% / 87 94.4% / 29

8 88.9% / 408 94.4% / 265 88.9% / 95 100% / 21
3-order 9 94.4% / 415 94.4% / 254 94.4% / 93 100% / 19

Polynomial 10 88.9% / 409 94.4% / 276 94.4% / 87 94.4% / 29

In this and the following tables, the symbol # represents the number of sample values
per group. The two numbers on the sides of “/” represent the classification accuracy on
the test set or the diagnosis accuracy, and the number of informative genes, respectively.
α is the significance level for the multi-population χ2 test.

Table 2. The relation between the classification accuracy and the number of sample
vaules per group

# 6 7 8 9 10 12

Accuracy 87.0% 94.4% 96.3% 96.3% 94.4% 94.4%

From Table 2, we can find that the multi-population χ2 test method reaches
the optimum result when there are 8 or 9 sample values per group. Moreover,
from the stability of classification accuracy, it performs better at 9 sample values
per group, which is further shown by other experiments on a plenty of data sets
constructed by randomly selecting 44 samples from the colon data set as a new
training set and leaving the other 18 as a new test set.

B. The Experimental Results on the Leukemia Data Set

The leukemia cancer data set2 consists of expression profiles of 7129 genes from
47 acute lymphoblastic leukemia (ALL) and 25 acute myeloid leukemia (AML)
samples. Specifically, the training set contains 38 samples (27 ALL and 11 AML),
while the test set contains 34 samples (20 ALL, 14 AML). Actually, the training
and test sets are provided at the web site. The parameters in the SVM are
selected as above.

From Table 3, we can find that the classification accuracy of the multi-
population χ2 test method on the leukemia data set is good and stable, compared
to that on the original leukemia data set with 94.1%, 85.7% and 97.1% to three
kernel functions respectively. Also, the number of related genes is reduced to a
low level. We further apply our method to a plenty of data sets constructed using
the same method on colon data set, and find that on some data sets, our method
can reach the optimal average accuracy 100% over three kernel functions. Our

2 retrieved from http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
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Table 3. The result on the leukemia data set

Kernel Functions # α = 0.1 α = 0.05 α = 0.01 α = 0.001

8 97.1% / 1733 97.1% / 1039 97.1% / 557 97.1% / 260
Linear 9 97.1% / 1948 97.1% / 1356 97.1% / 619 97.1% / 274

10 97.1% / 1807 97.1% / 1320 97.1% / 605 97.1% / 257

8 97.1% / 1733 97.1% / 1039 97.1% / 557 97.1% / 260
RBF 9 97.1% / 1948 97.1% / 1356 97.1% / 619 97.1% / 274

10 97.1% / 1807 97.1% / 1320 97.1% / 605 97.1% / 257

8 94.1% / 1733 97.1% / 1039 97.1% / 557 97.1% / 260
3-order 9 97.1% / 1948 97.1% / 1356 97.1% / 619 97.1% / 274

Polynomial 10 97.1% / 1807 97.1% / 1320 97.1% / 605 97.1% / 257

experiment results also show that the multi-population χ2 test method performs
best when the number of sample values per group is 9.

C. Further Discussions and Remarks

According to the experimental results, we give some further discussions and
remarks on the multi-population χ2 test method as follows.

(1). In general, we can select 0.01 as the best choice of the significance level for
the multi-population χ2 test method. The slight difference between the optimal
significance levels on the colon and leukemia data sets may be owing to the
characteristics of the distributions of the two data sets. However, the multi-
population χ2 test method is rather good on both the colon and leukemia data
set at 0.01 significance level.

(2). As to the number of sample values per group, it should be determined
through the experiments. However, we can set it 9 as an initial value and make
some adjustments based on the experiment results.

(3). The principle of grouping the samples evenly is demonstrated to be
effective in our experiments. However, it does not mean that this is just the
optimal one. Actually, the optimal division of the sample values for the multi-
population χ2 test method should be theoretically studied in the future.

(4). By the experiments, we can find that the performance of the the multi-
population χ2 test method is sensitive to the number of sample values per group
as well as the significance level α. However, it is interesting that when we chart
the diagram with the number of sample values per group as x-coordinate and
the number of identified informative genes as y-coordinate, we can discover that
the optimum number “9” of samples per group is located near the so-called
“plateau” of the polygonal line, which is shown in Fig. 1. If it can be proved
theoretically, we will have a good method to get the best number of the sample
values per group in the general case.

(5). Our experiments indicate that the classification accuracy of our method
is related to which samples are used for training and for testing. It is possible to
select proper training set to construct our diagnosis system.
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Fig. 1. The plateau for the best number of sample values per group

3.2 Comparisons with the Rank Sum Test Method

We now compare the multi-population χ2 test method with the rank sum test
method [10] on these two data sets. Obviously, these two test methods are both
non-parametric, getting rid of the normality assumption on the microarray data.
We implemented the rank sum test to select the informative genes on each data
set and obtained the classification result through the SVMs with the same three
kernel functions. The comparison results are listed in Table 4. Since we use the
test set provided in the website, our results of the rank sum test method are
different from those in [10].

Table 4. Comparison result between the multi-population χ2 test method and the
rank sum test method

Data set α 0.1 0.05 0.01 0.001 0.0001

Colon χ2 92.6% 92.6% 94.4% 96.3% 100%
cancer rank sums 92.6% 92.6% 92.6% 94.4% 96.3%

χ2 97.1% 97.1% 97.1% 97.1% 96.1%
Leukaemia rank sums 96.1% 97.1% 97.1% 97.1% 97.1%

For the multi-population χ2 test method, we use the experimental result with 9 sample
values per group.

From Table 4, we can find that the multi-population χ2 test method out-
performs the rank sum test method on both the diagnostic accuracy and the
stability on results. However, since the multi-population χ2 test method needs
to group the samples evenly on each gene, its computational cost is higher than
that of the rank sum test method. Nevertheless, this does not impair its efficiency
in practice.
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4 Conclusions

We have investigated the informative gene selection problem on a microarray
data set via the multi-population χ2 test. When the sample data are grouped
evenly, the multi-population χ2 test can be applied to selecting the informative
genes of a tumor. The evenly grouping method on the sample data is suggested
and demonstrated. By the experiments on real data sets utilizing the SVM for
tumor classification or diagnosis, we show that this multi-population χ2 test
method is efficient and even better than the rank sum test method. However,
there are still circumstances where the diagnostic accuracy under the selected in-
formative genes is not satisfactory. This may be due to an unreasonable grouping
on the sample data. However, in general, the multi-population χ2 test method
can reach excellent results, even without any diagnostic error when the param-
eters are set properly.
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Abstract. Normally the microarray data contain a large number of
genes (usually more than 1000) and a relatively small number of samples
(usually fewer than 100). This makes the discriminant analysis of DNA
microarray data hard to handle. Selecting important genes to the dis-
criminant problem is hence of much practically significance in microar-
ray data analysis. If put in the context of pattern classification, gene
selection can be casted as a feature selection problem. Feature selection
approaches are broadly grouped into filter and wrapper methods. The
wrapper method outperforms the filter method in general. However the
accuracy of wrapper methods is coupled with intensive computations. In
present study, we proposed a wrapper-based gene selection algorithm by
employing the Regularization Network as the classifier. Compared with
classical wrapper method, the computational costs in our gene selection
algorithm is significantly reduced, because the evaluation criterion we
used does not demand repeated trainings in the leave-one-out procedure.

1 Introduction

With recently developed technologies, such as DNA Microarray, researchers are
able to simultaneously measure the expression level of a large number of genes
in a single experiment. This provides the power of creating a comprehensive
overview of the gene regulation network. Nevertheless, these studies produce a
gigantic amount of data, which present challenges of extracting useful informa-
tion from them. One of the properties of microarray data is that each sample
is presented by a large number of genes (features), usually more than 1,000.
Many of these genes are irrelevant, insignificant or redundant to the discrimi-
nant problem at hand. As a consequence, the identification of informative genes
to a specific discriminant problem, such as presence of cancer, is of fundamental
and practical importance. So the selected marker genes can be found of great
value in further investigation of the disease and the gene function, and in fur-
ther clinical diagnosis and prognosis. From the viewpoint of machine learning,
for a typical microarray dataset, the number of training samples is relatively
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small (normally fewer than 100) when compared with the high dimensionality.
In such a sparse space, it is quite easy to find a decision function that perfectly
separates the training data. However, such a classifier might perform poorly on
the unseen test data. In other words, gene selection, as the technique to reduce
the high dimensionality, may help us find a discriminant classifier with better
generalization performance.

The problem of approximating a multivariate function from sparse data is
ill-posed and a classical way to solve it is regularization theory [4]. The general
regularization theory leads to the following regularization problem, known as the
Tikhonov regularization:

min
f∈H

1
l

l∑
i=1

V (yi, f(xi)) + λ‖f‖2K . (1)

where V (·, ·) is a loss function, ‖f‖2K is a norm in a Reproducing Kernel Hilbert
Space H defined by the positive definite function K, l is the number of training
samples (the l pairs {xi, yi}), and λ(> 0) is a fixed regularization parameter.
Support Vector Machines and Regularization Network [4] correspond to the min-
imization of Eq. (1) for different choices of loss function V . Choosing V to be
the hinge loss function, V (yi, f(xi)) = (1− yif(xi))+, where (x)+ = max (0, x),
leads to Support Vector Machines, while choosing V as squared loss function,
V (yi, f(xi)) = (yi − f(xi))2, leads to Regularization Networks.

As a classifier, the SVM is well performed with high dimensional data. How-
ever considering the intensive computational costs on training SVMs, it might
not be suitable for gene selection in high dimensional gene expression data. In
present study, Regularization networks, instead of SVMs, are employed for clas-
sification of microarray data, and to perform a gene selection algorithm based on
the leave-one-out procedure. The advantage of Regularization Network is that
the decision function can be obtained by solving a linear system of equations,
which is much easier than the quadratic programming in the SVM.

The paper is organized as follows. The Regularization Networks (RN) is first
briefly introduced, a new gene selection algorithm based on the leave-one-out
cross validation of Regularization Networks is then proposed. The performance
of our algorithm is finally tested with two benchmark microarray datasets, i.e.
the colon cancer dataset [1], and the leukaemia dataset [5].

2 Methods

2.1 Regularization Networks

Consider l training data pairs: {xi, yi}, i = 1, . . . , l, where xi is an n-dimensional
vector representing the i’th sample, and yi is the class label of xi, which is either
+1 or -1. The framework of Regularization Network can be formulates as a
variational problem of finding the function f that minimizes the functional

min
f∈H

1
l

l∑
i=1

(yi − f(xi))2 + λ‖f‖2K . (2)
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According to the Representer Theorem [9], under rather general conditions the
solution to the above regularization problem has the form

f(x) =
l∑

i=1

ciK(x,xi). (3)

Substituting Eq. (3) into the regularization functional (2), we can rewrite the
problem as

min
c∈Rl

1
l
(y −Kc)T (y −Kc) + λcT Kc. (4)

where c and y are defined as c = [c1, c2, . . . , cl]T and y = [y1, y2, . . . , yl]T re-
spectively, and here the symbol K refers to either the positive definite (kernel)
function K or the l-by-l matrix K defined by Kij = K(xi,xj). Note that the
functional is differentiable, after taking the derivative with respect to c, the
optimal c can be found by solving the following linear system of equations:

(K + λlI)c = y, (5)

where I is the identity matrix. Because the symmetric matrix K +λlI is strictly
positive definite and thus invertible, the solution f of the regularization prob-
lem (2) can be expressed as

f(x) = KT (x)(K + λlI)−1y, (6)

where K(x) is the vector of functions such that (K(x))i = K(x,xi).

2.2 Wrapper-Based Gene Selection Algorithm

If put in the context of pattern classification, gene selection can be solved as a
feature selection problem. Feature selection approaches can be broadly grouped
into filter and wrapper methods. The filter method evaluates feature subset
based on intrinsic properties of data, which are related to the performance of
the classifier but are not the direct function of the performance. In contrast
the wrapper method evaluates the feature subset based on the performance of
the classifier directly. Normally for better generalization, the leave-one-out cross
validation result is often used to guide the selection procedure in the wrapper
method.

It is proved that the leave-one-out procedure gives an almost unbiased esti-
mate of the probability of test error [8]. But to obtain the leave-one-out error
of each training data for a particular gene set, it requires repeated training of
classifiers in the leave-one-out procedure, which makes the procedure a burden-
some task. Several bounds on the expectation of SVMs from the leave-one-out
estimator were introduced to reduce the high computational complexity in the
leave-one-out procedure. But in practice the bounds proposed are quite loose,
which makes the estimate of the leave-one-out cross validation inaccurate. To al-
leviate these problems, Regularization Networks, instead of SVMs, are employed
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to perform a wrapper-like gene selection in our present work. One amazing prop-
erty of Regularization Networks, as we describe below, is that the leave-one-out
cross validation of each training samples can be exactly computed without re-
peated training for the leave-one-out procedure.

For Regularization Networks, the following equation holds in the leave-one-
out procedure:

ypf
p(xp) =

yp(Gy)p −Gpp

1−Gpp
, (7)

where G is denoted as G = K[K + λ(l − 1)I]−1, Gpp is the pth item in the pth
row of matrix G, (Gy)p is pth item in the vector Gy, and fp is the decision
function given by the Regularization Network after the sample xp has been
removed. For the proof of Eq. (7), please refer to the extended paper in our
website (http://www.ntu.edu.sg/home5/pg02776030/RN/RN.pdf).

The Eq. (7) illuminates that the computation of cross validation results only
demands matrix G, without involving any repeated trainings of the l classifiers in
the leave-one-out procedure. fp(xp) is the validation result for the sample xp in
the leave-one-out procedure. If ypf

p(xp) is negative the sample xp is considered
as an leave-one-out error, and if ypf

p(xp) is positive xp is correctly classified in
the leave-one-out procedure.

If we define p(y|x) to be the probability that class label of x is y, Lin[7] proved
that the solution of RN f(x) is convergent to 2p(y = 1|x)−1 when λ→ 0. So in
the present study, we employed the following function to estimate the probability
that a specific sample xp is correctly classified in the leave-one-out procedure,

h(ypf
p(xp)) = (

ypf
p(xp) + 1

2
)[0,1], where (x)[0,1] =

⎧⎨⎩1 if x > 1
x if 1 ≥ x ≥ 0
0 if x < 0

(8)

Combining all the estimates for training data together, we proposed the following
evaluation criterion for gene selection:

M =
l∑

p=1

(
ypf

p(xp) + 1
2

)[0,1] (9)

where ypf
p(xp) is computed by using Eq. (7). The criterion M gives an estimate

on the generalization performance. The feature (gene) subset which maximizes
the criterion M is preferred. In the present study, the criterion M was combined
with the sequential forward selection (SFS) to form a gene selection algorithm.
The SFS algorithm is a simple greedy heuristic search algorithm. The pseudo
code of the sequential forward gene selection algorithm can be summarized as
follows:

The gene selection algorithm combining the RN criterion M with SFS

(1) Initialize S to an empty set;
/* S is the set of selected genes */
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(2) Initialize C to the full gene set;
/* C is the set of candidate genes for selection */

(3) For i = 1 to m /* m genes are expected to be selected */
p = number of genes in set C;
For j=1 to p

/* evaluate the goodness of each gene in set C
together with all genes in set S */

Take gene j from set C and temporarily put into set S;
Calculate the criterion M using all genes in set S;

End
Select the gene with the maximal M;
Put the selected gene into set S;

End

The gene selection algorithm can be considered as a modification of classical
wrapper method, in which the 0-1 function to compute the classification error is
replaced by the function h in Eq. (8).

3 Results

In this section we reported the performance of the proposed gene selection algo-
rithm on two publicly available microarray datasets: colon cancer [1], leukaemia
[5]. For the colon cancer dataset, gene expression levels of 40 tumor and 22
normal colon tissues for 6500 human genes are measured using the Affymetrix
oligonucleotide microarrays. The leukaemia dataset contains gene expression lev-
els of 72 patients with either acute lymphoblastic leukaemia (ALL, 47 cases) or
acute myeloid leukaemia (AML, 25 cases) for 7129 human genes.

Each of these datasets was pre-processed using the procedure described in
[3]. After thresholding, filtering and log-transforming, the microarray data was
standardized to zero mean and unit standard variance across genes. Because the
dimensionality (number of genes) of microarray data is very huge, and most of
the genes are irrelevant to the discriminant task, we employed a pre-selection
procedure to reduce the searching space and computational time. The top 1000

genes were selected based on Fisher’s ratio, f = (μ1 − μ2)2

σ2
1 + σ2

2

. All the simulations

and comparisons in this paper are based on the pre-processed and pre-selected
data.

We assessed the performance of our gene selection algorithm using external
.632+ bootstrap. For details of external .632+ bootstrap, please refer to [2]. In
this paper we employed balanced bootstrap samples, with K=200 replicates. We
compared the performance with three other gene selection algorithms, including
Weighting factor, Mahalanobis measure, and SVM RFE [6]. The weighting factor

(a = |μ1 − μ2|
σ1 + σ2

) is commonly used in the literature of microarray data analysis
[5]. The Mahalanobis class separability measure is a well-known feature subset
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evaluation criterion in the literature of pattern recognition. In this work, the
Mahalanobis class separability measure was combined with SFS algorithm for
gene selection. SVM RFE is often considered as one of the best gene selection
algorithm in the literature. The Regularization Network was used as the classifier
to estimate the error rates of different gene selection algorithms. We chose RN
instead of SVM for classification, because the RN received better performance
in the experiments. The kernel used in RN was K(x1,x2) = xT

1 x2 + 1, and the
regularization parameter λ = 0.5 for all experiments. The comparison results
were shown in Fig. 1 and Fig. 2. Obviously, the performance of our gene selection
algorithm is quite well. Note that only 1, 2, 4, 8, 16, 32 genes are selected in SVM
RFE due to its selection mechanism. By performing our gene selection algorithm
on the entire dataset we selected 15 most important genes for classification. They
were shown in Tab. (1).

Table 1. The top 15 selected genes for the colon cancer dataset and leukaemia dataset.
The genes and ESTs without indicating the source are all from Homo sapiens

colon cancer leukaemia
No. Access No. Gene Name Access No. Gene Name

1 R87126 MYH, nonmuscle [Gallus gallus] M84526 Adipsin

2 X12671 HNRNPA1 M27878 ZFP84

3 Z50753 UGN M92287 Cyclin D3

4 T61661 Inorganic Pyrophosphatase [Bos taurus] X95735 Zyxin

5 R62549 Putative serine/threonine-protein ki-
nase B0464.5 [Caenorhabditis elegans]

J05213 IBSP

6 D31885 ARL6IP U05237 FALZ

7 H20709 Myosin light chain alkali M23161 MCFD2

8 T58861 60s ribosomal protein L30E
[Kluyveromyces lactis]

L16896 HKR3

9 K03474 MIS M30625 DRD2

10 J03210 MMP2 D42041 GANAB

11 M76378 CRP L11573 Surfactant protein B

12 X75208 EPHB3 M31951 PRF1

13 R88740 ATP synthase coupling factor 6 X03663 CSF1R

14 T57882 MYH, nonmuscle type A D55643 Spleen PABL

15 R10066 Prohibitin HG982-HT982 Pre-T/Nk-Cell-
Associated Protein

4 Conclusion

In the present study, we have proposed a wrapper-based gene selection algorithm
based on Regularization Networks. The strength of the algorithm we proposed
is that it provides gene subset leading to accurate classification result owing
to its evaluation criterion M derived from the leave-one-out procedure. On the
other hand, unlike the classical wrapper method, the computation of the cri-
terion M would not involve repeated trainings in the leave-one-out procedure,
which make the gene selection algorithm computational attractive. The effec-
tiveness of wrapper-based RN selection algorithm has been tested on two bench-
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Fig. 1. The external B.632+ error for the colon cancer dataset, shown as the number
of selected genes. The four curves are obtained from four gene selection algorithms:
Weighting factor, Mahalanobis measure, SVM RFE and wrapper-based RN selection
we proposed. The RN selection we proposed results in better performance than others
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Fig. 2. The external B.632+ error for the leukaemia dataset, shown as the number
of selected genes. The four curves are obtained from four gene selection algorithms:
Weighting factor, Mahalanobis measure, SVM RFE and wrapper-based RN selection
we proposed. The RN selection we proposed is slightly inferior to SVM RFE, but it
outperforms others

mark microarray datasets. For more details, please refer to the extended paper
(http://www.ntu.edu.sg/home5/pg02776030/RN/RN.pdf).
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Abstract. An important and common problem in microarray exper-
iments is the detection of genes that are differentially expressed in a
given number of classes. As this problem concerns the selection of signif-
icant genes from a large pool of candidate genes, it needs to be carried
out within the framework of multiple hypothesis testing. In this paper,
we focus on the use of mixture models to handle the multiplicity issue.
With this approach, a measure of the local FDR (false discovery rate)
is provided for each gene. An attractive feature of the mixture model
approach is that it provides a framework for the estimation of the prior
probability that a gene is not differentially expressed, and this proba-
bility can subsequently be used in forming a decision rule. The rule can
also be formed to take the false negative rate into account. We apply this
approach to a well-known publicly available data set on breast cancer,
and discuss our findings with reference to other approaches.

1 Introduction

DNA microarrays allow the simultaneous measurement of the expression levels
of tens of thousands of genes for a single biological sample; see, for example,
McLachlan et al. (2004). A major objective in these experiments is to find genes
that are differentially expressed in a given number of classes. In cancer studies,
the classes may correspond to normal versus tumour tissues, or to different
subtypes of a particular cancer. Comparing gene expression profiles across these
classes gives insight into the roles of these genes, and is important in making
new biological discoveries. Yet now a real goal for microarrays is to establish
their use as tools in medicine. This requires the identification of subsets of genes
(marker genes) potentially useful in cancer diagnosis and prognosis.

In the early days of microarray technology, a simple fold change test with
an arbitrary cut-off value was used to determine differentially expressed genes.
This method is now known to be unreliable as it does not take into account the
statistical variability. In order to determine statistical significance, a test such
as the t-test, can be performed for each gene. However, when many hypotheses
are tested the probability of a type I error (false positive) occurring increases
sharply with the number of hypotheses. This multiplicity poses a considerable
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problem in microarray data, where there are many thousands of gene expression
values.

Recently, a number of sophisticated statistical methods have been proposed,
including several nonparametric methods. Tusher et al. (2001), in their signifi-
cance analysis method (SAM), proposed a refinement on the standard Student’s
t-statistic. Because of the large number of genes in microarray experiments, there
will always be some genes with a very small sum of squares across replicates, so
that their (absolute) t-values will be very large whether or not their averages are
large. The modified t-statistic of Tusher et al. (2001) avoids this problem. Pan
et al. (2003) also considered a nonparametric approach in their mixture model
method (MMM). These methods are reviewed in Pan (2002).

In this paper, we initially present the statistical problem and show how a
prediction rule based on a two-component mixture model can be applied. In
particular, we show how the mixture model approach can handle the multiplicity
issue. It provides a measure of the local FDR (false discovery rate), but can be
used in the spirit of the q-value. In the latter case, an upper bound, co, can
be obtained on the posterior probability of nondifferential expression, to ensure
that the FDR is bounded at some desired level α.

We finally apply this method to real data, in the well-known breast cancer
study of Hedenfalk et al. (2001), with the aim of identifying new genes which are
differentially expressed between BRCA1 and BRCA2 tumours. We compare our
findings with those of Storey and Tibshirani (2003), and of Broët et al. (2004),
who also analysed this data set using different approaches.

2 Two-Component Mixture Model Framework

2.1 Definition of Model

We focus on a decision-theoretic approach to the problem of finding genes that
are differentially expressed. We use a prediction rule approach based on a two-
component mixture model as formulated in Lee et al. (2000) and Efron et al.
(2001). We let G denote the population of genes under consideration. It can be
decomposed into G0 and G1, where G0 is the population of genes that are not
differentially expressed, and G1 is the complement of G0; that is, G1 contains
the genes that are differentially expressed.

We let the random variable Zij be defined to be one or zero according as the
jth gene belongs to Gi or not (i = 0, 1; j = 1, . . . , N). We define Hj to be zero
or one according as to whether the null hypothesis of no differential expression
does or does not hold for the jth gene. Thus Z1j is zero or one according as to
whether Hj is zero or one.

The prior probability that the jth gene belongs to G0 is assumed to be π0

for all j. That is, π0 = pr{Hj = 0} and π1 = pr{Hj = 1}. Assuming that the
test statistics Wj all have the same distribution in Gi, we let fi(wj) denote the
density of Wj in Gi (i = 1, 2). The unconditional density f(wj) of Wj is given
by the two-component mixture model

f(wj) = π0 f0(wj) + π1 f1(wj). (1)



424 Liat Ben-Tovim Jones et al.

Using Bayes Theorem, the posterior probability that the jth gene is not
differentially expressed (that is, belongs to G0) is given by

τ0(wj) = π0f0(wj)/f(wj) (j = 1, . . . , N). (2)

In this framework, the gene-specific posterior probabilities τ0(wj) provide the
basis for optimal statistical inference about differential expression.

2.2 Bayes Decision Rule

Let e01 and e10 denote the two errors when a rule is used to assign a gene to
either G0 or G1, where eij is the probability that a gene from Gi is assigned to
Gj (i, j = 0, 1). That is, e01 is the probability of a false positive and e10 is the
probability of a false negative. Then the risk is given by

Risk = (1− c)π0e01 + cπ1e10, (3)

where (1− c) is the cost of a false positive. As the risk depends only on the ratio
of the costs of misallocation, they have been scaled to add to one without loss
of generality.

The Bayes rule, which is the rule that minimizes the risk (3), assigns a gene
to G1 if

τ0(wj) ≤ c; (4)

otherwise, the jth gene is assigned to G0. In the case of equal costs of misalloca-
tion (c = 0.5), the cutoff point for the posterior probability τ0(wj) in (4) reduces
to 0.5.

2.3 The FDR and FNR

When many hypotheses are tested, the probability that a type I error (false pos-
itive) is made increases rapidly with the number of hypotheses. The Bonferroni
method is perhaps the best known method for dealing with this problem. It con-
trols the family-wise error rate (FWER), which is the probability that at least
one false positive error will be made. Control of the FWER is useful for situations
where the aim is to identify a small number of genes that are truly differentially
expressed. However, in the case of exploratory type microarray analyses, ap-
proaches to control the FWER are too strict and will lead to missed findings.
Here it is more appropriate to emphasize the proportion of false positives among
the identified differentially expressed genes. The false discovery rate (FDR), in-
troduced by Benjamini and Hochberg (1995), is essentially the expectation of
this proportion and is widely used for microarray analyses. Similarly, the false
nondiscovery rate (FNR) can be defined as the expected proportion of false neg-
atives among the genes identified as not differentially expressed (Genovese and
Wasserman 2002).
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2.4 Estimated FDR

In practice, we do not know π0 nor the density f(wj), and perhaps not f0(wj). In
some instances, the latter may be known as we may have chosen our test statistic
so that its null distribution is known (or known to a good approximation). For
example, we shall work with the oneway analysis of variance F -statistic, which
can be so transformed that its null distribution is approximately the standard
normal.

Alternatively, null replications of the test statistic might be created, for ex-
ample, by the bootstrap or permutation methods. We shall estimate the popula-
tion density f(w) by maximum likelihood after its formulation using a mixture
model. But it can be estimated also nonparametrically by its empirical distribu-
tion based on the observed test statistics wj .

If π̂0, f̂0(wj), and f̂(wj) denote estimates of π0, f0(wj), and f(wj), respec-
tively, the gene-specific summaries of differential expression can be expressed in
terms of the estimated posterior probabilities τ̂0(wj), where

τ̂0(wj) = π̂0f̂0(wj)/f̂(wj) (j = 1, . . . , N) (5)

is the estimated posterior probability that the jth gene is not differentially ex-
pressed. An optimal ranking of the genes can therefore be obtained by ranking
the genes according to the τ̂0(wj) ranked from smallest to largest. A short list of
genes can be obtained by including all genes with τ̂0(wj) less than some threshold
co or by taking the top No genes in the ranked list.

Suppose that we select all genes with

τ̂0(wj) ≤ co. (6)

Then an estimate of the FDR rate is given by

F̂DR =
N∑

j=1

τ̂0(wj) I[0,co](τ̂0(wj))/Nr, (7)

where

Nr =
N∑

j=1

I[0,co](τ̂0(wj)) (8)

is the number of the selected genes in the list. Here IA(w)) is the indicator
function that is one if w belongs to the interval A and is zero otherwise.

Thus we can find a data-dependent co ≤ 1 as large as possible such that
F̂DR ≤ α. This assumes that there will be some genes with τ̂0(wj) ≤ α, which
will be true in the typical situation in practice. This bound is approximate due
to the use of estimates in forming the posterior probabilities of nondifferential
expression and so it depends on the fit of the densities f0(wj) and f(wj).
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2.5 Bayes Risk in Terms of Estimated FDR and FNR

The Bayes prediction rule minimizes the risk of an allocation defined by (3). We
can estimate the error of a false positive e01 and the error of a false negative e10

by

ê01 =
N∑

j=1

τ̂0(wj)ẑ1j/
N∑

j=1

τ̂0(wj) (9)

and

ê10 =
N∑

j=1

τ̂1(wj)ẑ0j/

N∑
j=1

τ̂1(wj) (10)

respectively, where ẑ0j is taken to be zero or one according as to whether τ̂0(wj)
is less than or greater than c in (4), and ẑ1j = 1− ẑ0j. Also, we can estimate the
prior probability π0 as

π̂0 =
N∑

j=1

τ̂0(wj)/N. (11)

On substituting these estimates (9) to (11) into the right-hand side of (3), the
estimated risk can be written as

R̂isk = (1− c)ω̂F̂DR + c(1− ω̂)F̂NR, (12)

where

F̂DR =
N∑

j=1

τ̂0(wj)ẑ1j/

N∑
j=1

ẑ1j (13)

and

F̂NR =
N∑

j=1

τ̂1(wj)ẑ0j/

N∑
j=1

ẑ0j (14)

are estimates of the FDR and FNR respectively, and where

ω̂ =
N∑

j=1

ẑ1j/N

= Nr/N (15)

is an estimate of the probability that a gene is selected.
Thus unlike the tests or rules that are designed to control just the FDR, the

Bayes rule approach in its selection of the genes can be viewed as controlling a
linear combination of the FDR and FNR. The balance between the FDR and
the FNR is controlled by the threshold c.
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3 Estimation of Posterior Probabilities

3.1 Mixture Model Approach

We choose our test statistic Wj so that it has a normal distribution under the
null hypothesis Hj that the jth gene is not differentially expressed. For example,
if Fj denotes the usual test statistic in a one-way analysis of variance of M
observations from g classes, then we follow Broët et al. (2002) and transform the
Fj statistic as

Wj =

(
1− 2

9(M − g)

)
F

1
3

j −
(

1− 2
9(g − 1)

)
√

2
9(M − g)

F
2
3

j +
2

9(g − 1)

(16)

The distribution of the transformed statistic Wj is approximately a standard
normal under the null hypothesis that the jth gene is not differentially expressed
(that is, given its membership of population G0). As noted in Broët et al. (2002),
it is remarkably accurate for (M − g) ≥ 10.

With this transformation, we can take the null density f0(wj) to be the
standard normal density (which has mean zero and unit variance). In order to
estimate the mixing proportion π0 and the mixture density f(wj), we postulate
it to have the h-component normal mixture form

f(wj) =
h−1∑
i=0

πiφ(wj ; μi, σi2), (17)

where we specify μ0 = 0 and σi2 = 1. In (17), φ(wj ; μi, σi2) denotes the normal
density with mean μi and unit variance σi2. We suggest starting with h = 2,
adding more components if considered necessary as judged using the Bayesian
Information Criterion (BIC).

3.2 Use of P -Values

An an alternative to working with the test statistic Wj , we could follow the
approach of Allison et al. (2002) and use the associated P -value pj. We can find
these P -values using permutation methods whereby we permute the class labels.
Using just the B permutations of the class labels for the gene-specific statistic
Wj , the P -value for Wj = wj is assessed as

pj =
#{b : w

(b)
0j ≥ wj}
B

, (18)

where w
(b)
0j is the null version of wj after the bth permutation of the class labels.
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3.3 Link with FDR

Suppose that τ0(w) is monotonic (decreasing in w). Then the rule (6) for declar-
ing the jth gene to be differentially expressed is equivalent to

w ≥ wo, (19)

where wo is the value of w such that τ0(wo) = co. The associated FDR, actually
the positive FDR (Storey 2004), is given by

π0
1− F0(wo)
1− F (wo)

. (20)

Using (17), the positive FDR can be approximated using the fully parametric
estimate for F (wo),

F̂ (wo) = π0Φ(wo) +
h−1∑
i=1

π̂iΦ(
wo − μ̂i

σ̂i
) (21)

in the right-hand side of (21).
Alternatively, we could choose wo, and hence co, so that (20) is equal to α.

It thus also has an interpretation in terms of the q-value of Storey (2004). For
if all genes with τ0(w) ≤ co are declared to be differentially expressed, then the
FDR will be bounded above by α; see Efron et al. (2001).

Concerning the link of this approach with the tail-area methodology of Ben-
jamini and Hochberg (1995), suppose that the right-hand side of (20) is mono-
tonic (decreasing) in w0. Then as shown explicitly in Wit and McClure (2004),
if we set π0 equal to one and estimate F (w0) by its empirical distribution in
the right-hand side of (20), the consequent rule is equivalent to the Benjamini-
Hochberg procedure.

4 Application to Hedenfalk Breast Cancer Data

We analyze the publicly available cDNA microarray data set of Hedenfalk et al.
(2001). They studied the gene expression profiles of tumours from women with
hereditary BRCA1- (n1 = 7) and BRCA2-mutation positive cancer (n2 = 8),
here referred to as BRCA1 and BRCA2, as well as sporadic cases of breast
cancer.

Hedenfalk et al. initially considered genes which could differentiate between
the three types of breast cancer (BRCA1, BRCA2 and sporadic). They computed
a modified F -statistic and used it to assign a P -value to each gene. A threshold
of α = 0.001 was selected to find 51 genes from a total of N = 3, 226 that show
differential gene expression. One of the main goals of the study was to identify the
genes differentially expressed between the BRCA1 and BRCA2 cancers. They
used a combination of three methods (modified t-test, weighted gene analysis
and mutual-information scoring), and identified 176 significant genes.
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Here we consider the gene expression data from the BRCA1 and BRCA2
tumours only. We use a subset of 3,170 genes, having eliminated genes with one
or more measurements greater than 20, which was several interquartile ranges
away from the interquartile range of all the data (as in Storey and Tibshirani
2003). We applied our decision-theoretic approach to this data set. In Table 1,
we report the estimated values of the FDR, calculated using (13), for various
levels of the threshold co.

Table 1. Estimated FDR for various levels of co

co Nr F̂DR

0.5 1702 0.29
0.4 1235 0.23
0.3 850 0.18
0.2 483 0.12
0.1 175 0.06

It can be seen that if we were to declare the jth gene to be differentially
expressed if τ0(wj) ≤ 0.1, then 175 genes would be selected as being significant,
with an estimated FDR equal to 0.06. The prior probability of a gene not being
differentially expressed (π0) was estimated to be 0.465. We found that the above
estimates, based on the semi-parametric version (13), were the same (to the
second decimal place) as those calculated using the fully parametric estimate
given in (20).

Of these 175 significant genes, 137 are over-expressed in BRCA1 tumours rel-
ative to BRCA2. Hedenfalk et al. (2001), and also Storey and Tibshirani (2003)
in their further analysis of this data set, found too that a large block of genes are
over-expressed in BRCA1. In particular, these included genes involved in DNA
repair and cell death, such as MSH2 (DNA repair) and PDCD5 (induction of
apoptosis), also identified by us. In their study, Storey and Tibshirani (2003)
identified 160 genes to be significant for differential expression between BRCA1
and BRCA2 by thresholding genes with q-values less than or equal to α = 0.05
(an arbitrary cut-off value). Here the q-value of a particular gene is the expected
proportion of false positives incurred when calling that gene significant, so that
8 of their 160 genes were expected to be false positives.

On comparing our 175 genes with the 160 identified by Storey and Tibshirani
(2003), we found that there were 140 genes in common. Of the 35 excluded
genes, 12 were included in the Hedenfalk set of 176. The functional classes (where
known) of the remaining 23 genes are shown in Table 2, and interestingly include
several genes involved in cell death as well as cell cycle control.

Broët et al. (2004) recently also applied a mixture model appproach to iden-
tify differentially expressed genes in this data set. However, they implemented
a Bayesian approach, in contrast to the frequentist approach as applied here.
They obtained a slightly different estimate for π0 of 0.52, hence rejecting 52 %
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Table 2. Functional classes for uniquely identified genes

Functional Class Gene Identifier

Cell death ITPK1, NALP1, GADD34
Cell cycle MAPK6
Transcription GATA3, TLE1, HDAC2, GTF2B
Cell-to-cell signalling ANXA1
Cell growth/adhesion/motility COL5A1, ACTB1
Protein synthesis EIF2S2
Protein modification PRKACA, CSTB
Metabolism OXCT1, POX1

of the genes as not differentially expressed, as opposed to our value of 46.5 %.
In their approach, they did not constrain the variance of the first component to
be one because it presents computational problems implementing the Bayesian
solution via MCMC methods. However, using the frequentist approach, we were
able to fix the variance to be one.

In conclusion, we feel that a mixture model-based approach towards finding
differentially expressed genes in microarray data can provide useful information
beyond that of other methods. In particular, genes which score as most significant
using standard methods for multiple hypothesis testing may not necessarily be of
most biological relevance (see Broët et al. 2004). Genes with more subtle changes
in their expression levels, indicating that they are more tightly regulated, may
be of more importance in the biology of tumour formation.
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Abstract. Prediction of peroxisomal matrix proteins generally depends
on the presence of one of two distinct motifs at the end of the amino acid
sequence. PTS1 peroxisomal proteins have a well conserved tripeptide at
the C-terminal end. However, the preceding residues in the sequence ar-
guably play a crucial role in targeting the protein to the peroxisome.
Previous work in applying machine learning to the prediction of peroxi-
somal matrix proteins has failed to capitalize on the full extent of these
dependencies. We benchmark a range of machine learning algorithms,
and show that a classifier – based on the Support Vector Machine – pro-
duces more accurate results when dependencies between the conserved
motif and the preceding section are exploited. We publish an updated
and rigorously curated data set that results in increased prediction ac-
curacy of most tested models.

1 Introduction

A cell requires that each of it many proteins are localized to the appropriate
compartment or membrane. Of the smaller cellular compartments, the peroxi-
some is an organelle lined by a single membrane, lodging essential enzymes for a
variety of specialized functions (e.g. lipid metabolism). All peroxisomal proteins
are nuclear encoded, synthesized on free ribosomes in the cytosol, folded, and
inserted into the organelle via at least two pathways. The import process is not
fully understood but involves receptor proteins in the cytosol which recognize
a signal of the newly synthesized protein and protein docking complexes at the
surface of the peroxisome. Several diseases are caused by deficient peroxisomal
import (e.g. Zellwegger’s disease), making the peroxisomal import machinery a
prime research target.

The vast majority of proteins localised to the peroxisomal matrix rely on
a short motif on the C-terminal end of the sequence called the PTS1 signal.
PTS1 is often described as the tripeptide SKL with some substitution flexibility.
Even though this motif is highly conserved in most peroxisomal proteins, it is
also present in many non-peroxisomal proteins. Statistical analysis of the PTS1
transport mechanism has indicated that the last twelve C-terminal residues of
the protein sequence are the most significant determinants of PTS1 peroxisomal
proteins [5, 6].
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The PeroxiP predictor [3] uses a three stage process to predict peroxisomal
localisation via the PTS1 pathway. Stage one makes use of existing predictors to
eliminate sequences that are targeted to other organelles or are predicted to have
a membrane spanning region1. Secondly, a motif identification module examines
the C-terminus of the sequence and rejects all sequences without an approved
PTS1 motif. In the final stage a machine learning module predicts whether the
PTS1 bearing protein is peroxisomal. For this last step, PeroxiP employs a neu-
ral network and a Support Vector Machine that are trained independently and
operate in union. The sequence is predicted as peroxisomal if either model in-
dicates so [3]. Importantly, the models in PeroxiP are distinctive in evaluating
only the 9-mer of amino acids that precede the PTS1 motif, implying that the
specific PTS1 motif had no further information to offer. However, independent
statistical analysis demonstrated significant correlation between positions -1 and
-2 of the PTS1 with positions between -3 and -6 of the 9-mer [6]. As previous
work in machine learning has failed to capitalize on the full range of the PTS1
signal, we develop a new, extensive but non-redundant data set and explore a
variety of machine learning techniques. We show that dependencies between the
9-mer and the elements of the PTS1 motif can be exploited.

2 Sequence Data

Data for training and testing classifiers is collected in accordance with the
methodology employed in [3] but from release 45 of SWISS-PROT. In brief, all
entries with a SUBCELLULAR LOCATION annotation in the comments field that in-
cluded any of PEROXISOM, GLYOXYSOM, or GLYCOSOM using a case-insensitive search
were initially considered as positives. Each protein was also required to identify
a MICROBODY TARGETING SIGNAL in the feature table, indicating a PTS1 target
signal, resulting in an initial set of 202 proteins. The initial set was then filtered
manually but conservatively for proteins not likely to be targeted by a PTS1
and for membrane proteins. An initial set of 573 negatives was similarly cre-
ated, requiring a C-terminal tripeptide identical to one of the initially identified
positives, and a subcellular location not specified as peroxisomal, glyoxysomal
or glycosomal. By consulting the literature for suspicious cases, a few records
appeared to be erroneously annotated in SWISSPROT and shuffled between
the positive and negative subsets. The resulting data set had 206 positives and
564 negatives. Given this overrepresentation of non-peroxisomal proteins and to
increase the quality of the data set, the negative subset was cleaned of all pro-
teins whose subcellular location was qualified as POTENTIAL, PROBABLE, or BY
SIMILARITY leaving 348 proteins, a sufficient size given the smaller size of the
positive subset.

Both steps of redundancy reduction employed in [3] were performed. Highly
similar proteins were first removed such that each pair of proteins differed in at
least two positions in the nine residues preceding the C-terminal tripeptide. The
1 The localisation of peroxisomal membrane proteins is governed by a separate set of

signals [4], often consisting partly of a membrane spanning region
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final stage of redundancy reduction was performed using BLASTClust (cluster-
ing on basis of pairwise sequence alignments). In order to reproduce a data set of
the same size as in [3] we found that a similarity threshold of 1.675 was required.
The final sequence data set, henceforth called the 2005-set, consisted of 124 per-
oxisomal proteins and 214 non-peroxisomal proteins. To ensure fair comparisons
we also created what we believe to be a close replica of the data set originally
used in [3] consisting of 90 positives and 160 negatives, henceforth referred to as
the 2003-set (based on SWISS-PROT release 39.27).

3 Simulations

We conducted two sets of exploratory simulations during the development of the
PTS1 peroxisomal predictor. In the first set of simulations we benchmarked a
range of machine learning models on both the replicated 2003-data set and our
new 2005-data set.

In the second set of simulations we took the better of the machine learning
models and explored the effect of using different input window sizes. This was
done in the interests of producing an optimal window size for the final classifier.

3.1 Machine Learning Algorithms

For the benchmarking study we used the WEKA library [7] and deployed the
following machine learning algorithms: a naive Bayes classifier, multilayer and
single layer perceptrons, Support Vector Machines, a k-nearest neighbor classifier
and the C4.5 decision tree algorithm. The algorithms were evaluated using the
Matthews correlation coefficient (MCC)2. We tested a range of encodings of
which an orthonormal encoding gave consistently better performance for all of
the machine architectures, thus all results reported herein were generated with
this encoding.

The outcome of benchmarking machine learning algorithms is summarised in
Table 1. In agreement with [3] the polynomial support vector machine performed

Table 1. The average MCC (std) over all models (5-fold cross validation over 10
runs). NB – Naive Bayes, SLP – Single Layer Perceptron, SVM(P2) – Support Vector
Machine with Polynomial Kernel Order 2, SVM(G) – Support Vector Machine with
Gaussian Kernel (var=0.1), KNN(1) – K-nearest neighbours (k=1), C4.5 – Decision
tree algorithm (rev. 8)

Machine Learning Model
Data set NB SLP SVM(P2) SVM(G) KNN(1) C4.5

2003 0.30 (0.12) 0.40 (0.13) 0.46 (0.12) 0.38 (0.12) 0.43 (0.12) 0.23 (0.12)
2005 0.27 (0.10) 0.40 (0.11) 0.59 (0.09) 0.47 (0.09) 0.53 (0.11) 0.28 (0.12)

2 The MCC is defined as (tp · tn − fp · fn)/
√

(tp + fn)(tp + fp)(tn + fp)(tn + fn),
where tp is the number of true positives, tn is the number of true negatives, fp is
the number of false positives and fn is the number of false negatives. Higher MCC
is better (max is 1)
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best. The Naive Bayes classifier achieved the lowest MCC, which we conclude
is due to the non-negligible dependencies between sequence positions. Also the
C4.5 decision tree algorithm seemed unable to identify these dependencies and
was only slightly better than the Naive Bayes classifier. The k-nearest neighbor
classifier performed surprisingly well (second best) with a k-value equals one,
indicating that the class boundaries are not strongly overlapping, thus the noise
level of the data is quite low. We tested a number of neural network architectures,
single and multilayer perceptrons, varying the number of hidden neurons. Of
these, the Single Layer Perceptron (i.e. no hidden neurons at all) performed best,
although the 2 and 3 node MLPs were very close behind (results not shown). The
highest MCC was achieved with a Support Vector Machine with a polynomial
kernel of order two. The linear and the Gaussian kernels were inferior.

Table 2. The average MCC (std) for Support Vector Machines with a polynomial
kernel of varying orders. 5-fold cross validation over ten runs

SVM(P) - Polynomial Order
Dataset 1 2 3 4 5

2003 0.30 (0.11) 0.46 (0.12) 0.47 (0.11) 0.34 (0.12) 0.24 (0.12)
2005 0.34 (0.10) 0.59 (0.09) 0.59 (0.08) 0.47 (0.10) 0.37 (0.10)

In Table 2 we see that the optimum MCC occurs with a polynomial kernel
of order 2. We noted that the specificity of the models increased with the degree
of the polynomial kernel (advancing from 0.834 for order 2 to 1.000 for order 5
and beyond) as the sensitivity went down. Thus, in an ensemble of predictors a
higher order may be preferred (cf. [3]).

3.2 Range of Inputs

The developers of PeroxiP exclude the tripeptide from the input window because
the sequences have already been filtered for PTS1 motifs. They further argue
that including the tripeptide would cause the prediction to be dominated by
the PTS1 motif neglecting the information contained in the adjacent 9-mer [3].
However, if there are dependencies in the structure of the motif and the preceding
residues, then excluding the motif from the classifier – as is done in PeroxiP –
may be hiding crucial information. Some co-dependencies between the physical
characteristics of residues appearing inside and outside the PTS1 motif were
recently put forward [6]. For instance, Neuberger et al. note that “Variations of
the hydrophobicity level at position -1 can be compensated by positions -3 and
-2” (ibid. p. 571) and the -3 residue is outside the tripeptide motif. Amery et al.,
on the motif ASL in protein Q9UHK6 state that it is “active [as a PTS1] only
when preceded by a lysine residue (or likely a positively charged amino acid)”
[1] (p. 1758).
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Fig. 1. A logo of the C-terminal 12-mer aligned with inter-residue dependencies

In order to obtain a deeper insight into the potential dependencies between
the tripeptide and the 9-mer, we performed a probabilistic analysis of the max-
imal dependencies between locations within these last 12 residues.

The dependencies were extracted in the following manner: Given a set of
aligned sequences S = {sk|k ∈ 1..n}, where a sequence sk is defined as a tuple
(rk1, .., rki, .., rkm) of residues, the dependencies Dij between two positions i and
j over all sequences in S are calculated as the maximum difference between the
joint probability P (rki, rkj) and the product of the independent probabilities
P (rki) and P (rkj):

Dij = max
k∈1..n

(P (rki, rkj)− P (rki)P (rkj)) (1)

If two positions are statistically independent (or perfectly conserved) Dij

equals zero. Figure 1 displays the logo and log(Dij) 3 for the last 12 residues of
the positive set.

The marked area reveals dependencies between residues in the c-terminal
tripeptide and the adjacent 9-mer. Any predictor for peroxisomes which analyses
the tripeptide and the 9-mer independently neglect these dependencies and is
therefore expected to perform worse than a classifier which takes all 12 residues
into account.

3 A logarithmic scale was chosen to magnify smaller dependencies
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In a final set of simulations we investigated the optimal window size for
the classifier, both including and excluding the tripeptide. In all simulations
excluding the tripeptide the classifier performed worse than those in which it
was included, these results are summarised in Table 3.

Table 3. MCC (std) of the SVM with two different window sizes both including and
excluding the C-terminal tripeptide. 5-fold cross validation over 50 runs

Tripeptide
Window size Included Excluded

9 0.48 (0.03) 0.47 (0.04)
12 0.60 (0.03) 0.50 (0.04)

For the classifiers that included the tripeptide we ran a number of simulations
for which the size of the window was varied between 1 and 20 residues. The
accuracy of the models with different window sizes is shown in Fig. 2. In general,
the classification accuracy increases up to a window of size 12, at which point
the performance stabilises.
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Fig. 2. The prediction accuracy of SVM(P2) for a range of different input window sizes
relative to the C-terminus
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3.3 Final Model

The overall structure of the model employs similar filtering steps as PeroxiP.
Instead of TargetP, we use Protein Prowler – a subcellular localisation predictor
with slightly better accuracy [2] – to disqualify sequences that are likely to
be secreted. A motif filter rejects sequences with a C-terminal tripeptide not
occurring amongst peroxisomal proteins in SWISS-PROT release 45, and an
SVM analyses the sequence and classifies the protein as PTS1 targeted or not.

A scan by the Protein Prowler of the positive and negative sets (before re-
dundancy reduction) showed only one protein, with a moderately high prediction
as being secreted (0.82). The negative set, on the other hand, contained 100 pro-
teins with scores above 0.82. 0.95 was chosen as a suitably high cutoff, including
74 proteins in the negative set.

Because no peroxisomal proteins are predicted to be secreted, the sensitivity
did not decline by including this filter, however the filter increased specificity
by an average of 0.034 (an increase of 3.9%) and the MCC by an average of
0.025 (an increase of 4%). Results were generated using 100 runs of five-fold
cross-validation.

3.4 Results

The performance statistics for our full peroxisomal localisation predictor are
shown in Table 4. When our model was trained on the replicated version of
the PeroxiP data set it provided an overall comparable performance to PeroxiP.
Emanuelsson et al. published values of 0.50, 0.78, and 0.64 for MCC, sensitiv-
ity and specificity respectively. Our model gives a comparable MCC, but has
significantly worse sensitivity and much greater specificity than PeroxiP.

The performance increased significantly when our model was trained on the
new data set, an increase of 29% in MCC. Interestingly, the reported sensitivity
of PeroxiP still greatly exceeded that achieved by our final model. This suggests
that a reasonable strategy for combined peroxisomal prediction would be to
give greater weight to our positive predictions, and greater weight to PeroxiP’s
negative predictions.

4 Conclusion

In this paper we have outlined the process by which we developed a new PTS1
peroxisomal localisation classifier. The system uses a design similar to that of

Table 4. Performance measures and standard deviation of the final model (including
filtering) 5-fold cross validation over 100 runs

Dataset performance comparison
Data set MCC Sensitivity Specificity

2005 0.66 (0.03) 0.64 (0.03) 0.91 (0.02)
2003 0.51 (0.04) 0.52 (0.03) 0.82 (0.04)
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the PeroxiP classifier, first filtering for other signaling peptides and then for
known PTS1 motifs, finally using a classifier to predict peroxisomal proteins.
Unlike PeroxiP, our model consists of a single SVM that processes a window of
12 residues from the C-terminal. In addition we have achieved three outcomes
with this research.

Firstly, the development of a updated and highly curated data set for peroxi-
somal localisation via the PTS1 motif. The quality of this data set improved the
accuracy of our final prediction system, measured as a 29% increase in MCC.

Secondly we argued and demonstrated that a PTS1 classifier should include
the terminal tripeptide within the input window, even when input is prefiltered
for known PTS1 motifs. The argument relied on existing analysis of the depen-
dencies between the tripeptide and the 9-mer, as well as simulation based results
showing that its inclusion improved overall prediction accuracy.

Finally, through a series of benchmarking studies we have established that
a Support Vector Machine with a polynomial kernel of order two produces the
best performance of all individual classifiers tested on the new data set. When
trained on our replicated version of the PeroxiP data set, our predictor provided
comparable performance to the PeroxiP model but with a simpler structure.
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Abstract. This research investigates transitive dependence relations,
an extension of direct dependence relations, in multi-agent systems. In
this paper, action dependence relations are employed to deduct transitive
dependence relations from direct dependence relations. Transitive depen-
dence is useful in representation, analysis, and social relations reasoning
between agents, groups, organizations, etc. Furthermore, in this paper,
dependence relations are differentiated by both dependence property and
dependence degree, which is useful in quantitative social reasoning.

1 Introduction

Socially intelligent agents are autonomous problem solvers that have to achieve
their objectives by interacting with other similarly autonomous entities. Social
reasoning mechanisms have been successfully used to design and build such in-
telligent agents. Dependence relations are believed to be the most crucial kind
of relations in MAS. Dependence relations allow an agent to know which of his
goals are achievable and which of his plans are feasible at any moment. This way,
an agent may dynamically choose a goal to pursue and a plan to achieve, being
sure that every skill needed to accomplish the selected plan is available in the
society. Most social reasoning mechanisms are based on dependence relations.
Dependence networks [3, 5]and dependence graphs [4] are employed to represent
social structures and reason about goals, intentions, and actions.

Although there is much related work addressing the crucial and difficult
issues of social reasoning mechanisms with dependence relations (called direct
dependence relations in this paper)[3–5], transitive dependence has not been
considered in the existing research. For instance, if an agent agi depends on an
agent agj about an action a1, and the agent agj depends on an agent agk about
an action a2, is there a dependence relation between the agent agi and the agent
agk can be deduced from the former two dependence relations? The answer is
definitely not. Then under what condition will there exist dependence between
the agent agi and the agent agk? If there is a dependence relation derived from
the two direct dependence relations, this kind of dependence is called transitive
dependence. To overcome the limitations in current research work, this research

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 486–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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advocates the importance of transitive dependence in representation and analysis
of social relations, and addresses the crucial notions of transitive dependence and
utilizes it in representing and reasoning about the dependence relations between
agents, organizations, groups, etc.

Moreover, concerning there are various kinds of dependence relations in MAS,
how to differentiate these dependence relation is an important issue in depen-
dence based social reasoning, especially in a quantitative way. To meet this
end, this research gives a definition of dependence degree, which is used to de-
fine dependence intensity (the higher the dependence degree, the stronger the
dependence relation is). Dependence degree is a quantitative characteristic of
dependence relations, which can be used in quantitative social reasoning.

The remainder of this paper is organized as follows. Section 2 proposes the
original dependence theory and the definition of dependence degree. Transitive
dependence will be discussed in section 3. A simple example of transitive depen-
dence will be described with dependence graphs in section 4. In the final section,
some conclusions are presented and ideas for future work are outlined.

2 Dependence Theory

A multi-agent system is composed of agents, agent environments, agent organi-
zations, agent interaction and relationships between agents. As social reasoning
mechanisms are based on agents’ information about the others. Here we use a
data structure knoagi to store information of the agent agi.

Definition 1 The data structure used by an agent to store information is: knoagi

=def ∪n
j=1knoagi(agj), where knoagi(agj) =def {{Dagi(agj)}, {Aagi(agj)},

{Ragi(agj)}, {Pagi(agj)}, {DPagi(agj)}} where Dagi(agj) is the set of desires,
Aagi(agj) is the set of actions, Ragi(agj) is the set of resources, Pagi(agj) is the
set of plans the agent agi believes the agent agj has. A plan consists of a sequence
of actions with its associated resources needed to accomplish them. DPagi(agj)
is the set of action dependence relations the agent agi believes the agent agj has.
Each action dependence relation in DPagi(agj) is an ordered triple (agi, ai, aj).
The definition of action dependence will be discussed later.

It’s obvious that agents must have some information about other members in
the multi-agent system before reasoning about possible coalition partners. The
information can be acquired in three ways: 1) Passive receiving. When an agent
joins a multi-agent system, he must present himself to the others, sending some
information to introduce himself, e.g., capabilities, resources, goals, etc. While
an agent leaves the multi-agent system, he has to tell the other members about
this. 2) Active inquiring. When an agent wants to know some information about
a member in agent society, he can inquire directly about the member or ask
for other members’ help. 3) Internal reasoning. Agents also can get information
about the other members by internal reasoning.

We call a depending agent the depender, and the agent who is depended
upon the dependee. The object around which the dependence relationship cen-
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tres is called the dependum [2]. According to dependence property, we divide
dependence relations into strong dependence and weak dependence [7].

Definition 2 (Strong dependence) Suppose an agent agi tries to achieve a goal
g. p(agk, g) = a1, a2, . . . , an is a plan of the agent agk for the goal g. The agent
agi has no ability to achieve an action ai ∈ p(agk, g), but he believes that the
agent agj has ability to achieve the action ai, then we call the agent agi strongly
depends on the agent agj about the action ai, i.e., Sdep(agi, agj, p(agk, g), ai).

Definition 3 (Weak dependence) An agent agi tries to achieve a goal g. There
is a plan of an agent agk for the goal g, p(agk, g) = a1, a2, . . . , an. The agent
agi can achieve the action ai ∈ p(agk, g) by himself, but he also believes that
the agent agj has ability to achieve the action ai if he pays offeragi→agj (ai)
to the agent agj. If the agent agi achieves the action ai by himself, he should
cost costagi(ai), and costagi(ai) > offeragi→agj (ai), then the agent agi weakly
depends on the agent agj about the action ai, i.e., Wdep(agi, agj, p(agk, g), ai).

The definition of strong dependence is the same as it is in most related
work. Although weak dependence relation has not been addressed in previous
research, weak dependence relations exist in multi-agent systems, as well as in
real society. For example, a robot who is good at washing clothes can also wash
dishes. Nevertheless it has to spend much more time than letting a dishwasher
robot do it. Therefore, the clothes-washer robot can request the dishwasher robot
to wash dishes, and it can wash clothes for the dishwasher robot. In this way, it
helps to save the cost and to increase efficiency through cooperation between the
dishwasher robot and the robot who is good at washing clothes. Another simple
example is the Tireworld [1], where every agent can move tiles. After analysis of
weak dependence, agents can save cost through cooperation.

As discussed above, it is desired to differentiate various dependence relations
in quantitative ways, rather than only from the dependence property. For in-
stance, in case 1, the agent ag1 strongly depends on the agent ag2 about the
action a1 (i.e., only the agent ag2 has ability to achieve the action a1); in case 2,
the agent ag1 strongly or-depends on the agent ag2 and the agent ag3 about the
action a1 (i.e., both the agent ag2 and the agent ag3 can achieve the action a1).
It’s obviously that the dependence relations between the agent ag1 and the agent
ag2 in the two cases are different, although in both cases, the agent ag1 strongly
depends on the agent ag2. The reason is: in case 1, if the agent ag2 declines to
achieve the action a1 for the agent ag1, the agent ag1 would fail to achieve the
action a1. But in case 2, if the agent ag2 declines to achieve the action a1 for the
agent ag1, the agent ag1 still could ask for the agent ag3’s help with the action
a1. Thus, the agent ag1’s dependence on the agent ag2 about the action a1 in
case 1 is much stronger than that in case 2.

We utilize dependence degree to differentiate dependence relations in a qual-
itative way. Suppose an agent agi tries to achieve a goal g. There is a plan of
an agent agk for the goal g, p(agk, g) = a1, a2, . . . , an. For the sake of simplic-
ity, we assume the agent agi depends on the agent agj about the action ai,
i.e., Dep(agi, agj, p(agk, g), ai), and the dependence can be strong dependence
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or weak dependence. Let Sdependee(agi, p(agk, g), ai) be the set of agents the
agent agi depends on about the action ai that belongs to the plan p(agk, g), and
we have: ∀agj ∈ Sdependee(agi, p(agk, g), ai)⇒ Dep(agi, agj , p(agk, g), ai)

Definition 4 (Dependence degree) Dependence degree is used to describe how
strong a dependence relation is. Dd : Dep1 → [0, 1] represents the dependence
degree of the dependence relation Dep1.

The main factors that have influence on the dependence degree include (take
the agent agi’s dependence on the agent agj about the action ai as an example,
i.e., Dep(agi, agj, p(agk, g), ai)) 1:

– Dependence property, i.e., strong dependence or weak dependence.
– Number of agents that the agent agi can depend on about the action ai,

i.e., the number of dependence partners: |Sdependee(agi, p(agk, g), ai)|. The
dependence degree decreases with the increase of dependence partners.

– Number of dependence competitors, i.e., the number of agents which also
depend on other agents about the action ai.

3 Transitive Dependence Theory

Here we propose a set of formal definitions related to transitive dependence.

Definition 5 (Action dependence) Suppose the agent agi can achieve the action
ai, but he wants any other agent who depends on him about the action ai to do
an action aj for him, and he has no ability to achieve the action aj, then the
agent agi has an action dependence on the action aj about the action ai, i.e.,
Adep(agi, ai, aj).

Let A be a set of actions. The agent agi can achieve the action ai. If he wants
any other agent who depends on him about the action ai to do all the actions
in A, we call this kind of action dependence and-action dependence. If he wants
any other agent who depends on him about the action ai to do any one action
in A, we call this kind of action dependence or-action dependence.

Now we discuss transitive dependence. For the agents agi, agj and agk,
Dep(agi, agj, p(agm, ga), ai)and Dep(agj , agk, p(agq, gb), aj). Although the agent
agj can achieve the action ai, but he has an action dependence on the action
aj about the action ai, i.e., Adep(agj , ai, aj). We can find that the agent agi

transitively depends on the agent agk about the action aj .
In contrast to the transitive dependence, we call the dependence relations

defined in definition 2 and definition 3 direct dependence.

Definition 6 (Dependence chain) Dependence chain is used to describe the
transition process of transitive dependence relations. A dependence chain has
a head and a tail. For the agents agi, agj and agk, Dep(agi, agj, p(agm, ga), ai),
Dep(agj, agk, p(agq, gb), aj), and Adep(agj, ai, aj), the dependence chain from
the agent agi to the agent agk is Dpc = agi

p(agm,ga),ai agj
p(agq ,gb),aj agk.

1 It’s not the main intention of this paper to discuss how to calculate the dependence
degree, which will be reported in future paper
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For a dependence chain Dpc, Head(Dpc) represents the agent at the head
of the dependence chain, and Tail(Dpc) represents the agent at the tail of the
dependence chain. For an agent agi in a dependence chain Dpc, ToDep act
(agi, Dpc) and Deped act(agi, Dpc) represent the actions that the agent agi de-
pends on and is depended upon respectively2. For the dependence chain Dpc in
the last paragraph, Head(Dpc) = agi, ToDep act(agi, Dpc) = ai, Tail(Dpc) =
agk, and Deped act(agk, Dpc) = aj .

Definition 7 Transitive dependence can be described as Tdep(Depender, Dep-
endee, Dependencechain). For the sake of simplicity, we regard the direct depen-
dence as a kind of special transitive dependence, i.e., the agent agi’s dependence
on the agent agj about the action ai that belongs to the plan p(agk, g) can be
described as Tdp(agi, agj , agi

p(agk,g),ai agj). Transitive dependence can be recur-
sively defined as:

For the agents agi, agj and agk, Tdep(agi, agj, Dpc1)∧Tdep(agj, agk, Dpc2)∧
ADep(agj , Deped act(agj , Dpc1)), T oDep act(agj, Dpc2)) ⇒ Tdep(agi, agk,
Dpc1 +Dpc2), where Dpc1 +Dpc2 represents the connection of Dpc1 and Dpc2.

Definition 8 According to dependence property, transitive dependence can be
divided into strong transitive dependence and weak transitive dependence. TSdep
(agi, agj, Dpc) means the agent agi strongly transitively depends on the agent agj

and TWdep(agi, agj , Dpc) represents the agent agi weakly transitively depends
on the agent agj .

According to definition 4, the transitive dependence relation Tdep(agj, agk,
Dpc2) in definition 6 should be strong transitive dependence relation.

As we regard direct dependence as a kind of special transitive dependence,
accordingly, we regard the strong direct dependence as strong transitive de-
pendence, and the weak direct dependence can be regarded as weak transitive
dependence. Furthermore, the dependence degree of a direct dependence relation
can be regarded as its transitive dependence degree.

Definition 9 For the agents agi, agj, agk, Tdep(agi, agj , Dpc1), Tdep(agj, agk,
Dpc2) and Tdep(agi, agk, Dpc1 + Dpc2). If the agent agi strongly transitively
depends on the agent agj, the agent agi strongly transitively depends on the
agent agk, otherwise the agent agi weakly transitively depends on the agent agk.

Definition 10 (Transitive dependence degree) Transitive dependence degree is
used to describe how strong a transitive dependence relation is. If the agent agi

transitively depends on the agent agj through dependence chain Dpc1, the tran-
sitive dependence degree of the transitive dependence relation Tdep1 = Tdep(agi,
agj , Dpc1) is TDp(Tdep1).

Definition 11 For the agents agi, agj, agk, the agent agi transitively depends
on the agent agj, Tdep1 = Tdep(agi, agj, Dpc1), and its transitive dependence
degree is TDp(Tdep1). The agent agj strongly transitively depends on the agent

2 An agent may appear more than once in a dependence chain
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agk, Tdep2 = Tdep(agj, agk, Dpc2), and its transitive dependence degree is TDp(
Tdep2). If the agent agi transitively depends on the agent agk, i.e., Tdep3 =
Tdep(agi, agk, Dpc1 + Dpc2), its transitive dependence degree can be got by3:

TDp(Tdep3) = TDp(Tdep1)× TDp(Tdep2)

Transitive dependence makes the following situation possible: if the agent
agi transitively depends on the agent agj about the action ai, the agent agj

transitively depends on the agent agi about the action aj , and there is an action
dependence relation ADep(agj, ai, aj), then the agent agi transitively depends
on himself about the action aj .

Definition 12 (Self-dependence) For the agent agi, transitive dependence rela-
tion Tdep(agi, agi, Dpc) is called transitive self-dependence.

4 An Example

In this section, a simple example is given. Here we utilize dependence graphs to
represent direct and transitive dependence. Firstly, some definitions are intro-
duced, more detailed introduction of dependence graphs can be found in [4].

Definition 13 A dependence graph DPG is an ordered triple (V (DPG),
E(DPG), ΨDPG) consisting of a nonempty set V (DPG) of nodes, a set E(DPG)
of edges and an incidence function ΨDPG that associates with each edge of DPG
an ordered pair of (not necessarily distinct) vertices of DPG.

1. The set V (DPG) = Vag(DPG) ∪ Vg(DPG) ∪ Vp(DPG) ∪ Va(DPG) is the
union of four disjoint sets. Vag(DPG) is the set of agents, Vg(DPG) is the
set of the possible goals these agents may want to achieve, Vp(DPG) is the
set of plans the agents may use to achieve their goals, and Va(DPG) is the
set of actions that can be performed by these agents.

2. The set E(DPG) is a set of edges.
3. The function ΨDPG : E(DPG)→ V (DPG)×V (DPG) is defined as follows:

(a) ΨDPG(e) = (agi, gi) associates an edge e with an ordered pair of vertices
(agi, gi), and represents the fact that the agent agi has the goal gi.

(b) ΨDPG(e) = (gi, pi) represents the fact that the goal gi can be achieved by
the plan pi.

(c) ΨDPG(e) = (pi, ai) represents the fact that the plan pi needs the action
ai and the action can’t be achieved by the depender or the depender can
achieve it but has to cost more.

(d) ΨDPG(e) = (ai, agi) represents the fact that the action ai can be per-
formed by the agent agi.

(e) ΨDPG(e) = (agi, ai)represents the fact that the agent agi has an action
dependence on the action ai, i.e., ADep(agi, ak, ai), where the action ak

is the origin action node of the agent agi.
3 Actually, there are many methods to get the transitive dependence degree, and the

detailed discussion of this is omitted due to lack of space
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Fig. 1. A simple example of dependence graph

An simple example of a dependence graph is showed in Figure 14. An agent
ag1 has two goals g1 and g2. For the first goal g1, he has two alternative plans,
p11 = a1, a2 and p12 = a1, a3. For the goal g2, he has only one plan p21 = a1, a4.
Suppose that the agent ag1 can perform the actions a1 and a4, and the actions a2

and a3 can be performed respectively by the set of agents {ag2, ag3} and {ag4}.
The agent ag5 can also achieve the action a4. If the agent ag1 do the action a4

by himself, he would cost more than the payoff to the agent ag5 if he asks for
the agent ag5’s help. The agent ag3 has a goal g3 and has a plan p31 = a2, a5

for the goal. Suppose that the agent ag3 can only perform the action a2, and
the action a5 can be performed by the agent ag5. An action dependence relation
of the agent ag3 is ADep(ag3, a2, a5). In the above scenario, the following basic
dependence relations hold:

dp1 = Sdep(ag1, ag2, {p11 = a1, a2}, a2)
dp2 = Sdep(ag1, ag3, {p11 = a1, a2}, a2)
dp3 = Sdep(ag1, ag4, {p12 = a1, a3}, a3)
dp4 = Wdep(ag1, ag5, {p21 = a1, a4}, a4)
dp5 = Sdep(ag3, ag5, {p31 = a2, a5}, a5)
dp6 = ADep(ag3, a2, a5)
According to dp2, dp5 and dp6, we get a transitive dependence relation:

dp7 = TDep(ag1, ag5, depchain), where depchain = ag1
p11,a2 ag3

p31,a5 ag5. Be-
cause both the dependence relations dp2 and dp5 are strong dependence rela-
tions, according to definition 9, the transitive dependence relation dp7 is strong.
Suppose the dependence degrees of dp2 and dp5 are 0.8 and 0.7 respectively,
according to definition 11, the dependence degree of dp7 is 0.56.

5 Conclusions and Future Work

The transitive dependence is an important and useful phenomenon in the field
of multi-agent systems, but it’s ignored in the related work. To meet this gap,
in this paper, we have addressed the crucial issues about transitive dependence
relations in MAS.
4 The or-dependence relations are represented with doted lines, and the and-

dependence relations are represented with solid lines
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As very first steps for computing transitive dependence and degrees of de-
pendence, this research focusing on transitive dependence relations in MAS is far
from being complete and formalized, and it’s also a non-experimental (simula-
tive) study. However, we believe that it might be inspiring for: 1) representation,
analysis, and social structures reasoning in the field of multi-agent systems, 2)
coalition formation in muiti-agent systems [1] and service oriented grid [8], and
3) quantitative social reasoning with the utilization of dependence degree, such
as, cooperation partner selection, decision making of the order of actions, utility
optimization, etc.

Future research concerning transitive dependence relations includes: 1) fur-
ther analysis of the characteristics of transitive dependence; 2) transitive depen-
dence based coalition formation; and 3) transitive dependence based quantitative
reasoning.
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Abstract. Coalition formation in multi-agent systems (MAS) is becom-
ing increasingly important as it increases the ability of agents to execute
tasks and maximize their payoffs. This paper proposes a novel depen-
dence theory namely transitive dependence theory for dynamic coalition
formation in multi-agent system. Based on the proposed transitive de-
pendence theory, a reasoning mechanism for searching coalition partners
has been worked out which includes dependence tree generation, depen-
dence tree reduction, plan optimization and action optimization.

1 Introduction

Cooperation among autonomous agents may be mutually beneficial even if the
agents are selfish and try to maximize their own expected payoffs. Mutual benefit
may arise from resource sharing and task redistribution. Coalition formation
is important for agent cooperation in multi-agent environment. A number of
coalition mechanisms have been successfully proposed and applied into many
areas (e.g., [1–4]).

Social reasoning refers to agents’ reasoning about others. The social reasoning
mechanism is considered to be an essential building block of really autonomous
agents. Although there are various kinds of relations in MAS as what in real so-
ciety, the dependence relation is believed to be the most crucial one. Dependence
relations allow an agent to know which of his goals are achievable and which of
his plans are feasible at any moment.

Social reasoning mechanisms, especially dependence based methods, play an
important role in coalition formation in MAS. Dependence relations are regarded
as the foundation of coalition formation [6]. There have been some research ef-
forts with respect to dependence based coalition formation (e.g., [5, 7]). However,
transitive dependence has not been considered in the existing research. Moreover,
search for potential partners is a crucial problem in dynamic coalition formation,
which has not been clearly and completely addressed in the related work. This
research advocates the importance of transitive dependence, an extension of di-
rect dependence, in social reasoning and proposes a transitive dependence based

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 507–514, 2005.
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method for searching coalition partners including dependence tree generation,
dependence tree reduction, plan optimization and action optimization.

The remainder of this paper is organized as follows. Section 2 introduces the
original transitive dependence theory. The transitive dependence based reasoning
mechanism for coalition formation is proposed in section 3. In the final section,
some conclusions are presented and ideas for future work are outlined.

2 Transitive Dependence Theory

A multi-agent system is composed of agents, agent environments, agent organi-
zations, agent interaction and various relationships between agents. For the sake
of simplicity, we regard all the social members as agents. As social reasoning
mechanisms are based on agents’ information about the others. Here we use a
data structure knoagi to store information of the agent agi.

Definition 1 The data structure used by an agent to store information is: knoagi

=def ∪n
j=1knoagi(agj), where knoagi(agj) =def {{Dagi(agj)}, {Aagi(agj)},

{Ragi(agj)}, {Pagi(agj)}, {DPagi(agj)}} where Dagi(agj) is the set of desires,
Aagi(agj) is the set of actions, Ragi(agj) is the set of resources, Pagi(agj) is the
set of plans the agent agi believes the agent agj has. A plan consists of a sequence
of actions with its associated resources needed to accomplish them. DPagi(agj)
is the set of action dependence relations the agent agi believes the agent agj has.
The definition of action dependence will be discussed later.

According to dependence property, we divide dependence relations into strong
dependence and weak dependence.

Definition 2 (Strong dependence) Suppose an agent agi tries to achieve a goal
g. p(agk, g) = a1, a2, . . . , an is a plan of the agent agk for the goal g. The agent
agi has no ability to achieve an action ai ∈ p(agk, g), but it believes that the
agent agj has ability to achieve the action ai, then we call the agent agi strongly
depends on the agent agj about the action ai, i.e., Sdep(agi, agj, p(agk, g), ai).

Definition 3 (Weak dependence) An agent agi tries to achieve a goal g. There
is a plan of an agent agk for the goal g, p(agk, g) = a1, a2, . . . , an. The agent agi

can achieve the action ai ∈ p(agk, g) by itself, but it also believes that the agent
agj has ability to achieve the action ai if it pays offeragi→agj (ai) to the agent
agj. If the agent agi achieves the action ai by itself, it should spend costagi(ai),
and costagi(ai) > offeragi→agj (ai), then the agent agi weakly depends on the
agent agj about the action ai, i.e., Wdep(agi, agj, p(agk, g), ai).

The definition of strong dependence is the same as it is in most related work.
Although weak dependence relation has not been addressed in previous research,
weak dependence relations exist in multi-agent systems, as well as in real society.
A simple example is the Tireworld [1], where every agent can move tiles. After
analysis of weak dependence, agents can save cost through cooperation.
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Definition 4 (Action dependence) Suppose the agent agi can achieve the action
ai, but he wants any other agent who depends on him about the action ai to do
an action aj for him, and he has no ability to achieve the action aj, then the
agent agi has an action dependence on the action aj about the action ai, i.e.,
Adep(agi, ai, aj).

Let A be a set of actions. The agent agi can achieve the action ai. If he wants
any other agent who depends on him about the action ai to do all the actions
in A, we call this kind of action dependence and-action dependence. If he wants
any other agent who depends on him about the action ai to do any one action
in A, we call this kind of action dependence or-action dependence.

Now we discuss transitive dependence. For the agents agi, agj and agk,
Dep(agi, agj, p(agm, ga), ai)and Dep(agj , agk, p(agq, gb), aj). Although the agent
agj can achieve the action ai, but he has an action dependence on the action
aj about the action ai, i.e., Adep(agj , ai, aj). We can find that the agent agi

transitively depends on the agent agk about the action aj .
In contrast to the transitive dependence, we call the dependence relations

defined in definition 2 and definition 3 direct dependence.

Definition 5 (Dependence chain) Dependence chain is used to describe the
transition process of transitive dependence relations. A dependence chain has
a head and a tail. For the agents agi, agj and agk, Dep(agi, agj, p(agm, ga), ai),
Dep(agj, agk, p(agq, gb), aj), and Adep(agj, ai, aj), the dependence chain from
the agent agi to the agent agk is Dpc = agi

p(agm,ga),ai agj
p(agq ,gb),aj agk.

For a dependence chain Dpc, Head(Dpc) represents the agent at the head
of the dependence chain, and Tail(Dpc) represents the agent at the tail of the
dependence chain. For an agent agi in a dependence chain Dpc, ToDep act(agi,
Dpc) and Deped act(agi, Dpc) represent the actions that the agent agi depends
on and is depended upon respectively1. For the dependence chain Dpc in the
last paragraph, Head(Dpc) = agi, ToDep act(agi, Dpc) = ai, Tail(Dpc) = agk,
and Deped act(agk, Dpc) = aj .

Definition 6 Transitive dependence can be described as Tdep(Depender, Dep-
endee, Dependencechain). For the sake of simplicity, we regard the direct depen-
dence as a kind of special transitive dependence, i.e., the agent agi’s dependence
on the agent agj about the action ai that belongs to the plan p(agk, g) can be
described as Tdp(agi, agj , agi

p(agk,g),ai agj). Transitive dependence can be recur-
sively defined as:

For the agents agi, agj and agk, Tdep(agi, agj, Dpc1)∧Tdep(agj, agk, Dpc2)∧
ADep(agj , Deped act(agj , Dpc1)), T oDep act(agj, Dpc2)) ⇒ Tdep(agi, agk,
Dpc1 +Dpc2), where Dpc1 +Dpc2 represents the connection of Dpc1 and Dpc2.

Definition 7 According to dependence property, transitive dependence can be
divided into strong transitive dependence and weak transitive dependence. TSdep

1 An agent may appear more than once in a dependence chain
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(agi, agj, Dpc) means the agent agi strongly transitively depends on the agent agj

and TWdep(agi, agj , Dpc) represents the agent agi weakly transitively depends
on the agent agj.

According to definition 4, the transitive dependence relation Tdep(agj, agk,
Dpc2) in definition 6 should be strong transitive dependence relation.

Definition 8 For the agents agi, agj, agk, Tdep(agi, agj , Dpc1), Tdep(agj, agk,
Dpc2) and Tdep(agi, agk, Dpc1 + Dpc2). If the agent agi strongly transitively
depends on the agent agj, the agent agi strongly transitively depends on the
agent agk, otherwise the agent agi weakly transitively depends on the agent agk.

3 Transitive Dependence Based Reasoning
for Coalition Formation

In order to enable an agent to co-ordinate its activities with other agents and to
participate in coalitions, one of the elements to take into account in its conception
should be a social reasoning mechanism that allows the agent to reason about
the other agents. In order to make the creation of mutually beneficial coalitions
possible, we make the following two assumptions:

1) Complete information: We assume that agents’information about the
other members in MAS is complete. The information is stored in the data struc-
ture described in section 2.

2) Personal rationality: We assume that each agent in the environment has
personal rationality, i.e., it joins a coalition only if it can benefit at least as much
within the coalition as it could benefit by itself or by joining in other coalitions.
For instance, an agent agi can do an action ai, if another agent agj ask for its
help with the action ai, and the agent agj can pay more than it wants and other
agents will pay, the agent agi will join the coalition to do the action for the agent
agj .

It’s obvious that agents must have some information about other members in
the multi-agent system before reasoning about possible coalition partners. This
kind of information is acquired during an initial information gathering phase
and can be acquired and updated dynamically. The information can be acquired
in three ways: passive receiving, active inquiring and internal reasoning.

The dependence relation is got by analysis of the information about other
members gathered. In the transitive dependence based reasoning mechanism,
after analysis of the dependence relations, the reasoning process for potential
coalition partners includes the three steps: dependence tree generation, depen-
dence tree reduction, plan optimization and action optimization.

In this paper, dependence trees are employed to described the direct depen-
dence and transitive dependence in achieving a goal.

Definition 9 A dependence tree DPT is an ordered triple (V (DPT ), E(DPT ),
Ψ(DPT )) consisting of a nonempty set V (DPT ) of nodes, a set E(DPT ) of
edges and an incidence function Ψ(DPT ) that associates with each edge of DPT
an ordered pair of (not necessarily distinct) vertices of DPT .
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1. The set V (DPT ) = Root ∪ Vplan(Root) ∪ Vag(DPT ) ∪ Vact(DPT ) is the
union of four disjoint sets. Root is the root of the dependence tree, i.e., the
depender and his goal to achieve, Vplan(Root) is the set of plans the agents
may use to achieve the goal in the root node Root, Vag(DPT ) is the set of
agents, and Vact(DPT ) is the set of actions.

2. The set E(DPT ) is a set of edges.
3. The function ΨDPT : E(DPT )→ V (DPT )×V (DPT ) is defined as follows:

(a) ΨDPT (e) = (Root, pi) represents the fact that the goal in the root node
Root can be achieved by the plan pi.

(b) ΨDPT (e) = (pi, ai) represents the fact that the plan pi needs the action
ai and the action can’t be achieved by the depender or the depender can
achieve it but has to cost more.

(c) ΨDPT (e) = (ai, agi) represents the fact that the action ai can be per-
formed by the agent agi.

(d) ΨDPT (e) = (agi, ai)represents the fact that the agent agi has an action
dependence on the action ai, i.e., ADep(agi, ak, ai), where the action ak

is the origin action node of the agent agi.

Here we define two notations for the dependence tree. Let a node x be any
node but the Root node in a dependence tree DPT . father(x) represents the
father node of the node x, and sons(x) represents the set of nodes whose father
node is the node x. Each node x has only a father node father(x), and may has
more than one son node, i.e., |sons(x)| ≥ 0.

A dependence tree has the following characteristics:
1) For an agent node x in a dependence tree, his father node, an action node,

ai = father(x) and any son node aj ∈ sons(x) (if |sons(x)| ≥ 1) belongs to an
action dependence relation ADep(x, ai, aj).

2) Let the node x is an action node in a dependence tree, for his father
node agi = father(x)(if it’s an agent node) and any son node, an agent node,
agj ∈ sons(x) (if |sons(x)| ≥ 1), it’s obvious that the maximum offer of the
agent agi about the action x is no less than the reserve price of the agent agj.

3) For an agent node x in a dependence tree, his father node is ai = father(x)
and the set of his son nodes is sons(x) (|sons(x)| ≥ 1 ). The node x is an “or”
node if the agent x or-depends on the set sons(x) of actions about the action ai,
and the node x is an “and” node if the agent and-depends on the set sons(x) of
actions about the action ai.

An example of a dependence tree is in Figure 12. An agent ag1 has a goal g1

and it has two alternative plans, p11 = a0, a1, a2 and p12 = a0, a3 for the goal.
Suppose that the agent ag1 can only perform the action a0, and the actions a1

and a2 can be performed respectively by the set of agents {ag2, ag3} and {ag4}.
The agent ag5 can achieve the action a3. An action dependence relation of the
agent ag2 is ADep(ag2, a1, a4). An or-action dependence relation of the agent
ag3 is ADep(ag3, a1, a5 ∨ a6). An and-action dependence relation of the agent

2 The or-dependence relations are represented with doted lines, and the and-
dependence relations are represented with solid lines
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ag5 is ADep(ag5, a3, a7 ∧ a8). The action a5 can be performed by the agent ag6.
The action a7 can be performed by the agents ag7 and ag8. The action a8 can
be performed by the agent ag9. The actions a4 and a6 can’t be performed by
any agent.

Definition 10 (Feasible action) For an action node ai in a dependence tree, it’s
a feasible action if it can be achieved, which can be defined by:

If the prior node of the action node ai is a plan node, and the depending
agent in the root node has ability to achieve the action ai, the action ai is a
feasible action.

An edge e associates with an ordered pair of vertices (ai, agj) and the node
agj is a leaf node, the action ai is feasible.

An edge e associates with an ordered pair of vertices (ai, agj), if the node agj

is an “or” node, and there is more than one ordered pair of vertices (agj , ak), in
which the action ak is feasible, then the action ai is a feasible action.

An edge e associates with an ordered pair of vertices (ai, agj), if the node agj

is an “and” node, and for every ordered pair of vertices (agj , ak), the action ak

is feasible, then the action ai is a feasible action.

Definition 11 (Feasible plan) For a plan pi in a dependence tree, if for every
ordered pair of vertices (pi, ai), the action ai is feasible, the plan pi is feasible.

Definition 12 After deletion of the all actions and plans that are not feasible
from a dependence tree, the reduced tree is called a reduced dependence tree.

Take the dependence tree in Figure 1 as an example. Assume that the agent
ag2 has no ability to achieve the action a4, and the agent ag3 has no ability
to achieve the action a6. Figure 2 shows the reduced dependence tree after
dependence tree reduction.

Definition 13 For a reduced dependence tree, if the node Root is a leaf node,
then the goal is not achievable; otherwise, it’s a feasible goal.

),( 11 gag

11p 12p

1a 3a

2ag
4ag3ag 5ag
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7a6a5a4a 8a

9ag
8ag

7ag
6ag

Fig. 1. A simple example of dependence tree
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Fig. 2. A reduced dependence tree
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Fig. 3. A coalition tree

Definition 14 (Plan optimization) For a feasible goal, there may be more than
one feasible plan, and we choose the most favorable plan to form coalition.

Definition 15 (Action optimization) Similarly, for a feasible action, there may
be more than one agent can achieve it, and we choose an agent to achieve it that
will result in the most favorable outcome.

Definition 16 (Coalition tree) For a reduced dependence tree, after plan opti-
mization and action optimization, the reduced dependence tree is called a coali-
tion tree.

Definition 17 (Dependence based coalition formation) Given a framework F =
< AG, G, P lan, Can, Dp >, an agent agi ∈ AG has a goal g ∈ G, according to
the set of agents’ ability Can and the set of dependence relations Dp, does there
exists a coalition tree over F that is feasible for the goal g?

Theorem 1 The Dependence based coalition formation problem is NP-complete.
Proof: The detailed proof is omitted due to lack of space. ��

Take the reduced dependence tree is in Figure 2 as an example. Let us assume
that the agent ag1 has to pay much more if he adopts the plan p11 than that if
he adopts the plan p12, and the reserve price of the agent ag7 is less than that
of the agent ag8 for the action a7. Figure 3 shows the coalition tree after plan
optimization and action optimization. After reasoning the potential cooperation
partners, the depending agent invites all the agents in the coalition tree to form
a coalition. According to assumption 1 and assumption 2, all the agents in the
coalition tree will agree to join in the coalition for cooperative problem solving.

4 Conclusions and Future Work

There are two major questions concerning coalition formation [2]: 1) how should
a group of autonomous agents form a coalition? and 2) among all possible coali-
tions, what coalition will form, and what reasons and processes will lead the
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agents to form that particular coalition? The theory of direct dependence and
transitive dependence tries to answer the first question, and it has been the
direction followed by some previous works like those presented in [5, 7].

In this paper, we extend the related research work in a significant way by
introducing a new theory transitive dependence theory in coalition formation.
The transitive dependence based reasoning for potential partners is proposed for
the second question. The coalition formation process is divided into three phases.
Dependence tree, reduced dependence tree and coalition tree are employed in the
reasoning about potential coalition partners. Our on-going research is focused
on solving the large complexity of the transitive dependence based reasoning,
which will be reported in the future papers.
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e = expression data, indexed by [step number][gene number] 
s = number of steps in e 
g = number of genes in e 
 
if (s > 0) and (g > 0): 
 clear the screen 
 xdist = screen-width / s 
 ydist = screen-height / g 
 xgap = 0.12 * xdist 
 ygap = 0.12 * ydist 

 x = 0  /* where 0 is leftmost screen coordinate */ 
 for i = 1 to s: 
  y = 0  /* where 0 is topmost screen coordinate */ 
  for j = 1 to g: 
   if expression_data[i][j] is activated: 
    x1 = x + xgap 
    y1 = y + ygap 
    x2 = x + xdist – xgap 
    y2 = y + ydist – ygap 
    draw_rectangle(x1, y1, x2, y2) 
   y = y + ydist 
  x = x + xdist 
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n = network, indexed by node 
p = position of each node 

clear the screen 
for i = 1 to (number of nodes in n): 
 p[i] = random position 
 draw sphere at p[i] 

for i = 1 to (number of nodes in n): 
 r = list of nodes regulated by n[i] 
 for j = 1 to (number of nodes in r): 
  draw arrow from p[i] to p[r[j]] 
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Abstract. In this paper, a new crossover operator based on Latin square
design is presented at first. This crossover operator can generate a set of
uniformly scattered offspring around their parents, and it is of the ability
of local search and thus can explore the search space efficiently. Then the
level set of the objective function is evolved successively by crossover and
mutation operators such that it gradually approaches to global optimal
solution set. Based on these, a new evolutionary algorithm for nondif-
ferentiable unconstrained global optimization is proposed and its global
convergence is proved. At last, the numerical simulations are made for
some standard test functions. The performance of the proposed algo-
rithm is compared with that of two widely-cited algorithms. The results
indicate the proposed algorithm is effective and has better performance
than the compared algorithms for these test functions.

1 Introduction

Global optimization problems have been arisen in many fields such as computer
science, engineering design and decision making, etc. They can be divided into
two categories: differentiable global optimization problems and nondifferentiable
global optimization problems. The objective functions of the former are differ-
entiable while the objective functions of the later are nondifferentiable. Based
on these two kinds of problems, the algorithms for global optimization problems
are accordingly classified into two categories: differentiable global optimization
algorithms and nondifferentiable global optimization algorithms. examples of the
former are such as filled function algorithms (e.g., [1], [2]) and tunneling algo-
rithms (e.g., [3]), etc, which make use of the derivatives of the objective functions
and can not be applicable to nondifferentiable problems. While neural networks
(e.g., [8]), evolutionary algorithms (e.g., [4], [5], [6], [7]) and simulated annealing
(e.g., [9]) are examples of the later, which usually do not need to use deriva-
tives of the objective functions and can be applicable to the nondifferentiable
problems.
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The most of the recently developed evolutionary algorithms can be seen as the
improvements of the classical evolutionary algorithms by improving genetic op-
erators (crossover and mutation operators) and selection scheme, but the frame-
work of the classical evolutionary algorithms is kept unchanged. However, in
this paper, a different model of algorithm is proposed, in which the global op-
timization problem is solved by evolving the level set of the objective function
consecutively such that the level set gradually becomes smaller and smaller and
until the measure of it is zero. As a result, each point in it is a global optimal
solution.

2 Concepts, Assumptions and Related Results

We consider the following global optimization problem

min
x∈G

f(x), (1)

Where G ⊆ Rn. First, we introduce the following concepts

Definition 1. Suppose that c is a constant satisfying c ≥ f∗ = minx∈G f(x),
then the set Hc = {x ∈ Rn| f(x) ≤ c} is called a level set of f(x), and M(f, c) =∫

Hc
f(x)dx

μ(Hc) is called mean of f(x) on Hc, where μ(Hc) is the Lebesque measure of

Hc. If {ck} → f∗ for k →∞ and ck > f∗, define M(f, f∗) = lim
k→∞

∫
Hck

f(x)dx

μ(Hck
) .

In order to guarantee the problem (1) is well-defined, i.e., there must exists
global optimal solution, we make the following assumptions: (A1). f(x) is con-
tinuous on G. (A2). There exists a real number c such that G∩Hc is a nonempty
and compact set. Now we introduce some related results:
Lemma 1[10] Under the assumptions (A1) and (A2), if G ∩Hc �= ∅ and μ(G ∩
Hc) = 0, then c is the global optimal function value of f(x) and G ∩Hc is the
set of global optimal solutions.
Lemma 2[10] Under the assumptions (A1) and (A2), we have

– If c > f∗, then M(f, c) ≤ c. If c1 ≥ c2 ≥ f∗, then M(f, c1) ≥M(f, c2) ≥ f∗.
– f̄ is global optimal function value if and only if M(f, f̄) = f̄ .
– If lim

k→∞
fk = f̄ , then lim

k→∞
M(f, fk) = M(f, f̄).

3 A New Evolutionary Algorithm
Based on Level Set Evolution and Latin Square

In the following we use real number encode, i.e., each individual is represented
by its original real vector form x.
Latin square design: First, we introduce the concept of Latin square. Let (x1, x2,
· · · , xq) ∈ Rq, a shift mapping S : Rq → Rq is defined as S(x1, x2, · · · , xq) =
(x2, x3, · · · , xq, x1).
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Definition 2. If a q × q matrix satisfies the conditions: (I). Its first row a =
(x1, x2, · · · , xq), denoted as V1, is a permutation of (1, 2, · · · , q). (II). Its i-th row,
denoted as Vi, is defined by shift mapping Vi = S(Vi−1) for i = 2 ∼ q. Then the
matrix is called a Latin square of order q. A Latin square of order q with the first
row a is denoted as Ls(q, a), and its the i-th row and the j-th column element is
denoted as vij.

Latin square design is one of the uniform design methods ([11]). It can generate
a uniformly scattered points in a domain. Since initially we do not know where
the optimal solution is, it is better to generate the initial population which
approximately uniformly scatter in the search space. We use Latin square design
to generate the initial population. The idea of Latin square design is as follows.
Suppose the domain considered is

[L, U ] = {x ∈ Rn| lj ≤ xj ≤ uj , j = 1 ∼ n},

where xj , lj and uj are the j-th component of x, L and U , respectively. Choose
a row vector a ∈ Rn and generate an order n Latin square Ls(n, a) = (vij)n×n,
then Latin square design generates a set of uniformly scattered points in [L, U ] as
follows: {W i|W i = (wi1, wi2, · · · , win), i = 1 ∼ n}, where wij = lj + 2vij−1

2n (uj −
lj), i, j = 1 ∼ n.

Initial population: Given the population size pop. Divide the search space into
several smaller domains and use Latin square design to generate a set of points
in each domain such that the total number of points generated is larger than or
equal to the population size, then the initial population consist of the pop best
points among these points.

Crossover operator: For two parents X i = (xi1, x + i2, · · · , xin), i = 1, 2, let
lj = min{x1j , x2j}, uj = max{x1j , x2j}, j = 1 ∼ n, L̄ = (l1, l2, · · · , ln), Ū =
(u1, u2, · · · , un), and define domain [L̄, Ū ] = {x ∈ Rn|lj ≤ xj ≤ uj, j = 1 ∼ n}.
Choose a proper Latin square Ls(q, a) = (vij) of order q. If q ≥ n, the i-th
offspring Oi = (oi1, oi2, · · · , oin) can be generated by oij = lj + 2vij−1

2n (uj − lj),
j = 1 ∼ n for i = 1 ∼ q. If q < n, divide the components of X1, X2, L̄
and Ū into q sub-vectors in the same way as follows: X1 = (A1, A2, · · · , Aq),
X2 = (B1, B2, · · · , Bq), L̄ = (L1, L2, · · · , Lq) and Ū = (U1, U2, · · · , U q), where
Aj , Bj , Lj and U j are same dimensional sub-vectors and the dimensions of q
sub-vectors are randomly assigned. The i-th offspring Oi = (Oi

1, O
i
2, · · · , Oi

q) can
be generated by Oi

j = Lj + 2vij−1
2q (U j − Lj), j = 1 ∼ q for i = 1 ∼ q.

Adaptive mutation operator: Suppose that x is an individual to undergo the
mutation. Its offspring Ō generated by adaptive mutation can be given by Ō =
x + σ(T, Ū − x) if r > 0 and Ō = x − σ(T, x− L̄) if r ≤ 0, where r is a random
number in [−1, 1], σ(T, y) = y(1 − t)λT with t ∈ [0, 1] is a random number, λ

is a parameter in [2, 5], T = f(x)−fmin

fmax−fmin
, fmin and fmax are the minimal and

maximal fitness values in current population.
Selection scheme: The best individuals of 70% population size among the

current population and all offspring generated in the current generation are
selected to the next generation population, the remaining individuals of 30%
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population size are selected among those which are as far as possible from the
70% selected individuals. Selection in this way is helpful to the diversity of the
population.
Algorithm 1: (A new evolutionary algorithm based on level set evolution and
Latin square)

1. (Initialization) Generate initial population P (0) = {x1, x2, · · · , xpop}, given
crossover and mutation probabilities pc and pm, and a large positive integer
N̄ . Let k = 0, s = 0 and ck = [f(x1)+· · ·+f(xpop)]/pop, where xi is required
to be in G for i = 1 ∼ pop. Let fk = ck and Lk = {x ∈ G|f(x) ≤ fk}. Find
the points from P (k) which are in Lk and denoted by x1, x2, · · · , xNk without
loss of generality. Let dk = [f(x1) + · · ·+ f(xNk)]/Nk.

2. If μ(Lk) = 0, fk is the optimal fitness value and Lk is the global optimal
solution set. Stop. Otherwise, go to step 3.

3. (Crossover) Select parents from P (k) for crossover with probability pc. Ran-
domly match every two parents and use the crossover operator to each pair
of matched parents to generate offspring. The set of all offspring generated
is denoted as O1.

4. (Mutation) Select parents from P (k) for mutation with probability pm. Each
selected parent generates an offspring and the set of all these offspring is
denoted as O2.

5. (Selection) Estimate dk+1 =
∫

Lk

f(x)dx/μ(Lk) as follows: suppose that o1,

o2, · · · , omk are the offspring in both O1 ∪ O2 and Lk. Let dk = [dk ×
Nk + f(o1)+ · · ·+ f(omk)]/(Nk +mk) and set Nk = Nk +mk. If there exists
ξk ∈ O1∪O2∪P (k) such that fk+1 = f(ξk) < dk, then P (k+1) consist of the
best pop individuals in O1∪O2∪P (k). Let Lk+1 = {x|f(x) ≤ fk+1, x ∈ G}.
Suppose x1, x2, · · · , xNk+1 ∈ P (k+1)∩Lk+1 without loss of generality. Define
dk+1 = [f(x1)+ · · ·+f(xNk+1)]/Nk+1, let k = k+1. Go to step 2; otherwise,
f(ξk) ≥ dk for any ξk ∈ O1 ∪O2 ∪ P (k). Set s = s + 1. If s ≤ N̄ , select pop
individuals from O1 ∪ O2 ∪ P (k) as temporary population Ps(k) according
to the selection scheme. Go to step 3; if s > N̄ , let fk+1 = dk, go to step 6.

6. fk+1 is optimal fitness value and Lk+1 is the set of global optimal solutions.

4 Global Convergence

Theorem 1 Suppose that N̄ is large enough such that there exists ξk satisfying
f(ξk) < dk when s ≤ N̄ in step 5 of algorithm 1, then under assumptions (A1)
and (A2) in section 2, {fk} and {Lk} have the following properties:

1. If algorithm 1 stops in generation k, then fk is the optimal fitness value and
Lk is the set of global optimal solutions.

2. Otherwise, we have: (I). For ∀k, fk > fk+1 > f∗ and Lk ⊃ Lk+1 ⊃ L∗,
where f∗ is the optimal fitness value and L∗ = {x|f(x) = f∗, x ∈ G}. (II).

lim
k→∞

fk = f∗ and lim
k→∞

Lk = L∗ =
∞⋂

k=1

Lk.
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Proof If algorithm 1 stops in generation k, then it must stops in step 2 or 6.
In the former case, μ(Lk) = 0. Conclusion 1 is true by Lemma 1. In the later
case, for ∀x ∈ G, f(x) ≥ fk. Conclusion 1 ia also true.

If algorithm 1 does not stop in finite generations, by step 5 of algorithm 1,
we have fk+1 < fk and Lk ⊃ Lk+1 for ∀k. Note that fk ≥ f∗ for ∀k, Thus
there exists f̄ such that lim

k→∞
fk = f̄ . Now we prove f̄ = f∗. In fact, it can be

seen from step 5 that fk+1 ≤ dk = M(f, fk), and it can be obtained by the first
conclusion of Lemma 2 that M(f, fk) ≤ fk. Thus fk+1 ≤M(f, fk) ≤ fk. From
lim

k→∞
fk = f̄ and the third conclusion of Lemma 2, we have f̄ ≤ M(f, f̄) ≤ f̄ .

Thus f̄ = M(f, f̄). It can be seen from the second conclusion of Lemma 2 that

f∗ = f̄ . From lim
k→∞

fk = f∗ we know lim
k→∞

Lk = L∗ =
∞⋂

k=1

Lk.

5 Simulation Results

Five widely used test functions are chosen ([6]) and the proposed algorithm
(denoted as LEA for short) is executed for these functions.
F1 = 4x2

1 − 2.1x4
1 + (1/3)x6

1 + x1x2 − 4x2
2 + 4x4

2, xi ∈ [−5, 5], i = 1, 2, f∗ =
−1.0316285.
F2 = [x2 − 5.1/(4π2) + (5/π)x1− 6]2 + 10(1− 1/(8π)) cosx1 + 10, x1 ∈ [−5, 10],
x2 ∈ [0, 15], f∗ = 0.398.

F3 =
30∑

i=1

−xi sin(
√|xi|), xi ∈ [−500, 500], 1 ≤ xi ≤ 30, f∗ = −12569.5.

F4 = max{|xi|, 1 ≤ i ≤ 30}, xi ∈ [−100, 100], 1 ≤ xi ≤ 30, f∗ = 0.

F5 =
29∑

i=1

[100(xi+1 − x2
i )

2 + (x1 − 1)2], xi ∈ [−30, 30], 1 ≤ xi ≤ 30, f∗ = 0.

In simulation, we take the following parameters: pop = 40, pc = 0.2, pm = 0.1,
q = 5, N̄ = 500 and λ = 2. We execute the proposed algorithm 50 independent
runs for each test function and record the following data: Mean best fitness
value (denoted as M-best) on 50 runs, standard deviation (denoted as Std) of
best fitness values on 50 runs, and mean generations (denoted as M-gen) on
50 runs. For each run the algorithm 1 stops if the best solution found in 20
successive generations can not be improved. We compare the results with those
obtained by two algorithms (denoted as FEP and CEP) in ([6]) in Table 1.

It can be seen from Table 1 that for each test function the mean best fitness
value found by LEA is very close to the true optimal fitness value, and better
or much better than those found by FEP and CEP. Moreover, the standard
deviation obtained by LEA for each function is much smaller than those obtained
by FEP and CEP. Furthermore, in the simulation, the mean number of function
evaluations used in each generation by LEA is about 84, while the mean number
of function evaluations used in each generation by FEP and CEP are 100. It can
be seen from Table 1 that the Mean generations used by LEA are fewer than
those used by FEP and CEP. Thus function evaluations used by LEA are fewer
than those used by FEP and CEP. From above discussion we can conclude that
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Table 1. Comparison of mean best solution, standard deviation and mean generation
for LEA and FEP

M-gen M-best Std

LEA FEP CEP LEA FEP CEP LEA FEP CEP

F1 80 100 100 -1.0315 -1.03 -1.03 2.7×10−15 4.9×10−7 4.9×10−7

F2 80 100 100 0.3979 0.398 0.398 0 1.5×10−7 1.5×10−7

F3 2000 9000 9000 -12564.8 -12554.5 -7917.1 5.72 52.6 634.5

F4 5000 5000 5000 7.1×10−8 0.3 2.0 8.2×10−7 0.5 1.2

F5 5000 20000 20000 7.3×10−7 5.06 577.76 6.3×10−6 5.87 11125.76

LEA used less computation to find more precise solutions for all test functions
than FEP and CEP did.
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Abstract. A novel Genetic Programming (GP) paradigm called Co-
evolutionary Rule-Chaining Genetic Programming (CRGP) has been
proposed to learn the relationships among attributes represented by a
set of classification rules for multi-class problems. It employs backward
chaining inference to carry out classification based on the acquired acyclic
rule set. Its main advantages are: 1) it can handle more than one class
at a time; 2) it avoids cyclic result; 3) unlike Bayesian Network (BN),
the CRGP can handle input attributes with continuous values directly;
and 4) with the flexibility of GP, CRGP can learn complex relationship.
We have demonstrated its better performance on one synthetic and one
real-life medical data sets.

1 Introduction

GP is a branch of evolutionary computation (EC). It has been applied on dif-
ferent areas, like shortest path finding and classification[5]. Wilson’s XCS [12]
and XCSI [13] are well-known classification algorithms based on learning classi-
fier system. However, the classification problems currently being addressed are
single class problem.

BN is a network model, which represents a set of attributes for a given multi-
class problem, and provides the probabilistic relationship among them. However,
BN cannot handle continuous values directly; and the continuous values must
be discretized first [6]. Heckerman et al. proposed methods of learning a network
that contains Gaussian distributions [7]. Monti et al. use neural networks to
represent the conditional densities [10].

In this paper, we propose the CRGP to handle the multi-class problem. It
learns a set of classification rules, which represent the relationships among the
attributes. It avoids cyclic rules; and it can handle input attributes with contin-
uous values directly. The remaining parts of the paper are organized as follows.
We describe the proposed algorithm in the next section. The experimental results
are presented in Section 3. The summary appears in the last section.
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2 Co-evolutionary Chaining Genetic Programming

The problem addressed in this study is to learn classification rules and the rela-
tionships among attributes without cycle in the inference process for multi-class
problem, in which one or more than one attributes are regarded as classes. Each
attribute of the problem is regarded as either an input attribute or a class. The
relationships among the attributes will be represented by rules.

The CRGP is a novel coarse grained multi-population GP based on backward
chaining. Multi-population maintain the diversity of rules. Backward chaining
can perform classification through the inference process and cyclic rules have to
be avoided.

2.1 Initialization of Populations

The CRGP uses the Michigan approach. It starts with n populations of rules,
where n is equivalent to the number of classes. Each population is assigned to
learn a different class, which is considered as the local class of the corresponding
population. The other classes are referred to as foreign classes.

The rules represent the relationships among attributes. They are of the form,
< antecedent >→< consequent >. The rules are in the prefix form. The function
set is defined as F = {∧, >, <=, =, �=}.

Each population has a different copy of the data set, which contains the
values of the input attributes and local class only. The foreign classes’ values are
omitted, i.e. the populations cannot access their foreign classes’ values.

The training process is divided into a number of epochs, which in turn consists
of a number of generations. The number of rules in each population is the same
and static. The populations are initialized randomly.

2.2 Backward Chaining

The populations in the CRGP cooperate through rule migration. Migration oc-
curs in the beginning of each epoch. During migration, the populations send a
copy of their rules to the others. In other words, the populations would get a
set of rules from the rest and they are referred to as migrated rules. To make it
clear, hereafter, we refer to the populations’ own rules as local rules. The new
migrated rules always replace the existing migrated ones of previous epoch.

Backward chaining is a well-known inferential methodology. Given a class,
some facts and rules, it forms a backward chain of rules and proves if the class
can be satisfied. The CRGP employs backward chaining in the fitness evaluation
and the cyclic relationship in the rules will be detected and eliminated.

Tables 1 show the pseudocodes of the fitness evaluation and backward chain-
ing procedures respectively. The populations cannot access the foreign classes’
values. During the fitness evaluation, if the local rule being evaluated contains
foreign class in its antecedent part, the backward chaining procedure would be
invoked, for each of these foreign classes.
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Table 1. (Top) The pseudocode of the Fitness Evaluation Procedure. (Bottom) The
pseudocode of the Backward Chaining Procedure

1. Set i = 0.
2. while i < the number of local rules,

• if the ith local rule contains one or
more foreign classes in its
< antecedent >,

� the ith local rule becomes the
first rule in the backward chain
of rules.
� the backward chaining
procedure is invoked for each of
these foreign classes.

• evaluate the ith rule’s fitness by the
fitness function.

input: a foreign class being looking for
a backward chain of rules

1. Set j = 0 and k = 0.
2. while j < the number of migrated rules,

• if the jth migrated rule infers the values of the
foreign class, which is being looking for,

� if the jth migrated rule form no cycle with
the others in the backward chain of rules

◦ the jth migrated rule is selected.
3. Sort the selected migrated rules, according to

their fitness values.
4. while k < the number of selected migrated rules,

• if the kth selected migrated rule contains one
or more foreign classes in its < antecedent >,

� the kth selected migrated rule is appended
to the backward chain of rules.
� another copy of backward chaining procedure
is invoked for each of these foreign classes

• fire the kth selected migrated rule.
5. remove the last rule from the backward chain of rules.

The backward chaining procedure selects suitable migrated rules to infer the
foreign class’s values. The migrated rules with the following characteristics are
selected: 1) it is a migrated rule inferring that foreign class’s values; and 2) it
will not form cycles with the others in the backward chain of the relevant rules.

The backward chaining procedure then fires the selected migrated rules one
by one to infer the foreign class’s values. The firing order is based on their fitness
values, the one with the highest fitness value is fired first. The fitness values are
brought from their original populations during migration. If a selected migrated
rule does further contain foreign class in its antecedent part, another round of
the backward chaining procedure would be invoked, for each of these foreign
classes forming a backward chain in the inference process.
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The migrated rules, which would form cycle with the others in the backward
chain of rules are excluded from the selection and the corresponding foreign
class’s values remain unknown. The rules referring to these unknown values
become unfit and difficult to survive and hence the cyclic rules can be avoided.

After the backward chaining procedure fired all of the selected migrated rules,
the local rule being considered would be evaluated, and a fitness value is assigned
according to its classification accuracy.

2.3 Fitness Evaluation, Selection and Genetic Operators

The CRGP uses a support-confidence based fitness function and token compe-
tition to evaluate the local rules’ fitness [1]. It employs three canonical genetic
operators for evolution; they are the crossover, mutation and dropping condi-
tions [9]. It selects local rules by the Roulette Wheel method. Fitter local rules,
higher chance to be selected. The selected local rules are applied with one of
the genetic operators, to produce the offspring. Then, all the local rules and the
offspring compete with each other. The best half of them would be selected as
the new population for the next generation.

When the maximum number of epochs is met, the training process is termi-
nated and all of the local rules of all the populations are collected together as
the resultant rule set.

3 Experiments

The CRGP has been compared with the Multi-population Genetic Programming
(MGP), C5.0, Belief Network PowerConstructor (PC), WinMine (WM) and B-
Course (BC). The MGP is a canonical GP with multi-population. It has no
migration, no backward chaining and all of the populations can access all of
classes’ values directly. We have implemented the CRGP and the MGP in C++.
They have the same implementation details. The C5.0, PC, WM and BC are
downloaded from their web sites [2–4, 8].

We have evaluated the CRGP on a synthetic and a real-life medical data set,
a Fracture medical data set. The synthetic data set is a multi-class problem with
400 data items. Table 2 and figure 1(left) show the pseudocode used to generate
the synthetic data set and the corresponding relationships among the attributes
respectively. It has 6 input attributes, 5 classes and 400 data items. Classes 3
and 4 are generated by the same set of rules. They are used to evaluate if the
algorithm can produce an acyclic rule set. The real-life data set, “Fracture”, is
from the Orthopaedie Department of the Prince of Wales Hospital of Hong Kong.
It consists of records of children with limb fractures admitted to the hospital in
the period 1984-1996. “Fracture” has been used in [11]. It has 1 input attribute,
5 classes and 6574 data items.

The data sets are split into two parts. 66% of the data items are used for
the training, the rest of them are used for the testing. For all of the algorithms,
we have specified the input attributes. The values of the number of epochs, the



550 Wing-Ho Shum, Kwong-sak Leung, and Man-Leung Wong

Table 2. The pseudocode of the synthetic data set generation

attribute 0 = random(); else
attribute 1 = random(); class 2 = 0;
attribute 2 = random(); if (class 0 	= class 1)
attribute 3 = random(); class 3 = 0;
attribute 4 = random(); else if (class 0 	= class 2)
attribute 5 = random(); class 3 = 1;
if (attribute 0 > attribute 1) else

class 0 = 1; class 3 = 2;
else if (class 0 	= class 1)

class 0 = 0; class 4 = 0;
if (attribute 2 > attribute 3) else if (class 0 	= class 2)

class 1 = 1; class 4 = 1;
else else

class 1 = 0; class 4 = 2;
if (attribute 4 > attribute 5) where :

class 2 = 1; random() returns a real number between 0 and 999

Fig. 1. (Left) The relationships among attributes in the synthetic data set. (Right)
The relationships in Fracture learnt by the CRGP

maximum number of generations, the number of local rules in a population,
the maximum depth, the crossover rate, the mutation rate and the dropping
condition rate are 40, 10, 15, 0.5, 0.4 and 0.1 respectively.

3.1 Synthetic Data Set Results

We construct the relationships learnt by the CRGP and MGP by, 1) evaluating
the resultant rule set by the typical testing methodology of GP and removing
the redundant rules [11]; and 2) collecting the remaining rules as the learnt
relationships. Since GP is a stochastic algorithm, it produces slightly different
result in each run and the results are likely to have some redundant codes. To
remove the stochastic effect, we consider only the relationships exist in all of the
runs as the actual results learnt.

Since the C5.0 can handle only one class at a time, in the experiment, it is
executed several times, once for each class. The relationships learnt by the C5.0
are derived by combining the trees it learnt in each run.
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Fig. 2. (Left) The relationships learnt by the CRGP. (Right) The relationships learnt
by the MGP

Fig. 3. (Left)The relationships learnt by the C5.0. (Right) The relationships learnt by
the PC

The BN learning algorithms cannot handle continuous values directly. The
continuous values are discretized first. The BC is a stochastic BN learning algo-
rithm, we have evaluated it ten times and selected the best result.

Figure 2(left) shows the relationships learnt by the CRGP. The relationships
are the same as the real relationships shown in figure 1(left). The additional
relationship between classes 3 and 4 representing their values are generated by
the same set of rules. The CRGP has learnt the relationships successfully. Fig-
ures 2(right), 3 and 4 show the relationships learnt by the MGP, PC, WM and
BC respectively. They show that only the BC can learn very similar relation-
ships. The MGP, C5.0 and WM cannot learn the relationships among class 3,
attributes 0, 1 and 2, and the one among class 4, attributes 0, 1 and 2. The PC
cannot learn the relationship between classes 3 and 1, and the one between class
4 and 1; It has also learnt three incorrect relationships.

Tables 3(top-left) and 3(top-right) illustrates the cyclic rules and trees pro-
duced by the MGP and C5.0 respectively. They show only the rules and trees
with classes 3 and 4 of value 1. The rules and trees state that if class 3 is 1, then
class 4 is 1, and vice versa. This is a cyclic phenomenon and we cannot infer
anything for the classes given the input attributes’ values.
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Fig. 4. (Left) The relationships learnt by the WM. (Right) The relationships learnt by
the BC

Table 3(bottom) shows the corresponding rules produced by the CRGP,
which are not cyclic. Besides the relationship between classes 3 and 4, the rules
also represent inferences with classes 3 and 4 equaling to 1. The rules formed
an acyclic inference chain and produces meaningful result. Also, the most im-
port point is that the rules and the inference chains provide the relationships
amongst the inputs and class attributes. It is the advantage of using the back-
ward chaining rather than inferring all of the classes’ values directly from the
given inputs.

The results show only the CRGP and BC can learn the relationships; the
result of the MGP shows the multi-class problem cannot be solved by accessing

Table 3. (Top-Left)The rules produced by the MGP. (Top-Right) The decision trees
produced by the C5.0. (Bottom) The rules produced by the CRGP

(= class4 1)→(= class3 1).
(= class3 1)→(= class4 1).
(= class4 1)→(= class3 1).
(= class4 1)→(= class3 1).
(= class4 1)→(= class3 1).
(= class3 1)→(= class4 1).
(= class3 1)→(= class4 1).
(= class3 1)→(= class4 1).

Decision tree for Class 3:
Class 4 = 0: 0 (122)
Class 4 = 1: 1 (68)
Class 4 = 2: 2 (74)

Decision tree for Class 4:
Class 3 = 0: 0 (129)
Class 3 = 1: 1 (69)
Class 3 = 2: 2 (66)

(∧ ( 	= class2 class0)(= class1 class0))→(= class4 1).
(= class4 1)→(= class3 1).
( 	= class0 class2)→(= class3 1).
( ∧ ( 	= class2 class0)(= class1 class0))→(= class4 1).
( ∧ (> attr2 attr3)(	= class2 class0)→(= class4 1).
( ∧ (> attr2 attr3)(	= class2 class0)→(= class4 1).
( ∧ (> attr2 attr3)(	= class2 class0)→(= class4 1).
( ∧ (> attr2 attr3)(	= class2 class0)→(= class4 1).



Co-evolutionary Rule-Chaining Genetic Programming 553

all of classes’ values directly; and the result of the C5.0 shows the multi-class
problem cannot be solved by simply executing the algorithm several times.

3.2 Fracture Results

Wong et al have learnt the relationships represented by BN in the Fracture data
set [11]. The result is confirmed by the medical experts.

Figure 1(right) shows the relationships learnt by the CRGP. The network is
exactly the same as the one learnt by Wong. It shows: 1) The Diagnosis affects
the Operation and Stay, different fractures are treated with different operations
and need different time for recovery; 2) The Diagnosis affects the Age. Some
fractures occur more often in particular age groups; 3) There is a relationship
between the Age and Sex. It is observed that the young patients are more likely
to be female; and 4) The Operation and Stay affect the Year. It is observed that
the length of stay in hospital is different in different periods. The CRGP has
learnt the relationships successfully.

4 Summary

We have described a novel algorithm, CRGP. It learns a set of classification rules
and the relationships among attributes for multi-class problem. Unlike BN, it can
handle input attributes with continuous values directly. We have evaluated its
performance on a synthetic and a real-life medical data sets. The experimental
results have shown the CRGP outperforms the MGP, C5.0, PC and WM; and it
has the comparable result as the BC in relationship learning. With the flexibility
of GP, we believe the CRGP can learn complex relationships amongst attributes
with discrete or continuous values that cannot be handled by BN.
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Abstract. In this paper, we propose a self Adaptive Migration Model
for Genetic Algorithms, where parameters of population size, the num-
ber of points of crossover and mutation rate for each population are
fixed adaptively. Further, the migration of individuals between popula-
tions is decided dynamically. This paper gives a mathematical schema
analysis of the method stating and showing that the algorithm exploits
previously discovered knowledge for a more focused and concentrated
search of heuristically high yielding regions while simultaneously per-
forming a highly explorative search on the other regions of the search
space. The effective performance of the algorithm is then shown using
standard testbed functions, when compared with Island model GA(IGA)
and Simple GA(SGA).

1 Introduction

In this paper, the proposed adaptive migration(island) model of GA is built
such that, given a search space, the number of individuals in the population
that resides in a relatively high fitness region of the search space increases thus
improving exploitation. For these high fitness population, the mutation rate
and number of points of crossover are decreased thus making the search more
focused. On the other hand, for populations in a relatively low fitness zone of
search space, the number of individuals is decreased but the mutation rates and
number of points of crossover are increased to make the search of these regions
more explorative [6].

2 Algorithm

Let S be made up of all the 2k, k bit binary numbers representing the entire
search space. Given the objective function f which is a mapping f : S → R
where R is a set of real numbers, the problem is to find an x∗ ∈ S such that
f(x∗) ≥ f(x) ∀ x ∈ S.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 555–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2.1 Pseudocode for Self-adaptive Migration GA(SAMGA)

Let E = {P1, P2...Pnp} be an ecosystem with np populations in it. Populations
P1, P2...Pnp ⊂ S. Pi[j] stands for the jth individual of population Pi, clearly
Pi[j] ∈ S. Let ni be the size of population Pi and nci be the number of points of
crossover used for reproduction in population Pi. Let f̄i be the average fitness
of a population Pi. Let f(Pi), the fitness of population Pi be the fitness of the
best individual of that population. Let f̄ be the average fitness of the ecosystem.
Let n̄ be the average number of individuals per population. Let pmi be the rate
of mutation used for population Pi. The rate of crossover being one. Then, the
pseudo code for the adaptive GA can be given as below

1. begin
2. var prev = 0;
3. for i = 1 : np, do

(a) Set ni, the number of individuals in the population Pi to some arbitrary
value n0

(b) Initialize all individuals of population Pi to some random bit strings
(c) Set number of crossover points used for population Pi, nci to one
(d) Set mutation rate used for population Pi, pmi to 0.01

4. for gen = 1 : maximum generation limit, do
(a) var nsum = 0;
(b) var fsum = 0;
(c) for i = 1 : np, do

i. Evaluate fitness of all the individuals of the population Pi and find
f(Pi) the best fitness of the population

ii. nsum = nsum + ni

iii. fsum = fsum + f(Pi)
(d) prev = f̄
(e) f̄ = fsum

np

(f) n̄ = nsum
np

(g) for i = 1 : np, do
i. nci = nci + n̄

n − 1
ii. pmi = pmi + ( n̄

n − 1) ∗ 0.0001
iii. ni = ni + f(Pi)

f̄
− 1

iv. if (ni == 0), Delete population Pi (extinction)
(h) for i = 1 : np, do

i. Perform elitist selection for population Pi with the modified popula-
tion size ni

ii. Perform nc point non-uniform crossover on the selected individuals
of population Pi

iii. Perform mutation on the individuals of population Pi with mutation
probability pmi

(i) if prev == f̄
Exchange or migrate best individuals between populations.

5. end
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The algorithm shown above is adaptive in four respects. First, the size of the
population is adaptively changed for each population. The size of the population
is varied dynamically based on the fitness of the best individual of that popula-
tion compared to the mean fitness of the population. The number of individuals
in population Pi is updated as,

ni,t+1 = ni,t +
f(Pi)

f̄
− 1 (1)

where t is used to represent time in generations. Using this update, the fitness
grows when the size of the population with fitness greater than the mean popula-
tion and vice versa. Thus, it can be visualized that more number of individuals
are concentrated in the heuristically better promising region of search space
(exploitation).

The second parameter that is dynamically adapted is the number of points
of crossover. The update used for number of crossover points is given by,

nci,t+1 = nci,t +
n̄

ni
− 1 (2)

Using this update the number of points of crossover is increased, if the number of
individuals in a population is less compared to the mean number of individuals
in a population. Thus, the number of points of crossover is linked to fitness of
population. It is clear that update of population size increases with fitness of
population while the number of crossover points is increased for relatively low
population size, thereby making search more explorative.

The significance of update of mutation rate is similar that of the number of
crossover points and is given by,

pmi,t+1 = pmi,t + (
n̄

ni
− 1) ∗ 0.0001 (3)

Obviously, higher the mutation rate, more explorative is the search. The factor
of 0.0001 is arbitrarily chosen as it is a considerably small factor to update
probability of mutation.

The final parameter that is adaptive in the algorithm is the rate of migration.
Migration refers to copying individuals from one population to another. Migra-
tion helps in discovering new schemas generated by crossover of schemas of two
populations. In the algorithm, there is no exact parameter for migration rate.
Migration occurs when the average fitness of the populations remains unchanged
between two generations. Thus, when populations have attained a steady state,
migration occurs that will try to discover a new schema.

The selection scheme used in the genetic algorithm is the elitist scheme. The
best individuals of each population are copied unaltered to the next generation
population. The remaining individuals are selected based on their fitness. The
use of elitistic selection guarantees that the best individual of any generation
is atleast as good as the best individual of the previous generation. It helps in
achieving global convergence.
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3 Mathematical Analysis

The Holland’s schema theorem for a general case can be given as,

M(H, t + 1) ≥ ((1− pc)M(H, t)
f(H)
favg

+pc[M(H, t)
f(H)
favg

(1− losses) + gains])(1− pm)O(H)

Where M(H, t) is the number of individuals in a population with schema H are
present in the current generation, favg is average fitness of population, O(H) is
order of schema H and pc and pm are rates of crossover and mutation respec-
tively. In our algorithm, we consider pc to be one. Hence the Schema theorem
becomes,

M(H, t + 1) ≥ [M(H, t)
f(H)
favg

(1− losses) + gains](1− pm)O(H)

In the proposed algorithm, as the population size varies each generation, the
schema lower bound becomes,

M(H, t + 1) ≥ [
M(H, t)

nt
nt+1

f(H)
favg

(1 − losses) + gains](1− pm)O(H) (4)

where nt is population size at generation t.
If we consider loss to be any crossover that disrupts the schema, then our

calculation of gain must account for the preservance of the schema when both
parents are of the schema H . Now for an n point crossover to be non-disruptive,
even number of crossover points can occur only between fixed bits of schema
[4]. The remaining crossover points must be outside the defining length. Hence
the probability of n point crossover generating only even number of crossovers
between fixed bits for a schema of k order hyperplane is Pk,even . Probability of
disruption Pd of n point crossover is bounded by,

Pd(n, Hk) ≤ 1− Pk,even(n, Hk)

In this paper, we consider a n point non disruptive crossover. Let d1, d2 and
d3 are fixed bits, L1 and L2 are distances of d3 and d2 from d1 respectively and
L is the string length. As a special case, probability of even number of crossover
points falling between fixed bits for a second order hyperplane is given by [5]

P2,even(n, L, L1) =

n
2∑

i=0

nC2i
L1

L

2i L− L1

L

n−2i

(5)

That is, the probability is given by the product of number of ways of choosing
an even number of points from an n point crossover, the probability of placing
an even number of points between the two defining points and the probability of
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placing the other points outside the defining points. L here is the string length
and L1 is the defining length.

We can extend the probability of disruption for a kth order hyperplane as

Pk,even(n, L, L1, ..., Lk−1)

=

n
2∑

i=0

nC2i
L1

L

2i L− L1

L

n−2i

Pk−1,even(n, L1, L2, ..., Lk−1) (6)

That is, probability that an even number of crossover points fall between k
defining bits Pk,even is given by the probability that even number of crossover
points fall between the first two defining bits and the rest of the points fall
outside the defining bits into Pk−1,even. Hence, taking bound on the probability
of disruption

Pd(Hk) ≤ 1−
n
2∑

i=0

nC2i
L1

L

2i L− L1

L

n−2i

Pk−1,even(n, L1, ..., Lk−1) (7)

Now, as mentioned earlier, the lower bound on the gain is given by the
preservance of schema when disruptive crossover occurs between two parents
both following the same schema. Hence, gain is given by

gains ≥ n ∗ Pd∗ Probability that P1 and P2 are in schema H

After selection, the number of individuals in schema H is given by M(H, t)f(H)
favg

.
Total number of individuals in a population is n. Hence probability that given
a parent, it is in schema H is given by M(H,t)

n
f(H)
favg

. Hence the gain is as follows,

gains ≥ nt+1Pd
M(H, t)

nt

f(H)
favg

M(H, t)
nt

f(H)
favg

(8)

Using this lower bound on gains in Equation (4) and replacing loss with disrup-
tion

M(H, t+1) ≥ [
M(H, t)

nt
nt+1

f(H)
favg

(1−Pd)+nt+1Pd(
M(H, t)

nt

f(H)
favg

)2](1−pm)O(H)

Simplifying,

M(H, t + 1) ≥ M(H, t)
nt

nt+1
f(H)
favg

[1− Pd + Pd(
M(H, t)

nt

f(H)
favg

)](1 − pm)O(H)

But ntfavg =
∑

f for generation t. Therefore we get the schema theorem as

M(H, t + 1) ≥ M(H, t)
nt

nt+1
f(H)
favg

[1− Pd(1− M(H, t)f(H)∑
f

)](1− pm)O(H) (9)

This is the schema theorem that deals with a single population. An ecosystem
of population where populations with better fitness have more number of indi-
viduals than those with low fitness population is considered in our algorithm.
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Consider a low fitness population in the low yielding region of the search space.
Consider the case when this population comes accross a high fitness point in
the search space. Let H̄ be the schema with high fitness that has come across
a low fitness population. All other individuals in population have a low fitness
compared to this high fitness point and hence

f(H̄) =
∑

f

Applying this to Equation (9) we get

M(H̄, t + 1) ≥ M(H̄, t)
nt

nt+1
f(H̄)
favg

[1− Pd(1−M(H̄, t))](1− pm)O(H̄)

Since we have found only a single point with high fitness, M(H̄, t) = 1. Therefore

M(H̄, t + 1) ≥ M(H̄, t)
nt

nt+1
f(H̄)
favg

(1 − pm)O(H̄)

Thus, there is no disruption. favg =
∑

f/nt and f(H̄) =
∑

f , Therefore

M(H̄, t + 1) ≥ M(H̄, t)
nt

ntnt+1(1− pm)O(H̄)

But M(H̄, t) = 1. Therefore

M(H̄, t + 1) ≥ nt+1(1− pm)O(H̄)

Thus, if a population Pi in the low fitness region comes across even one high fit-
ness solution then in the very next generation, aproximately ni,t+1(1− pm)O(H̄)

of the ni,t+1 individuals of the population are finds place in schema H̄ . This
immediate drift towards high fitness region of a low fitness population, suggests
the robust performance of the method. The assumption that the fitness of the
best solution is approximately equal to sum of fitness of all individuals in the
population is used to display the power of the algorithm when the entire pop-
ulation is in a very low fitness area of search space. This analysis is a proof for
the performance of the algorithm in the worst case. In general, the drift towards
high fitness region is faster when the population lies in a low fitness region. The
high fitness populations of the ecosystem drive the low fitness populations to
perform a more explorative search while the high fitness populations perform a
concentrated exploitational search in the high yielding regions. As soon as the
low fitness populations find a better region, the individuals in the population
crowd this region of the search space. This competitive nature of populations
ensures robust performance. The search conducted by the genetic algorithm can
thus be explained as exploitational with respect to high yielding regions of the
search space and explorative with respect to other regions. The adaptive updates
to the parameters of number of points of crossover and rate of mutation for each
population are responsible for the explorative nature of the low fitness popula-
tion. The adaptive parameter of population size helps in concentrated search in
high fitness region of search space. The term explorative indicates that larger
area of search space is covered by the search. There is no doubt that as mutation
rate increases, the search is more explorative.
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4 Experiments

To evaluate the performance of the algorithm, it was used to find the mini-
mal points of complex high dimensional landscapes obtained using the different
testbed functions. Function F1 (f(x) =

∑10
1 x2

i − 5.12 ≤ xi ≤ 5.12), which
is the De Jong’s function 1, is a unimodal function with one distinct peak.
Function F2 (f(x) = 100(x2

1 − x2
2) + (1 − x1)2 − 2.048 ≤ xi ≤ 2.048), is a

Rosenberg function which is basically an almost flat valley and hence finding
the minimal point becomes a difficult problem. Function F3 (f(x) = 200 +∑10

i=1 x2
i − 10cos(2πxi) − 5.12 ≤ xi ≤ 5.12) is a Rastragin multimodal function

with many peaks. The function is a good testbed function as any algorithm has
a good chance of getting stuck at one of the peaks which is a local minima.
Function F4 (f(x) =

∑10
i=1 x ∗ sin(x)− 5.12 ≤ xi ≤ 5.12) is again a multimodal

function. In the experiments conducted, the IGA and SAMGA both had ten
populations of sixty individuals each. The SGA had 600 individuals in its popu-
lation. For SGA and IGA the crossover rate chosen was one and mutation rate
0.01. The plot in Figure 1(a) shows the convergence of our algorithm(SAMGA),
island model(IGA) and simple genetic algorithm(SGA) for the function F1. It
is observed that the Self - Adaptive Migration GA(SAMGA) converges much
faster than the other algorithms. The plot in Figure 1(b) shows the convergence
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of the three algorithms for Rosenberg function. As our function is low dimen-
sional, the fitness was multiplied by a factor of 1000. Similarly, the plot in Figure
2(a) shows the convergence for Rastragin function. This is a multimodal function
with many peaks of almost equal heights. In both the cases, SAMGA outper-
forms IGA and SGA. The plot in Figure 2(b) shows the convergence for function
F4. Here SAMGA and SGA have similar performance and both outperform IGA.
In all these cases, the performance of SAMGA is most significant in the later
generations nearer to convergence.

5 Conclusions

In this paper we have proposed a Self-Adaptive Migration GA search techniques,
that have two central but competing concepts of exploitation and exploration.
The proposed algorithm can be characterized by focused and deeper exploitation
of the heuristically promising regions of the search space and wider exploration
of other regions of the search space. Our algorithm SAMGA converges much
faster than other models and out performs IGA and SGA.
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Abstract. Volatility modelling of asset returns is an important aspect
for many financial applications, e.g., option pricing and risk management.
GARCH models are usually used to model the volatility processes of fi-
nancial time series. However, multivariate GARCH modelling of volatili-
ties is still a challenge due to the complexity of parameters estimation. To
solve this problem, we suggest using Independent Component Analysis
(ICA) for transforming the multivariate time series into statistically in-
dependent time series. Then, we propose the ICA-GARCH model which
is computationally efficient to estimate the volatilities. The experimen-
tal results show that this method is more effective to model multivariate
time series than existing methods, e.g., PCA-GARCH.

Keywords: Financial Engineering, GARCH, ICA, Multivariate Time
Series, Volatility

1 Introduction

One of the most important volatility models for time series is the autoregres-
sive conditional heteroscedasticity (ARCH) model proposed by Engle [4] which
also has been extended to GARCH model by Bollerslev [2]. Many studies show
that the GARCH models are capable in capturing the dynamics of volatility
from financial time series. Although univariate GARCH models are successful in
volatility modelling, how to model volatility of multivariate time series is still a
challenge in the field of financial engineering.

In this paper, we propose an ICA-GARCH model to solve this problem. The
idea is that we first use the VAR model to find the residuals of return series. Then,
we employ ICA to turn these residual series into statistically independent time
series. After that, we can use univariate GARCH model to model the volatility
of each independent time series. By some linear transformation of ICA, we can
obtain the volatility of original multivariate time series. The most advantage
of this method is that the computational cost is very low, as it is based on
the univariate GARCH models of the independent components (ICs) obtained
by ICA. The rest of this paper is organized as follows: In Section 2, we briefly
introduce the AR, GARCH and ICA models. Then, we propose the ICA-GARCH
model for multivariate volatilities modelling. Experimental results are given in
Section 3. Finally, we conclude in Section 4.

M. Gallagher, J. Hogan, and F. Maire (Eds.): IDEAL 2005, LNCS 3578, pp. 571–579, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Volatility Modelling by Using ICA

2.1 AR Model

Autoregressive (AR) models are time series functions by its own lags. For in-
stance, the autoregressive model of order 1, the AR(1) model is:

rt = φ0 + φ1rt−1 + at (1)

where at is assumed to be a white noise series with mean zero and variance
σ2. The constant φ0 models a trend in the time series either upwards (φ0 > 0)
or downwards (φ0 < 0). The lag coefficient φ1 determines the stability of the
process. Only when |φ1| < 1, the process will be stationary.

The extension of AR model to multivariate time series {r̄t} is the vector
autoregressive (V AR) model. The general V AR(P ) model is:

r̄t = Φ0 + Φ1r̄t−1 + Φ2r̄t−2 + ... + Φpr̄t−p + āt (2)

where Φ0,...,Φp are n-dimensional vectors, n is the time series number. {āt} is a
serially uncorrelated random vectors with mean zero and covariance Σ.

2.2 GARCH Model

It is well known that financial return volatility data is influenced by time depen-
dent market information. Such time series can be parameterised using a gener-
alized autoregressive conditional heteroscedasticity (GARCH) process to model
and forecast the returns of financial indexes. In GARCH models, financial time
series (e.g., stock returns) are assumed to be generated by a stochastic process
with time-varying volatility. The GARCH(1,1) model is as follows:

yt = μ + εt (3)
σ2

t = α0 + α1ε
2
t−1 + β1σ

2
t−1 (4)

where yt consists of a conditional mean μ and a zero-mean error εt with condi-
tional variance σ2

t . To ensure a positive σ2
t , we have α0 > 0, α1 > 0, and β1 > 0.

In most cases, GARCH(1,1) is adequate to model the volatility of an univari-
ate time series. Also, the univariate GARCH models we use in this paper can
fit time series with different data distributions, e.g., Gaussian, and Students’ t
distribution.

In order to check the predictability of a GARCH model for long-term volatil-
ity forecasts, we usually separate the in-sample and out-of-sample time series
data. The in-sample data is used to train the GARCH models while the out-
of-sample data is for the purpose of volatility forecasting based on the model
estimation. The volatility forecasts can be obtained by the estimated GARCH
parameters. For example, the 1-day ahead variance forecast in the GARCH(1,1)
model is:

σ̂2
t+1 = α̂0 + α̂1ε

2
t + β̂1σ̂

2
t (5)

where α̂0, α̂1 and β̂1 are the estimation of GARCH(1,1) parameters α0, α1, and
β1, respectively.
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2.3 ICA Model

Independent component analysis (ICA) [3] is a statistical method which aims
to express the observed data in terms of a combination of underlying latent
variables. For simplicity, we only consider linear combination in this article. The
latent variables are assumed to be non-Gaussian and mutually independent. The
task is to identify both the latent variables and the mixing process. A typical
ICA model is:

X = AS (6)

where X = (x1, ..., xn) is the vector of observed random variables, S = (s1, ..., sm)
is the vector of statistically independent latent variables called the independent
components, and A is an unknown constant mixing matrix. The independent
components s in the ICA model (1) are found by searching for a matrix W such
that S = WX up to some indeterminacies.

A fast fixed point algorithm (FastICA) for the separation of linearly mixed
independent source signals was presented by Hyvarinen and Oja [5, 6]. The
FastICA algorithm is a computationally efficient and robust fixed-point type al-
gorithm for independent component analysis. The algorithm searches for the
extrema of E{G(|wx|2)}, where G is a nonquadratic function, e.g., G(y) =
log(cosh(y)). We first need to transform the observed vector linearly so that
we obtain a new vector x̄ which is white, i.e. its components are uncorrelated
and their variances equal unity. In other words, the covariance matrix of x̄ equals
the identity matrix E(X̄X̄ ′) = I. Whitening can always be accomplished by e.g.,
principal component analysis.

The iterative fixed-point algorithm for finding one unit is:

w̃n+1 = E{x(wnx) ∗ g(|wnx|2)} − E{g(|wnx|2) + |wnx|2g′(|wnx|2)}wn (7)

where wn+1 = w̃n+1
‖w̃n+1‖ . Getting the estimate of w, we can obtain an IC by

s = wx. The above algorithm can be extended to the estimation of the whole ICA
transformation S = WX . To prevent converging to the same ICs, the outputs
w1x, ..., wnx are decorrelated after every iteration. When we have estimated n
independent components, or n vectors w1, ..., wn, we run the one-unit fixed-
point algorithm for wn+1, and after every iteration step subtract from wn+1 the
projections of the previously estimated n vectors, and then renormalize wn+1:

w̃n+1 = w̃n+1 −
n∑

j=1

wjw
′
jw̃n+1. (8)

where wn+1 = w̃n+1
‖w̃n+1‖ . The above decorrelation scheme is suitable for deflation-

ary separation of the ICs.

2.4 ICA-GARCH Model vs PCA-GARCH Model

The ICA-GARCH model works as follows: first find the residuals by AR model,
then use ICA to capture the independent sources of information in the time
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series. Because the independent components are independent, such an approach
will not significantly increase the computational complexity while retaining a
very high accuracy. The ICA-GARCH model allows the multivariate volatili-
ties of k time series to be generated from just m univariate GARCH models,
where m is the number of independent components (m ≤ k). Since only the
univariate GARCH models are used to model volatilities, there is no dimen-
sional restrictions for the ICA-GARCH model. However, for other multivariate
GARCH models, when the number of time series increases, the computational
difficulties occur in the multivariate parameterizations.

A similar method called orthogonal GARCH or principal component GARCH
(PCA-GARCH) model was introduced by Alexander [1]. PCA-GARCH try to
find W such that ȳt = Wr̄t, E(ȳtȳ

′
t) ≡ V is diagonal. Both of the methods

attempt to construct unconditionally linear combinations of the series r̄. The
main difference between ICA-GARCH and PCA-GARCH is that ICA makes
the sources independent while PCA just makes the sources uncorrelated. The
empirical study [7] showed that financial time series (e.g., asset returns) often
demonstrate non-Gaussian distributions (e.g, fat-tails), in such cases, ICA is
more suitable than PCA. In the following section, we will perform some experi-
ments on ICA-GARCH model as well as PCA-GARCH model to compare their
performance on real financial time series.

3 Experiments

The historical stock prices from New York and Hong Kong stock markets are used
for experiments. The daily returns ri(t) are calculated by ri(t) = log(pi(t)) −
log(pi(t − 1)), where pi(t) is the closing price of stock i on the trading day t.
First, we choose the 1998-2003 stock prices of four U.S. IT stocks (HP, Dell,
Microsoft and AMD) and use the ICA-GARCH and PCA-GARCH to model the
volatilities of these stocks’ return residuals.

Fig. 1 shows the results. The first column shows the return residuals of the
four series obtained by VAR model. The left hand side of the vertical dotted
lines denotes the in-sample data while the out-of-sample is on the right of the
dotted lines. The second and third columns represent the volatilities estimated by
PCA-GARCH and ICA-GARCH, respectively. The length of volatility forecasts
is 250 days. Comparing the four figures in the second column, we can see that
the volatilities obtained by PCA-GARCH are more volatile than ICA-GARCH,
particularly when the changes of the residuals are unusual.

We also found that the volatilities of different series obtained by PCA-
GARCH tend to be varying together even though the correlation coefficients
of these time series are relatively small. What’s more, this is not consistent with
the changes of residual series we want to model. For example, in the 1st row,
there is not significant changes in the beginning of the residual series, but the
PCA-GARCH model misleads to indicate that the volatility at the beginning pe-
riod is large. Also, the PCA-GARCH model overestimates the volatility around
the No.1,100 observation of the 2nd series. However, ICA-GARCH model is ca-
pable in appropriately modelling the volatilities of these time series. For the last
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two series, both models identify that the average volatility of the 4th row is
larger than the 3rd row, but ICA-GARCH model is better to model the mag-
nitude of outliers. For instance, there is some smaller outliers in the middle of
the 3rd residual series and in the beginning of the 4th residual series, however,
PCA-GARCH treats these changes as large volatilities. ICA-GARCH seems to
be more robust, which suggests two large volatilities in each of the series.
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Fig. 1. Volatility modelling by PCA-GARCH and ICA-GARCH (1st row: HP, 2nd row:
Dell, 3rd row: Microsoft, 4th row: AMD)

We also note that in Fig 1, there is not significant difference between the
out-of-sample results of ICA-GARCH and PCA-GARCH. When we adjust the
scales, we can see the difference of the predicting results more clear in Fig 2.
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Fig. 2. Out-of-Sample Results by PCA-GARCH and ICA-GARCH (1st row: HP, 2nd
row: Dell, 3rd row: Microsoft, 4th row: AMD)
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ICA-GARCH can correctly forecast the peak around the No.1375 observation for
the stock Microsoft, however, PCA-GARCH incorrectly forecasts some peaks in
this time series. What’s more, the last time series has the largest fluctuation, but
PCA-GARCH underestimates the volatility. Therefore, the volatility prediction
power of ICA-GARCH seems to be better than PCA-GARCH.

We further discover something interesting in the loadings of ICs. The AI

matrix below is the mixing matrix A in the ICA model X = AS. From the
loadings (weights) of each IC, we can see that the dominant ICs (the IC with
the significantly large weighting) for each residual series X1, X2, X3, X4 are S4,
S3, S2, and S1, individually. We can also regard the dominant ICs as the main
driven-forces of the series.

However, it is not the case for PCs. WP below denotes the weights of the PCs
derived from the residual time series X . From the loadings of the PCs, we find
that the absolute values of the loadings are relatively closer. Hence, more than
one series Xi will have significant influence on each PC. This may explain why
the volatilities of multivariate time series by PCA-GARCH will tend to volatile
together. ICs are statistically independent while PCs are just uncorrelated, ICs
and PCs are equivalent only when the data strictly follows Gaussian distribution,
however, we know that in most financial time series, it is not true. It is the
reason why ICA-GARCH model can achieve better performance in modelling
the volatilities than PCA-GARCH model.

AI =

⎛⎜⎝ 0.0048 −0.0036 −0.0033 0.027
−0.0009 −0.0027 −0.035 0.006
0.0011 0.032 −0.014 0.0048
−0.046 0.0065 −0.015 0.013

⎞⎟⎠ ; WP =

⎛⎜⎝ 0.028 −0.012 −0.63 0.77
0.40 0.56 −0.56 −0.46
0.29 0.67 0.53 0.43
0.87 −0.48 0.098 0.041

⎞⎟⎠
We also calculate the dynamic correlations by using ICA-GARCH as well as

PCA-GARCH. Fig 3 shows the results. The upper triangle matrix represents the
time-varying correlations between the 4 US IT stock by using ICA-GARCH. The
lower triangle matrix represents the time-varying correlations estimated by using
PCA-GARCH. We can see that according to the two models’ estimation, HP has

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

0 500 1000 1500
0

0.5

1

HP

Dell

Microsoft

AMD

Fig. 3. The Dynamic Correlations by ICA-GARCH and PCA-GARCH



Volatility Modelling of Multivariate Financial Time Series 577

obviously smaller correlations with other stocks during the time horizon. More-
over, the correlations estimated by ICA-GARCH seem to be more appropriate.
For instance, the volatilities of Dell and Microsoft are relatively stable in the first
300 observations except one peak, the correlations estimated by ICA-GARCH
correctly response to this. However, the correlations estimated by PCA-GARCH
are much volatile which is not consistent with the fact.

To compare the results by using the data from other financial markets, we also
employ the daily returns of three Hong Kong properties stocks (Sun Hung Kai
Properties Ltd. (SHK), Henderson LD Co. Ltd. (HLD), Henderson Investment
Ltd. (HIL)) during the period from Jan 2, 2001 to July 26, 2004. We also forecast
the 150-days volatilities which plot on the right of the dotted lines in Fig 4. The
volatilities of in-sample data are shown on the left of the dotted lines.
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Fig. 4. Volatility modelling by PCA-GARCH and ICA-GARCH (1st row: SHK, 2nd
row: HLD, 3rd row: HIL)

For the in-sample data, ICA-GARCH can correctly respond to the outliers in
return residuals, e.g., the two peaks of the HIL series around the No. 500 obser-
vation. However, PCA-GARCH exaggeratedly forecasts a large peak around the
No. 800 observation. For out-of-sample data, ICA-GARCH model correctly pre-
dicts that, for the HLD residual series, there is a volatility as large as the previous
peak will occur while PCA-GARCH predicts a smaller volatility. In summary,
ICA-GARCH has superior modelling performance than PCA-GARCH.

To further validate the effectiveness of the ICA-GARCH model, we use ARCH
tests to test the presence of ARCH effects. The null hypothesis of ARCH test
is that a time series of sample residuals consists of independent identically dis-
tributed disturbances. Because we have used the GARCH models to estimate σ2.
Therefore, if the GARCH models are correctly specified, the series ε̂t = εt/σt

should have no autocorrelation. We also employ the Ljung-Box lack-of-fit hy-
pothesis test for model misspecification by the Q-statistic, which is defined as:
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Q = N(N + 2)
L∑

k=1

r2
k

(N −K)
(9)

where N is the sample size, L is the number of autocorrelation lags, and r2
k is

the squared sample autocorrelation at lag k.
In the tests, we set α = 0.05, where α is the significance level of the hypoth-

esis test. The corresponding critical value of the χ2 distribution is 31.41 where
L = 20. We use GARCH with t distribution to fit the time series. The estimated
degree of freedom is in the range of 5.1 to 6.3, which suggests that these time
series data exhibit non-Gaussian distribution. The test results are shown in Ta-
ble 1. There are two values for each time series under two GARCH models and
two tests. The left value is the test value of in-sample data. The values in the
brackets are the test values for out-of-sample data.

In Table 1, we can see that, both models accept the hypothesis that there is
no serial correlation or ARCH effect in the US stock data. However, for the three
Hong Kong properties stocks, PCA-GARCH rejects two in-sample tests and one
out-of sample test while ICA-GARCH accepts all tests. This result suggests that
ICA-GARCH is more suitable to fit the financial time series. Based on the above
studies, it seems that the better model is the ICA-GARCH model since it has
fewer rejections and smaller test statistic values in most cases.

Table 1. ARCH Test and Ljung-Box Q-Statistic for GARCH models

GARCH Models ICA-GARCH PCA-GARCH ICA-GARCH PCA-GARCH

Stocks/Test Statistic ARCH ARCH Ljung-Box Ljung-Box

HP 3.96 (10.54) 4.25 (12.22) 15.74 (28.63) 17.00 (27.23)

Dell 1.46 (19.95) 1.40 (19.65) 18.17 (22.95) 21.23 (25.75)

Microsoft 0.33 (9.27) 0.34 (10.38) 13.80 (17.09) 15.73 (17.51)

AMD 1.09 (10.01) 1.17 (10.64) 17.15 (18.48) 17.76 (18.40)

SHK 25.39 (12.18) 39.88 (13.09) 29.98 (27.54) 35.02 (32.04)

HLD 15.40 (8.63) 12.84 (8.39) 21.03 (18.56) 21.60 (19.41)

HIL 1.61 (14.67) 1.65 (14.87) 13.63 (22.05) 13.82 (22.90)

4 Conclusions

In this article, we propose an alternative multivariate GARCH model called ICA-
GARCH for modelling the volatilities of time series. The ICA-GARCH model
is computationally simple and efficient. The empirical studies demonstrate that
the ICA-GARCH is effective in capturing the time-varying features of volatilities
and it is more robust than comparable methods, e.g., PCA-GARCH. The ICA-
GARCH model also provides a better volatility forecasting method for financial
time series. In the future, we intend to employ the volatility model in practical
financial engineering applications, e.g., portfolio management.
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