Colin Boyd
Juan M. Gonzdlez Nieto (Eds.)

Information Security
and Privacy

10th Australasian Conference, ACISP 2005
Brisbane, Australia, July 2005
Proceedings

LNCS 3574

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3574

Colin Boyd Juan M. Gonzalez Nieto (Eds.)

Information Security
and Privacy

10th Australasian Conference, ACISP 2005
Brisbane, Australia, July 4-6, 2005
Proceedings

@ Springer

Volume Editors

Colin Boyd

Juan M. Gonzélez Nieto

Queensland University of Technology

Information Security Institute

GPO Box 2434, Brisbane 4000, Australia

E-mail: c.boyd@qut.edu.au, juanma@isrc.qut.edu.au

Library of Congress Control Number: 2005928379

CR Subject Classification (1998): E.3, K.6.5,D.4.6, C.2, E4,F2.1, K.4.1

ISSN 0302-9743
ISBN-10 3-540-26547-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26547-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11506157 06/3142 543210

Preface

The 2005 Australasian Conference on Information Security and Privacy was the
tenth in the annual series that started in 1996. Over the years ACISP has grown
from a relatively small conference with a large proportion of papers coming from
Australia into a truly international conference with an established reputation.
ACISP 2005 was held at Queensland University of Technology in Brisbane, dur-
ing July 4-6, 2005.

This year there were 185 paper submissions and from these 45 papers were
accepted. Accepted papers came from 13 countries, with the largest proportions
coming from Australia (12), China (8) and Japan (6). India and Korea both
contributed 2 papers and one came from Singapore. There were also 11 papers
from European countries and 3 from North America. We would like to extend
our sincere thanks to all authors who submitted papers to ACISP 2005.

The contributed papers were supplemented by four invited talks from emi-
nent researchers in information security. The father-and-son team of Prof. and
Dr. Bob Blakley (Texas A&M University and IBM) gave a talk entitled “All
Sail, No Anchor II1,” following up on a theme started at their ACISP 2000 in-
vited talk. Adrian McCullagh (Phillips Fox Lawyers and QUT) talked on the
benefit and perils of Internet banking. Ted Dunstone (Biometix) enlightened us
on multimodal biometric systems. Yvo Desmedt (University College London)
elucidated the growing gap between theory and practice in information security.

We were fortunate to have an energetic team of experts who formed the
Program Committee. Their names may be found overleaf, and we thank them
warmly for their considerable efforts. This team was helped by an even larger
number of individuals who reviewed papers in their particular areas of expertise.
A list of these names is also provided; we hope it is complete.

We are delighted to acknowledge the generous financial sponsorship of
ACISP 2005 by Eracom Technologies and RNSA (a research network funded by
the Australian Research Council). The conference was hosted by the Information
Security Institute at Queensland University of Technology who provided first-
class facilities and material support. The excellent Local Organizing Committee
was led by the ACISP 2005 General Chair, Ed Dawson, and included Lauren
May, Elizabeth Hansford and Christine Orme. We made use of electronic sub-
mission and reviewing software expertly written and supported by Andrew Clark
from the Information Security Institute at QUT; this software was invaluable in
easing our administrative tasks.

July 2005 Colin Boyd
Juan M. Gonzélez Nieto

VI Organization

ACISP 2005

10th Australasian Conference on
Information Security and Privacy

Sponsored by

Information Security Institute, Queensland University of Technology
ARC Research Network for a Secure Australia (RNSA)

General Chair

Ed Dawson

Program Chairs

Colin Boyd

Juan M. Gonzélez Nieto

Eracom Technologies Pty. Ltd.

Queensland University of Technology, Australia

Queensland University of Technology, Australia
Queensland University of Technology, Australia

Program Committee

Paul Ashley
Tuomas Aura
Feng Bao

Lynn Batten
Matt Bishop
Bob Blakley
Mike Burmester
Marc Dacier
Yvo Desmedt
Josep Domingo
Jordi Forné
Virgil Gligor
Dieter Gollmann
Peter Gutmann
Bill Hutchinson
Audun Josang
Marc Joye
Svein Knapskog

IBM, Australia

Microsoft Research, UK

Institute for Infocomm Research, Singapore
Deakin University, Australia

Uniwversity of California at Davis, USA
Texas A&M University, USA

Florida State University, USA

FEurecom, France

University College London, UK

Universitat Rovira i Virgili, Spain
Universitat Politécnica de Catalunya, Spain
University of Maryland, USA

TU Hamburg-Harburg, Germany

University of Auckland, New Zealand

Edith Cowan University, Australia

DSTC, Australia

CIM-PACA, France

Norwegian University of Science and Technology, Norway

Byoungcheon Lee
Javier Lépez
Wenbo Mao

Chris Mitchell
George Mohay

Paul Montague
SangJae Moon
Winfried Mueller
Eiji Okamoto

Susan Pancho-Festin
Radia Perlman
Josef Pieprzyk

Bart Preneel

Pandu Rangan
Anthony Rhodes
Carsten Rudolph
Rei Safavi-Naini
Pierangela Samarati
Akashi Satoh
Jennifer Seberry
Miquel Soriano
Sridha Sridharan
Vijay Varadharajan
Kapali Viswanathan
Huaxiong Wang
Matt Warren
Chuan-Kun Wu
Yuliang Zheng

Organization VII

Joongbu University, Korea

University of Mdlaga, Spain

HP Laboratories, UK

Royal Holloway, UK

QUT, Australia

Motorola, Australia

Kyungpook National University, Korea
University of Klagenfurt, Austria
University of Tsukuba, Japan

University of the Philippines, Philippines
Sun Microsystems, USA

Macquarie University, Australia
Katholieke Universiteit Leuven, Belgium
Indian Institute of Technology, India
Zayed University, UAE

Fraunhofer SIT, Germany

University of Wollongong, Australia
University of Milan, Italy

IBM Research, Japan

University of Wollongong, Australia
Universitat Politecnica de Catalunya, Spain
QUT, Australia

Macquarie University, Australia

SETS, India

Macquarie University, Australia

Deakin University, Australia

Australian National University, Australia
University of North Carolina, Charlotte, USA

VIII Organization

External Reviewers

Riza Aditya

Isaac Agudo

Toru Akishita

Stig Andersson
André Arnes
Joonsang Baek
Mark Branagan
Gareth Brisbane
Jordi Castella-Roca
Vinod Chandran
Liqun Chen

Joe Cho

Mathieu Ciet
Andrew Clark
Scott Contini
Nora Dabbous
Breno de Medeiros
Christophe De Canniere
Alex Dent

Jintai Ding

Hans Dobbertin
Christophe Doche
Jiang Du

Oscar Esparza
Serge Fehr
Clinton Fookes
Steven Galbraith
Praveen Gauravaram
Pierre Girard
Goichiro Hanaoka
Keith Harrison
Yvonne Hitchcock

Michael Hitchens
Zhenjie Huang
Sarath Indrakanti
Kouichi Itoh
Udaya Kiran Tupakula
Lars Knudsen
Joe Lano
HoonJae Lee
Ching Lin
Ling Liu
Subhamoy Maitra
Antoni
Martinez-Ballesté
Michael Mason
Anish Mathuria
Bill Millan
Jose A. Montenegro
Sumio Morioka
Yi Mu
Jose Luis Muoz
Gregory Neven
Lan Nguyen
Katsuyuki Okeya
Jose A. Onieva
Kenny Paterson
Josep Pegueroles
Kun Peng
Angela Piper
Fabien Pouget
Geraint Price
Michaél Quisquater
Jason Reid

Christian Ritz
Bruno Robisson
Rodrigo Roman
Chun Ruan
Francesc Sebé
Bouchra Senadji
Leonie Simpson
Nigel Smart
Agusti Solanas
Martijn Stam
Ron Steinfeld
Chris Steketee
Hung-Min Sun
Willy Susilo
Gelareh Taban
Dong To
Guillaume Urvoy-Keller
Tri Van Le

N. Vijayarangan
R. Vijayasarathy
Guilin Wang
Yongge Wang
Duncan S. Wong
Yongdong Wu
Alec Yasinsac
Fangguo Zhang
Janson Zhang
Weiliang Zhao
Yunlei Zhao
Huafei Zhu
Jacob Zimmermann

Table of Contents

Invited Talk

All Sail, No Anchor III: Risk Aggregation and Time’s Arrow
Bob Blakley, G.R. Blakley

Network Security

Traversing Middleboxes with the Host Identity Protocol
Hannes Tschofenig, Andrei Gurtov, Jukka Ylitalo, Aarthi Nagarajan,
Murugaraj Shanmugam

An Investigation of Unauthorised Use of Wireless Networks in Adelaide,
South Australia.o
Phillip Pudney, Jill Slay

An Efficient Solution to the ARP Cache Poisoning Problem
Vipul Goyal, Rohit Tripathy

Cryptanalysis

On Stern’s Attack Against Secret Truncated Linear Congruential
GENETAtOTS . . o ottt
Scott Contini, Igor E. Shparlinski

On the Success Probability of y2-attack on RC6
Atsuko Miyagi, Yuuki Takano

Solving Systems of Differential Equations of Addition..................
Souradyuti Paul, Bart Preneel

Group Communications

A Tree Based One-Key Broadcast Encryption Scheme with Low
Computational Overhead
Tomoyuki Asano, Kazuya Kamio

Dynamic Group Key Agreement in Tree-Based Setting.................
Ratna Dutta, Rana Barua

Immediate Data Authentication for Multicast in Resource Constrained
NetwWorK .
C.K. Wong, Agnes Chan

X Table of Contents

Elliptic Curve Cryptography

Redundant Trinomials for Finite Fields of Characteristic 2
Christophe Doche

Efficient Tate Pairing Computation for Elliptic Curves over Binary
Fields ...
Soonhak Kwon

A Complete Divisor Class Halving Algorithm for Hyperelliptic Curve
Cryptosystems of Genus Two i
Tzuru Kitamura, Masanobu Katagi, Tsuyoshi Takagi

Mobile Security

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents ...
Min Yao, Kun Peng, Ed Dawson

An Improved Execution Integrity Solution for Mobile Agents
Michelangelo Giansiracusa, Selwyn Russell, Andrew Clark, John Hynd

RFID Guardian: A Battery-Powered Mobile Device for RFID Privacy
Managementttt
Melanie R. Rieback, Bruno Crispo, Andrew S. Tanenbaum

Side Channel Attacks

Enhanced DES Implementation Secure Against High-Order Differential
Power Analysis in Smartcards
Jigiang Lv, Yongfei Han

Improved Zero Value Attack on XTR.......
Régis Bevan

Efficient Representations on Koblitz Curves with Resistance to Side
Channel Attacks
Katsuyuki Okeya, Tsuyoshi Takagi, Camille Vuillaume

Evaluation and Biometrics

SIFA: A Tool for Evaluation of High-Grade Security Devices
Tim McComb, Luke Wildman

Cancelable Key-Based Fingerprint Templates
Russell Ang, Rei Safavi—-Naini, Luke McAven

Public Key Cryptosystems

Hybrid Signcryption Schemes with Insider Security
Alexander W. Dent

Table of Contents

On the Possibility of Constructing Meaningful Hash Collisions for
Public Keyso
Arjen Lenstra, Benne de Weger

Tunable Balancing of RSA
Steven D. Galbraith, Chris Heneghan, James F. McKee

Access Control 1

Key Management for Role Hierarchy in Distributed Systems............
Celia Li, Cungang Yang, Richard Cheung

A Formalization of Distributed Authorization with Delegation
Shujing Wang, Yan Zhang

Signatures 1

Two Improved Partially Blind Signature Schemes from Bilinear Pairings .
Sherman S.M. Chow, Lucas C.K. Hui, S.M. Yiu, K.P. Chow

On the Security of Nominative Signatures................
Willy Susilo, Yi Mu

Invited Talk

Who Goes There? Internet Banking: A Matter of Risk and Reward.
Adrian McCullagh, William Caelli

Access Control I1

Role Activation Management in Role Based Access Control
Richard W.C. Lui, Sherman S.M. Chow, Lucas C.K. Hui, S.M. Yiu

VO-Sec: An Access Control Framework for Dynamic Virtual
Organizationttt e
Hai Jin, Weizhong Qiang, Xuanhua Shi, Deqing Zou

Threshold Cryptography

An Efficient Implementation of a Threshold RSA Signature Scheme
Brian King

GBD Threshold Cryptography with an Application to RSA Key
Recovery ...
Chris Steketee, Jaimee Brown, Juan M. Gonzdlez Nieto, Paul Montague

An (n — t)-out-of-n Threshold Ring Signature Scheme
Toshiyuki Isshiki, Keisuke Tanaka

XI

XII Table of Contents

Protocols 1

Deposit-Case Attack Against Secure Roaming
Guomin Yang, Duncan S. Wong, Xiaotie Deng

Security Requirements for Key Establishment Proof Models: Revisiting
Bellare-Rogaway and Jeong—Katz—Lee Protocols
Kim-Kwang Raymond Choo, Yvonne Hitchcock

Group Signatures

Group Signature Schemes with Membership Revocation for Large
(08 o) 1 o
Toru Nakanishi, Fumiaki Kubooka, Naoto Hamada, Nobuo Funabiki

An Efficient Group Signature Scheme from Bilinear Maps
Jun Furukawa, Hideki Imai

Group Signature Where Group Manager, Members and Open Authority
Are Identity-Based
Victor K. Wei, Tsz Hon Yuen, Fangguo Zhang

Protocols I1

Analysis of the HIP Base Exchange Protocol
Tuomas Aura, Aarthi Nagarajan, Andrei Gurtov

ID-based Authenticated Key Agreement for Low-Power Mobile Devices . .
Kyu Young Choi, Jung Yeon Hwang, Dong Hoon Lee, In Seog Seo

Signatures 11

On the Security of Two Key-Updating Signature Schemes..............
Xingyang Guo, Quan Zhang, Chaojing Tang

Building Secure Tame-like Multivariate Public-Key Cryptosystems:
The New TS ..o e
Bo-Yin Yang, Jiun-Ming Chen

Invited Talk

Potential Impacts of a Growing Gap Between Theory and Practice in
Information Security
Yvo Desmedt

Credentials

Security Analysis and Fix of an Anonymous Credential System
Yangjiang Yang, Feng Bao, Robert H. Deng

Table of Contents XIII

Counting Abuses Using Flexible Off-line Credentials................... 548
Kemal Bicakci, Bruno Crispo, Andrew S. Tanenbaum

Symmetric Cryptography

Cryptanalysis of Two Variants of PCBC Mode When Used for Message
Integrity 560
Chris J. Mitchell

New Cryptographic Applications of Boolean Function Equivalence
ClaSSES « . vttt e 572
William L. Millan

Author Index 585

All Sail, No Anchor III: Risk Aggregation and Time's
Arrow

Bob Blakley' and G.R. Blakley”

'IBM,
Austin, TX 78758, USA
blakley@us.ibm.com
? Texas A&M University
College Station, TX 77843-3368, USA
blakley@math.tamu.edu

Abstract. This paper explains why protection mechanisms which distribute
even the protected forms of information assets lead to increased risks. It
describes a mechanism (called a "lethal secret sharing system") which enables
the imposition of "forgetfulness" by an asset owner on the receiver of a
protected asset. This forgetfulness, or "lethe", is enforced by allowing the asset
owner to give information about a piece of knowledge to the asset receiver in
such a way that the receiver can be prevented at a future time from using the
knowledge to recover the information.

1 Introduction

All Sail, No Anchor I: Cryptography, Risk, and e-Commerce [1] examined how the
passage of time creates risk in electronic information systems.

This paper will extend the discussion to consider how re-use of cryptographic and
other information protection artifacts aggregates risks and thereby makes electronic
information systems more dangerous as time passes.

When a system is designed so that a cascade of failures, or a single failure with
multiple adverse results can lead to large losses, that system is said to aggregate risks.
Many critical systems are designed to avoid risk aggregation problems by eliminating
“single points of failure”.

Risk aggregation is often thought of in spatial terms (routing hydraulics through a
single point in airliners; siting multiple telecommunications hostels in the basement of
a single building, etc...) But it can also be thought of in temporal terms - adding more
risk to a single artifact or system over time.

Information security systems often aggregate risks in poorly-understood ways, by
re-using protection mechanisms which are assumed to be very strong but whose
strength is in fact poorly understood.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Bob Blakley and G.R. Blakley

2 Instantaneous Protection Decay

We consider two information protection scenarios which are common in today’s
information systems, and discuss how each of these scenarios leads to aggregation of
risk.

Encrypted Storage

Information systems often protect sensitive data against disclosure by encrypting the
data when it is stored on media.
In this scenario:

e The asset (for example, a file or database) is protected for a long time.

e The protected form of the asset is in the possession of its owner.

e Compromise of one asset does not (necessarily) diminish the protection of other
assets.

e Compromise of a single cryptographic key can devalue multiple assets — but smart
key management can help with this by ensuring that a unique key is used for each
asset, as can smart management of physical media and access thereto.

e Compromise of a mechanism (e.g. cryptosystem or block cipher mode of
operation) can devalue multiple assets, but smart management of physical media
and accesss thereto can help with this by allowing the owner to fall back to simple
physical access protections when he learns that the mechanism has been broken.

Digital Rights Management

Media distribution systems often protect valuable content against unlicensed use by
encrypting the data before it is distributed, and relying upon specialized media players
to prevent copying or other misuse of the content in violation of license terms.

In this scenario:

e The asset is protected for a long time.

o The asset (at least in its protected form) is in the possession of the enemy.

e Compromise of one asset does devalue other instances of the same asset, but does
not necessarily weaken the protection of instances of different assets.

e Compromise of a single key may devalue multiple assets, but smart key
management may be able to help with this, by ensuring that a unique key is used to
protect each asset.

e Compromise of a mechanism can devalue all assets.

3 Risk Aggregation

[1] introduced a taxonomy of asset types to facilitate discussions of the evolution of
risk over time. That paper went on to discuss risk associated with “Alice-type”

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 3

artifacts (title deeds, for example, which can be moved back and forth between bit-
space and atom-space because they are just pointers to things with value in the
physical world), and “Bob-type” artifacts (like digitized movies, which can’t move
back and forth, but remain in bit-space all the time because their digital form has
intrinsic value).

The discussion in [1] assumed that the effective strength of keys and algorithms
decays at some rate over time, and that the value of artifacts might also change in
various ways over time, and went on to describe how to protect artifacts of various
types under that assumption.

The current discussion will make a different set of assumptions: it will assume that
artifacts of all types share a single value, which remains constant over time. It will
also assume that cryptographic keys and protection mechanisms decay in
effectiveness instantaneously (that is, that their effectiveness goes effectively to zero
instantaneously, as the result of a conceptual advance on the part of attackers), but at
an unpredictable time.

It should be clear that security mechanisms aggregate risk over time as they are
used to protect more assets; assuming that a mechanism uses a unique key to protect
each asset and that a mechanism uses a single cryptosystem to protect all assets,
figure 1 shows how the maximum risk exposure grows over time as the mechanism is
used to protect more and more assets (the y-axis legend represents the value of a
population of assets; recall that we’ve already assumed all assets have equal values
which do not change over time):

Maximum Risk Exposure
One key per asset, one algorithm per mechanism

Vna) —— , algorithm or mechanlgm
Pid compromise
//
PR 7/
4
’
4
’
4
'
2a) —— S
l/’
)’ key compromise
Ma)—— &
L4
t4
4
’ \
0 !
n

Number of Assets Protected

Figure 1

It should be noted here that risk due to compromise of one key remains constant
over time, but that risks due to compromise of cryptographic algorithms and security
mechanisms grows without bound as time passes.

4 Bob Blakley and G.R. Blakley

In this context, we will introduce the following concepts:

— key risk is the aggregate decline in value caused by an instantaneous loss of
effectiveness of a single cryptographic key.

— cryptosystem risk is the aggregate decline in value caused by an instantaneous
loss of effectiveness of a single cryptographic algorithm.

— mechanism risk is the aggregate decline in value caused by an instantaneous loss
of effectiveness of a single information security protection mechanism.

Consider the two scenarios described above, and assume that the same assets are
being protected in each scenario.
The risks in the two scenarios are quite different:

Key Risk

In the encrypted storage scenario, this varies between zero (in case the owner learns
of the key compromise, shuts off physical access to the system before any attacker
can access the protected assets, and re-protects exposed assets using an unbroken key)
and the sum of the values of all assets protected using the compromised key (in case
the owner doesn’t learn about the compromise until after the horse is out of the barn).

However, if multiple instances of an asset are protected under different keys, the
instances protected under the uncompromised keys remain protected.

In the digital rights management scenario, this is always the sum of the values of
all instances of all assets protected using the compromised key (because the assets are
in possession of the enemy, even if the owner learns of the compromise, he can’t
prevent the enemy from using the compromise to use the assets in violation of their
license terms, and he also can’t prevent the enemy from making copies of the assets
and distributing unprotected versions of them to the holders of all other protected
instances).

Assuming that we use one key per asset in both scenarios, figure 2 shows how risk
varies with the duration of an exposure due to key compromise.

Cryptosystem Risk

In the encrypted storage scenario, this varies between zero (in case the owner learns
of the cryptosystem compromise, shuts off physical access to the system before any
attacker can access the protected assets, and re-protects exposed assets using an
unbroken cryptographic algorithm) and the sum of the values of all assets protected
using the compromised cipher (in case the owner doesn’t learn about the compromise
until after the horse is out of the barn). However, if multiple instances of an asset are
protected under different cryptosystems, the instances protected under the
uncompromised systems remain protected.

In the digital rights management scenario, this is always the sum of the values of
all instances of all assets protected using the compromised cryptosystem (because the
assets are in possession of the enemy, even if the owner learns of the compromise, he
can’t prevent the enemy from using the compromise to use the assets in violation of
their license terms, and he also can’t prevent the enemy from making copies of the
assets and distributing unprotected versions of them to the holders of all other
protected instances).

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 5

Key risk
One key per asset
Nna)—~
V(2a)—T
Scenario 2
@) fp=========sssuusssocusues o=
]
1 Scenario 1
0
Duration of Exposure
Figure 2

Again assuming one key per asset, and assuming also that protection mechanisms
use only a single cryptosystem, figure 3 shows how risk varies with the duration of an
exposure due to cryptosystem compromise:

Cryptosystem Risk
One cryptographic algorithm per mechanism
Vng) re======r==s=ssssoossssssssoo==e=
i N
1 Scenario 2
B
: N
V(za)iai Scenario 1
1
1
Ma)—y
1
1
0

Duration of Exposure

Figure 3

6 Bob Blakley and G.R. Blakley

Mechanism Risk

In the encrypted storage scenario, this varies between zero (in case the owner learns
of the key compromise, shuts off physical access to the system before any attacker
can access the protected assets, and re-protects exposed assets using an unbroken key)
and the sum of the values of all protected assets (in case the owner doesn’t learn about
the compromise until after the horse is out of the barn).

In the digital rights management scenario, this is always the sum of the values of
all assets protected using the compromised mechanism (because the assets are in
possession of the enemy, even if the owner learns of the compromise, he can’t prevent
the enemy from using the compromise to use the assets in violation of their license
terms).

Again assuming one key per asset, and assuming that protection mechanisms use
only a single cryptosystem, figure 4 shows how risk varies with the duration of an
exposure due to mechanism compromise:

Mechanism Risk
V(na)*‘]f“' ====== vE\H =======================
' Scenario 2
B
i N
V(za)iii Scenario 1
1
1
Ma)—t
]
0
Duration of Exposure

Figure 4

Note that in all cases the risks created by the digital rights management scenario
are greater than or equal to the greatest risk possible in the encrypted storage scenario.
It is worth considering why this is so. In the encrypted storage scenario, the
consequences of a risk are mitigated by the ability of the owner to respond to news of
a compromise by employing an uncompromised protection measure to prevent
exploitation of the compromised key, cryptosystem, or mechanism by a potential
attacker.

In the digital rights management scenario, on the other hand, the distribution of
protected assets to the enemy aggregates key, cryptosystem, and mechanism risks in
time by ensuring that the enemy’s access to assets protected using the compromised
protection artifact cannot be cut off. We call this type of risk aggregation

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 7

“instantaneous protection decay”. In the Encrypted storage scenario, we can have
instantaneous effectiveness decay for keys, cryptographic algorithms, and protection
mechanisms without causing instantaneous protection decay, because of the
feasibility of interposing a new mechanism between assets and attackers before all the
assets have been compromised. In the Digital Rights Management scenario,
instantaneous decay of a protection mechanism always causes instantaneous
protection decay for all assets; instantaneous decay of cryptographic algorithms or
cryptographic keys always causes instantaneous protection decay for all assets
protected by those algorithms or keys.

4 System Characteristics Contributing to Risk Aggregation
Problems

Risks are aggregated in information security systems when:

e Multiple assets are protected using the same cryptographic key.

e Multiple assets are protected using the same cryptographic algorithm, but different
keys.

e Multiple assets are protected using the same protection mechanism, which employs
different cryptographic algorithms.

o Protected forms of assets are exposed to enemies for extended periods of time.

e Enemies are able to copy and retain protected forms of assets.

e Protected forms of assets are exposed to multiple enemies at the same time.

These conditions are cumulative in the sense that when more conditions apply, risk
aggregation becomes a more serious concern. A system which employs a single
protection mechanism based on a single cryptographic algorithm and a single key, and
which irrevocably distributes all its protected assets to everyone is the worst possible
system from the viewpoint of risk aggregation.

5 Recovery Actions to Limit Risk Aggregation

To limit the types of risk aggregation discussed in this paper, system designers could
consider:

¢ Ensuring that assets cannot be accessed until they are required, even when they are
in protected form.

e Ensuring that the owner of an asset can cut off all access to protected assets in the
event of a protection compromise, in order to re-protect assets using new methods.

e Using inherently robust protection mechanisms (i.e. mechanisms like one-time
pads and secret-sharing systems, which are provably immune to compromise
except by brute-force, instance-by-instance methods)

e Using multiple protection mechanisms per asset to ensure that detected
compromises can be addressed before significant value loss occurs.

8 Bob Blakley and G.R. Blakley

We should note that the first two of these techniques essentially address temporal
aspects of risk aggregation; the third addresses mechanism strength, and the last
addresses an essentially topological (or “spatial”) aspect of risk aggregation.

6 To Cancel Half a Line

So far, we have treated system decay, algorithm decay and message decay as both
inexorable and irreversible.

This posture is natural enough, and well precedented. According to Fitzgerald [4],
one of the 12th Century's foremost mathematicians wrote something along the
following lines:

The moving finger writes, and having writ,
moves on. Nor all your piety and wit

shall lure it back to cancel half a line,

nor all your tears wash out a word of it.

This suggests, among other things, that there is no way to retroactively force
forgetfulness of any aspect of your communications on a collaborator or an opponent
who has had access to them.

Forgetting

However, in the context of games, one of the 20th Century's foremost mathematicians
coauthored these sentiments in three astounding pages [7] of a very influential book:

Anteriority (i. e. the chronological ordering of the moves) possesses the
property of transitivity

Preliminarity [essentially the property that the “preliminary” move is
known by the player making the current move] implies anteriority, but need
not be implied by it

preliminarity need not be transitive. Indeed it is neither in Poker nor in
Bridge,

in Bridge...this intransitivity... involves only one player, [and] ... the
necessary "forgetting”"... was achieved by "splitting the personality" of
[player] 1 into [North] and [South].

All important examples of intransitive preliminarity are games containing
chance moves. This is peculiar, because there is no apparent connection
between these two phenomena.

We imagine a game like the following:

At time ¢ we have n players p/; ... pl,. Each player pl; has been “dealt” some set of
information pl;,.

Within the game there is a function fifok which turns information into knowledge,
so that each player has, at time t, knowledge kn; = fitok(p;).

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 9

Can we rig the game so that at time #+1, we distribute additional information such
that every player’s information set either grows or stays the same (i.e. so that p/;, <
pli+ for all 7), while at least one player’s knowledge decreases (i.e. kn; .y kn;, for
some 7)?

von Neumann and Morgenstern might have had difficulty convincing Omar
Khayyam, but the answer is “yes”.

We here propose, within cryptography, an analog of the game-theoretic enforced
forgetfulness which Bridge exhibits. We propose to call it lethal secret sharing in
memory of the underworld river [6] of enforced lethe.

For simplicity we describe it only within the context of k-out-of-n threshold
schemes [2, 5], though it can also easily be implemented within the more general
context of d-from-k-out-of-n ramp schemes [3]. Extending lethality from threshold
schemes to access structures, however, is not straightforward and will not be
considered in this paper.

Background: Secret Sharing

As a brief reminder, before launching into the details, we note that a (k, n) threshold
scheme amounts to the Shannon perfectly secure (1, &, n) case of the (more efficient
but merely Shannon relatively secure [3]) notion of ramp scheme. And both can be
implemented in either Blakley (geometric) or Shamir (algebraic) fashion.

A (k, n) threshold scheme employs a dealer, Delia, who has chosen the positive
integers k and n (obeying the inequality k < n), as well as a -- probably quite large --
finite field F = GF(p"). She also possesses a random number generator G which
produces members of a F cheaply and quickly in a manner subject to a uniform
probability density function. Or, at least, she and her collaborators and opponents are
unable to profit from an assumption to the effect that they are not dealing with
independently uniformly distributed outputs from said generator.

Additionally, Delia knows every member p of a set P of n players. Any subset C —
P is called a coalition. In a (k, n) secret sharing scheme, such a subset C is a small
coalition if it consists of fewer than k players. A subset C of P is called an allowed
coalition if it contains at least k players.

A source of secrets, Fern, furnishes a secret s (chosen somehow from the field F)
to Delia, who employs G in the performance of a deal, A, which shares s among the
players.

This sharing process is done in such a way that every “share” is a clue regarding a
safe f = f{s) which conceals (or protects, if you prefer) the secret s. In the major
practical instances of secret sharing, the clues reveal aspects of the location of /.

This deal A uses the arithmetic of F to combine the secret s with outputs of the
random number generator G so as to give each player p his own share h = h(p) = h(k,
n, F,P, p,s, A) of the secret s.

Each share /1 can be a member of F or something else defined in terms of F (such
as a subspace of a space which depends on F, or a point on a graph in F' x F).

Every share yields information about the safe . The more shares you have, the
more you know about (the location of) /. But you remain in total ignorance about the
secret s until you have k£ shares.

10 Bob Blakley and G.R. Blakley

A showdown is defined to be a meeting of the members of a coalition C to pool --
and to spend as much time and effort as they deem appropriate in processing -- their
shares in such a manner as to find as much information as possible about the safe f
protecting the secret s.

A showdown does not logically require a “referee” (an additional participant who
may or may not have knowledge and powers the players lack). But lethality requires a
referee, Rory. And the secret sharing process could even be rigged in such a way that
it is impossible for the players to recover the secret s without the consent and
participation of Rory.

If all the members of a coalition C are members of a coalition C*, then the
coalition C* embodies no less knowledge about the safe f than the coalition C does.

In a (k, n) threshold scheme, an allowed coalition C knows everything about the
safe f (though perhaps only with the help of Rory). With this knowledge, it is a simple
matter to calculate the secret s quickly with certainty during a coalition C showdown.

When a small coalition C stages a showdown, it can assemble a considerable body
of knowledge about the safe f, but (even with the active assistance of Rory) not
enough to alter its total ignorance of the secret s, in the sense in which Shannon
perfect security defines total ignorance.

Small coalitions learn nothing about s (or, more exactly, the showdown teaches
them nothing about s which was not common knowledge before the deal). Allowed
coalitions learn everything about s (or, more exactly, the showdown replaces their
common-knowledge pre-deal assessment of likely and unlikely values of s by a
"certainty" that they know what s — the secret being shared — is).

The exact description of this Shannon perfect security feature is cast in
probabilistic language as follows.

"Common knowledge before the deal" amounts to an a priori probability density
function, presumed to be used by everybody (whether collaborator, opponent or
bystander)

Pri:F—>[0,1]

This pdf tells how probable the occurrence of a member m of the field F is (as a
typical message emanating from the source Fern who has secrets to share). For this
pdf,

Pri (m =s)=PROB (m = s according to common knowledge)

And for each coalition C there is an a posteriori pdf

PosC:F—[0,1]

which C calculates on the basis of both Pri and all the showdown information
(including referee input if that is required) pooled by it. For this pdf,

PosC (m = s | all the C information, and referee input, together with Pri)

At showdown time there are two completely different sorts of outcomes. If C is an
allowed coalition, then the function PosC is a Dirac delta, having value 1 at some one
point m (it will, of course, be equal to s) of F, and therefore having value 0
everywhere else. But if C is a small coalition, then the pdf PosC is equal to the pdf
Pri.

For example, in a Blakley scheme the safe f'is a point and the secret s is its first
coordinate. Larger and larger coalitions can determine smaller and smaller affine
subspaces containing /. But s remains totally unknown until the subspace is just {f}.

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 11

In a Shamir scheme the safe f'is a polynomial, and the secret s is the value of fat 0.
Larger and larger coalitions can tell more and more about combinations of the
coefficients of /. But s remains totally unknown until fis uniquely specified.

It is clear that publication of the share of one player in a deal Aofa (k+ 1,n+ 1)
threshold scheme employed upon a secret s confronts the other n players with exactly
the same recovery problem as a deal A* of a (k, n) threshold scheme employed upon
that same secret s.

So here we have Omar's moving finger. If it writes a player's share out for all the
world to see, it automatically converts a (k + 1, n + 1) threshold scheme recovery of s
into (k, n) threshold scheme recovery of 5. How could you go about disremembering
such a revelation?

Lethal Secret Sharing

Is there a von Neumann/Morgenstern type of lethe expedient available? The best
possible affirmative answer to this question would be a way to start witha (k+ 1, n +
1) threshold scheme 7, perceive the leak which (in effect) degrades T to a (k, n)
scheme as soon as it occurs, and then immediately snap 7 back into (k + 1, n + 1)
status.

Failing that, which partial rehabilitation from (k, n) status would be preferable? To
(k+ 1, n) status? Or to (k, n + 1) status? We say the former.

We will define a lethal secret sharing system as one in which we can recover from
a leak of one share and rehabilitate the scheme from (k, ») status to (k + 1, n) status.

The job, then, is to figure out an early modification (perhaps even at deal time or
before) of the workings of a (k + 1, n + 1) threshold scheme. Let us recall than an
allowed coalition in such a scheme has at least k£ + 1 members. A coalition with only &
members is small.

Constructing a Lethal Secret Sharing System

The sort of modification we seek will be called a lethe ("forgetting" is too weak a
locution) of the share A(n+1) assigned to the (now discredited and disenrolled) player
p(nt1). It must be a procedure which renders any coalition of k of the remaining n
players incapable of finding s in a showdown even if they are also making use of the
additional k + 1% share h(n+1). The way we propose involves a referee Rory.

The modified threshold scheme will be called a lethal (k + 1, n + 1) threshold
scheme. In such a scheme,

The dealer Delia encrypts the secret s, which Fern furnished, as a “pseudosecret” o
= H(x, s) in cryptosystem H using key «.

In the ordinary threshold scheme fashion, Delia produces "preshares"

7 (1), n(2),..., w(n), w(n+1)

of the "pseudosecret" o= H(k, s).
Delia encrypts the preshares z(w) so as to produce "pseudoshares"

12 Bob Blakley and G.R. Blakley

(1] = JI1]AD), (1)),
2] = J12)(A2), =(2)),

“eey

y[n] = Jn](A(n), z(n)),
wln+1] =Jn+1](A(n+1), a(n+1)),
where cryptosystems
J11, J12],..., J[n], J[n+1]
employ keys
A1), A(2),..., An), A(n+1)
to encrypt the plaintexts
(1), n(2),..., 7(n), w(n+1).

Delia deals these pseudoshares w(w) as if they were shares, so that the w™ player p(w)
gets y[w] = JIw](A(w), =(w)). But, in addition, the w" player p(w) also learns what
cryptosystem J[w] he is associated with.

But player p(w) knows neither H nor A(w) nor z(w).

Delia tells Rory all her cryptosystem information H, J[1], J[2]...., J[n], J[n+1] and
all her key information «x, A(1), A(2),..., A(n), A(n+1)

Rory, however, knows neither the secret s, nor the pseudosecret o, nor any
information about the safe /- Nor does he know anything about any w(w) or any z(w).

Outsiders know the field F, the random number generator G, the integers k and n,
all the personalities and roles and rules. But they know no Js, no 4s, no zs, and no s.
Nor do they know H, «, f, or s.

And Fern and Delia promptly die (as a consequence of which they forget
everything, since they have to drink from Lethe in order to get into Hades, of course).
This is merely for clarity. There is no logical necessity for Fern or Delia, or indeed
any human being whatsoever, to know anything about the secret s at any time
whatsoever.

Nevertheless we do away with them simply to emphasize that -- immediately after
the deal in the lethal threshold scheme -- literally nobody on earth knows anything
about the secret s. The lethe affects only the referee Rory and the players. In fact, it
affects only what Rory and a coalition C can come to learn from subsequent
revelation of a share of a player who is not a member of C.

Recovery of a Secret

Before turning to the lethe feature, consider how the recovery of a secret is carried out
when nothing untoward happens. In such a case the showdown-based recovery
process is obvious.

An allowed coalition C forms and meets with Rory. Recall that C has more than &
members (because the scheme is (k+1,n+1), not (k,n)).

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 13

Rory knows the cryptosystems H and the J[w], as well as the keys x and the A[w].
He now reveals them to the coalition C.

Consequently, he and they can emplace key A[w] in cryptosystem J[w] so as to
decrypt the pseudoshare y(w) and thus recover the preshare z(w).

They can do this for each w such that player p[w] belongs to the coalition C.

Rory and the coalition C can then perform the ordinary showdown operations to
recover the pseudosecret o= H(x, s).

Thereafter, he and C can emplace key « in cryptosystem H so as to decrypt o and
thus recover the original secret s.

So far a lethal threshold scheme merely looks like a cumbersome threshold
scheme. It is that. But not merely that.

Lethe: Forgetting a Share

But now consider why it is possible to recover from the unauthorized publication of a
pseudoshare in the (k+1,n+1) scheme.

Suppose that one player's share is publicized. There is no harm in assuming that he
is player p[n + 1].

The referee Rory hears about this. He produces n new keys

w(1), p(2),..., u(n)

at random and sends them over open channels to the players with the instruction that
each player p(w) use key u(w) in cryptosystem J[w] to encrypt y(w) so as to produce a
modified pseudoshare

yr(w) = Jw] (w(w), y(w)).

Rory doesn't know any y*(w).

Outsiders know nothing other than u(1), @(2),..., u(n), and w(n + 1)

Suppose that an allowed coalition C assembles. It has at least £ + 1 members, none
of whom is player p(n + 1).

Its members know the w*(w) and the y(w). But without Rory they don't know the
keys A(w) to insert into the cryptosystems they know.

So Rory uses the keys u(w) in the cryptosystems J[w] to decrypt the y*(w) (just to
keep the players honest) to obtain the w(w). He then uses the keys A(w) in the
cryptosystems J[w] to obtain the preshares z(w). He and the members of C then use
the usual showdown methodology to find the pseudosecret o = H (k, s).

Rory then emplaces the key x into the cryptosystem H to decrypt o and obtain s.

A merely k-member coalition C*, accompanied by player p(n+1), would be a set of
k+1 “players”, but Rory would not cooperate with them.

It might be objected that Rory represents a possible single point of failure (whose
demise would make successful recovery of the secret impossible). Such a flaw would
be alien to the spirit of a threshold scheme. But there is nothing to prevent cloning
him, or even taking more complicated expedients, which we will not consider here.

The point is that within secret sharing, as within game theory, it is possible to lure
the moving finger back to cancel half a line (not an entire line in either case). And in
neither endeavor have the authors encountered a way to do this without both

14 Bob Blakley and G.R. Blakley

incorporating randomness and splitting up a single human being's natural activities
and prerogatives.

7 An Example of Lethe

Let’s see how a lethal secret-sharing scheme could be used to protect digital content.

Imagine that Delia is a digital movie distributor. Imagine further that she’s got a
Rory chip built into a digital movie player. Finally, imagine that she wants to
distribute the movie to the player, and a set of licenses to people who have paid to see
the movie (for the purposes of argument let’s say two people have purchased
licenses). Delia splits the movie into n+1 pseudoshares using a lethal secret-sharing
scheme. She distributes n-1 pseudoshares (“the movie”) to the player. She gives
Rory the necessary key and cryptosystem information. And she distributes one
pseudoshare each (“the licenses”) to the two licensees. Figure 5 below shows the
situation after Delia has distributed her information:

Delia

l//l! . l//n-l’ Jl, --Jn—l

Figure 5

Now let’s say one of the two licensees (for purposes of argument, the one who
received pseudoshare n+1) publishes his pseudoshare to facilitate free viewing of the
movie, as illustrated in figure 6.

All Sail, No Anchor III: Risk Aggregation and Time's Arrow 15

Vi1

Wn1s S+

Figure 6

As soon as Rory learns about the publication of pseudoshare n+1, he can invalidate
it without denying access to the user who received pseudoshare n by distributing a
new set of pseudoshare-transformation keys as illustrated in figure 7.

'/fli - '/fn—l’ Ji, o Tty o M

Figure 7

At this point, the user who received pseudoshare n and its transformation key ,
can use his transformed pseudoshare y*, to view the movie, but no one who knows

16 Bob Blakley and G.R. Blakley

pseudoshare n+1, including the user who originally received it, can use it to view the
movie. In fact, no one can use any untransformed pseudoshare to view the movie.

8 Conclusion and Discussion

Designers of information security systems must consider the corrosive effects of time
and space on the systems they build. [1] considered the effects of time on the
protection of a single artifact, and counseled system designers to calibrate the strength
(over time) of each protection mechanism to the value of the artifact it protects.

This paper goes further and asks designers to consider the camel’s back: even a
strong protection mechanism becomes an unacceptable risk when too much value is
loaded onto it. Designers should take care to understand how much risk a mechanism
is bearing in the real world already before using them to protect new assets, in much
the same way as the designer of a building might consider how much load the
structure is bearing now, and how much load it has borne over its previous history,
before deciding whether it is safe to add another floor or a communications antenna to
the top.

Finally, the paper demonstrates how a random deal combined with a referee
enables “lethe”: a type of forced forgetfulness which enables distribution of
information about knowledge in a way which permits revocation of the ability to
transform the information into the knowledge.

9 References

[1] Blakley, B., and G.R. Blakley, “All Sail, No Anchor I: Cryptography, Risk, and e-
Commerce”, ed. E. Dawson, A. Clark, C. Boyd, “Information Security and Privacy:
Proceedings of 5th Australasian Conference on Information Security and Privacy”, LNCS
vol. 1841, Springer Verlag, Berlin, 2000, pp. 471-6.

[2] Blakley, G.R. “Safeguarding Cryptographic Keys”, Proceedings of the National Computer
Conference, American Federation of Information Processing Societies Press, vol. 48 (1979),
June 1979, pp 242-68.

[3] Blakley, G.R., and C. Meadows, “Security of Ramp Schemes”, Advances in Cryptology:
Proceedings of Crypto *84, LNCS vol. 196, Springer-Verlag, Berlin, 1985, pp. 243-68.

[4] FitzGerald, Edward, tr., “The Rubaiyat of Omar Khayyam”, ed. Christopher Decker,
Bibliographical Society of the University of Virginia, 1997.

[5] Shamir, A. “How to Share a Secret”, Communications of the ACM, vol. 24 no. 11,
November 1979, pp. 612-13.

[6] Virgil, “Opera”, ed. R. A. B. Mynors, Oxford University Press, Aeneid 6.705, Oxford,
1969.

[71 Von Neumann, J., and O. Morgenstern, “Theory of Games and Economic Behavior”,
Princeton University Press, Princeton, NJ, 1953.

Traversing Middleboxes with the Host Identity
Protocol

Hannes Tschofenig!, Andrei Gurtov?, Jukka Ylitalo®, Aarthi Nagarajan?, and
Murugaraj Shanmugam?*

! Siemens, Germany
hannes.tschofenig@siemens.com
2 Helsinki Institute for Information Technology, Finland
gurtov@cs.helsinki.fi

3 Ericsson Research NomadicLab, Finland

jukka.ylitalo@nomadiclab.com
* Technical University Hamburg-Harburg, Germany
{murugaraj.shanmugam}@tu-harburg.de

Abstract. The limited flexibility of the Internet to support mobility has
motivated many researchers to look for alternative architectures. One
such effort that combines security and multihoming together is the Host
Identity Protocol (HIP). HIP is a signaling protocol that adds a new pro-
tocol layer to the Internet stack between the transport and the network
layer. HIP establishes IPsec associations to protect subsequent data traf-
fic. Though the security associations are established solely between the
communicating end hosts, HIP also aims to interwork with middleboxes
such as NATSs and firewalls. This paper investigates this interworking
aspect and proposes a solution for secure middlebox traversal.

Keywords: Identifier-Locator Split, Host Identity Protocol, Middlebox, Network
Address Translators (NATSs), Firewalls, Authentication, Authorization.

1 Introduction

In the classical Internet architecture, an IP address serves as an address for
packet delivery and as an identifier for the communicating end points. These
roles are known as the locator and identifier respectively. The dual use of an
IP address, although originally intended, nowadays limits the flexibility with re-
gard to mobility and multihoming. In recent years, there have been many efforts
to overcome this limitation through different approaches at different layers in
the protocol stack. Existing solutions propose new indirection infrastructures,
transport layer enhancements to support multiple locators, or adding new shim
protocol layers. This paper looks at the compatibility issues of the Host Iden-
tity Protocol with NATSs or firewalls and proposes a generic middlebox security
solution.

The Host Identity Protocol (HIP) [1] is being developed by the IETF HIP
working group. It is an identifier-locator separation mechanism that operates

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 17-28, 2005.
© Springer-Verlag Berlin Heidelberg 2005

18 Hannes Tschofenig et al.

between the transport layer and the network layer. The Host Identity Protocol
heavily relies on public key cryptography where every host generates a pair of
keys: a private key and a public key. The public key is called the Host Identity
(HI). A Host Identity Tag (HIT) is a 128-bit hash of the host’s public key. The
interface to the transport layer uses Host Identity Tags in place of IP addresses,
while the interface to the Internet layer uses conventional IP addresses. In simple
terms, transport connections and security associations are bound to HITs that
do not change with changes of IP addresses. HIP is initialized with a base ex-
change mechanism that is used to quickly authenticate the hosts, exchange the
keys to protect the rest of the base exchange and to form the required security
associations to protect the payload.

HIP [1] starts with one of the hosts looking up the HI and IP of the peer
in the DNS. The host then sends an initial I1 message requesting a state to be
established with the peer. Messages R1, I2 and R2 are exchanged successively
in order to create an association.

Once the base exchange is completed, the data traffic between the commu-
nicating hosts is protected using IPsec. When one of the hosts changes its IP
address, the new address needs to be updated with the peer. For this purpose,
HIP uses a readdressing procedure. Additionally, readdressing can be accompa-
nied with a new SPI value and/or new keys for the existing security association.

All packets except the base exchange and readdressing messages are protected
using [Psec ESP. IPsec has traditionally been known to be a Network Address
Translation (NAT) sensitive protocol. To allow IPsec protected traffic to traverse
a NAT, it is either possible to provide UDP encapsulation [5] or to allow the
NAT to participate in the signaling message exchange. A mechanism to detect
a NAT along the path between two IPsec endpoints has be provided for IKEv1
[4] and has been incorporated into IKEv2 [6]. Additionally, firewall traversal
faces routing asymmetry problems. A number of IETF working groups such as
the MIDCOM, PANA and NSIS [13] have encountered this problem.

2 Problem Statement

Most networks today still use IPv4 addresses even though IPv6 is ready for de-
ployment. Apart from the communicating end hosts, many middleboxes are also
present between the hosts on the network, each meant for a specific functionality.
For instance, to combat the IPv4 address depletion problem, private networks
use NATs [12] to reuse and share global IPv4 addresses. For security reasons,
firewalls are placed at the border of a network. When HIP is deployed into an
existing network, NATs need to be retained for the sake of already existing IPv4
applications. For security reasons, HIP will need to deal with firewalls as well.
In the current Internet, IP addresses are used both for identifying hosts and
identifying their topological locations. This semantic overloading is deeply re-
lated to most of well-known NAT problems [9]. IPsec is an example of a protocol
that suffers from the related NAT traversal problems [10]. UDP encapsulation
of IPsec packets allows a NAPT[12] to modify the UDP header and to perform

Traversing Middleboxes with the Host Identity Protocol 19

the demultiplexing [4]. Unfortunately, the approach unnecessarily increases the
packet size and may cause configuration difficulties, e.g., in firewalls.

In this proposal we try to address the following functionalities that are ex-

pected of a HIP aware NAT or firewall:

1.

3

Interception : IPsec use <Destination IP, Destination SPI, Protocol >to
identify a particular security association. Middleboxes can also be thought
to use the same flow identifier information for a flow. This can be achieved
by making the NAT/FW HIP aware and to intercept the SPI values carried
within HIP signaling messages.

. Authentication : Many middlebox traversal mechanisms do not have any

security at all. A HIP aware NAT/FW must be able to authenticate the
requesting HIP nodes before creating a NAT binding or a firewall pinhole.

. Authorization : A HIP aware NAT/FW must be able to authorize the re-

questing HIP nodes using identity dependent or identity independent meth-
ods. A potential solution must respect the property of the middleboxes before
roaming outside the network.

. Denial of Service attack resistance : The authentication and authorization

mechanisms should not introduce new DoS attacks at the middlebox.

. Registration Procedure - A firewall might require authentication and autho-

rization of one of the end points prior to allowing signaling (and data traffic)
to bypass. Depending on the architecture and environment, this protocol
step might be required.

. Avoiding unwanted traffic : In the wireless environment an end host might

want to stop receiving unwanted traffic. A signaling protocol is needed to
indicate what traffic to receive and what traffic to drop. It must also be
assumed that end-to-end communication is not always possible prior to the
interaction of the end hosts.

Soft-state Nature : To deal with failures and route changes, it is important to
design a protocol in such a way that the state allocated at middleboxes times
out after a certain period of time. Periodic transmission of refresh messages
is therefore required. SPI multiplexed NAT (SPINAT) is an example of a
HIP aware NAT that uses HIP to establish a NAT binding and to establish
the security state [7].

HIP and NAT/FW Traversal

This section describes our proposal for traversing middleboxes with HIP. We use
HIP as a protocol to communicate with middleboxes.

3.1 HIP Base Exchange and NAT

A HIP aware NAT/FW needs to inspect the HIP base exchange to learn the
<Destination IP, Destination SPI, Protocol>triplet for a specific host. The HIT
values are also required and can subsequently be used to verify future signaling

20 Hannes Tschofenig et al.

messages. The approach presented in [7] is also relevant here which requires
the usage of hash chains to update the binding in a HIP aware NAT device.
All HIP messages carry a standard HIP header with the HIT of the initiator
and the HIT of the receiver. It must be noted that IPsec SAs are unidirectional
and hence two SPI values (for the Initiator and for the Responder) need to
be negotiated. Subsequently, message 12 carries the SPI value of the Initiator,
SPI(I), and message R2 carries the SPI value of the Responder, SPI(R). For
authorization, SPKI certificates [2] or SAML assertions [3] may turn out to be
useful since the Host Identities might be ephemeral and anonymity for the end
hosts is an important aspect. Providing authorization based on information in
the SPKI certificates or SAML assertions can be used to enable the middlebox
to execute the necessary protocol actions (e.g., opening a pinhole) without the
need for authentication.

3.2 HIP Base Exchange and Firewalls

NATSs establish state and modify IP address information and thereby force IP
packets to flow through also in the reverse direction. This makes the intercep-
tion mechanism for NAT's much easier compared to that of the firewalls. In the
presence of a generic middlebox (or firewalls in particular) or a topology with a
mixture of NATs and firewalls, routing asymmetry needs to be considered. Fig-
ure 1 shows a HIP exchange through a firewall. In firewalls, forward paths may
differ from the reverse paths. Then, messages I1 and 12 from the initiator to the
receiver take a different path from messages R1 and R2 sent from the receiver to
the initiator. For instance, the Initiator generates its SPI(I) and sends it to the
Responder in a message 12 through FW(R). However, FW(I) needs this infor-
mation to create the state for the Initiator. Similarly, the Responder generates
its SPI(R) and sends it to I in the R2 message through FW(I). However, FW(R)
needs to create the flow identifier information for R as shown in Figure 1.

Hence, new solutions need to be provided for tackling the routing asymme-
try problem with respect to the firewalls and flow identifier interception. These
solutions have to be handled without changing the existing HIP base exchange
significantly.

3.3 HIP Readdressing, Re-keying and NAT/FW

Even after the HIP base exchange is finished, a NAT/FW still needs to keep
updating its state for the flow identifier in case an IP address or an SPI value
changes for an end host. For example, whenever a HIP end point is mobile and
informs its peer about the new IP address, the states at FW(I) and FW(R) also
need to be updated. Additionally, if the hosts decide to choose a new SPI value
for the same security association or a new pair of keys along with the readdress-
ing, routing asymmetry may cause additional complications. Middleboxes must
authorize state modifications to avoid a number of attacks including redirection,
black holing or third party flooding. A desired property in this case is sender in-
variance, which states: “A party is assured that the source of the communication

Traversing Middleboxes with the Host Identity Protocol 21

Initiator Network Responder Network

Need SPI(R)
FW(R)
L | u

12 with SPI(I)

R2 with SPI(R)

Fig.1. Routing asymmetry with firewalls.

has remained the same as the one that started the communication, although the
actual identity of the source is not important to the recipient.” (Section 3 of [8]).

4 HIP Aware NAT/FW

Many middleboxes today do not support any security. State is created based
on data traffic without authentication, authorization or DoS protection. The
complexity to support different types of NAT/FWs influences the design of the
protocol to a certain extent. The middlebox could fall into some of the following
categories:

1. A NAT/FW could support only the present Internet Protocol and can be
completely incompatible with HIP. These falls into the category of “HIP-
unaware NAT/FW ”that does not require security capabilities.

2. A “Transparent NAT/FW ”could need weak authentication techniques secu-
rity for simple state establishment, for instance, using the SPINAT function-
ality. However, here the base exchange becomes vulnerable to a DoS attack
because the initiator’s HI is encrypted in the 12 packet and the NAT /FW box
is unable to verify the 12 message. As a consequence, an attacker may send a
spoofed 12 message before the authentic initiator does that. The spoofed 12
message may contain a spoofed SPI value resulting in an inconsistent state
at NAT/FW. The problem can be solved, either by including the initiator’s
SPI value both to the I1 and 12 messages or sending the initiator’s HI as plain
text in I2 packet. While the former solution creates a state at the NAT/FW
and the peer host even before the puzzle is solved, the later interferes with
anonymity. Fortunately, the NAT /FW may verify the responder’s SPI in R2
packet with signature, because responder’s HI is sent in plain text.

3. A third set of NAT/FW may opt to complete authentication and autho-
rization before establishing state for a host. These are the “Registration

22 Hannes Tschofenig et al.

Requiring NAT/FW ”that run a registration protocol, a variant of the HIP
base exchange between the end host and the middlebox.

4.1 The HIP Registration Protocol

To introduce a new registration protocol, it is necessary to deal with the general
protocol design issues such as mutual authentication capability, Denial of Service
attack resistance and efficiency in the number of roundtrips. Furthermore, it
is helpful if the end-to-end protocol and the registration protocol support the
same credentials. These requirements motivate to reuse the HIP protocol for
the purpose of authentication, authorization and the establishment of a security
association. However, it should be noted that the establishment of an IPsec
security association is not necessary here.

To deal with mobility it is necessary to periodically refresh the state at the
firewall. The update of packet filters can either be sent directly to the firewall
or indirectly with the help of an end-to-end HIP exchange. The former might be
necessary for a data receiver installing packet filters to prevent unwanted traffic
from consuming an expensive wireless resource where the data receiver might
get charged for.

Factors giving an advantage to the HIP registration protocol are follows:

1. Reuses the same puzzle mechanism to prevent Denial of Service attacks.

2. The Initiator has to solve the puzzle in order to prove its interest in a suc-
cessful protocol exchange. This allows the Responder to delay state creation
until receiving 12. The puzzle is made up of the corresponding HITs and a
random number; the difficulty of the puzzle can be increased based on the
trust of the Initiator. This cookie mechanism prevents the Responder from
some Denial of Service attacks.

3. Provides an end-to-end authentication, using signature verifications.

4. Both the Initiator and the Responder can authenticate each other; Initiator
authenticates Responder in the R1 packet by verifying the signature using
HI(R) and the Responder authenticates the Initiator by verifying the signa-
ture of the I2 packet using HI (I).

5. Uses HMAC to protect the integrity of the messages and prevents DoS using
signature verifications.

6. Both the peers obtain the shared secret key and calculate the corresponding
derived keys using the authenticated Diffie-Hellmann exchange. Responder
uses one of the keys to calculate HMAC in the R2 packet in order to prove
the key confirmation.

7. Uses SPKI certificates (or SAML assertions) for authorization.

8. The Initiator may send the authorization certificate immediately after the 12
message, to be authorized by the middlebox. This is a significant improve-
ment in design of the middleboxes, as currently most middleboxes do not
provide authorization.

Traversing Middleboxes with the Host Identity Protocol 23

4.2 SPISIG Message

The generic registration protocol that we have introduced can be used for all
middleboxes that require authentication and authorization for a host-middlebox
binding. This is mostly the case for NATs and firewalls at network borders for
outgoing traffic. However, the firewall for the incoming traffic needs to maintain
state information for the host to forward its packets. The registration protocol
can be reused here between the incoming traffic firewall and the host to make
sure that the firewall maintains the proper state for the legitimate host. Even
after the registration, the state is still not complete as FW(R) is unable to
intercept SPI(R) sent in R2 and FW(I) is unable to intercept SPI(I) sent in I2
as was shown in Figure 1.

Initiator Network Responder Network
FW(R)

1.12 with SPI

S 2. R2 with SPI(R)
FW(I) and SPI(T)

Fig. 2. Extending the base exchange with I3.

One possible solution to this problem could be following. Once the Responder
receives the SPI (I) in message 12, it could resend the SPI (I) along with SPI(R)
in message R2. This could help the FW (I) intercept the SPI (I) information.
Since the receiver R has to remain stateless until the solution in I2 is verified,
the SPI(R) cannot be sent in R1 and hence not resent in I2. The only other
option would be to create a new message I3 as that carries the SPI(R) from the
Initiator to the Responder such that all middleboxes in the path can intercept
and form the flow identifier information for the receiver. However, such a solu-
tion of changing the base exchange messages for the sake of firewall traversal is
unsatisfactory and undesired.

I — FW(I) — R: Il C Trigger exchange

I—FW(R)—R:R1C

PUZZl67 {DH(R)v HI(R)7 HIPTransforma ESPTransforms}SIG
I—-FW({)—R:I2C

{Solution, SPI(I), DH(I), HI Pryansform, ESPrransform, {H(I)}}SIG
I —FW(R)— R:R2C{SPI(R),SPI(I),HMAC}SIG

I—- FW(I)— R:I3C{SPI(R), HMAC}SIG

24 Hannes Tschofenig et al.

An alternative solution could be that once the base exchange is complete
and a state is established at the communicating HIP hosts, the local host could
signal its firewall in a SPISIG message about the SPI value that it has chosen for
the particular security association. The firewall would have already intercepted
the IP and HIT values from the initial messages of the base exchange. It can
then create the flow identifier information using the SPI value that it obtains
from the hosts within the private network.

5 Formal Analysis

The protocol has been analyzed by means of formal method analysis using the
High Level Protocol Specification Language (HLPSL) - an expressive language
for modeling communication and security protocols.

We used the tool OFMC! (On-the-Fly Model-Checker), from the AVISPA
project [15] (Automated Validation of Internet Security Protocols and Applica-
tions”), which uses a rich specification language for formalizing protocols, secu-
rity goals, and threat models of industrial complexity.

The HIPSL file was then translated into an Intermediate format using an-
other tool named HLPSL2IF, which is a translator, which maps security protocol
specifications into rewriting systems. This intermediate format can be executed
to analyze the threats of the protocol. From the results, which we got, no attacks
were found for the following attacks:

— Man in the Middle Attack (MitM)

— Denial of Service attack (DoS)

Replay Attack

Server Authentication to the client (server spoofing)
Client Authentication to the server (client spoofing)

5.1 Informal Analysis

The HIP registration protocol uses an authenticated Diffie-Hellmann Key Ex-
change and generates session keys to defend against the Man-in-the-Middle at-
tacks. The Initiator provides key confirmation in the 12 packet by encrypting
the Host Identity and the Responder performs key confirmation by sending the
HMAC in the R2 packet. When the Initiator chooses anonymous HIs, the pro-
tocol suffers from the Man-in-the-Middle attacks. The usage of authorization
certificates provides a solution for this purpose but the formal modeling tool
will produce an error.

This protocol also provides some protection for the Initiator, since the mes-
sages from the Responder are signed. One potential problem could be the fol-
lowing case: R1 message contains the signature and the Initiator, first, has to
verify it. Here the Intruder might try some DoS attacks. But in order to launch
this attack the Intruder has to act as a Man-in-the-Middle adversary and act
quickly to send spoofed R1 packets.

! The tool is available on-line at http://www.avispa-project.org/web-interface/

Traversing Middleboxes with the Host Identity Protocol 25

I. 11 Trigger © 111 Packet

>
>

| 2a. R1 packet 2.R1 packet Q\
]Ir" _.,| < -+ w

2b. R1 packet
+——

A

Responder

Initiator

2e. R1 packet

Drop R1 from R and send
multiple R1 from M

Fig. 3. Sending multiple bogus R1 packets.

After the 12 message, the Responder may wait for the certificates. Here the
Intruder can send some bogus certificates with signatures and forcing the Re-
sponder to verify, this might cause DoS attacks. This kind of attack can be
resisted, if the responder is designed not to accept more than one certificate
during the base exchange.

Initiator Intruder M Responder

1. 11 Trigger 1. 11 Packet

‘2. R1 packet ~ 2. R1 packet ‘@w
NS

3. 12 packet 3. 12 packet

CER: [Cle]blGN(l) CER: [CI:.R]]S[GN(\’I)

Replacing I's ("I'RT
packet with M’s

Fig. 4. Sending bogus certificates.

This protocol uses an R1 counter to protect against replay attacks. The R1
generation counter is a monotonically increasing 64-bit value and this counter
indicates the current generation of puzzles. The system can avoid replay attacks
by simply increasing the value of the counter to show the validity of the packet.

26 Hannes Tschofenig et al.

The Initiator can check the counter to determine whether it received a new high
counter value or not. The server authenticates the client in the R1 packet by
sending his HI in clear text and also signs the message. The Initiator can verify
the HI and signature as it knows the Responder’s public key/HI from the DNS
look up.

Client authentication to the server can be done because the server verifies
the Initiator’s Public key/HI with the received HIT. Since HIT is the Hash of
the HI, after the receiving the I2 packet, the Responder can verify the Initiator’s
identity by cross checking the HIT and HI.

Thus, the registration protocol provides enough resistance to protect against
the above listed attacks.

5.2 Implementation

We have implemented a prototype for the registration protocol °. For simplic-
ity the current implementation assumes that the Initiator obtained the SPKI
certificate using an out-of-band mechanism ©.

We found out that the minimum memory needed for storing the state in-
formation at a middle-box is 2286 bytes. The approximate time taken for each
packet is summarized in table below. Computing the Diffie-Hellman derived ses-
sion key takes almost 80% of the time and signature verification takes 10% of

the time.

Packets 11 (ms) R1 (ms) I2 (ms) R2 (ms)
Creation 0.030 15 95 25
Processing 0.007 300 75 15

Table 1. Time taken for the packets.

A more detailed performance investigation is in progress. To establish an
arbitrary number of HIP sessions and to check the throughput and packet loss
requires some protocol enhancements. The current implementation establishes
a state, if there is a change in the IP address or in the HIT. Changing the IP
address or HIT for high-performance tests does not seem to be adequate. seems
really difficult in a short interval of time. A different session identification (added
for testing purpose to the HIP registration protocol) allows creating an arbitrary
number of concurrent exchanges.

5 We used two Pentium IT 266 Mhz Linux based machines as an Initiator and the
Responder (Middlebox), both of them residing in a single LAN.

5 The throughput between the Initiator and Responder, (measured by using ttcp) was
8.5 Mbps, the round trip time was 0.16 ms (measured with ping) and the average
time taken to complete the registration was approximately 0.94 seconds.

Traversing Middleboxes with the Host Identity Protocol 27

6 Conclusions

For a long time the focus of HIP was on solving problems affecting mainly the
endpoints. In future, the IETF HIP research group [17] will also address the
middlebox traversal problem for HIP. To avoid including a HIT into every data
packet and to provide end-to-end protection of data traffic, IPsec ESP is used
between the end points. Unfortunately, IPsec protected data traffic is known to
cause problems with middleboxes (particularly with regard to NAT traversal).
Middleboxes need to participate in the HIP signaling exchange to allow these
devices to perform their function. This interaction requires certain security goals
to be met. A solution can be complicated by a number of factors including routing
asymmetry, combination of different types of middleboxes and state updates due
to mobility. Our proposal tries to raise the attention of the community based on
a simple protocol proposal.

To enable HIP-aware middleboxes, we use a registration procedure. The reg-
istration procedure reuses the common base exchange mechanism, removing the
ESP transforms and SPI fields. Authorization functionality is added using SPKI
certificates or SAML assertions. It is a first step toward deployment of HIP
friendly NATs and firewalls that performs their functionality with enhanced se-
curity.

7 Acknowledgements

This document is a by-product of the Ambient Networks Project, partially
funded by the European Commission under its Sixth Framework Programme.
It is provided “as is ”and without any express or implied warranties, including,
without limitation, the implied warranties of fitness for a particular purpose. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Ambient Networks Project or the European
Commission.

References

1. Moskowitz R., Nikander P., Jokela P. and Henderson T., Host Identity Protocol
draft-ietf-hip-base-01.txt (work in progress), October 2004.

2. Ellison C., Frantz B., Lampson B., Rivest R., Thomas B. and Ylnen T., SPKI
Certificate Theory . RFC 2693, September 1999.

3. Maler, E., Philpott R., and Mishra P., Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) V1.1 , September 2003.

4. Kivinen, T., Swander, B., Huttunen, A. and Volpe, V., Negotiation of NAT-
Traversal in the IKE, RFC 3947, January 2005.

5. Huttunen A., Swander, B., Volpe, V., DiBurro, L. and Stenberg M., UDP Encap-
sulation of IPsec ESP Packets . RFC 3948, January 2005.

6. Kaufman, C., Internet Key Exchange (IKEv2) Protocol. draft-ietf-ipsec-ikev2-
17.txt (work in progress), September 2004.

28

10.

11.

12.

13.

14.

15.

16.

17.

18.

Hannes Tschofenig et al.

Ylitalo, J., Melen, J., Nikander, P. and V. Torvinen Re-thinking Security in IP
based Micro-Mobility ~7th Information Security Conference (ISC-04), Palo Alto,
September 2004.

Automated Validation of Internet Security Protocols and Applications (AVISPA)
1ST-2001-39252, Deliverable v1.0, November, 2003.

Moore K., Things that NATs break Unpublished,

http://www.cs.utk.edu/ moore/what-nats-break.html, October. 2003.

Aboba B. and Dixon W., IPsec-Network Address Translation (NAT) Compatibility
Requirements RFC 3715, March 2004.

Ylitalo, J., P. Jokela, J. Wall and P. Nikander., End-point Identifiers in Secure
Multi- Homed Mobility in Proc. of the 6th International Conference On Principles
Of DIstributed Systems (OPODIS 02), pp. 17-28, France, Dec., 2002.

Giving K. and Francis P., Network Address Translator RFC 1631, May 1994.
Next Steps in Signaling (nsis) Working Group Charter
http://www.ietf.org/html.charters/ nsis-charter.html (February 2005).

Kent S. and Atkinson R., IP Encapsulating Security Payload, RFC2406, November
1998.

Automated Validation of Internet Security Protocols and Applications Webpage,
http://www.avispa-project.org/, (February 2005).

Kent, S. and Seo K., Security Architecture for the Internet Protocol, draft-ietf-
ipsec-rfc2401bis-05.txt, (work in progress), December 2004.

Host Identity Protocol (HIP) IRTF Research Group,
http://www.irtf.org/charters/hip.html (February 2005)

Jokela P, Moskowitz R, Nikander P, Using ESP format with HIP draft-jokela-hip-
esp-00.txt (work in progress), Febrauary 2005.

An Investigation of Unauthorised Use of Wireless
Networks in Adelaide, South Australia

Phillip Pudney & Jill Slay

School of Computer and Information Science
Advanced Computing Research Centre
University of South Australia
Mawson Lakes, South Australia
phillip@pudney.net.au & Jill.Slay@unisa.edu.au

Abstract. While it is known that wireless networks experience unauthorised
connections, little is known about the nature or frequency of the connections.
This study seeks to investigate the unauthorised use of wireless networks, and
to dispel the myth that attacks on wireless networks are simply an attempt to
obtain Internet access. Three wireless honeypots were deployed to collect data
about unauthorised use of wireless networks in the Adelaide CBD. The data
collected from the honeypots was then analysed for trends and evidence of ma-
licious activity. The results of the study show that insecure wireless networks
regularly experience unauthorised activity, ranging from harmless probes
through to intrusion attempts.

1. Introduction

Wireless network technology has enabled true mobile computing, by allowing a re-
mote user to connect to a corporate computer network from anywhere within the cov-
erage area of the wireless network. It is convenient, easy to use, inexpensive and
throughput is now comparable to wired networks, and hence wireless networks have
become an attractive option to corporate users and consumers alike. Accordingly, the
growth in wireless hardware sales has sharply increased in the past few years as it is
being used as both to complement and to replace wired networks. However, as wire-
less networks become ubiquitous, concerns about their security are escalating.

This paper discusses how honeypots can be used to investigate unauthorised use of
wireless networks based on the IEEE 802.11 standard. It describes the results of a
study conducted by the authors, who deployed a series of wireless honeypots to ascer-
tain the extent of attacks on wireless networks in Adelaide.

To contextualise the problem, the next sections briefly discuss wireless networks
and the security of wireless networks. Next, the concept of honeypots are introduced,
including how they can be applied to wireless technology, and what research is cur-
rently being undertaking using the technology. The details and results of a study con-
ducted by the researchers are then discussed. Finally, the paper concludes with a dis-
cussion about the results and further research that can be conducted using wireless
honeypots.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 29-39, 2005.
© Springer-Verlag Berlin Heidelberg 2005

30 Phillip Pudney and Jill Slay

2. Wireless Network Insecurity

The IEEE 802.11 standard defines two modes of operation—ad-hoc mode, where
communication occurs directly between wireless clients, or infrastructure mode,
where all communication passes through an access point (AP) that often connects to a
wired network. The advantage of this is that clients on the wireless network can
communicate with clients on the wired network and vice-versa.

However unlike wired networks, wireless networks cannot be protected through
physical security. Signals from wireless networks can pass through walls and physical
obstacles, and can propagate beyond the physical confines of the environment in
which the wireless network was intended to operate. Consequently, these signals can
be intercepted by anyone within range. An infrastructure wireless network without se-
curity can potentially expose the wired network, making it a valuable target to attack-
ers.

2.1 IEEE 802.11 Security Controls

The 802.11 designers recognised the inherent differences between the wired and wire-
less environments [7] and included the Wired Equivalent Privacy (WEP) protocol.
WEP was designed to provide security equivalent to that of wired networks [5]. How-
ever numerous flaws in the WEP protocol have since been exposed. The result is that
a WEP key can be recovered in as little as a few hours [7]. Several freely available
tools have been released that automate recovery of WEP keys, including WEPCrack
and AirSnort.

Authentication is provided by one of two mechanisms—open system authentica-
tion or shared key authentication. Open system authentication is essentially a null au-
thentication process, granting access to any request to associate with the wireless net-
work and provides no security at all. Shared-key authentication on the other hand uses
a challenge and response along with a shared secret key to authenticate a client. How-
ever, the key is the same as that used by WEP, and the protocol is vulnerable to a pas-
sive attack [2]. Moreover, it is not capable of differentiating between individual users,
and it does not protect against rogue access points since authentication is only per-
formed in one direction and is not mutual.

Apart from the security controls included in the 802.11 standard, some hardware
vendors have implemented other security mechanisms, including MAC-based access
control lists, ‘closed system’ authentication, and security that operates at higher net-
work layers such as virtual private networks (VPNs). However, few of these solve the
current security problems wireless networks.

Last year, the IEEE approved 802.11i to address the embarrassing security flaws in
the original 802.11 standard. 802.11i defines two mechanisms, Temporal Key Integ-
rity Protocol (TKIP) and Counter mode with CBC-MAC Protocol (CCMP). TKIP is
an immediate replacement for WEP and is designed to run on existing hardware.
CCMP is seen as the long-term solution for wireless LAN security. It adds the Ad-
vanced Encryption Scheme (AES) and bears little resemblance to WEP.

An Investigation of Unauthorised Use of Wireless Networks in Adelaide 31

2.2 Trends in Wireless Security

Despite the flaws in the original 802.11 security controls, they still function as a de-
terrent against casual network attacks. However, many organisations who use wireless
network technology are not even implementing rudimentary security. In a study con-
ducted of wireless networks in Australian CBDs, Hannan & Turnbull [4] discovered
that of 729 operational wireless networks detected, only half implement 802.11°s
WEP, while at least 15% had failed to implement any security at all.

There are few reports of wireless networks being exploited, even though the weak-
nesses have been well publicised [1]. However ‘war driving’, the practice of driving
around looking for wireless networks [10], is well documented in the literature. A
search on the subject using popular Internet search engine Google returns about quar-
ter of a million results!

Despite what is understood about the weaknesses and attacks of wireless networks,
only a modest amount of research has focused on determining the extent of attacks.
Particulars about the frequency of attacks, the number of attackers, methods of intru-
sion, and the motivations of attacks remain uncertain.

There are several ways in which data can be collected to ascertain the extent of at-
tacks on wireless networks. These include collating data from case studies of actual
attacks, or using security tools like intrusion detection systems (IDS). However, a
more suitable method is to use honeypots—a relatively new concept in security.
Honeypots are systems that appear to be an interesting target to hackers, but actually
gather data about them.

3. Honeypots

The concept was described in the literature as far back as 1990, in Stoll’s book ‘The
Cuckoo’s Egg’ [13] that discusses a series of true events where an attacker who infil-
trated a computer system was monitored. A paper by Cheswick [3] describes a system
that was built to be compromised by an intruder, and to study what threatening activ-
ity was happening on the network. His paper documents the first case of a true honey-
pot [12]. However, freely available honeypot solutions did not exist until the Decep-
tion Toolkit was released in 1997. Since then, honeypots have evolved and are
starting to be accepted as a legitimate network security tool.

Spitzner, moderator of the honeypots mailing list and one of the leading honeypot
experts, defines a honeypot as “an information system resource whose value lies in
unauthorised or illicit use of that resource”. Essentially, it is a resource that has no
production value on a network. Since it only imitates production resources and does
not contain any critical data, it should see no network activity. Any interaction with a
honeypot is therefore likely to be unauthorised, malicious activity, such as a probe or
port scan [11].

This is a contrast from most security tools, which set out to address specific prob-
lems. For example, firewalls are deployed around a network perimeter to control con-
nections into and out of the network. IDSs detect attacks by monitoring network ac-
tivity [12]. An IDS inspects all frames on a production network, and compares them
to a set of predefined rules. If a rule is matched, then an alert is triggered. IDSs do not

32 Phillip Pudney and Jill Slay

always accurately report an intrusion, and often generate masses amounts of false
positives. Furthermore, for an IDS to recognise an attack, a signature must exist for
the specific attack. If no signature exists, then an intrusion detection system has no
way of triggering an alert. Since a honeypot should not see any network traffic, all
connections are, in theory, unauthorised, and therefore data that is logged is almost
certainly the result of a probe or an attack on the system.

A common misconception about honeypots is that their purpose is to lure attackers.
However, since a honeypot has no legitimate business, an attacker would need to ac-
tively search for the resource and try to compromise it at their own will.

3.1 Types of Honeypots

Honeypots generally fall into one of two categories—production and research [11].
Production honeypots are systems that that help to secure networks. They can provide
systems for prevention, detection and response to intrusions. Research honeypots, the
focus of this paper, contribute little to the direct security of a network. Instead, they
offer value through their information gathering capabilities. They are concerned with
providing a platform to study threats. This is what makes honeypots a useful method
for gaining intelligence about attacks on wireless networks.

Honeypots are often characterised by the level of interaction they afford to attack-
ers. Low-interaction honeypots work by emulating operating systems and the services
that run on the system. They expect a specific type of behaviour, and are programmed
to react in a predetermined way.

High-interaction honeypots on the other hand do not simulate an environment, but
instead involve real operating systems and applications. They make no assumptions
about how the attacker will behave, allowing a researcher to learn the full extent of
their behaviour since they make no assumptions about how the attacker will interact
with the system where all activity is captured.

Clearly, high-interaction honeypots are the most desirable for researching attackers
since they are capable of providing a vast amount of information. However since the
attacker has access to a real operating system, the level of risk is much greater than
that of a low-interaction honeypot. There is more that can go wrong, and there is a
possibility that the attacker can use the honeypot to attack other systems. Conse-
quently, the researchers chose to use a low-interaction honeypot for the study, since it
was concerned with the bigger picture, and not how an attacker interacts with an indi-
vidual system.

4. Previous Research Using Wireless Honeypots

There appears to be very little data about the extent and nature of attacks on wireless
networks, apart from a handful of case studies where attackers have been caught.
That’s not to say that organisations are not collecting data for their own use—but it is
not being published in the literature.

An Investigation of Unauthorised Use of Wireless Networks in Adelaide 33

Four studies in particular have provided researchers with some insight into unau-
thorised use of wireless networks. However, none provide substantial detail about the
extent of unauthorised use.

In the middle of 2002, the first organised wireless honeypot was documented. Re-
searchers at the US government contractor Science Applications International Corpo-
ration (SAIC) set up the Wireless Internet Security Experiment (WISE) to ‘develop
effective information security, intrusion detection, and incident response, and forensic
methodologies for wireless networks’ according to the project’s web page [6]. The
page appears to have since been taken offline. In an article by Poulsen [9], the net-
work was reported to consist of five access points and a handful of deliberately vul-
nerable computers as bait at a secret location in Washington D.C. After details about
WISE were leaked in 2002, no literature or results of the experiment have appeared
since.

Not long after, a similar study was conducted by Tenebris Technologies Inc. over a
three month period in Ottawa, Canada [14]. The study consisted of a single wireless
honeypot located in an undisclosed area outside of the area’s central business district.
During the three months that the wireless honeypot was active, it logged 40 wireless
associations on 10 different days. One of the associations was reported to have clearly
been an intrusion with criminal intent. During the intrusion, the attacker spent 20
minutes attempting to access various web sites, performing port scans and trying to
connect to particular services on the honeypot network. A port scan is often used for
reconnaissance by would-be intruders to determine what hosts exist on a network, and
what services they are running. Given enough information, the hacker could deter-
mine vulnerabilities in the hosts on the network and exploit them. This figure would
have undoubtedly been much higher had the honeypot been in the central business
district, where the concentration of wireless networks is much higher and therefore
more attractive to an attacker.

In June 2003, Turnbull, Nicholson & Slay conducted an experiment where they
deployed a honeypot attached to a wireless network in the CBD of the City of Ade-
laide for two weeks [15]. During the two week period that the honeypot was capturing
data, two attempts were made to connect to the honeypot. One of the attempts was
possibly the result an accidental connection. The second attempt, where the intruder
initiated a port scan, was more likely to be targeted with malicious intent.

It is evident from previous studies that wireless networks are being attacked. How-
ever, none involve the widespread deployment of honeypots to ascertain the full ex-
tent of unauthorised use.

5. Experiment Details

The study was conducted by deploying wireless honeypots around the Adelaide CBD
between October 2004 and January 2005.

For this experiment, the researchers decided to place honeypots at three different
locations. The rationale was that having honeypots at different locations allowed a
much greater area to be studied. Furthermore, the results from each of the locations
could be compared to determine if the same client interacted with more than one wire-

34 Phillip Pudney and Jill Slay

less honeypot, and to ascertain any trends based on the surrounding environment. Fig.
1 shows the location of each of the wireless honeypots.

Ty e
— ot

[}

|

Aelaite

!

C § Byrilt Park

g, Ayl Pad
A=

Pade Lands <]
A
|‘~.___________.———-—-
WAKEFIELD
bl e—

!l victora

Rageco,

Fig. 1. Map showing the location of the three wireless honeypots

Site 1 was located on the fourth floor of a building at the University of South Aus-
tralia’s City West Campus on North Terrace. Site 2 was placed on the third floor of
building on Currie Street. The area immediately surrounding it is densely populated
with office buildings, and the access point was placed in the corner of the building
with an unobstructed view for many kilometres to the west, and views to adjacent
streets. Site 3 was located on the ground floor of a school building on South Terrace.
One side of South Terrace is occupied by parklands. The other side is a combination
of residential units, business offices and motels, with ample roadside parking avail-
able during the daytime and evening.

At each site, a survey was conducted to establish the number of nearby wireless
networks. At both site 1 and site 2, three other wireless networks were detected, while
no wireless networks were detected at site 3.

Each wireless honeypot consisted of the honeypot itself, which was attached to a
wireless access point (refer to Fig. 2). To ensure minimal exposure to risk, the wire-
less honeypot was isolated from any network, and was not connected to the Internet.

A Netgear WG602 access point with a 2dBi antenna was used at each site. The ac-
cess point was configured to broadcast its SSID, and no security was configured to
simulate an out-of-box wireless network installation.

An Investigation of Unauthorised Use of Wireless Networks in Adelaide 35

Ethernet

Honeypot

Fig. 2. Honeypot design

Honeyd was installed on each honeypot. Honeyd is an open-source, low-interaction
honeypot daemon developed by Niels Provos from the University of Michigan. It cre-
ates virtual hosts on a network that emulate numerous operating systems. For each
virtual host, an arbitrary number of services can be configured. Service scripts, which
provide an environment through which an attacker interacts with applications, can be
customised or written from the ground up in almost any language supported by the
host operating system. Furthermore, multiple virtual hosts can listen for activity si-
multaneously, effectively allowing Honeyd to simulate an entire network running a
variety of different operating systems with different applications. A DHCP daemon
was installed on the honeypot to automatically issue IP addresses to wireless clients
that connected to it.

A wireless network card was also installed in each honeypot. This was used to cap-
ture all network traffic that was transmitted to or from the access point. The capture
dumps were later analysed to determine the number of unauthorised connections and
evidence of malicious activity.

6. Results

To discover and connect to wireless networks, clients transmit probe requests to
which an active wireless network responds. Many war driving tools also transmit
probes in an attempt to locate insecure wireless networks. The responses to these
probe requests were captured together with the MAC address of the client to deter-
mine how many unique clients interacted with the access point connected to each of
the honeypots. A summary of the number of unique clients seen is shown in Table 1.

36 Phillip Pudney and Jill Slay

Table 1. Number of unique clients that interacted with each wireless honeypot

Honeypot Number of Period inlser‘zzzzﬁ)ens
yp unique clients | (days)

per day
Site 1 400 88 4.5
Site 2 562 89 6.3
Site 3 40 64 0.6

While these figures do not suggest malicious activity, they do show that there are a
high number of active wireless network devices, each capable of making an unauthor-
ised connection or participating in malicious activity. They also suggest that the like-
lihood of interaction is much higher where other wireless networks are detected
nearby, compared to when there are none.

Of those clients who interacted with the wireless honeypots, a list of those that
connected to the honeypot was also generated (refer to Table 2).

Table 2. Unauthorised connections experienced by each wireless honeypot

Unauthorised Average connections % of
Honeypot . . .
connections per week interactions
Site 1 26 1.0 6.5
Site 2 102 10.6 18.1
Site 3 6 0.7 15.0

All of the three wireless honeypots experienced unauthorised connections, and be-
tween 6.5% and 18.1% of wireless clients that interacted with the access point con-
nected without authorisation. More significantly, up to 10.6 unauthorised connections
(on average) were counted by the honeypot immersed by surrounding wireless net-
works.

The results show that an insecure wireless network will inevitably experience un-
authorised connections, and that a wireless network near other active wireless net-
works is at a much higher risk. Each unauthorised connection was further analysed to
ascertain the nature of the connection.

The analysis showed that the majority of unauthorised connections attempted to
access Internet hosts, evident by attempted DNS queries originating from the connect-
ing clients. In most cases, DNS queries were for:

e popular web sites, such as www.google.com or www.yahoo.com;

¢ instant messaging (IM) applications;

e software update sites—predominantly Windows Update, although several other
sites for security software updates were also present;

e peer-to-peer download sites, such as those using the BitTorrent protocol; and

e e-mail servers.

Each unauthorised connection to the wireless honeypots was investigated for evi-
dence of intrusion and malicious activity. Activities such as port scans, attempts to
penetrate the wireless honeypot’s virtual hosts, or other unusual behaviour were iden-
tified. Identification was undertaken by scrutinising the type of and sequence of inter-

An Investigation of Unauthorised Use of Wireless Networks in Adelaide 37

actions in the Honeyd log files and capture dumps for each unauthorised connection.
The results of the investigation are shown in Table 3.

Table 3. Malicious connections experienced by each honeypot

Malicious % of unauthorised
Honeypot . .
connections connections
Site 1 0 0
Site 2 3 29
Site 3 2 333

In total, five malicious connections were identified, with two out of three honey-
pots experiencing an attack. This clearly indicates that the risk of an insecure wireless
networks suffering an intrusion is high and cause for concern. Furthermore, the results
show a trend where the risk of connections that result in an intrusion is inversely pro-
portional to the number of nearby wireless networks.

7. Discussion

The fact that the wireless honeypots were not connected to the Internet limited con-
clusions that could be drawn from the connections. However, the researchers believe
that most connections were not malicious, and were the cause of innocent users acci-
dentally connecting to the access point (and in many cases, without knowing that they
had done so). This agrees with a survey conducted mid-2002 [8], where the greatest
percentage of wireless security incidents reported by participating organisations was
users connecting to wrong access points.

Nevertheless, many business-class Internet connections include download caps that
limit the amount of data that can be downloaded over the connection per month. Data
usage in excess of these caps often incurs excess usage charges. Even if an unauthor-
ised connection is not intended to be malicious, this study confirms that most unau-
thorised connections lead to theft of bandwidth, potentially costing organisations with
insecure wireless networks charges for excess data.

The problem is partly because some wireless software can be set to automatically
connect to any available wireless network. As soon as a wireless client is within range
of an access point, it automatically associates with it. Consequently, clients connect-
ing to wrong access points may suffer disruptions to their network and Internet con-
nectivity. Furthermore, users often do not use a host-based firewall to control access
through their wireless network interface since they treat it as ‘trusted’. Each time they
connect to an un-trusted wireless network, they risk intrusion from black hats con-
nected to the same network, or infection from worms and other malware. These could
be spread to their own network when the infected client connects.

Clearly, the number of unauthorised connections experienced by the honeypots in
this study shows that operators of wireless networks need to implement security, even
if it is the minimal WEP. In three months, two out of the three honeypots experienced
multiple intrusions with malicious intent that could have resulted in loss or theft of
valuable data, external attacks, or worse. Organisations also need to develop security

38 Phillip Pudney and Jill Slay

policies to prohibit wireless clients from connecting to any available wireless net-
works.

8. Further Research

The increase in the number of wireless “hot spots” has created unique security prob-
lems. Hot spots enable wireless Internet access from areas outside of the corporate
wireless network, such as from parks, coffee shops and hotels.

Authentication to a hot spot provider typically occurs at a gateway between the
wireless network and the provider’s Internet connection rather than at the access point
itself. However, few hot spot providers support encryption. Since authentication is not
performed at the access point, an attacker can associate with the hot spot network and
intercept the unencrypted traffic without the need for a network account. Furthermore,
systems that do not have a firewall installed to protect the wireless interface may be
vulnerable to intrusion by attackers via the hot spot wireless network.

Hot spot problems may be merely academic since no literature is currently avail-
able to prove or disprove the theory. Research wireless honeypots could be deployed
within hot spot networks to survey whether or not the problem exists, and production
honeypots could be used to deter would-be attackers or to monitor and deny access to
them.

Honeypots could also be used in emerging wireless technologies such as Bluetooth
and 3G mobile networks to provide a broader representation of wireless crime.

9. Conclusion

A number of weaknesses in 802.11 wireless network security allow intruders to inter-
cept confidential data and illegally connect to networks, while some implement no se-
curity at all.

The results of the study showed that over a period of 89 days, up to 562 unique
computers interacted with the access point connected to one of the honeypots. Be-
tween 6.5 and 18.1% of computers established an unauthorised connection. In gen-
eral, an unauthorised connection resulted in Internet traffic and bandwidth theft. In
most cases, unauthorised connections appeared to be accidental. However two out of
three wireless honeypots experienced intrusions with malicious intent.

It is imperative that steps are taken to secure wireless networks. Furthermore, secu-
rity policies need to be developed to ensure that wireless clients configured so that
they do not automatically connect to un-trusted wireless networks.

References

1. Arbaugh, WA 2003, 'Wireless security is different', Computer, vol. 36, no. 8, August 2003,
pp- 99-101.

An Investigation of Unauthorised Use of Wireless Networks in Adelaide 39

2. Arbaugh, WA, Shankar, N & Wan, YCJ 2002, 'Your 802.11 wireless network has no
clothes', I[EEE Wireless Communications, December 2002, pp. 44-51.

3. Cheswick, B 1990, 'An evening with Berferd in which a cracker is lured, endured, and stud-
ied', in Proceedings of USENILX, January 20 1990.

4. Hannan, M & Turnbull, B 2004, 'Wireless network security in Australia: A study of 7 Aus-
tralian capital cities', in Proceedings of PACIS 2004, Shanghai, China.

5. IEEE 1999, ANSI/IEEE Std 802.11, 1999 Edition, LAN MAN Standards Committee of the
IEEE Computer Society, USA.

6. Lemos, R 2002, Catching wireless hackers in the act, updated 02/09/2002, ZDNet Australia,
viewed 10/03/2004,
<http://www.zdnet.com.au/news/security/0,2000061744,20267853,00.htm>.

7. Petroni, NL & Arbaugh, WA 2003, 'The dangers of mitigating security design flaws: a wire-
less case study', IEEE Security & Privacy Magazine, vol. 1, no. 1, pp. 28-36.

8. Phifer, L 2002, 'Understanding wireless LAN vulnerabilities', Business Communications Re-
view, no. September 2003, September 2003, pp. 26-32.

9. Poulsen, K 2002, Wi-Fi honeypots a new hacker trap, updated 29/07/2002, SecurityFocus,
viewed 23/02/2004, <http://www.securityfocus.com/news/552>.

10. Shipley, P 2001, Open WLANSs: the early results of wardriving, viewed 25/08/2004,
<http://www.dis.org/filez/openlans.pdf>.

11. Spitzner, L 2003a, Honeypots: definitions and value of honeypots, updated 29/04/2003,
viewed 10/03/2004, <http://www.tracking-hackers.com/papers/honeypots.html>.

12. Spitzner, L 2003b, Honeypots: tracking hackers, Addison-Wesley, Boston.

13. Stoll, C 1989, The Cuckoo's Egg: tracking a spy through the maze of computer espionage,
Pan Books, London.

14. Tenebris Technologies Inc. 2002, Tenebris Wireless Honeypot Project: Assessing the threat
against wireless access points, updated 19/11/2002, Ottawa, Canada, viewed 4/08/2004,
<http://www.tenebris.ca/docs/TWHP20021119.pdf>.

15. Turnbull, B, Nicholson, D & Slay, J 2003, 'Wireless Network Security - A Practical Sum-
mary of 802.11b in Adelaide, Australia', in Proceedings of 4th Australian Information War-
fare & IT Security Conference, Adelaide, Australia, 20-21 November 2003.

An Efficient Solution to the ARP Cache Poisoning
Problem

Vipul Goyal and Rohit Tripathy

OSP Global, Town Center, Andheri(E),
Mumbai, India
{vgoyal, rtripathy}@ospglobal.com

Abstract. ARP cache poisoning is a long standing problem which is known to
be difficult to solve without compromising efficiency. The cause of this prob-
lem is the absence of authentication of the mapping between IP addresses and
MAC addresses. Due to lack of the required authentication, any host on the
LAN can forge an ARP reply containing malicious IP to MAC address mapping
causing ARP cache poisoning. In fact, there are a number of tools freely avail-
able on the internet using which, even a newbie can launch such an attack. In
this paper, we present a new cryptographic technique to make ARP secure and
provide protection against ARP cache poisoning. Our technique is based on the
combination of digital signatures and one time passwords based on hash chains.
This hybrid system prevents the ARP cache poisoning attack while maintaining
a good system performance at the same time.

1 Introduction

Local Area Networks running TCP/IP over Ethernet are the most common networks
these days. Each host on such a network is assigned an IP address (32 bits). Hosts
also posses a network interface card (NIC) having a unique physical address (48 bits)
also called the MAC address. For the final delivery of any packet destined to some
host, its MAC must be known to the sender. Thus, the address resolution protocol is
used to resolve an IP address into a MAC address. Resolved addresses are kept in a
cache so as to avoid unnecessary work for already resolved addresses every time they
are needed. Resolution is invoked only for entries expired or absent from the cache,
otherwise cache entries are used.

The ARP Poisoning attack involves maliciously modifying the association between
an IP address and its corresponding MAC address so as to receive the data intended
to someone else (victim). By performing ARP poisoning, an attacker forces a host to
send packets to a MAC address different from the intended destination, which may
allow her to eavesdrop on the communication, modify its content (e.g., filtering it,
injecting commands or malicious code) or hijack the connection. Furthermore, when
performed on two different hosts at the same time, ARP poisoning enables an adver-
sary to launch a “man in the middle” (MiM) attack. With MiM attacks, the traffic
between two hosts is redirected through a third one, which acts as the man in the
middle, without the two knowing it. The MiM may simply relay the traffic after in-

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 40-51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Solution to the ARP Cache Poisoning Problem 41

specting it or modify it before resending it. Note that MiM attacks are also possible at
various other network layers. ARP cache poisoning allows performing such an attack
at data link layer.

ARP Cache poisoning can also be used to launch a Denial-of-Service (DoS) attack
[20]. Furthermore, this attack is not just confined to Ethernet networks but layer 2
switched LANs and 802.11b networks are also vulnerable. In [2], various scenarios
are described where a wireless attacker poisons two wired victims, a wireless victim
and a wired one, or two wireless victims, either through different access points or a
single one. Even a newbie can launch sophisticated poisoning attack using easily
available tools and tutorials on internet, [5, 7, and 10].

In this paper, we propose a solution to the ARP cache poisoning problem based on
an extension of the ARP protocol. We introduce a set of functionalities that enable an
integrity and authenticity check on the content of ARP replies, using a combination of
digital signatures and one time passwords based on hash chains.

Rest of the paper is organized as follows. Section 2 illustrates the problem consid-
ered in this paper and recalls how ARP works and why it is vulnerable to cache poi-
soning. Section 3 discusses the related work. Section 4 describes the proposed solu-
tion. Section 5 concludes the paper.

2 Problem Definition

2.1 Address Resolution Protocol

Hosts and applications in a network work with domain names which are converted to
the IP address by a DNS server. But once packets containing application data arrive
on the local Ethernet network of the host, they can be transmitted only if the MAC
address buried in the NIC of the destination host is known to the switch. Thus a con-
version is needed from IP addresses to MAC addresses and vice versa. This conver-
sion is done by the Address Resolution Protocol or ARP in short [8, 6].

ARP works as follows. When a host needs to send an IP datagram as an Ethernet
frame to another host whose MAC address it does not know, it broadcasts a request
for the MAC address associated with the IP address of the destination. Every host on
the subnet receives the request and checks if the IP address in the request is bound to
one of its network interfaces. If this is the case, the host with the matching IP address
sends a unicast reply to the sender of the request with the <IP address, MAC address>
pair. Every host maintains a table of <IP, MAC> pairs, called the ARP cache, based
on the replies it received, in order to minimize the number of requests sent on the
network. No request is made if the <IP, MAC> pair of interest is already present in
the cache. ARP cache entries have a typical lifetime of 20 minutes, after which the
entry should be refreshed.

In ARP, a reply may be processed even though the corresponding request was
never received, i.e., it is a stateless protocol. When a host receives a reply, it updates
the corresponding entry in the cache with the <IP, MAC> pair in the reply. While a
cache entry should be updated only if the mapping is already present, some operating

42 Vipul Goyal and Rohit Tripathy

systems, e.g., Linux and Windows, cache a reply in any case to optimize perform-
ance.

2.2 ARP Cache Poisoning

Since ARP replies are not authenticated, an attacker can send an ARP reply contain-
ing a malicious <[P, MAC> association to any host on the network thus poisoning the
ARP cache of that host. The attacker may supply her MAC address in the sent mali-
cious association which enables her to receive all the packets sent by that host to the
IP address specified in the association. This way the attacker may receive all the
frames originally directed to some other host. If also the cache of the real destination
host is poisoned, both communication flows are under the attacker's control. In this
situation, the attacker could launch a man in the middle, where she can forward the
received packets to the correct destination after inspecting and possibly modifying
them. The two end points of the communication will not notice the extra hop added
by the attacker if the packet TTL is not decremented.

Although cache can easily be poisoned when there is an entry in the cache for the
targeted IP address, some operating systems, e.g. Solaris, will not update an entry in
the cache if such an entry is not already present when an unsolicited ARP reply is
received. Although this might seem a somewhat effective precaution against cache
poisoning, the attack is still possible. The attacker needs to trick the victim into add-
ing a new entry in the cache first, so that a future (unsolicited) ARP reply can update
it. By sending a forged ICMP echo request as if it was from one of the two victims,
the attacker has the other victim create a new entry in the cache. When the other vic-
tim receives the spoofed ICMP echo request, it replies with an ICMP echo reply,
which requires resolving first the IP address of the original ICMP request into an
Ethernet address, thus creating an entry in the cache. The attacker can now update it
with an unsolicited ARP reply.

3 Related Works

ARP-based attacks are not easily prevented in current architectures. There are a hand-
ful of actions often recommended for mitigation. The first of these is employing static
ARP, which renders entries in an ARP cache immutable. Thus any address resolution
protocol is not employed at all. This is currently the only true defense [17], but is
impractical. Windows machines ignore the static flag and always update the cache. In
addition, handling static entries for each client in a network is unfeasible for all but
the smallest networks. An administrator must deploy new entries to every machine on
the network when a new client is connected, or when a network interface card (NIC)
is replaced. Furthermore, this prevents the use of some DHCP configurations which
frequently change MAC/IP associations during lease renewal.

The second recommended action is enabling port security on the switch. Also
known as MAC binding, this is a feature of high-end switches which ties a physical
port to a MAC address. This fixed address can be manually set by the administrator to

An Efficient Solution to the ARP Cache Poisoning Problem 43

a range of one or more addresses, or can be auto-configured by the switch during the
first frame transmission on the port. These port/address associations are stored in
Content Addressable Memory (CAM) tables [15], a hardware-based reverse lookup
device. A change in the transmitter’s MAC address can result in port shutdown, or
other actions as configured by the administrator. However, port security is far from
ubiquitous and does nothing to prevent ARP spoofing [16]. Consider a man-in-the-
middle attack as presented in [11]. An attacker X only needs to convince victim A to
deliver frames meant for B to X, and vice versa for victim B. When sending forged
ARP replies to achieve this, at no time must X forge its MAC address — only the
cache of the clients is manipulated. Port security validates the source MAC in the
frame header, but ARP frames contain an additional source MAC field in the data
payload, and it is this field that clients use to populate their caches [6]. It should be
said, however, that port security does prevent other attacks mentioned in [11] such as
MAC flooding and cloning.

Virtual LANs (VLANSs) create network boundaries which ARP traffic cannot
cross, limiting the number of clients susceptible to attack. However, VLANs are not
always an option and have their own set of vulnerabilities as detailed in [18].

Arpwatch [11] allows notification of MAC/IP changes via email. IDS and personal
warn the user that the entry in the cache is changed. In these solutions, the decision is
left to the user and his/her awareness. Given the particularly sophisticated level of
operation in this case, it is doubtful that the average user will take the proper actions.
Still, detection is an important step in mitigation. Solutions such as a centralized ARP
cache or a DHCP server broadcasting ARP information, as they are deployed in IP
over ATM networks [4], have their own problems as the attacker could spoof the
source of the broadcast and poison the whole LAN [12].

Some kernel patches exist that try to defend against ARP poisoning. “Anticap” [1]
does not update the ARP cache when an ARP reply carries a different MAC address
for a given IP from then one already in cache and will issue a kernel alert that some-
one is trying to poison the ARP cache. “Antidote” [9] is more sophisticated. When a
new ARP replies announcing a change in a <IP, MAC> pair is received, it tries to
discover if the previous MAC address is still alive. If the previous MAC address
replies to the request, the update is rejected and the new MAC address is added to a
list of “banned” addresses. If Antidote is installed, an attacker may spoof the sender
MAC address and force a host to ban another host.

The only kernel patch which assures mutual authentication between the requester
and the replier even on the first message is Secure Link Layer [3]. SLL provides
authenticated and encrypted communication between any two hosts on the same
LAN. SLL requires a Certification Authority (CA) to generate SLL certificates for all
legitimate hosts on the network. SLL handles authentication and session key ex-
change before any messages are transferred from one host to another. Elliptic curve
cryptography algorithms are used for both operations. SLL defines three authentica-
tion messages that hosts send each other to perform mutual authentication and session
key exchange. After authentication, the payload data field of all Ethernet frames sent
between two hosts is encrypted with Rijndael using a 128-bit key and 128-bit long
blocks. However, such a mechanism is too slow and complex for the purpose of
ARP. Mutual authentication between two hosts is sufficient for avoiding ARP poison-
ing. Encrypting ARP replies does not yield any additional security since the associa-

44 Vipul Goyal and Rohit Tripathy

tion between IP and MAC addresses should be public. Furthermore, SLL also main-
tains all the cryptographic keys in kernel-space. Note that the amount of memory
required could be considerable in case of class B networks. It is not recommended to
use kernel memory with information that could be as well managed in user space,
such as keys. Hence although SLL is sufficiently secure, it has an unacceptable im-
pact on the system performance.

S-ARP was recently proposed [12]. Each host has a public/private key pair certi-
fied by a local trusted party on the LAN, which acts as a Certification Authority. Each
ARP reply is digitally signed by the sender, thus preventing the injection of malicious
replies. At the receiving end, the cache entry is updated if and only if the signature is
correctly verified. Cryptographic keys are maintained in the user space. Unnecessary
services provided by SLL and not required for the sake of ARP are removed. Thus S-
ARP is more efficient than SLL.

SLL and S-ARP are probably the only secure solutions for preventing the ARP
cache poisoning. We however note that S-ARP still requires all ARP replies to be
digitally signed. Recall that asymmetric key cryptography and digital signatures are
considerably slow when compared to symmetric key cryptography and one way hash
functions. Roughly, RSA signature generation is about 10,000 times slower than
calculation of a one way hash function [19]. Thus, even S-ARP may have unaccept-
able impacts on the system performance.

4 The Proposed Solution

4.1 The Basic Idea

Our solution for the prevention of ARP cache poisoning is based on a combination of
digital signatures and one time passwords. One time passwords are based on hash
chains. Cryptographic techniques can hardly be avoided as the receiver has to authen-
ticate the ARP reply; however an intelligent use of cryptography is desired to avoid
unacceptable performance penalties.

Our protocol requires periodic generation of digital signatures, the rate of genera-
tion being independent of the number of ARP requests being received. For this, we
identify two different components of an ARP reply:

1. The <IP address, MAC address> mapping
2. The recency of the mapping

The first component requires a digital signature since the <[P, MAC> mapping
must be authentic and its authenticity must be publicly verifiable. Our idea is to how-
ever to use the same digital signature again and again in ARP replies for a long time.

Here one option could be to trust the ARP reply for recency and the only check
performed on the content of replies would be validation of the digital signature. But
then an attacker could get hold of that digital signature by simply sending an ARP
request to the target system and getting it in reply. It could then wait for the target
system to go down or it could crash the target system using known attacks or Denial
of Service attacks. As soon as the target system goes down or gets disconnected from
the network, the attacker could change her MAC address to that of the target system

An Efficient Solution to the ARP Cache Poisoning Problem 45

and thus receive all packets sent to it. Now, even when the target system comes up
later, it cannot claim back its MAC address and has to change it. The attacker may
continue to poison the ARP cache of other hosts using the stored digital signature and
thus receive the packet sent to the target system.

Hence we need a method to somehow securely indicate the recency of the mapping
indicated in the digital signature. This is done by including a one time password in
the ARP reply. Thus, the basic idea of our protocol is:

Generate a digital signature S containing the IP address to MAC address mapping,
the local clock time and the tip of a hash chain used for verifying one time passwords.
Now, for the first 20 minutes (cache entry validity time), the host answers ARP re-
quests by sending S as the ARP reply. For the next 20 minutes, the host sends S and
the first one time password (first link of the hash chain) as ARP reply and so-on. In
general for the i/ 20 minute slot, the host sends S and the (i-/)" one time password as
the ARP reply.

This process is continued till the one time passwords (or the links of the hash
chain) do not get exhausted or the <IP, MAC> association of the host does not
change. After this, a new signature S’ should be generated and the whole process be
repeated.

We now describe the one time password system being used and then move on the
detailed description of the proposed protocol using that.

4.2 One Time Passwords

We use a variant of the one time password system designed by Leslie Lamport [13,
14]. This system is popularly known as Lamport Hashes or S/KEY. This scheme is
used to authenticate a client to an untrusted server and is based upon the concept of
Hash chains. No security sensitive quantities are stored at the server, i.e., the pass-
word verifying token is public.

The one time passwords are generated using a secret K known only to the client.
The client chooses an integer N and a random number R acting as the nonce. For
system initialization, the client then somehow securely sends N and H""/(K[|R) to the
server' (e.g. using digital signatures).

At any point of time, the server maintains the following 3-tuple entry for each cli-
ent:

<id, n, H""'(K||R)> with n=N initially

The client authenticates by sending H"'(K||R) to the server (along with its id). The
server computes its hash and then compares it with the stored H""/(K]|R). If they
match, "' (K||R) is replaced with H"(K||R), the value of stored n is decremented and
the client is successfully authenticated.

When n reaches 0 at the server, i.e., when the client authenticates with H(K]|R), the
list of one time passwords is considered to be exhausted. At this point, a new value of
R must be chosen and the system should be reinitialized.

1 H is a one way hash function like MD5 and || denotes concatenation

46 Vipul Goyal and Rohit Tripathy

4.3 Network Setup

The setup phase in our system is similar to that in S-ARP. Every host on the network
is identified by its own IP address and has a public/private key pair. Besides, there is
a trusted host on the network called the Authoritative Key Distributor (AKD) which
handles the task of key distribution and clock synchronization.

Note that this AKD based architecture can easily be converted to Certificate Au-
thority (CA) based architecture. This can be done by distributing a certificate contain-
ing the IP address to public key mapping to each host on the network. We elaborate
more on this issue in section 4.6.1.

The first step when setting up a LAN that uses our protocol is to identify the AKD
and distribute through a secure channel its public key and MAC address to all the
other hosts. Such an operation may be performed manually when a host is installed on
the LAN for the first time. On the other hand, a host that wants to connect to the LAN
must first generate a public/private key pair and send the public key along with its IP
address to the AKD. Here the correctness of the information provided is verified by
the network manager and the host public key together with its IP address is entered in
the AKD repository. This operation has to be performed only the first time a host
enters the LAN. If a host wants to change its key, it communicates the new key to the
AKD by signing the request with the old one. The AKD will update its key and the
association is correctly maintained. Section 4.6 explains the protocol behavior when
IP addresses are dynamically assigned by a DHCP server.

Once connected to the LAN, a host synchronizes its local clock with the one re-
ceived from the AKD. To avoid the reply of old clock value from an adversary during
clock synchronization, the host generates a random number R which it sends along
with the synchronization request to the AKD. The AKD replies back with the current
time ¢ along with a digital signature on (¢, R).

4.4 Message Format

The ARP request message format remains the same except for the addition of two
new fields- “timestamp” and “type”. “timestamp” is the value of the local clock at the
time of request generation. The value of “type” field may either be 1 or 2 to distin-
guish among the following two types of requests:

1. New entry request

2. Entry refreshment request

We discuss in the next section about how a host determines the type of request to
send in any scenario.

Our protocol adds an extension to the ARP reply header. The extension comprises
of a new field called “type” and a variable length payload called “data”. The field
“type” distinguishes among the following six types of messages:

1. New entry creation (reply only)

2. Entry refreshment (reply only)

3. Public key management (request/reply)
4. Time synchronization (request/reply)

An Efficient Solution to the ARP Cache Poisoning Problem 47

Messages of type 1 and 2 are exchanged between hosts of the LAN. The other
types of messages are exchanged only between a host and the AKD.

4.5 The Protocol Description

Every host on the network first chooses an integer N, a secret K and a random number
R. In practice, the first 128 bit of the private key of the host suffices as K. The signifi-
cance and the choice of N will be clear later on.

The host now computes a signature?

S(IP, MAC, N, H"(K||R), T)

Where T is the timestamp. This signature S will be useful for a period (N+1)T,
where T, = the cache entry validation time (usually equal to 20 min), i.e., the signature
will be valid for a time 7, and can be renewed upto N times using N one time pass-
words. This signature is stored by the host and will be used later in answering ARP
request.

4.5.1 Cache Entry Creation
Consider the scenario when a host H; needs to know the MAC address of H,. H;
checks its cache and consequently finds no entry for H,. It queries H; with an ARP
request having field type=1, i.e., a new entry creation request is sent to /.

H;now computes

n=N+D-[(t-T)/T, |

Where ¢ is the current time and the function 1 x| is the floor function returning the

largest integer smaller than its argument e.g., | 3.9] = 3. Informally, | (¢ - T')/ T, | is

the number of 20 minute time slots passed after the signature S was computed.

H; now calculates H'(K||R), i.e., the (N+1-n)" one time password. Note that if the
time elapsed between the ARP request and the signature generation is less than 7, (20
min), n = N+1 and the one time password is H""/(K||R) (already specified in the
signature). Hence this can be seen as the zeroth one time password. Further (N+/-n)
cannot be negative or less than 1 as when it reaches 1, a new signature with new R
should be computed.

I—{/ now sends an ARP reply to H; with type=1 and data = S(IP, MAC, N,
HY(K||R), T), n, H'(K||R), i.e., data contains the signature S and the computed one
time password. Upon receipt of the ARP reply, H; verifies the signature using the
public key of H; (if it does not already have the required key, it obtains it from the
AKD, see the next sub-section), validates the one time password supplied using N and
H""(K||R) given in signature S and computes ¢ = T+T,*(N+1-n). If ¢ is within time 7,
(i.e., 20 min) from the current local clock time, the reply is accepted and the follow-
ing five tuple entry is created for H;

<IP, MAC, n, H'(K||R), t>

The last three values are stored in order to avoid having H; send the signature S

everytime and to avoid the overhead of signature verification in each ARP reply.

2 This signature S represents the data IP, MAC, N, HV"'(K|R), T as well as the digital signa-
ture on it

48 Vipul Goyal and Rohit Tripathy

4.5.2 Cache Entry Refreshment

Now consider the scenario in which H; requires the MAC address of H; and find a
cache entry for it. It checks the stored values n and ¢. If ¢ is within time 7, (i.e., 20
min) from the current local clock time, the cache entry is considered to be good. No
ARP request is sent and the stored MAC address is used. Otherwise, it computes the
value t++nT, and compares it with the local clock time. If the local clock time is more
than t+nT,, this corresponds to (N+/-n) being less than 1, i.e., it corresponds to re-
quiring one time password with index more than N which is non-existent (only N one
time passwords exist). This means that the parent signature of the existing cache entry
should have expired beyond renewal. At this point, the cache entry is deleted and an
ARP request is sent with type=1, i.e., for the creation of a new cache entry. H; replies
as described in the previous subsection.

Finally, if the local clock time is less than #+n7,, a request of type=2, i.e., a request
for entry renewal is sent. /; now computes the new n and the required one time pass-
word H'(K||R) as described in the previous sub-section. The only difference lies in
the ARP reply which is of type=2 and the signature S is not included in the data to be
sent. The ARP renewal reply can be validated by computing the hash of the sent one
time password (n’-n) number of times and comparing with the stored password,
where n’ is the value of new #n included in the ARP reply. If they match, a check on
the quantity t+7,*(n—n) is performed which should be with time 7, (i.e., 20 min)
from the current local clock time. If the check succeeds, ¢ is replaced with t+7,*(n -
n), H'(K||R) with H" (K||R), n is replaced with n’ and the ARP reply is accepted.

Now, we discuss the issue when H; changes its MAC address. In that case, H; just
needs to discard its old computed signature and should recompute it using the new
MAC, a new R and correspondingly all new values including 7. The entry creation
requests proceeds without any change. In case of entry renewals, however, since the
one time password supplied in this case will not be correctly validated by H; storing
the old entry corresponding to the old signature and the old MAC, H; discards its
stored cache entry and sends a new ARP request with type=1.

4.5.3 A Rough Performance Comparison with SARP

On the contrary to S-ARP, our scheme requires a constant number of digital signa-
tures per unit time irrespective of the number of ARP entry creation/renewal request
received, e.g. with N=100 and 7, = 20 min, we require only one digital signature
computation for a time period of ¢ = (N+1)T, = 33.6 hours. Thus considering a period
of one month (30 days) with an average of one ARP request per second, our scheme
requires (30%24)/33.6 < 22 signature computations while S-ARP requires 259,200
signature computations. Given that signature computation is about 10,000 times
slower than the computation of a hash function [19], it is easy to see that our scheme
dramatically improves the performance of the system. Note that our scheme is still
exactly as secure as S-ARP.

4.6 Key Management

Key management in our protocol is pretty much the same as in S-ARP [12]. Note that
special care is required to be taken when dealing with dynamically assigned IP ad-

An Efficient Solution to the ARP Cache Poisoning Problem 49

dresses. Hence, we consider key management in networks with statically and dynami-
cally assigned IP addresses separately.
We will use the following notations in this section:

AKD Authoritative Key Distributor

H; Generic host i

Rq(a) Request for object a

Rp(a) Reply carrying object a

T Local clock Time-stamp

Ay Host H's IP address

My Host H's MAC address

Py Host H's Public Key

Sr(x) Message x digitally signed by host

4.6.1 Static Networks

In such networks, the mapping between the keys and the IP addresses is static. Hence,
when a host joins the network for the first time, a key pair and an IP address is as-
signed to it and inserted into the AKD repository. Now consider that a generic host i
broadcasts an ARP request to find host j°s MAC address and upon receiving the reply
finds that it does not have the public key of host j. Host i then contacts the AKD to
request host j’s public key. AKD then sends the required key in a digitally signed
message

The sequence of messages exchanged is as follows.

H; > AKD: Rq(PH))
AKD > H;: Sakp(Rp(PH)) || H; || T)

Now, since the public key used for verifying the host's signatures has been se-
curely released by the AKD and the private key corresponding to that public key is
known only to the legitimate host, an attacker cannot produce a valid signature for an
IP address other than its own. Thus an attacker can no longer send valid malicious
ARP replies to poison a host’s cache.

Here another possible way of key management is to provide digitally signed cer-
tificates to each host containing the mapping between its I[P address and the public
key. In this case, we require a CA instead of AKD and no active participation of CA
in the protocol would be required. A third type of ARP request can be created for
which the reply would contain the issued certificate. But such a mechanism will have
to deal with intrusions like certificate revocation in case of key compromise. Hence
we choose to stick with the option of AKD. Contrary to the public key infrastructures
where certificates are used, we see no problem in having an online AKD in our case
for the sake of ARP. Any host on the network as identified by the network adminis-
trator could act as AKD. Another reason for this choice is the possibility of dynamic
networks (discussed next) where such certificates are not possible as IP addresses are
dynamically assigned.

50 Vipul Goyal and Rohit Tripathy

4.6.2 Dynamic Networks

In such a network, a DHCP server dynamically assigns IP addresses to the hosts.
Since the IP address of a host is not fixed, keys cannot be bound to IP addresses at
generation time.

If an organization deploys a secure DHCP server with secure ARP, only well
known hosts that have been enrolled in the system and authorized in some way can
enter the LAN. Enrollment procedure is a one time activity which takes places when
the host joins the network for the first time. Enrollment involves generating a key pair
and the corresponding certificate. In this case, IP field of the certificate is empty.
AKD manually inserts this certificate into the repository with null IP address and the
corresponding public key, using a secure channel.

When a host H joins the LAN, it requests the DHCP server to assign to it an IP ad-
dress. In order to allow the DHCP server and the AKD to identify it and validate the
request, H timestamps and signs the request and sends its public key along with the
request. Before assigning an IP address to H, the DHCP server contacts the AKD to
verify whether H is authorized to be added to the LAN, i.e., if H's key is in the AKD
repository and is valid, and to inform the AKD of the IP address the host will be as-
signed. The message is signed by the DHCP server and includes the supplied public
key along with the proposed IP address. The AKD searches its database for the given
public key and replies to DHCP with a signed ACK or a NACK along with some
other fields to prevent replay attacks. If the response from the AKD is ACK, the
DHCEP server proceeds with the assignment of the new IP address to H, while the
AKD updates H's entry in the repository binding H's new IP address to H's key. Else,
the DHCP server will not release a new IP to the host. The message exchange se-
quence in case of a positive response from the AKD is as follows:

H > DHCP: Py || Sy(DHCP request || T)
DHCP > AKD: Spuce(Py || Au || T)

AKD > DHCP: S xp(ACK || Py || Ay || T)
DHCP > H. Sprcp(DHCP reply || Ay || T)

5 Conclusion

ARP cache poisoning occurs due to lack of message authentication since any host on
the LAN can spoof ARP replies containing malicious IP to MAC mapping. There is
no satisfactory solution to cache poisoning since all the proposed solutions are either
insecure or have unacceptable penalties on system performance.

We propose a new solution to the problem of ARP cache poisoning. Our solution
is based on an efficient combination of digital signatures and one time passwords
based on hash chains. Digital signatures are almost eliminated in the sense that the
system requires less than one digital signature per day. Thus, the performance of our
protocol is significantly better than S-ARP which requires digital signature computa-
tion for each ARP reply. Further, we do not compromise security at any point and the
security of our scheme is the same as S-ARP. Hence, our scheme is efficient as well
as secure at the same time.

An Efficient Solution to the ARP Cache Poisoning Problem 51

References

1. M. Barnaba. anticap. http://cvs.antifork.org/cvsweb.cgi/anticap, 2003.

2. B. Fleck. Wireless access points and arp poisoning [online document]. Available at
http://www.cigitallabs.com/resources/papers/download/arppoison.pdf.

3. F. Hunleth. Secure link layer. http://www.cs.wustl.edu/fithunleth/projects/projects.html.

4. M. Laubach. Classical IP and ARP over ATM. RFC 1577, 1994.

5. A. Ornaghi and M. Valleri. A multipurpose sniffer for switched LANSs. http://ettercap.sf.net.

6. D. C. Plummer. An ethernet address resolution protocol. RFC 826, 1982.

7. D. Song. A suite for man in the middle attacks. http://www.monkey.org/fidugsong/dsniff.

8. R. W. Stevens. TCP/IP Illustrated, vol 1. Addison Wesley, ISBN 0-201-63346-9, 2001.

9. I. Teterin. Antidote. http://online.securityfocus.com/archive/1/299929.

10. R. Wagner. Address resolution protocol spoofing and man in the middle attacks.
http://rr.sans.org/threats/address.php, 2001.

11. S. Whalen. An introduction to arp spoofing [Online document]. Available at
http://packetstormsecurity.nl/papers/protocols/intro_to_arp spoofing.pdf, 2001.

12. Bruschi, D., Ornaghi, A., Rosti, E., S-ARP: a Secure Address Resolution Protocol, in Pro-
ceedings of 19th Annual Computer Security Applications Conference (ACSAC), 2003.

13. Leslie Lamport, “Password Authentication with Insecure Communication”, Communica-
tions of the ACM 24.11 (November 1981), pp 770-772.

14. N Haller, "The S/KEY One-Time Password System", Proceedings of the ISOC Symposium
on Network and Distributed System Security, pp 151-157, February 1994.

15. A. Stemmer, “CAMs Enhance Network Performance”, System Design [Online document],
Jan. 98, Available HTTP: http://www.eedesign.com/editorial/1998/systemdesign9801.html

16. http://cert.uni-stuttgart.de/archive/vulndev/2002/ 01/msg00295.html

17. Whalen, S. H., Towards Layer 2 Authentication: Preventing Attacks based on Address
resolution Protocols Spoofing., 2003. http://wp.netscape.com/eng/ssl3/draft302.txt, 2002.

18. S. Convery, “Hacking Layer 2: Fun with Ethernet Switches”, Blackhat [Online document],
2002, Available HTTP: http://www.blackhat.com/presentations/bh-usa-02/bhus-02-convery-
switches.pdf

19. S. Micali “NOVOMODO: Scalable Certificate Validation and Simplified PKI Manage-
ment” First Annual PKI Research Workshop - Proceeding, April 2002.

20. Hacking UNIX 2003, a tutorial for performing various attacks including ARP poisoning
attack, on UNIX systems. Available at http://duho.cjb.net.

21. M. V. Tripunitara and P. Dutta. A middleware approach to asynchronous and backward
compatible detection and prevention of arp cache poisoning. In Proc. 15th Annual Computer
Security Application Conference (ACSAC), pages 303-309, 1999.

On Stern’s Attack Against Secret Truncated
Linear Congruential Generators

Scott Contini and Igor E. Shparlinski

Department of Computing, Macquarie University,
NSW 2109, Australia
{scontini,igor}@ics.mqg.edu.au

Abstract. In 1987, Stern showed how the parameters for secret trun-
cated linear congruential generators could be derived in polynomial time.
Here, we present a modification to that algorithm which makes it sim-
pler, more robust, and require less data. We then present a more careful
analysis of the algorithm, and establish some limits of its applicability.
Thus, secret truncated linear congruential generators may not necessar-
ily be insecure for properly chosen parameters. Unfortunately, as in the
original algorithm, all the results remain heuristic, however we present
results of numerical experiments which support our conclusions.

1 Introduction

Linear congruential generators are a well known method for producing pseudo-
random sequences [8]. They work as follows. Let m be a modulus, a an integer
multiplier such that ged(m,a) = 1, and b an integer additive shift. Define the
sequence (z;);>o0 by

Tiv1 =ar; +bmodm, 0 <z; <m—1, i=0,1,..., (1)

where z¢ is a given seed.

Although such sequences are known to have good pseudo-randomness proper-
ties such as a large period length and uniformity of distribution, see [6,10,13,14],
they are not suitable for cryptographic purposes. Knuth [7] suggests to keep the
parameters a, b and m secret and output only a portion of the most significant
bits of the sequence. However, it has turned out that in many cases such gen-
erators can still be broken, see [2,3,4,5,9,16]. In fact, even in the hardest case,
when only the most significant bits of each z; are available and all parameters
are kept secret, such a generator has been cryptanalyzed by Stern in [16], see
also [5]. All the aforementioned algorithms exploit the celebrated lattice basis
reduction algorithm of Lenstra, Lenstra and Lovdsz [11], namely the so-called
LLL algorithm.

Stern’s attack [5,16] runs in polynomial time, but there is a potential problem
with it from a practical viewpoint. Specifically, if one uses a single “wrong”
polynomial (see Section 2 for details), the algorithm fails altogether. In our
research, we modify the second step of the Stern algorithm. Our modification

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 52-60, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Stern’s Attack Against Secret Truncated Linear Congruential Generators 53

makes it simpler, more robust (bad polynomials do not prevent success), and
require less data.

We then investigate whether the Stern attack is always guaranteed to work.
In fact, we find that the algorithm breaks down if only about log k bits are output
from each z;, where k is the bit length of m and log z denotes the binary loga-
rithm of z > 0. In this case, we do not know if the truncated linear congruential
generator can still be cryptanalyzed.

Finally, we update the analysis of parameters given by Stern [5,16] to take
into consideration this breakdown condition and more recent results in lattice
reduction, see [1,15].

2 Stern’s Algorithm

2.1 Initial Settings

Consider the sequence of data from (1). Let k denote the bit length of the
modulus m, that is, k = [logm| + 1. Assume that s most significant bits are
output for every x;. More formally, we assume that for every integer i we are
given some “approximations” y; such that

x; =285y, + z;, where 0 < z; < 287 (2)

Thus, the y; are formed by the bits that are output while the z; are unknown.
We also denote by o = s/k the proportion of the bits which are output.

Stern’s algorithm [5,16] has two steps. The first step generates several poly-
nomials P;(X) such that Pj(a) = 0 mod m, j = 1,2,.... The second step uses
these polynomials to first determine m and then a. Once m and a are known,
the generator becomes completely predictable following the results of [4].

2.2 First Step

Consider the vectors

Yit1 — Yi
Yi+2 — Yit+1
Vi=)
Yitt — Yitt-1
fori=1,...,n, where t and n > t are certain positive integer parameters to be
discussed later. We seek a small vector (A1, ..., A,) such that

SAT =0,)
=1

Such a relation is guaranteed to exist with all |A\;| < B where

B = 2t(o¢k+log n+1)/(n7t)’

54 Scott Contini and Igor E. Shparlinski

see [5]. By applying the LLL algorithm [11] to the lattice spanned by the columns

of the following matrix
KVi KVy ... KV,

1 0O ... 0
0 1 ... 0 ’ (4)
0 0o ... 1

where K = [y/n2"~1/2B], we are assured to find a vector A = (A1,...,\,)
whose Euclidean norm ||| satisfies ||A|| < K and the the equation (3) holds.
For properly chosen parameters, it turns out that

U= Z/\iWi (5)

is 0, where
Tit1 — Xy

Ti42 — Ti41
W; =

Tipt — Tigt—1

In other words, a linear relation among the vectors involving partially known
bits implies a linear relation among the vectors involving all of the bits.

It is easy to verify that @;ij11 — zi4; = @’ (2,41 — x;) mod m. Thus, the
vectors W; satisfy

ai+t72 (1,2 _ 1,1)

So, if U = 0, then we get the polynomial
n .
F(X) = (2 —21) Y NXT
i=1

which satisfies f(a) = 0mod m (from the top row of the W;). We assume
ged(za — x1,m) = 1 and instead use the polynomial

P(X) =) XNX"!
=1

which has the same property, see [5] for justification of this assumption.
In [5,16], it is shown that by choosing

t>1/a and n~V2atk, (6)

On Stern’s Attack Against Secret Truncated Linear Congruential Generators 55

the first step is expected to work. We sketch the Stern proof [5,16] since we
modify the parameter choices later. Because of (3), we have

i=1

where
Zi41 — %
Zi4+2 — Zit1
Z; = .
Zidt — Zitt—1

Note that || Z;|| < vt2(1=®)*. Using the Cauchy-Schwarz inequality, it can then
be shown that ||U]| < M, where M = /nt21=®)k||)\||. With the parameter
choices suggested above and the bound ||| < K, we see that

M < \/ntQ(l_")kK =0 (n\/t2(1—a)k+(”—1)/23)
=0 <n\/t2(17a)k+(n71)/2+t(ak+log n+1)/(n7t)>
In particular, if n = o(logm) and t = o(n), then M < ml—a+o(l).

On the other hand, the vectors W; are in the lattice spanned by the columns
of the following matrix:

1 00...0
a mO0...0
a2 0m...0) (7)
a1 00...m

The determinant of this lattice is m?~!, so we expect its smallest vectors to be

on the order of m'~1/*. By the choice of t > é, we have made M much smaller
than this value. Thus, unless the lattice has a vector that is much smaller than
expected, the only possibility for U is 0. See [5,16] for more rigorous details,
and [4] for a statement on the probability of the lattice having exceptionally
small nonzero vectors.

2.3 Second Step

By repeatedly applying the first step, we get a sequence of polynomials (P;)
of degree n — 1 such that Pj(a) = 0 mod m. These polynomials can be written
uniquely as an integer linear combination of the polynomials Q;(X) = X*¢ — a°
for 1 <4 <mn—1 and the constant polynomial Qo(X) = m. By identifying the
P; with Z™ column vectors, we see that the vectors are in the span of the lattice
L given by the matrix

56 Scott Contini and Igor E. Shparlinski

m —a —a? —aqn 1
01 0 . 0
00 1. 0
00 O 1

which has determinant m. Stern [5,16] argues that given slightly more than n
polynomials, we expect them to generate the same lattice. Hence, by computing
the determinant of the lattice from our polynomials, we can discover m. Although
a rigorous proof of success is not available, both the experiments in [5,16] and
our experiments confirm this argument.

Upon finding m, one can then determine a. Stern [5,16] has suggested a
few algorithms to do so. In [16] it is claimed that there exists an algorithm to
reconstruct the @;. Clearly, if m = p is prime, one can easily find a by solving
congruences of the form P, = 0 mod p. In [5], a certain lattice based method is
given that allows us to determine)1 without computing the other @;.

3 Practical Difficulties with Stern’s Algorithm

The second step of Stern’s algorithm described in Section 2.3 is extremely fragile:
if we accidentally obtain a polynomial that does not satisfy Pj(a) = 0 mod m,
then the second step does not work. While it may be possible to use some type
of an efficient algorithm to eliminate the bad P;, we believe that our solution in
Section 4 is more appealing, especially since it requires less data.

To motivate this problem more, consider the following example. Let

m = 10734367385013619889 (k = 64),
a = 9807963723765715717,
b = 7226300108115682840,

To = 2877244225168654778.

We output o = ; of the most significant bits. The first 28 data points are given
in the table below.

475990822 277168665 951085457 509438822 1408360423 487756910 1233629515
731412381 1071978143 1524265123 1101665588 1800377470 1598061595 2219298046
1762030258 995024674 935996983 2369274372 577879031 1145304475 1279507381
1843354788 457858814 1627871073 1984671691 146090605 728684809 1646993503

According to the asymptotic formulas, we may be able to succeed with ¢ = 3
and n = 14. Using the Magma computer algebra package [12] to perform the
LLL algorithm on the lattice (4), we obtain with the following reduced lattice,
where K = 356131:

On Stern’s Attack Against Secret Truncated Linear Congruential Generators 57

o o o0 0 o o o0 0 O 0 0 K 0 O
o o0 o0 0 o o o0 0 O 0 0 0 0 K
o o o0 0 o o o0 0 O 0 0 0K O

67 44 49 26 3 47 36 5 57 113 1687-24 32 83
-96 4 -82 97 66 89 -22 -72 -28 -143 -715 81 82 72
-29 -45-102 -3 -70 85 -33 -82 214 825-1075-24 32111
-19 54 5-45 -6 32-100 134 66 805 860 5 44 79
-35 -89 -38 -42135 -8 -24 37 116 -709 1129 -17 83 34
21 -4 -12 61 -89 -88 -7 48 148 -1275 447 -38-41 70
41 -47 -37 -31-33 46 77 85 -11 -264 -364 7 27 73
-96 34 28 -64 51 26 82 -32 -86 -220 557 -4 14 -73
14 -55 87 -59 76 -17 5 -4 131 730-1182-81 9 10
-40 -23 -12 141 -26 -141 -28 69 -115 968 123 63 -64 -24

2-127 -70 -3 -28 22 3-103 9 -201 1669 6-28 -25
-41 24 84 17 -43 45-195 82 -40 -717 -226 40-26 52
30 -83 -38 23 60 -6 41 57 -48 100 -443 32 36 33
-79 -25 -14 47 -34 52 -22 -63 15 -27 978 21 -5 45

One would expect that we can use the shortest returned vector (the first
one), though Stern remarks that often there is more than one valid polynomial.
But how can we be confident that any vector, including the shortest, actually
results in a valid polynomial?

The answer to this question partially rests in a practical use of the asymptotic
formulas. The attacker requires vectors \ satisfying

M = V/nt2(=9k | \|| < 2kC=1/1) (8)

to have a reasonable chance of success. Substituting our parameters, this means
Al < 2797, We actually got nine vectors with relatively small norms. In order,
their norms are s 2761 97:67 9T.72 9T.79 97.85 9T.87 98.02 98.06 ,nq 9850 If
we were to take the inequality (8) literally, then we would expect the first six
vectors to produce valid polynomials. But, in fact only the fourth, fifth, and
ninth vectors work! So, even if we would have restricted to only using the first
(shortest) vector, Stern’s algorithm would have failed.

Now, the reader may not be very satisfied with our example, since the in-
equality (8) should not be taken literally. A simple solution would be to only take
vectors that are much smaller than the threshold bound. However, our view is
that this is not necessary since an improved algorithm exists which allows us to
determine both m and a from only the single reduced lattice basis given above. In
contrast, Stern’s algorithm requires several LLL calls, all of which must produce
valid polynomials.

4 Improving the Second Step

Each iteration of Stern’s first step involves a single LLL call. If we assume that
we get one valid polynomial per iteration, then we need at least n LLL calls to
apply the second step. In comparison, our modified second step only requires a

58 Scott Contini and Igor E. Shparlinski

constant number of calls to LLL. Moreover, it allows us to include vectors that
may not produce valid polynomials (they may not even satisfy the inequality (8))
without having the algorithm fail altogether. Finally, our algorithm requires less
data points: n+t+2 data points are sufficient, whereas Stern’s algorithm requires
more than 2n+t data points (again, assuming one polynomial taken per iteration,
and note that data points must be consecutive!). Similar to Stern’s second step,
our solution is polynomial time but not rigorously proved, though always works
in practice.

Our modification is quite simple. If P;(a) = 0 mod m and P;(a) = 0 mod m,
then the resultant of P; and P; is divisible by m. If we have a third polyno-
mial P (a) = 0 mod m, we can compute three resultants. Taking their greatest
common divisor, we are very likely to get m or else a small multiple of it.

In fact, it is still polynomial time if we include all vectors returned from LLL
(of norm less than K) and consider all combinations of three. If we have an in-
correct polynomial such that P;(a) # 0 mod m, then the resultant is most likely
to have either no common factor or a very small common factor with resultants
of other polynomials. So false computations can easily be identified, and correct
ones are identifiable by candidates for m of the right size. Furthermore, if one
has more than three correct polynomials, then there are several candidates m
which are no more than a small multiple of m. In the example from Section 3,
the resultants from the fourth, fifth, and ninth polynomials yield m exactly.

It is not difficult to find the correct m from even a single candidate m (though
we will generally have many candidates) which is a small multiple of m. From
the known results about the uniformity of distribution of linear congruential
generators, see [6,13,14], we conclude that for the choice of n of order about
Viogm (see (6)) with overwhelming probability the largest value

p= max 2%y,
i=1,...,n

falls in the interval m/2 < p < m, and thus can be used to find m amongst the
divisors of m. We remark that concrete forms of such uniformity of distribution
results depend on the arithmetic structure of m and also on the period length
of the generator (that is, the multiplicative order of a modulo m) but hold for
almost all generators, see [6,10,13,14] for more details.

Stern’s second step also requires n correct polynomials to compute a, except
when m is prime. Our modification involves using the polynomials that revealed
m. We simply take the greatest common divisor of these polynomials modulo m
to find the root a. The Euclidean greatest common divisor algorithm succeeds
unless the leading coefficient of one of the polynomials becomes a divisor of m
during the process. In this case, one has found a factor of m in polynomial time,
which allows him or her to repeat the process modulo the factors and reassemble
the result with the Chinese Remainder Theorem. Thus, we find both m and a
using less data than Stern’s solutions.

L If a data point in the middle is omitted, then the resulting lattice has much smaller
determinant than the lattice (7), so the whole algorithm breaks down.

On Stern’s Attack Against Secret Truncated Linear Congruential Generators 59

5 The Limits of Stern’s Algorithm

For Stern’s algorithm to work, we expect to need the inequality (8) to hold. This
can be rewritten as

Vnt||A|| < 2Fe=1/0),

Note that in order for any linear relation to exist among the vectors V;, we almost
certainly need n > ¢. Being overly optimistic, we assume n = ¢ and ||A|| = 1, and
then take logarithms to get

logt < k(a — 1) 9)

Let a < k~!logk, so we require logt < logk — k/t or k/t < log(k/t), which
is impossible. Thus, outputting about log k bits per iteration may be safe from
Stern’s attack.

One has to be careful in drawing such conclusions. As we have seen in Sec-
tion 3, it is sometimes the case that one finds valid polynomials even though the
inequality (8) is not satisfied. We expect that our overly optimistic assumptions
of n =t and |\| = 1 counteract this effect. Our experiments using the example
from Section 3 seem to confirm this. In fact, taking « as large as 1/8, we found
no valid polynomials for all ¢ < 50 and n < 100.

6 Updating Stern’s Parameter Choices

Stern shows that asymptotically, we need t > a~!. In fact, this is clear from the
inequality (9). However, for a given value of k, it is possible to choose t > a~*
and still not satisfy the inequality (9). Now, if we wanted to maximise our chance
of success, we might try to choose a value of ¢ such that k(a — 1/t) — logt is
as large as possible. On the other hand, this strategy results in extremely large
values of ¢ (implying high computation and data requirements) that offer no
practical benefit. Thus, we recommend starting with a value towards the lower
end bound, and increasing t if necessary.

Stern’s analysis [5,16] shows that n ~ v/2atk minimises the bound M on the
value of U, where U is defined in (5). The bound on M in [5,16] is based upon
the LLL approximation factor of \/712(’“1)/2 which appears in our constant K.
Since then, an asymptotically better value of the approximation factor has been
discovered. Namely, in [1] a probabilistic polynomial time algorithm is given
which has the approximation factor 2¢mloglogn/logn o any constant ¢ > 0. A
slightly larger value 2¢n(eglog n)?/logn jg given by Schnorr [15] (it is useful to
remark that the algorithm of [15] is also very practical and deterministic). In
particular, using the results of [1] leads us to to the bound

M < \/tQ(lfoz)lﬁLt(akJrlogn+1)/(n7t)+cnloglogn/ logn
where ¢ > 0 is an arbitrary constant. To asymptotically balance the two terms

in the exponent which depend on n we now choose a slightly larger value of n,
namely,

60

Scott Contini and Igor E. Shparlinski

1
n [c tatk og(atk)
log log(atk)

Note that this implies that the larger value of n has a higher chance of success,
not that we are required to use it. If we want to minimise the data requirements,
we only require n = o(k).

References

1.

10.

11.

12.
13.

14.

15.

16.

M. Ajtai, R. Kumar and D. Sivakumar, ‘A sieve algorithm for the shortest lattice
vector problem’; Proc. 38rd ACM Symp. on Theory of Comput., ACM, 2001, 601—
610.

J. Boyar, ‘Inferring sequences produced by pseudo-random number generators’, J.
ACM, 36 (1989), 129-141.

J. Boyar, ‘Inferring sequences produces by a linear congruential generator missing
low—order bits’, J. Cryptology 1 (1989) 177-184.

A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir. ‘Reconstruct-
ing truncated integer variables satisfying linear congruences’, SIAM J. Comp., 17
(1988), 262—-280.

A. Joux and J. Stern, ‘Lattice reduction: A toolbox for the cryptanalyst’, J. Cryp-
tology, 11 (1998), 161-185.

S. V. Konyagin and I. Shparlinski, Character sums with exponential functions and
their applications, Cambridge Univ. Press, Cambridge, 1999.

D. E. Knuth, ‘Deciphering a linear congruential encryption’, IEEE Trans. Inf.
Theory 31 (1985), 49-52.

D. E. Knuth, The art of computer Programming: Seminumerical algorithms, Vol.2.
Addison-Wesley, 1981.

H. Krawczyk, ‘How to predict congruential generators’, J. Algorithms, 13 (1992),
527-545.

P. Kurlberg and C. Pomerance, ‘On the period of the linear congruential and power
generators’, Acta Arith., (to appear).

A. K. Lenstra, H. W. Lenstra and L. Lovész, ‘Factoring polynomials with rational
coefficients’, Mathematische Ann., 261 (1982), 513-534.

Magma Computer Algebra Package, http://magma.maths.usyd.edu.au/magna/.
H. Niederreiter, ‘Quasi-Monte Carlo methods and pseudo-random numbers’, Bull.
Amer. Math. Soc., 84 (1978), 957-1041.

H. Niederreiter, Random number generation and Quasi—Monte Carlo methods,
SIAM Press, 1992.

C. P. Schnorr, ‘A hierarchy of polynomial time basis reduction algorithms’, Theor.
Comp. Sci., 53 (1987), 201-224.

J. Stern, ‘Secret linear congruential generators are not cryptographically secure’,
Proc. 28th IEEE Symp. on Found. of Comp. Sci., IEEE, 1987, 421-426.

On the Success Probability of y2?-attack on RC6

Atsuko Miyaji* and Yuuki Takano

Japan Advanced Institute of Science and Technology.
{miyaji, ytakano}@jaist.ac.jp

Abstract. Knudsen and Meier applied the y?-attack to RC6. The x*-
attack can be used for both distinguishing attacks and key recovery at-
tacks. Up to the present, the success probability of key recovery attack
in any x2-attack has not been evaluated theoretically without any as-
sumption of experimental results. In this paper, we discuss the success
probability of key recovery attack in y2-attack and give the theorem that
evaluates the success probability of a key recovery attack without any
assumption of experimental approximation, for the first time. We make
sure the accuracy of our theorem by demonstrating it on both 4-round
RC6 without post-whitening and 4-round RC6-8. We also evaluate the
security of RC6 theoretically and show that a variant of the x?-attack is
faster than an exhaustive key search for the 192-bit-key and 256-bit-key
RC6 with up to 16 rounds. As a result, we succeed in answering such an
open question that a variant of the x?-attack can be used to attack RC6
with 16 or more rounds.

Keywords : block cipher, RC6, x? attack, statistical analysis

1 Introduction

The y2?-attack makes use of correlations between input (plaintext) and output
(ciphertext) measured by the x2-test. The y?-attack was originally proposed
by Vaudenay as an attack on the Data Encryption Standard (DES) [14], and
Handschuh et al. applied that to SEAL [4]. The y2-attack is used for both
distinguishing attacks and key recovery attacks. Distinguishing attacks have only
to handle plaintexts in such a way that the y2-value of a part of ciphertexts
becomes significantly a high value. On the other hand, key recovery attacks
have to rule out all wrong keys, and single out exactly a correct key by using the
x2-value. Therefore, key recovery attacks often require more work and memory
than distinguishing attacks.

RC6 is a 128-bit block cipher and supports keys of 128, 192, and 256 bits [12].
RC6-w/r/b means that four w-bit-word plaintexts are encrypted with r rounds
by b-byte keys. In [3,8], the y?-attacks were applied to RC6. They focused on
the fact that a specific rotation in RC6 causes the correlations between input
and output, and estimated their key recovery attack directly from results of a

* Supported by Inamori Foundation.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 61-74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

62 Atsuko Miyaji and Yuuki Takano

distinguishing attack [8]. The y2-attacks to a simplified variant of RC6 such
as RC6 without pre- or post-whitening or RC6 without only post-whitening are
further improved in [11] or [5], respectively. We may note that key recovery
attacks in [11,5] differ from that in [8]: The variance of y?-value is taken into
account to recover a key in [11,5] but not in [8]. They also pointed out the
significant difference between the distinguishing attack and the key recovery
attack: The distinguishing attack succeeds if and only if it outputs high x2-
value, but the key recovery attack does not necessarily succeed even if it outputs
high y2-value. In fact, their key recovery attack can recover a correct key in the
high probability with a rather lower y2-value. This indicates that the security
against the key recovery attack cannot be estimated directly from that against
the distinguishing attack. Table 1 summarizes the previous results on RC6.

Table 1. Attacks on RC6

Attack Target RC6 Rounds #Texts
Linear Attack [1] RC6 16 219
Multiple Linear Attack [15] 192-bit-key RC6 14! 211968
x* Attack [8] 128-bit-key RC6 12 2%
192-bit-key RC6 14 208
256-bit-key RC6 15 219
x* Attack [11] 128-bit key RC6W? 17 2239
x* Attack [5] 128-bit key RC6P® 16 2!17-84
Our result 192-bit-key RC6 16 22720
256-bit-key RC6 16 212720

1: A weak key of 18-round RC6 with 256-bit key can be recovered by 2126936 plaintexts
with the probability of about 1/2%.

2: RC6W means RC6 without pre- or post-whitening.

3: RC6P means RC6 without post-whitening.

Theoretical analysis on y2-attack has been done by [16,10]. In [16], the av-
erage of y?-value based on the distinguishing attack [8] on RC6 is theoretically
computed, which enables to compute the necessary number of plaintexts for
the y2-value with a certain level. As a result, the necessary number of plain-
texts for distinguishing attacks can be estimated theoretically in each round.
However, this cannot evaluate the success probability of key recovery attacks di-
rectly since there is the significant difference between the distinguishing attack
and the key recovery attack as mentioned above. On the other hand, theoretical
difference between a distinguishing attack and a key recovery attack on RC6
without post-whitening [5] has been discussed in [10]. They make use of the idea
of the theoretical and experimental complexity analysis on the linear cryptanal-
ysis [6,13] to fit it in the theoretical and experimental complexity analysis on the
x2-attack. They also present the theorem to compute the success probability of
key recovery attacks by using the results of distinguishing attack, and, thus, they

On the Success Probability of x2-attack on RC6 63

can succeed to estimate the security against key recovery attack on RC6 with
rather less work and memory. However, their estimation requires experimental
results of distinguishing attacks. Up to the present, the success probability of
key recovery attack in yZ-attack has not been evaluated theoretically without
any assumption of experimental results.

In this paper, we investigate the success probability of key recovery attack
in y2-attack, for the first time, and give the theorem that evaluates the success
probability of a key recovery attack without any experimental result. First we
deal with a key recovery attack on RC6 without post-whitening [5] and give the
theorem that evaluates the success probability theoretically. We make sure the
accuracy of our theorem by comparing our approximation with the experimen-
tal results [5]. With our theory, we also confirm that 16-round 128-bit-key RC6
without post-whitening can be broken, which reflects the experimental approxi-
mation [5]. Then we improve the key recovery attack to work on RC6 itself. The
primitive extension to RC6 are shown in [5], but it does not seem to work. We
give the theorem that evaluates the success probability of the key recovery attack
on RC6 theoretically. We also demonstrate our theorem on 4-round RC6-8 and
make sure the accuracy by comparing our approximation with the experimental
results. With our theory, we confirm that 16-round 192-bit-key and 256-bit key
RC6 can be broken. As a result, we can answer the open question of [8], that is,
whether y2-attack can be used to attack RC6 with 16 or more rounds.

This paper is organized as follows. Section 2 summarizes the notation, RC6
algorithms, the x2-test, and statistical facts used in this paper. Section 3 reviews
the y2?-attack against RC6 without post-whitening and the theoretical relation
between a distinguishing attack and a key recovery attack. Section 4 presents
the theorem of success probability of key recovery attacks on RC6 without post-
whitening and investigates the accuracy by comparing the approximations of
success probability to 4-round RC6 without post-whitening with implemented
results. Section 5 improves the key ercovery algorithm on RC6 without post-
whitening to that on RC6 and presents the theorem of success probability of the
key recovery attacks on RC6. We investigate the accuracy by demonstrating the
key recovery algorithm on RC6-8. We also discuss the applicable round of key
recovery attack. A conclusion is given in Section 6.

2 Preliminary

We summarize the y2-test, statistical facts, and RC6 algorithms|[12], used in this
paper.

2.1 Statistical Facts

We make use of the y2-statistics [9] to distinguish a distribution with an unknown
probability distribution p from an expected distribution with a probability dis-
tribution 7. Let X = Xy, ..., X,,—1 be a sequence of VX, € {ag, - ,am—1} with
unknown probability distribution p, and Ng,(X) be the number of X which

64 Atsuko Miyaji and Yuuki Takano

takes on the value a;. The x2-statistic of X which estimates the distance be-
tween the observed distribution and the expected distribution @ = (71, -+, 7)
is defined:

y—t

- nm) - (1)

=0
After computing the y2-statistic of X, we decide which hypothesis holds.

{HO :p=m (null hypothesis) @)

H,:p# 7 (alternate hypothesis)

The following Theorems 1 and 2 on y2-statistic are known.

Theorem 1 ([17]). When Hy is true, x? statistic given by equation (1) follows
x? distribution whose freedom is m — 1 approzimately. In addition, the expected
mean or variance is calculated by Ep,(x?) = m — 1 or Vi, (x?) = 2(m — 1),
respectively.

Theorem 2 ([17]). When H; is true, x? statistic given by equation (1) follows
noncentral x? distribution whose freedom is m — 1 approzimately. In addition,
the mean or variance is computed by Em, (x?) = m — 1 + nf or Vg, (x?) =
2(m — 1) + 4né, respectively, where nf so called noncentral parameter is nf =

ny i, b (mi— P(“‘)) , where P(a;) is the probability of occurence of a;.

In our case of which distinguishes a non-uniformly random distribution from
uniformly random distribution [7,8,9], the probability 7 is equal to 7}1 and, thus,
equation (1) is simply described as follows.

e 0

=0

=

Table 2 presents threshold for a 63 degrees of freedom. For example, (level, x23)
= (0.95, 82.53) in Table 2 means that the value of the x2-statistic exceeds 82.53
in the probability of 5% if the observation X is uniform.

Table 2. y2-distributions with a 63 degree of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
Xes 62.33 65.20 68.37 72.20 77.75 82.53 92.01

Let us describe other statistical facts together with the notation.

Theorem 3 (Central Limit Theorem [2]). Choose a random sample from
a population which mean or variance is p or o2, respectively. If the sample size
n is large, then the sampling distribution of the mean is closely approxzimated by
the normal distribution, regardless of the population, where the mean or variance

is given by u or o2 /n, respectively.

On the Success Probability of x2-attack on RC6 65

We also follow commonly used notation: the probability density and the cu-
mulative distribution functions of the standard normal distribution are denoted
by ¢(x) and @(x); the probability of distribution X in the range X < I is de-
noted by Pr(X < I); and N is used for the normal distributions. The probability
density function of the normal distribution with the mean p and the variance
02, N'(u,0?), is given by the following equation,

202

)= e[|

2.2 Block Cipher RC6

Before showing the encryption algorithm of RC6, we give some notation.

{0,1}F:
: least significant n-bit of X;
: most significant n-bit of X;
: bit-wise exclusive OR;

a<Kb:
: i-th subkey (S2; and Sa;41 are subkeys of the i-th

Isby, (X)
msb,, (X)
2]

Si

(AZ? BZ, CzaDZ
(Ao, Bo, Co, Do

)
)
(Ars2,Bri2,Cri2, Dryo) :
AR

k-bit data

cyclic rotation of a to the left by b-bit;

round);

: number of rounds;
:input of the i-th round ;
: plaintext;

ciphertext after r-round encryption;
X (2z + 1);

: f(z) (mod 23%) « 5;
: concatenated value of x and y.

The detailed algorithm of RC6 is given:
Algorithm 1 (RC6 Encryption Algorithm)

1. A1:A0; BliBO+So; 01100; D1:D0+Sl;
2. for i=1 to r do: t=F(B;); u=F(D;); Ai+1 = B;;
Bi+1 = ((CZ @U) < t) +Sgi+1; Ci+1 = Di; Di+1 = ((AZ @t) <¢ u) +52i;

3. Arjo = App1 + Sorq2; Bryo = Bryis Cryo = Cryr + Sopg3; Dy =
Dris.

Parts 1 and 3 of Algorithm 1 are called pre-whitening and post-whitening, re-
spectively. A version of RC6 is specified as RC6-w/r/b. In this paper, we simply
write RC6 if we deal with RC6-32. We also call the version of RC6 without
post-whitening to, simply, RC6P.

2.3 A Transition Matrix

A transition matrix describes input-output transition, which was introduced in
[14] and applied to RC6-8 and RC6-32 in [16]. In [16], the transition matrix can
compute the expected x2-values on Isbs(A,2)||lsbs(Cr12) when plaintexts with
Isbs(Ag) = 1sbs(Cp) = 0 are chosen, which is denoted by TM in this paper. So TM

66 Atsuko Miyaji and Yuuki Takano

also gives the probability of occurence of lsbs(A,12)||lsbs(Cry2). We apply TM
to compute the expected y?-values and the variance on lsbg(A;,12)|[lsbs(Cy2)
when plaintexts with a fixed value of 1sbs(Bg) = Isbs(Dg) are chosen.

3 x2? Attack on RC6P

In this section, we review x2-attack on RC6P [5] and the success probability [10],
which is computed by using the result of distinguishing attack.

Intuitively, the key recovery algorithm fixes some bits out of
Isb,,(Bo)||lsb,(Dyg), checks the x2-value of Isbz(A,)||lsb3(C,) and recovers
Isba(S2r)||1sba(Sar4+1) of r-round RC6P. Let us set:

(U, ya) = (Isb3(Br41),1sb3(Dry1)), (we,Ta) = (Isbs (F(Ar11)), Isbs (F(Cri1))),
(Sa, 8ec) = (Isba(Sa),1sba(S2r41)) and s = sg4l||s., where z, (resp. x.) is the
rotation amounts on A, (resp. C) in the r-th round.

Algorithm 2 ([5])

1. Choose a plaintext (Ag, By, Co, Do) with (1sbs(By),1lsbs(Dyg)) = (0,0)
and encrypt it.

2. For each (Sq,S¢), decrypt yq|lyp with a key 0||sq,0||s. by 1 round to
Zal|2c, which are denoted by a 6-bit integer z = z,||zc.

3. For each s, z,, ©., and z, update each array by incrementing
count[s|[z.][zc][z] -

4. For each s, z,, and x., compute X2[s][x.][x.].

5. Compute the average ave[s] of {x?[s][zd][*c|}z, 2, for each s and
output s with the highest ave[s| as 1sba(Sa,)||1sba(S2ri1)-

We may note that Algorithm 2 can be easily generalized to recover an e-bit
key for an even e. In such a case, z is an (e + 2)-bit number, on which y2-value is
computed. The success probability of Algorithm 2 is derived theoretically from
Theorem 4, where the success probability means the probability of recovering a
correct key in Algorithm 2.

Theorem 4 ([5]). Let n > 10 and r > 4. The success probability Ps of Al-
gorithm 2 on r-round RC6P with 2™ plaintexts can be evaluated by using the
distribution of x%-values in the distinguishing attack as follows,

o0 x 2¢_1
Ps = [ety () - ([fw[r’n](u)du) dr, (@)

where fefrn)(T) or furn) s a probability density function of distribution of x3-
values on a correct or wrong key in Algorithm 2, given by

fc[r,n] (l’) = ('b(;u'd[r—l,n—lo] ,02 7,71,71710]/210)(1,) (5)

[
or
Jwprn)(2) = ¢(ud[,.+1,n,m],agwlynfm]/zw)(fﬂ), (6)

respectively, and ud[r’n](aﬁ[nn]) is mean (variance) of distribution of x*-values
on Isbs(Ar41)||lsbs(Cry1) of r-round RCEP with lsbs(Bo)||lsbs (Do) = 0 by using
2™ plaintexts.

On the Success Probability of x2-attack on RC6 67

4 Success Probability of x? Attack on RC6P

This section gives the theorem to compute the success probability of Algorithm
2 without any assumption of distinguishing attack.

4.1 Theoretical Mean and Variance of y2-values

To compute the success probability of Algorithm 2 without any experimental
results of distinguishing attack, we have to compute the mean and variance,
Hdfr,n) and 03[7,%], theoretically, that is, we have to compute 6,.. In our case, 6,
is given as ,

6, =203 (P(lsbg(ArH)\|1sb3(Cr+1)) - ;6) : (7)
where the summation is over lsbg (A, 11)||lsb3(Cy41) € {0,1}5 and P(Isbz(A,41)||
Isb3(Cy41)) is the probability of occurrence of 1sbs(A,4+1)||1sbs(Cr41). Thus, 6,
can be given by computing P(Isbs(Ay4+1)||/lsbs(Cr41)) and derived theoretically
by TM in Section 2, which follows the discussion below.

Algorithm 2 is based on such a distinguishing attack that chooses Isbs(By) =
Isbs(Dp) = 0 and computes the x2?-value on Isbz(A,1)||lsb3(Cri1) which are
outputs of r-round RC6P. Therefore we can apply TM to our distinguishing at-
tack by assuming that (A, B1,Cy, D1) is a plaintext since A; = By, C; = Dy,
and both B; and D; are random number. On the other hand, we compute
the x?-value on (e 4 2)-bit Isb, /241 (Arq1)|[I8be/a41(Crq1) in e-bit-key-recovery
Algorithm 2, whose probability of occurrence is derived by using TM from the
following Lemma 1.

Lemma 1. The probability of occurrence of Isbe/a11(Ari1)||lsbej241(Cry1), de-
noted by P(lsbe/a1(Ari1)|llsbe/a41(Cri1)), is computed from the probability of
occurrence of 1sbs(Ar+1)||lsbs(Cri1) as follows

2612601
P(Isbeja 1 (Ars)lsbes2s1 (Crin) = Y > Pilllsbesas1(Ar1)|lj]lIsbes241(Crin)),

i=0 j=0
where =5 — (e/2+ 1) and e is an even integer from 2 to 10.

Proof. Lemma 1 holds because

Isbs (Ap41)l[lsbs (Cri1)
= msbg(Isbs (Ar11))[[1sbe /241 (Art1)|[msbg(Isbs (Cri1))|[1sbe y2 11 (Crir).-

We show theoretical and experimental results of mean and variance of y2-
values of 3- or 5-round RC6P in Tables 3, respectively. Experiments are done
by using 100 keys x 100 kinds texts. We see that both mean and variance of
x2-value can be computed theoretically.

68 Atsuko Miyaji and Yuuki Takano

Table 3. y2-values of 3- or 5-round RC6P

3 rounds 5 rounds
#texts Theoretical Experimental #texts Theoretical Experimental
mean variance mean variance mean variance mean variance

28 63.20 126.82 63.18 126.50 22 63.20 126.80 63.30 125.72
29 6341 127.64 63.27 126.78 2% 63.40 127.60 63.43 128.48
210 63.82 129.29 63.79 125.02 22 63.80 129.19 63.72 128.94
2 64.64 13257 64.33 130.48 2% 64.60 132.34 64.50 132.11
212 66.29 139.14 65.92 139.85 2%® 66.19 138.78 66.16 141.22

Table 4. Theoretical and experimental success probabilities of 4-round RC6P
(e =4).

#texts 218 219 220 221 222

Theoretical 0.16 0.31 0.70 0.99 1.00
Experimental 0.10 0.17 0.34 0.75 1.00

4.2 Success Probability of Algorithm 2 on RC6P

By using the theoretical mean and variance in Section 4.1, the success probability
of Algorithm 2 is proved as follows.

Theorem 5. The success probability of e-bit-key-recovery Algorithm 2 of
r-round RC6P is given as follows,

PSycep,e(n) :/ (k1) 4mby_1,(2(k—1)+4mb,_1)/210) (T)-

T 2°—1
</ ¢((k1)+m6,.+1,(2(k1)+4m0,.+1)/210)<u)du> dz, (8)

where 27 is the number of texts; m = 27710, k = 2°%2: mf,. is r-round non-
central parameter; and e is an even integer from 2 to 10.

Proof. Psin Theorem 4 is derived by mean fi4[, ,,) and variance aﬁ[r n] of distribu-

tion of y2-values, which are computed by non-central parameter from Theorem 2.
On the other hand, 6, is computed by using Lemma 1. Thus we get Ps;cop,e(1)-

Table 4 shows the success probability of Algorithm 2. According to Table 4,
the theoretical estimation gives the upper bound of results. It seems rather rough
upper bound. We will discuss the reason in Section 5.

On the Success Probability of x2-attack on RC6 69

4.3 Applicable Round of RC6P

By computing 6, of each round r, we derive the number of texts to recover a
correct key by Algorithm 2. We approximate Equation (8) to reduce the com-
putation amount to get (8) for an even large e.

Theorem 6. The sufficient condition for Ps,cepe(n) > 0.95 is given as

1

Ps'rcﬁp,e(n) >1- 20(2@ . 1),

where

Ps,eope(n) =/ Pk—14mb,_1,(2(k—1)+4mb,_1)/210)(T) -
—oo

/ Bl 14mb, 1, (2(k—1)+4mb,.1) /210y (u)du dx;

m = 20710 k= 2¢+2- 1m0, is r-round non-central parameter; and e is an even
integer from 2 to 10.

Proof. We show that n satisfied with Equation (9) is sufficient for Ps,cgp.(n) >
0.95. First of all, we consider the following equation

Fle) = <1 N 20(261 1))261'

When e > 1, F(e) is a monotonically increasing function, satisfies F'(e) > 0.95

and
1 2¢—1
li 1-— ~ 0.951.
e < 20(2¢ — 1)> 095

On the other hand, Equation (8) becomes
oo
Psrpo,e(n) :/ ¢(k—1+m@r,1,(2(k—1)+4m9r,1)/210)(x)'
— o0
z 201
(/ ¢(k—1+m9r+1,(2(k—1)+4m9r+1)/210)(u)du> dz
> (/ Bk—14mb,_1,(2(k—1)+4m0,_1)/210) ()"

T 2°—1
/ Pk 14mby i1 ,(2(k—1)+4mb, 1) /210) (w)du dI)

Thus, if m = 2710 satisfies
</ Pk—14mb,_1,(2(k—1)+4mb,_,)/210) (T)-

. 2¢ 1
/ Blh—14mby 1 ,(2(k—1)+4mb,41) /210y (w)du dx) > F(e),
—o0

70 Atsuko Miyaji and Yuuki Takano
then Psrcep,e(n) > 0.95. Therefore, if n satisfies
. o0
Psycop,e(n) :/ Bl 14mb, 1 ,(2(k—1)+4mb,_1)/210)(T) -
— 00

x
1
/_Oo Pke—14my 41, (2(k—1)+4m0,41)/210) (W) du dz > 1 — 20(2¢ — 1)’

then Psregp,e(n) > 0.95.

Table 5. Theoretical and estimated #texts for Ps,cep a(n) > 0.95 or Ps > 0.95.

Theoretical (Th.6) Estimated (Th.4)
round # texts Work ¥ # texts Work ¥

4 220.69 224469 J(221460 T225460
6 236.73 239467 237464 241464
8 25276 256476 253468 257468
10 268.79 272479 269472 273472
12 284.81 288481 285476 289476
14 210082 2104482 2101480 2105480
16 2116.83 2119477 2117484 2121484
18 2132.85 2136485 2133488 2137488

T : experimental result [5]
1 : the number of incrementing cnt.

Here we set e = 4. Table 5 shows theoretical and experimental number of
texts necessary for Psycep,e(n) > 0.95 in each r round. From Table 5, Algorithm 2
is faster than exhaustive search for 128-bit-key RC6P with up to 16 rounds. It
corresponds with the previous experimental result [5]. Our theorem estimates
the number of texts necessary for recovering r-round RC6P with the success
probability of more than 95% to

loga (#texts) = 8.01r — 11.63. (10)
On the other hand, it is estimated in [5] heuristically as
loga (#texts) = 8.02r — 10.48. (11)

We see that both estimations are pretty close each other.

4.4 Success Probability of Algorithm 2 on RC6P-8

We also demonstrate our theorem on 4-round RC6P-8 whose word size is 8-bit.
Table 6 shows the theoretical and experimental results of Algorithm 2 on RC6P-
8. In the same way as 4-round RC6P, we see that theoretical estimation gives
the upper bound of experimental results.

On the Success Probability of x2-attack on RC6 71

Table 6. Theoretical and experimental success probability of 4-round RC6P-8
by using Algorithm 2.

texts Theoretical Experimental

212 0.742 0.228
213 1.000 0.481
2™ 1.000 0.888
2% 1.000 1.000

5 x? Attack Against RC6

This section improves Algorithm 2 to a key recovery attack against RC6, Algo-
rithm 3, and then gives the theorem that computes the success probability. We
also implement Algorithm 3 on 4-round RC6-8 and demonstrate the accuracy
of the theorem. Furthermore we also discuss the difference between Theorem 5
and 7 in view of accuracy.

5.1 Key Recovery Algorithm and Theoretical Success Probability

The primitive extension of Algorithm 2 to a key recovery attack on RC6 is to
decrypt yql||lya for each key candidate of s,S9,12 and Sa,y3, which is shown
in [5]. Apparently it is rather straightforward since it means that it decrypts
each ciphertext by each 28 key. So we improve Algorithm 2 such that it does
not have to decrypt each ciphertext. Before showing the algorithm, let us use
the following notation:

U = {u € {0,1}3?|msbs(ux (2u+1)) = 0}, (ug,ue) EU XUty = Apio—tg, te =
Cry2 — Uq,

v = lsb5(BO)Hlsb5D0, zZ = lsbg(Br_;,_Q)H]Sbg(Dr_,_g).

Algorithm 3

1. Choose a plaintext (Ag, By, Co, Dp) and encrypt it to (A2,
Bri2, Cri2, Dyy2).

3. For each (uq,u.), compute both t, and t. and update each array by
incrementing countl[ty][t.][v][z].

4. For each t,, t. and v, compute the x?-value x2[t.][tc][v].

5. Compute the average avelt,][t.] of {x?[ta][tc][v]}» for each t,,t. and

output t,, t. with the highest avelt,|[t.] as Sart2,S2r+3-

2

Algorithm 3 computes the y2-value on 6-bit z, which follows the idea of
Algorithm 2. Compared with [8], in which the y2-value is computed on 10-bit
data, Algorithm 3 seems to recover a correct key efficiently.

We may note that Algorithm 3 calculates the x2-value on z = lsbg(B,12)||
Isbs(Dy42) by using such plaintexts that make the final-round-notation 0 for
each key candidate. For a correct key, this is exactly equivalent to compute the
x2-value on Isbz(A,)||lsbs(C,), which is output of (r — 1)-round RC6P because

72 Atsuko Miyaji and Yuuki Takano

the addition keeps the y2-value. Thus, we succeed to skip the post-whitening
and get that the probability density function of distribution of x2-value with a
correct key in r-round RC6 is equal to f.[,) defined in Theorem 4. On the other
hand, in the case of wrong keys, this is exactly equivalent to compute the y2-
value on Isbs(A,12)| 1sb3(Cri2), which is output of (r + 1)-round RC6P. Thus,
we get that the probability density function of distribution of y2-value with a
wrong key in r-round RC6 is equal to fy.,) defined in Theorem 4. From the
above discussion, we’ve proved the following theorem.

Theorem 7. The success probability of Algorithm 3 on r-round RC6 is given
theoretically as

PSrcG(n) :/ ¢(26—1+mer,1,(2(26—1)+4m07~,1)/210)(x)'

- 9641
(/ (26 —14mb,11,(2(26—1)+4m0,41)/210) (U)du> dz, (12)
— 00

where 2" is the number of texts, m = 2" 20 and mb, is r-round non-central
parameter.

Table 7. #texts necessary for Ps,.g(n) > 0.95 (From Th.8)

r 4 6 8 10 12 14 16 18
4 texts 23106 947-10 963.13 979.15 995.17 9111.19 9127.20 9143.21

WOI‘kT 285.06 2101.10 2117413 2133.15 2149417 2165.19 2181420 2197.21

. a time to increment of cnt.

We approximate Equation (12) to reduce the computation amount to get (12)
in the same way as Theorem 5. Theorem 8 is pretty effective to compute n with
Ps,es(n) > 0.95 since the computation of exponentiation 264 _ 1 on an integral
part in (12) is eliminated.

Theorem 8. The sufficient condition for Ps,.g(n) > 0.95 is

1

Pspeg(n) > 1 — 20(264 — 1)’

where
. o0
Psyc6(n) =/ P(26 —14mb,_1,(2(26—1)+4mb,_1)/210)(T) -
— 00
/ P(26 —14mb, 1 ,(2(26—1)+4mb, 4 1) /210y (u)du dz,

m = 2""20 gnd mb, is r-round non-central parameter.

On the Success Probability of x2-attack on RC6 73

Table 8. Theoretical and experimental success probability of 4-round RC6-8
(Alg. 3)

texts 217 218 219 920
Theoretical 0.00 0.05 0.73 1.00
Experimental 0.00 0.04 0.76 1.00

Table 7 shows the necessary number of texts and work which make success
probability of Algorithm 3 on RC6 95% or more. The necessary number of texts
is computed by Theorem 8. “Work” means the time to increment of counter
cnt. Note that the number of available texts is bounded by 2!?® in Algorithm 3.
Therefore, we see from Table 7 that Algorithm 3 is applicable to 192-bit-key
and 256-bit-key RC6 with up to 16 rounds. Thus, our results can answer the
open question of [8], that is whether or not the x? attack works on RC6 with 16
rounds or more.

In [8], they estimated heuristically that 192-bit-key or 256-bit-key RC6 are
broken up to 14 or 15 rounds by their key recovery algorithm, respectively. We've
now proved theoretically that 192-bit-key and 256-bit-key RC6 can be broken in
up to 16 rounds. In Algorithm 3, we recover both post-whitening keys at once.
As a result, the number of work is #texts x 227%2_ and thus it works on an
128-bit-key RC6 with up to 8 rounds. But we can reduce the amount of work by
recovering either post-whitening key at once to #texts x 227. Then it works on
128-bit-key RC6 with up to 12 rounds, which will be shown in the final paper.

5.2 Success Probability of Algorithm 3 on RC6-8

We also demonstrate Theorem 7 on 4-round RC6-8. Table 8 shows the theoret-
ical and experimental results. We see that theoretical estimation gives a pretty
good approximation compared with Table 6. Let us discussion the reason. In Al-
gorithm 2, we assume that the y2-values of wrong keys in r-round RC6P equals
that in (7 +1)-round RC6P to estimate Ps,qep,(n). However, this is exactly up-
per bound of y2-values of wrong keys. In the case of Algorithm 3, the y2-values
of wrong keys in r-round RC6 are equal to that in (r 4+ 1)-round RC6P. Thus,
we see that theoretical estimation of Theorem 7 is much better than that of
Theorem 5.

6 Concluding Remarks

In this paper, we have improved the y2-attack on RC6P to the x?-attack on RC6
and proved the theorems that evaluate the success probability in both y2-attacks.
The derived formulae can be computed efficiently and provide a theoretical anal-
ysis of the success probability in the x?-attack. We have also demonstrated that
our theorems can estimate success probability in y?-attacks against 4-round
RC6P, RC6P-8, and RC6-8. Furthermore we have shown theoretically that our

74

Atsuko Miyaji and Yuuki Takano

x?-attack is applicable to 192-bit-key and 256-bit-key RC6 with up to 16 rounds
by using 2'27-2° plaintexts.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “The Security of the RC6 Block
Cipher. v 1.0,” August 20, 1998.

Available at http://www.rsasecurity.com/rsalabs/rc6/.

R.J. Freund and W.J. Wilson, Statistical Method, Academic Press, San Diego, 1993.
H. Gilbert, H. Handschuh, A. Joux, and S. Vaudenay, “A Statistical Attack on
RC6”, FSE 2000, LNCS 1978(2000), Springer-Verlag, 64-74.

H. Handschuh and H. Gilbert, “x? Cryptanalysis of the SEAL Encryption Algo-
rithm”, FSE ’97, LNCS 1267(1997), Springer-Verlag, 1-12.

N. Isogai, T. Matsunaka, and A. Miyaji, “Optimized y?-attack against RC6”,
ANCS 2003, LNCS 2846(2003), Springer-Verlag, .

P. Junod, “On the Complexity of Matsui’s Attack”, SAC 2001, LNCS 2259(2001),
Springer-Verlag, 199-211.

J. Kelsey, B. Schneier, and D. Wagner, “Mod n Cryptanalysis, with applications
against RC5P and M6”, FSE 99, LNCS 1636(1999), Springer-Verlag, 139-155.
L. Knudsen and W. Meier, “Correlations in RC6 with a reduced number of rounds”,
FSE 2000, LNCS 1978(2000), Springer-Verlag, 94-108.

D. Knuth, The art of computer programming, vol.2, Seminumerical Algorithms,
2nd ed., Addison-Wesley, Reading, Mass. 1981.

T. Matsunaka, A. Miyaji, and Y. Takano, ”Success probability in y2-attacks”,
ACNS 2004, LNCS 3089(2004), Springer-Verlag, 310-325.

A. Miyaji and M. Nonaka, “Cryptanalysis of the Reduced-Round RC6”, ICICS
2002, LNCS 2513(2002), Springer-Verlag, 480-494.

R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6 Block Cipher. v1.1,”
August 20, 1998. Available at http://www.rsasecurity.com/rsalabs/rc6/.

A. A. Selcuk and A. Bicak, ”On probability of success in differential and linear
cryptanalysis”, SCN 2002, LNCS 2576(2003), Springer-Verlag, 1751-185.

S. Vaudenay, “An Experiment on DES Statistical Cryptanalysis”, ACM-CCS ’96,
ACM Press(1996), 139-147.

T. Shimoyama, M. Takenaka, and T. Koshiba, “Multiple linear cryptanalysis of a
reduced round RC6,” FSE 2002, LNCS 2365 (2002), Springer-Verlag, 76-88.

M. Takenaka, T. Shimoyama, T. Koshiba, “Theoretical Analysis of x? Attack on
RC6”, IEICE Trans., VOL.E87-A, NO.1(2004), 28-35.

B. Ryabko, “Adaptive chi-square test and its application to some cryp-
tographic problems”, Cryptology ePrint Archive, Report 2002/030 (2003),
http://eprint.iacr.org/.

Solving Systems of Differential Equations of
Addition*
(Extended Abstract)

Souradyuti Paul and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,
B-3001, Leuven-Heverlee, Belgium
{Souradyuti.Paul, Bart.Preneel}@esat.kuleuven.ac.be

Abstract. Mixing addition modulo 2" (4) and exclusive-or (@) have
a host of applications in symmetric cryptography as the operations are
fast and nonlinear over GF(2). We deal with a frequently encountered
equation (z + y) ® ((z ®) + (y ® B)) = ~v. The difficulty of solving
an arbitrary system of such equations — named differential equations of
addition (DEA) — is an important consideration in the evaluation of the
security of many ciphers against differential attacks. This paper shows
that the satisfiability of an arbitrary set of DEA — which has so far been
assumed hard for large n — is in the complexity class P. We also design
an efficient algorithm to obtain all solutions to an arbitrary system of
DEA with running time linear in the number of solutions.

Our second contribution is solving DEA in an adaptive query model
where an equation is formed by a query («, 3) and oracle output . The
challenge is to optimize the number of queries to solve (z+y)® ((z Do)+
(y®B)) = 7. Our algorithm solves this equation with only 3 queries in the
worst case. Another algorithm solves the equation (z+y)®(z+(y®8)) =
v with (n —t — 1) queries in the worst case (¢ is the position of the least
significant ‘1’ of z), and thus, outperforms the previous best known al-
gorithm by Muller — presented at FSE '04 — which required 3(n — 1)
queries. Most importantly, we show that the upper bounds, for our algo-
rithms, on the number of queries match worst case lower bounds. This,
essentially, closes further research in this direction as our lower bounds
are optimal. Finally we describe applications of our results in differential
cryptanalysis.

1 Introduction

Addition modulo 2". Mixing addition modulo 2" (4) with other Boolean
operations such as ezclusive-or (®), or (V) and/or and (A) is extensively used

* This work was supported in part by the Concerted Research Action (GOA) Mefisto
2000/06 and Ambiorix 2005/11 of the Flemish Government and in part by the Eu-
ropean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 75-88, 2005.
© Springer-Verlag Berlin Heidelberg 2005

76 Souradyuti Paul and Bart Preneel

in symmetric cryptography. The main motivation for including addition mod 2™
in cryptographic primitives is that it is a nonlinear transformation over GF(2)
and the operation is extremely fast on all present day architectures. Nonlinear
transformations are of paramount importance in the design of ciphers as they
make functions hard to invert. Helix [9], IDEA [14], Mars [4], RC6 [20], and
Twofish [21] which mix modular addition with exclusive-or are a few examples
of the application of addition. Very recently Klimov and Shamir also used an
update function for internal state, known as a T-function, where addition is
mixed with multiplication and or in a certain fashion to achieve many useful
properties of a secure stream cipher [11], [12].

Keeping with the trend of widespread use of addition in symmetric ciphers,
there is a large body of literature that studies equations involving addition from
many different angles. Staffelbach and Meier investigated the probability dis-
tribution of the carry for integer addition [22]. Wallén explained the linear ap-
proximations of modular addition [24]. Lipmaa and Moriai [15] investigated the
equation (z+y) ® ((z® «) + (y ® B)) = v, where a, § are the input differences
and 7 is the output difference, to compute many differential properties. The dual
of the above equation (z ® y) + ((z + «) ® (y + B)) = v was investigated for
differential properties by Lipmaa et al. [16].

Differential Cryptanalysis (DC). Differential Cryptanalysis, introduced by
Biham and Shamir [5], is one of the most powerful attacks against symmetric ci-
phers. There are broadly two lines of attacks based on DC. One is guessing input
or output differences of a cipher with nontrivial probability. In a cipher that is se-
cure against DC, input and output differences should behave ‘pseudorandomly’,
so that none of them can be guessed from any known values with a nontrivial
probability. This line of attack usually results in distinguishing attacks [23]. A
second line of attack is much stronger but more difficult to implement than the
other. It recovers secret information from known input and output differences,
akin to the algebraic attacks [17]. Note that this second line of attack implies
the first but the converse is not true. Therefore, provable security against DC
— introduced by Lai et al. [14] and first implemented by Nyberg and Knudsen
[18] — remained a key factor in the evaluation of the security of a cipher. How-
ever, security of many complex modern ciphers against DC is hard to evaluate
because of lack of theory to evaluate the security of its components. Our target
is to mount a second line of attack (i.e., to recover secret information) on the
much used symmetric cipher component addition modulo 2™.

Results of the Paper. There are two basic addition equations under DC where
differences of inputs and outputs are expressed as exclusive-or.

@t+y)e+ep) =1, (1)
@ty e(@asa)+yap) =7, (2)
These equations are named differential equations addition (DEA). While engaged

in cryptanalysis of MD5, Berson noted in 1992 that, for large n, it is hard to
analyze modular addition when differences are expressed as XOR [3]. This may

Solving Systems of Differential Equations of Addition 7

have motived the use of addition in conjunction with XOR in many symmetric
ciphers to increase resistance against DC.

In this paper we show that the satisfiability of a randomly generated set of
DEA is in the complexity class P. In other words, a Turing machine can show
in O(n*) time whether there exists a solution to an arbitrary set of DEA (n
denotes the bit-length of =, y and k > 0 is an integer-valued constant computed
from the degree of the polynomial (in n) by which the number of equations to
be solved is bounded above). This result, on one hand, gives deeper insight into
the behavior of addition under DC. On the other hand this leaves a cautionary
note for the cryptographers to be more careful about using addition in the de-
sign. Outside cryptography, satisfiability of a system of equations has a natural
appeal to many areas such as computational complexity, combinatorics, circuit
optimization and computer algebra (remember the most famous NP-Complete
satisfiability problem: Boolean formula satisfiability [6]). For example, if a large
system of DEA is NOT satisfiable then the whole circuit representing the system
of DEA can be safely removed to optimize the circuit complexity. Going beyond
the satisfiability problem, we also give an efficient algorithm to compute all the
solutions to a randomly generated system of DEA with running time linear in
the number of solutions. Another subtle but a noteworthy aspect of our work is
the departure from the traditional technique for solving multivariate polynomial
equations over GF(2) [2]. We heavily benefit from certain properties of DEA and
solve such systems combinatorially.

Next, we extend our work to solve DEA in a crypto-friendly adaptive query
model. The aim is to minimize the search space for the secret (z, y) using a
minimum number of adaptive queries («, 3). Such an optimization problem —
typically used to reduce data complexity of chosen plaintext attacks — for (1) has
already been tackled by Muller [17]. But an optimal solution has been elusive
until now. We achieve optimal solutions for both of the equations. We show
that a worst case lower bound on the number of queries (0, 5) to solve (1) is
(n—t—1) where (n—t) > 1 with ¢ being the bit-position of the least significant
‘1’ of 2. A worst case lower bound on the number of queries (a, 3) to solve (2)
is 3 for n > 2. Most importantly, for solving the above equations we also design
algorithms whose upper bounds on the number of queries match worst case
lower bounds. Note that our algorithm outperforms the previous best known
algorithm by Muller to solve (1) — presented at FSE *04 — which required 3(n—1)
queries [17]. Over and above, our results essentially close further investigation
in this particular direction as the equations are solved with an optimal number
of queries in the worst case. It is particularly interesting to note that, for (2),
although the number of all queries grows exponentially with the input size n, an
optimal lower bound to solve (2) is 3 for all n > 2, i.e., constant asymptotically.

Our results on modular addition have the potential to be used either directly
in the cryptanalysis of ciphers that include this special component or to facilitate
cryptanalysis of several modern ciphers (e.g., mixing addition with multiplica-
tion). We show that, with a maximum of only 3 adaptively chosen queries, the
search space of the secret of modular addition against DC can be reduced from

78 Souradyuti Paul and Bart Preneel

22" to only 4 for all n > 1. We used our results to cryptanalyze a recently pro-
posed cipher Helix [9] which was a candidate for consideration in the 802.11i
standard. We are successful in reducing the data complexity of a DC attack on
the cipher by a factor of 3 in the worst case (a factor of 46.5 in the best case) [17].
In addition, using our algorithm to solve DEA, as discussed above we are able to
compute all the differential properties of addition by investigating a single equa-
tion (note that the differential properties of addition have been independently
found by Lipmaa and Moriai using a different technique [15]).

1.1 Notation and Model of Computation

The purpose of the paper is to solve (1) and (2) for (z, y) using triples («, 8,)
where z, y, o, 8, v € Z5. The ith bit of an n-bit integer [is denoted by I;
(lp denotes the least significant bit or the Oth bit of I). The operation addition
modulo 2™ over Zsn can be viewed as a binary operation over Z% (we denote
this operation by ‘+’) using the bijection that maps (l,—1, -+, lo) € Z§ to
ln—12""t 4+ -+ + 1p2° € Zan. Therefore ‘+’ is a function ‘+’: Z% x Z§ — Z3.
The symbols ‘@’ and ‘A’ denote the operations bit-wise exclusive-or and bit-wise
and of two n-bit integers respectively. We will denote a A b by ab. Throughout
the paper, [p, q] denotes a set containing all integers between the integers p and
q including both of them. Unless otherwise stated, n denotes a positive integer.
The size of a set S is denoted by |5].

The algorithms, described in this paper, can be implemented on a generic
one-processor Random Access Machine (RAM) (i.e., instructions are executed
sequentially) whose memory is composed of an unbounded sequence of registers
each capable of containing an integer. Typically, RAM instructions consist of
simple arithmetic operations (addition and bitwise XOR in our case), storing,
addressing (direct and indirect) and branching, each of which is a constant time
operation. However, the choice of RAM instructions is relatively less important
because algorithms based on two reasonable sets of instructions will have the
same asymptotic complexity. A detailed analysis of RAM can be found in [1],
[8]. Tt can be shown that a polynomial-time solvable problem on a RAM is also
polynomial-time solvable on a Turing Machine and vice versa.

2 Solving an Arbitrary System of DEA

Our aim is to solve for (z, y) from the following set of differential equations of
addition over Z,

@t+y) e ((zsalk]) + (e pk)) =k, k=1,2---m. 3)

We notice that the ith bit of y[k] is a function of the least (i + 1) bits of z, v,
alk] and G[k]. More formally,

v[kli = Fi(zo, -+ 5 @iy Yo, -+, Yi, «[klo, - -+, a[kli, Blk]o, -+, BlkL:) . (4)

Solving Systems of Differential Equations of Addition 79

Note that, from a system of m differential equations of addition, a total of mn
multivariate polynomial equations over GF(2) can be formed by ranging (k,)
through all values in (4).

Plenty of research has been undertaken to design efficient ways to solve ran-
domly generated multivariate polynomial equations. The classical Buchberger’s
Algorithm for generating Grébner bases [2] and its variants [7] are some of them.
This problem is NP-complete (NPC) over GF(2). Many other techniques such
as relinearization [13] have been proposed to solve a special case of overdefined
systems of multivariate polynomial equations. Note that, in our case, the num-
ber of unknowns and equations are 2n and mn respectively (if m > 2 then the
system of equations is overdefined). However, taking full advantage of the spe-
cific nature of the differential equations of addition, we shall use a combinatorial
technique to prove that, although the satisfiability of an arbitrary multivariate
polynomial equation over GF(2) is NP-complete, this special cryptographically
important subclass of equations is in the complexity class P (see [6], [10] for
definitions of NP, P, NPC). Finally, we also derive all the solutions to a system
of such equations.

2.1 Computing the Character Set and the Useful Set

From (3) we construct A = {(a[k], B[k], v[k]) | k € [1, m]} assuming («[k], B[k,
v[k])’s are all distinct.! We call A the character set. Our first step is to transform
the system of equations defined in (3) into a new set of equations over Z} as
defined below,

(z+y) @ ((z©alk]) + (y ® G[k])) © alk] ® f[k] = 5[k, k=1,2---m;(5)
where §[k] = v[k] @ a[k] ® B[k]. Now, we construct A,
A={(a. B, 7=a® o) (0, B, 7) € A}. (6)

We call A the useful set. Let all the solutions for (3) and (5) be contained in the
sets A-satisfiable and A-consistent respectively. It is trivial to show that

A-satisfiable = A-consistent . (7)

Our aim is to compute A-consistent from A.

2.2 Precomputation

Take an arbitrary element (o, 3, 4) € A (n > 1). Observe that ;41 can be
computed using z;, v, ¢, «;, Bi, Vi, Vi € [0, n — 2], from the following three
equations

Vit1 = Cit1 D Cit1, Cit1 = TilYi © TiCi D YiCi, Cit1 = Tili O TiCi D YiC;
where ¢; is the carry at the ith position of (x +vy), £; = z; Dy, Ui = v B G
and ¢; = ¢; @ 7;. Table 1 lists the values of 7,11 as computed from all values of
Tiy Yiy Ciy Qs ﬂiv ’}71

! This can be obtained by taking one of the identical equations in (3).

80 Souradyuti Paul and Bart Preneel

Table 1. The values of ;41 corresponding to the values of x;, y;, ¢;, as, G5, Vi-
A row and a column are denoted by R(l) and Col(k)

(@i, yi, ci) (ai, Bi, 7i)

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) R(0)
000) 0 0 0 1 0 1 1 1 R(1)
(1,1,1)
001) 0 0 1 0 1 0 1 1 R(2)
(1,1,0)
01,00 0 1 0 0 1 1 0 1 R(3)
(1,0,1)
(1,00) 0 1 1 1 0o 0 0 1 R(4)
(0,1,1)
Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7) Col(8)

2.3 Computing G;, S;,0 and S;, 1 from the Useful Set A

We now determine an important quantity, denoted by G;, for a nonempty useful
set A. In Gy, we store the ith and (i + 1)th bits of 4 and the ith bit of a and 3
for all (o, 3,) € A. We call G; the ith core of the useful set A. More formally
(suppose n > 1),

Gi:{(ai, ﬁi?f%a ’?i-‘rl)‘(a’ ﬁa ;?) EA}, 1€ [0,7’L—2] (8)

In the subsequent discussion we will often use the expression “G; = (x4, y;, ¢;)”.
Let |G| = g. Take an element (o, 8;, 7i, Fi+1) € G;. In Table 1, find the row(s)
of the fourth coordinate 7;41 in the column specified by the first three coordinates
(e, Bi, %) in R(0) and put them in set Fj;. Find Fjp,- - - Fj, for all g elements
of G;. Let F; = (; Fy; and R(x)€ F;. If (24, yi, ¢;) is in Col(0)xR(x) then we
say G; = (24, yi, ¢i). If F; = ¢ then no such (x;, y;, ¢;) exists. We compute
Si, i ={(xi, yi) | Gi = (4, yi, i = j)}. See [19] for an example.

We assume m = |A| = O(n!) for some nonnegative integer I. Then the time
and memory to compute all G;’s and S; ;’s are O(n*) each because the size of
Table 1 and |G;| are O(1) each (k = [4+ 1). Now, we show a relation between
Si,0 and S; 1 that will be used to obtain several results.

Proposition 1. For all nonempty useful set A and all n > 1, |S; o] = |Si1
Vie[0,n—2].

Proof. The proof follows from Table 1. O
We set,

1Si, 0

:‘52‘71‘:52‘ VZ'E[O,’II—Q}. (9)

Solving Systems of Differential Equations of Addition 81

2.4 Satisfiability of DEA is in P

In this section, we deal with a decision problem: does there exist a solution for
an arbitrary set of differential equations of addition, i.e., is a system of DEA
satisfiable?

We have already seen how to compute the character set A, the useful set A,
the core G;’s and S;’s from a system of DEA in O(n¥) (see Sect. 2.3). We now for-
mulate | A-consistent| (i.e., the number of solutions) in the following proposition
which will later answer our satisfiability question.

Proposition 2. Let the useful set A # ¢ and S denote |f~1-consistent\. Then,

0 if 50 = 1 for some (o, 3, 7) € A,
S=34-T['"2S: if30=0,Y(a, 3,3) € A andn > 1,
4 if %0 =0, Y(a, B, 7) € A and n = 1.

The S;’s are defined in (9).

Proof. A detailed proof is provided in the full version of the paper [19]. g

Using Proposition 2, we now answer the question of satisfiability of DEA in
the following claim.

Claim. (i) If 59 = 1 for some (o, 3,7) € A, then the set of DEA is NOT
satisfiable. (i) If 70 = 0, ¥(a, B, 7) € A and n > 1, then the set of DEA is
satisfiable if and only if S; # 0 Vi € [0, n —2]. (%) If % = 0, V(«, B, 7) € A

and n =1, then the set of DEA is satisfiable.

Verification of (i), (%) and (iii) take time O(1), ©(n) and O(1) respectively.
Therefore, the overall time to decide whether a system of DEA is satisfiable is
O(nF) +0O(1) + O(n) + O(1) = O(n*). Thus the satisfiability of DEA is in P.

2.5 Computing All the Solutions to a System of DEA

Now the only part left unanswered is how to actually compute A-consistent,
i.e., to extract all the solutions of a system of DEA which is satisfiable. Note,
if n = 1 then A-consistent comprises all 4 values of (z, y). The G;’s can be
computed from the useful set A in O(n*) (see Sect. 2.3). Now we compute an
intermediate parameter L; = {(z;, yi, ¢;) | Gi = (zi, yi, ¢;)} for all ¢ € [0, n— 2]
(note that the L;’s are different from the F;’s which have been computed in
Sect. 2.3). Computation of the L;’s takes time and memory each O(n). We call
L; the ith bit solution. Algorithm 1 computes A-consistent from the L;’s (n > 1).

The idea of the algorithm is to collect in M all (z, y) € Z§ x ZJ such that
Gi = (@i, ¥i, ¢i), Vi € [0, n — 2]. The following theorem is the heart of the
argument to prove that M is essentially A-consistent.

82 Souradyuti Paul and Bart Preneel

Algorithm 1 Compute all the solutions to a system of satisfiable DEA
Input: L;, Vi € [0, n — 2]
Output: A-consistent
1: Find M = {((xﬂflv LTn—2; ", 1170), (yn—l, Yn—2, """, yo)) ‘ (mnfla y’ﬂfl) € Z%a
(Jii, Yi, Ci) e€L;, i€ [0, n— 2}, co =0,cit1 =2y D Tici B ylcl}
2: Return (M).

Theorem 1. Let the useful set A # ¢ and n > 1. The following two statements
are equivalent.

1. (z, y) € Z% x Z% is such that G; = (x4, yi, ¢;), Vi € [0, n — 2].

2. (x, y) € A-consistent.

Proof. From the construction of GG;, it can be shown that 1 < 2. O

Time and Memory. Algorithm 1 takes time ©(S) and memory ©(n-.S) where
S is the number of solutions (an explicit construction of M from the L;’s and
its complexity analysis are presented in [19]).

3 Solving DEA in the Adaptive Query Model

In this section, we solve the equations

(z+y)@(z@a)+(yef)) =, (10)
@ty @+yen) =y (11)

separately in an adaptive query model. Solving (10) in adaptive query model
means solving a set of 22" equations generated by ranging («, 8) with the corre-
sponding . The number of solutions satisfying 22" equations is less than that of
any subset of the equations. Therefore, solving these 22" equations reduces the
search space of the secret (x, y) to the minimum. This fact is the major moti-
vation for dealing with this problem. The task of a computationally unbounded
adversary is to select a subset A of all equations such that the solutions to the
chosen subset A are the same as that of the entire 22" equations. The target of
the adversary is to minimize |A|. A similar optimization problem can be asked
of (11) where the number of equations is 2". Such an optimization problem
for (11) has already been tackled by Muller [17] in cryptanalysis of the Helix
cipher but an optimal solution has still been elusive. We reach optimal solutions
for both equations.

3.1 The Power of the Adversary

The power of an adversary that solves (10) is defined as follows.

1. An adversary has unrestricted computational power and an infinite amount
of memory.

Solving Systems of Differential Equations of Addition 83

2. An adversary can only submit queries (o, 3) € Z% x Z% to an honest oracle?
which computes vy using fixed unknown (z, y) € ZJ x Z% in (10) and returns
the value to the adversary. We will often refer to that fixed (z, y) as the seed
of the oracle.

Such an oracle with seed (z, y) is viewed as a mapping Oy, : Z§ X Z3 — Z3 and
defined by

Ozy ={(e, B, V) (o, B) € Zy x Ly, v = (e +y) @ (@) + (y& f)}. (12)

An adversarial model, similar to the one described above for (10), can be
constructed for (11) by setting (o, 5) € {0}" x Z3 and the mapping Oy,
{0} x 2% — 71 .

The model described above represents a practical adaptively chosen message
attack scenario where the adversary makes adaptive queries to an oracle. Based
on the replies from the oracle, the adversary computes one or more unknown
parameters.

3.2 The Task

Ogy, defined in (12), generates a family of mappings F = {Ogy |(z,y) €
ZB x ZB%}. Note that, if D € F then |D| = 22" for (10). Therefore, D € F is the
character set with the number of equations m = 22" (see Sect. 2.1). Our aim
is to find all (=, y) satisfying these 22" equations, i.e., to compute D-satisfiable
from a subset of the character set D. If we deal with (11) then |D| = 2™.

An Equivalent Task. From the character set D one can compute the use-
ful set D using (6). Therefore, the task is equivalent to the determination of
D-consistent from a subset of the useful set D. We call D and D the total
character set and the total useful set as their sizes are maximal and they are
generated from a satisfiable set 22" DEA (because we assumed the oracle to be
honest). Note that there is a bijection between D and D.

Adjusting the Oracle Output. If the oracle outputs v on query («,), we
shall consider the oracle output to be ¥ = a @ 8 @~y for the sake of simplicity in
the subsequent discussions.

Rules of the Game. Now we lay down the rules followed by the adversary
to determine the set D-consistent that, in turn, gives the essence of the whole
problem.

1. The adversary starts with no information about x and y except their size n.

2. The adversary settles on a strategy (i.e., a deterministic algorithm) which
is publicly known. Using the strategy, the adversary computes queries adap-
tively, i.e., based on the previous queries and the corresponding oracle out-
puts the next query is determined.

2 An honest oracle correctly computes v and returns it to the adversary.

84 Souradyuti Paul and Bart Preneel

3. The game stops the moment the adversary constructs D-consistent. The
adversary fails if she is unable to compute D-consistent for some (z, y) €
Zy X 7.

We search for an algorithm that determines D-consistent for all (x, y) € Z4 x
Zy. Furthermore, there is an additional requirement that, in the worst case of
(z, y), the number of queries required by the algorithm is the minimum . We
shall elaborate on the meaning of worst case in Sect. 3.4 which focuses on worst
case lower bounds on the number of queries.

3.3 Number of Solutions

In this section we are interested to determine the number of solutions of (10)
and (11) in the adaptive query model. We have already developed a framework
where the set of all solutions in the adaptive query model is denoted by D-
consistent where D is the total useful set. Therefore, formally, our effort will be
directed to formulate |D-consistent|. We will see in Theorem 4 that, for (11),
| D-consistent| depends on the least significant ‘1’ of x. However, for (10), |D-
consistent| = 4, V(z, y) € Z§ x Z5. We shall use these results in Theorem 4
and 5 of Sect. 3.4, to obtain lower bounds on the number of queries to compute
D-consistent and in Sect. 3.5, to prove the correctness of our optimal algorithms.
The proofs of the following two theorems are provided in [19].

Theorem 2. Let the position of the least significant ‘1’ of x in the equation

t+y)e(@+yap) =y

bet and x, y, B, v € Z%. Let the total useful set D be given. Then \D—consistenﬂ
is (i) 2173 ifn — 2>t >0, (i) 2"t otherwise.

Theorem 3. Let the total useful set D be given for the equation

(zt+y)e(z®a)+(y®B) =7

with x, y, o, B, v € Z%. Then |l~)-consistent\ =4.

3.4 Worst Case Lower Bounds on the Number of Queries

Our target is to design an algorithm (for (10) or (11)) which computes D-
consistent for all seeds (z,y) € Z§ x Z% with adaptive queries. For such an
algorithm, the number of required queries may vary with the choice of (z, y).
In this section we concentrate on a lower bound on the number of queries in
the worst case of (x, y) under the “rules of the game” stated in Sect. 3.2. The
significance of the lower bound is that there exists no algorithm that requires
less queries in the worst case than the obtained lower bound.

Solving Systems of Differential Equations of Addition 85

We already noticed that more queries tend to reduce the search space of the
secret (z, y). In our formal framework, if A C B C D then D-consistent C B-
consistent C A-consistent. This implies that |D-consistent| < |B-consistent| <
| A-consistent|. Note that our algorithm constructs A C D, V(z, y) € ZI x
Zy, using the submitted queries and the corresponding outputs such that
| D-consistent| = |A-consistent|. The algorithm fails if |D-consistent| < |A-
consistent|, for some (z, y) € Z§ x Z%. In the following theorems, we will use
the condition — | A-consistent| cannot be strictly greater than |D-consistent| — to
compute worst case lower bounds on the number of queries (note that we have
already obtained formulas for \ﬁ—consistenﬂ in the previous section).

In the following theorem, we partition the entire seed space Z§ x Z5 and com-
pute a worst case lower bound for each partition. Note that a lower bound (say,
1) for any partition shows that, for any algorithm that computes D-consistent
V(z, y) € Z3 x Z%, there exists at least one seed in that particular partition
which requires at least | queries.

Theorem 4. A lower bound on the number of queries (0, 8) to solve

(+y)o@@+yap) =

in the worst case of (z,y) is (i) 0ifn =1, (ii) 1 if x =0 and n > 1, (iii) 1 if
n=1+twitht>0, (iv)(n—t—1) if n—2 >t >0, where n is the bit-length
of x, y and t is the position of the least significant ‘1’ of x.

Proof. The basic idea of the proof is to show that, in each partition (note that
the partition is according to t and in each partition there are many possible
(x, y)’s), there exists at least one pair of (z, y) such that, if the number of
queries for that (x, y) is less than the lower bound then we reach an impossible
condition where the size of the solution set is greater than |D-consistent|. This
is shown using Theorem 2 and Table 1. The detailed and formal proof is in the
full version of the paper [19]. O

Theorem 5. A worst case lower bound on the number of queries (a, 3) to solve

@+y)e(e®a)+ (o) =7
is (1) 3ifn>2, (i) 2 if n=2, (ii) 0if n=1.

Proof. To prove (i), we consider all possible adaptively chosen two queries by
all algorithms and find that, in each case, an oracle can always select a seed
such that the number of solutions obtained from the outputs exceeds 4 which is
impossible by Theorem 3. A detailed analysis is given in [19]. The proofs for (ii)
and (#4) are trivial. O

3.5 Optimal Algorithms

In this section, we concentrate on designing algorithms that solve (11) and (10)
in the adaptive query model. In the formal framework, if the oracle is seeded with

86 Souradyuti Paul and Bart Preneel

an unknown (z, y) then there is always a total useful set D that the unknown
seed (z, y) generates. For a particular total useful set D, there exists a set D-
consistent containing all values of (z, y). Our algorithm makes adaptive queries
(a, B) to the oracle — which is already seeded with a fixed (z, y) — and the
oracle returns 4. The task of the algorithm is to compute D-consistent using
oracle outputs 7, for all seeds (z, y) € Z% x Z%. The algorithm is optimal if the
number of queries in the worst case (i.e., the upper bound) matches the lower
bound derived in the relevant theorem (Theorem 4 or 5). We refer the readers
to the full version of the paper [19] for optimal algorithms and their complexity
analysis. For each of the algorithms (one for each equation), the memory and
the time are @(n) and O(n) respectively.

4 Cryptographic Applications

Weakness of modular addition under DC. The fact that an arbitrary sys-
tem of DEA is in the complexity class P, shows a major differential weakness
of modular addition which is one of the most used block cipher components.
The weakness is more alarming because, with a maximum of only 3 adaptively
chosen queries the search space of the secret can be reduced from 22" to only
4 for all n > 1. It is, however, not known at this moment, how much influence
this weakness has on many modern symmetric ciphers that mix other nonlinear
operations with addition. Still, a recommendation for a deeper analysis of ci-
phers mixing XOR and modular addition in the light of our investigation is well
justified.

Cryptanalysis of Helix. Helix, proposed by Ferguson et al. [9], is a stream
cipher with a combined MAC functionality. The primitive uses combination of
addition and XOR to generate pseudorandom bits. Recently a differential attack
was found against Helix by Muller [17]. He solved the equation (z + y) @ (x +
(y @ B)) = v many times to recover secret information (x, y) using S and the
corresponding y. Every time (3 corresponds to a chosen plaintext. His algorithm
uses 3(n — 1) queries every time. Therefore, the most natural challenge, from
an algorithmic point of view, is to reduce the number of queries and if possible
to attain an optimality. For the Helix output word n = 32 bits, 93 queries
were needed whereas our optimal algorithm (described in [19]) takes at most 31
queries if the position of the least significant ‘1’ of (denoted by t) is zero. Note
that, if £ > 0 then the number of queries is less. However, the most important
fact is that the number of queries cannot be further reduced in the worst case
as our algorithm is worst case optimal. This fact can be straightaway used to
reduce the data complexity of that particular attack on Helix cipher by, at least,
a factor of 3. However, in the best case, there exists seed (z, y), Vt € [0, n — 3],
for which (11) can be solved by our optimal algorithm with only 2 queries and
the improvement in such a case is a factor of 46.5.

Computing Differential Properties of Addition. It is easy to show that
our algorithm to solve a randomly generated set DEA is robust enough to com-

Solving Systems of Differential Equations of Addition 87

pute all differential properties of addition (e.g., maximal differential, impossible
differential, etc.) In such a case we need to consider a single differential equation
of addition instead of many and then compute the solutions to it. For example,
if the single equation is NOT satisfiable then this is an impossible differential.
However, the differential properties of addition has been independently studied
in depth by Lipmaa and Moriai using a different approach [15].

5 Conclusion and Further Research

The results of the paper have impacts on both theory and practice. We have
shown the importance of solving DEA from both a theoretical and a practical
point of view. The paper seals any further search to improve lower bounds on
the number of queries for solving DEA with adaptive queries. Although the total
number of queries grows exponentially, an optimal lower bound is linear for one of
them and constant for the other. Moreover, our algorithm reduces the number
of queries of the previous best known algorithm and our results improve the
data complexity of an attack on Helix cipher. Our work leaves room for further
research, particularly, in the direction of solving DEA with nonadaptive queries.
Last but not the least, our solution techniques motivate further research to
solve more complex equations that mix modular addition, exclusive-or, modular
multiplication and T'-functions.

6 Acknowledgments

We are grateful to Mridul Nandi of the Indian Statistical Institute for encourag-
ing us to do this work and for his critical remarks on many technical results. We
also thank Taizo Shirai of Sony Incorporation, Japan, Sankardas Roy of George
Mason University, USA and Jongsung Kim of Katholieke Universiteit Leuven,
Belgium for numerous useful discussions. Thanks are also due to the anonymous
reviewers of ACISP 2005 for their constructive comments.

References

1. A. Aho, J. Hopcroft, J. Ullman, “The Design and Analysis of Computer Algo-
rithms,” Addison-Wesley, 1974.

2. I. A. Ajwa, Z. Liu, P. S. Wang, “Grébner Bases Algorithm,” ICM Technical
Report, February 1995, Available Online at http://icm.mcs.kent.edu/reports/
1995/gb. pdf.

3. T. A. Berson, “Differential Cryptanalysis Mod 23? with Applications to MD5,”
Eurocrypt 1992 (R. A. Rueppel, ed.), vol. 658 of LNCS, pp. 71-80, Springer-Verlag,
1993.

4. C. Burwick, D. Coppersmith, E. D’Avignon, Y. Gennaro, S. Halevi, C. Jutla,
S. M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford and N. Zunic, “MARS — A
Candidate Cipher for AES,” Available Online at http://www.research.ibm.com/
security/mars.html, June 1998.

5. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,”
Crypto ’90 (A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS, pp. 2-21, Springer-
Verlag, 1991.

88

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Souradyuti Paul and Bart Preneel

T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,” MIT
Press.

J. Faugere, “A new effecient algorithm for computing Grobuner bases (Fy),” Jour-
nal of Pure and Applied Algebra, vol. 139, pp. 61-88, 1999, Available Online at
http://wuw.elsevier.com/locate/jpaa.

R. Floyd, R. Beigel, “The Language of Machines,”W. H. Freeman, 1994.

N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, T. Kohno, “Helix:
Fast Encryption and Authentication in a Single Cryptographic Primitive,” Fast
Software Encryption 2003 (T. Johansson, ed.), vol. 2887 of LNCS, pp. 330-346,
Springer-Verlag, 2003.

J. E. Hopcroft, R. Motwani, J. D. Ullman, ‘‘Introduction to Automata Theory,
Languages and Computation,” Second Edition, Pearson Education, 2004.

A. Klimov, A. Shamir, “Cryptographic Applications of T-Functions,” Selected Ar-
eas in Cryptography 2003 (M. Matsui, R. J. Zuccherato, eds.), vol. 3006 of LNCS,
pp- 248-261, Springer-Verlag, 2004.

A. Klimov, A. Shamir, “New Cryptographic Primitives Based on Multiword T-
Functions,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of
LNCS, pp. 1-15, Springer-Verlag, 2004.

A. Kipnis, A. Shamir, “Cryptanalysis of the HFE Public Key Cryptosystems by
Relinearization,” Crypto 1999 (M. Wiener, ed.), vol. 1666 of LNCS, pp. 19-30,
Springer-Verlag, 1999.

X. Lai, J. L. Massey, S. Murphy, “Markov Ciphers and Differential Cryptanalysis,”
Eurocrypt 91 (W. Davis, ed.), vol. 547 of LNCS, pp. 17-38, Springer-Verlag, 1991.
H. Lipmaa, S. Moriai, “Efficient Algorithms for Computing Differential Properties
of Addition,” FSE 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 336-350, Springer-
Verlag, 2002.

L. Lipmaa, J. Wallén, P. Dumas, “On the Additive Differential Probability of
Exclusive-Or,” Fast Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017
of LNCS, pp. 317-331, Springer-Verlag, 2004.

F. Muller, “Differential Attacks against the Helix Stream Cipher,” Fast Software
Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 94-108, Springer-
Verlag, 2004.

K. Nyberg, L. Knudsen, “Provable Security Against a Differential Attack,” Journal
of Cryptology, 8(1):27-37, 1991.

S. Paul, B. Preneel, “Solving Systems of Differential Equations of Ad-
dition,” Cryptology ePrint Archive, Report 2004/294, Available Online at
http://eprint.iacr.org/2004/294, 2004.

R. L. Rivest, M. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block Cipher,” Avail-
able Online at http://theory.lcs.mit.edu/ rivest/rc6.ps, June 1998.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.Hall, N. Ferguson, “The Twofish
Encryption Algorithm: A 128-Bit Block Cipher,” John Wiley & Sons, April 1999,
ISBN: 0471353817.

O. Staffelbach, W. Meier, “Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition,” Crypto 90 (A. Menezes, S. A. Vanstone, eds.), vol. 537
of LNCS, pp. 601-614, Springer-Verlag, 1991.

H. Yoshida, A. Biryukov, Christophe De Canniere, J. Lano, B. Preneel, “Non-
randomness of the Full 4 and 5-Pass HAVAL,” SCN 2004 (Carlo Blundo and
Stelvio Cimato, eds.), vol. 3352 of LNCS, pp. 324-336, Springer-Verlag, 2004.

J. Wallén, “Linear Approximations of Addition Modulo 2",” Fast Software Encryp-
tion 2008 (T. Johansson, ed.), vol. 2887 of LNCS, pp. 261-273, Springer-Verlag,
2003.

A Tree Based One-Key Broadcast Encryption
Scheme with Low Computational Overhead

Tomoyuki Asano and Kazuya Kamio

Sony Corporation
6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan
tomoQ@arch.sony.co.jp, Kazuya.Kamio@jp.sony.com

Abstract. In this paper, we propose a new broadcast encryption method
which is a modification of the Complete Subtree method and it reduces
the number of keys a receiver stores to one. There have been proposed
some methods which minimize the number of keys for a receiver to one.
The most efficient one among them uses RSA cryptosystem in order to
reduce the number of keys, while the proposed method is based on Rabin
cryptosystem. The computational overhead at receivers in our method is
around 1/ log, e compared with the most efficient method proposed pre-
viously, where e is a public exponent of RSA. We examine this result by
experiments. Therefore, the proposed method is the most efficient among
tree based one-key methods with respect to the computational overhead
at receivers. This reduction in the computational overhead is achieved in
exchange for an increase in the size of nonsecret memory by [log N * few
(e. g. eight)] bits, where N is the total number of receivers. The security
of the proposed method is equivalent to Rabin cryptosystem in the sense
of key-intractability in the random oracle model.

1 Introduction

We deal with broadcast encryption schemes or revocation schemes, in which a
sender can distribute secret information securely to a group of receivers exclud-
ing specified receivers (called revoked receivers) over a broadcast channel. One
of the main applications of the broadcast encryption technology is digital rights
management (DRM) of copyrighted contents. For example, in a content pro-
tection scheme with recordable media, a session key to encrypt or decrypt the
contents stored on a medium can be retrieved only by authorized receivers (i. e.
players or recorders) having collect receiver keys. If these receiver keys are stolen
or exposed, these keys are revoked from the system, and as a result the receiver
having only the exposed keys will not be able to retrieve session keys from media
which are produced after the revocation.

We have two simple methods for broadcast encryption. The one key method
requires each receiver to store only one unique key, however the sender must
broadcast N — r ciphertexts encrypted under each of the keys possessed by
unrevoked receivers, where N and r denote the total number of receivers in the
system and the number of revoked receivers, respectively.

C. Boyd and J.M. Gonzélez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 89-100, 2005.
© Springer-Verlag Berlin Heidelberg 2005

90 Tomoyuki Asano and Kazuya Kamio

The power set method defines a power set of N receivers, i.e. {Sb,...b;--bn |
where b; € {0, 1} indicates whether or not receiver ¢ belongs to subset Sp,...b;...b -
The sender broadcasts only one ciphertext of secret information which is en-
crypted with a key corresponding to an appropriate subset. On the other hand,
each receiver must store 2V~ keys since it belongs to 21 subsets.

Both methods are impractical for a large N with respect to the upper bound
of the number of ciphertexts to be broadcast (the communication overhead)
or the number of keys each receiver stores (the storage overhead). We should
also consider another criterion: the computational overhead at each receiver. It
should be noted that usually administrators and broadcasters are assumed to
have much greater memory and computing resources than receivers.

1.1 Related Work

Berkovits [4] and Fiat et al. [6] independently introduced the notion of broad-
cast encryption. Berkovits used a secret sharing scheme to construct a broadcast
encryption method. Fiat et al. combined their 1-resilient broadcast encryption
methods hierarchically in order to construct an r-resilient method which is re-
sistant to any collusion of at most r revoked receivers.

Wallner et al. [17] and Wong et al. [19] independently proposed efficient meth-
ods for key distribution, using a logical key-tree structure. Their methods assign
a receiver to a leaf of a tree, and give the receiver log N + 1 node keys corre-
sponding to nodes on the path from the leaf to the root. Note that logarithms
are base 2, throughout this paper. To revoke a receiver, unrevoked receivers up-
date all node keys which have been shared by the revoked one. Then the sender
transmits secret information encrypted with the renewed root key.

These methods assume that receivers can change their keys. However, there
are challenging problems for use of such receivers: synchronization and secure
update of those keys, and their solutions might increase the production cost of
these receivers. Therefore broadcast encryption methods which allow receivers
without the ability to update their key are preferred for many applications. Such
receivers are called stateless receivers.

The notion of stateless receivers was introduced by Naor et al. [12], who also
proposed two efficient methods suitable for such receivers. The Complete Subtree
(CS) method is a direct application of the binary key-tree structure proposed
in [17,19] for stateless receivers. The communication, storage and computational
overhead in CS are rlog (N/r), log N+1 and O (loglog N), respectively. The Sub-
set Difference (SD) method improves the algorithm to divide the set of receivers
into subsets and the key assignment mechanism of CS using a pseudo-random
sequence generator. Its communication, storage and computational overhead are
2r—1, é log®N + é log N +1 and O (log N), respectively. Similar to CS, numbers
of modifications of SD such as [2,3,7,8,9,18] have been proposed.

Asano [1] modified CS using an a-ary tree and the master-key technique
proposed by Chick et al. [5], where a is an arbitrary integer satisfying a > 1.
Method 1 proposed in [1], which we call CS-MKT, reduces the storage overhead

A Tree Based One-Key Broadcast Encryption Scheme 91

Table 1. The properties of the original Complete Subtree method [12] and
its modifications proposed in [1], [13], [15] and in this paper. N, r, M and
e denote the total number of receivers, the number of revoked receivers, the
modulus of RSA and Rabin, and the public exponent of RSA, respectively. T The
computational overhead in the original CS is O (loglog N) lookups

ciphertexts # keys Comp. overhead
CS [12] rlog (N/r) logN +1 O (loglog N)'
CS-MKT [1] rlog (N/r) 1 O (max{log® N,log® N log® M})
CS-TOPT [13][15] rlog (N/r) 1 O (log elog N log® M)
CS-MRT (This paper) rlog(N/r) 1 O (log N'log® M)
rlog(N/r)

+ r, respectively,

2% log® N
loga .

and the communication overhead to one key and to log a

in exchange for an increase in the computational overhead to O (

Nojima et al. [13] (its improved version is [14]) and Ogata et al. [15] in-
dependently modified CS using trapdoor one-way permutations based on RSA
cryptosystem. Their methods reduce the number of keys a receiver stores to one,
while keeping the communication overhead as equal to CS. We call their meth-
ods CS-TOPT. Note that the computational overhead at receivers in CS-TOPT
is smaller than that in CS-MKT, and CS-TOPT is the most efficient tree based
one-key method, with respect to the computational overhead.

Gentry and Ramazan [7] used the master-key technique [5] to modify SD.
Their method, which we call GR, divides subsets of receivers in SD into some
portions, and each unrevoked receiver derives a key corresponding to a portion
from its unique master key. The storage and communication overhead in GR
are one key and Tlolgo(gl\i/ " 4 r, respectively, where a is an integer satisfying
2 < a < N. Note that its computational overhead is greater than CS-TOPT.
Namely, receivers in GR and CS-TOPT must perform (2a —loga — 1) lf;ggf and
log N modular exponentiations, respectively. Moreover, the computational cost
of each modular exponentiation in GR is larger than that in CS-TOPT.

1.2 Our Contribution

In this paper we focus on CS and its modifications. We propose a new key-tree
structure, which we call Modified Rabin Tree (MRT), based on Rabin cryptosys-
tem [16]. Then we modify CS using MRT. The counstruction of our modification,
called CS-MRT, is similar to CS-TOPT based on RSA. However, our method uses
Rabin cryptosystem in order to reduce the number of keys a receiver stores, and
hence the computational overhead at a receiver is much smaller than CS-TOPT.
We also show that the security of our method is equivalent to breaking Rabin,
in the sense of key-intractability in the random oracle model.

Table 1 summarizes the properties (the number of broadcast ciphertexts, the
number of keys a receiver stores, and the computational overhead at a receiver)

92 Tomoyuki Asano and Kazuya Kamio

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
kaf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. A binary tree with 16 leaves

of the original CS and its modifications CS-MKT [1] (assuming its parameter a is
set as a = 2), CS-TOPT [13,15] and CS-MRT proposed in this paper. Similar to
other modifications, CS-MRT reduces the number of keys for a receiver to one,
while keeping the upper bound of the number of ciphertexts to be broadcast as
the same as in CS, i.e. rlog (N/r). CS-MRT is more efficient with respect to the
computational overhead at receivers than any previously proposed modification
of CS which reduces the number of keys a receiver stores to one. This reduction
in the computational overhead is achieved in exchange for an increase in the
nonsecret, storage at receivers. In CS-MRT, receivers must store log N nonsecret
values with the size of small number of (e. g. eight) bits.

2 Underlying Tree Structure

This section presents the basic tree structure and two cryptographic tree struc-
tures: Rabin Tree (RT) introduced by Kikuchi [10] and our proposal Modified
Rabin Tree (MRT), which is used to construct our broadcast encryption method.

2.1 The Basic Tree Structure

For all methods discussed below we assume that the total number of receivers
N is a power of 2. These methods use a complete binary tree with N leaves.
Each node in the tree is numbered [(I =1,...,2N — 1) where the root is 1 and
other nodes are numbered with level order from left to right. Note that child
nodes of node [are numbered 2] and 2[+ 1, respectively. Each node has node
value NV; (I=1,...,2N —1). Each leaf is also represented by leaf number leaf ,,
(m =1,...,N), where the left most leaf is leaf. Let path,, be the path from
the root to leaf,,. Let [€ T denote that node [is included in tree T', and let
P (I) denote the parent node of node I. Moreover, let I; < Iz denote that node
l1 is an ancestor of node l. Figure 1 illustrates a binary tree with 16 leaves.

2.2 Rabin Tree

Kikuchi [10] proposed a broadcast encryption scheme using Rabin Tree (RT),
which is a structure based on Rabin cryptosystem. Let My = prqr and Mgr =

A Tree Based One-Key Broadcast Encryption Scheme 93

Prqr be products of two large primes chosen by TC, satisfying My < Mpg. Node
values NV, (I=1,...,2N — 1) in RT satisfy the following (1) and (2):

NV € QRy, N QR (1)
NV; = NVj mod My, = NV, mod Mg (2)

where QRj; denotes a set of quadratic residues mod M. RT is constructed as
follows.

1. Let Trusted Center (TC) be the administrator and also the sender of the
broadcast encryption schemes discussed in this paper. TC randomly chooses
an element NV € Zyy, satisfying (1). TC sets counter [= 1.

2. For each M, and Mg, TC regards N'V] as a ciphertext of Rabin cryptosystem
and performs decryption. Then TC sets one of four solutions with respect
to My, (respectively, Mp) as NVq; (resp., NVaiy1).

3. TC checks whether NVy; (resp., N'Va;11) satisfies (1). If not, TC sets another
solution of the decryption as NVy; (resp., NV2,41) and checks it.

4. If all four solutions do not satisfy (1), then TC changes node value of their
parent node with another solution. If necessary, TC repeats this backtrack
until it assigns node values for all 2N — 1 nodes in the tree.

Kikuchi [10] has reported that the probability that TC successfully assigns all

N-1
node values from a fixed value NV] is 116 (1 — (12)4) . Since this probability

decreases significantly as N grows, it is difficult to construct RT for a large N.

2.3 Modified Rabin Tree

We use a similar but slightly different tree structure called Modified Rabin Tree
(MRT). In addition to node value N'V;, all nodes except the root in MRT has its
own “salt” value salt; (I =2,...,2N — 1). MRT is constructed as follows.

1. Given input 1* where) is a security parameter, TC chooses two large primes
p and ¢ such that the length of their product M = pq is A (namely, |M| = X).
TC also selects hash function Hjp; which maps elements of arbitrary length
into random elements in Zp;. Then it uniformly chooses an element in ij
and sets it as node value NV; for the root.

2. For I =2 to 2N — 1 TC determines NV, and salt; as follows.

(a) TC finds the smallest positive integer salt; such that tmp, € QRy,
where tmp; £ (NV|;/2) — Hu (I]|salt;)) mod M and || denotes a bit-
wise concatenation.

(b) Regarding tmp; as a ciphertext, TC performs Rabin decryption to com-
pute square roots of tmp; mod M. TC sets one of the solutions as NV;.

Intuitively, MRT alleviates the need for an exponential sized search for a
suitable node value for the root in RT. By assigning a salt value to each node,
it changes a global search in the entire tree into a small search at each node.

94 Tomoyuki Asano and Kazuya Kamio

As we see later in Section 5, the probability that a randomly chosen element
x € Zyy satisfies x € QR is about 1/4. Therefore, TC must try four integers in
average as salt; in order to find an appropriate one for each node. In total, TC
needs O (N) trials to fix node values and salt values for all 2N — 2 nodes except
the root, and hence MRT is significantly efficient to construct than RT.

We have actually constructed MRT with N = 225 where |p| = |¢| = 512 bits
and |M| = 1024 bits, using Xeon 2.80GHz, 512KB cache, 2GB RAM machine
with gce-3.3, ntl-5.3.2 and gmp-4.1.3. The processing time was 482846 seconds
(5.6 days). This experimental result shows that construction of MRT is practical.

Note that for the purpose of broadcast encryption as we see in Section 3.2,
MRT is constructed only once by TC before it starts up the system. It may use
numbers of high performance machines and may spend long time (e.g. a couple
of months). Therefore, even when we need MRT with a larger N (for example
N = 230) it can be practically constructed with suitable resources and time.

3 The Proposed Broadcast Encryption Method

In this section we give brief explanations about CS and our proposed broadcast
encryption method, which is a modification of CS using MRT.

3.1 The Complete Subtree (CS) Method [12]

TC assigns receiver u,, to leaf leaf,, (m = 1,...,N). Node values NV; (I =
1,...,2N — 1) are randomly chosen from {0,1}“, where C denotes the key
length of symmetric encryption algorithm FE. These node values are directly
used as node keys NK;, i.e. NK; = NV,. Receiver u,, is given a set of node
keys corresponding to the nodes on path,,. Therefore each receiver must store
log N + 1 keys in a secret manner. In the example depicted in Fig. 1, receiver uy
assigned to leaf , stores five node keys: NK1, NKo, NKy4, NKg and N K.

In order to broadcast secret information I, TC finds the Steiner Tree ST (R)
which is the minimal subtree of the original tree containing the root and all leaves
in R, where R is a set of leaves such that receivers assigned to them are revoked.
Then TC broadcasts ciphertexts { Eng, (I) |l ¢ ST (R)NP (I) € ST (R)}. It has
been reported in [12] that the number of broadcast ciphertexts for a transmission
of I including revocation of r (= |R|) receivers is at most rlog (N/r).

3.2 The Proposed Method: CS-MRT

TC generates MRT and publishes M, Hy; and salt; (I =2,...,2N —1). Tt also
defines node keys NK; (I=1,...,2N —1) as NK; = NV,. Receiver u,, assigned
to leaf leaf ,,, is given node value NV, of leaf ,, and log N salt values salt; for the
nodes located on path,, except the root. It enables u,, to derive any NV, for
node ! on path,,, one by one from the leaf to the root as

NViiy2) = (NV/? + Hu (1] salt;)) mod M (3)

A Tree Based One-Key Broadcast Encryption Scheme 95

In the example depicted in Fig. 1, receiver uy stores only one node value
NVig and four salt values salts, salty, salty and salt19. Using these values uy
can derive any node values of nodes on path,. Note that salt values are public
values and do not require secrecy. We call this method CS-MRT. The way for
transmission of secret information in CS-MRT is the same as in CS.

4 Security of the Proposed Method

The discussion on security of CS-MRT in this section mainly follows the analysis
of a key management scheme by Nojima and Kaji [14], in which the number of
receivers N is assumed to be represented by a polynomial of a security parameter
A, namely N = w (A). First of all, we clarify the assumption regarding Rabin
function.

Definition 1 (Rabin function). A Rabin function is a 2-tuple of polynomial-
time algorithms (Keygen, Forward), where:
Rabin.Keygen (1)‘): Takes as input a security parameter 1*. It returns two
primes p and q and their product M, such that the size of M is .
Rabin.Forward(M, x): Takes as input modulus M and element x € Zyr. It
returns y = x> mod M.

Definition 2 (Intractability of inverse of Rabin function). We assume
that Rabin function is intractable to inverse. Namely, for all polynomial-time
algorithm A the probability

AdvRabing (\) = Pr [2> =2® (mod M) | (p,q, M) < Rabin.Keygen (1*) ;
T — ZL;
y = Rabin.Forward (M, z) ;
a'— A(M,y) |

s a negligible function in \, where x «— Zp; denotes that x is chosen uniformly
from Zyy.

Note that Rabin [16] proved that inverting Rabin.Forward function is as in-
tractable as factoring M. We consider CS-MRT as an Access Control (AC)
scheme as follows.

Definition 3 (Access Control scheme from CS-MRT). An Access Control
scheme AC[CS-MRT] is a 2-tuple of polynomial-time algorithms (Keygen, Derive),
where:

AC[CS-M RT].Keygen(l)‘) : Takes as input a security parameter 1. It returns
p, ¢, M, Hy, NV, (I=1,...,2N = 1), salt; (I1=2,...,2N —1), where Hy;,
NV, and salt; are generated in the way mentioned in Section 2.5. Let pub denote
public information such that M, Hyr and salt;.

AC[CS-MRT].Derive(l, NV, n, pub): Takes as input node numberl of a leaf to
which a receiver is assigned, its node value NV}, node number n in the tree, and
pub. It returns NV, if n <1, otherwise returns special symbol L.

96 Tomoyuki Asano and Kazuya Kamio

The scenario we consider is that all of the revoked receivers collude and
try to compute any node value of a node which is not an ancestor of any of
the leaves to which the revoked receivers are assigned. For node n in MRT, let
NV, £ {NV, | l is a leaf such that n £ [}.

We consider an adversary in AC[CS-MRT] as a pair of probabilistic poly-
nomial-time algorithms B = (By, Bz). B; takes as input a security parameter 1*
and pub, and outputs node number n and auxiliary information aux which is
helpful for Bs. Bs takes as input n, NV,,, pub and aux, and outputs NV,,.

Here we define the security notion, then state the security theorem on AC[CS-
MRT].

Definition 4 (Key-Intractability of AC.[CS-MRT]). We say that AC.[CS-
MRT] is secure in the sense of Key-Intractability if for all probabilistic poly-
nomial-time algorithms B = (By, Ba) the probability

AdvAC[CS-MRT]5 (A) =
Pr{z=NV,|(p,¢,NV; (I=1,...2N—1),pub) « AC[CS-MRT].Keygen (1*) ;
(n € [1,2N — 1],aux) < By (1*, pub) ;
T «— By (n,NVn, pub,aux)]

s a negligible function in A.

Theorem 1. If p,q are randomly chosen from a collection of appropriate prime
numbers and Hy is randomly chosen from the random oracles, then AC[CS-
MRT] is secure in the sense of Key-Intractability, in the random oracle model.

Proof. We construct probabilistic polynomial-time algorithm A which inverts
Rabin.Forward function (namely, given randomly chosen value y € QRys, A finds
x satisfying 22 = y (mod M)), by using an adversary B = (B, B2) to AC[CS-
MRT] which outputs node value NV, of node n, given NV,, and public informa-
tion, with oracle access with querying to 4 on execution of Hj,. Note that since
B views Hj; as a random oracle, let Bf{M (1)‘, pub’) and Bf’” (NVn, pub’,aux)
represent 3 (1)‘, pub) and Bo (NVn, pub, aux), respectively, where pub’ denotes
public information pub excluding H ;. The inverter A of Rabin.Forward function
is constructed as follows.

1. A constructs a binary tree with N leaves.

2. A randomly picks up target node ¢ € [1,2N — 1].

3. A determines node values NV, for nodes ¢ A [and hash values L; £
Hyy (1]|salt;) for all nodes in the tree as follows.

(a) For node [such that ¢ <[, let L; be a randomly chosen element in Z ;.

(b) For leaf [such that ¢ A 1, let NV, be a randomly chosen element in Zy;.

(¢) If two nodes [and m are sibling nodes in the tree such that both of
node values NV, and NV,, have been already fixed, then choose one
of L; and L,, randomly from Zj; and determine the other so that
(NVZ2 + Ll) mod M = (NV% + Lm) mod M is satisfied. In addition,
let NVp(;) be (NVZ2 + Ll) mod M.

A Tree Based One-Key Broadcast Encryption Scheme 97

(d) If node I is the sibling node of ¢ and NV, has been already fixed, then
choose L; so that (y + L.) mod M = (NV}2 + Ll) mod M is satisfied. In
addition, let NVp() be (y + L.) mod M.

Note that this construction makes NV, be one of four values z such that

2?2 = y (mod M). A uses values generated above in order to give NV,, as

input to B and to answer the queries from 5 on L;.

4. A runs Bf{M (1)‘, pub’) and obtains its output (n, aux).

5. If n # ¢ then A halts. Otherwise, A proceeds to the next step.
6. A runs Bf’” (NVn, pub’, aux) and obtains its output z.

7. A outputs z.

The above process completes only if B1’s output n is equal to c. Recall that
the number of receivers N is represented by a polynomial of the security parame-
ter A, namely N = w (\). Since the tree has 2N —1 = 2w (A) — 1 nodes, the prob-
ability that it happens is 1/ (2w (\) — 1). Hence, A outputs x such that 2% =y
(mod M) with probability AdvRabin4 (A\) = 211)(§\)71AdvAC[(:S—M RT]5 (). This
means that if AdvAC[CS-MRT]y ()) is a nonnegligible function in A then so is
AdvRabin 4 (). However, this contradicts the assumption that Rabin function is
intractable to invert given in Definition 2. Hence, AdvAC[CS-MRT] (A) must be
a negligible function in A. This proves the theorem. a

Moreover, using B3, we can construct probabilistic polynomial-time algorithm
A’ which factorizes M. A’ randomly chooses z1 € Zj\/[and uses x% mod M as
y when it constructs the tree. If output x of By satisfies © # 4z mod M,
then ged (z1 — z, M) gives a factor of M. When Bs outputs x, the probability
that x satisfies @ # +x7 mod M is 1/2. Therefore, the probability that A’ suc-
ceeds to factorize M is 4w()1\)72AdvAC[CS—M RT]; (A), which is nonnegligible if

AdvAC[CS-MRT] (A) is nonnegligible.

5 Efficiency of the Proposed Method

In this section we analyze efficiency of CS-MRT compared with CS and its previ-
ously proposed modifications. The following analysis is summarized in Table 1.

5.1 Communication Overhead

Since CS-MRT adopts the same way for sending secret information as CS, the
communication overhead is also the same. Namely, the upper bound of the num-
ber of ciphertexts is rlog (N/r). CS-MKT (assuming its parameter a is set as
a = 2) proposed in [1], and CS-TOPT in [13,15] have the same property.

5.2 Storage Overhead

First, we consider the size of secure memory where each receiver stores its keys.
A receiver in CS stores log N + 1 node keys. On the other hand, a receiver in

98 Tomoyuki Asano and Kazuya Kamio

CS-MRT stores only one node value. Since MRT is based on Rabin cryptosystem,
the size of each node value is equal to the size of a secure Rabin modulus. As
an example, if we set parameters as the total number of receivers N = 22°, and
the size of a node key in CS and a node value in CS-MRT as 128 and 1024 bits,
respectively, then the size of the secure memory of the receiver in CS-MRT is
about 70% smaller than in CS. This reduction rate becomes larger as N increases.
CS-MKT and CS-TOPT also have the same reduction rate, assuming that the
size a secure modulus for RSA is equal to that for Rabin.

Second, the size of memory which does not need secrecy is considered. In
total, CS-MRT uses 2N — 2 salt values salt; assigned to nodes except the root,
and each receiver needs log N of them. Recall that salt; is the minimum positive
integer such that tmp; = (NV{y/2) — Has (I]|salt;)) mod M € QRyy. For a ran-
domly chosen element y € Z); where M is the product of two primes p and ¢, the

probability that y € QR is (p—1;/2+1 (q—131/2+1 ~ Alp since y € QRy & (Z) =

(Z) = 1 where (g) denotes Legendre symbol. Therefore, under the assumption

that the output of Hj is uniformly chosen from Z,;, the expected number of
integers to try as salt; until we find an appropriate one is four, and hence each
salt; can be represented as a log4 = 2 bit number in average.

On the other hand, if we fix in advance the maximum length of each salt; as
len, the probability that all 2!°" integers generate tmp; ¢ QR is approximately

len
(2)2 . If we set len = 8, this probability becomes 1.0%10732, and it is considered
enough small even if N is a large number such as 22° ~ 3.4 x 107. Actually, in
the experimental results where we constructed MRT with N = 225 leaves, the
biggest value of salt; was 65, and their average was 4.0003. Hence, receivers in
CS-MRT need only [log N * few (e. g. eight)] bits of nonsecret storage for storing
the salt values.

Note that this increase in the size of nonsecret but unique storage for a
receiver does not require the receiver to equip a new storage apparatus. A receiver
in any tree based method must store its own unique information such as address
or leaf number which requires O (log N) bits for representation. Therefore, it
must equip O (log N) bits of memory for storing its unique data anyway. CS-
MRT merely requires an increase in the size of such memory by a small factor.

A receiver in CS-MKT uses log N + 1 public primes, which may be stored
directly, or be generated in an on-the-fly manner. In the former case, the re-
ceiver needs O (1og2 N) bits of nonsecret storage, and in the latter case it must
perform O (log5 N) bit operation when it uses Miller-Rabin primality testing
algorithm [11]. In contrast, CS and CS-TOPT use O (1) nonsecret information.

5.3 Computational Overhead

Here we consider computational overhead at receivers. In CS, each receiver needs

O (loglog N) lookups. To derive node value NV, from its master key MV,,,

receiver u,, in CS-MKT must perform operation of M nlf’"/p’ mod M, where p;

is a prime assigned to node [and w,, is a product of p;’s which are assigned to

A Tree Based One-Key Broadcast Encryption Scheme 99

the nodes on path,,. This operation requires O (max{log4 N, log? N log? M}) of
computational overhead, assuming u,, stores log N + 1 primes directly.

A receiver in CS-TOPT must perform one modular exponentiation with pub-
lic exponent e, and one execution of hash function Hjs, in order to derive node
value N'V|;/5) from its child’s node value NV, i.e.

NVjij2) = (NV + Hp (1)) mod M (4)

Similarly, a receiver in CS-MRT must perform one modular squaring and one
execution of a hash function to do it (see formula (3)). Since the computational
cost of a hash function is considered as much smaller than modular exponentia-
tion or modular squaring, we ignore it and focus on modular arithmetic.

The computational overhead for x® mod M is asymptotically represented as
0] (log elog? M) More precisely, if we use one of “repeated square-and-multiply”
algorithms [11] to compute z¢ mod M, we must perform |loge]| squaring and
wt (e) — 1 multiplications, where wt (e) denotes Hamming weight of e. By def-
inition, e must be an odd number satisfying e > 2 and hence wt (e) > 2. Note
that since squaring is a special case of multiplication, the computational cost of
squaring is smaller than multiplication. Therefore, the computational cost for
2¢ mod M is greater than the cost of |loge] 4+ 1 squaring.

On the other hand, in CS-MRT, the computation for deriving a node value
from its child’s node value requires only one squaring, and its cost is asymptot-
ically represented as O (1og2 M) This means that the computational overhead
at receivers in CS-MRT is at least |loge| + 1 times smaller than receivers in CS-
TOPT. It should be noted that by definition the minimum value of e is 3, in this
case ¢ mod M requires one squaring and one multiplication. Even this mini-
mum e is used in CS-TOPT, the computational overhead at receivers in CS-MRT
is at least two times smaller than CS-TOPT. Therefore, the proposed CS-MRT
is more efficient with respect to the computational overhead at receivers than
other tree based one-key broadcast encryption methods.

Our experimental results support the above analysis. Using Xeon 2.80GHz,
512KB cache, 2GB RAM machine with gcc-3.3, ntl-5.3.2 and gmp-4.1.3, we
compared processing time of formulae (3) in CS-MRT and (4) in CS-TOPT where
Ip| = |g| = 512 bits, |[M| = 1024 bits, e = 2! + 1 (i.e. |loge] + 1 = 17).
These average time (of 10° trials) are 5.867 and 112.4 us, respectively, which are
approximately 1 : 191,

References

1. T. Asano, “A Revocation Scheme with Minimal Storage at Receivers,” Advances
in Cryptology - Asiacrypt 2002, Lecture Notes in Computer Science 2501, pp.
433-450, Springer, 2002.

I Note that this results do not contain processing time of hash function Hus. We used
SHA-1 as substitution for Hps in these experiments. If we count processing time
of the hash function, these average of processing time become 8.493 and 114.2 us,
respectively, which are approximately 1 : 13.

100

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Tomoyuki Asano and Kazuya Kamio

T. Asano, “Reducing Storage at Receivers in SD and LSD Broadcast Encryption
Schemes,” Information Security Applications, 4th International Workshop, WISA
2003, Lecture Notes in Computer Science 2908, pp. 317-332, Springer, 2004.

N. Attrapadung, K. Kobara, and H. Imai, “Sequential Key Derivation Patterns for
Broadcast Encryption and Key Predistribution Schemes,” Advances in Cryptology
- Asiacrypt 2003, Lecture Notes in Computer Science 2894, pp. 374-391, Springer,
2003.

S. Berkovits, “How to Broadcast a Secret,” Advances in Cryptology - Eurocrypt
’91, Lecture Notes in Computer Science 547, pp. 535-541, Springer, 1991.

G. C. Chick and S. E. Tavares, “Flexible Access Control with Master Keys,” Ad-
vances in Cryptology - Crypto '89, Lecture Notes in Computer Science 435, pp.
316-322, Springer, 1990.

A. Fiat and M. Naor, “Broadcast Encryption,” Advances in Cryptology - Crypto
’93, Lecture Notes in Computer Science 773, pp. 480-491, Springer, 1994.

C. Gentry and Z. Ramzan, “RSA Accumulator Based Broadcast Encryption,”
Information Security, 7th International Conference, ISC 2004, Lecture Notes in
Computer Science 3225, pp. 73-86, Springer, 2004.

M. T. Goodrich, J. Z. Sun and R. Tamassia, “Efficient Tree-Based Revocation in
Groups of Low-State Devices,” Advances in Cryptology - Crypto 2004, Lecture
Notes in Computer Science 3152, pp. 511-527, Springer, 2004.

D. Halevy and A. Shamir, “The LSD Broadcast Encryption Scheme,” Advances
in Cryptology - Crypto 2002, Lecture Notes in Computer Science 2442, pp. 47-60,
Springer, 2002.

H. Kikuchi, “Rabin Tree and its Application to Broadcast Encryption,” (in
Japanese), IEICE Technical Report ISEC 2003-13, pp. 9-12, 2003.

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, “Handbook of Applied
Cryptography,” CRC Press, 1997.

D. Naor, M. Naor and J. Lotspiech, “Revocation and Tracing Schemes for Stateless
Receivers,” Advances in Cryptology - Crypto 2001, Lecture Notes in Computer
Science 2139, pp. 41-62, Springer, 2001.

R. Nojima and Y. Kaji, “Efficient Tree-based Key Management Using One-way
Functions,” (in Japanese), Proceedings of the 2004 Symposium on Cryptography
and Information Security, pp. 189-194, 2004.

R. Nojima and Y. Kaji, “Secure, Efficient and Practical Key Management Scheme
in the Complete-Subtree Method,” IEICE Trans. Fundamentals, vol. E88-A, no. 1,
pp. 189-194, 2001.

W. Ogata, T. Hiza and D. V. Quang, “Efficient Tree Based Key management
based on RSA function,” (in Japanese), Proceedings of the 2004 Symposium on
Cryptography and Information Security, pp. 195-199, 2004.

M. O. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as
Factorization,” MIT Technical Report, MIT/LCS/TR~212, 1979.

D. Wallner, E. Harder and R. Agee, “Key Management for Multicast: Issues and
Architectures,” IETF Network Working Group, Request for Comments: 2627, avail-
able from ftp://ftp.ietf.org/rfc/rfc2627.txt, 1999.

P. Wang, P. Ning and D. S. Reeves, “Storage-Efficient Stateless Group Key Re-
vocation,” Information Security, 7th International Conference, ISC 2004, Lecture
Notes in Computer Science 3225, pp. 25-38, Springer, 2004.

C. K. Wong, M. Gouda and S. S. Lam, “Secure Group Communications Using Key
Graphs,” Proceedings of ACM SIGCOMM ’98, 1998.

Dynamic Group Key Agreement
in Tree-Based Setting
(Extended Abstract)

Ratna Dutta and Rana Barua

Indian Statistical Institute
{ratna r,rana}@isical.ac.in

Abstract. We present a provably secure tree based authenticated group
key agreement protocol in dynamic scenario. Bilinear pairing and multi-
signature are at the heart of our protocol. We prove that our protocol
is provably secure in the standard security model of Bresson et al. An
appropriate modification of Katz-Yung approach to tree based setting is
adopted while proving its security against active adversaries. The pro-
tocol has an in-built hierarchical structure that makes it desirable for
certain applications.

1 Introduction

A group key agreement protocol allows a group of users to exchange information
over public network to agree upon a common secret key from which a session key
can be derived. This common session key can later be used to achieve desirable
security goals, such as authentication, confidentiality and data integrity.

Tree based group key agreement protocols are typically essential while the
users are grouped into a hierarchical structure. The leaves of the tree denote
individual users and each internal node corresponds to a user that represents
the set of users in the subtree rooted at that node. The representative users
have more computational resources than other users in the subtree. In a tree
based group key agreement protocol, the set of all users in each subtree agree
upon a common secret key. Besides, making optimal use of precomputed values in
the previous session, a group of users can save computation and communication
in subsequent sessions in which users join or leave the group. Moreover, some
subclass of users agree upon multiple common keys in a single session which
facilitates a typical subclass of users of the group to securely communicate among
themselves. These features make tree based key agreement protocols desirable
for certain applications.

In this work, we present a provably secure tree based authenticated group key
agreement in the dynamic scenario where a user can join or leave the group as
his desire with updating sets of keys. We can combine constant round protocols
and tree based protocols to get hybrid group key agreement which are efficient
in terms of both computation and communication. Consider the situation where

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 101-112, 2005.
© Springer-Verlag Berlin Heidelberg 2005

102 Ratna Dutta and Rana Barua

there are collection of user sets, each having a common key agreed upon by
executing an efficient constant round protocol among the users in that user set.
Now executing the constant round protocol among these user sets may not always
be desirable and executing the protocol among all the users may be expensive
from computation or communication point of view when number of users in
each subgroup is large. For instance, if the number of groups is about 20 and
each group is large, then a constant round key agreement using the protocol of
[11] will involve a large number of computations as well as communications. In
contrast, the tree based protocol (with the representatives of each group) will
compute the common key in 3 rounds with lesser number of communications
and verifications. Thus, a tree based scheme can be incorporated among these
user sets to get an efficient multi-party key agreement protocol.

A ternary tree based protocol was proposed by Barua et al. [2] that extends
the basic Joux [8] protocol to multi-party setting. They have shown that the
protocol is secure against passive adversaries. Dutta et al. [6] authenticate this
unauthenticated protocol using multi-signature and provide a concrete security
analysis against active adversaries in the standard model as formalized by Bres-
son et al. [5]. This security was achieved by modifying the Katz and Yung [9]
technique to tree based setting. The present work further extends this static au-
thenticated protocol [6] to dynamic authenticated protocol and provides a proof
of security in the above security model. Our protocol is designed to ensure min-
imum modification to the computation already precomputed when a user leaves
or joins the group. Besides, if the tree structure is not maintained after a join
or leave operation, then the subsequent join or leave in the group can not be
performed anymore. Thus retaining the tree structure is another important issue
of our protocol.

2 Preliminaries

2.1 Cryptographic Bilinear Maps

Let G1, G2 be two groups of the same prime order q. A mapping e : G; x G1 —
G satisfying the following properties is called a cryptographic bilinear map:
(Bilinearity) e(aP,bQ) = e(P,Q)® for all P,Q € G; and a,b € Zy; (Non-
degeneracy) if P is a generator of Gi, then e(P, P) is a generator of Go; and
(Computablity) there exists an efficient algorithm to compute e(P, Q). Modified
Weil Pairing [3] and Tate Pairing [1] are examples of such bilinear maps.

2.2 Security Model

We assume that the reader is familier with the model of Bresson et al. [5], which
is the model in which we prove security of our dynamic key aggreement protocol.
For completeness, we review their definitions (see [5]).

Let P = {Uy,...,U,} be a set of n (fixed) users or participants. A user
can execute the protocol for group key agreement several times with different

Dynamic Group Key Agreement in Tree-Based Setting 103

partners, can join or leave the group at its desire by executing the protocols
for Insert or Delete. We assume that users do not deviate from the protocol
and adversary never participates as a user in the protocol. This adversarial
model allows concurrent execution of the protocol. The interaction between the
adversary A and the protocol participants occur only via oracle queries, which
model the adversary’s capabilities in a real attack. These queries are as follows,
where ITj; denotes the i-th instance of user U and sk, denotes the session key
after execution of the protocol by II};.

— Send(U, 4, m) : This query models an active attack, in which the adversary
may intercept a message and then either modify it, create a new one or
simply forward it to the intended participant. The output of the query is
the reply (if any) generated by the instance II}; upon receipt of message m.
The adversary is allowed to prompt the unused instance II}; to initiate the
protocol with partners Us, ..., U;, 1 < n, by invoking Send(U, %, (Ua, ..., U;)).

— Execute({(V4, 1), .., (Vi,4;)}) : Here {V4,...,V;} is a non empty subset of P.
This query models passive attacks in which the attacker evesdrops on honest
execution the protocol among unused instances H‘i}l, ceey H‘i}l and outputs the
transcript of the execution. A transcript consists of the messages that were
exchanged during the honest execution of the protocol.

— Join({(V1,41),...,(V1,41)}, (U,4)) : This query models the insertion of a user
instance I}, in the group (Vi,...,V;) C P for which Execute have already
been queried. The output of this query is the transcript generated by the
invocation of algorithm Insert. If Execute({(V7,41),...(V;,4;)}) has not taken
place, then the adversary is given no output.

— Leave({(V1,41),...,(Vi,41)}, (U,4)) : This query models the removal of a user
instance IT}; from the group (V4,...V;) C P. If Execute({(V1,i1),... (Vi,i1)})
has not taken place, then the adversary is given no output. Otherwise, algo-
rithm Delete is invoked. The adversary is given the transcript generated by
the honest execution of procedure Delete.

— Reveal(U, i) : This outputs session key sk}). This query models the misuse of
the session keys, i.e known session key attack.

— Corrupt(U) : This outputs the long-term secret key (if any) of player U. The
adversarial model that we adopt is a weak-corruption model in the sense that
only the long-term secret keys are compromised, but the ephemeral keys or
the internal data of the protocol participants are not corrupted. This query
models (perfect) forward secrecy.

— Test(U,) : This query is allowed only once, at any time during the adversary’s
execution. A bit b € {0, 1} is chosen uniformly at random. The adversary is
given skzij if b =1, and a random session key if b = 0. This oracle computes
the adversary’s ability to distinguish a real session key from a random one.

An adversary which has access to the Execute, Join, Leave, Reveal, Corrupt
and Test oracles, is considered to be passive while an active adversary is given
access to the Send oracle in addition. We also use notations sid};, the session
identity for instance IT};, (we set sidi; = S = {(Uy,i1), ..., (Uk,ix)} such that

104 Ratna Dutta and Rana Barua

(U,i) € S and H(ijl, e ,H[i]’“k wish to agree upon a common key), pidfj, the
partner identity for instance IT}; (we defined pidi, = {Ui,..., Uy} such that
(Uj,i;) € sidy; for all 1 < j < k) and accl;, a 0/1-valued variable (set to be 1
by II{; upon normal termination of the session and 0 otherwise).

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries
several times, but Test query is asked only once and on a fresh instance. We say
that an instance IT}; is fresh unless either the adversary, at some point, queried
Reveal(U, i) or Reveal(U’,) with U’ € pid}; or the adversary queried Corrupt(V')
(with V' € pid};) before a query of the form Send(U,4,*) or Send(U’, j, *) where
U' e pid@. Finally adversary outputs a guess bit &’. Such an adversary is said
to win the game if b = b’ where b is the hidden bit used by the Test oracle. Let
Succ denote the event that the adversary A wins the game for a protocol XP.
We define Adv 4 xp := |2 Prob[Succ] — 1| to be the advantage of the adversary A
in attacking the protocol XP. The protocol XP is said to be a secure unauthen-
ticated group key agreement (KA) protocol if there is no polynomial time passive
adversary with non-negligible advantage. We say that protocol XP is a secure
authenticated group key agreement (AKA) protocol if there is no polynomial time
active adversary with non-negligible advantage. Next we define the advantage
functions: Adv%‘(t, ge) to be the maximum advantage of any passive adversary
attacking protocol XP running in time ¢ and making gg calls to the Execute
oracle and AvaéA(t, 4E,4J,9L,4s) to be the maximum advantage of any active
adversary attacking protocol XP, running in time ¢ and making qg calls to the
Execute oracle, g; calls to Join oracle, g1, calls to the Leave oracle and gg calls
to the Send oracle.

2.3 DHBDH Problem

Let (G1,G2,e) be as in Section 2.1. We define the following problem. Given
an instance (P,aP,bP,cP,r) for some a,b, ¢,r€rZ, and a one way hash func-
tion H : Gy — Z;, decide whether r = H(e(P, P)**¢) mod . This problem is
termed Decision Hash Bilinear Diffie-Hellman (DHBDH) problem in [2] and is
a combination of the bilinear Diffie-Hellman(BDH) problem and a variation of
the hash Diffie-Hellman(HDH) problem. The DHBDH assumption is that there
exists no probabilistic, polynomial time, 0/1-valued algorithm which can solve
the DHBDH problem with non-negligible probability of success.

2.4 Multi-signatures

Multi-signatures allow a group of users to sign a message, such that a verifier
can verify that all users indeed signed the message. We use the multi-signatures
presented by Boldyreva in [4] which is based on the Boneh-Lynn-Shacham [3]
(BLS) pairing based short signature. Formally, a multi-signature scheme consists
of three algorithms MSig = (MK, MS, MV), where MK is the key generation
algorithm; MS is the signature generation algorithm and MYV is the signature
verification algorithm. We denote by Succpsig(t) the maximum success probabil-
ity of any adversary running in time ¢ to forge signatures for a standard digital

Dynamic Group Key Agreement in Tree-Based Setting 105

signature scheme DSig = (K, S, V). Similarly, by Succumsig(t) the maximum suc-
cess probability of any adversary running in time ¢ to break the multi-signature
scheme MSig based on DSig.

3 Dynamic Group Key Agreement Protocol

Our protocol extends the tree-based multi-party group key agreement protocols
of [2], [6] to dynamic case where a user can leave or join the group.

Suppose a set of n users P = {Uy,Us,...,U,} wish to agree upon a secret
key. Let US be a subset of users. Quite often, we identify a user with its instance
during the execution of a protocol. In case US is a singleton set, we will identify
US with the instance it contains. Each user set US has a representative Rep(US)
and for the sake of concreteness we take Rep(US) = U; where j = min{k : Hgi €
US}. We use the notation A[l,...,n] for an array of n elements Aq,..., A, and
write A[i] or A; to denote the ith element of array A[]. Let G; = (P), G2 (groups
of prime order ¢) and e(,) be as described in Section 2.1. We choose a hash
function H : Gz — Z;. The public parameters are params = (G, G2, ¢,q, P, H).
Each user U; € P chooses s; € Z; at random which it uses as its ephemeral key.
These keys are session specific and determine the final common key for a session.

3.1 Unauthenticated Key Agreement Protocol of [2]

We present an informal description of the unauthennticated protocol of [2]. Secu-
rity of our dynamic key agreement protocol relies on the security of this scheme.

Let p = [%] and » = n mod 3. The set of users participating in a session is
partitioned into three user sets US1, USs, USs with respective cardinalities being
p,p,pifr=0;p,p,p+1ifr=1;and p,p+ 1,p+ 1 if r = 2. This top down
recursive procedure KeyAgreement is invoked for further partitioning to obtain
a ternary tree structure. The lowest level 0 consists of singleton users having a
secret key. We invoke CombineTwo, a key agreement protocol for two user sets
and CombineThree, a key agreement protocol for three user sets in the key tree
thus obtained. For more details, see [2], [7].

All communications are done by representatives and users in each user set
have a common agreed key. In CombineThree, a, b, c respectively are the common
agreed key of user sets A, B, C. Representative of user set A sends aP to both
the user sets B,C. Similarly, representative of B sends bP to both A,C and
representative of C sends c¢P to both A, B. After these communications, each
user can compute the common agreed key H (e(P, P)?*¢). In CombineTwo, users
in user set A has common agreed key a, users in user set B has common agreed
key b. Representative of A sends aP to user set B and representative of B sends
bP to user set A. Besides representative of user set A generates a random key
a € Z; and sends aP to all the users in both A, B. After these communications,

each user can compute the common agreed key H (e(P, P)2%).

106 Ratna Dutta and Rana Barua

3.2 Authenticated Key Agreement Protocol of [6]

This protocol incorporates secure signature based authentication mechanism into
the unauthenticated protocol of Barua, Dutta, Sarkar [6]. Each user U; chooses
a signing and a verification key sk; (or sky,) and pk; (or pky,) respectively as
part of the basic signature scheme DSig and multi-signature scheme MSig.
Besides, this authentication mechanism uses a variable, partial session iden-
tity psid?ji for each instance Hg’ which is initially set to be {(U;;, d;)} and after
J J

completion of the session, psid?j_ = sid?j_ ={(U;y,d1),...,(U,,d;)} where in-
'3 '3
stances Hgl_l o 1T 5’§k are involved in this session. The session-identity sid‘[ij
i : i

uniquely identifies the session and is same for all instances participating in this
session. The authenticated protocol consists of an algorithm for 2 party au-
thenticated key agreement AuthCombTwo, a 3 party authenticated key agree-
ment AuthCombThree-A and an authenticated key agreement AuthCombThree-B
among three user sets. These procedures are invoked instead of CombineTwo
and CombineThree in the key tree obtained by the procedure KeyAgreement
in the unauthenticated protocol described above. We discuss AuthCombTwo,
AuthCombThree-A, AuthCombThree-B informally and refer the reader to [6], [7]
for details.

In AuthCombTwo, user instance IT {ﬁ has a secret key s; with partial session-
identity psid‘[ij1 = {(U1,d1)}. Besides it generates a random key s € Z;, computes
a signature oy using basic signature scheme DSig on m; = (s1 P, sP) and sends
Ui|1|mq|oq to user instance IT gi Similarly, user instance IT, 32 with secret key so
and partial session-identity psid(Ilj’2 = {(Us, d2)} computes a basic signature oo on
mg = o P and sends Us|1|mz|os to user instance H{ﬁ On receiving the message
Us|1|ma|o2, user Uy verifies o2 on Us|1|ms according to the verification algorithm
V of DSig. If verification fails, it sets acchl1 =0, sk‘(ij1 = NULL annd aborts. Oth-
erwise it sets psid%l1 = psid%l1 U{(Ua,d2)} and computes the key H (e(P, P)%5152).
In a similar way, user Us performs verification oy on Uy|1|m; and computes the
key only if verification succeeds. Note that at the end, user instances IT, [‘2 il [‘2
have the same partial session-identity : psiddUl1 = psiddUl1 Upsidd[f2 = psiddUzz. An ana-
logus description holds for AuthCombThree-A. The algorithm AuthCombThree-B
performs key agreement among three user sets US1, USo, US3 as follows: Suppose
17 {ﬁ is the representative of user set US; and users in this set have a common
agreed key s;. Similarly, ng, sg are those for user set US; and Hgi, sz for
user set USs3. Let my = psiddU11|t1|51P, where 1 is the next expected message
number to be sent by H{ﬁ. For each user V in user set US;, psidf/‘/\tl\slP is
same as m1. Each user V' € US; computes a basic signature oy on m; using the
scheme DSig and sends (V,oy) to IT [‘}11 After accumulating these basic signa-
tures, the representative I1 gi constructs the multi-signature msig; on message
mq using the scheme MSig and sends mq|msig; to USy U USs. Similarly, repre-
sentative ng of user set USsy sends ma|msig, to US; U USs and representative
Hgi of user set USg sends mg|msigs to US; UUS2 where mg = psid‘(if2 |ta|s2 P and

Dynamic Group Key Agreement in Tree-Based Setting 107

ms = psid(IlJi)|t3\53P, to, t3 being the next expected message number to be sent
by I1, [‘E, II [‘2 respectively.

For the ease of discussion, we define a variable First(psidi;) to be the set
{Uiy, ..., Ui, } where psidy; = {(U;,,d;,), .., (Ui,,di,.)} Now on receipt of mes-
sages ma|msig, and ms|msigs, each user instance H"z" € US; (1) checks
First(psid‘(ij‘;) C pidf/" and First(psid([lfg) C pid?/"; (2) verifies to,t3 are the next
expected message number to be sent by II gz, II [‘2’ respectively; (3) verifies
msig,, msig, are multi-signatures on mg, ma respectively. If any of these verifica-
tion fails, H{ﬂ" sets acc%" =0and sk“i}’ = NULL and aborts. Otherwise computes
the common key H(e(P, P)®1%2%3) and sets psid%" = psid“i}’ U psid(Ilj’2 U psid‘,ﬂ?g.

Similar verifications are done by each user in user sets USy and US3. Common
key H(e(P, P)*'*2%3) is computed only if verification holds. Note that at the end
of an honest execution of this protocol, each user in the group US; U US; U US3
has a common partial session-identity.

3.3 Proposed Dynamic Key Agreement Protocol

Dynamic key agreement consists of a key agreement protocol together with two
additional algorithms, Insert and Delete. The procedure Insert enables a user to
join a group. A user can leave a group by invoking the procedure Delete. Now,
we describe protocols for insertion and deletion for the above static tree-based
authenticated protocol. Our protocol design makes an optimal use of the data
precomputed in the procedure KeyAgreement. When a user joins or leaves a
group, the structure of the key tree is disturbed and requires to be updated for
any subsequent join or leave operation. Maintaining the tree structure of the
key agreement protocol is a crucial part of our scheme. We refer this as the
preservation of the structure of the procedure KeyAgreement.

Suppose we have a keytree T of n users {1,2,...,n} according to the key
agreement of [2] with & = R(n) rounds. For the sake of easy description, we

take the user set P = {1,...,n} instead of the set {Uy,...,U,} and introduce

)

some more notations. For 1 <[< k, let UZ-(Z be the i-th user set at level [and

o

, be the common agreed key of users in the user set Ui(l) at level [. Initially,

s
Ui(o) = {i}, 82(0) is the private key randomly chosen by user i from Z;.

Insertion Let a new user {u} with private key z joins the group {1,...,n}. He
joins the tree in such a way that the structure of KeyAgreement is still preserved
and updation of key path is optimal in the sense that minimum updation or
recomputation is required. For instance, consider a group key agreement with
n = 10 members. In this case, the root node will have 3 subtrees, with the
left and middle subtrees having 3 leaves each and the right subtree having 4
leaves. Now suppose a new user wants to join this group. He cannot join the
first subgroup (of subusers) since this is contrary to the way we partition the
user sets. So the entire group of users will have to be repartitioned. Similarly,
he cannot join the third subgroup (of 4 users) without causing repartitioning.

108 Ratna Dutta and Rana Barua

But if he joins the second subtree, then there is no need of repartitioning and
so key updation is minimal and is only along a single path. This is illustrated in
Figure 1. The following Lemma (proof in the full version [7]) determines uniquely
such a path that we call the optimal path of joining of the new user.

Lemma 31 For1<1[<k, k= R(n), define the following:

iy := the index of the node at level | whose subtree will contain the new user
{u} as a leaf,

n = the number of leaf nodes in the subtree at i,

N; := number of leaf nodes to the left of node i; and

r; =1 mod 3.

Clearly i, = 1;n, = n;rr, = nmod 3; Ny, = 0. Then, for 2 <1 < k, we have
Q-1 = 30y — 1 Moy = L%’J, and Nj—1 = Ny + (2 — r)mi—1. Thus user u joins
the subgroup at i1 and iy,ix_1,...,%1 determine the optimal path along which
the subgroup keys meeds to be updated or recomputed.

We now describe our protocol Insert. This algorithm invokes a procedure
FindKeyPath to find the optimal key path path of joining of a new member and
updates path according to the algorithm UpdateKeyPath. The new user who has
permission to join the group for a group key agreement computes it’s optimal key
path of joining ig,...,71; Nk, ..., N1 by using algorithm FindKeyPath, communi-
cate this to all other members of the group and invokes algorithm UpdateKeyPath
to update this path. The formal description of the procedures FindKeyPath and
UpdateKeyPath are in the full version [7].

10+1

Fig. 1. procedure Insert

The algorithm UpdateKeyPath works as follows to update keys in level 1 on
joining of the new user. In the key tree T" with n users, the number of children
of the node i1 (node at level 1) in the optimal key path is either 1 or 2 or
3. If 47 has 1 leaf node, then the user corresponding to this leaf node chooses
a new private key, agree upon a common key with the new user by invoking
algorithm AuthCombTwo and the corresponding user set for level 1 is modified
to a set that includes these two users. In case i; has 2 leaf nodes, the users
corresponding to these leaves choose new private keys, a new user set for level
1 is constructed that contains these two users and the new user and algorithm
AuthCombThree-A is invoked to agree upon a common key among them. If 4; has

Dynamic Group Key Agreement in Tree-Based Setting 109

3 leaves, then the users corresponding to these leaves choose new private keys.
The rightmost user agree upon a common key with the new user by invoking
algorithm AuthCombTwo and constructs a new user set that consists of the new
user and itself. Then AuthCombThree-B is invoked for this new user set and the
the other two leaves of i1 to agree upon a common key. Finally the corresponding
user set for level 1 is modified to a set that includes these users.

The subsequent user sets are accordingly changed by algorithm UpdateKey-
Path and key updates in level [+1 (1 <1 < k—1) are done by invoking algorithm
AuthCombThree-B among the three user sets which are subtrees of node 4;41. The
modified user set corresponding to the node ¢; invokes AuthCombThree-B to agree
upon a common key with the user sets corresponding to the other two subtrees
(siblings of i;) of node 4,41 and a new user set for level [+ 1 is constructed that is
the union of these three user sets. We proceed in this way and finally a common
key is agreed among all the n+ 1 users. At the end, we newly index the members
(leaves) as {1,2,...,n+ 1}.

Deletion Suppose key tree T with n leaf nodes {1,2,...,n} has the tree struc-
ture used in the procedure KeyAgreement and suppose a member jg, 1 < jo < n,
wants to leave the group. For this we first introduce a procedure Extract which
outputs the identity or index of a leaf node in T" such that the structure of KeyA-
greement is preserved in the tree after removal of this node. We take a designated
user, called group controller (GC) to initiate the operation Delete. To be specific,
we take one sibling of the node leaving the group as the GC which is trusted
only for this purpose.

The procedure Extract works as follows (for formal description, see the full
paper [7]). If all the three subtrees Tr,, T, Tr of the tree T have equal number
of leaf nodes, then removal of a leaf node from the leftmost subtree 77, will not
disturb the tree structure and so we can extract a leaf node from 7. Similarly,
if the number of leaves in both T, T); are same, say p, and that of right subtree
Tr is p+ 1, then we can extract a leaf from T without disturbing the tree
structure. If the number of leaves in Tjs,Tr are same, say, p + 1 and that of
Ty, is p, then we can extract a leaf from T} retaining the tree structure. We
recursively apply this procedure on Ty, Tr or Ths chosen in this manner and
finally reach a leaf node. The index of the user corresponding to this leaf node
is outputed to the GC.

Now if a user corresponding to leaf jo leaves the group, the tree structure is
disturbed. We first find the highest level, say i, for which the subtree rooted
at the internal node at, say j;, lacks the tree structure. Consequently, j; is the
root of the highest level subtree with disturbed tree structure on removal of
jo. To retain the tree structure, we may need to extract suitably a leaf node I
from the tree T in such a way that the key updates required are minimal. We
do this by using an algorithm FindExtractNode that uses the procedure Extract
as a subroutine and removes the leaving member jj, and replaces it with the
extracted node, still preserving the structure of KeyAgreement in the resulting
key tree. This algorithm outputs the index of the extracted leaf node Iy to GC

110 Ratna Dutta and Rana Barua

and also the index of the internal node j;. The procedure FindExtractNode is
formally described in the full version [7].

Fig. 2. Different cases of procedure Delete with n = 11 (D denotes the node to
be deleted and E denote the node to be extracted to maintain the key structure)

Next we describe the algorithm Delete below (formal description is in the full
version [7]). Our algorithm Delete invokes FindExtractNode to obtain the index
lp of the node to be extracted (if required), finds from the tree T the path from
root to the parent of the leaving leaf node jo and also the path from root to
the parent of the extracted leaf node ly. Two new user sets are constructed in
level 1: one user set includes the user corresponding to [y together with the
users corresponding to brothers of jy and another user set includes only the
users corresponding to brothers of [y. All the users in these two new user sets
choose new private keys. The subsequent higher level user sets are modified
accordingly and appropriate algorithms AuthCombTwo, AuthCombThree-A or
AuthCombThree-B are invoked for successive key agreements in the key tree. At
the end of the procedure Delete, we newly index the users (leaves) as {1,2,...,n—
1}. Some particular cases are shown in Figure 2.

4 Security Analysis

We will show that our dynamic authenticated key agreement protocol DAP is
secure in the model as described in Subsection 2.2. In fact, we can convert any
active adversary attacking the protocol DAP into a passive adversary attacking
the unauthenticated protocol UP assuming that both DSig and MSig are secure
and DHBDH problem is hard. No Corrupt query appears since long term secret
keys are not used. So our protocol trivially achieves forward secrecy.

Dynamic Group Key Agreement in Tree-Based Setting 111

Theorem 4.1 [2] The group key agreement protocol UP described in Section 3.1
s secure against passive adversaries provided DHBDH problem is hard.

Theorem 4.2 [6] The group key agreement protocol AP described in Section 3.2
satisfies the following: Advap’ (t, qr, qs) < Advip(t, ga+qs/2)+|P| Succosig(t')+
|P| Succmsig(t') where t' < t + (|Plqe + qs)tap, where tap is the time required
for execution of AP by any one of the users.

Theorem 4.3 The dynamic group key agreement protocol DAP described in Sec-
tion 3.3 satifies the following: Advisss (t, 4g, 47, 4L, qs) < Advip(t', e+ (qr+qr+
qs)/2)+|P| Succpsig(t')+|P| Succmsig(t') where t’” < t+(|P|gr+qs+qr+4s)toap,
where tpap s the time required for execution of DAP by any one of the users,
qE,q7,qr and qs are respectively the mazrimum number of execute, join, leave
and send queries that an adversary can make.

Proof (Sketch) : Let A’ be an adversary which attacks the dynamic authenti-
cated protocol DAP. Using this we construct an adversary A which attacks the
unauthenticated protocol UP. As in [6], we have the following claim.

Claim : Let Forge be the event that a signature (either of DSig or of MSig) is
forged by A’. Then Prob[Forge] < |P| Succmsig(t’) + |P| Succpsig(t').

Adversary A maintains a list Tlist to store pairs of session IDs and tran-
scripts. It also uses two lists Jlist and Llist to be specified later. Adversary A
generates the verification/signing keys pky, sky for each user U € P and gives
the verification keys to A’. If ever the event Forge occurs, adversary A aborts and
outputs a random bit. Otherwise, A outputs whatever bit is eventually output
by A’. Note that since the signing and verification keys are generated by A, it
can detect occurrence of the event Forge. A simulates the oracle queries of A’
using its own queries to the Execute oracle. We provide details below.

Execute and Send queries: These queries are simulated as in [6]. Apart from
the usual send queries, there are two special type of send queries, Send; and
Sendy. If an unused instance Hﬁ wants to join the group Hl‘kl yeen ,Hg’i“k, then
A" will make Send;(U,d, (U;,,...,U;)) query. This query initiates
Join({(Usy,d1), ..., (Ui,,di)}, (U,d)) query . A first finds a unique entry of the
form (S,T) in Tlist with S = {(U;,,d1), ..., (Ui, dk)}. If no such entry, A makes
an execute query to its own execute oracle on S and gets a transcript 7. A
then stores (S, Uld,T) in Jlist. Similarly, when Send, (U, d, (U, ...,U;,)) query
is made, A stores (S,U|d,T) in Llist.

Join queries : Suppose A" makes a query Join({(U;,,d1), ..., (U, ,dr)}, (U, d)).
A finds an entry of the form (S, U|d, T') in Jlist where S={(Uj,,d1), ..., (Ui, dk)}-
If no such entry, then the adversary A’ is given no output. Otherwise, A modi-
fies T as follows: A can find the path of joining of U in the key tree with leafs
Ui,,...,U;, and detect the positions in 7" where the new messages are to be
injected or where the old messages are to be replaced by new messages. A does
these modifications in T' according to the unauthenticated version of the algo-
rithm Insert described in Section 3.3 and gets a modified transcript 7. It then
patches appropriate basic signatures and multi-signatures with each message in
T according to the modifications described in Section 3.2. Thus A expands the
transcript T into a transcript 7”7 for DAP. It returns 7" to A’.

112 Ratna Dutta and Rana Barua

Leave queries : These queries are simulated as Join queries with modified
transcript Ths obtained from unauthenticated transcript T according to the al-
gorithm Delete in Section 3.3.
Reveal/Test queries : Suppose A’ makes the query Reveal(U,) or Test(U,)
for an instance II}; for which acci;, = 1. At this point the transcript 7" in which
IT}; participates has already been defined. If 7" corresponds to the transcript of
the authenticated protocol, then A finds the unique pair (S,7") in Tlist such that
(U,i) € S. Assuming that the event Forge does not occur, T is the unique unau-
thenticated transcript which corresponds to the transcript 7'. Then A makes
the appropriate Reveal or Test query to one of the instances involved in T" and
returns the result to A’. Otherwise, 7" is the transcript for Join or Leave, as
the case may be. Since T” has been simulated by A, A is able to compute the
modified session key and hence send an appropriate reply to A’.

As long as Forge does not occur, the above simulation for A’ is perfect.
Whenever Forge occurs, adversary A aborts and outputs a random bit. So

Prob_s ap[Succ|Forge] = ;. Using this, one can obtain Advaup > Adv.a,pap —

Prob[Forge] and finally show that (see the full version [7]) Advpap < Advip(t, e+
(g7 + qr + qs)/2) + Prob[Forge]. This yields the statement of the theorem. O

References

1. P. S. L. M. Barreto, H. Y. Kim and M. Scott. Efficient algorithms for pairing-
based cryptosystems. Advances in Cryptology - Crypto’02, LNCS 2442, pp. 354-
368, Springer 2002.

2. R.Barua, R.Dutta, P.Sarkar. Eztending Jouz Protocol to MultiParty Key Agree-
ment. Proc. of Indocrypt’03, LNCS 2905, pp. 205-217, Springer 2001.

3. D. Boneh, B. Lynn, and H. Shacham. Short Signature from Weil Pairing. Proc.
of Asiacrypt’01, LNCS 2248, pp. 514-532, Springer 2001.

4. A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. Proc. of PKC’03, LNCS
2567, pp. 31-46, Springer 2003.

5. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman
Key FExchange under Standard Assumptions. Advances in Cryptology - Euro-
crypt ‘02, LNCS 2332, pp. 321-336, Springer 2002.

6. R. Dutta, R. Barua and P. Sarkar. Provably Secure Authenticated Tree Based
Group Key Agreement. Proc. of ICICS’04, LNCS 3269, pp. 92-104, Springer
2004.

7. R. Dutta and R. Barua. Dynamic Group Key Agreement in Tree-Based setting.
Available at http://www.cse.iitk.ac.in/users/iriss05/r dutta.pdf.

8. A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. Proc. of ANTS
IV, LNCS 1838, pp. 385-394, Springer 2000.

9. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Ezchange.
Advances in Cryptology - Crypto’03, LNCS 2729, pp. 110-125, Springer 2003.

10. Y. Kim, A. Perrig, and G. Tsudik. Tree based Group Key Agreement. Available
at http://eprint.iacr.org/2002/009.

11. H. J. Kim, S. M. Lee and D. H. Lee. Constant-Round Authenticated Group Key
Ezxchange for Dynamic Groups. Proc. of Asiacrypt’04, LNCS 3329, pp. 245-259,
Springer 2004.

Immediate Data Authentication for Multicast in
Resource Constrained Network

C.K. Wong and Agnes Chan

Northeastern University, Boston MA 02115, USA
{ckwong,ahchan}@ccs.neu.edu

Abstract. In this paper, we consider the problem of authentication
of multicast data. The TESLA scheme was introduced to provide data
authentication for multicast communication over lossy channels. Later,
TESLA was further improved to offer immediate authentication of pack-
ets and fortifications against denial-of-service attacks. The improved
TESLA scheme is efficient and applicable to mobile resource-constrained
receivers for authentication of multicast data. The resource limitation of
mobile resource-constrained receivers gives additional challenges to mul-
ticast authentication. In this paper, a denial-of-service attack called the
Random-Substitution attack is presented. We present a new scheme that
can provide immediate packet authentication and deter the Random-
Substitution attack. It is also robust against packet losses. In addition,
the new scheme allows a receiver to immediately authenticate all pack-
ets upon arrival, when the receiver joins the multicast communication.
Hence, the new scheme offers a practical multicast authentication solu-
tion for resource-constrained receivers.

1 Introduction

When a sender wants to simultaneously transmit a sequence of data packets to
multiple receivers, multicast communication can be used. Multicast is an efficient
means of communication and particularly well suited to applications such as
audio and video streaming. Over the past decade, multicast communication has
gained substantial attention among researchers. In an open environment such as
the Internet, the communication channels generally cannot be assumed secure,
and data received through insecure channels can be fabricated and altered. In
unicast communication where sender and receiver share a unique secret key,
message authentication code (MAC) provides an efficient means for verifying
the authenticity and integrity of data. However, in multicast communication, the
same common key is shared by all receivers. Any compromised receiver knowing
the secret key can compute the MAC and impersonate the sender. Thus, the
same approach cannot be directly applied to multicast communication.

A scheme called TESLA [3] has been proposed to provide data authentication
for multicast communication over lossy channels. It is computationally efficient
and is robust against packet losses. However, a drawback of TESLA is that pack-
ets cannot be immediately authenticated. Moreover, delayed packet authentica-
tion forces receivers to buffer incoming packets until they can be authenticated.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 113-121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

114 C.K. Wong and Agnes Chan

The buffering requirement introduces a vulnerability to denial-of-service attacks,
as an adversary can flood bogus packets to buffer-limited receivers. An improved
TESLA scheme [4] is proposed later, offering immediate packet authentication
and fortifications against denial-of-service attacks.

The resource limitation of mobile resource-constrained receivers gives ad-
ditional challenges to multicast authentication. In this paper, we present the
Random-Substitution attack that wastes computation and storage resources of
receivers. To guard against the Random-Substitution attack, we propose a new
scheme that can provide immediate packet authentication and is robust against
packet losses. Our new scheme is built on the improved TESLA scheme, using a
different construction of hash values in order to deter the Random-Substitution
attack. The design of our scheme assumes that data are stored and known to the
sender in advance. Examples of such applications can be found in multimedia
services for mobile users.

To provide a receiver the ability to immediately authenticate packets when
the receiver joins the multicast communication, we introduce an additional hash
value per packet. This additional field also provides a better sustainability of
immediate authentication against packet losses.

The paper is organized as follows. In section 2, we give a review of the im-
proved TESLA scheme. The Random-Substitution attack is presented in section
3. Next, we present the proposed scheme in section 4. The immunity of the
proposed scheme to the Random-Substitution attack is discussed in section 5.
Finally, we conclude the paper in section 6.

2 Review of the Improved TESLA Scheme

The original TESLA scheme [3] has drawbacks including delayed authentication
of packets and vulnerabilities to denial-of-service attacks. Later, improvements
to TESLA are proposed [4], offering immediate authentication of packets and
fortifications against denial-of-service attacks. In this section, we review the im-
proved TESLA scheme.

2.1 Overview

In the multicast communication model, there is a sender who multicasts messages
M; to multiple receivers [4,3]. Each message M; is carried by a packet P;. In each
time interval, the sender may send zero or multiple packets. When a receiver
receives a new packet P;, the receiver will verify the authenticity and integrity
of P;. The first packet is authenticated via a digital scheme such as RSA [5] or
DSA [6]. Each packet carries the hash value of the message of a future packet.
Thus, if the current packet is authentic, then the hash value it carries is authentic
and can be used to provide immediate authentication of a future packet.

The improved TESLA scheme can be described in four stages: sender setup,
bootstrapping a new receiver, sending authenticated packets, and verifying re-
ceived packets.

Immediate Data Authentication for Multicast 115

2.2 Sender Setup

The improved TESLA scheme makes use of a key chain analogous to the one-
way chain introduced by Lamport [2] and the S/KEY authentication scheme
[1]. Tt also assumes that time is split into equal intervals I;, with starting time
denoted by T;. Before sending the first message, the sender determines the send-
ing duration (possibly infinite), the interval duration Tj,¢, and the number N of
keys on the key chain. Next, the sender generates a random key K as the last
key of the key chain, and computes the entire key chain using a pseudo-random
function F. Each element of the key chain is defined as K; = F(K;4+1), where
0 <1i < N. Each key K; of the key chain corresponds to one interval I;, and K;
is used during the interval I;. A second pseudo-random function F’ is applied
to each K; to derive the key which is used to compute the MAC of messages
in each interval. Hence, K| = F'(K;) for 0 < i < N. Finally, a cryptographic
hash function H and a message authentication code scheme are selected, where
M AC(k,m) denotes the message authentication code of message m under key k.

2.3 Bootstrapping a New Receiver

The initial packet sent to a dynamically added new receiver is authenticated
via a digital signature scheme, such as RSA [5] or DSA [6]. It also contains the
following information about the time intervals and key chain:

— The beginning time of a specific interval T}, along with its id I;

— The interval duration Tj,,;

The key disclosure delay d (in interval unit)

— A commitment to the key chain K; (i < j —d where j is the current interval
index)

2.4 Sending Authenticated Packets

In each interval, the sender may send zero or multiple packets, and the corre-
sponding key is used to compute the MAC of all these packets. Thus, the sender
can send packets at any rate and adapt the sending rate dynamically. Further-
more, the key is kept secret for d — 1 future intervals. Packets sent in interval
I; disclose the key K;_q4, which allows receivers to verify the authenticity of the
packets sent in interval I;_g4.

For simplicity, it is assumed that the sender sends out a constant number v
of packets per time interval. To support immediate authentication of packets,
the sender constructs and sends the packet for the message M; in time interval
T; as follows:

1. construct D; = M;||H(M,+va), where || denotes message concatenation,

2. determine from the current time ¢ the index of the current time interval
L t=Tp
i=["7"0],

3. multicast the packet P; = (D;, MAC(K],D;), Ki_q,1).

Remark: The time interval index i was omitted in P; in [4]. We believe that ¢

has to be explicit in P; as originally proposed in [3].

116 C.K. Wong and Agnes Chan

2.5 Verifying Received Packets

The initial packet is verified according to the signature scheme of the sender.
Since signature verification is usually expensive, it should be avoided for verifi-
cation of other packets.

A received packet can be immediately authenticated if its hash value is con-
tained in a previously received packet. If a received packet cannot be immediately
authenticated, it needs to be buffered and verified later. Since each key K; will
be disclosed eventually, a receiver must verify the security condition stated below
for each packet it receives.

Security condition: A packet arrived safely, if the receiver is assured that
the sender cannot yet be in the time interval in which the corresponding key is
disclosed.

Assume that the packet is sent in interval I; and received at receiver’s local
time ¢, where ¢t denotes the time after adjustment for time synchronization error
is made [4]. The security condition is satisfied if | %, TOJ < i+ d, where i is the
index of the interval I; and d is the key disclosure delay

The receiver verifies a packet P; = (D;, MAC(K!, D;), K;_q4,%) that arrives
at time ¢ as follows:

1. If P; contains a disclosed key K;_4, the receiver checks whether K;_ 4 has
been previously received. If not, then the receiver will compute keys from
K;_4 to authenticate packets that are buffered to be verified. Let K, denote
the key in the key chain that the receiver has most recently received. Then
v < i — d. The receiver verifies that K, = F'=97V(K;_,). If the condition
is satisfied, the receiver updates the key chain. For each new key K, in
the key chain, the receiver computes K/ = F’(K,,), which can be used to
authenticate the buffered packets.

2. The receiver verifies the security condition and rejects P; if the condition is
not satisfied.

3. If P; satisfies the security condition, then there are two cases:

Case (1), the receiver has previously received the packet Pj_,q4. It means
that if Pj_,q is authentic, then the H(M;) of Pj_,q is also authentic and
therefore the data M; is immediately authenticated by using the authentic
Pj_yq.

Case (2), the packet P;_,q is lost or previously dropped by the receiver.
Then, it means that P; cannot be immediately authenticated. Therefore,
it needs to be buffered until its MAC value can be verified later in a time
interval.

3 A Denial-of-Service Attack

In this section, a denial-of-service attack called the Random-Substitution at-
tack is presented. We show that the Random-Substitution attack can waste the
computation and storage resources of a victim receiver.

Immediate Data Authentication for Multicast 117

For our study of denial-of-service attacks, we assume that an adversary is
capable of :

1. eavesdropping packets sent from a legitimate sender
2. creating and injecting packets to receivers

but cannot block packets.

3.1 The Random-Substitution Attack

Although a receiver can immediately authenticate the message M; of an incom-
ing packet P; in the improved TESLA scheme, the receiver cannot immediately
verify the authenticity of the hash value H(M;ji,q) of future message M,iyd,
and the MAC(K], D;). Then, the adversary can create valid bogus packets and
flood receivers as shown in the Random-Substitution attack.

Random-Substitution attack: Since K;_4 and M; are plaintexts and known
to the adversary, the adversary can generate a bogus packet P; = (ﬁj,rg,
K;_g4,1), where D~j = Mj||r1, r1 and 7o are random values chosen by the ad-
versary. The adversary can flood a victim receiver with these bogus packets.
Note that when the victim receives a bogus packet]5j, the receiver will verify
M; and H(M;), and thus it is accepted. Also, note that the receiver cannot dis-
tinguish a bogus packet]5j from an authentic packet P;, because at the current
moment the receiver does not know the correct key and cannot distinguish ro
from a valid MAC code for f’j. Therefore, the receiver cannot decide whether
to store r; from]5j or H(Mj4,q) from P; for the immediate authentication of
packet Pji,q in the future. So, the receiver must store both 71 and H(M1yq)-
Similarly, the receiver must store both r5 of the packet]5j, and the M AC(K], D;)
value of the packet P;.

Thus, an adversary can force a receiver to assign new buffer storage for the
bogus packets received. Other than wasting storage, the Random-Substitution
attack also wastes the computational resources of the victim receiver. A receiver
must extract and buffer all the r; and 75 values of bogus packets. For each bo-
gus pair (r1,72) buffered, the receiver must verify its validity by checking if 7o
is a valid MAC code when a future packet such as Pj,q arrives. Until a stored
(r1,72) pair is found to pass such a test, the receiver is unable to immediately
authenticate Pji,q. So, the average number of MAC operations that a victim
receiver must compute is equal to half of the total number of the bogus packets
flooded to the victim receiver.

The Random-Substitution attack forces the victim receiver to assign a sub-
stantial amount of computation and storage. So, mobile resource-constrained
receivers are most affected by the Random-Substitution attack.

118 C.K. Wong and Agnes Chan

4 The Proposed Scheme

In this section, we present a new scheme that is immune to the Random-
Substitution attack. The proposed scheme also allows a receiver to immediately
authenticate all packets (including the initial sequence of received packets) upon
arrival, when the receiver joins the system.

The proposed scheme is built by extending the improved TESLA scheme. We
describe the proposed scheme in four stages: sender setup, bootstrapping a new
receiver, sending authenticated packets, and verifying received packets.

4.1 Sender Setup

The proposed scheme uses a key chain analogous to the one-way chain introduced
by Lamport [2] and the S/KEY authentication scheme [1]. It assumes that time is
split into equal intervals I;, with starting time denoted by T;. Before sending the
first message, the sender determines the sending duration, the interval duration
Tint, and the number N of keys on the key chain. Next, the sender generates a
random key Ky as the last key of the key chain, and computes the entire key
chain using a pseudo-random function F'. Each element of the key chain is defined
as K; = F(K;41), where 0 < i < N. Each key K of the key chain corresponds to
one interval I;, and K; is used during the interval I;. A second pseudo-random
function F’ is applied to each K; to derive the key which is used to compute the
MAC of messages in each interval. Hence, K| = F'(K;) for 0 < ¢ < N. Finally,
a cryptographic hash function H and a message authentication code scheme are
selected, where M AC(k, m) denotes the message authentication code of message
m under key k.

4.2 Bootstrapping a New Receiver

The initial packet sent to a new receiver is authenticated via a digital signature
scheme. It also contains the following information about the time intervals and
key chain:

The beginning time of a specific interval T}, along with its id I;

— The interval duration Tj,;

The key disclosure delay d (in interval unit)

— A commitment to the key chain K; (i < j —d where j is the current interval
index)

4.3 Sending Authenticated Packets

The proposed scheme is built by extending the improved TESLA scheme. Similar
to the improved TESLA scheme, a packet P; in the proposed scheme carries
a hash value ;. However, different from TESLA, the proposed scheme uses
a different construction for the hash value $; in order to deter the Random-
Substitution attack.

Immediate Data Authentication for Multicast 119

Moreover, an additional hash value o; is introduced to enable a receiver to
immediately authenticate all received packets after the initial one, regardless
when the receiver joins the system.

We assume that the sender sends out a constant number v of packets per
time interval. We also assume that all messages My, M, ..., M, are known to
the sender in advance. The sender computes the followings for multicasting the
messages:

- Qp_1 = H<Mr, ﬁra Oér),

- oy = H(Mj+1,ﬁj+1,aj+1) for 0 S] S T — 2,

- ﬁrfvdf((rfi) mod vd) :H<Mr7((r7i) mod vd)s ¥r—((r—i) mod vd)> ﬁrf((rfi) mod vd))
for 0 <i<wd-—1,

= Bj = H(Mjtvd, @jtvd; Bjtva) for 0 < j <7 —2vd,

—a,=0=0y="forr—vd+1<y <r—1, where v can be any string,
for example, the empty string.

(a mod b denotes the non-negative integer ¢ such that 0 < ¢ < b—1 and b divides
a—c).

To support immediate authentication of packets, the sender constructs and
sends the packet P; for the message M; in time interval T; as follows:

1. construct D; = M;||a,||B;, where || denotes message concatenation,

2. determine from the current time ¢ the index of the current time interval
| t=To
=700

3. multicast the packet P; = (D;, MAC(K],D;), Ki_4,1).

4.4 Verifying Received Packets

The initial packet is verified according to the signature scheme of the sender.
The receiver verifies a packet P; = (D;j, MAC(K/, D), K;_q,1) that arrives at
time ¢ as follows:

1. If P; contains a disclosed key K;_4, the receiver checks whether K; 4 has
been previously received. If not, then the receiver will compute keys from
K;_4 to authenticate packets that are buffered to be verified. Let K, denote
the key in the key chain that the receiver has most recently received. Then
v < i — d. The receiver verifies that K, = F'"~97V(K;_4). If the condition
is satisfied, the receiver updates the key chain. For each new key K, in
the key chain, the receiver computes K, = F’(K,,), which can be used to
authenticate the buffered packets.

2. The receiver verifies the security condition and rejects P; if the condition is
not satisfied.

3. If P; satisfies the security condition, then there are three cases :

Case (1), the receiver has previously received the packet Pj_,q. Let D; =
M;||e]|B;. It means that if Pj_,q is authentic, then the 3;_,q of Pj_yq is
also authentic and therefore the packet P; is immediately authenticated by
using the authentic Pj_.q.

120 C.K. Wong and Agnes Chan

Case (2), the receiver has previously received the packet P;_;. Let D; =
M;||a;|8;. It means that if P;_; is authentic, then the ;1 of P;_; is also
authentic and therefore the packet P; is immediately authenticated by using
the authentic Pj_;.

Case (3), both packets Pj_,q and Pj_; are lost or previously dropped by the
receiver. It means that P; cannot be immediately authenticated. Therefore,
it needs to be buffered until its MAC value can be verified later in a time
interval.

4. Finally, if all verifications pass, the receiver accepts P; and stores a;, 3; for
future immediate authentication. Moreover, once the receiver has accepted
a packet P;, then any additional incoming packet claiming to be P; can
be immediately discarded and no further inspection is required. The ability
to discard all these additional packets prevents the Random-Substitution
attack.

A received packet Pj;,q can be immediately authenticated unless both P; and
Pjivq—1 are lost. Let p be the probability that a packet will be lost, Pproposed
and Prgsa denote the probability that a received packet can be immediately
authenticated in the proposed scheme and the improved TESLA scheme respec-

tively. Assuming independent packet loss in different time intervals,

Pproposed =1-p°

On the other hand, since a received packet can be immediately authenticated
under TESLA if the packet containing its hash value is not lost,

Prosia=1-p

5 Denial-of-Service Attacks on the Proposed Scheme

In this section, we show that the proposed scheme can deter the Random-
Substitution attack.

Let P, be the first packet received by the receiver, y > 0. Since P, is signed,
and assuming that the signature scheme is secure, the received P, must be
authentic if it passes the signature verification.

Next, consider a receiver has an authentic packet P;_,q, and has used it to
immediately authenticate a packet P;. After P; is accepted, the receiver stores
o, B;. To launch the Random-Substitution attack, the adversary sends the re-
ceiver bogus packets P; = (Dj,r9, K;_q,1), where D; = MHT(XHTQ and ro are
values chosen by the adversary. If the receiver wanted to verify P the receiver
would use M, 7 , rg to compute the hash value ¥ = H(M Tas 7“,3) and verify 7.
Assuming the adversary cannot break the cryptographic hash function H, then
P; will not pass the verification unless M = M, ro = a; and 73 = ;. Let us
first consider the case where M = M;, r, = a; and rg = ;. If the receiver
wanted to verify P then the receiver Would know that P is valid and contains

Immediate Data Authentication for Multicast 121

the same Mj, o, 3; which were previously received from P;, and so]5j can be
discarded. In the other case, M # Mj or ro # o or rg # ;. If the receiver
wanted to verify ﬁj, then the receiver would know that f’j is invalid and should
be discarded. Thus, in both cases, the bogus packet]5j would have no effect on
the receiver and so the receiver can immediately discard the packet]5j.

Therefore, the receiver is assured that M;, o; and §; are authentic for any
accepted packet P;. So, the receiver can immediately discard any additional
packet claiming to be P;. On the other hand, in the improved TESLA scheme
[4], only the message in P; is authenticated by the receiver. In order to ensure
that future packet Pjy,q can be authenticated upon arrival, the receiver needs
to buffer all packets claiming to be P;. The Random-Substitution attack can
waste the storage and computation resources of a victim receiver, but it does
not affect the proposed scheme.

6 Conclusion

We have presented modifications on the improved TESLA scheme to provide
a new scheme that allows immediate data authentication even though keys are
disclosed at a later time, and is resistant to the Random-Substitution attack.
The proposed scheme also allows users to check data authenticity immediately
upon joining the communication system. In addition, the hash value added in
the proposed scheme improves the probability of immediate data authentication
under lossy channel.

7 Acknowledgements

We would like to thank the anonymous referees for their useful comments on the
paper.

References

1. N. Haller. The S/KEY one-time password system. Request for Comments (Infor-
mational) 1760, Internet Engineering Task Force, Feb. 1995.

2. L. Lamport. Password authentication with insecure communication. Commun.
ACM, 24(11), Nov. 1981.

3. Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. Efficient Authentica-
tion and Signing of Multicast Streams over Lossy Channels. In Proc. of IEEE
Symposium on Security and Privacy, 2000.

4. Adrian Perrig, Ran Canetti, Dawn Song, and J.D. Tygar. Efficient and Secure
Source Authentication for Multicast. In Proc. of NDSS 2001, 2001.

5. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126,1978.

6. U. S. National Institute of Standards and Technology (NIST). Digital Signature
Standard (DSS), Federal Register 56. FIPS PUB 186, Aug. 1991.

Redundant Trinomials for Finite Fields of
Characteristic 2

Christophe Doche

Division of ICS, Department of Computing
Macquarie University, NSW 2109 Australia
doche@ics.mqg.edu.au

Abstract. In this article we introduce redundant trinomials to repre-
sent elements of finite fields of characteristic 2. This paper develops
applications to cryptography, especially based on elliptic and hyperel-
liptic curves. After recalling well-known techniques to perform efficient
arithmetic in extensions of Fs, we describe redundant trinomial bases
and discuss how to implement them efficiently. They are well suited to
build Fgn when no irreducible trinomial of degree n exists. Depending on
n € [2,10000] tests with NTL show that, in this case, improvements for
squaring and exponentiation are respectively up to 45% and 25%. More
attention is given to extension degrees relevant for curve-based cryptog-
raphy. For this range, a scalar multiplication can be sped up by a factor
up to 15%.

1 Introduction

Although this is the first time redundant trinomials are used in cryptography,
Brent and Zimmermann introduced the similar concept of almost irreducible
trinomials in the context of random number generators in [2,3]. In particular,
they have shown that there exist almost irreducible trinomials of degree n for
every n € [2,10000] and explained how to compute efficiently with them.

We discovered the concept of redundant trinomial, designed an algorithm to
find them, and searched for efficient arithmetic independently. Then Brent and
Zimmermann pointed out that some of this work was already contained in [2].
Additionally, this paper provides a careful analysis of the best algorithm to use
to compute an inverse in a redundant trinomial basis depending on the extension
degree chosen. Also, we implemented our ideas and give a precise comparison
of running times between redundant trinomials and irreducible pentanomials,
focused on extension degrees of cryptographic interest. Tests reveal that a cer-
tain class of redundant trinomial, called optimal redundant trinomials, give even
better results. This leads us to introduce optimal redundant quadrinomials that
can outclass irreducible pentanomials and even trinomials.

At present, let us recall basic facts on fields of characteristic 2. There are
mainly two types of bases to compute in finite fields of characteristic 2, namely
polynomial and normal bases. It is well known that there is a normal basis of Fan
over [y for every extension degree n. However only a certain category of normal

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 122-133, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Redundant Trinomials for Finite Fields of Characteristic 2 123

bases, namely optimal normal basis of type I or II can be used in practice. Those
bases are quite rare. Considering extension fields of degree up to 10,000, only
17.07% of them have an optimal normal basis.

For every extension degree, there is a polynomial basis as well. Sparse irre-
ducible polynomials are commonly used to perform arithmetic in extension fields
of Fy since they provide a fast modular reduction. As a polynomial with an even
number of terms is always divisible by = + 1, we turn our attention to so-called
trinomials. When no such irreducible polynomial exists, one can always find
an irreducible pentanomial, at least for extension degrees up to 10,000. In this
range this situation occurs quite often. In fact one has to choose an irreducible
pentanomial in about 50% of the cases (precisely 4853 out of 9999 [11]).

The next section describes in more detail efficient algorithms to perform
reduction, addition, multiplication, and inversion in Fan /Fo.

2 Finite Field Arithmetic

Let pu(x) be an irreducible polynomial of degree n over Fo. An element of Fon ~
Folz]/ (u(m)) is uniquely represented as a polynomial f of degree less than n
with coefficients in Fs. If f is a polynomial such that deg f > n one first reduces
f modulo the irreducible polynomial . The usual way to get this reduction is
to compute the remainder of the Euclidean division of f by p. When p is sparse
there is a dedicated algorithm which is much faster [7].

Algorithm 1. Division by a sparse polynomial

INPUT: Two polynomials p(z) and f(z) with coefficients in a commu-
tative ring, where u(z) is the sparse polynomial " + > ¢_, a;z" with
b < bi+1.

OuTpPUT: The polynomials v and v such that f = up+ v with degv < n.

1. v« fandu«<0

2. while deg(v) > n do

3 k «— max(n,degv —n+b; + 1)

4. write v(z) = u1 (x)z* + w(z)

5 v(z) — w(z) —wi () (u(z) —z™)z" "

6. w(z) — ui(2)z" " + u(z)

return (u,v)

Remarks.

o If degf = m then Algorithm 1 needs at most 2(t — 1)(m —n + 1) field
additions to compute u and v such that f = up +v. In this case the number
of loops is at most [(m —n+1)/(n—by —1)]|. If m < 2n — 2, as is the case

124 Christophe Doche

when performing arithmetic modulo p, then the number of loops is at most
equal to 2 as long as 1 < by < n/2.

o To avoid computing the quotient u when it is not required, simply discard
Line 6 of Algorithm 1.

Concerning operations, additions are performed at a word level and correspond
to XOR. Computing a squaring only costs a reduction modulo f. Indeed if f(z) =
> a;xt then f2(x) = Y a;x?*. Multiplications are also performed at a word level,
but processors do not provide single precision multiplication for polynomials.
Nevertheless it is possible to emulate it doing XOR and shifts. One can also
store all the possible single precision products and find the global result by table
lookup. This method is fast but for 32-bit words the number of precomputed
values is far too big. A tradeoff consists in precomputing a smaller number of
values and obtaining the final result with Karatsuba’s method. Typically two 32-
bit polynomials can be multiplied with 9 precomputed multiplications of 8-bit
block polynomials [6].

Once the single precision multiplication is defined, different multiplication
methods can be applied depending on the degree of the polynomials. In [7]
the crossover between the schoolbook multiplication and Karatsuba’s method is
reported to be equal to 576. Other more sophisticated techniques like the F.F.T.
or Cantor’s multiplication [6] based on evaluation/interpolation methods can be
used for larger degrees. For example, the crossover between Karatsuba’s method
and Cantor’s multiplication is equal to 35840 in [7].

There are usually two different ways to compute the inverse of an element of
Fan. The first one is to compute an extended Euclidean GCD. The second one

takes advantage of the group structure of F3, and computes a1 as a2,

3 Redundant Trinomials

With Algorithm 1, the product of two elements in Fon can be reduced with
at most 4(n — 1) elementary operations using trinomials and at most 8(n — 1)
operations using pentanomials.

For some extension degree there is an even better choice, namely all one
polynomials. They are of the form

plr)=a" +2" 1. 1 (1)

Such a p(z) is irreducible if and only if n+1 is prime and 2 is a primitive element
of F,,+1. This occurs for 470 values of n up to 10,000, but n has to be even.

It is clear from the definition of u(z) that u(z)(x + 1) = 2™ + 1. Thus
an element of Fan can be represented on the anomalous basis (a,a?, ..., a™)
where « is a root of p(x). In other words an element of Fan is represented by a
polynomial of degree at most n with no constant coefficient, the unity element
1 being replaced by = + 22 + - - - + 2™,

The reduction is made modulo "' +1 and a squaring is simply a permuta-
tion of the coordinates. In one sense computations in Fan are performed in the

Redundant Trinomials for Finite Fields of Characteristic 2 125

ring Fa[z]/(z™! + 1). Unfortunately this very particular and favorable choice
does not apply very well to odd degrees. When n is odd, one can always embed
Fa» in a cyclotomic ring Fo[z]/(z™ + 1). But m > 2n + 1 so that the benefits
obtained from a cheap reduction are partially obliterated by a more expensive
multiplication [13]. Note that for elliptic and hyperelliptic curve cryptography
only prime extension degrees are relevant [5,8,10].

We now adopt this idea and transfer it to the setting of polynomial bases.
When there is no irreducible trinomial for some extension degree n one can try to
find a trinomial ¢(z) = 2™ + x* + 1 with m slightly bigger than n such that t(z)
admits an irreducible factor p(z) of degree n. Such a trinomial is called a redun-
dant trinomial. The idea is then to embed Fan ~ Fa[z]/(u(x)) into Folz]/(t(z)).
From a practical point of view an element of Fan is represented on the redundant
basis 1, a,...,a™ ! where a is a root of u(x) and the computations are reduced
modulo t(x). As p(z) divides ¢(x), one can reduce modulo p(z) at any time and
obtain consistent results. If m — n is sufficiently small then the multiplication of
two polynomials of degree less than m has the same cost as the multiplication
of two polynomials of degree less than n, since multiplications are performed at
a word level.

To reduce the results one needs at most 2 iterations using Algorithm 1 since
one can always choose t(z) = 2™ + x¥ + 1 such that k¥ < |m/2]. Indeed if
k > |m/2] the reciprocal polynomial of ¢(x) can be considered instead.

However with these settings, the expression of a field element is no longer
unique, but the result can of course be reduced modulo p(z), when it is required.
Note that it is possible to perform a fast reduction modulo p(z) knowing only
t(z) and 6(x) = t(z)/p(x). The same kind of idea provide a quick way to test
if two polynomials represent the same field element. Finally, one examines how
inversion algorithms behave with this representation.

These topics are discussed in the next section.

4 Efficient Implementation of Redundant Trinomials

To reduce a polynomial f(x) modulo p(z) one could perform the Euclidean
division of f(x) by wu(z), but this method has a major drawback. It obliges to
determine or to know p(z) which is not sparse in general. A better idea is to
write f(z) = q(x)p(x) + r(z). Then f(x2)d(z) = q(x)t(x) + r(x)d(z) so that

f(x)é(x) mod t(x)
The last division is exact and can be obtained by an Algorithm easily derived
from Jebelean’s one for integers [9]. Now two elements fi(z) and fa(z) corre-
spond to the same element in Fa. if and only if u(z) | (fi(z) + fz(x)). This
implies that t(z) | 6(z)(f1(z) + f2(x)). We could compute an exact division but
there is a more efficient way to proceed. First note that if fi(x) and fa(z) are
both of degree at most m — 1 then

deg(6(z)(f1(z) + fo(x))) < 2m—n— 1. (3)

126 Christophe Doche

So the quotient g(z) of the division of §(z)(f1(z) + f2(z)) by t(z) = 2™ +zF +1
is of degree at most m — n — 1. Writing the division explicitly we see that if

m—k>m-n—1 (4)

then ¢(z) is equal to the quotient of the division of 6(z)(f1(z) + f2(z)) by =™.
This is just a shift and it is a simple matter to determine if 6(z)(f1(z) + fa(z))
is equal to q(z)(z™ + z* + 1) or not.

Now one can check, cf. [4], that all the redundant trinomials found for n up
to 10,000 satisfy m —k >m —n — 1.

Concerning inversion, it is clear that the algorithm based on Lagrange’s the-
orem works without any problem with redundant polynomials. One must be
careful with the extended GCD algorithm. Let o € Fan be represented by f(x).
When the algorithm returns u and v such that

f(@u(@) + ta)o(z) =1 (5)
then the inverse of « is given by u(z). But one could have
f(@)u(z) +t(z)o(z) = d(z) (6)

with degd(x) > 0. In this case two possibilities arise. If p(x) | d(x), which can be
checked by looking at the degree of d(x), then a = 0. Otherwise d(z) | 6(z) and
the inverse of « is given by wu(z)e(x) where e(x) is the inverse of d(x) modulo
wu(x). Nevertheless there is a more simple technique. Indeed, as we will see, ¢(x)
is squarefree. So the ged of f(z)d(z) and t(z) is equal to §(z) and
f()o(z)ur () + t(x)vr(2) = 0(x) (7)
so that
F(e)u (@) + (@) (@) = 1 ®)
and the inverse of f(x) is directly given by uy(z). The degree of d(z) is usually
much smaller than the degree of e(x). So the multiplication is faster. No reduction
modulo ¢(z) is required at the end. It is not necessary to compute or precompute
anything new. Even when gcd(f(x), t(m)) =1 this last technique works. So one
can either compute the extended gcd(I (:c),t(:c)), test its value and compute
the extended gcd(f(x)d (ac),t(ac)) if necessary, or always perform only this last
computation. The tradeoff in time depends on the number of irreducible factors
of 4 and the cost of a modular multiplication. Indeed the degree and the number
of factors of §(x) determine the probability that a random polynomial is prime
to t(x). If §(z) is irreducible of degree r then this probability is clearly equal
to 1 —1/2". If 6(x) has two factors of degree r1 and 7o, necessarily distinct
since () is squarefree, the probability becomes 1 —1/2™ —1/272 4+ 1/2™+"2, By
induction, if §(x) has ¢ distinct factors of degree r1, 7, . .., 7, then the probability
that t(x) = ™ + 2* + 1 is prime to a random polynomial of degree less than m

is ,
1y
L Z DRTR (9)
=1

1<in - <in <t
Note that §(x) is irreducible in about 95% of the cases, c¢f. Section 6.

Redundant Trinomials for Finite Fields of Characteristic 2 127

5 Example

Let us consider Fgs. There is no trinomial of degree 8 irreducible over Fs. Instead
one usually chooses the irreducible pentanomial p(z) = 2% + 2% + 23 + 2 + 1.
Nevertheless it is easily seen that ¢(z) = 2'* + 2% + 1 splits as u(z) times J(z)
where p(zr) = 28 + 2% + 2° + 2* + 22 + 2 + 1 and §(z) = 2° + 2 + 1 are both
irreducible. The explicit expression of p(z) is not important. In fact ¢(z) and
§(x) = 23 + x + 1 are enough to compute in Fys.

Let f(x) and g(x) be two polynomials of degree 7, namely

flx)=2"+a25+22 +2+1
and
g@)=a"+2% ¥+ o+ 1 (10)

The product of f(z) and g(z) reduced modulo t(x) is h(z) = 210 + 2% + 2% +
2% + 2% + 2% + 2 + 1, whereas it is equal to 2% + 2* + 22 + 1 modulo p(x). Of
course h(z) = 2%+ 2* + 2% + 1 (mod y(z)) but there is no need to reduce h(z)
at this stage.

Now let us compute the inverse of f(z) and g(z). Using an extended GCD
algorithm. One obtains

f@) @ +a® 42"+t + 2 24+ 1) +t(x)(2® +22) =1 (11)

and
g@) @t + ¥ +2? +2) +t(x) =2+ + 1. (12)

We conclude immediately that the inverse of f(x) is
f@)y'=2"+2% + 2" + 2" + 22 + 2+ 1 (mod ¢(2)). (13)

For the inverse of g(z) one can first multiply g(z) with §(z) and compute an
extended Euclidean GCD again. We get

g(@)6(x) (28 + 25 + 22 + 1) + t(z)(2® + 2 4 z) =2+ +1 (14)

so that
g(z) ' = 2% +2° + 2% + 1 (mod t(z)). (15)
Using Lagrange’s theorem, one gets directly
flx)y = f(x)zzt2 =2 + 2% + 2 (mod () (16)
and .
g(x) P =g(2)* ? =2"" 42" +2° (mod t(z)). (17)

The results are different representations of the same elements. If one wants to
check it out, for example for the inverse of f(x), it is enough to compute

(@@ +r+1)((@°+2®+2"+at + 2’ +r+1+2% + 2% +2) + (2¥ + 2% +2)) (18)

128 Christophe Doche

which is equal to 22 + z'!' 4+ 25 + 2° + 2 + 1 and test if this polynomial is a
multiple of ¢(x). If so the quotient must be z + 1 and indeed

(+ D)@+ 2+ D) =22+ a8 125 a1 (19)
so that

2+t +at a2 rar+ 1428 + 28 + 2= 2% + 2% + 2 (mod p(z)). (20)

6 Search of Redundant Trinomials

An exhaustive search of redundant trinomials has been conducted using NTL [12]
for extension degrees n < 10,000 when no irreducible trinomial exists. More
precisely, given n we try to find a trinomial ¢(x) = 2™ + ¥ + 1 such that

« t(x) has an irreducible factor of degree n
« m is as small as possible
« k is as small as possible.

It turns out that such a polynomial always exists for the investigated range of
degree. To simplify the search one notes that such a trinomial is necessarily
squarefree. Indeed ged (t(x), ' (2)) is equal to 1 when m or k is odd. Both m and
k cannot be even otherwise 2™ + 2 + 1 = (2"/2 + 2¥/2 + 1)? and one should
have chosen /2 4+ z¥/2 + 1 instead.

Then the idea is to test all the trinomials ™ 4 x* + 1 with n +1 < m and
1 <k < |m/2] until a good candidate is found, that is a trinomial with a factor
of degree m — n.

Tt is well known that 22" + z is equal to the product of all irreducible polyno-
mials of degree d such that d | k. Since ¢(x) is squarefree it is easy to determine
if it has a factor d(z) of degree m — n, computing gcd(a:zl +a, 2™+ 2k + 1) for
successive ¢ < m —n. Note that such a gcd computation can be very costly when
m —n is large. It is much faster to compute g(z) = 2% (mod t(m)) by successive
squarings and reductions first and then ged(g(z) + z,t(z)). If ¢(z) has a factor
d(z) of degree m — n the irreducibility of ¢(x)/d(x) is finally checked.

For all the extensions up to the degree 10,000 which do not have an irre-
ducible trinomial, our proposal provides a redundant trinomial. There are 4748
such extensions. Note that when an all one polynomial is available it is given
even if an irreducible trinomial exists for that extension degree.

Tables containing the redundant trinomials discovered, or all one polynomials
when they exist, can be found in [4]. In this paper, we only give results for
extensions of degree less than or equal to 1002, see Table 1.

The redundant trinomials 2™ + z* + 1 where m = n + degé and the all one
polynomial (z"*1+1)/(z+1) are respectively represented by n, deg §, k and n, 1.
The degree of § is rather small in general. In about 95% of the cases it is less
than or equal to 10. It is maximum for n = 5373 and equals 40.

In about 87% of the cases ¢ is irreducible. With 32-bit processors, redundant
trinomials require the same number of words as an irreducible polynomial of

Redundant Trinomials for Finite Fields of Characteristic 2 129

2.1 41 8.3.5 10,1 12,1 13,3,3 16,3,4 18,1 19,3,3 24,34
26,3,12 27,21 28,1 32,5,16 36,1 37,64 382,17 140,33 43,10,2 45.7,9
48,3,20 50,3,5 51,24 52,1 53,8,28 56,2,5 58,1 59,2,26 60,1 61,5,17
64,7,12 66,1 67,920 69,313 70,7,11 72,3.8 75,24 77,3,9 78,2,31 80,3,11
82,1 83214 85828 88,819 91,8,1 96,2,1 992,13 100,1 101,2,2 104,5.9
106,1 107,28 109921 112322 11434 115106 116,517 117,631 120225 122,39
125,3,3 128,2,17 1301 131,761 133,343 136330 1381 139,3,3 141,3,13 143,3,53
144,719 1481 14922 152,265 157,725 158519 160,327 162,1 163870 164,5,59
165,5,9 168,31 171,210 1721 173,3,5 176,253 1781 179214 1801 181,7,51
184,3,60 187,745 188461 189337 190433 192353 195225 1961 197,369 200,5,42
203,7,73 205529 206217 208,345 210,1 211,3,103 213337 2163101 219,21 221,15,77
222237 224386 2261 227277 229361 230235 232369 235147 237341 240,2,37
243252 24522 246209 248241 251274 254271 2561645 2595103 261,309 262,4,89
264,368 267,288 2681 269547 272387 275399 277612 2805103 283351 2856,122
288,2,133 2903114 291231 2021 293,2,2 296,515 298,791 29925 301,6,78 304,346
306,855 307,5,119 309,787 311,8,139 312,9,143 3152127 316,1 317,3,113 320,326 323,241
3253151 32625 328352 331,13,60 3345115 335620 336,31 338332 339213 341,10,124
3442125 3461 3472173 348,1 349,6,177 352,378 35511,173 356,15,38 357,3,79 360,3,53
361,864 3632169 365380 368855 371,256 3721 373,385 37425 376,3,159 3781
379,3,187 381,899 384,394 387,267 3881 389,5,193 392371 39511187 397,513 398,9,203
400,3,159 4035127 4053,13 408,990 4104107 4115105 413,3,9 416,615 4181 419.2,176
4201 421814 4249112 42755 4293137 430,891 432,338 4343170 435261 437,6,12
4403146 4421 443.10,68 4455193 448378 451,7,130 452,7,211 4533227 454,510 456,2,25
459,2,202 460,1 461,327 464,2,101 466,1 467,220 469,8,109 4723214 4755133 477,389
4807224 4823108 483.2,16 485,7,181 4883180 490,1 4912224 493337 496366 499.16,137
501,10,101 502,570 504,5,167 507,249 5081 509,12,204 5129252 51525 517,565 520,3,18
522,1 523,33 5251089 5283121 530,324 531,2.226 533,3,195 535725 536.2,113 539,2,92
540,1 541,6,37 5422200 5445215 546,1 5477131 548,2,107 5495261 5522133 554,327
555,2,58 556,1 557,812 560,399 562,1 563,2,86 565,3,3 568,340 5715187 5725281
5735249 5762,160 5789153 579,2,148 581,11.241 584372 586, 587,2,104 589,397 591,867
592,7,37 5953135 5977257 598513 600,2,145 603,2,4 6053219 608,348 611,211 6121
613,10,76 616,364 618,1 619,5,265 621,3,283 6242193 6275261 6293260 630,237 6322281
635,2,200 637,3,127 6382,89 640,7,23 643,5191 644,2287 6453103 648,526 652,1 653,3,155
656,2,125 6581 659,2,80 660,1 661,381 664,3,297 666,3,173 667,321l 669,5139 672,38
674,3,186 6758219 6761 677,359 6782169 6802269 6812193 683247 6853255 6883204
691,14,208 6938258 696,395 699,2,160 700,1 701,367 703,325 7045169 706,334 707,274
708,1 709,3,123 7102251 712,3,136 7157,165 717,6,110 720,3,251 723,3.295 7258168 728,2,53
7312146 733345 7344320 736,3,174 730727 TAL7.83 744249 7472241 7498205 752,2,353
755,2,98 7561 757397 760,546 7633247 764,4209 7653127 7665130 768,319 770,344
771,203 7721 773311 7763132 7792161 781,6375 784.9.86 786,1 787,367 788,9,266
789,10,276 790,5,136 792,2,325 795,2,160 796,1 797,7,347 800,277 802,7,341 803,289 8053219
808,6,403 8115161 8133181 816,5288 819,2,313 820,1 8216363 8242149 826,1 827,2,68

8281 8203291 8302323 832,394 8355101 8362275 837,5,223 840,3,155 843,2,187 848,2,341
851,2,119 8521 853,3,307 8542161 856,3235 8581 859,9,197 863,6,300 8645144 867,225
869,375 872927 8746111 8752392 876,1 877,10,69 878,731 880,361 8821 883,5,395
885,3,137 886,9,314 888,3241 891,2442 893,559 896,365 899,2,320 901,6,1 904,3,6 906,1

907,7,105 909,355 9107131 912,2.337 914,9,369 9152349 917,3,9 020,3,375 922,3,229 9232389
92512,18 928,764 9292302 931,10,415 933,3,1 0345428 936,225 939267 9401 941,3,317
9442125 9461 047250 949,838 9502383 9523324 9557321 9057.3.367 958,7,174 960,2,241

962,364 96327 9653203 968229 970,7,226 971,2,179 973,12.233 OT4,7,65 976,3,394 978,3,425
980,511 9815235 90842313 987,228 989,311 992,5472 995289 997,3.319 1000,9,140 1002,3,41

Table 1.

130 Christophe Doche

degree n in more than 86% of the cases to represent field elements. Otherwise
one more word is necessary, except for the extension of degree 5373 which needs
two more words.

For each degree, the factor ¢ is not explicitly given in Table 1, but it is easy
to retrieve since

o(x) = gcd(mm + k41, "ﬁn<x2i + x)) . (21)

i=1

Also 6(x) can be found by trial divisions when its degree is small.
The complete data, including the expression of §(z), are available on the
Internet [4].

7 Tests

Computations have been done on a PC with a Pentium IV processor at 2.6 Ghz
running Linux. The test program was written in C++, compiled with gcc-2.96
using NTL 5.3.1 [12] and compares the efficiency of irreducible pentanomials
against redundant trinomials for some basic operations within extension fields
of Fy of prime degree between 50 and 400. For both systems of representation,
namely F»[z]/(p(z)) and Fa[z]/(t(z)), we give in Table 2 the running times and
the respective speedup (in percent) for

« the reduction of a polynomial of degree 2n — 2 (resp. 2m — 2) modulo p(z)
(resp. t(x)).

« the squaring of an element of Fan

« the multiplication of two elements of Fan

« the exponentiation of an element of Fon to an exponent less than 2™.

The unit used is 10~7s for reduction, squaring and multiplication. It is 10~°s for
exponentiation.

Redundant trinomials are not well suited for inversions, at least when com-
puted with an extended GCD computation. Results show that inversions are
about 15% slower with redundant trinomials.

We remark that prime extension degrees 59, 197, 211, 277, 311, 317, 331, 347,
389, and 397 are quite particular. Indeed for these n, there exists a trinomial
of degree m = [n/32] x 32 with an irreducible factor of degree n. We call such
a polynomial an optimal redundant trinomial. For all these degrees, except for
n = 317, another redundant trinomial of smaller degree exists. However tests
show that the results are much better with optimal trinomials. Thus when it
is possible, these polynomials are used instead. With the same conventions as
previously they are

99,5,9 197,27,103 211,13,67 277,11,83 293,27,91
311,9,33 331,21,81 347,5,127 389,27,205 397,19,175

Redundant Trinomials for Finite Fields of Characteristic 2 131

Red. Sqr. Mul. Exp.

n degs pent. tri. gain pent. tri. gain pent. tri. gain pent. tri. gain

53 8 1.63 1.37 15.95 2.17 1.77 18.43 3.51 3.04 13.39 1.82 1.53 15.93

59 5 1.64 0.89 45.73 2.17 1.37 36.87 3.51 2.63 25.07 2.01 1.39 30.85

61 5 1.63 1.33 18.40 2.20 1.70 22.73 3.49 4.87 —39.54 2.07 2.05 0.97

67 9 1.57 1.31 16.56 2.18 1.80 17.43 5.37 4.99 7.08 2.67 2.28 14.61

83 2 2.01 1.48 26.37 2.46 1.89 23.17 5.70 5.40 5.26 3.51 3.00 14.53

101 2 1.88 1.50 20.21 2.42 2.01 16.94 6.60 6.08 7.88 4.44 3.88 12.61
107 2 1.91 1.50 21.47 2.49 2.02 18.88 6.53 6.02 7.81 4.64 4.05 12.72
109 9 1.93 1.64 15.03 2.47 2.16 12.55 6.53 6.26 4.13 4.76 4.33 9.03
131 7 2.04 1.50 26.47 2.62 2.14 18.3 10.28 10.07 2.04 7.26 6.28 13.50
139 3 2.37 1.87 21.10 3.00 2.16 28.00 10.77 10.24 4.92 8.19 6.95 15.14
149 2 2.69 1.86 30.86 3.24 2.39 26.23 11.02 10.55 4.26 9.15 7.68 16.07
157 7 2.73 1.82 33.33 3.31 2.39 27.79 11.01 12.46 —13.17 9.73 8.92 8.32
163 8 2.50 1.72 31.20 3.02 2.28 24.50 13.31 12.08 9.24 10.65 8.90 16.43
173 3 2.73 1.90 30.40 3.38 2.47 26.92 13.00 12.39 4.69 11.61 9.87 14.99
179 2 3.01 2.15 28.57 3.61 2.67 26.04 13.09 12.66 3.28 12.90 10.66 17.36
197 27 3.03 1.51 50.17 3.78 2.14 43.39 15.16 13.50 10.95 14.50 10.74 25.93
211 13 3.43 1.55 54.81 4.14 2.14 48.31 15.35 13.50 12.05 16.49 11.50 30.26
227 2 3.17 2.27 28.39 4.01 2.98 25.69 17.08 15.51 9.19 18.29 15.53 15.09
229 3 3.25 2.35 27.69 4.18 3.03 27.51 16.70 15.28 8.50 18.24 15.75 13.65
251 2 3.70 2.52 31.89 4.72 3.07 34.96 16.79 15.27 9.05 21.14 17.70 16.27
269 5 3.71 3.04 18.06 4.62 3.77 18.40 27.05 26.49 2.07 28.65 26.51 7.47
277 11 4.12 1.97 52.18 4.80 2.70 43.75 27.43 25.37 7.51 30.44 23.42 23.06
283 3 4.08 3.16 22.55 4.86 3.89 19.96 27.43 26.47 3.50 31.22 28.30 9.35
293 27 3.81 2.12 44.36 4.69 2.88 38.59 31.09 29.12 6.34 34.15 28.03 17.92
307 5 4.50 2.96 34.22 5.32 3.67 31.02 31.70 30.11 5.02 38.10 32.48 14.75
311 9 4.52 2.09 53.76 5.33 2.90 45.59 31.74 29.11 8.29 38.58 29.63 23.20
317 3 4.52 2.12 53.10 5.36 2.87 46.46 31.74 29.12 8.25 39.18 30.01 23.40
331 21 4.57 2.26 50.55 5.58 3.18 43.01 35.95 33.54 6.70 44.07 35.56 19.31
347 5 4.98 2.20 55.82 5.83 3.12 46.48 36.18 33.53 7.32 47.41 37.04 21.87
349 6 4.99 3.16 36.67 5.83 4.06 30.36 36.17 37.58 —3.90 47.77 43.24 9.48
373 3 5.18 3.51 32.24 6.23 4.33 30.50 38.44 36.55 4.92 53.66 45.72 14.80
379 3 5.20 3.34 35.77 6.25 4.26 31.84 38.44 36.67 4.60 54.44 46.21 15.12
389 5 4.50 3.29 26.89 5.50 4.15 24.55 41.67 40.44 2.95 56.47 50.41 10.73
389 27 4.56 2.41 47.15 5.52 3.35 39.31 41.67 39.40 5.45 56.13 46.48 17.19
397 19 5.24 2.39 54.39 6.20 3.36 45.81 42.14 39.41 6.48 60.50 47.41 21.64
Table 2.
Red. Sqr. Mul. Exp.

n degd pent. tri. gain pent. tri. gain pent. tri. gain pent. tri. gain
1019 2 1.22 0.75 38.52 1.41 0.96 31.91 1.36 1.32 2.94 39.84 33.97 14.73
2499 2 2.57 1.80 29.96 2.94 2.05 30.27 7.60 7.50 1.32 365.91 340.75 6.88
5013 9 4.68 3.31 29.27 5.45 4.00 26.61 22.68 22.54 0.62 1840.55 1757.94 4.49
7597 17 7.87 5.05 35.83 8.65 5.97 30.98 35.34 35.09 0.71 4133.90 3896.40 5.75
9995 2 9.92 6.59 33.57 11.22 7.78 30.66 67.96 67.62 0.50 9561.80 9180.50 3.99

Table 3.
Dbl. Add. Mul.

n degéd pent. tri. gain pent. tri. gain pent. tri. gain
163 8 1.35 1.24 8.15 3.60 3.33 7.50 1.79 1.61 10.06
197 27 1.52 1.09 28.29 4.07 3.49 14.25 2.42 2.10 13.22
277 6 1.81 1.57 13.26 6.72 6.45 4.02 5.69 5.41 4.92
317 3 1.91 1.30 31.94 7.61 6.74 11.43 7.41 6.65 10.26

Table 4.

132 Christophe Doche

Unfortunately the extension degrees which allow the use of optimal redundant
trinomials are quite rare. However an optimal redundant quadrinomial whose
degree is a multiple of 32 and having an irreducible factor of degree n are much
easier to find for a given n. Tests with NTL showed that in some cases optimal re-
dundant quadrinomials give better result than nonoptimal redundant trinomials
and even than irreducible trinomials.

In Table 3 we perform the same computation for bigger degrees. The units
are in ps for reduction and squaring, 10~°s for multiplication and 10~%s for
exponentiation.

Finally, we have done some computations on elliptic curves defined over fi-
nite fields represented with pentanomials and redundant trinomials. Table 4 con-
tains the running times of an addition and a doubling in ps with Montgomery’s
method. The times for scalar multiplications, also with Montgomery’s method,
are in ms.

8 Conclusion

In this paper we propose to use reducible trinomials, called redundant trinomial,
instead of irreducible pentanomials to represent finite fields of characteristic
2. This allows a faster reduction and more generally a faster arithmetic. The
improvement is about 20% for reductions and squarings. For multiplications it
is usually less than 5%. We also propose to use sparse reducible polynomials
of degree a multiple of the word length (usually 32 bits) having an irreducible
factor of degree n to represent Fon. This idea seems promising but has to be
investigated further. Testing the equality of two elements is a costly operation,
and should be avoided if possible.

This work naturally extends to other fields, in particular extension fields
of characteristic 3. It can be applied to larger characteristic as well. Indeed
Mersenne prime numbers or primes of the form 2" + ¢ with ¢ small are used
to define prime fields of large characteristic and Optimal Extension Fields [1]
because of the fast integer reduction they provide. However these primes are
quite rare, but when N = 2" + ¢ is not prime but has a large prime factor p
the same kind of idea applies, namely working in F, by actually computing in
Z/NZ.

Acknowledgment

The author would like to thank Richard Brent and Paul Zimmermann who made
him aware of their work [2,3].

References

1. D. V. Bailey and C. Paar. Efficient arithmetic in finite field extensions with appli-
cation in elliptic curve cryptography. Journal of Cryptology, 14(3):153-176, 2001.

10.

11.

12.
13.

Redundant Trinomials for Finite Fields of Characteristic 2 133

R. Brent and P. Zimmermann. Algorithms for finding almost irreducible and al-
most primitive trinomials. Primes and Misdemeanours: Lectures in Honour of the
Sixtieth Birthday of Hugh Cowie Williams, The Fields Institute, Toronto, to be
published by the American Mathematical Society.

See http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb212.pdf.
R. Brent and P. Zimmermann. Random number generators with period divisible
by a mersenne prime. In Computational Science and its Applications - ICCSA
2003, volume 2667, pages 1-10. Springer-Verlag, Berlin, 2003.

See http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb211.pdf.
C. Doche. A table of redundant trinomials in characteristic 2 up to the degree
10000.

See http://www.math.u-bordeaux.fr/~cdoche/documents/redundant.gp.gz.

G. Frey. Applications of arithmetical geometry to cryptographic constructions.
In D. Jungnickel and H. Niederreiter, editors, Fifth International Conference on
Finite Fields and Applications, pages 128-161. Springer-Verlag, Berlin, 2001.

J. von zur Gathen and J. Gerhard. Arithmetic and factorization of polynomials
over Fa, 1996.

J. von zur Gathen and M. Nocker. Polynomial and normal bases for finite fields.
To appear.

P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of
Weil descent on elliptic curves. Journal of Cryptology, 15(1):19-46, 2002. Online
publication: 29 August 2001.

T. Jebelean. An algorithm for exact division. J. Symbolic Computation, 15(2):169—
180, 1993.

A. Menezes and M. Qu. Analysis of the Weil descent attack of Gaudry, Hess and
Smart. In Topics in Cryptology — CT-RSA 2001, volume 2020 of Lecture Notes in
Comput. Sci., pages 308-318. Springer-Verlag, Berlin, 2001.

G. Seroussi. Table of low—weight binary irreducible polynomials. Technical Report
HPL-98-135, Hewlett—Packard, August 1998.

V. Shoup. NTL: A Library for doing Number Theory, ver. 5.3.1.

H. Wu, M. A. Hasan, I. F. Blake, and S. Gao. Finite field multiplier using redundant
representation. IEEE Trans. Computers, 51(11):1306-1316, 2002.

Efficient Tate Pairing Computation for
Elliptic Curves over Binary Fields

Soonhak Kwon

Inst. of Basic Science and Dept. of Mathematics, Sungkyunkwan University,
Suwon 440-746, Korea
shkwon@skku.edu

Abstract. In this paper, we present a closed formula for the Tate pair-
ing computation for supersingular elliptic curves defined over the binary
field Fom of odd dimension. There are exactly three isomorphism classes
of supersingular elliptic curves over Fam for odd m and our result is
applicable to all these curves.

Keywords: supersingular elliptic curve, Tate pairing, divisor, automor-
phism, roots of unity.

1 Introduction

Many cryptographic schemes are based on the bilinear pairings arising from the
rank two abelian group structure of the points of prescribed order of the given
elliptic curve. Bilinear pairings were originally used as tools for attacking discrete
logarithm problem for supersingular elliptic curves by Menezes et al. [1] and also
by Frey and Riick [2], and they become popular these days for efficient encryption
and signature schemes. Examples of such cryptographic protocols are, to name
just a few, identity based encryption scheme by Boneh and Franklin [3], short
signature scheme by Boneh et al. [4], tripartite Diffie-Hellman key agreement
protocol by Joux [5], identity based authenticated key agreement protocol by
Smart [7], and identity based signature schemes by Sakai et al. [6], Hess [16],
Cha and Cheon [19], Baek and Zheng [28]. In most of these applications, the Tate
pairing of supersingular elliptic curves (or curves of small embedding degrees) is
an essential tool. Therefore efficient computation of the Tate pairing is a crucial
factor for practical applications of the above mentioned cryptographic protocols.

Recently many progresses have been made on the computation of the Tate
pairing. A few refined techniques and ideas to speed up the computation of the
Tate pairing are suggested in [8,9,10,14,21,24]. The notion of the squared Tate
pairing is introduced by Eisentrdger [11]. Barreto et al. [14] showed that the
algorithm of Miller [22] can be modified to a new algorithm where division in a
finite field can be omitted since the denominator becomes one after final power-
ing. Also Duursma and Lee [10] presented a closed formula for the computation
of the Tate pairing for a finite field with characteristic three, which significantly
reduces the cost of computation.

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 134-145, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 135

In this paper, we show that an efficient closed formula can also be obtained
for the computation of the Tate pairing for supersingular elliptic curves over a
binary field Fom with odd dimension m. There are exactly three isomorphism
classes of supersingular elliptic curves over Fom with m odd [17] and our method
is applicable to all these curves. Also we present a method of avoiding inverse
Frobenius operations in our and Duursma-Lee’s algorithms. When one wants to
use a polynomial basis, inverse Frobenius operation is not at all trivial unlike
the case of a normal basis. We propose new modified algorithms which avoid the
inverse Frobenius map without affecting the computational merits of the original
algorithms.

A preliminary version of this work was posted through e-print archive, http://eprint.
iacr.org/2004/303.pdf. Subsequently, the author was informed that a similar work was
already presented by Barreto, Galbraith, O hEigeartaigh and Scott in ECC 2004 (slides
are available through http://www.cacr.math.uwaterloo.ca/conferences/2004/ecc2004/
barreto.pdf). Their preprint containing generalization to hyperelliptic case has ap-
peared through http://eprint.iacr.org/2004/375.pdf.

2 Elliptic Curves and Miller’s Algorithm

Let E be an elliptic curve over a finite field IF, where ¢ is a power of a prime.
We may express E as the standard Weierstrass form, £ : Y2 + a; XY + a3y =
X3+asX?+asX +ap, where the coefficients a1, as, a3, as, ag are in F,. Let E(F,)
be the additive group of all points P = (z,y), =,y € Fy, on the curve with the
point at infinity O. Let | be a positive integer and let E[l] (resp. E[l](Fq)) be
the set of points P € E(Fy) (resp. P € E(F,)) satisfying [P = O, where F, is an
algebraic closure of IF,. Let k be the minimal degree of the extension satisfying
E[l] € E(F). Such k is called the embedding degree (or the security multiplier)
of E[l] [17,25] and is dependent on E and [. If I is prime to ¢, then it is well
known [13] that E[l| = Z/l $ Z/!.

A divisor D on FE is a formal (finite) sum of the points P on the curve
D = 3"ny(P), n, € Z. We call D a degree 0 divisor if n, = 0. A principal
divisor is a divisor of the form (f) = > n,(P), where f is a rational function on
E and P is a point of E with np the order of multiplicity of f at P, ie. np >0
if f has a zero at P and np < 0 if f has a pole at P. We say two divisors D
and D’ are equivalent if D — D’ is a principal divisor. It is well known [13,17]
that a principal divisor (f) is a degree 0 divisor, and a divisor D =) n,(P) is a
principal divisor if D is a degree 0 divisor and) n, P = O in the abelian group
E(F,). More precisely, there is an isomorphism

Divy/Divgrin — E, with D= ny(P)— > n,P, (1)

where the summation in the right side is the addition of points on the elliptic
curve E and Divg (resp. Divprin) s a free abelian group generated by the degree
0 divisors (resp. principal divisors). Now suppose that P € E[l]. Then the divisor
I(P)—1(0) is a principal divisor so that there is a rational function fp such that
(fp) = 1(P) —l(O). For any rational function f and any divisor D = > n,(P)

136 Soonhak Kwon

having disjoint supports, one naturally defines f(D) = [] f(P)™. The Tate
pairing 7; on the set E[l] is defined as follows.

Definition 1. Let P € E[l|(F,) and Q € E[l](Fy). The Tate pairing is a map

k

7 El(Fy) x E[)(Fpe) — {G}, with m(P.Q) = fp(Dg)" 1,

where fp is a rational function satisfying (fp) = 1(P)—1(0O) and Dq is a degree
0 divisor equivalent to (Q) — (O) such that Dg and (fp) have disjoint supports.
Also {¢;} is the group of I-th roots of unity in]quk.

It is well known that 7; is a non-degenerate bilinear pairing and a proof can be
found in [2,15]. Tt is also easy to verify 714(P, Q) = (P, Q) for P,Q € EJl] and
d > 0 with Id dividing |E(Fg)].

An effective algorithm for finding a rational function fp satisfying (fp) =
I(P) — I(O) with P € EJl] is found by Miller [17,22]. Let us briefly explain
the idea of Miller. For any degree 0 divisor D and D', the isomorphism in (1)
implies that there exist points P and P’ such that D = (P) — (O) + (f) and
D' = (P') — (O) + (f") for some rational functions f and f’. Then one has the
following formula due to Miller,

D+D’=(P+P’)_(O)+(ff/;:i/)’ (2)

where £p ps is an equation of a line intersecting P and P’, and ¢p is an equation
of a vertical line intersecting P and —P. This can be verified using the relation

(7)) = (tpp) = (Lpypr) = (P) + (P') + (=P = P') = 3(0) — {(P + P') +
(P'= P') =2(0)} = (P) + (P)) — (P + P') - (O).

An elliptic curve E over F, is called supersingular if Tr(¢) = 0 (mod p)
where ¢ is the Frobenius map and p is the characteristic of F,. If an elliptic
curve E over F, is supersingular, then it is well known [17] that for any [dividing
|E(Fg)|, the embedding degree k is bounded by 6. More precisely, we have E[l] C
E(Fg) with k = 2,3,4,6. It is also well known that the embedding degree k = 6
is attained when the characteristic of F, is three and the embedding degree k = 4
is attained when the characteristic of I is two. It should be mentioned that non-
supersingular curves of low embedding degrees (< 6) are found by Miyaji et al.
[12], which have some potential security advantage over supersingular curves.

3 Review of Previous Works

For some families of supersingular curves with embedding degree k = 2,4, 6, Bar-
reto et al. [14] showed that one can speed up the computation of the Tate pairing
by observing that the denominators {g appearing in the Miller’s algorithm can
be omitted using the idea of the distortion map ¢ introduced by Verheul [25],
where ¢ is a suitably chosen nontrivial automorphism of the given supersingular
elliptic curve. That is, since the line X — o intersecting Q = («,) € Fq and —Q

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 137

has only X-coordinate and since this X-coordinate has the value in Fx/> after

applying ¢ to @), it becomes one after taking the final power by qkl_l because
|¢*? +1 and ¢* — 1 = (¢*/? — 1)(¢*/?> + 1). By the similar reasoning, they
also showed that it is not necessary to evaluate the Tate pairing at the point

at infinity O. To summarize, one may twist the pairing in Definition 1 such as
k_1

n1(P,Q) = fp(#(Q))" 1, which simplifies all the necessary computations.

For a field with characteristic three, Iy with ¢ = 3™, Duursma and Lee
[10] noticed that one can obtain a faster Tate pairing computation if one uses
l=¢>+1=23%"+1, since the ternary expansion of ¢ + 1 is trivial. That is, if
one write g¢ as a rational function satisfying 3(Q) — 3(0) = (3Q) — (0) + (9¢),
then, by repeated applications of the above equation, one has

337?1,7 1 33771,72

897 (P) = 37(0) = (3" P) = (0) + (95" gir" " -+ gl 2pgaom1p).

3m _g3m—i

It is shown [10] that the rational function f = J]; | g5:-1p
a computation of the Tate pairing as 7;(P, Q) = f(¢(Q))33m_1. Duursma and
Lee [10] showed that the value f(¢(Q)) = Hf’g {g3-1p(6(Q))}*"" " has certain

cyclic property with regard to the polynomials ggffbfpl so that they found a nice
closed formula for f as a product of m (not 3m) polynomials.

can be used for

4 Tate Pairing Computation for Binary Fields

4.1 Supersingular Elliptic Curves over Binary Fields

For cryptographic purposes, it is natural to think of elliptic curves defined over
Fom with m odd or more strongly a prime. There are exactly three isomorphism
classes of supersingular elliptic curves over Fom when m is odd [17]. Namely they
are Y2 4+Y =X34+ X, Y24+Y =X3+X+1and Y2+Y = X3, Among them,
the curves

Ey:Y24+Y=X3+X+b, b=0,1 (3)

have the embedding degree (or security multiplier) & = 4 while the curve Y2 +
Y = X? has k = 2. Thus we are mainly interested in the curves FEj though
our method is also applicable to the curve Y2 +Y = X3, The Frobenius map
¢ : By — B, with o(x,y) = (22,y?) is a root of the characteristic polynomial
h(X)=X?+2X+2= (X — ¢)(X — ¢). We also have the order |Ej(Fam)| of
the group of rational points Ep(Fam) as |Ey(Fam)| = 2™ + 1 — Tr(¢™), where
Tr(e™) = ¢™ + @™ and ¢™(z,y) = (22",4y?"). Letting ¢; = Tr(p?), one
can find the values of ¢; using the second order linear recurrence relations (or
Lucas type sequences) arising from the characteristic polynomial h(X), ¢; =
2(F¢j—1 — ¢j—2), j > 0, with ¢y = 2 and ¢; = F2. From these relations, it is
straightforward to see [17] that Ep(Fam) is a cyclic group of order

|Ey(Fom)| = 2™ +1+ (—1)’v2-2m, if m=1,7 (mod 8)

=2m 41— (-1)’v2-2m, if m=3,5 (mod8).

138 Soonhak Kwon

4.2 Closed Formula of the Tate Pairing for Y2 +Y = X34+ X 4+ b

As in the characteristic three case of Duursma and Lee [10], we want to derive
a closed formula for the Tate pairing computation using the simple equality for
our binary case, 22™ +1 = (2™ + 14272)(2m +1-2"3"). Let P = (a, 3)
be a point on the curve By : Y2+ Y = X2 4+ X +b, b = 0,1. Then one has
—P = (a,3+1) and 2P = (a* +1,a* + 3%). Thus we get 22P = (a2, 32" + 1) =
—*(P), 8P = (a® +1,0%" + 82° +1), 24P = (a*", 82°), where ¢* +4 =0, i.c.
h(X) = X?+2X +2 divides X* + 4. Using this cyclic property, one finds easily

227;72

27 = (o i 1,8 1 (-1 +e)

_ . . (5)
— (a(2172) + Z _ 1,/6(2172) + (7/ _ 1)05(2172) + 6i)’
where @) (resp. 8)) is defined as a¥) = o’ (resp. 84) = 52') and ¢; is defined
as

=0 ifi=1,2 (mod4) and ¢ =1 if i=3,4 (mod4). (6)

For an effective Tate pairing computation, the following distortion map (non-
trivial automorphism) ¢ : E, — Ej, with ¢(z,y) = (x + s%,y + sz +t) is chosen
[14], where s> + s+ 1 = 0 and t?> +t + s = 0. That is, Fa(s) = Fg2, Fa(t) =
Fos, s =12, t*+t+1=0, and ¢ is a generator of the group IFQX4 of order 15.

For any point) on the curve Ej, let us write go as a rational function
satisfying 2(Q) — 2(0) = (2Q) — (O) + (gq)- By the Miller’s formula in (2), we
have gg = €g,0/¢20 and the denominator ¢3¢ can be omitted by the result in
[14]. Now for a given point P € E,(Fam), one repeatedly has

2(P) = 2(0) = (2P) = (O) + (gp),
22(P) - 2%(0) = 2{(2P) — (0)} + (g3) = (2°P) — (O) + (9pg2p),

22m,— 1 22771,—2

22m(P) = 2°™(0) = (2°"P) = (O) + (9p 93p " GYam—2pgaam—1p).

Letting

2m

o 92m—i . 92m—1 92m-—2 2

fr= H92iflp =J9p gop ' 9y2m-—2pgo2m-1p, (7)
=1

we have 22 (P)—22m(0) = (22" P)—(0)+(fp) and (P)—(0) = (P)—(0)+(1).
Thus the equation (2) of the Miller’s formula again says (22™ +1){(P) — (O)} =
(fplp) because 22" P = —P. Note that the line £p can also be omitted in
the actual computation in view of [14]. Therefore after adjusting the irrelevant
factors, we can say that

(fp) = (2" + D{(P) = (O)} = /" - {U(P) = UO)} = M1 (fp), (8)

where fp is a rational function satisfying {(P) — (O) = (fp). Thus we have the
Tate pairing

gdm _q

n(P,Q) = fp(d(Q) = [fp(4(Q))

22";+1 (22m 1) _

Fe(e(@)F" 1 (9)

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 139

From the equation (7), the rational function fp is just a product of the functions

of the form gyi—1 p which can be regarded as the tangent line at the point2 2i-1p,
Thus all we have to do is to find an explicit expression of fp = Hf:l gg,l 1;.

Lemma 2. Let P = (o, 3),Q = (z,y) be points in Ey(Fam). Then one has the
value of {gai—1p(#(Q))}2" " = {garp(@+ 5%y + sz + 1)} as

227n—1,

{g21p(3(Q)}* " " = a2 4 U 44D 4 50l 4 200) 41 40,

where gr(X,Y) = €gr g is an equation of the tangent line at R.

Proof. The tangent line at P = (a, 3) on the curve Ep, : Y2+Y = X34+ X +b is
Y = (a?+1)X + 32 +b. Thus we have 2(P) —2(0) = (2P) — (0) + (/%) where

lap
gp(z,y) = (@®+ Dz + 5> +b—y, (10)

and fop is the vertical line intersecting 2P and —2P. Since {5p can be removed
without affecting the pairing value, we are mainly interested in the computations
of the lines goi—1p. Using the equation (5), one has goi—1p(x,y) = (¢~ i)z +
B 4 (i — 1)a®Y 4+ ¢; + b — y. Therefore, by applying the distortion map
¢ to the point @ = (z,y), we get

goip(@+ st y+sz+t) = (@D +i)(x+s7) + Y

_ (11)
+ G —-1)a® Y 4 +b—(y+ sz +1).

Taking 22™~*-th power of both sides of the above equality,

22771,77,

{g2i-1p(6(Q))}
— (a(i—l) +,L-)(x(2m—i) + S(2m—i+1)) +B(i—1) + (Z _ 1)a(i—1) +€ + b
o (y(mez) + S(mei)l,(mei) + t(2m7i)) (12)
= olimDp@m—i) | {i— S(2m7i)}x(2m7i) + {S(2m7i+1) +i— 1}05(1'71)
+ ﬁ(i—l) +b— y(Zm—i) + {Z-S(2m—i+1) +e — t(Zm—i)}.
From s2 4+ s+ 1 =0, we have s = s* = 5,53 =s+1,5% =5,.... That is,
s =543 (13)
The coefficients i — s™~9 (resp. i — 1 4+ sZ™=71)) of 2(2m=0) (resp. ali=1)
in the equation (12) have a unique value equal to s independent of the choices

of i because ¢ and 2m — i always have the same parity and we are in the binary
field. In other words, for any ¢ > 0, we get

i—sPm) =4 om—its=s. (14)

140 Soonhak Kwon

From t2 = t+s, we have t2) = t2° = t+5+52 = t+1,t®) = ¢2° = ¢45+1,t@ =
t+s+s2+1=1t1t0 =t>=t+s,---. Therefore, for any j > 0, we have

t@) = WD — g (WD —p 1 W) — s 1. (15)

Now using the equations (6),(13),(15), it is trivial to show that the last term of
the equation (12) has the value

Z-S(2m7i+1) + € — t(2mfi) —¢ (16)

independent of the choices of 7. This can be proved as follows. Since the extension
degree m is odd, we may write m = 2j + 1 for some j. Therefore one has
isCmitl) ey — ¢(2m=1) — s(+3-1) 4 ¢ (414279 By taking i (mod 4) and
noticing that our field has characteristic two, we easily get the equation (16).
Since z,y, o, § are all in Fam, the values (), y0) o) 3U) are determined up
to the residue classes of j (mod m) and V) with j € Z (resp. yU), a9, 30))

is understood as ¢ = ¥ where j/, 0 < j/ < m — 1, is a unique integer

satisfying j/ = j (mod m). Therefore, using (14) and (16) in the equation (12),
we are done. O

227n.

Theorem 3. One has the Tate pairing 7,(P,Q) = fr(¢(Q))*" ~1 where

fr(6(Q)) = H{a(i)x(ﬂ'ﬂ) OB G B N O B D - A

i=1

Proof. Lemma 2 implies that {ggi-1p(¢ (Q))}2 s depending only on the
residue classes of ¢ (mod m). Thus, from (7) and (9), we have fp(p(Q)) =

17 g2 p (6@} = nizl{gzmpw(cz))}f’” "2 = I {aWaD o
B +yHD 4 s2(a® 4 (D) 442 4 pY. 0

4.3 Closed Formula of the Tate Pairing for Y2 +Y = X3

The curve E : Y2 4+ Y = X3 has the embedding degree £k = 2 and is not
so interesting in terms of the bandwidth. However using the same techniques
in the previous section, we can derive a similar closed formula for the pairing
computation. That is, by defining the distortion map ¢ : E — E as ¢(z,y) =
(x+1,y+x+t) with 24+t+1 =0, we have {goi-1p(0(Q))}>" " = iD= 4
(a+3) D + (x+y)9 +t, where P = (a,) and Q = (2, y) are the points in
E(Fgm). Therefore

Theorem 4. One has the Tate pairing (P, Q) = fp(#(Q))?" ' where

) = [[{a"20 + (a+ 8) + w4+) + 1},

and fp is a rational function satisfying (2™ + 1){(P) — (O)}.

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 141

5 Field Arithmetic for the Computation of fp(¢(Q))

In Theorem 3, using s? = 2 +t + 1, we may write o) z(=#1) 4 g0 4 4 (=i+1) 1
s2(0® + 5H)) 142 4 b= w+ 2t + (2 + 1)t2, where

2 = a(i) + x(—i""l), w=z+ a(i)x(—i""l) + ﬁ(l) + y(—i‘f‘l) +b. (17)

Letting C' = ¢y + c1t + cot? + c3t, ¢; € Fam, be the partial product in the
computation of fp(¢(Q)), we have C- (w+ zt + (2 + 1)t2) = c{, + it + cht? + c4t?,
where ¢f, = cow+(ca+c3)(z+1) 4¢3, ¢ = cow+(c1+ca+c3)w+(co+catcs)(w+
z+1)4ec3(z+1)+co+es, ¢y = cow+(c1+ca+c3)w+(cot+ca+tes)(w+z+1)+ (e +
ea)(w+z+1)+e and ¢ = (e1 +ca+c3)w+ (e 4+ c2)(w+ z+ 1) 4 2. Therefore
one needs 6 Fam-multiplications for the computation of C - (w + 2t + (z + 1)t?)
with respect to the basis {1,¢,t2 t3}. One may also use the basis {1, s,t, st} to
get the same result.

Table 1. An algorithm for computing fr(¢(Q))

IHPUt:P:(avﬂ)vQ:(way)
Output: C = fp(é(Q))

C+—1

for (=1tom ;i++)

a—a?, [

z—a+zr, w—z+ar+8+y+b
C—C-(w+zt+(z+1)t?)

om— 1 om— 1

end for

If we ignore the costs of (inverse) Frobenius maps and Fom-additions, we find that
exactly 7 Fom-multiplications are needed in each round of the for-loop, where
the computation of w needs one multiplication in Fom and the computation of
C' needs 6 multiplications in Fom. Compare our result with the similar result in
Fsm case of Duursma and Lee where each step of the algorithm in [10] requires
14 F3m-multiplications [8,9] with loop unfolding technique.

6 Algorithms Without Inverse Frobenius Operations

Many computational evidence [8,23] imply that a more efficient field arithmetic
can be obtained for small characteristic finite fields by using a polynomial ba-
sis than a normal basis, especially for software purposes. Though a Gaussian
normal basis of low complexity [27] is a good choice for a fast arithmetic, such
basis does not appear quite frequently when compared with a polynomial ba-
sis of low hamming weight (like trinomial or pentanomial). Granger et al. [8]
showed that, even though a cube root operation (inverse Frobenius operation
for characteristic three) in a polynomial basis is tricky, an algorithm for the

142 Soonhak Kwon

Tate pairing computation with a polynomial basis outperforms a method with
a normal basis since the cost of a multiplication with a normal basis is quite
expensive than that of a polynomial basis in general situations. Based on the
idea of Vercauteren [8], Granger et al. showed that a cube root operation in Fzm
has roughly the same cost as 2/3 multiplication in Fzm with a small amount of
precomputation. A similar method for the characteristic two case is discussed by
Fong et al. [26] so that one can show that the cost of one square root operation
is roughly equal to the cost of 1/2 multiplication with a precomputation. In fact,
as pointed out by Harrison [18], the cost of one inverse Frobenius (square or cube
root) operation is almost equal to the cost of one Frobenius operation when the
given irreducible polynomial is a trinomial. However for a general case where no
irreducible trinomial exists, the computation is not so simple and even in the
case of pentanomial basis, inverse Frobenius operation is quite costly compared
with Frobenius operation.

6.1 Avoiding Square Root Operation

Let us define A; as A; = {a@ (741 4 300 (=41 4 2(o(0) 4 (=141 442 4
b2 = a0 g2 4 BRI 42 4 g0 (2D 4 g2) 4 ¢(Mm=14) 4 b where we used the
fact that sU) is determined up to j (mod 2) with 3m +1 =0 (mod 2) and)
is determined up to j (mod 4) with 3m 4+ 1 = m — 1 (mod 4) as is clear from
the equations (13) and (15). Then the expression of fp(4(Q)) in Theorem 3 can
be rewritten as fp(¢(Q)) = [[1m, A2" " = (-+- (((41)%A2)243)% - -)2 A,,. Using
the cyclic property of tU) in the equation (15), it is not difficult to see that, for
all indices 1 < i < m, A; can be written as A; = A;(t) = w + 2zt + (2 + 1)t
for some z and w in Fom. Thus, similarly as in the previous section, one needs 6
Fom-multiplications for computing C'- A;(t) with respect to the basis {1,t,¢2,¢3}
for any C' € Faam. We now have the following algorithm for computing fp(¢(Q))
which avoids inverse Frobenius operations.

Table 2. An algorithm for computing fp(¢(Q)) without square root operations

Input:P:(a,ﬁ),QZ(:C,y)

Output: C' = fr(4(Q))

C—1

w2 veu, yey?

for (i=1tom;i++)

a—at, B—p!

Aty —a(v+ 1) +u+B+y+b+ " " + (a+o)t+ (a+v+1)t2
C — C? A

u—u+v+1l, v—v4+1

end for

Note that the coefficients of A;(t) depend on the values of s() and ¢(m~1+%) and
they are recursively computed by the relation (13) and (15). We also have the
initial values s() = s? = t2+¢+1 and t(™ = 2+ ™! In each step of the above

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 143

algorithm, one needs 7 Fym-multiplications which is same to the algorithm in
Table 1. Since the operation C' « C? needs 4 squaring operations in Fom and
since the operations o — a?, 8 «— 3% also need 4 squaring operations, the total
number of necessary squaring is 8 in this new algorithm. On the other hand, the
algorithm in Table 1 needs 2 squaring and 2 square root operations. Therefore
our new algorithm in Table 2 is a more optimal choice if one is interested in
the implementation with arbitrary polynomial basis (especially for hardware
purpose) since this new algorithm uses 6 Frobenius operations instead of using
2 inverse Frobenius operations.

6.2 Avoiding Cube Root Operation from the Algorithm of Duursma
and Lee

Duursma and Lee [10] found a closed formula for the following supersingular
elliptic curves defined over Fsm with m prime to 6, B, : Y2 = X3 - X +0b, b=
+1. For the above mentioned curves, the following nontrivial automorphism
¢ : By — By with ¢(z,y) = (p—2,0y) is used, where 02 +1 = 0 and p> —p—b =
0. That is, F3(o) = F32 and F3(p) = Fszs. A closed formula of Duursma and
Lee says that, for P = (a,3) and Q = (x,y) in E[l](Fsm), the Tate pairing
can be written as 7(P, Q) = fp(4(Q))*"" ' with fp(6(Q)) = T[], B; where
B; = —oBWy=Hh) _ (o) 4 (=1 — p 4)2 and fp is a rational function
satisfying (fp) = (3™ + 1){(P) — (O)}. Now let us define A; € Fzom as 4; =
335m+1 _ O_(5m+z)ﬁ(22)y(1) _ (a(2z) —|—x(1) _p(5m+z) +b) (1)i+10ﬁ(21‘)y(1) _
(oz(m) + 20 — p+ (m 4+ 1 —i)b)?, where we used the relations o) = (~1)/o
and pU) = p + jb. Thus, from B; = A", we get fp(4(Q)) = [[I-, 43" " =
(- (A)3A2)3A3)‘)3 Ay, Letting p = o) + 20 4 (m +1—i)b € F3m and
A= (=1)"*epC0y(1) — 2 € Fyom, one finds A; = X\ — pp — p?. Therefore the
modified algorlthm is given as follows.

Table 3. A modified Duursma-Lee algorithm without cube root operations

IHPUt:P:(a7ﬁ)7Q:(x7y)
Output: C = fr(9(Q))

C—1

z—a, y—y> d—mb
for (i=1tom;i++)
a—a, [p
p=oa+z+d, I=ofy—p’
C—C% (A=pup—p?
ye——y, d<—d—>

end for

In each step of the above algorithm, the number of necessary multiplications in
Fsm is same to that of the original algorithm of Duursma and Lee. Since the
cube operation C' « C? with respect to the basis {1, p, p?} over Fszm costs 6
cube operations in Fsm and since the operations o «— o, 8 «— (2 cost 4 cube

144 Soonhak Kwon

operations in Fsm, the total number of necessary Frobenius operations in each
step of the above algorithm is 10. Note that the original Duursma-Lee algorithm
needs 2 Frobenius operations plus 2 inverse Frobenius operations. Therefore
our modified algorithm uses 8 Frobenius operations instead of using 2 inverse
Frobenius operations. With arbitrary polynomial basis, it is safe to believe that
the cost of 4 cube operations is cheaper than the cost of one cube root operation.

7 Conclusions

In this paper we showed that an efficient closed formula can be derived for the
Tate pairing computation for supersingular elliptic curves over a binary field Fom
of odd dimension. There are exactly three isomorphism classes of supersingular
elliptic curves over Fom with m odd and our method is applicable to all these
curves. Each step of our algorithm requires two inverse Frobenius operations like
the characteristic three case of Duursma and Lee. To overcome the computational
complexity of the inverse Frobenius operation with arbitrary polynomial basis,
we modified our algorithm and the algorithm of Duursma and Lee, and presented
another closed formula which does not need any inverse Frobenius operation,
which is especially useful for polynomial basis arithmetic.

Acknowledgements: The author would like to thank Robert Granger and Keith
Harrison who made valuable suggestions on the preprint version of this paper. Also
thanks are due to the anonymous referees for their many helpful comments. Finally,
this work was supported by grant No. R01-2005-000-11261-0 from Korea Science and
Engineering Foundation in Ministry of Science & Technology.

References

1. A.J. Menezes, T. Okamoto, and S.A. Vanstone, “Reducing elliptic curve logarithms
to logarithms in a finite field,” IEEFE Trans. Information Theory, vol. 39, pp. 1639—
1646, 1993.

2. G. Frey and H. Riick, “A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class groups of curves,” Math. Comp., vol. 62, pp. 865-874,
1994.

3. D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing,”
Crypto 2001, Lecture Notes in Computer Science, vol. 2139, pp. 213-229, 2001.

4. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,”
Asiacrypt 2001, Lecture Notes in Computer Science, vol. 2248, pp. 514-532, 2002.

5. A. Joux, “A one round protocol for tripartite Diffie-Hellman,” ANTS 2000, Lecture
Notes in Computer Science, vol. 1838, pp. 385-394, 2000.

6. R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” SICS
2000, Symposium on Cryptography and Information Security, pp. 26—28, 2000.

7. N.P. Smart, “An identity based authentication key agreement protocol based on
pairing,” FElectronics Letters, vol. 38, pp. 630-632, 2002.

8. R. Granger, D. Page, and M. Stam, “Hardware and software normal basis arith-
metic for pairing based cryptography in characteristic three,” preprint, available
at http://eprint.iacr. org/2004/157.pdf, 2004.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields 145

R. Granger, D. Page, and M. Stam, “On small characteristic algebraic tori in pair-
ing based cryptography,” preprint available at http://eprint.iacr.org/2004/132.pdf,
2004.

I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic curves
y? =aP —x+d,” Asiacrypt 2003, Lecture Notes in Computer Science, vol. 2894,
pp. 111-123, 2003.

K. Eisentrager, K. Lauter, and P.L. Montgomery, “Improved Weil and Tate pairing
for elliptic and hyperelliptic curves,” preprint, 2004.

A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic
curve trace for FR-reduction,” IEICE Trans. Fundamentals, vol. E84 A, pp. 1-10,
2001.

J.H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1985.

P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing based
cryptosystems,” Crypto 2002, Lecture Notes in Computer Science, vol. 2442, pp.
354-368, 2002.

F. Hess, “A Note on the Tate pairing of curves over finite fields,” Arch. Math. vol.
82, pp. 28-32, 2004.

F. Hess, “Efficient identity based signature schemes based on pairings,” SAC 2002,
Lecture Notes in Computer Science, vol. 2595, 310-324, 2003.

A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lisher, 1993.

K. Harrison, Personal Communications, 2004.

J.C. Cha and J.H. Cheon, “An identity-based signature from gap Diffie-Hellman
groups,” PKC 2003, Lecture Notes in Computer Science, vol. 2567, 18-30, 2003.
K. Rubin and A. Silverberg “Torus based cryptography,” Crypto 2003, Lecture
Notes in Computer Science, vol. 2729, pp. 349-365, 2003.

S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate pairing,” ANTS
2002, Lecture Notes in Computer Science, vol. 2369, pp. 324-337, 2002.

V. Miller, “Short programs for functions on curves,” unpublished manuscript, 1986.
D. Hankerson, J.L. Hernandez, and A.J. Menezes, “Software implementation of
elliptic curve cryptography over binary fields,” CHES 2000, Lecture Notes in Com-
puter Science, vol. 1965, pp. 1-24 | 2000.

S. Galbraith, “Supersingular curves in cryptography,” Asiacrypt 2001, Lecture
Notes in Computer Science, vol. 2248, pp. 495-513, 2001.

E.R. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems,” Furocrypt 2001, Lecture Notes in Computer Science, vol. 2045, pp.
195-210, 2001.

K. Fong, D. Hankerson, J. Lépez, and A. Menezes, “Field inversion and point
halving revisited,” Technical Report CORR 2003-18, Univ. of Waterloo, 2003.

S. Gao, J. von zur Gathen, and D. Panario, “Gauss periods and fast exponentiation
in finite fields,” Latin 1995, Lecture Notes in Computer Science, vol. 911, pp. 311—
322, 1995.

J. Baek and Y. Zheng, “Identity-based threshold signature scheme from the bilinear
pairings,” ITCC 2004, Proceedings of International Conference on Information
Technology, vol 1, pp. 124-128, 2004.

P. Gaudry, F. Hess, and N.P. Smart, “Constructive and destructive facets of Weil
descent on elliptic curves,” J. of Cryptology, vol. 15, pp. 19-46, 2002.

N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptogra-
phy,” Design, Codes and Cryptography, vol. 19, pp. 173-193, 2000.

A Complete Divisor Class Halving Algorithm
for Hyperelliptic Curve Cryptosystems of
Genus Two

Izuru Kitamura', Masanobu Katagi', and Tsuyoshi Takagi®*

! Sony Corporation, 6-7-35 Kitashinagawa Shinagawa-ku, Tokyo, 141-0001 Japan
{Izuru.Kitamura, Masanobu.Katagi}@jp.sony.com
2 Future University - Hakodate, 116-2 Kamedanakano-cho Hakodate, 041-8655, Japan
takagi@fun.ac. jp

Abstract. We deal with a divisor class halving algorithm on hyperellip-
tic curve cryptosystems (HECC), which can be used for scalar multiplica-
tion, instead of a doubling algorithm. It is not obvious how to construct
a halving algorithm, due to the complicated addition formula of hyper-
elliptic curves. In this paper, we propose the first halving algorithm used
for HECC of genus 2, which is as efficient as the previously known dou-
bling algorithm. From the explicit formula of the doubling algorithm,
we can generate some equations whose common solutions contain the
halved value. From these equations we derive four specific equations and
show an algorithm that selects the proper halved value using two trace
computations in the worst case. If a base point is fixed, we can reduce
these extra field operations by using a pre-computed table which shows
the correct halving divisor class — the improvement over the previously
known fastest doubling algorithm is up to about 10%. This halving algo-
rithm is applicable to DSA and DH based on HECC. Finally, we present
the divisor class halving algorithms for not only the most frequent case
but also other exceptional cases.

1 Introduction

We know from recent research that hyperelliptic curve cryptosystems (HECC)
of small genus are competing with elliptic curve cryptosystems (ECC) [Ava04,
Lan02a-c, PWG103]. With an eye to further improvement of HECC we utilize
its abundant algebraic structure to make HECC faster in scalar multiplication
than ECC. Lange and Duquesne independently showed that Montgomery scalar
multiplication is applicable to HECC [Lan04a, Duq04]. We expect other fast
algorithms used for ECC can also be efficiently implemented in HECC.

A point halving algorithm is one of the effective algorithms on ECC and the
algorithm tries to find a point P such that 2P = @ for a given point Q. Knud-
sen and Schroeppel independently proposed a point halving algorithm for ECC

* This work was carried out when the author was in Technische Universitat Darmstadt,
Fachbereich Informatik, Hochschulstr.10, D-64289 Darmstadt, Germany

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 146-157, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Complete Divisor Class Halving Algorithm 147

over binary fields Fon [Knu99, Sch00]. Their algorithm is faster than a dou-
bling algorithm. Moreover, there has been growing consideration of the point
halving algorithm, showing, for instance, a fast implementation [FHLT03], an
application for Koblitz curve [ACF04], and an improvement of curves with co-
factor 4 [KR04]. The explicit doubling formula of HECC (denoted by HECDBL)
is more complicated than that of ECC. It is not obvious how the algorithm of
Knudsen and Schroeppel can extend to HECC.

In this paper, we propose a divisor class halving algorithm applied to HECC
with genus 2 over binary fields. Let D = (U, V) be a reduced divisor, where
U =22+ ux+uy and V = viz + vg9. The doubled divisor class 2D can be
represented as polynomials over Fon with coefficients wuq,ug,v1,v9 and curve
parameters y? + h(x)y = f(x). We report two crucial quadratic equations which
compute some candidates of the halved values. These equations are derived from
the property: an equation of degree 6 appeared in the doubling algorithm can be
divided by 2% + u22? + u3. We also show a criterion and an algorithm selecting
the correct divisor class from two candidates. The correct divisor class can be
efficiently found if the polynomial h(x) is irreducible. In order to select the correct
halved value, we perform some test calculations, and notice that the number of
operations can be reduced if the correct halving value is first found. We develop
a divisor class halving algorithm used for not only the most frequent case but
other exceptional cases, e.g. the weight of input divisor class is 1. The proposed
algorithm can be optimized with careful considerations of the basic operations.

This paper is organized as follows: in Section 2 we review the algorithms of
a hyperelliptic curve. In Section 3 we present our proposed divisor class halving
algorithm for HECC, and compare it with existing doubling formulae. In Section
4 a complete divisor class halving algorithm is shown. In Section 5 we consider
a halving algorithm for a special curve, degh = 1. Section 6 is our conclusion.

2 Hyperelliptic Curve

We review the hyperelliptic curve used in this work.

Let Fan be a binary finite field with 2™ elements. A hyperelliptic curve C' of
genus g over Fon with one point at infinity is defined by C : y? + h(x)y = f(z),
where f(x) € Fan[z] is a monic polynomial of degree 2g + 1 and h(z) € Fan[z]
is a polynomial of degree at most g, and curve C has no singular point. Let
P, = (x;,y;) € Fan X Fan be a point on curve C' and Py, be a point at infinity,
where Fan is the algebraic closure of Fon. The inverse of P; = (x;,y;) is the
point —P; = (a;,y; + h(x;)). P is called a ramification point if P = —P holds.
A divisor is a formal sum of points: D = > m;P;,m; € Z. A semi-reduced
divisor is given by D = > m;P; — (3" m;)Psx, where m; > 0 and P; # —F;
for ¢ # j, and semi-reduced divisor D is called reduced if Y m; < g holds. The
weight of a reduced divisor D is defined as Y m;, and we denote it by w(D).
Jacobian J is isomorphic to the divisor class group which forms an additive
group. Each divisor class can be represented uniquely by a reduced divisor and
so we can identify the set of points on the Jacobian with the set of reduced

148 Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi

divisors and assume this identification from now on. The reduced and the semi-
reduced divisors are expressed by a pair of polynomials (u, v), which satisfies the
following conditions [Mum84]:

u(z) = H(m +)™ v(2;) = yi,degv < degu,v* + hv + f = 0 mod u.

A divisor class is defined over Fayn if the representing polynomials u, v are defined
over this field and the set of Fan-rational points of the Jacobian is denoted by
J(F2n). Note that even if u,v € Fan[z], the coordinates z; and y; may be in
extension field of Fan. The degree of u equals the weight of the reduced divisor
and we represent the zero element by O = (1, 0).

To compute the additive group law of J(Fa»), Cantor gave an addition al-
gorithm which is applicable to a hyperelliptic curve of any genus. However, this
algorithm is relatively slow due to its generality. Harley then proposed an effi-
cient addition and doubling algorithm for a hyperelliptic curve of genus 2 over
F, [GHO00, Har0Oa, Har0OOb]. This algorithm achieved speeding up by detailed
classification into the most frequent case and some exceptional cases. This clas-
sification allows us to avoid extra field operations. Sugizaki et al. expanded the
Harley algorithm to HECC over Fa» [SMCT02], and around the same time Lange
expanded the Harley algorithm to HECC over general finite field [Lan02a]. The
most frequent case of doubling algorithm HECDBL is defined as follows:

Algorithm 1 HECDBL
Input: Dy = (U1, V1), D1 has no ramification points.
Output: Dy = (U27 Vz) = 2D1, U;, = ZC2 + w1 x + wio, Vi =viix + V50, where 7 = 17 2

1.U] — UE 4. Us — (f +hV + V{*) /U]
2.8 «— (f+hVi +V2)/Us 5. Us «— MakeMonic (U3)

S — Sh™ ! mod Uy 6. Vo «— V| 4+ h mod U,
3. Vi « SU + V1 7. return (Us, V2)

In HECDBL, from Step 1 to Step 3 is called the composition part and from
Step 4 to Step 6 is called the reduction part. From Algorithm 1, it is clear that
the number of field operations depends on the curve parameters. To reduce the
number of field operations, in previous works, a transformed curve y? + (22 +
Rz +hh)y = x® + fia® + -+ f}, via isomorphic transformations: y — hjy and
x — h3x + f4, is used. We call this transformed curve a general curve.

In this paper, our aim is to present the divisor class halving algorithm for the
general curve. Additionally, we consider a simple polynomial h(xz) = hiz + ho
and we call this curve a special curve. In a cryptographic application, we are
only interested in a curve whose order of J(Fan) is 2 x 7, i.e. whose cofactor is
two, where r is a large prime number. Note that the cofactor is always divisible
by 2 [KKTO05]. Moreover, as inputs and outputs for the halving and doubling
algorithm we use the divisor classes whose order is .

3 Proposed Halving Algorithm for General Curve

In this section we propose a divisor class halving algorithm (HECHLV) on hyper-
elliptic curve cryptosystems of genus two. We derive HECHLV by inverse com-

A Complete Divisor Class Halving Algorithm 149

puting of HECDBL. For HECHLV, the significant problem is to find the missing
polynomial k such that V] + h = kUs + V5 in Algorithm 1. First, we compute
k by a reverse operation of the reduction part, then the semi-reduced divisor
(U1, V{) via k, at last D1 = } D by a reverse operation of the composition part.

3.1 Main Idea

We follow the opposite path to HECDBL. From Step 6 of HECDBL, there is a
unique polynomial k = kjx+kg such that V{+h = (kyz+ko)Uz+Va. Substituting
V/ to equation (f + hV{ + V{?) appeared in Step 4, the following relationship
yields:

UsU, = f + h(kUs + Vo) + K*UZ + V2. (1)

Because the doubled divisor class (Usz, V) is known, we can obtain the relation-
ship between k and Uj. Note that U}, = kU, from the highest term of equation
(1). Recall that U] = U} from Step 1, namely, we know

Ul =2t +uda? + . (2)

In other words, the coefficients of degree 3 and 1 are zero. From this observation,
there are polynomials whose solutions includes kg and k;. In our algorithm we
try to find ko and ky by solving the polynomials. Once kg and k; are calculated,
we can easily compute the halved divisor class Dy = (U1, Vi) from equation (1).
We describe the sketch of the proposed algorithm in the following.

Algorithm 2 Sketch HECHLV

Input: D2 = (U27 VQ)

Output: D, = (U17 Vl) = éDz, U; = ZC2 + w1 + o, Vi = vz + V30, where ¢ = 1,2

1. determine k = kiz + ko by the reverse operation of the reduction part
11V — Vot h+kUs, k=kiz + ko, Ul — (f +hV{ + V) /(k3Us)
1.2 derive ko, k1 from two equations coeff (U1,3) =0 and coeff(U7,1) =0

2. compute U] = z* + u?,2? + v?, in the semi-reduced divisor by using ko, k1
2.1 compute ui, uiy by substituting ko, k1 in coeff(U7,2), coeff(U7,0)

3. compute Ui, Vi by the reverse operation of the composition part
3.1U1 «— \/U{ :x2+u11x+u10, Vi «— Vo + h+ kUs mod U,y

4. return (Uz, V1)

We explain Algorithm 2 in detail. The coeff(U, i) is the coefficient of z* in
polynomial U. In Step 1.1, we compute polynomial U] in equation (1):

coeff(U],3) = (k1hy + k3ug; +1)/k?

coeff (U7,2) = (k1h1 + koha + kfugo + k§ + c2) /K7
coeff (U1, 1) = (kiho + koh1 + kfua1 + 1) /k3
coeff(U],0) = (koho + kgusg + co)/k?,

150 Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi
where

C2 = fa+u21, c1 = f3+ havor + ugo + cau21,

2
co = fa + havao + hivar + v3; + cauao + cruos.

Equation (2) yields the explicit relationship between variables ko, k1, u11, and
uU10-

klhg + k%’UJQl +1=0 (3)

kiho + kohy + kduay +¢1 =0 4)

U1 = \/k‘lhl + koho + k%U/QO + k‘g + Cg/k‘l (5)
wio = y/koho + kguzo + co/ks (6)

In the algorithm we used the following lemma in order to uniquely find kg, k;.
The proof of this lemma is shown in the full version of this paper [KKT05].

Lemma 1. Let h(zx) be an irreducible polynomial of degree 2. There is only one
value k1 which satisfies both equations (3) and (4). Equation (4) has a solution
only for the correct k1. There is only one value ko which yields the halved divisor
class D1 in algorithm 2. Equation xho + 2?u1; + 1 = 0 has a solution only for
the correct ko.

After calculating ko, k1, we can easily compute w11, u19, v11, and vyg via
equations (5), (6), and V; «— Vo + h + (k1z + ko)U2 mod U;.

3.2 Proposed Algorithm

We make the assumption that the polynomial h has degree two and is irreducible.
We present the proposed algorithm in Algorithm 3.

The proposed algorithm requires to solve quadratic equations. It is well
known that equation az? + bx + ¢ = 0 has roots if and only if Tr(ac/b?) = 0.
Let one root of az? + bz + ¢ = 0 be xg, then the other root be xg + b/a. If this
equation has roots, i.e. Tr(ac/b?) = 0, then we can solve this equation by using
half trace, namely xo = H(ac/b?),z}, = 2o + b/a. This equation has no root if
Tr(ac/b?) = 1.

We explain the proposed algorithm as follows. The correctness of this al-
gorithm is shown in Lemma 1. In Step 1, we compute two roots k; and kj of
equation (3). In Step 2, the correct k; is selected by checking the trace of equa-
tion (4). Then we obtain two solutions kg and k{, of equation (4). In Step 3, the
correct kg is selected by checking trace of xhs + z2u;; +1 = 0. In Steps 4 and 5
we compute the halved divisor class.

A Complete Divisor Class Halving Algorithm 151

Algorithm 3 HECHLV
Input: Dy = (Usz, Va)
Output: D1 = (Ul,Vl) = ;Dz
Ui =2® +unzx + w0, Vi = viix + vio, where i = 1,2, hy #0
step procedure
1. Solve kihs + k%um +1=0
o — h2/U21,’y — U,Ql/hg, k1 «— H(’}/)Oz, kll — ki +a«
2. Select correct ki by solving kiho + koh1 + k%um +c1 =0
c2 «— fa+ u21, c1 — faz+ havai + u20 + c2u21,
co «— fa + havao + h1v21 + v3 + cauzo + crugr, o — hifus,
w — u21/h%7 ¥ (Cl —+ klho)w
if Tr(y) = 1 then k1 < ki, v < (c1 + k1ho)w
ko «— H(Y)a, ki < ko +
3. Select correct ko by checking trace of xhs + z2u1+1=0
Ul — \/klhl + koha + k2uzo + k2 + c2/k1, v« ui1/h}
if Tr(y) =1 then ko < kb, u11 < /kih1 + koha + k?uzo + k3 + c2/k1
4. Compute U;
uto — \/koho + k3u20 + co/k1
5. Compute Vi = Vo + h + kUz mod U;
w — ha + kiuz1 + ko + kiui
v11 < V21 + h1 + kiu2o + kouz1 4+ ui0k1 + ui1w, vio < v20 + ho + kouzo + uow
6. Dy« (:c2 + u11Z + u10,v11& + v10), return D

3.3 Complexity and Improvement

In order to estimate the complexity of HECHLV shown in Algorithm 3, we con-
sider four cases with respect to the selection of k1 and ky. When we get incorrect
k1 and ko (k] and k{ are correct) in Steps 1 and 2, respectively, we have to re-
place k1 — ki, ko < k{, and compute v, u1; again in Steps 2 and 3, respectively.
In the worst case this requires 4M + 1SR as additional field operations compared
to the best case, and we have another two cases: one is ko and k{ are correct
and the other is k) and k; are correct. Note that a multiplication by M for
short and other operations are expressed as follows: a squaring (5), an inversion
(I), a square root (SR), a half trace (H), and a trace (T). Our experimental
observations found that these four cases occur with almost the same probability.
Therefore, we employ the average of these four cases as the average case.

Now we consider how to optimize the field operations in Algorithm 3. We will
discuss the optimization under the two topics: choices of the curve parameter
and scalar multiplication using a fixed base point.

Choices of the curve parameter. The complexity of HECHLV depends on the
coefficients of the curve. If the coefficients are small, one, or zero, we reduce
some field operations. Firstly, we reduce some inversion operations to one. If
1/h% and 1/h3 are allowed as inputs, we reduce two inversion operations and we
compute 1/k; = hg + kjug; from equation (3), then Algorithm 3 requires only
one inversion operation 1/us;. Secondly, we use the general curve. When f; =0
we reduce 3M to 1M + 1S by coug; = u2; and cougg + ciugr = uz1(ugg + c1).

152 Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi

When hy = 1, two multiplications by hs and two multiplications by 1/h2 are
omitted. Thirdly, we use the general curve when h; = 1. In this case, we change
1M to 1S by woy(hy + vo1) = v21 + v3;, where 1S is faster than 1M, and two
multiplications by h1 and one multiplication by 1/h? are reduced. Finally, we
use the general curve when hy = hg = 1 then we skip one multiplication k1 hyg.
We summarize these improvements in Algorithm 4.

Algorithm 4 HECHLV (he =1, f4 =0)
Input: Dy = (U, V2),1/h3

Output: D1 = (U, V1) = éDz
Ui:zz+uilz+uio, Vi =wvij1x + vio, wherei=1,2
step procedure cost
1. Solve ki + k3us1 +1=0 1M + 11+ 1H
a «— 1/uz21, k1 «— H(u21)a, k’lkkl +
2. Select correct ki OM +1S +1H + 1T

by solving kiho + kohy + kZug1 +¢1 =0
c1 — f3 4+ v21 + u20 + u3y

co < f2 +v20 + v21(h1 + v21) + u21 (u20 + c1) (h1 =1 :v21(h1 +v21) = var +v3;)
wo — uz1/h?, a — hia,y — (c1 + k1ho)wo
if Tr(y) = 1 then ki < Kk}, v < (c1 + k1ho)wo (h1 =1:7v < v+ ho)

ko — H(V)a, ki «— ko +
3. Select correct ko by solving z + z%ui1 +1 =0 5M + 1S+ 2SR+ 1T
wo — k3, w1 — wouzo + k1h1 + u21
wa — ko + Vw1 + ko, wa — kiugr + 1, w1 — wawy
if Tr(u11) = 1 then
ko — kg, wa — ko + Vw1 + ko, ui1 «— waws
4. Compute U; 4M + 1SR
w1 <+ kouzo, ws «— wa + 1, we < (ko + k1)(u20 + u21)
u1g — way/ko(wi + ho) + co
5. Compute Vi = Vo + h + kUs mod Uz 2M
wg — ws + ko + 1, ws «— w1 +ws + we +v21 + ha
we +— w1 + v20 + ho, w7 — w2 + wy
w1 <+ wruio, ws « (k1 + w7)(uio + u11)
v11 — w1 + w2 + w3z + ws, Vip < w1 + we

6. Dy« (2?4 uiiz + uio,vi12 + vig), return Dy

total (k1, ko) is correct 18M +2S + 11 + 2SR+ 2H + 2T
(k1, k() is correct 19M + 2S5 + 11 + 3SR+ 2H + 2T
(k. ko) is correct 20M + 28 + 11 + 2SR + 2H + 2T
(k1. ky) is correct 21M +2S + 11 + 3SR + 2H + 2T
hi1 =1
(k1, ko) or (k'l,ko) is correct 14M +3S + 11 + 2SR+ 2H + 2T
(kl,ké,) or (k'l,ké,) is correct 15M +3S + 11 + 3SR+ 2H + 2T
hi =ho=1
(k1, ko) or (k'l,ko) is correct 13M +3S + 11 + 2SR+ 2H + 2T
(kl,k{)) or (k'l,k{)) is correct 14M +3S + 11 + 3SR+ 2H + 2T

Scalar multiplication with o fized base point. We explain the scalar multiplication
using divisor class halvings. Knudsen and Schroeppel proposed the ECC scalar
multiplication algorithm, halve-and-add binary method, which replaces point
doublings in double-and-add binary methods with point halvings. Similarly, the
halve-and-add binary method can be applied to HECC via the divisor class
halving proposed in Algorithm 4. In the case of scalar multiplication with a fixed
base point D, we improve a computation method of 21iD via a pre-computed
table which shows whether ki (ko) or k7 (k{) is the correct value in each halving,
since whether ky (ko) is correct or not depends on D. This improvement can be
applied to a right-to-left binary method by adding 211 D. We adopt this table-
lookup method to the general curve [KKTO05] which requires only 18M + 25 +

A Complete Divisor Class Halving Algorithm 153

11 +2SR+2H. The pre-computed table requires only the same bit length as D
since D needs 4n bits while the scalar value has length 2n and we need two bits
to encode the right choices of k1 and kg.

3.4 Comparison of Doubling and Halving

We compare field operations cost of doubling algorithms to halving algorithms.
Table 1 provides a comparison of HECDBL and the above halving algorithms in
the average case.

Table 1. Comparison of Halving and Doubling

Scheme HECHLV HECDBL [LS04]
h2=1,f1=0 19.5M + 28 + 11 +2.5SR+2H + 2T 21M 455 + 11
random base point (27.5Mn,29.95Mp) (29Mn,29.5Mp)
ha=1,f1=0 18M +25 4+ 11 +2SR+2H —
fixed base point (26 Mn,28.2Mp) —
ho=h1=1,f41=0 14.5M +3S + 11 +255SR+2H 4+ 2T 18M + 7S5 + 11
random base point (22.5Mn,25.05Mp) (26 Mn,26.TMp)
ho=h1=1,f41=0 14M +3S + 11 + 2SR+ 2H —
fixed base point (22MnN,24.3Mp) —
ha=h1 =ho=1,f1=0135M +3S+ 11 +25SR+2H +2T 156M + 75+ 11
random base point (21.5Mn,24.05Mp) (23Mn,23.7Mp)
hi=hi=ho=1,f1=0 13M +3S + 11 + 2SR+ 2H —
fixed base point (21Mn,23.3Mp) —

By using the normal basis, we can neglect the computation time of a squaring,
a square root, a half trace, and a trace compared to that of a field multiplication
or an inversion [Knu99]. Menezes [Men93] showed that an inversion operation
requires |log,(n — 1)] + #(n — 1) — 1 multiplications, where #(n — 1) is the
number of 1’s in the binary representation of n — 1. By neglecting these oper-
ations, for the general curve, HECHLV and HECDBL require 19.5My + 17 and
21Mpy + 11, respectively, where My is a multiplication over the normal basis.
When we assume 11 = 8 My HECHLV and HECDBL require 27.5M and 29My,
respectively.

On the other hand, by using the polynomial basis, we cannot ignore the
computation time of a squaring, a square root, and a half trace. Assuming that
1S = 0.1Mp, 1SR = 0.5Mp, 1H = 0.5Mp, and 1I = 8Mp, where Mp is
a multiplication over the polynomial basis. For the general curve, HECHLV and
HECDBL require 29.95M p and 29.5M p, respectively. By selecting the polynomial
basis, however, we can compute these arithmetic faster than half the time of
multiplication, and there is a possibility to reduce the cost of these operations.

Table 1 shows that when we use the normal basis HECHLV is faster than
HECDBL for all the cases. On the contrary by using the polynomial basis,
HECHLV is faster than HECDBL when hy = h; = 1 and f; = 0, especially
the improvement by using a fixed base point over HECDBL is up to about 10%.

154 Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi

4 Complete Procedures for Divisor Class Halving
Algorithm

In the previous sections, we proposed the halving algorithm, which corresponds
to the most frequent case in the doubling algorithm. However, we also have
to consider several exceptional procedures for giving complete procedures of
the halving algorithm. These cases appear with very low probability, but we
cannot ignore them. Therefore, we have to implement these procedures in order
to perform the scalar multiplication correctly. In this paper we only deal with a
divisor class whose order is r (not order 2 x r), and thus the divisor class does
not include any ramification points. Therefore, we have to consider four inverse
operations of HECDBL, HECDBL?~!, HECDBL'~2, and HECDBL?~? as follows:

HECDBL: w(D;) =2
HECDBL?™!: w(D:) =2, w
HECDBL'™2: w(D;) =1

HECDBL?~2: w(D1) =2, w

Note that HECDBL2?™2 is computed via HECDBL. In the halving algorithm,
however, we have to care HECDBL?™2 because the inverse map of HECDBL2~2
is indistinguishable from the inverse map of HECDBL!~2. Therefore, the halving
algorithms can be classified into four cases: HECHLV, HECHLV!—~2, HECHLV?—2,
and HECHLV?~!. These cases are inverse maps of HECDBL, HECDBL?~!, HEC-
DBL2~2, and HECDBL!'~2, respectively. The Complete HECHLYV is as follows:

Algorithm 5 Complete HECHLV
Input: Dy = (Usz, Va)
Output: D1 = (Ul,Vl) = ;Dz
U, = ui2x2 4+ uirx + wio, Vi = vi1x + vio, uiz € Fa, where ¢ = 1,2, ho ;é 0

step procedure
1. HECHLV'~™2: w(Dz) =1, w(D1) =2

ifdegUsz = 1 then Dy «— HECHLVI_’2(D2), return D1
2. HECHLV®™': w(D2) = 2,w(D1) = 1,u21 = 0 or

HECHLV?*™2: w(Ds3) = 2,w(D1) = 2,u21 = 0

ifdeg Uz = 2 and w21 = 0 then Dy « HECHLVQ_’2(D2)7 return D1
3. HECHLV: ’LU(DQ) = w(Dl) = 2, u21 75 0

if degUs = 2 and w21 # 0 then Dy « HECHLV(D3), return D,

In the following paragraphs we explain exceptional procedures. The explicit
algorithms are presented in [KKTO05].

HECHLV!=2, A divisor class halving algorithm HECHLV'~? is the analogy of
HECHLV. The main difference between HECHLV'—2 and HECHLV is weight of
input Dy. For example, in HECHLV! =2 f + AV + V1’2 is a monic polynomial
with degree five because of deg(V]) = 2 and U, is a monic polynomial, so U] «—
(f+hV] + V1’2)/U2 not divided by k? like HECHLV.

A Complete Divisor Class Halving Algorithm 155

HECHLV?~!, In this case, D; = (z+4wu19, v10) is computed by reverse operation of
HECDBL!'™2. Dy = (2% +ugp, v212+v90) = 2D7 is computed as follows: 2% +ugy =
(z+u10)?, va1 = (ufy+ fsuio+ fithivio)/h(u10), and vag = v1o+ve1u1g. Then we
can easily express u1g, v10 by u20,v21,v20 and curve parameters by ui1g = /u20,
vig = (va1h(uo) + ufy + faudy + f1)/h1.

HECHLV?~2. In the case us; = 0, there are two candidate of ;DQ: Dy = (z+
V/U20,v2(y/u20)) and D} = (22 + w112+ u10, V117 +v10). If D1 is a correct divisor
class, we use HECHLV2~!. On the other hand, if D} is a correct one, we use
HECHLV2~2. We need to select a correct algorithm HECHLV?~! or HECHLV?—2
as follows: First, we assume that D] is a correct divisor class, second compute
u11, then check the trace of why +x%u1; +1 = 0. If Tr(uy1/h3) = 0, D) is correct,
then select the algorithm HECHLV2~2. If Tr(u11/h3) = 1, D; is correct, then
select the algorithm HECHLV?—!,

HECHLV?2~2 is similar to HECHLV. The main difference between HECHLV2—2
and HECHLV is a value of ugi, e.g. u2; = 0 in HECHLV?™2 and us; # 0 in
HECHLV. In HECHLV?~2, uy; = 0 leads to that there is only one value k; not
two values like HECHLV.

5 Halving Algorithm for Other Curves

In this section, we focus on other curves: (1) h(z) is reducible in Fa» with degh =
2, and (2)the special curve with degh = 1, i.e. ho = 0.

Let h(x) be areducible polynomial of degree 2, namely h(z) = (z+xz1)(x+x2)
where x1,z9 € Fon. Assume that x1 # zo, then there are three different divisor
classes of order 2, say Dj, Dy, and D3 [KKTO05]. In this case, Lemma 1 is no
longer true, and there are four different candidates of the halved value arisen
from equation (3) and equation (4). They are equal to %D, éD + Dy, %D + Do,
and %D + D3. In order to determine the proper divisor class, we have to check
the trace of both equation (3) and (4). Therefore the halving algorithm for this
case requires more number of field operations than that required for the general
curve. If 1 = x5 holds, we know h; = 0 and there is only one divisor class of
degree 2. In this case, equation (4) has a unique root for each solution k; of
equation (3), namely we have only two candidates of the halved value. It can be
distinguished by the trace of equation zhy + 22h11 + 1 = 0 as we discussed in
Lemma 1.

For the special curve of degh = 1, we have only one value k; not two, recall
for the general curve, there are two value k; and k] and we need to select the
correct one. This is the main difference between the general curve and the special
curve. For the special curve, we obtain a system of equations related to variables
ko, k1, u11, and u1g by the same method for the general curve.

kiuz +1=0 (7)

klho + kohl + k(Z)’UQl +c1 = 0 (8)

156 Izuru Kitamura, Masanobu Katagi, and Tsuyoshi Takagi

In the case of the general curve, we select correct kg by checking trace of the
degree two equation of k1 in next halving. If this equation has roots (no roots)
i.e. trace is zero, ko is correct (not correct). However in the case of the special
curve, we have only one value k; from equation (7), so we select correct ko by
checking a degree two equation (8) of kg in next halving, instead of the equation
of k. If the equation of k¢ in next halving has roots (no roots), ko is correct
(not correct).

6 Conclusion

In this paper, we presented the first divisor class halving algorithm for HECC
of genus 2, which is as efficient as the previously known doubling algorithm.
The proposed formula is an extension of the halving formula for elliptic curves
reported by Knudsen [Knu99] and Schroeppel [Sch00], in which the halved di-
visor classes are computed by solving some special equations that represent the
doubled divisor class. Because the doubling formula for HECC is relatively com-
plicated, the underlying halving algorithm is in general less efficient than that
for elliptic curves. However, we specified two crucial equations whose common
solutions contain the proper halved values, then an algorithm for distinguishing
a proper value was presented. Our algorithm’s improvement over the previously
known fastest doubling algorithm is up to about 10%. Moreover, the proposed
algorithm is complete — we investigated the exceptional procedures appearing in
the divisor class halving algorithm, for example, operations with divisor classes
whose weight is one. The presented algorithm has not been optimized yet, and
there is a possibility to enhance its efficiency.

Acknowledgment. The authors thank Toru Akishita for helpful discussions.

References

[Ava04] R. Avanzi, “Aspects of Hyperelliptic Curves over Large Prime Fields in Soft-
ware Implementations,” CHES 2004, LNCS 3156, pp.148-162, 2004.

[ACF04] R. Avanzi, M. Ciet, and F. Sica, “Faster Scalar Multiplication on Koblitz
Curves Combining Point Halving with the Frobenius Endomorphism,” PKC 2004,
LNCS 2947, pp.28-40, 2004.

[Can87] D. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve,” Mathemat-
ics of Computation, 48, 177, pp.95-101, 1987.

[Duq04] S. Duquesne, “Montgomery Scalar Multiplication for Genus 2 Curves,” ANTS
2004, LNCS 3076, pp.153-168, 2004.

[FHL*03] K. Fong, D. Hankerson, J. Lépez, and A. Menezes, “Field inversion and
point halving revised,” Technical Report CORR2003-18,
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-18.pdf

[GHOO] P. Gaudry and R. Harley, “Counting Points on Hyperelliptic Curves over Finite
Fields,” ANTS 2000, LNCS 1838, pp.313-332, 2000.

[HHMO0O] D. Hankerson, J. Hernandez, A. Menezes, “Software Implementation of El-
liptic Curve Cryptography over Binary Fields,” CHES 2000, LNCS 1965, pp.1-24,
2000.

A Complete Divisor Class Halving Algorithm 157

[Har00a] R. Harley, “Adding.txt,” 2000. http://cristal.inria.fr/ “harley /hyper/

[Har00b] R. Harley, “Doubling.c,” 2000. http://cristal.inria.fr/ “harley /hyper/

[KKTO05] I. Kitamura, M. Katagi, and T. Takagi, “A Complete Divisor Class Halving
Algorithm for Hyperelliptic Curve Cryptosystems of Genus Two,” Cryptology
ePrint Archive, 2004/255, TACR, 2004.

[KR04] B. King and B. Rubin, “Improvements to the Point Halving Algorithm,”
ACISP 2004, LNCS 3108, pp.262-276, 2004.

[Kob89] N. Koblitz, “Hyperelliptic Cryptosystems,” Journal of Cryptology, Vol.1,
pp-139-150, 1989.

[Knu99] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,” ASI-
ACRYPT 99, LNCS 1716, pp.135-149, 1999.

[Lan02a] T. Lange, “Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite
Fields via Explicit Formulae,” Cryptology ePrint Archive, 2002/121, TACR, 2002.

[Lan02b] T. Lange, “Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves,”
Cryptology ePrint Archive, 2002/147, TACR, 2002.

[Lan02c] T. Lange, “Weighted Coordinates on Genus 2 Hyperelliptic Curves,” Cryp-
tology ePrint Archive, 2002/153, IACR, 2002.

[Lan04a] T. Lange, “Montgomery Addition for Genus Two Curves,” ANTS 2004,
LNCS 3076, pp.309-317, 2004.

[Lan04b] T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves,”
J.AAECC Volume 15, Number 5, pp.295-328, 2005.

[LS04] T. Lange, M. Stevens, “Efficient Doubling on Genus Two Curves over Binary
Fields,” SAC 2004, pre-proceedings, pp.189-202, 2004.

[Men93] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lishers, 1993.

[Mum84] D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43,
Birkhéuser, 1984.

[MCTO01] K. Matsuo, J. Chao, and S. Tsuji, “Fast Genus Two Hyperelliptic Curve
Cryptosystems,” Technical Report ISEC2001-31, IEICE Japan, pp.89-96, 2001.

[PWPO03] J. Pelzl, T. Wollinger, and C. Paar, “High Performance Arithmetic for
Hyperelliptic Curve Cryptosystems of Genus Two,” Cryptology ePrint Archive,
2003/212, IACR, 2003.

[PWGT03] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar, “Hyperelliptic Curve Cryp-
tosystems: Closing the Performance Gap to Elliptic Curves,” CHES 2003, LNCS
2779, pp.351-365, 2003.

[Sch00] R. Schroeppel, “Elliptic curve point halving wins big. 2nd Midwest Arithmetic
Geometry in Cryptography Workshop, Urbana, Illinois, November 2000.

[SMC*02] T. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii, “An Extension of Harley
Addition Algorithm for Hyperelliptic Curves over Finite Fields of Characteristic
Two,” Technical Report ISEC2002-9, IEICE Japan, pp.49-56, 2002.

Using “Fair Forfeit” to Prevent Truncation
Attacks on Mobile Agents

Min Yao, Kun Peng, and Ed Dawson

Information Security Institute, Queensland University of Technology
Brisbane, QLD 4000, Australia
{m.yao,k.peng,e.dawson}@qut.edu.au

Abstract. Protection of data integrity in mobile agents has drawn much
attention in recent years. Various degrees of agent data integrity have
been achieved by a number of proposed schemes. A known vulnerability
of these published techniques is the truncation attack. In this paper we
propose a “fair forfeit” technique to prevent the truncation attack. It
also prevents other known attacks such as the modification, insertion
and deletion attacks.

1 Introduction

Mobile agents are autonomous software entities that move code, data and state
to remote hosts. They have great potential for electronic commerce applications.

We consider a scenario where a mobile agent is ordered to search for the best
price of a specific product [11]. The agent migrates to multiple vendors’ servers,
collects price quotes and is free to choose its next move dynamically based on
the data it acquired from its journey. The agent finally returns to the buyer with
the offers of all the vendors. Using the agent data, the buyer chooses the best
offer.

However, vendors (servers) may try to delete, replace, or invalidate the offers
that have been collected by the agent. Hence, the integrity of the offers that are
made by visited servers needs to be protected along the agent’s journey.

Karjoth et al. [5] published a family of protocols - referred to as the KAG
protocols - to ensure the integrity of the offers acquired from the visited hosts.
A common vulnerability of these protocols is that they cannot resist the “trun-
cation” attack. In this attack, a server currently visited by the agent colludes
with a previously visited server to discard all the offers made between the two
visits. A stemming attack is an extension of the truncation attack where one or
more faked offers are inserted in place of the truncated data.

Possible solutions to the truncation attack have been proposed in the liter-
ature. Loureiro et al [6] published a technique to hash together a set of data
blocks in an order-independent fashion that possesses a security property to de-
fend against the truncation attack. However the technique can only prevent a
truncation attack by a vendor that is not listed in the agent’s itinerary.

Cheng and Wei [3] proposed a “co-signing” scheme to prevent the truncation
attack, where a server S;_1 helps its successor server S; sign its computed data

C. Boyd and J.M. Gonzalez Nieto (Eds.): ACISP 2005, LNCS 3574, pp. 158-169, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents 159

O;. If a malicious server S; wishes to truncate a string of existing data, S;_1 must
consent to re-sign the new offer O; which includes an indicator of S;’s successor
server S;41. It is however still vulnerable to the “colluding-servers” truncation
if S;_1 conspires with S; and is willing to co-sign the new offer.
Contribution. In this paper, we have devised a “fair forfeit” technique to deter
servers from launching various attacks against the integrity of mobile agents’
data. All of attacks, including modification, insertion, deletion, truncation and
stemming, require the malicious server to perform re-computation on previously
computed data. Especially, the truncation attack, a vulnerability existing in most
of the current mobile agent systems, can be prevented.

We assume that, for fairness, every server can provide one and only one
offer. The “fair forfeit” is realised by an “e-cash division” mechanism, which is
accomplished by 2-out-of-2 secret sharing of each server’s e-cash in such a way
that with high probability, the e-cash of malicious servers becomes available for
use by anyone. The main deterrent in this system is therefore exposure of e-cash
of the malicious server, since the cost of losing e-cash is obvious.

In this paper we assume that the proposed technique can be implemented in

an electronic market environment and that a trusted third party in the e-market
plays a role of judge to settle any disputes rising.
Organisation. The rest of the paper is organised as follows: Section 2 describes
related work. Section 3 proposes a new protocol to identify illegally repeated
operations on the existing data and to detect the “truncation” and “stemming”
attacks. We analyse the new protocol in terms of security and efficiency in Sect. 4.
We conclude the paper in Sect. 5.

For ease of reading, the notation used in the paper is listed in Table 1.

2 Related Work

This section first discusses the attacks to the offer integrity of shopping mobile
agents. We then briefly describe the e-cash technique that is employed in the
new scheme.

2.1 Shopping Mobile Agents and Attacks

Common cryptographic techniques used to protect offer integrity for shopping
mobile agents are digital signatures over the servers’ offers to provide the signer’s
non-repudiation and data integrity, and chaining relationships.

The concept of the chaining relationship has been used often in the mobile
agent applications. It was first noted by Karjoth et. al [5]. When the agent
collects data from the server, the server must provide a short proof of the com-
putation (such as a digital signature) that is stored in the agent. The chaining
relationship is established between proofs by cryptographically linking each proof
with the one computed at the previous site. This makes it impossible to modify
an intermediate proof without modifying all the subsequent ones. The originator
verifies the integrity of the “chain” of cryptographic proofs.

160 Min Yao, Kun Peng, and Ed Dawson

Notation Meaning
11 An agent’s code.
So ID of the originator.

Si, 1<i<n ID of server i.
So—1, 1 <i <nID of the last server in the agent’s itinerary.
00 A secret possessed by Sp. It can be regarded as
a dummy offer and is only known to the originator.
0i, 1 <i<n An offer (a partial result) from S; .

£0; An encrypted offer of server S;

O; An encapsulated offer (cryptographically protected) from S;.

(yi, xi) A public/private key pair of server S;.

ci Server S;’s e-cash.

(ei, mi); ds A public/private key pair of the issuing bank that issues c¢;.

(sie;, Sio;) jth pair of shares in the signature of S;’s e-cash.

Sie; A jth chosen share from pair (sisj , sioj).
sicj can be either sisj or sioj.

(diej , dioj) A pair of commitments corresponding to the pair of shares(sigj , 8o,),
where dic, = szﬁ; and yio, = gm"j.

dic]. A jth commitment to the chosen share sic; where dicj = 512; dic].
can be
either diej or dioj.

Ki A set of chosen shares of server S;

hd; A hash value used by server S; to select partial shares in a secret.

T; A nonce generated by S;.

H(m) A one-way collision-free hash function.

Eyi{m;} Message m; encrypted with the encryption key yi associated with S;

Sigai(m;) A signature of S; on the message m; with xi.

Very;(s;, m;) = Verification of the signature s; on the message m;. It is true
true or false when Sigz;(m;) = s;; false otherwise.
Si; — Sit1: m Server S; sending a message m to Si41.

Table 1. Notation used in this paper (0 < i < n unless ¢ is indicated)

The general form of a chaining relationship can be expressed as: (h; =
H(O;—1, Ii11)) where H() is a one-way hash function, O;_1 is the offer made
by the previous server S;_i, and [I;y1 is the identity of its next server S;;i.
Each entry of the chain depends on some of the previous and succeeding mem-
bers, therefore, any illegitimate change in O;_; and/or I;11 will invalidate the
chaining relationship.

However, many of the schemes that use the chaining relationship are still
vulnerable to the “truncation” and “stemming” attacks.

Truncation attack. An attacker S; captures an agent with encapsulated offers
Op, O1,... O;_1, and colludes with a previously visited server S,,. The attack is
launched when S;, with the agent at hand, sends the agent back to .S,,. Hence
S can delete the offers between S,,, and S; from the agent. S, sends the agent
back to S; after the truncation; the agent continues to execute on S;. A special

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents 161

case occurs when S, sends the agent back to the originator after the attack. In
this case, S,, and S; both have to agree to sacrifice S;’s interest.
Stemming attack. This attack takes place in conjunction with the truncation
attack. Sy, inserts a series of fake offers under the names of victim hosts S}, ;,
Syqo--until S; or the originator Sp. Sy, first replaces its previous offer with
O,,, using its own identity and a fake server S), ,; as its successor. It signs
offer O;, using S,,’s long term private key. For constructing fake offers Oy, , 1,
2 0j_1 (or Oj_y), Sy, arbitrarily chooses fake private keys and signs on
behalf of the fake servers S), .1, S}, 5..., Si_; (or Sy_y).

There are some other attacks, such as modification, insertion and deletion [11],
to offer integrity that also feature repeated operations. They require the mali-
cious server Sy, to replace either O,,—1 or I,,+1 in order to retain the validity
of hy, = H(Opy—1, Im+1) at Sy, or to recalculate O,y,.

2.2 E-cash

E-cash is a self-authenticating digital payment instrument that can be stored
in an electronic wallet and the electronic equivalent of real paper cash. E-cash
is a type of pre-paid electronic payment where payers withdraw electronic cash
from their bank accounts prior to making a purchase and payment. To make
a payment, the payer simply passes the required amount of electronic cash to
the payee. The payee is not referred to any bank account of the payer. E-cash
typically comes in the form of electronic coins of various face values, to which
digital signatures issued by the issuing banks are attached. Hence the basic form
of e-cash is composed of two components: a data component that contains certain
information such as the issuing bank, sum etc., and the signature component
that is generated over the data. Any payee can immediately validate electronic
coins by checking the signature on them against the public verifying key of the
respective issuing bank.

E-cash was first introduced by Chaum et. al [2], which is based on the use of
zero-knowledge proofs. The drawbacks of Chaum’s proposal lie in the expensive
computation real applications [8]. Some subsequent works [1][10][4] have achieved
various improvements on Chaum’s scheme.

E-cash must not be illegally forgeable and cannot be double spent. It must
also provide anonymity to clients and untracebility to digital coins.

3 The New Protocol

Our new protocol is based on a proposed “fair forfeit” technique and attempts
to provide deterrence to repeated operations in situations where only one-time
operations are allowed.

This section first depicts an electronic market, in which the proposed mecha-
nism and its application can be designed and implemented. A “e-cash division”
technique is introduced and applied in a simple digital signature scheme to de-
tect and prevent truncation and stemming attacks. It also prevents other attacks
against integrity.

162 Min Yao, Kun Peng, and Ed Dawson

3.1 Architecture

The participants in the e-market in our setting include: (1) a buyer, (2) a number
of vendors’ servers and (3) a trusted third party. In Fig. 7?7, a buyer’s mobile
agent enters the e-market through the trusted third party, which may provide
yellow-page like services. At last the agent travels to the trusted third party to
verify its collected results and finally returns to its originator.

The trusted third party plays an important role in the proposed new scheme.
The trusted third party verifies the requesting servers’ e-cash and registers them
if the e-cash is valid. In case of a dispute between an e-market member and a
customer or another member, the trusted third party serves as an arbitration
board. In our architecture, the behavior of the trusted third party can be publicly
verified by a prover. The prover functionality can be shared among multiple
servers to distribute the trust and strengthen the robustness of the system.

3.2 The E-cash Division Mechanism

The “e-cash division” mechanism is employed to guarantee detection of illegally
repeated operations. In the “e-cash division”, an e-cash token c is divided into ¢
pairs, where ¢ is a security parameter in the system. Putting each pair together
can recover the e-cash token.

As we discussed above, an e-cash token c¢ has a data component b and a
signature component s. Hence we denote ¢ = (b, s). ¢ is divided into pairs as
follows:

- In each pair, the data part b is divided into halves (be,, b,,), where b., and by,
denote one half in d with even and odd number subscripts respectively. (b, , b,,)
are published as commitments.

- In each pair, the signature part s is divided into two halves (se,, so,), where
Se; and s,, denote partial shares in S with even and odd number subscripts
respectively. (se,, So;) are kept secret. When both halves of the signature are put
together, the e-cash is valid and useable, while only one half of the signature is
unrecognised by the issuing bank and unusable.

The “e-cash division” technique can be realised using the RSA [7] signature
scheme. Assume the e-cash issuing bank has RSA keys (e, n; d), where pair (e, n)
is the public key, and d is the corresponding secret key. Therefore s = b mod n.

A RSA signature can be divided as follows: choose s., and then s,, = $/s.,;
or vice versa. The following equations then obtained:

b= s® mod n

b= (SOi X SEi)e

b= (80,)° X (5¢,)°

Let (80,)¢ = bo, and (s¢,)¢ = be,. Then b = by, X b, .

7

3.3 The New Protocol

We employ the “e-cash division” technique in mobile agent applications to de-
fend against truncation attacks. The new protocol can be implemented in an

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents 163

e-market, since we need a trusted third party to manage the commitments from
the participant servers.

The protocol using “e-cash division” is illustrated in Fig. 1.

— Offer Encryption

€0; = Eyofoi, 1i}, 0<i<n (1)
— Generating hash value for selecting shares

hd; = H(e0i,Si+1), 0<i<n (2)
— Choosing shares

Ki = {Sic,,Stcy...Slc, }, 0 <1< (3)
— Offer Encapsulation

Oo = Sigwo(é‘Oo, 51) (4)

O; = Sigzi(0i, Si+1,Ki), 0 <i<n (5)
— Protocol

So — S1: [[, {Oo} (6)

Si — Sit1: [, {Oo, O1, ... 05}, 0<i<n (7)

Fig. 1. The protocol using “e-cash division” mechanism

We divide the agent’s journey into Preparation, Execution and Finishing
phases. There are seven stages involved in these phases: Setup, Offer encryption,
Choose and Share, Sign, Verify, Update and Reveal. All the stages except the
Reveal stage are always performed in each protocol run. The Reveal stage is con-
ducted only when a malicious action is detected. Any invalid data is detected in
the Verify stage. The application contains three parties: the sending server, the
receiving server and the trusted third party.

Preparation Phase
In this phase, all the participant servers in the e-market should purchase a bond
in the form of e-cash from any bank that is recognised by the trusted third party.
Setup Stage. The participant servers register with the trusted third party by
revealing their e-cash. If the amount of the e-cash is correct and the signature
of the issuing bank is valid, the trusted third party requests the servers to make
commitments to the next transaction. Assume a server S; has e-cash ¢; = (b;, s;)
where s; = b" with (e;,n;) as the public key of the issuing bank of ¢;.

To make a commitment, S; performs the following steps:
- S; splits s;, finding ¢ equations such that:
Sey X So; = 8; mod n; (1)
Sey X Sop = 8; mod n; (2)

Se, X 8o, = 8; mod n; (t)
- S; publishes b;, (e;,n;) and 2t commitments be, = s& mod n;, by, = 55 mod
Ny, =+, be, = s¢ mod n;, b,, = s mod n;. This commitment mechanism is

164 Min Yao, Kun Peng, and Ed Dawson

unconditionally binding, therefore at the end of the Preparation phase, the
secret holder is unable to change its chosen shares. The commitments can be
verified by anyone against b; by testing:

bgl X b01 = bz (1)

bgz X b02 = bz (2)

be, X by, = b; (%)
where b, X by, = 85 X 851 = (52, X 80,)% = 5;° = b;

In the Setup stage, the originator Sy also initialises the protocol (shown in
Fig. 1) by randomly generating ro. It then encrypts ro and a secret token og
with its public key. Sy signs this encrypted value together with the identity
of S7 to construct a dummy encapsulated offer Og. Finally Sy sends Og to the
first server S;. After the Setup stage is completed, the agent enters the e-market.

Execution Phase

From S; onwards, each server S; will perform the following four stages:

Offer encryption stage. When the agent arrives at a server S;, the server makes
an offer o; and also computes the identity of the next host S;11. Then S; con-
structs €o; by encrypting both o; and a random value r; with the public key of
the agent’s originator. Therefore only the agent’s originator can retrieve o;.

Choose and Share stage. Prior to sending the agent to S;;1, S; chooses t shares,
each of which is a partial share of the half-divided signature of the e-cash. S;
sends these shares to S;11 alongside the other data.

The shares are chosen using a hash-based algorithm:
1. S; takes its encrypted offer €o; and identity of the successor host S;11 as
inputs to a one-way hash function hd; = H(£0;, S;+1) that returns ¢ bits output.
We choose hd; to be a string of bits ajas...a; since we have k sets of shares in
this case.
2. S; chooses one share si., or si,, out of the set (sic;,si,,) (0 < j <) in
the equations above according to the value of each bit in ajas...a;. For example,
S; can choose the first share in equation (1) with even number subscript si.,
if a; = 05 or si,, if a; = 1. For convenience, we use a notation si., to indi-
cate a chosen share. si.; is either sic; or si,; (1 < j < t). As such, t shares
ki ={Xic,,Ticy...Tic, } are selected. The probability of producing two identical
sets of shares in this case is 21t .

Note the same set of shares cannot be reused in different protocol runs. Oth-
erwise the e-cash can be reconstructed and used by anyone who possesses it.

Sign stage. S; constructs an encapsulated offer O; by signing the encrypted offer
€0;, the identity of its next server S;y; and k;.

Verify stage. During the agent’s execution, a list of public keys of the participant
servers should be either published and/or carried with the gent. The public keys

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents 165

of the e-cash issuing banks should also be available to all entities in the e-market.
The commitments of the participant servers can be stored locally in each server’s
database. When these public keys and commitments are available, each server
in the agent’s itinerary can verify offers obtained at previous servers.

When the agent arrives at server S;;1, carrying a set of previously collected
encapsulated offers {Og, Oy, ... O;}, Si+1 can conduct verification as follows:

- S;+1 obtains O; from the chain and searches for the corresponding public key
yi from the key list. If Ver,, (O;) = true, S;41 ensures that the offer signature
is authentic. S;11 recovers {o;, r;}y,, the identity of S;11 and cs;. S;11 can not
view 0; since it was encrypted using the originator’s public key yg. S;41 verifies
its own identity and the shares in ;.

- Sit+1 gains shares {sic,,Sic,...Si¢, } from k; and the searches for the correspond-
ing public key (e;, n;) of the issuing bank. S;;1 computes di,, = sigf mod nj,
dir,, = sigi mod n,... dil, = si mod n;. S;11 also computes hd; = H(go;, Siy1)
and gains the ¢-bit string ajas...a; of hd;. It searches the corresponding commit-
ments in its own database and checks whether these equations are satisfied: If
a; =0 (1 <j <), di’cj Z die;; else aj = 1, di’cj ~ di,;. If this correspondence
does not exist, S;11 knows that S; did not correctly choose the set of secret
shares and should report this action to the trusted third party. As such S;;1 is
able to verify x;_1, ..., K2, K1.

Following the same line of reasoning, Og, O1, ... O;_1 can be verified. If no in-
tegrity violation is detected and the shares are matched with the commitments,
the agent continues its execution; otherwise, the agent’s computation aborts
early. In the latter case, S;+1 reports the abnormality to the trusted third party
and sends the identity of the suspected server to the trusted party.

Finishing Phase

Once the agent visits all the servers, it arrives at the trusted third party prior
to returning to the originator. The trusted third party verifies all the signatures
and shares from all of the visited servers in the agent’s itinerary. To detect if any
illegally repeated operations have taken place, the trusted third party publishes
all the received offers Oy,... O, and their associated shares {s1, ,s1,...s1¢ },...
{sn;, ,sn,...sn, }. If a visited server S; (1 < i < n) discovers any mismatch
between the published shares and its received shares, it contacts the trusted
third party and sends the mismatched shares. We assume that only the trusted
third party has the authority to reveal a dishonest server’s long-term private
key. The reveal stage then will be conducted.

Reveal stage. The trusted third party compares published shares {sj. , sj.,, ...,
sj, } with the received shares {sjc,, Sjcy, .-y Sjc, }- If at any position two bits are
not matched, the signature of the e-cash token can be reconstructed by simply
computing the multiplication of those bits. For instance, if sj;, # sjc,, then
5] = Sji, X Sje,- This token becomes forfeited by the server.

If the trusted third party can successfully complete the verification, it per-
forms the Update stage.

166 Min Yao, Kun Peng, and Ed Dawson

Update stage. At the beginning of each protocol execution, the trusted third
party informs all the participant servers to choose a new set of shares. It erases
the old commitments and publishes the new commitments. The servers must
ensure that they do not use the same set of shares in two protocol runs, otherwise
the signatures of their e-cash can be reconstructed. After these seven stages are
completed, the trusted third party will dispatch the agent back to the originator
(the buyer) with the collected data.

The protocol discussed above prevents a malicious server from any illegally
repeated operations that corrupt the collected data chain, by making the server’s
e-cash available for use. The cost of losing its e-cash is obvious. This is the main
deterrent in this system. The magnitude of this cost depends upon the amount
of the e-cash that the participant server needs to purchase the good.

4 Security Analysis

Theorem 1. If a host S,, computes hd,, more than once using different o,
or Sp41 as inputs and produces t bits output, the signature of Sy,’s e-cash can
be reconstructed with a probability no less than 1 — 27¢.

Proof. Let H() be a collision-resistant hash function with ¢ bits output. Sup-
pose a malicious host S, launches a truncation attack by replacing its successor
server Sy,41 and its own data €o,, with S}, ,, and co,," where (€0, Spy1) #
(€om', S}, 41), then hd,, # hd,, is satisfied with a probability no less than
1 — 27" where hd,, = H(0m,Sm+1) and hd], = H(eon',S), 1) as H() is
collision-resistant. So two different sets of shares {smc,,smc,,...,sme,} and
{sme, smey, ..., ome b determined by hd,, and hdj, respectively are revealed
and there exists {cq, ,} = {€a,0a}, 1 < a <y, also with a probability no less
than 1 — 27t Therefore, S,,’s private key sm = sm._ + sm,, can be recon-
structed with the same probability. O

The protocol in Fig. 1 can effectively prevent the truncation attack, the
stemming attack and some other attacks, as follows:

- Sending incorrect shares. In this attack, the malicious server S; (0 < j < n)
sends unpublished shares to S;41. This attack can be easily identified by 541
in its Verify stage.

- Truncation and Stemming attacks. As we have discussed in the Sect. 2.1, the
truncation and stemming attacks require one-time operations to be repeated.
According to Theorem 1, a malicious server’s e-cash will be forfeited with an
overwhelming large probability. In addition, since S; cannot tamper with the
encapsulated offers of other servers, it cannot shift the responsibility of a trun-
cation attack that it launches. All the encapsulated offers are digitally signed by
the server’s long term private key, of which the malicious server has no knowl-
edge. Any illegal modification can be detected during the verify stage.

As we have discussed in Sect. 2.1, the malicious server that launches a stem-
ming attack is difficult to identify. With the “e-division” technique, the malicious

Using “Fair Forfeit” to Prevent Truncation Attacks on Mobile Agents 167

server S, can be discovered: (1) during the verify stage when S,, 1 checks S,,’s
digital signature, if .S, deliberately inserted an offer but did not honestly sign it,
or (2) during the reveal stage after the trusted third party publishes the received
data, if S, truncates a string of data and inserts fake offers under the victim
servers’ names.

A special case of the truncation and the stemming attacks occurs when a
server S; that has not made an offer deletes a number of consecutive offers
{0;,0;41,... } in the mobile agent and appends fake offers {O;, Oj41,...} in-
stead. Since it has not sent its shares, there is no way to reconstruct the signature
of its e-cash. However this attack is very easy to detect as its identity is not in-
cluded in the offer O;_; produced by S;_1, unless it colludes with S;_;. However
this collusion will lead to the reconstruction of S;_;’s e-cash signature, simply
because S;_1 has to recompute O;_; in order to include S; in the encapsulated
offer.

- Modification, insertion and deletion attacks. Following the same argument
as for the truncation attack above, these three attacks that require illegally re-
peated operations will also be identified in the unveil stage. A special case of the
modification attack occurs when a re-visited server replaces its previous com-
mitted offers. This also requires the server to re-calculate a new offer. Therefore
it can be prevented with our new protocol.

Defense against other attacks is described in the extended paper.

The proposed scheme relies on the fact that each server will honestly utilise
the hash-based algorithm to choose a certain set of its signature shares to publish.
This can be checked at the “verify” stage when a verifier checks the correspon-
dence between the commitments calculated from a server’s chosen shares and
the same server’s published commitments, based on each bit of the hash value
(see “verify” stage in Sect. 3.3).

Note this technique can be also applied in any circumstance where repeated
operations are forbidden, and the choices of shares with each operation can be
varied. For example, they can be determined by data, time or other characters
of the operation.

Computation Efficiency.

Suppose each server chooses t sets of shares. The mechanism uses DSA for dig-
ital signatures with 160-bit SHA-1, as well as a 1024-bit RSA signature scheme.
The computational cost of RSA signature scheme is one exponentiation for each
generation and verification, and provides 128 bytes output. DSA needs two ex-
ponentiations with 40 bytes output.

Referring to Table 2, we count the average computational cost for each server
in terms of the number of modular exponentiations required by DSA signatures
as an example. To analyse the communication complexity, we count the num-
ber of bytes required to transmit the message from one server to another. The
communication cost only occurs when all the participant servers send their com-
mitments to the trusted third party and when the agent is dispatched from one

168 Min Yao, Kun Peng, and Ed Dawson

server to another. The maximum bandwidth is required when the agent is sent
from S,—1 to S, (assume the agent visits n servers).

Average Computational Cost
Stages Without “e-cash ~ With “e-cash
division” technique division” technique
(exponentiations) (exponentiations)

Setup - 1x 2t
Offer 2 2
Encryption

Choose and - -
Share

Sign 1 1
Verify n n+ t;
Update - 1x 2t
Reveal - -

Maximum Communication Cost
Stages Without “e-cash With “e-cash

division” division”
technique technique
Setup - 2t x 128bytes
n—1 n—1
Dispatch)" size(eo;) > size(eos)
i=0 i=0

n—1 n—1
+ > size(Si) + Y size(S;)
i=0 i=0
+n x 40 bytes +n x 40 bytes
+n X t x 128 bytes

Table 2. Comparison of computational and communication cost of the protocol

From the analysis above, some additional computation and communication
cost can be observed. The computation complexity relies on the number of the
shares chosen. The greater the number of shares chosen, the greater the compu-
tation cost and also the larger the payload of the agent as the shares have to be
sent with the agent. However the system is more secure with a larger number of
shares. Therefore there is a tradeoff between the computation complexity and
the security requirements.

However, the extra cost does not impact a great deal in the performance
of the protocol, since all the additional computation described above can be
done off-line. Communication cost during the protocol