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Preface

The nineteenth biennial International Conference on Information Processing in
Medical Imaging (IPMI) was held July 11–15, 2005 in Glenwood Springs, CO,
USA on the Spring Valley campus of the Colorado Mountain College. Following
the successful meeting in beautiful Ambleside in England, this year’s conference
addressed important recent developments in a broad range of topics related to
the acquisition, analysis and application of biomedical images.

Interest in IPMI has been steadily growing over the last decade. This is par-
tially due to the increased number of researchers entering the field of medical
imaging as a result of the Whitaker Foundation and the recently formed National
Institute of Biomedical Imaging and Bioengineering. This year, there were 245
full manuscripts submitted to the conference which was twice the number sub-
mitted in 2003 and almost four times the number of submissions in 2001. Of
these papers, 27 were accepted as oral presentations, and 36 excellent submis-
sions that could not be accommodated as oral presentations were presented as
posters. Selection of the papers for presentation was a difficult task as we were
unable to accommodate many of the excellent papers submitted this year. All
accepted manuscripts were allocated 12 pages in these proceedings.

Every effort was made to maintain those traditional features of IPMI that
have made this conference a unique and exciting experience since the inaugu-
ral meeting in 1969. Papers were presented in single-track sessions, followed by
discussions that did not have time limits. Although unlimited discussion ruins
carefully planned meal schedules, many participants welcome the rich, detailed
descriptions of essential techniques that often emerge from the discussions. For
that reason, IPMI is often viewed as a true workshop in contrast to the con-
strained schedules of most conferences.

The main focus at IPMI has always been to encourage the participation of
new investigators, loosely described as students, postdocs, and junior faculty
under 35 years of age who are presenting at IPMI for the first time. To broaden
participation in the discussion, we continued the “discussion group” idea intro-
duced by Chris Taylor and Alison Noble in 2003. Small groups of new investi-
gators led by Scientific Committee members met before each session to discuss
the papers to be presented and formulate questions and comments to be raised
during the session. We were lucky to have Carl Jaffe from the National Cancer
Institute, to give a plenary talk on recent advances and open problems in cancer
imaging research.

The setting and dress have always been casual, which promotes collegiality
and an exchange of information unfettered by the usual formalities. This year
the conference was held on the Spring Valley campus of the Colorado Mountain
College, where attendees stayed together in the university housing. The causal
approach helps organizers keep costs low, thus encouraging young investigator
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participation. The tradition of carrying on discussion into the evening was con-
tinued. We provided bus service to downtown Glenwood Springs where attendees
enjoyed the local bars, relaxed in the hot springs, and took strolls through the
beautiful downtown area. On Wednesday afternoon, attendees bonded during a
13-mile bike ride along the scenic Colorado River, relaxed in the hot springs,
or visited the ski resort town of Aspen. Later that evening, everyone enjoyed a
pleasant dinner at the elegant Rivers restaurant, and those who wanted stayed
late into the night on the porch overlooking the Roaring Fork River.

IPMI is a unique meeting for which we, the members of the IPMI board,
and many other participants hold a true affection. While it was a great deal of
work, we were delighted to be given the opportunity to organize this meeting
and continue the IPMI tradition. We are looking forward to a more relaxed par-
ticipation at IPMI 2007 in the Rolduc Abbey in The Netherlands!

July 2005 Gary E. Christensen
Milan Sonka
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Cybèle Ciofolo, Christian Barillot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Coupled Shape Distribution-Based Segmentation of Multiple Objects
Andrew Litvin, William C. Karl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Partition-Based Extraction of Cerebral Arteries from CT Angiography
with Emphasis on Adaptive Tracking

Hackjoon Shim, Il Dong Yun, Kyoung Mu Lee, Sang Uk Lee . . . . . . . . . 357



XVIII Table of Contents

Small Animal Imaging

Regional Whole Body Fat Quantification in Mice
Xenophon Papademetris, Pavel Shkarin, Lawrence H. Staib,

Kevin L. Behar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Surfaces and Segmentation

Surface Matching via Currents
Marc Vaillant, Joan Glaunès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

A Genetic Algorithm for the Topology Correction of Cortical Surfaces
Florent Ségonne, Eric Grimson, Bruce Fischl . . . . . . . . . . . . . . . . . . . . . 393

Simultaneous Segmentation of Multiple Closed Surfaces Using Optimal
Graph Searching

Kang Li, Steven Millington, Xiaodong Wu, Danny Z. Chen,

Milan Sonka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

A Generalized Level Set Formulation of the Mumford-Shah Functional
for Brain MR Image Segmentation

Lishui Cheng, Jie Yang, Xian Fan, Yuemin Zhu . . . . . . . . . . . . . . . . . . . 418

Applications

Integrable Pressure Gradients via Harmonics-Based Orthogonal
Projection

Yuehuan Wang, Amir A. Amini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Design of Robust Vascular Tree Matching: Validation on Liver
Arnaud Charnoz, Vincent Agnus, Grégoire Malandain,
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Anne Cuzol, Pierre Hellier, Etienne Mémin . . . . . . . . . . . . . . . . . . . . . . . 456

Transitive Inverse-Consistent Manifold Registration
Xiujuan Geng, Dinesh Kumar, Gary E. Christensen . . . . . . . . . . . . . . . . 468



Table of Contents XIX

Cortical Surface Alignment Using Geometry Driven Multispectral
Optical Flow

Duygu Tosun, Jerry L. Prince . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Inverse Consistent Mapping in 3D Deformable Image Registration:
Its Construction and Statistical Properties

Alex Leow, Sung-Cheng Huang, Alex Geng, James Becker,

Simon Davis, Arthur Toga, Paul Thompson . . . . . . . . . . . . . . . . . . . . . . . 493

Poster Session 2

Robust Nonrigid Multimodal Image Registration Using Local Frequency
Maps
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A Unified Information-Theoretic Approach

to Groupwise Non-rigid Registration
and Model Building
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Abstract. The non-rigid registration of a group of images shares a
common feature with building a model of a group of images: a dense,
consistent correspondence across the group. Image registration aims to
find the correspondence, while modelling requires it. This paper presents
the theoretical framework required to unify these two areas, providing a
groupwise registration algorithm, where the inherently groupwise model
of the image data becomes an integral part of the registration process.

The performance of this algorithm is evaluated by extending the con-
cepts of generalisability and specificity from shape models to image mod-
els. This provides an independent metric for comparing registration al-
gorithms of groups of images. Experimental results on MR data of brains
for various pairwise and groupwise registration algorithms is presented,
and demonstrates the feasibility of the combined registration/modelling
framework, as well as providing quantitative evidence for the superiority
of groupwise approaches to registration.

1 Introduction

Over the past few years, non-rigid registration has been used increasingly as a
basis for medical image analysis. Applications include structural analysis, atlas
matching and change analysis. There are well-established methods for pairwise
image registration(for a review, see e.g., [12]), but often it is necessary to reg-
ister a group of images. This can be achieved by repeatedly applying pairwise
registration, but there is no guarantee that the solution is unique – depending on
the choice of reference image, representation of warp, and optimisation strategy,
many different results can be obtained for the same set of images. Clearly, this
does not form a satisfactory basis for analysis.

In this paper we consider non-rigid image registration as a complementary
problem to that of modelling a group of images [2]. A statistical model of a group
of images requires that a dense correspondence is defined across the group, which

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is precisely what non-rigid image registration provides. The key idea explored
in this paper is that the best correspondence is that which generates the best
model of the data. Building on the optimal shape model approach of Davies et
al [3], we define a minimum description length (MDL) criterion for image model
quality. We show that a unique correspondence can be defined across a group of
images by minimising, explicitly, an MDL objective function.

The combination of non-rigid image registration with modelling was shown
previously by Frangi et al. [5], who used non-rigid registration to automatically
construct 3D statistical shape models of the left and right ventricles of the heart.
However, their method did require an initial manual labelling of every image in
the training set. As regards groupwise non-rigid registration, several authors
have considered the problem of choosing the best reference image. For instance,
Bhatia et al [1] use a fixed intensity reference picked from the training set, but
select the spatial frame of the reference so that the sum of deformations from this
spatial reference frame is zero. Davis et al [4] concentrate specifically on deriving
the most representative template image for a group of images, using sum-of-
squared difference on the space of image discrepancies, and a metric on the
diffeomorphism group of spatial deformations. Each of these approaches involve
defining a series of independant criteria for what constitutes image matching,
how image deformation is weighted against spatial deformation and so on. The
advantage of our approach is that we use a single criterion – minimum description
length – which can in principle determine not just the groupwise correspondence
across the set of images, but also the optimal spatial reference frame, the optimal
reference image and, potentially, the optimal model parameters (e.g., number of
modes of the model retained). It hence combines registration and modelling
within a single framework.

In this paper, we present a full description of our framework for groupwise
registration, defining the MDL objective function and showing how the optimi-
sation can be performed in a principled way by moving between different frames
of reference. We validate the MDL objective function experimentally, using a set
of annotated 2D MR brain slices. We also address the problem of evaluating dif-
ferent groupwise correspondences, by defining the generalisabilty and specificity
of the resulting models. Again, we validate these measures using annotated data.
We use these measures to evaluate the performance of a range of pairwise and
groupwise approaches to registering a set of brain images, and show that the
groupwise approach gives quantitatively better performance than pairwise.

2 Spatial and Pixel/Voxel-Value Transformations

The aim of non-rigid registration is to define a consistent spatial correspondence
across a set of training images. One way to ensure a consistent correspondence is
to define all correspondences w.r.t. a spatial reference frame – the origin of the
space of spatial deformations. We define the following basic notational conven-
tions , taking as our example the simplest case of a spatial warp directly between
a training image frame and a reference frame (see Fig. 1):
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• X0 is the regular grid of pixel/voxel positions on which each of our images
is defined.

• R is the spatial frame of the reference. A reference image IR(X0) consists
of the set of values of a function IR, taken at the set of positions X0.

• The set of N training images is denoted by {ITi
(X0) : i = 1, . . . N}, where

Ti is the spatial frame of image i, with associated image function ITi
.

The dense correspondence between a training image frame Ti and the reference
frame R is defined by a spatial warp ωi : x ∈ Ti �→ ωi(x) ∈ R. The warp ωi

also induces a mapping between the function spaces (that is, it warps images
between frames). Mathematically, there are two such mappings:

The push-forward: ωi : ITi
�→ Iωi

Ti

.
= ωi(ITi

), Iωi

Ti
(ωi(x))

.
= ITi

(x)
The pullback: ω∗

i : IR �→ I∗R
.
= ω∗

i (IR), I∗R(x)
.
= IR(ωi(x))

The pullback ω∗
i is easier to

Fig. 1. A spatial warp ωi from training frame Ti

to reference frame R. X0 (black filled circles) is
the set of regular voxel positions, with the grey
filled circles being the warped voxel positions
ωi(X0)

compute, since we resample IR in
R from the regular grid X0 to the
irregular, warped grid ωi(X0) to
obtain I∗R(X0) in Ti, whereas the
push-forward mapping entails re-
sampling Iωi

Ti
in R from the irreg-

ular grid ωi(X0) to the regular
grid X0, which is computation-
ally more expensive. So, in what
follows, we will use the pullback

mapping wherever possible, where
the direction of flow of image in-
formation is in the opposite direction to that of the spatial mapping.

Once we can map images between frames, we can compare images. We will
denote a general image-difference/discrepancy-image by ∆I. So, in the example
above, if we define a discrepancy image in the frame Ti:

∆ITi
(X0) = ITi

(X0) − I∗R(X0) =⇒ (∆ITi
◦ ω∗

i )IR(X0) ≡ ITi
(X0), (1)

where (∆ITi
◦ ω∗

i ) is taken to denote the composition of a pullback mapping
ω∗

i and a voxel-value deformation ∆ITi
(X0). The pixel/voxel-value deformation

in this case is defined such that when applied to the warped reference image
I∗R(X0) it exactly recreates the training set image ITi

(X0). It is important to
note that in general these two classes of transformations do not commute. We
now have a general class of image deformations, composed of a spatial part and
a discrepancy image part – we will denote such a general combined deformation
by capital greek letters (e.g., Ωi).

A more complicated situation is shown in Fig. 2. This shows the reference
image being transformed into a training image ITi

, by a sequence of two combined
transformations Υi then Ωi. We take this approach since, if we are to model
combined transformations across the group of images, we need them to be applied



4 C.J. Twining et al.

Fig. 2. Top: The spatial transformations (black arrows) between reference, interme-
diate and training image frames for one image i in the training set. Bottom: The
corresponding combined (spatial and voxel-intensity) transformations (broad grey ar-
rows) between images

in a common frame. So, the spatial transformations {υi} and the discrepancy
images {∆iIR} are all applied in the reference frame R, hence can be modelled
across the group. However, the direction of the spatial warp υi is now in the same

direction as the combined warp Υi (the direction of flow of image information),
which means that Υi no longer has the simple form given above, but is given by:

Υi = υi ◦ ∆iIR, (2)

which uses the push-forward mapping υi as applied to images, rather than the
easier-to-compute pullback. The spatial warp ωi is now just from the training
frame Ti to the intermediate frame Mi, the corresponding combined warp Ωi

being constructed using the pullback ω∗
i and the discrepancy image ∆ITi

, which
is calculated in a manner analogous to (1), but with the intermediate image IMi

taking the place of the reference image IR. This second combined transformation
is included because in general the groupwise-modelled transformation will not
completely represent the total required transformation.

3 The Objective Function

As we explained in the Introduction, we have chosen to define the optimal group-
wise non-rigid registration as that which minimises an objective function based
on the minimum description length (MDL) principle [7].

The basic idea behind MDL is that we consider transmitting our dataset to
a receiver, encoding the dataset using some model1. Using the structure and
notation defined in the previous section, the data we have to transmit is the

1 Note that in this paper, we use ‘model’ in two senses – in terms of an encoding
model, which can be something very simple, such as a flat distribution over a known
range, and in terms of a groupwise model, explicitly constructed to fit the data.
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reference image IR and the set of combined deformations {Υi, Ωi} that enable
us to exactly reconstruct each training image. Optimising the description length
means in principle finding:

• The optimal reference image IR(X0) and optimal reference frame R.
• The optimal set of combined transformations {Υi, Ωi} via:

– The optimal groupwise encoding of the deformations that act in a com-
mon frame, that is, the optimal groupwise model of the set {Υi},

– Encoding of the residual deformations {Ωi}, which do not act in a com-
mon frame.

The total description length can hence be decomposed thus:

Ltotal = LR(R, IR) +Lparams +Lgroup({Υi}) +Lresiduals({Ωi})
Reference frame

& reference image

Parameters of

groupwise model

Encoded using

groupwise model

Encoded residuals

(3)

Actual description lengths are computed using the fundamental result of Shan-
non [9] – if there are a set of possible, discrete events {A} with associated
encoding-model probabilities {pA}, then the optimum code length required to
transmit the occurrence of event A is given by:

LA = − ln pA nats� (4)

The encoding lengths for unsigned and signed integers are calculated thus:

LZ+(n) =
1

e
+ ln(n) nats, n ∈ Z

+, LZ(n) =
2

e
+ ln(n) nats, n ∈ Z. (5)

As an example, consider the description length for transmitting a discrepancy
image ∆I(X0) according to the image histogram. The NI = size(X0) voxels of
the image are taken to be integers in the range [−Nrange, . . . Nrange], Nm voxels
having the value m. The associated model probability is then p(m) = Nm

NI
. The

description length is:

LHist(∆I) =−
∑

m, Nm>0

ln
(

1
2Nrange+1

)
+

∑
m, Nm>0

LZ+(Nm) −
∑

x∈X0

ln p(∆I(x)).

Positions of occupied bins Bin Occupancies Encoded Data

(6)

See [11, 10] for further details.

4 The Algorithmic Framework

4.1 Initialisation

In [10], an algorithm was presented to find an initial correspondence using MDL.
The structure of the algorithm followed that shown in Fig. 1. The free variables

� The nat is the analogous unit to the bit, but using a base of e rather than base 2.
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Algorithm 1. MDL NRR Initialisation

1: {ωi = I, i = 1, . . . N} %:Initialize warps to the identity.

2: Repeat

3: Randomize the order of the set of training images ITi
(X0), indexed by i.

4: For i = 1 to N do

5: Optimise Linit({ωk}) w.r.t. spatial warp ωi.
6: Update Intermediate Images {IMj

(X0) : j �= i}. %:Using equation (8).

7: End

8: Until convergence

were the set of spatial warps {ωi}, initialised to the identity I, and the reference
image was taken to be the mean of the training images, pulled-back using the
inverses {ω−1

i }:

IR(X0) =
1

N

N∑
i=1

[
ω−1

i

∗
(ITi

)
]
(X0). (7)

This algorithm was fully groupwise, in that changes to any of the {ωi} change
the reference, hence change the description length for all of the images in the set.
However, the calculation of the inverse warps (or alternatively the push-forward
mappings generated by {ωi}) is computationally expensive.

We propose here a computationally cheaper initialisation algorithm, within
the structure shown in Fig. 2. We keep the idea from the algorithm presented
in [10], of initial image estimates based on averages of pushed-forward training
images, but instead choose to populate the intermediate images, using the leave-
one-out means:

IMi
(X0) =

1

N − 1

∑
j �=i

[ω−1
j

∗
(ITj

)](X0), (8)

with {υi = I}. We do not explicitly assign a value to the reference image. But
we would expect the intermediate images to mutually converge as the algorithm
progresses and the images are brought into alignment, so that {∆iIR �→ ∅}.
So, we estimate the true description length thus:

Linit({ωi}) = 1
N

∑
i

LHist(IMi
(X0)) +

∑
i

L(ωi) +
∑
i

L(∆ITi
(X0)).

Estimate of LHist(IR(X0)) Spatial Warps Discrepancy Images

(9)

The pseudocode for the initialisation algorithm is given in Alg. 1. Note that
the update of the Intermediate images {IMi

(X0)} (line 6) can be carried out
less-frequently than at every training image, if required.

4.2 Groupwise Models

We have shown how to initialise the registration algorithm, within the struc-
ture shown in Fig. 1. However, when it comes to building groupwise models, we
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Algorithm 2. MDL NRR & Groupwise Model Building

1: Run Algorithm 1 %:Output is {IMi
(X0), ωi, ∆ITi

(X0)}

2: υi ⇐ I %:Initial Shared frame for all Intermediate Images

3: IR(X0) ⇐
1

N

∑
i
IMi

(X0) %:Estimate Reference as Mean

4: ∆iIR ⇐ IMi
(X0) − IR(X0) %:Maintain Intermediate Images

Build & Test groupwise model of {Υi ≡ υi ◦ ∆iIR}
5: (IR, {∆iIR, υi, ωi, IMi

, ∆ITI
}) ⇐ TEST-MODEL(IR, {∆iIR, υi, ωi})

Main Loop

6: Repeat

7: Repeat

8: Randomize the order of the set of training images ITi
(X0), indexed by i

Optimise warps ωi

9: For i = 1 to N do

10: Optimise Ltotal w.r.t. spatial warps ωi. %:Ltotal calculated from eq. (3)

11: End

12: Until convergence
Re-Build Model

13: (IR, {∆iIR, υi, ωi, IMi
, ∆ITI

}) ⇐ TEST-MODEL(IR, {∆iIR, υi, ωi})
14: Until convergence

Function TEST-MODEL: Build & Test Groupwise Model

1: Lold ⇐ Ltotal(IR, {∆iIR, υi, ωi}) %:Description Length L before modelling, eq.(3)

2: υnew

i ⇐ ω−1

i
◦ υi %:Put all spatial warp into υi

Build Model

3: (Inew

R , {∆new

i IR, υnew

i }) ⇐ MODEL(IR, {∆iIR, υnew

i })
4: ωnew

i ⇐ υnew

i ◦ (υ−1

i
◦ ωi) %:Reset ωnew

i to maintain spatial correspondence

5: Lnew ⇐ Ltotal(I
new

R , {∆new

i IR, υnew

i , ωnew

i }) %:Description Length after modelling

6: If Lnew ≤ Lold then

7: ωi ⇐ ωnew

i , υi ⇐ υnew

i , IR ⇐ Inew

R , ∆iIR ⇐ ∆new

i IR %:Accept new values

8: IMi
(X0) ⇐ (υi ◦ ∆iIR)IR(X0) %:Reset Intermediate Images

9: ∆ITi
(X0) ⇐ ITi

(X0) − [ω∗
i (IMi

)](X0) %:Reset discrepancies in Training frame

10: End

have the structure shown in Fig. 2. One method would be to build some default
generative model of the set of deformations {Υi}, and then search within the
space of this model. However, this approach suffers from two drawbacks; firstly,
the use of a default model (such as a gaussian) would bias the results, since
it would tend to force the deformations to have a gaussian distribution, rather
than finding the best deformations. The second drawback is computational – if
we alter Υi, we have to then re-calculate Ωi so that the combined deformation
does indeed re-create our target training image ITi

(X0). This means that we
have to re-calculate the intermediate image IMi

(X0), which means either calcu-
lating a pushforward mapping via υi, or a pushback via υ−1

i , both of which are
computationally expensive.
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We take an alternative approach, which is to optimise the {ωi}. As in Alg. 1,
this only involves computing the pullback ω∗

i . So, after we have optimised the
set {Ωi}, we then transfer of much of this combined deformation as possible
from the intermediate frame Mi to the equivalent deformation applied in the
reference frame R. We can then construct a model in the reference frame. The
proposed algorithm is given in Alg. 2. Lines 1-5 are just the initialisation stages,
which run the previous initialisation algorithm. The transfer between {Ωi} and
{Υi} is given in lines 2-3 of the function TEST-MODEL. An important point to
note is in line 4 of that function – we maintain the spatial correspondence that
we have previously found, despite moving spatial warps between frames. We
then build a model of the set of combined deformations {Υi = (υi ◦ ∆iIR)} and
the reference image IR(X0). The modelled deformations are not necessarily the
same as the input deformations to the modelling process, which is the reason for
the resetting in line 5. We then accept this model provided that it decreases the
total description length.

5 Implementation Issues

Consider the relation of spatial frames for the groupwise algorithm (e.g., see
Fig. 2 and Alg. 2) – it is clear that we require a description of spatial warps
{ωi, υi} that allows us to efficiently invert and concatenate warps, as well as a
description which allows us to represent a set of warps (i.e.,{υi}) within a com-
mon representation for the purposes of modelling. Such a description is provided
by spline-based formulations which interpolate the movement of general points
from the movement of a set of nodes/knotpoints, where the knotpoints can take
arbitrary positions. In the experiments which follow, we use both the clamped-
plate spline, and an efficient spline based on the piecewise-linear interpolation
of movements across a tesselated set of knotpoints in either 2D or 3D.

The advantages of such a knotpoint based scheme is that it can be applied
in both a multi-resolution and a data-driven fashion. Successive optimisations
of the set {ωi} in Alg. 2 are calculated by adding knotpoints to the previously-
optimised set (hence increasing the resolution of the spatial warp). These knot-
points are also chosen in a data-driven manner (e.g., image features such as
edges, or places of high discrepancy – see [6, 8] for further examples of such
data-driven techniques). This not only increases the computational efficiency
of our implementation but, as will be shown later, also leads to quantitatively
better models. We use a coarse-to-fine strategy during the optimisation – at a
coarse spatial resolution, node movements can be large, and it is sufficient to
use a low-resolution version of the image. As the spatial resolution of the warps
increases, so does the spatial resolution of the image used. The optimisation
scheme for the nodes is a simple gradient descent – points are moved singly to
estimate the gradient direction for the objective function, but moved all at once
using a line search.
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6 Model Evaluation Criteria

In order to compare different algorithms for non-rigid registration and model
building, we need to have some quantitative measures of the properties of a given
model. Following Davies et al. [3], we use two measures of model performance:

• Generalisability: the ability to represent unseen images which belong to
the same class as images in the training set.

• Specificity: the ability to only represent images similar to those seen in the
training set.

Let {Ia(X0) : a = 1, . . . N} be some large set of images, generated by the group-
wise model, and having a distribution which is the model distribution. Then we
define the following:

G =
1

N

N∑
i=1

min
w.r.t a

(|ITi
(X0) − Ia(X0)|) , Generalisability, (10)

S =
1

N

N∑
a=1

min
w.r.t. i

(|ITi
(X0) − Ia(X0)|) , Specificity, (11)

where the distance |·| is a measure of the distance between two images. This could
be taken as the Euclidean distance between images, but this is likely to be very
sensitive to quite small shape changes or misalignments, and thus not provide
a useful measure of image difference. To deal with this problem, we have used
shuffle distance, calculating, for each pixel in one image, the minimum intensity
difference to any pixel/voxel within a radius r of the corresponding pixel/voxel
in the other image. The shuffle distance is then defined as the sum across all
voxels/pixels of the absolute intensity differences, since this is more robust to
outliers than sum-of squares. Note that our definition of G is not that used
in [3], but a form which is symmetric as regards the form of S; G measures how
close each training image is to images in the modelled distribution, whereas S

measures how close each model-generated image is to the training data. Standard
errors for S and G can be defined similarly to Davies et al.

7 Experiments

We have performed experiments to validate our MDL objective function and
model evaluation criteria and investigate the performance of several different
non-rigid registration methods, including that presented in this paper. Although
all the methods we have described can be used in 3D, it was impractical to run
the very large set of experiments required in the time available, thus we present
results for 2D images of the brain.

7.1 Behaviour of the MDL Objective Function

The first question to be answered is whether the total description length has a
suitable minimum as regards correspondence across a set of images. To investi-
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Fig. 3. Left: Two examples of marked-up brains, showing annotation. Right: Total
description length for this dataset as a function of the size of the perturbation of the
points

gate this, we took a dataset which consisted of 2D MR image slices; this dataset
had been expertly annotated with 163 points around the skull, ventricles, the
caudate nucleus and the lentiform nucleus (see Fig. 3). The clamped-plate spline
warp between these points then defined dense image correspondence. We applied
a perturbation to the point positions on all the images (independent Gaussian
noise of width σ, 5 trials for each value of σ, with 10 images in the dataset). For
each value of σ, we constructed the corresponding shape and texture models, the
discrepancy between the actual images and the model representations, and hence
calculated the total description length. As can be seen from the Figure, there is
a general trend that as the perturbation increases, so does the total description
length, indicating that the description length does indeed have a minimum in
the vicinity of the annotated correspondence.

7.2 Behaviour of the Model Evaluation Criteria

To validate our Generalisability G (10) and Specificity S (11) criteria, we took
the same dataset and markup as above, but now with 36 examples. As before,
we perturbed the point positions and built the corresponding shape and texture
models. We then generated 1000 examples sampled from each model p.d.f., and
calculated G and S. The results for various values of the perturbation width σ,

Fig. 4. Left: Generalisation Ability and Right: Specificity as a function of the size
of the perturbation on the points, for various radii of shuffle distance plus Euclidean
distance. Standard errorbars smaller than markers in all cases
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and different shuffle distances (r), are shown in Fig. 4. It can be seen that both
Generalisability and Specificity increase (get worse) as σ is increased, indicating
that they provide useful independent measures of model quality.

The useful range of response is greater for larger shuffle distances (e.g., the
slope of the 5×5 (r = 2) shuffle distance curve is lower than that of the Euclidian
distance curve). In the automatic model building experiments described below
we used the 5 × 5 shuffle distance to calculate G and S.

7.3 Evaluation of Pairwise and Groupwise Registration and

Models

To evaluate different methods of non-

Fig. 5. Example images from the brain slice
training set, showing the tessellation

rigid registration we used a dataset
consisting of 104 2D MR slices of brains
taken from normals; the initial 3D data
set was affinely-aligned, and then the
corresponding slice extracted from each
example. Fig. 5 shows examples of the
slices. In order to compare different
registration strategies, for each tech-
nique we registered the entire set of
104 images and built the statistical
models of shape and appearance given
by the found correspondence, using the nodes/knotpoints used during the reg-
istration. We then computed the Generalisability G (10) and Specificity S (11)
for each model (generating 1000 model examples in each case, and using a 5-
pixels square sample region for the shuffle distance), enabling a quantitative
comparison of the registration strategies from which each model was derived.
The strategies tested were:

1 Pairwise Registration:
A Image from training set chosen as reference & 16 × 16 regular grid of nodes:

i Residuals calculated in reference frame.
ii Residuals calculated in training frame.

B As above, but removing points from the grid in regions of low texture variance.
C Ditto, but moving points to nearby strong edges.

2 Groupwise Registration:
A Registering to Intermediate Images estimated as the leave-one-out means (Alg. 1).
B Registering to Intermediate Images estimated using the leave-one-out models.

Note that for 1, we tried a selection of images from the training set as the
reference, and choose that which gave the best results in terms of the evaluation
criteria. Strategy 2B can be viewed as an approximation to the full algorithm
given in Alg. 2; in the same way that in the initialisation algorithm (Alg. 1) we
estimate the Intermediate Images {IMi

} using the leave-one-out mean, in this
case we estimate them by finding the closest fit to the training image ITi

using
the shape model built from all the other examples and the current best estimate
of their correspondence. We then optimise the description length of the shape
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Fig. 6. Generalisation ability and Specificity for the strategies listed in $7.3 – dark
bars groupwise, light bars pairwise

Fig. 7. The first two modes of the shape model built using the results of groupwise
registration, acting upon the mean of the texture model

and texture discrepancies between this model estimate and the training image.
Note that we do not model the texture at this intermediate stage – this is because
in the inner loops of Algs. 1&2, the warps {ωi} at each spatial resolution are
fully optimised, hence can then be modelled, whereas the texture discrepancy is
merely continually reduced. The results of this comparison are given in Fig. 6.

8 Discussion and Conclusions

We have presented a principled framework for groupwise non-rigid registration,
based on the concept of minimum description length. A groupwise model of
shape and appearance is an integral part of the regsitration algorithm, hence the
registration also produces an optimal appearance model. We have given a full
description of a practical implementation of the basic ideas. Another important
contribution is the introduction of objective criteria for evaluating the results of
non-rigid registration, based on the properties of the resulting appearance model.
The results summarised in Fig. 4 show that the method of evaluation we propose
provides a practical method of comparing the quality of different non-rigid regis-
trations. The results summarised in Fig. 3 show that our MDL objective function
behaves as expected, with a minimum for a groupwise correspondence close to
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that given by expert manual annotation. the key results are those summarised
in Fig. 6. These show that our groupwise approach achieves better Specificity
than several different pairwise approaches. They also show the importance of
measuring errors in the correct frame of reference. Further work is required to
implement more sophisticated versions of our groupwise approach, and to provide
a more comprehensive set of comparisions to alternative approaches. Our initial
results are, however, extremely encouraging.
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12. Barbara Zitová and Jan Flusser. Image registration methods: A survey. Image and
Vision Computing, 21:977 – 1000, 2003.



Hypothesis Testing with Nonlinear
Shape Models

Timothy B. Terriberry1, Sarang C. Joshi1,2, and Guido Gerig1,3

1 Dept. of Computer Science
2 Dept. of Radiation Oncology

3 Dept. of Psychiatry, Univ. of North Carolina, Chapel Hill, NC 27599, USA
{tterribe, joshi, gerig}@cs.unc.edu

Abstract. We present a method for two-sample hypothesis testing for
statistical shape analysis using nonlinear shape models. Our approach
uses a true multivariate permutation test that is invariant to the scale
of different model parameters and that explicitly accounts for the de-
pendencies between variables. We apply our method to m-rep models of
the lateral ventricles to examine the amount of shape variability in twins
with different degrees of genetic similarity.

1 Introduction

We have been developing methods for statistical shape analysis utilizing medial
representations. However, these and many other useful shape models contain
a large number of parameters that lie in nonlinear spaces, and so traditional
statistical analysis tools designed for Euclidean spaces have to be reformulated.
In this paper we formalize the notion of hypothesis testing against data that
lies in the direct product of a large number of nonlinear spaces as a tool for
understanding growth and disease.

Recently, Fletcher et al. have developed methods for one-sample statistical
shape analysis based on medial representations, or m-reps [1, 2, 3]. We turn to
the problem of two-sample statistics, where we wish to answer the following
question: given two samples from two different populations, do they have the
same statistical distribution? This is the classic problem of testing the null hy-
pothesis, H0, that the populations are identical, against its complement, H1.
The main difficulty arises from the fact that m-reps lie on high-dimensional non-
linear manifolds where assumptions of Gaussianity are unreasonable, making
traditional parametric or linear methods inapplicable.

We present a true multivariate permutation test approach that is equiva-
lent to traditional nonparametric permutation tests in the univariate case, and
converges to the same result as Hotelling’s well-known T 2 test in the linear,
normally-distributed case. The only tool we require on the underlying space our
data lives in is the existence of a metric.

The mechanics of the method are similar to those used in correction for
multiple tests [4]. Unlike methods of direct combination, which sum up various
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Fig. 1. Left: An example m-rep of a left lateral ventricle. The mesh vertices and off-
shooting spokes make up the medial atoms. The shape the m-rep was fit to is shown as
a point cloud surrounding it. Right: Ventricle pairs from five monozygotic twin pairs
(top) and five dizygotic twin pairs (bottom)

test statistics [5, 6], our method is invariant to the scale of each term. This is
critical when different shape parameters have different physical units and the
choice of weighting between them can be arbitrary. Our test also accounts for
the dependencies between model parameters.

1.1 A Metric Space for M-Reps

M-reps are a medial shape model whose parameters provide intuitive descriptions
of local object thickness, bending, narrowing, and widening. They have been
well-described by previous authors [7], but for completeness we provide a brief
summary. An m-rep is a coarse grid of samples that lie on the medial axis of an
object. Each sample, called a medial atom, consists of a 4-tuple m = (x, r,n0,n1)
of parameters. The 3-D position of the atom is x ∈ R3, the distance to the two
closest boundary points is r ∈ R+, and n0,n1 ∈ S2 are unit vectors that point
from the atom position towards the two boundary points. The direct product of
these spaces, R3 × R+ × S2 × S2, is denoted M(1), and an entire m-rep with p
medial atoms lives in the direct product space M(p) = M(1)p. See Fig. 1 for an
example of a complete model and a sample of our shape population.

Fletcher et al. treat medial atoms as elements of a Riemannian symmet-
ric space [2]. Such a space is a differentiable manifold and has a Riemannian
metric that is invariant to certain transformations of the space. R3 uses the nor-
mal Euclidean metric, while the positive reals, R+, use the metric d(r1, r2) =
|log(r1) − log(r2)|, and the unit sphere, S2, uses distance measured along the
surface of the sphere. Every point on the manifold has a tangent plane, which is
a vector space, and exponential and log maps that project from the plane to the
manifold and back while preserving distances from the tangent point in a local
neighborhood. For a more complete treatment, see Fletcher’s Ph.D. thesis [3].

1.2 One-Sample Statistics in Nonlinear Spaces

In linear spaces, the most important property of a probability distribution is
often its first moment, the mean. Fréchet generalized the notion of an arithmetic
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mean of a sample of n points xi drawn from a distribution in a general metric
space M as the point which minimizes the sum-of-squared distances [8]:

µ̂ = argminx∈M

1
2n

n∑
i=1

d(x, xi)2 . (1)

This is sometimes referred to as the Fréchet mean or the intrinsic mean, but
hereafter will just be called the mean.

In general, this mean may not exist, or may not be unique, and without
additional structure on the metric space, the minimization may be difficult to
perform. However, for Riemannian manifolds, it is possible to compute the gra-
dient of this functional [9], making a gradient descent algorithm possible [10].
Kendall showed that existence and uniqueness is guaranteed if the data is well-
localized [11]. Fletcher et al. extend this, using principal component analysis
(PCA) in the tangent plane at the mean to characterize the distribution of one
sample [2].

1.3 Two-Sample Statistics

If we assume both of our distributions are identical around the mean, and that
they can be characterized entirely by the distance from the mean, then a single
global distance value is sufficient to construct a univariate permutation test for
equality of the two means. Permutation tests are appealing because they make
no other distributional assumptions, requiring only that the data in each group
be exchangeable under the null hypothesis that they do in fact come from the
same distribution. The interested reader is referred to Bradley [12] or Nichols
and Holmes [13] for details.

However, our geometric models contain parameters in nonlinear spaces, like
the sphere. Some parameters may have a large variance, masking the effects of
other variables with a smaller variance that might provide greater discrimina-
tion. Some may be highly correlated, unduly increasing their contribution to the
distance over that of parameters with less correlation. Some will have completely
different scales, and appropriate scale factors need to be determined to combine
them in a single metric. These factors make the assumption that the distance
from the mean entirely characterizes the distribution hard to justify.

For example, scaling the model will change the distance between medial atom
centers, x, without affecting the distance between radii or spoke directions. To
combat this, Fletcher et al. propose scaling the latter by the average radius
across corresponding medial atoms [2], but this choice is somewhat arbitrary.
It does restore invariance to scale, but does nothing to handle differing degrees
of variability or correlation. Different choices of scale factors will produce tests
with different powers.

In Rn, if we relax our assumption that the distribution is characterized by
the distance from the mean, and instead assume only a common covariance, the
classic Hotelling’s T 2 test provides a test invariant to coordinate transformations.
For normally distributed data, it is uniformly the most powerful (see a standard
text, such as Anderson’s [14], for a derivation). The test is based on the statistic:
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T 2 ∝ D2 = (µ̂1 − µ̂2)T Σ̂−1(µ̂1 − µ̂2), where µ̂1 and µ̂2 are the sample means
and Σ̂ the pooled sample covariance. Any linear change of coordinates yields a
corresponding change in metric, but this is absorbed by the Σ̂−1 term.

2 Multivariate Permutation Tests

The hypothesis test we propose is an attempt to generalize the desirable proper-
ties of Hotelling’s T 2 test to a nonparametric, nonlinear setting. We cannot take
advantage of the vector space structure of the tangent plane, as Fletcher et al.
do, to apply Hotelling’s test directly, because there is a different tangent space
around each sample’s mean, and there may be no unique map between them.
For example, on the sphere, such a map has one degree of freedom, allowing an
arbitrary rotation of the coordinate axes in the vector space. Instead, we take a
more general approach, only requiring that our objects lie in a metric space.

Our approach is based upon a general framework for nonparametric combi-
nation introduced by Pesarin [15]. The general idea is to perform a set of partial
tests, each on a different aspect of the data, and then combine them into a
single summary statistic, taking into account the dependence between the vari-
ables and the true multivariate nature of the data. We assume that we have two
distributions with the same structure around the mean, and develop a test to
determine if the means are equal. We now begin describing the details.

2.1 The Univariate Case

We begin by introducing notation and describing the procedure for a single,
univariate permutation test. Suppose we have two data sets of size n1 and
n2, x1 = {x1,i, i ∈ 1 . . . n1} and x2 = {x2,i, i ∈ 1 . . . n2}, and a test statistic,
T (x1, x2). To test for a difference in the means, a natural test statistic is

T (x1, x2) = d(µ̂1, µ̂2) , (2)

where µ̂1 and µ̂2 are the sample means of the two data sets computed via the
optimization in (1). For other tests, other statistics are possible.

Under the null hypothesis, both samples are drawn from the same distribu-
tion, and so we may randomly permute the data between the two groups without
affecting the distribution of T (x1, x2). We pool the data together, and then gen-
erate N =

(
n1+n2

n1

)
random partitions into two new groups, still of size n1 and n2.

We label these xk
1,i and xk

2,i, with k ∈ 1 . . . N , and compute the value of the test
statistic, T k, for all of them. We always include the actual observed groupings
among this list, and denote its test statistic T o. This forms an empirical distri-
bution of the statistic, from which we can calculate the probability of observing
T o under the null hypothesis:

p(T o) =
1
N

N∑
k=1

H(T k, T o) , H(T k, T o) =

{
1, T k ≥ T o

0, T k < T o
. (3)
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2.2 Partial Tests

If our data can be adequately summarized by a single test statistic, then this is
the end of the story. We now turn to the case where we have M test statistics:
one for each of the parameters in our shape model. Let µ1,j and µ2,j be the means
of the jth model parameter for each population. Then we wish to test whether
any hypothesis H1,j : {µ1,j 	= µ2,j} is true against the alternative, that each null
hypothesis H0,j : {µ1,j = µ2,j} is true. The partial test statistics Tj(x1, x2), j ∈
1 . . . M are defined analogously to (2), and the values for permutations of this
data are denoted T k

j , , with j ∈ 1 . . . M , k ∈ 1 . . . N .
Given that each Tj(x1, x2) is significant for large values, consistent, and

marginally unbiased, Pesarin shows that a suitable combining function (de-
scribed in the next section) will produce an unbiased test for the global hy-
pothesis H0 against H1 [15]. The meaning of each of these criteria is as follows:

1. Significant for large values: Given a significance level α and the critical
value of Tj(x1, x2) at α—Tα

j —the probability that T o
j ≥ Tα

j is at least α. For a
two-sided test Tj(x1, x2) must be significant for both large and small values.

2. Consistent: As the sample size n = n1 + n2 goes to infinity, the probability
that T o

j ≥ Tα
j must converge to 1.

3. Marginally unbiased: For any threshold z, the probability that T o
j ≤ z given

H0,j must be greater than the probability that T o
j ≤ z given H1,j , irrespective of

the results of any other partial test. This implies that T o
j is positively dependent

in H1,j regardless of any dependencies between variables.

Since each of our tests are restricted to the data from a single component of
the direct product and we have assumed that the distributions around the means
are identical, they are marginally unbiased. We cannot add a test for equality of
the distributions about the mean, as then the test for equality of means would
be biased on its outcome.

To illustrate these ideas, we present a simple example, which we will follow
through the next few sections. We take two samples of n1 = n2 = 10 data
points from the two-dimensional space R×R+, corresponding to a position and
a scale parameter. The samples are taken from a multivariate normal distribution
by exponentiating the second coordinate, and then scaling both coordinates by
a factor of ten. They are plotted together in Fig. 2a. They have the common
covariance (before the exponentiation) of 1

2 ( 3 1
1 3 ), and the two means are slightly

offset in the second coordinate. That is, µ1,1 = µ2,1, but µ1,2 < µ2,2.
We construct M = 2 partial test statistics using (2) for each coordinate, and

evaluate them using Monte Carlo simulation. To avoid an exponential complex-
ity, we use a fixed N = 10, 000 permutations, which still provides an unbiased
test. The results are shown in Fig. 2b. The first partial test value lies in the mid-
dle of the distribution, while the second lies near the edge. However, the scale
of the first test is much larger, because no logarithm is involved in its metric.
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Fig. 2. The observed data and test statistics for our simple example. (a) shows the
distribution of our two samples, with ×’s for the first and ◦’s for the second. (b) shows
the distribution of the partial test statistics under permutation. The large dot indicates
the location of the observed data point

2.3 Multivariate Combination

Given the partial tests from the previous section, we wish to combine them into
a single test, while preserving the underlying dependence relations between the
tests. This is done in the following manner. We apply the same N permutations
to the data when computing each of partial tests, and then compute a p-value
using the empirical distribution for that test over all of the other permutations:

p(T k
j ) =

1
N

N∑
l=1

H(T l
j , T

k
j ) . (4)

Thus, for every permutation k we have a column vector of p-values, p(T k) =
(p(T k

1 , . . . , p(T k
j ), . . . , p(T k

M ))T . It is critical to use the same permutations for
each partial test, as this is what captures the nature of the joint distribution.

We now wish to design a combining function to produce a single summary
statistic, T ′(p(T k)), from each p-value vector. For one-sided tests, this statistic
must be monotonically non-increasing in each argument, must obtain its (pos-
sibly infinite) supremum when any p-value is zero, and the critical value T ′α

must be finite and strictly smaller than the supremum. If these conditions are
satisfied, along with those on the partial tests from the previous section, then
T ′(p(T k)) will be an unbiased test for the global hypothesis H0 against H1 [15].

Our combining function is motivated by the two-sided case, where we can use
the Mahalanobis distance. First, we compute a Uk vector for each permutation,
where Uk

j = Φ−1(p(T k
j ) − 1

2N ) and j ∈ 1 . . . M . Here Φ is the cumulative distri-
bution function for the standard normal distribution. The extra 1

2N term keeps
the values finite when the p-value is 1, and is negligible as N goes to infinity.

Because the distribution of p-values for each partial test is uniform by con-
struction, the marginal distribution of the Uk

j values over k for a single j is
standard normal. Arranging these vectors into a single N ×M matrix U , we can
estimate the covariance matrix Σ̂U = 1

N UT U , and use the Mahalanobis statis-
tic: T ′k = (Uk)T Σ̂−1

U Uk. In the event that the data really is linear and normally
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distributed, Σ̂U matrix converges to the true covariance as the sample size goes
to infinity [16], making it asymptotically equivalent to Hotelling’s T 2 test. Even
if the sample size is small, the matrix ΣU is well-conditioned regardless of the
number of variables, since it is the covariance over the N permutations.

Typically, our distances are not signed, and so we are interested in a one-
sided test. In this case, we use the positive half of the standard normal c.d.f.,
Uk

j = Φ−1(1 − 1
2 (p(T k

j ) − 1
2N )), and assume the Uk distribution is symmetric

about the origin. This assumption, however, implies that the covariance between
Uk

j1
and Uk

j2
when j1 	= j2 is exactly zero. The diagonal entries of Σ̂U are 1 by

construction, and so Σ̂U = I, the identity matrix. The fact that the p-values
of the partial tests are invariant to scale obviates the need for arbitrary scaling
factors. Thus, our one-sided combining function is:

T ′k = (Uk)T · Uk . (5)

Note that normality of the partial test statistics is not required, and that the
even though the marginal distributions of the Uk vectors are normal, the joint
distribution may not be. Therefore, we must use a nonparametric approach to
estimating the distribution of the T ′o statistic under the null hypothesis. Just
as in the univariate case, this produces a single p-value:

p(T ′o) =
1
N

N∑
k=1

H(T ′k, T ′o) . (6)

It is this nonparametric approach that corrects for correlation among the tests,
even without explicit diagonal entries in the covariance matrix.

We return to our example from the previous section. The Uk vectors are
plotted in Fig. 3a, along with the α = 0.95 decision boundary, and our sample is
shown to lie outside of it. As can be seen, equal power is assigned to alternatives
lying at the same distance from the origin in this space. Figure 3b shows this
boundary mapped back into the space of the original p-values. The p-values of
the individual partial tests are 0.36 and 0.022, and the combined result is 0.049.

2.4 Relation to Other Testing Procedures

The entire procedure is very similar to procedures used in correction for multiple
tests, such as that proposed by Pantazis et al. [4]. In fact, another alternative
for a combining function is Tippet’s T ′k = maxM

j=1(1−p(T k
j )), which results in a

Bonferroni-style correction [15]. Some authors have suggested methods of direct
combination applied to the T k

j statistics themselves [5, 6]. They are more appeal-
ing computationally, being O(nMN) instead of our method’s O(nMN log(N)),
but they do not avoid problems of differing scale or strong correlation.

Consider what happens when T ′k =
√

(T k
1 )2 + (T k

2 )2. Now, the first test
dominates the results, and the overall p-value becomes 0.34. With n1 = n2 = 100
samples, our test becomes much more significant (p = 0.0008), while the direct
combination test becomes even worse (p = 0.44).
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Fig. 3. The empirical distribution of our example plotted against the decision boundary
at α = 0.95. (a) The distribution of the Uk vectors, where the cutoff is a circle cen-
tered around the origin. (b) The distribution of the original p-values with the decision
boundary pulled back into this space

3 Experimental Data and Results

The data for our experiments comes from a twin pair schizophrenia study con-
ducted by Weinberger et al. [17]. High resolution (0.9375 × 0.9375 × 1.5 mm3)
Magnetic Resonance Imaging (MRI) scans were acquired from three different
subject groups: 9 healthy monozygotic twin pairs (MZ), 10 healthy dizygotic
twin pairs (DZ), and 9 monozygotic twin pairs with one twin discordant for
schizophrenia and one twin unaffected. See Fig. 1 for some examples. A fourth
group of 10 healthy non-related subject pairs (NR) was constructed by match-
ing unrelated members of the two healthy groups. All four groups were matched
for age, gender, and handedness. A tenth healthy, monozygotic twin pair was
discarded due to segmentation problems attributed to head trauma suffered by
one of the twins in a car accident at age seven. A tenth twin pair discordant for
schizophrenia was discarded due to hydrocephaly in the unaffected twin.

The left and right lateral ventricles were segmented using supervised classifi-
cation and 3-D connectivity [18]. An automatic morphological closing operation
was applied to ensure a spherical topology. An area-preserving map was used to
map them to a sphere, after which they were converted to a spherical harmonics
representation (SPHARM) [19]. Correspondence on the boundary was estab-
lished using the first order harmonics [20]. Point Distribution Models (PDMs)
were constructed by uniformly sampling the boundary at corresponding points.
The m-rep models were constructed using a robust method that ensures a com-
mon medial topology [21]. For our data, this consists of a single medial sheet
with a 3×13 grid of medial atoms, which provides 98% volume overlap with the
original segmentations.
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From this data set, we wish to determine if the twin pairs that were more
closely related had smaller variations in shape. We also wish to see if the shape
variations between the discordant and the unaffected twins in the schizophrenic
pairs is similar to the normal variation between healthy monozygotic twins. For
this purpose, we use the partial test statistics:

Tj(x1, y1, x2, y2) =
1
n2

n2∑
i=1

d(x2,i,j , y2,i,j) −
1
n1

n1∑
i=1

d(x1,i,j , y1,i,j) . (7)

Here (x1, y1) form the twin pairs for one group, while (x2, y2) form the twin pairs
for the other. The partial tests are applied separately to all three components
of the medial atom location, x, as well as the radius and two spoke directions.
This gives six partial tests per medial atom, for a total of M = 3×13×6 = 234,
much larger than the sample size. Each is a one-sided test that the variability in
group 2 is larger than that in group 1.

For consistency with previous studies [22], all shapes were volume normalized.
After normalization, we also applied m-rep alignment, as described by Fletcher
et al. [2], to minimize the sum of squared geodesic distances between models
in a medial analog of Procrustes alignment. First, the members of each twin
pair were aligned with each other, and then the pairs were aligned together as a
group, applying the same transformation to each member of a single pair.

In order to ensure invariance to rotations, we had to choose data-dependent
coordinate axes for the x component of each medial atom. Our choice was the
axes which diagonalized the sample covariance of the displacement vectors from
one twin’s atom position to the other at each site. While this had some influence
on the results, the general trend was the same irrespective of the axes used.

For each pair of twin groups, we generated N = 50, 000 permutations, and
computed their p-value vectors using (4). Following Sect. 2.3, these were mapped
into Uk vectors, from which the empirical distribution of the combined test
statistic T ′k from (5) was estimated, producing a single global p-value via (6).

The results are summarized in Table 1. For comparison, we list the results of
a previous study which used a univariate test on the average distance between
corresponding points on the PDMs [22]. While we note that the significance
of a p-value on an experimental data set is not a useful metric for comparing
different methods, it is interesting to see the differences between the two. Our
tests give a consistent ranking: MZ ≈ DS < DZ ≈ NR, which is fully transitive.
The boundary study, however, finds a significant difference between DZ and NR,
but fails to identify the difference between DS and DZ.

We also performed local tests, to identify specific medial atoms with with
strong differences. A multivariate test was conducted using our procedure on the
6 components of M(1) for each atom, and the results were corrected for multiple
tests using the minimum p-value distribution across the shape, as described by
Pantazis et al. [4]. The results are shown in Fig 4.
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Table 1. p-values for paired tests for the difference in the amount of shape variability
in groups with different degrees of genetic similarity. Results from our method are in
the first two columns, while results from a previous study [22] are in the last two for
comparison. Groups are: monozygotic (MZ), monozygotic twins with one twin discor-
dant for schizophrenia (DS), dizygotic (DZ), and non-related (NR). Results significant
at the α = 0.95 level are shown in bold

Our Study Boundary Study [22]
Left Right Left Right

MZ vs. DS 0.12 0.38 0.28 0.68
MZ vs. DZ 0.00006 0.0033 0.0082 0.0399
MZ vs. NR 0.00002 0.00020 0.0018 0.0006
DS vs. DZ 0.020 0.0076 0.25 0.24
DS vs. NR 0.0031 0.00026 0.018 0.0026
DZ vs. NR 0.16 0.055 0.05 0.016

Fig. 4. Results for local tests for the difference in shape variability in groups with
different degrees of genetic similarity. Atoms with differences significant at the α = 0.95
level are shown in a larger size. Tests not shown had no significant local differences

4 Conclusion

We have presented a true multivariate permutation test approach for hypothesis
testing in direct products of metric spaces. The resulting test does not require
a priori scaling factors to be chosen, and captures the true multivariate na-
ture of the data. It is well-defined even in the high-dimensional, low-sample
size case. The method has been applied to shape discrimination using m-reps,
though it is suitable for any type of metric data, including potentially categorical
data.

MZ vs. DZ MZ vs. NR DS vs. NR

MZ vs. DZ MZ vs. NR DS vs. NR

Left

Right
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An important area for future research is the design of suitable partial tests
to use in each space. Because they cannot be broken into smaller pieces than
a single component of the direct product, the distance to the mean and similar
tests are limited in the types of distributions they can describe. For example,
the distance from the mean can only characterize an isotropic distribution on
the sphere. An interesting candidate is the test designed by Hall and Tajvidi,
which can test for equality of entire distributions in a single metric space [23].
This would allow us to relax our assumption of identical distribution about the
mean. For manifolds, another possibility is the use of tests based on Distance
Weighted Discrimination [24]. It is also possible to extend this to different shape
models, such as PDMs with surface normals or deformable templates [25].
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Abstract. Modeling the variability of brain structures is a fundamental
problem in the neurosciences. In this paper, we start from a dataset of
precisely delineated anatomical structures in the cerebral cortex: a set of
72 sulcal lines in each of 98 healthy human subjects. We propose an orig-
inal method to compute the average sulcal curves, which constitute the
mean anatomy in this context. The second order moment of the sulcal
distribution is modeled as a sparse field of covariance tensors (symmet-
ric, positive definite matrices). To extrapolate this information to the
full brain, one has to overcome the limitations of the standard Euclidean
matrix calculus. We propose an affine-invariant Riemannian framework
to perform computations with tensors. In particular, we generalize ra-
dial basis function (RBF) interpolation and harmonic diffusion PDEs to
tensor fields. As a result, we obtain a dense 3D variability map which
proves to be in accordance with previously published results on smaller
samples subjects. Moreover, leave one (sulcus) out tests show that our
model is globally able to recover the missing information when there is a
consistent neighboring variability. Last but not least, we propose innova-
tive methods to analyze the asymmetry of brain variability. As expected,
the greatest asymmetries are found in regions that includes the primary
language areas. Interestingly, such an asymmetry in anatomical variance
could explain why there may be greater power to detect group activation
in one hemisphere than the other in fMRI studies.

1 Introduction

Brain structures differ greatly in shape and size even among normal subjects, and
these variations make it difficult to identify abnormal differences due to disease.
Understanding the degree and quality of brain variation is vital for distinguishing
signs of disease from normal variations. Geometric variability of anatomy also
makes the automated segmentation and labeling of brain structures difficult.
Statistical information on brain variability would make this task easier, and could
be used in Bayesian approaches for nonlinear registration as well (which adjust
for anatomical variations across subjects). Finally, neuroscientists are interested
in identifying the causes of brain variability at a genetic or environmental level.
Measuring brain asymmetry (i.e. differences between hemispheres) is of special
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interest as it sheds light on how the functions of the two hemispheres become
specialized. Improved modeling of the range of variations in brain structure could
make it easier to isolate specific effects of genetic polymorphisms on these normal
variations and asymmetries.

A major class of anatomical variations can be thought of as arising from
the smooth deformation of a reference anatomy, where the deformation is rep-
resented as a 3D displacement field, after affine (linear) differences are factored
out. Ideally, one could model the joint variability of all pairs of points to see
how the displacement of one any point in a specific subject w.r.t the reference
anatomy covaries with the displacement of neighboring or distant points in the
brain (e.g. symmetric ones in the opposite hemisphere). In this article, we sim-
ply model the variability of each point independently. Assuming that the mean
deformation of the reference anatomy is null, the first moment of the 3D dis-
placement distribution is its covariance matrix, which will be called a variability
tensor. Thus, our goal is to compute the field of variability tensors within the
brain from information that may be sparsely distributed.

However, working with tensors is not so easy as the underlying space is a
manifold that is not a vector space. As tensors constitute a convex half-cone
in the vector space of matrices, many operations (like computing the mean)
are stable. Nonetheless, this Euclidean framework is not satisfactory as one can
easily reach the boundary of the space (singular symmetric matrices) with a
classical gradient descent. Moreover, the arithmetic mean of a tensor and its
inverse is not the identity matrix. This lack of symmetry is unsatisfactory: in
many cases, one would like the mean to be geometric.

In Sec. 2.1 we present a consistent Riemannian framework to compute with
tensors. Then, we show in Sec. 2.2 how to extend these tools to implement
harmonic diffusion PDEs and extrapolate tensors that are sparsely distributed
in space. Solving these PDEs is computer intensive, so in Sec. 2.3 we provide a
practical but efficient initialization by extending the radial basis functions (RBF)
concept to tensors. In Sec. 3, we consider low dimensional but anatomically very
readily defined and delineated features (sulcal lines) as a way to obtain mean-
ingful brain variability tensors. We show in Sec. 3.1 how to compute the mean
sulcal curve and its correspondence with the sulcal instances of each subject. To
extract only the relevant information and minimize the number of parameters,
we fit in Sec. 3.2 a parametric tensor model to these data. Then, we come back
to our original goal in 3.3 by extrapolating this sparse tensor model to the whole
brain. The validity of our extrapolated model is analyzed in Sec. 3.4. In Sec. 3.5
we generalize our statistical model to examine the correlation of the variations
observed at symmetric points in the brain.

2 A Mathematical Framework to Extrapolate Tensors

Much of the literature addresses tensor computing problems in the context of
diffusion tensor image (DTI) regularization. In these articles, the spectral de-
composition of the tensors is exploited. For instance, [1] anisotropically restores
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the principal direction of the tensors, while [2] independently restores the eigen-
values and eigenvectors. This last approach requires an additional reorientation
step of the eigenvectors due to the non-uniqueness of the decomposition.

More recently, differential geometric approaches have been developed to gen-
eralize the PCA to tensor data [3], for statistical segmentation of tensor images
[4], for computing a geometric mean and an intrinsic anisotropy index [5], or as
the basis for a full framework for Riemannian tensor calculus [6]. In this last
work, we endowed the space of tensors with an affine invariant Riemannian met-
ric to obtain results that are independent of the choice of the spatial coordinate
system. In fact, this metric had already been proposed in statistics [7], and turns
out to be the basis of all the previous differential geometric approaches.

2.1 A Riemannian Framework for Tensor Calculus

The invariant metric provides a new framework in which the limitations of Eu-
clidean calculus are fully overcome: it endows the tensor space with a very regu-
lar structure where matrices with null or negative eigenvalues are at an infinite
distance from any positive definite matrix. Moreover, the geodesic between two
tensors is uniquely defined, leading to interesting properties such as the existence
and uniqueness of the (geometric) mean [6].

On Riemannian manifolds, geodesics realize a local diffeomorphism, called the
exponential map, from the tangent space at a given point to the manifold itself.
This allows us to (locally) identify points of the manifold with tangent vectors.
With the invariant metric on tensors, the geodesic starting at Σ and with tangent
vector W can be expressed simply with the classical matrix exponential and the
(Riemannian) exponential map realizes a global diffeomorphism [6]:

expΣ(W ) = Σ
1
2 exp
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2 WΣ− 1
2

)
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1
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2 log
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These two diffeomorphisms are the key to the numerical implementation and
generalization to manifolds of numerous algorithms that work on a vector space.
For instance, the “difference vector” between two tensors Σ1 and Σ2 may be
expressed as Z = Σ

−1/2
1 logΣ1
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space at the identity (i.e. Z is a symmetric but not necessarily positive matrix).
The distance between the two tensors is simply given by:
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Likewise, the Euclidean gradient descent scheme Σt+1 = Σt − ε∇C(Σt), which
could easily lead to a non-positive matrix, is advantageously replaced by the
geodesic marching scheme Σt+1 = expΣt

(−ε ∇C(Σt)).

2.2 Dense Extrapolation of Sparse Tensors

Let us consider a set of N measures Σi of a tensor field Σ(x) at spatial positions
xi ∈ Rd. To access the value of the tensor field at any point, one could think
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of interpolating or approximating these measures. We proposed in [6] a least
square attachment term to the sparsely distributed tensors, combined with a
regularization term to perform an estimation of the extrapolated tensor: C(Σ) =
Sim(Σ) + Reg(Σ). In a continuous setting, the data attachment term is:

Sim (Σ) = 1
2

∑N
i=1 dist2 (Σ (xi) , Σi) = 1

2

∫
Ω

∑N
i=1 dist2 (Σ (x) , Σi) δ (x − xi) dx.

The Dirac distributions δ(x−xi) are problematic when numerically differen-
tiating the criterion. To regularize the problem, we consider them as the limit
of a Gaussian function Gσ when σ goes to zero. Practically, σ has to be of the
order of the spatial resolution of the grid on which Σ(x) is estimated, so that
each measure influences its immediate neighborhood. After differentiating the
criterion, one obtains: ∇Simσ (x) = −

∑
i Gσ (x − xi) logΣ(x)(Σi).

Basically, the attachment term prevents the tensor field from deviating too
much from the measures at the points xi. In between these points, we need to
add a regularization term that ensures a homogeneous result. The simplest cri-
terion is the harmonic regularization: Reg(Σ) = 1

2

∫
Ω
‖∇Σ(x)‖2

Σ . We showed in
[6] that the gradient of this criterion is ∇Reg (Σ) (x) = −∆Σ(x), and we pro-
vided a practical implementation of this Laplace-Beltrami operator on a tensor
field. Using the geodesic marching scheme, we compute at each point x of our
estimation grid the following intrinsic gradient descent:

Σt+1(x) = expΣt(x) (−ε∇Sim(x) − ε∇Reg(x)) . (1)

Finally, we can evaluate the extrapolated field Σ at any point x by tri-linear
interpolation of the values at the grid nodes.

However, due to the large number of tensors and the large domain of diffu-
sion used here (see next section), this algorithm converges slowly, even with a
multi resolution implementation. To improve the initialization and enable faster
convergence, in this paper we develop a RBF interpolation.

2.3 Extending RBFs to Extrapolate Tensors

RBFs provide a family of methods to extrapolate sparsely defined observations
[8]. The extrapolated field is expressed as a linear combination of translated
versions of a single radial function (the basis). Thus, if (yi) is a set of scalar
measures of the field y(x) at points xi, we find a set of scalar coefficients (λi)
such that y(x) =

∑
i λih(x−xi). To interpolate the data, the coefficients need to

yield y(xi) = yi, i.e. be solutions of the linear system ∀j : yj =
∑

i λih(xj − xi).
There is a unique solution for any set of measurements at any set of spatial
positions if the symmetric matrix [H]i,j = h(xi − xj) is always positive definite.

Scalar RBF extrapolation can be extended to vectors by simply running the
extrapolation on each component independently. To apply this method to ten-
sors, we map all tensors into the tangent space TΣM of a reference tensor Σ. We
then run the RBF extrapolation on the vectors logΣ(Σi) and map the resulting
values back into tensor space by the inverse mapping expΣ . Among the many
possible choices for a common reference tensor, we chose the mean Σ̄ of all tensor
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measurements. Also, rather than letting the extrapolated values explode at in-
finity as with Thin Plate Splines, we use an interpolating function that decreases
toward zero at infinity, namely from the family h(x) = 1/

(
1 + (‖x‖2/α2)γ

)
. The

asymptotic value for the interpolation will be the reference tensor Σ̄.

3 Modeling Brain Variability from Sulcal Lines

To model the spatial pattern of variability in brain structure, we chose to focus
on anatomically well defined 3D curves that could be manually delineated by
neuroanatomists and considered as ground truth data. This choice naturally
led us to the primary anatomical landmarks on the cortex: the sulcal lines.
Over 70 sulcal curves consistently appear in all normal individuals and allow a
consistent subdivision of the cortex into major lobes and gyri [9]. In the absence
of individual functional imaging data, sulci also provide an approximate guide
to the functional subdivisions of the cortex, for all of the lobes.

We use a dataset of sulcal lines, or sulci, manually delineated in 98 subjects
by expert neuroanatomists according to a precise protocol1. We included the
maximal subset of all sulcal curves that consistently appear in all normal subjects
(72 in total), with formal rules governing the handling of branching patterns,
breaks in sulci, and doubling of specific sulci (e.g. the cingulate). By repeated
training on test sets of brain images, the maximum allowed inter- and intra-rater
error (reliability) was ensured to be 2mm everywhere, and in most regions less
than 1mm, far less than the intersubject anatomical variance. Delineations were
made in 3D on cortical surfaces extracted from MR images linearly aligned to
the ICBM stereotactic space, thus providing a common coordinate system for
all traced curves. Next, we determined the mean curve for each sulcal line by
modeling samples as deformations of a single average curve. Based on the mean
sulcal line, for each sulcus, and the mapping from this curve to its instance in
each subject image, we can easily compute the local covariance matrix to create
our second order statistical model of the sulcal line.

3.1 Learning Local Variability from a Sulcal Lines Dataset

Statistical models have frequently been constructed for objects such as open or
closed curves and surfaces [10, 11, 12]. In each of these examples, the aperture
problem occurs: as we do not have landmarks, the point-to-point correspondences
between instances of a surface or a curve cannot be recovered exactly. For in-
stance, the correspondences of two instances of a sulcus are intrinsically subject
to error, with greater tangential than normal uncertainty. Here, we propose a
one-to-one correspondence mapping that minimizes the influence of this error.

First, we denoise the sample lines by approximating them with B-splines.
In this setting, the number of degrees of freedom can be adjusted to increase

1 http://www.loni.ucla.edu/∼khayashi/Public/medial surface/
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Fig. 1. Sulcal variability. Left: The Sylvian Fissure mean curve (in red) with traces
from 98 healthy normal individuals (in green and yellow). Right: 50 covariance matrices
(1 σ ellipsoids) are overlaid on the mean sulcus. Note that the very first and last tensors
are larger than the interior ones

robustness to noise while avoiding resampling problems [13]. Typically, we reduce
the number of control points to one third of the original sampling points.

Many criteria have been proposed in the literature to evaluate the appropri-
ateness of one-to-one correspondences between geometric objects. They usually
invoke local differential characteristics such as the tangent space, curvature [14],
the local Frenet frame for a curve on a surface, regional shape information [15]. In
our case, the variability is so large (see Fig. 1), that using such refined measures
is meaningless. Therefore, we simply use the total variance of curve models as a
criterion. Minimizing this variance greatly reduces the variability due to inade-
quate correspondences. Practically, we alternately improve the correspondences
between the mean curves and each sample by dynamic programming and opti-
mize the average curve position by a first-order gradient descent with an adaptive
step. This optimization strategy converges after a few iterations.

For each of the 72 sulci, we now have the mean curve position c̄(t), param-
eterized by B-splines, and a one-to-one mapping that gives the corresponding
point ci(t) in each instance. The variability tensor Σ(t) along the mean sulcus is:
Σ (t) =

∑n
i=1 [ci(t) − c̄(t)] [ci(t) − c̄(t)]�/(n − 1). An example set of covariance

tensors estimated along the Sylvian Fissure is shown in Fig. 1. Variability is
greater at the extremities of the sulci. These points should be landmarks as they
are precisely identifiable by neuro-anatomists. We believe that the main part of
their variability is due to a bias when we estimate the position of the end points
of the mean curve. To remain consistent, we chose in this paper to remove this
information from our model, and focussed only on the interior part of the sulci.

3.2 Model Simplification Using Tensor Interpolation

In the interior part of the sulci, the tensors are highly regular in size and shape.
Some of this information is therefore redundant and could be simplified by select-
ing only a few tensors at specific points along the mean sulcus, and interpolating
in between them. We use interpolation along the geodesic joining 2 tensors, be-
cause it preserves the monotonic evolution of the determinant. This is crucial
when interpolating two probability densities and is in general not possible with
direct interpolation. For efficiency reasons, we also selected the tensor values
among the observed data rather than optimizing them as free parameters. This
operation has been automated in an algorithm called tensor picking.
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Let Σ(ti) be a set of N covariance tensors defined at parameter ti along a
mean sulcus. Riemannian interpolation between them gives the tensor: Σ̃(t) =
expΣ(ti)[(t − ti)/(ti+1 − ti) logΣ(ti) (Σ(ti+1))] for ti ≤ t < ti+1. As we are
working only on the interior of the sulcus, t takes its values between t2 and
tN − 1, so that the interpolated variability Σ̃(t) is always defined. The tensor
picking operation consists of finding the optimal ti such that the least-square
error between the observed and interpolated variability tensors is minimized:
C (Σ) =

∫ tN

t1
dist2

(
Σ(t), Σ̃(t)

)
dt. To minimize this criterion, N points (i.e. ten-

sors) are uniformly chosen along the mean curve. Then, an exhaustive search for
the optimal point positions is done. If the criterion value at the optimal set is be-
low a given threshold (0.7 in our experiments), the tensors are picked, otherwise
the number of chosen tensors N is increased and the search is repeated.

Results of this operation are presented in Fig. 2 (middle panel): by choosing
tensors at adequate positions, one can accurately reconstruct the full variability
of each sulcus using 4 to 10 matrices, depending on its length and shape. The
variability of all the major sulci can be represented by about 310 variability
tensors out of 2000 initially.

3.3 Extrapolating the Variability to the Full Brain

The next step consists of extrapolating these selected tensors to the full brain,
using the framework developed in Sec. 2.2. Fig. 2 presents the result of the
extrapolation of our 310 tensors on discrete grid of size 91×109×91 and with a
spacing of 2×2×2mm3 (ICBM 305 space). We used the parameter values α = 20
and γ = 0.95 for the RBF interpolation and σ = 2 for the discretization of the
data attachment term in the extrapolation (Eq. (1)).

The spatial pattern of variability agrees with established neuroanatomical
data. For instance, [16] computed the variability of the cortex surface in an
independent normal sample (15 controls) using a non-linear surface registration
algorithm. Fig. 3 compares his variability map with ours. Our model of variability
presents the same high values in the temporo-parietal cortex (red area, marked
“b” in Fig. 3) and low values in the superior frontal gyrus (marked “a” in Fig. 3),
Broca’s language area, and the lower limits of the primary sensorimotor cortices

Fig. 2. Accessing the full brain variability step by step. The color bar is the
same as in Fig. 3. Left: Covariance matrices calculated along the mean sulci. Middle:
Matrices selected by the tensor picking operation. Right: Result of the extrapolation
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Fig. 3. Comparison of two independent models of brain variability. The scalar
value mapped on the mean cortex is the trace of the tensors (the variance). Left: Cor-
tical variability map from [16]. Right: Extrapolation of our simplified sulci variability
model to the full brain (the display is restricted to the cortex). Note the similarity in
the superior frontal gyrus (a) and the temporo-parietal cortex [shown in red colors (b)]

in the central and precentral gyri. Phylogenetical older areas (e.g. orbitofrontal
cortex), and primary cortices that myelinate earliest (e.g. primary somatosensory
and auditory cortex) exhibit least variability. The planum parietale (marked “b”
in Fig. 3) consistently shows the highest variance of any cortical area, consistent
with the complex pattern of secondary fissures surrounding the supramarginal
and angular gyri (the perisylvian language cortex). It is also reasonable that the
temporo-parietal areas around the Sylvian fissures are the most variable: they
specialize and develop in different ways in each hemisphere, and are also the
most asymmetric in terms of gyral patterning and volumes.

3.4 Validation of the Variability Model

Validating our extrapolated variability model is a tough issue. Obviously, using
the information given by the sulci is not enough to infer the variability of the full
brain, particularly within the brain (e.g. in the white matter, ventricles and deep
gray matter nuclei). Moreover, we have no ground truth in these areas to validate
the predicted variability. Thus, we restrict the evaluation of the predictive power
of our model to the places where we have enough data: on the cortex. The
first idea is to see how well our interpolation and extrapolation models fits the
observed variability along each sulcus. This yields a root mean square error
(RMSe) assessing the fidelity of the approximation. Then, we can perform a
“leave one sulcus out” test to see if a group of sulci can correctly predict the
variability of another sulcus in their neighborhood. This would mean that the
model can effectively find missing data (the measures are independent) and
somehow predict the variability of missing structures in our datasets.

Intra-Sulcus Variability Recovery. We computed the “difference” or error
vector between the observed variability tensor and the reconstructed one with
our interpolation and extrapolation methods. We found that the mean errors
were not significantly different from zero (p-value of 0.25 at the Hotelling’s test).
Second, we found a standard deviation of σref = 0.15 for the interpolation error.
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This value gives us a lower bound on the range of the reconstruction errors. The
slightly higher value of 0.21 for the extrapolation error could be attributed to
the aperture problem: in regions with orthogonal sulci, the normal component
of one tensor influences the tangential part of its perpendicular neighbors and
vice versa, which misleads the reconstruction. After removing these “outliers”,
the error distributions after interpolation and extrapolation are comparable.

Leave One Sulcus Out. This test removes one sulcus and its variability ten-
sors from the model and extrapolates the rest of the data to the full brain. Then,
the prediction error made on this specific sulcus is compared to the interpolation
and extrapolation errors. As the measures are independent, an error below 3σref

is not significant and shows that our extrapolation model recovers the missing
variability information up to the intrinsic reconstruction uncertainty. However, a
RMSe larger than 3σref means that we do not recover a comparable variability
in at least one direction. We know that an uncertainty in the tangent of the
mean sulcus could be induced by the aperture problem. To remove this effect,
we “project” the error vector onto the plane perpendicular to the tangent of the
mean sulcus. Thus, the error component in this direction is zeroed out. We will
call this error the “partial error”.

This test is performed on 3 sulci: the Sylvian Fissure, the Superior Tem-
poral Sulcus Main Body and the Inferior Temporal Sulcus. Fig. 4 displays the
reconstructed sulci after extrapolation with and without their variability tensors
while Table 1 summarizes the global RMSe statistics. The prediction error with
missing sulci is globally 2 to 3 times larger than that incurred by interpolat-
ing or extrapolating the full model, but the difference is not high enough to be
significant. However, errors are locally significant. In some places, like for the
Sylvian Fissure, the prediction errors occur primarily in the tangential direction
to the mean sulcus. Such behavior was expected due to the aperture problem
and is confirmed by the “partial” error that is much lower than the standard
error. By contrast, the variability of some sulci like the Central Sulcus cannot
be correctly recovered from neighboring sulci: the error is not only due to the

Fig. 4. Result of the “leave one sulcus out” test. Left: Positions of the 3 tested
sulci in the ICBM305 space. Middle: variability of each sulcus after extrapolation
of the complete model. The color bar is the same as in Fig. 3. Right: extrapolated
variability from the neighboring sulci only. Top: the Sylvian Fissure, middle: the
Superior Temporal Sulcus main body, bottom: the Inferior Temporal Sulcus
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Table 1. RMSe of reconstruction of 3 sulci with the interpolation, extrapolation and
leave one-sulcus out extrapolation methods. * indicates the “partial error” (Sec. 3.4)

Sulcus Sylvian Fiss. Sup. Temporal Inf. Temporal.

Interpolation 0.12 - 0.10∗ 0.17 - 0.15∗ 0.17 - 0.14∗

Extrapolation 0.18 - 0.13∗ 0.21 - 0.17∗ 0.17 - 0.15∗

Extrapolation w/o sulcus 0.43 - 0.27∗ 0.37 - 0.32∗ 0.27 - 0.22∗

aperture problem but spatial correlations between adjacent sulci may be lower
in some brain regions, making variations more difficult to predict.

3.5 Analysis of the Asymmetry of Brain Variability

The study of asymmetry in brain variability is of great interest for neuroscien-
tists [17], and measures of structural and functional lateralization are of interest
in mapping brain development, and disorders such as dyslexia and schizophre-
nia. The two brain hemispheres develop according to slightly different genetic
programs, and the right hemisphere is torqued forward relative to the left, with
greatest volume asymmetries in the planum temporale and language cortex sur-
rounding the Sylvian fissures (typically larger in the left hemisphere). If the types
of variation in the two hemispheres could be differentiated, their genetic basis
would be easier to investigate. It could also help understand whether there is an
asymmetry in the power to detect group activation in functional brain imaging
studies, due to structural variance asymmetries.

We therefore measured the symmetry/asymmetry of brain variability using
our extrapolation model. The principle is to compute the distance between the
variability tensor at one point and the (symmetrized) tensor at the symmetric
point in the brain. To define the symmetric point, we simply use the 3D position
that is symmetric w.r.t. the mid-sagittal plane in the stereotaxic space (ICBM
305). In that case, we compute a dense asymmetry map from the extrapolated
tensor values at each 3D point of a hemisphere (Fig. 5, left). We may also retrieve

Fig. 5. Maps of the asymmetry of the brain variability. Red to purple colors
indicate a significant asymmetry. Left: Asymmetry of the 3D extrapolation w.r.t. the
mid-sagittal plane. Middle: Difference vectors between left-right variability tensors.
Right: Extrapolation to the volume of the “asymmetry vectors” of the previous figure
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the corresponding points between each left and right mean sulcus by mapping
the left sulci into the right hemisphere and computing the correspondences using
the algorithm of Sec. 3.1. In that case, we end up with an error tensor measuring
the asymmetry along each sulcus (Fig. 5 middle). This error is finally extrapo-
lated to the full brain using once again the framework previously developed (Fig.
5, right). A very interesting feature is that the regions with greatest asymmetries
in variability include the 2 main language areas, Broca’s speech area (see pink
colors in the inferior frontal cortex) and Wernicke’s language comprehension area
(yellow and red colors surrounding the posterior Sylvian fissure). As expected,
these areas vary more on the left hemisphere which is dominant for language.
The greater left hemisphere variation may be attributable to the greater vol-
umes of structures such as the planum temporale in the left hemisphere. Also
as expected, the primary sensorimotor areas (central and pre-central gyri) are
relatively symmetric in their variance, as the absolute variability is lower, as is
their degree of hemispheric specialization (i.e. they perform analogous functions
in each hemisphere, but innervate opposite sides of the body).

4 Discussion

This paper applies a powerful Riemannian framework for tensor computing to
extrapolate sparsely distributed tensors. We extend a RBF extrapolation method
combined with diffusion PDEs. While the RBF provides a good initialization,
the diffusion with attachment to the measures results in a smooth tensor field
that stays close to the observed measures and converges in a few iterations. We
applied this methodology to model the profile of brain variability, where tensors
are measured along sulcal lines that are consistently anatomical landmarks.

When modeling variability, the main weakness is the unknown variability
along the direction tangent to the mean sulci (aperture problem). We intend
to tackle this point by first improving our sulcal matching algorithm to safely
use the landmark information at the ends of sulci, and second by removing
the data attachment term in the direction of the sulcal tangent. Doing this,
the neighboring information could diffuse freely in that direction and hopefully
reconstruct a globally coherent variability. For the model validation, we need to
compare to other sources of information, like the variability obtained from the
matching of surfaces (e.g. ventricles or basal ganglia), fiber pathways mapped
from DTI, or of full 3D images. As these sources of information are also subject
to an aperture problem (we mainly retrieve the deformation in the direction of
the gradient of the image), we expect to obtain a good fit in some areas, but we
require complementary measures in other areas.

These results are also interesting neuroscientifically. Variance and the asym-
metry of variability are greatest in language areas, which have fundamentally
different developmental programs in each brain hemisphere, leading to volu-
metric and functional asymmetries (e.g. left hemisphere language dominance).
This variance asymmetry was also seen in Broca’s area, which is specialized in
the left hemisphere for producing speech, but is less commonly associated with
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structural asymmetries. Lower variance was seen in cortical regions subserving
primary brain functions (e.g., touch, motor function, hearing) and these areas are
the earliest to mature in utero. The modeling of variance is practically valuable
for understanding the genetic and disease related factors that affect brain struc-
ture, which are currently hard to identify given the extremely complex patterns
of variation in normal anatomy.
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Abstract. A hierarchical model based on the Multivariate Autoreges-
sive (MAR) process is proposed to jointly model neurological time-series
collected from multiple subjects, and to characterize the distribution of
MAR coefficients across the population from which those subjects were
drawn. Thus, inference about effective connectivity between brain re-
gions may be generalized beyond those subjects studied. The posterior
on population- and subject-level connectivity parameters are estimated
in a Variational Bayesian (VB) framework, and structural model param-
eters are chosen by the corresponding evidence criteria. The significance
of resulting connectivity statistics are evaluated by permutation-based
approximations to the null distribution. The method is demonstrated on
simulated data and on actual multi-subject neurological time-series.

1 Introduction

Neuroimaging studies are regularly conducted in which measurements of brain
activity are collected simultaneously from multiple, analogous brain regions in
multiple subjects. These measurement may be taken by EEG, MEG, fMRI or in-
tracranial electrical monitoring. Such studies are often motivated by hypotheses
about the interaction among gross brain regions under particular experimen-
tal conditions or due to some neurological disorder. Numerous techniques have
been proposed which use such functional data to characterize Effective Connec-

tivity, defined as the influence that one brain region exerts on another under
a given interaction model. These include Structural Equation Modeling (SEM)
[14], Multivariate Autoregressive Modeling (MAR) [9, 16, 7] and Dynamic Causal
Modeling (DCM) [4]. The MAR and DCM approaches characterize effective con-
nectivity by modeling particular brain regions as variables in a causal, dynamical
system. Model parameters may thereby inform about the influence that each re-
gion exerts on the others, either directly or indirectly through other regions.

� This research was supported by grants NIH 5 P41 RR13218 and FIRST BIRN.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 39–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



40 E.R. Cosman and W.M. Wells III

It is of interest to determine which interactions between modeled brain re-
gions are characteristic under experimental conditions within the population
from which studied subjects are drawn. However, to our knowledge, models for
effective connectivity have been applied only in subject-independent manner. As
such, statistical inference about connectivity is limited to the specific subjects
included in a study, except by post hoc analysis of the variation in subject-specific
connectivity parameters. We propose a hierarchical, or Random Effects (RFX),
approach to the analysis of multi-subject functional time-series such that the ef-
fective connectivity parameters of all subjects are estimated jointly along with a
density describing the variation in those parameters across the population from
which studied subjects were drawn. Such joint estimation of connectivity under
SEM, MAR, DCM or other models, would be valuable for neuroimaging studies.
We have chosen the MAR process as a starting point for investigation of the
applicability of such hierarchical modeling to generalize inference about effective
connectivity to the population level.

In particular, we present the RFX-MAR model which parameterizes the in-
teractions of specified brain regions for each subject using the MAR process,
and describes the variability in those subject-level models by the mean and
variance of their MAR coefficients. We estimate population- and subject-specific
parameters in a Variational Bayesian (VB) framework, and characterize effective
connectivity at the population level by inference on the posterior of the MAR
coefficients’ means, which we refer to as the population-level MAR coefficients.
Specifically, we compute statistics related to evidence of non-zero directional in-
fluence between each pair of monitored brain regions under the MAR model,
across the sampled population. Structural parameters of the RFX-MAR model
are selected by an approximate maximum evidence criteria.

Though Gaussian population models have been used extensively in neu-
roimaging analysis for the purpose of localizing protocol-related neural activity
[5], this work is the first to investigate their utility in modeling of neural connec-
tivity. We describe the results of our analysis on synthetic and EEG time-series
collected from multiple subjects.

2 The Multivariate Autoregressive Process

The Multivariate Autoregressive (MAR) process models the temporal dynamics
of multivariate systems causally and without hidden state variables, such that
multivariate measurements at the present time are a linear function of measure-
ments in the past. This kind of parametric process has been used to identify
the linear, time-invariant (LTI) system dynamics and spectra of multichannel
time-series data in a number of contexts, including geophysics, economics and
neuroimaging [9, 16, 7]. In neuroimaging, the MAR process has been used to
model and test effective connectivity based on neurological data collected by
fMRI, EEG and direct electrical recording. In general, the MAR process may be
used when specialization of a dynamical model, possibly through hidden state
variables, is difficult or unnecessary. Since the MAR process is strictly causal,
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it can model directional influence between channels, and elucidate causal chains
and loops.

A MAR(p) process is defined as follows, where Yn· ∈ �d is a sample from

d channels at time n arranged in a row vector, A(l) ∈ �d×d, l = 1, . . . , p, is a
series of matrices comprising the coefficients of the MAR model, and En· ∈ �d

is a temporally-white innovation with stationary distribution N (0,Λ−1). Note
that we replace a matrix or sequence index with a large dot · to refer collectively
to elements corresponding to all values of that index.

Yn· =

p∑
l=1

Y(n−l)·A(l) + En· = [Y(n−1)· | . . . |Y(n−p)·]︸ ︷︷ ︸
≡X

n·

A(1)
...

A(p)


︸ ︷︷ ︸

≡W

+En· (1)

We denote the p coefficients by which channel i directly influences channel j
as Aij(·) ∈ �p, and refer to this as the Direct Influence Function (DIF) from
channel i to j. Stacking these equations for each time sample n, we get the matrix
equation Y = XW + E. To highlight that this is a specialized linear regression
model, we will henceforth use its vectorized form, where y ≡ vec(Y) ∈ �Nd,

w ≡ vec(W) ∈ �d2p, and ⊗ denotes the Kronecker product (as defined in [13]):

p(y | w,Λ) = N (y ; (Id ⊗ X)w , Λ−1 ⊗ IN ) (2)

The utility of maximum likelihood (ML) estimates of MAR parameters, w̃ =
vec(X+Y) and Λ̃ = (Y − XW̃)′(Y − XW̃)/(N − d2p), is limited by the large
amount of data required to fit these Θ(d2) parameters reliably. A Variational
Bayesian framework for MAR estimation has been proposed which relieves this
data requirement to some degree, by means of a prior that regularizes coefficient
magnitudes [16].

Neuroimaging experiments are commonly associated with time-varying stim-
uli or tasks. Encodings of such information can be added as linear terms in
Equation 1 without affecting analysis. As such, they account for bias in the in-
novations, and do not influence system dynamics per se, which are assumed to be
stationary in the time-series y. Nonlinear coupling between variables can be ap-
proximated in the MAR framework by adding new variables which are nonlinear
functions of data from other variables (e.g. product terms) [7].

3 The RFX-MAR Model

To generalize inference about effective connectivity to the greater population
from which studied subjects were drawn, we propose to model the variation of
subject-specific MAR coefficients across that greater population. As is standard
in population inference, we approximate the population density as Gaussian,
so that its mean characterizes dynamical structure common to the population,
and its covariance characterizes the degree of variability in that structure found
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within that population. Hence, we construct a hierarchical, or Random Effects

(RFX), model which describes both the subject-specific MAR parameters and
the inter-subject variation of those parameters.

p(yk | wk, Λk) = N
(
yk ; (Id ⊗ Xk)wk , Λ−1

k ⊗ In

)
, k = 1, . . . , S (3)

p(wk | w0, γ) = N
(
wk; w0 ,

H∑
h=1

γ−1
h Qγh

)
(4)

p(w0 | α) = N
(
w0; 0,

G∑
g=1

α−1
g Qαg

)
(5)

In particular, we model the multivariate time-series yk ∈ �Nkd from each subject
k as MAR(p) process with coefficients wk and innovations precision (inverse co-
variance) Λk (Equation (3)). The data from subject k comprise Nk time samples
of dimension d. Each subject-specific MAR coefficient [wk]i is drawn indepen-
dently about its population mean [w0]i with some precision γh (Equation (4)).
We group coefficients to reflect similarity in their inter-subject variation, rather
than assuming a single variance for all coefficients a priori. Each of these random-
effects variance groups are associated with a precision γh, h = 1, . . . , H. This
“structuring” of inter-subject variation is defined as follows:

groupγ(i) ≡ the RFX group of [wk]i [Qγh
]ij ≡ δijδ(groupγ(i) = h) (6)

Additionally, we assume that each population-level coefficient [w0]i is drawn in-
dependently from a zero-mean Gaussian, and partitioned into one of G groups
with other coefficients with similar magnitudes (Equation (5)). This kind of
“structured” prior was used to reduce the effective degrees of freedom in single-
subject MAR modeling [16, 7], and has been referred to as an Automatic Rel-

evance Determination (ARD) prior [11]. This ARD structuring is defined as
follows, where g = 1, . . . , G indexes the groups:

groupα(i) ≡ the ARD group of [w0]i [Qαg
]ij ≡ δijδ(groupα(i) = g) (7)

In summary, we have a three-level linear Gaussian model. Its first level describes
subject-specific variation with the MAR process. Its second level describes vari-
ation in subject-specific coefficients across the sampled population by means of a
Gaussian density with diagonal precision matrix. The third level regularizes the
magnitude of the population-level coefficients. Naturally, care should be taken to
look for inconsistency between this model and the qualities of data to which it is
applied. Since the data has zero mean under the MAR model, the sample mean
is removed from each data channel as a pre-processing step. Furthermore, each
channel’s signal is individually normalized by its sample variance (we expect to
model stable systems). By doing so, the cross-coefficients of wk, i.e. [Ak]ij(·)
for i �= j, are comparable across subjects, normalized by the ratio between the
amplitudes of the “to” and “from” signals

∥∥[Yk]·j
∥∥/∥∥[Yk]·i

∥∥.
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For notational simplicity, we will henceforth refer to the N ≡
∑S

k=1 Nk sam-
ples of multi-subject data collectively as y ≡ [y′

1 . . .y′
S ]′; the subject-level preci-

sions as Λ ≡ {Λ1, . . . ,ΛS}; and the population and subject-specific coefficients
as w ≡ [w′

0 w′
1 . . .w′

S ]′.

3.1 Precision Priors

Since we intend to estimate the RFX-MAR model in a Bayesian framework, we
set the following “noninformative” priors for the precision parameters in (3)–(5)
to represent an absence of prior information.

p(Λ) ∝
s∏

k=1

∣∣Λk

∣∣− d+1

2 p(α) =
G∏

g=1

Ga(αg ; ap , bp), ap, bp ≡ 10−3

p(γ) =
H∏

h=1

(
2uγ

3
2

h

)−1

, γh ≥ u−2, u ≡ 103

(8)

We subscribe to the view in [6] that “any noninformative prior distribution
[is] inherently provisional— after the model has been fit, one should look at
the posterior distribution to see if it makes sense.” We follow [16] in the form
of the priors on precisions Λ and α due to their success in the single-subject
MAR modeling and in our experiments on synthetic multi-subject data. The
prior on α follows a Gamma density [1], and the prior on Λ is improper. Both
were motivated by Jeffreys’ Rule [2]; however, they do not follow from its strict
application, but rather from its application to the first and third levels of the
model in isolation. The prior on γ is equivalent to a locally uniform prior on the
standard deviation of inter-subject variation σh ≡ γ−0.5

h for each RFX variance
group h. This prior is suggested for RFX models as preferable to those of the
family Ga(γh; ε, ε), under which inference is sensitive to ε when σh is near zero
[6]. We observed this sensitivity in our experiments.

4 Variational Posterior Estimation

In this section, we describe a Variational Bayesian (VB) algorithm [8, 10] for
estimating the posterior of the RFX-MAR model’s real-valued parameters, in-
cluding the MAR coefficients w and precision parameters Λ, γ and α. Our choice
of this framework for posterior estimation was motivated by its suitability to es-
timation of a single MAR process [16, 7]. In Sect. 5, we address selection of the
model’s discrete-valued, structural parameters, which include the MAR model
order and the RFX and ARD structuring functions.

The VB algorithm proceeds as follows: For a generic statistical model with
parameters θ and observed data D, an approximation to the true posterior
q(θ) ≡ p̂(θ | D) is produced by maximizing a lower bound on the model’s log
evidence

F ≡ log p(D) − D(q(θ) ‖ p(θ | D)) ≤ log p(D) (9)
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with the simplifying assumption that the posterior approximation factorizes
q(θ) ≡

∏
i q(θi) in some way. The quantity F is referred to as the negative

variational free energy. Maximization proceeds by fixed-point iteration whereby
the posterior for each subset of parameters θi is updated sequentially, while
holding the posterior of remaining parameters constant. If priors are set to be
conditionally-conjugate under such posterior independence assumptions, each
VB update step may reduce to a closed-form update of the induced sufficient
statistics of q(θi). This is referred to as Free-Form Variational Bayes. Alterna-
tively, Fixed-Form Variational Bayes refers to a VB update step which follows
from assuming additionally that the posterior factor has a particular parametric
form. For instance, the Expectation Maximization (EM) algorithm [3] is a special
case in which the second of two parameter groups is assumed to have a singular
posterior q(θ1, θ2) ≡ q(θ1)δ(θ2 − θ̂2) with parameter θ̂2.

For the RFX-MAR model, we assume the posterior independence of the pre-
cisions parameters and MAR coefficients. With this assumption, it can be shown
that precisions’ posterior further factorizes, due to the graphical structure of the
model and their prior independence:

q(w,Λ,γ,α) ≡ q(w)q(Λ,γ,α) = q(w)
S∏

k=1

q(Λk)
H∏

h=1

q(γh)
G∏

g=1

q(αg) (10)

Furthermore, with priors on the precision parameters of the form given in (8),
it can be shown that the posterior factors follow Normal, Wishart, Gamma and
incomplete Gamma1 densities (denoted N , W, Ga, and IGa, respectively) [1].
Thus the free-form VB algorithm proceeds by sequential update of the sufficient
statistics of each posterior factor until convergence to a fixed point. These up-
dates are given below in (11)–(14). For clarity in these equations, we let

∑
ig

denote summation over the κg coefficient indices i which are part of ARD prior
group g, i.e.

∑
i :group

α
(i)=g. Similarly,

∑
ih

denotes
∑

i :group
γ
(i)=h, where the

RFX group h contains νh coefficients. We also define Λ̃k ≡ Λ̂k ⊗ X′
kXk and

w̃k ≡ vec(X+
k Yk ), and let Γ̂ ≡

∑H
h=1 γ̂hQγh

and Ξ̂ ≡
∑G

g=1 α̂gQαg
denote the

estimated precision matrices for the second and third levels of the RFX-MAR
model.

Update for q(w) ← N (w ; ŵ , Σ̂): The (k, l)th block of Σ̂ of size d2p × d2p is

denoted Σ̂(kl), k, l = 0, . . . , S

Σ̂(00) =

(
Ξ̂ + SΓ̂ − Γ̂

[
S∑

k=1

(Γ̂ + Λ̃k)−1

]
Γ̂

)−1

Σ̂(0k) = Σ̂(k0)′ = Σ̂(00)Γ̂(Γ̂ + Λ̃k)−1, k = 1, . . . , S (11)

Σ̂(kl) = δkl(Γ̂ + Λ̃k)−1 + (Γ̂ + Λ̃k)−1Γ̂Σ̂(00)Γ̂(Γ̂ + Λ̃l)
−1, k, l ≥ 1

1 We define the incomplete Gamma density IGa(x; a, b, xmin) to be proportional to
the Gamma density Ga(x; a, b) for positive values x ≥ xmin, and zero otherwise.
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ŵ′ =
[
0′ (Λ̃1w̃1)

′ . . . (Λ̃Sw̃S)′
]
Σ̂

Update for q(Λ) ←
∏S

k=1 Wd(Λk ; ak , Bk):

ak = Nk Ωk ≡
Nk∑
n=1

(Id ⊗ [Xk]n·)Σ̂(kk)(Id ⊗ [Xk]n·)′

Bk = (Yk−XkŴk)′(Yk−XkŴk)+Ωk Λ̂k ≡ Eq(Λk)

{
Λk

}
= akB

−1
k

(12)

Update for q(γ) ←
∏H

h=1 IGa(γh ; aγh
, bγh

, u−2) :

aγh
=

νhS − 1

2
bγh

=
1

2

S∑
k=1

∑
ih

[
[Σ̂(00)−2Σ̂(k0)+Σ̂(kk)]ihih

+[ŵk−ŵ0]
2
ih

]

γ̂h ≡ Eq(γh)

{
γh

}
=

1

bγh

[
aγh

+
(bγh

u−2)aγh exp
{
−bγh

u−2
}

Γ (aγh
, bγh

u−2)

] (13)

Update for q(α) ←
∏G

g=1 Ga(αg ; aαg
, bαg

):

aαg
= ap +

κg

2
bαg

= bp +
1

2

∑
ig

[
[Σ̂(00)]igig

+ [ŵ0]
2
ig

]
α̂g ≡ Eq(αg)

{
αg

}
= aαg

b−1
αg

(14)

In our experiments with this algorithm, we found that the sufficient statistics
for q(Λ) and q(α) converge quite rapidly, but that convergence of those for q(γ)
is extremely slow for data in which any RFX group has a large precision γh. This
observation is consistent with the literature on EM estimation of generic RFX
models [15]. However, we found that posterior optimization could be made quite
rapid by using Powell’s direction set method [17] to estimate the otherwise slow-
converging sufficient statistics of q(γ). In this approach, the optimal negative
variational free energy F at each setting of q(γ) is computed using the relatively
rapid VB fixed-point iteration for the remaining parameters (Equations (11),
(12) and (14)):

max
γ̂

VB iteration︷ ︸︸ ︷
max

ŵ,Σ̂,Λ̂,α̂

F (ŵ, Σ̂, Λ̂, γ̂, α̂)︸ ︷︷ ︸
Powell’s Method

(15)

Above, we are able write F above as a function solely of the precision means
since only one of the two sufficient statistics of their respective posteriors varies
during VB optimization.

We initialize this hybrid algorithm by computing the sample mean and preci-
sion of source-independent ML estimates of the source-level coefficients and noise
precisions, and then by running the full VB iteration until the change in Λ̂ and
α̂ becomes less than 10−4. This quickly produces a posterior estimate q(Λ,γ,α)

which is nearly optimal. We cache the optimal Λ̂ and α̂ for recent evaluations of
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F (γ̂) to initialize the VB iteration of subsequent evaluations, so that as Powell’s
method converges, the VB iteration is started very close to its fixed-point. We
terminate the hybrid optimization when F is maximized to precision ±10−10.

The following is an expression for the negative variational free energy F under
the RFX-MAR model. Note that we have dropped an infinite constant due to
the improper prior on Λ, and have canceled a number of terms by assuming
that F is evaluated after the update steps for q(Λ) and q(α), but before the
next update for q(w). If q(γ) is being updated, then the last line also cancels.

The block structure of Σ̂ can be used to make evaluation of its determinant
|Σ̂

∣∣ = |Σ̂(00)|
∏S

k=1 |Γ̂ + Λ̃k|
−1 computationally manageable.

F =
d

2

(
S(d − 1)

2
− N

)
log π +

(S + 1)d2p

2
+

1

2
log

∣∣Σ̂∣∣ +

G∑
g=1

log
b
aαg
αg Γ (âαg

)

b̂
âαg
αg Γ (aαg

)

+

H∑
h=1

log
Γ (âγh

, b̂γh
u−2)

2ub̂
âγh
γh

+

S∑
k=1

[
Nk

2
log

(∣∣Λ̂k

∣∣N−d
k

)
+

d−1∑
i=0

log Γ
(Nk − i

2

)]

+

H∑
h=1

γ̂h

(
b̂γh

−
γ̂h

2

S∑
k=1

∑
ih

[
[Σ̂(00) − 2Σ̂(k0) + Σ̂(kk)]ihih

+ [ŵk − ŵ]2ih

])

5 Model Structure Selection

Since the VB algorithm maximizes a lower bound on the log evidence p(D|H)
of a generic model H, the optimized negative variational free energy F (H) can
be used to approximate the posterior on model structure p(H|D) by search over
competing models [16, 12]. For the RFX-MAR model, H is parameterized by its
discrete-valued structural parameters: the MAR model order p, the RFX struc-
turing function groupγ(), and the ARD structuring function groupα(). Thus,
inference can proceed either by model averaging (for which exp(F (H)) weights
the posterior q(θ|H) under each H), or by model selection (for which inference

proceeds based only on the posterior q(θ|Ĥ) under the model Ĥ = argmaxF (H)
with maximum approximate evidence). The latter VB model selection criteria is
equivalent to the Bayesian Information Criteria (BIC) in the large sample limit,
and has been shown superior to BIC for model order selection in single-subject
MAR modeling [16]. We choose a model selection framework since in our experi-
ence with the RFX-MAR on real and synthetic data, F (H) is typically strongly
peaked and the coefficient posterior is very similar under all explored model
structures with non-vanishing evidence.

We search the MAR order parameter p exhaustively over positive integer
values, up to some maximum. Since exhaustive search is not possible for the
RFX and ARD group functions, we follow [16] which suggests a semi-automatic,
heuristic search method for finding a structuring function likely to group coef-
ficients appropriately. These may include hand-tailored structurings, or generic
ones such as a “global” function which puts all coefficients into the same group.
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Another example is an “interaction” function which groups all coefficients cor-
responding to interactions between channels, Aij(·) for all i �= j, and places the
remaining coefficients into a second group. Such functions may also be selected
semi-automatically. For instance, an “auto” function for the ARD structuring
can be produced by k-means clustering of the MAP coefficient estimates under
the “global” structuring. An “auto” function for the RFX variance structuring
can be produced by k-means clustering of the sample variances of MAP coeffi-
cient estimates from subject-independent MAR modeling.

6 Connectivity Inference

We are principally interested in inferring which direct interactions between mod-
eled brain regions are non-zero within a population under experimental condi-
tions. Inference of this kind will be based on (marginalization of) the posterior of
the population-level coefficients q(w0). Having selected a model structure by the
VB maximum evidence criteria, we can report on the population-level effective
connectivity between variables i and j by computing a statistic that relates to the
posterior “plausibility” of A0

ij(·) = 0 under q(w0), where A0
ij(·) are the coeffi-

cients in w0 related to the direct influence of variable i on j. Generally speaking,
one can report on the posterior plausibility of a specific parameter value θ = θ0

by computing the complementary probability content of the smallest Highest

Probability Density (H.P.D.) region of the posterior q(θ) that contains the value
in question [2]. For a Gaussian posterior q(θ) = N (θ; µ, Ω) with full-rank co-
variance Ω, it is readily shown that this connectivity statistic s0 is a monotonic
function of the Mahalanobis distance from the posterior mean µ ∈ �r to the
specified value θ0. Note that s0 decreases as θ = θ0 becomes less plausible a
posteriori.

s0 = 1 − χ2
r

(
(θ0 − µ)′Ω−1(θ0 − µ)

)
(16)

To assess the specificity of a test which rejects the null hypothesis (that A0
ij(·) =

0) by thresholding such connectivity statistics, we simulate a null distribution
by permutations of the time-series data and re-estimation of the these statistics
[9]. In particular, we randomly sample circular translations of each of the d time-
series for each subject such that every pair of univariate time-series are shifted by
more than 2pmax lags. Here, pmax is the maximum MAR model order entertained
in our search. This produces multivariate time-series whose univariate statistics
are roughly unaffected, while removing causal interactions between variables.

7 Experiments

The ability of the MAR process to capture inter-regional neural dynamics has
been shown on synthetic data from biologically plausible models [9]. We validated
our estimation algorithm in terms of its ability to estimate all real-valued and
structural RFX-MAR parameters using multivariate time-series sampled from
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known RFX-MAR models. The scope of our investigation was quite broad and
involved varying the number of subjects S, number of samples per subject Nk,
and degree of inter-subject variance of MAR coefficients. We considered the cases
where the subject-specific coefficients were drawn about a single mean, about
two means, and drawn independently. We also compared performance of the
RFX-MAR model to the subject-independent MAR estimation of [16], and to a
“fixed-effects” model in which all subject-level coefficients were assumed to be
identical. In summary, we found parameter estimation and model selection to
be robust when the number of subjects S ≥ 10, and the number of samples per
subject Nk was greater than approximately three times the number of parameters
per subject at the optimal model order d2(p + 1). Classification error for non-
zero direct influences between pairs of variable was less than 5% in general.
When the amount of data was more limited, the RFX-MAR model tended to
overestimate the model order p, but with little impact on connectivity inference.
Subject-independent estimation of p was generally more robust.

RFX-MAR analysis of a small number of fMRI and EEG multi-subject
datasets have produced promising results. Here, we detail our analysis of multi-
subject EEG time-series from the UCI Knowledge Discovery Database2. This
dataset contains measurements from 64 electrodes placed on the scalps of healthy
subjects and sampled at 256 Hz for 1 second during a picture presentation task.
The protocol and data are described in [18]. We performed RFX-MAR modeling
of 1 second of data from each of S=20 healthy subjects, having selected d=6 chan-
nels from the frontal (F5, F6), temporal (T7, T8), and parietal (P3, P4) regions in
each hemisphere. We searched all combinations of the following structural param-
eter settings: p = {1, . . . , 5}, groupγ = {global, interaction, auto (H=2, 3, 4)}
and groupα = {global, interaction, auto (G=2, 3, 4)}. The MAP model struc-
ture was p = 5, groupγ = groupα = interaction. This model order was consistent
with the most common model order estimated by subject-independent analysis
of the data. The MAP inter-subject standard deviation of coefficients involved
with within-channel predictions was 0.027, whereas that for coefficients involved
in cross-channel prediction was 0.007. The posterior of the population-level co-
efficients is shown in Fig. 1. We computed connectivity statistics using (16) to
assess evidence of a non-zero causal interaction between each pair of channels,
and estimated the null distribution of these statistics by repeating analysis on
100 randomly, circularly shifted versions of each channel, in each subject. This
yielded 100 d(d − 1) = 3000 samples of connectivity statistics between channels
for which there is unlikely to be a causal connection. Figure 2 shows the inferred
population-level effective connectivity pattern, the associated connectivity statis-
tics, and their estimated p-values. We note that few variables were found to be
interacting when the same data was modeled in a subject-independent manner,
except when a larger sample of the data was included for each subject. This

points to the cross-subject regularizing effect that joint modeling of multiple

2 http://kdd.ics.uci.edu These data were provided by Henri Begleiter at the Neurody-
namics Laboratory at the State University of New York Health Center at Brooklyn.
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Fig. 1. The posterior mean of the population-level directed influence functions A0

ij(·)
(plotted with 99% H.P.D.-content error bars) given the RFX-MAR structural param-
eters with maximum F for the EEG dataset. The background of plot (i, j) is colored
black when the connectivity statistic s0 for A0

ij(·) = 0 is less than 10−6

Fig. 2. A graphical representation of the population-level effective connectivity inferred
from the EEG data. We only show edges between channels whose connectivity statistic
is ≤ 10−6, and omit self interactions for clarity. EEG channels with odd (even) index
are in the left (right) hemisphere. This pattern suggests that regions which are spa-
tially closer interact to a greater degree under the MAR model. The table gives the
connectivity statistic (top) and the estimated p-value (bottom) for each interaction

subjects can have to elucidate more subtle connectivity patterns in the data. We
repeated this analysis for S=20 different healthy subjects from the same study,
and found the population-level posterior and effective connectivity pattern to be
very similar.
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8 Discussion

We have presented the initial development of a method for population modeling
of effective connectivity among brain regions based on neurological time-series.
Numerous avenues exist for further elaboration, validation and utilization of this
kind of model. We are particularly interested in different ways two populations
(distinguished, for example, by the presence of disease) might be compared on
the basis of effective connectivity. Certainly, one can perform inference on the
population-level coefficients produced by independent RFX-MAR modeling of
the two populations. However, the success of classifiers produced from such pop-
ulation models would lend credence to what is necessarily a model-dependent
characterization of the interaction among brain regions. It would also be valu-
able to construct similar population models for more elaborate systems models,
such as those not limited to time-invariant connectivity patterns. Finally, we
note that the RFX-MAR model can also be used to characterize other types of
variation in connectivity parameters, such as that arising from repeated trials
under similar experimental conditions.
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Abstract. Most of the approaches dedicated to fiber tracking from diffusion-
weighted MR data rely on a tensor model. However, the tensor model can only
resolve a single fiber orientation within each imaging voxel. New emerging ap-
proaches have been proposed to obtain a better representation of the diffusion
process occurring in fiber crossing. In this paper, we adapt a tracking algorithm
to the q-ball representation, which results from a spherical Radon transform of
high angular resolution data. This algorithm is based on a Monte-Carlo strategy,
using regularized particle trajectories to sample the white matter geometry. The
method is validated using a phantom of bundle crossing made up of haemodialy-
sis fibers. The method is also applied to the detection of the auditory tract in three
human subjects.

1 Introduction

Brownian motion of water molecules in brain white matter is disturbed by the fiber
bundle microscopic structure. Therefore, the anisotropy of the molecule displacements
embeds information about the fiber bundle orientations. Hence, diffusion MRI, which
probes these water molecule displacements, provides a way to detect the main bundles
and to map the large scale connectivity of the brain.

A lot of methods have been proposed for this purpose. Most of them rely on a ten-
sor model of the water diffusion process (Diffusion Tensor Imaging, DTI) [1, 15]. This
model, however, is too simple to represent the complex diffusion process occurring in
voxels filled by fiber crossing. More sophisticated models have been recently introduced
to overcome these difficulties [22, 8, 16]. They usually aim at explaining the MR signal
as a mixture of tensor models. They provide convincing results in some crossing areas,
but lack the versatility required to untangle any complex diffusion pattern (fan-shaped
bundle, bending fibers, kissing fibers, etc.). Therefore, another strategy consists in us-
ing iconic representations of the diffusion process, namely an image for each voxel.
This point of view alleviates the risk of misinterpreting the MR data because of the
narrowness of the model.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 52–63, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Diffusion Spectrum Imaging (DSI), which provides for each voxel a 3D image of
the water displacement probability distribution, is the most attractive solution [25, 12].
Unfortunately DSI is based on sampling the 3D Fourier space of the water displacement
distribution, which requires large pulsed field gradients and time-intensive acquisition.
Therefore DSI can not be used in clinical situations. However, it has been shown re-
cently that the orientation distribution function (ODF) of this probability distribution
can be reconstructed from high angular resolution diffusion imaging (HARDI) using a
spherical tomographic inversion called the Funk-Radon transform, also known as the
spherical Radon transform [21]. This technique called q-ball imaging could resolve in-
travoxel white matter fiber crossing as well as white matter insertions into cortex [23].

In this paper, we propose a new algorithm to infer fiber bundles from q-ball imaging
data. This algorithm combines the idea of performing a probabilistic tractography [4,
3, 16] with regularization of the curvature of the particle trajectories used to sample the
white matter organization [17, 24, 13, 5]. The method is first validated with a phantom
of fiber crossing made up of haemodialysis fibers. Then, the method is successfully
applied to the detection of the auditory tract in 3 human subjects. This tract can not
be detected with the standard DTI-based streamline method [14, 6, 2] because of its
crossing with a large orthogonal bundle.

2 Method

2.1 QBall Imaging

The QBall model has been introduced by David Tuch in 2002 because performing rou-
tine DSI acquisition was too difficult [20]. The MR diffusion signal E is related to the
diffusion function P by the Fourier relation P = F [|E(q)|] where q is the diffusion
wave-vector. The radial projection of the diffusion function is called the diffusion ODF
and is defined as ψ(u) =

∫∞

0
P (ru)dr, where u is the unit direction vector. Given a

sampling of E on a sphere (HARDI), David Tuch demonstrated that the spherical Radon
transform or Funk-Radon Transform (FRT) provides a good approximation of this ODF.
Let us consider a function p(w) on a sphere where w is the unit direction vector: for a
given direction of interest u, the FRT is defined as the integral over the corresponding
equator.

S[u] =
∫

w⊥u

p(w)dw. (1)

David Tuch demonstrated that the FRT of E evaluated at a particular radius q’ can
be written in cylindrical coordinates as :

Sq′ [E] = 2πq′
∫

P (r, θ, z)J0(2 ∗ π ∗ q′r)rdrdθdz (2)

where J0 is the 0th order Bessel Function. If we replace this Bessel function by a delta
function, δ(r), then we obtain the radial projection ODF exactly. Therefore, due to the
Fourier relationship between the diffusion MR signal and the diffusion function, we
can exploit this finding to measure the displacement probability in a particular direction
by simply summing the diffusion MR signal along an equator around that direction
[23, 21]. Q-ball field is the result of this summation computed voxel by voxel.
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In the following, q-ball data are visualised according to the following rules. Each
q-ball is represented by a spherical mesh. Each node of the mesh is moved outward
according to the water molecule displacement probability. In order to maximize the
information provided by this deformation process, this motion is computed as (p −
minS(p))/(maxS(p) − minS(p)), where p is the node probability and S the sampled
sphere of the current voxel. To improve visualisation further, each node is given a color
related to its orientation relative to the image axis: red for x axis, green for y axis and
blue for z axis, interpolated in between.

2.2 Fiber Direction and ODF

Due to the mathematical approximation mentioned above, the q-ball-based ODF does
not match exactly the actual ODF. Moreover, the relationship between the diffusion
ODF and the fiber ODF is an open issue governed for instance by the link between
the physics of diffusion and some biophysical properties of the tissue such as cell mem-
brane permeability or free diffusion coefficients for the different cellular compartments.
This issue corresponds to a crucial research program for the community of diffusion
imaging. This program, however, needs time to deliver some answers, which should
not stop the development of tracking algorithms. These algorithms, indeed, have the
possibility to use contextual knowledge, namely the neighborhood of a voxel, in order
to tackle locally the inverse problem: which geometry of fiber can explain such q-ball
data. Therefore, in the following, we assimilate the diffusion ODF with the fiber ODF,
but the relationship could be refined in the future. One key issue, for instance, when
dealing with q-ball imaging will be the optimal choice of the radius q′ of the HARDI
acquisition. Increasing q′, indeed, sharpens the Bessel kernel and increases the ability
to resolve distinct diffusion peaks but at the cost of a lower signal to noise ratio.

2.3 Probabilistic Tracking and Curvature Regularization

The simplest approaches for fiber tracking, which are based on DTI, are variants of
the “streamline” method. The eigenvector of the tensor associated with the highest
eigenvalue is supposed to provide the local fiber direction. Then this local direction
is followed step by step in order to build 3D trajectories supposed to correspond to the
bundles [14, 6, 2]. Unfortunately, in case of partial volume (fiber crossing), the diffu-
sion ellipsoid associated to the tensor may be a disk or a sphere. In such cases, the
first eigenvector indicates a spurious fiber direction leading to false fork of the tracking
process.

Various approaches have been proposed to reduce the bad influence of ambiguous
tensors. They all involve the use of the entire tensor information. For instance the tensor
is used in [26, 9] to deflect the estimated fiber trajectory leading to the reconstruction
of “tensorlines”. Another approach considers the tensor field as a Riemannian manifold
and the fibers as some geodesics of this manifold [10]. Using a regularization point of
view leads to define the fibers as a trade-off between high diffusion along fibers and low
curvature constraints [17]. The tensor field can also feed a model of uncertainty on the
fiber orientation used to perform Monte-Carlo estimations of the connectivity [4, 3] or
probabilistic tracking [5].
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Fig. 1. The normalized standard deviation of the q-ball provides a measure of anisotropy α, that
is used to weight the influence of the q-ball on the particle trajectories

All these approaches perform better than the simple streamline idea. However, when
getting close to the cortex, they get in touch with large areas of crossing fibers where
the reliability of the results drop down. In such areas, the tracking problem becomes
ill-posed because of the poor representation of the diffusion process provided by the
tensor. There is now a consensus that higher angular resolution data like HARDI is re-
quired to untangle such crossing. New approaches are then needed to infer information
on the fiber orientation from such data. The multi-tensor point of view converts HARDI
into a short list of fiber directions for each voxel that can be used to develop track-
ing approaches [16]. A weakness of this strategy stems from the potential failures of
the process leading to this list, either a standard fitting procedure [22] or more sophis-
ticated approaches from information theory [8]. The q-ball approach, which converts
directly the diffusion data into a fiber ODF, overcomes this difficulty. Therefore, this
data representation seems the perfect candidate for developing Monte-Carlo estimation
of white matter geometry. In the following, we describe such an approach where this
geometry is sampled using regularized particle trajectories.

Like most approaches, our method requires a Region of Interest (ROI) as input.
Each voxel of this ROI is spatially sampled in order to define the starting points of n
particles. These particles move inside a continuous q-ball field defined by linear inter-
polation. Each particle is endowed with an initial speed in the direction of the q-ball
maximum. Then, each particle moves with constant speed according to a simplistic
sampling scheme: let us note p(i) the location of the particle at time i, and

−−→
v(i) the

direction of the particle speed at time i:

p(i + δt) = p(i) +
−−→
v(i) ∗ δt (3)

The behaviour of the particle speed direction can be understood from a simple mechan-
ical analogy: at each step of the trajectory sampling, the new speed

−−−−−→
v(i + δt) results

from a trade-off between inertia (
−−→
v(i)) and a force stemming from the local q-ball (−→vq ):

−−−−−→
v(i + δt) = α−→vq + (1 − α)

−−→
v(i) (4)
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where α is a parameter ranging between 0 and 1 that will be described latter. The orien-
tation −→vq of the force acting on the particle is chosen randomly inside a half cone defined

from the incident direction
−−→
v(i). The probability distribution driving this sampling cor-

responds to the restriction of the q-ball to this half cone. Therefore, the maximum of
the q-ball inside the half cone has the highest probability.

The parameter α is the standard deviation of the q-ball normalized by its maximum
in the field. Hence, this weight depends on the location in the q-ball field. In fact α is a
measure of anisotropy [7]. For isotropic voxels, α parameter is small and the algorithm
favours incident orientation; while for anisotropic voxels, α parameter is large and the
algorithm favours q-ball distribution (see Fig. 1).

The particle trajectory regularization depends on three parameters:

1. the half-cone angle is used to discard the diffusion peaks leading to high curvature
of the trajectory. In the following, the cone angle defined from the cone axis is 30
degrees.

2. the q-ball standard deviation (α parameter) tunes the weight of inertia.
3. the constant sampling δt provides another level of tuning: increasing the trajectory

sampling decreases curvature regularization. In all the following, δt is set such as
the particles do a 0.5 mm move at each iteration.

In this paper, the influence of these ad hoc parameters is not explored. The algorithm
proposed in this paper, indeed, aims mainly at studying the inner organization of the q-
ball field and its links with the bundle organization. It is too early to address the optimal
tuning of such parameters.

The particles propagate throughout a mask computed from the T2 image. Trajecto-
ries stop only when they leave the mask. After the propagation, a postprocessing can
be applied to keep only the reliable part of a bundle. After selection of a set of particle
trajectories, for instance using a second ROI, a meter is used for each voxel accounting
for the number of particles which go through that voxel. Then, the trajectories crossing
some voxels whose meter is under a given threshold are discarded as non significant.

3 Fiber Crossing Phantom

The lack of knowledge about the white matter organization of the human brain is a huge
handicap for the community developing fiber tracking algorithms. Considering the com-
plexity of the MR diffusion signal, it is rather difficult to validate such algorithms using
only simulated data. Therefore, the development of phantoms with known geometry is
in our opinion crucial for a better understanding of the algorithm behaviours [12].

For this purpose, we have designed a phantom corresponding to two intersecting
fiber bundles. It consists of sheets of parallel haemodialysis Fibers (Gambro, Polyflux
210 H) with an inner diameter of 200 micrometers and an outer diameter of 250 mi-
crometers. Sheets of two different orientations intersecting at 90 degrees were stacked
on each other in an interleaved fashion [12]. Crossing thickness is above 2cm. Fibers
are suspended and hold by two arms as seen in Fig. 2. Fibers are permeable to water.
They are dived in pure water mixed with gadolinium.
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A phantom
of haemodialysis fibers

I

II

III

IV

Fig. 2. I: A phantom of fiber crossing. II: A slice of the 512 directions q-ball acquisition with a
zoom on the crossing area. q-balls are superimposed on a T2-weighted MR image whose intensity
is related to water amount. q-balls and MR data have been slightly rotated in order to simplify the
reading of the q-ball 3D color code. Green and blue rectangles denote the regions of interest at
the origin of fiber tracking. III: Slices of the number of particles crossing each voxels at the end of
the fiber sampling (left: blue bundle, right: green bundle). IV: Trajectories selected by a threshold
on the particle density map for each bundle. A T2-weighted slice of the phantom crossing the
bundles is used as background and hides some trajectories

We performed MRI acquisitions with a 1.5 Tesla magnet (Signa, General Electrics)
with maximal gradient intensity of 40 mT m−1. Acquisitions were performed with
Spin echo EPI sequence and Stejskal and Tanner diffusion gradient [19]: b value is
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700 s mm−2, equivalent to 2000 s mm−2 for diffusion in brain white matter, 512 ori-
entations of the diffusion gradient (HARDI), Matrix 64 x 64, In-plane voxel resolution
3.75 x 3.75 mm, Slice thickness 2.0 mm, TE 66.6 ms, TR 3000 ms, 1 shot, field of view
24 cm. Spatial distortions of the diffusion-weighted images induced by Eddy currents
were corrected before estimation of the q-ball field. This correction relies on a slice by
slice affine geometric model and maximization of mutual information with the diffusion
free T2-weighted image.

A slice of the q-ball field is shown in Fig. 2. Unfortunately, because of a difficult
positioning of the phantom due to the shape of its container, the two crossing bundles
are not parallel to the slice axes. To clarify the visualisation of the q-ball data based
on color encoding, a rotation around the z-axis has been applied to the data before
visualization. Then the orientation of each bundle corresponds to a pure color in the
q-ball meshes (green and red). A zoom on the crossing area highlights the additional
information provided by the q-ball compared to a tensor model. The diffusion peaks,
however, would provide a better angular discrimination with higher b value (q′).

For each bundle, the tracking algorithm is fed with a ROI made up of 3 voxels,
using 3 x 130 particles. The particles propagate throughout a mask defined from the
T2-weighted image. This mask corresponds to the part of the field of view including
the artificial fibers. It was defined from a high threshold on intensity (the voxels includ-
ing fibers contain less water, which leads to less signal), followed by a morphological
closing in order to fill up spurious holes. A slice of the two resulting particle density
maps is shown in Fig. 2. A threshold of 5 particles is applied to these maps in order
to create a mask used to select reliable trajectories. The remaining trajectories do not
include any spurious fork in the crossing area.

A second experiment was performed to check that the successful result was not only
due to the fact that the phantom bundles have a straight geometry. With such a geom-
etry, indeed, curvature regularization is sufficient for the particles to pass through the
crossing area without trouble. For this second experiment, a 20 degree rotation around
the z axis was applied to the q-balls of the crossing area corresponding to the zoom
of Fig. 2. Then the tracking algorithm was triggered with the same set of particles as
for the first experiment using first the initial q-ball field and second the modified field.
However, the particles could propagate throughout the whole field (no mask) and no fil-
tering of the trajectories was applied using the particle density map. The results shown
in Fig. 3 prove that the curvature regularization does not prevent the particle to follow
the rotated fiber direction indicated by the q-balls of the crossing area. This observation
means that the q-balls of the crossing area are anisotropic enough to oppose the particle
inertia.

A last experiment was performed to observe the behaviour of the streamline ap-
proach with the same data and the same ROIs. The algorithm was provided by brain-
VISA software (http://brainvisa.info). Each voxel of the ROI was spatially sampled in
order to provide several starting points. The streamlines were sampled with 0.5mm
steps. For each step, the tensor is estimated after linear interpolation of the 512 diffu-
sion-weighted images and the streamline follows the direction of the main eigenvector.
Streamlines are stopped by a threshold on the angle between two consecutive direc-
tions, namely a threshold on the streamline curvature. We performed the experiment
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Fig. 3. Left: a slice of the normalized standard deviation of the q-ball (α). Middle: particle tra-
jectories in the initial q-ball field (T2-weighted image behind). Right: particle trajectories in the
field where the q-balls of the crossing area have been rotated around the z axis (20 degrees)

Fig. 4. Streamline algorithm with different thresholds on the angle between two consecutive steps.
a) 30 degrees, b) 60 degrees, c) 80 degrees d) 90 degrees

with four different thresholds (30deg, 60deg, 80deg, 90deg). The results are shown in
Fig. 4. With a 30deg threshold, the streamlines can not pass through the crossing area.
Increasing the threshold allows the streamlines to go further, but the result is uncertain.
When the streamlines remains inside the correct bundle, they include questionable high
curvature parts. All these difficulties stem from the fact that the directions of the tensor
main eigenvectors in the crossing area are not predictable.

4 Human Brain

One of the bundles often used to illustrate the behaviour of tracking methods is the optic
tract, which conveys information from the thalamus to the visual cortex in occipital
lobe [6]. The optic tract is interesting for validation because it is one of the few well
known bundles of brain architecture. A few other primary bundles like the pyramidal
tract are used for the same purpose. Surprisingly, the auditory tract, which conveys
information from the thalamus to the auditory cortex in temporal lobe, is usually absent
from tracking reports. This bundle seems to be lost in a large crossing with orthogonal
fibers. To study the potential of the approach described in this paper, the last experiment
aims at detecting this primary tract.

The acquisitions used for this last experiment were not initially dedicated to q-ball
methodology. Therefore, the angular resolution is low and the b-value is too small to get
accurate information on the crossing geometry. Nevertheless, the q-ball approach can
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Subject 2

Subject 3

Subject 1

I II

III

IV
Fig. 5. I: The two regions of interest (ROIs) used to define auditory tract are the thalamus (red)
and Heschl gyrus (green), a good landmark of primary auditory area. The yellow object is the grey
matter of the lateral fissure surrounding Heschl gyrus. The blue bundle, supposed to correspond
to auditory tract, has been inferred from q-ball data. II: Intersection of the ROIs and of the tracked
bundle with a slice of the anisotropy map (the parameter α mentioned in the text) computed inside
the mask used for tracking. III: The q-balls of the voxels crossed by at least one particle trajectory
linking the two ROIs. IV: the representation of the auditory tract obtained after thresholding the
particle density map for the subject used above and for two other subjects
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be used to analyze such data, which has been done for 3 different subjects. The acqui-
sition parameters are the following: 41 diffusion gradient directions (HARDI), b value
is 700 s mm−2, Matrix 128 x 128, In-plane voxel resolution 1.875 x 1.875 mm, Slice
thickness 2.0 mm, TE 66.6 ms, TR 2000 ms, single shot, FOV 24 cm. After correction
of the spatial distortions induced by Eddy currents, the q-ball field was estimated using
a tessellation of the sphere made up of 240 nodes. To improve further 3D visualization,
a homothetic factor was applied to the q-ball meshes. This factor corresponds to the
normalized standard deviation of the q-ball (α). Hence, anisotropic q-balls are larger
than isotropic ones.

A white matter mask was used to prevent the particles to go through cortical folds.
The process leading to this mask is the following. A low threshold was applied to the
normalized standard deviation of the q-ball in order to get a first mask of anisotropic
areas. This mask was used to compute the histogram of intensities of anisotropic areas in
the T2-weighted image. A simple histogram analysis provides two thresholds allowing
the definition of the white matter mask.

A good landmark of the primary auditory cortex is called Heschl gyrus, a small
gyrus hidden in the temporal part of the lateral fissure [18, 11]. This gyrus and the
thalamus have been drawn manually in the T2-weighted images (see Fig. 5). Each voxel
of Heschl gyrus has been spatially sampled with 20 particles leading to a total of 20000
starting points (1000 voxels in the ROI). After the tracking, the trajectories reaching
the thalamus ROI are selected first. Then, these trajectories are split in order to keep
only the part linking the two ROIs. A 3D view of the q-balls crossed by the remaining
trajectories is proposed in Fig. 5. While the auditory bundle orientation is clear close to
Heshl gyrus from the q-ball shapes, the q-balls of the crossing area depict mainly the
orthogonal bundle that disturb the streamline approach. A threshold of 3 particles in the
density map was used to select further reliable trajectories, which defined a reasonable
putative auditory bundle for the three subjects (see Fig. 5).

We performed an additional experiment to compare globally the particle trajectories
with streamlines computed for the same data and with the same starting points, using a
80 degrees threshold on angles. The results are shown in Fig. 6. The streamlines are all
attracted by the orthogonal bundle.

Fig. 6. Left: the entire set of particle trajectories right: the equivalent set of streamlines
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5 Conclusion

In this paper, we have explored the new possibilities provided by q-ball representa-
tions for untangling fiber crossing during tracking. We have shown with the phantom
study that the additional information on the fiber ODF provided by the q-ball increases
largely the potential of tracking algorithms. In this paper, we advocate the use of prob-
abilistic tracking approaches, which can embed uncertainty about the fiber ODF. The
potential of this kind of approaches had already been shown in previous work using
tensor [4, 3, 5] and multi-tensor models [16]. Here, we have shown that the probabilis-
tic framework fits perfectly the information provided by the q-ball, even if some more
work has to be done in order to convert q-ball data into a more reliable fiber ODF. For
instance, the proportions of the different fiber orientations included in a voxel influence
the q-ball in a way that should be corrected in the fiber ODF. This could largely bias
the algorithm described in this paper. This algorithm was kept deliberately simple to
prevent the need for sophisticated theoretical development that would be meaningless
because of our lack of understanding of the link between the two ODFs. The develop-
ment of new phantoms could be of great help to improve this understanding. Some of
the key parameters whose influence on q-ball should be studied are the proportions of
the bundles, the angle between the bundles and the bending of the bundles.

While the experiments with the human brain data may be discussed, because the ac-
quired data are far to optimize the q-ball representation, they show that gathering some
of the most advanced ideas of the diffusion community (q-ball, probabilistic tracking,
curvature regularization) allows the tracking to get closer to the few a priori anatomical
knowledge about the brain connectivity. The next stage will imply to use higher angular
resolution data and higher b-value, in order to address the tracking of longer bundles.
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Abstract. We present a new technique for noninvasively tracing brain
white matter fiber tracts using diffusion tensor magnetic resonance imag-
ing (DT-MRI). This technique is based on performing diffusion simula-
tions over a series of overlapping three dimensional diffusion kernels that
cover only a small portion of the human brain volume and are geometri-
cally centered upon selected starting voxels where a seed is placed. Syn-
thetic and real DT-MRI data are employed to demonstrate the tracking
scheme. It is shown that the synthetic tracts can be accurately replicated,
while several major white matter fiber pathways in the human brain can
be reproduced noninvasively as well. The primary advantages of the algo-
rithm lie in the handling of fiber branching and crossing and its seamless
adaptation to the platform established by new imaging techniques, such
as high angular, q-space, or generalized diffusion tensor imaging.

1 Introduction

A number of fiber tracking algorithms have been developed since the appearance
of diffusion tensor magnetic resonance imaging (DT-MRI). Typical fiber track-
ing schemes, including the streamline-based technique [1, 2, 10], reconstruct the
white matter tracts by tracing down in a voxel-by-voxel manner, using an esti-
mate of the local fiber orientation determined by the principal eigenvector in each
voxel that is assumed to align with the mean fiber direction in that voxel. These
techniques appear to give excellent results in many instances if the principal
eigenvector field is smooth. However, it suffers from several significant limita-
tions. The vector field is error prone in the sense that the noise of DT-MRI data
will influence the direction of the principal eigenvector, yielding an accumula-
tion of orientational errors and thus an erroneous fork of the trajectory. Another
major restriction is that these techniques may also be affected by partial volume
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effects [19], leading to unstable tracking through the primary eigenvector field
in regions of fiber crossing, branching, or merging.

Under the diffusion tensor imaging platform, a variety of methods have been
proposed aiming to palliate the difficulties with more information incorporated
from the diffusion tensor data. The algorithm presented in [8] uses a deflection
term obtained from the diffusion tensor to improve the image noise immunity.
Other schemes [7, 15] use predefined knowledge to group together neighboring
voxels based on a similarity measure. Taking into account the uncertainty of fiber
direction, probabilistic and statistical approaches [3, 5, 12] have been developed
to mitigate the effects of fiber crossing and diverging as well as the sensitivity to
noise. The level set theory is also utilized to find fiber paths connecting different
brain regions [13]. Another front evolution algorithm proposed in [17] utilizes
the fiber orientation function to reconstruct fiber tracts.

As the measured quantity in DT-MRI is for water diffusion, an intuitive
way to gain insights from the diffusion tensor data is to treat the brain vol-
ume as a physical system and simulate a virtual water diffusion process over it,
which is anisotropic and governed by the diffusion equation. The shape of the
anisotropic diffusion, represented by diffusion fronts, can be used to estimate
the directional arrangement of the underlying white matter fiber bundles. This
reflection is based upon the principle that the faster the diffusion, the longer the
distance will be traveled on average by water molecules within the same amount
of diffusion time. The fiber tracts are thus expected to proceed along the direc-
tion where the diffusion is the greatest. The fiber tractography presented in this
paper performs simulations of the diffusion process stemming from a series of
diffusion starting voxels, within corresponding overlapped 3D diffusion kernels.
The diffusion simulation initiated from a diffusion root node is utilized to con-
struct a diffusion front in its associated kernel. The next set of diffusion root
nodes, where a seed will be placed, are located on the diffusion front which is
generated by the diffusion process initiated from a previous seeded root voxel.
They are picked up according to the created distance map and the local orienta-
tion information involving these voxels and the diffusion root node. For the next
round, each of the newly selected diffusion root voxels will be used to generate a
front by starting a diffusion process in its own kernel. Given below is the detailed
description of the diffusion-based fiber tractography theory and algorithm.

2 Methods

2.1 The Anisotropic Diffusion Equation

The anisotropic diffusion process simulated in this work is governed by the equa-
tion

∂C

∂t
= ∇ · (D∇C), (1)

where D is the so-called diffusion coefficient, which is a second-order tensor in the
presence of anisotropy, C the concentration, and t the independent time variable.
The coefficient used in the anisotropic diffusion simulation is the diffusion tensor
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calculated from the diffusion-weighted imaging data, which is represented by a
three-by-three symmetric positive definite matrix,

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 ,

where the subscripts xx, xy, xz, etc., denote the values of the individual coeffi-
cients in the matrix.

2.2 Extracting Front in Diffusion Kernel

The first step to reconstruct fiber pathways starting from a pre-chosen root
node s involves simulating the diffusion process in its associated diffusion kernel,
initiated from a seed (an initial concentration value) in this voxel. A diffusion
kernel defined here is a cube with six rectangular sides, which covers only a
small bulk of the whole 3D data volume and is geometrically centered upon the
diffusion starting voxel. The virtual concentration seed of water spreads from
the root node through the neighboring nodes, within a limited amount of time,
forming a diffusion front which is the surface of a diffusion volume containing
nodes with nonzero concentration values. The expansion of the diffusion volume
originated from the root node is achieved by integrating Eq. (1) over a certain
amount of time, subject to the following initial condition,

C


t=0
=

{
1 at the root node,
0 elsewhere in the diffusion kernel.

(2)

The boundary of the diffusion kernel is assumed to be insulated, i.e.,

(D∇C) · n = 0, (3)

where n is the direction normal to the boundary. This condition implies that
the normal part of the gradient of the concentration on the boundary is zero, in
other words, nothing escapes out of the domain.

We have developed an unsteady state anisotropic diffusion solver framework,
which is adapted to the cerebral circumstance and runs in both sequential and
parallel computing environments. In the current paper, (1) was solved sequen-
tially under the initial condition (2) and boundary condition (3) by resorting to
the established computational framework. We used a diffusion kernel with di-
mensions 11×11×7 and a voxel size same as in the original data volume, which
proved to be very efficient in time cost and showed no impairment on tracking
performance. Fig. 1 shows a concentration distribution map of the anisotropic
diffusion simulated in a diffusion kernel using the human brain tensor data.

Once the time integration for solving (1) is done, a discrete approximation to
the diffusion front can be calculated in terms of whether the concentration value
is zero in a voxel. Thus all nodes in the diffusion kernel can be partitioned into
two groups, one with zero concentration and the other with nonzero values. Since
only one seed is diffused over the root node, the diffusion-swept volume, denoted
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Fig. 1. The concentration distribution map of the anisotropic diffusion simulated in
a diffusion kernel (bounded by the white rectangle). The profile is superimposed on a
grey-scale axial map of the fractional anisotropy

as V (r), is comprised of voxels with nonzero concentration values, where r is the
position of the root node. For each member of V (r), we consider its surrounding
26 closest neighboring nodes in a 3 × 3 × 3 cube. Let i, j, k index the relative
coordinates of the 26 nearest neighbors of r with i, j, k ∈ {−1, 0, 1}. If F (r) is the
set of voxels that form the diffusion front of r, then for any node p ≡ (px, py, pz) ∈
V (r), we define p ∈ F (r) if ∃ (i, j, k), such that (px − i, py − j, pz − k) /∈ V (r),
which implies that if any of the 26 nodes is not in V (r), then p ∈ F (r).

2.3 The Criteria Set

In order to store and handle the front nodes dynamically produced in each diffu-
sion kernel, we set up a queue Q, a first-in first-out data structure. Q is initialized
to contain just the starting node s, i.e., Q = {s}, thereafter, Q always contains
the set of diffusion front nodes which will be the subsequent diffusion root voxels.
Once F (r) is computed for the root node r, we further apply the criteria in the set
C (see below) to the nodes of F (r) and pick up those that meet the correspond-
ing thresholds. We define I(r) to be the set of nodes selected from F (r) that
satisfy the criteria in C, i.e., I(r) = { p ∈ F (r) | p meets all the criteria in C }.
The qualified nodes in F (r) are inserted into I(r) in a non-ascending order of α
(see the first criteria c1 below). I(r) is then appended to the tail of the queue Q.

The set C bears a number of criteria, which determine the connection of fiber
pathways. There are five criteria in C used to evaluate the information about
distance and orientation between the root r and its front nodes in F (r). Let
C =

⋃
i∈{1,··· ,5}{ci}. The first criterion, c1, is the threshold for distance ratio

measure α, which is defined as α = d/dmax, where d = ‖v(r)‖ is the Euclidean
distance in R3 of two points, connected by the vector v(r) pointing from r to a
node in F (r), while dmax is the maximum value among the d’s. We set c2 to be
a threshold of an invariant anisotropy index, the fractional anisotropy (fa) [14].
The next criterion, c3, is a curvature constraint introduced to secure the tracks
yielded moving forward consistently and smoothly without erratically turning
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back on themselves. A threshold is used to restrain the angle between v(π(r))
and the current direction of tracking, v(r). Here, π(r) is the predecessor voxel
of r, i.e., r ∈ I(π(r)). v(π(r)) is an established vector pointing from π(r) toward
r, which implies the presence of a trajectory passing in this direction. c4 is used
to judge the coherence of fiber directions along the reconstructed trajectories
passing through r. One threshold is set on three inner products, φ1, φ2, and φ3,
where φ1 = |v̂(r) · e1(r)|, φ2 = |v̂(r) · e1(f)|, and φ3 = |e1(r) · e1(f)|. Here,
v̂(r) = v(r)/‖v(r)‖; e1(r) and e1(f) are principal eigenvectors (corresponding
to the largest eigenvalue of D) at the voxel r and f ∈ F (r), respectively. The
last criterion, c5, specifies the maximum number of voxels I(r) allowed to have
if there are more voxels than expected satisfying all previous four criteria, which
controls the overall computational time for simulating the diffusion process in
diffusion kernels.

2.4 Recovering Fiber Pathways

When Q is not empty, the current head node of Q is removed off the queue and
is considered to be a new root r′ where a seed is diffused. r′ is positioned at
the geometrical center of the diffusion kernel, which is then initialized using the
global-to-local mapping to retrieve necessary information from the original data
volume for carrying out the new diffusion simulation. The diffusion front F (r′)
is calculated in the same way as that of F (r). As in the derivation of I(r), the
set I(r′) is determined as well by checking each member of F (r′) based upon
the criteria in C, then it is added to the tail of Q. We continue in this way by
repeatedly taking off the head node of Q and processing it as a new root to
diffuse a seed over it, until the queue becomes empty.

Aimed at recovering the fiber pathways after constructing the diffusion front
in each kernel, each voxel p in the global data grid owns a memory of its prede-
cessor voxel, π(p), where p ∈ I(π(p)). Since every voxel in the grid can be taken
as a diffusion root no more than once, π(p) is the sole predecessor of p if there
is one. Thus, back propagation from the voxels on diffusion fronts by following
continuously the corresponding predecessor voxels leads to paths that merge to
the starting voxel s. This merging corresponds to the procedure that can be
viewed in the reverse direction as fiber tracts branch outwards from s. Finally,
the pathways are smoothed out using B-spline least-square approximations. The
diffusion equation-based fiber tractography procedure is outlined in Alg. 1.

2.5 Connectivity Index

Since the size of the set I(r) can be larger than one for any root r, there may ex-
ist a bunch of reconstructed fiber pathways that branch outwards from the voxel
where tracking starts. We utilize a heuristic connectivity index, ξ, as a confidence
measure to estimate the odds that any generated path well approximates a true
anatomical connection. For a given putative pathway, the index is defined as
ξ =

∏n

i=1(
αi+βi

2 ), where α is the distance ratio, β = (φ1 +φ2 +φ3)/3, and n the
number of diffusion kernels used to produce the pathway. The definition of ξ may
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Algorithm 1. Fiber tracking using kernel-based diffusion simulations

1: specify a starting node s and initialize Q such that Q = {s}
2: while Q is not empty do
3: remove the head node r off Q and take it as a root
4: initialize the 3D diffusion kernel that is geometrically centered on r
5: get V (r) by solving the diffusion equation (1) over the diffusion kernel with the

initial and boundary conditions (2) and (3) imposed
6: compute F (r), then determine I(r) and append it to the tail of Q
7: end while
8: record π values for voxels during front construction
9: retrieve fiber pathways using back propagation

be construed as evaluating how faithful the computed pathways are to follow the
fastest diffusion direction, yet adjusted by coherence with local fiber orientations.

3 Data Acquisition

3.1 Synthetic Tensor Fields

In order to assess fidelity and robustness of the tracking algorithm, we gener-
ated synthetic DT-MRI data with a uniform voxel size of 1 mm3, where the
true path of a fiber tract is known. The tensor field was constituted upon an
anisotropic and an isotropic tensors taken out of real DT-MRI data. The shape
of the diffusion tensor in synthetic fibers was described by the anisotropic one
such that λ1 : λ2 : λ3 was approximately 2.5 : 1 : 1, while the isotropic one was
used to forge the background of the simulated tensor field. The vector field for
fiber orientations was derived by sampling discretely the trajectories which were
analytically defined. To make the simulated field more realistic, an approxima-
tion to Rician noise [4] was added in the diffusion-weighted images which were
calculated from the Stejskal-Tanner equation using the gradient sequence in [18]
and a b-value of 1000. The noisy realization led to a signal-to-noise ratio of 10.
A compact analytic solution to the Stejskal-Tanner equation [18] was employed
to yield the desired noisy synthetic diffusion tensor data.

3.2 Real Diffusion Tensor Data

Real diffusion tensor imaging data were acquired from a single healthy male
subject. A 1.5T Siemens Sonata scanner was used to do the measurement using
an optimized diffusion tensor imaging sequence described in [6]. The imaging
parameters were 43 axial slices, FOV = 230 mm, TR = 6000 ms, TE = 106 ms,
2.5 mm slice thickness with 0.25 mm gap, acquisition matrix 128 × 128, and 60
images acquired at each location consisting of 16 with low diffusion weighting
(b = 0) and 44 diffusion images in which the encoding gradient vectors were
uniformly distributed in space (b = 1100 s/mm2) using the electrostatic approach
described elsewhere. The reconstruction matrix was 256 × 256, resulting in an
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in-plane resolution of 0.898 × 0.898 mm2. The diffusion tensor was calculated
according to the Stejskal-Tanner equation [16]. The resolution of the original
calculated tensor data volume was 256 × 256 × 43 with a voxel size of 0.898 ×
0.898 × 2.75 mm3 defined on a Cartesian mesh. It has been recomputed using
trilinear interpolation, leading to a uniform voxel size of (0.898 mm)3.

4 Results

Five single-turn helical fiber bundles were synthetically generated with radius
being 25 mm, 20 mm, 15 mm, 10 mm, and 5 mm, respectively. For each helix,
trajectories were traced from a single voxel at the lower end of the tract. In
Fig. 2, the tracking result is presented, showing the simulated helical curves are
closely reproduced. Fig. 3 delineates the tracing results on crossing fiber tracts
synthetically constructed with two straight-line fiber bundles. It can be seen
that the algorithm is capable of getting through the crossing area with planar
tensors.

Fig. 4 demonstrates the capability of the tracking algorithm on real human
brain DT-MRI data, showing computed tracks launched from two starting vox-
els that are placed in the corticospinal tract approximately at the level of the
left and right pons area, respectively. It is apparent that the calculated tracks
emerging from the starting points branch into different cortical motor regions.
In Fig. 5, the pathways reconstructed stem from three starting voxels located
approximately in the midline of the corpus callosum, which interconnect the two
hemispheres. Depicted in Figure 6 is another tracking example, which shows
computed fiber pathways of the cingulum. We also generated pontocerebellar
tracts with two different settings of the criteria set C, as shown in Figs. 7 and
8, respectively. One can observe that with appropriate selection of the thresh-
olds, the medial lemniscus erroneously yielded in Fig. 7 can be eliminated when
segmenting the pontocerebellar tracts in the pons which bear an entangled fiber
crossing structure.

Fig. 2. Synthetic helical fiber tracts with varying radii (left, shown as diffusion tensor
ellipsoid map) and the tracing results (right) yielded by the fiber tracking algorithm
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Fig. 3. Synthetic crossing fiber tracts (left, shown as diffusion tensor ellipsoid map)
and the tracing results (right) yielded by the fiber tracking algorithm

Fig. 4. Fiber pathways of corticospinal tract computed from a starting voxel positioned
approximately at the level of the left pons. The colors on tracks correspond to the
connectivity index as shown in (e), the color bar legend. Fibers are incorporated into
grey-scale fractional anisotropy (fa) maps for anatomical reference, where bright grey-
scale regions reflect high diffusion anisotropy. (a) Viewed from front, superimposed on
a coronal fa map. (b) Viewed from left, overlaid on a midline sagittal fa map. (c) A
3D view, shown together with an axial fa map at the level of the internal capsule. (d)
Viewed from top, overlaid on an axial fa map at the level of the motor cortex

(a)

(b)

(c) (d) (e)
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Fig. 5. Fiber pathways generated from three starting voxels located in the midline of
the body of the corpus callosum. The tracks are color-scaled as in Fig. 4. (a) Viewed
from right, overlaid on a sagittal fa map at the midline. (b) Viewed from top-front,
overlaid on an axial fa map

Fig. 6. Fiber pathways of cingulum calculated from two starting voxels which are
slightly above the body of the corpus callosum. The tracks are color-coded as in Fig. 4.
(a): Viewed from top, shown together with an axial fa map. (b): A lateral view from
left, overlaid on a midline sagittal fa map

5 Discussion and Conclusion

We have conducted tracking experiments on synthetic as well as on real human
brain diffusion tensor data, utilizing the tractography algorithm based on sim-
ulating the diffusion process in diffusion kernels. An accurate replication of the
ideal track geometries has been presented in the tracing results on simulated
tensor fields, while the estimated pathways on several major white matter tracts
are faithful to the corresponding neuroanatomy performed with postmortem
dissections and compatible to those obtained by using other reported tracking
techniques. The demonstration shows that with the diffusion tensor imaging
data, it is possible to employ the diffusion equation-based tracking technique to

(a) (b)

(b)(a)
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Fig. 7. Fiber pathways of pontocerebellar tract. The tracks are color-coded as in Fig. 4.
Here C = {0.8, 0.25, 0.7, 0.65, 4}. The pink pathways are corticospinal tracts as in Fig. 4.
The tracks pointed to by the black arrow belong to medial lemniscus. (a): Viewed from
top, shown together with an axial fa map. (b): A 3D projection with an axial and a
coronal fa map superimposed

Fig. 8. Fiber pathways of pontocerebellar tract. The tracks are color-coded as in Fig. 4.
Here C = {0.8, 0.2, 0.7, 0.7, 4}. The pink pathways are corticospinal tracts as in Fig. 4.
(a): Viewed from top, shown together with an axial fa map. (b): A 3D projection with
an axial and a coronal fa map superimposed

noninvasively follow the major white matter fiber tracts and construct maps of
connectivity in the living human brain.

The demonstrations have shown that the tracking algorithm has the capabil-
ity of elucidating branched fiber pathways naturally from a single starting voxel,
without using multiple interpolated starting points within the starting voxel or
specifying regions of interest defined from anatomical landmarks. It relies on
simulating the diffusion process to construct diffusion front in kernels, which is
truly a physical phenomenon and the magnitude of the tensor contributes to
fiber tracking, instead of fully relying on the orientation of the tensor in each
voxel. So the primary advantage of the algorithm is its ability to accommodate
branching fibers with the connectivity index assigned representing uncertainty.

(b)(a)

(b)(a)
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Another desirable feature is its capability to behave correctly in crossing regions
with reduced tensor information. It also reveals that the properties of the gener-
ated tracts are dependent on the threshold values in the criterion set C, which
bears flexibility to improve the tracking reliability and robustness to noise.

In fact, diffusion tensor imaging (DTI), as used by our diffusion equation-
based tracking method, is unable to truly resolve the crossing of multiple axon
directions within a single voxel. However, it has been suggested to get around
the inadequacy by using newly developed imaging approaches, like high angu-
lar resolution diffusion imaging (HARDI), q-space imaging (QSI), or generalized
diffusion tensor imaging (GDTI). An outstanding feature of fiber reconstruction
using diffusion simulations is that it can be seamlessly adapted to the platform
established by the new imaging techniques. Studies have shown that the general-
ized diffusion tensor model is able to not only accommodate HARDI and GDTI
methods but QSI as well, due to the relationships among DTI, HARDI, GDTI,
and QSI [9, 11]. This makes it possible for the diffusion simulation based trac-
tography to become independent of the imaging techniques used, while the fiber
tracking will require a more sophisticated diffusion simulation, which is governed
by a generalized diffusion equation associated with generalized diffusion tensors,
according to a generalization of Fick’s second law.
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Abstract. This paper proposes a maximum entropy method for spheri-
cal deconvolution. Spherical deconvolution arises in various inverse prob-
lems. This paper uses the method to reconstruct the distribution of mi-
crostructural fibre orientations from diffusion MRI measurements. Anal-
ysis shows that the PASMRI algorithm, one of the most accurate dif-
fusion MRI reconstruction algorithms in the literature, is a special case
of the maximum entropy spherical deconvolution. Experiments compare
the new method to linear spherical deconvolution, used previously in dif-
fusion MRI, and to the PASMRI algorithm. The new method compares
favourably both in simulation and on standard brain-scan data.

1 Introduction

Diffusion MRI has exploded over the last decade, since the introduction of
diffusion-tensor MRI (DT-MRI) by Basser et al [1]. Diffusion MRI measures the
displacement of particles, usually water molecules, within a material over a fixed
time interval. The material microstructure controls the scatter pattern of par-
ticles within and, conversely, measurements of the particle displacement reveal
information about the microstructure. The current standard diffusion MRI tech-
nique is DT-MRI, which provides two unique insights into material microstruc-
ture. First, DT-MRI provides quantitative measurements of the anisotropy of
particle displacements and, second, it provides an estimate of the dominant ori-
entation of particle displacements. In fibrous material, such as white matter in
the brain, the dominant orientations of particle displacements are similar to the
dominant fibre directions. Diffusion MRI is particularly useful for brain imag-
ing, because it reveals the orientations of white-matter fibres in each voxel of an
image volume. Tractography algorithms use these fibre-orientation estimates to
determine the connectivity of the whole brain.

A well-documented problem with DT-MRI is that it fails at fibre crossings.
Recent trends in the field are towards a new generation of reconstruction algo-
rithm that can resolve the orientations of multiple fibre populations within each
voxel, see [2] for a review. One such technique [3, 4] views the diffusion MRI
signal as the convolution of the response from a single fibre with specific orien-
tation with the distribution of fibre orientations. A deconvolution of the signal
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by the single-fibre response yields the fibre-orientation distribution (FOD). The
implementations of this deconvolution technique in [3, 4] use a linear basis for
spherical functions to represent the FOD. Although the literature shows nice
results from the technique in certain regions of high-quality data, the methods
are reknowned for instability and, in performance comparisons such as [5], they
perform worse than rival methods such as PASMRI [6] and q-ball imaging [7].

Maximum entropy methods [8] have proved useful in a variety of reconstruc-
tion and inverse problems. In particular, the methods have proved effective for
deconvolution. This paper constructs a maximum-entropy formulation of the
spherical deconvolution problem and demonstrates its application to reconstruc-
tion of the FOD from diffusion MRI measurements. Experiments show that the
maximum-entropy spherical-deconvolution (MESD) improves on a linear imple-
mentation and produces results comparable to the PASMRI algorithm on data
from a standard diffusion MRI acquisition sequence. Further analysis shows that
the PASMRI algorithm is a special case of the MESD method. Performance of the
method depends on the choice of response function (deconvolution kernel). Here
we use only a simple kernel to show efficacy of the approach. We can expect fur-
ther improvements in the method through better choices of deconvolution kernel.
Although particularly useful for diffusion MRI, the method extends naturally to
any spherical deconvolution problem.

Section 2 gives some background on the diffusion MRI reconstruction problem
and existing techniques. Section 3 outlines the MESD method and compares it
analytically to other reconstruction techniques used in diffusion MRI. Section 4
shows results from using the new methods on diffusion MRI data acquired from
a standard brain imaging sequence and compares them with results from linear
spherical deconvolution (SD) and PASMRI on the same data. Simulation exper-
iments compare the methods further. Finally, section 5 concludes and outlines
areas for further work.

2 Background

Diffusion-tensor MRI models the particle displacements in each image voxel with
a zero-mean Gaussian distribution with covariance 2tD, where t is the diffusion
time and D is the diffusion tensor. The diffusion MRI measurement is approxi-
mately proportional to the Fourier transform of the particle-displacement density
function p:

A(q) = (A�(0))−1A�(q) =
∫

R3
p(x) cos(q · x)dx, (1)

where A�(q) is the MR signal with wavenumber q, which depends on the strength
and direction of the magnetic gradient pulses in the diffusion MR imaging se-
quence [9]. The MRI measurements also vary spatially, although we omit the
spatial dependence from the notation for simplicity. Substituting the Gaussian
model for p in (1) and taking logs shows that each measurement provides a lin-
ear constraint on the six elements of the diffusion tensor, D. We can estimate
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D from seven or more measurements with independent q. Since the contours of
the Gaussian model are ellipsoidal, DT-MRI can only reveal a single dominant
fibre orientation in each voxel. At fibre crossings, however, p has multiple peaks
at fixed radii and the Gaussian model is poor. We can also fit other models for
p using (1), such as mixtures of Gaussians, e.g. [10, 11], which can reveal the
directions of multiple fibre orientations.

Although DT-MRI extends to handle multiple fibre populations through the
use of mixture models, fitting becomes non-linear with mixtures of two or more
Gaussians and is often unstable. Furthermore, model fitting procedures require
a choice of the number of fibres in each voxel prior to fitting. A new generation
of multiple-fibre reconstruction techniques [2, 12], including PASMRI [6], q-ball
imaging [7] and spherical-deconvolution methods [3, 4] all compute objects that
provide the number of fibres, together with an orientation estimate for each,
without requiring prior specification of the number of fibres present.

Spherical-deconvolution methods assume that the diffusion MRI signal in
each voxel is the convolution of the FOD (fibre-orientation distribution) f , which
is a real-valued function of the unit sphere, with the signal R(·; x̂) from a single
fibre with orientation x̂:

A(q) =
∫

R(q; x̂)f(x̂)dx̂, (2)

where the integration is over the unit sphere in three-dimensional space. Note
that (2) assumes that R(·; x̂) has rotational symmetry about x̂ and does not vary
spatially. The methods aim to deconvolve the signal, using a model for R(·; x̂),
to obtain f . The function f can have multiple pairs of equal and opposite peaks
and each pair provides a separate fibre-orientation estimate.

To implement the method, the standard approach represents f using a linear
basis:

f(x̂) =
K∑

k=1

βkθk(x̂). (3)

We substitute for f in (2) and reverse the order of the integral and sum to obtain

A(q) =
K∑

k=1

(
βk

∫
R(q; x̂)θk(x̂)dx̂

)
. (4)

Diffusion MRI sequences usually acquire a set of measurements with wavenum-
bers qi, i = 1, · · · , N , together with some number of measurements with q = 0
for normalization. The set of qi is the same in each voxel. For a set of mea-
surements with wavenumbers qi, i = 1, · · · , N , we can summarize the set of
equations from (4) as A = XB, where A = (A(q1), · · · , A(qN ))T is the vector
of normalized measurements, B = (β1, · · · , βK)T is the vector of basis-function
weights and X is the matrix with ik-th entry

Xik =
∫

R(qi; x̂)θk(x̂)dx̂.
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We solve the matrix equation to obtain the set of basis-function weights that
define f via a linear transformation of the measurements: B = X′A, where
X′ = (XT X)−1XT is the pseudoinverse of X. Since the set of qi is identical
in each voxel, we need to compute X′ only once. The computational burden of
the method is therefore light (a single matrix multiplication in each voxel) and
comparable to that of diffusion-tensor MRI.

Following the general method outlined in [13], references [3, 4] use the spher-
ical harmonics as the basis for f . References [3, 11] use Gaussian models of the
particle displacement within single fibres to obtain R. Tournier et al [4] derive
R directly from the data by taking an average signal from the most anisotropic
voxels.

The PASMRI algorithm [6] aims to compute a feature of p called the per-
sistent angular structure (PAS) by assuming independence of the angular and
radial structure of p, so that p(x) = g(|x|)p̂(x̂), where g is a model for the radial
structure of p and p̂ is the PAS. Jansons and Alexander [6] take g(|x|) = δ(|x|−r)
for some scalar r, so that (1) becomes

A(qi) = r−2

∫
p̂(x̂) cos(rqi · x̂)dx̂. (5)

Jansons and Alexander derive a maximum-entropy parametrization of p̂:

p̂(x̂) = exp

λ0 +
N∑

j=1

λj cos(rqj · x̂)

 , (6)

which they fit to the measurements in each voxel using a Levenberg–Marquardt
algorithm. The recovered PAS reflects the angular structure of p that persists
over a wide range of radii. Like the FOD, the PAS is a real-valued function of
the sphere with peaks that provide fibre-orientation estimates.

Another class of method, including q-ball imaging [7], diffusion spectrum
imaging [14], and the methods in [15, 16], all compute or estimate the orientation
distribution function (ODF) φ, which is the projection of p onto the unit sphere:

φ(x̂) =
∫ ∞

0

p(αx̂)dα. (7)

The ODF is also a real-valued function of the sphere with peaks that provide
fibre-orientation estimates. If we represent φ using a linear basis, recovery of the
ODF in each voxel comes from multiplication of the measurements by the same
matrix in each voxel so computation time is similar to linear SD, see [7, 12].

3 Maximum Entropy Spherical Deconvolution

This section outlines the new MESD method. Since the literature already con-
tains a variety of multiple-fibre reconstruction algroithms, we begin with some
motivation for the development of the new technique.
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The literature contains little evaluation and comparison ofmultiple-fibre recon-
structions,butearly indications [5, 12] suggest thatthePASMRIalgorithmrecovers
fibre directions more accurately and consistently than spherical deconvolution and
the q-ball algorithm. The PASMRI algorithm has two fundamental differences to
the other methods that may account for differences in performance: it computes a
different object, the PAS, and it uses a non-linear basis to represent that object.
Comparison of Eq. (2) with Eq. (5) reveals that the PASMRI inversion is a de-
convolution with R(q; x̂) = r−2 cos(rq · x̂). If we replace the maximum-entropy
representation of the PAS in Eq. (6) with a linear combination of basis functions,
as used for f in Eq. (3), the method reduces to a single matrix multiplication in
each voxel like the linear SD method. However, experiments with this linearized
version of PASMRI (not shown) reveal that performance is signficantly worse than
the non-linear implementation in [6]. This suggests that the power of the method
lies in thenon-linearmaximum-entropy representationof thePAS. Infibrous tissue,
the PAS function often has very sharp peaks, which linear bases cannot capture
accurately but the product of exponential waves in Eq. (6) is better equipt to
represent.

Spherical-deconvolution methods have some advantages over the PASMRI
method and methods that estimate the ODF. First, the output of the spherical
deconvolution, the FOD, is a readily understandable object with well-defined
meaning. The PAS is more arcane and it is less obvious why its peaks should
correspond to fibre orientations. Second, spherical deconvolution does not rely
on the Fourier relationship between the MRI measurements and p, which is only
approximate. Third, the peaks of the FOD, at least in theory using an ideal
deconvolution kernel, correspond genuinely to fibre orientations rather than the
directions of ridges in p. The peaks of p at a fixed radius may not correspond
exactly to fibre directions particularly if the fibre orientations are not orthogonal.
If p is a mixture of Gaussians, for example, the peaks at fixed radii (or ridge
directions) are more closely aligned than the peaks of the individual Gaussian
components when the peaks are not orthogonal. The effect is similar in mixtures
of Gaussians in one dimension where the peaks of the mixture are closer than
those of the mixed components.

The observation that the linear representation of the PAS produces worse
performance than the non-linear representation suggests that the poor per-
formance of spherical-deconvolution methods in diffusion MRI may arise from
the linear basis representation of the FOD. Like the PAS, we may expect the
FOD to have sharp peaks in fibrous tissue regions where the distribution of
fibre directions is highly concentrated. This section derives an alternative non-
linear representation for the FOD using a maximum-entropy argument simi-
lar to that used by Jansons and Alexander [6] to derive the PAS representa-
tion in Eq. (6). We aim to determine a representation for f that imposes the
minimum information on the reconstructed f . The information content of the
FOD, f , is

I[f ] =
∫

f(x̂) log f(x̂) dx̂. (8)
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We shall minimize the information content of f subject to the constraints
from the measurements and that f is a probability density function and so
integrates to one: ∫

f(x̂)dx̂ = 1. (9)

Each measurement provides a constraint on f given by Eq. (2). We incorporate
each constraint into the expression for the information content of f using the
method of Lagrange multipliers to yield

I[f ] =
∫ (

f(x̂) log f(x̂) − f(x̂)
N∑

i=1

(λiR(qi; x̂)) − f(x̂)µ

)
dx̂, (10)

where qi, i = 1, · · · , N , are the wavenumbers of the MRI measurements, the
λi are Lagrange multipliers for the constraints from the data and the Lagrange
multiplier µ controls the normalization of f . Taking a variational derivative δI[f ]
and solving δI[f ] = 0, we find that the information content, I[f ], is minimum
when

f(x̂) = exp

(
λ0 +

N∑
i=1

λiR(qi; x̂)

)
, (11)

where λ0 = µ − 1.
We need to solve ∫

f(x̂)R(qi; x̂)dx̂ = A(qi) (12)

for the λi. We implement the method following Jansons and Alexander’s im-
plementation of the PASMRI algorithm in [6]. We use a Levenburg–Marquardt
algorithm to search for a set of λi that minimize

N∑
i=1

(
A(qi) −

∫
f(x̂)R(qi; x̂)dx̂

)2

. (13)

In all the experiments in the next section we use the simple deconvolution kernel

R(q; x̂) = exp
(
−t|q|2d−1(x̂ · q̂)2

)
, (14)

following [11], where d is the diffusivity in the fibre direction; we take t|q|2d−1 =
1, since the |qi| are all equal in the test data we use. The kernel in Eq. (14) is the
signal we expect from a material in which particles displace only in direction x̂.

4 Experiments and Results

We begin by comparing the output of the MESD algorithm with linear SD and
the PASMRI algorithm. Figure 1(a) shows the maximum entropy FOD in each
voxel of the image region spanning the two highlighted regions of interest on the
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(a) (b) (c)

Fig. 1. Reconstructions over the region spanning the two highlighted regions in figure 2
for (a) MESD and (b) linear SD and (c) PASMRI

coronal slice in figure 2. Figure 1(b) shows the linear FOD over the same region
and figure 1(c) shows the PAS. The diffusion MRI data comes from a standard
acquisition sequence with N = 54, t = 0.04 s, |qi| = 2.00×105 m−1, i = 1, · · · , N ,
and the q̂i minimize the electrostatic energy with equal charges at each q̂i and
−q̂i. The signal to noise ratio with |q| = 0 in white matter is approximately
16, which is lower than for the test data used to introduce many multiple-fibre
reconstructions in the literature but is typical for whole-brain diffusion MRI
acquisitions.

In the linear SD, we use a radial-basis-function representation with

θk(x̂) = exp(−(cos−1(|x̂ · ŷk|))2/σ2), (15)

where σ is a constant scaling parameter and the ŷk, k = 1, · · · ,K, are unit vectors
evenly distributed on the unit sphere. The method is simpler to control using
radial basis functions than spherical harmonics. We take K = 120 and σ = 20.0.
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Fig. 2. Fractional anisotropy over a coronal slice of the brain data set with two high-
lighted regions of interest: the corpus callosum (top) and the fibre crossing at the pons
(bottom)

The value of σ controls the smoothness of the output of the linear SD method.
With σ > 50, the basis functions are too broad for the linear combination to
support two orthogonal peaks reliably. With σ < 10 spurious peaks dominate
the real peaks both in simulation and on the brain data and the method gives
no sensible output. In the PASMRI algorithm, we set r = 1.4 following the
suggestion in [6].

The image region in figure 1 contains part of the corpus callosum (top), where
we expect a single fibre with left-right orientation, and part of the pons, where we
expect two approximately orthogonal fibres with left-right and superior-inferior
orientations. All three methods produce peaks in the expected fibre directions
in both regions. In the corpus callosum, the linear SD method consistently pro-
duces false-positive fibre directions approximately orthogonal to the correct fibre
direction; PASMRI and MESD rarely generate false positives in the corpus cal-
losum. In the pons, PASMRI and linear SD show two peaks more consistently
than MESD. However, linear SD produces extra peaks pointing in the posterior-
anterior direction (out of the page) in a significant proportion of voxels in the
pons region; PASMRI produces similar false positives to a lesser extent; MESD
rarely shows these false positives.

Further experiments compare the methods in simulation. We synthesize mea-
surements from the imaging sequence for the brain data using a simple test
function for p, which models the particle displacement in tissue containing two
distinct fibre orientations. We set

p(x) = aG(x;D1, t) + (1 − a)G(x;D2, t) (16)

where a ∈ [0, 1] is the mixing parameter, G(·;D, t) is a zero-mean trivariate
Gaussian function with covariance matrix 2tD and the diffusion tensors are

D1 = diag(λ1, λ2, λ2) and (17)
D2 = RT (φ)diag(λ2, λ1, λ2)R(φ), (18)

where R(φ) is a rotation about the z-axis through angle φ and Tr(Di) = λ1 +
2λ2 = 2.1 × 10−9 m2s−1 (typical for brain tissue).
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Table 1. Summary of simulation results for the MESD, PASMRI and linear SD. The
angle α = cos−1(µ1 · n) is the bias in recovered directions. Each set of trials produces
two direction concentrations, γ(κ1), and two bias angles, one from each component.
The table shows the lowest diresction concentration and the highest bias angle of each
pair

λ1/10−12 a φ MESD MESD MESD PAS PAS PAS Lin. SD Lin. SD Lin. SD
m2 s−1 deg C γ(κ1) α/deg C γ(κ1) α/deg C γ(κ1) α/deg

100 0.5 0 1.000 5.9 0.2 1.000 5.6 0.2 0.012 3.9 1.7

100 0.5 22.5 0.980 5.5 9.2 0.758 2.5 10.4 0.008 4.0 7.9

100 0.6 0 1.000 5.6 0.2 1.000 5.3 0.2 0.024 3.7 1.9

100 0.6 22.5 0.964 5.2 12.6 0.832 3.4 9.0 0.020 3.6 11.5

300 0.5 0 0.996 4.7 0.4 0.996 4.3 0.4 0.063 3.0 3.2

300 0.5 22.5 0.773 4.0 10.0 0.949 3.7 1.9 0.020 2.5 10.0

300 0.6 0 0.996 4.4 0.4 1.000 4.2 0.5 0.043 2.7 4.1

300 0.6 22.5 0.727 3.8 13.2 0.906 3.7 3.6 0.020 2.3 13.4

500 0.5 0 0.504 2.3 3.1 0.270 2.1 2.2 0.012 1.7 8.6

500 0.5 22.5 0.176 2.0 15.1 0.211 1.8 9.8 0.008 1.5 17.4

500 0.6 0 0.492 2.3 2.5 0.273 2.0 2.1 0.012 1.6 9.0

500 0.6 22.5 0.156 1.9 15.2 0.180 1.6 12.8 0.012 1.5 21.0

For various settings of a, φ and λ1, we synthesize 256 voxels of data with
independent noise and estimate the fibre orientations using MESD, linear spher-
ical deconvolution and PASMRI. We use the peak-finding algorithm in [6] to
determine the fibre directions from each method in each trial. In each set of
trials, we compute the following performance statistics:

– The consistency fraction C, which is the fraction of trials in which the re-
construction algorithm finds the right number of fibres (two) to within a
small angular tolerance of the principal directions of D1 and D2. We set the
tolerance to cos−1 0.95.

– The direction concentration of each population of recovered fibre directions.
The concentration of a collection of directions x̂i, i = 1, ..., n, is γ(κ1) =
− log(1−κ1), where κ1 is the largest eigenvalue of the mean dyadic tensor Y =
n−1

∑n
j=1 x̂ix̂T

i . To group corresponding peak directions from separate trials,
we cluster the directions to maximize the concentration of each population.

– The direction bias of each recovered population. The bias is µ1 ·n, where µ1 is
the principal eigenvector of Y and n is the closest of the principal directions
of D1 and D2.

Table 1 shows the performance statistics for each algorithm with each com-
bination of settings in the test function. Some observations from table 1 are:

– The consistency fraction is much greater for PASMRI and MESD than for
linear SD. The linear method produces false positives in most trials, although
it rarely produces false negatives. Reducing σ can reduce the false positive
rate slightly, but the effect is not significant until a sudden change when
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the basis functions become too smooth to support two peaks and the false
negative count increases sharply.

– The peak directions are more consistent using MESD than linear SD, since
the direction concentrations are higher for MESD than linear SD.

– The bias in the mean reconstructed directions is lower for MESD than linear
SD apart from when the test function is very anisotropic (low λ1). At very
high anisotropy, some of the measurements hit the noise floor, which corrupts
the reconstruction.

– The PASMRI method shows better results than both spherical deconvolu-
tions. Both deconvolution methods show greater bias in the mean recon-
structed directions than PASMRI, particular when the test-function prin-
cipal directions are non-orthogonal. The consistency fraction is generally
slightly greater for PASMRI than for MESD. Further examination of the
output reveals that PASMRI tends to have a greater false-positive rate than
MESD, which has greater false-negative rate. However, we note that the
false-positive false-negative trade off is easy to control in PASMRI by vary-
ing the parameter r.
In fact, we might expect that the PASMRI algorithm performs better in
this simulation. To generate the synthetic data we use the Fourier model in
Eq. (1), which is also the basis of the PASMRI algorithm. Since both de-
convolution algorithms show similar trends in the bias of the reconstructed
directions, it seems likely that the bias is a product of the choice of deconvo-
lution kernel. The deconvolution kernel we use in the deconvolution methods
does not match the components of the test function. We might expect that
the spherical-deconvolution methods are more robust to the departures from
the Fourier model in the measurement process from which the brain data
comes; see [9, 17] for some discussion of the nature of the departures from
the Fourier model in diffusion MRI data.

5 Conclusions

This paper introduces a maximum-entropy spherical-deconvolution method and
demonstrates efficacy within the diffusion MRI application. The method im-
proves on a linear implementation of the spherical deconvolution method. With
the chosen deconvolution kernel, the method does not quite match the per-
formance of PASMRI in simulation, but the spherical deconvolution method,
which generalizes the PASMRI method, potentially has theoretic advantages,
which warrant its use and further investigation. Many avenues of future work
may extend and improve the basic MESD implementation here. Better choices of
deconvolution kernel surely exist. In [4], Tournier et al estimate R directly from
the input data. In more recent work [18], they improve the robustness to noise of
linear SD by choosing a deconvolution kernel that minimizes the entropy of the
output FOD. The MESD method is simple to adapt to use the kernels in [4, 18]
or any other kernel.
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A disadvantage of MESD is that computation time is much greater than
for linear SD and is similar to that of the PASMRI algorithm. The numerical
integration in (12) dominates the computation time. The numerical integration
scheme is naive, however, and approximates the integral with a summation over
points evenly distributed over the sphere. A better approach would sample the
integrand more densely around its sharp peaks and avoid unnecessary evaluations
where the integrand is near zero.

Other possible areas for improvement are the optimization algorithms that
fit the non-linear FOD to the measurements. We use a single starting point
for the optimization and do not guarantee to find the global minimum of the
least-squares objective function. Other choices for the objective function itself
may also improve results. For example, we may extend the maximum-entropy
analogy by maximizing the entropy of the FOD subject to the data constraints
rather than minimizing the least-squares fit to the data. Other regularization
techniques may also improve stability.
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From Spatial Regularization
to Anatomical Priors in fMRI Analysis
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Abstract. In this paper, we study Markov Random Fields as spatial
smoothing priors in fMRI detection. Relatively high noise in fMRI im-
ages presents a serious challenge for the detection algorithms, creating a
need for spatial regularization of the signal. Gaussian smoothing, tradi-
tionally employed to boost the signal-to-noise ratio, often removes small
activation regions. Recently, the use of Markov priors has been suggested
as an alternative regularization approach. In this work, we investigate
fast approximate inference algorithms for using MRFs in fMRI detec-
tion, propose a novel way to incorporate anatomical information into
the detection framework, validate the methods through ROC analysis on
simulated data and demonstrate their application in a real fMRI study.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a non-invasive dynamic
method for studying brain activation by capturing the change in the blood oxy-
genation level. Most fMRI detection algorithms operate by comparing the time
course of each voxel with the experimental protocol, labelling the voxels whose
time courses correlate significantly with the protocol as “active”. The commonly
used general linear model (GLM) [9] further assumes that the fMRI signal pos-
sesses linear characteristics with respect to the stimulus and that the temporal
noise is white. Application of GLM to an fMRI time series results in the so-called
statistical parametric map (SPM), which is often thresholded to produce a bi-
nary map of active areas. However, because of a low signal-to-noise ratio (SNR),
the binary maps typically contain many small false positive islands.

A common approach to reducing such false detections employs a Gaussian
filter to smooth the fMRI signal prior to applying the GLM detector. Unfortu-
nately, Gaussian smoothing, though intended to combat low SNR, leads to overly
smoothed SPMs and a loss of detail in the resulting binary activation maps. A
number of alternative approaches have explicitly incorporated spatial and tempo-
ral correlations into the estimation procedure. Examples include autoregressive
spatio-temporal models [4, 24], Markov Random Fields (MRFs) [5, 8, 7], Bayesian
models inferring hidden psychological states [15], adaptive thresholding methods
that adjust statistical significance of active regions according to their size, based
on the Gaussian Random Field theory [10]. In this paper, we focus on MRFs
for modeling spatial coherency, study their performance and develop several in-
creasingly rich spatial prior models. Following the formulation in [5], we assume
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that, given the activation state of each voxel, the time courses of different voxels
are conditionally independent and can be reduced to a sufficient statistic. This
work therefore concentrates on spatial regularization of the activation maps.
Temporal regularization models can be easily incorporated into our framework
by changing the activation statistic.

For MRFs with binary states, exact solution can be obtained in polyno-
mial time. An fMRI detection algorithm based on the GLM statistic and the
binary activation states was demonstrated in [5]. However, if one wants to go
beyond binary states (e.g., treating positively and negatively activated voxels
differently), the problem of estimating the optimal activation states becomes in-
tractable and approximation algorithms must be used. Prior work in MRF-based
fMRI detection employed simulated annealing [8, 21] and the iterated conditional
mode algorithm [22]. We adopt the Mean Field solver, introduced in statistical
physics [18], which has been widely used for image segmentation [16, 17, 20, 25].
In our experiments with binary MRFs, the Mean Field algorithm produced re-
sults comparable to those of the exact solver while reducing computation time
by one to two orders of magnitude1.

We further refine the activation priors by incorporating anatomical informa-
tion. Similarly to segmentation, where a probabilistic atlas serves as a spatially
varying prior on the tissue types, the anatomical information can provide a
prior on the activation map. Intuitively speaking, we want the prior to reflect
the fact that activation is much more likely to occur in gray matter than in
white matter, and not at all in cerebrospinal fluid (CSF) or bone. In addition,
the spatial coherency of activation is strong within each tissue and not across
tissue boundaries. In this model, the hidden nodes encode both the tissue type
and the activation state. Segmentation provides an additional, potentially noisy,
observation at each node. We derive the detection algorithm for this model and
evaluate it on simulated and real data, achieving high detection accuracy with
significantly shorter time courses compared to the standard GLM detector.

Anatomical scans have certainly been used in fMRI analysis and visualization
before. Hartvig [14] used the anatomical information in his marked point pro-
cess spatial prior. Moreover, in some systems (e.g., BrainVoyager [1]), the sub-
ject’s anatomical image is transformed into a standard coordinate frame (such
as Talairach) and the functional activation map is displayed on the surface that
corresponds to the cortical sheet in that coordinate frame. Other systems (e.g.,
FSL [2]) rely on sophisticated segmentation algorithms to extract a topologically
correct representation of the cortical surface from the anatomical scan [6]. Per-
forming Gaussian smoothing on the surface eliminates irrelevant voxels from the
weighted average for the cortical locations. In contrast, our approach does not
require a surface extraction algorithm, but instead utilizes anatomical informa-
tion to inject the anatomically based coherency bias into the detection algorithm

1 We also experimented extensively with the Belief Propagation algorithm, which often
produces better approximations, but did not find it to be more accurate in this
application. We therefore present the results of the Mean Field solution only.
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while performing the computation directly on the volumetric data. The inspira-
tion for this work comes from the success enjoyed by MRFs in providing spatial
smoothing priors for image segmentation [16, 17, 20, 25].

In the next section, we briefly outline how the GLM detector can be aug-
mented with an MRF prior closely following the derivation presented in [5], re-
view the Mean Field algorithm, and present the empirical evaluation of the
detector on simulated data. In Section 3, we extend the Markov priors to in-
corporate the anatomical information and show the empirical evaluation of this
new, refined model. Section 4 illustrates the proposed detectors on a real fMRI
data set.

2 Markov Priors for Activation Maps

Background. An fMRI scan contains a time course yi ∈ RT for each voxel i
(i = 1, ..., N), where T is the number of time samples and N is the number of
voxels in the scan. GLM models the fMRI signal as a linear combination of the
protocol-dependent component B, and the protocol-independent component A,
such as cardiopulmonary factors. The presence of the protocol-dependent signal
indicates that the corresponding voxel is active due to the stimulus. Let H1 be
the hypothesis that a voxel is active and H0 be the null hypothesis. Under GLM,

H0 : yi = Aαi + εi H1 : yi = Aαi + Bβi + εi

for i = 1, ..., N . For white temporal noise, εi ∼ N (0, σ2
i I). Least squares esti-

mates of the activation response βi and the protocol-independent factors αi are
found through a linear regression on the design matrix C = [A B]:

[α̂i β̂i] = (CTC)−1CTyi, (1)

and the corresponding F-statistic is given by Fi = β̂T
i Σ̂−1

βi
β̂i/Nβ, where Nβ is the

number of the regression coefficients in βi and Σ̂βi
is their estimated covariance.

Let random variable X = [X1, ...,XN ] represent an activation configuration
of all voxels in the volume, and x = [x1, ..., xN ] be one possible configuration i.e.,
the activation map. In the case of binary hypothesis testing, the random variable
Xi, which represents the activation state of voxel i, is also binary. Given an
fMRI scan [y1, ...,yN ], the GLM estimate of the activation map x∗ is obtained
by thresholding the statistic value Fi for all voxels in the volume at a certain
user-specified level.

It can be shown that the maximum log-likelihood ratio

zi = log
maxαi,βi,σ2

i
p(yi|H1)

maxαi,σ2
i
p(yi|H0)

= log
maxαi,βi,σ2

i
N (yi;Bβi + Aαi, σ

2
i I)

maxαi,σ2
i
N (yi;Aαi, σ2

i I)
(2)

is a monotonic function of the F statistic (see [5] for a detailed derivation). We
can therefore consider zi as an alternative statistic indicative of the activation
state of voxel i. We will use this fact in the derivations of the MRF-based de-
tection. If a different model of fMRI activation is proposed, it can be easily
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incorporated into our algorithm by formulating the corresponding maximum
log-likelihood ratio and using it in place of zi.

Markov Priors. A Markov prior on the activation configuration X, PX(x) =
1
λ

∏
<i,j> Ψij(xi, xj)

∏
i Ψi(xi), is defined in terms of the singleton potentials Ψi(xi)

that provide bias over state values xi for voxel i, and the pairwise potentials
Ψij(xi, xj) (often referred to as the compatibility matrices) that evaluate the
compatibility of voxel i being in state xi and voxel j being in state xj for each
pair < i, j > of neighboring voxels. λ is a normalization constant, also called the
partition function. Given the activation statistic values z, we seek the maximum
a posteriori (MAP) estimate of the activation configuration:

x∗ = arg max
x

PX|Z(x|z) = arg max
x

PX,Z(x,z) = arg max
x

PX(x)PZ|X(z|x)

= arg max
x

1
λ

∏
<i,j>Ψij(xi, xj)

∏
iΨi(xi)PZi|Xi

(zi|xi) (3)

The last equality is based on the assump-

Z4 Z3

Z1 Z2

X4 X3

X1 X2

Fig. 1. Graphical model for PX ,Z

tion that the observations at different vox-
els are independent given the activation
state of each voxel, and the likelihood
over the volume can therefore be written
as a product of the individual likelihood
terms for each voxel. Fig. 1 depicts the
corresponding graphical model, using a
two-dimensional grid for illustration pur-
poses only. The estimation is performed
fully in 3D in all experiment reported here. We assume a spatially stationary gen-
erative model, i.e., PZi|Xi

, Ψi, and Ψij are identical for all voxels in the volume.
The observations (the fMRI signal, and in Section 3, the anatomical information)
move the MAP estimate away from the spatially stationary configurations.

Direct search for the optimal activation configuration is intractable in gen-
eral. However, a polynomial-time algorithm for exact MAP estimation exists for
binary MRFs [13], based on a reduction to the Minimum-Cut-Maximum-Flow
problem. We refer to this exact solver as Min-Max throughout this paper. Min-
Max is still computationally intensive when applied to the volumetric data: in
our experiments, it took 1-3 hours, depending on the pairwise potential settings
and the initial threshold applied to the GLM statistic. On the other hand, the
Mean Field approximation for MRFs is fast (ten to hundred times faster than
Min-Max on the 3D grids we consider in this paper) and reasonably accurate,
as our results in the remainder of this section indicate.

Mean Field Solution. The Mean Field algorithm approximates PX |Z (x|z)

by a product distribution Q(x) =
∏

i
bi(xi) through minimization of the KL-

Divergence between the two distributions:

D(Q||PX|Z) =
∑

xQ(x) log(Q(x)) −
∑

xQ(x) log(PX|Z(x|z)) (4)
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bi(xi) denotes the probability of voxel i being in state xi (often called the belief),
therefore

∑
M

xi=1
bi(xi) = 1, where M is the number of possible states of Xi. The

KL-Divergence measures how closely Q approximates PX |Z ; it is non-negative
and is equal to zero only for Q = PX |Z . It is easy to see that the minimum of
D(·) is achieved for the same state configuration x that minimizes the so called
free energy, FMF = D(Q||PX |Z )) − log(PZ (z)) − log(λ), since the last two terms of
the latter function are independent of x. Substituting the product form for Q,
we obtain,

FMF (b) = −
∑

i

∑
j∈N (i)

∑M
xi=1

∑M
xj=1bi(xi)bj(xj) log(Ψij(xi, xj))

+
∑

i

∑M
xi=1bi(xi)

[
log(bi(xi)) − log(PZi|Xi

(zi|xi)Ψi(xi))
]

(5)

Setting ∂FMF (b)/∂bi = 0 under the constrains
∑M

xi=1 bi(xi) = 1 ∀i yields the
following iterative update rule:

bt+1
i (xi) ← γ PZi|Xi

(zi|xi) Ψi(xi) e
∑

j∈N(i)
∑M

xj=1 bt
j(xj) log Ψij(xi,xj) (6)

The normalization constant γ ensures the solution is a valid probability distri-
bution. N (i) is the set of voxel i’s neighbors. In each iteration of the Mean Field
algorithm, the voxel’s belief is updated according to the linear combination of its
neighbors’ beliefs in the previous iteration. The probability model (i.e., PZi|Xi

,
Ψi, and Ψij) determines the exact form of the update rule. Each voxel is assigned
the state value with the highest belief at the end of the procedure (for binary
MRFs, the voxel is set active if bi(1) > bi(0)).

Estimating Model Parameters. The potential functions Ψi, and Ψij and
the observation likelihood PZi|Xi

must correspond to our notions of the appro-
priate bias toward desired solutions. In this work, we follow a common prac-
tice of setting the potential functions (same for all voxels) to the corresponding
marginal probability distributions estimated from data: Ψi(xi) is set to the ex-
pected percentage of voxels in state xi, Ψij(xi, xj) is set to the joint frequency
of the states xi and xj , and PZi|Xi

is approximated by a smoother version of a
class-conditional histogram. Other forms of potential functions have also been
explored [7, 11, 12].

Lack of training data or ground truth necessary for estimating the marginal
frequencies is a more serious problem. Unlike the segmentation application,
where manual segmentations by experts can be used to construct priors on
the frequencies and co-occurrences of tissue types, in most fMRI experiments
even the experts cannot provide such information. Model parameters in the cur-
rently used detectors are either set using researcher’s intuition on the underlying
activation properties (e.g., the threshold in GLM or the kernel width in Gaus-
sian smoothing) or estimated from the input images (e.g., the noise variance in
GLM). We take a similar approach of first running the GLM detector without
smoothing and using the resulting SPM at a user-chosen threshold to estimate
the probability model. To study the sensitivity of the method to the parameter
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Fig. 2. ROC curves for different smoothing techniques, at two noise levels. False posi-
tive rate is shown on the log scale

settings, we ran experiments where the values of the singleton potentials and
the compatibility matrices varied substantially (0.1 to 2 times the estimated
frequencies). The variability in the detection accuracy (3-7%) was within the
variability across different data sets as reported below.

Empirical Evaluation. To quantitatively evaluate the performance of the
method, we generated realistic phantom data by applying EM segmentation [19]
to an anatomical MRI scan and placing activation areas of variable size (average
diameter of 15mm) randomly in the gray matter. We then downsampled the
scan to an fMRI resolution. The gray matter voxels represent 10% of the total
number of voxels in the volume, and the active voxels represent about 10%
of the gray matter voxels in these images. We then created simulated fMRI
scans based on a fixed parametric hemodynamic response function, an event-
related protocol, and varying levels of noise. We used the estimated SNR, ŜNR =
−10 log10(|Bβ̂|2)/σ̂2, to determine a realistic level of the simulated noise as the
true SNR is unaccessible for real fMRI scans. Since the signal and the noise
overlap in some frequency bands, part of the noise energy is assigned to the
estimated signal during detection. The estimated SNR is therefore an optimistic
approximation of the true SNR, which can still be used as a monotonic upper
bound of the true SNR. In our real fMRI studies, the estimated SNR is about
-5dB. Here, we illustrate the results for two levels of true SNR, -6dB and -9dB,
which correspond to estimated SNR of -4.3dB and -6.2dB respectively.

In all experiments, we used the same GLM detector based on a 10-bin non-
parametric hemodynamic response function. To create a baseline for comparison,
we ran the GLM detector with and without Gaussian smoothing. To evaluate
the Markov priors, we ran GLM coupled with the exact Min-Max solver and
with the approximate Mean Field solver on the same raw images. Fig. 2 shows
the ROC curves created for the four methods by varying the threshold applied
to the GLM statistic. Due to the large number of voxels in the volume and the
relatively small number of active voxels, only very low false positive rates are
of interest (we focus on the false positive rates below 0.1%, which corresponds
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to about 10% of the total number of the active voxels, or approximately 250
voxels). The error bars indicate the standard deviation of the true detection rate
over 15 different, independently created and processed, data sets. The Min-Max
ROC curve does not have the error bars, as the estimation takes too long (1
to 3 hours for a single run). Moreover, the Min-Max ROC curve is incomplete
because extreme threshold values cause it to run even longer (we stopped the
runs after 3 hours).

The Mean Field detection accuracy is very close to the exact Min-Max solu-
tion, providing a reasonable approximation to the exact solution that also takes
much less time to compute (most Mean Field runs finished in a few minutes).
The Min-Max accuracy is sometimes lower than the Mean Field accuracy, which
appears to contradict the optimality of Min-Max. However, we note that both
algorithms solve a particular estimation problem that does not necessarily de-
scribe the ground truth precisely but rather approximates it using a Markov
model. Thus, the lowest energy state under this model might not be the best
detector in practice. It is still reassuring to see that the approximate solver per-
forms as well as the exact algorithm. It also suggests that more realistic spatial
priors could further improve the detection accuracy.

As expected, the accuracy of all methods improves with increasing SNR. At
high noise levels (low SNR), Gaussian smoothing outperforms MRFs. As the
simplest smoothing technique, Gaussian smoothing is more robust to noise. We
also believe that our current way of constructing the likelihood term in the
MRF model over-emphasizes the data evidence over the prior. We are inves-
tigating ways to compensate for this in the estimation of the model. As the
SNR increases, MRFs provide better regularization of the activation state (for
example, at SNR=-6dB, at the false positive rate of 0.01%, the MRF outper-
forms the Gaussian smoothing by about 15% in true detection accuracy; at 70%
true detection, the MRF approximately halves the false detections compared to
the Gaussian smoothing). With the improving scanning technology, we believe
MRFs will become even more helpful in reducing spurious false detection islands.

3 Anatomical Priors for Spatial Regularization

The general nature of the Mean Field
Z1 Z2

W1 W2

Z4

W3

Z3

U4 U3

U1 U2

W4

Fig. 3. Graphical model for PU ,Z ,W

algorithm allows straightforward exten-
sion of the probabilistic model in the pre-
vious section to include the tissue type
for each voxel. We define V = [V1, ..., VN ]

to be the tissue types of all voxels, and
W = [W1, ..., WN ] the tissue type obser-
vations, such as a result of an automatic
segmentation procedure. Wi’s are noisy
observations due to imperfect registra-
tion between the fMRI image and the anatomical scan, the mismatch in their
resolution and the noise in the segmentation itself. Now each voxel has two
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hidden attributes: the activation state Xi and the tissue type Vi. We combine
these attributes into a single hidden node Ui, as illustrated in Fig. 3. For exam-
ple, for a binary activation states (active or not active) and three tissue types
(gray matter, white matter, or other), Ui has six possible states. Similarly to the
derivations in the previous section, the MAP estimate in this case is as follows:

u∗ = arg max
u

PU |Z,W (u|z,w) = arg max
u

PU (u)PZ|U (z|u)PW |U (w|u)

= arg max
u

1
λ

∏
<i,j>Ψij(ui, uj)

∏
iΨi(ui)PZi|Ui

(zi|ui)PWi|Ui
(wi|ui) (7)

We assume that the segmentation W and the fMRI observation Z are condi-
tionally independent given the state of the voxel since they are obtained from
two different images. Similarly to the previous section, we derive the iterative
update step in the estimation procedure:

bt+1
i (ui) ← γPWi|Ui

(wi|ui)PZi|Ui
(zi|ui)Ψi(ui)e

∑
j∈N(i)

∑M
uj=1 bt

j(uj) log Ψij(ui,uj)

(8)
This update rule is similar to Eq. (6), with the exception of the extra likelihood
term PWi|Ui

(wi|ui) for the tissue type observation. The compatibility matrix
Ψij(xi, xj) is M × M , where M is the number of states in Ui.

Empirical Evaluation. We used the same phantom data sets described ear-
lier to evaluate the performance of the anatomically-guided detectors. The basic
GLM with anatomical prior suppresses activations outside of the gray matter
using segmentation as a guidance (“soft” masking could also account for mis-
registration and errors in segmentation). To incorporate the anatomical infor-
mation into the Gaussian filter, we adjust the weights of the filter based on the
tissue types of the voxel’s neighbors: when evaluating the filter at voxel i, we
assign higher weights to the neighbors sharing the same segmentation results as
voxel i. Fig. 4 illustrates the ROC analysis for the three regularization methods
investigated in the previous section (solid lines) and their anatomically-based
variants (dashed lines). We omit the Min-Max solver for the MRF model, as it
cannot handle multi-valued states.

In addition to the trends observed before, we note that the anatomical in-
formation significantly boosts the performance of all detectors at all noise lev-
els. At high noise levels (SNR = -9dB) and false positive rates between 0.01%
and 0.1%, all methods gain at least 10% in true detection rate when using
the anatomical information. The MRF model benefits more than the Gaussian
smoothing, but its detection accuracy is still lower. At the lower noise level
(SNR = -6dB), the basic GLM detector augmented with anatomical informa-
tion approaches the performance of the Gaussian smoothing. At 0.01% false pos-
itive rate, the anatomically-guided MRF outperforms the anatomically-guided
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Fig. 4. ROC curves for different smoothing techniques augmented with the anatomical
information, at two noise levels. False positive rate is shown on the log scale

Gaussian smoothing by about 15% in true detection rate, achieving over 90%
detection accuracy. The large boost experienced by the basic GLM when aug-
mented with anatomical information is easy to understand: since false detections
occur relatively uniformly throughout the volume, masking the gray matter im-
proves the performance substantially.

In addition to the quantitative analysis presented above, we find it useful
to visually inspect the resulting activation maps. Fig. 5 illustrates the detec-
tion results by showing one axial slice of the estimated activation map. The
top image shows the phantom activation areas that were placed in the volume
and used to generate the simulated fMRI scan. The middle and the bottom
rows show the same slice in the reconstructed volume at two different noise
levels. All the reconstructions were performed at 0.05% false positive rate. In
other words, each image in Fig. 5 shows one slice in the reconstructed volume
that corresponds to a point on the ROC curve of the respective detector at
0.05% false positive rate.

The basic GLM produces a fragmented activation map that contains a num-
ber of false detection islands at high SNR and shows very little of the original
activation at low SNR. Given either of these maps, the users would have troubles
inferring the true activation areas and disambiguating them from spurious false
detections. The Gaussian smoothing leads to a reasonable estimate of the ground
truth. Gaussian smoothing tends to make the detections “spherical”, which may
change the shape of the detected activations. The smoothing effectively over-
estimates the extent of the regions. Consequently, many false positive voxels
in the Gaussian smoothing occur at the boundaries of the activation regions.
Imposing anatomical information reduces this over-smoothing effect for some of
the areas. At low SNR (-9dB), the MRF model fills in many of the active pixels
that were missed by the GLM, but as we saw before, it does not produce as
accurate result as Gaussian smoothing. At higher SNR (-6dB), MRF produces
a relatively accurate result. Not all of the scatter activation islands are removed
through regularization, but the activation map looks more similar to the ground
truth. The activation map is further improved when the anatomical information
is incorporated into the model.
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Ground Truth

No Smoothing Gaussian Gaussian + Ana MRF MRF + Ana

SNR = -9dB
No Smoothing Gaussian Gaussian + Ana MRF MRF + Ana

SNR = -6dB

Fig. 5. One slice from estimated activation maps for the same ground truth at 0.05%
false positive rate. True and false detections are shown in yellow. The on-line version
shows true and false detections in different colors

4 Real fMRI Experiment

In real fMRI experiments, the ground truth is unavailable, and ROC analysis
is not possible. Instead, we visually compare the resulting activation maps pro-
duced by different detectors to evaluate their performance on reduced-length
time courses. This effectively evaluates the ability of each method to reconstruct
the true activation areas with less evidence on the strength of the signal.

In this fMRI study [23], the original scans were obtained during an auditory
“two-back” word experiment. Each experiment consisted of five rest epochs and
four task epochs, each epoch 30 seconds long. In the rest condition, the subjects
were instructed to concentrate on the noise of the scanner and lie still. In the task
condition, the subjects were presented with a series of pre-recorded single-digit
numbers, one number every three seconds. The subjects were asked to tap their
index finger to the thumb when hearing a number that was the same as the one
spoken two numbers before. The experiment was repeated ten times for each sub-
ject. The anatomical images were acquired on a 1.5 Tesla GE signa clinical MR
scanner (T1-weighted SPGR, 256×256, 124 slices, 1.5mm slice thickness). The
EPI images were acquired on the same scanner (axial, TR/TE=2500/50msec,
FA90, 64×64, 24 slices, 6mm slice thickness, no gap). The original study contains
nine subjects, but for the purposes of voxel-by-voxel comparison of the detectors,
we present the results for one subject across all detectors. The estimated SNR
when averaging over all voxels in the brain was -4.7dB (-2.3dB when averaging
voxels in selected ROIs relevant to the task).



98 W. Ou and P. Golland

(a) No smoothing (long) (c) Gaussian (e) MRF

(b) No smoothing (d) Gaussian + Ana (f) MRF + Ana

Fig. 6. Real fMRI study. One slice in the estimated activation map. (a) No spatial
smoothing, using the entire time course. (b)-(f) Estimation based on the first five
epochs of the time course using different spatial smoothing methods

Fig. 6a shows one axial slice in the reconstructed activation map using GLM
without any spatial smoothing on the full-length fMRI signal (all 9 epochs).
The ground truth for this scan is unknown, but we can use this map as a vi-
sual reference when evaluating the performance of the detectors on the time
course of reduced length. For example, Fig. 6b shows the result of applying the
same GLM detector to the first 5 epochs of the time course. This map is more
fragmented due to loss in SNR from reducing the length of the signal. The
other four images illustrate the results of applying GLM with the Gaussian
smoothing and the MRF priors, as well as their anatomically augmented ver-
sions. Although Gaussian smoothing removes most of the single voxel activation
islands, its activation map (Fig. 6c) is an overestimate compared with Fig. 6a.
Anatomical weighting slightly reduces the overestimate in the Gaussian smooth-
ing. MRF regularization (Fig. 6e,f) yields reconstruction results that are close to
the activation map estimated from the full-length signal, but do not look overly
smoothed. This highlights the potential benefit of using the Markov priors in
fMRI detection. Similarly to the Gaussian smoothing, the MRF model benefits
from using anatomical information to remove spurious activations.

5 Discussion and Conclusions

Our experiments confirm the importance of spatial regularization in reducing
fragmentation of the activation maps. This paper investigates two improvements
in spatial modelling for fMRI detection: Markov priors and anatomical bias. An
MRF provides a spatial prior that refines the structure of the resulting acti-
vation map over the Gaussian smoothing, as demonstrated by our experiments
on phantom and real data. In this work, we explored fast approximate solvers
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in application to MRF-based fMRI detection and showed that they provide rea-
sonably accurate approximations to the exact solution while taking substantially
less time to evaluate. We also note that since the Markov model itself is an ap-
proximation of the real geometry of the activation regions, we should not dwell
on the small differences in the activation maps introduced by the approximate
solvers but rather focus on their performance relative to the ground truth.

A separate insight of this paper is that we can use anatomical information to
bias the fMRI detector. Gaussian smoothing can be straightforwardly augmented
with the anatomical prior by rescaling the coefficients of the smoothing kernel.
Moreover, we derived an algorithm for anatomically-guided MRF estimation.
One of the problems that should be investigated in the future is the partial
voluming effects. The anatomical information comes at much higher resolution
than the fMRI signals. Right now, we downsample the anatomical scan to match
the resolution of the functional scan. A better solution would be to use the high-
resolution anatomical scans to resolve the activation in the functional voxels that
are on the boundary of the gray matter, leading to a “super-resolution” detector.

We evaluated the methods on phantom data by performing ROC analysis
and on real data by studying their ability to recover activation from signifi-
cantly shorter time courses. While in high noise settings the Gaussian smoothing
outperformed other methods, as the SNR in the images increased, the Markov
priors offered a substantial improvement in the detection accuracy. Using this
smoothing prior enabled us to shorten fMRI scan length by half while retaining
the detection power comparable with the full-length fMRI scan. We expect a
similar effect to occur with respect to the spatial resolution when we extend the
method to utilize the anatomical information at the original scan resolution. As
the quality of the scanning equipment improves, the sophisticated spatial mod-
els, such as MRFs, will become even more important in recovering the details of
the activation regions.
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Abstract. This paper proposes a temporally-consistent and spatially-
adaptive longitudinal MR brain image segmentation algorithm, referred
to as CLASSIC, which aims at obtaining accurate measurements of rates
of change of regional and global brain volumes from serial MR images.
The algorithm incorporates image-adaptive clustering, spatiotemporal
smoothness constraints, and image warping to jointly segment a series
of 3-D MR brain images of the same subject that might be undergoing
changes due to development, aging or disease. Morphological changes,
such as growth or atrophy, are also estimated as part of the algorithm.
Experimental results on simulated and real longitudinal MR brain images
show both segmentation accuracy and longitudinal consistency.

1 Introduction

MR brain image segmentation is a key processing step in many brain image
analysis applications, e.g. morphometry, automatic tissue labeling, tissue vol-
ume quantification, image registration, and computer integrated surgery [1, 2,
3, 4, 5, 6, 7, 8]. Analysis of a series of 3-D data of the same subject captured at
different time-points, i.e. of a 4-D image, is important in many neuroimaging
studies that concentrate on normal development, aging, and evolution of pathol-
ogy [9]. Consistent segmentation is particularly important in the literature of
aging and Alzheimer’s Disease (AD) since subtle brain changes that might be
indicative of early stages of underlying pathology must be estimated from serial
MR images. However, existing 3-D segmentation algorithms may not provide
adequate longitudinal stability for serial brain images since they process each
image at a time. Herein, we propose a 4-D segmentation method that overcomes
this limitation and significantly improves longitudinal stability of segmentation.

Fuzzy algorithms [1, 2, 3, 4, 5, 10] have been proven to be more suitable for 3-D
MR images than hard segmentation algorithms since the intensity of each voxel
of an MR image may represent a combination of different tissues. Fuzzy C-Means
(FCM) algorithms have been used in many segmentation applications often ac-
counting for intensity inhomogeneity [6, 7, 11, 12] and incorporating spatial infor-
mation among voxels [8, 13, 14]. The intensity inhomogeneity can be well modeled
by the product of the original image and a gain field [12] or by the summation of
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them [6]. It is also desirable that the clustering algorithm be spatially-adaptive
to relatively local image intensity variations in order to adaptively segment tis-
sues of different structures. Different methods have been proposed to incorporate
the spatial image context information, including the methods using smoothness
constraints of the spatially varying centroid [8], using intensity dissimilarities of
neighboring voxels [13], and using smoothing operations of fuzzy membership
functions [14]. By combining [6] and [14], Pham and Prince proposed a Fuzzy
And Noise Tolerant Adaptive Segmentation Method (FANTASM), which is ro-
bust to the effects of both intensity inhomogeneities and noise, while providing a
soft segmentation [http://iacl.ece.jhu.edu/projects/fantasm/]. The advantage of
FANTASM is that it uses the intermediate information of the segmentation re-
sults while compensating the gain field and performing smoothness on the mem-
bership functions. However, in FANTASM, the spatial smoothness constraints
of fuzzy membership functions are the same for all the locations in an image,
which can result in an “over smoothing” effect across tissue boundaries. More
importantly, FANTASM and other existing segmentation methods are designed
for segmentation of 3-D images, and they might yield inconsistent results when
applied to serial scans of the same subject, thereby rendering estimations of rates
of brain atrophy and growth noisy.

In this paper, we propose a novel algorithm for longitudinal MR brain image
segmentation based on FANTASM, which we refer to as CLASSIC (Consistent
Longitudinal Alignment and Segmentation for Serial Image Computing). CLAS-
SIC not only jointly segments longitudinal 3-D MR brain images of the same
subject, but also estimates the longitudinal deformations in the image series, e.g.
tissue atrophy. It iteratively performs two steps: (1) it jointly segments serial 3-
D images using a 4-D image-adaptive clustering algorithm based on the current
estimate of the longitudinal deformations in the image series, (2) it then refines
these longitudinal deformations using a 4-D elastic warping algorithm [15, 16].
In this way, we obtain both a longitudinally-consistent segmentation result and
an estimate of longitudinal deformation of anatomy in a series of 3-D images.
The 4-D image-adaptive clustering algorithm used in CLASSIC extends FAN-
TASM in three aspects. First, a new temporal consistency constraint term on
the fuzzy membership functions is used in order to obtain temporally-consistent
segmentation results. Second, the spatiotemporal constraints of fuzzy member-
ship functions are made adaptive to the smoothness of the image, i.e. they are
stronger in the regions that have more uniform image intensities, and vice versa,
thus fuzzy membership functions are not necessarily overly smooth across tissue
boundaries. Third, the clustering centers at each voxel location are adaptive to
local image intensity variations. In this way, the proposed algorithm not only
provides temporally-consistent segmentation results, but also adapts to local
image intensity variations.

Experiments are performed to segment simulated and real longitudinal MR
brain images. The longitudinal 3-D T1-SPGR MR images of healthy, older adults
from the Baltimore Longitudinal Study of Aging (BLSA) [9] are used in the ex-
periments, which display both brain atrophy and changes of tissue contrast due
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to vascular and possibly other pathologies. In all the experiments, we focused
on evaluating the performance of the CLASSIC and FANTASM algorithms in
terms of obtaining temporally-consistent segmentation, capturing global and lo-
cal intensity/contrast changes, as well as estimating longitudinal deformations.
The results demonstrate that CLASSIC gives consistent segmentation results
across different years and adapts to image intensity variations.

2 Serial Image Segmentation

2.1 The Framework of CLASSIC

A 4-D MR brain image in the context of this work is a series of 3-D MR brain
images obtained from the same subject at different times. Because the brain
changes that we might be interested in can be extremely small, for example in
early stages of Alzheimer’s Disease (AD), temporally-inconsistent segmentation
can significantly reduce the statistical power of longitudinal neuroimaging studies
aiming at determining early structural changes as markers of AD. In this paper,
we focus on jointly segmenting a 4-D image and follow the underlying temporal
changes in anatomical structures, in order to provide more stable and consistent
tissue segmentation across different years. Our idea is to classify the tissue of
each voxel according to the intensities around that voxel, plus incorporating
image-adaptive spatiotemporal constraints at that location. Therefore, a 4-D
image segmentation framework, referred to as CLASSIC, is proposed, which
iteratively performs the following two steps: (1) given a current estimate of the
longitudinal deformations necessary to align 3-D images, it jointly segments the
image series using a 4-D image-adaptive clustering algorithm, (2) it then refines
the longitudinal deformations using a 4-D HAMMER registration algorithm [15].

The pre-processing of the input 3-D image series include: correct global in-
tensity inhomogeneity [6] and globally normalize the intensities of each image
according to the histogram of the first image [17]; transfer the subsequent im-
ages onto the space of the first image using rigid transformations. After pre-
processing, CLASSIC is applied to consistently segment the rigidly aligned serial
images It, t ∈ T = {t1, t2, ..., tY }, with initial longitudinal deformations from the
first image It1 to other images It as Ft1→t, t = t2, t3, ..., tY , and Y being the
total number of the serial images. If no initial longitudinal deformations among
the images are available, Ft1→t(i) = 0, where i refers to a voxel location in the
first image It1 , i.e. initially there is no deformation at all. The standard FCM al-
gorithm is also performed on each image It to give initial values of the clustering
centroids. Then, CLASSIC iteratively performs the following two steps:

1. Apply the proposed 4-D image-adaptive clustering algorithm to the image
series It, t ∈ T , based on the current estimate of the longitudinal deforma-
tions Ft1→t, t = t2, t3, ..., tY , and obtain the segmented images I

(seg)
t ,t ∈ T

(The algorithm will be described in Section 2.2 in detail).
2. Use the 4-D HAMMER [15], to register the segmented images I

(seg)
t , t =

{t2, t3, ..., tY } onto the reference image series formed by repeating the first
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segmented image Iseg
t1 for Y − 1 times, i.e. I

(seg)
t1 , I

(seg)
t1 , ..., I

(seg)
t1 . After per-

forming 4-D registration, the longitudinal deformations Ft1→t, t = t2, t3, ..., tY
are refined according to the 4-D segmentation results of step (1). Go to step
(1) if the amount of deformation changes between two iterations is larger
than a prescribed threshold; otherwise terminate with I

(seg)
t and Ft1→t as

the final segmentation results and the final estimate of the longitudinal de-
formations, respectively.

These two steps are performed iteratively so that consistent segmentation results
can be obtained. In practice, we find that a few iterations are enough to obtain
stable segmentation results. In Section 2.2, we describe the 4-D image-adaptive
clustering algorithm used in step (1) of CLASSIC in detail.

2.2 The 4-D Image-Adaptive Clustering Algorithm

Algorithm Formulation. Given image series It, t ∈ T and the longitudinal
deformations Ft1→t, t = t2, ..., tY , the purpose of the 4-D segmentation is to
calculate the segmented images I

(seg)
t , t ∈ T . Since Ft1→t is the deformation

from It1 to It, the corresponding point of voxel i of image It1 will be Ft1→t(i)
in image It. For simplicity, we denote point Ft1→t(i) in image It as (t, i), and
x(t,i) as its intensity. According to the 4-D image-adaptive clustering algorithm,
x(t,i)(t ∈ T, i ∈ Ω) is classified into different tissue types by finding c(t,i),k,
the kth clustering center at location (t, i), and µ(t,i),k, the fuzzy membership
function of x(t,i) belonging to class k, and by minimizing the objective function
in Eq.(1), which includes three terms: the weighted squared error between the
intensities around each voxel and the clustering centroids, the spatially-adaptive
smoothness constraints, and temporally-adaptive smoothness constraints.

E(µ, c) =
∑
t∈T

∑
i∈Ω

{
1

S(N(t,i))

K∑
k=1

∑
(τ,j)∈N(t,i)

[µq
(τ,j),k(x(τ,j) − c(t,i),k)2]}

+
α

2

∑
t∈T

∑
i∈Ω

{ρ
(s)
(t,i)

K∑
k=1

[µq
(t,i),kµ̄

(s)
(t,i),k]}

+
β

2

∑
t∈T

∑
i∈Ω

{ρ
(t)
(t,i)

K∑
k=1

[µq
(t,i),kµ̄

(t)
(t,i),k]}, (1)

where µ̄
(s)

(t,i),k
=

1

N1

∑
(t,j)∈N

(s)′

(t,i)

∑
m∈Mk

µq

(t,j),m
, µ̄

(t)

(t,i),k
=

1

N2

∑
(τ,i)∈N

(t)′

(t,i)

∑
m∈Mk

µq

(τ,i),m
.

The fuzzy membership functions are subject to

K∑
k=1

µ(t,i),k = 1, for all i ∈ Ω, t ∈ T. (2)

In Eq.(1), N(t,i) is the spatiotemporal neighborhood of point (t, i). It is a com-
bination of its spatial neighborhood N

(s)
(t,i) and temporal neighborhood N

(t)
(t,i) =
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{(τ, i) : |τ − t| ≤ TN}, thus N(t,i) = N
(s)
(t,i) ∪ N

(t)
(t,i). S(N(t,i)) represents the num-

ber of voxels within N(t,i). In the first term of Eq.(1), the centroids c(t,i),k are
adaptively changed at different image locations based on local image intensity
variations within the spatiotemporal neighborhood N(t,i) of each location. The
second term of Eq.(1) reflects the spatial constraints of the fuzzy membership
functions, which is analogous to the FANTASM algorithm. The difference is that
an additional factor ρ

(s)
(t,i) is used as an image-adaptive weighting coefficient, thus

stronger smoothness constraints are applied to the fuzzy membership functions
in the image regions that have more uniform intensities, and vice versa. The
third term of Eq.(1) reflects the temporal consistency constraints. Similar to
ρ
(s)
(t,i), ρ

(t)
(t,i) is a weighting coefficient that reflects the temporal smoothness of the

image. µ̄
(s)
(t,i),k and µ̄

(t)
(t,i),k are the means of µq

(τ,l),k in the spatial and temporal

neighborhoods N
(s)′

(t,i) and N
(t)′

(t,i) of the current position (t, i), respectively (N (s)′

(t,i)

and N
(t)′

(t,i) do not include the point (t, i)). α and β are the weighting coefficients
and N1 and N2 are the numbers of addends for normalization.

ρ
(s)
(t,i) is the spatial smoothness factor of image It at voxel (t, i). The value of

ρ
(s)
(t,i) is close to 1 when the image around voxel (t, i) is spatially-smooth, and

close to 0 when the image around voxel (t, i) is not spatially-smooth. Using a
spatial difference operator Dr along each of 3 spatial axis r, ρ

(s)
(t,i) is defined as

ρ
(s)
(t,i) = exp {−

∑
r

[(Dr ∗ It)2(t,i)/2σ2
s ]}, (3)

where (Dr ∗It)(t,i) refers to first calculating the spatial convolution (Dr ∗It), and
then taking its value at location (t, i). ρ

(t)
(t,i) is the temporal smoothness factor,

ρ
(t)
(t,i) = exp {−(Dt ∗ x(t,i))2t /2σ2

t }, (4)

where Dt is the temporal difference operator, and (Dt ∗ x(t,i))t refers to first
calculating the temporal convolution (Dt ∗ x(t,i)) and then taking its value at t.

Notice the size of the spatiotemporal neighborhood N(t,i) at each location
(t, i) can also be adaptively adjusted. A smaller neighborhood size will make
the algorithm much adaptive to local image intensity variations, while a larger
neighborhood size has to be used to capture adequate intensity information of
different tissues around that location in order to label that voxel correctly. No
spatiotemporal smoothness constraints on c were used in Eq.(1), because we have
found that the image-adaptive constraints of µ along with reasonably large and
smooth neighborhood sizes are adequate for yielding smoothly varying centroids.

Finding the Solutions of the 4-D Clustering Algorithm. Using Lagrange
multipliers to enforce the constraint in Eq.(2), the new objective function is,

J = E(µ, c) +
∑
t∈T

∑
i∈Ω

λ(t,i)(1 −

K∑
k=1

µ(t,i),k). (5)



106 Z. Xue, D. Shen, and C. Davatzikos

Setting the partial derivative of Eq.(5) with respect to µ(t,i),k to zero, and using
Eq.(2), we get the equation to update the fuzzy membership functions,

µ(t,i),k =
[
∑

(τ,j)∈N̄(t,i)

(x(t,i)−c(τ,j),k)2

S(N(τ,j))
+ αρ

(s)
(t,i)µ̄

(s)
(t,i),k + βρ

(t)
(t,i)µ̄

(t)
(t,i),k]

−1
q−1∑K

k=1[
∑

(τ,j)∈N̄(t,i)

(x(t,i)−c(τ,j),k)2

S(N(τ,j))
+ αρ

(s)
(t,i)µ̄

(s)
(t,i),k + βρ

(t)
(t,i)µ̄

(t)
(t,i),k]

−1
q−1

.

(6)

Since different spatiotemporal neighborhood sizes are used for different image
locations, in Eq.(6), N̄(t,i) = {(τ, j) : (t, i) ∈ N(τ,j)}.

Setting the partial derivative of Eq.(5) with respect to c(t,i),k to zero, the
equation to update the centroids can be acquired,

c(t,i),k =

∑
(τ,j)∈N(t,i)

µq
(τ,j),kx(τ,j)∑

(τ,j)∈N(t,i)
µq

(τ,j),k

. (7)

Given a series of 3-D images and the longitudinal deformations among them,
the 4-D image-adaptive clustering algorithm then jointly segments them by itera-
tively calculating the fuzzy membership functions using Eq.(6) and the centroids
using Eq.(7) until convergence. In order to determine adaptively the size of each
neighborhood N(t,i), we first initialize an identical neighborhood size for all the
locations, and then adaptively adjust these sizes in every iteration: we segment
the images using the current fuzzy membership functions, and then calculate the
Fractional Anisotropy (FA) [18] of point (t, i) within the current neighborhood
N(t,i), denoted as a(t,i). Since FA describes difference proportions of three tissue
classes, the size of neighborhood N(t,i) is increased if its a(t,i) is greater than
a prescribed threshold ahigh, or is decreased if a(t,i) is smaller than a threshold
alow, or remains unchanged if a(t,i) is between the two thresholds. Finally, the
neighborhood sizes are spatially smoothed across the images.

The 4-D image-adaptive clustering algorithm can be summarized as follows:

1. Set α, β, σs, σt, ahigh, alow and neighborhoods N(t,i), N
(s)′

(t,i) and N
(t)′

(t,i).
2. Compute fuzzy membership functions using Eq.(6).
3. Compute centroids using Eq.(7). In order to accelerate the calculation speed,

we only calculate the centroids on down-sampled grid points and linearly
interpolate the values at other locations.

4. Segment the images using the current fuzzy membership functions. If the al-
gorithm were converged (the difference of the values of the objective function
between two iterations is smaller than a prescribed threshold), then output
the segmentation results, otherwise update the size of each spatiotemporal
neighborhood N(t,i) and back to step (2).

3 Experimental Results

3.1 Segmentation of Simulated MR Brain Images

In this section, the simulated longitudinal MR brain images are used to evalu-
ate the performance of CLASSIC. Three sets of simulated data are generated,
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t1 t5 t9

Fig. 1. An example of the segmentation results for simulated 4-D images with local
(see the white circle) longitudinal intensity/contrast changes. Top: simulated images,
middle: FANTASM results, bottom: CLASSIC results. It can be seen that for FAN-
TASM, because of the intensity and contrast decrease in the spherical region, the overall
centroid for WM becomes lower, which results in “over segmentation” of WM

including (1) global intensity/contrast decrease; (2) local intensity/contrast de-
crease; and (3) local atrophy with intensity/contrast decrease. To generate simu-
lated longitudinal images, starting from a 3-D segmented template image, we set
the means of CerebroSpinal Fluid (CSF), Gray Matter (GM) and White Matter
(WM) to prescribed intensity values and insert random spatially correlated noise
to the image. The initial values of the means of CSF, GM and WM of the first
image It1 were set to 25, 85 and 105, respectively, and the standard deviation of
the noise was set to 2. The intensity/contrast decrease is simulated by changing
the means of GM and WM (mg and mw) with time t. The change rate of GM is
defined as rg = (mg(tY ) − mg(t1))/mg(t1)/(Y − 1) and that of WM is defined
as rw = (mw(tY ) − mw(t1))/mw(t1)(Y − 1). Different combinations of rg and
rw yield different simulation results. rg, rw, mg(t1) and mw(t1) determine the
change rate of contrast rc = (mw(tY ) − mg(tY ) − mw(t1) + mg(t1))/(mw(t1) −
mg(t1))/(Y − 1). Local intensity/contrast changes are achieved by setting rg

and rw to some values within a prescribed spherical region and setting them to
zero outside that region. Gaussian function is used to smooth the change rates
across the boundary of this spherical region in order to obtain smooth simulated
images. The local atrophy is simulated by matching the Jacobian of the simu-
lated deformation to the desired volumetric changes subject to smoothness and
topology preserving constraints [19]. The amount of atrophy can be described by
the shrinkage rate, 0 < rs <= 1. For example, rs = 0.9 implies a 10% atrophy
within the spherical area.
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t1 t5 t9

Fig. 2. An example of segmenting the simulated longitudinal data with local atrophy
and intensity/contrast decrease. Top: the simulated images, the white circle indicates
the spherical area within which atrophy and intensity decrease are simulated, middle:
segmentation results of FANTASM, bottom: segmentation results of CLASSIC

CLASSIC and FANTASM were then used to segment these simulated im-
ages. In all the experiments, the parameters of CLASSIC were set as follows,
α = 150, β = 200, σs = 25, σt = 35, ahigh = 0.3, alow = 0.1, the initial size of
N

(s)
(t,i) was set to 35 (radius), and N

(t)
(t,i), N

(s)′

(t,i) and N
(t)′

(t,i) were set as the imme-
diate spatial or temporal neighborhoods of (t, i). A quantitative measure of the
Correct Classification Rate (CCR) was used to evaluate the similarity between
the segmented images and the ground truth. CCR is defined as the percentage
of the number of brain voxels that have been correctly labeled according to the
ground truth with respect to the total number of brain voxels.

Because of space limitation, we only illustrate some examples of the segmen-
tation results of the simulated images with local intensity/contrast decrease,
and with local atrophy. Fig.1 is an example of simulated local intensty/contrast
decrease with rg = 0, rw = −0.013 and rc = −0.066. Fig.2 shows an example
of simulated local atrophy and intenstiy/contrast decrease, where the shrinkage
rate rs = 0.8, and the rates of intensity decrease are rg = −0.006, rw = −0.013,
rc = −0.035. The white circles in the images reflect the spherical area within
which the atrophy and/or intensity decrease were simulated.

The results of CCR of these two examples are reported in Fig.3 and Fig.4
respectively. Comparing the segmentation results of FANTASM and those of
CLASSIC, it can be seen that CLASSIC yields more temporally-consistent seg-



CLASSIC 109

Comparison of CCR

50%

75%

100%

t1 t2 t3 t4 t5 t6 t7 t8 f9

Temporal  axis

C
C

R

FANTASM CLASSIC

Comparison of CCR

50.00%

75.00%

100.00%

t1 t2 t3 t4 t5 t6 t7 t8 t9

Temporal  axis

C
C

R

FANTASM CLASSIC

Fig. 3. CCR for the results in Fig.1 Fig. 4. CCR for the results in Fig.2
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Fig. 5. Temporal consistency of GM and WM of different subjects. Small values indi-
cate relatively less temporally-consistent segmentation

mentation results, while capturing the longitudinal deformations at the same
time. Also, comparing either Fig.1 and Fig.2 or Fig.3 and Fig.4, we find that
the results of FANTASM in Fig.2 are better than those of Fig.1. This is because
their rates of contrast decrease are different. It can also be seen that CLASSIC
adapts to local intensity variations quite well. For FANTASM, some larger local
intensity variations, e.g. contrast decrease, may affect the segmentation results
at other image locations. The reason is that FANTASM models the intensity
changes through a very smooth gain-field, whereas the 4-D clustering algorithm
of CLASSIC is fully-adaptive to local image intensity variations.

3.2 Segmentation of Real Longitudinal MR Brain Images

In this experiment, we used CLASSIC to segment 18 sets of longitudinal MR
brain images from the BLSA data [9]. The nine serial scans of each subject were
obtained during a period or nine consecutive years. In order to quantitatively
analyze the segmentation results, we used a Temporal Consistency (TC) factor
to reflect the temporal consistency of the segmentation results. Suppose xseg

(t,i) is
the segmentation result (label) of x(t,i), the segmentation results of voxel i across
different times can be denoted as xseg

(t1,i),x
seg
(t2,i),...,x

seg
(tY ,i). Denote Li as the number

of label changes of corresponding voxels across time, then the segmentation of the
corresponding voxels is consistent if Li is small, and vice versa. Therefore, the TC
of segmentation results is measured by TC = 1/S(Ω′)

∑
i∈Ω′(1 − Li/(Y − 1)),
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year 3 year 4 year 5 label changes

Fig. 6. Comparison of a typical segmentation result of BLSA data using CLASSIC and
FANTASM. The top row shows the original serial scans after rigid transformations, the
middle row indicates the segmentation results using FANTASM, and the bottom row
gives the results of CLASSIC. The two images in the right column show the number
of label changes Li. It can be seen that CLASSIC gives not only spatially-smooth but
also temporally-consistent segmentation results. It is worth noting that some atrophy
is present between serial scans, thereby contributing to the label changes on the right

where Ω′ is the voxel set of the region of interest, and S(Ω′) is the number of
voxels in Ω′. Fig.5 gives the TCs of GM and WM of the entire brains calculated
from the segmentation results of CLASSIC and FANTASM on the 18 image
series respectively. The figure shows that TCs of CLASSIC are much higher
than those of FANTASM, which indicates CLASSIC achieves more temporally-
consistent results. Fig.6 shows a typical segmentation result using CLASSIC and
FANTASM respectively. For comparative purposes, the images shown are the
aligned images using rigid transformations. The two images on the right illustrate
the number of label changes Li of corresponding voxels projected on the first
image, where white indicates many label changes, and black means no changes
across time. In summary CLASSIC got relatively smoother and temporally-
consistent segmentation results than FANTASM for real MR image series.

Finally, it is worth noting that although the proposed CLASSIC incorporates
temporal smoothness constraints of the segmentation results, it still maintains
longitudinal change information. Moreover, CLASSIC captures these changes in
a more stable and smooth way by means of the longitudinal deformations among
the images and the parameters of the clustering algorithm. For example, Fig.7
shows the GM and WM volumes of the brains of 13 subjects using CLASSIC and
FANTASM. Fig.8 gives similar plots calculated within a local spherical region
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Fig. 7. GM and WM volumes of entire brains. Top: FANTASM, bottom: CLASSIC
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Fig. 8. GM and WM volumes in a local sphere. Top: FANTASM, bottom: CLASSIC

(see Fig.6). It can be seen that the curves of CLASSIC are quite smooth. More-
over, the GM and WM volumes calculated from the results of CLASSIC steadily
decrease with time, which suggests tissue loss with aging. Although longitudinal
analysis of MR brain images is much more complex, the experiments indicate
that CLASSIC is a promising tool for longitudinally-consistent segmentation
without compromising measurement of longitudinal atrophy.
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4 Conclusion

We proposed an algorithm for segmentation of serial MR brain images, which
yields spatially-adaptive and temporally-consistent segmentation results. The
longitudinal deformations among the image series that reflect the underlying
structural changes across time are also estimated. Experiments with simulated
and real longitudinal MR brain images have confirmed the advantages of CLAS-
SIC over more conventional 3-D segmentation analogous formulation.
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Abstract. A novel robust active appearance model (AAM) matching
algorithm is presented. The method consists of two main stages. First,
initial residuals are clustered by a non parametric mean shift mode de-
tection step. Second, modes without gross outliers are selected using
an objective function. Robustness of the matching procedure is demon-
strated on a variety of examples with different noise conditions. The
proposed algorithm outperformed the conventional AAM matching on
images with gross disturbances and can tolerate up to 40% of disturbed
data.

1 Introduction

Active Appearance Models (AMMs) introduced by Cootes et al. [1, 2] have
proven to be a useful method for the segmentation of medical image data. Ap-
plications reported in the literature include the segmentation of knee parts in
MRI data [1], the heart in MRI data [3, 4, 5] and stress echocardiograms [6],
parts of the human brain in MR images [7], or the diaphragm in CT data [8], to
name a few. One reason for the popularity of AAMs is that knowledge learned
in the training phase about object shape and texture (appearance) is utilized for
segmentation.

Despite the success of AAMs in medical image analysis and other application
domains, problems are encountered in cases where the object gray-value appear-
ance is significantly changed due to gross disturbances. Here, the learned model
will fail to describe the whole object to be segmented correctly. Such cases occur
quite frequent in clinical routine and may have several reasons including artificial
changes of organ appearance (e.g. implants), pathological changes of organ ap-
pearance (e.g. tumors), missing data, or image acquisition artifacts. The impact
of disturbances in gray-value appearance can range from a partially erroneous
result to a complete failure to match the target object. Consequently, another
(manual) procedure may have to be used for segmentation.

In cases of gross disturbances, the AAM based segmentation method should
match undisturbed portions of input data and utilize a priori knowledge gained
in the learning phase of the AAM to estimate the plausible object shape and
appearance in the disturbed regions. Such a robust behavior can be obtained
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by treating missing or abnormal information (outliers) differently compared to
undisturbed information (inliers) during the model matching process. The goal
of the matching step is to minimize the difference between model and image
data (residual) in order to achieve a good segmentation. In the standard AAM
framework proposed by Cootes et al. [1, 2], matching is treated as a least-squares
optimization problem. Because of the quadratic error measure (L2 norm), it is
sensitive to outliers and limits the performance of AAMs.

Approaches to make AAMs more robust have been reported by Edwards et
al. [9], Stegmann at al. [10], and Gross et al. [11]. All reported methods try to
reject outliers solely based on the magnitude of residuals observed during the
AAM matching. In general, a large residual is not an information that should
be discarded a priori. For example, the error might be due to an initial model
displacement. In this case, the error is a valuable information. If discarded, a
slower convergence of the AAM or a complete failure to match image data might
result. Therefore, treating the error information of an AAM only in terms of its
magnitude is not a generally viable solution.

In this paper we propose a novel robust AAM matching algorithm. Resid-
uals are analyzed by means of a Mean Shift based mode detection step and
selected according to the impact on the matching process. This allows an indi-
vidual adaptation to disturbances in input data. Compared to other methods,
no assumptions regarding “normal” residuals are made. This translates into a
higher flexibility regarding the types of disturbances that can be handled without
adjusting the algorithm.

2 Methods

2.1 Robust Active Appearance Models (RAAMs)

The proposed robust AAM matching method builds on the AAM framework
described by Cootes et al. in [1, 2] and requires that training data is free of dis-
turbances. During standard AAM matching, updates of model parameter vector
p are obtained by evaluating

δp = −
([

J(r)T J(r)
]−1

J(r)T
)
r(p) = −Rr(p) (1)

based on the observed actual residual r, calculated by comparing the gray-values
of the model and the image data underneath [1, 2]. In Eq. (1), J(r) = ∂r/∂p
denotes the Jacobian of r and R is the prediction matrix. To increase the robust-
ness of AAMs to gross disturbances (outliers) in the input image, “misleading”
coefficient updates (incorrect δp) must be avoided. Therefore, inliers and outliers
must be identified. If the outliers in r(p) are known, Eq. (1) can be adjusted
accordingly. Let vsel = (v1, . . . , vM )T be the selection vector with respect to the
residual r = (r1, . . . , rM )T with the following property:

vi =
{

1 : ri ∈ I(r)
0 : ri ∈ O(r) (2)
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where the set of inliers is denoted as I(r) and the set of outliers as O(r). Then
the rows of the Jacobian J(r) are rearranged into the vector J(r)sel. J(r)sel

denotes the components of J(r) for which vsel is equal to one:

J(r)sel = J(r)[vsel==1,:] . (3)

According to Eq. (1), a new matrix Rsel and a new parameter update vector
δpsel can be calculated, assuming that I(r) consists of at least one element.
By using δpsel instead of δp, only inliers are used for the update of model
parameters p during matching. A successive degeneration of the model, due to
outliers, can be avoided. Note, that Rsel has to be recalculated in each iteration
of the matching procedure, since the residual r(p) changes during matching.

The crucial step in this procedure is the classification of the residual into
inliers and outliers. As explained in the introduction, classifying outliers only
according to the magnitude of the residual r(p) is not sufficient. Therefore, we
propose a robust AAM matching procedure based on optimization of an objective
function:

1. Initialize the AAM with the parameter vector p0 based on an initial estimate.
2. Calculate the initial residual r̃(p0) by roughly aligning the texture vector of

the model gm(p0) to the image texture vector gi(p0) (model frame):

r̃(p0) = gi(p0) − a(gm(p0)) , (4)

where a(g) denotes the alignment function.
3. Analyze the modes of the initial residual r̃(p0) (Section 2.2).
4. Choose an optimal (outlier-free) combination of modes based on the opti-

mization of an objective function (Section 2.3).
5. Utilize only pixels covered by the finally selected mode combination in the

intrinsic iterative AAM matching process.

Steps 1 and 2 are similar to the standard AAM matching steps. In step 3
the initial residual r̃(p0) is partitioned into modes by using a Mean Shift based
algorithm (Section 2.2). Based on the partitioning, the combination of modes
is optimized according to an objective function. The goal is to select only the
modes associated with I(r) and to reject the modes associated with O(r). Mode
combinations are tested by running an intrinsic AAM matching followed by
the evaluation of the objective function (Section 2.3). Finally, the best mode
combination is selected. The results obtained with this selection are taken as the
final matching result.

Intrinsic AAM matching deviates from the standard AAM matching in two
ways:

1. Prior to each parameter update during intrinsic AAM matching, a selection
vector vsel is generated and utilized for calculating rsel, Rsel and δpsel,
respectively. The generation of vsel is based on an estimate r̃ for the residual
r. r̃ is calculated in an analogous way to Eq. (4) using the rough alignment
function a(g). The components of vsel are set to one, if the corresponding
value in r̃ is covered by the actual mode combination under evaluation.
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2. A z-score function z(x) = [x − µ(x)i]/σ(x) is applied during residual calcu-
lation for the alignment of the image and the model texture vectors

r(p) = z (gi(p)) − z (gm(p)) , (5)

where the mean of the components of vector x is denoted as µ(x), the stan-
dard deviation as σ(x) and the unit vector as i. Based on r(p) and vsel,
rsel(p) is generated by taking only components of r(p) for which vsel is
equal to one and used in combination with Rsel for a parameter update:
δpsel = −Rselrsel(p).

2.2 Mode Analysis of Residuals

To find the modes of the initial residual r̃(p0), the mean shift algorithm is utilized
[12, 13]. Given a set of points X = {xi ∈ Rd|i = 1, . . . , n}, the mean shift vector
at point x is defined as

mh,G(x) =

∑n

i=1 g
(∥∥x−xi

h

∥∥2
)
xi∑n

i=1 g
(∥∥x−xi

h

∥∥2
) − x (6)

where h is the bandwidth parameter of the radial symmetric kernel G(u) =
ck,dg(‖u‖2) with the profile function g; ck,p is a normalization constant. The
mean shift vector has the following property: mh,G(x) always points in the di-
rection of the maximum probability density function (PDF) ascent.

For our application, the boundaries between modes are of interest to partition
the residual r̃(p0) = (r1, . . . , rM )T into modes. Therefore, the valleys between
the modes need to be found. Following the mean shift vector mh,G(x) would
lead to a mode (local maximum of PDF). However, by reversing the direction
of mh,G(x) local minima, representing the boundaries between modes, can be
found by the following procedure:

1. Repeat for each xl ∈ X with X = {ri}i=1,...,M , the set of all components of
residual r̃(p0), and l = 1, . . . , n:
(a) Set y0 = xl.
(b) Shift each point proportionally to the negative gradient of the PDF

(mean shift) until it converges to a valley point by iteratively computing:

yj+1 = yj − mh,G(yj) j = 0, 1, 2, . . . (7)

(c) Store the obtained valley point: pxl
= yend.

2. Quantize all valley points into bins: p̃xi
= q(pxi

).
3. Find all the different valley points in P = {p̃xi

}i=1,...,n and store them as a
list of scalars (d = 1) in BX = [b1, . . . , bo+1] where bi ≤ bj for i < j. Modes
are stored in MX = {M1, . . . ,Mo}, whereas mode Mi is limited by the
valley points bi and bi+1.
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Fig. 1. Histogram H(r) of a residual r. Ymax(r) denotes the maximum value of H(r)
and Xmax(r) the magnitude of the corresponding residual

Modes consisting only of a few data points are of secondary importance,
since they have hardly any influence on the result. Therefore, modes with less
than T = γ maxi=1,...,o{|Mi|} (0 ≤ γ < 1) data points can be merged with
neighboring modes, and BX and MX are updated accordingly. The number of
remaining modes is denoted by õ. The choice of γ depends on the selected kernel
bandwidth h, which defines the sensitivity regarding small modes.

2.3 Mode Selection

The main idea behind the objective function for mode selection is as follows:
gross outliers in images usually lead to a degeneration of AAMs during matching.
For the evaluation of the AAM matching performance, an objective function is
utilized for the selection of a mode combination. A suitable objective function
should consider two criteria. First, the quality of the match should be high.
Ideally, a matched AAM would result in a residual vector r equal to 0. Therefore,
the histogram H(r) would show a single peak at the residual value of 0 with the
peak height equaling to M . Peak heights lower than M or a peak occurring at
other residual values than zero indicate a less desirable match (Fig. 1). Second,
the match should be based on as many (inlier) points as possible. It is also
crucial that no assumptions regarding a “normal” magnitude of residuals are
made, since large residual values might provide important information for AAM
matching. The objective function described below takes this into account. It
weights the peak height with a combination of the peak offset and the number
of data points used for matching. Let S = ℘(MX) \ {∅} = {S1, . . . ,Sl} be the
set of all possible mode combinations with at least one mode selected where ℘
denotes the power set and l = |S| = 2õ − 1. Given S, our goal is to find an
optimal mode combination Sj with Q(Sj) = maxi=1,...,l{Q(Si)} .

Let rSi
be the final residual (Eq. 5) after the intrinsic AAM matching based

on the actual selected modes Si. The distribution of residual rSi
is analyzed

by calculating the histogram H(rSi
). The maximum value Ymax(rSi

) of H(rSi
)
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is calculated and the magnitude of the corresponding residual is denoted as
Xmax(rSi

) (Fig. 1). We define the following objective function

Q(Si) = Ymax(rSi
)fand(wo, ws) , (8)

where fand(wo, ws) = 2wows/(wo + ws) represents an AND-conjunction of two
weighting functions wo and ws. The peak offset (quality of match) is taken
into account by the weighting function wo = α−|Xmax(rSi

)| and the number of
residual components used is reflected in ws = 1/M

∑
Mj∈Si

|Mj |. The values
of both weighting functions range between zero and one. The relative influence
of wo and ws is adjusted by the factor α. Both weights are combined by the
function fand and attenuate the peak value Ymax(rSi

).
Since the number of modes is usually rather small, an exhaustive search is

used to find the best mode combination. In the case where a lot of modes are
found, the use of a greedy search strategy is possible, but may yield suboptimal
results. If a priori knowledge about the disturbance is available (e.g. disturbance
is dark), it can be incorporated into the search strategy.

3 Case Studies

To evaluate the performance of the RAAM, segmentation results obtained with
a standard AAM (with z-score alignment; see Eq. 5) were compared to RAAM
results on proximal phalanx (Fig. 2(a)) and metacarpal bone (Fig. 2(b)) X-ray
images of the small finger. Forty images showing both bones were available.
Reference tracings were made manually by a physician, and landmarks used
for model building were placed automatically by using the method proposed by
Thodberg [14]. The gray-values of the images were scaled to [0, 255]. Image data
is disturbed by natural or artificially generated outliers. The following RAAM
parameters were used in all experiments: g(x) = exp(−x/2), h = 4, γ = 0.05,
and α = 1.03. For model building, the number of principal component analysis
(PCA) modes used to represent shape, texture, and the final model were selected
to explaining 99% of the variation present in training data.

Matching performance was measured by the relative overlap error Erol% =
100%(|Aref ⊕ Amodel|)/|Aref | where Aref and Amodel are object masks for the

Fig. 2. Example of a X-ray image of the small finger. (a) Proximal phalanx. (b)
Metacarpal bone

(a) 
(b) 
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reference segmentation and the matched model, respectively. The operator ⊕
denotes the XOR operation between masks and the number of object pixels is
denoted by |A|. Reference masks were generated by converting reference tracings
of the object contours. The relative overlap error is suitable to measure not only
the success of the matching process, but also the degree of failure.

For interpreting the distribution of the relative overlap errors of test series,
box-and-whisker plots were used [15]. The box has lines at the lower quartile,
median, and upper quartile values. The whiskers show the extent of the rest of
the data. Outliers are displayed by a ‘+’ symbol.

Both, AAM and RAAM matching started with identical initial model param-
eters. Images, showing original information and disturbances, have been gray-
value transformed for better visibility.

3.1 Proximal Phalanx X-Ray Images with Synthetic Disturbances

Performance of AAMs and RAAMs was compared using the undisturbed orig-
inal data and the artificially corrupted images (Fig. 3) using a leave-one-out
approach. Models were generated and trained on 39 complete proximal phalanx
images, and matching performance was subsequently evaluated on the left-out
image. The training process was repeated 40 times, always leaving out a different
data set for evaluation.

Results. Full object masks were used for error calculation with the exception
of the test case occlusion pattern n (Fig. 3(a)), where the occluded part was
ignored for error calculation. Full masks allow to measure the degree of model
degeneration caused by local disturbances, but are not meaningful if only dis-

Fig. 3. Occlusion patters used in combination with proximal phalanx X-ray images
(Section 3.1). Disturbance patterns were fixed in all 40 proximal phalanx images.
(a) Occlusion noise (normally distributed within range of [−50, 50]). (b) Constant dis-
turbance (gray-value: 255). (c)–(f) Occlusion with varying density. Gray-values of oc-
cluding boxes are chosen randomly between [0,255]. (a)–(f) Effective mean occlusion
of the 40 target objects: n : 29.2%, o : 15.5%, p1 : 8.2%, p2 : 19.8%, p3 : 39.5%, and
p4 : 64.4%

(a) n (b) o (c) p1 (d) p2 (e) p3 (f) p4
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Fig. 4. Box-and-whisker plots of the relative overlap error for AAM and RAAM on
proximal phalanx X-ray images (Section 3.1). Each plot is based on leave-on-out ex-
periments using 40 cases. (a) Standard AAM. (b) Robust AAM

Fig. 5. Example of matching results on images with synthetic disturbances (Section
3.1). The pattern p1 was used to occlude the image

turbed image data is available in a larger area (pattern n). A comparison of the
relative overlap error for AAM and RAAM algorithms is given in Fig. 4. For the
case with no occlusion pattern applied, the results are essentially the same. In
all other cases with disturbed image data (patterns n, o, p1–p4), the RAAM al-
gorithm had a considerably lower median of the overlap error than the standard
AAM (see also example in Fig. 5). The RAAM algorithm tolerates occlusion
rates of up to 40% well, and fails in the cases of the occlusion pattern p4 with
an average object occlusion rate of 64.4%.

3.2 Proximal Phalanx X-Ray Image with Implants

A proximal phalanx X-ray image with a disturbance, caused by a medical inter-
vention, was used for comparison of the AAM and RAAM methods. Fig. 6(a)
shows the test image with a reference tracing of the bone contour. When com-
pared to a normal proximal phalanx (Fig. 2), several differences can be observed.
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(a) Reference (b) AAM (c) RAAM

Fig. 6. Proximal phalanx X-ray image with implants. (a) Manual reference tracing. (b)
AAM and (c) RAAM matching result. Landmarks are represented by ‘+’ symbols and
are connected by white lines

First, the patient is suffering from rheumatoid arthritis, causing lower bone den-
sity and pathological changes of the joints, compared to normals. Second, an
arthrodesis of the proximal interphalangeal joint (top of bone in Fig. 6(a)) of
the finger with wires for fixation, leading to union of the of the bones, has been
carried out. This and the data set presented in Section 3.3 (metacarpal bone
data) are of particular interest, since model-based segmentation techniques are
promising for the automated assessment of rheumatoid arthritis [16]. Training
of AAM and RAAM was performed on the 40 segmented (normal) data sets
available. After training, models were applied to the test case.

Results. The AAM and RAAM matching result is shown in Fig. 6(b) and
Fig. 6(c), respectively. The relative overlap error was calculated as 33.66% for
the AAM and 15.53% for the RAAM. The AAM is severely influenced by the
changed object appearance and fails to deliver an acceptable result. The RAAM
does not show such a behavior. In case of the RAAM, segmentation errors mainly
occur in the region of the joint which is affected by rheumatoid arthritis.

3.3 Metacarpal Bone X-Ray Image with Implant and Severely
Changed Shape

The metacarpal bone X-ray image of the small finger that was used for compari-
son is depicted in Fig. 7. In the area of the metacarpophalangeal joint, a silicone-
spacer-implant for metacarpophalangeal arthroplasty in rheumatoid arthritis is
present. The implant causes a gross disturbance in gray-value appearance com-
bined with a severe shape change of the metacarpal joint (parts of the bone
are missing). In addition, the carpometacarpal joint shows pathological changes
caused by rheumatoid arthritis (compare with Fig. 2(b)). Learning and training
of the AAM and the RAAM was performed on the 40 healthy metacarpal bone
contours as described above. Testing was done on the image shown in Fig. 7.
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(a) AAM (b) RAAM

Fig. 7. Metacarpal bone data. (a) AAM and (b) RAAM matching result. Landmark
points are represented by ‘+’ symbols and are connected by white lines

Results. The standard AAM matching result is shown in Fig. 7(a). The con-
tour is atypical for a metacarpal bone (Fig. 2(b)). Areas without shape changes
(adjacent joints) are not well segmented. The gray-value disturbance has a clear
impact on the segmentation result. In contrast, the RAAM correctly segments
the bone structures without severe shape changes (Fig. 7(b)). This example also
demonstrates the inherent limits of RAAM matching—and more generally all
model based segmentation approaches (including standard AAMs)—the model
can not compensate for severe pathological/artificial changes in object shape
not learned previously. However, in case of the RAAM result (Fig. 7(b)) a priori
knowledge is utilized plausibly. Hence, the contour in the carpometacarpal joint
area can for example be used as a starting point for the quantification of the
stage of the rheumatoid arthritis based on a snake approach (see [16]).

4 Discussion and Conclusion

While the presented RAAM method has many advantages, a decrease of image
analysis speed is experienced due to the increase of the computation complexity.
The search for an optimal mode combination requires that all 2õ − 1 individual
combinations be tested, where õ denotes the final number of modes after mode
merging (Section 2.2). The average for õ was 2.2 in case of the 40 undisturbed
proximal phalanx images. This number increased with the increased image dis-
turbance level. The more modes are found in the process, the more mode com-
binations need to be analyzed (intrinsic AAM matching and objective function
evaluation). Hence, a trade-off between selectivity (kernel size) and processing
time has to be made. If processing speed is of the utmost importance, the RAAMs
may be employed selectively to improve performance in cases known to include
metal implants, tumors, or image artifacts as described above while conventional
AAMs can be used in the standard situations. The method selection can easily
be done interactively when reviewing the images prior to the analysis.

A fully automated robust active appearance model matching approach was
presented and compared to the standard matching method. No a priori assump-
tions regarding the kind of disturbance were made. The RAAM algorithm was
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universally applicable to different types of segmentation tasks. The performed
experiments demonstrated that the RAAM segmentation method outperformed
the standard AAM technique in all tested cases exhibiting gross outliers of gray-
value appearance. This is an expected outcome, since gross outliers severely influ-
ence the least squares optimization of the standard matching algorithm causing
segmentation failures. In comparison, RAAMs tolerated disturbances up to ap-
proximately 40% of the object-of-interest area, as demonstrated by the reported
experiments.
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Abstract. Breast Contrast-Enhanced MRI (ce-MRI) requires a series of
images to be acquired before, and repeatedly after, intravenous injection
of a contrast agent. Breast MRI segmentation based on the differential
enhancement of image intensities can assist the clinician detect suspicious
regions. Image registration between the temporal data sets is necessary
to compensate for patient motion, which is quite often substantial. Al-
though segmentation and registration are usually treated as separate
problems in medical image analysis, they can naturally benefit a great
deal from each other. In this paper, we propose a scheme for simulta-
neous segmentation and registration of breast ce-MRI. It is developed
within a Bayesian framework, based on a maximum a posteriori esti-
mation method. A pharmacokinetic model and Markov Random Field
model have been incorporated into the framework in order to improve
the performance of our algorithm. Our method has been applied to the
segmentation and registration of clinical ce-MR images. The results show
the potential of our methodology to extract useful information for breast
cancer detection.

1 Introduction

The use of contrast-enhanced magnetic resonance imaging (ce-MRI) has gained
considerable attention in recent years, not least for the early detection of breast
cancer [1]. Conventional MRI often yields little or no contrast difference between
abnormalities and normal tissue. Contrast agents, commonly gadolinium diethy-
lene triamine pentaacetic acid (Gd-DTPA), are used to improve the sensitivity
to cancerous tissue, because they highlight areas with increased vascular density,
which correlate with tumors. Regular scans of the breast (approximately every
one minute) are made before, during and after the administration of the contrast
agent. In this paper, a total of 7 scans were made for all the experiments. The
resulting signal enhancement-time curve is in the basis for differentiating various
tissue types within the breast [2][3][4][5].
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The goal of our work is to segment the breast into different regions, each
corresponding to a different tissue, and to identify tissue regions judged abnor-
mal, based on the signal enhancement-time information. There are a number of
problems that render this task complex. Not least, the images are often noisy,
and patient movement occurring during the scan can be rapid and substantial.

In this paper, we propose a simultaneous segmentation and registration method
to solve both the segmentation and patient motion correction problems for breast
ce-MRI. We show that interleaving segmentation and registration in the way
that we propose, is mutually beneficial for both problems; we get better results
both for segmentation and for registration. Our simultaneous segmentation and
registration (SSR) algorithm is developed within a Bayesian framework, based on
a maximum a posteriori (MAP) estimation method. We use a pharmacokinetic
model of the dynamic MR signal change to gain a more anatomically meaningful
measurement of tissue at each voxel in the breast for quantitative analysis. A
Markov Random Field (MRF) model is incorporated into our framework to reduce
the effects of random noise.

2 Method

2.1 The Hayton-Brady Pharmacokinetic Model

Currently, most radiologists analyze breast MR scans from subtraction images
from time slices relative to a baseline and then plot graphs of signal enhancement
vs time. The relative enhancement is calculated according to the enhancement
formula: E(t)% = (SI(t) − SI(t = 0))/SI(t = 0) ∗ 100%, where SI(t > 0) is the
post-contrast signal intensity at time t and SI(t = 0) is the pre-contrast signal
intensity.

Hayton[4] proposed a pharmacokinetic model based on the empirical observa-
tion that relative signal increase is proportional to the concentration of contrast
agent. This is used to relate the observed MR signal to Gd-DTPA concentration
in the extracellular space of breast tissue at a particular pixel. The model can
be represented by:

C(t) =
A

a − b
(exp−bt − exp−at). (1)

By measuring the relative signal increase at each breast pixel, we can fit the
model to the temporal data sequences. The pharmacokinetic model provides a
mathematical model of the ce-MRI signal time course, which gives quantitative
measurement of tissue characteristics at each pixel.

2.2 Segmentation of Breast ce-MRI

We aim to develop algorithms for segmenting the breast into different tissue
regions and thus to identify abnormal tissue. Here, we assume that the breast
is comprised of four major tissue types: fat, normal tissue, benign lesions and
malignant lesions. Due to the strong signal intensity contrast between fat and the



non-fat tissue types and the largely undetectable contrast between non-fat tissue
types in the pre-contrast scan, we initially use K-means clustering to segment
the breast image into two classes: fat vs non-fat. In the following section, the
non-fat tissues (normal, benign and malignant) are the areas of interest (ROI)
to be segmented.

The Pixel Attribute Vector. Because normal tissue, benign lesion and ma-
lignant lesion tend to have similar intensities, a single pre-contrast breast MRI
is generally not capable of distinguishing between them. As mentioned above,
the shape of the signal enhancement-time curve is an important criterion in
differentiating these tissue types in ce-MRI.

Although the parameters A, a and b found for each pixel contain the curve
shape information, experiments show that there are substantial overlaps in the
parameter values for these physiologically different tissue types. This leads di-
rectly to the failure of using these three parameters for segmentation. Instead,
we need to identify different parameters to represent each pixel within non-fat
breast tissue.

In [5] two criteria were suggested to describe the curve shapes. First, the
behavior of signal intensity in the early phase, immediately after the adminis-
tration of contrast material, is evaluated from the steepness of the post-contrast
signal intensity curve; one descriptor is early-phase enhancement rate: which can
be calculated by the enhancement for the first post-contrast image using

f1 = C(t = 1) =
A

a − b
(exp−bt − exp−at). (2)

Second, the behavior of signal intensity in the intermediate and late post-contrast
periods may be traced to derive diagnostic information. The shape of this part of
curve can be evaluated: whether the signal intensity continues to increase after
the initial upstroke, whether it is cut off and reaches a plateau, or whether it
washes out. The slope of the pharmacokinetic curve at an intermediate and late
stage can be used to describe this shape. Due to the lack of curvature at this
period, the slope can be represented by

f2 = (C(t = TL) − C(t = TM))/(TL − TM), (3)

where TL is the time when the last scan was taken and TM is the time when
the middle scan was taken. The formulation of an attribute vector for each pixel
is defined as: f = [f1, f2].

MRF Model-Based Segmentation. In this section, an MRF model segmen-
tation method based on [8] is proposed to segment the breast non-fat tissue into
three classes: normal, benign and malignant. An attribute vector provides the
information for each pixel. From the previous section, we see that the attribute
vector calculations can be derived from curve fitting the dynamic time-dependent
signal intensity data on a pixel-by-pixel basis, segmentation based only on the
attribute vector has an intrinsic limitation – no spatial information is taken into
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account. In order to minimize the effect of random noise, an MRF model is
used in which the spatial information is taken into account through the mutual
influences of neighboring sites.

Let us denote the pixels’ attribute vectors in the breast region of interest by
F = {f1,f2, · · · ,fn}, where n is the number of pixels. Let S = {s1, s2, · · · , sn}
denote the underlying segmentation, where si ∈ L = {1, 2, · · · ,K} and K (3 in
our case) is the number of tissue classes. si = k indicates that pixel i belongs
to tissue type k. We define the probability that pixel i belongs to tissue type
k by a non-negative quantity wk

i , so P (si = k) = wk
i . With this notation, the

probability vectors describing the image can be written as follows:

W = {w1,w2, · · · ,wn},

where wi = [w1
i , w2

i , · · · , wK
i ]T with

∑K

k=1 wk
i = 1.

The optimal segmentation, given the image attribute data F , can be repre-
sented by the MAP estimation:

si = arg max
k

w̃k
i , (4)

where
W̃ = arg max

W
P (W |F ). (5)

Using Bayes’ rule, we can form the posterior distribution P (W |F ) by the com-
bination of a data model P (F |W ) and a prior distribution P (W ): the former
provides a description of the observed data F given the underlying unobserved
data W ; the latter is a probabilistic model for our a priori beliefs about the
data W . Thus, we have:

W̃ = arg max
W

P (F |W )P (W ). (6)

In order to maintain spatial coherence and smoothness, W is considered as
a realization of an MRF, and its prior probability can be derived from

P (W ) = Z−1exp(−βU(W )), (7)

where Z is a normalizing constant, β is the neighborhood parameter, which
controls the granularity of the segmentation result and U(W ) =

∑
c∈C Vc(W ),

which is a sum of clique potentials Vc(W ) over all possible cliques C. A clique
c is defined as a subset of sites in image domain in which every pair of distinct
sites are neighbors, except for single-site cliques. In this paper, we use a second
order neighborhood system, in which there are eight neighbors for each site. We
also consider only two-site cliques which include horizontal, vertical and diagonal
pair-site cliques. The clique potential function Vc is determined by the distance
measure:

Vc(wi,wj) = |wi − wj |
2, (8)

where i and j are neighboring sites in image domain.



If we assume conditional independence and suppose that the ce-MRI signal
enhancement follows a Gaussian distribution, then since the attribute vector is
linear with signal enhancement, f j

i also follows a Gaussian distribution, we have:

P (F |W ) =
∏

i

2∏
j=1

P (f j
i |wi) =

∏
i

2∏
j=1

(

K∑
k=1

P (f j
i |si = k,wi)P (si = k|wi)) =

∏
i

2∏
j=1

{

K∑
k=1

wk
i√

2πσ2
j,k

exp[−
(f j

i − µj,k)2

2σ2
j,k

]}, (9)

where µj,k and σj,k are the mean and variance of each attribute vector element
for tissue class k. These values are unknown and can be estimated either with
an EM [6] algorithm or we can use a simple typical sample data method to
estimate: based on our prior knowledge of the data, we choose all the pixels with
f1 > 0.5 and f2 < 0 as typical malignant data, f1 > 0.3 and f2 > 0 as typical
benign data, and f1 < 0.3 and |f2| < 0.05 as typical normal tissue data. We
calculate the mean and variance for each group of typical sample data, and get
the values µ and σ. From a computational point of view, EM method will be
more expensive and may depends on the initialization, and this may favor also
the sample method.

Equation 9 may be written as

P (F |W ) = Z−1exp(−U(F |W )) (10)

with the likelihood energy:

U(F |W ) =
∑

i

2∑
j=1

log{
K∑

k=1

wk
i√

2πσ2
j,k

exp[−
(f j

i − µj,k)2

2σ2
j,k

]}.

It is easy to show that

P (W |F ) ∝ exp(−U(W |F )), (11)

where U(W |F ) = U(F |W ) + βU(W ) is the posterior energy. MAP estimation
is equivalent to minimizing the posterior energy function:

W̃ = arg min
W

{U(F |W ) + βU(W )}. (12)

Since the energy function is differentiable, we can use an iterative gradient de-
scent optimization technique to find a local minimum for W .

130 X. Chen et al.



Simultaneous Segmentation and Registration of Contrast-Enhanced Breast 131

2.3 Simultaneous Segmentation and Registration (SSR)

The signal enhancement-time curve used to describe each pixel is based on the
assumption that the patient either makes no motion or that any motions are
small enough to be negligible. In reality, due to the breathing of the patient,
or other movements made during the examination, the signal enhancement-time
curve will be degraded. Image registration should be used to correct for any
patient movement that occurs during the scan. This ensures that the images
through time always contain the same anatomical volume of tissue at each po-
sition within the scan.

Although segmentation and registration are usually considered separately in
medical image analysis, they can benefit a great deal from each other. In this
section, we propose a novel scheme for simultaneously solving for segmentation
and registration.

General Framework. We have a serial observed images from ce-MRI time
sequences: I = {I0, I1, · · · , I6}. We assume I1, · · · , I6 corresponds to some un-
known geometric transformation of reference image I0. “Segmentation”, or la-
belling of each pixel to one tissue types can be regarded as a model of the
underlying anatomy. The problem can be formulated as follows: given observed
images I, we wish to simultaneously estimate the label field S of the images
and recover the geometric transformation T = {T1, T2, · · · , T6} that register the
images I1, · · · , I6 with I0. The MAP estimate is to find S and T to maximize
P (S,T |I).

The problem can be separated into a 2-step procedure, in which the best T

is found given the correct estimate for S, and then the best estimate for S is
found, given the correct estimate for the transformation T :

1. Set an initial estimate T̃ = 0;
2. Repeat until convergence or often enough:

(a): Set S̃ = arg max
S

P (S|T̃ , I)

(b): Set T̃ = arg max
T

P (T |S̃, I)

Segmentation Based on Registration. We now analyze step (a). Given the
observed data I and a known transformation T between images, we can compute
the attribute vector F for each pixel r after applying the transformations on the
post-contrast images and calculate the parameters from fitting the curve C(r, t)
of data E(r, t)% = (SI(T (r), t) − SI(r, t = 0))/SI(r, t = 0) ∗ 100%. Since our
segmentation is only based on the attribute vector information of each pixel, we
have P (S|T̃ , I) = P (S|F ), where the same method described in section 2.2 can
be used.

Registration Based on Segmentation. For step (b), we consider image I0

to be the reference image, transformation Ti to be a spatial mapping from Ii

to I0. The transformation type is a displacement vector per point. Using Bayes’
rule, we have:



P (T |S̃, I) ∝ P (I|S̃,T )P (T ) =

6∏
i=1

P (Ii|S̃, Ti)P (Ti). (13)

In order to maintain spatial coherence and smoothness, the transformation
T may be required to be similar to its value at its spatial neighbors. We assume
a Gibbs distribution on the expected deformations: P (T ) = exp(−E(T )), where
E(T ) is T in the form of an energy. We choose a second order neighborhood
system, and consider only two-site cliques which include horizontal, vertical and
diagonal pair-site cliques. The energy is the sum of clique potentials over all
possible cliques C: E(T ) =

∑
c∈C Vc(T ) where

Vc(T (r),T (q)) = |T (r) − T (q)|2. (14)

with r and q are neighboring sites in image domain.
The likelihood of the observations can then be rewritten:

P (Ii|S̃, Ti) =
∏

r∈ΩI0

P (Ii(Ti(r))|s̃r). (15)

For a Gaussian noise distribution, we have:

P (Ii(Ti(r))|s̃r) =
1√

2πσ2
i,s̃r

exp[−
|E(Ti(r), i) − µi,s̃r

|2

2σ2
i,s̃r

], (16)

where µi,k and σi,k are the fitted contrast enhancement curve mean and variance
for tissue class k at time i. These values are unknown but can be estimated either
using an EM algorithm or by the simple typical sample method.

Finally we get:
P (T |S̃, I) ∝ exp[−U(T )] , (17)

where

U(T ) =
∑

i

∑
r∈ΩI0

|E(Ti(r), i) − µi,s̃r
|2

2σ2
i,s̃r

+ E(T ). (18)

The first term of U(T ) is the similarity measure, and is proportional to
|Ii − I0 ∗ M(r)|2, with M(r) as adaptive intensity correction factor depends on
the segmentation result of pixel r.

Our registration method addresses the fundamental problem associated with
ce-MRI registration: contrast enhancement is an intensity inconsistency between
two images, which is what intensity-based registration algorithms are designed
to minimize. Given that the image intensity might change after injection of the
contrast agent, one cannot use a direct comparison of image intensities. With
adaptive intensity correction, our algorithm can achieve registration without
causing shrinking problem [7].

Step (b) is equivalent to minimizing of U(T ). Since the energy function is
differentiable, we can use an iterative gradient descent optimization technique
to find a local minimum for T .
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3 Experiments

Our initial experiments have been on clinical breast MR images. To date, data
from fifteen patients have been analyzed using our method. The 3-D MR scans
were performed on General Electric Medical Systems (Genesis Signa). The slice
is coronal orientation, with thickness of 3mm and 1.5mm space between slices.
The flip angle is 10 degrees. The Repetition Time: TR = 8.9ms; Echo Time:
TE = 4.2ms.

Figure 1 shows scans from one patient dataset. A total of 7 scans were taken.
Figure 1(a) is the pre-contrast scan, and Figure 1(b)-(g) are post-contrast scans
from 1 minute to 6 minute after injection of Gd-DTPA.

Figure 2 shows the registration results using our SSR method. Figure 2(a)(c)(e)
shows the subtraction between the Figure 1(e)(f)(g) and the pre-contrast image:
the effect of the breast motion is clearly visible, especially on the edge of the
different tissue types. Figure 2(b)(d)(f) show the subtraction between the trans-
formed images of Figure 1(e)(f)(g) after SSR and the pre-contrast image, the
amount of mis-registration is significantly reduced. We use a new measure to as-
sess the quality of the registration. We calculate the residual norm value of curve
fitting before and after registration. We show in Figure 2(g) and (h) those pixels
with large residual norm value (larger than 0.1) before and after SSR. From
the significant reduction in large residual norm after SSR, we can see that the
pixels’ signal-time profiles are much smoother and the changes that occur in the
image over time can be better explained mathematically by our pharmacokinetic
model.

We segment the images into 4 tissue classes in the breast: fat, normal tissue,
benign lesions and malignant lesions. The fat tissue and non-fat tissues are seg-
mented using the K-Means method, while the 3 non-fat tissues are segmented
using an MRF-based method according to their attribute vectors which reflect
the pixel’s signal profile over time. We use grey to indicate fat tissue, blue for
normal tissue, red for benign lesions and green for malignant lesions. Figure 3(a)
and (c) show the left and right breast segmentation results without considering
patient’s movement. Figure 3(b) and (d) show the left and right breast segmen-
tation results with our SSR method. Figure 3(e) shows the typical pixel’s signal-
time profile for each non-fat tissue after SSR, we can see the quick take-up and
a wash-out procedure for malignant lesion pixel, a steady growing in intensity of
benign lesion and a relatively flat pattern for normal tissue. Figure 3(f) shows
the pixels whose segmentation results are changed, which is achieved by our SSR
method. This SSR segmentation result shows the reduction of misclassification
pixels, whose signal-time profile pattern were distorted by patient movement.

4 Summary

In this paper, we have developed a framework to achieve simultaneous segmenta-
tion and registration for breast ce-MRI. With registration, the patient’s motion
during the 6 minutes examination is corrected, providing a better reflection of



(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1. Example of breast ce-MRI data. (a)Pre-contrast image. (b)Post-contrast image
at one minute after contrast agent injection. (c)Post-contrast image at two minutes
after injection. (d)Post-contrast image at three minutes after injection. (e)Post-contrast
image at four minutes after injection. (d)Post-contrast image at five minutes after
injection. (d)Post-contrast image at six minutes after injection
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. SSR registration results. (a)Subtraction image of Fig.1(e) and (a).
(b)Subtraction image of motion corrected Fig.1(e) and (a). (c)Subtraction image
of Fig.1(f) and (a). (d)Subtraction image of motion corrected Fig.1(f) and (a).
(e)Subtraction image of Fig.1(g) and (a). (f)Subtraction image of motion corrected
Fig.1(g) and (a). (g)Pixels with large residue of curve fitting before registration.
(h)Pixels with large residue of curve fitting after SSR



Fig. 3. SSR segmentation results. (a)The left breast segmentation result without regis-
tration. (b)The left breast segmentation result after SSR. (c)The right breast segmen-
tation result without registration. (d)The right breast segmentation result after SSR.
(e)The signal-time curve of a typical sample chosen from Malignant, Benign, Normal
tissue separately. (f)The pixels with different segmentation results before and after SSR
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the signal change over time for each pixel, thus we achieve a better segmentation,
since the segmentation is based on the signal enhancement pattern. Segmenta-
tion enables the predication of intensity enhancement of each pixel at different
time, and it is particular useful for dynamic MR images due to the non-uniform
signal enhancement in different tissue types. With segmentation information, the
intensity of each pixel in the pre-contrast image was adapted, and compared with
the post-contrast images, to achieve better registration result. By interleaving
segmentation and registration in one framework, the two problems’ solution can
be benefit to each other, thus achieve better results for both problems.

The pharmacokinetic model used for curve fitting can provide a mathematical
measure to calculate the attribute vector for each pixel. The MRF model used
for SSR incorporate the neighborhood information into the pixel-based method,
the segmentation and registration are smooth and random noise effect is also
reduced greatly.

The regions detected by this algorithm are intended to be presented to the
clinician as suspicious regions. The computational analysis yields information
that is of diagnostic and prognostic value, but further study is needed to better
understand the true biological meaning of ce-MRI enhancement curves and the
accuracy and specificity of this method should be assessed in a retrospective
clinical trial, which will be our future work.
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Abstract. Filtering of vessel structures in medical images by analyzing
the second order information or the Hessian of the image, is a well known
technique. In this work we incorporate Frangi’s multiscale vessel filter
[4], which is based on a geometrical analysis of the Hessian’ eigenvectors,
into a nonlinear, anisotropic diffusion scheme, such that diffusion mainly
takes place along the vessel axis while diffusion perpendicular to this
axis is inhibited. The multiscale character of the vesselness filter ensures
an equally good response for varying vessel radii. The first, theoretical
contribution of this paper is the modification of the original formulation
of this vessel filter, such that it becomes a smooth function on its do-
main which is a necessary condition imposed by the diffusion process to
ensure well-posedness. The second contribution concerns the application
of noise filtering of 3D synthetic, phantom computed tomography (CT)
and patient CT data. It is shown that the method is very effective in
noise filtering, illustrating its potential as a preprocessing step in the
analysis of low dose CT angiography.

1 Introduction

Vessel analysis in medical images is important both for diagnostic and interven-
tion planning purposes. Vessel centerline extraction can be used to generate spe-
cific visualizations, such as endovascular views or multiplaner reformats. Vessel
segmentation can be used for quantification, e.g. stenosis grading, or to deter-
mine the dimension of stents to be used in interventions. In many approaches
for vessel analysis, images are first preprocessed to enhance vascular structures.
Vessel enhancement improves vessel visualization, e.g. in volume rendering tech-
niques or maximum intensity projections, and has the potential to facilitate the
task of centerline extraction and segmentation.

In this paper a method is proposed to enhance vascular structures within
the framework of scale space theory. In scale space theory, a family of images is
generated by evolving the image according to the diffusion equation, with the
original image as the initial condition. Consider the general diffusion equation
in divergence form Lt = ∇ · (D∇L), which states that the change in luminance
L is the divergence of some flow D∇L. The diffusion tensor D enables us to
control the flow such that features of interested are blurred or preserved. The
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simplest form is by taking the identity matrix for D which results in the linear
isotropic heat equation, used in linear scale space theory. The first nonlinear
variant was proposed by Perona and Malik [8], in which the diffusion tensor is
replaced by a scalar function of the gradient magnitude. Note that the Perona
and Malik equation is isotropic, despite its original characterization as being
anisotropic. Weickert [14, 16] goes one step further by using not only the gradient
magnitude but also the orientation or average gradient direction to enhance
small edges and coherent structures by analyzing the structure tensor of the
image, obtaining truly anisotropic behaviour. For an overview of these and other
diffusion equations, we refer to [11] and [15].

The objective of this work is to extend these types of diffusion equations
by replacing the diffusion tensor by a function of the second order information
or the Hessian of the image. In the context of vessel analysis, the Hessian has
direct geometrical interpretation when analyzing its eigenvectors, and in partic-
ular, Frangi’s [4] vesselness measure is taken to steer the diffusion process. This
combination, coined vessel enhancing diffusion - VED, has been explored before
by Cañero and Radeva in [1], which is, to the best of our knowledge, the only
other work combining vesselness filtering with diffusion. While their incorpora-
tion of the vesselness measure into the diffusion process has much resemblance,
an important difference is found in our tensor function which satisfies a smooth-
ness constraint; a necessary condition imposed by the diffusion process to ensure
well-posedness. Furthermore, compared to [1], the method is extended to 3D.

The second half of this paper is devoted to the application of noise filtering
of 3D synthetic, phantom computed tomography (CT) and patient CT data.

2 Method

2.1 Diffusion Filter Class

It can be shown that under fairly mild conditions on the diffusion tensor, the
resulting diffusion equations exhibit well-posedness, regularity and a minimum-
maximum principle. Well-posedness means that the problem has a solution which
is unique and that continuously depends on the initial image. Regularity implies
that the solution belongs to the class of smooth functions. The extremum prin-
ciples states that the range of the intensity values becomes smaller - in fact, the
intensity range converges to the average gray value of the image if the number
of iterations goes to infinity. The derivation can be found in [16, 14] where the
results from [2] and [13] are generalized. Here, only the three conditions imposed
on the diffusion tensor D = (dij) are given, which are repeated from [16]:

Smoothness D ∈ C∞(Rm×m, Rm×m) with m denoting the dimension.
Symmetry dij(H) = dji(H) for all (symmetric) Hessian matrices H ∈ Rm×m.
Uniformly positive definite Let Ω ∈ Rm be the open, bounded subset of Rm

denoting the image domain. If w : Ω → R2, satisfies |w(x)| ≤ K on Ω (Ω
is the closure of Ω), then there exists a positive lowerbound υ(K) for the
eigenvalues of D(H).
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We aim at constructing a D which fulfills these requirements and allows for
vessel preserving diffusion.

2.2 Vesselness Filter

In the context of vessel analysis, we use the second order information or the
Hessian matrix H of the image. Since the Hessian is symmetric and real, by
the Principal Axis Theorem from linear algebra, it can be decomposed into
H = QΛQT , in which Q forms an orthonormal base of eigenvectors, and Λ
denotes its corresponding eigenvectors. These eigenvectors and values have a di-
rect geometrical interpretation: the eigenvectors point in the direction in which
the curvature takes extremal values, the eigenvalues give these extremal values.
These eigenvalues are also called the principal curvatures.

In the case of bright vessels on a dark background, and with the following
ordering of eigenvalues |λ1| ≤ |λ2| ≤ |λ3|, the direction along the vessel is given
by v1 when |λ1| ≈ 0 and |λ1| � |λ2| ≈ |λ3|. Several vesselness filters have been
proposed based on the eigenvalues of the Hessian [6, 10, 4]. Selected is Frangi’s
filter [4], because it consists of exponential functions, which turns out to be
advantageous when modifying the function (in Section 2.3). The formulation of
the vesselness measure by Frangi et al. [4], calculated at scale σ, is as follows:

VF (σ) �


0 if λ2 > 0 or λ3 > 0(
1 − e−

A2

2α2

)
e
− B2

2β2

(
1 − e

− S2

2γ2

)
(1)

with

A =
|λ2|

|λ3|
(2)

B =
|λ1|√
|λ2λ3|

(3)

S =
√

λ2
1 + λ2

2 + λ2
3 (4)

in which A differentiates between plate and line like structures, B accounts for
deviation from a blob like structure, and S differentiates between foreground
(vessel) and background (noise). This function is used as starting point to con-
struct the diffusion tensor D.

2.3 Smoothed Vesselness Filter

Unfortunately, this vesselness function VF is not smooth at the origin, and thus
can not directly by used in the diffusion equation. Smoothness implies that
the nth-order derivative exists and is continuous (since continuity is necessary
prerequisite for the next derivative). The following modifications are proposed
to remedy this issue. The first modification applies to the domain definition: by
testing for λ{2,3} larger equal zero instead of larger zero, the function becomes
continuous at the limit λ2 ↑ 0 and λ3 ↑ 0. Also, for λ → 0, the function goes to



Multiscale Vessel Enhancing Diffusion in CT Angiography Noise Filtering 141

zero since the third term (the contrast term) goes to zero while the other two
terms are bounded. Still, the resulting function is not smooth. This is basically
due to the appearance of the ratio of polynomial functions in λi, which has the
same order in the nominator as well as in the denominator, which occur in the
first two terms of the vesselness function. It goes wrong first for the second order
partial derivatives in λ1, VFλ1λ1 = ∂2VF /∂λ2

1. Suppose λ2 = λ3 � αλ1 with α ∈

R and α ≥ 1 and letting λ1 → 0, results in VFλ1λ1 = (2 + 4α2)(1− 1/e)e(−1/α2).
A similar argument can be applied in the 2D case for the first order derivative
in λ1; thus the diffusion tensor proposed in [1] is not smooth either. To resolve,
observe that VF and V

(n)
F , consist of terms of the form

T (λ) =
(

P

Q

)
e−(R

S ) (5)

with {P,Q} some polynomial function in λ, and {R,S} some polynomial func-
tions in λ without any constant terms. Obviously, {R,S} remain the same for any
order derivative, only {P,Q} change. Therefore, if λ → 0 then {R,S} → {0, 0},
making T undefined. Multiplying T with e(−1/S) gives(

P

Q

)
e−(R+1

S ) (6)

which always goes to zero if λ → 0, making this new term properly defined
around the origin. By collecting the exponential terms of VF , it immediately
follows that the ’largest’ denominator is |λ2|λ

2
3. Therefore, multiplying VF with

e
−

(
2c2

|λ2|λ2
3

)
(7)

with c some constant, will result in a smoothed version of the vesselness function.
It resembles a Gaussian function with its argument inverted, and is controlled
by the standard deviation c. This constant c should be chosen very small to
only have influence around the origin, when λ → 0. Intuitively, the vesselness
function is multiplied by a term which is one everywhere except at the origin
and rapidly goes to zero in a small neighborhood around the origin. The new
vesselness function Vs then reads:

Vs(σ) �


0 if λ2 ≥ 0 or λ3 ≥ 0

e
− 2c2

|λ2|λ2
3

(
1 − e−

A2

2α2

)
e
− B2

2β2

(
1 − e

− S2

2γ2

)
(8)

Similar as in the original vesselness function, a multiscale approach is adopted,
i.e. the vesselness function is calculated at multiple scales - normalized by σ2 [5],
and the maximum response is selected.

V = max
σmin≤σ≤σmax

Vs(σ) (9)
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2.4 Vessel Enhancing Diffusion

With the new smoothed vesselness function V in Equation 9, the diffusion tensor
D can now be defined such that diffusion mainly takes place in the direction
along the vessel, while diffusion perpendicular to this direction is inhibited. A
straightforward definition of D is as follows

D � QΛ′QT (10)

with Q the eigenvectors of H and Λ′ having the following entries on its diagonal

λ′
1 � ε + (1 − ε) · V (11)

λ′
2 � ε (12)

λ′
3 � ε (13)

That is, for all structures blurring is small and (roughly) isotropic, except within
a vessel where the vesselness is high and blurring is maximal in the minimal
curvature direction. It easily follows that this definition of the diffusion tensor
satisfies the filter conditions from Section 2.1.

3 Experiments and Results

In this section, VED filtering is applied to 3D synthetic, phantom CT and patient
CT data and evaluated with respect to improvement in visualization and signal-
to-noise ratio.

3.1 Acquisition and Parameters

Patient data, used in Sections 3.2 and 3.5, are acquired on a 16-slice CT scanner,
resulting in voxel sizes of 0.3125×0.3125×0.5 mm. The voxel size of the synthetic
data used in Section 3.3 is set to 0.3125 × 0.3125 × 0.5 mm, the same as the
voxel sizes of the patient data. The parameters of the method are fixed for all
experiments except for the number of iterations n, unless specified otherwise.
Following [4], the smoothed vessel filter has the following parameters: α = β =
0.5 and γ = 50 (in the patient data, the vessel intensity vary in the range
[200 . . . 600] HU - Hounsfield Units). Also, c = 0.000001, σmin = 0.1 mm and
σmax = 2.0 mm, with 10 different scales, exponentially distributed between σmin

and σmax. Diffusion was performed with ε = 0.01 and time step t = 0.02. The
smoothed vesselness response is calculated every time step t. Furthermore, a
quantitative measure is needed for evaluation. To this end, the signal-to-noise
ratio is used, defined as

SNR =
(
〈I〉V − 〈I〉B

σB

)2

(14)

with 〈I〉 the mean intensity of vessel V or background B, and with σB the standard
deviation of background. Background and vessel regions are selected manually.
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3.2 Illustration of Performance

For illustration purposes, the method is first applied to a 3D synthetic data set
representing a bifurcation (Figure 1), and a real 3D patient data set representing
a small part of the cerebral vasculature (Figure 2). The bifurcation model consists
of three tubes with equal intensity of 200 (background is set to 0) and radii of 1.7,
2.0 and 2.6 voxels. Gaussian noise is added with a standard deviation of η = 200,
letting the original structure almost completely disappear in noise. Shown are the
results after n = 800 and n = 3000 iterations. Clearly, VED filtering is capable
of retrieving tube like structures in the image, and also, increasing the number
of iteration results in further blurring over the tube edges of the image, as was
expected. It means, that for the signal-to-noise ratio an optimum in the number
of iterations exists, as function of the noise η. The method applied to patient
data (Figure 2, n = 800 iterations) resulted in smoothed vessel like structures
while the background (noise) is suppressed.

(a) original (b) noise
η = 200

(c) filtered
n = 800

(d) filtered
n = 3000

Fig. 1. A synthetic 3D example of size 64 × 64 × 64 voxels, of a bifurcation consisting
of tubes of varying radii. Shown are the maximum intensity projections (mips) of the
original data (a), the data with Gaussian noise (η = 200) added (b) and the results of
VED filtering after n = 800 (c) and n = 3000 (d) iterations

Fig. 2. A small part of the cerebral vasculature from 3D CTA data of size 106×65×261
voxels. Left a mip of the original, showing some overlapping arteries, and right a mip
of the result of VED filtering (n = 800)
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3.3 Synthetic Data and Noise

The purpose of this experiment is to investigate the relation between the di-
ameter of the vessel, the noise η and the SNR as function of the number of
iterations n. Additionally, mips of the filtering results are visually evaluated to
determine the influence of filtering on small vessels. A synthetic test bed of tubes
is generated with diameters of 1, 2, 3, 4 and 5 voxels and intensity of 200, the
background is set to intensity 0. The results are shown in Figures 3 and 4.
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Fig. 3. Left the original test bed of tubes with varying diameters. Right the SNR after
filtering for different η of the Gaussian noise

(a) No filtering at η = 30, 90, 200

(b) Optimal filtered with respect to SNR

Fig. 4. The results of filtering of the test bed for varying η of the Gaussian noise. The
optimal results according to the SNR (Figure 3), are obtained after 400, 900 and 1300
iterations, respectively
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Figure 3 clearly shows an optimum for different noise values η. This optimum
is rapidly achieved for increasing number of iterations n, and the SNR slowly
decreases after this optimum. The optimal SNR lies between 200 and 1000 itera-
tions. Figure 4 shows the optimal results for η = 30, 90 and 200. The visibility of
the smallest diameter deteriorate only for relatively small η; shown is the noise
level for which the diameters of one and two voxels still was visible (first two
columns). From the right column in Figure 4 can be concluded that the smallest
diameter that remains visible after filtering even for extremely noisy images, is
three voxels.

3.4 Phantom Data and Noise

In CT imaging, X-ray exposure forms a risk to the patient. Attempts to lower
this risk usually comes at the expense of a degraded quality of the reconstructed
image. The following simple and important relation holds. Both the patient dose
and the detector dose (i.e. the image quality), are linear related to the tube
current, or the mAs setting of the scanner [9]. There are other parameters that
are of influence, e.g. the tube voltage, but these are ignored for now by keeping
them constant. The purpose of this experiment, is to investigate the capability of
VED filtering to improve visualization in low dose CT, by applying the technique
to images scanned at decreasing mAs. The image quality is measured by the SNR
(Equation 14) and is evaluated visually.

A phantom of the cerebral vasculature [3] is used, which models the most
important arteries in the brain, including the Circle of Willis. The phantom was
filled with 50 mgI/ml contrast agent, and data was acquired on a Philips 40-slice
scanner. A standard head protocol was selected with 120 kV and six different
mAs settings [245, 200, 150, 100, 50, 21] - 245 mAs is the standard setting, result-
ing in data sets of 512× 512 by approximately 350 voxels, with almost isotropic
voxel sizes of approximately 0.404 × 0.404 × 0.33 mm. A region of interest is
selected that includes the Circle of Willis, of 89 × 84 × 46 voxels to run the
experiments on. The results are shown in Figures 5 and 6.
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Fig. 5. Left the phantom scanned at the protocol standard and highest current setting
of 245 mAs. Right, the results of VED filtering
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(a) No filtering at 245, 100 and 21 mAs

(b) Optimal filtered with respect to SNR

Fig. 6. Zooming in on the Circle of Willis. The optimal results according to the SNR
(Figure 5), are obtained after 900, 1200 and 2000 iterations, respectively. Observe that
vessels of varying radii are smoothed, while background noise is suppressed

First, a strong similarity with the results obtained in the synthetic data set
can be observed; the SNR increases rapidly for increasing n, and decreases slowly
after the optimum has been reached. Secondly, all data sets can be improved con-
siderably by VED filtering, even the data scanned at the highest mAs settings.
And finally, the mAs setting can be lowered to 100 mAs - more than a factor 2.4,
while the SNR is significantly better than at 245 mAs without filtering, achieved
already for n < 500 iterations (confirm by the horizontal line in Figure 5). Some
results for qualitative evaluation are shown in Figure 6, for 245, 100 and 21
mAs settings, for both the unfiltered data sets (first row), and the results after
reaching the optimal SNR value (second row). The data show mips of the axial
view of the Circle of Willis. Clearly, VED filtering is capable of smoothing the
tubular structures of varying sizes. Even in the case of the lowest mAs setting,
the results after filtering seem ‘acceptable’.

3.5 Patient Data and Visualization

Finally, the method is applied to 3D CT patient data. Before filtering, the bone
structures are masked [12] for improved projection visualizations. Bone masking
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requires an additional, low dose scan of the patient without contrast fluid which
is rigidly registered to the high dose scan with contrast. After registration and
bone segmentation in the low dose scan by thresholding, bone structures in the

(a) Original patient data, after bone masking

(b) Results after n = 800 iterations

Fig. 7. Results of filtering on 3D CT patient data sets
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high dose scan are masked. For further details on this technique, we refer to
[12] and [7]. Subsequently, the data is chunked to get a smaller roi to reduce
computation time and memory requirements.

The results of filtering of three different patient data, after n = 800 iterations,
are shown in Figure 7. We observe that background noise is suppressed, while
the vessels of varying radii are smoothed.

4 Discussion and Conclusion

A nonlinear, anisotropic diffusion scheme has been proposed in which the diffu-
sion tensor is defined from the Hessian of the image, such that diffusion along
the vessel axis is encouraged, while diffusion perpendicular to this direction is
inhibited. To this end Frangi vesselness filter is adopted and modified such that
this function becomes smooth on its domain. A naturally extension is, besides
including the Hessian, to include intensity and gradient information into the dif-
fusion tensor. Based on experiments with synthetic data, it is shown that, in the
case of extremely noisy data (Gaussian noise of η = 200 with vessel structures
having the same intensity levels), the smallest diameter which still can be made
visible has size of three voxels. The phantom experiments showed the potential
of the method in decreasing CT dosage while retaining or even improving the
signal-to-noise ratio and having visually acceptable results. This is a prelimi-
nary conclusion and extensive clinical validation is appropriate. The results of
real patient CT data showed the method’s capability in smoothing vessel struc-
tures of varying radii, while suppressing the background noise level. Comparison
with other, well established filtering techniques (such as Gaussian, Perona-Malik,
Coherence-Enhanced and Edge-Enhanced filtering), allows for a better charac-
terization and placing of the vessel enhanced diffusion method, which is subject
of future work.
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Abstract. Information fusion has, in the form of multiple classifier systems, long
been a successful tool in pattern recognition applications. It is also becoming in-
creasingly popular in biomedical image analysis, for example in computer-aided
diagnosis and in image segmentation. In this paper, we extend the principles of
multiple classifier systems by considering information fusion of classifier inputs
rather than on their outputs, as is usually done. We introduce the distinction be-
tween combination of data (i.e., classifier inputs) vs. combination of interpreta-
tions (i.e., classifier outputs). We illustrate the two levels of information fusion
using four different biomedical image analysis applications that can be imple-
mented using fusion of either data or interpretations: atlas-based image segmen-
tation, “average image” tissue classification, multi-spectral classification, and de-
formation-based group morphometry.

1 Introduction

Combinations of multiple independent classifiers can be substantially more accurate
than the individual classifiers alone. Numerous applications of this principle have been
reported in the pattern recognition literature over the past dozen years. Xu et al. [1] eval-
uated different combination schemes of classifiers for the recognition of unconstrained
handwritten numerals. Similarly, Kittler et al. [2] combined four classifiers for optical
character recognition of uppercase letters and digits. In biomedical image analysis and
computer-aided diagnosis, multiple classifier systems have been applied to classifica-
tion of microcalcifications in breast magnetic resonance (MR) images [3, 4], diagnosis
of skin melanomas [5], and classification of breast lesions in ultrasound images [6].

Xu et al. [1] point out that classifiers and classifier fusion can operate on three
different levels of output information: the abstract level (which assigns a unique output
label to each input), the rank level (which assigns a ranking of all available labels to each
input), and the measurement level (which assigns a confidence value for each label and
to each input). However, their and all other papers referenced above, as well as the vast
majority of publications in general, only consider information fusion in the domain of
classifier outputs, which we refer to in this paper as the interpretation domain.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 150–161, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Illustration of principles of (a) COI approach vs. (b) COD approach. (a) The data from
each source are classified separately by the classifier C, and the outputs are combined into a
final interpretation I . (b) The data from all sources are first combined and classified by a single
classifier C. Note that the combination operators in (a) and (b) typically work on different data
types and are, therefore, usually different operators (which are symbolized by different shapes in
the illustration)

If the multiple classifiers are generated using different instantiations of their inputs,
then we observe that information fusion is possible on the classifier inputs, which we
refer to as the data domain. In fact, there are many applications where we can choose
between a combination of interpretations (COI) and a combination of data (COD). The
general principle is illustrated in Fig. 1. In this paper, we describe four examples of
biomedical image analysis tasks that can each be performed using techniques from
either group of information fusion approaches. In each case, we describe examples of
such techniques and evaluate and discuss their respective advantages and disadvantages.
While typically the data domain is a continuous space and the interpretation domain is a
discrete space (set of labels), the interpretation domain can also be a continuous space,
as the application in Section 5 shows.

2 Atlas-Based Segmentation

Atlas-based image segmentation generates a segmentation of an image by registering
it to an already segmented image, the atlas [7]. We have shown in previous work [8]
that the segmentation accuracy can be improved substantially by using multiple at-
lases. For each atlas a nonrigid transformation from the unsegmented image to the at-
las is computed. This transformation maps each pixel of the image to the atlas, where
the pixel’s label can be looked up, thus producing a segmentation of the entire
image.

When combining multiple such segmentations in a COI approach, the labels j as-
signed by K individual segmentations to a given voxel x are counted, and the one with
the most “votes” is assigned to the voxel in the final, combined segmentation:
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x �→ arg max
j

#{k | 0 ≤ k < K,Ak(Tk(x)) = j} (1)

Note that partial volume interpolation [9] can be used to interpolate smoothly between
labels, and it also reduces the frequency of “undecided votes” without a unique winner
label.

We have also shown previously that a similar improvement, albeit of smaller magni-
tude, can be achieved using a single atlas with different nonrigid registration algorithms,
or different parameterizations of the same algorithm [10]. This corresponds to replacing
Ak(Tk(x)) in Eq. (1) with A(Tk(x)), where there are K different transformations into
a single atlas A.

The single-atlas, multi-transformation case is particularly interesting, because all
coordinate transformations map from the same source coordinate system (the unseg-
mented image) to the same target coordinate system (the atlas). They can therefore be
averaged numerically in the target image domain, and the average transformation can
be used to obtain a segmentation.

x �→ A(T∗(x)) with T∗ ≡
1
K

∑
k

Tk (2)

While Eq. (1) describes a COI approach (i.e., the labels assigned to each voxel), Eq. (2)
is a COD approach (i.e., the nonrigid deformation fields). The practical differences be-
tween both approaches are illustrated in Fig. 2. In this application, COD, because it is a
simple arithmetic averaging operation, can be performed using as few as two deforma-
tion fields. In the interpretation domain, however, we need at least three classifiers (and
therefore deformation fields) in order to assign an unambiguous label when the individ-
ual classifiers disagree. Also, the COI approach tends to work better with odd numbers
of classifiers, since this reduces the frequency of voting ties. There is, however, no sub-
stantial difference in terms of computational performance, since the rate-limiting step
in atlas-based segmentation remains the nonrigid registration.

Table 1 shows the recognition rates (i.e., fraction of correctly classified voxels) for
atlas-based segmentations of seven three-dimensional confocal microscopy images of

(a) (b) (c) (d)

Fig. 2. Atlas-based segmentation using COI vs. COD. We consider two segmentations (a) and (b)
of the boundary between structures A and B, where the bold line in all figures represents the true
boundary between the two structures. Panel (c) shows the result of COI with an area (dark gray)
where the two segmentations disagree so that no unambiguous label assignment is possible. The
ambiguity will generally disappear with additional segmentations, especially when using partial
volume interpolation. Panel (d) shows the result of COD, with the combined boundary estimate
approximately halfway between the two boundary estimates. The gray lines represent the two
individual segmentations in (a) and (b)
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Table 1. Recognition rates for three atlas-based segmentations and their combinations using la-
bel voting (COI) and deformation averaging (COD) in seven subjects. The different individual
segmentations were produced using different smoothness constraint weights of the nonrigid reg-
istration between subject image and atlas

Recognition Rates
Three Individual Segmentations Combined Segmentation

Subject Min Max Mean Label Voting Avg. Deformation
1 0.9562 0.9598 0.9585 0.9602 0.9591
2 0.9547 0.9582 0.9566 0.9590 0.9567
3 0.9681 0.9708 0.9695 0.9711 0.9673
4 0.9637 0.9652 0.9643 0.9658 0.9645
5 0.9490 0.9549 0.9519 0.9555 0.9519
6 0.9621 0.9665 0.9647 0.9671 0.9650
7 0.9797 0.9802 0.9800 0.9806 0.9801

bee brains [8]. For each subject, three different nonrigid transformations to a single atlas
were computed, each using a different smoothness constraint weight for the registration
algorithm [11, 12]. For details of the segmentation and evaluation methods, we refer
the interested reader to [10]. The results in Table 1 show that both information fusion
approaches achieved improvements over the individual segmentations. However, while
label voting (COI) achieved recognition rates better than the best individual segmen-
tation, averaging of the deformation fields (COD) produced recognition rates slightly
better than the mean recognition rate of the individual segmentations.

3 Average Image Segmentation

Population average images [13] have become popular for obtaining images of normal
anatomy with high signal-to-noise ratio [14], morphometric comparisons between sub-
jects in different groups [15], as a reference anatomy for integration of sparse data from
different subjects [16], and for atlas-based segmentation [8].

When segmented subject images are combined into an average shape image, there
are two possible approaches to segment the average image: the individual segmentations
(deformed into the average coordinate system) can be combined using label voting as
described in the previous section (COI approach). Alternatively, because the average
image resembles an actual image of a hypothetical “average” subject, it can be seg-
mented directly (COD approach).

For this paper, we evaluated both strategies using MR brain images from 9 male
control subjects that took part in an ongoing longitudinal study on the effects of al-
coholism [17, 18]. All images were acquired at 1.5 T using SPoiled Gradient Recalled
(SPGR) echo volumetric acquisitions of 94 slices, each 2 mm thick with no inter-slice
spacing, collected in the coronal plane (TR = 25 ms; TE = 5 ms, flip angle = 30 de-
grees, matrix = 256×192, pixel size = 0.94×0.94 mm). Non-brain tissue in all images
was removed using the Brain Extraction Tool [19] from the FMRIB Software Library
(http://www.fmrib.ox.ac.uk/fsl/).
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(a) (b) (c)

Tissue Types:

CSF

Grey Matter

White Matter

Undecided

Fig. 3. Comparison of combined individual segmentations (COI) vs. segmentation of average
image (COD). (a) Anatomical slice from the shape and intensity average image. The horizontal
and vertical lines show the locations of the other orthogonal slices. (b) Combination of individual
subject segmentations by label voting (COI). White dots represent voxels with undecided votes.
(c) Direct segmentation of the shape and intensity average image (COD)

All subject images were registered, first rigidly and then nonrigidly [11, 12], to a ref-
erence subject [20]. They were then combined into a shape and intensity average image
by determining the mean deformation of the population [21], deforming all images into
this space, and averaging their corresponding image intensities (after an inter-subject
intensity normalization).

For segmentation of the anatomical images, individual and average, into tissue types
we used FMRIB’s Automated Segmentation Tool [22] (FAST), also available from the
aforementioned website. We performed segmentation on the intensity-normalized im-
ages in the shape average coordinate space, because MR images are more easily de-
formed and interpolated than label images resulting from segmentation. A combined
segmentation of the average brain was generated by label voting, analogous to the
method described for atlas-based segmentation in Section 2.

The results of combined individual segmentations (COI) vs. direct segmentation of
the average image (COD) are shown in Fig. 3. Since we have no ground truth segmen-
tation for either the subject images or the average, we limit ourselves to some general
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observations. First of all, the two segmentations appear very similar and both seem quite
reasonable. It seems, however, that the direct segmentation of the average image did a
slightly better job of capturing the anatomical details of complex and small structures
(see for example the cerebellum and the cortical structure in the sagittal slices).

On a more technical level, in the combination of the individual segmentations there
are voxels that could not be assigned a unique label due to equal numbers of votes for
more than one winning label (voxels without uniquely assigned labels are shown as
white dots in Fig. 3(b)). This problem is easily corrected by morphological operators,
or greatly reduced by using fractional class weights rather than hard class assignments.
It is, however, an issue that needs to be dealt with in the combination of segmentations,
whereas it is avoided altogether by segmenting the average image. Finally, for a combi-
nation of individual segmentations each subject image has to be segmented separately
(which for our data took about 4 minutes on a 3 GHz Pentium 4 CPU per case), whereas
segmenting the average image requires only one segmentation step.

4 Multi-spectral Classification

A multi-channel image is one that contains a vector of values for each voxel, rather than
a single scalar value. One way of generating such data is the acquisition of multiple
aligned MR images with different imaging parameters. The advantage of such data for
the purpose of segmentation is that, while tissue intensity distributions typically overlap
substantially in scalar images, they are better separated in the higher-dimensional space
of multi-channel data.

Tissue type classification of multi-channel MR images typically uses algorithms
like k means clustering, which finds the centers of k clusters in the space of multi-
dimensional intensity vectors. This is a COD method, where the data combination op-
erator maps intensities of corresponding voxels from the three separate sets IT1 ,IPD ,
and IT2 to the product space of 3-tuples:

(IT1 , IPD, IT2) �→ IT1 × IPD × IT2 . (3)

A straight forward COI method for multi-spectral classification is to segment each chan-
nel separately, followed by vote fusion of the classifications for each voxel.

We apply both classification strategies to a three-channel MR image (T1-weighted,
T2-weighted, proton density (PD)-weighted) from a single male subject. The T1-weight-
ed channel was acquired at 3 T using a 3D axial inversion recovery-prepared spoiled
gradient recalled echo (IRPrep SPGR) pulse sequence with the following parameters:
TI = 300ms, TR = 6.5ms, TE = 1.54ms, slice thickness = 1.25 mm, no inter-slice
spacing, 124 slices, 0.94 mm pixel size. The PD and T2-weighted channels were si-
multaneously acquired in a single 2D axial dual-echo Fast Spin-Echo (FSE) acquisition
with the following parameters: TR = 10 s, TE = 14/98ms (PD/T2), slice thickness
= 2.5 mm, no inter-slice spacing, 62 slices, 0.94 mm pixel size. To account for a small
shift between the data sets, the T1-weighted image was registered and reformatted to
the PD-weighted channel using a nine-parameter affine registration algorithm [23, 24].

As in the previous section, tissue types are classified in the single MR images us-
ing FMRIB’s Automated Segmentation Tool [22] (FAST), whereas the multi-spectral
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(a) (b) (c) (d) (e)

Tissue Types: CSF Grey Matter White Matter Undecided

Fig. 4. Multi-spectral MR image and comparison of COD vs. COI tissue classification. (a) T1-
weighted image. (b) PD-weighted image. (c) T2-weighted image. (d) Tissue classes from multi-
spectral classification (COD). (e) Tissue classes from vote fusion of separate classifications of
multi-spectral MR images (COI)

segmentation tool (MFAST) from the same software library is used for multi-spectral
segmentation.

Orthogonal slices from the three MR images and segmentation results are shown
in Fig. 4. Overall, the COD and the COI approaches produce comparable results. As
before, there are some voxels for which the COI approach by itself cannot determine
an output label, which could be fixed by a morphological correction step. On the other
hand, the COI method seems to be better able to identify thin structures, e.g., the septum
pellucidum that separates the two lateral ventricles, and most CSF-filled cortical folds.

5 Deformation-Based Group Morphometry

Deformation-based morphometry quantifies anatomical differences between groups of
subjects, or within subjects over time [25]. A particular technique pioneered by Stud-
holme et al. [20, 26] analyzes Jacobian determinant maps derived from nonrigid regis-
trations of subject images to a reference image. The Jacobian maps quantify the local
volume differences between the two registered images. By averaging such maps within
groups of subjects, distinguishing characteristics between the groups can be identified.
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(a) (b) (c) (d)

Fig. 5. Comparison of deformation morphometry based on individual Jacobian maps vs. non-
rigid registration of two shape average images. (a) Anatomical slices from control group average
image. The horizontal and vertical lines show the locations of the other orthogonal slices. (b)
Anatomical slices from alcoholic group average image. (c) COI strategy: Group average of Jaco-
bian maps between individual alcoholics and anatomical control group average. (d) COD strat-
egy: Jacobian map between control group average and alcoholics group average. All Jacobian
maps were filtered using Studholme’s intensity-consistent filter [26] based on a Gaussian kernel
with σ = 4mm and cut-off radius r = 2σ. The Jacobian maps are shown with a logarithmic
color scale, where bright colors correspond to increased, and dark colors correspond to decreased,
relative volume in subjects in the alcoholic group

In the present context, we can look at the Jacobian map generation as a classifica-
tion operation, where the classifier output is a local estimate of the volume difference
between corresponding regions in two subjects. This example application is particularly
interesting because the interpretation domain here is the continuous space of Jacobian
determinant values rather than a discrete label set.

Consider the comparison of a group of diseased subjects to a group of normals
using an inter-group Jacobian map. There are two alternatives. Given an average shape
image [13, 27] of the normals group, we can compute a separate Jacobian map for each
subject in the disease group. Each such map is based on the nonrigid transformation
between the image from the respective diseased subject to the control group average
shape image. All these maps are computed in the same coordinate space, the space of
the control average, so they can be numerically averaged [20]. This, in our framework,
is a COI strategy.
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On the other hand, we can also generate an average shape image from the diseased
subjects group and register it to the average image of the control group. The inter-group
Jacobian map can then be computed from the resulting transformation, which is a COD
strategy.

The group average images of, and the Jacobian maps between, a group of alcoholic
men and a group of age-matched control subjects are shown in Fig. 5. These were
computed from the image data acquired in the MR brain imaging study mentioned
in Section 3 above. Before averaging the individual maps, we applied an intensity-
consistent filter introduced by Studholme et al. [26], which is based on a Gaussian
kernel (σ = 4mm, cut off radius r = 2σ). The same type of filter was also applied to
the Jacobian map between the two group average images.

Again, in the absence of ground truth data, we visually assess the Jacobian maps
in Fig. 5. It is apparent that the Jacobian values are more specific to certain anatomi-
cal structures (e.g., corpus callosum, fourth ventricle, inter-hemispheric fissure) in the
map computed using the COD strategy (Fig. 5(d)). In the COI map (Fig. 5(c)), despite
applying the intensity-consistent filter, the averaging of Jacobian maps seems to blur
the boundaries of structures. It is worth pointing out, however, the fairly specific re-
gions of agreement between the two maps, for example the relative volume increase
in the posterior inter-hemispheric fissure and the volume decrease in the left occip-
ital lobe. Note that we are not addressing the question whether the maps are factu-
ally correct; we are merely comparing the results obtained through different processing
paths.

A fundamental advantage of the COI method is that it allows voxel-wise statistical
tests and modeling (c.f., [20]). In addition, a potential problem with the COD approach
is that the single nonrigid registration between the group average images creates a sin-
gle point of failure. That is, in regions where the registration computes an inaccurate1

transformation, the resulting Jacobian map will almost certainly be incorrect as well.
When combining individual Jacobian maps from all subjects in a group, such errors are
more likely to be averaged out in the process. Note, however, that registration between
two average images is typically less likely to fail than registration between two subjects,
so the registration failure issue may not be a serious problem.

6 Discussion

In this paper, we have developed a new view of information fusion, distinguishing be-
tween combination of information in the data domain and in the interpretation domain.
In four common biomedical image analysis tasks, we have illustrated that problems can
often be approached by algorithms operating in either of these domains, with specific
advantages and disadvantages. Table 2 gives a brief summary of our examples and the
respective COI and COD methods applied to them.

1 The accuracy of a volumetric inter-individual nonrigid transformation between two different
subjects is not a particularly well-defined concept. Because of this, and because of the dif-
ficulty of inter-subject registration, such a transformation is typically somewhat inaccurate
pretty much everywhere.
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Table 2. Overview of the biomedical applications of information fusion discussed in this paper

Application Combination of Interpretations Combination of Data

Atlas-Based
Segmentation

Label voting among individual seg-
mentations generated using differ-
ent nonrigid coordinate transforma-
tions

Averaging of nonrigid transforma-
tion in the atlas coordinate system

Average Image
Segmentation

Classification of the original indi-
vidual images with subsequent la-
bel voting

Classification of the average image

Multi-Spectral
Classification

Classification of each channel with
subsequent voting

Classification of multi-spectral data

Deformation
Morphometry

Separate Jacobian maps for each in-
dividual image based on its regis-
tration to the reference image, fol-
lowed by averaging of the maps for
each group

Generation of shape average im-
ages, followed by nonrigid registra-
tion of averages and Jacobian map
computation

In atlas-based segmentation, we found that the COI method (i.e., label voting) ap-
pears to be more accurate than the COD method (i.e., deformation averaging), but the
differences are relatively small. Recall, however, that COD here preserves the continuity
and smoothness of the underlying B-spline transformation, which can be an advantage.

Segmenting a group average image, the COD method (i.e., direct segmentation of
the average image) lead to segmentations that were slightly more consistent with the
image data than the COI method (i.e., label voting). It was also more computationally
efficient, as it required only a single application of the tissue segmentation algorithm.

In the multi-spectral MR segmentation example, the observed differences between
the commonly applied COD method and the COI method are fairly subtle. Of course
the theoretical advantage of the COD method is that in multi-spectral data clusters of
different tissue classes typically overlap much less than in any of the marginal distribu-
tions, so that the classes can be more reliably separated. Another advantage of the COD
method is its insensitivity to replication of channels. When applied to data that contains
the same channel more than once, k-means clustering likely produces very similar re-
sults as it would with each channel occurring only once. This, however, is a situation
that can heavily bias the COI technique and thereby reduce its usefulness.

In the group morphometry application, we again found that the COD method (i.e.,
computation of the Jacobian map between group average images) seemed to produce
output that was more consistent with the image data than the COI method (i.e., averag-
ing of the individual Jacobian maps). However, depending on a single nonrigid registra-
tion step between the group average images creates potential reliability problems due
to the single point of failure. Also, the COI approach is more versatile in that it allows
voxel-wise statistical tests between the individual Jacobian maps in each group.

We note that information fusion can exist on multiple levels within a single appli-
cation. For example, the atlas-based segmentation in Section 2 is a single-atlas case
with multiple transformations generated with different registration parameters (con-
straint weights). An alternative approach, which we have previously published, is the
multiple-atlas case. The multiple-atlas case with many individuals vs. the single-atlas
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case where the single atlas is an average image of those many individuals is also a COI
vs. COD situation. Information fusion exists on two levels within this application, in
the sense that the average atlas itself can be constructed with either a COI or a COD
approach (as discussed in Section 3). (We used a COI approach to construct the average
atlas because we had manually segmented individuals.)

In summary, we conclude that information fusion is a valuable concept in many
image analysis tasks. By considering different domains in which information can be
combined and analyzed, its benefits may be increased and better adjusted to the specific
requirements of a given problem. The primary point of this paper is to provide a frame-
work for thinking about information fusion. The examples we explored illustrate some
of the many potential applications of information fusion in biomedical image analysis.
A detailed comparison and evaluation of COD and COI approaches is beyond the scope
of this paper. Nonetheless, whereas most reported work on information fusion uses COI
approaches, the very preliminary results in our work suggest that COD approaches are
also useful and worth considering.
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Abstract. This paper presents a new shape representation for a special
class of 3-D objects. In a generative approach to object modeling inspired
by m-reps [15], skeletons of objects are explicitly defined as continuous
manifolds and boundaries are derived from the skeleton by a process
that involves solving a Poisson PDE with a non-linear boundary con-
dition. This formulation helps satisfy the equality constraints that are
imposed on the parameters of the representation by rules of medial geom-
etry. One benefit of the new approach is the ability to represent different
instances of an anatomical structure using a common parametrization
domain, simplifying the problem of computing correspondences between
instances. Another benefit is the ability to continuously parameterize
the volumetric region enclosed by the representation’s boundary in a
one-to-one and onto manner, in a way that preserves two of the three co-
ordinates of the parametrization along vectors normal to the boundary.
These two features make the new representation an attractive candidate
for statistical analysis of shape and appearance. In this paper, the repre-
sentation is carefully defined and the results of fitting the hippocampus
in a deformable templates framework are presented.

1 Introduction and Overview of Prior Work

The popularity of Active Shape Models (ASM) [3] and Active Appearance Mod-
els (AAM) [4] in the medical image processing community underscores the im-
portance of analytic tools that combine shape and appearance. These two types
of features are related in a non-linear way and are both essential for characteriz-
ing and comparing anatomical structures. Shape features can detect growth and
decay processes or physical deformation, while appearance features can describe
a diverse set of local properties, such as tissue contrast, diffusion or blood per-
fusion. In this paper, we present a novel continuous parametric medial object
representation that offers a unique approach to establishing correspondences be-
tween shape and appearance features and promises to be useful for statistical
analysis of anatomy. We begin this section with a review of the state of the art
in shape and appearance modeling; we then motivate the use of medial axes and
medial representations and explain the need for continuous medial modeling;
and, finally, we summarize the contributions of our method.
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A natural way to associate shape and appearance features is to parameterize
the image intensities inside and outside of an object using the same set of coordi-
nates that parameterize the boundaries themselves. This is roughly the approach
taken by ASM, where appearance features are obtained by sampling the image
along fixed-length profiles projected orthogonally from the boundary [3]. When
the boundary is represented by a parameterized surface, as in the related spher-
ical harmonics model [7], each profile is associated with two parameter values,
and the distance along the profile can serve as a third ‘depth’ coordinate for
parameterizing the space around the boundary [10]. However, since the profiles
have fixed length, they are not guaranteed to span the whole interior of the object
and they may intersect, causing ambiguity in the parametrization. In contrast,
AAM offers a one to one and onto parametrization of space enclosed by the
object [4], but it no longer associates internal points with the nearest boundary
points because it is based on warps that do not preserve the orthogonality of the
vectors normal to the boundary.

We can make the ASM-like parametrization of points inside of an object one
to one and onto by making every profile extend all the way to the medial axis of
the object (in 3-D, the medial scaffold), where it would touch a profile extended
from a boundary point on the opposite side. Since it is likely that the medial
axis would have a different number and configuration of branches for every in-
stance of a given type of object, it would be seemingly difficult to apply such
a parametrization in statistical analysis. However, if we are willing to trade off
the accuracy of the representation for consistency, the m-rep approach pioneered
by Pizer et al. [15, 12] would allow us to model populations of objects using a
prescribed medial branching topology. In this approach, objects are represented
by first explicitly defining their medial axes or scaffolds and then deriving the
corresponding boundary curve or surface. The medial definition in m-reps is dis-
crete, consisting of a set of rich primitives. Attempts to continuously interpolate
these primitives have failed to strictly adhere to the rules of medial geometry,
disallowing the kind of object parametrization that we seek [21]. The attempt by
[22] to model the medial scaffold and the associated radius field as continuous
functions, which is described in more detail in Sec. 2.2, did allow proper object
parametrization, but suffered from the inability to define these functions on a
prescribed domain, making statistical analysis difficult. This method was also
inherently limited to single-manifold medial scaffolds.

In this paper, a new approach to continuous parametric medial representation
is presented. Unlike the earlier approach [22], it allows different instances of an
anatomical structure to be represented using a common domain of parametriza-
tion. In doing so, it overcomes the key limitation of [22] that made the extension
of the method to branching medial scaffolds infeasible. In the new method, the
radial field on the medial scaffold is defined as the solution of a Poisson PDE
with a non-linear boundary condition that seamlessly incorporates the equality
constraints that hold at special points on the medial scaffold. This approach
allows us to ‘transfer’ second order properties of the radial field from one medial
scaffold to another, opening the door for statistical analysis.
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The paper is organized as follows. Sec. 2 summarizes the key results from
medial geometry, examines the limitations of the implicit domain solution to
continuous medial representation, defines the PDE-based approach and describes
its use in deformable templates modeling. Sec. 3 presents the results of fitting a
hippocampus template to segmentations from a schizophrenia study. The paper’s
contributions are summarized in Sec. 4.

2 Methods

2.1 Elements of Medial Geometry

Blum and Nagel [1] pioneered the use of medial axes for 2-D shape analysis. In
this paper, we are interested in modeling medial geometry in 3-D. The medial
scaffold, shown in Fig. 1, is the 3-D analogy of Blum’s medial axis and it has
been studied rigorously in the recent literature [14, 16, 6], and in this subsection
we summarize some of the results. We begin with a formal definition of objects
and medial scaffolds.

Definition 1. A geometric object (or just object) is a bounded set in R3 that
is homeomorphic to a unit ball and whose boundary is a generic surface.

Definition 2. A ball with center x and radius r is called a maximal inscribed
ball with respect to an object O if {y : ||x − y|| ≤ R} ⊂ O and ∀R′ > R,
{y : ||x−y|| ≤ R′} 	⊂ O. The medial scaffold of an object O is the set of points
in R3 × R+ formed by the centers and radii of maximal inscribed balls of O.

According to Damon [6] the medial scaffold is a Whitney stratified set, i.e., a
collection of manifolds with boundary that are connected. Giblin and Kimia [14]
give a complete taxonomy of the types of points that form the medial scaffold.
There are five types of points, each with different order and multiplicity of the
tangency between the maximal inscribed ball and the object’s boundary. The
five point types correspond to five different places on the medial scaffold; a point
may lie on a medial manifold; it may lie at an edge of a medial manifold; it may
lie at a curve shared by two medial manifolds (we shall call this the seam curve);
it may lie at an intersection of a seam curve and an edge of a manifold; and it
may lie at an intersection of two seam curves.

Our intention in this paper is to model the medial scaffold and the radial field
of an object as a parametric function from a domain in R2 to R3 and R+; and then
to generate the boundary of the object as a function of the medial scaffold. Given
some parametric expression for a single medial surface (x(u1, u2), R(u1, u2)),
the expression for the boundary can be found by observing that the boundary
is the envelope of a two-parameter family of spheres defined implicitly by the
equation

S(y;u1, u2) = ||x(u1, u2) − y||2 − R(u1, u2)2 = 0 . (1)
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Fig. 1. Left: the medial scaffold with a fin-like branching configuration. Right: the
local geometry of a point on the medial scaffold

Thus any point y on the boundary of an object must satisfy the following enve-
lope equations:

S = 0 ;
∂S

∂ui
= 0 , i = 1, 2 . (2)

By solving these equations for a vector U = y−x

R , we obtain the following system:

U · U = 1; U ·
∂x
∂ui

= −
∂R

∂ui
, i = 1, 2 . (3)

By decomposing U into a component in the tangent plane of the medial scaffold
and a normal component, we find that the tangential component is directly
related to the Riemannian gradient of R on the medial surface:

projNx
U = −gij ∂x

∂ui

∂R

∂uj
= −gradR , (4)

where gij denotes the contravariant metric tensor on the medial surface and
the Einstein summation notation is used. The fact that U has unit length allows
one to compute the magnitude of its normal component, producing the following
expression for U:

U± = −gradR ±
√

1 − ||grad R||2 Nx . (5)

At points where the argument of the square root is non-zero, U takes two distinct
values. The pair of boundary points y associated with a medial point (x, R) are
then given by

y±(u1, u2) = x + RU± . (6)

It is easy to verify that the sphere defined by S = 0 is tangent to the object’s
boundary at the points y± and that the unit normal vectors to the boundary at
y± are given by U±. This geometry is summarized on Fig. 1.

It is a remarkable fact of medial geometry that the expressions for the bound-
ary y and for the boundary normal U only involve the first order derivatives of
x and R. This fact implies that the metric tensor, the second fundamental form
and the shape operator on the boundary surface can be computed using deriva-
tives of the medial scaffold of up to the second order. This is great news from the
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point of view of geometrical modeling: if we were to represent medial surfaces
by C2 functions, then the generated boundaries would also be C2 continuous.

We will be especially interested in this paper in the situation that occurs
at the edges of medial sheets. As shown by [14], at these points the maximal
inscribed ball is tangent to the boundary at a single point but with a higher
order of contact. Note that in general, (4) is valid only at points on the interior
of medial surfaces, where the partial derivatives with respect to ui can be taken.
Points on edges and seams of medial surfaces are typically treated as the limit
case of interior medial points [6, 14]. However, in the medial modeling paradigm,
we can ignore this issue by simply extending the parametric model definition
slightly past the domain on which the medial scaffold is given. Along the medial
edge, y− and y+ in (6) must coincide, thus either R or the normal component
of U in (5) must vanish, leading to the following equality constraint:

||grad R||
2 = gij ∂R

∂ui

∂R

∂uj
= 1 if R > 0 . (7)

A similar equality constraint can be given along the seam curve where three me-
dial surfaces meet; in this case the constraint is a non-linear expression relating
vectors grad R on all three surfaces [22].

2.2 Geometric Modeling of Medial Scaffolds

Suppose we were to represent each medial surface in a medial scaffold using
twice differentiable functions x : Ω → R3 and R : Ω → R defined on a regular
domain Ω in R2. These functions must satisfy certain constraints in order for
Eqns. 4 - 6 to define a valid boundary surface, i.e., a generic surface whose
medial scaffold coincides with (x, R). Damon [6] derives a small number of such
constraints and shows that they are necessary and sufficient. In addition to the
equality constraints for medial edges and seams described in the previous section,
which relate to Damon’s compatibility constraints, there is a set of inequality
constraints that ensure that the boundary surface does not have singularities.

We are interested in modeling medial surfaces using basis functions such
as splines or wavelets, which allow us to specify a surface using a finite set of
coefficients. From this point of view, equality constraints pose much more of a
problem than inequality constraints. The latter can be dealt with by restricting
the set of possible coefficient values to a region of Euclidean space. However,
when equality constraints are non-linear, there may not be any combination of
coefficients that would produce a surface that satisfies the constraints. In other
words, the above equality constraints hold at an infinite number of points along
medial edges and seams, yet there is only a finite number of coefficients used to
define the medial surfaces. Hence, the problem is overconstrained.

Earlier work in continuous medial modeling [22] addressed this problem for
single-surface medial scaffolds by computing the domain on which a medial sur-
face is defined implicitly. The coefficients of the representation were chosen in
such a way that ||grad R|| would be greater than 1 on the boundary of a regular
domain Ω ∈ R2, while holding ||grad R|| < 1 on some subset of Ω. Then the
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actual domain on which the medial surface was defined was taken to be the set
Ω′ = {u ∈ Ω : ||grad R(u)|| ≤ 1}. By construction, the constraint (7) would
hold on ∂Ω′. While this approach made it possible to represent and deform
single-surface medial scaffolds, it suffered from a severe limitation: the implicit
domain Ω′ depends on the values of the coefficients and changes as the model
deforms, and it is not possible to generate models of different instances of the
same anatomical structure with the same domain. This makes it very difficult to
establish point correspondences and perform statistical analysis on such mod-
els. Moreover, the implicit domain solution has no obvious extension to handle
the equality constraints that hold along seam curves of medial scaffolds with
multiple medial surfaces.

2.3 Parametric Medial Surfaces with Fixed Domains

The main contribution of this paper is the derivation of an alternative model
that allows the domain Ω to be determined a priori and to stay fixed as the
model deforms. We achieve this by defining the function R using a partial differ-
ential equation. We present here the results for modeling of single-surface medial
scaffolds; the extension to seam modeling is the subject of ongoing research.

Suppose that the medial surface x is a twice differentiable function from a
fixed domain Ω ∈ R2 to R3. For instance, below we let x be the weighted sum of
N basis functions. The key idea of this work is to define the function R : Ω → R+

as the solution of a PDE of the form

L(R;x) = ρ(u1, u2) ; ||grad R||2 = 1 on ∂Ω , (8)

where L is a suitable Riemannian differential operator and ρ : Ω → R is a
function defined parametrically, e.g., using basis functions. A suitable choice of L
would be one that would lead to a PDE with provable existence, uniqueness and
stability properties. Ideally, the quantity L(R;x) will have geometric meaning
and will be invariant under shape-preserving similarity transformations.

We have examined several possible choices of the operator L and the only
suitable and attractive option that we discovered was the curved-space analog
of the Laplacian, the Laplace-Beltrami operator, applied to R2:

L(R;x) = �̃R2 , (9)

�̃f = div gradf =
1
√

g

∂

∂uη

(
√

g gµη ∂f

∂uµ

)
, ([13], p. 231). (10)

If we set φ = R2 and rewrite (8) for φ, we obtain a Poisson elliptic partial
differential equation with a non-linear boundary condition:

�̃φ = ρ ; ||grad φ||2 = 4φ on ∂Ω . (11)

There are several ways to justify this particular choice of L. First, we can formally
prove that the solution of this PDE is unique if ρ < 0 on ∂Ω. The converse of
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a. b. c.

Fig. 2. The three steps of constructing a cm-rep. a. A medial manifold x with the
radial conductance function ρ. b. The radial function R computed by solving the
Poisson equation (11) on the manifold. c. Boundary surface y computed using (5)

this condition implies that R increases on the approach to the edge of a medial
manifold, which is not possible geometrically. The existence and stability of the
solution are demonstrated by empirical evidence, i.e., by our ability to repeatedly
solve the PDE for different ρ and x in the course of template deformation. The
operator L is intrinsic and it is invariant under similarity transformations.

Finally, L(R;x) has a definite geometric meaning because it is proportional
to the divergence of the vector field R gradR, which is in turn the projection
of the vector y − x on the tangent plane of the medial surface. The operator L
captures second order properties of the radius field that are independent of the
choice of parametrization. It is notable that on the medial scaffold of an ellipsoid
�̃R2 is constant.

We use the finite difference method to solve (11) numerically on a regular
sampling grid in a rectangular or circular domain. The metric tensor and the
Christoffel symbols, which are needed to express grad φ and �̃φ, are computed
analytically from the medial surface formulation. The partial derivatives of the
unknown function φ are expressed as finite differences. The PDE (11) reduces
to a system of first and second order equations with values of φ on the sampling
grid as the unknowns. The roots of this system can be found iteratively using
Newton’s method [18–pp. 142–147]. Each Newton iteration involves solving a
non-symmetric sparse linear system. At each iteration we use the state of the art
PARDISO direct sparse solver [17]. On a 100×100 sampling grid, the numerical
solution is computed in less than a second on a modern CPU.

The overall process of defining an object from functions x and ρ is illustrated
on Fig. 2. First, the medial manifold x and the scalar field ρ are defined para-
metrically. Next, the PDE (11) is solved, yielding the scalar field R. Finally,
equations (5) and (6) are used to define a closed continuous boundary surface.

2.4 Deformable Modeling Using CM-Reps

Following the example of discrete m-reps [15], we are interested in deforming
templates with single-surface medial scaffolds to instances of human anatomy,
in particular the hippocampus. This will eventually allow us to build a model of
the shape and appearance of the hippocampus, which could serve as a prior for
shape-based image segmentation. The model could also be useful for detecting
group differences between patients with different medical conditions and controls.
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We define the deformable template as a finite set of coefficients that together
with a set of orthogonal basis functions give a parametric definition of a smooth
medial surface and a smooth function ρ that appears in the right hand side of the
PDE (11). In the present implementation, following [19], we use the real-valued
Fourier transform as our basis:

x(u1, u2; {C}j,k) =
N∑

j,k=0

Cj,k cos(2πj u1) cos(2πk u2) , (12)

and ρ is also defined this way. The advantage of using the Fourier basis is the
ability to easily increase the number of high frequency components in the model;
the disadvantage is the lack of local control over the surface. In future implemen-
tations we will likely switch to the wavelet basis, which allows both frequency
and location components to be modulated. Parameters u1, u2 are defined on a
rectangular domain (we do not use the unit square domain because the metric
tensor of x would vanish at its corners). In the future we anticipate using the
unit circle as the domain, in order to generate medial surfaces without corners.
Both of these extensions are easy to implement within our framework. Changes
in basis functions are virtually transparent to most aspects of parametric medial
representation, and a change to the circular domain is a matter of reformulating
the finite difference equations.

To construct a hippocampus template, we used a discrete m-rep [15] of the
hippocampus (graciously provided by Prof Stephen M. Pizer’s group at UNC)
and densely interpolated the medial atom positions. We used a least squares fit
to the interpolated points to obtain the initial values of the coefficients Cj,k. The
function ρ was initialized as a negative constant. To deform the medial surface
and ρ of the template, we modify the values of the coefficients and solve (11) to
generate the radius function R and its derivatives, from which the boundary can
be computed using (5) and (6). To be considered valid, a set of coefficients values
must generate a medial surface and a ρ function that satisfy a set of inequality
constraints. While the exhaustive set of constraints is given by Damon [6] could
have been implemented, we have found that in practice, only two constraints
must be ‘kept track of’ during template deformation. First, ρ must be negative
on ∂Ω - assuring that R decreases when approaching the edge of a medial surface.
Second, the Jacobian of the function y(u1, u2) must be positive at every point
in Ω in order to prevent cusps from forming on the boundary.

As in the case of discrete m-reps, we pose the problem of fitting a deformable
template to a binary characteristic image of a structure as a Bayesian problem
of finding a maximum posterior estimate. This problem is solved by concurrent
minimization of a weighted sum of a likelihood, or image match term, and a
prior term that incorporates the above constraints in a ‘fuzzy’ manner using
exponential penalty functions. In the future, when a statistical shape model
constructed from training data will be available, we will use it as a prior, similar
to the way ASM, AAM, and m-reps incorporate existing knowledge [3, 4, 15].

We represent objects such as the hippocampus using real-valued character-
istic images in which the object itself is the zeroth level set. These images are
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computed by smoothing a binary characteristic image with a Gaussian kernel.
The variance of the kernel is decreased over the course of the fitting. Two im-
age match terms are used: the less accurate but more globally sensitive relative
volume overlap term is used throughout most of the multi-resolution fitting
procedure. At the late stages, we switch to a term that integrates the squared
image intensity along the template’s boundary. Volume overlap is approximated
by computing the template’s volume and the volume of the template-object
intersection by integrating over template’s interior. The integration is efficient
because vectors U span the interior of the template.

Maximum a posteriori estimation is implemented as a multi-resolution sched-
ule of conjugate gradient descent optimizations. Each step in the schedule in-
volves using more and more coefficients (we start with 2x4 and finish with 8x10
4-tuples of coefficients), and, from time to time, reducing the aperture of the
kernel that is used to smooth the binary characteristic image.

Gradient methods are an appropriate choice because the cost of computing
the central difference approximation of the partial derivatives of φ with respect
to the coefficients is lower than the cost of computing φ at arbitrary points.
This is the case because the solution of (11) at the central point can be used to
initialize Newton’s method at points located an ε away, reducing the number of
iterations needed to solve the equation. The derivatives of φ could also be com-
puted directly by solving a Poisson equation with a different non-linear boundary
condition; we will explore this option in future work. The partial derivatives of
the volume overlap match can be computed very efficiently using Green’s theo-
rem; however, the approximation error becomes a detractor at late stages of the
optimization. Our results, presented in the following section, indicate that our
deterministic approach is not severely hampered by spurious local minima. The
fitting is initialized by a global localization that matches the moments of inertia
between the template and the image and by an optimization over the space of
affine transforms (with ρ scaling), which further improves the initialization.

3 Results and Discussion

To test the representational ability of the parametric medial representation, we
fitted the hippocampus template to 174 (87 right, 87 left) segmentations of the
hippocampus from a MRI schizophrenia study [2]. The segmentation was com-
puted using the Joshi et al. [11] algorithm for large deformation diffeomorphic
registration with manually placed anatomic landmarks. This approach is used
extensively in brain morphometry [5] and was shown to be more accurate and
reliable than manual segmentation [9]. The data in the form of boundary meshes
was graciously provided by Profs. Guido Gerig (UNC Depts. of Comp. Sci. and
Psychiatry) and Sarang Joshi (UNC Dept. of Rad. Onc.).

The 174 hippocampus segmentations were fitted on a 14-CPU Linux cluster
over approximately 24 hours. The quality of the fit between a template T and
an image I was evaluated using the following criteria: robust volume overlap
Vol(T ∩ I)/Vol(T ∪ I) ; ‘biased’ volume overlap Vol(T ∩ I)/Vol(I); mean and
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Table 1. The results of fitting a template T to 174 hippocampus segmentations I.
For each of the six error metrics, the mean and the standard deviation are given. All
distances are in millimeters

’Biased’ vol. overlap 0.91 (0.016) Robust vol. overlap 0.88 (0.018)

Mean dist. from T to I 0.20 (0.030) Mean dist. from I to T 0.33 (0.063)

Max. dist. from T to I 1.58 (0.31) Max. dist. from T to I 2.56 (0.86)

Fig. 3. Examples of a template fitted to instances of the hippocampus. The solid
blue surface is the boundary of the subject hippocampus, and the white mesh is the
boundary of the fitted cm-rep template

maximum distance from T to I; and mean and maximum distance from I to
T . Volume overlaps were computed by digitizing the template and the target
segmentation at a 0.1mm voxel resolution; distance metrics were computed using
the distance transform at this resolution.

These error measurements are reported in Table 1. Notably, the mean dis-
tance from T to I was 0.20mm, on average. This is 0.03mm greater the mean
distance reported by Styner et al. [20] in a similar experiment that fitted dis-
crete m-reps to hippocampus segmentations in the same MRI dataset. This is
encouraging because discrete m-reps are less constrained by the strict rules of
medial geometry and, theoretically, they should produce better fits than contin-
uous parametric m-reps. Fig. 3 presents representative examples of the template
fitted to the hippocampus data.1

The pilot results leave room for improvement, especially in terms of the max-
imum distance from I to T . The large variance in this metric shows that there
are some poorly fitted outliers that are affecting it. We expect that accuracy can
be gained by adopting the wavelet basis, improving the multi-resolution sched-
ule, switching to a domain without corners, and fine-tuning the optimization.
These improvements, plus an extension to objects with branching medial scaf-
folds, as well as development of statistical methods for parametric m-reps will
be addressed in our future work.

4 Conclusion

We have presented a new algorithm for generative modeling of 3-D objects that
starts with a definition of a single-surface medial scaffold and a second-order

1 Attached demos 1 and 2 show corresponding animations.
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property of the radius field, and produces a definition of the object’s boundary
that is geometrically congruent (in a loose sense of the term) with the medial
scaffold. To find a way around a non-linear equality constraint defined along the
edge of the medial surface, we posed the problem as a Poisson PDE with a non-
linear boundary condition. We applied the method in a deformable templates
framework and presented pilot results where the template was fitted to 174
hippocampi from a schizophrenia study.

The PDE-based approach to continuous parametric medial representation
is a significant and non-trivial improvement on previous attempts to explicitly
model continuous medial geometry because it allows the domain of the medial
representation to be specified a priori. Previously, the problem of finding con-
tinuous medially-based correspondences between objects has been hampered by
either the difficulty of interpolating discrete medial atoms in 3-D or by the tran-
sient nature of the implicit-domain continuous m-reps approach. The method
presented here is relevant because it opens the door to computing such corre-
spondences and through them, to statistical analysis of shape and appearance,
to a type of analysis that leverages the descriptive nature of features derived
from medial structures (evidenced by [8, 15, 23]) and their unique ability to pa-
rameterize object interiors in a way that can be said to combine the attractive
features of Active Shape and Active Appearance Models.
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16. S. M. Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker. Multiscale
medial loci and their properties. International Journal of Computer Vision, 55(2-
3):155–179, 2003.
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Abstract. Many types of transformations are used to model deformations in
medical image registration. While some focus on modeling local changes, some
on continuity and invertibility, there is no closed-form nonlinear parametric ap-
proach that addresses all these properties. This paper presents a class of nonlinear
transformations that are local, continuous and invertible under certain conditions.
They are straightforward to implement, fast to compute and can be used partic-
ularly in cases where locally affine deformations need to be recovered. We use
our new transformation model to demonstrate some results on synthetic images
using a multi-scale approach to multi-modality mutual information based image
registration. The original images were deformed using B-splines at three levels of
scale. The results show that the proposed method can recover these deformations
almost completely with very few iterations of a gradient based optimizer.

1 Introduction

Methods for image registration have three main components: the geometric transforma-
tion used to model deformations, the objective function, and the optimization algorithm.
While using Mutual Information (MI) as the objective function has been successfully
explored and validated [1], finding a simple transformation possessing the useful quali-
ties of smoothness, compact support, and the existence of an inverse has been an ongo-
ing effort. Rigid or affine transformations cannot be used to recover local warps. Defor-
mation fields that are solutions to Ordinary Differential Equations (ODEs) [2, 3] have
been proposed because of their ability to recover large deformations while still being
invertible. These methods have large number of degrees of freedom except Arsigny’s
Polyrigid transforms [4] and geodesic spline representations of diffeomorphisms [5]. In
contrast the parametric transformation proposed here is a more parsimonious approach
in that it can be applied only in regions that need correction.

Different types of radial basis functions with global e.g., Thin Plate Splines [6], and
local support [7] are used as well. This is because they have fewer degrees of freedom
and can be used to recover local warps. But these types of deformations are not invert-
ible in general. In addition, functions with global support change distant regions of the
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image that may not require correction while attempting to change local regions that do.
B-Splines [8] have been used successfully because of their C2 continuity and local sup-
port, but injectivity conditions are non-trivial [9]. In Arsigny’s Polyrigid transforms [4]
using ODEs, the deformation vector is obtained by integrating the velocity vector that
is a distance weighted sum of individual vectors corresponding to ‘action’ points whose
solution is the trajectory equation. This method always ensures that the transform is
continuous and invertible. However these weights are normalized, so the transform is
global. Furthermore, methods that use ODEs do not have a closed form and the defor-
mation is computed by integrating the velocity vector in a finite number of time steps to
obtain the transformation. This paper was motivated by the ideas discussed in [4]. We
introduce a nonlinear transformation that possesses the properties discussed by modi-
fying the affine transformation, so that at the center of the region that needs correction
we have an affine transform described by all the parameters of the transform, and grad-
ual convergence to identity as we move away from the center. This convergence can be
controlled using our transform model. Also our transform has a closed form and is easy
and fast to compute because it is characterized by few parameters and always ensures
that an inverse exists under certain trivial conditions.

We show some preliminary results using a multi-scale approach to image registra-
tion by applying corrections starting from the coarsest level of scale to the finest. We
applied synthetic B-Spline based deformations to images and then corrections were ap-
plied at three levels of scale using only one seed point at each. A seed point is the center
of the region that we are trying to correct. They are picked based on finding high gra-
dients of local MI with respect to local affine transformation parameters. Results show
that using these transforms could be a good alternative to current methods used in image
registration.

We used normalized mutual information (NMI), first proposed by Studholme [10]
as the objective function and a simultaneous perturbation based gradient optimizer [11]
to maximize NMI.

2 The Locally Affine Transformation Model

A global affine transformation without shear in Rn for any vector x about the center
x0 is

T (x) = esAesS(x−x0)+ st+x0, (1)

where x =
[
x1 x2 . . . xn

]T
, x0 =

[
x01 x02 . . . x0n

]T
, t =

[
t1 t2 . . . tn

]T
(translation), A

is the skew symmetric matrix corresponding to the rotation matrix, S is the symmetric
matrix corresponding to the scale matrix and s ∈ [0,1].

At s = 1 we get the complete affine transformation about the center x0. Many such
centers will be chosen from the image as requiring correction. The parameter s in the
above equation can be parameterized in space in the form of a continuous function, say
λ(r) where r = ‖x−x0‖ so that at r = 0, s = 1 and as r increases s → 0. The elegance
of writing it this way is that as we move towards the center of the region that we are at-
tempting to correct, we have an affine transformation, but the transformation converges
to an identity map as we move away. The region of influence can be controlled by a
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parameter of the continuous function. So any function with the above properties can be
used. Although the Gaussian does not have a compact support it was used because it
could be treated as being almost local for small σ. We used the Gaussian because of its
C∞ smoothness and loose bounds for an inverse to exist. The proposed transformation
(T : Rn → Rn) is

T (x) = eλ(r)Aeλ(r)S(x−x0)+λ(r′)t+x0 (2)

where
r′ = ‖eλ(r)Aeλ(r)S(x−x0)‖ = ‖eλ(r)S(x−x0)‖

and

s ≡ λ(r) = e
− r2

2σ2 . (3)

One can also write T in Eq. (2) as

T (x) = (TT ◦TRS)(x)+x0 (4)

where
TRS(x) = eλ(r)Aeλ(r)S(x−x0) (5)

and
TT (x) = x+λ(‖x‖)t. (6)

Above, σ2 is the variance of the Gaussian modulation function. It sets the scale at which
we are working in the registration step and is also fine tuned (optimized along with the
affine parameters) to match the scale at which the deformations were induced. The
transformation is nonlinear and can be applied to each region individually. A region is
picked if it has a large gradient of local MI. The center of this region is x0 about which
the transformation is applied.

The transform also satisfies many desirable properties discussed in the following
subsections. These properties depend on the choice of λ which can be chosen to be
local and smooth. The properties discussed here are for λ(r) chosen to be gaussian in
Eq. (3). One may select the function λ based on what properties one seeks to satisfy.

2.1 Continuity and Locality

Continuity is determined by the choice of the function λ. The Gaussian ensures C∞ con-
tinuity. Locality also depends on λ. The Gaussian function has “nearly” local support.
Functions with strictly local support may also be used to arrive at different conditions
for an inverse to exist.

2.2 Existence of Inverse

Current methods using spline-based deformation models have either difficult conditions
to incorporate in the optimizer to prevent folding, i.e not invertible or use regulariza-
tion methods that discourage folding by adding an additional smoothness term in the
objective function [8]. In our method we derive loose bounds for the transformation
parameters which are straightforward to implement and always ensure invertibility.



The Jacobian matrix for a transformation T : Rn → Rn must be positive definite
everywhere to ensure invertibility. We have found the conditions for which the deter-
minant of the Jacobian of the transformation is positive to always guarantee an inverse
(see Appendix). We picked λ to be Gaussian because of its loose bounds, infinite conti-
nuity and an easily controllable region of influence. Other functions like inverse multi-
quadratics or differentiable local support functions of the type proposed by Wendland
[12] may also be used and lead to similar conditions.

As shown in Eq. (2) the transformation T has an inverse as long as

‖t‖ < σe
1
2

and
0 < a < ee0.5

≈ 5.2003,

where t is the translation vector and a = max(ax,ay), the larger of the two anisotropic
scales in the x and y direction. These bounds in practice were found to be very loose
and we never experienced any folding in our simulations.

3 Initialization and Registration

3.1 Initialization

We implement a multi-scale approach to image registration starting from the coarsest
level of scale and proceeding to the finest.

At each level of scale we pick only regions that are mis-registered and apply the al-
gorithm. Rohde et al. [7] picked regions with large gradient of cost function with respect
to radial basis function coefficients while Park et al. [13] used a mismatch measure to
quantify mis-registration.

Here we pick regions based on its sensitivity to local affine deformations. Since we
apply corrections based on a locally affine transformation model, the gradients com-
puted give us a meaningful estimate on the extent of mis-registration. The way these
gradients are computed is as follows. A rectangular window is picked with dimensions
in correspondence with the scale and three control points are placed in a triangular
fashion spanning the area of the window. The window is placed in the reference and the
floating image and the control points in the floating image are perturbed and the gradi-
ent of NMI with respect to the affine coefficients is found. This window is moved over
the complete reference and floating image in an overlapping fashion. If the gradients of
the cost in a region is not small, then it is likely that this region is mis-registered. Re-
gions with large magnitude of gradient norm above a selected threshold are picked and
the centers of these regions denoted as seed points are used in the global registration
step. If pi are the parameters that define our affine transformation, the gradient of local
NMI is computed as

ĝ =
[

∂NMI
∂p1

∂NMI
∂p2

. . . ∂NMI
∂p6

]T

We apply transformations about these points and correct for them locally using the
transformation model at different levels of scale. Since these points are also fed as
parameters to the optimizer they will also be allowed to move to model the deformation
better.
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3.2 Multi-scale Nonrigid Registration

The final deformation is computed iteratively across different levels of scale. Since
the spatial support of the deformation can be constrained to be local, seed points are
picked in the initialization step at these different scales, and they serve as the centers
for our locally affine transformation model. Global registration is then initiated at the
coarsest level of scale (large σ) and optimization is performed over all the seed points
with large to smallest σ. The final transform is computed as a composition of individual
transformations.

After optimizing over each region, the geometric maps are stored and this is repeated
over other regions of the image. Since each of these transforms correct for only one
region at a time, they have very few parameters and high local sensitivity yielding their
ability to model local changes accurately. Also, only regions that are mis-registered are
picked and corrected instead of placing a grid of control points and picking which ones
are active (needing optimization) and inactive. This gives us a finer control over the
region we are trying to correct. E.g. if we have N seed points, the final transformation is

T (x) = (TN ◦TN−1 . . .T2 ◦T1)(x), (7)

where each seed point ’i’ is associated with a transformation Ti.

Fig. 1. Deformations applied to a uniform grid at two different levels of scale (σ). The figure
shows the same amount of rotation (a and d), translation (b and e) and scale (c and f) applied
individually for a small and large σ respectively
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         (a)                            (b)                           (c)

         (d)                            (e)                           (f)

Fig. 2. Registration of T1 and T2 weighted slices using three seed points (a) Original T2 weighted
reference image. (b) artificially deformed T1 weighted floating image. (c) T1 weighted floating
image after registration. (d) Applied Deformation (e) Estimated inverse after registration (f) Es-
timated inverse applied to the induced deformation

The reference and the floating image are assumed to be already affine registered
with each other before we begin the algorithm. The individual transformation parame-
ters are computed for each seed point. There may be several seed points identified at a
level of scale. Global normalized mutual information was used as the objective function
and a simultaneous perturbation based gradient optimizer proposed by Spall [11] was
used to arrive at the final solution. All eight parameters corresponding to the transfor-
mation were optimized: i.e. two translation parameters (tx and ty), rotation angle (θ),
two anisotropic scale parameters in the scale matrix (ax and ay), two center coordinates
(Cx and Cy) and a variance parameter (σ from the Gaussian function).

Algorithm
1: Initialize reference (A) and floating images (B) and set T0 to an identity map
2: for i = 1 to Levels o f Scale do
3: M = # of seed points picked based on high local gradients
4: for k = 1 to M do
5: T̂i,k = argmax Ti,k NMI(A(•),B((Ti,k◦T̂i,k−1 . . . T̂i,2◦T̂i,1◦T̂i−1◦T̂i−2 . . . T̂0)(•)))

L
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6: end for
7: T̂i = T̂i,k

8: end for
9: T̂ = T̂i

4 Results

4.1 Examples of Locally Affine Deformations

Fig. (1) shows examples of rotate, translate and scale applied individually about one
seed point for two different σ. This is to show that we can model all kinds of local and
global changes using a combination of these parameters.

4.2 Registration Experiments

Fig. (2) shows a head registration example using an axial slice from T1 and T2 weighted
images from Brainweb [14]. They were artificially deformed using B-Splines at three

           (a)                                (b)                                 (c)

           (d)                                (e)                                 (f)

Fig. 3. Registration of a coronal slice of a vervet monkey using three seed points. (a) Original
reference image. (b) artificially deformed floating image. (c) Reconstructed floating image after
registration. (d) Applied Deformation (e) Estimated inverse after registration (f) Estimated inverse
applied to the induced deformation
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Fig. 4. Average norm of registration error vs. iterations at three different levels of scale (σ). (a)
Human brain - T1, T2 weighted registration. (b) Monkey brain registration

different levels of scale. This was done by moving one knot in the B-Spline grid by a
known amount at each scale, refining the grid and repeating the procedure at the next
level. Registration was performed using three seed points each working at a different
scale. i.e different σ. The outline for the ventricle was marked manually so that the
registration performance could be visually assessed. In Fig. (2), (a) is the original T2-
weighted reference image and (b) is the deformed floating image with three seed points
marked. The seed points from left to right are in decreasing levels of scale (σ), i.e. three
optimizations were performed, one at each scale. The registered T1 image in (c) shows
that the ventricles follow the contours more tightly after registration. (d) shows the ap-
plied deformation, (e) is the estimated inverse obtained via registration and (f) shows the
deformation computed(e) applied to the induced deformation(d) which should resemble
a uniform grid as best as possible.

Fig. (3) shows a coronal slice from a vervet monkey atlas developed at UCLA’s
Laboratory of Neuroimaging [15]. The slice was deformed using B-Splines similar to
the procedure described in the previous paragraph. Seed points were placed at exactly
three locations each with a different variance (σcenter > σright > σle f t ) for the Gaussian
function that controls the support of the transformation. The contours in (c) shows that
the boundaries of the caudate and putamen hug the manually segmented boundaries
more tightly, a marked improvement from (b).

L
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Fig. (4) shows the registration error versus iterations at three different levels of scale
for the first and second example respectively. Only twelve iterations were performed at
each scale and each experiment took less than three minutes to run on a 3.2 Ghz PC
with 2 Gb memory running MATLAB 7.

5 Discussion

We have demonstrated and tested a new local nonlinear transformation using a multi-
scale approach to multi-modality image registration. This transformation has good local
properties and affine behavior near the region of interest. The parameters controlling the
support of this transform (σ) can be initialized and changed (by the optimizer) during
the course of the registration to match the level of scale of the induced deformation.
Furthermore, the transformation has a closed form and there is no need to integrate the
velocity vector over time as in the case of methods using ODEs, making it very fast.
Since each region is optimized for one at a time, only eight parameters are used in the
optimization which makes it very fast. Although we can always guarantee that folding
does not occur, finding a direct inverse is not straightforward. A numerical inverse could
be found finally using the optimized parameters. Since this is computed only after es-
timating the transformation (T in Eq. (7)), it could be easily done using any numerical
method at the end if required.

5.1 Translation

Consider the case where the vector x is subjected to pure translation with no rotation or
scaling (i.e. T (x) = x+λ(‖x−x0‖)t). Using the condition that det(J) > 0 we get,

x̄T t <
1
d

.

Applying the Cauchy-Schwarz inequality to the left hand side and substituting ‖x̄‖ = 1
we get the sufficient condition

‖t‖ < σe
1
2 , (8)

where σe
1
2 is the smallest value that 1

d can assume.

5.2 Rotation

For x ∈ Rn, the rotation matrix can be constructed as the composition of elementary
rotations in planar subspaces. Each of these matrices is a Jacobi rotation matrix. The
rotation matrix is invertible as long as each of these matrices has an inverse. The Jaco-
bian for a Jacobi matrix corresponding to the planar subspace containing axes ‘i’ and
‘ j’ is given by

J = Qi j

 p1 p2

p3 p4
0

0 In−2

Qi j
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where
Qi j is the permutation matrix
p1 = cos(λθ)+ rθdx̄2

i sin(λθ)+ rθdx̄ix̄ j cos(λθ),
p2 = −sin(λθ)+ rθx̄ix̄ jd sin(λθ)+ rx̄2

jθd cos(λθ),
p3 = sin(λθ)− rx̄2

i θd cos(λθ)+ rx̄ix̄ jθd sin(λθ) and
p4 = cos(λθ)− rx̄ix̄ jθd cos(λθ)+ rx̄2

jθd sin(λθ).
The determinant of this matrix is always 1. The volume is always preserved under rota-
tion. So the transformation (T (x) = eλ(r)A(x−x0)+x0) always has an inverse

5.3 Scale

Finally consider the case when the transformation consists of only scaling. (i.e. T (x) =
eλ(r)S(x− x0)+ x0). One can show that the determinant of the Jacobian is 1− rd ∑n

j=1

x̄2
j log(a j). Applying the conditions for an inverse to exist(i.e det(J) > 0) we get

rd
n

∑
j=1

x̄2
j log(a j) < 1

where a j are the anisotropic scales in each dimension. Let a = max(a1,a2, . . . ,an). Re-
placing a j above with a we get a more stringent inequality

rd log(a)‖x̄‖2 < 1.

Substituing ‖x̄‖2 = 1 and rearranging above we get

a < e
1
rd .

Since the minimum value that 1
rd can assume is easily shown to be e0.5, the sufficient

condition is
0 < a < ee0.5

≈ 5.2003. (9)

5.4 Conditions for Inverse

We have derived the bounds so that an inverse always exists for rotation, translation
and scale each individually applied. Let TR be the isomorphism for pure rotation (i.e.
no scale or translation) so that TR(x) = eλ(r)A(x−x0)+x0 and let TR′(x) = TR(x)−x0.
We need to show that T in Eq. (4) has an inverse. Let us first show that TRS in Eq. (5) is
invertible. The transformation TRS is

TRS(x) = eλ(r)Aeλ(r)S(x−x0)
= P TR′(x)

where

P = eλ(r)A

[
aλ(r)

x 0

0 aλ(r)
y

]
e−λ(r)A.

Being similar to a diagonal matrix P is invertible. Also TR′ is always invertible since TR

is. So TRS always has an inverse as long as a < ee0.5
≈ 5.2003.

L
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We have already proved that TT in Eq. (4) has an inverse as long as ‖t‖ < σe
1
2 .(See

Eq. (8)). So the transformation T (x) = (TT TRS)(x)+x0 has an inverse as long as

‖t‖ < σe
1
2 (10)

and
0 < a < ee0.5

≈ 5.2003. (11)
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Appendix

Here we derive conditions under which an inverse exists for a Gaussian weighting func-
tion. The conditions have been derived for a vector x ∈ Rn(i.e. x =

[
x1 x2 . . . xn

]T
) for
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rotation and scale about x0 =
[
x01 x02 . . . x0n

]T
. The bounds for 2D and 3D that we are

interested in will turn out to be the same as the N dimensional case.
We will derive the conditions for translation, rotation and scale each treated individ-

ually and will show that these are sufficient conditions for an inverse to always exist.
For λ gaussian,

∂λ(r)
∂xi

= −
r

σ2 e
− r2

2σ2
(xi − x0i)

r
= −dx̄i,

where d = r
σ2 e

− r2

2σ2 and x̄i = xi−x0i
r . Let x̄ be the direction cosine vector so that x̄ =[

x̄1 x̄2 . . . x̄n
]T

and ‖x̄‖ = 1.

L
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Abstract. We present a framework for registering and analyzing func-
tional neuroimaging data constrained to the cortical surface of the brain.
We assume as input a set of labeled data points that lie on a set of pa-
rameterized topologically spherical surfaces that represent the cortical
surfaces of multiple subjects. To perform analysis across subjects, we
first co-register the coordinates from each surface to a cortical atlas us-
ing labeled sulcal maps as constraints. The registration minimizes a thin
plate spline energy function on the deforming surface using covariant
derivatives to solve the associated PDEs in the intrinsic geometry of
the individual surface. The resulting warps are used to bring the func-
tional data for multiple subjects into a common surface atlas coordinate
system. We then present a novel method for performing statistical anal-
ysis of points on this atlas surface. We use the Green’s function of the
heat equation on the surface to model probability distributions and thus
demonstrate the use of PDEs for statistical analysis in Riemannian man-
ifolds. We describe methods for estimating the mean and variance of a set
of points, such that the mean also lies in the manifold. We demonstrate
the utility of this framework in the development of a maximum likelihood
classifier for parcellation of somatosensory cortex in the atlas based on
current dipole fits to MEG data, simulated to represent a somatotopic
mapping of S1 sensory areas in multiple subjects.

1 Introduction

Studies of brain activity often result in the detection of focal activated regions
constrained to the cerebral cortex. For instance, current dipoles, representing
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focal neural current sources localized using MEG, can be constrained to lie on
the cortical surface [1]. Meaningful analysis of these data requires methods that
take into account the non-Euclidean geometry of the surface. For multiple sub-
ject analysis, assuming that parameterized representations of the surfaces are
available, the problem can be reduced to two stages: (i) coregistration of the co-
ordinate systems of each subject to a cortical atlas; and (ii) statistical analysis
of the variability of these registered point sources in the intrinsic geometry of
this atlas. For the purposes of this paper we select one representative cortical
surface as the target or “atlas”. To register other individual cortical surfaces
to this atlas, we solve the biharmonic equation using covariant derivatives to
obtain a thin-plate spline warp from subject to atlas coordinates. The warp is
constrained by a set of sulcal landmarks. Through use of covariant derivatives
when solving the PDEs we make the resulting warp dependent only on the in-
trinsic geometry of the surface and independent of the specific parameterization.
This approach is similar to that in [2] except that here we use a thin-plate spline
rather than linear elastic energy resulting in a pair of decoupled PDEs, one for
each component of the warping field. The resulting warp provides point to point
correspondence between subject and atlas cortices by aligning their coordinate
systems.

Once the surfaces have been registered, we can apply the same transformation
to the functional point-source data so that we have a collection of points, all lying
on the atlas surface, which we wish to analyze. The example we will use later in
the paper is the location of the primary somatsensory area S1 for digits of the
right hand as determined using magnetoncephalography. Mapping these areas
for each subject to the atlas will give a collection of points for each digit reflecting
the degree of variability of these functional areas in the surface space of the atlas.
Our goal is to perform a statistical analysis of this variability.

Since the data are constrained to lie in a manifold, it makes sense to talk
about an ‘average’ that is also constrained to lie in the manifold. Such an av-
erage can be called the ‘intrinsic mean’ [3, 4]. More generally, we would like to
define statistical distributions with respect to the manifold [5, 6]. Since there is
no simple notion of distance on the surface, averaging and quantifying variance
in the intrinsic geometry is not straightforward. Note that geodesic distances are
global rather than local attributes. We base our scheme on local attributes by
using covariant PDEs, since in local neighborhoods, surfaces look like Euclidean
spaces. Consequently it is possible to solve PDEs in the intrinsic geometry of the
surfaces [7, 8]. We use this idea to define statistical distributions on a manifold
using the Green’s function of the heat equation or the heat kernel. The heat
kernel can be computed on any Riemannian manifold and reduces to a Gaussian
function in Euclidean space. In this respect, our approach is a generalization of
the use of Gaussian distributions from Euclidean to Riemannian spaces. Using
this framework we describe methods for computing the mean and standard de-
viation of a set of points such that the mean itself lies on the surface. We then
describe how to use these ideas to generate a maximum likelihood classifier in
the intrinsic geometry of the cortical surface.
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2 Surface Registration in the Intrinsic Geometry

2.1 Surface Extraction and Parameterization

We first extract cortical surfaces from MRI for each subject using the Brainsuite
software [9], which includes a 6 stage cortical modeling sequence. First the brain
is extracted from the surrounding skull and scalp tissues using a combination of
edge detection and mathematical morphology. Next the intensities of the MRI
are corrected for shading artifacts. Each voxel in the corrected image is labeled
according to tissue type using a statistical classifier. Coregistration to a standard
atlas is then used to automatically identify the white matter volume, fill ventric-
ular spaces and remove the brain stem and cerebellum, leaving a volume whose
surface represents the outer white-matter surface of the cerebral cortex. It is
likely that the tessellation of this volume will produce surfaces with topological
handles. Prior to tessellation, these handles are identified and removed automat-
ically using a graph based approach. The resulting mask is then tessellated to
produce a genus zero surface.

We use our p-harmonic functional minimization scheme to map each cortical
hemisphere onto a unit square. Our cortical flat maps are computed as described
in [10]. Each brain hemisphere is mapped onto a unit square while constraining
the interhemispheric fissure to lie on the boundary of the unit square. Let S

denote the cortical surface. We assign a vector in R2 to every point in the
surface such that the two components denote the u and v coordinates assigned
to that point, i.e. we define a vector-valued function φ : S → R2. We chose the
function φ to minimize the integral

∫
M

‖�φ‖
p

where M denotes the integral over
the hemisphere. The integral is discretized and minimized numerically using a
conjugate gradient method to obtain a bijective p-harmonic map [10, 11].

The square maps for each hemisphere are then resampled on a regular 256x256
grid, as illustrated in Fig 1. Because the interhemispheric fissure is fixed on the
boundary of the square for each hemisphere, one can visualize the parameter
space as two squares placed on each other and connected at the boundaries of
the squares. This allows us to calculate partial derivatives across the two hemi-
spheres and explicitly include the connectivity of the two cortical hemispheres
in subsequent analysis. This boundary-less space is then used for solving the

(a) (b) (c) (d)

Fig. 1. (a) A cortical surface with hand labeled sulci; (b) a smoothed version of the
surface; (c) and (d) square p-harmonic maps of the left and right hemispheres. The
interhemispheric fissure is constrained to lie on the boundary of the square
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differential equations that will align the (u, v) coordinates of the sulcal features
from the subject to the atlas space.

The maps described above serve two purposes. First, they set up an initial
alignment of the features across multiple subjects. Second, they are used as
our computational space to align the cortices. However, thin plate spline based
alignment uses covariant derivatives, and therefore is invariant with respect to
the specific parameterization [12].

2.2 Thin Plate Splines in the Intrinsic Geometry of the Cortical
Surface

Having parameterized each of the cortical surfaces, we now align coordinate
systems between one surface, which we denote the “atlas”, and each of the other
brain surfaces. The alignment uses a set of interactively labeled sulci, sampled
uniformly along their lengths, as a set of point constraints [13]. To compute a
smooth warping field φ from one coordinate system to the other we use the thin
plate spline bending energy on the atlas surface as a regularizing function.

Thin plate (biharmonic) splines [14] have become a very popular method for
landmark registration of 2D or 3D images. These splines are a generalization of
the 1D cubic spline and correspond to the bending energy Eb of a thin metal
plate:

Eb =

∫ (
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂y

)2

+

(
∂2φ

∂y2

)2

dxdy (1)

We minimize this bending energy subject to the point landmark constraints,
implemented here using a quadratic penalty function approach. Since we wish
to minimize the bending energy in the surface, we must account for the intrinsic
geometry of the surface when computing the integral. While we use the pa-
rameter space for doing the calculations required for evaluation of the bending
energy, we account for the effect of the parameterization while calculating the in-
tegral. This is achieved using covariant derivatives which results in the property
that given a set of homologous landmarks (initial alignment), the deformation
is independent of the parameterization used for the computation of the TPS
deformation field. The the use of covariant derivatives eliminates the effect of
the initial parameterization on the resulting warping field.

We note that the eigenfunctions of the biharmonic operator on the surfaces
are dependent on the surface itself. Therefore we cannot expand the deformations
in terms of a common eigenfunction basis as in [14]. Instead we take a more
direct approach and minimize the integral numerically. The bending energy is
minimized in the intrinsic geometry after replacing the first and second partial
derivatives in (1) by the corresponding covariant derivatives. This is explained in
more detail in the Appendix. Integration over the surface can be carried out by
integration in the parameter space while compensating with the surface metric
g. The differential form ds2 for the integration in the surface S is related to
its counterpart in the parameter space (u, v) by ds2 = gdudv. Let S be the set
of all vertices, and let Sc denote the set of constrained vertices (landmarks).
Let d1

j and d2
j denote the u and v displacements required at the jth landmark,
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1 ≤ j ≤ N , to take it to its location in the atlas space. The warping field (φ1, φ2)
with respect to the parameter space (u, v) that minimizes bending energy in the
surface while matching the constraints is then given by:

φ1 = arg min
ψ1

∫
P

(
(ψ1

,11)
2 + (

√
2ψ1

,12)
2 + (ψ1

,22)
2

)
gdudv, with φ1(uj , vj) = d1

j , ∀j ∈ Sc

φ2 = arg min
ψ2

∫
P

(
(ψ2

,11)
2 + (

√
2ψ2

,12)
2 + (ψ2

,22)
2

)
gdudv, with φ2(uj , vj) = d2

j , ∀j ∈ Sc

We discretized the above integral in the parameter space over a 256x256 regular
grid for each hemisphere. We denote the covariant differential operator in the above
equations by L. As described previously, our parameter space takes into account the
neighborhood relationships between the two hemispheres and thus the covariant op-
erator L is discretized in such a way that derivatives at the interhemispheric fissure
are calculated correctly. In our current implementation our constraints are enforced by
adding a quadratic penalty term rather than the exact matching constraints in (2). Let
Φ = (φ1, φ2) denote the deformation field. The discretized cost function then takes the
form

Φ = arg min
∑
i∈S

||√gLiΦi||2 + σ2
∑
j∈Sc

||√g(LjΦj − dj)||2

The resulting least squares problem is very high-dimensional (256x256x2x2 parame-
ters), but it can be solved directly since the matrix L is sparse. However, we reduce
the dimensionality of the problem by projecting onto a subset of the discrete cosine
transform (DCT) basis functions. Provided the constraints can be satisfied with a rel-
atively smooth deformation, this approach will work with fewer basis functions than
the original 256x256 samples in (u, v) space. Let B denotes the DCT basis matrix,
T = LB, Ψ = BT Φ and Ti = LiB. The optimization problem reduces to:

Φ = arg min
∑
i∈S

||√gLiBBT Φi||2 + σ2
∑
i∈Sc

||√gLiBBT Φi − di||2

Ψ = arg min
∑
i∈S

||√gTΨ ||2 + σ2
∑
i∈Sc

||√gTiΨ − di||2

In this way, we calculate the deformations in DCT transform space. Use of this basis
leads to a significant increase in speed. The warps thus obtained are then applied to
the (u, v) coordinates of each cortical surface to coregister them to the template. This
process is illustrated in Fig. 2 where we show the sulci traced on the original cortical
surface and their corresponding locations in flat space. We then show the relative
locations of these sulcal features in flat space for the subject and atlas before and after
matching. Note that we use a quadratic penalty function to match the landmarks so
that they do not exactly align after registration. Note also that cortical regions near
the boundary of the unit square exhibit larger metric distortion relative to the cortical
surface than do regions near the center. Since the warp bending energy is computed
with respect to the intrinsic geometry of the surface rather than flat space, we see that
the warp in flat space exhibits larger deformations near the boundaries than at the
center, following the pattern of metric distortion.
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Fig. 2. The intrinsic TPS warping process. The figure show the extracted cortex, its
p-harmonic map, and sulci of the subject and atlas mapped to the parameter space
before (right) and after (left) warping. The figure at the bottom shows the warping
field computed on the surface. The color indicates the magnitude of the deformation

3 Statistical Analysis in Riemannian Spaces

We now turn to the problem of statistical analysis in the space of the cortical surface
atlas. We describe a general approach to modeling statistical variability of points on
this surface, and illustrate its application to pattern classification. In functional brain
imaging, localized regions of activation can be constrained to lie on the cortical sur-
face. Pattern classification of this data requires a classification scheme that considers
the intrinsic geometry of the cortical surface. Here we present such a scheme based on a
parametric model that extends the Gaussian distribution to Riemannian surfaces [15].
This approach uses the heat kernel to replace the Gaussian distribution so that a prob-
ability density function on the surface can be defined by analogy to heat propagation
on a surface.
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3.1 The Heat Equation in the Intrinsic Geometry

The heat equation in the intrinsic geometry of the surface is given by:

(∆ − ∂

∂t
)ζ = 0 where ∆ =

1√
g

∂

∂ui

√
ggij ∂

∂uj

where ∆ denotes the Laplace-Beltrami operator and ζ is the scalar field being diffused.
We discretized the operator using the metric tensor calculations described in the Ap-
pendix. Using this discretized operator, we set up the Crank-Nicolson scheme [16] for
solving the heat equation since it is known to be stable. We illustrate the differences
between using the usual Laplacian and the Laplace-Beltrami operator in Fig. 3. In the
former, diffusion is computed with respect to the 2D Euclidean space and produces a 2D
Gaussian distribution in the flat parameter space which maps to a clearly anisotropic
distribution on the surface. Conversely, the Laplace-Beltrami form computes the dif-
fusion directly on the surface, on which it produces an isotropic distribution while
exhibiting anisotropic behavior with respect to the parameter space. Solutions of lin-
ear partial differential equations, such as the heat equation, can be characterized by
Green’s functions. The Green’s function of the heat equation, also known as the heat
kernel, has been a topic of extensive research in spectral theory [17]. Though the heat
kernel can only be implicitly defined in arbitrary surfaces, several of its properties in
Euclidean spaces extend to Riemannian spaces and, in particular, to surfaces.

Here we list a few properties we will use later in this paper. Proofs can be found
in [17]. Let M be a geodesically complete Riemannian manifold. Then the heat kernel
Kt(x, y) exists and satisfies

1. Kt(x, y) = Kt(y, x)

2. limt→0 Kt(x, y) = δx(y)

3. (∆ − ∂
∂t

)K = 0

4. Kt(x, y) =
∫

M
Kt−s(x, z)Ks(z, y)dz

5. Kt(x, y) =
∑

∞

i=0
e−λitφi(x)φi(y)

(a) The heat kernel computed us-
ing the Laplacian in the (u, v) pa-
rameter space

(b) The heat kernel computed us-
ing the Laplace-Beltrami operator
on the cortical surface

Fig. 3. The heat kernels are displayed in the parameter space and on the surface. It
can be seen that when the Laplace-Beltrami operator is used instead of the Laplacian,
the heat kernel is not isotropic in the parameter space, however it is isotropic on the
surface
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3.2 The Heat Kernel as a Pdf

We know that the heat kernel is positive everywhere. It integrates to one on the man-
ifold [18] and therefore it is a suitable candidate for modeling the probability density
function of sample points lying in the manifold. Moreover, in Euclidean space, the heat
kernel is identical to the Gaussian pdf. Therefore we propose replacing the Gaussian
density with the covariant heat kernel in our surface-based analysis [15].

Just as we can characterize an isotropic Gaussian distribution in the Euclidean plane
through its mean and standard deviation, so we can characterize distributions on the
surface through mean and variance-like parameters that characterize the location of the
heat kernel and the ‘time’ at which it is observed. Estimation of these parameters is in
turn analogous to maximum likelihood parameter estimation, i.e. parameter estimation
for a set of sample points on the surface can be viewed as the problem of finding the
kernel of a covariant differential operator that best fits these points.

For isotropic distributions the corresponding heat kernel K(m, t) on a Riemannian
manifold can be completely specified by two parameters: m, the location of the initial
impulse, and the time t. Parameters m and t play the role of the mean and variance
in the Gaussian case. Thus the probability of finding a sample at x is modeled as
p(x|m, t) = Kt(m, x). So the problem of fitting the heat kernel in the given sample
points can be reduced to the problem of estimating these two parameters of the heat
kernel.

If the sample points are xi, we define the likelihood function for m and t as:

L(m, t) =
N∏

n=1

Kt(m, xi)

Because of property 2 above, Kt(m, x) can be calculated explicitly by placing a delta
function at point m and solving the heat equation up to time t. The problem with this
approach is that the parameter m (the location of the mean) is unknown. However,
since the heat kernel is symmetric (property 1), we can instead place the delta function
at the sample points xi whose locations are known, rather than at the unknown mean
location m, and running the heat equation up to time t. This allows us to explicitly
compute the likelihood function (2) for a set of sample points xi for any time point t.
The values of m and t for which the likelihood function L(m, t) attains its maximum
are then our estimates of the mean and variance.

To use this scheme for supervised classification of two clusters of points, we first
compute ML estimates of the parameters (m1, t1) and (m2, t2) for the two clusters.
We then define a likelihood ratio as the ratio of the two heat kernels: R = K1(m1, t1)/
K2(m2, t2) and compute this ratio at each point on the surface. The surface is then
partitioned into two regions R > 1 and R ≤ 1.

4 Applications and Results

We illustrate the technique presented above for classification of point localizations of
S1 somatosensory regions. For each of 5 subjects we simulated 6 points each represent-
ing locations of thumb and index figure on the postcentral gyrus; the 6 points could,
for example, represent localizations from 6 separate studies on a single subject. We
brought the cortical surfaces for all subjects into register, using one of the subjects as
the atlas, as described above. We then used the pooled data from all subjects in the
atlas-coordinates to compute the mean and standard deviation for the thumb and index
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finger respectively as illustrated in Fig. 4. We then applied the likelihood ratio statistic
to partition the cortex as illustrated in Fig. 5. Note that this two-class problem classifies
the entire brain, including both hemispheres, into two regions. With more somatosen-
sory areas involved we could perform a finer partitioning of somatsensory cortex pro-
ducing maps of the most probable areas to which each sensory unit would map. While
this is a somewhat artificial problem, it is clear that an extension of this analysis would
allow us to produce probabilistic maps of functional localization in the atlas space.

(a) pdf estimated for digit 1

(b) pdf estimated for digit 5

Fig. 4. The figures shows the heat kernels estimated to fit the two datasets for MEG
somatosensory data. For each of the datasets the estimated pdf is displayed in the
parameter space and on the cortical surface

Fig. 5. The classifier: Red and Blue regions shows the two decision regions
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5 Conclusion

We have presented a unified framework for analyzing cortically constrained functional
data from multiple subjects where the analysis is performed in the intrinsic geometry
of the surface. This allows us, for example, to compute the mean with respect to a
cluster of points, such that the mean also lies in the surface. We have illustrated this
framework by applying the analysis to produce functional parcellation of somatosensory
cortex based on (simulated) MEG source localizations across multiple subjects. The
method is currently limited to isotropic distributions and to point-wise analysis, but the
idea of using the intrinsic heat equation, and kernels of covariant differential operators
in place of the Gaussian distribution generalizes to the development of multivariate
statistical analysis tools for data constrained to Riemannian manifolds.
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Appendix

Let x denote the 3-D position vector of a point on the cortical surface. Let u1, u2 denote
the coordinates in the parameter space. The metric tensor coefficients required in the
computation are given by:

g11 =

∥∥∥∥ ∂x

∂u1

∥∥∥∥
2

, g22 =

∥∥∥∥ ∂x

∂u2

∥∥∥∥
2

, g12 = g21 =

〈
∂x

∂u1
,

∂x

∂u2

〉
, g = g11g22 − (g12)

2

Cartesian tensors suffice for flows in 2D or 3D Euclidean spaces. However the corti-
cal surface is a two dimensional non-Euclidean space and from the outset demands a full
tensorial treatment. We do this by replacing the usual partial derivatives by covariant
derivatives. Although we want the deformation field with respect to the cortical sur-
face to be independent of the specific choice of parameterization, the deformation field
expressed in the 2D parameter space invariably does depend on the parameterization.
Small deformations expressed in the parameter space can be modeled as contravari-
ant vectors [19, 7] since, with respect to two different parameterizations u and u, the

respective values of the deformations φ and φ are related by φ
β

= φj ∂uβ

∂uα . In order
to preserve their tensorial nature, we need to use covariant derivatives instead of the
usual partial derivatives. The covariant derivative φβ

,σ of a contravariant tensor φβ is
given by:

φβ
,σ =

∂φβ

∂uσ
+ φκΓ β

κσ where α, β, κ ∈ {1, 2}

where Γκσ denote the Christoffel symbols of the second kind [7]. The first covariant
derivative of a contravariant tensor φζ is a mixed tensor φζ

,β . Covariant derivatives

φζ
,βσ of such a tensor is given by:

φζ
,βσ =

∂φζ
,β

∂uσ
− φζ

,µΓ µ
βσ + φ ν

β Γ ζ
νσ where σ, β, ζ, µ, κ ∈ {1, 2}
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Abstract. Statistical iterative reconstruction algorithms have shown
improved image quality over conventional nonstatistical methods in PET
by using accurate system response models and measurement noise mod-
els. Strictly speaking, however, PET measurements, pre-corrected for
accidental coincidences, are neither Poisson nor Gaussian distributed
and thus do not meet basic assumptions of these algorithms. In addi-
tion, the difficulty in determining the proper system response model also
greatly affects the quality of the reconstructed images. In this paper,
we explore the usage of state space principles for the estimation of ac-
tivity map in tomographic PET imaging. The proposed strategy formu-
lates the organ activity distribution through tracer kinetics models, and
the photon-counting measurements through observation equations, thus
makes it possible to unify the dynamic reconstruction problem and static
reconstruction problem into a general framework. Further, it coherently
treats the uncertainties of the statistical model of the imaging system and
the noisy nature of measurement data. Since H

∞
filter seeks minimum-

maximum-error estimates without any assumptions on the system and
data noise statistics, it is particular suited for PET image reconstruction
where the statistical properties of measurement data and the system
model are very complicated. The performance of the proposed frame-
work is evaluated using Shepp-Logan simulated phantom data and real
phantom data with favorable results.

1 Introduction

PET image reconstruction algorithms largely fall into analytic strategies and
iterative statistical methods. The first group most frequently uses the deter-
ministic filtered backprojection (FBP) principles, or modifications thereof [1, 9],
based on inversion of the Radon transform through the central slice theorem.
While they are fast and inexpensive as they operate entirely linearly on the pro-
jection data, FBP algorithms do not produce high quality reconstructed images
because of their disregarding of the spatially-variant PET system response and
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treating measurement noise in a post-hoc manner. Iterative statistical methods
have thus been the primary focus of many recent efforts, including notable ex-
amples of maximum likelihood–expectation maximization (ML–EM) [14], max-
imum a posteriori (MAP) [4], and penalized weighted least-squares (PWLS) [2]
algorithms. Unlike conventional FBP methods, iterative methods are based on
specific models for the measurement statistics and the physical systems, and
thus have the potential to improve bias-variance performance. For any statisti-
cal framework, it is then clear that appropriate models for the measurement and
the system response play essential roles in achieving good reconstruction [6].

During PET emission scans, one wishes to include only true coincidences that
are related to gamma rays from the same annihilation and that have not scattered
in the body prior to detection. In reality, however, the coincidence events also in-
clude the scattered coincidences (SC) and the accidental coincidences (AC), both
being primary sources of background noise in PET. Since the introduction of the
ML-EM algorithm, statistical reconstruction methods have heavily relied on the
idealized PET system model with Poisson statistics for the measurements. How-
ever, due to AC events substraction, the measured data do not actually meet the
Poisson distribution requirement in most commercial PET scanners [5]. Several
recent works have attempted to derive statistical models that best fit the mea-
surement data under some assumptions, such as the shifted Poisson (SP) model
[17] and the saddle point (SD) model [16]. Nevertheless, in practical situations it
is almost impossible to have the exact model information a priori as these works
demand. The accuracy of the system response model, or the system probability
matrix, also greatly affects the quality of the reconstruction results [11]. Some
of the most interesting research efforts in system probability matrix estimation
include the use of analytic detector response function [12], the consideration of
the voxel position relative to the detectors [10], and the Monte Carlo simula-
tions [15]. While nearly all model-based image reconstruction methods assume
that the system response model is known exactly, either a priori or once it has
been estimated, real imaging systems are subject to a number of physical effects
that make the system response space-variant and image-dependent. Proper un-
derstanding and handling of system probability matrix uncertainties remains a
challenging issue [9].

In this paper, we present a general PET reconstruction paradigm which is
based on the state space principles. Given the uncertainties inherently associated
with the system response and data measurements, we believe that a state space
strategy offers an alternative to achieve robust and optimal image reconstruc-
tions. Compared to earlier statistical works, our effort has three significant novel
aspects. First, this approach undertakes the uncertainties on both the imaging
system model and the measurement data model. Secondly, it unifies the dynamic
and the static reconstruction problems into a general framework, allows negative
Sinogram values, and can simultaneously estimate the attenuation map and the
activity map. Finally, two solutions are proposed for the framework: the Kalman
filtering (KF) solution that adopts the minimum-mean-square-error criterion and
the H∞ filter which seeks the minimum-maximum-error estimates. Since the H∞
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principle makes no assumptions on the system and measurement statistics, it is
particular suited for PET imaging where the statistical properties of measure-
ment data and the system uncertainty remain difficult to acquire. We realize that
several additional efforts in PET/SPECT image reconstruction are of relevance
to our work. The noise equivalent counts (NEC) scaled and NEC-shifted ML-
EM algorithms aim to transform arbitrary sinogram noise into approximately
Poisson distributed one [8] for further processes, although it does not attempt
to handle the system response model uncertainties. We believe, however, that
we are presenting the first attempt to formulate PET reconstruction as a state
estimation problem, to deal with noisy measurement data and uncertain system
model in a coordinated effort, and to recursively estimate the activity map with
the aid of the robust H∞ filter.

2 PET Reconstruction: A State-Space Formulation

2.1 Modeling of PET Measurement

In the PET measurement process, a coincidence event indicates that two gamma
rays interact with the opposite detector pairs within a small coincidence timing
window. The true coincidences are contaminated by the AC and SC events, and
the measured PET data Y is usually precorrected for AC events using delayed
coincidence timing windows. The emission sinogram data Y = {Yj |j = 1, ...,m}
is represented as one-dimensional vectors of dimension m, obtained by scan-
ning all detector bins at each angle. Let vectors Yp and Yd be the number
of coincidences detected within the prompt and delayed windows, the prob-
ability distributions for Yp and Yd then follow independent Poisson distribu-
tions with mean yp = {ypj |j = 1, ...,m} and yd = {ydj |j = 1, ...,m}, respec-
tively. x = {xi|i = 1, ..., n} is a n x 1 vector, with n the total number of im-
age voxels, which represents the unknown radioactivity of emission object in
voxel i.

Denoting the additive contributions of AC events with mean r and SC events
with mean s, we have yd = r. Further, the relationship between the projection
data and emission object is given through affine transform yp = Dx+r+s, where
D is the m x n system matrix that gives the probability of a photon emitted
from voxel i being detected in projection bin j. The detection probability matrix
D depends on various factors: the geometry of the detection system, detector
efficiency, attenuation effects, dead time correction factors, and the extent of
scattering between source and detector.

Assuming that the expected value of the projection data is y, we have:

y = yp − yd = Dx + s (1)

2.2 Modeling of Tracer Kinetics

To quantitatively obtain measurements of tissue metabolic function, it is nec-
essary to model the relationship between the tracer activity and the metabolic
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parameter of interest. Since compartmental models are generally used to de-
scribe tracer kinetics, there have been many efforts focusing on describing com-
partmental models and their applications. In general, the dynamic equation for
a compartmental system can be expressed as [3] ẋ(t) = Ax(t) +BU(t), where A
is combinations of the rate constants denoting the transfer of material between
compartments, B is the delivery of the tracer to the tissue, and U(t) is the blood
input function.

In this paper, we focus on static imaging of steady states, assuming that
the distribution of the radioisotopes in the body is temporally stationary cor-
responding to the autoradiographic (ARG) model. The ARG assumption is the
equilibrium of the metabolic ratio, which means:

ẋ(t) = 0 (2)

2.3 State Space Representation for PET Imaging

In more general form, Equation (1) can be rewritten as y = Dx + e where
e is the noise vector that represents unknown measurement errors including
other noise except SC events. Making the time-dependence in the equation
gives:

y(t) = Dx(t) + e(t) (3)

where t denotes the time steps. The equation can be interpreted as the obser-
vation equation of the state-space representation of the PET system, where the
measurement noise e models the uncertainty of the measurement data.

Since the state x(t) is temporally stationary for static imaging, we discretize
Equation (2) and arrive at x(t + 1) = x(t). The state space representation is
completed by a more general system equation:

x(t + 1) = Ax(t) + v(t) (4)

with some initial activity x0. Here, the state noise v models the statistical un-
certainty of the imaging process, and the transition matrix A relates to our
knowledge and assumptions about the compartmental model parameters. While
Equation (4) represents the system equation of static PET imaging when the
transition matrix A is an identity matrix, in general, A can be time invariant,
time varying, linear, or nonlinear functions.

Equations (3) and (4) constitute a so-called state-space representation of
PET imaging system, and the goal is now to estimate state x(t) based on the
observations y(t). If we assume that the noise properties are known (Gaussian
or Poisson) for e and v, many classical estimation techniques can be applied to
recover the activity state x. However, the results can be sub-optimal or even
divergent due to possible mismatch between the actual noise properties and the
assumptions. Hence, we will mainly focus on the H∞ estimation strategy in this
paper where no a priori knowledge of noise statistics is required.
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3 MMSE Estimation with Gaussian Noise

A general solution to the state-space PET system is through the Kalman filter,
which has been the standard method for state-space models with Gaussian noise.
It adopts a form of feedback control in estimation: the filter estimates the process
state at some time and then obtains the feedback in the form of (noisy) mea-
surements. Hence, the reconstruction technique updates state x(t) at time t into
an optimal estimate based on: (i) the prediction of the time update equations of
the Kalman filter from the previous state and error covariance estimates. The
solution to this problem is called the Kalman predictor. (ii) the Kalman filter is
completed by adding the update based on the noisy measurements y(t) to the
predicted state– i.e. for incorporating measurements into the a priori estimate
to obtain an improved a posteriori estimate. And the final estimation algorithm
resembles that of a predictor-corrector algorithm for solving numerical prob-
lems. In our implementation, a recursive procedure is used to perform the state
estimation of Equations (4) and (3):

1. Initial estimates for state x̂0 and error covariance P (0).
2. Time update equations, the predictions, for the state x̂−(t) = Ax̂(t− 1) and

for the error covariance P−(t) = AP (t − 1)AT + Qv(t).
3. Measurement update equations, the corrections, for the Kalman gain L(t) =

P−(t)DT (DP−(t)DT + Re(t))
−1, for the state x̂(t) = x̂−(t) + L(t)(y −

Dx̂−(t)), and for the error covariance P (t) = P−(t) − L(t)(DP−(t)DT +
Re(t))L

T (t).

Here, P is the covariance matrix describing the uncertainty of the state,
Qv is the covariance matrix associated with the process noise v(t), Re is the
covariance of the observation errors e(t), and L incorporates the model and the
measurements and is termed the Kalman gain. In this notation the superscript
′−′ refers to the intermediate state and covariance predictions provided by the
Kalman predictor, which are then modified by the measured data to produce
the next state value.

Discussion. Estimation of radioactivity distribution with the Kalman filter
bears strong ties with several existing methods. When A is set to be zero,
x−(t) vanishes and P−(t) is equal to Qv. Then the state estimate becomes
x̂(t) = QvDT [DQvDT + Re]

−1y, the equivalent form of a least square
solution.

In developing Kalman-based algorithms, the external excitation has to be
assumed with Gaussian distribution, which may be unreasonable for PET mea-
surements. Fortunately, Anscombe transformation can covert Poisson distributed
noise into Gaussian distributed one [7], which gives the possibility to describe
a clear relationship among these methods. Consider the joint likelihood p(x, y)
for the state space equations (3) and (4). Using the Markovian structure of the
state space equations, we apply the chain rule and readily see that:

p(x, y) = p(x(0))p(x(t + 1)|x(t))p(y(t)|x(t)) (5)
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where p(x(0)) is the a priori state (the image) distribution, p(x(t + 1)|x(t)) is
the conditional probability for the next state, and p(y(t)|x(t)) the conditional
probability for the observations. Taking the logarithm of the joint likelihood:

Φ = lnp(x, y) = lnp(x(0)) + lnp(x(t + 1)|x(t)) + lnp(y(t)|x(t)) (6)

the estimation solution is then the state variable that maximizes the objective
function. If one chooses the state values that maximize p(y(t)|x(t)) by setting the
other two terms to be constant, the traditional ML estimate is achieved. Simi-
larly, the MAP estimate is the state value for which lnp(x(0)) and lnp(y(t)|x(t))
are maximized.

4 Robust Estimation Without Assumptions on Noise

Previous studies have assumed that the noise in PET is Poisson (or shifted Pois-
son, Gaussian) processes in order to develop the estimation algorithms such as
ML-EM and MAP. Similarly, Kalman filter also requires prior knowledge on
the statistical properties of the Gaussian state variables and noise. However,
in practice, the PET measured data is affected by random coincidence, scatter
coincidence, scanner sensitivity and dead time, and thus its distribution is very
complicated. The Gaussian, Poisson, or shifted Poisson assumptions may not
agree with the actual nature of PET measurement exactly. In the following, we
present a robust estimation strategy for the PET state-space estimation, based
on the mini-max H∞ principles that do not impose any restrictions on the un-
known disturbances v(t) and e(t) but only assume finite disturbance energy. It
is thus more robust and less sensitive to noise variations and model assump-
tions [13].

Along with the state and measurement equations (4) and (3), the required
output equation for the H∞ filter is constructed as:

z(t) = Fx(t) (7)

where the output variable z(t) is the linear combination x(t), and the entries of
the known output matrix F are problem- and system- specific. In this paper, F
is just an identity matrix.

While the Kalman filter calculates the estimation error using the H2 norm
and minimizing the mean-square error, the H∞ filter aims to provide a small
estimation error, w(t) = z(t)− ẑ(t), for any types of noises e(t) and v(t). Specif-
ically, the measure of the performance is given by:

J =
‖w(t)‖2

Q(t)

‖xo − x̂o‖2
p−1

o

+ (‖v(t)‖2
N(t)−1 + ‖e(t)‖2

V (t)−1)
(8)

where the notation ‖x‖2
G is defined as the square of the weighted (by G) L2

norm of x, i.e. ‖x‖2
G = xT Gx. Here, N(t), V (t), Q(t) and po are the weighting

matrices for the process noise, the measurement noise, the estimation error and
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the initial conditions respectively, and x̂o is the a priori estimate of the state.
These weighting matrices are user-specified and dependent on the performance
requirement. The optimal estimate z(t) among all possible ẑ(t) should satisfy:

‖J‖∞ = supJ < γ2 (9)

where γ2 > 0 is a prescribed level of disturbance attenuation. It is assumed that
the L2 norms of e(t) and v(t) exist (i.e. finite energies). The robustness of the
H∞ estimator arises from the fact that it yields an energy gain less than γ2 for
all bounded energy disturbances no matter what they are.

As a solution to the H∞ estimation problem keeps the H∞ norm less than a
prescribed value, an H∞ filter has been derived for state space PET model (4)
and (3). Since the disturbance inputs e(t) and v(t), as well as the uncertainty
of the initial state vector x0, tend to increase the performance index J , while
the estimation error w(t) is designed to minimize J , Equation (9) can be further
equivalently represented as

minwmaxv,e,x0
J =

‖w(t)‖2
Q(t) − γ2‖xo − x̂o‖

2
p−1

o

− γ2(‖v(t)‖2
N(t)−1 + ‖e(t)‖2

V (t)−1) (10)

where min and max stand for minimization and maximization respectively. With
this expression, the H∞ filter represents a typical min-max problem where the
worst situation is first induced by the disturbances and the estimator is then
introduced for improvement. In other words, the H∞ filter is in fact a two-person
game between the external disturbances and the estimator w(t) [13]. This can be
solved by using a game theoretic algorithm which can be implemented through
recursive updating of the filter gain K(t), the Riccati difference equation solution
P (t), and the state estimates x̂(t):

K(t) = AP (t)S(t)DT V (t)
−1

(11)

P (t + 1) = AP (t)S(t)AT + N(t) (12)

x̂(t + 1) = Ax̂(t) + K(t)(y(t) − Dx̂(t)) (13)

where

S(t) = (I − γ−2Q̄(t)P (t) + DT V (t)−1DP (t))−1

Q̄(t) = FT Q(t)F

P (0) = (p−1
0 + γ−2Q)−1

This H∞ filtering formulation has a similar structure to the Kalman filter but
with different optimizing criteria. Let the weighting matrices N(t), V (t) and p0

be the same as the covariances matrices Qv, Re and P (0) of Kalman filtering.
In the limiting case, when the parameter γ approaches ∞, the H∞ approaches
the Kalman filter. Note that although when γ = ∞ the H∞ filter is identical
to that of the Kalman filter in form, the meanings of optimality are different.
The Kalman filter has quite a large H∞ norm, which means that the maximum
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energy gain of the Kalman filter algorithm has no upper bound. This leads to
the observation that the Kalman filter will be more sensitive to the variations
in the initial state and noise issues.

Detailed computational issues are omitted here because of page limit.

5 Experiments and Discussions

5.1 Digital Phantom Simulation

The synthetic emission phantom with known radioactivity concentrations is
used, as shown in Fig. 1. The resolution of the original image is 34 by 32
pixels, and 720 projections over 180 degrees are simulated. To generate real-
istic data, we simulate the emission coincidence events during prompt windows
and delayed windows respectively. The prompt data has to be modified to sub-
tract the effects of the AC events. Taking these effects into account, the mea-
sured sinogram y is created based on the equations yprompt = Poisson{ytrue}+
Poisson{60%.ytrue} + Poisson{10%.ytrue}, ydelay = Poisson{60%.ytrue}, and
y = yprompt − ydelay. Here, we model the random and scatter events to be uni-
form field of 60 percents and 10 percents respectively. yprompt is the number of
coincident photon pairs collected in the prompt windows. ydelay is the number of
coincident photon pairs collected in the delay windows. The total number of pho-
ton counts in the reconstruction plane is set to be 20, 000 (low) and 2, 000, 000
(high) respectively. Then, a set of 50 separate realizations of pseudorandom emis-
sion projection data are generated for each case. These 100 sinograms are then
reconstructed using the following four different reconstruction algorithms, in or-
der to quantitatively evaluate the performance of each reconstruction method:

1. ML-EM (OP) algorithm [16]: ideal Poisson measured data, and the resulting
logarithm of the likelihood is solved by ordinary EM algorithm.

2. ML-EM (SP) algorithm [16]: the measured data is modeled by shifted Poisson
process, and the resulting logarithm of the likelihood is solved by the EM
algorithm.

3. State-space KF algorithm: P (0), Qv, and Re are all set to diagonal matrices,
and the values are fixed during the estimation process.

4. State-space H∞ algorithm: the H∞ weighting parameters N(t), V (t), Q(t)
and po are all set to diagonal matrices.

Convergence is checked using two consecutive errors such that ‖χ(t + 1) −
χ(t)‖ < ς, with ς being a small constant. Let x be the ground truth image and
x̂ be a single reconstruction, then χ defines the error between the estimated and

the exact activity values as χ =
(

1
n

∑n
i=1 |xi − x̂i|

2
)0.5

. Please recall that n are

the known sets of image pixels. If the criteria is satisfied, the estimated activity
map distribution is considered to be final. No smoothing algorithm is applied.

The system matrix is generated using the MATLAB toolbox developed by
Jeff Fessler and his students. In order to investigate how the noise in the sys-
tem matrix affects the reconstructed image, we have also reconstructed images
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Fig. 1. Digital Shepp-Logan phantom for PET reconstruction experiments (left), and
emission sinogram of the phsyical phantom obtained from the SHR-22000 (right)

Fig. 2. Mean (top row) and pixel-variance (bottom row) images (Shepp-Logan phan-
tom) reconstructed using low counts measurement with noisy system matrix. From left
to right: OP, SP, KF, and H

∞
results

Fig. 3. Vertical profiles through sample mean (left) and standard-deviation (right) of
estimators for low counts measurement using noisy system matrix

for different methods based on a noisy system matrix. In our current simula-
tion, we generate a noisy matrix D with the mean relative error in the range
of 35%. The reconstructions are evaluated quantitatively in terms of bias and
variance estimator performance for each reconstruction technique. We calcu-
late the relative errors bias and variance through bias = 1

n

∑n
i=1(xi − x̂i) and

variance = 1
n−1

∑n
i=1(xi − x̂i)

2. The errors bias and variance are averaged over
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Table 1. Comparative studies of estimated activity distribution on synthetic data.
Each data cell represents reconstruction error: bias ± variance

Conditions Methods bias ± variance

With exact known ML-EM-OP +0.0044 ± 0.2115
system matrix ML-EM-SP +0.0046 ± 0.1331
(High Counts) KF -0.0417 ± 0.2782

H
∞

+0.0006 ± 0.1167

With noisy ML-EM-OP +1.1643 ± 1.2913
system matrix ML-EM-SP +0.5830 ± 0.6454
(High Counts) KF +0.4293 ± 0.4027

H
∞

+0.5743 ± 0.5625

With exact known ML-EM-OP +0.0189 ± 1.8614
system matrix ML-EM-SP +0.0239 ± 0.7261
(Low Counts) KF -0.0060 ± 1.0160

H
∞

-0.0507 ± 0.5213

With noisy ML-EM-OP +1.1859 ± 4.2465
system matrix ML-EM-SP +0.6109 ± 1.7007
(Low Counts) KF +0.4342 ± 0.7576

H
∞

+0.0045 ± 0.5103

the 50 reconstructions to give the estimates E[bias] and E[variance] for OP,
SP, KF and H∞ reconstruction methods, and the analysis results are summa-
rized in Table 1. Images of the mean pixel values and the variances obtained
by the four algorithms (OP, SP, KF, and H∞) with noisy system matrix and
low counts measurement are shown in Fig. 2, with their sample vertical profiles
plotted versus the corresponding pixel positions shown in Fig. 3.

These quantitative results and figures illustrate that both OP and SP results
show large positive biases when using a noisy system matrix, while the KF and
H∞ frameworks seem free of such biases. However, the KF result shows signif-
icantly large variances for high counts case. Further, because the KF method
is sensitive to modeling mismatch problem, it is capable of good performance
under Gaussian statistics assumptions, which unfortunately is unrealistic for the
PET image reconstruction problem. H∞ framework is nearly unbiased to known
or noisy system matrix cases. Also, it gives the good variance performance.

5.2 Real PET Data

The real data set used in this study was acquired on the Hamamatsu SHR-22000
scanner using a 6-spheres phantom, which has six circular regions of different
diameters. These sphere objects have diameters of 37mm, 28mm, 22mm, 17mm,
13mm and 10mm respectively, and are each inserted in a circular cylinder with
diameter of 200mm corresponding to a volume of 9300ml, as shown in Fig. 4. The
phantom filled with pure water was located at the center of both transaxial and
axial FOV in the scanner using the patient bed. We injected F-18 concentration
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Fig. 4. The geometry of real phantom, and the FBP, OP, SP and H
∞

estimation results
(left to right)

with initial activity of 107.92 Bq/ml into the six spheres. A 120-minutes scan was
then performed. Fig. 1 (right) shows the sinograms obtained from the emission
scan with 48 radial bins uniformly sampled over a 450mm transaxial FOV, and
48 angles uniformly sampled over 180 degrees.

Here, system matrix Dij is computed by using a single ray approximation
model. For more accurate modeling, physical effects such as attenuation, positron
range, and non-collinearity must be accounted for in the D matrix. The random
events have been removed by using delayed window coincidence technique. Con-
ventional FBP method, OP, SP and H∞ algorithms as described in the previous
sections have been applied to recover images from the noisy data. The recon-
struction image size is cropped to 48x48 pixels. For FBP, we choose ramp window
type and the cutoff frequency is set to be 1/2. The FBP result in Fig. 4 shows
significant noise and streak artifacts. In terms of visibility, four spheres can be
visualized in both OP and SP methods, while five spheres are appeared when
using the H∞ framework.

6 Discussion

We want to point out that, in our current implementation, the noise covari-
ance matrices Qv and Re (KF framework), as well as the weighting matrices
in H∞ framework are set to some empirically fixed values which are obviously
not optimal. Ideally, these parameters should be adaptively updated during the
estimation process.

In order to provide more accurate image reconstructions, all physical fac-
tors including detector response, attenuation, positron range et al, must be
modeled in the reconstruction process. However, establishing an exact system
model is a challenging problem, not least because of the system response be-
ing space-variant and image-dependent. In the state space representation, the
system model parameters can be treated as random variable with known prior
statistics. A joint estimation framework can then possibly be applied to simul-
taneously estimate the image and the system matrix D from observations.

In particular, attenuation correction is a well-documented research topic due
to the requirement of quantitative analysis. The attenuation and activity distri-
butions from emission data can be simultaneously reconstructed based on the
state space framework. The unknown state vector x can be augmented by the
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unknownattenuation coefficients θ to form thenew statevector z(t) = [x(t) θ(t) ]T .
Thus, we may explicitly construct the state space equations accounting for at-
tenuation effects. This form of formulation may lead to a solution of the filtering
problem either based on the extended Kalman filter algorithm (Gaussian models)
or iterative sequential H∞ filter framework (robust solution).

As a straightforward extension, based on the tracer kinematics equation and
the measurement equation, we can recover dynamic changes of tracer density in
a continuous time domain for dynamic PET. On the other hand, the purpose of
dynamic PET imaging is to estimate physiological parameters associated with
compartmental model. Thus, joint estimation of the physiological parameters
and tracer density can be achieved. Because this integration allows image recon-
struction and physiological parameters estimation in a coherent framework, we
believe that it will help achieve more robust results from noisy data. Detailed
investigations on these issues are underway.

Acknowledgement. Thanks to Dr. T. Yamashita and Dr. E. Yoshikawa of Hama-
matsu Photonics K.K. for useful discussions. This work is supported by the National
Basic Research Program of China (No. 2003CB716104), by HKUST6151/03E, and by
the NSF of China for Innovative Research Groups (No. 60021201).

References

1. H.H. Barrett and W. Swindell. Radiological Imaging: The Theory of Image For-

mation, Detection, and Processing. Academic Press, San Diego, CA, 1981.
2. J. A. Fessler. Penalized weighted least-squares image reconstruction for positron

emission tomography. IEEE Transactions on Medical Imaging, 13(2):290–300,
1994.

3. R.N. Gunn, S.R. Gunn, F.E. Turkheimer, J.A.D. Aston, and V.J. Cunningham.
Tracer Kinetic Modeling via Basis Pursuit. Academic Press, In M. Senda, Y.
Kimura, and P. Herscovitch, editors, Brain Imaging using PET, 2002.

4. T. Hebert and R. Leahy. A generalized EM algorithm for 3-D Bayesian recon-
struction from Poisson data using Gibbs priors. IEEE Transactions on Medical

Imaging, 8:194–202, 1989.
5. E.J. Hoffman, S.C. Huang, M.E. Phelps, and D.E. Kuhl. Quantitation in positron

emission computed tomography: 4. effect of accidental coincidences. Journal of

Computerized Assisted Tomography, 5:391–400, 1981.
6. R. M. Lewitt and S. Matej. Overview of methods for image reconstruction from

projections in emission computed tomography. Proceedings of the IEEE, 91:1588–
1611, 2003.

7. H. Lu, G. Han, D. Chen, L. Li, and Z. Liang. A theoretically based pre-
reconstructing filter for spatio-temporal noise reduction in gated cardiac SPECT.
In IEEE Nuclear Science Symposium, pages 141–145, Lyon, France, October 2000.

8. J. Nuyts, C. Michel, and P. Dupont. Maximum-likelihood expectation-
maximization reconstruction of sinograms with arbitrary noise distribution using
NEC-transformations. IEEE Transactions on Medical Imaging, 20:365–375, 2001.

9. J.M. Ollinger and J. A. Fessler. Positron emission tomography. IEEE Signal

Processing Magazine, 14(1):43–55, 1997.



PET Image Reconstruction: A Robust State Space Approach 209

10. J. Qi, R.M. Leahy, S.R. Cherry, A. Chatziioannou, and T.H. Farquhar. High
resolution 3D Bayesian image reconstruction using the microPET small-animal
scanner. Physics in Medicine and Biology, 43:1001–1013, 1998.

11. M. Rafecas, G. Boning, B.J. Pichler, E. Lorenz, M. Schwaiger, and S.I. Ziegler.
Effect of noise in the probability matrix used for statistical reconstruction of PET
data. IEEE Transactions on Nuclear Science, 51:149–156, 2004.

12. V. Selivanov, Y. Picard, J. Cadorette, S. Rodrigue, and R. Lecomte. Detector
response models for statistical iterative image reconstruction in high resolution
FBI. IEEE Transactions on Nuclear Science, 47:1168–1175, 2000.

13. X. Shen and L. Deng. A dynamic system approach to speech enhancement using
the H

∞
filtering algorithm. IEEE Transactions on Speech and Audio Processing,

7(4):391–399, 1999.
14. L.A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomog-

raphy. IEEE Transactions on Medical Imaging, 1:113–122, 1982.
15. E. Veklerov, J. Llacer, and E.J. Hoffman. MLE reconstruction of a brain phan-

tom using a Monte Carlo transition matrix and a statistical stopping rule. IEEE

Transactions on Nuclear Science, 35:603–607, 1988.
16. M. Yavuz and J.A. Fessler. New statistical models for randoms precorrected PET

scans. Lecture Notes in Computer Science:IPMI’97, 1230:190–203, 1997.
17. M. Yavuz and J.A. Fessler. Statistical image reconstruction methods for randoms-

precorrected PET scans. Medical Image Analysis, 2(4):369–378, 1998.



Multi-dimensional Mutual Information Based
Robust Image Registration Using

Maximum Distance-Gradient-Magnitude

Rui Gan and Albert C.S. Chung

Lo Kwee-Seong Medical Image Analysis Laboratory,
Department of Computer Science,

The Hong Kong University of Science and Technology, Hong Kong
{raygan, achung}@cs.ust.hk

Abstract. In this paper, a novel spatial feature, namely maximum
distance-gradient-magnitude (MDGM), is defined for registration tasks.
For each voxel in an image, the MDGM feature encodes spatial informa-
tion at a global level, including both edges and distances. We integrate
the MDGM feature with intensity into a two-element attribute vector
and adopt multi-dimensional mutual information as a similarity mea-
sure on the vector space. A multi-resolution registration method is then
proposed for aligning multi-modal images. Experimental results show
that, as compared with the conventional mutual information (MI)-based
method, the proposed method has longer capture ranges at different im-
age resolutions. This leads to more robust registrations. Around 1200 ran-
domized registration experiments on clinical 3D MR-T1, MR-T2 and CT
datasets demonstrate that the new method consistently gives higher suc-
cess rates than the traditional MI-based method. Moreover, it is shown
that the registration accuracy of our method obtains sub-voxel level and
is acceptably high.

1 Introduction

A key issue in the medical imaging field is multi-modal image registration, which
can integrate complementary image information from different modalities. The
task of image registration is to reliably identify a geometric transformation to
accurately align two images.

A crucial element in the registration process is a similarity measure to deter-
mine how well the images match with each other through a hypothesized spatial
transformation. General promising results have shown that mutual information
(MI) as a voxel intensity-based similarity measure is well-suited for multi-modal
image registration [1, 2]. However, it has been suggested that the conventional
MI-based registration can result in misalignment for some cases [3, 4] and then
room for improvement exists. The standard MI measure only takes intensity val-
ues into account. Therefore, a known disadvantage is the lack of concern on any
spatial information (neither local nor global) which may be present in individual
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images to be registered [5, 6]. As a simple illustration, a random perturbation of
image points identically on both images results in unchanged MI value as that
of the original images.

Several researchers have proposed adaptations of the MI-based registration
framework to incorporate spatial information of individual images. Butz et al.
[7] applied MI to edge measure (e.g., gradient magnitude) space, which was
meant to align object surfaces in images. However, MI based on edge measure
is sensitive to the sparseness of joint edge feature histograms. This may increase
the difficulty of the optimization procedure. Pluim et al. [4] incorporated spatial
information by multiplying the conventional MI measure with an external local
gradient term to ensure the alignment of locations of tissue transitions in images.
The probing results indicated that the registration function of the combined
measure was smoother than that of the standard MI measure. But this approach
does not actually extend the MI based similarity measure. Moreover, Rueckert
et al. [6] exploited higher-order mutual information for 4D joint histograms. To
include local spatial information present by neighboring point pairs, the 4D joint
histograms were built on the co-occurrence of intensity pairs of adjacent points.
This method was shown to be robust with respect to local intensity variation.
However, only one neighbor is considered at a time in this approach and plenty of
spatial information which may be present globally or within large neighborhood
system has been ignored.

In this paper, a new spatial feature, namely maximum distance-gradient-
magnitude (MDGM), is defined for registration tasks. The MDGM feature en-
codes spatial information for each voxel in an image at a global level, which is
about the distance of a voxel to a certain object boundary. In order to improve
the conventional MI-based registration framework, we integrate the MDGM fea-
ture with intensity to form a two-element attribute vector for each voxel in
individual images. Then, multi-dimensional mutual information is exploited as
a similarity measure on the attribute vector space. To increase computation ef-
ficiency and robustness of the proposed method, the registration procedure is a
multi-resolution iterative process.

Based on the results on clinical 3D MR-T1, MR-T2 and CT image volumes, it
is experimentally shown that the proposed method has relatively longer capture
ranges 1 than the conventional MI-based method at different image resolutions.
This can obviously make the multi-resolution image registration more robust.
Moreover, the results of around 1200 randomized registration experiments reveal
that our method consistently gives higher success registration rates than the
traditional MI-based method. Finally, it is demonstrated that our method can
obtain acceptably high registration accuracy in sub-voxel level.

The organization of the paper is as follows. Section 2 formulates spatial infor-
mation as a novel MDGM feature. Our multi-modal image registration method
is proposed in Section 3. Some implementation details are given in Section 4.

1 Capture range represents the range of alignments from which a registration algorithm
can converge to the correct maximum.

MI singU MDGM
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Section 5 presents the experimental results and discussions. The conclusion is
drawn in Section 6.

2 Spatial Feature Definition

Given an image pair and a geometric transformation, we aim at evaluating a
novel multi-dimensional mutual information based registration criterion. In our
proposed approach, each voxel in the image has a two-element attribute vec-
tor. The first element is the conventional voxel intensity, while the second one
is a newly designed spatial feature term, namely maximum distance-gradient-
magnitude (MDGM), for incorporating spatial information at a global level
within individual images. Compared with the traditional local gradient mag-
nitude feature, the MDGM feature can encode local edge information, as well
as globally defined spatial information about the distance of a voxel to a cer-
tain object boundary. Although it can be similar to the distance transform [8],
the distance transform is normally applied to binary images, while the proposed
MDGM feature directly processes original intensity images and does not rely on
segmentation. Moreover, unlike the sparseness of gradient magnitude feature, the
MDGM feature varies smoothly and gradually from object boundaries towards
homogeneous image regions.

2.1 Maximum Distance-Gradient-Magnitude (MDGM)

Gradient magnitude represents spatial information in an image. However, the
traditional gradient magnitude operator is locally defined and normally used
to detect the amplitude object boundaries where voxels change their gray-level
suddenly. By deriving gradient magnitude map, voxels at object boundaries,
which may only occupy a very small proportion of the whole image volume,
would give large values. On the other hand, a large amount of voxels (i.e. voxels
within background regions and anatomical structures) would give small and
almost constant values. Consequently, such gradient magnitude feature of an
image can be sparse and insufficient for voxel-based image registration [9].

In this section, we define a new spatial feature, maximum distance-gradient-
magnitude (MDGM). It contains not only local edge information, but also spatial
information at a global level, which is about the distance of a voxel to a certain
object boundary. Moreover, the MDGM feature varies smoothly and gradually
from object boundaries towards homogeneous image regions.

We begin by defining a distance-gradient operator, ∇d, on two voxels in an
image. Given an image I(v), where v = (x, y, z) denotes voxel position, the
distance-gradient of two different voxels, v1 and v2, is defined as

∇dI(v1,v2) =
(
I(v1) − I(v2)

) v1 − v2

|v1 − v2|2
. (1)

Then, a MDGM map, G(v), of the image can be derived by using

G(v) = max
v′∈Ω

|∇dI(v′,v)|, (2)
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Fig. 1. (a) - (d) are slices respectively selected from a clinical CT image volume and
its corresponding GM, MDGM and signed-MDGM maps. (e) - (g) are value profiles of
lines in (a) - (d), which are marked as dashed lines

where Ω is the image domain. Following this formulation, when a voxel is at or
very close to object boundary, its MDGM value would be large and can approx-
imate the traditional local gradient magnitude. On the other hand, when voxel
position varies from boundaries towards interiors of homogenous regions (either
background regions or anatomical structures), the MDGM value smoothly and
gradually decreases. With this property, the MDGM map of homogenous regions
can provide global and detailed spatial information (which is about the distance
of a voxel to a certain object boundary), and therefore is superior to the local
gradient magnitude map.

As a comparative illustration, we individually computed the traditional local
gradient magnitude (GM) and MDGM maps of a clinical CT image volume
obtained from the Retrospective Registration Evaluation Project (RREP) 2. A
slice from the volume is shown in Figure 1a, while Figures 1b and 1c respectively
present the corresponding slices from the GM and MDGM maps. (Note that
values from individual images are re-scaled to [0, 1] for a fair comparison.) It is
observed that the GM map can only exhibit sharp edge information. In addition,
much more structural information can also be found in the MDGM map. For
instance, regions close to boundaries in Figure 1c suggest much more information
than those in Figure 1b. However, due to the limitation of image quality, smooth
changes within the background regions and anatomical structures may not be
clearly displayed in Figure 1c.

2 Images were provided as part of the project, “Evaluation of Retrospective Image
Registration”, National Institutes of Health, Project Number 1 R01 NS33926-01,
Principle Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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For a detailed description, Figures 1e - 1g respectively present the value
profiles of the same line (marked as dashed lines) in Figures 1a - 1c. As suggested
by the figures, feature values in Figure 1f are very sparse, where the overwhelming
majority are small and constant. Contrarily, for Figure 1g, the value variation
from boundaries towards homogenous regions is smooth and gradual. It is worth
noting that, although there is little intensity variation at the middle of the line
in Figure 1e, an evident and smooth saddle can be found in Figure 1g located
at the corresponding position. The raised white boundary slightly below the line
cause this saddle. It is because, unlike the local gradient magnitude operator,
the MDGM operator is globally defined.

2.2 Signed-MDGM

In order to make the MDGM map be capable of distinguishing voxels of objects
with different intensities, we further introduce the signed-MDGM map, Ĝ(v),
as follows,

Ĝ(v) = sign(I(v̂) − I(v)) · |∇dI(v̂,v)|, (3)

where v̂ = arg maxv′ |∇dI(v′,v)|, and the function sign(·) indicates the sign
of the difference. According to this modified definition, a voxel of relatively low
intensity would have a positive MDGM value and vice versa. (It should be noticed
that, for a fixed v, |Ĝ(v)| = G(v).)

As a comparison, Figures 1d and 1h respectively show the corresponding slice
and value profile from the signed-MDGM map of the aforementioned CT image
volume. Obviously, the signed-MDGM map presents all the properties shown in
the MDGM map. Furthermore, as shown in Figure 1h, voxels of objects with
different intensities are distinguishable. Hereafter, we adopt the signed-MDGM
feature to represent spatial information for registration tasks.

3 Multi-modal Image Registration

As we have discussed above, the signed-MDGM feature encodes spatial informa-
tion at a global level. We associate it with voxel intensity to form a two-element
attribute vector for registration. Given two images, in order to measure the de-
gree of dependence of the attribute vector space, multi-dimensional (i.e. 4D)
mutual information (MI) is exploited as a similarity measure.

3.1 Multi-dimensional Mutual Information

Suppose that Ir and If are the intensity domains for the reference and floating
images respectively, and Ĝr and Ĝf are their signed-MDGM domains. Given a
rigid transformation T, the 4D joint histogram hT(If , Ĝf , Ir, Ĝr) over the sam-
pling set V 3 can be approximated by either Parzen windowing or histogram-
ming [10]. Histogramming is employed in this paper because the approach is

3 The sampling set V can be all voxels in the floating image or a subset.
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computationally efficient. That is, hT(If , Ĝf , Ir, Ĝr) is constructed by binning
the attribute vector pairs (If(v), Ĝf(v), Ir(T · v), Ĝr(T · v)) for all v ∈ V. The
trilinear partial volume distribution interpolation [1] is exploited to update the
joint histogram for non-grid alignment.

Then the 4D mutual information registration criterion is evaluated by using

MI(T) =
∑

If ,Ĝf ,Ir,Ĝr

pT(If , Ĝf , Ir, Ĝr) log2

pT(If , Ĝf , Ir, Ĝr)

pT(If , Ĝf) · pT(Ir, Ĝr)
, (4)

where

pT(If , Ĝf , Ir, Ĝr) =
hT(If , Ĝf , Ir, Ĝr)

∑
If ,Ĝf ,Ir,Ĝr hT(If , Ĝf , Ir, Ĝr)

,

pT(If , Ĝf) =
∑

Ir,Ĝr

pT(If , Ĝf , Ir, Ĝr),

pT(Ir, Ĝr) =
∑

If ,Ĝf

pT(If , Ĝf , Ir, Ĝr).

3.2 Multi-resolution Optimization

In the proposed registration approach, the optimal transformation T̂ can be
estimated by

T̂ = arg max
T

MI(T). (5)

In order to accelerate the registration process and ensure the robustness of
the proposed method, we exploit a multi-resolution approach based on the Gaus-
sian Pyramid representation [11, 2, 12]. Rough estimates of T̂ can be found using
downsampled images and treated as starting values for optimization at higher
resolutions. Then the fine-tuning of the solution can be derived at the original
image resolution. In this paper, the value of multi-dimensional mutual informa-
tion at each resolution is maximized via the Powell’s direction set method in
multidimensions [13].

4 Implementation Details

Signed-MDGM Map: In our implementation, the signed-MDGM map is com-
puted by separating it into the positive and negative components. Then the
two components are calculated by sequentially processing voxels in intensity-
decreasing and intensity-increasing orders respectively.

During either procedure, we keep updating a Voronoi diagram and a (positive
or negative) MDGM map. When a voxel v is processed, the Voronoi diagram
is locally reconstructed by adding v into the Voronoi sites. We then update
the MDGM map within the Voronoi cell V (v) of v. The reason for ignoring
the exterior is illustrated as follows: Let v0 be a voxel in another Voronoi cell
V (v′) (i.e. |v − v0| > |v′ − v0|). Since v′ has been processed prior to v, we

Multi-dimensional Based Robust Image RegistrationMI singU MDGM
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have I(v′) ≥ I(v) (for decreasing order) or I(v′) ≤ I(v) (for increasing order).
Therefore, we have |∇dI(v′,v0)| > |∇dI(v,v0)| and the MDGM value of v0

remains unchanged.
Finally, the positive and negative components of the signed-MDGM map are

combined together according to their absolute values.

Multi-dimensional Mutual Information: For calculating multi-dimensional
mutual information, the number of 4D joint histogram bins should be limited,
due to the relatively high dimensionality. In practice, we have found that 4D his-
tograms with 32 bins both for intensity and signed-MDGM dimensions performs
good for registering two images of size 256 × 256 × 26. (Note that the number
of histogram bins may be tuned for downsampled images in multi-resolution
registration process.)

5 Experimental Results and Discussions

To evaluate the multi-dimensional mutual information similarity measure on
the novel two-element attribute vector space (hereafter referred to as MI-4D)
and the proposed multi-resolution registration method, we have performed three
categories of experiments on different image modalities: MR-T1, MR-T2 and CT.
Comparisons on capture range of the traditional mutual information similarity
measure on intensity (hereafter referred to as MI-2D) [1, 2] and MI-4D will be
presented in Section 5.1. Section 5.2 will show the performance comparisons
on registration robustness between the proposed method and the conventional
MI-2D based method. The registration accuracy of the two methods will be
demonstrated in Section 5.3.

5.1 Comparisons on Capture Range

T1 – T2 (3D – 3D) Registration: Three pairs of clinical MR-T1 and MR-
T2 image volumes (datasets #1, #2 and #3) were obtained from RREP. All
these images have been rectified for intensity inhomogeneity and scaling, and
hereafter they are referred to as T1-rec and T2-rec respectively. The size of these
image volumes is 256×256×26 voxels and the voxel size is around 1.26×1.26×4.1
mm3. Note that all image pairs used in our experiments (T1-rec, T2-rec and CT)
were first registered by the conventional multi-resolution MI based registration
method and were then examined by an experienced consultant radiologist to
ensure that the final alignments are correct and acceptable. This procedure was
employed for a better presentation of the probing results and also for further
facilitating the experiments that will be described in Section 5.2.

Figures 2a and 2d respectively plot the translational probes for registering
the low resolution 4 (Level 2) testing image pairs from three datasets for MI-2D

4 The definition of resolution levels in the Gaussian Pyramid representation follows
the same line as in [11]. The smoothing filter was {1, 4, 6, 4, 1} in our experiments.
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Fig. 2. Probing curves for 3D – 3D registration on three T1-rec and T2-rec datasets
(#1, #2 and #3). Translational probes for registering the low resolution (Level 2)
image pairs: (a) MI-2D and (d) MI-4D. Translational probes for registering the original
resolution (Level 0) image pairs: (b) MI-2D and (e) MI-4D. Rotational probes for
registering the original resolution (Level 0) image pairs: (c) MI-2D and (f) MI-4D

and MI-4D. At the original image resolution (Level 0), Figures 2b and 2e plot
the translational probes and Figures 2c and 2f plot the rotational probes based
on MI-2D and MI-4D respectively. (Note that the number of histogram bins for
MI-2D was set to 32×32 at all resolutions while that for MI-4D at Level 2 was
set to 32×32×8×8, where 8 was for the signed-MDGM feature.)

As observed in Figures 2a and 2b, for the translational probes of MI-2D at
different image resolutions, obvious local maxima occur when the misalignment
of two images is relatively large. On the contrary, Figures 2d and 2e suggest that
the shape of the probing curves based on MI-4D is improved and the capture
ranges of MI-4D can be relative longer than those of MI-2D. This is because,
with the proposed two-element attribute vector, regions with homogenous inten-
sities (including the anatomical structures and background regions) can provide
varying information related to the distance of a voxel to a certain object bound-
ary. Therefore, when the misalignment increases, the MI-4D values would keep
decreasing. With this finding, it is expected that the optimization procedure for
registration will be benefited and the registration robustness can be increased.
On the other hand, for the rotational probes, the capture ranges of MI-2D and
MI-4D are comparable (see Figures 2c and 2f).

CT – T1 (3D – 3D) Registration: Three pairs of clinical CT (around
512×512×30 voxels and 0.65×0.65×4 mm3) and T1-rec image volumes (datasets
#1, #2 and #3) obtained from RREP were used for the experiments. The results
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Fig. 3. Probing curves for 3D – 3D registration on three CT and T1-rec datasets
(#1, #2 and #3). Translational probes for registering the low resolution (Level 2)
image pairs: (a) MI-2D and (d) MI-4D. Translational probes for registering the original
resolution (Level 0) image pairs: (b) MI-2D and (e) MI-4D. Rotational probes for
registering the original resolution (Level 0) image pairs: (c) MI-2D and (f) MI-4D

of translational probes are shown in Figures 3a (MI-2D) and 3d (MI-4D) for the
low resolution (Level 2) registration and in Figures 3b (MI-2D) and 3e (MI-4D)
for the original resolution (Level 0) registration. Figures 3c and 3f respectively
plot the rotational probes based on MI-2D and MI-4D for the original resolution
(Level 0). Similar results of the capture ranges are obtained as compared with
T1 – T2 registrations.

5.2 Performance Comparisons on Registration Robustness

In order to study and compare the registration robustness of the proposed MI-
4D based method and the conventional MI-2D based method, we have designed
a series of randomized experiments for these two methods. The testing image
pairs were the aforementioned three T1 – T2 datasets (#1, #2 and #3) and
three CT – T1 datasets (#1, #2 and #3). The experiments took 100 tests on
each testing image pair for either method. At each trial, the pre-obtained ground
truth registration (see Section 5.1) of the testing image pair was perturbed by
6 uniformly distributed random offsets for all translational and rotational axes.
The perturbed registration was then treated as the starting alignment. The ran-
dom offsets for X and Y axes were drawn between [-150, 150] mm, while those
for Z axis and each rotational axis were respectively drawn between [-70, 70] mm

and [-0.35, 0.35] radians (i.e. [-20, 20] degrees). (Note that for any testing dataset
the same set of randomized starting alignments was used for both methods as a
fair comparison.)
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Table 1. The success rates with the MI-2D based method and the MI-4D based method
for all testing image pairs (T1 – T2 and CT – T1)

Testing Success rate

dataset MI-2D MI-4D

T1 #1 68% 89%

| #2 65% 95%

T2 #3 66% 81%

CT #1 66% 94%

| #2 63% 88%

T1 #3 70% 94%

To evaluate each derived registration with respect to the ground truth reg-
istration, the translational error (which was the root-sum-square of the differ-
ences for three translational axes) and the rotational error (which was the real
part of a quaternion) were computed. In our experiments, the threshold vec-
tor for assessing registration success was set to (2mm, 2◦), because registra-
tion errors below 2mm and 2◦ are generally acceptable by experienced clini-
cians [14, 15].

The success rates of the MI-2D based method and the MI-4D based method
for all testing image pairs are listed in Table 1. It is suggested that the MI-
4D based method (Column MI-4D) consistently has higher success rates as
compared with the MI-2D based method (Column MI-2D) for all testing image
pairs. (Note that, due to the space limitation, we do not show the registration
results of these 1200 randomized experiments in details.)

Based on these experiments, we also observed that the majority of failed
cases for the MI-4D based method had about 180◦ misalignment for one rota-
tional axis, while registration errors for other axes were quite small. (It is meant
that, after registration, the brain in the floating image was inverted along a ro-
tational axis.) Oppositely, for the MI-2D based method, most of the failed cases
had large translational and rotational misalignments simultaneously. This obser-
vation somehow implies that, along the translational axes, the capture ranges of
MI-4D are longer than those of MI-2D.

5.3 Registration Accuracy

To precisely demonstrate the registration accuracy of the proposed registration
method, similar randomized experiments described in Section 5.2 were performed
on a pair of T1 and T2 image volumes obtained from the BrainWeb Simulated
Brain Database [16] (181×217×181 voxels, 1×1×1 mm3 and the noise level was
3%). Note that this image pair is perfectly aligned. The experiments took 50
tests for the MI-4D based method, as well as for the MI-2D based method as
a comparison. For perturbation, the random offsets for each translational axis
were drawn between [-30, 30] mm, and those for each rotational axis were drawn

Multi-dimensional Based Robust Image RegistrationMI singU MDGM
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Table 2. The means and standard deviations of the registration accuracies of the MI-
2D based method and the MI-4D based method for a BrainWeb T1 – T2 image pair
with 3% noise level

Translation (10−3mm) Rotation (10−3 degrees)
Method

∆tx ∆ty ∆tz ∆θx ∆θy ∆θz

MI-2D −0.40 ± 0.71 −0.62 ± 1.41 4.15 ± 1.88 0.63 ± 1.85 0.47 ± 1.78 0.04 ± 1.55

MI-4D −1.09 ± 0.60 −1.10 ± 0.79 4.14 ± 2.05 1.02 ± 1.72 0.85 ± 1.61 0.02 ± 1.82

between [-0.17, 0.17] radians (i.e. [-10, 10] degrees). It should be noticed that all
registrations obtained by either method are successful.

The means and standard deviations of the registration accuracies for each
transformation parameter for these 100 experiments are lists of in Table 2, where
Row MI-2D is for the MI-2D based method and Row MI-4D is for the MI-
4D based method. According to the table, the accuracies of the MI-2D based
method and the MI-4D based method are comparable and acceptably high. Both
methods can achieve sub-voxel level registration accuracy.

6 Conclusion

To conclude, this paper has designed a new spatial feature, namely maximum
distance-gradient-magnitude (MDGM), for registration tasks. The MDGM fea-
ture encodes spatial information for each voxel in an image at a global level.
Then, we have improved the conventional mutual information (MI)-based reg-
istration framework by integrating the MDGM feature with intensity and set-
ting a two-element attribute vector to each voxel in individual images. Multi-
dimensional mutual information has been adopted as a similarity measure to
the attribute vector space. To increase computation efficiency and robustness
of the proposed method, the registration procedure has been a multi-resolution
iterative process.

The experimental results on clinical 3D MR-T1, MR-T2 and CT datasets
have indicated that the proposed method has relatively longer capture ranges
than the conventional MI-based method at different image resolutions. Moreover,
a large number of (around 1200) randomized experiments on precisely registered
clinical image pairs have demonstrated that the success rates of our method are
consistently higher than those of the traditional MI-based method. It has been
also shown that the registration accuracy of the new method is acceptably high
and obtains sub-voxel level.
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Abstract. The analysis of tissue perfusion in myocardial contrast
echocardiography (MCE) remains a qualitative process dependent on
visual inspection by a clinician. Fully automatic techniques that can
quantify tissue perfusion accurately has yet to be developed. In this pa-
per, a novel spatio-temporal technique is described for segmenting the
myocardium into differently perfused regions and obtaining quantitative
perfusion indices, representing myocardial blood flow and blood flow
reserve. Using these indices, Myocardial segments in 22 patients were
classed as either healthy or diseased and results compared to coronary
angiogram analysis and an experienced clinician. The results show that
the automatic method works as well as a human at detecting areas of
ischaemia, but in addition localizes the spatial extent of each perfused
region as well. To our knowledge this is the first reported spatio-temporal
method developed and evaluated for MCE assessment.

1 Introduction

The evaluation of tissue perfusion in various parenchymatous organs is important
in the diagnosis, determination of severity, and localisation of ischemic disease.
In echocardiography, the assessment of myocardial perfusion by means of ultra-
sound contrast agents is a valuable adjunct to wall motion analysis although
considered today of secondary importance in terms of automatic quantification.
The literature in this area is surprisingly sparse although clinically there is great
interest in perfusion assessment, as perfusion abnormalities are an earlier indi-
cator of coronary disease than abnormal wall motion.

Both quantitative and qualitative measurements of tissue perfusion can be
made by injecting a contrast agent (microbubbles) intravenously and then imag-
ing the changes in signal intensity as the contrast agent makes its pass through
an organ. This has permitted the application of myocardial contrast echocardio-
graphy (MCE) to the evaluation of myocardial blood flow and, thus, detection
of obstructive coronary artery disease([1, 2, 3]). However, interpretation of MCE
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studies have mostly been qualitative and subjectively based upon a clinician’s
visual inspection of the image sequences.

Recent advances in contrast ultrasound have made it possible to develop
quantitative analysis systems capable of extracting clinical meaningful informa-
tion from MCE studies. These are mostly based on the destruction-replenishment

principle introduced by Wei et al. [4]. During a constant intravenous infusion of
a contrast agent the microbubbles within the myocardium are depleted using
high power ultrasound (mechanical index = 1.0) and their replenishment is as-
sessed using low power ultrasound (mechanical index = 0.1). The replenishment
kinetics allow the calculation of myocardial blood flow by estimating blood vol-
ume and mean blood velocity within the regions of interest (ROI) placed in the
myocardium. Linka et al. ([5]) took the processing a step further by analysing re-
plenishment curves within the entire left ventricular myocardium and displaying
the calculated parameters (blood flow, blood volume and mean blood veloc-
ity) with different hues in parametric colour maps. Each parameter is displayed
in a separate image whose colours display the quantities calculated by the re-
plenishment model. Lower colour hues will indicate lower perfusion rates, and
elucidate possible diseased areas. However, these semi-automatic techniques still
require user intervention and visual interpretation, while they suffer from ad hoc
smoothing in space and time.

Recently, we have developed a new approach for perfusion quantification ([6])
in which a novel spatio-temporal method is used to classify the MCE sequences
into different regions of perfusion. Classification is done by analysing the tempo-
ral pattern of relationships between pixels in a global manner, using a Bayesian
Factor Analysis (BFA) model, and incorporating spatial information through a
Markov Random Field (MRF). That paper presented only a preliminary version
of the algorithm and no clinical validation.

This paper, however, goes on to further develop the quantification algorithm
and shows how the BFA-MRF method can be used to obtain quantitative perfu-
sion indices that can aid the clinician in the diagnosis and assessment of diseased
tissues. Two different indices, blood flow and blood flow reserve, are extracted
for each region and used to identify the region as normal, abnormal or non-
diagnostic. A clinical validation of the methodology based on 22 patient studies,
is also presented, and the results are compared to coronary angiogram analysis
as well as diagnosis from a clinician experienced in MCE. The results show that
the automatic method works as well as a human at detecting areas of ischaemia,
but in addition localizes the spatial extent of each perfused region as well.

2 Methods

2.1 Image Data

All patients were referred to the John Radcliffe Hospital for standard dobutamine
stress echocardiography for evaluation of inducible ischemia. Only patients, with
a scheduled coronary angiogram were included in this study. 12 patients had a
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normal angiogram or insignificant coronary artery disease and 10 patients showed
various degrees of stenosis (>50%) in one or more of the three main coronary
arteries.

All datasets were obtained using the replenishment principle of Wei et al. [4]
during a constant intravenous infusion of the contrast agent SonoVueR© (Bracco
International B-V). The contrast agent is routinely used in our hospital to en-
hance the endocardial border for wall motion analysis and to assess myocardial
perfusion visually. Images were acquired using the real-time Power Modulation
technique on the SONOS5500 ultrasound machine (Philips, Andover, MA, USA)
and afterwards transferred to a computer for off-line analysis. Here, image se-
quences were cut according to the acquired ECG to keep just end-systolic (end
of T-wave) frames and to extract the replenishment sequence. In this study, only
standard apical views were used to evaluate the replenishment sequences (apical
4-chamber view, apical 2-chamber view, and apical long-axis view) to allow vi-
sualisation of the entire left ventricular myocardium and to minimise artefacts.
Images were included into the study if the entire myocardium was visible, free of
severe artefacts, and the cavity sufficiently opacified. Most MCE sequences were
acquired at peak stress and therefore only 8 rest sequences were available. These
resulted in 50 different image sequences consisting of various apical 4-chamber
views (4 at rest and 21 at stress), apical 2-chamber views (1 at rest and 9 at
stress) and apical long axis views (3 at rest and 11 at stress). For the automatic
algorithm analysis, half the image sequences available in each view were ran-
domly selected to form a control group of 25, with the remaining used as a test
group. This was done so that the quantification measures could be trained on
the control group and then ’blindly’ tested on the remaining 25.

2.2 Clinical Reference

The reference (ground truth) for this study was coronary angiography with vi-
sually assessed stenosis >50% quoted as abnormal. The left ventricular my-
ocardium for each dataset was divided using the 16-segment anatomical heart
model proposed by the American Society of Echocardiography [13] (i.e. each
wall was sub-divided in an apical, mid and basal segment). The same model
was used to assign each segment to one of the 3 major coronary arteries (LAD,
LCX, RCA) as is the clinical practice for assessing heart function. If coronary
angiography revealed abnormality in the assigned artery, the segment was des-
ignated abnormal and normal otherwise. In total 246 myocardial segments were
tagged in this manner. Although there is tremendous variability in the coronary
artery blood supply to myocardial segments, it was felt appropriate to assign
indivual segments to coronary artery territories to allow for standardisation and
comparison to the other methods.

An experienced MCE reader (AE) analysed each dataset qualitatively by vi-
sual assessment of myocardial perfusion during the replenishment sequence, and
scored each segment as normal, abnormal or non-diagnostic. The MCE reader
was completely blinded to any patient information and the outcome of the coro-
nary angiogram. The image quality of each dataset was also graded by the MCE
reader as poor, medium or high.
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2.3 Review of Automatic BFA-MRF Method

We have previously proposed a novel spatio-temporal technique to assess tissue
perfusion by automatically classifying the ultrasound images into different re-
gions of perfusion. This Bayesian Factor Analysis - Markov Random Field (BFA-
MRF) method is described in detail in [6], and is summarized below. Briefly, it
treats the classification as a statistical problem, which involves assigning to each
pixel a class label taking a value from the set L = {1, 2, . . . , l}, where each pixel
is indexed by a two-dimensional rectangular lattice S = {1, 2, . . . , n} and char-
acterised by a p-variate vector of intensity values yi = {yi1, . . . , yip}, i ∈ S. In
this case each observation vector yi represents an intensity-time curve for a sin-
gle pixel location. The problem of classification is then to estimate the true but
unknown labeling configuration, x∗, given the observed intensity time vectors,
Y′ = {y1, . . . ,yn}. In particular, the maximum a posteriori (MAP) estimate of
x is used:

x̂ = arg max
x∈X

{P (Y|x)P (x)}. (1)

The right-hand side of the above equation contains two parts: P (Y|x) and P (x),
which are defined as a Bayesian Factor Analysis likelihood distribution and a
Markov Random Field prior distribution, respectively. What remains is the es-
timation of the parameters of these two distribution functions, where the BFA
model is constructed as a generative latent variable model,

(yi|(µ,Λ, fi) = µ + Λfi + εi, (2)

for each observation vector yi(i = 1, . . . , n), where µ is the overall popula-
tion mean, Λ is a matrix of constants called the factor loading matrix; fi =
(fi1, . . . , fil), is the factor score vector for pixel i; and the εi’s are noise variables
assumed to be mutually uncorrelated and Normally distributed N(0,Ψ). The
factor loading matrix, Λ, expresses how each latent factor loads onto the ob-
served variables, therefore giving an indication of how the hidden factors might
look. In the case of a perfusion study, each column in the factor loading ma-
trix will represent an intensity-time curve associated with each different type
of perfusion present in the dataset. The factor scores give the estimated value
(“weight”) of the observations on the hidden factors. Therefore, if each hidden
factor represents a class, the factor score vector gives an indication of how much
an observation belongs to each class. Since the parameters µ, Λ, the f ′is, and
Ψ are all unobservable, a Normal likelihood distribution for each yi is assumed,
and written as:

p(yi|µ,Λ, fi,Ψ) = (2π)−
p

2 |Ψ|−
1

2 e−
1

2
(yi−µ−Λfi)

′Ψ−1(yi−µ−Λfi). (3)

The probability of an MRF realisation, x, is given by the Gibbs distribution:

P (x) = Z−1e(−ωU(x)), (4)

where
U(x) =

∑

c∈C

Vc(x) (5)
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Fig. 1. Frames 1, 3 and 12 of a 4-chamber image sequence and the classification result.
White = normal, Gray = abnormal, black = cavity.

is the energy function which is a sum of clique potentials Vc(x) over all possible
cliques C. Z is a normalisation term and ω is a positive constant which controls
the size of clustering. The potential function used is, Vc(xi) = −δxi=x′

i
where

δxi=x′

i
= 1, if xi = x′

i, and 0 otherwise.
The novelty of this particular algorithm stems from the way it interlinks the

factor scores in the BFA model to the prior probability of the MRF model. The
factor score vector indicates how much an observation belongs to a particular
class. It is therefore assumed that the prior probability of the factor scores ma-
trix, F′ = (f1, . . . , fn), follows the same prior probability of the classification
configuration, x, and in fact that the factor score for each hidden factor (or
class) is equivalent to the posterior probability of the class label. For every l ∈ L

and i ∈ S

fil = P (yi|l)P (xi = l). (6)

Using the prior probability (4) and the likelihood function (3) with respect to
xi and fil gives

fil = Z−1e(−ωU(xi)) × (2π)−
p

2 |Ψ|−
1

2 e−
1

2
(yi−µ−Λlfil)

′Ψ−1(yi−µ−Λlfil). (7)

Therefore the posterior probability values obtained through the MRF-MAP clas-
sification can directly be used as the factor scores. Thus, the strategy underlying
this algorithm can be summarized as follows: (1) With the Gibbs function esti-
mate the labelling configuration, x̂, using the current estimate of the parameters;
(2) use it to specify the factor scores matrix, F; (3) and then estimate the new
values of the parameters µ, Λ , and Ψ, using an iterative conditional modes
(ICM) approach as described in [6]. These steps are iteratively repeated until
suitable convergence is reached. The BFA-MRF algorithm was initiated using
a simple K-Means Clustering method that provides the initial estimate for the
labelling configuration, x̂. The algorithm was implemented in a multiscale frame-
work to improve convergence, first executed at a 1/4 of the resolution, then at
1/2, and finally at full resolution.

The above method was applied to each dataset to divide the left ventricle into
regions with different perfusion characteristics. The number of regions (factors)
to search for was set to three, corresponding to cavity, normal and abnormal
classes (see Fig. 1). However, it can be expected to find datasets where only 2
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Fig. 2. Frames 3, 7 and 8 of a 4-chamber image sequence affected by motion. White
shows the 3rd region found due this artefact. The classification boundaries are overlayed
in each frame

classes should be present. This happens when the whole of the myocardium is
either completely healthy; or a similar abnormality is found throughout the my-
ocardium (i.e. comparable stenosis in all of the coronary arteries). Nonetheless,
it was found that for these datasets, looking for a third class did not alter the
results. The reason for this is that when a 3rd class is sought the algorithm does
not divide the myocardium any further (because there is no further distinction to
be made), but instead will find a third separate region where motion might have
caused misalignment (Fig. 2); or the papillary muscles appeared in the cavity.
Setting the number of factors to three does mean that for cases where there are
indeed three classes present, extra smaller classes like the two mentioned above,
will be absorbed by more significant classes that have characteristics close to
itself. To determine the exact number of physiological important regions (i.e.
perfusion types) present in the data has always been a difficult problem for any
Factor Analysis approach (see [7, 8]). A better strategy would be to find this
number automatically using prior physiological knowledge. This will be the sub-
ject of future work. For this study the number was kept at 3 for all datasets,
and it can be seen from the results that this choice works well.

2.4 Quantification

Having divided the myocardium into differently perfused regions, the next step is
to find clinically meaningful quantitative parameters that can be used to identify
each region as either normal, abnormal or non-diagnostic. Non-diagnostic, in
this case, is defined as regions that were caused by ultrasound artefacts (motion,
blooming, shadowing, etc.) and therefore have nothing to do with the disease
state of the tissue.

The Measures. The mean intensity time curves for each region are calculated.
These intensity curves, representing the microbubble replenishment, can then
be used to obtain ‘perfusion indices’ that represent myocardial blood flow and
relative blood flow reserve within each region. Before comparisons can be done
between datasets based upon the intensity curves, these curves need to be nor-
malised to compensate for variability of intensity amongst the datasets. This
variability is usually due to heterogeneity of acoustic power, attenuation and
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differences in ultrasound acquisition between the datasets. To do this, the cavity
curve is first identified as the curve with the highest mean intensity. The rest of
the curves are then normalised by additively raising/lowering all intensity levels
so that the mean intensity of the cavity curve is always at the same level. In the
results shown here, this level was set to 200 which was found to be approximately
the mean of the cavity class for all datasets.

The normalised intensity curves are then fit to the exponential model as
suggested by Wei et al. [4]:

ym(t) = A(1 − e−βt) + C (8)

In the above equation, A is the plateau of the exponential curve, β the initial
slope and C a constant representing the start value of the curve. The constant
C was added to the establised Wei et al. model because due to incomplete
microbubble destruction, the mean intensity level of myocardial regions in real
perfusion data seldom starts with a zero intensity. Curve fitting was only done
for myocardial intensity curves, and not for the LV cavity. Wei et al. showed
that for the exponential model, the saturation value (A + C) is equivalent to
myocardial blood volume, the gradient β to myocardial blood velocity, and that
the multiple of the two (A + C)β represents myocardial blood flow; which is the
first perfusion index used in this paper.

A second parameter available from the intensity curves is the area under the
curve. For each myocardial intensity curve (ym), the ratio of the integral of the
curve to the integral of the cavity curve (yc) was calculated,

index2 =

∫
ymdt∫
ycdt

. (9)

where the integral is taken over the same time interval. Since the concentration
of the microbubbles within the LV cavity stays at roughly the same level, the
intensity ‘curve’ for the cavity will essentially be a straight line and is an indi-
cator of the total blood reserve in circulation. Therefore, the ratio as calculated
above represents relative myocardial blood flow reserve and is comparable to
the perfusion index proposed by Christian et al. [9] and Klocke et al. [10], for
Magnetic Resonance Imaging (MRI) contrast perfusion studies.

Analysis. First, a distinction needs to be made between non-diagnostic regions
and other regions.Thiswas doneusing the goodness-of-fitmeasure obtainedduring
curvefitting.Basedon the assumption that any region severely affectedbyartefacts
will notfit theexponentialmodel, all regionswitha lowgoodness-of-fitvalue (ε < x)
were classified as non-diagnostic, and excluded from subsequent analysis.

For the remaining regions, the two measures were used for further classifica-
tion. Although these perfusion indices do not provide absolute values of coronary
blood flow and flow reserve1, they are still clinically meaningful and can be used

1 To calculate absolute values, both the ultrasound beam width as well as the exact
microbubble concentration is needed, see [4].
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to identify healthy and diseased tissue. Each index was used separately to clas-
sify a region as either normal or abnormal, and the results compared to the
clinician’s analysis. The combination of the two indices, simple calculated by
multiplying the two values, was also evaluated as an index.

To be able to do this classification the indices were learned empirically to find
the values at which a distinction can be made between normal and abnormal
regions. For all the perfusion indices low values indicate diseased tissue, while
high values correspond to healthy tissue. Therefore a certain cut-off value needed
to be found for each index, where regions that have a value below the cut-off
are classed as abnormal and regions with a value above as normal. Using the
datasets in the control group a search was conducted where the cut-off value was
changed, in suitable steps, from the minimum value to the maximum value found
in the group. At each step, sensitivity and specificity values were calculated, and
the value that gave the best combination of the two, was kept. This cut-off value
is then also used to classify the myocardial segments in the test group, so that
the quantitative method can be properly evaluated.

In practice, an abnormal region does not only fall in one heart segment, but
may cross multiple segments or may be constrained to part of a segment only.
This type of distinction is not picked up by a clinician, but it is made by the
BFA-MRF algorithm which localizes the spatial extent of the regions. Therefore,
to make comparisons between the two approaches, the same 16-segment model
was used for the BFA-MRF method. After each perfused region (class) is found,
the myocardium for each dataset is divided into six equal segments starting from
the left basal part of the myocardium and going around until the right basal part
(as described in 2.2). The class of each segment is then equal to the class which
had the most pixels present in that segment. Comparison was then done by
calculating sensitivity and specificity values for the expert, as well as for each
one of the indices. Using the angiogram analysis as the ground truth, sensitivity is
defined as the percentage of abnormal myocardial segments correctly identified,
while specificity is the percentage of normal segments correctly identified. Non-
diagnostic segments were not included in the calculation of these values.

A short summary of the complete algorithm is given below:

1. Use the BFA-MRF algorithm to divide the LV into 3 regions with different
perfusion characteristics

2. Obtain the mean intensity-time curve for each region
3. Identify the cavity curve as the one with the highest mean intensity and

normalise all the curves by additively raising/lowering the intensity levels so
that the mean intensity of the cavity curve is equal to 200.

4. Fit the normalised intensity curves to the exponential function yi = A(1 −
e−βt) + C

5. Calculate the blood flow index = (A + C)β.

6. Calculate the blood flow reserve index =

∫
ymdt∫
ycdt

7. Use these values separately to classify myocardial segments as either normal
or abnormal.
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3 Results

Using the angiogram analysis, the myocardial segments were divided into a nor-
mal and abnormal batch. For each of these batches the first order statistics of
the blood flow index (BFI), blood flow reserve index (BFRI), and the multiple
of the two, are shown in Table 1; first for all the datasets together, then for the
control group and lastly for the test group.

All of the 246 myocardial segments were analysed by the clinician and the au-
tomatic algorithm. The clinician was only able to make a diagnostic decision for
193 (78.39%) of these segments, while the BFA-MRF algorithm performed much
better and quantitative analysis (those not classified as non-diagnostic by the
algorithm) was possible in 215 (87.40%) segments. The non-diagnostic segments
found by the automatic method had a mean and standard deviation (σ) for

Table 1. First order statistics for Perfusion indices. (BFI = blood flow index, BFRI
= blood flow reserve index)

BFI BFRI BFI×BFRI

All datasets
Normal 48.83±22.25 0.5066±0.1225 25.55±15.68
Abnormal 23.36± 3.98 0.3686±0.0633 8.72± 2.16

Control Group
Normal 47.03±20.83 0.5109±0.1006 24.20±13.19
Abnormal 23.61± 4.69 0.3697±0.0620 8.96± 2.46

Test Group
Normal 51.12±23.74 0.5021±0.1418 27.27±18.21
Abnormal 22.99± 2.64 0.3672±0.0649 8.40± 1.60

Table 2. Evaluation percentages for Test Group

Clinician BFI BFRI BFI×BFRI

Cut-off Value —– 24.75 0.3884 9.61
Sensitivity (%) 48.84 54.76 57.14 52.38
Specificity (%) 79.66 87.67 79.45 87.67
Correctly classed (%) 68.48 75.65 71.30 74.78

Table 3. Evaluation percentages for All Datasets

Clinician BFI BFRI BFI×BFRI

Sensitivity (%) 49.37 55.91 56.99 54.84
Specificity (%) 79.82 90.78 78.72 92.20
Correctly classed (%) 67.02 76.92 70.09 77.35
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the goodness of fit values equal to 0.1555±0.1536. For all of the other segments
goodness of fit values had a mean and standard deviation of 0.8935±0.1161.
Therefore a distinction can be clearly made and all curves with goodness of fit
values smaller than 0.46 (mean + 2σ) were classed as non-diagnostic.

Table 2 (for the test group) and Table 3 (for all the datasets), shows the
sensitivity and specificity values, as well as the percentage of segments correctly
identified (compared to angiogram analysis), for the clinician and the three per-
fusion indices. The cut-off value obtained using the optimisation above is also
shown.

4 Discussion

In all cases, diagnosis done using the automatic method performed better than
the experienced MCE reader. The method was capable of satisfactory sensitivity
and specificity values despite a range of image quality (of the 22 patients the
MCE reader graded 5 as having poor image quality, 8 as medium, and 9 as
high). The study showed that even with simple perfusion indices the method can,
with an acceptable degree of accuracy, distinguish between healthy and diseased
myocardial segments. It is also capable of excluding regions affected by imaging
artefacts such as motion and shadowing, ensuring that these regions do not alter
the results. Apart from just scoring a specific segment of the myocardium, the
algorithm can also show the full spatial extent of a region (as in Fig. 3(d)) and
is not confined to the normal 16-segment heart model. This means that a more
accurate localisation of a defect is possible.

However, there are some remaining technical limitations that need to be ad-
dressed. Real perfusion curves are very noisy (see Fig. 3(e)) and any quantitative
parameter based on the intensity curves will therefore be sensitive to the amount
of noise present. Intensity variation within the cavity (due to attenuation, poor
acquisition, etc.) will also affect the normalisation step and therefore the intensity
curves. Using the mean intensities as well as curve-fitting alleviates some of the
noise and intensity variation found, but it is difficult to completely compensate
for both. We are working towards an attenuation correction ultrasound contrast
imaging protocol in separate work [12]. The algorithm also assumes correspon-
dence between pixel locations from frame to frame in an image sequence. This
might not be true in cases affected by motion, and a pre-processing registration
step might align the images more effectively than just using ECG-triggering and
improve classification results. However preliminary assessment has shown that
on the data, alignment did not improve results [11]. Grossly mis-aligned data
also invalidates the assumption of pixel correspondence across time as it is likely
that tissue has gone out of plane.

This study has identified a number of interesting questions regarding tissue
perfusion quantification. In this paper, only the stress image sequences were
used, and a simple decision was made between healthy and diseased tissue. A
more precise evaluation of the disease state of the myocardium might be possible
if the results of the algorithm was compared between the rest and stress datasets
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Fig. 3. Frames (a) 1, (b) 10 and (c) 20 along with (d) the classification result (White =
normal, Gray = abnormal, black = cavity) for a stress 2-chamber view of an abnormal
patient with occlusion in all three main coronary arteries. The associated normalised
intensity curves is shown in (e), while (f) shows the diagnosis from the computer
algorithm (note the error made in anterior wall) and (g) the clinician’s diagnosis (error
in whole myocardium) (0 = Normal, 1 = Abnormal). This dataset was graded as ’poor’,
but is shown here as an example of the strength as well as weakness of the computer
algorithm

of a patient. In this way, reversible as well as fixed defects can be studied and
the perfusion indices more accurately determined. It would also be interesting to
study the correlation of the perfusion indices with true values of tissue perfusion,
as well as varying grades of severity of stenosis. This type of analysis might
permit a more complicated separation of the degrees of perfusion/stenosis and
allow distinction between milder/severe abnormalities.

5 Conclusion

Although several problems regarding quantitative analysis of tissue perfusion
using MCE still remain uncertain, this study has documented that the BFA-MRF
method can provide a reliable and accurate evaluation of myocardial disease in
an ordinary clinical setting. The results have shown that the automatic method
performs as well as an experienced clinician, and provides additional information
regarding the spatial extent of a tissue defect. This technique can therefore
provide a valuable supplementary diagnostic tool, alongside wall motion analysis,
for the detection and assessment of coronary artery disease.
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Abstract. This paper presents a novel approach for object segmentation in med-
ical images that respects the topological relationships of multiple structures as
given by a template. The algorithm combines advantages of tissue classification,
digital topology, and level-set evolution into a topology-invariant multiple-object
fast marching method. The technique can handle any given topology and enforces
object-level relationships with little constraint over the geometry. Applied to brain
segmentation, it sucessfully extracts gray matter and white matter structures with
the correct spherical topology without topology correction or editing of the sub-
cortical structures.

1 Introduction

The topological properties of 2D and 3D objects are often very simple, regardless of the
complexity of the geometric object. The cortex of the human brain is a striking example;
despite its intricate folds, it is considered to have the topology of a sphere, without any
hole or handle-like junction. Most organs and sub-structures found in the human body
also share this spherical topology.

Ideally, segmentation algorithms that extract objects from 2D or 3D images should
respect the object topology. A major problem is that topology is a global property of
the object, whereas most extraction techniques operate locally on the voxels or pixel of
an image. Two approaches to addressing this issue are to correct the extracted object to
obtain the desired topology, or to start from a template object, with the correct topology,
and deform it with topology-preserving deformations.

Topology correction techniques alter a segmented object to enforce a spherical
topology by removing all holes, sub-parts and handles [16, 7, 18]. However, changes
in the resulting object are generally unrelated to the underlying image data and non-
spherical topologies cannot be obtained systematically. Topology preserving deforma-
tions are more flexible in that they can start from a template with any arbitrary topol-
ogy. In most surface-based methods, the object of interest is initialized as a sphere,
or its topology is corrected using the previous set of methods. Then, a surface evolu-
tion algorithm, either explicit [10] or implicit [8, 3] deforms the original surface using
forces inherited from a tissue classification technique. This approach still seems limited
to spherical topology. Another limitation is that the topology constraints are enforced
on one object at a time. When applied simultaneously to multiple objects, the level set
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method must use a combinatorial composition of level set functions [23] that makes the
handling of topology more difficult if not impossible.

In this paper, we address these limitations with a new technique that simultane-
ously segments multiple objects in an image, while constraining the segmentation to be
consistent with the topology of a given template. Our algorithm interweaves tissue clas-
sification and topology-invariant object segmentation in an iterative, multi-object fast
marching method. The method can enforce spherical or non-spherical topology con-
straints on a set of objects. Moreover, segmenting these objects simultaneously permits
us to encode global object relationships in the topology template: neighboring objects
of the template must remain neighbors in the segmented image, separate objects have
to stay separated.

The proposed method is somewhat related to some non-linear registration tech-
niques [4, 14] that register a template image to the subject image and preserve the
topology using diffeomorphic transformations. However, the approaches are actually
very different: our algorithm assumes an object-level class structure and estimates its
statistics from the data instead of deforming the image to establish point correspon-
dences. Similarity metrics and deformation models are not required. The result we ob-
tain is truly a tissue segmentation, and two adjacent structures with the same intensity
will not be separated.

The paper is organized as follows. In Section 2, we introduce the necessary concepts
from tissue classification, level sets and fast marching methods, and digital topology.
Section 3 describes how these components are combined into our new segmentation al-
gorithm. Section 4 presents experimental results on the problem of brain segmentation,
along with a discussion of the main features of the algorithm.

2 Background

2.1 Definition of the Problem

We are interested in retrieving a collection of objects with a given topology from a
digital image I in Z3. The objects are represented as digital volumes Vk ∈ I , and
completely cover the image:

⋃
Vk = I (i.e. there is no background, or the background

is itself an object).
Each object Vk, ideally, is characterized by a constant intensity ck in the image. A

topology template, defined as a segmentation of the image in objects that has the correct
topology, but not necessarily the correct geometry, is assumed to be given. For instance,
if we have one object with spherical topology and its background, this template could
be the image of a sphere. For each object, we can compute a membership function uj,k

that will attribute a normalized score between zero and one (eg. a probability value) that
measures whether pixel j belongs to the object k.

2.2 Pixel Classification and Membership Functions

Tissue classification methods can be used to segment an image by assigning each pixel
to an object, defined by some statistical properties. A common assumption is that the
object can be modeled as a Markov Random Field with a Gaussian distribution for
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the intensity. These methods are fast, accurate, and can incorporate prior information,
spatial regularization, adaptation to signal inhomogeneities, and other properties [9, 19,
13, 25]. A major drawback for enforcing topological constraints is that the classification
of each voxel is made simultaneously and almost independently. There is no concept of
a global object one can easily manipulate with these methods.

Most classification techniques estimate a membership function that reflects the prob-
ability for each pixel to belong to a given class. We use the Fuzzy C-means (FCM)
classification paradigm, although most other classification techniques would also be
suitable. The basic FCM algorithm iterates the two steps:

1. compute the membership functions uj,k = (‖Ij−ck‖2)1/1−q∑
k(‖Ij−ck‖2)1/1−q given the centroids

ck,

2. compute the centroids ck =
∑

j uq
j,kIj∑

j uq
j,k

given the membership functions uj,k,

until it converges. It minimizes the energy E =
∑

j,k uq
j,k‖Ij − ck‖2. The centroids ck

correspond to the mean intensity for the object k.

2.3 Fast Marching Methods

Fast marching methods, along with their related level set evolution approaches, of-
fer an alternative to independent pixel-based computations. These methods evolve a
3D implicit surface embedded into a 3D volume, using efficient computation tech-
niques [12, 17]. Surface evolution techniques, commonly used in image segmentation
[22, 15, 8], iteratively evolve a surface according to image and smoothness forces, un-
til an equilibrium is reached. Fast marching methods propagate an initial surface over
all the image in one iteration, but only in one direction (the surface cannot move over
points previously visited).

Fast marching methods are implemented through a binary tree sorting technique
[17]: all points in front of the initial surface are ranked into a binary tree depending
on image and smoothness properties, then the surface is brought in front of the first of
those points. Its neighbors (now in front of the surface) are added to the binary tree, and
the surface is moved again until the tree is empty. This algorithm performs in N log N ,
with N the number of visited points. It is commonly used in many tasks involving the
propagation of a boundary condition (e.g. distance function computations).

2.4 Digital Topology

The topology of 3D objects can only be characterized globally, by the Euler Number of
the surface at their boundary. However, topology changes in evolving scalar fields only
occur at critical points [5, 24, 1], which can be detected without computing a global
measure. In binary images, these points are locally the singular points of the surface
bounding the digital volume (regular and critical points are also referred to as simple
and non-simple points in the binary case).

To identify a critical point j in a binary image, we compute the number of regions
inside and outside of the object, respectively Nin(j) and Nout(j). The regions are de-
fined as the sets of 6,18 or 26-connected neighbors to the point of interest. It is enough
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a. b.

Fig. 1. Critical points and connectivity: a) an example of critical or regular point depending on
the connectivity, b) an example of unclassified point with (6,6) connectivity. In (a), the light gray
pixel is critical for the gray object with our (6,6) connectivity (left). It would be regular for (6,26)
or (6,18) connectivity. With a (18,18) or (26,26) connectivity, the object would have a handle
but the background object would stay connected into one piece, so they would intersect. When
other points are attributed to the object, the critical point can become regular (right). In (b), the
unclassified point (in black) cannot be attributed to either the light or the dark gray object without
changing the topology (top). However, a subdivision of the pixel into four half resolution pixels
brings a viable solution, without changing the topology (bottom)

to know if a point is regular or critical (although there are different categories of critical
points):

j is regular ≡ Nin(j) = Nout(j) = 1

An important issue when dealing with digital topology is to specify the connectivity
of the object and the background. With multiple objects, this becomes a difficult issue
because the background for one object must contain the other objects as well. This
constraint prohibits two adjacent objects to have 18- or 26-connectivity, because they
could go through each other without making a hole (see Figure 1-a). The only viable
option is for all objects to have 6-connectivity. This connectivity prevents objects from
crossing each other, but can create artificial background points at their interface. These
points will remain unclassified in the segmentation, and require a sub-pixel resolution
to be properly attributed to the objects (see Fig. 1-b). In practice, very few of these
points appear in the computations, so we currently leave them unclassified.

3 Segmentation Algorithm

3.1 Algorithm Outline

To compute the topology preserving tissue classification, the topology template is first
aligned to the image to be segmented. This is used as an initialization for one iteration
of a modified FCM algorithm. We next remove from each object the pixels with low
membership values through a process we call “thinning”, leaving only a skeleton of the
original object with the same topology and high membership values. We then reverse
the process, which we call “joint marching”; starting from the skeleton, new points are
added to all objects until there is no outside point left. Pixels with high membership
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values are recovered first in the joint marching process. This procedure will modify the
template to better match the image I , but it will not completely displace the template, as
the skeleton remains fixed. We have to iterate these two steps until the objects stabilize.
The membership function is re-computed at each iteration, to take into account the extra
constraints given by the topology.

3.2 Initialization: Image Alignment

In the two steps of the algorithm, the objects are reduced to their skeleton, then ex-
panded again. To properly segment the objects, we implicitly assume that the template
segmentation is close enough to the image segmentation to roughly share the same
skeleton.

We enforce this assumption at the beginning of the algorithm by registering the im-
age to segment to the topology template, using a rigid transformation. In the case of
brain segmentation, we created our templates in Talairach space, so the images can be
registered by AC-PC or Talairach alignment [20, 2], as well as automated rigid align-
ment. Note that we need to register the image to the template, as resampling the template
may affect its topology.

3.3 Membership Functions

We require membership functions for defining the objects within the image, similar to
how distance functions are used in level set approaches. The membership function must
be bounded and yield comparable membership values for the different objects. The
FCM membership function fulfills these requirements. However, the FCM algorithm is
sensitive to noise, so we add a regularization term [13] to improve the smoothness of
the membership:

uj,k =
(‖Ij − ck‖2 + β

∑
l∈Nj ,m �=k uq

l,m)1/1−q∑
k(‖Ij − ck‖2 + β

∑
l∈Nj ,m �=k uq

l,m)1/1−q
.

In our algorithm, ck is computed using only the pixels inside the object Vk, and the
topology constraints influence the results. However, we still obtain a result that mini-
mizes the same energy E, given the constraints, as the two marching algorithms follow
the lowest energy path on the memberships surface.

3.4 Topology-Preserving Thinning

Topology-preserving fast marching methods are a key component of our algorithm. In
the thinning step, the algorithm is the following:

Algorithm 1. Object thinning

1. start from the object Vk in the template,
2. sort all the points j on the inside boundary of Vk into a binary tree, ranked by their

membership uj,k,
3. extract the point j with lowest membership from the tree,
4. if the point is regular for the object Vk, remove it from the object
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5. if the point is critical for the object Vk, keep it in the object
6. if j is removed, insert its neighbors that were inside the volume or previously criti-

cal into the tree,
7. go back to step 3, until the tree is empty.

The fast marching technique propagates from the boundary to a skeleton, the mini-
mal set of critical points inside Vk, with the ordering given by uj,k. Regular points are
points that can be removed without changing the topology, while critical points need to
be kept to preserve the object’s topology. Certain points may or may not remain critical
while the object is thinning (see Figure 1), so it is necessary to check them whenever
the object changes in their neighborhood. The idea is similar to the level set evolution
method of the TGDM algorithm [8], but the fast marching method is non-iterative and
handles critical points in a principled way. More importantly, the fast marching tech-
nique extends naturally to joint, multiple object segmentation, a key advantage of our
method.

3.5 Topology-Preserving Joint Marching of Multiple Objects

After the objects are thinned into skeletons, we perform the opposite operation and grow
them again to cover the entire image. The algorithm is again a fast marching method,
similar to the previous one:

Algorithm 2: Object growing
1. start from the skeletons of objects {Vk},
2. sort all the points j on the outside boundary of all objects into a binary tree, ranked

by their membership uj,k,
3. extract the point j with highest membership from the tree, and retrieve the associ-

ated object Vk,
4. if the point is regular for the object Vk, add it to the object Vk,
5. if the point is critical for the object Vk, keep it outside,
6. if j is added, insert its neighbors that were outside the object or previously critical

into the tree,
7. go back to step 3, until the tree is empty.

Once again, an important property of this approach is that the objects are grown
together simultaneously. The segmentation criterion then, is that a point j belongs to
object Vk if and only if Vk is the first of all objects to reach j. The objects are all com-
peting, and will try to cover as much as possible of the image, following the ordering of
uj,k to grow faster in certain directions. The algorithm ends when the only remaining
points are background points generated by the connectivity constraint.

Even if our technique is based on a volumetric representation, the objects grow
along their boundaries. We can compute curvature estimates on these boundaries using
a simplified level set representation: points inside the object have the level set +1, points
on the boundary have the level set 0 and points outside the object have the level set −1.
Level set techniques have been very successful at regularizing the geometry of surfaces
using their curvature κ. We add curvature regularization in our method by replacing the
membership uj,k by u′

j,k = uj,k − γκj . Note that this modified membership must be
computed as the object evolves.
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3.6 Segmentation Algorithm

The complete algorithm is as follows:

Algorithm 3: Topology-preserving Fast Marching Segmentation
1. align the image to the topology template and set the initial segmentation {Vk} to

be the template,

2. compute the classification parameters ck =
∑

j∈Vk
uq

j,kIj∑
j∈Vk

uq
j,k

and

uj,k =
(‖Ij−ck‖2+β

∑
l∈Nj,m �=k uq

l,m)1/1−q∑
k(‖Ij−ck‖2+β

∑
l∈Nj,m �=k uq

l,m)1/1−q using the current segmentation {Vk},

3. reduce each object to its topology skeleton using the Object Thinning algorithm,
4. expand jointly the objects using the Object Growing algorithm,
5. loop to step 2 until convergence.

The convergence criterion is the number of changed labels per iteration. The curva-
ture regularization is computed during the thinning and growing steps.

4 Experimental Results

Topology constraints are particularly relevant to the problem of brain segmentation. It
is often desirable to map the cortex of the brain to a sphere, as it provides a coordinate
system and unfolds the deep structure of the sulci [21]. We study here the use and
performance of our algorithm for brain segmentation.

4.1 Spherical Brain Templates

To apply our algorithm to brain images, we first need to obtain a brain template with
the correct topology. This problem is far from trivial. Simple geometric templates, like
spheres, are difficult to align well with the images under study and provide poor esti-
mates for the classification parameters. On the other hand, anatomically accurate tem-
plates like the Talairach atlas [20] usually have a very complex topology, due to the lack
of constraints imposed on the manual segmentation.

Moreover, the anatomy may be in conflict with the topology assumption. The hy-
pothesis of a spherical brain assumes that the cortical gray matter surrounds entirely
the white matter of the brain, which in turn surrounds the sub-cortical gray matter and
cerebro-spinal fluid. In reality, sub-cortical and cortical gray matter are linked through
the base of the brain, near the brainstem, and so are the inner and outer CSF. Previous
works assumed a post-processing step after the segmentation to ’fill in’ the white matter
membership [6].

Here, we use similar rules to separate cortical and sub-cortical gray matter and CSF
at the top of the brainstem. We also make the common assumption that the brain has
been pre-processed to remove extra-cranial tissues, and that both the brainstem and
cerebellum have been removed. Our template possesses outer CSF, gray matter and
white matter, all with a spherical topology. To enforce this, an extra layer of gray and
white matter has been included in the area on top of the brainstem, to separate sub-
cortical and cortical gray matter. We assume the sub-cortical gray matter has spherical
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a. b. c.

Fig. 2. Topology templates for the spherical brain hypothesis: a) a simplistic template created
from the Talaraich atlas, b) a very detailed template created from the MNI/ICBM atlas, c) a sim-
plified version of (b) that preserves more of the CSF. Very simplified templates like (a) are easier
to create but they match poorly the structures involved, making the initialization more difficult
and increasing the number of needed iterations. On the other hand, very detailed templates may
not comply well with the topology constraints: in (b), the folds of cortical gray matter are not
respected (the sulci are often isolated) and the template needs much editing. We settled for (c),
where the cortical gray matter is obtained by morphological dilatation of the white matter. This
last template is more accurate than (a) and better describes the topology constraints than (b)

topology, and the inner CSF has a more complex topology that includes two loops.
In practice, the topology constraints are enforced only on the white and gray matter,
mostly because the pre-processing affects the CSF outer layer (one could also argue
that CSF, being a fluid, has a free topology). We tested several options for the template
shape, as shown in Fig. 2. All templates were created from atlas data obtained from
a digital version of the Talairach atlas and the MNI/ICBM atlas [2], edited through
semi-automatic procedures until reaching the desired topology for each object.

4.2 Experiments

We tested the algorithm on six different examples of brain images from different sources.
All images used have been pre-processed to isolate the cerebrum, and then registered
to the template of Fig. 2-c using an automated registration technique in MIPAV [11].
The segmentation algorithm has been run with the same parameters for each brain. The
results of figures 3 and 4 show that the segmentation closely follows the image data. We
have verified that the volumes extracted all have the correct topology. Different brains
with large variations in shape have all been processed successfully using the same tem-
plate, even when variations in shape limited the initial registration accuracy.

The algorithm is rather computationally intensive, but it is efficient. It is composed
of two fast marching methods, both using N log(N) time, with N the number of visited
points. For each object, we visit at most the Nk points of the object Vk and its boundary,
not the entire image, so the global cost is 2

∑
k Nk log(Nk) for a complete iteration. The

number of iterations depends on the convergence of the algorithm, measured by the
number of changed voxels per iteration. In our experiments, the number of iterations
needed to reach 0.5% of changed voxels ranges between 8 and 12, with a mean of 10.
The mean time for one iteration of the algorithm, which is written in JAVA, is currently
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a.

b.

Fig. 3. Segmentation of candidate brains with variations in shape: a) original image, b) hard seg-
mentation. Dark gray corresponds to CSF, medium gray is gray matter, and white is white matter.
Black voxels inside the brain correspond to unclassified voxels where the topology constraints of
the three classes could not be reconciled at the original resolution

118s on a 3 GHz Pentium 4 PC, with little code optimization, bringing the complete
procedure under half an hour.

Noise in the original image translates into noise in the membership functions. As the
fast marching evolution follows the order of the memberships, this could create artifi-
cial critical points where the object becomes non-convex. The two regularization terms,
however, promote a convex ordering limiting this problem. The topology constraints
enforce another form of regularization: they prohibit isolated misclassified points in
objects, as that would change the topology. They also enforce adjacency at the object
level, as objects in contact must stay in contact, and separated areas must stay sepa-
rated (e.g. the sub-cortical and cortical gray matter is separated by the white matter in
the template, it is also separated in the results. The same goes for the inner and outer
CSF, because the white and gray matter separate them). Nevertheless, topology con-
straints alone have little control over the object geometry, and complicated, convoluted
shapes can arise. In some cases, the topology constraints can lead to results that do not
necessarily correspond to the data. This is a good feature in areas where the template
deviates from the anatomy to enforce a certain topology (e.g. the white and gray matter
layer added in the area near the top of the brainstem), but it is not desirable everywhere.
For instance, had we not enforced topology constraints on the outer CSF, it would be
forced to be at least a one voxel thick 6-connected volume, potentially gouging into
some of the gray matter. Similarly, the topology constraints can strongly affect other
thin structures that are one or two voxels wide. The connectivity constraints generate
few unclassified points, and this issue should be settled easily with a subdivision of
the unclassified voxels, or when extracting continuous surfaces from the segmentation,
as illustrated in Fig. 1-b. Overall, the segmentation closely follows the image data and
respects the highly convoluted geometry of cortical surfaces (c.f. Fig.4-f,g).



Topology Preserving Tissue Classification 243

a. b. c. d.

e.

f.

g. h. i.

Fig. 4. A detailed example of segmentation: hard segmentation (a), membership functions for
each tissue (white matter (b), gray matter (c), CSF (d)), coronal and sagittal views of the original
image with superimposed gray and white matter boundaries (e), 3D renderings of the separate
structures: cortical gray matter (f), white matter (g), sub-cortical gray matter (h) and ventricles (i)

5 Conclusions

In this paper, we have introduced a technique for joint multiple object segmentation in
3D images with topological constraints. The algorithm is based on a new idea for mul-
tiple objects segmentation that combines the advantages of tissue classification tech-
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niques and fast marching methods. The topology constraints are maintained simultane-
ously for all objects in the image, and can be of any nature, not just spherical.

Our preliminary experiments show that the method is well adapted to the brain seg-
mentation problem under the spherical topology hypothesis, which has complex topol-
ogy requirements. No specific pre-processing is required, and all structures are obtained
at once. In our experiments, the computations always converge to a stable result, within
a few iterations. Topology constraints and regularization limit the effects of noise. The
overall accuracy of the results is visually good for most structures, although it can de-
grade over very thin structures, where the topology constraints are in balance with the
image data. Further tests are under way to alleviate this problem and validate the tech-
nique. The creation of topology templates, central to the method, also needs to be stud-
ied further. In particular, we need to establish a more precise definition of anatomically
approximative assumptions like the spherical brain hypothesis, and to create standard-
ized atlases with both meaningful geometry and topology.
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Abstract. We present a new approximation for the apparent diffusion coeffi-
cient (ADC) of non-Gaussian water diffusion with at most two fiber orientations
within a voxel. The proposed model approximates ADC profiles by product of
two spherical harmonic series (SHS) up to order 2 from High Angular Resolution
Diffusion-weighted (HARD) MRI data. The coefficients of SHS are estimated
and regularized simultaneously by solving a constrained minimization problem.
An equivalent but non-constrained version of the approach is also provided to re-
duce the complexity and increase the efficiency in computation. Moreover we use
the Cumulative Residual Entropy (CRE) as a measurement to characterize diffu-
sion anisotropy. By using CRE we can get reasonable results with two thresholds,
while the existing methods either can only be used to characterize Gaussian diffu-
sion or need more measurements and thresholds to classify anisotropic diffusion
with two fiber orientations. The experiments on HARD MRI human brain data
indicate the effectiveness of the method in the recovery of ADC profiles. The
characterization of diffusion based on the proposed method shows a consistency
between our results and known neuroanatomy.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) adds to conventional MRI the
capability of measuring the random motion of water molecules, referred to as water
diffusion. The mobility of water molecules within tissue depends on the microstruc-
ture of the tissue. For instance, in most gray matter in the brain, the mobility of water
molecules is the same in all directions and is termed isotropic diffusion. However, in fi-
brous tissues, such as cardiac muscle and brain white matter, water diffusion is with pre-
ferred direction along the dominant fiber orientation, and hindered to different degrees
in different directions, causing diffusion anisotropy. The anisotropy of water diffusion
in tissue, and the sensitivity of water diffusion to the underlying tissue microstructure
form the basis for the utilization of DWI to infer neural connectivity [1], and to probe
tissue structures [2, 1].

Water diffusion in tissue over a time interval t can be described by a probability
density function (PDF) p on the displacement r. The PDF p(r, t) is related to DWI echo
signal s(q) via a Fourier transformation (FT) with respect to the diffusion sensitizing
gradients q by

s(q) = s0

∫
p(r, t)e−iq·rdr, (1)

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 246–257, 2005.
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where s0 is the MRI signal in the absence of any gradient [3]. From equation (1), the
PDF p(r, t) can be estimated by the inverse FT of s(q)/s0. However, it requires a
large number of measurements of s(q) over a wide range of q. Recently, Tuch et al. [4]
developed q-space imaging method to obtain high angular resolution diffusion (HARD)
measurements. In [5] Wedeen et al. succeed in acquiring 512 measurements of s(q) in
each scan to perform a stable inverse FT.

However, a more common approach to estimate the PDF of diffusion over time t
from much sparser set of measurements s(q) is by assuming p(r, t) to be of Gaussian
distribution, whose covariance matrix is the diffusion tensor, that is a 3 × 3 positive
definite matrix. This technique is known as diffusion tensor imaging (DTI). Based on
the theory that the principle eigenvector (PE) of D parallels to the mean fiber orien-
tation, it is possible to infer the orientation of the diffusion within a voxel. DTI is in
particular useful for creating white matter fiber tracts. Numerous algorithms have been
developed to perform a robust estimation, regularization of the tensor field and fiber
tracts reconstruction [3, 6, 7, 8, 9, 10, 11, 12].

However, it has been recognized that the single Gaussian model is inappropriate for
assessing multiple fiber tract orientations, when complex tissue structure is found within
a voxel [13, 14, 15, 16, 4, 5]. A simple extension to non-Gaussian diffusion is to assume
that the multiple compartments within a voxel are in slow exchange and the diffusion
within each compartment is a Gaussian [14, 15, 17, 18]. Under these assumption the
diffusion can be modelled by a mixture of n Gaussians:

p(r, t) =
n∑

i=1

fi((4πt)3det(Di))−1/2e
−rT D

−1
i

r

4t , (2)

where fi is the volume fraction of the voxel with the diffusion tensor Di, fi ≥ 0,∑
i fi = 1, and t is the diffusion time. Inserting (2) into equation (1) yields

s(q) = s0

n∑
i=1

fie
−buT Diu, (3)

where u = q/|q|, and b = t|q|2 is the diffusion-weighting factor. To estimate Di and
fi, at least 7n− 1 measurements s(q) plus s0 are required. In [18, 17, 19] the model of
a mixture of two Gaussians were used to estimate the PDF. This estimation requires at
least 13 diffusion weighted images from 13 different directions.

An alternative method for the characterization of diffusion anisotropy is to use ap-
parent diffusion coefficient(ADC) profiles. The ADC in DWI is defined as a function
d(θ, φ) in the Stejskal-Tanner equation:

s(q) = s0e
−bd(θ,φ), (4)

where (θ, φ) (0 ≤ θ < π, 0 ≤ φ < 2π) represents the direction of q in spherical
coordinates, the b-factor is defined as b = 4π2|q|2t. For Gaussian diffusion the PE of
D indicates the direction of the diffusion. The fractional anisotropy (FA) defined as

FA =

√
3
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2)

(λ1 + λ2 + λ3)2
, (5)
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has become the most widely used measure of diffusion anisotropy. In (5) λi’s (i =
1, 2, 3) are the eigenvalues of D. If fibers are strongly aligned within a voxel, the FA is
high, and the diffusion is anisotropic at that voxel.

For non-Gaussian diffusion the ADC profiles are more complex. Tuch et al. [4]
recognized that HARD imaging with high b-values is able to exhibit the variance of the
signal as a function of diffusion gradients. This admitted a generation of the concept of
DTI to higher order tensors [20] or spherical harmonic series (SHS) approximation of
the ADC to characterize complex diffusion properties [21, 22, 16].

To quantify diffusion anisotropy Frank [16] first proposed approximating the ADC
profiles by its SHS. Later this idea was applied and more developed in [21, 22]. In these
works the ADC profiles were represented by a truncated SHS:

d(x, θ, φ) =
∑

l=0,2,4

l∑
m=−l

Al,m(x)Yl,m(θ, φ), (6)

where Yl,m(θ, φ) are the spherical harmonics, which are complex valued functions de-
fined on the unit sphere. The SHS in (6) doesn’t have odd-order terms. Since the mea-
surements are made by a serie of 3-d rotation, d(θ, φ) is antipodal symmetric.

The Al,m’ s can then be used for the characterization of diffusion anisotropy. In
[21, 16] the voxels with significant 4th order (l = 4) components were characterized as
anisotropic with two fiber orientations (shortened as two-fiber diffusion), while voxels
with significant 2nd order (l = 2) but not the 4th order components were classified as
anisotropic with single fiber orientation (shortened as one-fiber diffusion). Voxels with
significant 0th order (l = 0) but not the 2nd or the 4th order components are classified
as isotropic. The truncated order is getting higher as the structure complexity increases.
However, Fig.3 in [21] indicated that there was significant difference in overall ADC
profile shape between the order 4 and order 2 models for non-Gaussian diffusion, but no
significant change among models with order greater than 4. In [22] Chen et al. realized
that the SHS with significant 4th order may not necessarily only describe two-fiber
diffusion. Hence, they used the number of local maxima of the ADC, together with
the weights of the variances at the local maxima to determine whether the diffusion is
isotropic, one-fiber, two-fiber, or even more than two-fiber. This procedure is precise,
but the drawback is that there are many measures involved and thus a lot of thresholds
to be set subjectively.

In this note we will further study the SHS approximation model for ADC profiles,
and develop a new algorithm based on information theory for characterizing the diffu-
sion anisotropy under the assumption that there are at most two fiber orientations within
a voxel.

Both the SHS model (6) and the mixture model (3) have been used to reveal intra
voxel information with two-fiber diffusion. Model (6) involves 15 unknown complex
valued functions Al,m. Since d(θ, φ) is real and Yl,m satisfies Yl,−m = (−1)mYl,m,
each complex valued Al,m is constrained by Al,−m = (−1)mAl,m, where Al,m denotes
the complex conjugate of Al,m. This constraint transforms the 15 unknown complex
valued functions in (6) to 15 real valued functions: Al,0(x), (l = 0, 2, 4), ReAl,m(x),
ImAl,m(x), (l = 2, 4;m = 1, . . . , l). Therefore, to use SHS model (6) to approximate
d in (4), and hence to detect two-fiber diffusion, at least 15 diffusion weighted mea-
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surements s(q) over 15 carefully selected directions are required. However, to use the
mixture model (2) with n=2 to detect two-fiber diffusion only 13 unknown functions:
f , 6 entries of each of D1, D2 need to be solved. This motivated us to study what
is the minimum number of the diffusion weighted measurements required for detect-
ing diffusion with no more than two fiber orientations within a voxel, and what is the
corresponding model to approximate the ADC profiles in this case. In this note we pro-
pose to approximate the ADC profiles from high angular resolution diffusion-weighted
(HARD) MRI by the product of two up to the second order spherical SHS instead of
a SHS up to order four. We also show that the product of two up to the second order
spherical SHS describes only the diffusion with at most two fiber orientations, while the
SHS up to order four may also reveals the diffusion with three fiber orientations. The
details will be given in the next section.

Moreover, we will introduce an information measurement developed in [23], and
termed as CRE (see definition (13)) to characterize the diffusion anisotropy. CRE dif-
fers from Shannon entropy in the aspect that Shannon entropy depends only on the
probability of the event, while CRE depends also on the magnitude of the change of the
random variable. We observed that isotropic diffusion has either no local minimum or
many local minima with very small variation in the denoised s(q)/s0, i.e., e−bd profiles
in comparing with one fiber or two-fiber diffusions, which implies the corresponding
CRE to be small. We also found that one fiber diffusion has only one local minimum
with larger variation in the s(q)/s0 profiles, which leads to larger CRE. Therefore, we
propose to properly threshold the CRE for the regularized s(q)/s0 profiles to charac-
terize the diffusion anisotropy. Details will be provided in section 3.

2 New Approximation Model for ADC Profiles

In[16, 21, 22] to detect the diffusion with at most two fiber orientation the ADC profiles
were represented by a truncated SHS up to order 4 in the form of (6). In [16] the coef-
ficients Al,m’s (l is even) were determined by inverse spherical harmonic transform of

− 1
b log s(q)

s0
and in [21] they were estimated as the least-squares solutions of

−1
b
log

s(q)
s0

=
lmax∑
l=0

l∑
m=−l

Al,mYl,m(θ, φ). (7)

Regularization on the raw data or Al,m wasn’t considered in these two work. In [22]
Al,m’s were considered as a function of x, and estimated and smoothed simultaneously
by solving a constrained minimization problem:

min
Al,m(x),s̃0(x)

∫
Ω

{
∑

l=0,2,4

l∑
m=−l

|∇Al,m(x)|pl,m(x) + |∇s̃0(x)|p(x)}dx

+
λ

2

∫
Ω

{
∫ 2π

0

∫ π

0

|s(x,q) − s̃0(x)e−bd(x,θ,φ)|2sinθdθdφ + |s̃0 − s0|2}dx, (8)
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with the constraint d > 0. In this model pl,m(x) = 1 + 1
1+k|∇Gσ∗Al,m|2 , q(x) =

1 + 1
1+k|∇Gσ∗s0|2 , and d takes the form (6). By the choice of pl,m and q, the regu-

larization is total variation based near edges, isotropic in homogeneous regions, and
between isotropic and total variation based that varies depending on the local proper-
ties of the image at other locations, In these work since the ADC profile was approx-
imated by (6), at least 15 measurements of s(q) were required to to estimate the 15
coefficients Al,m.

However, the mixture model (2) with n = 2, which is also able to detect two-fiber
diffusion involves only 13 unknown functions. This motivates us to find a model that
is able to detect non-Gaussian diffusion with the minimum number of unknowns. In
this paper we only discuss the diffusion with no more than two fiber orientations within
a voxel. The significance of this study is clear: less number of unknowns lead to less
requirement for number of HARD measurements. This will significantly reduce the
scan time and thus is important in clinical application.

Our basic idea is to approximate the ADC profiles MRI by the product of two second
order SHS’s instead of a SHS up to order four. This can be formulated as

d(x, θ, φ) = (
∑
l=0,2

l∑
m=−l

bl,m(x)Yl,m(θ, φ)) · (
∑
l=0,2

l∑
m=−l

cl,m(x)Yl,m(θ, φ)). (9)

In this model there are only 12 unknowns: bl,m, cl,m (l = 0, 2 and −l ≤ m ≤ l).
To estimate the ADC profile from the raw HARD MRI data, which usually contains

a certain level of noise, we propose a simultaneous smoothing and estimation model
similar to (8) for solving bl,m, cl,m, that is the following constrained minimization
problem:

min
bl,m(x),cl,m(x),s̃0(x)

∫
Ω

{
∑
l=0,2

l∑
m=−l

α(|∇bl,m(x)| + |∇cl,m(x)| + β|∇s̃0(x)|dx

+
1
2

∫
Ω

{
∫ 2π

0

∫ π

0

|s(x,q) − s̃0(x)e−bd(x,θ,φ)|2sinθdθdφ + |s̃0 − s0|2}dx, (10)

with constraint d ≥ 0, where d is in the form of (9). α, β are constants. The first 3 terms
are the regularization terms for bl,m, cl,m and s0 respectively. The last two terms are
the data fidelity terms based on the original Stejskal-Tanner equation(4).

Next, feasibility of this model will be explained. Denote B :=
∑

l=0,2

∑l
m=−l bl,m

·Yl,m(θ, φ), C :=
∑

l=0,2

∑l
m=−l cl,mYl,m(θ, φ) andA :=

∑
l=0,2,4

∑l
m=−l Al,mYl,m.

Define sets SBC = {d : d(θ, φ) = B · C}, SA = {d : d(θ, φ) = A}. Since each
d(θ, φ) in SBC is a function defined on S2, it can be approximated by SHS, simple
calculation shows that coefficients of the approximated SHS of even order larger than 4
are all zeros, so SBC ⊂ SA. On the other hand,numerous experiments show that when
a voxel is not more complicated than 2-fiber diffusion, its ADC is always a function in
set SBC. But if a voxel is of 3-fiber diffusion or even more complicated, its ADC can
not be described accurately by a function in SBC. This implies that SBC is a real sub-
set of SA. Fig.1 depicts how functions in set SBC and SA differ in representing ADC.
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(a) (b) (c) (d)

Fig. 1. Comparison of the ADC’s approximated by (6) and (9) in four cases: (a) isotropic diffu-
sion, (b) one-fiber diffusion, (c) two-fiber diffusion, (d) three-fiber diffusion. In (a)-(d) from left
to right, top to bottom, we show shapes of B, C, B · C, and A, respectively

It is observed that the ADC in the form A can not be well approximated by B ·C only in
3-fiber diffusion case (see Fig. 1 below). Therefore, if we focus only on characterizing
at most two-fiber diffusion, which is the most interesting case, model (9) is reasonable
and sufficient to represent ADC.

Model (10) is a minimization problem with constraint d(θ, φ) ≥ 0 for all 0 ≤ θ <
π, 0 ≤ φ < 2π which is usually difficult to implement. To improve the efficiency of
computation we used the idea that any second order SHS

∑
l=0,2

∑l
m=−l bl,mYl,m(θ, φ)

is equivalent to a tensor model uT Du for some semi-positive definite 3 × 3 matrix
D, where u(θ, φ) = (sinθcosφ, sinθsinφ, cosθ). This means that the coefficients
bl,m,(l = 0, 2,m = −l, ..., l) in SHS and the entries D(i, j), (i, j = 1, ..., 3) in D can
be computed from each other explicitly. Here are two examples: b00 = 2

3

√
π(D11 +

D22 + D33). D(1, 1) = −
√

5b20−2b00−
√

30Re(b22)
4
√

π
, where Re(b22) is the real part of

b22. Hence, we could let B = uD1u
T ,C = uD2u

T , then d = (uD1u
T )(uD2u

T ).
And for i = 1, 2 decomposed Di into Di = LiL

T
i with Li a lower triangular matrix to

guarantee semi-positiveness of Di. The ADC is finally approximated by

d(x, θ, φ) = [u(θ, φ)L1(x)L1(x)T u(θ, φ)T ][(u(θ, φ)L2(x)L2(x)T u(θ, φ)T ]. (11)

Furthermore we substituted model (10) by

min
Ljk

1 (x),Ljk
2 (x),s̃0(x)

∫
Ω

(α
2∑

i=1

3∑
j=1

j∑
k=1

|∇Lj,k
i | + β|∇s̃0|)dx

1
2

∫
Ω

{
∫ 2π

0

∫ π

0

|s − s̃0e
−bd|2sinθdθdφ + |s̃0 − s0|2}dx, (12)

where d = (uL1L
T
1 uT )(uL2L

T
2 uT ). All the bl,m, cl,m, l = 0, 2,m = −l...l are smooth

functions of Ljk
i ,i = 1, 2; j = 1, 2, 3; k ≤ j, smoothness of Ljk

i guarantees that of
bl,m’s, cl,m’s. The first term in model (12) thus works equivalently as the first two terms
in model (10) do, while all the other terms are the same as those left in (10). Hence, (12)
is equivalent to (10), but it is a non-constrain minimization problem and is thus easy to
implement. After we get L1 and L2, bl,m and cl,m in (10) can be obtained by the one to
one relation between them.
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We apply model(12) to a set of human brain HARD MRI data to reconstruct and
characterize ADC profiles. The data set consists of 55 diffusion weighted images Sk :
Ω → R, k = 1, ..., 55, and one image S0 in the absence of a diffusion-sensitizing field
gradient(b=0 in (4)). 24 evenly spaced axial planes with 256× 256 voxels in each slice
are obtained using a 3T MRI scanner with single shot spin-echo EPI sequence. Slice
thickness is 3.8mm, gap between two consecutive slices is 1.2mm, repetition time
(TR) = 1000ms, echo time (TE) = 85ms and b = 1000s/mm2. The field of view
(FOV) =220mm × 220mm. We first applied the model(12) to the data to get Li, and
then used Li to compute bl,m and cl,m, l = 0, 2,m = −l...l, and the ADC d = B · C.
On the other hand, we used the model (8) to estimate Al,m and get A. The comparison
for the shapes of ADC in the form of B ·C and A is demonstrated in Fig.1(a)-(d) at four
specific voxels. The diffusion at these 4 voxels are isotropic (a), one-fiber (b), two-fiber
(c), and three-fiber (d), respectively. In each sub figure, the up left, up right, down left,
down right ones are the shapes of B, C, B · C and A, respectively. It is evident that if
the diffusion is isotropic, one-fiber or two-fiber, B · C and A are the same. However, if
the diffusion is three-fiber, A can’t be well approximated by B · C.

To show the effectiveness of the proposed model in recovering ADC, in Fig.2(a)-(d)
we compared images of R2 (defined in section 3) with coefficient Al,m estimated by
4 different methods. The voxels with higher value of R2 were considered as one-fiber
diffusion. The Al,m’s in (a), (b) and (c) were estimated using least-squares method
in [21], model (8), and model(12) with the diffusion-sensitizing gradient applied to
55 directions, respectively. The Al,m’s in (d) are estimated by the same way as that
in (c), but from the HARD data with 12 carefully chosen directions. The model (12)
applied on 55 measurements worked as good as the model (8) in getting higher value
of R2. Both of them worked better than the least-squares method that does not consider
regularization. Although the result from 12 measurements was not as good as that from
55 measurements, they are are still comparable. We will show in Fig.5(a) and (b) that the
anisotropy characterization results based on the ADC presented in (c) and (d) are also
close. These experimental results indicated that by using the proposed model the voxels
with two-fiber diffusion can be detected reasonably well from 12 HARD measurements
in carefully selected directions.

(a) (b) (c) (d)

Fig. 2. (a)-(d) are images of R2 with Al,m’s calculated using least-squares method, model (8),
model (12) applied on 55 measurements, and model (12) applied on 12 measurements, respec-
tively
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3 Use of CRE to Characterize Anisotropy

As mentioned, FA is only able to detect Gaussian diffusion. For non-Gaussian dif-
fusion, Frank and Alexander et.al. used the order of significant component in SHS
to characterize anisotropy. They considered voxels with significant 4th order compo-
nents as two-fiber diffusion. In [22] Chen et al. realized that such a voxel could have
isotropic or one-fiber diffusion. They defined R0 := |A0,0|∑

l=0,2,4
∑ l

m=−l |Al,m| , R2 :=∑m=2
m=−2 |A2,m|∑

l=0,2,4
∑ l

m=−l |Al,m| . Higher values of R0 and R2 are corresponding to isotropic and

one-fiber diffusion, respectively. For the rest of points, the number of local maxima of
ADC, together with the weights of the variances at the local maxima were used to clas-
sify voxels as isotropic, one-fiber or two-fiber diffusion. This procedure is more precise,
but there are many measures involved and thus more thresholds needed to be set subjec-
tively. In this section, we will introduce a simple scheme using only one measurement
CRE and two thresholds.

CRE is a measure of uncertainty/information in a random variable. Let X be a ran-
dom variable in R, CRE of X is defined by

CRE(X) = −
∫

R+

P (X > λ)logP (X > λ)dλ, (13)

where R+ = {X ∈ R|X ≥ 0}.
We use CRE of e−bd rather then d to characterize diffusion anisotropy, where d is

recovered from HARD measurements through(12). The magnitude of ADC is usually
in the order of 10−3, while the magnitude of e−bd is in the order of 10−1, which is
larger than that of ADC itself. Moreover, e−bd is a smooth approximation of the data
s/s0.

The weak convergence property of CRE proved in [23] makes empirical CRE com-
putation based on the samples converges in the limit to the true CRE. This is not the
case for the Shannon entropy. We define empirical CRE of e−bd as

CRE(e−bd) = −
M∑
i=2

P (e−bd > λi)logP (e−bd > λi)
λi (14)

where {λ1 < λ2 < ... < λM} is range of e−bd at voxel x. 
λi = λi − λi−1 is the
absolute difference between two adjacent e−bd, note this term is not shown in Shannon
entropy. In most of the cases, the variation of e−bd is the largest for one-fiber diffu-
sion voxels, smaller for two-fiber diffusion and smallest for isotropic voxels. This also
explains why CRE is the largest for one-fiber, medium for two-fiber and smallest for
isotropic diffusion voxels. In our experiment, we choose M=1000 uniformly distributed
directions (θ, φ) in (14).

Define the decreasing distribution function F (λ) := P (e−bd > λ). Fig.3 (a) demon-
strate the graphs of −F (λ)logF (λ) at the same three voxels. It is evident that the area
under the right solid curve(one-fiber) is much larger than that under the middle dotted
curve(two-fiber), while the area under the left curve is the smallest. Since CRE is ex-
actly the area under curve −F (λ)logF (λ), we can conclude that measure CRE(e−bd)
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Fig. 3. (a) Graph of −F (λ)logF (λ) at three voxels corresponding to isotropic (left), two-fiber
(middle dotted), one-fiber (right solid ) diffusion.(b) Form left to right, shapes of uD2uT (top)
and uD1uT · uD2(ψ)uT (bottom) for ψ = iπ/10, i = 0...5. (c) Graphs of R2 (top), CRE
(middle),variance (bottom) as functions of ψ ∈ [0, π]

(a) (b) (c) (d)

Fig. 4. Images of four measures: (a) R2, (b) FA, (c) CRE of e−bd, (d) Variance of e−bd

is the largest at the voxels with one-fiber diffusion, medium with two-fiber diffusion,
and smallest with isotropic diffusion. Thus measure CRE(e−bd) could be used to dis-
cern isotopic, one-fiber and two-fiber diffusion with two thresholds T1 and T2, with
T1 < T2. Set up 3 intervals:(0, T1), (T1, T2), (T2,∞). Voxels with CRE fall into the
first, second, and third intervals are classified as isotropic, two-fiber and one-fiber dif-
fusion respectively.

Fig.3(c) on synthetic data and Fig.4 on human brain HARD MRI data further show
the strength of CRE over the three popularly used measures R2, FA and variance in
characterizing diffusion anisotropy. The human data is the same as that used in Fig.2.
The synthetic data is constructed as follows: Set D1 and D2 to be two diagonal ma-
trix with diagonal elements 4 × 10−2, 10−2, 2 × 10−2 and 8 × 10−2, 10−2, 3 × 10−2,
respectively. Then fix D1 but rotate the two eigenvectors corresponding to the first
two diagonal entries of D2 in the plane perpendicular to the third eigenvector by an-
gle ψ to get D2(ψ). Let B(θ, φ) = uT D1u, Cψ(θ, φ) := uT D2(ψ)u with u =
(sinθcosφ, sinθsinφ, cosθ). In Fig.3(b), from left to right, we show figures of Cψ(θ, φ)
(top row) and B(θ, φ) ·Cψ(θ, φ) (bottom row) for ψ = iπ/10, i = 0...5. When ψ varies
from 0 to π/2, B ·C changes from a typical one fiber diffusion to a two fiber diffusion.
By symmetry, when ψ varies from π/2 to π B · C changes back to the same shape as
ψ = 0. Fig.3(c) represents the graphs of R2 of B · C (top), CRE of e−bB·C (middle),
variance of e−bB·C (bottom) as a function of ψ ∈ [0, π]. The three measures are normal-
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ized by dividing by their corresponding maxima. Values of the three measures decrease
when B · C varies from one-fiber diffusion to two-fiber diffusion, and increase when
B · C gradually changes from two-fiber diffusion backs to one-fiber diffusion. But the
graph CRE is much steeper than others. This implies CRE difference between adjacent
voxel is much larger than that of R2 and variance, thus image of CRE will have better
contrast than the other two. This is verified in Fig.4, where figure (c) has better contrast
than figure (a)and (d). R2 cannot detect multi-fiber diffusion as it measures the signif-
icance of the second order components in SHS. Nonsignificant difference between R2

and FA is observed from the images in Fig.4(a) and (b). But CRE differs much from R2

and FA. Furthermore, the smallness of magnitude of R2 or FA is unable to distinguish
between isotropic and two-fiber diffusion, while that of CRE does better job. Note, CRE
is comparable to FA or RA2 in detecting Gaussian diffusion.

Next we discuss from the theoretical point of view why CRE beats variance in char-
acterizing diffusion anisotropy. Let X be a random variable, V ar(X) be its variance.
According to proof in [24], E(|X − E(X)|) ≤ 2CRE(X). In our case, X is e−bd

whose magnitude is multiple of 10−2 < 1, so we have V ar(X) = E(|X −E(X)|2) ≤
E(|X − E(X)|) ≤ 2CRE(X). Our experiment results show that magnitude of CRE
is almost 10 times of that of V ar(X). Higher magnitude of CRE makes it less sen-
sitive to rounding errors. One more result from [24] is CRE(X) ≤ √

V ar(X), thus
V ar(X) ≤ 2CRE(X) ≤ 2

√
V ar(X), which implies CRE has smaller range than

variance does. This is verified by Fig.3(c) where the graph of variance is way below
that of CRE. Moreover, in Fig.4(d), which representing the the variance of e−bd, the
Genu/Splenium of corpus callosum is so bright that regions besides it are not clearly
visualized , so CRE is much better than variance visually.

Fig.5(a) shows a partition of isotropic,one-fiber and two-fiber diffusion based on
ADC calculated from 55 measurements. The black, gray, white voxels are identified as
isotropic, one-fiber and two-fiber diffusion, respectively. The characterization is consis-
tent with the known fiber anatomy. Fig.5(b) represents the characterization result based

(a) (b) (c) (d)

Fig. 5. (a)-(b). Characterization: black, gray, and white regions represent the voxels with isotropic,
one-fiber, and two-fiber diffusion, respectively.(a) using 55 measurements, (b) using 12 carefully
selected measurements. (c) Image of CRE calculated from 12 measurements. (d) Characterization
results of the region inside the black box in (a) using CRE (top) and variance (bottom) based on
55 measurements
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on the ADC estimated from 12 measurements. It is very close to that from 55 measure-
ments. CRE based on ADC estimated from 12 measurements (Fig.5(c)) is also compa-
rable to that from 55 measurements (Fig.4(c)). Thus our characterization is not sensitive
to number of measurements. Fig.5(d) illustrates a two-fiber diffusion voxel(pointed by
black arrow) that is incorrectly characterized as one-fiber diffusion using variance (bot-
tom image) but characterized as two-fiber correctly using CRE (top image). This further
verify superiority of CRE over variance in characterizing diffusion anisotropy.

4 Summary

In this paper, we present a novel variational framework for simultaneous smoothing and
estimation of ADC profiles depicted by two diffusion tensors. To our knowledge this is
the first attempt to use the least amount of measurement to detect two-fiber diffusion
from human brain HARD MRI data. We also demonstrated our algorithm for using
CRE of e−bd to characterize the diffusion anisotropy.

Our experiments on two sets of human brain HARD MRI data showed the effec-
tiveness and robustness of the proposed model in the estimation of ADC profiles and
the enhancement of the characterization of diffusion anisotropy. The characterization of
diffusion from the proposed method is consistent with the known neuroanatomy.

In this article, we have not included the work for determination of fiber directions
and the method for automated fiber tracking. The study addressing these problems will
be reported in separate papers.
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20. E. Özarslan and T. H. Mareci, “Generalized diffusion tensor imaging and analytical rela-
tionships between diffusion tensor imaging and high angular resolution diffusion imaging,”
Magn. Reson. Med., vol. 50, pp. 955–965, 2003.

21. D. C. Alexander, G. J. Barker, and S. R. Arridge, “Detection and modeling of non-gaussian
apparent diffusion coefficient profiles in human brain data,” Magn. Reson. Med., vol. 48, pp.
331–340, 2002.

22. Y. Chen, W. Guo, Q. Zeng, X. Yan, F. Huang, H. Zhang, G. He, B. C. Vemuri, and Y. Liu,
“Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from
high angular resolution DWI,” in IEEE Int. Conf. in Computer Vision and Pattern Recogni-
tion (CVPR), Washington, D.C., 2004, pp. 588–593.

23. M. Rao, Y. Chen, B. C. Vemuri, and F. Wang, “Cumulative residual entropy: A new measure
of information,” IEEE Trans. on Info. Theory, vol. 50, pp. 1220–1228, 2004.

24. M. Rao, “More on a new concept of entropy and information,” Journal of Theoretical
Probability, to appear.



Linearization of Mammograms Using Parameters
Derived from Noise Characteristics

Nico Karssemeijer, Peter R. Snoeren, and Wei Zhang

Department of Radiology, Radboud University Nijmegen Medical Centre,
PO Box 9101, 6500HB Nijmegen, The Netherlands

n.karssemeijer@rad.umcn.nl

Abstract. A method is proposed for converting digitized mammograms
to a normalized representation, in which pixel values are linearly related
to the logarithm of x-ray exposure. This method is based on a signal
dependent noise model. By exploiting this model unknown parameters
of the non-linear response of the film-screen system can be estimated
from signal dependence of the image noise. The method was applied to
a series of 1372 mammograms acquired over a period of 8 years. Sudden
changes in estimated parameters corresponded well with the introduction
of new film-screen systems.

1 Introduction

Quantitative analysis of mammograms requires reliable knowledge of acquisition
parameters. If these are available mammograms can be converted to a normal-
ized representation, from which tissue properties can be extracted more reliably.
The use of such representations may increase robustness of computer aided de-
tection (CAD) systems, and may allow more accurate estimation of clinically
relevant features like breast density. Methods for normalized representation of
mammograms have been proposed in the literature. Most notably, a physics
based method was developed by Highnam and Brady [1, 2], which assumes that
the breast is composed of two classes of tissue, fat and a mixture of dense tissue
types. This method converts mammograms to a representation of dense tissue
thickness. Other investigators have used linearization methods when dealing with
digitized mammograms, to correct for the non-linear reponse of the film/screen
system. or used a representation in which image noise is equalized.

In this paper we focus on linearization, which is defined as a process in
which mammograms are converted to a space in which pixel values are linearly
related to the logarithm of the exposure E. For quantitative analysis this is a
naturale scale, as in first approximation there is a linear relation between log E
and the average x-ray attenuation µd of the tissue mapping on a pixel, with
µ the average linear attenuation coefficient and d the tissue thickness. On this
scale, local measures of contrast, gradients, and other derivatives only depend
on physical properties of the projected anatomical structures and not on the
pixel value itself. Without taking into account the non-linear response of the
acquisition system contrast related measurements cannot be made accurately.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 258–269, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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With modern full field digital mammography (FFDM) systems images can
be archived in a raw format, in which pixel values are proportional to exposure.
For computer aided detection methods this is an important advantage. However,
it will take a long time before annotated databases with FFDM cases are suffi-
ciently large to develop CAD systems that are trained exclusively with FFDM.
For the near future the use of digitized mammograms will be necessary, and if
adequate normalization methods are available continued use of large databases
of digitzed mammograms will be advantageous. After all, the size and quality of
databases will be one of the key elements in future development of CAD systems.

When dealing with digitized films it is difficult to retrieve acquisition pa-
rameters, in particular those related to the nonlinear response of the screen-
film system. In a previous paper, we explored the use of temporal matching
of mammograms to retrieve the relation between pixel values in digitized films
and exposure. In this paper we investigate a method to estimate parameters
for linearisation from the image itself. The method is based on analysis of high
frequency components in the image noise.

2 Screen-Film Noise in Digitized Mammograms

2.1 Theory

Radiographic mottle in screen-film mammography systems has been investigated
by by Barnes [3]). There are three independent random processes involved, film
granularity, quantum mottle and screen structure mottle. The resulting density
fluctuations due to these processes can be described as

σ2(D) = σ2
g(D) + σ2

q (D) + σ2
s(D) (1)

with D the optical density. According to Barnes, in mammography the latter
component is very small, which is confirmed by more recent studies [4]. Here it
will be neglected. Noise due to film granularity can be described in first approx-
imation by

σg(D) ∝
√

D (2)

Quantum noise fluctuations in the x-ray exposure at the detector are propor-
tional to

√
E. In the optical density domain they can be written in the form of

σq(D) ∝ G√
n

(3)

with n the average x-ray photon fluence absorbed in the screen and G(D) the
slope of the characteristic curve of the screen-film system at density D. The in-
verse relation is due to the fact that characteristic curves are defined as a function
of log E. Film noise dominates quantum noise at high spatial frequencies, very
low exposures, or very high exposures [4].
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Fig. 1. Characteristic curves and gradients of a Kodak Min-R 2000 film and a Kodak
Min-R H film. The plotted curves are model fits

2.2 Characteristic Curves

Over the last decades mammographic film-screen systems have gradually in-
creased contrast. By increasing the film gradient the peripheral zone of the
breast and the skin line are imaged at high optical densities, often rendering
them invisible under normal viewing conditions. To improve this, some compa-
nies developed dual-emulsion films in which the gradient is high at low densities
but smaller in the mid and high density ranges.

It was found experimentally that the screen-film response can well be mod-
eled by

D(E) = Dbf + Dmax

[
1

1 + e−g·(ln E−s)

]q

= Dbf + Dmax

[
1 + (E/s)−g

]−q (4)

with x-ray exposure denoted by E, with D(E) the optical density, Dbf the base
plus fog optical density of the unexposed film, and Dmax the optical density of
the fully exposed film. The parameters g and s represent the gradient and speed
of the film, respectively. The parameter q can be used to model an asymmetric
shape of the curve. An example of a symmetric model (q = 1) fitted to the
characteristic curve of a Kodak Min-R 2000 film is shown in figure 1. To model
the Kodak Min-R H response an asymmetric model was used (figure 1). It is
noted that characteristic curves of screen-film systems vary over time due to
changes in developer conditions.

For medical x-ray films it is common to measure the average gradient Gav

between the optical densities of 0.25 and 2.00 above base plus fog, using

Gav =
2.0 − 0.25

log E1 − log E2
(5)
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where E1 and E2 are the relative exposure values at densities 0.25 and 2.0 above
base plus fog, respectively.

2.3 Quantum Noise

Quantum noise fluctuations are transfered through the imaging system and give
rise to pixel value fluctuations in digitized mammograms. To analyze this process
the screen-film and digitizer transfer functions are modeled. We assume that the
digitizer response is linear with optical density:

y(E) = y0 − cdD(E)

with y the pixel value and y0 the pixel value at density D = 0.
At a given image intensity the fluctuation of pixel values σy(y) due to quan-

tum noise can be written as a function of variation in exposure σE(y)

σy(y) =
∣∣∣∣∂y(E)

∂D

∂D

∂E

∣∣∣∣
y

bσE(y)

with b a constant that takes blurring in the imaging system into account at the
scale of the filter used to measure fluctuations. We assume that this constant is
independent of E. Using the square root model for quantum noise

σE(y) = p
√

E(y)

it can be derived from using the characteristic curve model in 4 that,

σy(y) = cq cd g q Dmax
1√
E(y)

[
1 + (E(y)/s)−g

]−q−1 (E(y)/s)−g (6)

with E(y) the exposure corresponding with pixel value y, and cq = b p a con-
stant that we will refer to as the quantum noise factor. The 1/

√
E factor is in

accordance with (3).
Taking the inverse of the film curve exposure can be expressed as

E(y) = s

[(
Dmax

D(y) − Dbf

) 1
q

− 1

] 1
g

= s t(y)−
1
g (7)

with

t(y) =
(

Dmax

D(y) − Dbf

) 1
q

− 1 (8)

= (E(y)/s)−g
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Fig. 2. Changes of quantum noise due to variation of the gradient g of the characteristic
curve for two types of film

Fig. 3. Pixel value at which the quantum noise maximum occurs as a function of film
gradient for two values of q

By substitution of t(y) in equation (6) we can derive

σy(y) = cq cd g q Dmax
1√
s
t(y)1+1/2g(1 + t(y))−q−1 (9)

In figure 2 it is shown how the quantum noise component modeled by relation
6 behaves when the gradient of the film is varied. Changes of the film speed
did not affect the location of the maximum. An analytical expression for the
maximum can be found by differentiation of (9). The optical density DM at
which this maximum occurs is given by

DM = Dbf + Dmax

(
1 +

[
2g + 1
2gq − 1

])−q

(10)
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Figure 3 shows a graph of the maximum location as a function of the film gra-
dient.

The fact that the quantum noise maximum DM shifts when the film gradient
is varied provides an opportunity for estimating the film gradient from the noise
characteristics in a digitized film. The speed of the film cannot be retrieved
in this way. It is noted that the noise maximum strongly depends on digitizer
calibration and film curve parameters q, Dmax, Dbf .

2.4 Film Granularity

As mentioned before, noise due to film granularity cannot be neglected. In a
paper by Bunch [4] the relative contribution of film granularity to the noise
power spectrum was determined for a number of mammographic film-screen
systems from Kodak. At 5 lp/mm, which corresponds with a 100 micron pixel
size, the relative contribution of film noise is fairly constant at a level of 40 %
at low optical densities. It increases for densities higher than 1.2. At an optical
density of 2.0 the relative contribution is 80 %.

3 Noise Measurements

To measure noise a high pass filter was applied to compute local contrast fluctu-
ations. The filtered image was obtained by subtracting a smoothed image from
the original. We used a Gaussian kernel for smoothing with σ = 100 micron.
All experiments were done with images that were averaged down to 100 micron
resolution. To compute image noise as a function of pixel value the gray-scale
was divided in non-overlapping bins of fixed size N . Local contrast distributions
were computed for each bin and the standard deviations s(yn) of these distri-
butions were estimated, with yn the weighted mean pixel value in bin n. In all
experiments a fixed bin-size of N = 20000 pixels was used.

Fig. 4. Example of a mammograms for which both a film-screen (Min-R 2000) and a
FFDM image was available. The middle figure shows noise measured in the film-screen
images. Noise determined in the FFDM image is shown right
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Fig. 5. Examples of noise measured in three mammograms. The top row shows an
image recorded with a Kodak Min-R 2000 film. The other examples are Min-R films.
The images on the first and second row are from the same woman. The example
demonstrates how the film type affects the shape of the curves

A typical example is shown in figure 4. A case was chosen for which both a
conventional mammogram and a digital mammogram were available. The time
between the two acquisitions was less than two weeks. In the noise plot of the
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FFDM image a square root model for quantum noise is indicated by a dashed
line. This appears to fit well to the data up to some point. Experimentally it
was found that the model fit was good in the area where the breast is fully
compressed. In the uncompressed tissue part there is an additional noise com-
ponent, which appeared to be due to skin surface roughness. The noise plot of
the digitized film shows the expected gradual decrease at higher pixel values (see
figure 2). For low pixel values the scanner noise is dominant. Other examples
are shown in figure 5. The image in the upper row was made with a Kodak
Min-R 2000 film, whereas the other images were older Kodak films with a lower
gradient. In this example the expected shift of the maximum to the right for
lower film-gradients can be observed.

It appeared that there were three distinct discontinuities in the noise charac-
teristics of digitized film which were at the same grey level for all images. This
was due to the digitizer we used. To reduce scanner noise an increasing amount
of smoothing was applied in the scanner at lower pixel values.

4 Film Curve Parameter Estimation

4.1 Method

In section 2 it has been shown how the shape of the film curve is reflected in the
relation between optical density and high frequency noise. We investigate if this
relation allows retrieval of film curve parameters from a digitized mammogram.

It should be noted that it is not be possible to determine film speed from the
image noise, because the effect on σD of a shift of the film curve along the log E
axis might as well be caused by a combined change of unknown variables as
exposure time, the constants p and b representing quantum noise contribution,
and the modulation transfer function (see equations 2.3 and 2.3). Therefore, we
use a fixed relative speed in our parameter estimation process. According to
ANSI specifications, X-ray film speed is defined as the exposure required for the
film to reach net optical density 1. We arbitrarily chose a value of logE = 1.2
to correspond with D + Dbf = 1.0. It is noted that in our film curve model the
parameters s and g are not defined in the same way as the relative film speed
defined above and the average film gradient Gav used in practice (eq 5).

Inaccuracy of the digitization process limits applicability of the aproach. The
results in the previous section show that digitizer noise is dominant at higher op-
tical densities and, moreover, that image noise may be affected by noise reduction
processes in the digitizer. For the digitizer used in the study it was determined
that up to a optical density of about 1.8 (y > 2300) noise measurements are
accurate. For higher optical densities the noise reduction scheme activated in
the scanner causes problems. This makes estimation of the film curve at higher
optical densities problematic. It does not prohibit, however, estimation of the
film curve in the mid and low optical density range. As most of the relevant
structures in mammograms are imaged at lower optical densities this may not
be a problem. In our experiments scanner calibration was fixed and known. We
used cd = 1000 and y0 = 4000.
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To estimate the film curve parameters from the measured noise characteristics
using relation (6) we have to take the film noise component σf into account. The
digitizer noise is neglected in the range of interest. For the noise at pixel value
yi we assume

σmodel(yi)2 = σq(yi)2 + cfD (11)

where film noise variance is assumed to be proportional to optical density (equa-
tion 2) and cf is a constant. We were not able to develop a stable procedure
to estimate this parameter together with the film curve parameters. Therefore,
we used a fixed value of cf chosen as such that thee mean contribution of film
noise relative to the total noise was 0.4 at optical density 1.5. This choice was
motivated by data found in the literature ([4]).

Given the fixed relative speed of the film, the model we use has five unknown
parameters parameters, representing the average gradient Gav, asymmetry q,
the quantum noise factor c, maximum density Dmax and base plus fog density
density Dbf . For the latter we use a fixed value Dbf = 0.20. The other four
parameters were estimated. To increase the robustness of the esimation method,
prior information about the expected parameter values was used in two ways.
Firstly, the range of variation of the three film curve parameters was limited to
realistic intervals. Secondly, the expected value and variance of the parameters
Dmax and Gav were used to penalize unrealistic film curve models. Ranges,
means and variances were determined from various sets of characteristic curves
obtained from quality assurance procedures in recent years.

Fig. 6. Film curve parameter estimation for a series of 1372 case (left MLO images).
Prior distributions for the average gradient and maximum density were used (w = 0.02)
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For parameter estimation we used a regularized least squares fit. Minimiza-
tion was performed with the simplex method. The function that was minimized
is given by

J(r) =
1

N

i=N∑
i=0

(σ(yi) − σmodel(yi))
2 + w

[
(
(Gav − E(Gav))

2

var(Gav)
+

(Dmax − E(Dmax))
2

var(Dmax)

]
(12)

with the parameter vector r = (q, Dmax, Gav, p). The weight of the regulariza-
tion term was determined experimentally.

4.2 Results

A series of 1372 cases was used to evaluate the method. Only left MLO images
were processed. Results are shown in figure 6. Transitions from Kodak MinRH
to MinR2000 in January 1999 and from an older film/screen type in 1996 are

Fig. 7. Example of film curve estimation in a mammogram (a Kodak film from 1993).
The linearized mammogram is shown on the bottom. For comparison, typical film
curves of Kodak MinRH, MinR2000 and Agfa HDR are also shown
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clearly marked. In particular the difference between the asymmetry parameter
value of the new MinR2000 film and the older ones is very distinct and estimates
of asymmetry appear to be very consistent.

5 Conversion to Linear Mammogram Representation

When the film curve and calibration parameters are known mammograms can
be converted to a linearized representation in which pixel values are linear with
log E. This is attractive because in first order approximation that scale is also
linear with the X-ray attenuation of the imaged dense tissue thickness:

log E = log
[
E0 e−µdtd−µf tf

]
= −µdtd − µf tf + log E0

= −µdtd − µf (T − td) + log E0

= td (µf − µd) + constant (13)

with td and tf the thickness of dense and fatty tissue, µd and µf the attenuation
coefficients and T the breast thickness.

To map the pixel values to the log E domain a value of the constant in the
equation above must be chosen. Mapping the fatty tissue in the compressed
region of the breast to a fixed value seems to be a natural choice. It can be
determined in a digitized mammogram after segmentation by taking the mini-
mum pixel value in the interior part of the compressed breast region. Perhaps,
correction for scatter might be useful as well, this would also make the relation
to dense tissue thickness more accurate. For very dense breasts, determination
of the fatty tissue background may require another method.

6 Discussion

Estimation of film curve parameters from the pixel value to noise relation is
possible, but some assumptions have to be made to make estimation robust.
Speed of the film cannot be retrieved. However, as speed does not influence
contrast (changes of log E) this may not be a problem in most applications. Given
the parameters of the film curve and the digitizer calibration mammograms can
be converted to a linear mammogram representation (LMR) in which pixel values
are linear with log E. As this scale is also linear with the imaged dense tissue
thickness, in first approximation, it seems to be a good choice for quantitative
image processing.

One application of film curve estimation is temporal mammogram analysis.
However, when the last mammogram is digital a very different approach is pos-
sible, because then we have the linear FFDM recording available as a reference.
By registration of the FFDM case with the digitized film a pixel to pixel match
can be obtained which allows computation of a 2D probability density func-
tion of the Gray values on both images. Actually this pdf is already computed
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when a method like mutual information is used for registration. The pdf allows
estimation of the film curve parameters.

When a mammogram only has a limited dynamic range there may not be
enough information to determine filmcurve parameters. In particular for CC
images of fatty breast cases this may be a problem. Because images of the same
case will have the same filmcurve parameters the best approach would be to
extract the pixel value to noise relation simultaneously from all images of the
case. Alternatively, the filmcurve derived the first image that is processed can
be used for all. It should be avoided to process images from the same case
with different curves, because inaccuracy of the estimation might then hamper
CC/MLO and left/right comparisons.
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Abstract. Consistent efforts are being made to build Computer-Aided 
Detection and Diagnosis systems for radiological images. Such systems depend 
on automated detection of various disease patterns, which are then combined 
together to obtain differential diagnosis. For diffuse lung diseases, over 12 
disease patterns are of interest in High Resolution Computed Tomography 
(HRCT) scans of the lung. In this paper, we present an automated detection 
method for two such patterns, namely Pleural Plaque and Diffuse Pleural 
Thickening. These are characteristic features of asbestos-related benign pleural 
disease. The attributes used for detection are derived from anatomical 
knowledge and the heuristics normally used by radiologists, and are computed 
automatically for each scan. A probabilistic model built on the attributes using 
naïve Bayes classifier is applied to recognise the features in new scans, and 
preliminary results are presented. The technique is tested on 140 images from 
13 studies and validated by an experienced radiologist. 

1   Introduction 

Digital technology has revolutionised the acquisition, processing and storage of 
medical images. The next step is the automation of disease pattern detection and 
diagnosis. Current imaging modalities are producing ever more images with 
increasing detail. Even though their availability have increased the diagnostic 
sensitivity, the burden on radiologists is also increasing due to the large volume of 
data produced. The need for automated techniques is self-evident, as fatigue and 
oversight are major contributors to diagnostic error [1]. In addition, errors due to 
inexperience and inter- and intra observer variations are not uncommon. Computer-
aided detection systems are being developed to help alleviate these problems and 
make the diagnostic process more objective. Inevitably, such systems are built in a 
bottom-up manner since images must be processed, segmented and analysed before a 
diagnosis can be made. Subsequently, diagnosis systems can be built on top of the 
detection systems. 

High Resolution Computer Tomography (HRCT) is considered to be the best tool 
available for detection of diffuse lung diseases [2]. HRCT has proven to be more 
sensitive than chest X-Rays and CT scans. HRCT refers to scans with very thin 
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collimation of 1 to 1.5 mm. Even though the images are normally obtained with up to 
20 mm gap between consecutive slices, the increased resolution and limited artefacts 
compensates for any deficiency arising from non-contiguous sampling. This protocol 
on average produces 25 images per patient, however the latest volumetric multi-
detector row scanners can produce up to 300 contiguous thin-section scans per 
patient.  

Our focus is on asbestos related diseases. Even though the mining of asbestos has 
been terminated in many countries, the exposure to asbestos continues due to its 
ubiquitous usage in building products till the 1970’s. As the latency period between 
asbestos exposure and the development of pleural diseases is anywhere from 20 to 30 
years, the incidence of asbestos related diseases is peaking now in some countries and 
yet to peak in others. Asbestos related diseases can be broadly classified into three 
categories: asbestos-related benign pleural disease, asbestosis and malignant pleural 
mesothelioma (MPM). We present an automated detection technique for two 
characteristic features of benign pleural disease, namely pleural plaque and diffuse 
pleural thickening. Pleural plaques are often the first signs of asbestos exposure, since 
the pleura appears to be more sensitive to the effects of asbestos infiltration than the 
lung parenchyma. Bilateral plaques (appearing in both the lungs) and calcification of 
plaques are distinctive characteristics of asbestos exposure. The incidence of pleural 
plaque in non-asbestos exposed population is very low [3], and therefore pleural 
plaques and thickening are considered as prime indicator of asbestos-related diseases; 
consequently they are very significant disease features to detect and monitor. 

To the best of our knowledge, no automated technique for detection of pleural 
plaques has been reported to date. Other diffuse lung disease pattern detection has been 
automated. Lung nodule detection has attracted a bigger share of attention [4 - 7], 
while automated techniques are also being developed for detection of patterns such as 
Emphysema [8], Ground-Glass Opacity [9] and other interstitial [10] and airway 
abnormalities [11]. Recently, we have reported on other characteristic features of 
asbestosis such as Parenchymal bands and end stage Honeycombing [12, 13].  

In the next section, some background information on pleural plaques is discussed. 
Section 3 presents our automated technique for detection of pleural plaque and diffuse 
pleural thickening. Preliminary results are presented in section four and section five 
concludes with a summary and future directions. 

2   Background 

The lung may be visualised as a pair of sacs, as illustrated in Fig 1. The inner visceral 
layer covers the lung, while the outer parietal layer lines the chest cavity and the 
upper surface of the diaphragm. The lung region where the trachea bifurcates into 
main bronchi and enters the lungs is known as the hilum. The hilum is an important 
landmark since it helps to divides the lung roughly into apical, middle and basal 
regions. Many diseases show predominance in one or more of these regions. 

Pleural plaques are defined as discrete elevated areas of hyaline fibrosis arising 
from the parietal pleura. On HRCT, they appear as smooth, sharply defined regions 
especially underneath visible rib segments. Diffuse pleural thickening occurs when 
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Fig. 1. Lung Anatomy 

thickened visceral pleura fuses with the parietal pleura over a wide area [3]. For the 
purpose of detection, we may classify pleural plaques into three distinct types based 
on location, namely diaphragmatic plaques, paravertebral plaques and costal plaques. 
Examples of these types and other anatomical details are shown in Fig 2. 

Even though there are no reports on automated detection techniques for pleural 
plaques, their visual appearance on CT / HRCT scans has been well studied. It is 
known that pleural plaques are not commonly seen in the apical region of the lungs, 
whereas diffuse pleural thickening is observable there. Even though the size and 
number of plaques vary vastly, they are rarely solitary. Pleural plaques are commonly 
seen indenting the lung parenchyma to form “pleural bumps”. Diffuse pleural 
thickening, on the other hand, is often smooth. 

Costal plaques are by far the easiest to detect when located internal to the rib 
segments. This is because only the pleura and extrapleural fat normally lie internal to 
the ribs, and in normal patients, are too thin to be resolved on the HRCT scans. Even 
though the intercostal muscles have visual characteristics very similar to those of 
plaques, they pass in between, and not internal to the rib segments. In many cases 
however, the pleural plaque region may appear to merge or extend into the intercostal 
muscle and surrounding soft tissues, since the extrapleural fat layer that separates 
them may be very thin and invisible. This makes the segmentation task very 
challenging. In the case of diffuse pleural thickening, the region of interest extends in 
between and internal to the rib segments and again, this region often appears merged 
with the surrounding soft tissue. 
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Fig. 2. Costal plaque, Diaphragmatic Plaque and Diffuse Pleural Thickening 

Normal anatomy near the vertebral region can mimic the appearance of a plaque 
since the intercostal vessels make the soft tissue appear thicker, thereby resulting in 
false positive detection of pleural plaque. It has been suggested that the detection of 
plaques in this region should be considered at multiple levels. Diaphragmatic plaques 
are by far the most difficult to detect, since they are not well delineated and show only 
a marginal variation of curvature in the plane of scan. However, it is suggested that if 
these regions show calcification, they are more likely to be plaques. 

3   Method 

In this section we describe the image features specially designed to capture the 
anatomical and morphological knowledge discussed above. Also, the image 
processing techniques employed to extract such features and relevant anatomical 
structures are explained. 

3.1   Feature Design 

The domain knowledge acquired from expert radiologists was used in image feature 
design and are summarized in Table 1. The diagnosis of pleural plaques depends 
heavily on their location. They are easiest to identify when they are located internal to 
the rib segments. The feature “CanReachRibs” encodes this knowledge. Since the 
confidence near the paravertebral region is somewhat lower, the spinal bones are 
treated differently and the feature “CanReachSpine” is extracted. 
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Focal pleural plaques often appear to be indented into the lung parenchyma causing 
small “bumps” along the lung boundary. This serves as another strong indicator of 
plaques and the feature “IsOnBump” reflects this knowledge. Sometimes when a 
layer of extrapleural fat is visible, it can used to distinguish plaques especially from 
the intercostal muscles and other soft tissues. The feature “CanReachFat” is used for 
this purpose. 

Unlike pleural plaques, diffuse pleural thickening has a very smooth appearance 
and does not form an undulating bumpy interface with the lung parenchyma. Further, 
as the fat layer is usually not visible and parts of the thickened region might merge 
with the surrounding soft tissues, we require other features to help group confident 
regions and not-so-confident regions.  For such cases, we look at whether any other 
portions of the candidate region are internal to the ribs and / or fat layer and whether 
the region is considerably long, in order to arrive at a decision. The features with 
percentage measures are used for this purpose. In addition, it was found that the 
thickness of the candidate region helps to minimise false positives.  

Table 1.  Features used for classification 

Feature Explanation Comments 

CanReachRibs  
Pixel lies internal to rib 
segment 

Very good predictor of plaque 

CanReachSpine  
Pixel lies internal to 
Vertebra 

Confidence is somewhat low due, as 
intercostal tissues in paravertebral 
region may appear thick and mimic 
plaque 

CanReachFat 
Pixel lies internal to fat 
layer 

Not very reliable since in many 
cases the layer is too thin to be 
visible 

IsOnBump  
Pixel lies on pleural 
bump 

Good predictor of plaque, however 
accurate assessment using simple 
image processing techniques is 
difficult 

PctBump  
% pixels on pleural 
bump for the region 

PctIntRibs  
% pixels internal to ribs 
for the region 

PctIntFat 
% pixels internal to fat 
layer for the region 

PctIntSpine 
% pixels internal to 
vertebra for the region 

These features help identify whether 
a plaque region is made up of pixels 
that show characteristics such as 
internal to ribs, fat etc.  If a major 
portion displays such 
characteristics, then the other 
portions may be included with 
confidence. Helps in detection of 
diffuse pleural thickening 

Thickness Thickness of the region 
Helps eliminate pleural regions that 
may appear thick due to imaging 
artifacts 

Length Length of the region 
Useful for recognition of diffuse 
pleural thickening 
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Since diaphragmatic plaques are not well demarcated, a different approach is 
needed. The features described above are not sufficient to recognise diaphragmatic 
plaques and may cause large number of false positives.  Therefore, we decided to 
exclude regions detected near the diaphragm at this stage.  

For every slice in the HRCT study, and for every candidate plaque pixel, the 
features in Table 1 are extracted.  Knowledge of anatomy is used in this process. 
Classification and post-processing steps are carried out to arrive at the final output. 
The block diagram in Fig 3 outlines the sequence. Techniques used for parameter 
tuning and model building are also included. 
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Fig. 3. System Architecture 

3.2   Extraction of Anatomical Details 

Some anatomical structures found to be useful in localising and improving the 
detection outcome are extracted from the images. There are not sufficient landmarks 
within the lungs to create reference atlases. However, knowledge of certain anatomical 
structures can be exploited in the detection of pleural plaques. Since pleural plaques 
can be easily discriminated from adjacent ribs and vertebral regions, extraction of 
relevant anatomical these structures helps to localise the plaques. Since pleural plaques 
are constrained on the inner side by lung parenchyma, good extraction of the lung 
boundary is also necessary. In the following sections, the HRCT images are blurred to 
highlight the regions of interest, which are cross-hatched for better visibility. 
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Fig. 4. Lung Boundary 
 

Fig. 5.  Segmented ribs and vertebra 

  

Fig. 6.  Mediastinum Mask Fig. 7. Diaphragm Surface 

The lung boundary is extracted by applying simple image processing techniques. A 
threshold level of -700 HU (Hounsfield Unit) is selected for segmentation from the 
surrounding soft tissues, as the lungs are mostly filled with air. Morphological 
operators, which alter the contours of regions using small structuring elements, are 
applied to obtain a smooth boundary as shown in Fig. 4.  

Ribs have the highest pixel intensity in the image and hence are easily segmented. 
They are contrasted best when viewed in the soft tissue window of 50/350 HU. The 
pixel values are adjusted for this window and thresholded at an intensity level of 250. 
The segmented regions, however, contain calcified plaque regions as well, which 
must then be separated. Calcified plaques are solid in appearance compared to ribs 
and vertebrae, as they enclose the soft tissue of bone marrow and spine respectively.  
In the segmented binary image these appear as black holes surrounded by white bone. 
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Euler number of a region, which represents the number of holes in the region, can be 
easily calculated using the component labelling technique. Component labelling is an 
algorithm that assigns a unique label to each segmented region. For each bone sub-
image, black regions are labelled. If one or more black regions larger than a certain 
area are detected, such bone regions are deemed to be ribs or vertebrae. The vertebra 
(interchangeably referred to as spine at times) is identified as the largest bone region 
in the top half of the image (after it is flipped if the scan is taken in a supine position). 
Segmented ribs and spine are highlighted in Fig. 5 and clearly calcified plaque 
regions are omitted. 

Another useful anatomical region is the mediastinum, the structure between the 
lungs containing the heart, the large arteries and the veins. Pleural plaques along the 
mediastinum are rare and hence any region detected here is likely to be a false 
positive. With a mediastinum mask, all such regions can be easily excluded. A convex 
hull of the two lung regions is obtained from which the lungs are subtracted. From 
this, only the region below the level of the spine is retained, which gives the desired 
mediastinum mask as shown in Fig. 6. 

Since detection of plaques along the diaphragm is difficult and the designed 
features work better for other types of plaques, a large number of false positives are 
detected along this surface. Hence we exclude all such regions with a diaphragm 
mask. The diaphragm surface is visible only in the last few slices of the basal region 
and anatomically the lung shape is wider here compared to its height. The aspect ratio 
can be a good predictor given the lung region. Hence, we first identify the lung region 
for each slice using our earlier work on hilum detection [14].  The bounding rectangle 
for each lung provides the length and width measurements to calculate aspect ratio. 
We extracted these attributes for nearly 450 lungs (left and right) from around 350 
slices belonging to 15 studies. A decision tree learner (C4.5 in Weka [15]) was used 
to obtain classification rules. Once a slice is identified to contain the diaphragm, we 
divide each lung vertically (sagittal section) into two halves. The local minima of the 
lung boundary in these two halves give the starting and ending points of the 
diaphragm. Tracing the lung boundary between these two points provides the 
diaphragm surface as seen on HRCT slices. The result is as shown in Fig. 7. 

The detection techniques for rib segments, spine, mediastinum mask and 
diaphragm were tested on the same 13 patient studies that are later used for testing 
pleural plaque detection. The region-based accuracy of these detection methods is 
shown in Table 2. It should be noted that the detection accuracy of the spine heavily 
influences accuracy of the mediastinum and an improvement in the former will 
automatically improve the latter. 

Table 2. Performance measures for anatomical region detection 

Module Accuracy 
Rib Segments 74% 
Spine 64% 
Mediastinum 69% 
Diaphragm 80% 
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3.3   Pre-processing and Segmentation 

Thresholding is usually the first operation used in any segmentation and the threshold 
level may be determined either empirically or statistically.  We used a simple decision 
tree learner to determine the appropriate pixel intensity of the plaque pixels. On 
HRCT scans, the plaques are separated from the ribs and the extrapleural soft tissue 
by a thin layer of fat. Since the plaques are best contrasted when viewed in soft tissue 
window of 50/350 HU, the pixels are first adjusted to the soft tissue window (i.e. 
pixels in the range –125HU and +225HU with centre at 50HU are mapped linearly to 
256 grey-scale levels and pixels below and above this range are set to zero and 255 
respectively). A total of 20 images from 5 studies labelled by radiologists were used. 
Pixels sampled from the plaque and extra-pleural fat regions were fed into a decision 
tree learner (C4.5 in Weka) to obtain the threshold level. 

Region growing techniques are normally used to group pixels belonging to one 
class to form a region. However, a seed point is needed to start the region growing 
process. Also, a stopping condition is required, which is normally based on the 
pixel intensity of the neighbouring pixels. Using anatomical knowledge, a simpler 
method of region growing was implemented to segment the candidate plaque 
regions. Since the pleural plaques are constrained by the lung parenchyma, lung 
boundary pixels provide a good starting point. The stopping condition based on 
pixel intensity was deemed unsuitable, as in many cases the fat layer that separates 
the plaques from extrapleural soft tissue is very thin and therefore unresolved on 
HRCT scans.  

The lung masks are first dilated by one pixel. All pixels that lie within the dilated 
masks and having pixel intensity greater than the threshold learned above are 
marked. The lung mask is then dilated by one more pixel. Now every pixel located 
within the expanded band with pixel intensity greater than the threshold and also in 
the neighbourhood of the previously marked is included. The neighbourhood policy 
is enforced to terminate the growth at the fat layer when it is visible, and not grow 
into intercostal muscle region. These steps are repeated a number of times 
(determined empirically to be 7), which captures the average thickness of the 
plaques and gives a satisfactory result. While the focus was on capturing the 
percentage involvement of the pleura, further tuning of the parameters will be 
required while targeting, say, the pleural thickening seen on patients with 
mesothelioma. This process is very close to a constrained region growing technique. 
The candidate regions extracted from this step may include intercostal muscles and 
other false positives. Various feature values, extracted using anatomical knowledge 
help minimise such false positives. 

3.4   Feature Extraction and Classification 

Anatomical and pathological knowledge acquired from expert radiologists was used 
in feature design. Features are extracted for each pixel in the candidate region using 
what we call a “Radial Walk” technique. The pixels on the lung boundary internal to 
the candidate plaque region are extracted from the intersection of the lung boundary  
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and the dilated candidate plaque region (see Fig 8). Pixels lying on the extrapolated 
line joining the lung centroid and each of the short-listed boundary pixels are labelled 
as belonging to candidate plaque, fat or rib regions, based on the pixel intensity and 
location on various anatomical masks explained above. If two or more rib pixels are 
encountered, then the feature “CanReachRib” is assigned to true for all plaque pixels 
lying on the extrapolated line. Instead, if a vertebral mask is detected, the feature 
“CanReachSpine” is assigned to true. Similarly, if one or more fat pixels are 
encountered immediately after the plaque pixels, then the feature “CanReachFat” is 
assigned to true. No features are extracted for pixels that are missed between the 
extrapolated lines. We deal with such pixels in the post-processing phase. 

The pleural bumps are extracted by subtracting the lung boundary from its convex 
hull. Since the convex hull joins the outer most points with a line, only a portion of 
the bumpy region is extracted. For all candidate pixels that lie on the bumpy region, 
the feature “IsOnBump” is set to true. 

These features were extracted for around 30,000 pixels belonging to plaque and 
non-plaque regions (mainly intercostal muscles) from 14 labelled images in two 
studies. We used a simple naïve Bayes classifier (implemented in Weka [15]) to 
deduce the probabilities for each feature class. This supervised learner is based on the 
Bayes rule for calculating posterior probabilities from prior probabilities. It is well 
known that even though the naïve Bayes classifier assumes conditional independence 
among features given the class label, it works remarkably well even when this 
assumption is not valid [16].  Clearly some of the features we extract are not 
independent. We calculate the probabilities of a pixel belonging to plaque or non-
plaque class and the pixel is assigned to the class with the highest probability. Fig 9 
and 10 show the candidate regions and the regions after classification. 
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Extrapolated
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Fig. 8. Feature extraction using “Radial Walk”, dotted lines depict extrapolated points (not to 
scale) 
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Fig. 9. Candidate regions Fig. 10. Classification output 

3.5   Post- rocessing 

When we extract features with the “radial walk”, some pixels fall between the radial 
lines, therefore no features are extracted and no class label is assigned to these pixels. 
For such pixels we assign the majority class label in the 3 x 3 neighbourhood. Since 
the class labels are based on the probabilities, some portions of the candidate regions 
may be classified as plaque and others as non-plaque. Regions with fewer that 20% 
plaque pixels are ignored. 

4   Results 

The methods were developed and tested using 1 mm collimation scans with 15 mm 
inter-slice gap. The algorithm was run on 13 studies from 13 different patients, which 
were different from the studies used in the training set. We divided the studies into 
two groups. The first group contained 10 studies. After removing the first and last few 
slices, where the lungs were either not visible or very small, a total of 130 images was 
presented to a senior radiologist along with the output from the automated detection 
technique. This group included one case of pleural plaque and two cases of diffuse 
pleural thickening, forming the positive test set, and seven other studies with non-
pleural diseases formed the control or negative set in the group. Of these, two 
predominantly had emphysema, one had predominant honeycombing, two had 
ground-glass opacity, one had large nodules and masses and the last one was mostly 
normal with one or two small lung nodules.  

Since the percentage involvement of the pleural surface is clinically important, we 
computed our performance measures using the total number of pleural pixels involved 
vs. the number of pixels on the lung boundary. A radiologist was asked to mark the 
start and end of the pleural boundary where the plaques were wrongly detected (false 

p
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positive) and where the technique missed detection (false negative). From this 
feedback we are able to determine the true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN) numbers, explained below. 

• TP: Number of pleural pixels labelled by radiologist as plaque and recognised 
as such by our method. 

• FP: Number of pleural pixels identified as plaque by our method, but not 
labelled so by radiologist. 

• TN: Number of pleural pixels labelled by radiologist as NOT plaque and 
recognised as such by our method. 

• FN: Number of pleural pixels labelled by radiologist as plaque, but NOT 
recognised as such by our method. 

The following performance measures were calculated. 

Sensitivity = TP / (TP + FN) (1) 

Specificity = TN / (TN + FP) (2) 

Precision = TP / (TP + FP) (3) 

Accuracy = TP + TN / (TP + FP + TN + FN) (4) 

The performance results are shown in Table 3. 

Table 3. Performance measures on the first test group 

Measure Positive + Control Set Positive Set alone 
Sensitivity 81 % 81% 
Specificity 95% 95% 
Precision 53% 83% 
Accuracy 94% 91% 

The precision in the positive plus control group is low compared to positive set 
alone since no positive example were found in the control set (TP = 0, FN = 0) and 
only FP were found. However, the performance on the studies in the control set with 
extensive pulmonary fibrosis (honeycombing) and ground-glass opacity proved 
satisfactory. 

The second group comprised 11 images from three studies and they contained 
pleural plaques. They were pre-labelled by two radiologists without having seen the 
computerised output. However, not all occurrence of plaque was labelled on these 
images and hence we cannot deduce true positives and true negatives. The proportion 
of plaque pleural pixels detected by our technique over the plaque region labelled by 
radiologists yielded 60.5 %. 
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5   Discussion 

The technique performs well on images with pleural plaque / diffuse pleural 
thickening, missing relatively a few regions. However on non-plaque images, many 
false positives are reported. These tend to be mostly in the paravertebral region  
(around 49%) where normal anatomy mimics the appearance of plaques. Another 
point of failure occurs where the rib segments are very slender and containing very 
little bone marrow, resulting in inadequate segmentation of ribs. The paravertebral 
region can be improved by taking into consideration the slices above and below. To 
improve bone detection, more rigorous methods such as template matching may be 
required, or extraction of more features than just the Euler number currently used. 

It is clear from Table 1 that not all features contribute equally to the detection of 
pleural plaques. Feature such as “CanReachRibs” is highly reliable where as features 
“CanReachFat” and “IsOnBump” are not so reliable. The latter two are not reliable 
for very different reasons. In the case of “CanReachFat”, it is due to the fact that the 
fat layer may or may not be visible whereas for “IsOnBump”, even though it is 
always visible, a more sophisticated extraction method is needed.  

In a trial, we accumulated confidence levels for each pixel based on the features, 
where each feature was weighted differently. We assigned an initial value of 1 to 
every candidate pixel. If fat layer could be reached, we added 1. If spine could be 
reached a value of 2 was added, and 3 was added if ribs could be reached. We mapped 
these numbers into different colours from red to green, red being the lowest and any 
value above 5 being green (possible values were 1 to 7). One such colour-coded 
image is show in Fig. 11. We are currently working on more formal methods for 
assigning priorities to different features. More results are presented in Fig.12. 

  

Fig. 11. Left: Original image marked by radiologist (outlined regions with arrows pointing), 
Right: Result with confidence levels assigned to pixels based on features. Colors range from red, 
yellow, blue, cyan and green; red being the lowest (darker shade represents red) 
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Fig. 12. Left: Original images marked by radiologist (outlined regions with arrows pointing), 
Right: Results of automated technique on right 
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Abstract. This work analyses the accuracy of estimating the location
of 3D landmarks and characteristic image structures. Based on nonlinear
estimation theory we study the minimal stochastic errors of the position
estimate caused by noisy data. Given analytic models of the image in-
tensities we derive closed-form expressions for the Cramér-Rao bound
for different 3D structures such as 3D edges, 3D ridges, 3D lines, and
3D blobs. It turns out, that the precision of localization depends on the
noise level, the size of the region-of-interest, the width of the intensity
transitions, as well as on other parameters describing the considered im-
age structure. The derived lower bounds can serve as benchmarks and
the performance of existing algorithms can be compared with them. To
give an impression of the achievable accuracy numeric examples are pre-
sented. Moreover, by experimental investigations we demonstrate that
the derived lower bounds can be achieved by fitting parametric intensity
models directly to the image data.

1 Motivation

Performance characterization in biomedical image analysis is gaining increased
importance as more and more approaches for the same or similar tasks are de-
veloped. On the one hand, performance characterization serves a clear practical
need, e.g., when we have to select an algorithm for a certain application. On the
other hand, validation and evaluation studies are a major step towards a sound
description of algorithms as well as the foundation of the field.

This work is concerned with characterizing the performance of 3D landmark
localization. Landmarks are preferred features for a variety of image analysis
tasks, e.g., multi-modality image registration, motion analysis, as well as ob-
ject measurement, and the performance in these tasks directly depends on the
quality of extracting these features from images. However, work on performance
evaluation of 3D landmark extraction is rare. For an experimental study on 3D
differential approaches for point landmark extraction in 3D tomographic images
of the human brain see [3]. Here, we describe an analytic study on 3D landmark
localization. We take the statistical point of view to analyze the localization er-
rors caused by noisy data. We consider a continuous image model that represents
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the blur as well as noise introduced by an imaging system. For this model we de-
rive analytic results stating lower bounds for the localization uncertainty (highest
possible precision). The lower bounds are evaluated for explicitly given feature
models. We show that the precision of localization in general depends on the noise
level, the size of the region-of-interest, the width of the intensity transitions, as
well as on other parameters describing the systematic intensity variations.

Our study on the positional random errors is based on nonlinear estimation
theory and the Cramér-Rao bound (CRB). As explicitly given models of image
features we investigate 3D edges, 3D ridges, 3D lines, and 3D blobs. This gener-
alizes the work in [4] on 2D step edges and that in [6] on 2D edges and corners.
Note, that the derivation of analytic results for 3D image features is much more
extensive in comparison to the 2D case. For use of Cramér-Rao bounds in the
case of prior edge extraction and 2D curve fitting we refer to [2],[5].

We derive closed-form expressions and also provide numeric examples which
represent the highest possible precision for localizing the considered landmarks.
This means, we can use the formulas and numeric values as benchmarks and
compare them with the performance of existing algorithms for 3D landmark lo-
calization. Note, that here we derive uncertainty lower bounds for the location.
Therefore, we may assume that all model parameters except the ones for the lo-
cation are known. On the other hand, if the other parameters are also unknown
and thus have to be estimated then the resulting bound can only increase. There-
fore, the bounds derived here are indeed fundamental limits. In addition, as a
comparison, we perform an experimental study where we apply the model fitting
approach in [9] for localizing 3D landmarks in 3D tomographic images. It turns
out that the theoretical lower bounds can actually be achieved.

2 Nonlinear Estimation Theory and Cramér-Rao Lower
Bound

Our aim is to derive analytic results for the highest possible precision (minimal
uncertainty) in localizing landmarks in images. To this end we model landmarks
by their systematic intensity variations which are disturbed by an additive noise
process. Our observations g(x) are continuous functions extended over certain
intervals. Signal measurements are available within finite regions of an image
(regions-of-interest). We deal with space-dependent random variables, i.e. ran-
dom processes. The model gM (x,p) describing the systematic intensity varia-
tions depends on the parameter vector p = (p1, ..., pn)T and, in general, is non-
linear. Therefore, nonlinear estimation theory (e.g., van Trees [8]) is the suitable
framework.

Depending on the image dimension (2D or 3D) and the type of landmark (0D,
1D, or 2D image feature) the number of location parameters to be estimated
differs. In the case of 2D images, for example, point landmarks such as blobs
require two parameters while for (straight) lines and edges only one parameter
determines their location (the position in orthogonal direction is not uniquely
defined). In the case of 3D images we have to estimate the following number of
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location parameters: Three for point landmarks (0D feature), two for lines and
ridges (1D feature), and one for edges (2D feature).

The image noise n(x) will be assumed to be a sample function from an
additive zero-mean white Gaussian noise process that is independent of the signal
and has a spectral power density Ln(u) = σ2

n. Our image model then reads

g(x) = gM (x,p) + n(x), x1 ≤ x ≤ x2. (1)

Note that by choosing a particular space point x = xi a random variable n(xi)
with variance σ2

n is defined. Note also that the assumed noise model is an ap-
proximation to the error statistics of biomedical images. While the assumption
of the Gaussian noise model often holds, it has been argued that for large signal-
to-noise ratios the dependence of the noise on the signal should be taken into
account [1]. However, here we assume that this dependence can be neglected.

In the following we suppose to have no statistical a priori knowledge about p

and therefore treat p as a non-random variable. In general, we have to deal with
the case of multiple parameter estimation. The uncertainties of the estimated
parameter vector p̂ = (p̂1, ..., p̂n)T are represented by the covariance matrix

Σ = cov{p̂} = E{(p̂ − p)(p̂ − p)T } =




σ2
p̂1

· · · σp̂1p̂n

...
. . .

...
σp̂np̂1

· · · σ2
p̂n


 .

Lower bounds for the elements of this matrix are determined by the Fisher
information matrix. In the case of 3D images this matrix can be stated as

F =
1

σ2
n

x2∫
x1

y2∫
y1

z2∫
z1

∂gM (x,p)

∂p
·
(

∂gM (x,p)

∂p

)T

dx. (2)

If p̂ is an unbiased estimate of p then the errors are bounded by

Σ ≥ F−1, (3)

which means that the symmetric matrix Σ −F−1 is positive semidefinite. Since
the diagonal elements of positive semidefinite matrices are larger or equal to
zero, the uncertainty of an element of p̂ is bounded by

σ2
p̂i

≥ (F−1)ii, (4)

where (F−1)ii is the ii-th element of F−1. This inequality is usually referred
to as Cramér-Rao bound (CRB). The lower bound can be compared with the
actual variance of a certain estimation scheme. For an efficient estimate, (4) is
satisfied with equality. However, this is only the case if gM depends linearly on p.
Then, the maximum-likelihood estimate is the estimate with minimum variance.
It is possible that the variance in the nonlinear case approaches this bound (see
below).
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For general 3D image features the location is defined by three parameters
p = (x0, y0, z0)

T and we have a symmetric 3 × 3 matrix

F =


F11 F12 F13

F21 F22 F23

F31 F32 F33


 , (5)

where F21 = F12, F31 = F13, and F23 = F32. With

detF = F11(F22F33 − F 2
23) − F12(F12F33 − F23F13) + F13(F12F23 − F22F13)

we thus have for the positional parameters the following bounds:

σ2
x̂0

≥ CRBx̂0
=

F22F33 − F 2
23

detF
(6)

σ2
ŷ0

≥ CRBŷ0
=

F11F33 − F 2
13

detF
(7)

σ2
ẑ0

≥ CRBẑ0
=

F11F22 − F 2
12

detF
. (8)

Regions-of-interest (observation windows) are specified by the half-widths wx, wy,
and wz around the landmark position (x0, y0, z0)

T .

3 Cramér-Rao Bounds for 3D Landmark Localization

The framework described above is now applied to derive closed-form expressions
for the Cramér-Rao bound for different 3D image structures. We consider 3D
edges, 3D ridges, 3D lines, and 3D blobs. The investigated structures are exam-
ples for 0D, 1D, and 2D features. Note, that the derivation of analytic results for
3D image features is much more extensive in comparison to the 2D case. On the
one hand, the Fisher information matrix in (2) and (5) contains nine elements
in comparison to four elements, and, on the other hand, the integrals that have
to be calculated are much more complex. For reasons of space restriction we
concentrate on the main steps and results.

We also note, that the models under consideration depend on several param-
eters, however, here we are only interested in deriving uncertainty lower bounds
for the location. Therefore, in the following, we may assume that all model pa-
rameters except the ones for the location are known. On the other hand, if all
parameters are unknown and thus have to be estimated then the resulting bound
can only increase (see Scharf [7]). Therefore, the bounds derived here are indeed
lower bounds (fundamental limits).

3.1 3D Edges

First, we consider a Gaussian smoothed 3D step edge with contrast a and tran-
sition width σ. We arbitrarily assume that the edge has intensity variations only
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Fig. 1. Models of a 3D edge (left), 3D ridge (middle), and 3D line (right)

along the x-axis and denote its location by x0 (see Fig. 1, left). To simplify the
calculations we choose the coordinate system in such a way that x0 = 0. The
region-of-interest (ROI) defined by the half-widths wx, wy, and wz is placed sym-
metrically around x0 and some position y0 = 0 and z0 = 0 in y- and z-direction.
The model function of this image feature is given by

Edge3D(x, y, z) = aφ(
x

σ
), (9)

with the Gaussian error function φ(x) =
∫ x

−∞ G(ξ)dξ. For this model there is one
uniquely defined location parameter and the Cramér-Rao bound calculates to

σ2
x̂0,Edge3D ≥ CRBx̂0,Edge3D =

√
πσ

2a2erf(wx

σ )
· σ2

n

wywz
, (10)

where erf(x) = 2φ(
√

2x) − 1. To easier interpret the formula we can derive an
approximation by assuming that the width wx is much larger than the width σ
of the Gaussian, i.e. wx � σ (this means that the significant intensity variations
essentially lie within the ROI, which is typically the case). Then we obtain

CRBx̂0,Edge3D ≈
√

πσ

2a2
· σ2

n

wywz
. (11)

We see that the bound is proportional to the ratio σ2
n/(wywz) of the noise level

and the width of the ROI in y- and z-direction. The contrast a has a large influ-
ence on the precision since it appears (inverse) quadratically. The approximate
bound depends linearly on the edge width σ. We also see that if the struc-
tural intensity variations are essentially captured in x-direction then the preci-
sion cannot be improved by increasing wx. On the other hand, we can improve
the localization precision by extending the ROI in y- or z-direction (enlarging
wy or wz). The relation to an analogous 2D edge model is CRBx̂0,Edge3D =

1/(2wz) · CRB
x̂0,Edge2D.

a

y

z

x

y

z

x

a

x

y

z

a
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3.2 3D Ridges

Next we consider a model of a 3D ridge structure. This structure is a 1D feature
and its extremal points define a line in 3D images. Actually, such a structure
can be modeled by extending a Gaussian smoothed 2D L-corner model to 3D.
We use an L-corner with an aperture angle of 90o and assume that we have no
variation in z-direction (Fig. 1, middle):

Ridge3D(x, y, z) = aφ(
x

σ
)φ(

y

σ
). (12)

Assuming that wx, wy � σ, the analytic lower bounds for the two positional
parameters compute to

CRB
x̂0,Ridge3D ≈

√
πσ

a2
· σ2

n

wywz
(13)

CRBŷ0,Ridge3D ≈
√

πσ

a2
· σ2

n

wxwz
. (14)

3.3 3D Lines

3D lines are 1D features in 3D images. We analyze a 3D Gaussian line model
with elliptic cross-section and extended in y-direction (Fig. 1, right). Such a
model is often used for representing 3D vessels and can be written as

Line3D(x, y, z) = a e
− x2

2σ2
x e

− z2

2σ2
z . (15)

For the lower bounds we obtain

σ2
x̂0,Line3D ≥ σx

πa2σz

(
−2

√
2wx

σx
G(

√
2wx

σx
) + erf(wx

σx
)
)

erf(wz

σz
)
· σ2

n

wy
(16)

σ2
ẑ0,Line3D ≥ σz

πa2σx erf(wx

σx
)
(
−2

√
2wz

σz
G(

√
2wz

σz
) + erf(wz

σz
)
) · σ2

n

wy
. (17)

Assuming wx � σx and wz � σz we have

CRBx̂0,Line3D ≈ σx

πa2σz
· σ2

n

wy
(18)

CRBẑ0,Line3D ≈ σz

πa2σx
· σ2

n

wy
. (19)

In comparison to an analogous 2D Gaussian line model, the result depends on
the ratio between σx and σz. Assuming σx = σz = σ = 1 the uncertainty for the
3D Gaussian line is a factor of

√
π smaller compared to the 2D Gaussian line.
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Fig. 2. Model of a 3D blob

3.4 3D Blobs

Finally, we consider 3D anisotropic blobs as point landmarks in 3D images
(Fig. 2). Such a model can be used, for example, to represent artificial markers,
parts of bone structures, the human eye, or the ventricular horns in human brain
images (if we take one half of the model, cf. [9]). We define the centerpoint as
the point we want to localize and model such structures by a trivariate Gaussian

Blob3D(x, y, z) = a e
− x2

2σ2
x e

− y2

2σ2
y e

− z2

2σ2
z . (20)

The localization uncertainty for this structure computes to

σ2
x̂0,Blob3D ≥ 2σx σ2

n

π
3

2 a2σyσz

(
−2

√
2wx

σx
G(

√
2wx

σx
) + erf(wx

σx
)
)

erf(
wy

σy
) erf(wz

σz
)

(21)

σ2
ŷ0,Blob3D ≥ 2σy σ2

n

π
3

2 a2σxσz erf(wx

σx
)
(
−2

√
2

wy

σy
G(

√
2wy

σy
) + erf(

wy

σy
)
)

erf(wz

σz
)

(22)

σ2
ẑ0,Blob3D ≥ 2σz σ2

n

π
3

2 a2σxσy erf(wx

σx
) erf(

wy

σy
)
(
−2

√
2wz

σz
G(

√
2wz

σz
) + erf(wz

σz
)
) (23)

Assuming wx � σx, wy � σy, wz � σz, we obtain the relatively simple formulas

CRB
x̂0,Blob3D ≈ 2σx σ2

n

π
3

2 a2σyσz

(24)

CRBŷ0,Blob3D ≈ 2σy σ2
n

π
3

2 a2σxσz

(25)

CRBẑ0,Blob3D ≈ 2σz σ2
n

π
3

2 a2σxσy

. (26)

For x0 the precision depends on the ratio σx/(σyσz). The result for y0 and z0 is
analogous. In the case of an isotropic blob (σx = σy = σz = σ) we have

CRBx̂0,Blob3D = CRBŷ0,Blob3D = CRBẑ0,Blob3D ≈ 2σ2
n

π
3

2 a2σ
. (27)

In contrast to an analogously defined 2D blob the result depends on the width σ.
The relation between isotropic 2D and 3D blobs can be stated as CRBx̂0,Blob3D =

x

z

y
a
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1/(
√

πσ) · CRB
x̂0,Blob2D. Thus, for σ = 1, for example, the localization uncer-

tainty for a 3D blob is a factor of 0.56 lower in comparison to a 2D blob, while
for σ = 0.1 the localization uncertainty is a factor of 5.64 higher.

4 Numeric Examples and Experimental Investigations

In this section, we present numeric examples of the achievable precision for
the above studied landmark models as well as describe results of experimental
investigations. The resulting precision will be presented in terms of the image
grid by identifying the units of the space coordinates with pixel or voxel positions.
The pixel or voxel spacing will be denoted by pix or vox, respectively, and the
intensity values will be characterized by the dimension gr.

4.1 Numeric Examples

We state numeric results for the following landmark models: 2D and 3D step
edges, 2D and 3D lines, as well as 2D and 3D blobs. To ease a comparison we
use the same parameter values for all examples below. We use ROIs of size 25×25
pixels (2D) or 25 × 25 × 25 voxels (3D), which means that wx = wy = 12pix
or wx = wy = wz = 12vox. Furthermore, for the intensity contrast we choose
a = 100gr and for the noise level we assume σ2

n = (5gr)2. Note, that we present
the numeric values of the uncertainties in terms of the standard deviation (square
root of the variance) in order to be better comparable with the space coordinates.

We first consider a 2D step edge with transition width σ = 1pix. Note, that
we can use the same model as in the 3D case in (9). Applying the approxima-
tion of the Cramér-Rao bound, which is valid since wx = 12pix � σ = 1pix,
the localization precision computes to σx̂0,Edge2D ≈ 0.0192pix. For the 3D step
edge Edge3D(x) with the same parameter setting and applying (11) we obtain
σx̂0,Edge3D ≈ 0.0039vox. Thus, the precision is about five times better than
in the 2D case. It should be noted that this (subvoxel) precision can only be
achieved if a and σ (and the orientation of the edge) are determined correctly
and surely only if the model is valid. However, the obtained precision which is
better than 1/100vox is amazing.

Next we consider a 2D Gaussian line model. The model is analogous to the
3D case in (15) except that the term including the z−coordinate is omitted.
Using the same parameter values as above and σx = 1pix we yield σx̂0,Line2D ≈
0.0108pix. In the 3D case, for the model Line3D(x) applying (18),(19) with
σx = σz = 1vox we obtain σx̂0,Line3D = σẑ0,Line3D ≈ 0.0081vox. It can be seen
that the precision in the 3D case is somewhat better than in the 2D case.

Finally, we present numeric results for 2D and 3D blob structures. For the
2D Gaussian blob model (analogous to the 3D case) with σx = σy = 1pix the
localization precision calculates to σx̂0,Blob2D = σŷ0,Blob2D ≈ 0.0399pix. For the
3D Gaussian blob model Blob3D(x) in (20) with σx = σy = σz = 1vox we
obtain σx̂0,Blob3D = σŷ0,Blob3D = σẑ0,Blob3D ≈ 0.0300vox. Also in this case the
precision in 3D is better than in 2D.
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4.2 Experimental Investigations

The numeric values stated above are theoretical values and represent the highest
possible precision for localizing the considered landmarks. This means, we can
use these values as benchmarks and compare them with the performance of
existing algorithms for landmark localization. Here, as a comparison, we apply
a model fitting approach which has been introduced in [9] for localizing 3D
landmarks in 3D tomographic images. With this approach parametric intensity
models are directly fit to the image data using least-squares minimization to
determine estimates of the model parameters including the position.

Our study is based on 2D and 3D images which have been generated using
the intensity models introduced above with additive white Gaussian noise of dif-
ferent levels. For each image we randomly varied (using a uniform distribution)
the correct (subvoxel) position of the landmark within an interval of [−1, 1]vox
in each coordinate. In addition, to initialize the model fitting approach we ran-
domly varied (again using a uniform distribution) the model parameters around
the correct values within certain intervals. We varied the intensity levels of the
background and structure a0, a1 within [−10, 10]gr, each coordinate of the posi-
tion x0, y0, z0 within [−1, 1]vox, and the blurring (width) parameters σx, σy, σz

within [−0.2, 0.2]vox. In total, for each noise level, we carried out 1000 experi-
ments, i.e., using 1000 different images and 1000 different initializations of the
model fitting approach. The precision of the position estimate is then computed
as the standard deviation, for example, in case of the x-coordinate as

σx̂0
=

√√√√ 1

N − 1

N∑
i=1

(x0,i − x0)
2
, (28)

where x0 denotes the mean and N the number of experiments (N = 1000 in our
case). In all our experiments we used ROIs of sizes 25× 25 pixels or 25× 25× 25
voxels, respectively, i.e. wx = wy = wz = 12vox.

In the experiments, the noise level is specified by the standard deviation σn

as in the formulas above. In addition, we also state the corresponding signal-to-
noise ratio (SNR), which is computed as the ratio between the variance of the
signal and that of the noise by

SNR =
σ2

g

σ2
n

=
1

mσ2
n

m∑
i=1

(g(xi) − g)
2
, (29)

where g is the mean intensity over all intensities g(xi) within the ROI consisting
of m pixels (voxels).

We first study the localization of line (vessel) structures in 2D images us-
ing the Gaussian line model. The landmark position is the center point of the
line along a cross-section within a symmetric ROI. As parameter values for
the intensity levels of the background and the structure we choose a0 = 50gr
and a1 = 150gr, i.e., the contrast is a = 100gr. For the width of the line we
choose σ = 3pix. From the experiment it turned out that the position es-
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Fig. 3. 3D example images with noise. Isotropic 3D Gaussian line: Longitudinal (left)
and axial cross-section (middle) (a0 = 50gr, a1 = 150gr, σx = σy = 3vox, σn = 5gr),
and anisotropic 3D blob: xz−cross-section (right) (σx = 4vox, σy = 3vox, σz = 2vox)

timate is unbiased, i.e., the systematic error is zero. The result for the pre-
cision of the position estimate as a function of the noise level σn when ap-
plying the model-fitting approach has been summarized in Tab. 1. We chose
values of σn = 1, 3, 5, 10, 50gr which correspond to signal-to-noise ratios of
SNR = 1222.22, 135.80, 48.89, 12.22, 0.49, respectively. In addition, we carried
out experiments without noise (σn = 0gr), where we obtained a precision of ca.
10−8vox, i.e., the uncertainty can be considered to be zero. In comparison, in
Tab. 1 we have also listed the theoretically derived values based on the Cramér-
Rao bound. It can be seen that the agreement between the theoretical and the
experimental values is very good. The agreement is even more remarkable since
the analytic derivation does not consider discretization effects due to sampling
and quantization, while in the experiments naturally discrete images have to
used. Moreover, in the experiments we also estimated the model parameters a0,
a1, and σ in addition to the positional parameters.

We have also analyzed the 3D Gaussian line model Line3D(x) in (15). We
have used the same parameter values as in the 2D case and assumed a circu-
lar cross-section of the line of width σx = σz = 3vox. The noise levels σn =
1, 3, 5, 10, 50gr correspond to SNR levels SNR = 370.54, 41.17, 14.82, 3.71, 0.15.
As an example, we show in Fig. 3 (left, middle) images of longitudinal and ax-
ial cross-sections of the 3D Gaussian line model with added noise of σn = 5gr.
Tab. 2 reveals that the agreement between the theoretical and experimental val-
ues is very good. The accuracy in the 3D case is about a factor of two better
than in the 2D case.

Next we study the localization of blobs in 2D images consisting of a bivariate
anisotropic Gaussian function. The landmark position is the center point of
the blob. As above we choose an intensity contrast of a = 100gr (a0 = 50gr,
a1 = 150gr). We first consider an isotropic blob (σx = σy = σ) with σ = 3pix.
Again, from the experiment it turned out that the position estimate is unbiased.
The result for the precision of the position estimate as a function of the noise
level σn for the model-fitting approach has been summarized in Tab. 3. We
chose values of σn = 1, 3, 5, 10, 50gr which correspond to signal-to-noise ratios
of SNR = 370.54, 41.17, 14.82, 3.71, 0.15. In comparison, in Tab. 3 we have also
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listed the theoretically derived values based on the Cramér-Rao bound. It can
be seen that the agreement between the theoretical and the experimental values
is very good.

The result for an anisotropic 2D blob with σx = 4pix and σy = 2pix has been
listed in Tab. 4. Here the accuracy in y−direction is a factor of two better than
in x−direction.

Finally, we consider the localization of a blob in 3D images using the 3D
blob model Blob3D(x) in (20) consisting of a trivariate Gaussian function. The
landmark position is the center point of the 3D blob. We choose the same pa-
rameter values for the intensity levels as above and first investigated an isotropic

Table 1. Localization of a 2D Gaussian line with σx = 3pix: Standard deviation of
the precision as a function of the standard deviation σn of the noise

σn[gr] 1 3 5 10 50

Theory, σx̂0
[pix] 0.0038 0.0113 0.0188 0.0376 0.1878

Experiment, σx̂0
[pix] 0.0037 0.0111 0.0182 0.0367 0.1798

Table 2. Localization of a 3D Gaussian line with σx = σz = 3vox: Standard deviation
of the precision as a function of the standard deviation σn of the noise

σn [gr] 1 3 5 10 50

Theory, σx̂0
[vox] 0.0016 0.0049 0.0081 0.0163 0.0814

Experiment, σx̂0
[vox] 0.0016 0.0049 0.0082 0.0162 0.0831

Table 3. Localization of an isotropic 2D blob with σx = σy = 3pix: Standard deviation
of the precision as a function of the standard deviation σn of the noise

σn [gr] 1 3 5 10 50

Theory, σx̂0
[pix] 0.0080 0.0239 0.0399 0.0798 0.3989

Experiment, σx̂0
[pix] 0.0081 0.0236 0.0399 0.0800 0.3944

Table 4. Localization of an anisotropic 2D blob with σx = 4pix, σy = 2pix: Standard
deviation of the precision in x− and y−direction as a function of the standard deviation
σn of the noise

σn [gr] 1 3 5 10 50

Theory, σx̂0
[pix] 0.0113 0.0339 0.0564 0.1128 0.5642

Experiment, σx̂0
[pix] 0.0112 0.0337 0.0558 0.1168 0.5937

Theory, σŷ0
[pix] 0.0056 0.0169 0.0282 0.0564 0.2821

Experiment, σŷ0
[pix] 0.0055 0.0175 0.0281 0.0565 0.2909
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Table 5. Localization of an isotropic 3D blob with σx = σy = σz = 3vox: Standard
deviation of the precision as a function of the standard deviation σn of the noise

σn [gr] 1 3 5 10 50

Theory, σx̂0
[vox] 0.0035 0.0104 0.0173 0.0346 0.1730

Experiment, σx̂0
[vox] 0.0035 0.0105 0.0176 0.0342 0.1832

Table 6. Localization of an anisotropic 3D blob with σx = 4vox, σy = 3vox, and
σz = 2vox: Standard deviation of the precision in x−, y−, and z−direction as a function
of the standard deviation σn of the noise

σn [gr] 1 3 5 10 50

Theory, σx̂0
[vox] 0.0049 0.0147 0.0245 0.0489 0.2447

Experiment, σx̂0
[vox] 0.0049 0.0145 0.0238 0.0485 0.2537

Theory, σŷ0
[vox] 0.0037 0.0110 0.0184 0.0367 0.1835

Experiment, σŷ0
[vox] 0.0036 0.0111 0.0183 0.0364 0.1830

Theory, σẑ0
[vox] 0.0024 0.0073 0.0122 0.0245 0.1223

Experiment, σẑ0
[vox] 0.0025 0.0073 0.0123 0.0239 0.1224

3D blob of σx = σy = σz = σ = 3vox. Tab. 5 shows that the agreement between
theory and experiment is again very good, and that the accuracy is about a
factor of two better in comparison to the 2D case (cf. Tab. 3). The noise levels
σn = 1, 3, 5, 10, 50gr correspond to SNR = 88.82, 9.87, 3.55, 0.89, 0.04. The result
for an anisotropic 3D blob (σx = 4vox, σy = 3vox, σz = 2vox) can be seen in
Tab. 6. For an example of a cross-section image see Fig. 3 (right). Again we
observe a remarkable agreement between theory and experiment.
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Abstract. A new approach is proposed to estimate the spatial distribu-
tion of shear modulus of tissues in-vivo. An image sequence is acquired
using a standard medical ultrasound scanner while varying the force ap-
plied to the handle. The elastic properties are then recovered simultane-
ously with the inter-frame displacement fields using a computational pro-
cedure based on finite element modeling and trust region constrained op-
timization. No assumption about boundary conditions is needed. The op-
timization procedure is global, taking advantage of all available images.
The algorithm was tested on phantom, as well as on real clinical images.

1 Introduction

Elastography, or elasticity imaging [1, 2], aims at noninvasive measurement of
elastic properties of tissues and their spatial distributions. Knowing elastic pa-
rameters can be very useful for biomedical modeling as well as for diagnostics. As
an example, many carcinoma are harder than the surrounding healthy tissue [3–
5], as are some lesions. It has been established that several diseases of breast,
kidney, prostate, blood vessels and other organs are also accompanied by a
change of elastic properties of tissues. After all, palpation, a precursor to elastog-
raphy, has been used for medical diagnosis since perhaps several thousand years.

Many kinds of elastographic procedures have been proposed in recent
years [6–10]. In most cases, a small force is applied to the tissue and the result-
ing displacement is measured. Typically, the induced displacement is extremely
small and a special device is needed to measure it. In ultrasound based elas-
tography, we often need to resolve displacements significantly smaller than the
wavelength. A special ultrasound scanner is used, allowing the sampling of the
received signal (RF signal) at very high frequency [11–13], so that it can be
correlated with the emitted pulse.

However, such specialized devices are not yet readily available in clinical
practice. Therefore, we attempt to develop an elastography approach using only
a standard ultrasound machine, without any special hardware. The tissue is
deformed by varying the force applied by the operator on a standard ultra-
sound hand-held transducer while acquiring the image sequence. A specialized

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 299–310, 2005.
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reconstruction algorithm is used, simultaneously estimating the shear modulus
distribution and the displacement fields between a chosen reference frame and
the rest of the images in the sequence.

We have already confirmed the feasibility of reconstructing elastic properties
of tissues from standard ultrasound images in our previous work [14], where we
have used a pair of images for the reconstruction. Like all similar methods de-
scribed in the literature [8–10, 15], we were forced to provide stress (force) bound-
ary conditions for the elasticity problem even on the virtual internal boundaries
of the imaged region, where no measurement is available. Using displacement-
only boundary conditions leads to an inherently ill-posed and unstable inverse
problem, even if additional boundary conditions for the elastic modulus µ are im-
posed [16]. In practical terms it means that there are many different modulus dis-
tributions consistent with the two acquired images within measurement accuracy.

The new reconstruction algorithm described here can find a shear modu-
lus distribution µ consistent with a whole set of images, allowing us to choose
a trade-off between the robustness and accuracy of the estimation and the time
and memory requirements. The applied force does no longer have to be strictly
perpendicular to the sensor array, maintaining the same image plane is enough.
Moreover, no assumptions are needed about the boundary forces any more. By
virtue of using more images, the problem is better posed. It has been shown re-
cently [17] that the elastic modulus can be reconstructed almost uniquely (up to
4 constants) from two displacement fields, i.e. 3 images in our case, and up to 1
constant from 4 displacement fields (5 images). To the best of our knowledge, this
is the first algorithm described in the literature that combines information from
several images (or equivalently, from several displacement fields), to reconstruct
elasticity parameters.

2 Method

2.1 Data Acquisition

An ultrasound probe (transducer) of a Philips Envisor scanner is placed on a skin
above the zone of interest, such as the thyroid gland, breast, or liver. An image
sequence of about 10 s at 5 ∼ 10 frames per second is acquired while the operator
slowly varies the pressure applied on the handle. The operator is instructed to
keep the same image plane as closely as possible. Out of this sequence, a smaller
number of approximately equidistant images (in time) are selected for further
processing, ideally with no motion and other artifacts. The selected 2D images
will be denoted ft for −n1 ≤ t ≤ n2. Image f0 will be called a reference image.
The images of an area denoted Ω are taken in a moving coordinate system
attached to the sensor (Figure 1).

2.2 Elasticity Equations

Let us consider the tissue movement between two adjacent images ft− , and ft,
where t− = t− sign t. In other words, ft− is the image preceding ft towards the
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Fig. 1. The tissue is deformed by varying the pressure on the ultrasound probe (black).
Dashed lines show the position of the skin and the sensed region after the probe is
shifted (in this case downward by a distance d)

reference image f0. Since we do not have any information about the movement
of the tissue outside the imaging plane, we will make the standard assumption
of a plane strain, i.e. that all the out-of-plane strains (displacements) are zero.
Let us denote vt the displacement field between ft− and ft

vt

(
ut−(x)

)
= ut(x) − ut−(x) (1)

where t → ut(x) is the trajectory of a tissue point that is at coordinates x in
frame f0; u0(x) = x. Note that vt is expressed in the coordinate system of ft− .
We shall assume that the displacement is small and that the tissue is isotropic
and incompressible. Then, the displacement field satisfies the standard elasticity
equations [1, 10] governed by a Lamé parameter µ(x) > 0, the shear modulus:

−∇pt + ∇ · (2µ∇svt

)
= 0

−∇ · vt = 0

}
in Ω (2)

where pt is a pressure, positive for compression, and εt = ∇svt = 1
2 (∇vt +∇vT

t )
is a symmetric strain tensor. Note that there are n = n1 + n2 independent
displacements vt and pressures pt, one for each image ft, t �= 0, while there is only
one field µ, defined in the reference coordinate system, common to all images. All
equations (2) must be satisfied simultaneously, for all images t, −n1 ≤ t ≤ n2,
t �= 0. The only boundary condition we impose is

ut = vt = 0 on Γ1 (3)

It comes from the assumption that the ultrasound sensor is always in touch with
the upper edge Γ1 of the imaged region Ω (the skin).

2.3 Weak Formulation

We convert the strong formulation (2) into an equivalent weak one [10]. We say
that fields µ ∈ L+

∞(Ω), {vt} ∈ H1(Ω)n, {pt} ∈ L2(Ω)n, are consistent with the
elasticity constraints, iff (3) holds and
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0 = A
(
µ; {vt}, {pt}, {wt}, {qt}

) def=
∑
t�=0

At(µ;vt, pt,wt, qt)

At(µ;vt, pt,wt, qt) =
∫

Ω

2µt∇svt : ∇swt − (∇ · wt)pt − (∇ · vt)qt dΩ

(4)

for all sufficiently regular and integrable test functions wt ∈ H1(Ω) and qt ∈
L2(Ω) such that wt = 0 on ∂Ω. We write

ξ
def=
(
µ, {vt}, {pt}

) ∈ C ⇐⇒ ∀wt, qt; A
(
µ; {vt}, {pt}, {wt}, {qt}

)
= 0 (5)

where C is a manifold representing all consistent modulus, displacement, and
pressure fields. Note that no boundary conditions are imposed apart from (3).

2.4 Finite Element Method

We convert the continuous formulation (4) to a corresponding linear system
of equations using the Galerkin method [18]. The domain Ω is triangulated to
form a mesh with a maximum edge size h.The mesh topology is the same for all
frames, while the mesh nodes follow the tissue, i.e. the trajectory of a node with
an initial position x (corresponding to the reference frame) is ut(x). We shall
denote Nv the total number of vertices in the mesh, Nu the number of vertices
except the top, non-moving edge, and Ni the number of internal vertices, not
lying on any edge.

The modulus µ, the displacement fields vt and the test functions wt are
discretized with P1 basis functions ϕi (equal to 1 at vertex i, 0 on other vertices,
and piecewise linear on each triangle). The pressure pt and test functions qt are
discretized with P0 basis functions ψi (piecewise constant):

µh =
∑

i

miϕj vh =
∑

i

[
v2i

v2i+1

]
ϕi =

∑
j

vjϕj (6)

ph =
∑

j

pjψj (7)

(and similarly for wh and qh) where the superscript h denotes the discretized
version. To relax the incompressibility condition in order to avoid mesh locking,
the support of functions ψi is chosen to be triangles adjacent to vertex i, where
ψi is 1, and zero elsewhere. Consequently, we have 2Nu degrees of freedom for
each vt, Nv degrees of freedom for µ and each pt and qt, and Ni degrees of
freedom for each wt. Note also that with this discretization, the bilinear form
A (4) can be integrated exactly.

The discretized state ξh of the modulus and displacement reconstruction
problem is completely described by a finite-dimensional state vector Ξ with
Nx = n(2Nu + Nv) + Nv degrees of freedom.

ξh def=
(
µh, {vh

t }, {ph
t }
)←→ Ξ =

({mi}, {vj,t}, {pk,t}
) ∈ RNx t �= 0
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The corresponding discretized version of the manifold (5) of consistent
solutions is

Ch =
{

ξh =
(
µh, {vh

t }, {ph
t }
)
;µh > 0, c(ξh) = 0

}
with a vector of constraints

c(ξh) = DλAh(ξh,wh, qH) and
[
wh

qh

]
= Φλ

where λ =
({wi,t}, {qj,t}

)
is a vector expressing the test functions wh and

qh using P1 and P0 basis functions (6),(7). As Ah is linear in λ, we have
∀λ;Ah(ξh,λ) = 0 iff c(ξh) = DλAh(ξh,λ) = 0. To simplify the notation, we will
from now on drop the superscript h even if the resulting algorithm must obviously
represent the continuous quantities in the appropriate finite dimensional bases.

2.5 Image Similarity Criterion

A solution ξ =
(
µ, {vt}, {pt}

)
, besides satisfying the elasticity constraints, must

also be consistent with the image sequence {ft}. The displacements vh
t must

correspond to the observed movement in the image sequence. The similarity
between a pair of images f , g is measured by a normalized version of the SSD
criterion

Js(f, g) =
1
2

∑
i∈I

mg(i) mf (i)
(
g(i) − f(i)

)2

∑
i∈I

mg(i) g(i)2 + mf (i)f(i)2

where I is the set of pixel coordinates in the images and mf and mg are masks,
determining the region of interest. There is one mask mt associated with each
image ft. This criterion is fast to calculate, invariant to image intensity scale
changes and largely insensitive to changes of overlap. This is important in our
application where the imaged region is changing from frame to frame. We chose
to evaluate the similarity between the reference image f0 and deformed images(
Tut

ft

)
(x) = ft

(
ut(x)

)
, where ut and vt are recursively related by (1)

ut(x) = ut−(x) + vt

(
ut−(x)

)
and u0(x) = x

In our experience [19, 20] comparing each image with a reference is more accurate
than evaluating the similarity between adjacent images. Bilinear interpolation
and zero boundary conditions are used to evaluate the warped image Tut

ft and
the corresponding warped mask Tutmt. The global similarity criterion over the
whole sequence is:

J(ξ) = J
({vt}

)
=
∑
t�=0

Js(f0, Tut
ft)
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2.6 Problem Definition

Given the definitions above our problem of simultaneous reconstruction of elas-
tic properties of the tissue and the displacements consistent with the elasticity
equations and the acquired image sequence can be described as a constrained
optimization:

ξ∗ = arg min
ξ

J(ξ) for ξ ∈ C (8)

The difficulty lies in the complicated nonlinear structure of the manifold C,
coming from the µ∇svt products (4) and the the displacement accumulation
{vt} → {ut}. In other words, the PDE (2) is solved in a curved space, the local
curvature of which is influenced by the deformation in preceding frames. The
problem (8) may have several local minima. Therefore, finding a good starting
point ξ0 is important. Usually, we use vt = 0, pt = 0, and µ = 1, or multireso-
lution (Section 2.8).

According to our tests, most higher-order approximations used by standard
optimization methods are only useful in a close vicinity of the solution point.
We therefore chose a modified trust region optimization method [21], described
in the following section, as it was the only method tested providing the required
robustness.

2.7 Trust Region Optimization

In contrast to the classical trust region approach that uses linearized constraints
and quadratic approximation to the criterion, we found that a linear approxi-
mation of the criterion is adequate, while the constraints have to be take into
account exactly in each step, otherwise the convergence is not ensured.

Major Iterations. Starting from an initial (feasible) estimate ξ0, the trust
region optimizer attempts to find a sequence of estimates ξ0, ξ1, ξ2, . . . on the
manifold C, (i.e., such that c(ξi) = 0 for all i), and so that further the sequence
of criterion values J(ξ0), J(ξ1), J(ξ2), . . . is decreasing. Each step ξi → ξi+1

is termed a major iteration. Major iterations terminate if the decrease of J is
below an a priori chosen relative or absolute threshold (we normally use a relative
threshold of 10−3) or if the process stagnates (no improvement can be found).

Within each major iteration i, we linearize the criterion around ξi

J̃(ξi + z) = J(ξ) + DξJ(ξi) z = Ji + aT z (9)

and solve the reduced problem

z∗ = arg min J̃(ξi + z) = arg min aT z for z + ξi ∈ C, ‖z‖ < �i (10)

where �i is the trust region radius. We start with �0 = 0.3 (units of � partly
correspond to pixels). If the problem (10) is successfully solved and J(ξi +z∗) <
J(ξi) (the linear approximation is valid), we accept the step by setting ξi+1 =
ξi + z∗ and increase �i+1 = 1.5�i. Otherwise, we try to solve (10) again with
�i ← 0.1�i.
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The problem (10) is equivalent to

z∗ = arg min aT z +
α

2
‖z‖2 for z + ξi ∈ C (11)

for some Lagrange multiplier α. The appropriate α is found by a binary search,
stopping if 0.1� ≤ ‖z‖ ≤ � and using the last value of α as a first guess. If no
such α can be found, the major iteration is declared to fail.

Minor Iterations. The problem (11) is again solved iteratively, producing a se-
quence z0, z1, . . . . Each step is called a minor iteration. The first of them, z0 is
chosen to minimize (9) in the trust region, regardless of the constraints

z0 = arg min aT z for ‖z‖ ≤ � (12)

The solution (except degenerate cases) is z0 = −�a/‖a‖. Then, for each mi-
nor iteration estimate zj we find the next estimate zj+1 as a solution to the
constrained optimization problem (11) with linearized constraints

zj+1 = arg min
z

aT z +
α

2
‖z‖2

with 0 = d + B(z − zj)

where d + B(z − zj) = c(ξi + zj) +
(
Dξ c(ξi + zj)

)
(z − zj) ≈ c(ξi + z)

We form the Lagrangian

L = aT z +
α

2
‖z‖2 + yT

(
d + B(z − zj)

)
and find its first order optimality conditions for δz = zj+1 − zj :

α δz +BT y = −a − αzj

B δz = −d
(13)

The sparse symmetric linear system of equations (13) is solved using the (itera-
tive) MINRES method [22].

We monitor the constraint fulfillment ‖c(ξi + zj)‖ during minor iterations.
Normally only a few iterations (3 ∼ 5) are needed to ensure that the dicrepancy is
sufficiently small (‖c(ξi+zj)‖ < 10−4). If divergence is detected (the discrepancy
‖c(·)‖ increases), the minor iterations are declared to fail. Consequently, in the
next major iteration, smaller � will be used and so the linear approximation of
the constraints will be more accurate and the major iterations thus less likely to
diverge.

Summary of the Trust Region Optimization. The trust region algorithm
consists of four cascaded iteration loops. The outermost, major iterations, finds
a sequence of feasible solutions ξi with decreasing criterion values. The second
level attempts to find a suitable value α such that the step z∗ of (11) has a cor-
rect amplitude ‖z∗‖ ≤ �. The third level (minor iterations) iteratively solves
(11). Finally, the innermost, fourth level, iteratively solves a linear system of
equation (13) within each minor iteration.
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Unfeasible Starting Points. If only an infeasible (not belonging to C) starting
point ξ′

0 is available, we project it to C by minimizing

ξ0 = arg min
ξ

‖ξ − ξ′
0‖2

W for ξ ∈ C (14)

where ‖(µ, {vt}, {pt})‖2
W = 103‖µ‖2+‖{vt}‖2+‖{pt}‖2 is a weighted Euclidean

norm which gives more weight to the µ components of ξ, expressing our a priori
estimate of the precision of the various components. The minimization prob-
lem (14) is solved by repeated projections to the linearized constraint subspace
with respect to ‖·‖W , until convergence is reached, similarly to the minor itera-
tions described above (13). Infeasible starting point may arise for example when
interpolating a coarse solution in a multiresolution framework (Section 2.8).
Normally, however, the distance from the constraint space is small, just due
to numerical errors, so only a few iterations are needed and the choice of the
projection norm is not crucial.

Maintaining Feasibility. We had to add two additional rules to the evaluation
of the success of each major iteration, preventing the algorithm from running
astray. First, we require that µ is everywhere positive. If not, we project the
proposed µ to the allowed space by selectively setting the offending components
to small positive numbers (10−6). Second, we require that the change of all
accumulated displacements ut be less than 0.5 pixels in magnitude everywhere.
Both rules could be implemented within the trust region approach albeit with
a slightly higher computational cost. We opted for this hybrid approach since
both rules only affect the optimization during a few initial steps.

2.8 Multiresolution

To improve speed and robustness of the optimizer, a multiresolution approach
was used with respect to both mesh and image size. We start with a coarse
mesh and coarse versions of the images — normally a mesh with 3 × 3 nodes
and images of about 64 × 64 pixels are used. Once the coarse problem is solved
(which is fast), its solution is used as a starting point for a finer one. In the
outer loop we progressively refine the mesh by subdivision. In the inner loop,
we increase the image resolution, so that the problem is solved at optimum level
— as a rule of thumb, we attempt to have image size 5l ∼ 10l pixels, where l
is the maximum edge length for the mesh. We continue until the desired mesh
and image resolution is reached. The image pyramid is built by convolution with
a 3 × 3 smoothing filter and down-sampling by a factor of 2.

When the mesh or image resolution is changed, the status vector ξ must be
updated accordingly. This involves multiplying vt by 2 (for image size change) or
taking the mean of the parent node values (for mesh expansion). The interpolated
state vector has to be projected to C (see (14)).
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3 Experiments

First experiment is based on data acquired on a Gammex 429 Ultrasound Biopsy
Phantom1 that mimics normal breast tissue and contains eleven test objects
filled with low or high density gel, simulating lesions (Figure 2). Two of the
acquired images with different views of different lesions are shown, each rep-
resenting a whole sequence. Corresponding reconstructions using 3 images are
shown; using 2 images did not converge to an acceptable solution, using more
than 3 images did not improve the results significantly.
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Fig. 2. Phantom images (left column) and corresponding reconstruction of the relative
modulus µ from sets of 3 images with a 10 × 10 node mesh (right column). The same
color scale is used in both images

Figure 3 (top) shows a reconstruction based on a real thyroid gland ultra-
sound sequence of a normal subject using 3 images. Finally, for illustration, the
bottom image shows a reconstruction from thyroid gland sequence taken from
a subject with acute thyroiditis, 2 reconstructed using a twice finer mesh and 5
images.
1 www.gamex.com
2 We suspect there might be a difference in the elastic properties however it probably

is not discernible at the current resolution level of the elastograms.
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Fig. 3. Normal thyroid gland image (top left) and the reconstructed elastogram from
a 3 image set (top right). Acute thyroiditis subject image (bottom left) and the cor-
responding elastogram reconstructed using a finer mesh and 5 images (bottom right).
The same color scale is used as in Fig. 2

4 Timings and Resolution

Most reconstructions shown above used 3 images of about 500 × 500 pixels and
moderate density meshes with about 10 × 10 nodes. Such reconstruction takes
10min ∼ 1 h on a standard PC (1.4GHz Pentium). The time increases signif-
icantly with both mesh density and number of images. As an illustration, the
thyroiditis reconstruction above with 20× 20 nodes and 5 images took over 5 h.

5 Conclusions

We have presented an algorithm for simultaneous estimation of displacement
field and shear modulus distribution from a series of standard ultrasound im-
ages. The novelty of the method is in its ability of combining information from
several images in a global manner. It is based on the theoretical observation
that while reconstructing a shear modulus from a pair of images is bound to
lead to an ill-defined problem [17], the situation is improved if several deforma-
tion fields are available. This way we avoid inventing essentially unmeasurable
boundary data for the direct elasticity problem. The reconstruction task is for-
mulated as a constrained optimization method. Unfortunately, since we no longer
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have a uniquely solvable direct problem, the feasible subspace that needs to be
searched is a highly convoluted manifold of all solutions consistent with linear
elasticity equations. Therefore, the computation time is rather long. Also, since
our data is relatively noisy and low resolution, we suspect there might not even
be enough information to obtain more details of the shear modulus distribution.
In any case, the new method gives better results than the previous algorithm [14],
based on only two images.
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21. Moré, J., Sorensen, D.: Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing (1983) 553–572

22. Barret, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., van der Vonst, H.: Templates for the Solution of Lin-
ear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)
Available from netlib.



Representing Diffusion MRI in 5D for
Segmentation of White Matter Tracts with a

Level Set Method

Lisa Jonasson1, Patric Hagmann1,2, Xavier Bresson1, Jean-Philippe Thiran1,
and Van J. Wedeen3

1 Signal Processing Institute (ITS),
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

2 Department of Diagnostic and Interventional Radiology,
Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland

3 Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital and the Harvard Medical School,

Boston, MA, United States

Abstract. We present a method for segmenting white matter tracts
from high angular resolution diffusion MR images by representing the
data in a 5 dimensional space of position and orientation. Whereas cross-
ing fiber tracts cannot be separated in 3D position space, they clearly
disentangle in 5D position-orientation space. The segmentation is done
using a 5D level set method applied to hyper-surfaces evolving in 5D
position-orientation space.

In this paper we present a methodology for constructing the position-
orientation space. We then show how to implement the standard level
set method in such a non-Euclidean high dimensional space. The level
set theory is basically defined for N -dimensions but there are several
practical implementation details to consider, such as mean curvature.

Finally, we will show results from a synthetic model and a few pre-
liminary results on real data of a human brain acquired by high angular
resolution diffusion MRI.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging is a modality that permits non-
invasive quantification of the water diffusion in living tissues. The tissue structure
will affect the Brownian motion of the water molecules which will lead to an
anisotropic diffusion. Today, a diffusion tensor (DT) model is the most frequently
used method to map the structural anisotropy. The tensor model, which basically
only contains information about anisotropy and principal diffusion, has limited
possibilities of resolving complex brain white matter architectures, particularly
in regions with fiber crossings.

A recent approach first presented by Wedeen et al. in [1] is the Diffusion Spec-
trum Imaging (DSI) that provides a full 3D probability density function (PDF)
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of the diffusion at each location. This PDF provides a detailed description of
the diffusion and manages to resolve highly complex cytoarchitecture such as
fiber crossings. For simplicity the PDF is normally reduced to an orientation
density function (ODF) which is the radial projection of the PDF. Other ap-
proaches such as q-ball imaging [2] and persistent angular structure (PAS) [3]
aim at directly obtaining the ODF without first measuring the PDF. All these
methods are commonly referred to as high angular resolution diffusion (HARD)
MRI. Currently, the HARD data is used to map cerebral connectivity through
fiber tractography [4].

Jonasson et al. [5] presented a 3D geometric flow algorithm designed for
segmenting fiber tracts from DT-MRI. The method was based on the assumption
that adjacent voxels in a tract have similar properties of diffusion and we defined
similarity measures between tensors to propagate the surface. Various problems
can benefit from fiber tract segmentation, like quantitative investigation of the
diffusion inside the chosen fiber tracts, white matter registration and surgical
planning.

By diagonalizing the DT several practical representations can be computed
such as direction of principal diffusion, anisotropy and comparisons between dif-
ferent compartments of diffusion. These simplifications are less straightforward
for the ODF. Frank et al. [6] presented a way of determining the anisotropy from
HARD data but only anisotropy is not sufficient for segmentation of white mat-
ter tracts and the problem of crossing fibers remain unsolved. By augmenting the
dimensionality of our data many of these problems can be solved simultaneously.
Instead of considering a 3D map of ODFs, we define a 5D position-orientation
space (POS) as a combination of a spherical space of orientation and an Eu-
clidean space of position. Two fiber tracts with different directions of diffusion
that are crossing each other in the same voxel become separated in this 5D space
and can be segmented separately without interference from one another. Another
positive aspect of this 5D space is that it consists of only scalar values which
allow us to adapt classical segmentation methods for grayscale images.

Firstly we will explain the underlying principles of POS and show how to
define it from a 3D map of ODF. We will then show that it is possible to segment
white matter structures from HARDI MRI data by propagating a hyper-surface
in this non-Euclidean 5D space. The evolution of the interface is implemented
using the level set method proposed by Osher and Sethian [7, 8, 9]. The level set
formalism is defined for N -dimensions and we will show how to practically apply
it in 5D, with an emphasis on the computation of mean curvature in 5D.

2 Background Theory

2.1 Position Orientation Space

A HARDI experiment provides a 3D map of ODFs. Thus, for every position
vector x = (x, y, z), in Euclidean 3D space, R3, there is an ODF measuring the
intensity of diffusion in any direction, u = (ϕ, θ) where u is a vector restricted
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Fig. 1. Example of POS for a 2D slice of a volume of ODFs. The intensity is plotted
for each angle

to the unit sphere, S2, with (0 ≤ θ < 2π, 0 ≤ ϕ ≤ π). The cartesian product of
R3 and S2 forms POS that we note Ω:

(x,u) ∈ Ω = R3 × S2. (1)

And its implied metric tensor allows us to determine the gradient operator as:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
+ ϕ̂

∂

∂ϕ
+

1
sin(ϕ)

θ̂
∂

∂θ
. (2)

To get some intuition about what POS is and why it is useful for fiber tract
segmentation is it instructive to consider the case of a 2D map of ODF restricted
to a plane. In Fig. 1a a 2D slice of ODFs is shown. The slice shows a crossing
between two fiber tracts. The ODFs in the figure are restricted to the plane and
can therefore be described through only one angle, θ. The intensity of the ODF
varies with the angle. In the case where we only have one fiber there will be a
peak in the intensity for the angle that corresponds to the direction of the fiber.
In positions where two fiber tracts cross there will be two intensity peaks, one
for the direction of each fiber. These two cases are illustrated in Fig.1b.

The third dimension represents the orientation of diffusion, hence the 2D
ODF map is mapped as a 3D scalar field. This means that even though the two
fiber tracts cross over in 2D, they will be separated in 3D and can therefore
easily be segmented. Fig. 2 shows how the two fibers are segmented in 3D and
then projected back to 2D.

2.2 Level Set Evolution of N-Dimensional Interfaces

Since the level set method was first introduced by Osher and Sethian [7, 8, 9] it is
becoming a more and more popular numerical tool within image processing, fluid
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Fig. 2. Example of POS for a 2D slice of a volume of ODFs

mechanics, graphics, computer vision etc. It is basically used for tracking moving
fronts by considering the front as the zero level set of an embedding function,
called the level set function, of the moving front. In image processing the level
set method is most frequently used as a segmentation tool through propagation
of a contour by using the properties of the image as well as properties of the
contour itself, such as the mean curvature. It was originally used to detect edges
in an image [10], but more recent applications detect textures, shapes, colors etc.
The level set theory was initially used for two dimensional images but its general
formulation makes it possible to use for N-dimensional images. The theoretical
extension to three dimensions is commonly used and even though some of the
properties of the 2D curves, such as the property of shrinking to a point under
curvature flow, do not hold in the 3D case, the main part of the theory remains
valid and works well for segmentation of 3D objects [11]. The extension to even
higher dimensions is straightforward.

Let the level set, φ(x, t), be a smooth function where x ∈ POS and t ∈ R+.
Then the hyper-surface in 5-dimensions is represented by the level set defined
by {x = (x, y, z, ϕ, θ) ∈ POS : φ(x, t = 0).

The evolution of the hyper-surface embedded in the level set function is gen-
erally described through this equation:

∂φ

∂t
= F | ∇φ |, (3)

where F is a speed function. For the particular case

F = −∇ ·
( ∇φ

| ∇φ |
)

, (4)

F is the mean curvature of level sets of φ and (3) becomes the 5-D mean
curvature flow.
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Chan and Vese presented in [12] a method for segmenting images without
edge detection by using the weak formulation of the Mumford-Shah functional
[13]. The resulting equation for the interface evolution becomes [12]:{

∂φ
∂t = δε(φ)

[
µ∇ ·

(
∇φ
|∇φ|

)
− (u0 − c1)2 + (u0 − c2)2

]
in Ω

δε(φ)
|∇φ|

∂φ
∂−→n = 0 on ∂Ω

(5)

where Ω is the image domain, in our case POS, and ∂Ω is the boundary of Ω.
δε(φ) is the ε-regularized Delta function [12] and µ > 0 is a fixed parameter.
u0 is a given image which in our case is the ODF map represented as a scalar
volume of intensity values in POS and c1 and c2 are defined as: c1 =

∫
Ω

Hε(φ)u0dx∫
Ω

Hε(φ)

c2 =
∫

Ω
(1−Hε(φ))u0dx∫
Ω

(1−Hε(φ))

(6)

Here we have that Hε(φ) is the ε-regularized version of the Heaviside function
and c1 and c2 are respectively the averages of the image u0 on the region {φ � 0}
and {φ < 0}.

3 Method and Implementation

3.1 Creating POS

We have constructed the 5D POS from a 3D map of ODF. The values of the
ODF are placed on a 2D grid. Due to the symmetry of the diffusion data only a
hemisphere is sampled so we have that:

(ϕ, θ) ∈ {0,
π

n
, ..., π − π

n
} × {0,

π

n
..., π}, (7)

where n is the sampling step.
Due to the spherical geometry of the space there is a periodicity in the data.

The two extremities along the θ-axis are neighbors. Due to the symmetry of the
diffusion data this periodicity is also present along the ϕ-axis. If, due to the same
symmetry, only a hemisphere is considered, the periodicity along the ϕ-axis can
be disregarded. To cope with the periodicity of the data an exchange between
the two ends of the level set along the θ-axis is made after every iteration.

3.2 Evolution of the Hyper-Surface

The hyper-surface is evolved according to (5). Once the POS is defined we have
a scalar image not too different from a classical gray scale image. The specific
considerations except for the high number of dimensions are the periodicity and
the computation of the gradients, see (2). Implementing a level set function in 5D
is theoretically straightforward but practically difficult. One of the main problem
is handling the storage of the huge amount of data that is treated. Optimizing
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Fig. 3. A hyper-cube evolving under 5D mean curvature flow. a) x-z-plane, b) y-θ-plane

the computation of the level set function and its re-initialization is crucial. There
is however one important issue to consider theoretically: the computation of the
curvature.

For evolving curves in 2D and surfaces in 3D the expression in (4) is already
complicated. In the 2D case the expression of the mean curvature becomes:

∇ ·
( ∇φ

| ∇φ |
)

=
φxxφ2

y − 2φxφyφxy + φyyφ2
y

(φ2
x + φ2

y)1/2
. (8)

Computing this equation for 5D, Mathematica gives a several pages long
answer which is not satisfactory from a numerical point of view.

A lot of work has already been done for N-D mean curvature flows [14, 15].
Hence, we propose to use the theory developed by Ambrosio and Soner [14] to
determine the mean curvature in a 5D space.

Differential geometry decomposes the mean curvature, Γ , into its principal
curvatures, κn, such as:

Γ =
κ1 + ... + κN

N
. (9)

The principal curvatures of a hyper-surface embedded in a level set function,
φ, of codimension one are then given by the eigenvalues of the following N × N
matrix:

1
| ∇φ(x) |2 P∇φ(x)∇2φ(x)P∇φ(x), (10)

where Pp is a projection operator onto the space normal to the nonzero vector p:

Pp = I − p ⊗ p

| p |2 , (11)

where I is the identity matrix.
To test these theories we have evolved a 5D hyper-cube through a mean

curvature flow and seen how it first turns into a hyper sphere and then finally
shrink to a point, see Fig 3.
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The level set function is re-initialized at every iteration using the fast march-
ing method [16]:

| ∇φ |= 1 (12)

4 Results

4.1 Synthetic Data

To test the method we constructed a 3D volume of ODFs modelling two crossing
fiber tracts, see left figure in Fig. 4. The ODFs are normalized by removing
the minimum from each ODF. One surface was initialized by placing a small
surface of a few voxels in each fiber tract. The hyper surface was evolved until
convergence and then projected back into 3D Euclidean space. The result can
be seen in Fig. 4. We see how each fiber tract is segmented completely without
influence from the other crossing fiber.

ba c

Fig. 4. a) Slice of the synthetic 3D volume of ODFs. b) The intensity of the different
angles plotted against each other. c) The 3D projection of the 5D result

4.2 Real Data

Material. The diffusion images were obtained on a healthy volunteer with a
3T Philipps Intera scanner. We used a diffusion weighted single shot EPI se-
quence with timing parameters: TR/TE/∆/ δ =3000/154/47.6/35 ms, bmax =
12000mm2/s and a spatial resolution of 2x2x3mm3. The data were acquired by
sampling q-space on a 3D grid with 515 diffusion encoded directions restricted
to the interior of a sphere of radius 5. From this acquisition the ODF map is
reconstructed according a standard DSI scheme [17].

Informed consent was obtained in accordance with institutional guidelines for
all of the volunteers.

Results. The ODFs are normalized by removing the minimum from each ODF.
The small initial surfaces were placed inside brain region known to contain well
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Fig. 5. Results from application on HARD MRI from a human brain. The red surface
is a part of the cortico spinal tract. The blue surface is a segment of the corpus callosum
and the green is the arcuate fasciculus

known fiber tracts. The result are shown in Fig. 5 and display the core of impor-
tant fiber tracts such as the corpus callosum (blue), the cortico spinal tract (red)
and the arcuate fasciculus in green. These are early results but show proof of
principle. The current problem is the handling of data storage and only smaller
volumes can be treated at the moment.

5 Discussion and Conclusion

We have shown how extending the dimensionality of the segmentation space from
3D to 5D disentangles originally overlapping structures. We have seen from the
result on synthetic data, that crossing fiber tracts in 3D are represented in 5D
POS as separate objects characterized by intense diffusion. The results shown
for brain HARD MRI data are the early results. Due to the huge 5D matrices
only parts of the structures have been segmented. However, they clearly show
the potential of this approach to clearly delimit structures of coherent diffusion.
The problem of data handling will be solved with better computer power and a
more efficient implementation and data storage.

Further, we have shown that it is possible to implement the level set method
for evolving a hyper-surface in a non-Euclidean 5D space. To solve the problem
of the implementation of the mean-curvature flow we have proposed to use the
theory developed by Ambrosio and Soner [14].

Segmenting regions in HARD MRI is a new approach for interpreting data
with a different objective than classical fiber tractography. Fiber tractography
provides a map of the cerebral connectivity and aims at visualizing fiber tracts
as a set of lines. Our approach treats one fiber tract as one single object char-
acterized by intense and coherent diffusion. This representation gives a different
view of the brain architecture that can be more appropriate for applications
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such quantitative investigation of the diffusion as well as for surgical planning
and white matter registration.
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Abstract. An important assessment in patients with ischemic heart dis-
ease is whether myocardial contractility may improve after treatment.
The prediction of myocardial contractility improvement is generally per-
formed under physical or pharmalogical stress conditions. In this paper,
we present a technique to build a statistical model of healthy myocardial
contraction using independent component analysis. The model is used
to detect regions with abnormal contraction in patients both during rest
and stress.

1 Introduction

Ischemic heart disease is a major heart disease in the western world. Non-invasive
diagnosis of ischemia has been developed in recent years (see [1] for the survey
of different imaging techniques). Among others, Magnetic Resonance Imaging
(MRI) has attracted many clinicians due to its excellent spatial and temporal
resolution, high-contrast of soft tissue, accurate and reproducible global and
regional ventricular function, flow and perfusion during rest and pharmacological
stress, and the possibility of using paramagnetic contrast agent to enhance the
intensity of myocardial infarction areas [2, 3].

One crucial assessment in ischemic heart disease is to determine whether
hibernating or stunning myocardium occurs. This is viable but dysfunctional
myocardium, which may improve its function after treatment [1]. The prediction
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of improvement of myocardial contraction is only possible during physical or
pharmacological stress [4]. Thus, the identification of dysfunctional myocardium
that improves under stress is an important factor in the treatment of ischemic
heart disease.

Low-dose dobutamine stress MRI can be used to evaluate improvement of
myocardial contraction in infarct patients [1, 5]. In this procedure, a low dose
of dobutamine is administered to stimulate dysfunctional, but potentially viable
myocardium. Usually, visual comparison between the rest and stress cine images
is used to perform visual wall motion scoring. However, this visual assessment
is very difficult and subjective to perform, because differences between rest and
stress motion may be very subtle.

The goal of this work is to develop a method to automatically detect subtle
changes in cardiac contraction between rest and stress. In this paper, we fur-
ther expand previously described work on modeling the myocardial contraction
of healthy hearts [6]. A statistical contraction model is trained from myocar-
dial contours in rest condition using Independent Component Analysis (ICA)
to construct a set of locally selective basis functions. Analysis is performed by
projecting patient shapes onto this basis, and in [6], this model is used to au-
tomatically detect and localize abnormal cardiac contraction in rest. The main
novelty of this work is twofold:

– We improve upon the ICA modeling framework by adopting a principled
way of selecting the optimal number of components, and introducing kernel
density estimation to describe the model parameter distributions for normal
contraction.

– We apply the framework to the rest-stress comparison problem. By compar-
ing the projection parameters in rest and stress conditions, one can assess
which regions of myocardium show contractility improvement under stress,
and therefore may be viable.

This paper is organized as follows. Section 2 describes the statistical modeling
of normal contraction by using ICA. In Section 3, we present the qualitative pre-
diction results of myocardial viability in stress condition, followed by a discussion
in Section 4.

2 Methodology

ICA is originally used for finding source signals from a mixture of unknown sig-
nals without prior knowledge other than the number of sources [7]. There have
been some studies to use ICA in machine learning for feature extraction [8], face
recognition [9] and classification [10]. Previously, we have reported a statistical
model to detect regional abnormalities from infarct patients using ICA [6]. The
advantage of using ICA over other decompositions is the fact that ICA yields
locally independent detectors that can be used to determine regional shape ab-
normalities, whereas PCA yields global shape variations that influence the entire
shape.
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ICA is a linear generative model, where every training shape can be approxi-
mated by a linear combination of its components. Let x = (x1, y1, . . . , xm, ym)T

be a shape vector, consisting of m pairs of (x, y) coordinates of landmark points.
The linear generative model is formulated as follows:

x ≈ x̄ + Φb . (1)

The matrix Φ ∈ IR2m×p defines the independent components (ICs) and b ∈ IRp

is the weight coefficient vector. The mean shape, x̄, is defined by

x̄ =
1

n

n∑
i=1

xi . (2)

where n is the number of shapes and p is the number of retained components.
The goal of ICA is to find a matrix, Ψ , such that

b = Ψ (x − x̄) (3)

with a constraint that columns of Ψ correspond to statistically independent
directions. Thus the independent components are given by Φ = Ψ−1. The matrix
Ψ is estimated by a suitable optimisation algorithm (see [11] for survey of ICA).

2.1 Modeling Contraction of Healthy Myocardium

In this paper, the observed shapes are taken from LV epi- and endocardial con-
tours from short-axis MR images. To model the contractility pattern, contours
for each subject are combined serially into one shape vector in the following
order: endocardium contour at end-diastole (ED), epicardium contour at ED,
endocardium contour at end-systole (ES) and epicardium contour at ES.

Prior to shape modeling, Procrustes shape alignment on the 4 contours at
once was performed as a pre-processing step to eliminate global differences in
pose and scale between the samples [12]. Mean shape of the training shapes after
the alignment is shown in Fig. 1.

Since we want to determine the improvement of motion contraction from
rest to stress, centerline points, i.e. points in the the middle between epi- and

(a) aligned shapes at ED (b) aligned shapes at ES (c) centerline points

Fig. 1. Mean shape of the aligned training shapes
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Fig. 2. Four examples of independent components from model. Dots are shape varia-
tions, where the maximum is ±3σ (standard deviation). The inner and outer contours
are ES and ED centerline points, respectively

endocardial contours, were used in ICA. The centerline method has already
been used in the rest and stress studies to diagnose coronary artery disease [13].
Figure 1(c) shows the centerline points from the mean shapes.

Four examples of independent components are shown in Fig. 2. The indepen-
dent components (ICs) show an interesting and important property where shape
variations are local. In the diagnosis, these shape variations are used as detectors
to determine local shape abnormalities, i.e. regions with abnormal contraction.

2.2 Determining the Number of Independent Components

If the number of source signals in ICA is not known a priori, the number of compo-
nents needs to be determined. Many methods have been proposed to estimate this
parameter, for instance, by using mutual information [14], neural networks [15], a
Bayesian approach [16], and clustering techniques [17]. Though these approaches
are different, the basic idea is to determine which are ”weak” and ”strong” inde-
pendent components. Strong ICs represents reliable components.

In this paper, we adopted the clustering technique, proposed by Himberg et.
al. [17]1. In this approach, reliable ICs are determined from a number of different
realizations of ICs with different initialization and by subsequently performing
clustering on the resulting ICs. This approach was selected because of stochastic
nature of computing ICs with the FastICA [7], the most popular and robust ICA
algorithm that we used in this study.

After each trial, each IC is represented as a single point in a source space. The
reliability of the estimated ICs can be analyzed by looking at the spread of the
obtained ICs. The ICs form clusters in the source space, and the more compact
and isolated the cluster of an IC, the more reliable is the IC (see Fig. 3(b)). To
measure the reliability, an agglomerative hierarchical clustering is performed.
A quality index of an IC, Iq, that reflects the compactness and isolating of a
cluster, is defined as

Iq(Cm) =
1

|Cm|2
∑

i,j∈Cm

σij − 1

|Cm||C−m|
∑

i∈Cm

∑
j∈C−m

σij (4)

1 The implementation is known as the Icasso package [17].
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(a) The quality and the R-index. (b) Cluster visualization

Fig. 3. Iq and IR plot and the visualization of the estimated ICs in the cluster space. In
the right figure, clusters are indicated by red convex hulls. Grey lines connect estimates
whose similarity is larger than a threshold, the darker the line the stronger the simi-
larity. Labels correspond to independent components. Notice that reliable components
are compact and isolated

where Cm and C−m are the set of indices that belong and do not belong to the
m-cluster, respectively. The σij is a similarity measurement between i-th and
j-th IC using their mutual correlation coefficient rij , i.e.

σij = |rij | . (5)

The value of Iq increases when Cm becomes more compact and isolated.
Another measurement to indicate reliable ICs in the clustering technique is

the R-index, IR.

IR =
1

L

L∑
m=1

Sin
m

Sex
m

(6)

where

Sin
m =

1

|Cm|2
∑

i,j∈Cm

dij

Sex
m = min

m′ �=m

1

|Cm||Cm′ |
∑

i∈Cm

∑
j∈C

m′

dij .

dij is a dissimilarity measurement, defined as dij = 1 − σij . The R-index is
basically a ratio between the within-cluster and between-cluster ratio.

The R-index and the quality index indicate improved clustering in opposite
directions. The optimal value for the number of computed ICs is when Iq is large
and IR is small. The plot of Iq and IR for our study is shown in Fig. 3(a).
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The estimated ICs can be visualized in the cluster space (see Fig. 3(b)). Each
estimated IC is represented as a single point in the cluster space. Reliable ICs
form compact and isolated clusters. In Fig. 3(b), ICs number 1 until 19 are
reliable, whereas the remaining ICs are not reliable (they are glued together as
one cluster number 20). The gray lines in Fig. 3(b) denote dependencies at some
threshold values between clusters.

2.3 Density Estimation of Coefficient Values from the ICA Model

In Eq. 1, the b vector represents, the projection of a shape X onto the IC basis,
Φ. The b vector contains coefficient values for the model that are needed to
approximate the shape X from the IC basis. If X is similarly shaped to the
shapes that construct the IC basis, then the coefficient values are within the
distribution of the b vector of the model. On the contrary, if X is not similar to
the shapes of the model, then the coefficient values are outside of the distribution.
Hence, the detection of abnormal shapes becomes a problem of estimating the
probability density function of the model coefficient values.

Since the ICA model is built from n training shapes, Eq. 1 can be simply
reformulated in matrix form as:

X = x̄ · 1T + ΦB . (7)

We want to estimate the probability density of each column in matrix B. Figure 4
shows the distribution of each coefficient value from the healthy heart contraction
for each IC (column of B), with an example of a projected patient shape.

In ICA, components are sought to be statistically independent. This is achieved
by finding the direction of components that maximizes the nongaussianity [7].

Fig. 4. Distribution of coefficient values of healthy heart contraction (crosses) with an
example of coefficient values from the projected shape of a patient (solid lines)
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The result is an independent basis which is non-orthogonal. The components
have non-gaussian distribution, or at most only one with a gaussian distribu-
tion. Thus we cannot use an assumption of normal distribution to estimate the
probability density function of the matrix B.

However there is one important advantage of using ICA. A multivariate den-
sity estimation of the matrix B can be simplified into univariate density estima-
tion, because of the independency. This cannot be done in other linear represen-
tation, such as PCA [18]. Thus we can estimate the probability density function
on each of IC separately.

Based on those ICA properties, we used the non-parametric kernel density
estimation [19] on each of the independent component separately. The kernel
density estimation for the j-th component is defined by

f̂j(x) =
1

nh

n∑
i=1

K

(
x − Bi,j

h

)
(8)

where Bi,j is the coefficient values in the matrix B in Eq. 7 at j-th indepen-
dent component. The bandwidth h and the kernel function K(u) are the two
parameters of the kernel density estimation method.

We choose the Gaussian function:

K(u) =
1√
2π

exp

(
−u2

2

)
(9)

as the kernel function. Note that the choice of kernel function is not really critical
for the kernel density estimation, but rather for the choice of bandwidth [19].

The bandwidth h controls the amount of smoothing. A small difference in set-
ting h can yield a big difference in the probability function. We use the Sheather-
Jones solve-the-plugin method level 2 to estimate the optimal bandwidth [20].
The solve-the-plugin method solves an unknown functional parameter in the op-
timal bandwidth equation (see the equation in [20]) directly from the sample
distribution.

After estimating the probability density function f̂j(x) for each IC, the quan-
tification of abnormalities is straightforward. We define a probability map of
being abnormal for each IC as

p̂j(x) = 1 − f̂j(x) . (10)

A threshold value ρ is defined to determine the abnormality. Coefficient values
that fall below that threshold are considered to be normal.

3 Experimental Results

3.1 Model Construction

An ICA model of healthy myocardial heart contraction was built by selecting
epicardial and endocardial borders at ED and ES phases from 42 healthy vol-
unteers. The mid-ventricular level from short-axis MRI was taken from each
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Fig. 5. Qualitative prediction results of myocardial contractility improvement from
Patients 1, 2, and 3. The leftmost and middle figures are quantification of abnormal
regions from rest and stress respectively. ED and ES contours are drawn in solid and
dashed lines respectively, to visualize contraction of the heart. The right most figure
shows the abnormal independent components

subject. Contours were drawn manually and used 60 landmark points per con-
tour, defined by equi-angular sampling from the center of the myocardium. To
ensure point correspondence between shapes, a fixed reference point was defined
at the the intersection between the left and the right ventricle.

ICA was performed using the FastICA algorithm [7], implemented in Mat-
lab. FastICA uses an optimization algorithm to maximize the non-Gaussianity

of each component’s direction to ensure that components are statistically inde-
pendent between each other. The nonlinearity objective function used in the op-
timization process is g(y) = 3y2 (or pow) and with symmetric orthogonalization.
The number of independent components was determined following Himbergs ap-
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proach [17], as has been described in Sec. 2.2. The number of trials was set to
20. The plot of the quality index and the R-index of the estimated ICs is shown
in Fig. 3(a), yields 19 ICs.

3.2 Qualitative Prediction Results of Contractility Improvement

To qualitatively evaluate the prediction of myocardial contractility improvement
under stress, MR data of 6 representative patients with acute myocardial infarc-
tion were selected. The threshold value, ρ, separating abnormal from normal
coefficient values, is empirically defined as 0.8. Figure 5 and 6 show the visual-
ization of abnormal regions in rest and stress for those 6 patients.

Fig. 6. Qualitative prediction results of myocardial contractility improvement from
Patients 4, 5, and 6. The leftmost and middle figures are quantification of abnormal
regions from rest and stress respectively. ED and ES contours are drawn in solid and
dashed lines respectively, to visualize contraction of the heart. The right most figure
shows the abnormal independent components
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The left and middle figures are the quantification of abnormal contraction
regions from our method in rest and stress, respectively. Regions with abnormal
contraction are shown with dark colors inside of the myocardium. The darker the
color, the more abnormal the regional motion. Thus regions with contractility
improvement are visible by the decreasing amount of darkness from rest to stress
in the corresponding regions.

Each of the abnormal regions has a corresponding abnormal independent
component that is shown as bar plot at the right figure, given as the probability
value of being abnormal. Contractility improvement of an IC is shown as a
decreasing amount of the probability value from rest to stress.

Contraction motion is visualized with the ED (solid lines) & ES (dashed lines)
contours that are plotted together. It can be seen from Fig. 5 and 6 that regions
with abnormal contraction motion correspond visually with the dark areas.

Arrows in Fig. 5 and 6 point to some interesting regions in each patient.
If contraction in a region is improved, then the arrow is marked with ‘+’ sign
(Patient 3 and 5). Regions with a lot of contractility improvement, where they
are detected as normal in stress, are marked with ‘++’ sign. These are seen at
Patient 1, 2, 3, 4 and 6.

There is a case where an abnormal region does not improve its contractility
in stress (Patient 4 with ‘0’ sign) or even the contraction is getting worse in
stress (Patient 5 with ‘–’ sign). Another interesting case appears in Patient 2,
where there is a region that has a small contraction in rest (see the arrow with
‘D’ sign), an improved contraction in stress, but abnormal motion in stress. This
is detected by the model as an abnormal region.

4 Discussion

This paper explores the potential of using ICA to model contraction of healthy
hearts. The model is used to detect myocardial regions with abnormal contrac-
tion, both in rest and stress. Comparing the detection between rest and stress
gives an indication of areas that may improve after treatment.

In Fig. 5 and 6, we show 6 examples of the prediction results using the
ICA model. These examples show that the method is capable to perform com-
parative morphometrics between rest and stress. Abnormal myocardial regions
in rest with decreasing probability value in stress are identified as viable but
dysfunctional myocardium. These are regions that may gain improvement after
treatment.

The detected abnormal regions both in rest and stress correspond visually
with the lack of contractility on those regions (see Fig. 5 and 6). The method
can also detect an abnormal motion in stress, even with increased contraction.
This is possible, because the model is statistically trained from normal cardiac
contraction, all deviations from normal contraction or motion are labeled as
abnormal.

Currently, we are working on validating the method with clinical visual wall
motion scores to provide a quantitative evaluation of the method. The gold stan-
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dard for the assessment of ischemic heart disease is post-treatment data when
it comes to the question whether myocardium improves or not after treatment.
This validation is performed on a larger patient group.

To gain more accurate prediction of contractility improvement for the whole
heart, extending the ICA model into a semi 3D model is necessary to detect ab-
normal myocardial segments for the 3 major coronary arteries [21]. This involves
inclusion of three levels of short-axis MRI (apical, middle and basal) and one
segment from vertical long axis.
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Cybèle Ciofolo and Christian Barillot

IRISA / CNRS - Team Visages,
35042 Rennes Cedex, France

{Cybele.Ciofolo, Christian.Barillot}@irisa.fr
http://www.irisa.fr/visages/visages-eng.html

Abstract. We propose to segment 3D structures with competitive level
sets driven by fuzzy control. To this end, several contours evolve simulta-
neously toward previously defined anatomical targets. A fuzzy decision
system combines the a priori knowledge provided by an anatomical atlas
with the intensity distribution of the image and the relative position of
the contours. This combination automatically determines the directional
term of the evolution equation of each level set. This leads to a local ex-
pansion or contraction of the contours, in order to match the borders of
their respective targets. Two applications are presented: the segmenta-
tion of the brain hemispheres and the cerebellum, and the segmentation
of deep internal structures. Experimental results on real MR images are
presented, quantitatively assessed and discussed.

1 Introduction

Segmentation of anatomical structures is a critical task in medical image pro-
cessing, with a large range of applications going from visualization to diagnosis.
For example, to delineate structures in the mid-sagittal plane of the brain in
the context of a pre-operative planning, an accurate segmentation of the hemi-
spheres, and especially of their internal faces, is needed. In such a task, the main
difficulties are the non-homogeneous intensities within the same class of tissue,
and the high complexity of anatomical structures such as white and gray matter,
as well as their large variability.

Various methods using deformable models have been proposed for image seg-
mentation. Parametric methods [1], including the first active contours, showed
limited abilities to deal with topological changes and complex, highly convo-
luted shapes, both being frequent in 3D medical images. The non-parametric ap-
proaches, including gradient-based methods [2, 3], region-based methods [4, 5, 6],
or both [7, 8], proved a better adaptability to medical applications. The level set
formalism [9] provides an efficient implementation for these approaches, with the
following advantages: (i) efficient numerical schemes are available, (ii) topologi-
cal changes are allowed, and (iii) extension of the method to higher dimensions
is easy. The evolution force of a level set depends on internal properties of the
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corresponding contour, such as the local curvature, on external parameters and
on additional propagation terms. The role of these additional terms is to drive
the contour to dedicated areas, depending on the target application. To this end,
both image data such as the gray levels and prior knowledge are critical to get
accurate results in the context of medical image segmentation. Thus, our goal is
to take advantage of as much information as possible in the level set evolution.

Recent approaches [6, 7] generally use energy minimization techniques to de-
fine the additional terms of the force. However, in medical imaging, the structures
of interest are often very small compared to the image resolution and may have
complex shapes. This makes it difficult to define energy constraints that remain
both general and adapted to specific structures and pathologies.

Another approach consists in translating the available information into de-
cision rules that are directly used to drive the level set evolution. To do so, a
strong theoretical background and effective tools are provided by fuzzy logic [10].
In particular, the use of fuzzy sets is appropriate to describe data that belong
to ill-defined categories, where neither arbitrary classes nor fixed borders are de-
fined, such as the voxels corresponding to partial volumes on cerebral MRI data.
Consequently, the fuzzy sets theory has already been used in medical image seg-
mentation. Some authors [12] use an adaptative fuzzy c-means algorithm that
is combined with an isosurface algorithm and a deformable surface model to re-
construct the brain cortex. Automatic segmentation methods for brain internal
structures are also proposed [13], where the segmentation is based on a symbolic
spatial description of the structures and finally refined with a deformable model.

Our approach differs from these ones. As we wish to process larger structures
and more complex shapes, we propose to introduce a regularization constraint
as soon as the segmentation begins. To do so, we use a level set algorithm,
whose evolution parameters are automatically tuned by a specific type of fuzzy
decision system: a fuzzy controller [15]. In particular, this decision system takes
advantage of the structure labels provided by an atlas, the anatomical descrip-
tion brought by experts and the intensities of the processed volumes. Following
previous work [16, 17], we focus on the competition between several level sets to
segment structures that cannot be distinguished with only their intensities. As a
first example, we apply our method to the segmentation of the brain hemispheres
and the cerebellum, with the objective to get a fine segmentation of the hemi-
spheres internal faces. We also use our algorithm to segment the basal ganglia
and thalami, which correspond to a critical target area for electrical stimulation
in Parkinson’s disease treatment. The method can also be used in many other
contexts where the target regions cannot be segmented with only the statistics
of the image.

This paper is organized as follows. The segmentation method is described
in Section 2 with a focus on the level set formulation. Section 3 presents the
tuning of the expansion-contraction term of the level set equation with a fuzzy
controller and the application to the label competition. Our results on real MRI
volumes are then presented and discussed in Section 4.
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2 Level Set Segmentation Driven by Fuzzy Control

2.1 General Formulation of the Level Set Evolution

The design of our level set is based on the region-based evolution force proposed
in [18]:

F = g(PT )(ρκ − ν), (1)

where ν is a constant module force, whose sign leads the current contour toward
the desired border; κ is the local curvature of the contour; ρ is the weight on
curvature; g is a decreasing function; and PT is the probability of transition be-
tween the inside and the outside of the structure to be segmented. Thus the role
of the term g(PT ) is to stop the evolution of the contour at the desired location.

The ν and PT terms are computed according to a preliminary classification of
tissues before the beginning of the level set evolution. The image intensities are
viewed as samples of a Gaussian Mixture Model (GMM), whose parameters are
estimated according to a Maximum A Posteriori principle, with a SEM algorithm
[14]. The classes that are mainly represented inside the initialization volume are
automatically detected and determine the reduced GMM corresponding to the
inside of the object to segment. For further details concerning the computation
of these terms, see [18].

The advantages of the evolution force described in Eq. (1) is that it is very
simple and directly derived from the original geometric active contour formulation
[2]. It assigns a precise role to each term, while preserving the ability to modify each
term according to geometrical constraints corresponding to visual requirements.

2.2 Adding Dedicated Geometrical Constraints with Fuzzy Control

Our goal is to take advantage of the strong background presented in Section 2.1,
and to improve it while meeting the requirements of real medical problems. These
requirements are difficult to model with a robust mathematical formulation. In
particular, the energy minimization methods are often too global to lead to a
fine segmentation of thin structures, and when they give satisfactory results,
they generally use weighting parameters that need to be manually tuned.

To avoid this, our approach is to extract as much information as possible from
the intensities of the MRI volume and to combine it with the knowledge brought
by an atlas and the anatomical descriptions provided by some experts. Finally,
the result is directly used in the level set evolution law. This implies to perform
the fusion between numerical data (coming from both the MRI volume and the
atlas) and symbolic data (the spatial description of the brain structures), which
is the typical field of application of the theory of fuzzy sets [10].

However, let us stress that we want to preserve the precision of the data
coming from the MRI volume. For this reason, the use of a fuzzification process,
which would blur the data, does not seem appropriate, and we prefer to work
in a context where precise measurements are directly applicable as inputs of
the fuzzy decision system. This requirement leads us to focus on a particular
application of the theory of fuzzy sets : fuzzy control [15].
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The fuzzy controller is a fuzzy decision system that efficiently translates evo-
lution rules, which are formulated by sentences in natural language, into con-
straints that are introduced in the level set equation. In previous works, we
showed how to combine the gradient and region information to improve the
stopping criterion g(PT ) in Eq. (1) [16], and how to use fuzzy labels to automat-
ically tune the weighting parameter on curvature ρ in Eq. (1) so that the white
matter is accurately segmented, or to have the level set evolve to a selected area,
for example the left hemisphere of the brain [17].

In this paper, we focus on the competitive evolution of several level sets,
according to various constraints. The advantage of competition between level
sets is that, under certain conditions, it can be considered as a shape constraint
when there is no statistical information to distinguish between several regions
of the MRI volume. For example, the left and right hemispheres of the brain
are similar with respect to their image intensities and the contour curvature.
However, using their spatial localization, their identification is easy.

Consequently, for each level set, our method takes into account both the dis-
tance of the corresponding contour to the fuzzy map associated to the structure
to segment and the distance to the other contours, as well as the gray levels
of the MRI volume. Inputs for the fuzzy decision system are then defined from
these sources of data. As we aim at defining a privileged propagation direction
for the contour, the output of the fuzzy controller is the value of the ν parameter
in Eq. (1). In other words, for each voxel, the local value of ν will be assigned
so as to favor contraction or expansion of the contour, as shown in Section 3.

3 Tuning of the Expansion-Contraction Term ν

This section presents in detail the fuzzy decision system that assigns the value
of ν for each voxel of the processed volume, at each iteration step of the level
set algorithm.

3.1 Principle of the Fuzzy Decision System

In [18], the proposed computation of ν is:

ν = Sign(P (λ ∈ Λi|x) − P (λ ∈ Λe|x)), (2)

where x is the current voxel, λ is the class of the current voxel estimated from
the volume histogram, and Λi and Λe are the reduced GMM representing re-
spectively the inside and the outside of the structure to be segmented. We aim
at replacing this equation by a law constituted of three constraints:

1. Several contours that evolve in competition must not intersect even if each
of them can split in several components;

2. Each contour must stay in the vicinity of the fuzzy label describing its seg-
mentation target;

3. Eq. (2) is valid under Conditions 1 and 2.
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Condition 1 corresponds to the idea of competition between the evolving
contours. Some methods have been developed to solve this problem, such as
region competition algorithms [6]. However this approach is applicable if the
regions can be distinguished by their statistics. In the case of regions presenting
similar gray levels, such as the brain hemispheres, one must use other features,
like labels coming from an atlas, to guarantee that the different contours will not
intersect. Another repulsive constraint has also been proposed in [19]: if a pixel is
covered by another contour than the current one, the current contour is pushed
away. The advantage of this condition is its simplicity, both for implementation
and introduction into an energetical model. But this requires to have well-defined
classes, which does not correspond to the segmentation of brain MRI volumes.
Consequently, we choose to take advantage of this idea and adapt it to our
application in order to fulfill the above three conditions. The role of the fuzzy
decision system, more specifically the fuzzy controller, is thus to translate this
repulsive constraint in a fuzzy environment. Let us note that even if there is a
distinct equation evolution for each contour, all of them have to match the same
general constraints, consequently only one fuzzy controller is needed and used
successively for all the level sets.

A fuzzy controller is characterized by three main elements: the inputs, the
outputs and the decision rules. The inputs and outputs are fuzzy variables that
are characterized by several states modeled by fuzzy sets. The decision rules are
expressed in natural language and determine the fusion of the inputs in order to
compute the value of the outputs.

3.2 Inputs of the Fuzzy Controller

Three fuzzy variables are used as inputs of the fuzzy controller, each one corre-
sponding to one of the conditions listed in Section 3.1.

1. Dc represents the distance from the current contour to the other ones.

2. Dlab represents the signed distance from the current contour to the label
corresponding to its segmentation target. An example of distance map, or
fuzzy label map of the left brain hemisphere is shown on Fig. 1.

3. Dp represents the difference of probability presented in Eq. (2).

Dc and Dlab are five-state variables. Each state is represented by a fuzzy set
with a trapezoidal or triangular membership function. Dp is a simpler variable,
since only the sign of the difference of probability in Eq. (2) was shown to have
a real influence on the contour evolution [18]. Consequently, Dp is characterized
by two states only, which also have trapezoidal membership functions.

Let us note that we also used Gaussian-like functions to represent the states of
the variables. However, as reported in [15, 11], we did not observe any significative
modification of the segmentation results.
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Fig. 1. Left: example of distance map from the left hemisphere. Right: the five fuzzy
states of the Dlab variable: very negative (VN), negative (N), around zero (Z), positive
(P) and very positive (VP)

3.3 Outputs of the Fuzzy Controller

The unique output of the fuzzy controller is the variable ν, which has two states:
P and N, which respectively mean positive and negative. We choose this repre-
sentation in relation with Eq. (1) and Eq. (2), where ν is a constant module force.

3.4 Decision Rules of the Fuzzy Controller

The fuzzy decision rules are the translation of the conditions described in Section
3.1. They are formulated as “IF ... THEN...” expressions. An example of these
rules is:

“IF (Dlab is P) AND (Dp is P) AND ((Dc is F) OR (Dc is RC) OR (Dc is
C) OR (Dc is TC)) THEN (ν is P)”

The conjunction operator AND was implemented with the t-norm min and
the disjunction operator OR with the t-conorm max. The results are defuzzified
to obtain the final value of ν with the centroid method. Let us note that, as re-
ported in [10, 11], these choices are very common, but not critical, in the context
of fuzzy control.

The fuzzy decision rules that were set up in this work are summarized in
Table 1. In order to meet Condition 1, which avoid overlapping between contours
corresponding to different level sets, the ν output of the fuzzy set is tuned to
act as a repulsion or contraction force (ν=N), when a contour is too close to
another one (Dc=N). This corresponds to the first line of the table.

Condition 2, which is related to the distance maps, is translated by a majority
of P states in the right part of the table and N states in the left part. This means
that if the processed voxel of the contour is far outside its label (Dlab=N or VN),
it needs to contract (ν=N). On the contrary, if it is inside the label (Dlab=P or
VP), it needs to expand (ν=P).

Condition 3 is mainly visible in the central part of the table (Dlab=Z and
Dc=TC to F). This corresponds to the case where the contour is within the
vicinity of its label and not too close to another one. Then the state of ν depends
on the intensities of the volume only, as explained in Eq.( 2).

Membership value

VN

Z
N

P
VP

1

0
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Table 1. Fuzzy decision rules for the output variable ν. The states of the variable
Dlab are very negative (VN), negative (N), around zero (Z), positive (P), and very
positive (VP). The states of the variable Dc are null (N), too close (TC), close (C),
rather close (RC) and far (F). The states of the variables Dp and ν are negative (N)
and positive (P)

Dlab=VN Dlab=N Dlab=Z Dlab=P Dlab=VP

Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp =N Dp=P

Dc=N N N N N N N N N N N

Dc=TC N N N N N P N P P P

Dc=C N N N N N P N P P P

Dc=RC N N N N N P N P P P

Dc=F N N N N N P N P P P

4 Experiments and Results

We focus on two applications to illustrate our method. First, we use three level
sets in competition to segment simultaneously the left and right hemispheres
of the brain and the cerebellum. The goal of this experiment is to obtain an
accurate segmentation of the internal faces of the hemispheres, in order to later
on delineate structures on these faces, like the calcarine sulci. Another interesting
issue in pre-operative planning is the segmentation of internal structures such as
the thalami and parts of the basal ganglia. These structures correspond to target
areas for electrical stimulation in the context of Parkinson’s disease treatment
for example. For this application, we use four level sets, one for each of these
structures: thalami, caudate nuclei, pallida and putamens.

4.1 Data

We test our method on a database provided on the Internet Brain Segmenta-
tion Repository (IBSR), and available at the Center for Morphometric Analysis,
Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr).

This database, which will be called the IBSR dataset in this document, con-
tains 18 real T1-weighted MR scans and the corresponding manual segmentation
of 43 structures, performed by a trained expert. We consider this manual segmen-
tation as the ground truth to assess our results. The MR scans are 256x256x128
volumes, with slices of thickness 1.5mm, and pixel dimension going from 0.84mm
to 1mm on each slice.

We also use another database of 18 real T1-weighted volumes without ground
truth to qualitatively assess the robustness of the segmentation of the brain
hemispheres and the cerebellum. This set of volumes is called the GIS dataset,
and each MR scan (GE, 1.5T) is 256x256xN , where N is the number of 1mm
slices (typically between 150 and 190), with isotropic voxels.
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4.2 A Fully Automatic Processing

In order to achieve the segmentation of brain structures of interest in MRI
volumes coming from any acquisition system, we include the segmentation al-
gorithm in a fully automatic succession of operations. These operations are the
same for each processed MRI volume.

First, one subject is randomly selected among the IBSR dataset. It is isolated
as the reference subject for this set of volumes and its manual segmentation is
considered as the atlas for all the experiments that are run on the 17 remaining
subjects. Concerning the GIS database, we use the BrainWeb dataset [20] as the
reference atlas.

A brain mask and fuzzy label maps (or distance maps) are then created
from the atlas for each of the processed subjects. Afterwards, the segmentation
is performed with a level set algorithm including the fuzzy decision module
described in the previous sections.

Creation of a Brain Mask. To create an adjusted brain mask for the pro-
cessed volume from the atlas, we use an affine registration algorithm (12 param-
eters that maximize the mutual information are computed). The gray matter,
white matter and internal CSF volumes of the reference subject were previously
combined to obtain a reference brain segmentation. We then use a morphological
dilation on the registration result to get a mask including the whole brain of the
processed volume.

Creation of the Fuzzy Label Maps. As for the brain mask, the labels cor-
responding to the target structures (hemispheres and cerebellum or internal
structures) are extracted from the manual segmentation of the reference subject
and registered with a non-linear algorithm towards the processed volume. For
each structure to segment, the signed distance to the corresponding registered
label border is then computed and normalized to be used as the Dlab input of
the fuzzy decision system.

4.3 Segmentation of the Hemispheres and the Cerebellum

These experiments are run both on the IBSR dataset and the GIS dataset. The
three level sets are initialized with boxes located respectively in the left and right
hemispheres and in the cerebellum.

Fig. 2 shows the segmentation results on both datasets, with the same set
of parameters. The boxes are deformed in order to correctly match the complex
shapes of the three structures. The mean computation time is around 30 minutes
on a 2.6GHz PC Linux. The visual quality of the segmentation results on the
internal faces of the hemispheres is good. Note that these results show the ro-
bustness of the method, since the contours are initialized far from their targets
and the intensity distribution strongly varies from one dataset to the other one,
and inside the IBSR dataset itself.

In order to quantitatively assess our results on the IBSR dataset, we compute
the mean distance Md between our results and the ground truth provided by
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Fig. 2. Segmentation with labels of the left hemisphere, right hemisphere and cerebel-
lum. Top row: IBSR dataset, bottom row: GIS dataset

Table 2. Mean values of the similarity indexes for the segmentation (Seg.) and the
registration (Reg.) of the hemispheres (LH and RH) and the cerebellum (C) on the
IBSR dataset

Index LH Seg. LH Reg. RH Seg. RH Reg. C Seg. C Reg.

Spatial accuracy index S 0.95 0.89 0.95 0.89 0.92 0.80

Mean distance Md (mm) 1.5 2.0 1.6 2.1 2.1 2.6

the manual segmentation. We also use the spatial accuracy index S, which is a
similarity index based on the overlapping rate between the result and the truth [21]:

S = 2 · Card(R∩T )

Card(R)+Card(T )
Md =

∑
r∈R

mint∈T d(r,t)

Card(R)
,

where R is the segmentation result and T is the ground truth. Our results are
summarized in Table 2. This table also contains the index values corresponding
to the similarity between the non-linear registration result of the atlas struc-
tures and the ground truth. This shows that the segmented volumes are clearly
closer to the ground truth than the ones that were obtained with a registration
algorithm only.

4.4 Segmentation Results of Internal Structures

The objective of these experiments is to show another application of the com-
petitive level set algorithm. The segmentation of internal structures of the brain
gray matter is peculiarly difficult since they are located in partial volume areas
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(a) (b) (c) (d)

Fig. 3. (a): Initialization of the level set with boxes. (b), (c), (d): Segmentation with
labels of the thalami, caudate nuclei, pallida and putamens

and their borders are largely blurred. In this section, we present promising pre-
liminary results that should be improved by future refinement of the method.

As no ground truth is available for the GIS dataset, these experiments are run
on the IBSR dataset. We wish to take into account the a priori knowledge pro-
vided by the registered labels of each target region: thalami, caudate nuclei, pal-
lida and putamens. Consequently the level sets are initialized with seed regions
obtained by morphological erosion of the labels. The mean computation time is
8 minutes. Let us note that, as for the previous experiments, the segmentation is
done with exactly the same set of parameters for all the volumes in the dataset.

An example of the segmentation results is shown on Fig. 3. The visual quality
of the segmented structures is globally good on 14 subjects of the dataset. For
3 cases, the results are too small or too large compared to the ground truth.
This is due to the location of the target structures, which corresponds to partial
volume areas on the MR scans. Due to the small range of the histogram of
these 3 cases, the preliminary classification process (see Section 2.1 and 3.1)
does not succeed in accurately classifying the partial volumes. Consequently, the
role of the Dp input of the fuzzy controller is not completely adapted to the
desired evolution of the level sets. We believe that this should be improved with
a better adaptation of the classification process to the range of the histogram.
Another solution would be to introduce a priori spatial relations between the
internal structures as inputs of the fuzzy decision system, as suggested in [13].
This should help the contours to jointly evolve toward their respective targets.

The left part of Fig. 3 shows an illustration of the level sets topological
flexibility. They are initialized with a box roughly located in the area of the
target structures, and split in four boxes, one for each level set. Each box evolves
toward its specific target and the segmentation results are similar to the ones
with registered seed regions.

The quantitative evaluation of the results is shown in Table 3. The spatial
accuracy index is good for the thalami. For the caudate nuclei, pallida and puta-
mens, the lower values can be explained by the small size of the corresponding
structures. Consequently, even a small difference between the result and the
ground truth leads to a large variation in the spatial accuracy index. As an ex-
ample, let us consider the result of a morphological erosion on the ground truth
of one of these structures with a structuring element of size 1. The mean S value
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Table 3. Similarity indexes values for the segmentation (Seg.) and the registration
(Reg.) of the thalami (Th), caudate nuclei (CN), pallida (GP) and putamens (Pu)

Index Th. Seg. Th. Reg. CN Seg. CN Reg. GP Seg. GP Reg. Pu. Seg. Pu. Reg.

S 0.77 0.75 0.65 0.59 0.58 0.62 0.70 0.72

Md (mm) 1.70 1.79 1.71 1.81 1.51 1.69 1.46 1.59

computed between the ground truth and the erosion result is only 0.77. For this
reason, the index values obtained between the non-linearly registered labels and
the ground truth were included in the table. They show that the segmentation
improves the registration results for both thalami and caudate nuclei. On the
contrary, for the smallest structures, pallida and putamens, the similarity slightly
decrease with the segmentation process. However, the mean distances between
the result and the ground truth remain very low even for these structures, which
shows that the competitive level set segmentations can be considered as promis-
ing premilinary results for internal structures. Moreover, note that we used a
manual segmentation as the ground truth, without taking into account the intra
and inter-observer variability that is generally observed on manual results, and
should be included in the computation of similarity indexes.

5 Conclusion and Future Work

We presented an automatic method for the simultaneous segmentation of several
regions with competitive level sets driven by fuzzy control. The level set evolution
depends on the intensity distribution of the image, the distance to other evolving
contours, and the distance to a target label registered from an atlas. This method
was applied in two contexts: the segmentation of the brain hemispheres and the
cerebellum, and the segmentation of internal structures of the brain.

Experimental results show that the competitive level sets can adapt to several
datasets and precisely segment complex shapes such as the internal faces of
the brain hemispheres, even if they are initialized far from the desired result.
However, the method still needs improvement on internal structures because of
the partial volumes and the small size of the structures.

This leads to introduce new a priori knowledge in the fuzzy decision system,
such as the spatial relations between the target structures. A variety of medical
applications could thus take advantage of this technique to assess the evolution
of anatomical structures, such as lesions.
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Abstract. In this paper we develop a multi-object prior shape model for
use in curve evolution-based image segmentation. Our prior shape model
is constructed from a family of shape distributions (cumulative distribu-
tion functions) of features related to the shape. Shape distribution-based
object representations possess several desired properties, such as robust-
ness, invariance, and good discriminative and generalizing properties.
Further, our prior can capture information about the interaction between
multiple objects. We incorporate this prior in a curve evolution formu-
lation for shape estimation. We apply this methodology to problems in
medical image segmentation.

1 Introduction

The use of prior information about shape is essential when image intensity alone
does not provide enough information to correctly segment objects in a scene.
Such cases arise due to the presence of clutter, occlusion, noise, etc. In this
work we concentrate on curve evolution-based image segmentation approaches
[1] and prior shape models matched to this framework. In a typical curve evolu-
tion scheme, the regions of interest in the image (i.e. the shapes or objects) are
represented by non-self-intersecting closed contours. Curve evolution methods
allow convenient handling of object topology, efficient implementation, and pos-
sess variational and associated probabilistic interpretations. In a typical curve
evolution implementation, the shape-capturing curve is evolved under the com-
bined action of two classes of forces: those dependent on the observed image
data (data-dependent forces) and those reflecting prior knowledge about the
segmented shape or boundary (regularizing forces). This work is focused on the
development of shape models suitable for such prior shape force terms in curve
evolution.
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Desirable qualities in a shape-based prior include invariance with respect
to transformations such as scale, translation, and rotation, independence from
knowledge of correspondence, robustness of the resulting solution to initializa-
tion, the ability to generate the prior model from training data, and subsequent
robustness to small training set size. Shape distributions have been used in the
computer graphics community [14] to characterize shapes and, more recently,
have been successfully applied to shape classification problems. They were shown
to possess the desired properties of robustness, invariance, and flexibility. To
date, however, shape distributions have not been used in an estimation context.

In this work we develop a novel multi-object prior based on such shape dis-
tributions for use in estimation. We then present a method to use this prior in
curve evolution-based segmentation problems. Finally, we suggest the promise of
this prior for challenging medical image segmentation tasks through an example.
In our formulation, the shape prior is constructed by designing a shape similar-
ity measure penalizing the difference between shape distributions extracted from
boundary curves under comparison.

In Section 2 we give an overview of existing shape modeling approaches and
the motivations behind our technique. In Section 3 we review the curve evolution
framework and introduce the shape distribution concept. Section 4 presents our
experimental results and Section 5 concludes this paper.

2 Prior Work

Different approaches have been proposed for the inclusion of prior information in
deformable curve-based image segmentation. The most common regularization
method for curve evolution penalizes a quantity such as total curve length or
object area [1, 10]. Such “generic” penalties are stationary along the curve, in
that every point on the boundary experiences the same effect. Such priors can
remove object protrusions and smooth salient object detail when the boundary
location is not well supported by the observed data, since they seek objects with
short boundaries or small area.

Deformable template approaches construct prior models based on allowable
deformations of a template shape. Some approaches are based on representing
and modeling shape as a set of landmarks (see [5, 4] and references therein).
Other approaches use principal component analysis based on parameterized
boundary coordinates or level-set functions to obtain a set of shape expansion
functions [20, 22] that describe the subspace of allowable shapes. Still other ap-
proaches construct more complex parametric shape representations, such as the
MREP approach in [16], or deformable atlas based approach in [3]. These meth-
ods are effective when the space of possible curves is well covered by the modeled
template deformations as obtained through training data, but may not generalize
well to shapes unseen in the training set.

Motivated by such limitations in existing approaches and by the represen-
tational richness of the ideas in [24, 14], we propose construction of a shape
prior based on an energy which penalizes the difference between a set of fea-
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ture distributions of a given curve and those of a prior reference set. Such prior
shape distributions capture the existence of certain visual features of a shape
regardless of the location of these features. Shape distributions have been suc-
cessfully applied to shape classification tasks (e.g. [8, 14] and references therein),
and these results indicate that shape distributions are robust, invariant, flexible
shape representations with good discriminative properties. In this work, we ap-
ply such shape distribution-based models to problems of boundary estimation
in medical imaging, suggesting their potential.

Simultaneous multiple object segmentation is an important direction of re-
search in medical imaging. The positions of segmented parts are often highly
correlated and can be used to further constrain the resulting boundary estima-
tion. In [23, 18] the authors extend the PCA shape model to constrain multiple
object locations. In [6], a PDM model was extended to model multiple shapes.
In [7, 15] the authors mutually constrained shapes by penalizing quantities such
as area of overlap between different objects. These approaches do not include
shape specific information regarding the different objects. Our approach shares
a common idea with [13], where the concept of a force histogram was used to
characterize shapes. In [13] histogram-based descriptors were used solely in dis-
crimination while our focus is to use similar descriptors in estimation problems.

In [11], the authors present preliminary results on constructing shape dis-
tribution-based shape models for single objects. This paper improves upon and
extends this technique to the multiple object case. In contrast to existing ap-
proaches, this model attempts to directly encode properties of a class of shapes
(versus simply penalizing points of high curvature), yet does not depend on the
specific embedding of a shape, and thus generalizes well to unseen objects. As
another major contribution, analytical expressions for energy minimizing gradi-
ent curve flows are derived, providing useful insights as well as efficient curve
evolution implementation. Our approach seems to provide an interesting alter-
native shape prior, well matched to curve evolution approaches, with promise
for challenging segmentation problems.

3 General Formulation and Shape Distribution Prior

3.1 Segmentation by Energy Minimization Based on Curve
Evolution

First, we review the overall approach of segmentation in a curve evolution frame-
work based on energy minimization. We assume that each object (shape) in the
image is defined by a separate closed curve. An energy functional is defined for
each object (in contrast to the multi-phase approach in [21]) and each boundary
is evolved to minimize the overall energy. For a single object, then, the solution
curve C∗ is sought as:

C∗ =argmin
C

E(C) (1)

The energy E(C) consists of a data term and a shape prior term:

E(C) = Edata(C) + αEprior(C) (2)
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The data term Edata favors the fidelity of the solution to the image data. This
term is sensor and application specific. In this paper we use two definitions of
Edata: the bimodal image energy in [2] and the information theoretic energy in
[9]. Our contribution is focused on the shape prior term Eprior, which we base
on the concept of shape-distributions, discussed in Sec. 3.2. The positive scalar
α is a regularization parameter that balances the strength of the prior and data.

The gradient curve flow minimizing (2) can be found using variational ap-
proaches or shape-gradient approaches. In this work we utilize variational ap-
proaches. The curve is then evolved according to the gradient curve flow dC/dt =
−∇E(C), were t is an artificial time parameter. We implement the curve evo-
lution via the level-set framework [17]. This framework is very general, and our
prior term can be coupled with many existing data terms (ex. [2, 9]). In the
multi-object case the simultaneous evolution of multiple boundaries effectively
minimizes an energy which is a sum of terms (2) corresponding to the individual
objects.

3.2 The Shape Distribution Concept

Distributions of features measured over shapes in a uniform way, are called shape
distributions [14]. As shown by recent shape classification experiments [14], such
shape distributions can capture the intuitive similarity of shapes in a flexible way
while being robust to a small sample size and invariant to object transformation.

In a continuous formulation, shape distributions are defined as sets of cu-
mulative distribution functions (CDFs) of feature values (one distribution per
collection of feature values of the same kind) measured along the shape boundary
or across the shape area. Joint CDFs of multiple features can also be consid-
ered, although in this work we only consider one-dimensional distributions. An
illustrative example of the shape distribution idea is shown in Figure 1, using
boundary curvature as the feature. We define the shape distribution for a class
or set of shapes as an average of the cumulative distribution functions corre-
sponding to the individual shapes in the group. This approach is equivalent to
combining feature value representations (continuous functions or discrete sets of
values) measured on individual shapes into a single set and then defining the
overall CDF of the resulting set.

k

Shape
s

−r−r

s

k −r

H(k)

k

1
pdf(k)

Fig. 1. An example of constructing a shape distribution for a curve (left) based on
curvature κ(s) measured along the boundary (second graph). Third and fourth graphs
show the sketches of pdf(κ) and cumulative distribution function H(κ) of curvature
respectively. Note the invariance of H(κ) with respect to the choice of the initial point
of arc-length parameterization
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We will call a set of feature values extracted from a shape a “feature class”.
In the example of Figure 1 the feature class is boundary curvature. Separate
feature classes capturing different characteristics of shapes can be combined in
a single framework, creating a more versatile prior. We distinguish two types
of feature classes. For the first type of feature, which we term autonomous, the
values for a particular curve are computed with reference only to the curve itself.
For the second type of feature, which we term directed, the feature values are
computed with reference to the curves of other objects. By incorporating directed
feature classes into our shape models we provide a mechanism for modeling the
relationships between different objects in a scene and, thus, create a framework
for multi-object segmentation.

3.3 A Prior Energy Based on Shape Distributions

We now introduce our formulation of the shape prior in the continuous domain.
Let Φ ∈ Ω be a continuously defined feature (e.g. curvature along the length of
a curve), and let λ be a variable spanning the range of values Λ of the feature.
Let H(λ) be the CDF of Φ:

H(λ) =

∫
Ω

h
{
Φ(Ω) < λ

}
dω∫

Ω
dω

(3)

where h(x) is the indicator function, which is 1 when the equality is satisfied
and 0 otherwise.

We define the prior energy Eprior(C) for the boundary curve C in (2) based
on this shape distribution as:

Eprior(C) =
M∑
i=1

wi

∫
Λ

[
H∗

i (λ) − Hi(C, λ)
]2

dλ (4)

where M is the number of different distributions (i.e. feature classes) being
used to represent the object, Hi(C, λ) is the distribution function of the ith

feature class for the curve C, and the non-negative scalar weights wi balance
the relative contribution of the different feature distributions. Prior knowledge
of object behavior is captured in the set of target distributions H∗

i (λ). These
target distributions H∗

i can correspond to a single prior shape, an average derived
from a group of training shapes, or can be specified by prior knowledge (e.g.
the analytic form for a primitive, such as a square). In practice, we compute
the feature values, the corresponding shape distributions, and evolution forces
dC/dt by discretizing curves and their properties through uniform sampling.

We use three specific feature classes in our experiments in this work, which
we define below and illustrate in Figure 2.

– Feature class # 1. Inter-node Distances (Autonomous feature type).
The feature value set {F} consists of the normalized distances between nodes
of the discrete curve.

{F} =
{dij | (i, j) ∈ S}

mean
(
{dij | (i, j) ∈ S}

) (5)
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Fig. 2. Feature value sets used in this work illustrated for a curve C discretized using 6
nodes. Feature class #1 (left): interpoint distances {d13..d15}. Feature class #2 (center):
interpoint angles {α−1,1,2..α−n,1,n} (n = 2) are shown. Feature class #3 (right): feature
set values for curve C are defined as shortest signed distances from the curve Γ to nodes
of the curve C

The set S defines the subset of internodal distances used in the feature.
For (a, b) ∈ [0, 1], S(a,b) defines such subset of nodes in a multi-scale way:
{(i, j) | (j − i) ∗ ds/L ∈ [a, b]}, where a and b are the lower and upper bounds
of the interval respectively; ds is the distance between neighboring boundary
nodes and L is the total boundary length. In the experiments presented
in this paper we used 4 different, non-overlapping intervals. Note that the
features defined above are invariant to shape translation, rotation and scale.

– Feature class # 2. Multiscale curvature (Autonomous feature type).
The feature value set {F} consists of the collection of angles between nodes
of the discrete curve.

{F} = { � i−j,i,i+j (i, j) ∈ S} (6)

where � (ijk) is the angle between nodes i, j, and k. Again, the set S defines
the subset of internodal angles used in the feature and again we used S
in a multi-scale way, as described in Feature class #1. Similar invariance
properties hold for this feature class by construction.

– Feature class # 3. Relative inter-object distances. (Directed feature type)
The set {F} consists of the collection of shortest signed distances between
each node of C and the boundary of object Γ (negative for nodes of C inside
Γ ). These distances are normalized by the average radius of Γ with respect to
its center of mass. This feature class encodes the relative position of C with
respect to Γ . Note that the prior defined using this feature class provides
a descriptor richer than those in penalty based approaches in [7, 15], while
being less restrictive than a PCA based prior. Again, this feature is invariant
to translation, rotation and scale applied to the pair of shapes C and Γ .

3.4 Gradient Flow Computation

In order to use the energy in (4) as a prior in a curve evolution context we must
be able to compute the curve flow that minimizes it. For simplicity, we consider
here an energy defined on just a single feature class. Since (4) is additive in the
different feature classes, minimizing flows for single individual feature classes can
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be added with the corresponding weights to obtain the overall minimizing flow.
The energy for a single feature class is given by:

E(C) =
∫ [

H∗(λ) − H(C, λ)
]2

dλ (7)

Because the energy depends on the whole curve in non-additive way, the mini-
mizing flow at any location on the curve also depends on the whole curve, and
not just the local curve properties.

The minimizing flow and its computation will, of course, depend on the
specifics of the feature classes chosen. In [11], a numerical scheme was proposed
to estimate the flow. Such a scheme can be employed for any definition of the
feature class; although, it is computationally expensive. Here we introduce an
efficient approach to analytically compute the minimizing flows for the feature
classes presented previously using a variational framework. The resulting flows
guarantee reduction of the energy functionals (7).

Due to the space constraints we only briefly outline the steps required to
derive the flows and present final results for our specific feature classes.

1. Find the Gâteaux semi-derivative of the energy in (7) with respect to a per-
turbation β. Using the definition of the Gâteaux semi-derivative, the linearity
of integration, and the chain rule we obtain

G(E, β) = 2
∫ [

H∗(λ) − H(Γ, λ)
]
G
[
H(γ, λ), β

]
dλ (8)

2. If the Gâteaux semi-derivative of a linear functional f exists, then according
to the Rietz representation theorem, it can be represented as

G(f, β) =< ∇f, β > (9)

were ∇f is the gradient flow minimizing the functional f . Therefore, we must
find the boundary functional representation ∇H(Γ, λ) for the feature such
that G

[
H(Γ, λ), β

]
=< ∇H(Γ, λ), β >.

3. The overall flow minimizing (7) is then given by

∇E = 2
∫ [

H∗(λ) − H(Γ, λ)
]
∇H(Γ, λ)dλ (10)

A detailed derivation of the gradient flows for the three features used in this
work can be found in the technical report [12]. We simply summarize those
results here. For feature class #1 the minimizing flow is given by:

∇E(Γ )(s) = 2
∫

t∈S

n(s) · Γ (s, t)
|Γ (s, t)|

[
H∗(|Γ (s, t)|) − H(Γ, |Γ (s, t)|)

]
dt (11)

where Γ is the parameterized curve as a function of arc length {X(s), Y (s)} with
s ∈ {0, 1}, Γ (s, t) is a vector with coordinates {X(t) − X(s), Y (t) − Y (s)}, and
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n(s) is the outward normal at {X(s), Y (s)}. The flow at each s is an integral
over the curve, indicating the non-local dependence of the flow. The expression
under the integral can be interpreted as a force acting on a particular pair of
locations on the curve, projected on the normal direction at s.

For feature class #2, the minimizing flow is given by

∇E(Γ )(s) =

−
∫

t∈S


{

cos(β) cos(n(s),Γ+)+cos(γ) cos(n(s),Γ−)
sin α if α �= π

sin(n(s),Γ−)) otherwise

}
× a · r(s,t)

bc
−

f (s−t)

√
1 −

(
n(s − t) · Γ −

|Γ −|
)2

|Γ−| −f (s+t)

√
1 −

(
n(s + t) · Γ +

|Γ +|
)2

|Γ +|

×

[
H∗(α(s, t)) − H(Γ, α(s, t))

]
dt (12)

where r(s,t) and f (s+t) take values -1 and 1 and indicate the sign of change of the
angle α(s, t) = � (Γ−,Γ +) with respect to along-the-normal perturbation of the
point Γ (s) and Γ (s + t) respectively, Γ + = Γ (s, s + t); Γ− = Γ (s, s − t); a =
|Γ +−Γ−|; b = |Γ−|; c = |Γ+|; β = � (−Γ +,Γ−−Γ +); γ = � (−Γ−,Γ +−Γ−).

Finally, for feature class #3, relating the curve Γ to another object Ω, the
gradient flow is given by:

∇E(Γ )(s) = n(s) · ∇DΩ(s)
[
H∗

(
DΩ(s)
R(Ω)

)
− H

(
Γ,

DΩ(s)
R(Ω)

)]
(13)

where DΩ(s) is value of signed distance function generated by curve Ω at the
point on the curve Γ given by {X(s), Y (s)}, and R(Ω) is the mean radius of the
shape Ω relative to its center of mass.

4 Results

In this section we apply our shape distribution based prior to both a synthetic
and a real example. The real data example arises in segmentation of brain MRI.
We compare both single object and multi-object priors. The benefit of using a
multi-object prior is expected to be greater when the object boundary is not
well supported by the observed image intensity gradient or when initialization
is far from the true boundary.

In the first experiment we apply our prior to a synthetic 2-object segmen-
tation problem with very low SNR, simulating two closely positioned organs,
shown in Figure 3, panel (a). Both objects in the ground truth image have the
same known intensity. The background intensity is also known as in the model
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(a) (b) (c)

Fig. 3. Synthetic 2 shape example: (a) Noisy image; Solid black line shows the true ob-
jects boundaries; dashed white lines - initial boundary position; (b) Segmentation with
curve length prior; (c) - Segmentation with new multiobject shape distribution prior
including all three feature classes. Solid black line shows the true objects boundaries;
solid white lines - final boundary

Table 1. Symmetric difference (area based) segmentation error. For each object the
error measure is computed as a symmetric difference between final segmented region
and true segmented region. The values in the table are computed as a sum of error
measures for individual objects

Curve length PCA method Our method

Experiment I 1092 146

Experiment II 1090 1437 758

[2]. Gaussian IID noise (SNR= -18dB) was added to this bimodal image to form
the noisy observed image. The data term Edata in (2) and the corresponding
data-term gradient curve flow are formed according the data model in [2].

In Figure 3 we show the results obtained by segmenting this image using en-
ergy minimizing curve evolution based on two different shape priors: (b) shows
the results with a curve length penalty; (c) shows the results with our multi-
object shape distribution prior including all 3 feature classes. The prior target
distributions for case (c) were constructed using the true objects in (a). The
regularization parameter was chosen in each case to yield the subjectively best
result. The curve length prior result in (b) yields an incorrect segmentation for
one of the objects or leads to a collapse of one of the contours. With the directed
feature class included in the segmentation functional (c), both objects can be
correctly segmented since the energy term corresponding to feature class #3 ef-
fectively prevents intersection of boundaries. Segmentation errors (area based)
are summarized in Table 1.

In our second example we apply our techniques to 2D MRI brain data seg-
mentation. A data set consisting of 12 normal adult subjects was used. Manual
expert segmentations of the subjects was provided and those of 11 of these sub-
jects was used as training data to construct our shape prior. The prior was then
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(c) (d)

Fig. 4. Brain MRI segmentation: (a) Multiple structures and interactions used for
feature class #3; (b) Segmentation with independent object curve length prior. (c)
Segmentation using multiobject PCA technique in [19] (d) Segmentation with new
multiobject shape distribution prior. Solid black line shows the true objects boundaries;
solid white line - final segmentation boundary

applied to segment the data of the omitted subject. The eight numbered struc-
tures shown in Figure 4, panel (a) were simultaneously segmented. For the data
dependent energy term Edata, we used the information theoretic approach of
[9] by maximizing the mutual information between image pixel intensities and
region labels (inside or outside), therefore favoring segmented regions with inten-
sity distributions that were different from the background intensity distribution.

In Figure 4 we present our results. Panel (b) gives the segmentation with
a standard curve length prior applied independently to each object. One can
see that Structures 1 and 4 are poorly segmented, due to their weak image
boundaries. In panel (c) we present the result given by the multi-shape PCA
technique in [19] using 5 principle components defining the subspace of allowable
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shapes. The segmentation is sought as the shape in this subspace, optimizing the
same information-theoretic criteria [9] as used with our shape prior. The usage of
the same data term simplifies the comparison with our approach since only the
shape model components of the method are different. One can see that structures
2,5,6, and 7 are not segmented properly due to the poor generalization by the
PCA prior. Expanding the subspace by choosing 10 PCA components did not
improve the result given by this method. Finally, our result is shown in panel (d).
We obtain satisfactory segmentation for the structures for which PCA method
failed (2,5,6,7), while performing equally well for structures 1,3,4 and 8. The
choice of initialization did not significantly influence our results. Segmentation
errors given in Table 1 qualitatively confirm the superior performance attained
using our prior.

5 Conclusions

In this paper we present a shape distribution-based object prior for use in curve
evolution image segmentation. This prior allows encoding of multi-object infor-
mation. We apply a variational approach to analytically compute the energy
minimizing curve flows for three feature classes. We investigate the application
of our shape distribution prior to medical image segmentation involving multiple
object boundaries. In our experiments we achieved the performance superior to
that obtained using the traditional curve length minimization methods and a
multi-shape PCA shape prior reported in the literature.
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Abstract. In this paper a method to extract cerebral arteries from com-
puted tomographic angiography (CTA) is proposed. Since CTA shows
both bone and vessels, the examination of vessels is a difficult task.
In the upper part of the brain, the arteries of main interest are not
close to bone and can be well segmented out by thresholding and simple
connected-component analysis. However in the lower part the separa-
tion is challenging due to the spatial closeness of bone and vessels and
their overlapping intensity distributions. In this paper a CTA volume
is partitioned into two sub-volumes according to the spatial relationship
between bone and vessels. In the lower sub-volume, the concerning arter-
ies are extracted by tracking the center line and detecting the border on
each cross-section. The proposed tracking method can be characterized
by the adaptive properties to the case of cerebral arteries in CTA. These
properties improve the tracking continuity with less user-interaction.

1 Introduction

The wall of a cerebral artery may become weak and have a bulging spot like a
thin balloon. This is an aneurysm inside which the flowing blood can rupture the
weakened wall and result in a subarachnoid hemorrhage (SAH). However, most
people with unruptured aneurysms have no symptoms. The overall annual risk
of rupture of an intact intracranial aneurysms is 1.9%[1]. Therefore, periodical
screening by medical images is considerably required for potential patients.

As the imaging technology develops, the resolution becomes higher, but at
the same time, the amount of data becomes enormous increasing the burdens of
the experts examining vessels and the associated pathologies. For prognosis of
SAH it is crucial to examine the vascular structure exactly not hindered by bone
or vein. If only the vascular structure can be segmented out in CTA, it will be
very helpful for prognosis or surgery planning.
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The most basic method for segmentation is the combination of thresholding
and connected-component analysis (CCA)[2]. However, being applied to the seg-
mentation of cerebral arteries from bone or vein in CTA, it has some problems
mainly due to the following two facts. One is the overlapping intensity distri-
butions of bone and vessels making thresholding not effective. The other is the
close contact between arteries and bone or vein resulting in the infeasibility of
CCA. Bone usually has higher intensity values than arteries. However the par-
tial volume effect (PVE)[3] causes in-between voxels to have in-between intensity
values so that the intensity distributions of bone and arteries overlap with each
other. Veins have only a little lower intensity values than arteries and are very
close to arteries.

To settle these problems it is required to make use of some prior information
or anatomic knowledge about arteries like follows:

– Vessels are smoothly varying structures with nearly circular or elliptical
cross-sections.

– In the cranial cavity the arteries of main interest flow apart from bone.
However below the floor of the cranial cavity the arteries often pass through
bone.

Until now a number of papers have been published on the vessel extraction
in magnetic resonance angiography (MRA) [4, 5, 6]. MRA does not show bone
which makes vessel extraction more easily than CTA. As for CTA only a few
researches have been performed.

Suryanarayanan et. al [8] took account of the profiles of bone and sinus (cav-
ity) and partitioned the head volume into three sub-volumes. Each sub-volume
has a consistent spatial relationship between bone and vessels enabling separate
segmentation algorithm to be applied. This work is not on segmentation itself
but on the proper partitioning of volumes for segmentation.

Wink et. al [9] extracted the abdominal aorta based on tracking of the cen-
ter line. The abdominal aorta is thick and mostly straight, consequently much
simpler to extract than cerebral arteries. Their method is very similar to the
proposed method in this paper. However, in being applied to the case of cere-
bral arteries in CTA, consideration of obscure boundary of arteries, especially
to bone or vein was not sufficiently. The proposed method adds some adaptive
properties to the extraction of cerebral arteries in CTA. Its better performance
in tracking will be confirmed by some experiments in section 3.

Hong et. al [10] eliminated bone in brain with two CT volumes scanned be-
fore and after the injection of contrast dye, respectively. They performed rigid
registration between the two CT volumes and subtracted the pre-contrast vol-
ume from the post-contrast volume. This work belongs to a digital subtraction
angiography (DSA) and can make a perfect extraction theoretically. The draw-
back of this approach is that it requires twice of scanning which doubles the
burden and cost for patients.

The outline of this paper is as follows. In section 2 the overall workflow of the
proposed method will be explained. In section 3 the experimental results and
the analysis will be provided. And finally we will conclude with section 4.
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2 Description of the Overall Workflow

This paper proposes a method to extract cerebral arteries from CTA. The over-
all workflow is composed of the following five sub-sections. First, a CT data
is acquired, re-sampled and pre-processed. Then the head CT volume is parti-
tioned into two sections each of which has a consistent spatial relationship be-
tween bone and vessels. To each sub-volume a separate segmentation algorithm
is applied. Therefore the next two sub-sections describe these two algorithms,
repectively. Finally, to remove the discontinuities between the sub-volumes, the
inter-partition tracking is devised and will be explained in the last sub-section.

2.1 Data Acquisition and Pre-processing

A CT data is sampled in an anisotropic space, where the resolution in each
of x-, y-, and z-directions is not equal. For further processing of volume data,
we interpolated the intensity value on each grid in the z-direction by trilinear
interpolation. To suppress the effects of noise and artifacts, the isotropically
resampled volume is pre-processed by the convolution with a Gaussian kernel.

2.2 Partitioning of a Head CT Volume

In the cranium, the arteries of main interest are called as the Circle of Willis
and aneurysms usually happen on the Circle of Willis located on the floor of the
cranial cavity. The cranial cavity corresponds to the upper part of the head CT
volume data, and has the concerned arteries separated far away from bone. In
the while, below the floor of the cranial cavity, the arteries often pass through
bone and run closely to vein. As mentioned earlier, these circumstances produce
obscure boundaries of the arteries which require special treatment of the lower
sub-volume.

If we consider the profile of bone, in the upper sub-volume, bone forms an
outer boundary as in Fig. 1 (a). As we go down, bone approaches closer to the
inner arteries and consequently constitutes a complex structure as seen in Fig.
1 (b). We assume a square region on each slice as in Fig. 1 (c). From the top of
the head the ratio rbone of the number of bone voxels in the square to the total
number of voxels in the square is computed on each slice. At first no bone voxels
can be found, but as we go down, the number of bone voxels increases and the
slice where it exceeds a threshold tbone is the partitioning slice. Empirically tbone

is set to 0.002.

2.3 Extraction in the Upper Sub-volume (Threshold-Morphological
Method)

As bone and vessels are not adjacent to each other in the upper sub-volume, they
can be well separated mostly by intensity thresholds and CCA. On the contrary
as stated in the introduction, the PVE produces voxels of in-between intensity
values on the boundary of the bone structure. These voxels are what should have
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(a) (b) (c)

Fig. 1. Bone voxel distributions in : (a) A slice of the upper sub-volume, (b) a slice of
the lower sub-volume, (c) The partitioning slice

(a) (b)

Fig. 2. Vessels extracted: (a) In the upper sub-volume, (b) In the lower sub-volume

been removed together with bone structure. Thus, we applied morphological
dilation operation with the ball-shaped structuring element to add these voxels
to the bone structure. Next, after the application of CCA, only the components
which satisfies the size and the shape criteria remain as vessel segments. The
size criterion is that the size of a component should be larger than a threshold
tsize and the shape one is that the component has a saturation value less than
another threshold tsat. Saturation is a compactness measure being the ratio of
the number of voxels in the component to the number of voxels in the bounding
box of the component. Empirically, tsize tsat are 100 and 0.1, respectively.

Fig. 2 (a) shows the vessels extracted by the method in the upper sub-volume.
The upper part of the Circle of Willis can be examined clearly with the bone
structure removed. Some veins are visualized together, but they can be removed
by a simple post-processing using some anatomical knowledge.

2.4 Extraction in Lower Partition (Adaptive Tracking Method)

In the lower sub-volume, as the arteries are often adjacent to bone or veins, they
could not be segmented out only by intensity information. In this paper, the
main arteries are extracted by tracking the central axes and detecting the border
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Fig. 3. The block diagram of the segmentation in the lower sub-volume

points on each cross-section. The tracking method in the lower sub-volume is
composed of several step as shown in Fig. 3. The most important steps are the
ones of “Generation of the normal vector” and “Ellipse-fitting and determination
of the center”.

Manual Initialization and Computation of the Next Candidate Center:
The tracking is initialized by the user designating a center point and a normal
vector. The arteries of main interest are left-right internal carotid arteries (ICA)
and left-right vertebral arteries (VA), consequently four pairs of an initial center
and an initial normal vector are required.

The candidate center for the next cross-section Ccand is computed by adding
the step vector b to the previous center Clast. The step vector b is in the same
orientation of the normal vector computed for the last cross-section.

Generation of the Normal Vector: As seen in Fig. 4, vessels are assumed
to be cylinders, and the direction of vessel axis and the area of its perpendicular
cross-section are denoted by n0 and S0, respectively at the center O. Then, an
arbitrary cross-section with the angle of φ has its area S of (1). Consequently
the perpendicular cross-section is determined by minimizing S which means that
φ = 0.

S =
S0

cos φ
, 0 ≤ φ ≤

π

2
. (1)

However the real vessel is generally not a cylinder. Therefore to minimize the
cross-section area, both of θ and φ of the spherical coordinate system should

Fig. 4. Cross-sections and their normal vectors
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be sampled in uniform intervals as (2) and (3). θ is the azymuthal angle in the
xy-plane from the x-axis with 0 ≤ θ ≤ 2π and φ is the zenith angle from the
z-axis with 0 ≤ φ ≤ π

2 [11].

Θ = {θi

∣∣∣ θi = 2π
i

M
, i = 0, . . . , M − 1}. (2)

Φ = {φj

∣∣∣ φj =
π

2
j

N
, j = 0, . . . , N}. (3)

The normal vector, n is computed as (4) at the pair of (θ, φ).

n(θ, φ) = (cos θ sin φ, sin θ sinφ, cos φ). (4)

When we denote as nij = n(θi, φj), the correct normal vector of the cross-section,
nmin = n(θimin

, φjmin
) is defined from (5).

(imin, jmin) = arg min
i∈{0,...,M−1}

j∈{0,...,N}

Sij , (5)

where Sij = Area of the cross-section determined by (θi, φj).

However Sij can be calculated only after the border of the cross-section is cor-
rectly obtained over all the possible pair of (θi, φj). It is worth to note that if the
detected border points are scattered sparsely, Sij will be large and vice versa.
Therefore we determine the normal vector by minimizing the variance of the
positions of the border points instead of the area of the cross-section.

Ellipse-Fitting and Determination of the Center: At the cross-section
perpendicular to the previous normal vector, the border points of the artery are
detected and fitted to an ellipse. From the candidate center of the cross-section,
rays are cast along the directions equally sampled around the candidate center
as in Fig. 5 (d). The radial component of the gradient along each ray is plotted as
in Fig. 6. Fig. 5 (a) and (d) show the usual case where the artery is surrounded
only by normal tissues. The contrast-enhanced artery has higher intensity value
than the surrounding tissues, so the border point along the ray is detected as
the first negative extremum below some negative threshold t−.

Fig. 5 (b) and (e) show the case where the artery passes through bone. Since
bone has much higher intensity values that the artery, the plot of the radial
gradient component shows large positive values. For this reason, we invert the
sign of the negative threshold t− into some positive value t+ and detect the
border point as the first positive extremum above t+.

Finally Fig. 5 (c) and (f) are the case where the artery is adjacent to vein.
As veins have similar intensity values to arteries resulting in a plain plot of the
radial gradient component, we reduce the magnitude of t−. With this smaller t−
the border point is detected.

Fig.5 (e) and (f) show the detected border points in these special cases.
Although there are some outliers, the modified thresholds generally produce
proper border points. These outliers should be removed in the ellipse-fitting
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Artery cross-sections : (a) Surrounded by only normal tissues, (b) Surrounded
by bone structure, (c) Adjacent to vein, (d) (e) (f) The detected border points, the
outliers, and the fitted ellipse of (a), (b), and (c), respectively

Fig. 6. The radial component of the gradient along a ray

which can be certified by the blue ellipse not effected by the outliers in Fig.
5 (e) and (f). The ellipse-fitting was implemented by the use of Intel OpenCV
library[12].

The removal of outliers are performed by two separate processes. The first
process is illustrated in Fig. 7 (a). E is the ellipse fitted in the previous cross-
section and Et is the translation of E by the amount of the step vector b.
Since arteries have smoothly varying structure as stated in the introduction,
if the length of b is sufficiently small, the new boundary in the current cross-
section will not be much different from Et. Therefore, the border points which are
the most distant from Et are removed and are named as the absolute outliers
denoted by ’o’ in Fig. 7 (a). If ntotal and nao denote the number of all the
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(a) (b)

Fig. 7. Removal of outliers: (a) Absolute outliers, (b) Relative outliers

detected border points in a cross-section and the absolute outliers, respectively,
the ratio rao = nao/ntotal can be adjusted according to the obscureness of the
boundary. Next the relative outliers are removed among the remained border
points as in Fig. 7 (b). If the number of the relative outliers is denoted by nro,
the number of all the possible nro-tuples each of which is composed of nro points
is ntuple =

(
ntotal−nao

nro

)
.

For each nro-tuple Ti = {Pi1, . . . Pinro
}, i = 1, . . . , ntuple, an ellipse Ei is

approximated using the rest border points except the points of Ti. If the 3D
distance from a point P to the boundary of an ellipse E is denoted by d(E,P ),
the sum of distances di of (6) measures how much each Ti will be taken as the
relative outliers. ωj is the weight for Pij and empirically is set to 1 if Pij is exterior
to the ellipse Ei and set to 0.2 otherwise. This is for the purpose of weighting
the exterior outliers more than the interior ones, because they produce larger
errors in ellipse-fitting. Afterwards the points of Ti minimizing di are removed
as the relative outliers.

di =
nro∑

j=1

ωjd(Ei, Pij). (6)

Checking of the End Conditions and Visualization of the Vessel: The
possible end conditions can be the maximum length of the artery, the z-coordinate
of the center point, or whether being out of the artery boundary. If the end con-
dition is not satisfied, the workflow goes back to the stage of “To compute the
next candidate center” of Fig. 3. Otherwise, the workflow terminates and the
accumulated cross-sections will be visualized. Fig. 2 (b) shows left-right ICA’s
and left- right VA’s. In spite of the varying diameter of the arteries and the
overlapping intensity distributions, the proposed tracking scheme has extracted
the main arteries effectively.

2.5 Inter-partition Tracking

The proposed method applies a separate segmentation algorithm to each sub-
volume. This inevitably causes discontinuities on the partitioning slice between
the two sub-volumes as in Fig. 8 (a). We perform the inter-partition tracking to
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(a) (b)

Fig. 8. Inter-partition tracking to eliminate the discontinuities on the partitioning slice:
(a) Before, (b) After

eliminate these discontinuities. First, 2-D CCA is executed on the partitioning
slice. Among the connected components, only those that are large enough and
in the region of interest are selected as the seeds for tracking. The central mean
of each seed is the initial center point and the initial normal vector is downward
to the lower sub-volume. From each seed the tracking is initiated to connect
the discontinuities. Fig. 8 (b) is the result after the inter-partition tracking and
shows that most of the discontinuities are eliminated.

3 Results and Discussion

We performed experiments with 24 data sets which were provided by a company
and a hospital (not-specified due to anonymous reviewing). Three of them are
the double-scanned data sets composed of before-injection, after-injection, and
their DSA result. Let us call them as DS (double-scaned) data sets of from DS01
to DS03. The rest are the single-scanned volumes scanned after the injection and
are named as from SS01 to SS21. Mainly concerned about the tracking in the
lower sub-volume, we defined some subjective evaluation criterion. It designates
a result as a success when at most one of the arteries of main interest is missed
or cut with no re-initialization. According to this criterion 17 out 24 data sets
marked as the success and the subjective success rate can be 70.83% = 17/24.

3.1 Adaptiveness of the Proposed Tracking

To evaluate the proposed tracking method more objectively, we performed ex-
periments with the left ICA of DS03 data set. The most important measure
about the tracking performance can be the ability to continue tracking with-
out getting astray or making turnovers which requires user’s re-initialization.
We counted the number of requirements for re-initialization (in short, NRR) as
the sum of the number of getting astray (NGA) and the number of turnovers
(NTO). For tracking to get astray means that the new center point is out of
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(a) (b) (c)

Fig. 9. Left ICA : (a) The cross-sections tracked by the proposed method, (b) The
cross-sections tracked by a conventional method[9], (c) The cross-sections re-initialized
by the user in the conventional method[9] with the green ones owing to getting astray
and the blue ones owing to turnovers, repectively

the true artery boundary. Fig. 9 (a) shows the tracking result of the proposed
method by the accumulated cross-sections. It required no re-initialization, i.e.
NRR = NGA + NTO = 0.

On the contrary, Fig. 9 (b) is the cross-sections by the tracking method[9]
using the center-likelihood (CL) measure for determining the new center point
on a cross-section This method[9] was targeted for the abdominal aorta which
is simpler to extract than the cerebral arteries. It used the difference between
the last two center points for the generation of the step vector and provided not
enough consideration to deal with outliers. Hence it is not appropriate for the
extraction of the cerebral arteries as shown in Fig. 9 (b). When the left ICA
passes through bone or is adjacent to veins, the border points are not exactly
detected making the cross-sections irregular. Besides, in Fig. 9 (c), the green
cross-sections are the re-initialized ones owing to getting astray and the blue
ones indicate the re-initialization owing to turnovers. In this case, NGA = 8
and NTO = 4.

This comparison illustrates the adaptiveness of the proposed tracking which
is due to the following facts.

– The normal vector at each cross-section is determined by minimizing all the
cross-sections computed by the sampled pairs of (θ, φ).

– The gradient threshold is modified in the case where the artery is adjacent
to veins.

– The outliers in detecting border points on a cross-sections are removed by
two separate processes.

3.2 Visual Comparison to DSA Results

Each of the DS data sets has three volumes. We call them, as Before-volume,
After-volume, and DSA-volume[10], respectively. The vascular structure includ-
ing arteries can be seen clearly in Fig. 10 (a), (c), and (e). However this result
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Visual comparison to DSA results[10] : (a) (c) (e) The DSA results of DS01,
DS02, and DS03, respectively, (b) (d) (f) The results of the proposed method of DS01,
DS02, and DS03, repectively

requires double-scanning. The results of the proposed method are shown in Fig.
10 (b), (d), and (f) and are comparable to (a), (c), and (e).

The results of the proposed method show that where the arteries pass through
bone, their surfaces are mixed with the colors of bone and vessel. This is in-
evitable when the segmentation result is being displayed using a bit-mask oper-
ation. Due to the PVE the voxel at the artery boundary adjacent to bone has
higher intensity value than the normal artery surface voxel.

4 Conclusion

In this paper we proposed a method for the extraction of cerebral arteries in
CTA. CTA also shows bone structure which hinders arteries to be seen. When
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veins are adjacent to the arteries of interest, their spatial closeness and small in-
tensity difference make the segmentation of arteries more difficult. The proposed
method partitioned the CT volume into two sub-volumes and applied a separate
segmentation algorithm to each segment. Specially, in the lower sub-volume, we
added some adaptive properties to the simple tracking and they enhances the
continuity of tracking in spite of the above difficulties. The experimental results
confirmed that the proposed method had produced considerable amount of re-
sults which are subjectively satisfying and had enhanced the continuity of the
tracking. The visual comparison to the DSA result illustrated that the proposed
method is comparable to the result with double-scanned volumes which means
a high applicability to the practical clinical use.
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Abstract. Obesity has risen to epidemic levels in the United States and
around the world. Global indices of obesity such as the body mass index
(BMI) have been known to be inaccurate predictors of risk of diabetes,
and it is commonly recognized that the distribution of fat in the body is
a key measure. In this work, we describe the early development of image
analysis methods to quantify regional body fat distribution in groups of
both male and female wildtype mice using magnetic resonance images. In
particular, we present a new formulation which extends the expectation-
maximization formalism commonly applied in brain segmentation to
multi-exponential data and applies it to the problem of regional whole
body fat quantification. Previous segmentation approaches for multispec-
tral data typically perform the classification on fitted parameters, such
as the density and the relaxation times. In contrast, our method directly
computes a likelihood term from the raw data and hence explicitly ac-
counts for errors in the fitting process, while still using the fitted param-
eters to model the variation in the appearance of each tissue class. Early
validation results, using magnetic resonance spectroscopic imaging as a
gold standard, are encouraging. We also present results demonstrating
differences in fat distribution between male and female mice.

1 Introduction

Obesity is rapidly becoming an epidemic in the United States and around the
world. This was particularly highlighted in a series of recent NIH workshops
[5]. The relation of obesity to insulin resistance and impaired glucose tolerance
leading to type 2 diabetes is well established [22, 7]. Body fat distribution in
humans has also been linked to ischemic heart disease [13, 15] and cancer [2].
Further, it has been known for decades that global indices of obesity, such as
the body mass index (B.M.I.), are often not an accurate predictor of the risk of
diabetes and heart disease. For example, the amount of visceral abdominal fat
(i.e. fat inside the abdominal cavity) seems to correlate more highly with risk
for diabetes. As stated in lay language in a recent New York Times article [9],
“People who are shaped like apples, carrying excess weight in the abdomen, are
more likely to have diabetes and heart disease than are those built like pears,
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who deposit fat in their hips, thighs and backsides.” This was even further
emphasized by a recent study by Klein et al [11] that demonstrated an absence
of effect of liposuction on insulin resistance. This was attributed to the fact
that liposuction primarily removes subcutaneous fat (i.e. fat just under the skin
and outside the abdominal cavity), whose presence appears less correlated with
insulin resistance.

Transgenic mouse models of obesity offer the unique ability to study the
effect of factors such as age, gender, diet and therapeutic agents on disease pro-
gression, in statistically significant numbers of subjects in a tightly controlled
environment. There are currently, however, no effective automated methods for
the non-invasive measurement of fat distribution in rodents. While such measure-
ments can be made invasively (via dissection [21]), non-invasive techniques will
enable longitudinal studies of the same group of animals, and the development
of automated image analysis techniques will facilitate large scale studies.

Multi-echo magnetic resonance imaging offers a unique non-invasive tech-
nique for quantifying soft tissue structural differences between wildtype mice
and transgenic mouse models of obesity and for regional quantification of fat
in a whole body image. The parameters that can be estimated from such im-
ages, namely the T1-weighted proton density and the relaxation rate r2, offer
jointly a high contrast marker for the detection of fat as well as optimal soft
tissue contrast for image registration. Accurate image registration is necessary
for bringing information from different mice into a common space for the pur-
pose of statistically comparing fat distributions and morphometric differences in
different groups.

In this paper, we present preliminary work aimed at the effective quantifica-
tion of such images. In particular, we present a method for image classification
for the purpose of determining tissue composition in terms of fat, lean mus-
cle (non-fatty soft tissue) and bone/air. The main mathematical contribution
of this work is the development of a probabilistic model for the modeling of
multi-exponential data in the presence of noise for optimal tissue classification.

Our work is related to previous work in voxel based image classification and
segmentation which has been extensively studied in the literature. Many of the
methods in this area rely on the formalism of Markov random fields as originally
presented by Geman and Geman [8]. The major application of such techniques
in medical imaging has been in the voxel-based classification of brain images
into gray matter, white matter and cerebro-spinal fluid. Our work is close in
spirit to the approach of Wells et al. and others [24, 25], where an Expectation-
Maximization strategy is used to simultaneously estimate tissue classes (gray,
white, CSF) while simultaneously estimating additional parameters (in this case
the bias field) which aid in the classification. Cline et al. [4] use multispectral
voxel classification in conjunction with connectivity to segment the brain into
tissue types. Material mixture models [12] have also been used. There has also
been additional work explicitly aiming at fuzzy classification where each voxel,
instead of being classified as exclusively belonging to a specific class, is given
partial memberships into multiple classes e.g. [14, 19, 17]. Our proposed whole
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body classification is particularly close to the work of Pham et al [17] which aims
to fuzzily classify multi-spectral acquisitions using a fuzzy c-means method, and
exponential fits to estimate tissue properties.

Simple thresholding techniques have been used by many investigators in more
clinically focused studies to determine fat volumes (e.g. the work of Weiss et al
[23].) Threshold selection, however, is often performed in an arbitrary manner
and the measurements produced using such methods are highly sensitive to the
exact threshold settings. There has been some work in automated fat quantifi-
cation from MRI (e.g. [3, 10]) which either utilize simplified thresholding based
algorithms, and/or very specific acquisition methods, which are not suitable for
whole body fat quantification.

The rest of this paper reads as follows. In, Section 2, we provide details for
both the conventional imaging and spectroscopic imaging (CSI) methods used
to obtain both the images and the CSI data used as a gold standard. Next,
in Section 3, we describe the mathematical formulation of our classification
method. Validation results are presented in Section 4, and results illustrating
differences in fat distribution between groups of male and female mice are pre-
sented in Section 5. Conclusions and plans for future work are discussed in
Section 6.

2 Imaging and Spectroscopy Methods

Our imaging/spectroscopy methods were developed on a Bruker 4T small-animal
imager with an inner diameter of 16 cm. Three-dimensional images were acquired
with a resolution of approximately 0.15×0.20×0.15mm, and an imaging matrix
of 128 × 512 × 128, using a 3D multi-echo multi-spin (MSME) sequence with 6
echos TE = 15, 30, 45, 60, 75, 90ms and TR = 300ms. This yielded six images of
different contrast which in turn enable the fitting of a mono-exponential model to
each voxel for the purpose of computing tissue parameters such as the relaxation
rate r2 and the T1-weighted density d. Because the dimensions of our current
imaging coil were not long enough to image the full length of some male mice, in
these cases mice were imaged twice with repositioning between the acquisitions
and the resulting images were joined together to form the whole body image.
Example images, as well as fitted mono-exponential parameters d and r2, are
shown in Figure 1.

Chemical shift spectroscopic imaging (CSI) acquisition was used as a gold
standard data of tissue composition for a small portion of the mouse. The CSI
data were acquired with a resolution of 0.4×0.4×1mm3, dimensions 64×64×12,
and a spectral width of 4006Hz resulting in good water and fat separation. Fat
was quantified by integrating the resulting spectra for each voxel around the fat
peak, as was done in the images shown in Figure 2 (on page 375). Although the
acquisition time required for CSI is prohibitively long for routine work (more
than two hours for a small section of the mouse), these data provide a gold
standard for the validation of faster acquisitions (such as our multi-echo data)
combined with more rigorous image analysis techniques.
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Fig. 1. Example images from multi-echo acquisitions. Leftmost four columns: Four
different contrasts obtained using a multi-echo sequence. Rightmost two columns: Ex-
ponential fit of T1-weighted density and relaxation rate r2

3 Tissue Classification

In this section, we describe our methodology for tissue classification from MRI.
Our method for classification extends the EM-like classification methods of Wells
et al and Zhang et al [24, 25], to properly apply to the vector-valued imaged data
that are available to us.

Image Model: We acquire a number Ne = 6 of images at multiple echo times
Te = [15, 30, 45, 60, 75, 90] ms, and we model the image intensity at image loca-
tion x for a given Te using a mono-exponential model:

I(x, Te) = d(x)e−Ter2(x) + ef (x) (1)

where Te is the echo-time for the acquisition, d(x) and r2(x) are the T1-weighted
proton density and the relaxation rate at location x (r2 = 1/t2, where t2 is the
relaxation time), and ef is the noise term, which we assume to be normally
distributed.

For the purpose of the classification, we assume that any given voxel belongs
to one of three classes c = [ 1=bone/air, 2=lean muscle, 3=fat ], and that the
density d and relaxation rate r2 for each class can be described as independent
normally distributed random variables with means md,mr2 and standard devia-
tions sd, sr2. We group the parameters for each class i ∈ [1, 2, 3] into a parameter
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vector θi = [mi
d,m

i
r2, s

i
d, s

i
r2], and further concatenate the three parameter vec-

tors θi into a global parameter vector Θ. In addition, we define the labeling
function M(x) which determines the class value for each voxel. M(x) can take
values [1, 2, 3]. At each image location x (we will drop the explicit dependence on
x from here on), we estimate the optimal values of d and r2. This is accomplished
by minimizing a standard least squares merit function of the form:

χ2 =

Ne∑
j=1

(
I(x, Te(j)) − de−Te(j)r2

)2

σ2
n

=

Ne∑
j=1

ef (j)2

σ2
n

(2)

We label the optimal estimates at location x as d̂ and r̂2, and σn is an estimate of
the image noise at this location. We model the fitting errors ef (i) as independent
and normally distributed with zero mean. The quality of the fit can be modeled
using the Student’s t distribution with Ne−2 degrees of freedom [17]. Hence, we
can compute at each voxel a probability of fit q(x)[18], given the optimal residual
error χ2. Further, we can estimate the variance of the fitting error ef , s2

e which
will be useful in the classification process. In summary, the application of this
procedure at each voxel results in the computation of optimal tissue parameters
(d̂, r̂2), the likelihood that the model is applicable q, and the variance of the
fitting error s2

e.

Classification Algorithm: The goal of our classification strategy can then be
expressed as estimating the optimal segmentation M and parameter vector Θ
given the input image vector I. We express this mathematically as:

M̂, Θ̂ =
arg max

M,Θ
p(M,Θ|I) (3)

As is commonly done, this can be solved iteratively (where k labels the iteration)
in the same spirit as the EM-framework as:

E-Step: Θk =
arg max

Θ
p(Θ|I,Mk−1), M-Step: Mk =

arg max

M
p(M |I, Θk)

(4)

where at iteration k, in the E-Step we estimate a new set of parameters Θk

given the current classification Mk−1 and then, in the M-Step, using the newly
estimated Θk we estimate a new classification Mk.

E-Step: This is straightforward. For each class i we estimate the mean and
standard deviation of d and r2 by a weighted sum of the d̂ and r̂2 of all the voxels
where M = i, using the quality of fit terms q as the weights. This ensures that
parameter estimates from better fits are weighted more heavily in the estimation
process [17].

M-Step: This takes the form of a Bayesian a-posterior maximization. First we
express

M̂ =
arg max

M
log p(M |I, Θk) = k1 + log p(I, Θk|M) + logp(M) (5)
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where k1 is a constant. This equation is easily maximized by a greedy search
strategy as M can only take values of 1, 2, 3. The prior term on the classifica-
tion, p(M), can be defined by modeling M as a Markov random field resulting
in a Gibbs distribution for M of the form: P (M) = e−kmU(M(x)) [25], which
ensures local smoothness of the classification (km is a normalization constant.)
We express the likelihood (or data-adherence) term for each possible value of
M = i as:

p(I, Θk|M = i) = p(I|Θk,M = i)P (Θk|M = i) ∝ ΠNe

j=1p(I(T j
e )|θi) (6)

The term p(I(T j
e )|θi) can be derived using the imaging model (Equation 1). First

we linearize this using a Taylor series expression as:

I(T j
e ) ≈ mi

de
−T j

e mi
r2 + (d − mi

d)e
−T j

e mi
r2 + (r2 − mi

r2)T
j
e mi

de
−T j

e mi
r2 + ef (7)

By assuming that d, r2 and ef are normally distributed random variables, we can
conclude that the conditional density p(I(T j

e )|θi) is also a normal distribution,
as I(T j

e ) is effectively a weighted sum of three normal random variables. Further
we can derive the mean and standard deviation of this distribution as:

Mean(p(I(T j
e )|θi)) = µ(M,T j

e ) = mi
de

−T j
e mi

r2 ,M = i (8)

Variance(p(I(T j
e )|θi)) = σ2(M,T j

e ) = (T j
e mi

r2)
2(s2

d + (mi
d)

2T 2
e s2

r2),M = i (9)

Based on this derivation, we can express Equation 5 in its final form as:

M̂ =
arg min

M

Ne∑
j=1

(
I(T j

e ) − µ(M,T j
e )
)2

2σ(M,T j
e )2

− logσ(M,T j
e )︸ ︷︷ ︸

Vector Data Adherence Term

− kmU(M)︸ ︷︷ ︸
Smoothness

(10)

This formulation is superior to the more standard approach where the clas-
sification is performed directly on fitted tissue parameters (e.g. in this case the
T1-weighted density d and the relaxation rate r2) because it takes into account
directly the fact that such parameter fitting is an approximation to the real data.
In cases where the local parameter fit is inaccurate (i.e. the residual error in the
fitting of d and r2, which is not uncommon in motion-corrupted data) a standard
classification based on these estimates can yield erroneous results, whereas by
performing the classification using the original image data such errors can be
avoided. Consider, for example, the case where a mono-exponential model badly
approximates the data at a given voxel. If the fitted parameters are used, the
data adherence term will push for the voxel to be classified in one of the given
classes regardless. In our method, the values for the (vector) data adherence term
will be high for all classes, hence allowing the local classification to be driven by
the smoothness term as is appropriate in cases of uncertain data.

Initialization: The algorithm is initialized using a k-means clustering procedure
[6, 17], which initially forms clusters based on the fitted density measurements

d̂. Then, using the output as a starting point, the algorithm performs a joint
clustering on the pair [d̂, r̂2].
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4 Validation of Segmentation Using CSI

We performed preliminary validation of the MRI-based fat quantification algo-
rithm by comparing its output to a direct measure of fat using chemical shift
spectroscopic imaging (CSI). While CSI provides high quality measurements, the
imaging time is prohibitive for in-vivo whole body imaging. We acquired both
whole body MR images and also CSI data covering a small portion of the ab-
domen (typically 2.5x2.5x2 cm3) of 12 wildtype C57BL6 mice (6 male, 6 female,
average age 11 weeks), using the methods described in Section 2.

CSI Processing. The CSI data were first corrected to align the water peaks in
the spectra of the individual voxels (as shown in Figure 2 (top right)). Next we

Fig. 2. Preliminary validation of the MRI-based fat measurements using spectroscopic
(CSI) imaging. (Top Left) Section of the MRI image for which CSI data was acquired.
(Top Right) Integrated MRS Spectrum from all CSI voxels illustrating the effect of
correcting for local field inhomogeneities by shifting the individual CSI-voxel water
peaks to the center of the spectrum. Note that both the water and the fat peaks
become higher and narrower as a result of the correction. (Bottom Left) Spectroscopic-
“water” image showing contrast that is similar to that obtained using MRI – without
the fat . (Bottom Middle) Spectroscopic “% fat” image (Bottom Right) Fat probability
map generated by the classification algorithm and MRI, at the same resolution as the
CSI data. The correlation between the two fat maps was 0.78. When the small signal
dropout region near the mouse’s back is excluded the correlation rises to 0.82
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Table 1. Quantitative validation of the MRI-based fat measurements with CSI. The
total amount of fat in the imaged region from CSI (CSIFAT) is compared with MRI
derived measurements (MRIFAT) as estimated by our algorithm (using three different
smoothness parameters 0.1,0.5,1.0). The voxelwise correlation between the CSI per-
centage fat map and the algorithm output is given in the rightmost three columns.
(The mouse identifier begins with ‘F’ for female mice and ‘M’ for male mice.)

computed a water signal and a fat signal for each voxel by integrating over the
appropriate portions of the spectrum around the water and fat peaks respec-
tively. A water image is shown in Figure 2 (bottom left), and a percentage fat
image is shown in Figure 2 (bottom middle).

MRI-based Fat Quantification. Our algorithm was used to quantify fat in the
MRI data and a corresponding MRI percentage fat image was computed, by
first rigidly registering the MRI image to the MRS ‘water image’ using the
method by Studholme et al. based on normalized mutual information[20] (top
left, and bottom left of Figure 2 respectively) and computing the percentage
of MRI voxels in the space occupied by a single CSI voxel labeled as fat by
the algorithm. The results are tabulated in Table 1, and the overall trend is
encouraging. The overall correlation (obtained by concatenating the fat maps
from all the mice and computing a single correlation) was approximately 0.75
and the algorithm’s total fat estimate was approximately 80% of the CSI total
fat estimate. Further the output of the algorithm was fairly insensitive to the
setting of the smoothness parameter as shown in the table.

For the male mice, the CSI slices were acquired in the kidney region where fat
content is generally higher, whereas for the female mice CSI slices were through
the liver where the fat is more dispersed inside the organ. The lower correlations
for the female mice were expected. The error for the male mice is less as the
fat around the kidney is easier to quantify from MRI (and see visually). This
may be due to our hard classification strategy which does not allow for partial
voxel labeling. Also, in general our approach under-estimated the total amount
of fat possibly due to the inability of the mono-exponential model to accurately
quantify fat dispersed in tissue.
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5 Quantification of Group Differences

5.1 Fat Quantification in Male and Female Mice via ROI Analysis

To illustrate the potential applications of our methodology in the evaluation
of groups of mice, we performed regional fat quantification for two groups of
mice, a group of N = 5 male mice and a group of N = 5 female mice. The two
groups were approximately age matched (average age 10.6 vs 10 weeks). They
are a subset of the mice used for evaluation of our tissue classification algorithm
presented in Section 4, in particular two mice were omitted from the original
N = 12 mice of Table 1 for the purpose of this analysis to make the groups
approximately age matched.

Our tissue classification strategy described in Section 3 was used to classify
the images. Using this classification, we computed the following measures which
are tabulated in Table 2: (a) Total mouse volume, (b) Total body fat volume,
(c) Abdominal fat volume – this was defined as the total volume of fat inside the
abdomen. A region of interest (ROI) inside the abdomen was defined by the semi-
automatically extracted abdominal surfaces in each mouse. (d) Subcutaneous
Fat Volume – defined as the total amount of fat outside the abdomen, (e) %
abdominal fat, defined as the ratio of abdominal fat to total fat and (f) % body
fat, defined as the ratio of total fat volume to total mouse volume.

The results tabulated in Table 2, demonstrate that in these two (admittedly
small) groups, male mice tend to be bigger and have proportionally more fat than
female mice, Further, we illustrate our ability to quantify regional fat measures
such as abdominal fat, as opposed to simply whole body fat. We additionally note
that the computed % body fat numbers are in the same range as those reported
in the literature[1] using a whole body MR-spectrometer on similar mice.

Table 2. Quantification of key parameters using our tissue classification algorithm
(Top: M = Males N = 5. Bottom: F = Females N = 5). Mice were approximately
age-matched (10.6 vs 10 weeks old)
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Fig. 3. Left: Average anatomical image (left) and fat distribution image (right) from
N = 5 male mice, computed using non-rigid registration. The fat distribution is overlaid
on the average anatomical image (right) where the color scale is such that voxels shown
in red were classified as fat in at least half the mice, with progressively brighter shades
of yellow indicating that those areas were classified as fat in more mice. Middle &
Right: Fat distributions of N = 5 male (middle) and N = 5 female (right) projected
onto the outer skin surface of the reference male and female mice respectively. At each
point in the surface we plot the average value of the fat distribution on a line segment
of length 7 mm parallel to the local surface normal

5.2 Fat Distributions in Male and Female Mice

Fig. 4. Example of a point-set used for registration – from
a female mouse. Red: outer skin surface, orange: abdominal
surface, green and yellow: right and left kidney surfaces re-
spectively

For the same N =
5 male and N = 5
female mice used in
the previous section
we computed fat dis-
tribution maps by (a)
registering the indi-
vidual male and fe-
male mice into a
common space using
our integrated regis-
tration method [16] –
that used both image
intensities and points sampled from pre-segmented surfaces (an example is shown
in Figure 4), and (b) averaging the warped individual fat maps to generate av-
erage fat distribution maps for each group. The fat distribution maps are shown
in Figure 3. Visually it is again obvious that in this case the male mice had
substantially more fat, especially in the area around the reproductive organs
(between the rear two legs). Such fat distributions generated by the registration
of individual mouse tissue classification maps to a common space afford a direct
look of what the typical fat distribution is in a group of mice.
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6 Conclusions and Future Work

With the segmentation and quantification method described in this paper it
has been possible to estimate regional body fat which overcomes a number of
inadequacies in previous studies. The current method achieves an accurate quan-
tification of subcutaneous fat pads, however the accuracy of the method to detect
intra-organ fat (e.g. in the liver) which is dispersed in normal tissue is limited
by its reliance on binary classification and mono-exponential tissue modeling.
To address these limitations, it should be possible to use a larger number of
non-uniformly spaced echos to enable the robust estimation of multi-exponential
tissue models, which in turn will enable the use of fuzzy classification techniques.
Additional ongoing work aims to optimize whole body mouse non-rigid registra-
tion to address the issue of forming composite fat maps and eliminating the need
for the manual ROI analysis, which was used in the results presented in Section
5.1. The classification methods presented in this paper are also applicable in both
human and rodent neuroimaging in cases where multi-echo data is available.
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Abstract. We present a new method for computing an optimal deformation be-
tween two arbitrary surfaces embedded in Euclidean 3-dimensional space. Our
main contribution is in building a norm on the space of surfaces via representa-
tion by currents of geometric measure theory. Currents are an appropriate choice
for representations because they inherit natural transformation properties from
differential forms. We impose a Hilbert space structure on currents, whose norm
gives a convenient and practical way to define a matching functional. Using this
Hilbert space norm, we also derive and implement a surface matching algorithm
under the large deformation framework, guaranteeing that the optimal solution is
a one-to-one regular map of the entire ambient space. We detail an implementa-
tion of this algorithm for triangular meshes and present results on 3D face and
medical image data.

1 Introduction

Surfaces embedded in 3D are important geometric models for many objects of inter-
est in image analysis. They are often the appropriate abstractions for studying gross
shape, either because the structure of interest is inherently 2D (e.g. the outer cortex of
the human brain, human face, etc.), or because its shape can be efficiently and com-
pletely captured by its bounding surface (e.g. planes, animals, or anatomical struc-
tures of the human body, etc.). A fundamental task in image analysis applications is
to perform a non-rigid matching (deformation) between two occurrences of the same
structure. For example, it has been recognized as early as 1917 by D’Arcy Thomp-
son [1], that given representations of a particular anatomic structure in two subjects,
an appropriate methodology for comparing their gross morphological differences is to
study a transformation–uniquely characterized by a natural optimality property–from
one structure into the other.

Surface matching is usually achieved via semi-automated procedures in which a
small number of substructures, such as landmark points or curves, are identified by
hand and then used to guide the transformation of the entire surface [2, 3, 4, 5, 6]. One
interpretation of the problem is to consider surface matching as a “point correspon-
dence” task: for each point on the discretized template surface find its corresponding
point on the target. Fully automated approaches to this problem have been developed in
[7]. However, a fundamental issue with this point of view is that, due to discretization,
a point on one surface need not have a homologous point on the other. This problem is
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handled in [7] by simultaneously identifying and rejecting points with no corresponding
pair as “outliers”. A second issue is that geometric information is necessarily discarded
when reducing surfaces–inherently 2D objects–to 0-dimensional point sets. Another re-
lated approach is the work of Wang et. al. [8]. This approach does use local geometric
constraints by including surface curvature in their matching criterion. Its advantage is
that both triangulation and correspondence is established simultaneously. Another el-
egant approach includes the work of Davies et. al. [9] in which the correspondence
problem is tackled by building the “best” model via a set of optimality criteria.

We develop a surface matching approach in which the two issues mentioned above
are overcome naturally in the fundamental theoretical framework. Our approach fol-
lows most closely the work of [10], but differs in that we represent surfaces as the
generalized distributions of deRham called currents [11], instead of the classical dis-
tributions of Schwartz. As in [10], distribution representations allow us to get away
from a strict pointwise representation of surfaces and therefore enable us to treat the
problem as true surface matching without the point correspondence issue. Furthermore,
representation via currents captures the geometry of the structure because it is sensitive
to both location and to the first order local geometric structure. We are therefore able
to overcome the two issues above via the natural choice of current representation. In
this paper we provide a detailed theoretical development of a norm on surfaces which
can be used as a matching criterion for finding an optimal transformation from one
surface into another. We present one such variational optimization problem under the
large deformation diffeomorphism framework. Finally, we derive a discretized version
of this variation problem, detail its implementation, and provide results on 3D face and
medical image data.

2 Surfaces as Currents

In order to build a surface matching algorithm, we need a criterion that measures how
“close” or similar one surface is to another. Our strategy is to represent surfaces as
objects in a linear space and then to equip this space with a computable norm. The
generalized distributions from geometric measure theory, called currents, will serve as
the representers. In this section we set the notation and introduce currents as representa-
tions of surfaces. The main power, and hence motivation, for using these representations
will become clear in Section 2.2 where we see that they are preserved under coordinate
transformations.

2.1 2-Forms and Currents

The paradigm of the approach is built from mathematical objects called differential
m-forms. Although the theory is more general than presented here, we restrict the dis-
cussion to the setting of interest: surfaces embedded in R3. In this setting, we need only
introduce differential 2-forms. A differential 2-form on R3 is a differential mapping
x → ω(x) such that for each x ∈ R3, ω(x) is a skew-symmetric bilinear function on
R3. A 2-form is a natural object to be integrated over an oriented smooth surface S
because, as we will see, it automatically transforms correctly under a change of coor-
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dinates. For each x ∈ S, let u1
x, u2

x be an orthonormal basis of the tangent plane at x.
Abusing notation slightly, we then associate to S the function

S(ω) =
∫

S

ω(x)(u1
x, u2

x)dσ(x), (1)

where dσ is the element of surface area. Thus, the surface S is seen as a linear functional
on the space of 2-forms via (1). More generally, the space of 2-dimensional currents is
defined as the dual space to C∞ 2-forms with compact support. It is equipped with the
correct topology as in the classical theory of distributions of Schwartz. This definition
extends to more singular geometric objects, such as triangular meshes, by replacing
the surface measure with 2-dimensional Hausdorff measure. In fact a wide class of
geometric subsets of R3, called rectifiable sets, can be viewed as currents [12].

In the sequel, we continue to abuse notation by using the same letter to denote both
a surface as well as its associated representation as a current.

2.2 Push Forward of a Current

The fundamental property ultimately motivating the representation of surfaces by cur-
rents is that it is possible to define an action of diffeomorphisms φ : R3 → R3 on
currents which coincides with the natural action of φ on surfaces (i.e. S → φ(S)).

First define the pull back of a 2-form ω by: φ�ω(x)(η, ν) = ω(φ(x)) ((dxφ)η, (dxφ)ν) .
The push forward φ�S of a current S is φ�S(ω) = S(φ�ω). The change of coordinates
for integration of differential forms [13] states

S(φ�ω) = φ(S)(ω). (2)

That is, φ�S is indeed the current associated with φ(S), which is exactly the natural
property we would like our representations to have.

2.3 Vectorial Representation

It will be convenient to use a vectorial representation of skew-symmetric bilinear func-
tions on R3. If B is such a function, its representer B ∈ R3 satisfies B(η, ν) =
B · (η× ν), where · and × are the euclidean dot and cross products respectively. There-
fore a 2-form, ω(x), will be represented by the vector field ω(x) via this association.
Formally, the association between 2-forms and vectors is given by the hodge star oper-
ator and duality (see [13]).

2.4 Hilbert Space of Currents

Recall that the motivation for introducing representations is as a vehicle for constructing
a norm on the space of hypersurfaces of R3. In practice, this norm must be computable.
We see in this section that the currents of interest, i.e. those associated with hypersur-
faces of R3 via (1), can be equipped with a Hilbert space structure having an easily
computable norm. The machinery of Reproducing kernel Hilbert space (r.k.h.s.) theory
is fundamental in this construction (see [14]). Background in the somewhat uncommon
setting of differential forms is given next, together with the derivation of the norm.
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Let (W, 〈·, ·〉W ) be a Hibert space of differential 2-forms. The dual space (space
of continuous linear functionals) of W is denoted W ∗. By the Riesz-Frechet theorem,
each S ∈ W ∗ has a representer KW S ∈ W such that for every ω ∈ W , S(ω) =
〈KW S, ω〉W . KW is in fact an isometry between W ∗ and W . We say that W is a
r.k.h.s. if for every x, ξ ∈ R3, the associated linear evaluation functional, δξ

x, defined
by δξ

x(ω) = ω(x) · ξ belongs to W ∗. If W ∗ is a r.k.h.s., we define the reproducing
kernel operator kW by

kW (x, y)ξ = KW δξ
x(y).

Thus it is in fact the reproducing kernel of W , the space of vector fields corresponding
to W . From this definition follows the formula:

〈δξ
x, δη

y 〉W∗ = kW (x, y)ξ · η (3)

We impose a slightly stronger constraint than continuity of the evaluation function-
als: W is constructed so that it is continuously embedded in the space of continuous
bounded 2-forms. That is, there exists some constant c such that |ω|∞ ≤ c|ω|W for all
ω ∈ W . This immediately implies continuity of the evaluation functionals, and further-
more, if S is a surface, we have

|S(ω)| ≤
∫

S

|δu1
x×u2

x
x (ω(x))|dσ(x) ≤ σ(S) c|ω|W .

Hence S ∈ W ∗, and we are now able to compare submanifolds via the dual space
norm on W ∗.

3 Surface Matching

Equipped with an appropriate representative space W ∗, as described in the previous
section, we can now state an optimization problem for mapping one surface into an-
other. We have chosen the well established “large deformation” setting which provides
a solution that is a diffeomorphism of the ambient space. This framework is founded in
the paradigm of Grenander’s group action approach for modeling objects. Abstractly, an
appropriate group of transformations, G, is defined together with a group action, which
act on a set of objects or structures of interest, M. The idea is to study two elements
S1 and S2 of M through an “optimal” transformation φ ∈ G that registers these objects
(i.e. φS1 = S2). This approach shifts the focus of the modeling effort onto the study of
transformations, as envisioned by D’Arcy Thompson.

In the large deformation setting, G is a subgroup of diffeomorphisms and the struc-
tures of interest in this paper, M, are hypersurfaces of R3. Optimality is realized by
considering all curves φt ∈ G, t ∈ [0, 1] connecting two elements in G via the group
action. The optimal transformation is given by φ1, for the curve which minimizes the
accumulated infinitesimal variations in G through a riemannian structure. We next detail
the construction of the group G and define formally the optimization problem.
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3.1 Large Deformation Framework

The fundamental object of construction is a Hilbert space V , with inner product 〈·, ·〉V ,
of smooth vector fields (at least C1) defined on the background space R3. For all
time dependent families of elements of V , written vt ∈ V for t ∈ [0, 1], such that∫ 1

0
|vt|V dt < ∞, the solution φt at time t = 1, of

∂φ

∂t
= vt ◦ φt, (4)

with φ0(x) = x, is a unique diffeomorphism (see [15, 16]). The collection of all such
solutions defines our subgroup of diffeomorphisms GV , and the inner product 〈·, ·〉V
equips it with a Riemannian structure. We will sometimes denote φv for an element
of G, explicitly characterizing it by its associated vector field v. The geodesics of G
provide the transformations which match objects in the orbit, and are characterized by
extremals of the kinetic energy 1

2

∫ 1

0
|vt|2V dt. In fact, G can be equipped with a natural

right-invariant geodesic distance

dV (φ, φ′) = inf
{(∫ 1

0

|vt|2V dt
)1/2

, φv
1 ◦ φ = φ′

}
.

3.2 Variational Formulation

We define the optimal matching, φ∗ between two currents S and T as a minimizer
of JS,T (φ) .= dV (Id, φ)2 + |φ�S − T |2W∗/σ2

R, where σ2
R is a trade-off parameter.

Equivalently we have φ∗ = φv∗
1 where v∗ is a minimizer of

JS,T (v) =
∫ 1

0

|vt|2V dt +
1

σ2
R

|(φv
1)�S − T |2W∗ (5)

The first term of this energy is referred to as the regularizing term, and the second is
referred to as the matching, or data attachment term.

In practice, a surface is approximated by a triangular mesh, which also has a current
representation. Our strategy is to approximate triangle mesh associated currents in order
to derive a computable gradient of the energy (5). We next detail the approximation and
gradient derivation.

Let S be a triangular mesh in R3. Given a face f of S, let f1, f2, f3 denote its
vertices, e1 = f2 − f3, e2 = f3 − f1, e3 = f1 − f2 its edges, c(f) = 1

3 (f1 + f2 + f3)
its center, and N(f) = 1

2 (e2 × e3) its normal vector with length equal to its area.
We will also denote by St the triangular mesh at time t, with faces ft having vertices
f i

t = φt(f i), i = 1, 2, 3.
The mesh S is represented as a current in the following way

S(ω) =
∑

f

∫
f

ω(x) · (u1
x × u2

x)dσf (x),

where σf is the surface measure on f . Now, we approximate ω over a face by its value
at the center. Thus, we have the approximation S(ω) ≈∑

f ω(c(f)) · N(f), so in fact,



386 M. Vaillant and J. Glaunès

the approximation is a sum of linear evaluation functionals C(S) =
∑

f δ
N(f)
c(f) , and the

matching error can be easily computed using the reproducing kernel as in (3).
From the identity φ�S = φ(S) we can infer two possible approximations to φ(S) :

1. compute the approximation C(S) and then apply the push forward formula
(φ1)�C(S):

φ�δ
ξ
x = δ

det(dxφ)(dxφ∗)−1ξ
φ(x) (6)

2. first compute S1 and then compute the approximation C(S1).

We have implemented the second approximation. The advantage is that it does not in-
volve the derivatives of φ1, which simplifies the computation of the gradient (cf 3.3).
Note, however, that in this case an additional approximation is made since S1 �= φ1(S).
Given either approximation, we can compute explicitly the metric between two sur-
faces S and T . Let f, g index the faces of S and q, r index the faces of T , the metric
E = |C(S) − C(T )|2W∗ between these two surfaces under the second approximation
becomes

E =
∑
f,g

N(f)tkW (c(g), c(f))N(g) − 2
∑
f,q

N(f)tkW (c(q), c(f))N(q)

+
∑
q,r

N(q)tkW (c(q), c(r))N(r).

After a considerable amount of theoretical work, we have arrived at a fairly simple
formula which we can analyze intuitively. The first and last terms enforce structural
integrity of the two surfaces, while the middle term penalizes geometric and spatial
mismatch. Using this approximation we now turn to the computation of the gradient
with respect to vt.

3.3 Gradient of J in L2([0, 1], V )

Let xj index the vertices of S. Like all point-based matching problems in the large
deformation setting, it can be shown that the optimal vector fields vt are of the form

vt(x) =
∑

j

kV (xj , x)αj
t , (7)

where kV denotes the reproducing kernel of the deformation space V (see [4, 5]). The
vectors αj

t are referred to as momentum vectors do to the connection of the large
deformation setting to Hamiltonian mechanics (see [17, 18]). It follows from the flow
equation that the matching functional (5) is a function only of the trajectories xj

t .

Gradient of the Data Attachment Term. The gradient of the data attachment term, E ,
in the space L2([0, 1], V ) of vector fields is of the form ∇Et(x) =

∑
j kV (xj

t , x)dxj
t
φ∗

t1

∇xj
t
E . Indeed, for a variation vt,ε = vt + εṽt of the vector field vt, the corresponding

variation of xj
1 = φ1(xj) is (see [19])

x̃j
1 = ∂εx

j
1|ε=0 =

∫ 1

0

dxj
t
φt1ṽt(x

j
t )dt,

and thus the variation of E is
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∂εE|ε=0 =
∑

j

∂xj
t
E x̃j

1 =
∫ 1

0

∂xj
t
Edxj

t
φt1ṽt(x

j
t )dt

=
∫ 1

0

〈kV (xj
t , ·)dxj

t
φ∗

t1∇xj
t
E , ṽt〉V dt

We have reduced the computation to the derivative of |C(S1) − C(T )|2W∗ with respect
to the vertices of S1. Let ∂fi

1
E denote the contribution of a face f1 to its vertex f i

1. We
have ∂fi

1
E η = 2[∂fi

1
C(S1) η](ω), where ω = KW (C(S1) − C(T )) and C(S1)(ω) =∑

f δ
N(f1)
c(f1)

(ω) =
∑

f N(f1) · ω(c(f1)). Thus,

∂fi
1
E η = 2∂fi

1
N(f1) η · ω(c(f1)) + N(f1) · dω(c(f1))∂fi

1
c(f1) η,

= (η × ei
1) · ω(c(f1)) +

2
3
N(f1) · dω(c(f1)) η,

so that ∇fi
1
E = (ei

1 ×ω(c(f1))) + 2
3dω(c(f1))∗N(f1). It is left to compute dxi

t
φt1. It

follows from properties of the differential that d
dt (dxi

t
φt1) = −dxi

t
φt1dxi

t
vt (see [10]).

Therefore we have the ordinary differential equation

d

dt
∇xi

t
E = −(dxi

t
vt)∗∇xi

t
E , (8)

which can be solved by integrating backward from time t = 1, since we can compute
dxi

t
vt using (7). Finally, we obtain ∇xi

1
E by summing ∇fj

1
E over all faces which share

xi
1 as a vertex.

Gradient of J . By a direct computation, the gradient of the regularization term,∫ 1

0
|vt|2V , is simply 2vt so that the gradient of the functional J becomes

∇Jt(x) = 2
∑

j

kV (xj
t , x)(dxj

t
φ∗

t1∇xj
t
E + αj

t ) (9)

3.4 Description of the Algorithm

On the basis of remarks made in 3.3, we compute the functional and gradient as func-
tions of the momentum variables αj

t . The trajectories xj
t = φt(xj) being computed by

solving the flow equation, written ∂tx
j
t =

∑
k kV (xk

t , xj
t )αk

t . Therefore the dimension
of the parameter space is 3 ∗ nt ∗ nf where nt is the number of time steps and nf
the number of faces of S. Equipped with equations (8) and (9), we implement a simple
steepest descent algorithm.

4 Experiments

4.1 Experiments with Faces Dataset

In this experiment we used 10 segmented surfaces from the USF HumanID database
[20] together with manually selected landmarks. The landmarks are used only for val-
idation purposes. The first face was chosen as the template S to be matched to the
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Fig. 1. Left: template, right: target, center: mapped template

Fig. 2. Face experiments: distance graphs for vertices (left) and landmarks (right). Mean distance
is given by the bold curves

other 9 surfaces. For each experiment we downsampled the original surfaces from 60
thousands triangles to 5 thousands triangles and we computed the optimal deformation
between the downsampled meshes. Figure 1-left shows the image of the original tem-
plate surface with its landmarks overlayed. Figure 1-right shows a target surface with
its landmarks as well as the landmarks of the mapped surface. The mapped template
is shown in the center panel. Figure 2-left shows distance error graphs, before and af-
ter the matching process (i.e. between S and T and between φ(S) and T ). The left
graph plots the percentage of vertices whose distance to the other surface is less than
d, as a function of distance d. On the right we plot the distance graphs for the sets of
landmarks, i.e. the percentage of landmarks on target T such that the distance to their
corresponding landmarks on S (resp. φ(S)) is less than d. Note that the matching is
visually satisfying, which is confirmed by the surface distance graph. However, success
in matching some of the landmarks such as those along the chin, neck and jaw was
not achieved. In fact, this may reflect the somewhat unreliable choice of these land-
mark points, which do not necessarily correspond to clearly defined features that can be
reliably identified.
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template 1 2 3 8 9 10

Fig. 3. up: 7 left hippocampi segmented surfaces (1,2 and 3 are of Alzheimer type). bottom:
deformations of template through the action of the optimal diffeomorphisms.

4.2 Experiments on Hippocampus Data

Next we applied the matching algorithm

Fig. 4. Distance graph for the hippocampi ex-
periments

to 15 left hippocampi segmented surfaces
(see [21] for the method used); the first 7
belong to patients with Alzheimer disease
and the others belong to normal subjects.
In this experiment, the surfaces were down-
sampled to 500 triangles.

Figure 3 displays the deformations of
the template surface from the matching pro-
cess. Figure 4 shows the distance graph for
this set of experiments. Note that for al-
most all vertices the distance is lower than
2mm. Also notice the small variance for
these experiments.

4.3 Experiments on Planum Temporale Segmented Surfaces

As a final experiment, we applied the surface matching algorithm to segmentations of
left and right planum temporales (PT) from 17 different subjects with 8 having auditory
disorders. There is a high variability in sizes and shapes for this part of the brain, even
between normal subjects, and also between left and right PTs of the same subject.

We chose to run two types of experiments on this set of data. In the first experiment
we fixed one PT surface as the template and then registered it to the other 16 PTs with
our current matching algorithm. This was done for both left and right sets of data. Bilat-
eral PT asymmetry studies are an active area of research, so in the second experiment we
mapped each PT to its symmetric pair of the same subject. I.e. for each left PT we used
its corresponding right PT as the template, and conversely for each right PT we used its
corresponding left PT as the template. Figure 5 shows the distance graphs obtained for
the left PT data of the first experiment, and for the left to right symmetry matchings.
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Fig. 5. Distance graphs for the planum temporale experiments

template

Fig. 6. Planum temporale experiments: correspondences of landmarks selected on template

The mean performance for this data was quite good, and similar to the performance
for the hypocampus. Note, however the high variance of the distance measures in the
graphs. This may be explained by the fact that the boundaries of the mapped template
and target need not match if the geometries near the boundary are quite different from
one another. For example, in Figure 6 we show a template on the left and two targets in
the top row. In the bottom row are the mapped templates corresponding to the target of
the same column. Overlayed on the template are manually defined landmarks which are
also flowed under the mapping and overlayed on the mapped template. The landmarks
shown on the target were estimated from the mapped template by choosing the closest
point on the target for each landmark on the mapped template. In the first case (left)
the algorithm gives correspondences which are consistent with what one may select by
hand, whereas in the second case it gives correspondences for c and d landmarks which
are not on the boundary. Indeed here there are no obvious corresponding landmarks on
the target since its shape is globally different from template.
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5 Conclusion

We have presented a novel matching criterion for surfaces based on a sound theoreti-
cal framework. We integrated this criterion into a large deformation based variational
problem, derived a discrete version and an algorithm for implementing its optimiza-
tion via gradient descent. Finally we demonstrated its performance on different types of
data. The main contribution was in recognizing currents as an appropriate mathematical
modeling object for surfaces. Given the recent active developments in exterior calculus
[22] and current based approaches to curvature estimation [23], we expect the represen-
tations to become more sophisticated (perhaps incorporating second order geometric
information), and that discretization will continue to get better.

A promising and exciting immediate application of the diffeomorphic matching in
this paper is in statistical inference of shape via momentum representation of flow, as
described in [18]. It has been shown in [17] that the image of the template S under
the flow φt is completely determined by the momentum (αi) at time t = 0. Hence,
the momenta encode the non-linear transformation from one structure into another, and
furthermore, they live in a linear space which lends itself to linear statistical analysis.
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17. M. I. Miller, A. Trouvé, and L. Younes. Geodesic shooting in computational anatomy. Tech-

nical report, Center for Imaging Science, Johns Hopkins University, 2003.
18. M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé. Statistics on diffeomorphisms via
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Abstract. We propose a technique to accurately correct the spherical
topology of cortical surfaces. We construct a mapping from the original
surface onto the sphere to detect topological defects as minimal non-
homeomorphic regions. A genetic algorithm corrects each defect by find-
ing the maximum-a-posteriori retessellation in a Bayesian framework.
During the genetic search, incorrect vertices are iteratively identified
and eliminated, while the optimal retessellation is constructed. Applied
to synthetic and real data, our method generates optimal topological
corrections with only a few iterations.

1 Introduction

The human cerebral cortex is a highly folded ribbon of gray matter that lies
inside the cerebrospinal fluid and outside the white matter of the brain. Locally,
its intrinsic “unfolded” structure is that of a two-dimensional (2-D) sheet, which
is several millimeter thick. The analysis of cortical data is greatly facilitated by
the use of accurate 2-D models of the cortical sheet [1, 5], which alleviates most
drawbacks of the three-dimensional embedding space (such as the underestima-
tion of true cortical distances or the overestimation of cortical thicknesses). In
the absence of pathology, each cortical hemisphere is a simply-connected 2-D
sheet of neurons that carries the simple topology of a sphere. There has been ex-
tensive research dedicated to the extraction of accurate and topologically-correct
models of the brain surface that allows for the establishment of a global 2-D co-
ordinate system onto the cortical brain surface. However, because of its highly
convoluted nature that results in most of its surface being buried within folds,
noise, imaging artifacts, partial voluming effects and intensity inhomogeneities,
the automatic extraction of accurate and topologically correct cortical surfaces
is still a challenging problem.

Methods for producing topologically correct cortical models can be divided
into two categories. Several approaches directly incorporate topological con-
straints into the segmentation process. A model, carrying the desired topology,
is iteratively deformed onto the cortical surface while preserving its topology. To
this end, active contours [3, 4, 2, 9, 19] and digital models [12, 15] have shown to
be extremely useful. Unfortunately, the energy functionals driving the deforma-
tion are highly non-convex and the achievement of the desired final surface most
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often requires an initialization of the model that is close to its final configura-
tion. In addition, local topological constraints can easily lead to large geometric
inaccuracies in the final cortical representation, which are difficult to correct.

Recently, new approaches have been developed to retrospectively correct the
topology of an already segmented image. These techniques, which do not enforce
any topological constraints into the segmentation process, can focus on more ac-
curate models. Many segmentation techniques, using local intensity, prior prob-
abilities, and/or geometric information without regard to topology, will be able
to generate accurate cortical surfaces, with few topological inconsistencies.

Most methods assume that the topological defects in the segmentation are
located at the thinnest parts of the volume and aim at correcting the topol-
ogy by minimally modifying the volume or tessellation [17, 8, 18]. While these
methods can be effective, most of them do not use any geometric or statisti-
cal information. Although they will often lead to accurate results, due to the
accuracy of initial segmentations, topological corrections may not be optimal:
additional information, such as the expected local curvature or the local inten-
sity distribution, may lead to different corrections, i.e. hopefully comparable to
the ones a trained operator would make.

Only a few techniques have been proposed to integrate additional information
into the topology correction process. Using a digital framework, Kriegeskorte and
Goeble [11] developed a technique that corrects each topological defect, located
at the thinnest parts of the volume, by maximizing an empirical fitness function.
More recently, another method to correct the topology of sub-cortical structures
has been proposed but has not yet been applied to the reconstruction of cor-
tical surfaces [16]. Unfortunately, digital approaches fail to integrate geometric
information into the topology correction process.

In previous work, Fischl et al. [7] proposed an automated procedure to locate
topological defects by homeomorphically mapping the initial triangulation onto
a sphere. Topological defects are identified as regions in which the homeomor-
phic mapping is broken and a greedy algorithm is used to retessellate incorrect
patches, constraining the topology on the sphere S while preserving geometric
accuracy by a maximum likelihood optimization. In this approach, all possible
edges in a defective region are ordered using some measure, then each edge is
sequentially added to the existing tessellation if and only if it does not intersect
any of the existing or previously added edges.

Although this approach can result in reasonable surfaces in many cases, it is
worth noting that the information necessary to evaluate the “goodness” of an
edge does not exist in isolation, but only as a function of the tessellation of which
the edge is a part. This is a critical point, as it implies that a greedy algorithm
cannot in general achieve geometrically accurate surfaces, as the necessary infor-
mation does not exist at the time that the edge ordering is constructed. Another
subtle point to be noted is that every vertex in the original defect, even those
present due to segmentation inaccuracies, will be present in the final retessella-
tion, resulting in extremely jagged patches that only a strong smoothing could
correct. As a consequence, the final configuration will approximately correspond
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to an average of all vertex positions in the original configuration. Finally, we note
that, even though the final intrinsic topology will be the correct one (the one
of a sphere, corresponding to an Euler number X = 2 1), the proposed method
does not guarantee that the final surface will not self-intersect.

In this paper, we propose a technique that directly extends the approach
taken by Fischl et al. in [7], addressing most of its limitations. We focus on the
retessellation problem and introduce a genetic algorithm to explore the space
of possible surface retessellations and to select an optimal configuration. During
the search, incorrect vertices are iteratively identified and eliminated from the
tessellation.

2 Methods

In order to extend the greedy retessellation developed in [7], we propose to take
a somewhat different approach, and evaluate the goodness of fit of the entire
retessellation, not of individual edges.

Our method proceeds as follow:

1) Generate a mapping from the original cortical surface onto the sphere that
is maximally homeomorphic. Each topological defect is identified as a set of
overlapping triangles.

2) Discard the tessellation in each defect and generate an optimal retessellation
using a genetic algorithm to search the space of potential retessellations.

2.1 Identification of Topological Defects

The first step is identical to the approach developed by Fischl et al. in [7]. Briefly,
the identification of topological defects begins with the inflation and projection
of the cortical surface C onto a sphere S. Next, we generate a maximally home-
omorphic mapping M : C → S by minimizing an energy functional that directly
penalizes regions in which the determinant of the Jacobian matrix of M becomes
zero or negative (non-homeomorphic regions). More specifically, noting that the
Jacobian yields a measure of the deformation of an oriented area element under
M, the energy functional EM limits the penalization of compression primarily
to negative semi-definite regions. If the initial area on the folded surface of the
ith face is A0

i , and the area on the spherical surface S at time t of the numerical
integration is At

i, then the energy functional is given by:

EM =

F∑
i=0

log(
1 + ekRi

k
) − Ri , Ri =

At
i

A0
i

.

1 The Euler number of a surface is a topological invariant. For a tessellation, it can
be easily computed as: X = #vertices − #edges + #faces. The Euler number
of a sphere is X = 2.
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The resulting mapping - from the initial tessellation to the sphere - is maximally
homeomorphic. Multivalued regions, containing overlapping triangles, constitute
topological defects where the homeomorphic mapping is broken. M associates at
each vertex v of the initial cortical surface C a vertex vS = M(v) on the sphere S.
Vertices with spherical coordinates that intersect a set of overlapping triangles
are marked as defective and topological defects are identified as connected sets
of defective vertices (we refer to [7] for more details).

2.2 Definition of the Retessellation Problem

Once a topological defect has been identified, its tessellation is discarded. The
retessellation problem can then be stated as follows.

Given a set of defective vertices, each of which has been assigned a spher-

ical location by the quasi-homeomorphic mapping M, find the vertices

that should be kept in the defect and the set of edges connecting them, so

that an energy functional, measuring the goodness of the retessellation,

is maximized.

Topological inconsistencies, which are resulting from mislabeled voxels in the seg-
mentation process, generate tessellations that include incorrect vertices. These
vertices should be identified and discarded from the final solution. A potential
topological correction of the defect corresponds to the generation of a new tes-
sellation such that no edge intersection occurs in the spherical surface. Many
such tessellations exist 2, and one would like to select an optimal solution that
maximizes the goodness of fit of the retessellation.

We evaluate the fitness of a corrected region with the maximum-a-posteriori
estimate of the retessellation, given geometric information about the observed
surface, and the underlying MRI values. The numerical technique we propose to
explore in the maximization of the fitness function is a genetic algorithm or GA
(for a good introduction see [14]). The GA is an appropriate choice for this type
of problem as the space to be searched is potentially quite large (the defects
can contain upwards of 300,000 candidate edges), and there is no easy way
to compute gradient information. More importantly, we define a set of genetic
operations used to propagate information from one generation to the next that
correspond to ’relevant’ surface operations.

2.3 A Genetic Algorithm for the Surface Retessellation

Genetic Algorithms were developed by John Holland in the 1960s as a means
of importing the mechanisms of natural adaptation into computer algorithms
and numerical optimization [10]. In genetic algorithms, a candidate solution to
a problem is typically called a chromosome, and the evolutionary viability of
each chromosome is given by a fitness function. Typically, genetic algorithms
are defined by different operators: Selection, Crossover and Mutation.

2 For a defect composed of n vertices, the number of potential edges is N = n(n−1)/2,
leading to a space of size O(2N ).
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In the next paragraphs, we explain the role of these operators in detail and
specify how their definition is meaningfully tailored to the current problem.

A - Representation and Retessellation: perhaps the most important decision in
the construction of a GA is the choice of representation for the underlying prob-
lem. Here we have a number of constraints that must be satisfied that lead to the
representation we use. These essentially amount to the requirement that every
potential edge be represented exactly once in an ordering for the retessellation.
This guarantees that the retessellation will result in the proper topology [7].
Thus the representation we choose is an edge ordering, represented by a permu-
tation of N integers. The retessellation procedure then simply involves adding
edges in the order specified by the permutation.

Such a procedure will generate retessellated patches that include all vertices
present in the defect, resulting in irregular jagged surfaces. In order to alleviate
this problem, we directly encode the vertex selection into the representation.
Given an edge ordering, we construct the corresponding tessellation and assign to
each vertex an arrival number based on the order in which they were added. Next,
we discard all the vertices that were added after all of its neighbors, i.e. vertices
with lower arrival numbers. This way, edges added first in the retessellation will
force their bordering vertices to be included in the final retessellation. The edges
added last, which most often generate the surface irregularities, will consequently
be discarded.

B - Selection of the Initial Population: the selection of the initial population is
particularly significant for the considered problem. The space to be searched is
potentially quite large and the selection of a “good” initial population can drasti-
cally improve convergence of the algorithm. Topological defects are constituted
of sets of overlapping triangles. The intersecting edges on the sphere S corre-
spond to different topological paths in the original cortical surface C. In order to
generate an initial population with a large variance, i.e. composed of individuals
with large shape differences, we first group the non-overlapping edges into differ-
ent clusters. Using the spherical quasi-homeomorphic mapping M , intersecting
edges are iteratively segmented into different clusters. Next, these clusters are
used to select the initial population of chromosomes. We say that a chromosome
is generated from a cluster Ci, if the first edges (in the ordering) constituting
this chromosome comes from Ci. Consequently, chromosomes generated from
different clusters will have different shapes, hopefully leading to an initial popu-
lation with a large variance. Figure 1 provides a few examples of initially selected
chromosomes in the case of a simple topological defect.

C - Mutation and Crossover: the two most important operations used in GAs
are mutation and crossover. Mutation involves the random modification of a part
of the code of an “individual” in the population and crossover the exchange of a
part of the code of an “individual” with another one in the population. We define
these operations in order to accommodate the nature of the current problem.
Intersecting edges represent choice between different surface configurations. In
the following section, we note Ii the set of edges intersecting the edge ei: Ii =
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Fig. 1. a) Example of a topological defect containing 2 handles and constituted of
183 defective vertices. b) Result of the clustering of the non-intersecting edges into
5 segments. c-e) These candidate retessellations represent different configurations of
the initial population generated using the edge clustering. f) The optimal solution
generated by our genetic approach in 15 generations after 4 mutations and 8 crossovers

{ej |int(ei, ej) = 1}, where int(ei, ej) is the intersection operator, and returns 1
if edge ei intersects edge ej , and 0 otherwise.

For mutation, we perform the following operation for each possible edge in
the tessellation:

1) Draw a random number r from UR(0, 1), the uniform distribution on the real
numbers between 0 and 1.

2) If r > pmut then continue with the next edge.
3) Draw a random number k from UN(1,#Ii), the uniform distribution on the

natural numbers between 1 and #Ii.
4) Exchange the positions of ei and ej , where ej is the kth entry in the set Ii.

This procedure will allow the selective exploration of the different retessellations
represented by different members of Ii, thus reducing the size of the effective
search space.

The crossover operator we define is the random combination of permutations.
Some care must be taken here to insure that every edge is represented exactly
one time. Towards that end, the crossover operator will add a random number of
edges from each parent retessellation, only if that edge has not been added. The
crossover operator will randomly select one of the permutations to draw from
first, then copy a random number of edges from it to the ”offspring” retessella-
tion. For each edge, we draw a random number r from UR(0, 1), and stop copying
edges if r < 1/2. Next, a random number of edges will be copied from the second
parent, if they are not already represented in the offspring. This procedure will
continue until every edge is represented.

It is important to note that the previously defined genetic operations carry
meaningful geometric operations. Mutation, which randomly swaps the order-
ing of intersecting edges, corresponds to local jumps from one configuration to
another one. The crossover operation naturally combines different parts of the
code from the two candidate tessellations, generating a configuration that often
expresses distinct local surface properties of both parents. In addition, since the
edge ordering naturally encodes which vertices are discarded (the vertices in-
cluded last being discarded), the crossover operation, which iteratively combines
two edge orderings, most often generates offspring chromosomes that preserve
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the best geometric characteristics of the parents (most likely, the same vertices
will be discarded).

D - Fitness and Likelihood Functions: we use some prior knowledge about the
cortex to define the fitness function. A cortical surface is a smooth manifold
C that partitions the embedding space into an inside part, composed of white
matter, and an outside part, composed of gray matter. We characterize the
goodness of a retessellation by measuring two of its properties:

(1) The smoothness of the resulting surface,
(2) the MRI values I inside and outside the surface.

Formally, the posterior probability of the ith retessellation Ti is given by:

p(Ti|C, I) ∝ p(I|C, Ti)p(Ti|C).

The likelihood term p(I|C, Ti) encodes information about the MRI intensities
inside and outside the surface. Each retessellated patch, being topologically cor-
rect, separates the underlying MRI volume into two distinct components 3, an
inside part C− and an outside part C+. An acceptable candidate solution should
generates a space partition with most of its inside and outside voxels corre-
sponding to white and gray matter voxels respectively. In order to estimate the
likelihood p(I|C, Ti), we assume that the noise is spatially independent. This
probability can be rewritten:

p(I|C, Ti) =
∏

x∈C−

pw(I(x)|C, Ti)
∏

x∈C+

pg(I(x)|C, Ti)

︸ ︷︷ ︸
volume-based information

Vi∏
v=1

p(gi(v), wi(v)|C, Ti)

︸ ︷︷ ︸
surface-based information

,

pw(I(x)|C, Ti) and pg(I(x)|C, Ti) are the likelihood of intensity values at location
x in the volume inside and outside the tessellation respectively, p(gi(v),wi(v)|C,Ti)
is the joint likelihood of intensity values inside and outside the tessellation at
vertex v in tessellation Ti.

Geometric information can be incorporated via p(Ti|C), which represents pri-
ors on the possible retessellation. For example, p(Ti|C) could have the form:

p(Ti|C) =

Vi∏
v=1

p(κ1(v), κ2(v)|C),

where κ1 and κ2 are the two principal curvatures of the surface, computed at
vertex v.

Given that the vast majority of the surface is in general not defective, we for-
tunately have ample amounts of data with which to estimate the correct forms

3 We use the angle weighted pseudo-normal algorithm to compute the signed distance
of the tessellation. The voxel grid is partitioned into inside negative values and
outside positive values
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Fig. 2. a) Example of the gray and white matter distributions estimated locally from
a given a topological defect. b) Joint distribution of gray and white matter given the
surface computed using the non-defective portion of the gray/white boundary repre-
sentation of a single subject. The gray and white matter intensity are two correlated
variables, as indicated by the diagonal structure of the joint distribution. c) Joint dis-
tribution of two principal curvatures of the surface

of the distributions p(Ti|C), pg(I(x)|C, Ti), pw(I(x)|C, Ti) and p(gi, wi|C, Ti). In
particular, the single tissue distributions pg(I(x)|C, Ti) and pw(I(x)|C, Ti) are
locally estimated around each topological defect in a region that excludes the
defect itself (we exclude all voxels that intersect one of the N potential edges).
This makes the resulting procedure completely adaptive and self-contained, in
the sense that no assumptions need to be made about the contrast of the un-
derlying MRI image(s), and no training or parametric forms are required for
p(Ti|C). An example of the estimation of p(gi, wi|C, Ti) and p(Ti|C) is given in
Fig. 2. Image b) shows the joint distribution of gray and white matter given the
surface computed using the non-defective portion of the gray/white boundary
representation of a single subject. Note the diagonal character of the distribution,
indicating that the intensities are mutually dependent - brighter white matter
typically means brighter gray matter due to factors such as bias fields induced
by RF inhomogeneities and coil sensitivity profiles, as well as intrinsic tissue
variability. One possible form of the priors on the tessellation is given in Fig. 2c,
which shows the joint distribution of the two principal curvatures κ1 (green) and
κ2 (red) computed over the non defective portion of a single surface. It is impor-
tant to note in this context that all these distributions can only be applied after
a candidate retessellation has been completed, as the gray/white joint density
requires surface normals, gray and white intensity distributions necessitate the
underlying MRI volume to be partitioned in two separate components and the
principal curvatures require the calculation of the second fundamental form, all
of which are properties of the surface, not of individual edges.

E - Iterative Elimination of Vertices: During the genetic search, some vertices
will be consistently discarded from the best patches. These vertices, which are
the ones that were erroneously kept in the initial cortical tessellation, should be
identified and eliminated from the final tessellation. To this end, we introduce
in our genetic search, an elimination operator, which selectively eliminates the
worst vertices from the defect. The elimination step operates as follow: after



A Genetic Algorithm for the Topology Correction of Cortical Surfaces 401

every few iterations, we eliminate the vertices that were consistently discarded
from the best candidate patches.

The proposed approach is implemented with the following parameters. The
initial population size is chosen depending on the number of defective vertices.
The retessellation process is quadratic in the number of vertices contained within
the convex hull of each defect. Typical defect contains on the order of 100 vertices
for a population size of 20 candidate retessellations. At each step of the genetic
search, a new population is generated from selected chromosomes based on their
fitness. Given a population of individuals, the top one third is selected to form
the elite group. These chromosomes are kept for the next generations. The worst
individuals, corresponding to the bottom one third, are replaced with mutated
copies of the best. Finally, the remaining ones are generated from crossover op-
erations from parents iteratively chosen from the elite population. The mutation
rate pmut is experimentally chosen to be 10%. The algorithm stops when no new
best candidate has been found for the past 10 generations. For a typical topo-
logical defect of size 100 vertices, the algorithm usually converges in less than
50 generations, which corresponds to a computational time of approximately 10
minutes on a 1-G-Hz Pentium IV. An optimal configuration is usually the result
of approximately 30 genetic operations, 80% of which are crossovers and 20%
mutations. The elimination operator is applied every 5 generations. The number
of discarded vertices depends on the topological defect. In some cases, more than
40% will be eliminated.

3 Results and Discussion

Before reporting results of the proposed approach on synthetic and real datasets,
we measure the goodness of our method relatively to a random search algorithm.
This is to verify that our approach actually improves the speed of convergence
and that the genetic operations allow the generation of superior candidate retes-
sellations.

Genetic versus Random Search: we compared our approach with a random
search algorithm, in which random permutations of the edge ordering were iter-
atively generated. The graphs in Fig. 3 illustrate the strength of our approach on
a real data example. The topological defect is shown in Fig. 1a. For each method,
the first candidate tessellation corresponded to the solution generated by the
greedy approach proposed in [7] with its vertices added last being discarded
(see sect 2.3.A). Compared to a random search, the genetic search converges
much faster (at least, second order magnitude). The genetic algorithm boosts
the overall fitness of the population by keeping the best representations at each
generation and producing new candidates using the elite population. In a few
generations composed of a small number of chromosomes (20 chromosomes per
generation in this example), the genetic search is able to produce new optimal
retessellations (see Fig. 1f).
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Fig. 3. a) Evolution of the log of the fitness function during the genetic search. b)
Evolution of the log fitness function during a random search. Note how the genetic
search iteratively improves the average fitness of each generated chromosome, which, as
a consequence, will be able to generate new optimal chromosomes. On the other hand,
random retessellation rarely generates new optimal patches. In this defect, which was
constituted of 183 vertices, even after 50000 random draw, the fitness function of the
best randomly generated chromosome was still 5 order of magnitude below the best
GA chromosome (generated as the 300th offspring during the 15th generation)

Application to Synthetic Data and Real Data: in order to validate the proposed
method, we first generated surfaces containing simple topological defects (han-
dles, holes). These data were used to explore the performance of the algorithm
relatively to typical topological defects. The underlying MRI volumes were gen-
erated by adding white noise to the expected tissue intensities : gray and white
intensity values were drawn from Gaussian distributions G(µg = 90, σg = 5.0)
and G(µw = 110, σw = 5.0) respectively. Figure 4, top row, illustrates the be-
havior of the algorithm relatively to different MRI volumes, when the same
topological defect has to be corrected (left: a simple handle). We note that tra-
ditional active contour models could not have generated the same results due to
the amount of noise in the images and the presence of large local minima in the
energy functional.

We have applied our proposed approach on 35 real images. The dataset was
composed of MRI volumes of different qualities, from different populations. Re-
sults were evaluated by an expert to assess the correctness of the final cor-
rections. The algorithm was able to generate correct solutions that the initial
greedy approach [7] failed to produce. Methods that do not integrate statistical
and geometric information will often fail to produce solutions comparable to the
ones a trained operator would make. This is illustrated in Fig. 4, bottom, where
valid solutions do not always correspond to minimal corrections (i.e. cutting the
handle in the two examples of Fig. 4). Only general approaches that integrate
additional information can lead to correct solutions. An average cortical surface
contains on the order of 50 topological defects, most of which are relatively small.
A full brain is corrected in approximately 2 hours on a 1GHz PII machine. The
average Hausdorff distance computed for each defect in between automatically
and manually corrected surfaces is less than 0.2mm.
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Fig. 4. Top row) Results of our proposed approach on different phantom examples.
The same topological defect (left: a small handle constituted of about 100 vertices)
is corrected using different underlying MRI volumes. In each case, our approach gen-
erated an optimal configuration corresponding to the expected solution. Bottom row)
Topology correction of a cortical representation. The initial surface was constituted of
30 defects (Euler number X = −58). Compared to the greedy approach of Fischl et
al. [7], which failed to find the correct solutions in many defects, our approach was
able to generate valid solutions. This is illustrated on two examples, in which valid
topological solutions do not correspond to minimal corrections

We note that the proposed method does not directly prevent the final surface
from self-intersecting. Self-intersecting configurations typically have low fitness
values and are naturally discarded during the genetic search. The self-intersecting
constraint could be directly integrated into the retessellation process, but would
drastically slow down the proposed approach. In our experience, final corrected
representations rarely intersect (less than one in ten thousand faces, which cor-
responds to approximately 1 defect per brain). In order to ensure that the so-
lution generates a valid manifold, we retrospectively check that the final retes-
sellation does not self-intersect. In the case of self-intersection, we re-apply the
genetic algorithm with the additional constraint of only generating valid can-
didate patches. Self-intersecting patches are identified and discarded from the
population.

4 Conclusion and Future Work

We have proposed an automated method to accurately correct the topology of
cortical representations. Our approach integrates statistical and geometric infor-
mation to select the optimal correction for each defect. In particular, we have
developed a genetic algorithm that is specifically adapted to the retessellation
problem. Iterative genetic operations generate candidate tessellations that are
selected for reproduction based on their goodness of fit. The fitness of a retes-
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sellation is measured by the smoothness of the resulting surface and the local
MRI intensity profile inside and outside the surface. The resulting procedure is
completely adaptative and self-contained. During the search, defective vertices
are identified and discarded while the optimal retessellation is constructed.

Given a quasi-homeomorphic mapping from the initial cortical surface onto
the sphere, our method will be able to generate optimal solutions. For each defect,
the space to be searched (i.e. the edge ordering) is dependent on the spherical
location of the defective vertices. Some configurations of the quasi-homeomorphic
mapping could lead to optimal but incorrect retessellations. In future work,
we plan to address this limitation by directly integrating the generation of the
homeomorphic mapping into the correction process.
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Abstract. This paper presents a general graph-theoretic technique for
simultaneously segmenting multiple closed surfaces in volumetric im-
ages, which employs a novel graph-construction scheme based on tri-
angulated surface meshes obtained from a topological presegmentation.
The method utilizes an efficient graph-cut algorithm that guarantees
global optimality of the solution under given cost functions and geomet-
ric constraints. The method’s applicability to difficult biomedical image
analysis problems was demonstrated in a case study of co-segmenting
the bone and cartilage surfaces in 3-D magnetic resonance (MR) im-
ages of human ankles. The results of our automated segmentation were
validated against manual tracings in 55 randomly selected image slices.
Highly accurate segmentation results were obtained, with signed surface
positioning errors for the bone and cartilage surfaces being 0.02±0.11mm
and 0.17 ± 0.12mm, respectively.

1 Introduction

Optimal segmentation of surfaces representing object boundaries in volumetric
datasets is important and challenging for many medical image analysis appli-
cations. Recently, we proposed an efficient algorithm for d-D (d ≥ 3) optimal
hyper-surface detection with hard smoothness constraints, making globally op-
timal surface segmentation in volumetric images practical [1, 2]. By modeling
the problem with a geometric graph, the method transforms the segmentation
problem into computing the minimum s-t graph cut that is well-studied in graph
theory, and makes the problem solvable in a low-order polynomial time. The so-
lution is guaranteed to be globally optimal in the considered region by theoretical
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(a) Coronal view (b) Sagittal view

Fig. 1. Two sample slices of a 3-D MR image of human ankle

proofs [1]. We have also developed a multi-surface segmentation algorithm [3].
However, these methods were both limited to segmenting height-field or cylin-
drical surfaces in regular grids.

In this paper, we present a non-trivial extension of our previous work. We
focus on the problem of segmenting optimal multiple closed surfaces in 3-D. The
new method for multiple surfaces segmentation is motivated by the need to
accurately segment cartilage layers in diseased joints. In this application, the ar-
ticular cartilage and corresponding subchondral bone surfaces can be imaged by
3-D high-resolution MRI (Fig. 1). However, no segmentation method exists that
would allow a rapid, accurate, and reproducible segmentation for quantitative
evaluation of articular cartilage.

The main contribution of our work is that it extends the optimal graph-
searching techniques to closed surfaces, while the backbone of our approach –
graph-cuts – is radically different from traditional graph searching. Consequently,
many existing problems that were tackled using graph-searching in a slice-by-
slice manner can be migrated to our new framework with little or no change to
the underlying objective function formulation.

2 Methods

The proposed method allows segmenting multiple inter-related surfaces in vol-
umetric images and facilitates subsequent quantitative analysis. We will utilize
the bone–cartilage segmentation task to help make the method description intu-
itively clear. The general strategy of our method is to achieve the final segmen-
tation in two stages. The initial stage provides approximate segmentation of the
three-dimensional object (in our case, of the bone), and the final segmentation
is achieved by accurate and simultaneous segmentation of its multiple surfaces
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of interest. The outputs of the algorithm are triangulated meshes that are ready
for visualization and quantitative measurement.

The method consists of the following three main steps:

1. Bone surface presegmentation. A level set based algorithm is used. Start-
ing from several seed-spheres, the method uses the image-derived edge and
regional information to evolve a smooth surface toward the bone bound-
ary. The presegmented surface serves as an initialization to the subsequent
segmentation.

2. Mesh generation and optimization. The presegmentation results in an im-
plicit surface that is the zero level set of a 4-D function embedded in a
volumetric digital grid. An isosurfacing algorithm (e.g., marching cubes) is
used to convert the implicit surface into an explicit triangulated mesh. The
mesh is optimized by removing or merging isolated and redundant triangles.
The resolution of the mesh can be increased or decreased using progressive
level of detail approaches when necessary.

3. Co-segmentation of the cartilage and bone surfaces. The mesh generated by
the second step is used to initialize a graph in a narrow-band around the
presegmented bone surface. A novel multi-surfaces graph search algorithm is
used to simultaneously obtain the precise positions of the bone and cartilage
surfaces based on two cost functions separately designed for the two surfaces
while considering specific geometric constraints.

Since the mesh manipulation step involves largely standard techniques in
graphics, only the first and third steps are described in detail.

2.1 Bone Surface Presegmentation

The presegmentation algorithm is based on the MetaMorphs deformable shape
and texture model presented in [4]. The method provides a unified gradient-
descent framework for modeling both the boundary and texture information in
an image, and is relatively efficient in computation.

Let Ω denote the image domain, and ∂Ω be the surface represented by the
model, which is the zero level set of a signed distance function φ. φ is positive
in the model interior, denoted Ω+. Instead of directly evolving the function φ,
the deformation of the surface is controlled by a set of uniformly-spaced control
points artificially embedded in the image domain. The motion of the control
points is computed using image-derived information. The deformation at any
voxel location can then be derived using the cubic B-spline based Free Form
Deformation (FFD). As such, the level set function φ can be updated using a
geometric transformation of itself at each descent step. The motion of the control
points is determined by minimizing the weighted combination of two edge-based
cost terms and two region-based cost terms. For more detail of the cost terms
and the model evolution, we refer to reader to [4].

Particularly, in [4], the authors suggested a Gaussian kernel-based nonpara-
metric approach for modeling image pixel (voxel) intensity distributions. This
approach, however, is computationally expensive in 3-D. Considering our
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application domain and taking advantage of the physical properties of the MR
images, voxel intensities in the bone region are approximated by a Rayleigh
distribution:

P (I|b) =
Ie−I2/2b2

b2
, I ≥ 0, b > 0 (1)

with I being the pixel intensity. This distribution has only one free parameter
b, which is estimated using the sample mean µ of voxel intensities inside the
initializing spheres, as:

b = µ

√
2

π
(2)

2.2 Simultaneous Segmentation of Cartilage and Bone Surfaces

After the bone surface is presegmented and converted into a triangulated mesh,
a novel graph-based algorithm is applied to co-optimize the cartilage and bone
surfaces. Note that anatomically, the cartilage only covers certain parts of the
bone surface. To simplify the problem, we assume the cartilage extends the full
surface area of the bone. However, in some areas the “cartilage” surface merges
with the bone, so that the cartilage thickness is effectively zero in those areas.

Preliminaries. A triangulated mesh consists of a set of vertices connected by
edges. We use M(V, E) to denote a mesh with vertex set V and edge set E . Two
vertices are said to be adjacent if they are connected by an edge. Each vertex
has an associated surface normal, which is perpendicular to the surface that the
mesh represents at the vertex.

A graph G(N ,A) is a structure that consists of a set of nodes N and a set
of arcs A. The arc connecting two nodes n1 and n2 is denoted by 〈n1, n2〉. For
undirected arcs, the notations 〈n1, n2〉 and 〈n2, n1〉 are considered equivalent.
For a directed arc, they are considered distinct. The former one denotes the arc
from n1 to n2, and the latter one from n2 to n1. In addition, a geometric graph
is a graph whose nodes have certain geometric positions in space.

Graph Construction. Since the bone and cartilage surfaces are to be seg-
mented simultaneously, two spatially-coincident columns of equidistant nodes
are constructed along the normal at each vertex of the triangular mesh obtained
from the presegmentation (Fig. 2). The number of nodes in each column is de-
termined by the required resolution, and the extent of each column depends on
the width of the region where the cartilage and bone surfaces are expected –
a narrow-band around the presegmented surface. A set of arcs is carefully con-
structed between the nodes to ensure the geometric constraints, including the
smoothness constraint, which controls the stiffness of the output surfaces, and
the surface separation constraint, which defines the relative positioning and the
distance range of the two surfaces.

Suppose there are N vertices on the mesh, and let vi be one of them (i ∈
{0, . . . , N − 1}). The two columns of nodes constructed along the normal at
vi are denoted by K0(vi) ≡ {n0

0i, . . . , n
K−1
0i } and K1(vi) ≡ {n0

1i, . . . , n
K−1
1i },
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Fig. 2. Graph construction

respectively, where K is the number of nodes in each column. The collection of
columns

⋃
Ks(vi) with s = 0, 1 and i = 1, . . . , N − 1 constitutes the node set N .

Next, assuming that each column K0(vi) intersects with the bone surface at
exactly one node, denoted n∗

0i, and each column K1(vi) intersects with the car-
tilage surface at exactly one node n∗

1i, the collections of nodes N ∗
0 ≡ {n∗

0i : i =
0, . . . , N − 1} and N ∗

1 ≡ {n∗
1i : i = 0, . . . , N − 1} will represent discretizations

of the bone surface and the cartilage surface, respectively. In this way, the seg-
mentation problem is converted to a graph search problem, in which the node
sets N ∗

0 and N 1
1 are to be identified.

Apparently, the choices of N ∗
0 and N ∗

1 are not arbitrary. Cost values are
assigned to the graph nodes according to two cost functions constructed specif-
ically for the bone and cartilage surfaces. N ∗

0 and N ∗
1 will correspond to the

set of nodes with the minimum total cost in the graph. Furthermore, several
constraints are imposed on the geometric relations of the nodes in N ∗

0 and N ∗
1 .

These constraints are enforced by the graph arcs, constructed as follow.

– Intra-column arcs Aa: Along each column Ks(vi), every node nk
si has a di-

rected arc to the node nk−1
si , i.e.,

Aa = {〈nk
si, n

k−1
si 〉 : k = 1, . . . , K − 1;∀i, s} (3)

– Inter-column arcs Ar: The inter-column arcs encode the smoothness con-
straint, which is imposed between each pair of adjacent columns. Two columns
Ks(vi) and Ks(vj) (s ∈ {0, 1}, i �= j) are said to be adjacent if the two ver-
tices vi and vj are adjacent on the mesh. Suppose one of the sought surfaces

intersects with two adjacent columns Ks(vi) and Ks(vj) at nodes nki

si and

n
kj

sj , respectively. If the surface is smooth, ki and kj should not differ too
much. The smoothness constraint ∆ defines the maximum allowed difference
between ki and kj , i.e., ∆ = max |ki−kj |. Smaller ∆ forces the surface to be
smoother. To encode the smoothness constraint in the graph, the following
directed arcs are constructed:

Ar = {〈nk
si, n

max(0,k−∆)
sj 〉 : ∀s, k; vi, vj adjacent} (4)



Simultaneous Segmentation of Multiple Closed Surfaces 411

– Inter-surface arcs As: These arcs model the separation constraint between
the two surfaces. Suppose the bone and cartilage surfaces intersect K0(vi)
and K1(vi) at nodes nk0

0i and nk1

1i , respectively. Because the thickness of the

cartilage is within some known range, nk0

0i and nk1

1i are at least δl, and at
most δu nodes apart, i.e., δl ≤ k1 − k0 ≤ δu. The inter-surface arcs are
constructed between columns K0(vi) and K1(vi) for all vi ∈ V as:

As = {〈nk
1i, n

max(0,k−δu)
0i 〉, 〈nk

0i, n
min(K−1,k+δl)
1i 〉 : ∀i, k} (5)

For more than two surfaces, the separation constraint is specified pairwisely.

Cost Functions. The cost functions are crucial for accurate surface localiza-
tion. For this pilot study, relatively simple cost functions are used. Specifically,
the cost function for the bone surface, Cbone, is the negated gradient magnitude
of the Gaussian-smoothed image G,

Cbone = −|∇G| ≡ −
√

G2
x + G2

y + G2
z (6)

where Gx ≡ ∂
∂xG, Gy ≡ ∂

∂y G and Gz ≡ ∂
∂z G are partial derivatives of the

image. The cost function for the cartilage surface is computed as a weighted
combination of the response of a 3-D “sheet filter” [5] and the directional image
gradients. The sheet filter is formulated using the Hessian matrix ∇2G of the
image intensity. Let the eigenvalues of ∇2G be λ0, λ1 and λ2, (λ0 ≥ λ1 ≥ λ2).
The sheet filter is defined as:

Fsheet(G) =

{
|λ2| · ω(λ1, λ2) · ω(λ0, λ2), λ2 < 0,
0, otherwise.

(7)

The function ω is given by:

ω(λa, λb) =




(1 + λa

|λb|
)γ , λb ≤ λa ≤ 0,

(1 − α λa

|λb|
)γ , |λb|

α > λa > 0,

0, otherwise,

(8)

where α, γ are parameters. In our experiments, we chose α = 0.25 and γ = 0.5.
In summary, the cost function for cartilage surface is computed as:

Ccartilage =

{
−Fsheet(−G) − τxGx, if Gx > 0,
−Fsheet(−G) otherwise,

(9)

where the value of τx is chosen to be 1.0 in our experiments.
The above cost functions are computed in the image domain. The node costs

are assigned using spatial interpolation based on the positions of the nodes.
Specifically, the costs of nodes nk

0i are assigned according to Cbone, and the costs
of nodes nk

1i are computed from Ccartilage.
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Optimization. Once the graph is constructed and the node costs assigned, we
can use the same technique described in [3] to transform the graph into an s-t
graph Gst that has a source node s and a sink node t, and apply a minimum s-t
cut algorithm to compute the optimal surfaces. The final surfaces will correspond
to the upper envelope of the set of nodes that can be reached from s in Gst, i.e.,
the source set of Gst.

3 Case Study

Osteoarthritis and articular cartilage injuries are very common – one in six
people in the USA is affected by some form of arthritis. The socio-economic
impact of degenerative joint diseases is massive, with an estimated annual cost
of $65 billion in the USA during the 1990’s. As such, there is a huge research
interest in the field of chondro-protective and chondro-restorative treatments.

The proposed method allows segmenting the articular cartilage surface and
the corresponding subchondral bone surface in volumetric MRI images that fa-
cilitates subsequent quantitative analysis. The segmentation is initiated by a
few (normally 3 or less) roughly-placed seed points in the bone region, but is
otherwise fully automated.

Data. The method was tested in 8 high-resolution 3-D MR data sets of human
ankles. The images were acquired using a 1.5T MR scanner, with in plane res-
olution 0.3 × 0.3 mm2 and slice thickness 0.3 mm. The acquisition time was 17
minutes and 14 seconds. Overall, each MR image data set consisted of approxi-
mately 512 × 512 × 150 voxels.

Independent Standard. In the 8 MR images, 55 coronal or sagittal slices
were randomly selected to be manually traced by an expert observer (ortho-
pedic surgeon) and formed the independent standard. The selection of coronal
as well as sagittal slices allows assessing the performance of the inherently 3-D
segmentation method using 2-D manual tracings.

Comparisons with the Independent Standard. Computer segmentation of
the talus bone and the cartilage surfaces was performed in 3-D. Consequently,
the segmented surfaces were available for the entire closed 3-D object. The au-
tomated segmentation method locally failed in 5 of the 55 image slices for which
independent standard was available due to local pre-segmentation errors. The
segmentation accuracy was assessed in the 50 image slices by computing signed,
unsigned, and RMS surface positioning errors. The positioning errors were de-
fined as the shortest distances between the manually traced borders and the
computer-determined surfaces in the coronal and sagittal MR slices for which
the independent standard was available. The errors are reported on a per-slice
basis as mean ± standard deviation.

Reproducibility. To assess the reproducibility of cartilage segmentation, the
method was independently initialized 5 times and the mean and maximum car-
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(a) Presegmented talus surface

(b) Segmented talus and cartilage

Fig. 3. Presegmentation and segmentation. Cartilage surfaces are color-coded, with
darker shadings depicting thicker cartilage
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tilage thicknesses were determined for each of the 8 talus cartilages. The repro-
ducibility was assessed by calculating mean ± standard deviation of differences
between the average values obtained in the 5 reproducibility runs and the indi-
vidual results.

Results. All experiments were performed on a workstation with dual 3.0GHz
processors and 4GB of RAM. For each data set, we used 3 seed-spheres inside the

Table 1. Overall surface positioning accuracy

Signed Error (mm) Unsigned Error (mm) RMS Error (mm)

Bone 0.02 ± 0.11 0.25 ± 0.08 0.03 ± 0.01
Cartilage 0.17 ± 0.12 0.39 ± 0.09 0.04 ± 0.01

(a) Computer (b) Manual

(c) Computer (d) Manual

Fig. 4. Comparison of computer and manual segmentations
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Fig. 5. Bland-Altman plots of cartilage thickness reproducibility

bone region to initialize the presegmentation. To reduce running time, the regions
containing the talus bones were cropped from the original MR images to form
smaller images of approximately 250×250×150 voxels each. The presegmentation
was performed on 2-times downsampled copies of the cropped images, while the
final segmentation was performed on the original full-resolution images.

The parameters used for final segmentations were K = 30, δl = 0, δu = 12
and ∆ = 1. For each data set, the average execution times of the presegmentation
and segmentation stages were about 200 seconds and 70 seconds, respectively.
The overall surface positioning errors of the computer-segmented talus bone and
its cartilage surfaces are shown in Table 1. Examples of computer-segmented
and manually-traced bone and cartilage contours are shown in Fig. 4.

The mean cartilage thickness measurements achieved a signed error of 0.08±
0.07mm, and an unsigned error of 0.09 ± 0.06mm. The corresponding measure-
ments of maximum cartilage thicknesses have signed and unsigned errors of
0.01 ± 0.19mm and 0.16 ± 0.10mm, respectively. All border positioning errors
show subvoxel accuracy (voxel size 0.3 × 0.3 × 0.3 mm3).

In the reproducibility experiment, the initializing spheres were modified from
the original settings by adding up to 10% of random perturbations to their radii
and 2 to 5 voxels of random translations to each coordinate of their positions.
The Bland-Altman plots of the signed differences between each individual mea-
surement and the average measurements are shown in Fig. 5 demonstrating that
repeated measurement of cartilage thickness is unbiased and reproducible.

4 Discussion and Conclusion

Traditional techniques such as manual segmentation and gradient based edge
detection are not suitable for automated, accurate, reproducible detection of
the cartilage and subchondral bone surfaces in thin congruent cartilage layers.
The objective of this study was to provide a proof of concept that the cartilage
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and subchondral bone surfaces can be accurately detected simultaneously in
3-D, using a novel segmentation method, and perform its pilot validation in
comparison with an independent standard.

Properties of the Method. The graph-based segmentations utilized hard ge-
ometric constraints, which are intuitive and easily controllable. The definition of
the smoothness constraint, however, requires that the edges in the surface mesh
be as equidistant as possible. This could be achieved by using sophisticated mesh
optimization algorithms. An alternative and simpler way is to make the smooth-
ness constraint vary between graph columns by modulating it according to the
corresponding edge length. When the mesh is dense enough, however, the effect
of unequal edge length could be ignored for our application. Therefore, neither
approach was used in the reported experiments. A drawback of the presented
graph-search approach is its dependence on presegmentation, which is crucial for
obtaining good final results. However, a one-shot approach using either numerical
or discrete mathematical tools alone could be difficult to design, computationally
inefficient and may not yield a satisfactory outcome. In addition, its reliance on
surface normals makes the method suffer from surface self-intersections. How-
ever, this problem is avoidable by detecting spatially intersecting node columns
and pruning the affected nodes during the graph-construction.

The employed presegmentation method uses free form deformation, with
which one can use large step size for surface evolution. Moreover, in practice,
the number of control points required for the FFD is usually much fewer than
the number of image voxels. These make the method computationally efficient.

Overall, the method was shown to be highly reproducible in our experiments.
However, the initialization of the presegmentation is quite strategic. As a rule of
thumb, the seed-spheres should be roughly centered at the maxima of the “shape
image” in the bone interior. Automatic initialization methods can be designed
following this strategy.

Cartilage Segmentation. A variety of 2-D image segmentation techniques
have been utilized on articular cartilage images in the past, including manual
segmentation, seed point and region growing algorithms, fully automated 2-D
shape recognition, interpolated B-splines, B-spline snakes, and directional gra-
dient vector flow snakes [6,7,8]. All of these techniques have limitations as they
require an accurate initialization. Manual surface segmentation is both labor
intensive and prone to error and is influenced by subjective judgment of the
operator leading to inter-observer variability. Moreover, the accuracy and repro-
ducibility of existing fully automated and semi-automated algorithms in noisy
images of cartilage layers are often suboptimal. This poses particular problems
in thin highly congruent, curved cartilage layers, which require subvoxel mea-
surement accuracy. Previous studies utilizing computer-assisted techniques suffer
from measurement errors of up to 100% or exclude large areas of the joint sur-
face. As a result there has been a return to manual segmentation techniques
with the focus being on the development of time saving devices such as touch
screen interactive segmentation. The reported 3-D approach addresses a number
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of the existing challenges and carries a substantial promise for the future utility
of automated quantitative analysis of cartilage in 3-D.

Conclusion. A novel method for simultaneously segmenting multiple closed
surfaces was demonstrated. The method utilizes an efficient graph-based algo-
rithm that produces optimal solutions according to certain cost functions and
geometric constraints. The proposed method achieved highly accurate results in
segmenting cartilage and bone surfaces in MR images of human ankles. Although
this paper concentrated on closed surfaces, the presented method can segment
surfaces of other topologies according to different initializing meshes.
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Abstract. Brain MR image segmentation is an important research topic in 
medical image analysis area. In this paper, we propose an active contour model 
for brain MR image segmentation, based on a generalized level set formulation 
of the Mumford-Shah functional. The model embeds explicitly gradient infor-
mation into the Mumford-Shah functional, and incorporates in a generic frame-
work both regional and gradient information into segmentation process simulta-
neously. The proposed method has been evaluated on real brain MR images and 
the obtained results have shown the desirable segmentation performance.  

1   Introduction 

Segmentation of anatomical structures is of utmost significance both for clinical diag-
nosis and visualization purposes. Because of the huge amount of data and the com-
plexity of these organs and structures, manual segmentation is extremely tedious and 
often unfeasible. Computer-based automatic segmentation methods are required to 
fully exploit medical data.  

Active contour model, since it was first proposed in [1], has been extensively stud-
ied and used in the field of image segmentation. The central idea behind active contour 
model is to evolve a curve or surface based on energy minimization method under the 
influence of image dependent forces, regularity constraints and certain user-specified 
constraints. Originally, active contour models are parameterized curves or surfaces 
which iteratively evolve toward the desired locations according to the energy minimi-
zation criterion. The limitations of such kind of contour models are well known. For 
example, they are sensitive to initial conditions and should be placed usually near to 
the boundary of objects of interest. Besides, due to the explicit parameterization of the 
model, they can not cope with significant protrusions and topological changes. 

Level set method provides an alternative solution to energy minimization-based 
image segmentation problem. The main idea behind level set method, which was first 
introduced by Osher and Sethian [2], consists of regarding the evolution curve as a 
higher dimension function which evolves under certain forces. It provides efficient 
numerical techniques for tracking and analyzing curve evolution problems. Moreover, 
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level set-based contours are parametric independent and thus particularly appropriate 
for segmenting complex anatomical shapes. The evolution contour can change its 
topology naturally and the result is less dependent on initialization than parametric 
active contour models.  

Many approaches have been proposed to address medical image segmentation 
problems with level set method. Geodesic active contour, which was proposed in [3], 
has been developed and extended to medical imagery in [4] and [5]. However, geo-
desic deformable contours are usually dependent on local features of an image, such 
as gradient, which makes them sensitive to noise. In [6], Zeng et al. derived a method 
for segmenting three-dimensional (3-D) brain cortex using coupled level set surface 
propagation based on certain geometric constraints of cortex thickness. The evolving 
surfaces are driven to boundaries of anatomical objects by forces derived from a spe-
cific designed local image information operator. On the other hand, there has been a 
great interest in region based active contours. In [7], Chan and Vese proposed a re-
gion-based active contour which was derived from the Mumford-Shah functional [8]. 
This model can detect interior contours automatically and the initial curve can be 
placed anywhere in the image. Methods for magnetic resonance (MR) brain image 
segmentation based on Chan-Vese model have been developed and implemented in 
[9] and [10]. Recently, Yang et al. [11] proposed a neighbor-constrained segmentation 
method for 3-D MR image analysis based on a combination of level set shape repre-
sentation and Chan-Vese model. We notice that Tsai et al. in [12] also did similar 
work in this period. 

Region-based active contours can provide a global criterion for image segmenta-
tion and are usually more robust to noise than boundary-based active contours. How-
ever, edge information of an image has more strength in the localization of bounda-
ries. Moreover, because boundary finding usually relies on changes in the gray level, 
rather than their actual values, it is less sensitive to changes in the gray level distribu-
tions. Based on these observations, a number of researchers have tried to integrate 
region and boundary information in image segmentation. Chakraborty et al. [13] pro-
posed a deformable model for medical images by integrating gradient and region 
information. In [14], Zhu and Yuille proposed a statistical variational approach which 
combines the geometrical features of a snake/balloon model and the statistical region 
growing techniques. Paragios also introduced a geodesic active region model which 
was implemented in level set method [15]. Note that the authors of [16] and [17] have 
done similar work in an attempt to combine gradient vector flow (GVF) [18] with 
geodesic active contour [3].  

In this paper, a new variational active contour model for brain MR image segmen-
tation is proposed. The model is based on the generalized level set formulation of the 
Mumford-Shah functional. It embeds explicitly gradient information into the Mum-
ford-Shah functional, and incorporates in a general framework both regional and 
gradient information in segmentation process. Region-based forces make our method 
less sensitive to noise, while the gradient information allows for a better spatial local-
ization. Furthermore, the method is very general, and does not require external 
information (such as an atlas) nor makes extra anatomy assumptions for brain MR 
image segmentation. 
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The rest of the paper is organized as follows. Section 2 briefly introduces the 
Mumford-Shah image segmentation problem. In section 3, the basic formulation of 
the proposed model is described in detail. In section 4, we depict the use of the basic 
model for multiphase brain MR image segmentation. Experimental results and con-
clusion are given in sections 5 and 6, respectively. 

2   Background 

In the variational framework, an image 0I is usually considered as a real-valued 

bounded function defined on Ω , where Ω  is a bounded and open subset of 2R  (in 
two dimension case) with Ω∂ its boundary. 

Let I  be a differentiable function on Ω , Γ is a set of discontinuities (i.e. con-
tours).  In [8], Mumford and Shah proposed the following functional to segment an 
image into homogeneous objects: 

     ||||||)(),( 22
0 Γ+∇+−=Γ

Γ−ΩΩ

νµ dxdyIdxdyIIIE MS                  

(1) 

where || Γ   stands for the total length of the arcs making up Γ , µ   and ν  are fixed 

parameters. The first term asks I  is a good approximation of 0I , the second term 

asks that I  is smooth and the third term ensures the boundaries that accomplish this 

be as short as possible. The smaller E  is, the better ),( ΓI   segments 0I . 

A reduced form of this segmentation problem is simply the restriction of I  to 

piecewise constant functions, i.e. I =constant ic on each connected compo-

nent iΩ .Under this circumstance, the image segmentation problem, which is now 

called “minimal partition problem”, is solved through minimizing the following func-
tional: 
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where iµ  and ν  are scaling parameters.  

Traditionally, Mumford-Shah functional provides a region based method for image 
segmentation. In [7], Chan and Vese formulated this functional in terms of the level 
set formalism. Later, they generalized this method to treat multiple regions [19], and 
applied it to medical imaging [9]. The similar work was also proposed by Tsai et al. 
[20]. However, their method did not consider the gradient information of an image in 
segmentation process. Furthermore, as pointed out by F. Gibou and R. Fedkiw [21], 
under suitable assumptions, Chan-Vese model [7] simply reduces to the k-means 
algorithm [22].  
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3   Description of the Model 

In this section, we present the generalized level set formulation of the Mumford-Shah 
functional in bimodal case. According to level set theory originally proposed by 
Osher and Sethian in [2], a geometric active contour can be represented by the zero 

level set of a real-valued Lipschitz function RR →⊂Ω 2:φ   which evolves in an 

image 0I according to a variational flow in order to segment the object from the 

background. Since it was proposed, level set theory has received increasing interest in 
medical image analysis community [23]. Some of the biggest advantages of level set 
method are as follows. Firstly, unlike traditional parametric active contour models [1], 
level set based active contours are parametric-independent and hence can deal with 
topological changes naturally. Secondly, level set contours can be extended to three 
and higher dimensions, which is needed in many medical image processing and 
analysis applications. Thirdly, level set method usually has mature numerical imple-
mentation and is convenient to compute some geometry properties, such as curvature 
and normal [2]. 

 

Fig. 1. The domain Ω  divided into two regions by the curve Γ  on which φ =0 

The boundary curve Γ  in Mumford-Shah model can be represented by the zero 
level set of the functionφ , as depicted in Fig.1 for bimodal case. As in [7], the first 

term of Eq. (2) can be represented as follows: 

dxdyHcIdxdyHcI ))(1()()()( 2
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                             (3) 

where 1c and 2c  are the mean intensities inside and outside the active contour Γ  

(Fig. 1), respectively, and )(φH is the Heaviside function defined as: 
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φ                                           (4) 

Now let us consider the length term of the Mumford-Shah functional. In [24], the  

line (surface) integral of a function )(xf  in )( 32 RR  is defined as the following 

formula : 
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where the region of integration is all of  Ω , and )(xδ  the Delta function defined as 

follows: 
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Because the Delta function prunes out everything except the boundary Ω∂  automati-
cally, the one-dimensional Delta function can be used to rewrite the line integral in 
level set framework as (for more details, see [24]): 

Ω

∇ xdxf ||)()( φφδ                               (7) 

Based on this definition of line integral, the length term in the Mumford-Shah func-
tional can be represented by a weighted length as follows: 

                                            
Ω

∇ xdxg ||)()( φφδ                                 (8) 

where )(xg  is a positive and decreasing function, indicating  the boundary features 

of an image. Usually, )(xg  can be defined as (in 2 dimension): 

1,
|),(),(|1

1
),()(

0

≥
∗∇+

== p
yxIyxG

yxgxg p
σ

                               (9)          

where 0IG ∗σ ,  a smoother version of 0I , is the convolution of the image 0I with 

the Gaussian σ
σ σ 4/||2/1 22

),( yxeyxG +−−= . The function )(xg is supposed to be 

positive in homogeneous regions and zero in edges. In fact, similar to geodesic active 
contour model in [3], the corresponding curve that can minimize (8) is a geodesic 
curve. So here we are seeking to use a geodesic length which can stand for the length 
term in the Mumford-Shah functional.   

Taking into account Eq. (3) and (8), the Mumford-Shah functional defined by 
Eq.(2) can be, using level set theory, reformulated as the following form that unifies 
both region and boundary features of an image: 

     
dydxyxg
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where 21,µµ and v  are positive parameters, which have a scaling role. The first two 

terms encode the region statistics of the image while the last term carries the gradient  
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information of the image. By adjusting the values of 21,µµ andν , we can choose 

different weights of region and gradient information.  
Using the fundamental lemma of calculus of variations, minimizing E with respect 

toφ  leads to the following Euler-Lagrange equation:  

      )]
||

()()()[( 2
202

2
101 φ

φνµµφδφ ∇
∇•∇−−−−= gcIcIE                   (11) 

Then, using the steepest descent method, we obtain the evolution equation as follows 
(see Appendix): 
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Eq. (12) constitutes the basic formulation of our new active contour model. The 
first two terms describe the attraction of region homogeneity forces, the third term 
prevents curves from crossing over edges, and the last term is the part of force that 
depends on the intrinsic geometry, especially the curvature of the contour. Further-
more, both the last two terms are also dependent on gradient information of the im-
age, which drives the contour to the boundaries of objects. Therefore, our active con-
tour model provides a generic framework that unifies the region and boundary fea-
tures of an image for segmentation problems.  

 

Fig. 2. Four regions separated using two level set functions ( 21,φφ ) 

4   MR Image Segmentation Scheme 

In brain MR image segmentation problems, an image is often to be segmented into 
four regions: white matter (WM), grey matter (GM), cerebro-spinal fluid (CSF) and 
the background. So, in order to segment more than two objects using the active con-
tour model described in the preceding section, it is necessary to extend the model to 
multimodal or multiphase case. This can readily be achieved by following the same 
idea as that in [19]. For simplicity, we give below the energy functional only for four 
phases (Fig. 2): 



424 L. Cheng et al. 

 

  

dxdyyxgdydxyxg

dxdyHHcI

dxdyHHcI

dxdyHHcI

dxdyHHcIE

||)(),(||)(),(

))(1))((1()(

)())(1()(

))(1)(()(

)()()(),(

222111

21
2

00000

21
2

01001

21
2

10010

21
2

1101121

φφδνφφδν

φφµ

φφµ

φφµ

φφµφφ

∇+∇+

−−−+

−−+

−−+

−=

ΩΩ

Ω

Ω

Ω

Ω

           (13) 

where ,,,,, 100011011 νµµµµ and 2ν   are scaling parameters, 1φ  and 2φ are two level 

set functions, 011011 ,, ccc and 00c  are the mean values of the four regions, defined as 

follows: 

)( 011 Imeanc =  in }0),(,0),(:),{( 21 >> yxyxyx φφ  

 )( 010 Imeanc =  in }0),(,0),(:),{( 21 <> yxyxyx φφ  

 )( 001 Imeanc =  in  }0),(,0),(:),{( 21 >< yxyxyx φφ  

 )( 000 Imeanc =  in  }0),(,0),(:),{( 21 << yxyxyx φφ  

Following the same idea as in section 3, we can obtain the corresponding evolution 
equations for the two level set functions: 
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Thus, we evolve two level sets simultaneously in order to segment a brain MR image 
into four regions, WM, GM, CSF and background. 

In the numerical implementation, )(φH is the regularized Heaviside function de-

fined as: 
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επε
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Likewise, )(φδ is the regularized version of Delta function defined as: 
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Note that when 0→ε , both regularized versions converge to standard Heaviside 

function and Delta function [7]. φ∇•∇g and || φ∇ are discretized using upwind 

difference scheme [2] . The discretization of 
|| φ

φ
∇
∇•∇  is with central difference 

scheme and the temporal derivative with a forward difference scheme. 
In practice, the segmentation process is initialized with two level set functions de-

fined as the distance function from initial surfaces. In order to accelerate the conver-
gence of the algorithm, we adopted seeded initialization which was used in [15] and 
[19] as a common level set implementation technique. To be specific, these initial 
surfaces are defined as a number of cylinders centered at regularly spaced locations 
across the entire data volume. The number of cylinders is set according to the volume 
size. After convergence, we use a simple 3-D connectivity algorithm to correct for 
spurious isolated pixels in the three regions, WM, GM, and CSF. Finally, by checking 
the sign of the two level set functions, we can obtain the four segmented regions as the 
result of combination of inside and outside areas (Fig.2).When necessary, the data is 
filtered by anisotropic diffusion [25] before being fed into the segmentation algorithm. 

5   Experimental Results and Discussion 

In our experiments, we fixed νννµµµµµ ====== 2111100100 , . This leaves 

us only two free parameters ( µ andν ) to balance the influence of two forces, the 

region homogeneity and the gradient-based forces. 
To evaluate the performance of our method, we used a quantitative criterion, the 

Dice Similarity Coefficient (DSC), which has been adopted for voxel-by-voxel classi-

fication agreement [26]. For any type T, assuming that mV  denotes the set of pixels 

assigned for it by manual segmentation and aV  denotes the set of pixels assigned for 

it by the automatic segmentation algorithm, DSC is defined as follows: 

||||
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                                        (18) 

It can be considered as a special case of the widely used Kappa coefficient [27]. 
Since manual segmentations are not “ground truth”, DSC provides a reasonable way 
to evaluate automated segmentation methods.  

5.1   Validation on Real Brain MR Data 

We applied our method on 12 real brain MR data sets, which were acquired with a 1.5 
T MR imaging system (GE, Signa) with the resolution 0.94 x 1.25 x 1.5 mm (256 x 
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192 x 124 voxels). These data sets have been previously labeled through a labor-
intensive (usually 50 hours per brain) manual method by an expert. Since in this paper 
our main focus is on the cortical structures, the subcortical structures and non-brain 
tissues were removed by using manually labeled data sets as binary masks. We first 
applied our method on these data sets and then compared with expert results. The 
obtained results are shown in Fig. 3 and Table 1. Furthermore, we also compared our 
algorithm with Chan-Vese model [19] using the same data sets. The experiments 
indicated that our method usually got a DSC 2%-6% higher than that of Chan-Vese 
model.  

            
                   (a)                                          (b)                                          (c) 

Fig. 3.  Three views of the interface between GM/WM for case 7. (a) Coronal view. (b) Sagittal 
view. (c) Axial view 

Table 1. Comparison of our method with manual segmentation using DSC (%) 

Tissue Case1 2 3 4 5 6 7 8 9 10 11 12 
WM 87 86 84 86 84 85 89 84 80 87 88 79 
GM 77 76 70 74 72 78 80 74 72 79 79 71 
Average 82 81 77 80 78 82 85 79 76 83 84 75 

5.2   Discussion 

According to Zijdenbos’s statement [26] that DSC>0.7 indicates excellent segmenta-
tion, the results shown in Table.1 indicate that our method has achieved desirable 
performance in MR brain image segmentation. 

Because of the varieties of the real data sets, the average DSC of our method ranges 
from 75% to 85% in the experiment. The performance of WM segmentation is rela-
tively better than that of GM segmentation. One reason for this is that GM is usually 
much more convoluted than WM, and the evolving surfaces have difficulty in moving 
into extremely narrow sulcus (1-2 pixels wide). Another reason is that GM usually 
has a much smaller area than WM, and misclassification of only one pixel has a much 
greater influence on GM segmentation than WM segmentation. Finally, labeling of 
MR data can also bear some error because accurate localization of anatomical struc-
tures is difficult even for an expert. 
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Although our method is specifically designed to be valid for brain MR image seg-
mentation, it remains versatile. Unlike other specific techniques, for example [6], our 
technique does not need any geometric constraints; nor does it make use of priori 
shape information [11]. So, our segmentation method can be used for a wide variety 
of structures and modalities. 

6   Conclusion and Future Work 

Starting from the original Mumford-Shah functional, we have reformulated the latter 
using level set theory. In particular, we have introduced a weighted length term in the 
Mumford-Shah functional, thus allowing for incorporating gradient information in the 
Mumford-Shah model. The proposed active contour model is particularly suitable for 
brain MR image segmentation problems, and bears all the advantages of a parametric 
independent active contour. By driving two level set functions through the use of both 
region and boundary information, we have achieved a good segmentation of brain MR 
volumes into four regions, white matter, grey matter, cerebro-spinal fluid and the 
background. 

In order to keep the consistency of mathematical formulation with the original 
Mumford-Shah functional, we did not include some possible modifications which 
may improve the performance of the proposed method. For example, in [28], the 
variance is considered in order to fit the Gaussian intensity distribution. In [29], the 
authors introduced a multiplicative gain field to Mumford-Shah functional which is 
adaptive to intensity inhomogeneities. These may be also incorporated in our method 
and are the subjects of future research. 
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Appendix 

We show our demonstration for bimodal case. The problem is: for the following func-
tional (A.1), the evolution equation is given by Eq. (12). 
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Proof: 

The Frechet derivative of )(φE with respect to ),( yxφ in the direction ),( yxϕ , 

which is denoted by ),( ϕφdE , can be computed as: 
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where )(' φδ  denotes the first derivative of the Delta function. 
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Applying Green’s theorem to (A.2),  
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under the natural boundary condition. 0=
∂
∂

n

φ . 

So from Schwartz inequality, it is obvious that the direction that reduces the energy 
functional most rapidly is given by: 
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Introducing an artificial time t, we get: 
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which is the same as Eq.(12). 
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Abstract. In the past, several methods based on iterative solution of
pressure-Poisson equation have been developed for measurement of pres-
sure from phase-contrast magnetic resonance (PC-MR) data. In this pa-
per, a non-iterative harmonics-based orthogonal projection method is
discussed which can keep the pressures measured based on the Navier-
Stokes equation independent of the path of integration.

The gradient of pressure calculated with Navier-Stokes equation is ex-
panded with a series of orthogonal basis functions, and is subsequently
projected onto an integrable subspace. Before the projection step how-
ever, a scheme is devised to eliminate the discontinuity at the vessel
boundaries.

The approach was applied to velocities obtained from computa-
tional fluid dynamics (CFD) simulations of stenotic flow and compared
with pressures independently obtained by CFD. Additionally, MR ve-
locity data measured in in-vitro phantom models with different degree
of stenoses and different flow rates were used to test the algorithm and
results were compared with CFD simulations. The pressure results ob-
tained from the new method were also compared with pressures cal-
culated by an iterative solution to the pressure-Poisson equation. Ex-
periments have shown that the proposed approach is faster and is less
sensitive to noise.

1 Introduction

Phase-Contrast (PC) MR methods are widely used for measurement of blood
flow velocities [1]. PC MR imaging relies on the phase changes of moving spins
when subjected to a magnetic field gradient. In the absence of acceleration and
higher order terms, it can be shown that the accumulated phase offset is directly
proportional to the spin velocities, and all three orthogonal components of the
velocity vector for points within a prescribed image slice may be determined.
The velocity field can then be used to obtain flow patterns, wall shear stress,
vascular compliance, and blood pressure.

Previously, Urchuk et al. [2] developed a method to determine the pressure
wave from time-resolved PC MRI data. Yang et al. [3] developed a technique
for pressure calculation, which performs iterative integration of pressure gra-
dients data in two-dimensions. The method was extended by Tyszka et al. [4]
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to three-dimensions. Both of the techniques in [3] and [4] are similar in spirit
to a method developed earlier by Song et al. [5], who proposed a solution to
the pressure-Poisson equation for derivation of intraventricular blood pressures,
from ultra-fast X-ray CT. More recently, Ebbers [6] has developed a technique to
integrate pressure gradients along specific flow streamlines computed from PC
MR data, and Thompson [7] has proposed a single slice method to measurement
of intra-cardiac pressures. In previous work, we developed an iterative solution
to the pressure-Poisson equation in axisymmetric geometries for pressure mea-
surements [8]. In this paper, we propose a novel non-iterative approach to pres-
sure calculations which offers significant advantages over previously proposed
methods.

The idea is based on a method originally proposed by Frankot and Chel-
lappa [9] for solving the shape from shading problem in computer vision. In this
paper, Frankot and Chellappa’s method is extended and adapted to blood pres-
sure measurement from MR velocity fields. The approach was applied to CFD
simulated velocity fields of stenotic flow as well as in-vitro MR velocity data.
The results were compared with the pressure generated by CFD and the iterative
solution to pressure-Poisson equation, in terms of accuracy and speed.

2 Method

2.1 Calculation of Pressure Gradient

The law of ”Conservation of Momentum” [10], described by the Navier-Stokes
equations, governs the fluid motion. If the dynamic viscosity µ can be considered
a constant (a good approximation for an incompressible Newtonian Fluid), the
Navier -Stokes equations take the following form:

∇P = −ρ
∂u

∂t
− ρ(u.∇)u + µ∇2u + ρf , (1)

where u is the fluid velocity, P is the pressure, ρ is the density of fluid, and f is
the body force such as gravity which is generally ignored.

This vector equation completely describes the dynamics of Newtonian fluids
such as water and air. In axi-symmetric coordinates, one can obtain the gradient
for steady flow as P̂r = ∂P
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where u is the radial component and w is the axial component of PC velocities
and P̂r and P̂z denote the r and z components, respectively, of the gradient of
pressure as calculated from the PC data.

Due to noise, the vector field (P̂r, P̂z) is not curl-free, and therefore by defi-
nition it can not be the true gradient of the scalar pressure field.
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2.2 Non-iterative Harmonics-Based Orthogonal Projection

For the vector field (P̂r, P̂z) to be integrable, it needs to be the gradient of a
scalar function (i.e., integral is path-independent) and therefore,

∂P̂r

∂z
=

∂P̂z

∂r
(3)

The projection of ∇̂P(r, z) = (P̂r, P̂z) onto an integrable subspace involves min-
imizing the following energy function:

D =

∫∫
Ω

∣∣∣P̃r − P̂r

∣∣∣2 +
∣∣∣P̃z − P̂z

∣∣∣2 rdrdz (4)

where (P̃r, P̃z) is the projection onto the integrable subspace, that is, it minimizes
D in equation (4).

Provided a series of orthogonal integrable basis function φ(r, z, ω), with ω as
the vector (ωr, ωz) of spatial frequencies, the pressure P̃ can be expanded as:

P̃ =
∑

C̃(ω)φ(r, z, ω) (5)

and its gradient will have:

P̃r =
∑

C̃(ω)φr(r, z, ω), (6)

P̃z =
∑

C̃(ω)φz(r, z, ω). (7)

where φr = ∂φ
∂r

and φz = ∂φ
∂z

The measured gradient can also be expanded as:

P̂r =
∑

Ĉ1(ω)φr(r, z, ω), (8)

P̂z =
∑

Ĉ2(ω)φz(r, z, ω). (9)

Following Frankot and Chellappa [9], the coefficient of expanssion of the pro-
jected pressure P̃ in the integrable subspace, is related to Ĉ1 and Ĉ2 by:

C̃ =
Ĉ1Tr + Ĉ2Tz

Tr + Tz

(10)

where Tr =
∫
�3 |φr|2 rdrdz and Tz =

∫
�3 |φz|2 rdrdz.

Then P̃ can be retrieved with inverse projection of C̃. Herein, Fourier basis
functions are adopted for φ(ω) for convenience of computations using the fast
implementation of the Discrete Fourier Transform.

3 Effect of Discontinuities at Boundaries

The projection can not work in presence of pressure discontinuity. As an example,
Fig. 1 shows the pressure profile along the center of a rigid tube under steady
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Fig. 1. A pressure profile and its gradient

flow (linear pressure drop along z) with the in-flow boundary being at z = 0 and
out-flow boundary being at z = zL.

Now consider Fourier expansion of P(z) =
∑

C(ωz)e
jωzz and derivative of

P(z):
∑

jωzC(ωz)e
jωzz. One can show that because of the discontinuity at z = 0

and z = zL, Fourier expansion of dP
dz

:

dP

dz
=

∑
Cd(ωz)e

jωzz (11)

will not yield Cd(ωz) = jωzC(ωz)
There are two kinds of discontinuities that affect the harmonics-based orthog-

onal projection. First, because of the non-rectangular geometry, both the area in-
side and outside of the vessel will be included in the data to be projected. There-
fore, a discontinuity exists at the boundaries of blood vessel {(r, z)|r = rb(z)}
(rb(z) is the radial coordinate of the boundary point at z; see Figure 2). Another
discontinuity exists at locations r = 0, r = rL, z = 0, and z = zL (Figure 2)
since the Discrete Fourier Transform assumes that the data is periodic.

For the discontinuities across the vascular boundary, the gradient components
were set as follows:

P̂r(r, z) =

{
P̂r(rb, z) if rb(z) < r ≤ rL

P̂r(r, z) if r ≤ rb(z)
(12)

P̂z(r, z) =

{
P̂z(rb, z) if rb(z) < r ≤ rL

P̂z(r, z) if r ≤ rb(z)
(13)

To keep continuity in the periodic extension, a symmetric extension of pres-
sure can be adopted:

P̂(r, z) = P̂(r,−z) = P̂(−r, z) = P̂(−r,−z)

z=z 

P 

P 

P(z)=−az+P

P 
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z=z 

−a 

dP/dz 
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Fig. 2. Illustration of stenotic flow in axisymmetric coordinate system and solution
to the discontinuity problem at boundaries. The figure in bold illustrates a physical
axi-symmetric vessel phantom with 0 ≤ r ≤ rb(z) and 0 ≤ z ≤ zL

which means that the gradient components adhere to:

P̂r(r, z) = P̂r(r,−z) = −P̂r(−r, z) = −P̂r(−r,−z),

P̂z(r, z) = −P̂r(r,−z) = P̂z(−r, z) = −P̂z(−r,−z)

for all r ∈ [0, rL], z ∈ [0, zL]
The process of harmonics-based orthogonal projection is then applied to

∇̂P(r, z), r ∈ [−rL, rL], z ∈ [−zL, zL], as shown in Fig. 2.

4 Experiments

4.1 Flow Phantom

In order to study the pressure changes in blood flow across stenoses, we have
studied flow patterns in in-vitro models. Three axi-symmetric models, which
mimic 50, 75 and 90 percent area stenoses in larger vessels, were manufactured
in house and were used to acquire velocity information using magnetic resonance
(MR) imaging techniques.

This vascular pathology was modeled as a symmetric spindle-shaped narrow-
ing in a rigid pipe with straight entrance and exit tubes. A 1.5 m long straight
rigid acrylic tube was placed upstream of the test section to ensure a fully de-
veloped laminar flow (Poiseuille flow) at the entrance of the model.

Figure 3 shows a schematic diagram of the flow apparatus including the
stenosis test section. The dimensions L0, L1, H, and RS , in Fig. 3 are 150 cm,
20 cm, 8 cm, and 0.95 cm respectively.
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(z) 
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z=−z L 
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Fig. 3. Schematic diagram of the flow apparatus, including the test section, with ma-
jor features of the flow loop used in the in vitro MR experiments. The flow simulator
is a positive displacement pump with a computer-controlled system that can produce
steady and pulsatile flows. Rigid tubing is placed upstream of the test section to ensure
an undisturbed flow at the entrance of model. The water bath enclosure is a cylindrical
reservoir that holds the model inside, and is used to satisfy the minimum load require-
ment of the scanner. The water bath enclosure sits inside a head coil during the MRI
experiment. The replaceble concentric stenosis models are made from clear acrylic with
different dimensions

4.2 MRI

After purging the system of air bubbles from the flow circuit shown in Fig. 3, a
constant flow rate was driven through the flow system by a computer controlled
UHDC flow simulator (Shelley Medical Imaging Technologies, London, Ontario,
Canada). The working fluid employed was the Shelley blood mimicking fluid,
which mimics the MR relaxation properties of the blood (T1 = 1300 ms and T2

= 185 ms at 1.5 Tesla). It has a viscosity of 0.00255 kg/(m.s) (2.55 centi-poise),
slightly lower than the normal blood.

The test section was placed in a head coil inside a 1.5T MR imaging system
(Magnetom Symphony, Siemens Medical Systems, Erlangen, Germany). Imaging
parameters were as follows: slice orientation = coronal, number of slices = 1, slice
thickness = 2.0 mm, in-plane pixel size = 0.1172 cm, flip angle = 20 degree, 7.1
ms < TE < 8.5 ms, TR = 40 ms, field of view = 300 mm, and number of signal
averages = 32. Venc was set to different values in the axial and radial directions.
Its value depended upon the specific phantom and flow rate which is given in
Table 1. Some typical images are shown in Fig. 4.

4.3 Experimental Results

Comparison with CFD To validate the pressures calculated with the non-
iterative harmonics-based orthogonal projection method, the CFD code FLU-
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Fig. 4. Typical axial images of the three velocity components in the 90% area stenosis
model. (a) u (right-left) encoded. (b) v (anterior-posterior) encoded. (c) w (superior-
inferior) encoded. (d) Coronal image containing the axis of symmetry for the same
model, displaying w (superior-inferior) encoded velocities. The axial images were ac-
quired at the center of the stenosis

Table 1. In the in-vitro phantom experiments, Venc (cm/s) was set to different values
in the axial and the radial directions

Stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s
Radial Axial Radial Axial Radial Axial

50% 4 12 4 18 5 22

75% 5 22 5 30 7 40

90% 7 50 11 70 16 90

ENT 6 (Fluent Inc., Lebanon, NH) was used to perform simulation for laminar,
steady flow of a blood mimicking fluid (density 1.03 g/cm3 and viscosity 2.5
centi-poise), in axisymmetric phantom geometries employed in PC-MRI experi-
ments. FLUENT’s output included velocity components as well as pressure maps.
To validate PC-MRI based pressure calculations, the velocity field produced by
FLUENT was used independently by our program to calculate pressure, P̃, which
was then compared with the pressure obtained from FLUENT, Pf .
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Table 2. RError of the AC component of pressure calculated with non-iterative
harmonics-based orthogonal projection, P̃, based on velocities simulated using FLU-
ENT, when compared with pressure independently generated by FLUENT, Pf

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 3.24% 5.10% 6.31%

75% 4.12% 5.26% 5.95%

90% 6.79% 7.26% 7.53%

Table 3. CPU Time (in seconds) of the non-iterative harmonics-based orthogonal
projection method when applied to the FLUENT simulated velocities, running on a
SUN Ultra SPARC 10 workstation

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 3.30 3.23 3.23

75% 4.25 4.23 3.25

90% 3.25 3.27 3.26

Table 4. RError of the AC component pressure calculated with iterative solution to
Pressure-Poisson equation, based on the same velocities simulated by FLUENT, when
compared with Pf

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 7.13% 4.29% 3.71%

75% 10.68% 10.60% 9.60%

90% 5.11% 7.55% 8.92%

To estimate error, a normalized error measure was adopted:

RError =

√∫
Ω

(P̃ − Pf)2rdrdz∫
Ω

P2
f rdrdz

(14)

The results are given in Table 2 and 3.
For comparison, the relative RMS error of pressures calculated with the iter-

ative solution to pressure-Poisson equation discussed in [8] using the same input
velocities is presented in Table 4. The CPU times for arriving at solutions are
given in Table 5.

In these two tests, as well as in the following tests, the RErrors were measured
between the AC component of the calculated pressures and the AC component
of pressures independently generated by FLUENT; all DC components were
omitted. The results are for the flow region from z = -4 cm to z = 18 cm (z = 0
is the center of the stenosis). The results indicate that on average, some gains in
accuracy are obtained; however, computational times are dramatically reduced
when using the proposed non-iterative harmonics-based orthogonal projection
method.
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Table 5. CPU Time (in seconds) of the iterative solution to pressure-Poisson equation
when applied to the velocity data simulated with FLUENT, and running on the same
workstation

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 7.91 10.81 13.87

75% 7.18 5.93 5.82

90% 154.3 154.5 154.3

Table 6. Comparison of RErrors when using the non-iterative and iterative approach
to pressure calculation from CFD velocity data corrupted by additive Gaussian noise
for the case of 90% stenosis and flow rate = 20ml/s. For results in this table, a pre-filter
was first applied to the velocity data before pressure calculation

σϕ RError of non-iterative method RError of iterative method

0.02 15.41% 16.93%

0.04 15.29% 17.88%

0.06 15.84% 19.95%

0.08 17.01% 22.98%

Table 7. Comparison of RErrors when using the non-iterative and iterative approach
to pressure calculation from CFD velocity data corrupted by additive Gaussian noise
for the case of 90% stenosis and flow rate = 20ml/s. For results in this table, no filtering
was performed before pressure calculation. N/A (Not Available) = the program did
not converge

σϕ RError of non-iterative method RError of iterative method

0.02 28.53% 119.98%

0.04 49.47% 299.72%

0.06 71.42% N/A

0.08 95.15% N/A

Effect of Noise. Since the pressure is computed based on Eq. (2), a nonlin-
ear differential equation in velocity components, the noise on velocity plays an
important role in accurate pressure computation.

In PC-MRI, velocity u is proportional to phase ϕ. According to [11], if both
components of the acquired MR signal are Gaussian-distributed with variance
σ2, and SNR (signal to noise ratio) of the magnitude R is relatively large, noise
on the phase ϕ can be well simulated by a Gaussian distribution with variance
σ2

ϕ. Then the noise on PC velocities is also Gaussian and its standard deviation
is:

σv =
Venc

π
σϕ (15)

Different values of σϕ were used to add noise to the velocity field produced
by FLUENT. In the first test, a pre-filter was adopted, and in the second test no
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filtering was performed. The tests were carried out on all nine combinations of
the three models (50%, 75%, 90% stenosis) and three flow rates (10ml/s, 15ml/s,
20ml/s). In Tables 6 and 7 the results for 90% stenosis and flow rate at 20ml/s
are given.

The results demonstrate that with weak noise, even without a pre-filter, the
proposed non-iterative harmonics-based orthogonal projection method can still
work, while the iterative solution to pressure-Poisson equation completely fails.
In reality, we have observed that in most cases where there is significant noise,
the iterative method will not even converge without a pre-filter.

It should be noted that the filter used here was not optimized. However, since
the same filter was applied to velocities, the comparisons are valid.

In vitro Results. The pressure fields calculated from in-vitro PC-MR veloc-
ity data were compared with Pf independently obtained by FLUENT. The

Fig. 5. Comparison of FLUENT generated pressures (thin lines) with those calculated
with non-iterative harmonics-based orthogonal projection using PC-MR velocity data
(thick lines) and iterative solution to Pressure-Poisson equation (dashed lines) also
from the same PC-MR velocity data
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Table 8. CPU Time (in seconds) of the non-iterative harmonics-based orthogonal
projection method when applied to in-vitro PC-MR velocity data

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 2.89 2.88 2.93

75% 2.62 2.64 2.67

90% 2.66 2.69 2.66

Table 9. CPU Time (in seconds) of the iterative solution to pressure-Poisson equation
when applied to the same PC-MR velocity data

stenosis models flow rate = 10ml/s flow rate = 15ml/s flow rate = 20ml/s

50% 40.21 76.97 26.94

75% 46.45 79.27 63.67

90% 60.63 155.65 95.92

comparisons of pressure along axis of symmetry are plotted in Fig. 5, and the
CPU time for the computations are listed in Tables 8 and 9. For these tests, no
filtering was performed before pressure calculations.

4.4 Discussion

If one compares the in-vitro results and the CFD validations, one concludes
that the CPU time for the iterative solution to the pressure-Poisson equation
is significantly higher than the proposed method. In fact, in the case of 90%
stenosis phantom, the convergence rate of the iterative solution is far slower
than in the other cases. The CPU time of the non-iterative harmonics-based
orthogonal projection method is almost directly proportional to the size of the
input data, whereas that of the iterative approach is determined primarily by
noise level.

5 Conclusion

In this paper, a non-iterative harmonics-based orthogonal projection approach
was proposed for pressure measurement from PC-MR velocity data in 3-D ax-
isymmetric geometries. With validations performed on CFD simulated velocity
data and PC-MRI velocity data, the method shows slight gain in accuracy in
comparison to the iterative solution to pressure-Poisson equation. At the same
time, it is much faster and is far less sensitive to noise (when using no pre-filter).
It is expected that the gains in accuracy and compute time will be more sub-
stantial when dealing with 3-D geometries and pulsatile flows. This is the topic
for current research.
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Abstract. In this paper, we propose an original and efficient tree match-
ing algorithm for intra-patient hepatic vascular system registration. Vas-
cular systems are segmented from CT-scan images acquired at different
times, and then modeled as trees. The goal of this algorithm is to find
common bifurcations (nodes) and vessels (edges) in both trees.

Starting from the tree root, edges and nodes are iteratively matched.
The algorithm works on a set of match solutions that are updated to
keep the best matches thanks to a quality criterion. It is robust against
topological modifications due to segmentation failures and against strong
deformations.

Finally, this algorithm is validated on a large synthetic database
containing cases with various deformation and segmentation problems.

1 Introduction

Motivations: Liver Tumors Follow-Up. The main purpose of our work is
to make an intra-patient follow-up of tumors (see our previous work [3]). This
approach is motivated by the fact that the liver is a highly deformable organ and
that tumors evolution study needs the determination of this volumic deforma-
tion. Now it is well-known that the most reliable landmarks to estimate deforma-
tions sustained by the liver are provided by its vascular network [2, 6, 12, 7, 10].

Previous Works. Related works propose algorithms to match and/or register
vascular systems (brain, liver and, in a similar manner, lung airways). Generally,
veins are modeled as graphs computed from segmented images and skeletons [11].
Some authors use some tree structure notions in their algorithms to register a
tree with an image [2] or two trees [6]. Other approaches really match structures
(nodes and vessels), but use general graph matching methods [12, 7, 8] or specific
methods like subtree isomorphism [10] which do not take segmentation problems
into account.

The oriented tree matching problem is more specific than graph matching
because the structure is oriented and the path that connects two nodes is unique.
Moreover, it cannot be considered as a oriented subtree isomorphism problem

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 443–455, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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because of segmentation problems. Indeed, the segmentation process can miss
some vessels (edges). This implies a (virtual) pruning on both trees (for example
an edge in a tree could be represented by several successive edges on the other
tree) and thus the tree topology differs between acquisitions.

In our previous work [3], vascular systems are modeled as a tree and then tree
vertices are matched together without taking possible segmentation errors into
account. The previous algorithm works well on most branches but suffers from
a lack of robustness in complex (but real) cases, especially on small branches
where segmentation problems are important.

Proposal. The new algorithm proposed in this paper does not to focus on the
best solution (given two edge sets to match) like in our previous algorithm but
on the most likely solutions which are updated along the process. The remainder
of this paper is organized as follows. The first part presents our iterative oriented
tree matching. We describe how we generate solutions at each step of the tree
according to local criteria, and how we select the most likely ones with a global
quality criterion.

In the second part, an evaluation of our algorithm on large database shows
that in standard cases (20% of pruning or less), our algorithm matches 90% of
nodes and that even in worst, cases 75% of matches are correct.

2 A New Iterative Tree Matching Technique

Skeletons computed from segmented vascular systems can be represented as an
oriented tree. Thus, the proposed algorithm is a tree matching. The orientation
symbolizes blood circulation flow. Nodes represent bifurcations and edges corre-
spond to vessels between two bifurcations. And in our algorithm, some geometric
vessel attributes are used (3D positions, radius, vessel path).

Vascular trees segmented for a patient follow-up represent the same vascular
system; our goal is to find common bifurcations and registering them. However,
their topology and 3D positions may differ due to segmentation errors and defor-
mations applied on them. The main challenge consists in using tree topology to
detect deformations, and in parallel, geometric informations to detect topology
problems. In the following, we assume that we work on standard patient case,
thus that tree roots are known (detection of vascular system entrance) and that
tree deformations are small.

In next sections, we explain our tree matching. Firstly, we focus on a global
view of the algorithm framework. Then, we detail the solution creations and the
quality criteria that select at each step the most likely solutions.

2.1 Notations

In this paper, we use the notions of oriented tree [1]. We work on a tree noted
T = (V,E, r) where V represents the set of vertices, E ⊂ V × V the set of edges
and r the root. We note ‖T‖ the number of vertices of T . For a node u in a
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tree T , T (u) denotes the subtree of T induced from u. For a vertex v, sons(v)
denotes the set of their child vertices, father(v) its father vertex, out(v) the set
of out-edges of v, and in(v) its in-edge. For an oriented edge e = (v, u), we define
src(e) = v and tgt(e) = u. For two vertices v, w ∈ V , P (v, w) is the unique path
in T linking v to w. Let e be an edge and v its target vertex, DVL(e) = {u/u ∈
vertices of T (v), ‖P (v, u)‖ ≤ L} denotes the descendant vertex set composed
of L-first depth level vertices in subtree induced from e. For a vertex v, T+(v)
denote the subtree T (v) to which father(v) is added to the vertex set and in(v)
to the edge set. More generally, A being a finite set, Ai is the ith element of
A, and |A| = card(A). So A = {Ai : 1 ≤ i ≤ |A|}. We introduce also some
notations on functions. Bk

A,B is the set of bijections from subset of k elements of
A to subset of k elements of B. For f ∈ Bk

A,B , Df (A) (resp. If (B)) is the domain
(resp. the image) of f . So f(Df (A)) = If (B) and |Df (A))| = |If (B)| = k

2.2 Framework of the Algorithm

Our algorithm searches for the best tree matching between T1 = (V1, E1, r1) and
T2 = (V2, E2, r2) starting from roots (r1 match with r2). Since possibilities are
high, we propose to generate and select the most likely solutions. The algorithm
starts by studying the root match and updates selected solutions when it explores
and finds other possible matches in both trees. This means that some solutions
selected at a process step can be eliminated later if they become unlikely. The
likelihood of solutions is evaluated at each tree depth step with quality match
criteria.

Our algorithm studies simultaneously N likely solutions (S0
i . . . SN

i ), i being
the depth step. S0

i contains a set of matched vertices which descendant vertices
are not studied yet. To continue building the final solution (all nodes analysed
in both trees), the algorithm have to explore, one by one, these vertex matches.
The exploration of one of them generates new solutions more complete noted
Sj

i+1. Our algorithm progresses in solution exploration from Si to Sj
i+1 when a

vertex match is analysed. Solutions are studied and developed simultaneously to
be able to compare themselves.

In particular, the figure 1 shows the creation of the most likely solution Si
1

of the first tree depth step of process by exploring the root vertex match of the
initial solution S0. This figure details the constuction of match solutions from an
initial vertex in S0 (root match between r1 and r2). The first process step (1.a)
consists in generating all out-edge match set hypotheses, noted HEi (two hy-
potheses are shown among all: HEA and HEB). However, the number of solution
is too high to be explored and a local quality criterion (cost(HEi)) is computed
to keep only the n best hypotheses (1.b). Then, we study each hypothesis to
find next vertex match associated with an out-edge match. The figure shows the
vertex match research of one out-edge match set ((a1, a2), (b1, b2)) corresponding
to the hypothesis HEA.

The second process step (2.a) consists in generating path match hypotheses,
noted nHP i, from the nth out-edge match (for instance, two hypotheses are
shown, 1HP 1 and 1HP 2 corresponding to the first out-edge match (a1, a2)).
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Fig. 1. This figure details the constuction of solutions on a tree depth step

Once again, the number of solution is too high to be explored and a local quality
criterion (cost(1HP i)) is computed to keep only the m best hypotheses (2.b).
When the algorithm finishes to compute all best path match hypotheses for each
out-edge match, we test all possible permutations and reassemble them (3.a) in
local solutions noted SLi,j

k where k is the kth out-edge match set hypothesis, i
and j the path match chosen for the first out-edge matches. Once again, only
the best of them are selected (3.b). In (4.a) and (4.b), we build and select all
best solutions resulting of different out-edge matches set hypotheses and path
match hypotheses. A global solution example possible is shown on the right in
the figure and is noted S0

1 . The algorithm restart this process from one of vertex
matches included in different solutions Sl

1.
In next subsections, we detail how we generate out-edge match set hypotheses

and path match hypotheses and how we select the best most likely one using
either local or global quality criterion.

2.3 Hypothesis Generation

Step I: Out-Edge Match Set Hypothesis. This step consists in generating
out-edge match possibilities from a vertex match, noted (v1, v2), to continue
the match of T1(v1) and T2(v2). Two possiblilities are shown on figure 2. Let
O1 = out(v1) and O2 = out(v2). An out-edge match set hypothesis is noted
HE(v1, v2). An hypothesis HEi(v1, v2) is represented by an out-edge match set
Ef (v1, v2) which characterizes a match between k elements of O1 with k elements
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Fig. 2. Illlustration of a creation of out-edge match set hypotheses from a vertex match.
The left figure resumes the vertices match between v1 and v2. The others show two
possible solutions, in which an out-edge match set is chosen for each solution({E1

f1
} for

HE1 and {E1

f2
, E2

f2
} for HE2). Hypotheses suppose that some out-edges do not have

their equivalent in other trees and thus that the corresponding subtree is not matched
({φ1

1, φ2

1, φ1

2} for HE1 and {φ1

1} for HE2)

of O2. Ef (v1, v2) = {(e, f(e))/e ∈ Df (O1), f ∈ Bk
O1,O2

}. This out-edge match set
assumes implicitly that some out-edges of O1 (respectively O2) noted Df (O1)c

(respectively If (O2)c) have no association. Thus, some subtrees have no match in
the other tree. A cost will be attributed to them to be able to compare hypotheses
with or without lost subtrees. Thus these lost subtrees must be retained in the
solution (this was deliberately omitted in the figure 1 explications for clarity
reason). Let φ(v,OE) = {T+(u)/∀(v, u) ∈ OE} be the subtree induced by a
vertex and a subset OE of its out-edges. We note Omin = min(|O1|, |O2|), then
possible hypotheses are given by:

HE(v1, v2) =
⋃

k=0...Omin

⋃
f∈Bk

O1,O2

{
(Ef (v1, v2), φ(v1, Df (O1)c), φ(v2, If (O2)c)

}
Step II: Path Match Hypothesis. This step consists in generating path
match possiblilities from an out-edge match, noted (e1, e2). Tree possiblilities
are shown on figure 3. We assume that an edge e1 ∈ O1 and an edge e2 ∈ O2

match (representing the same starting vessel). the algorithm must find the next
common bifurcation in subtrees T1(tgt(e1)) and T2(tgt(e2)) closest to v1 and v2.
Due to segmentation defects, tgt(e1) and tgt(e2) do not necessarily represent
the same bifurcation (this case happens frequently when branches are small).
We search a vertex match in subtrees and not only between tgt(e1) and tgt(e2)
(Fig. 3).

The research of next vertex match is restricted on the L first level of subtrees
T1(tgt(e1)) and T2(tgt(e2)). Thus, we search the best vertex match between
DVL(e1) and DVL(e2). In our algorithm, L is empirically choosen and is generally
fixed 3.

Now, let (w1, w2) be a vertex match with w1 ∈ DVL(e1) and w2 ∈ DVL(e2).
w1 does not necessarily equal tgt(e1) and this vertex match defines a path match
P(v1, w1, v2, w2) = (P (v1, w1), P (v2, w2)). This match of pathes implies that
some subtrees starting from them are not matched. We note this forest of no
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Fig. 3. Figures show the creation of path match hypotheses from an out-edge match.
The different depths L are shown on the left figure and three solutions are illustrated

match subtrees ψ(v, w) = {T+(u), u ∈ sons(k), k ∈ VP , T+(u) ∩ P (v, w) = {k}}
where VP = {vertices of P (v, w)}\{v, w}. if we note v1 = src(e1) and v2 =
src(e2), the set of possible path matches is defined as:

HP (e1, e2) =
⋃

w1∈DVL(e1)

⋃
w2∈DVL(e2)

{P(v1, w1, v2, w2), ψ(v1, w1), ψ(v2, w2)
}

2.4 Hypotheses Selection

In the previous section, we have seen how to generate all out-edge match set
hypotheses and path match hypotheses. matches. However, all possible tree
matching solutions cannot be explored due to huge combinatorial possibilities:
Selections must be made.

Therefore some cost functions are computed to determine the quality of
matches. In our algorithm, two types of cost are computed: a global cost to
determine the solution quality Si(cost(Si)), and two local costs to determine
the quality of each out-edge match set hypothesis HEi and each path match
hypotheses HP i (Fig. 1).We give here general expression of the cost functions.
Each term of these cost functions are detailed in the next paragraph.

We define the two following local costs that select the most likely HEi and
the most likely HP i.

cost(HEi(v1, v2)) =
∑N1

j=1 cost(Ej
f (v1, v2)) +

∑N2
j=1 cost(φj(v1, Df (O1)c))

+
∑N3

j=1 cost(φj(v2, If (O2)c))
cost(HP i(e1, e2)) = cost(P(v1, w1, v2, , w2)) +

∑N4
j=1 cost(ψj(v1, w1))

+
∑N5

j=1 cost(ψj(v2, w2))

The global cost expression selects the most likely solutions Si. If algorithm
explores a vertex match (v1, v2) of a current solution Si, we obtain new solutions
Sl

i+1 (for example Sl
i+1 = Si

⋃
e∈Df (O1)

HPT (e, f(e)) where T is different for each

out-edge match). Sl
i+1 is caracterised by an out-edge match set from v1 and v2

and a path match for each out-edge match. The value of solution cost is given by:
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cost(Sl
i+1) =

∑
e∈Df (O1)

cost(HPT (e, f(e)) +
∑N2

j=1 cost(φj(v1, Df (O1)c))

+
∑N3

j=1 cost(φj(v2, If (O2)c)) + cost(Si)

In these equations, Ni represents the different set cardinals. Note that there
are three kinds of costs: a cost between two out-edges, a cost between two paths
and a cost for subtrees which have no correspondence in the other tree.

Physical Cost Used: We define here the basic functions that allow to com-
pare the geometric properties of match solutions (vertex or edge). The cost CE

represents the distance between extremity edges, CR represents the radius differ-
ence along edges (vessels), COE represents the difference between the out-edges
number from each extremity edge, CS represents the scale between edges and
CA represents the angle between edges. These costs are normalized thanks to a
truncated quadratic robust estimator ρ and its empirically chosen parameter α
[5]. The perfect match is symbolised by a zero cost.

We remind that an edge e represents a vessel between two bifurcations. In
the following cost formules, e(t) is the 3D parametric curve representation of
the vessel, r(t) represents the vessel’s radius along the curve and l is the curve’s
length. Thus by default, e(t) (respectively r(t)) is defined between t ∈ [0, l] where
e(0) and e(l) represent the vessel extremities. We note e the vector between two
points e(0) and e(l). For each cost comparison between e1 and e2, we supposed
that e1(0) = e2(0).

CE(e1, e2) = ρ
(‖e1(l1) − e2(l2)‖, αE

)

CR(e1, e2) = ρ
(∫ 1

0

‖r1(s × l1) − r2(s × l2)‖ds, αR

)
CS(e1, e2) = ρ

(
1 − l1

l2
, αS

)
, if l1 < l2

CA(e1, e2) = ρ
(
1 − ‖e1.e2‖

‖e1‖‖e2‖ , αA

)

ρ(v, α) =

{( v

α

)2 if |v| < |α|
1

Out Edge Match Cost: cost(E i
f (v1, v2)) compare edge orientation and radius.

cost(E i
f (v1, v2)) =

1
γ1 + γ2

(γ1CA(e′1, e
′
2) + γ2CR(e′1, e

′
2))

with e′1(t) (respectively e′2(t)) is e1(t) (e2(t)) defined on [0,min(l1, l2)] and where
γ1 and γ2 are weights used to favor robust characteristics in the algorithm.
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Path Match Cost: In cost(P(v1, w1, v2, w2)), weights are added to favor path
matches with same small length, same orientation and same vessel radius and
vessel extremities.

cost(P(v1, v2, w1, w2)) =
1

β1 + . . . + β4

(
β1CA(e1, e2) + β2CR(e1, e2)+

β3CS(e1, e2) + β4CE(e1, e2)
)

+ min
i

cost(HEi(w1, w2))

with e1 = P (v1, w1) and e2 = P (v2, w2). This cost is composed of a local cost
representing the current edge comparison and the cost of the next best out-edge
matches from current extremity edges. This last term allows the algorithm to be
more efficient and robust because an information is added on the vessel extremity
similarity.

No Match Tree Cost: We have previously considered a cost for no inclu-
sion subtrees in the match solution represented by φi(u,E) and ψj(u,w). Each
subtree T+(v) is defined by a vertex v. Cost computation is the same in both
cases and is noted costLost(v). We highlight that choosing the weight of this
cost is difficult and depends on other match costs. If this cost is too high, then
all nodes are matched (we forbid a subtree lost and then the algorithm is not
robust against segmentation problem). Conversely, if it is too low, the algorithm
does not select matches (the algorithm looses all branches). Hence a minimum
cost costmin is introduced.

costLost(v) = R′(v) +
∑

wk∈sons(v)

costLost(wk)

with: R(v) =
1

µ1 + µ2

(
µ1

‖T (v)‖
‖T‖ + µ2

∫ 1

0

‖r(s) − Rmin‖ds
)

R′(v) = max(R(v), costmin)

the constant Rmin corresponds to minimum radius to detect vessels in images.
This cost is composed of two terms, the first one give us an information on the
subtree surface to avoid loosing big subtree, the second one is an information
on vesssel radius to avoid loosing large vessel (vessels with large radius are not
concerned by segmentation problem and thus can be found in the other tree)

3 Experiments and Validation

3.1 Virtual Patient Creations

To test and validate our algorithm, we have worked on a liver and its hepatic
vascular system. To work on a complex vascular system (380 nodes), the Visible
Man (cf. The Visible Human Project of NLM) has been segmented. The matching
is harder (more bifurcations) than for a real patient case. This leads to better
tests to evaluate the algorithm robustness.
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Fig. 4. The surgery simulator prototype is used to simulate liver and vascular system
deformations thanks to a volumic model. [Left] Surfacic model [Center] Volumic
model [Right] Volumic model and portal vascular system

Fig. 5. The visible Man’s portal vascular system is randomly pruned to loose approx-
imately 20%, 30% and 40% of length in both trees. Lost branches appear in green

To simulate deformations, we have used the minimally invasive hepatic
surgery simulator prototype developed at INRIA [9]. The goal of this simula-
tor is to provide a realistic training framework to learn laparoscopic gestures.
For this paper, we used it only to simulate deformations of the liver and its
vascular system (Fig. 4). This simulator uses complex biomechanical models,
based on linear elasticity and finite element theory, which include anisotropic
deformations.

To simulate segmentation errors on our phantom, we have pruned random
tree branches. The probability to loose small vessels is greater than to loose large
ones (Fig. 5).

To test the algorithm, a database of 600 patient follow-up cases has been
generated from 2 types of deformations : a small (mean distance between com-
mun points = 9 mm) and a strong (30mm) and 5 pruning steps (0,10,20,30,40
%) with on each step, 20 randomly generated prunings (Tab. 1 and 2).

3.2 Results on a Virtual Patient

Algorithm parameters have been chosen and fixed empirically to work more
efficiently on all these cases. These paramater choices and their different con-
sequences on the algorithm process (error, robustness, procesus time) are not
detailed here but in a future journal paper.
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Table 1. Matching results with a small deformation: Each line represents a
pruning configuration with 20 randomly computed cases. Each column shows the mean
result of these 20 cases with their magnitude. Three results are shown : the number of
common nodes (match number in the reference solution) between both pruned trees,
the sensitivity which is the number of correct found matches among the number of
solutions matches and the efficiency which is the number of correct found matches
among the number of found matches (correct and uncorrect)

% T1 pruning % T2 pruning common nodes % sensitivity % efficiency

0 0 380 ± 0 100 ± 0 100 ± 0

0 10 314 ± 7 98,7 ± 0,8 98,9 ± 0,7

0 20 242 ± 8 96,2 ± 3,1 97,5 ± 0,7

0 30 189 ± 7 92,1 ± 5,2 94,9 ± 1,5

0 40 144 ± 3 84,0 ± 5,8 90,9 ± 2,5

10 10 260 ± 9 98,5 ± 0,7 97,8 ± 1,1

10 20 203 ± 7 97,4 ± 1,0 94,7 ± 1,3

10 30 164 ± 6 94,9 ± 2,5 93,0 ± 1,5

10 40 128 ± 6 90,5 ± 6,4 89,7 ± 4,9

20 20 169 ± 8 96,2 ± 1,8 92,8 ± 1,0

20 30 135 ± 10 96,2 ± 1,7 89,9 ± 1,6

20 40 108 ± 6 90,3 ± 6,9 85,4 ± 3,3

30 30 115 ± 7 94,3 ± 3,6 87,0 ± 2,6

30 40 90 ± 6 90,8 ± 6,5 82,6 ± 3,5

40 40 71 ± 6 93,5 ± 3,2 79,5 ± 3,8

The process is fast (about 10 minutes to register 380 nodes on 1GHz PC).
Two process results are shown (Fig. 6) for a small and a strong deformation and
pruned to loose approximately 20% of surface branches in both trees. Tab. 1
and 2 show that on small deformations the algorithm is very robust (practically
all possible matches with a small standard deviation were found in the different
cases) even with large pruning. With strong deformations and large pruning, the
process is less robust (around 80%).

Results are reported in terms only of node identification. In fact, the conse-
quences of performing an incorrect connection may be much larger in a proximal
branch than peripherally. However, we noticed that most of the match errors
(incorrect node correspondences and lost branches) are localized on terminal
edges. On these nodes, the algorithm suffers from a lack of information (no sub-
tree, dense node concentrations, small vessels). This makes the matching task
harder.

To conclude, deformations and prunings (20% or less) used for these tests
correspond with standard observed real cases. For this values, experts consider
our algorithm efficient (sensitivity and similarity greater than 90%) to find a
good approximation of the 3D liver deformation.
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Table 2. Matching results with a strong deformation: see description Tab.
1. The standart deviation of cases (0-30%) and (0-40%) is very high. Our algorithm
attains its limits when we have a great difference between pruning (topology of trees
become very different) associated with a strong deformation. These configuration cases
occurre infrequently

% T1 pruning % T2 pruning common nodes % sensitivity % efficiency

0 0 380 ± 0 100 ± 0 100 ± 0

0 10 311 ± 9 97,7 ± 1,0 98,7 ± 0,6

0 20 246 ± 6 94,4 ± 0,8 95,8 ± 0,8

0 30 195 ± 10 75,1 ± 37,3 76,9 ± 35,1

0 40 147 ± 6 69,6 ± 34,5 72,3 ± 32,7

10 10 257 ± 6 95,7 ± 1,8 96,0 ± 1,3

10 20 206 ± 5 93,0 ± 2,7 92,5 ± 1,3

10 30 162 ± 7 92,9 ± 2,2 91,4 ± 1,7

10 40 128 ± 7 88,2 ± 4,5 86,5 ± 3,0

20 20 169 ± 7 92,9 ± 4,2 91,3 ± 1,1

20 30 138 ± 7 90,3 ± 4,8 87,6 ± 2,6

20 40 109 ± 6 88,9 ± 5,4 85,6 ± 2,6

30 30 114 ± 7 90,0 ± 7,3 85,6 ± 2,0

30 40 93 ± 6 91,6 ± 2,5 82,9 ± 3,6

40 40 73 ± 4 87,7 ± 5,8 78,0 ± 4,4

4 Conclusion

The purpose of this paper was to present the design of our original new robust
method to match liver vascular systems between two CT/NRI acquisitions. This
method is well adapted, fast and robust on a complex vascular system. Thanks to
the virtual database generated by the INRIA simulator, we have tested numerous
configurations.

Currently, we are working on the second step of tumor follow-up: the es-
timation of liver deformation computed from the vascular system matching.
In parallel, we have started first tests on a real patient database with very
encouraging results (Fig. 7). These results will be detailed in a future
paper.

Then, we will validate our works with surgeons on a real patient database
with the collaboration of the Strasbourg hospital and also propose a new tool
for automatic diagnosis of tumor evolution in the liver.

Acknowledgments. We thank the Strasbourg hospital and their surgeons for
providing images as well as their advice on “standard” deformations applied on
the liver. This work has benefited from the segmentation program of the vascular
system developed by the IRCAD R&D team. The realistic liver deformations are
provided by the INRIA simulator from the Epidaure project. Many thanks to
Clément Forest [4] for his assistance during the use of the simulator.
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Fig. 6. [Top] On the left, small deformation case is pruned at 20%. The center figure
shows the result of our oriented tree matching, good matches are represented by green
arrows and represent 95% of all nodes and wrong matches by red arrows. The right
figure shows the tree registration after the process. [Bottom] A strong deformation
with an equivalent pruning where the algorithm find 91% of all nodes

Fig. 7. [a]Real patient where the vascular system has been matched where vertex
matches are shown in red. [b]Deformation field computed from matches. [c,d]Tumors
before and after registration
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Abstract. This paper presents a novel non-rigid registration method. The main
contribution of the method is the modeling of the vorticity (respectively diver-
gence) of the deformation field using vortex (respectively sink and source) parti-
cles. Two parameters are associated with a particle: the vorticity (or divergence)
strength and the influence domain. This leads to a very compact representation of
vorticity and divergence fields. In addition, the optimal position of these particles
is determined using a mean shift process. 2D experiments of this method are pre-
sented and demonstrate its ability to recover evolving phenomena (MS lesions)
so as to register images from 20 patients.

1 Introduction

Non-rigid image registration is the process of estimating a non-linear geometric trans-
formation that puts two images into correspondence. Beyond rigid transformations,
non-rigid registration is needed when deformable phenomena are observed. Applica-
tion field of non-rigid registration are numerous: motion computation of beating organs
(heart), estimation of inter-subject anatomical variability (construction of anatomical at-
lases), monitoring of changes over time (evolving lesions in multiple sclerosis disease),
etc.

This is a very active field of research and numerous methods have been proposed so
far. We refer the reader for comprehensive surveys on this area [5, 7, 10, 11].

Non-rigid registration methods based on image luminance can usually be classi-
fied according to the image similarity and the deformation field regularization. Most
often, methods tend to regularize deformation fields using a Gaussian regularization
(demon’s), a first-order or second-order regularization (penalization of the deforma-
tion discontinuities) or a intrinsically regularized deformation model (B-splines defor-
mation fields for instance). These regularizations amount to zeroing the vorticity and
divergence of the deformation field. These two variables are related to the first-order
derivatives of the deformation field indeed.

However, matter apparition or dissipation lead to a divergent field, therefore we
think that this information needs to be accurately estimated in case of monitoring
anatomical changes over time. This paper presents an original 2D registration method
that overcomes this difficulty. We rely on vortex and source particles to model the de-
formation field.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 456–467, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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2 Definitions and Properties of Vector Fields

In this section, we present first known analytic results on planar vector fields. We shall
rely on them to develop an original method for fluid motion estimation.

A two-dimensional vector field w is a R2-valued map defined on a bounded set Ω of
R2. We denote it w(x) = (u(x), v(x))T , where x = (x, y) and x and y are the spatial
coordinates. Each component of the vector field will be supposed twice continuously
differentiable: u, v ∈ C2(Ω, R).

Noting ∇ = ( ∂
∂x , ∂

∂y ) the operator whose components are the partial derivatives

with respect to the coordinates x and y, we define the divergence: div w =
∂u

∂x
+

∂v

∂y
=

∇.w and the scalar vorticity of the vector field: curl w =
∂u

∂y
− ∂v

∂x
= ∇.w⊥, where

w⊥ = (−v, u) is the orthogonal counterpart of w.

The vorticity accounts for the presence of a rotating motion, while the divergence is
related to the presence of sinks or sources in the flow. A vector field whose divergence
is null at every point is called solenoidal. Similarly, a field with zero vorticity will
be called irrotational. It is well known that for irrotational fields there exists a scalar
function φ, called the velocity potential, such that w = ∇φ. Similarly, for solenoidal
fields there exists a scalar function ψ called the stream function such that w⊥ = ∇ψ.

Any continuous vector field that vanishes at infinity can be decomposed into a sum
of an irrotational component with null vorticity and a solenoidal component with null
divergence. This is called the Helmholtz Decomposition. When the null border condition
can not be imposed, an additional component, named the laminar component, which
is both irrotational and solenoidal, has to be included. The decomposition reads then:
w = wirr +wsol+wlam. In practice, an affine registration (by maximization of mutual
information [6]) is performed first, so that we can assume a null border condition at
infinity.

Substituting the two components wirr and wsol by their expressions in terms of po-
tential functions and considering the divergence and the curl of the motion field enables
to write the potential function as solution of two Poisson equations:

∆φ = divwirr and ∆ψ = −curlwsol, (1)

where ∆ denotes the Laplacian operator. These solutions may be expressed as convolu-
tion products:

φ =
∫

G(x − u)div wirr(u)du = G ⊗ div wirr, (2)

ψ = − ∫ G(x − u)curl wsol(u)du = −G ⊗ curl wsol, (3)

where G is the Green’s function associated to the two-dimensional Laplacian:

G(x) =
1
2π

ln(|x|). (4)

As the vector fields wirr and wsol are respectively the gradient and the orthogonal
gradient of the potential functions φ and ψ, equation (2-3) may be rewritten as:

wirr = K ⊗ div wirr and wsol = −K⊥ ⊗ curl wsol, (5)
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where K denotes the gradient of the Green kernel. The second equation of (5) is known
as the Bio-Savart integral. These two equations state that the solenoidal and the irrota-
tional components (and consequently the whole vector field) may be recovered through
a convolution product knowing the divergence and the vorticity of the velocity field.

3 Vortex Particles

The idea of vortex particles methods [1, 4] consists in approximating the vorticity of a
field w by a discrete sum of delta functions located at point vortices zi:

curl w(x) ≈
n∑

i=0

γiδ(x − zi), (6)

with δ denotes the Dirac measure.
This discretization of the vorticity into a limited number of elements enables to

evaluate the velocity field directly from the Bio-Savart integral (equ. 5). Due to the sin-
gularity of the Green kernel gradient, K, the induced field develops 1

r -type singularities,
where r is the distance to the point vortices.

These singularities can be removed by smoothing the Dirac measure with a cutt-off
or blob function, leading to a smoothed version of K. Let fε be such a blob function
scaled by a parameter ε: fε(x) = 1

ε2 f(x

ε ). The smoothed kernel is defined as Kε =
K ⊗ fε. The amount of smoothing is determined by the value of ε. If ε → 0, fε tends to
the Dirac function and Kε → K.

In the same way, for the divergence map a source particles representation reads then:

div w(x) ≈
n∑

i=0

γifεi
(x − zi), (7)

where zi denotes the center of each basis function fεi
, the coefficient γi is the strength

associated to the particle i, and εi represents its influence domain. These parameters are
free to vary from a function to another.

4 Registration Method Using Vortex Particles

In this section we present how a vortex and source particles representation may be used
in conjunction with an appropriate cost function to design the registration method.

4.1 Deformation Modeling

As we mentioned above, the discretization of the vorticity map with vortex particles,
along with a Gaussian smoothing of the Dirac measure leads through Bio-Savart inte-
gral to the following representation of the solenoidal component of the motion field:

wsol(x) ≈
nsol∑
i=0

γsol
i K⊥ ⊗ fεsol

i
(zsol

i − x) =
nsol∑
i=0

γsol
i K⊥

εsol
i

(zsol
i − x), (8)
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where K⊥
εi

is a new kernel function obtained by convolving the orthogonal gradient
of the Green kernel with the blob function. Obviously, a similar representation of the
irrotational component can be obtained using source particles.

As a result, we exhibit an approximation of the complete motion field as weighted
sums of basis functions defined by their centers location and their respective spatial
influence. A Gaussian smoothing allows to derive analytically the associated smoothed
kernel Kε. Thus, the final expressions of the motion field components are:

wsol(x) =
nsol∑
i=0

γsol
i

(zsol
i − x)⊥

2π|x − zsol
i |2 (1 − e

− |x−zsol
i |2

εsol
i

2
), (9)

and
wirr(x) =

nirr∑
i=0

γirr
i

x − zirr
i

2π|x − zirr
i |2 (1 − e

− |x−zirr
i |2

εirr
i

2
). (10)

This representation will be incorporated within a spatio-temporal variation model of the
luminance function in order to perform the registration.

4.2 Brightness Variation Model

The linearized version of the usual brightness consistency equation (dI
dt = 0) is used.

This data model reads:

∇I(x, t)T .w(x) + It(x, t) = 0, (11)

where ∇I(x, t) is the spatial gradient of the luminance function I and It(x, t) the tem-
poral gradient.

Because of the linearization, this optical flow constraint is not valid in cases of
large displacements. The use of a multiresolution scheme will insure the validity of the
equation.

Considering this constraint holds almost everywhere on the whole image plane leads
to seek a motion field w(x) minimizing the following cost function:

F(I,w) =
∫
Ω

[∇I(x, t)T .w(x) + It(x, t)
]2

dx. (12)

We have chosen to embed the vortex deformation model into the brightness con-
stancy assumption. However, this is not restrictive and the deformation model could be
used with more general measures such as mutual information for instance. However, the
minimization scheme that is presented below would need to be adapted since the partial
derivatives of mutual information cannot be readily computed (a Powell optimization
scheme would be required for instance).

4.3 General Minimization Problem

Considering such a cost function for an unknown motion field approximated through
vortex and source particles representations comes down to solve the following mini-
mization problem:
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β̂ = arg min
β

F(I,w(β)), (13)

with β = ({zsol
i , γsol

i , εsol
i }i=1:nsol , {zirr

i , γirr
i , εirr

i }i=1:nirr ).
One seeks therefore the minimizer of the cost function F in terms of particles lo-

cation, strength coefficients and influence domains. Due to the peculiar form of the
field components (9) and (10) this minimization is a difficult problem, which is highly
non linear with respect to some of the unknowns. To face the problem we have cho-
sen to rely on a least square process embedded in a multi-resolution framework and
associated to a generalized conjugated gradient optimization known as Fletcher-Reeves
method.

We present more precisely in the next section how this difficult global optimization
issue is handled.

5 Estimation

In order to cope with large displacements, the minimization is performed in a classical
incremental multiresolution framework. At the coarsest level, the linearized version
of the consistency equation can be used. At the finest levels, an incremental field is
estimated.

5.1 Incremental Estimation Scheme

We assume first that a previous estimate of the set of unknowns is available. All these
unknowns combine in the deformation modeling to form a deformation field w̃. Drop-
ping the time indices of the intensity function for sake of clarity we end up with the
following functional to be minimized according to h, an unknown correction motion
field:

F(h) =
∫
Ω

[
∇Ĩ(x)T .h(x) + Ĩt(x)

]2
dx. (14)

In this equation we have introduced a compact notation Ĩ(x) for the backward regis-
tered image I(x+ w̃(x), t+1). The correction field h is a combination of a solenoidal
component hsol and of an irrotational component hirr according to the Helmholtz de-
composition. Like the field w̃, this correction field is parameterized on the basis of a
set of vortex and source particles. In practice, this kind of scheme is embedded into
a pyramidal multiresolution data representation scheme. Such a representation is ob-
tained through low-pass filtering and sub-sampling. At a given level, the known motion
estimate w̃ is fixed to be the projected estimate obtained at the previous level. At the
first level, the field is a null field.

5.2 Resulting Minimization Problem

The incremental estimation scheme transforms the original optimization problem (13)
into a succession of minimization problems with respect to three kinds of unknowns.
The derivatives with respect to the different variables are explicit and given by:
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∂F(h)
∂γi

=
∫
Ω

ri(x)
π|ri(x)|2 (1 − e

− |ri(x)|2
εi

2 )∇Ĩ(x)[∇Ĩ(x)T .h(x, γi) + Ĩt(x)]dx, (15)

∂F(h)
∂βi

∣∣∣∣
βi=

1
εi

=
∫
Ω

2γi

πεi

ri(x)
|ri(x)|2 e

− |ri(x)|2
εi

2 ∇Ĩ(x)[∇Ĩ(x)T .h(x, εi) + Ĩt(x)]dx,

(16)

∇zi
F(h) =


∂F(h)

∂xi
∂F(h)

∂yi

 , (17)

where: ∂F(h)
∂xi

=
∫
Ω

−
2

ε2
i

|ri(x)|2r2
i (x)+(|ri(x)|2+r2

i (x))(1−e
− |ri(x)|2

ε2
i )

π|ri(x)|4

∇Ĩ(x)[∇Ĩ(x)T .h(x, xi) + Ĩt(x)]dx,

(18)

ri(x) = (ri(x), ri(y))T = x − zi(irr. part) or (zi − x)⊥(sol. part). (19)

Equations (15,16 and 17) lead to three different kinds of systems. The first one, in
terms of coefficient strength is linear, the second one in terms of particles influence
domain is non linear. No constrained minimization is required for both of them. A
gradient descent process can be devised for this set of unknowns. For the third one an
additional constraint to keep the particles into the image plane must be added. Such a
constrained minimization problem, combined with the kind of non linearity, leads to a
very tough minimization problem. Besides, if we do not make assumptions about the
initial particles location, we must devise a method allowing eventual long range moves
of the particles coordinates.

Thus, we have decoupled the estimation of the three unknowns. The two first (the
strength coefficients and the influence domains of the particles) will be solved with
a generalized conjugated gradient process presented in section 5.3 while the particles
locations are frozen. The particles location will be in turn updated through a mean shift
process presented in section 5.4.

5.3 Fletcher-Reeves Optimization

Fletcher-Reeves optimization consists in a non linear extension of conjugate gradient
algorithms. Given an iterate Θk = {γsol

k , εsol
k , γirr

k , εirr
k } and a direction dk, a line

search (w.r.t. αk) is performed along dk to produce Θk+1 = Θk +αkdk. The Fletcher-
Reeves variant of the nonlinear conjugate algorithm generates dk+1 from the recursion:

dk+1 = βkdk − ∇F(Θk+1) with βk =
(‖∇F(Θk+1)‖2

‖∇F(Θk)‖2

)2

.

Let us note that for the linear part of our system the method comes to a standard conju-
gated gradients. During this optimization, the particle locations are fixed. We initialize
the domain of influence in an adaptive way. Their values are fixed to the value of the
distance to the nearest particles. At convergence, we obtain a representation of the un-
known correction field for fixed particle locations. Let us now describe how we propose
to adjust these locations.
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5.4 Estimation of Optimal Particle Positions

Definition of the Error Function. Considering that estimates of the strength coeffi-
cients and influence domains are available for both irrotational and solenoidal com-
ponents we consider two different error surfaces. For each component, the surface is
the registration discrepancy, considering the other orthogonal component fixed. For the
solenoidal component the error surface is defined at each point of the image domain as:

Dsol(x) = It+1(x + w̃(x) + h̃irr(x)) − It(x), (20)

where h̃irr is a first estimate of the irrotational increment, with a set of fixed initial
positions for the source particles. This error surface gathers all the reconstruction er-
rors due to the solenoidal component. Similarly the error surface corresponding to the
irrotational component is defined as:

Dirr(x) = It+1(x + w̃(x) + h̃sol(x)) − It(x). (21)

Extension to a Characteristic Surface. The quality of the modelization we consider
depends on the accuracy of the discrete approximation of the divergence and curl map.
To achieve the best approximation as possible with a limited number of particles we
should try to have a great number of particles to describe areas with strong divergence
or vorticity and only few of them for the rest of the image. The surface error as defined
by (20) or (21) can help to guide a particle towards a new location in accordance with its
nature (vortex or source). However, it can guide a particle to an unappropriate location if
the initial estimation of the components is not informative, because Dsol could highlight
an error associated to the irrotational component, and vice versa.

To overcome this problem we choose to add a term to each error surface, based on
the amount of vorticity or divergence estimated by the particles method. Particles could
therefore be encouraged to go toward locations of high error magnitude associated to
high concentration of vorticity or divergence. We end up with two surfaces, for the
solenoidal and the irrotational part:

Ssol(x) =
(Dsol(x))2∫

Ω

(Dsol(x))2dx
+

(curlh̃(x))2∫
Ω

(curlh̃(x))2dx
, (22)

and Sirr(x) =
(Dirr(x))2∫

Ω

(Dirr(x))2dx
+

(div h̃(x))2∫
Ω

(div h̃(x))2dx
. (23)

Finally, in order to restrict the displacements of the different particles to localized
areas we combine these functions with an a priori prior on the particles location.

A Priori Probability Distribution for Particles Location. Considering zk
i the random

vector denoting the location of particle i at step k, we propose to fix a distribution of
zk+1

i , knowing zk
1:n, where zk

1:n represents the set of the n vectors (zk
1 , ..., zk

n) at step k.
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We assume this probability distribution is Gaussian, defined as zk+1
i |zk

1:n ∼ N (zk
i , σk

i ),
The standard deviation σk

i is set to the half of the distance between zk
i and the closest

center among {zk
j }j=1,..,n,j �=i. The distribution takes into account the previous location

of the particles through a Gaussian prior of mean zk
i but also the dependency between

zk+1
i and all the other particles through the expression of σk

i .

Conditional Version of the Probability Distribution. Combining the a priori distri-
bution p

z
k+1
i |zk

1:n
defined above with the surface described before, denoted Szk

1:n
and

characterized by (22) or (23), we can define a conditional probability distribution func-
tion of a particle zk+1

i given the others:

p
z

k+1
i |zk

1:n,S
zk
1:n

(x) ∝ Szk
1:n

(x).p
z

k+1
i |zk

1:n
(x). (24)

This pdf balances an a priori for the location of one given particle (whose role is
to confine the particle to stay in a certain area between two iterates) and the informa-
tion brought by the characteristic surface (associated to all the particles locations) in
the neighborhood of this position. Once known this distribution for each particle we
propose to shift zk

i towards the pdf local mode in order to adjust optimally the location
of the particles set.

Shifting the Particles Towards the Pdf Modes. From the sample {Szk
1:n

(s)}s∈S eval-
uated at pixel coordinates s, and the probability distribution p

z
k+1
i |zk

1:n
, a statistical non

parametric estimate of the conditional probability distribution p
z

k+1
i |zk

1:n,S
zk
1:n

may be

obtained [9] as

p̂
z

k+1
i |zk

1:n,S
zk
1:n

(x) ∝

∑
s∈S

Szk
1:n

(s)p
z

k+1
i |zk

1:n
(s)K(

x − s
h

)

∑
s∈S

K(
x − s

h
)

, (25)

where K is a kernel and h is its corresponding window size.
The continuous pdf p̂

z
k+1
i |zk

1:n,S
zk
1:n

(x) is thus expressed as a linear combination of

basis functions with weighted coefficients given by w(s) = Szk
1:n

(s)p
z

k+1
i |zk

1:n
(s).

To shift a center zk
i towards the nearest mode of p̂

z
k+1
i |zk

1:n,S
zk
1:n

we rely on the mean

shift estimate of the gradient of a density function [2, 3]. This estimate called the mean
shift vector reads:

Mh,G(x) =

∑
s∈S

w(s)sG(
x − s

h
)

∑
s∈S

w(s)G(
x − s

h
)
− x, (26)

where G is the kernel obtained by derivation of the kernel K. This vector gives at
each point the direction of the maximum increase of the density function estimated
through the weights w(s) and the kernel K. Different choices can be done for this
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kernel. Usual choices are the Epanechnikov kernel or a Gaussian kernel. The gradient
of the Epanechnikov kernel is a box function kernel whereas G remains Gaussian for a
Gaussian kernel K.

Given this estimate of the pdf gradient, an iterative convergent [2] process called
mean shift naturally arises. This process consists in moving iteratively the kernel center
x following Mh,G(x) until a stationary point (i.e., zero gradient) of the underlying
density is found.

In our case, the mean shift procedure is applied to the nsol + nirr centers of the
basis functions (or particles) involved in our motion field modeling. Each particle is
shifted towards the nearest mode of the conditional density p̂

z
k+1
i |zk

1:n,S
zk
1:n

. We have

chosen to use the Epanechnikov kernel. Besides, the choice of the window size is cru-
cial. Different choices can be made. In our case we have settled adaptive window sizes.
They are fixed to the distance of the nearest particles. Such a choice make sense in
our case. As a matter of fact, for distant particles only a rough and smooth estimate
of the pdf function is needed whereas for close particles an accurate estimate of the
density is at the opposite required to approximate at best the vorticity and divergence
maps.

5.5 Overall Estimation Scheme

The overall estimation scheme consists in an alternate updating of the different un-
knowns. It is composed by the following two steps, repeated in turn until convergence:

1. For a given set of particles at fixed locations, the strength coefficients and the in-
fluence domains attached to the particles blob function are estimated through the
generalized conjugated gradient optimization described in section 5.3.

2. The vortex and source particles locations are shifted toward the nearest local mode
of the corresponding pdf. This shift is realized applying the mean shift procedure
described in section 5.4.

The whole process is stopped when the divergence and vorticity reach a certain stability.
This criterion is expressed as:(

‖div h̃k+1 − div h̃k‖2

‖div h̃k‖2

)2

+

(
‖curl h̃k+1 − curl h̃k‖2

‖curl h̃k‖2

)2

6 Results

In this section we illustrate our method with two real examples. The first one shows the
evolution of a multiple sclerosis (MS) lesion for the same patient between two different
times. Two 3D T2 (among other modalities) were acquired within 6 months and rigidly
registered [6]. The MR volumes were registered with a 3D rigid transformation and
an axial 2D slice extracted to experiment the non-rigid registration method. The lesion
appears as a white stain in the left part of the brain at t0 and has grown at t0+6 months
(see fig. 1).
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(a) (b) (c) (d)

Fig. 1. (a) T2-MR slice at time t0; (b) T2-MR corresponding slice at time t0+6 months; (c)-(d)
Zoom centered on the lesion

(a) (b) (c)

Fig. 2. (a) Automatic shifting of the source particles towards the region of interest. The black
points represents the initial positions of the source particles (manual initialization), the white
points the final optimal positions after the mean shift process; (b) Zoom on the resulting divergent
field, centered in the lesion. The deformation field ; (c) Registered image (image at time t0+6
months registered toward image at time t0)

The source particles are initialized manually near the lesion. The user can fix the
positions of the particles without precision because the estimation method allows to
guide the particles towards the region of interest (fig. 2(a)). An accurate deformation
field is estimated (fig. 2(b)), corresponding to a divergent motion centered in the le-
sion. The corresponding registered image is represented in fig. 2(c). The difference
image between the original and the deformed image (fig.3(a)) can be compared with
the difference image after registration (fig.3(b)). The error due to the lesion has been
removed by the estimation method. The remaining error , mainly around sulci, is due to
rigid registration error and interpolation artifacts.

The second example illustrates the application of our method to a basis of 20 sub-
jects. For each subject, a T1 3D MR was acquired and the brain was extracted using the
Brain Extraction Tool [8]. All the IRM images have been first registered rigidly toward
a reference subject (a 3D transformation was estimated and a 2D slice was extracted for
each subject after registration). The goal is here to estimate the non rigid deformation
between all the rigidly registered images and the reference one. The deformations are
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(a) (b)

Fig. 3. (a) Difference between the two images after rigid registration; (b) Difference after non
rigid registration. The image discrepancy has decreased significantly on the lesion. The image
discrepancy on the sulci is not due to a misalignment, but to a luminance variation because of the
interpolation artifact

(a) (b)

Fig. 4. (a) Reference subject; (b) Rigidly registered image for another subject of the database

(a) (b) (c) (d)

Fig. 5. (a) Original difference image between one given subject and the reference one, after rigid
registration; (b) Difference image after non rigid registration for this subject; (c) Average image
after rigid registration over the 20 subjects; (d) Average image after non rigid registration over
the 20 subjects

here much more complicated than for the first example. To obtain an accurate result, we
choose to fix a dense grid of source and vortex particles, recovering the brain region.
We present an example of registration for one given subject (fig.4(b)) with respect
to the reference one (fig.4(a)). The corresponding difference images before and after
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non rigid registration are shown in fig.5(a-b). The estimation method brings a signifi-
cant reduction of the important regions of error. Finally, fig.5(c-d) shows the average
image after rigid registration and the average image after non-rigid registration.

7 Conclusion

In this paper, a parametric method for non-rigid image registration was presented. The
deformation field is described by two sets of so-called vortex and source particles, lead-
ing to a compact representation. The deformation parameters (for each particle, the
vorticity or divergence, and the influence domain) are computed using a generalized
conjugate gradient descent. The optimal positions of the particles are also estimated
using a mean shift process.

This method was implemented for 2D images and experimented on various real
data. It is shown that this method is capable of recovering efficiently divergent fields,
and show its ability to register a set of 20 images (T1-MR sagittal images of different
subjects).

Future work will focus on the 3D extension of this registration modeling. Concern-
ing the divergent component, the 3D extension is straightforward since divergence is
still a scalar variable. However, the 3D extension of the vorticity component will be
more problematic since vorticity is no longer a scalar but a vector: vorticity cannot be
bound to a particle but to a manifold such as a line or a surface.
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Abstract. This paper presents a new registration method called Transitive
Inverse-Consistent Manifold Registration (TICMR). The TICMR method jointly
estimates correspondence maps between groups of three manifolds embedded
in a higher dimensional image space while minimizing inverse consistency and
transitivity errors. Registering three manifolds at once provides a means for min-
imizing the transitivity error which is not possible when registering only two
manifolds. TICMR is an iterative method that uses the closest point projection
operator to define correspondences between manifolds as they are non-rigidly
registered. Examples of the TICMR method are presented for matching groups
of three contours and groups of three surfaces. The contour registration is regular-
ized by minimizing the change in bending energy of the curves while the surface
registration is regularized by minimizing the change in elastic energy of the sur-
faces. The notions of inverse consistency error (ICE) and transitivity error (TE)
are extended from volume registration to manifold registration by using a closest
point projection operator. For the experiments in this paper, the TICMR method
reduces the average ICE by 200 times (contour)/ 6 times (surface) and the aver-
age TE by 40 times (contour)/ 2-4 times (surface) compared to registering with
a curvature constraint alone. Furthermore, the TICMR is shown to avoid some
local minimum that are not avoided when registering with a curvature constraint
alone.

1 Introduction

This paper introduces a new registration approach called Transitive Inverse Consistent
Manifold Registration (TICMR). The novelty of this approach is that it jointly registers
three manifolds together instead of two allowing both the inverse consistency error [1]
and the transitivity error [2] to be minimized. TICMR is a general approach that has
applications for many types of manifolds. In this paper we present two registration
algorithms based on the TICMR framework: one for registering contours and one for
registering surfaces.

Fig. 1 defines the notation used throughout the paper. Transformation hij : x → y
defines a pointwise correspondence mapping between all points x on manifold j and
their corresponding projections y on or near manifold i. The closest point operator [3]
is used to map points y = hij(x) onto manifold i if necessary. All six pictured transfor-
mations are jointly estimated using the TICMR approach to find the correspondences
between the three manifolds.
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Fig. 1. The transformations h12, h21, h13, h31, h23, and h32 satisfy the transitivity property if
hij(x) = hik(hki(x)) for every x on surface i and i �= j �= k. These transformations are inverse
consistent if hij(x) = h−1

ji
(x) for every x on surface j and i �= j

The goal of this work is to identify important sources of registration error and de-
velop a registration algorithm to minimize those errors. This type of approach is needed
since there is no “gold standard” for evaluating non-rigid image registration perfor-
mance. Thus, the best we can do is to identify necessary conditions/properties that the
registration algorithms should satisfy—such as zero to near zero inverse consistency
error and transitivity error—and try to achieve them.

Parameterized contours and surfaces play an important role in medical image analy-
sis because surfaces are relatively easy to define and are a rich source of shape informa-
tion. The geometric properties of curves and surfaces are conserved between individual
images, making them useful landmarks for morphometric comparisons and provide im-
portant boundary conditions [4] for image registration constrained by regions of inter-
est. Surface-based mapping can offer advantages over volume based mapping in some
medical imaging registration applications such as brain mapping. For example, 3D reg-
istration accuracy based on matching intensity values of brain images does not ensure
the alignment of sulcal and gyral pattens of the individual cortical surfaces [5].

2 The TICMR Registration Method

Let CSIM represent a similarity cost function that defines the correspondences between
the three manifolds to be registered. Let CREG represent a constraint for regularizing
the estimation procedure. Finally, let CICC and CTRANS correspond to the inverse
consistency constraint and the transitivity constraint, respectively. The TICMR problem
statement is to jointly estimate a set of six transformations h12, h21, h13, h31, h23, and
h32 that satisfy

hij = arg min
hij

σCSIM + ρCREG + χCICC + γCTRANS (1)

where σ, ρ, χ, and γ are weighting factors.
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In this paper, we present two registration algorithms based on solving Eq. 1; the first
is contour-based and the second is surface-based. Contours are assumed to be repre-
sented by a linked list of node points connected with straight lines. Surfaces is assumed
to be represented by a triangulated surface mesh. The parameters for contour registra-
tion are the displacement vectors from each node on the template contour to the target
contour. Likewise, the parameters for surface registration are displacement vectors from
each vertex in the template surface to the corresponding point on the target surface.

2.1 Similarity Cost Function

We used the closest point similarity cost function [3] to define the correspondences
for the contour-to-contour and surface-to-surface TICMR algorithms. The closest point
similarity cost function is a convenient method for defining correspondences between
manifolds when exact correspondences are unknown. The cost function we used is
given by

CSIM =
3∑

i=1

3∑
j=1
j �=i

∫
Sj

||DSi
(hij(x))||2dx (2)

where DSi
corresponds to the distance map of Si. That is, DSi

(x) gives the closest dis-
tance from point x to Si. The manifold Si represents a contour for contour-to-contour
matching or a surface for surface-to-surface matching. The distance maps were com-
puted using Voronoi Feature Transform (VFT) presented in Maurer et. al [6].

The six terms in Eq. 2 correspond to the unidirectional similarity cost functions re-
quired to match each manifold to the other two manifolds (see Fig. 1). Although the
cost function in Eq. 2 is simple and effective, it can be replaced by more complicated
similarity functions if desired. For example, feature vectors can be used to define cor-
respondence as in the HAMMER registration algorithm[7].

2.2 Regularization Constraint

Correspondences defined solely by the similarity cost in Eq. 2 are independent of the
neighborhood structure of Si and will produce poor correspondences if not regularized.
Regularization is used to constrain the estimation procedure to produce correspondence
maps or transformations that are smooth spatially. Different regularizing constraints for
contour and surface matching are needed due to the differences in topology of contours
and surfaces,

The regularization cost used to constrain the contour-to-contour registration is given
by

CREG =
3∑

i=1

3∑
j=1
j �=i

∫
Sj

||dhij(x(s))
ds

− dx(s)
ds

||2ds (3)

where s is arc length of the curve. The registration of curves S1, S2, and S3 is regular-
ized by penalizing the change of the tangent vector along the deforming curve. Notice
that this cost function is similar to that used to regularize snake active contour models
[8] except that Eq. 3 is defined in a Eulerian coordinate system instead of a Lagrangian
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coordinate system. The consequence of this is that the curves do not deform in our
formulation, but their projections do.

The regularization used for surface matching is different than that used for contour
matching since points on a contour are ordered while the points on a surface are not.
Following Hsu et. al [9], the elastic energy E(S) of a surface S can be defined by
E(S) =

∫
S
(a + bH2 + cG)dA where H and G are mean and Gaussian curvatures

of S, respectively; A is the surface area of S; b and c are “bending” energies, and a
is a surface tension or “stretching” energy. Setting a equal to zero makes E(S) scale
invariant. To regularize the transformation so there is no penalty for the original shape
of the surface, we replace H with H − HS , where HS is the mean curvature of the
original surface S and plays a role as boundary condition. The third term in E(S) is
a constant because

∫
S

GdA = 2πχ(S) where χ(S) is a constant for surfaces with the
same topology. Combining these observations produces the elastic energy function

CREG =
3∑

i=1

3∑
j=1
j �=i

∫
Sj

(H(hij(x)) − HSj
(x))2a(hij(x))dx (4)

where a(x) is the area around point x and
∑

x ax is the total surface area. Moving the
surface vertex at x in the direction of the gradient of the area ax (i.e., the same direction
of the normal vector at this point) decreases the energy. Making the assumption that the
mean curvature at x is a constant, we can simplify the the derivative of the regularization
cost as H(hij(x)) − HSj

)N(hij(x)a(hij(x)), where N(x) is the normalized normal
vector at point x.

2.3 Inverse Consistency Constraint and Projection Error

The contribution of each transformation hi,j in the similarity cost function CSIM and
the regularization constraint CREG is independent. Therefore minimizing the similarity
cost and regularization constraint produces 6 uni-directional registration problems and
are not sufficient to guarantee that hij and hji are inverse consistent. In this paper, we
define an inverse consistency constraint (ICC) to minimize inverse consistency error for
manifold registration in a similar manner to the work in [1] for registering volumetric
images.

We begin by defining the inverse consistency error (ICE) and projection error (PE)
of the forward and reverse transformations between two manifolds as shown in Fig. 2.
This figure illustrates that the forward transformation h12 does not have to project from
manifold 1 to manifold 2 and vice versa for the reverse transformation h21. The differ-
ence between the projection of a point from one manifold to the closest point on the
other manifold is defined as the PE.

Fig. 2 shows two ways to define the inverse consistency error (ICE). Panel a defines
the ICE as the difference between the identity map and the concatenation of h21 and
h12. This method can be used to evaluate the inverse consistency error between the
forward and reverse transformations. Panel b defines the ICE as the difference between
the projection of x through h12 and x′ through h−1

21 where x′ is the closest point to x
that is in the range space of h−1

21 . The method in panel b is the one we use to minimize
the inverse consistency error.
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(a) Projection error and Inverse
Consistency error

(b) Compute Inverse Consistency
error

Fig. 2. Illustration of the projection error and the two ways to calculate the inverse consistency
error

The inverse consistency constraint for the six transformations between three mani-
folds (see Fig. 1) is defined as

CICC =
3∑

i=1

3∑
j=1
j �=i

∫
Sj

||hij(x) − fij(x)||2dx (5)

where fij(x) = arg min
y∈Si

||hji(y) − x||2.

2.4 Transitivity Constraint

One of the most important points of this paper is that both the inverse consistent er-
ror and the joint transitivity error can be minimized together. Based on the transitivity
relationships illustrated in Figure 1, we define the transitivity constraint as

CTRANS =
3∑

i=1

3∑
j=1
j �=i

3∑
k=1

k �=i�=j

∫
Sj

||hik(hkj(x)) − hij(x)||2dx. (6)

To minimize the transitivity cost, we assume that hij is independent of hkj and hik

for k �= i �= j. Therefore, for each partial cost in Eq. 6, we fix the term (hik(hkj(x))
to estimate the parameters of hij(x). Making this assumption simplifies the estimation
procedure by making it linear in the parameters of hij rather than nonlinear in the
parameters of hkj due to the concatenation with the transformation hik.

3 Results

3.1 Contour-Based Registration Results

The contour-based registration algorithm was tested using contours extracted from 2D
CT images of human lungs. Fifteen lung contours were extracted from 15 different data
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contours NC CR CR+ICC TICMR

Fig. 3. Typical contour-to-contour registration results. Arrows show the displacement vectors
starting at points on contour 2 mapped through the estimated transformation h12. Every tenth
displacement vector is visualized. The bases and points of adjacent vectors have been connected
by lines to visualize contour 2 and the estimated shape of contour 1. The panels from left to right
show the three contours super-imposed used to generate the results, registration with no con-
straints (NC), registration with curvature regularization (CR), registration with CR + inverse con-
sistency constraints (CR+ICC), and registration with CR+ICC+transitivity constraints (TICMR)

sets using a boundary finding algorithm after segmenting the CT images. The number of
points making up the lung boundary contours varied from 700 to 1000 points depending
on the size of the lung cross sectional area. The 15 data sets were divided in to five
groups of three contours each. Each group of three contours were registered using 100
iterations, the similarity weight (σ = 1) and

1. No constraints (NC) (ρ = χ = γ = 0),
2. Curvature regularization (CR) only (ρ = 1, χ = γ = 0),
3. CR+inverse consistency constraints (CR+ICC) (ρ = χ = 1, γ = 0), and
4. CR+ICC+transitivity constraints (TICMR) (ρ = χ = 1.0; γ = 0.1).

The results for one transformation estimated using the four constraint sets are illus-
trated in Fig. 3. The left panel shows the three contours used to produce the registrations
shown in the other panels. The arrows show every tenth estimated displacement vec-
tor from contour 2 to contour 1. The displacement vectors at each contour node were
initialized to zero and converged to the target contour within 100 iterations. All the
displacement vectors were estimated independently of each other for the unconstrained
(NC) registration result. The arrows show that displacement field is not uniform/smooth,
there are many-to-one mappings, and poor correspondence at places. The CR registra-
tion produced uniform/smooth displacements, but still had many-to-one mappings and
poor correspondence in places. The CR+ICC registration produced a uniform/smooth
displacement field, a one-to-one mapping from one contour to the other, and a good
correspondence from one contour to the other. The TICMR registration is very similar
to the CR+ICC result although there are slight differences.

The images in Fig. 4 show how the inverse consistency error is typically affected
by the four sets of constraints. The boxed region in each image is zoomed to help show
differences. This figure shows the trajectories of points from contour 2 → 1 → 2
using the estimated transformations h12 and h21. The final position of the trajectories
should match the starting location if the forward and reverse transformations are inverse
consistent. We see that the inverse consistency for the NC and CR registrations are not
good and could be expected from the results shown in Fig. 3. However, the CR+ICC
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NC CR CR+ICC TICMR

Fig. 4. Typical inverse consistency errors for contour-based registration. Arrows show the trajec-
tories of points starting on contour 2, mapped through transformation h12, projected onto closest
point on contour 1, and then mapped through transformation h21. The distance between the start-
ing and final positions is defined as the inverse consistency error. Arrows are shown for every
tenth displacement vector estimated along contour 2. The panels from left to right correspond
to registrations with no constraints (NC), curvature regularization (CR), CR+inverse consistent
constraint (CR+ ICC), and CR+ICC+transitive constraint (TICMR). The bottom row shows a
zoomed version of the boxed region in the top row

and the TICMR registrations are essentially inverse consistent over the whole contour
and there is very little noticeable difference between them.

The results in Fig. 5 illustrate typical transitivity errors for the four constraint sets.
In this figure, the arrows show the trajectories of points from contour 2 → 1 → 3 → 2.
The final position of the trajectories should point to the start location if the transfor-
mations have the transitivity property. Again the NC and CR registration results show
large transitivity error. However, unlike the two previous cases, we can now see a dif-
ference between CR+ICC and TICMR registrations. The TICMR registration produced
essentially transitive transformation, while the CR+ICC did not do so well.

Figure 6 shows the summary statistics for the five groups of three lung contours with
respect to the average similarity error (ASE), average regularization error (ARE), aver-
age inverse consistency error (AICE) and average transitivity error (ATE) for the four
sets of constraints. The ASE is the average distance from the estimated displacement
vectors to the target curve. The ASE is lowest for unconstrained registration and highest
when using curvature regularization alone. Adding inverse consistency and transitivity
constraints the curvature regularization reduces the ASE slightly. The median ASE is
less than 0.1 pixels for h12 but close to 1.0 pixel for the h31 and h23 transformations.

The ARE is a measure of the smoothness of the estimated displacement vectors.
It is defined as the cost CREG in Eq. 3 normalized by the number of nodes in the
discrete contour. This measure can only be used to access the relative smoothness of a
transformation since it depends on the shape of the template and target contours. In all
three cases shown, the ARE is high for the unconstrained registration and is essentially
the same for the three results that include the curvature regularization.
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NC CR CR+ICC TICMR

Fig. 5. Typical transitivity errors for contour-based registration. Arrows show the trajectories of
points starting on contour 2, mapped through h12, projected onto closest point on contour 1,
mapped through h31, projected onto closest point on contour 3, and mapped through h23. The
distance between the starting and final positions is defined as the transitivity error. Arrows are
shown for every tenth displacement vector estimated along contour 2. The panels from left to right
correspond to registrations with no constraints (NC), curvature regularization (CR), CR+inverse
consistent constraint (CR+ ICC), and CR+ICC+transitive constraint (TICMR). The bottom row
shows a zoomed version of the boxed region in the top row

The Average Inverse Consistency Error (AICE) is defined as CICC in Eq. 5 nor-
malized by the number of nodes in the discrete contour. The AICE is much larger for
the NC and CR registration results than for the the CR+ICC and TICMR results. These
findings are to be expected since the CR+ICC and the TICMR results were generated by
specifically minimizing the the AICE. It is important to note that the AICE was reduce
to less than 0.11 pixels on average for the CR+ICC and TICMR results giving a 200
times improvement over only using CR.

The Average Transitivity Error (ATE) is defined as CTRANS in Eq. 6 normalized by
the number of nodes in the discrete contour. Again the ATE is much larger for the NC
and CR registration results than for the the CR+ICC and TICMR results. However, the
ATE is much smaller for the TICMR result compared to the CR+ICC result demonstrat-
ing the importance of the transitivity constraint. The TICMR results reduced the median
ATE by approximately 40 times compared to CR registration and approximately 2 times
compared to CR+ICC registration.

Fig.7 shows the effect of varying χ and γ on the similarity, inverse consistency and
transitivity errors. The left column shows that varying the inverse consistency constraint
weight χ without the transitivity constraint (γ = 0) has little effect on the average
similarity error (ASE), but has a large effect on the average inverse consistency error
(AICE) and on the average transitivity error (ATE). The right column shows that varying
the transitivity constraint weight γ while keeping χ = 1 has little effect on the ASE and
AICE, but does have a substantial effect on lowering the ATE. Similar results were
found for the 3D experiments discussed in the next section.
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Fig. 6. Summary box plots for the 5 groups of 3 contour-based registration experiments. Only
3 of 6 plots for each error measure are shown to save space. The boxes stretch from the 25th
percentile (bottom) to the 25th percentile (top). The median is shown as the line across the box.
Some of the maximum values are out side of the range of the scale shown. The boxes in each plot
are numbered from 1 to 4 and correspond to NC, CR, CR+ICC, and TICMR, respectively, at the
100th iteration. Notation: hiji means hij(hji) and hijki means hij(hjk(hki))

3.2 Surface-Based Registration Results

The surfaced-based TICMR algorithm was tested using surfaces generated from 3D
phantom images (12 images in total) and the brain surfaces extracted from MRI image
volumes (6 images in total). Two groups of three torus-shaped phantom surfaces and 2
groups of three ellipsoid-shaped phantom surfaces were generated from 64 × 64 × 64
voxel volumes. The 6 surfaces of the human brain were generated from 128×160×128
voxel MRI image volumes. All triangulated surfaces were generated from binarized 3D
image data using the regularized marching tetrahedra technique [10]. The surfaces had
approximately 3500 vertices and 7500-9500 faces for the torus phantoms, 2600-4400
vertices and 4800-5100 faces for the ellipsoid phantoms, and approximately 7500-8400
vertices and 15,000-16,700 faces for the brain surfaces. Down-sampling the original
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Fig. 7. Typical convergence rates for the contour-based registration experiments. χ is the inverse
consistency constraint (ICC) weight, and γ is the transitivity constraint (TC) weight. In the left
column, χ varies while keeping γ = 0; in the right column, γ varies while keeping χ = 1

image volumes before generating the surfaces was used to reduce the number of vertices
and faces for the triangulated surfaces so no further decimation of the surface meshes
was required. The normal vector at vertex v on the surface was computed by averaging
normals of its adjacent faces weighted by the area of each face. The mean curvature at a
vertex v was computed using the method of Joshi et al. [11]. In this method, the surface
at v is approximated by fitting a quadratic surface patch to the neighboring vertices of v
using least squares estimation. The principal curvatures are extracted from the quadratic
surface patch and averaged.

The parameters estimated for surface registration were displacement vectors at each
node in the template surface to the corresponding point on the target surface. The sur-
faces were approximated with triangular surface patches between vertices for the closest
point computations. The closest point computations were computed efficiently using
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the 3D distance maps generated using the method described in Maurer et. al[6]. Sur-
faces and their displacement vectors were visualized using the MatlabTM software (see
Fig. 8).

For the torus and ellipsoid experiments, the TICMR method reduced the average
inverse consistency error (AICE) by 6 times and the average transitivity error (ATE)
by 4 times compared to curvature regularized (CR) registration. For the brain surface
registration, the TICMR approach reduced the AICE by 10 times compared to the CR
registration. Fig. 8 shows a 3D visualization of the transitivity error for the brain surface

CR TICMR

Fig. 8. Visualization of transitivity error (TE) for uni-directional surface registration with curva-
ture regularization (left) and TICMR surface registration (right). The short lines on the surface
show the transitivity error of the composite transformation h2132 that maps points from surface 2
to 3 to 1 to 2. Not all transitivity error vectors are shown

registration results. The short lines on the surface represent transitivity error of the
composite transformation h2132(x) = h21(h13(h32(x)). The average transitivity error
(ATE) was reduced by a factor of 2 for the TICMR brain surface registration compared
to the uni-directional curvature regularized registration.

The contour and surface-based TICMR algorithms were implemented in C++ and
run on a dual processor 2GHz AMD Athlon computer with 3.5 GB of RAM. The com-
putation time for the contour-based TICMR algorithm was less than 5 minutes for 100
iterations. The surface-based TICMR registrations took approximately 20 minutes for
the torus and ellipsoid surfaces and approximately 70 minutes for the brain surfaces for
100 iterations. In contour case, approximately 90% of time is used for computing the in-
verse transformations and interpolating the closest contour points. In surface case, 85%
of time was used for compute inverse transformations (20%) and interpolating points
on the surfaces (65%).

4 Discussion and Conclusions

This paper presented a new registration method for jointly registering groups of three
manifolds called the transitive inverse consistent manifold registration (TICMR). Ex-
ample TICMR registration algorithms were given for curve-based and surface-based
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registration. The curve-based and surface-based TICMR algorithms gave much better
correspondences than non-rigid, uni-directional, closest-point curve and surface-based
registration with curvature regularization.
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Abstract. Spatial normalization is frequently used to map data to a
standard coordinate system by removing inter-subject morphological dif-
ferences, thereby allowing for group analysis to be carried out. In this
paper, we analyze the geometry of the cortical surface using two shape
measures that are the key to distinguish sulcal and gyral regions from
each other. Then a multispectral optical flow (OF) warping procedure
that aims to align the shape measure maps of an atlas and a subject
brain’s normalized maps is described. The variational problem to esti-
mate the OF field is solved using a Euclidean framework. After warping
one brain given the OF result, we obtain a better structural and func-
tional alignment across multiple brains.1

1 Introduction

Developments in medical imaging techniques, particularly magnetic resonance
imaging (MRI), have allowed for imaging studies concerning the structure of the
human cerebral cortex and its function with large number of subjects. A major
challenge has been the development of automated spatial normalization meth-
ods that allow analysis of data from multiple subjects in a standard coordinate
system, designed to remove intersubject morphological differences.

Traditionally, scaled volumetric transformations are utilized to warp each
brain into a standard (reference) coordinate system [1, 2, 3]. The simplest ap-
proaches rely on affine transformations only [1], and complex warping algorithms
with large number of degrees of freedom improve the spatial normalization [2,3].
Comparison of local intensity and density of cortical tissues is a common key
element of such voxel-based normalization approaches, which ignore geometric
properties intrinsic to the cortex.

Recent advances in reconstruction of cortical surfaces from three-dimensional
(3-D) MR brain image volumes have made surface-based visualization and de-
tailed analyses on the cortical surface through surface warping possible [4, 5].

1 This work was supported by the NIH/NINDS under grant R01NS37747. See
http://iacl.ece.jhu.edu/~duygu/research/Pubs.html for color version of figures.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 480–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Main goal: Anatomical feature matching by optical flow warping (displaying
sulcal segmentation)

Visualization and analyses on the cortical surface, however, is difficult because
of the extensive sulcal and gyral convolutions and their variability among in-
dividuals. Cortical unfolding procedures have been developed to address these
problems. These procedures expose the buried folds of cortical gray matter, to
reveal the entire structure of part or all of the cortex on a flat, convex, or radial
surface [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Preservation of the metric details — i.e.,
creation of approximately isometric maps — of the 3D surface has been a ma-
jor goal in flattening [6, 11, 12, 13]. Several mapping approaches choose to map
cortical surface onto a shape whose intrinsic properties are similar to cortex or
introduce “cuts” in the surface, which are generally made manually, to control
the distortion.

In order to carry out analyses on normalized cortical surfaces, it is desirable
to create maps that are in a “standardized” coordinate system, in the sense that
they put known anatomical features at the same coordinates in the mapped
space [7, 8, 11, 14, 15]. It is believed that many major sulci are linked to the un-
derlying cytoarchitectonic and functional organization of the cortex [16]. Hence,
the main anatomical features of interest are the primary sulci common among
individuals. Some methods enforce manually identified corresponding features
to correspond on the computed maps [8, 14]. Others derive correspondence by
maintaining strict point correspondences between parametric models that are
initialized and deformed in similar fashion throughout the surface estimation
process [11,4].

In this work, we develop an automated procedure to align the key anatomical
features from the individual brains in the normalized cortical coordinate system
as outlined in Fig. 1. Because of the large variability of cortical geometry, a
challenge is to reliably identify key anatomical features and map them to the
same location on the normalized cortical coordinate system. Instead of identify-
ing the anatomical features of interest explicitly, we analyze the geometry of the
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cortical surface by using two shape measures that distinguish sulcal and gyral
regions from each other. This approach gives an implicit representation of the
features. In order to align the dominant anatomical features of the two brains,
an optical flow (OF) field is computed using both shape features as input, and
the resulting deformation is used to warp the subject brain into correspondence
with the template brain (atlas).

As shown in Fig. 1, the variational problem to estimate the OF field is defined
on the normalized cortical surface. This variational problem can be solved on the
surface via finite element approximation; however, such approaches can be time
consuming and numerically unstable. To avoid these problems, we adopt the
Euclidean framework described in [17] and modify it for our purpose. The basic
idea of this approach is to embed the surface-based variational problem in the
3-D Euclidean space, and use Cartesian coordinate based differential operators.

The proposed feature matching procedure, when applied to multiple brains,
gives a good alignment of major sulcal regions. In addition to testing for align-
ment of anatomical features, we also look at the alignment of functional data
before and after the feature matching procedure and quantify the improvement
in functional data alignment by estimating the mutual information between atlas
and subject brains.

2 Preliminaries

Cortical Surface Reconstruction. In this paper, we start with a triangle
mesh representation of the human brain cortex. We use Cortical Reconstruction
Using Implicit Surface Evolution (CRUISE) [5] to find the central surface that
lies at the geometric center of the gray matter tissue. CRUISE is a data-driven
method combining a robust fuzzy segmentation method, an efficient topology
correction algorithm, and a geometric deformable surface model. The cortical
surface extraction starts with a 3-D T1-weighted SPGR volumetric axial MR
data set obtained from the Baltimore Longitudinal Study of Aging (BLSA) [18].
Each reconstructed central surface is a triangle mesh comprising approximately
300,000 vertices.

Cortical Normalization. The feature matching procedure described in this
paper assumes that the cortical surface extracted from the 3-D MR image vol-
ume is normalized onto a common manifold. We used the cortical normalization
technique presented in [15] to map each cortical hemisphere onto its own unit
sphere (i.e., hemispherical maps). The key components of the cortical normaliza-
tion technique are parametric surface relaxation, iterated closest point registra-
tion, and conformal mapping. The cortical normalization automatically produces
spherical coordinates on each cortical hemisphere separately. (A hemispherical
map is the map of a single cortical hemisphere onto the entire unit sphere sur-
face). The key anatomical landmarks — e.g., major sulci — are mapped to ap-
proximately the same location on the hemispherical maps and represents a good
starting point for the geometry-based surface alignment that we describe herein.
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3 Anatomical Feature Matching by Optical Flow

Warping

A general warping procedure can be stated as following: Given two manifolds
— an atlas A and a subject S — and a similarity measure, find the best coor-
dinate system transformation that associates any point of S to a corresponding
point at A while maximizing the similarity measure between the warped man-
ifold S and the atlas manifold A. In our setting, the manifolds A and S are
the hemispherical map pairs of the atlas and subject brains on the unit sphere
surface, respectively. Therefore, we are looking for a warping procedure that
warps a unit sphere into another unit sphere with the feature matching con-
straints. Each cortical hemisphere is warped separately on its own hemispher-
ical map sphere. In this paper, we use an optical flow (OF) technique for this
purpose.

Incorporating the key anatomical features such as sulcal and gyral landmarks
into the warping procedure [8, 3] is the key to obtaining the desired match on
the hemispherical maps. Unlike the methods described in [8, 14], our goal is to
derive a warping procedure that does not require manually identified landmarks
and does not require strict point correspondences throughout the estimation
process. The primary focus of the warping procedure is to match prominent
features such as the major sulci that are common across multiple brains. This
creates the challenge of automated extraction of features to drive the warping
procedure.

In order to force a focus on the prominent features, we use the geometry of a
partially flattened surface (PFS) representation of the cortex. A PFS represen-
tation of the cortex is generated by smoothing the triangle mesh representation
of the central surface using a relaxation operator [6, 12]. There are two reasons
behind our use of PFS representation instead of the central surface representa-
tion. First, the PFS is a smoother surface having smaller curvatures than the
original central surface. The degree of detailed folding can be easily controlled by
the surface relaxation algorithm’s stopping criterion. In particular, we stop when
the L2 norm of the mean curvature function H defined on the surface, ‖H‖2,
reaches a pre-selected value (see [15]). ‖H‖2 is a global measure that quanti-
fies the global shape of the surface, allowing meaningful comparison between
PFSs from different individuals. Second, the surface relaxation operator used
to generate our PFS allows the preservation of the most prominent anatomical
details representing the major sulci while smoothing out the cortical folds highly
variable among individuals.

In this section, we first introduce the shape measures that we use to au-
tomatically identify the key surface features. Then, an OF warping procedure
with multispectral constraints based on these shape measures is proposed to
warp the subject brain’s hemispherical map to the atlas brain’s hemispherical
map in order to match their shape measure maps.
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3.1 Shape Measures

The two principal curvatures κ1 and κ2, where κ1 ≤ κ2, have the necessary
information to fully describe the local shape of the surface. However, curvature
based analysis of the folding pattern requires individual measures that possess a
coordinate independent geometrical meaning such that the shape of the surface
can be specified independent of the size. The widely used Gaussian and mean
curvature measures, by themselves, fail to capture the intuitive notion of local
shape very well. In particular, the Gaussian curvature vanishes both at planar
points (i.e., κ1 = κ2 = 0), and at parabolic points (i.e., κ1 �= 0 and κ2 = 0),
thereby failing to distinguish these two shapes.

In [19], shape index and curvedness measures were introduced as a pair of
local shape indicator measures. The shape index, SI, and the curvedness, C, are
defined as

SI =
2

π
arctan

κ2 + κ1

κ2 − κ1
and C =

√
κ2

1 + κ2
2

2
. (1)

The shape index specifies the local surface geometry up to a scaling factor (i.e.,
similarity), and takes values in [−1,+1]. The extreme values of the shape index
represents local shapes look like either the inside (SI = −1) or the outside
(SI = 1) of a spherical surface, and intermediate values correspond to the local
surface shapes observed when these shapes smoothly morphed one to other.

Fig. 2. Shape measures of two example partially flattened surfaces (PFSs)

As a scale-independent measure, the shape index does not specify the mag-
nitude of the local shape. In contrast, the curvedness measure is inversely pro-
portional with the size of the surface patch independent of the coordinate. Un-
like the Gaussian and mean curvature measures, the shape index and curved-
ness measures complement each other in defining the local surface shape and
the size.

Fig. 2 shows the shape index and curvedness measure maps of two example
PFSs. It is observed that the shape index measure successfully distinguishes the
sulci and gyri on the PFSs. One can also see that the curvedness measures of
the subject and atlas brains’ PFSs are comparable in magnitude and similar in
overall pattern.
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3.2 Optical Flow with Multispectral Constraints

We now describe an optical flow (OF) technique defined on the unit sphere
to warp the atlas and subject brains’ hemispherical maps to match their key
anatomical features on the hemispherical map coordinate system. Let I(V(t)) =
[wSIISI(V(t)), wCIC(V(t))] be the shape measure vector extracted from the PFS
representation, where V ∈ �3 is the surface mesh node on the hemispherical map
of the atlas brain when t = 0, and of the subject brain when t = 1. ISI and IC

are the shape index and curvedness measure maps with scalar weights wSI and
wC, respectively.

Hemispherical maps are 2-D manifolds embedded in the 3-D Euclidean space.
Let I(x) = [wSIISI(x), wCIC(x)] denote the shape measure vector in �3 where
x = x(t) = [x1(t), x2(t), x3(t)] ∈ �3, but restricted to the unit sphere surface
— i.e., S2 ⊂ �3 — where the hemispherical maps are defined. Starting with

the constant intensity constraint of OF, dI(x)
dt

= 0, and using the chain rule of
differentiation, the left hand side of this equation can be expressed as

wj

(
〈∇S2Ij(x),u〉 +

dIj(x)

dt

)
= 0 for j = SI, C (2)

where u = u(x(t)) = [u1(x(t)), u2(x(t)), u3(x(t))] = dx(t)/dt represents the flow
field vector at x, and ∇S2 is the the spatial gradient operator defined on S2.

To estimate a smooth flow field u with the multispectral OF constraint given
in (2) and the incompressibility (divergence-free) constraint [20,21], we pose the
following optimization problem:

argmin
u∈F

∫
S2

(
3∑

i=1

ρ(‖∇S2ui‖, µ)

)
dx1dx2dx3

s.t. wj

(
〈∇S2Ij(x),u〉+

dIj(x)

dt

)
=0 for j = SI, C and ∇S2 · u=0, (3)

where ρ(ε, µ) = log(1 + 1
2 ( ε

µ
)2) is a robust Lorentzian error measure [22] intro-

duced to handle discontinuities and outliers, and F is the set of flow fields. The
set of flow fields is defined as F = {u ∈ W 1,2(S2 ⊂ �3) s.t. ‖u + x‖ = ‖x‖},
where W 1,2(S2,�3) denotes the Sobolev space of functions, so that every point
on a sphere of a given radius is mapped back onto the same sphere surface.

Rather than solving the optimization problem given in (3) directly, we solve
the problem of unconstrained minimization of the energy function for given α
and β parameters

E(u) =

∫
S2

ρ




√√√√ ∑
j=SI,C

w2
j

(
〈∇S2Ij(x),u〉 +

dIj(x)

dt

)2

, µ


 dx1dx2dx3

+α

∫
S2

(
3∑

i=1

ρ(‖∇S2ui‖, µ)

)
dx1dx2dx3+β

∫
S2

ρ (‖∇S2 · u‖, µ) dx1dx2dx3. (4)
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To derive the Euler-Lagrange equation of this variational problem, we need
to compute the gradient descent of (4). Let φ = φ(x) ∈ C∞

0 (S2,�3), the space
of smooth functions in S2 vanishing outside a compact subset of S2. The flow
field function should satisfy ‖u + x‖ = ‖x‖; thus, for a small enough pertur-

bation s, the admissible function is defined as u(s) = [(u + sφ + x) ‖x‖
‖u+sφ+x‖ −

x] ∈ W 1,2(S2,�3). Computing d
ds

E(u(s))|s=0 gives the following Euler-Lagrange
equation.

0 =

∑
j=SI,C

[
w2

j

(
〈∇S2Ij ,u(s)〉 +

dIj
dt

) (
∂

∂xk
Ij − 〈∇S2Ij ,y〉yk

)]

µ2 + 1
2

∑
j=SI,C

w2
j

(
〈∇S2Ij ,u(s)〉 +

dIj
dt

)2

+ α

[
yk

3∑
i=1

(
yi ∆S2ui + 2〈∇S2ui,x〉

yi

‖u+x‖2

µ2 + 1
2‖∇S2ui‖2

)
− α

∆S2uk

µ2 + 1
2‖∇S2uk‖2

]

+ β


 (2∇S2 ·u)〈y,x〉

‖u+x‖2 + yk 〈∇S2 (∇S2 · u) ,y〉 − yk
∂

∂xk
(∇S2 · u)

µ2 + 1
2‖∇S2 · u‖2


 (5)

for k = 1, 2, 3, where y = u+x

‖u+x‖ = [y1, y2, y3], and ∆S2 is the Laplace-Beltrami

operator on the S2 surface.

Numerical Implementation. The shape measures are defined on the triangle
mesh representation of the hemispherical maps. Therefore, in order to compute
the solution to (5), the differential operators must be discretize on the trian-
gulated surface. This involves a finite element approximation of the differential
operators defined on S2. Such approaches can be not only tedious and time con-
suming, but also unstable if the surface triangulation is not regularized. In [17], a
new concept was introduced that allows us to transform the variational problem
defined on the surface into a variational problem embedded in the entire 3-D
Euclidean space (�3).

In order to utilize this Eulerian framework to solve the PDE given in (5),
we first need to transfer the given explicit surface representation of S2 into
an implicit surface representation, and then extend the shape measure maps
defined on the surface to maps defined for the entire �3. Although the triangle
mesh representation of the unit sphere has thousands of mesh nodes, its implicit
representation in �3 occupies only a cubic region of size 2×2×2. The unit sphere
surface needs to be resized to a sphere of size R 
 1 to properly transfer the
surface data into the entire 3-D Euclidean space with enough details. Its implicit
surface representation is given as the zero level set of the signed distance function
φ : �3 → �, φ(x) = ‖x‖−R. The shape measure maps on S2 are then extended
to the entire 3-D Euclidean space in such a way that the maps are constant in
the surface normal directions — i.e., 〈∇I,∇φ〉 = 0 [17], where ∇ is the spatial
gradient operator in the 3-D Cartesian coordinates.
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This transformation allows us to calculate the spatial gradient and Laplace-
Beltrami operators, intrinsic to the surface, by using the simple differential op-
erators defined in the 3-D Cartesian coordinates. Hence, ∇S2f = P∇φ∇f and
∆S2f = ∇ · (P∇φ∇f), where P∇φ is the operator that projects a 3-D vector
onto the plane orthogonal to ∇φ (see [17]). Eqn. (5) is discretized by using the
classical scheme of forward differences in time, and combination of forward and
backward differences in space, thereby making the numerical implementation
straightforward and faster compared to that of a finite element approximation
on the triangulated surface. From various possible combinations of the forward
and backward differences, upwinding scheme in the direction of ∇φ is used in
computing the projected gradient, and upwinding scheme in the direction of
−∇φ is used in computing the divergence.

Iterative Procedure. First the shape measure maps extended to the 3-D space
are regularized using the intrinsic isotropic diffusion operator in 3-D Cartesian
coordinates — i.e., ∇ · (P∇φ∇ISI) = 0 and ∇ · (P∇φ∇IC) = 0 — to stabilize
the OF field estimation. To speed up the iterative procedure, we solve the vari-
ational problem only at the narrow-band points that satisfies ‖φ(x)‖ < h for a
given constant h. Finally, to address the large deformation problem, a multiscale
scheme is utilized as outlined in the following pseudo-code.

Algorithm 1 (Multiscale Scheme for Optical Flow Warping)

1. Initialize the parameters wSI, wC, R, h, µ, α, and β.
2. Resize the hemispherical maps to a sphere of size R 
 1.
3. Extend the shape measure maps to the 3-D Euclidean space.
4. Regularize the shape measure maps via intrinsic isotropic diffusion op-

erator in 3-D Cartesian coordinate.
5. Set u = 0 at all 3-D Cartesian grip points.
6. Use the Euler-Lagrange equation given in (5) to solve for u at narrow-

band points using a iterative procedure.
7. Map u onto the hemispherical map of subject brain and deform the

hemispherical map accordingly.
8. Increase R and decrease α and β parameters.
9. Repeat the above steps until ‖u‖ < ε almost everywhere for a small ε.

4 Experimental Results and Discussion

Hemispherical maps of 32 subject brains were warped to the atlas brain’s hemi-
spherical map using the multiscale OF warping procedure described in Sect. 3.
The algorithm parameters at the last iteration of the multiscale scheme were
wSI = wC = 1, R = 50, h = 5, µ = 2, α = 5, and β = 1. Choosing R = 50 makes
each hemispherical map’s surface area comparable to the actual cortical surface
area. We want to note that since the proposed OF warping does not have a built
in diffeomorphism criterion, a large α algorithm parameter was chosen to obtain
a smooth flow field. The multiscale scheme convergences after 10–20 iterations,
and each iteration takes 30–60 seconds depending on the size of R.
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Fig. 3. Optical flow field after 5th, 10th and 15th iterations of the multiscale scheme.
Top row: magnitude of the field vectors; Bottom row: direction of the field vectors.
Contours: The boundary of the central sulcus region of the atlas brain (in magenta)
and of the subject brain initially and after the OF warping after these iterations (in
yellow and cyan, respectively)

Fig. 3 shows an example. The magnitude of the resulting flow field (top row)
and the field vectors (bottom row) on the warped hemispherical map are shown
after 5th, 10th and 15th iterations of the multiscale scheme. The field vectors are
downsampled for display purposes. The boundary of the central sulcus region of
the atlas brain (in magenta) and of the subject brain initially and after the OF
warping after these iterations (in yellow and cyan, respectively) are also shown in
Fig. 3. (Note that sulcal boundary information was not used in the OF process.)

In order to evaluate how well common anatomical features map to similar
locations on the sphere using the proposed OF warping procedure, we analyzed
the locations to which four primary sulci are mapped in 33 individual brains (one
atlas brain and 32 subject brains). Four sulcal regions — the central sulcus (cs),
superior frontal (sf), cingulate sulcus (cn) and parieto-occipital sulcus (po) on
both the left and right cortical hemispheres — were automatically segmented [23]
and manually labeled on all 33 brains.

To see where the four sulci map on the hemispherical map of the atlas brain,
we generated probabilistic maps comprising an estimated conditional probability
of the location of a sulcal region for each of four sulcal regions. Fig. 4 shows the
probabilistic maps of the sulcal regions on the left cortical hemisphere before
and after the OF warping. The maximum values of the probabilistic maps, and
the surface area of the regions on the atlas brain’s hemispherical map where
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Fig. 4. Probabilistic maps of the four sulcal regions on the left cortical hemisphere
before and after the optical flow warping

Table 1. Alignment of the major sulcal regions

lcs lsf lpo lcn rcs rsf rpo rcn

average sulcal area 0.29 0.21 0.08 0.46 0.28 0.18 0.08 0.48

max before OF 1.00 0.93∗ 0.94 1.00 0.94 0.88 0.88 1.00∗

area(Prob > 0.5) before OF 0.28 0.15 0.07 0.45 0.23 0.07 0.07 0.44

max after OF 1.00 1.00∗ 1.00 1.00 1.00 1.00 1.00 1.00∗

area(Prob > 0.5) after OF 0.32 0.24 0.06 0.42 0.33 0.14 0.06 0.41

∗Only 31 subjects data were used because of missing labels in 2 subjects.

Prob > 0.5 are given in Table 1 along with the average surface area of each
sulcal region. Improvements in both of these measures, and the visual inspection
of the results shown in Figs. 3 and 4 show that by geometry driven OF warping
we achieve a significantly better sulcal alignment, close to perfect alignment
in fact.

In order to demonstrate a potential use of the proposed OF warping tech-
nique in neuroscience applications, we utilize the warped hemispherical maps in
cross-sectional analysis of functional images of cerebral blood flow using positron
emission tomography (PET-CBF) from older adults in the neuroimaging sub-
study of the BLSA [18]. For each neuroimaging session, three PET scans were
performed during: Rest, and Verbal and Figural Recognition Memory. For each
scan, 75mCi of [15O] water were injected as a bolus, and scans were acquired on
a GE 4096+ scanner (resolution = 6 mm FWHM), and the activation intensity
range is [0,511]. Each subject’s PET-CBF data was preprocessed and aligned
with its structural MRI data by following the processing steps described in [24],
and then the PET-CBF data values were mapped onto the central surface mesh
nodes by integrating the PET-CBF data over a curvilinear line bounded by the
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Fig. 5. Joint probability distribution of PET-CBF activation before and after the OF
warping

GM tissue thickness at this point. The CBF data on the surface was regularized
using the intrinsic isotropic diffusion operator.

The OF warping approach presented in this paper aims to improve alignment
of the anatomical features, which should also improve the alignment of function
for gross tasks involving vision and speech in the major sulci. To quantify any
such improvement in functional data alignment, we estimated the mutual infor-
mation before and after OF warping, which is widely used in the medical image
registration techniques [25]. The PET-CBF activation values mapped onto the
surfaces are quantized into 256 levels. The probability that the activation level x
occurs in brain X, pX(x), is estimated as N(x)/

∑
i N(i), where N(i) is the total

surface area on the given hemispherical map with activation level i ∈ [0, 255].
The joint probabilities are estimated in a similar fashion.

The joint probability distribution of atlas and subject brains’ PET-CBF ac-
tivations before and after the OF warping are shown in Fig. 5. We observe a
subtle decrease in the spread of the joint probability distribution, and the peak
values are larger after the OF warping as well. Averaged over 32 subjects, we
observe a 45% increase in the mutual information metric of PET-CBF activation
during rest once the normalized cortical maps are matched using the proposed
method. The improvement on the mutual information metric is 50% for PET-
CBF activation during both verbal and figural memory tasks.

Conclusion. We have presented a feature matching technique based on two
shape measures and optical flow warping with multispectral constraints. The
shape measure vector, I, can be extended to a n× 1 vector by incorporating ad-
ditional features inherent to that specific application such as features extracted
from functional data, or information regarding the relative location of structures
of interest. The mathematical derivations presented in this paper can be gener-
alized to optical flow warping of any manifolds with n constraints, which gives
the opportunity of utilizing the proposed method in a wide variety of image
processing and analysis research where alignment of data on a surface is desired.
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Abstract. This paper presents a new approach to inverse consistent image reg-
istration.  A uni-directional algorithm is developed using symmetric cost func-
tionals and regularizers. Instead of enforcing inverse consistency using an addi-
tional penalty that penalizes inconsistency error, the new algorithm directly 
models the backward mapping by inverting the forward mapping. The resulting 
minimization problem can then be solved uni-directionally involving only the 
forward mapping, without optimizing in the backward direction. Lastly, we 
evaluated the algorithm by applying it to the serial MRI scans of a clinical case 
of semantic dementia. The statistical distributions of the local volume change 
(Jacobian) maps were examined by considering the Kullback-Liebler distances 
on the material density functions. Contrary to common belief, the values of any 
non-trivial Jacobian map do not follow a log-normal distribution with zero 
mean. Statistically significant differences were detected between consistent ver-
sus inconsistent matching when permutation tests were performed on the result-
ing deformation maps  

1   Introduction 

Non-linear image registration is a well-established field in medical imaging with 
many applications in functional and anatomic brain mapping, image guided surgery, 
and multimodality image fusion [1-3].  The goal of image registration is to align, or 
spatially normalize, one image to another. In multisubject studies, registration reduces 
subject-specific anatomic differences by deforming individual images onto a popula-
tion average brain template. Using a similar procedure, maps visualizing structural 
brain change over time can be generated by deforming baseline scans onto subsequent 
scans of the same subject, and using the deformation map to quantify local changes. 

To formulate the image registration problem mathematically, we denote the two 
images to be registered as T and S (both defined on an image domain Ω). We seek to 
estimate a transformation h  so that S(h(x)) is “closest”  to )(xT in terms of certain 
matching criteria. Ideally, this transformation mapping h should be smooth, one-to-
one, and differentiable (i.e., a diffeomorphism). Conventionally, researchers in the 
field of non-linear image registration use the notation u=(ux, uy, uz), the displacement 
vector field away from the identity map, to represent the transformation h (i.e., 
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)()( xuxxh −= ). The inverse map h-1 of h (i.e., h-1(h(x))=x for all x) thus maps the 
target to the source image. We will also use the notation u-1 to denote the displace-
ment field of the inverse map h-1.  

To make the transformation smooth, one-to-one, and differentiable, a regularizing 
constraint on the displacement field is needed. Thus, the problem of image registra-
tion is often cast as a minimization problem with a total cost functional E expressed in 
general as E=EM(S,T)+R(h), where EM is the matching criterion cost function, and 
R(h) is the regularizing constraint on the transformation. 

Intuitively, the problem of image registration is symmetric, i.e., the correspondences 
established between the two images should not depend on the order we use to compare 
the two images. However, early approaches for non-linear image registration were not 
symmetric and various terms (e.g., source, target, template, study, and reference) have 
been used to describe the direction of this comparison. In this paper, we will adopt the 
term source or S to describe the floating/deforming image and the term target or T to 
describe the image that the source image is deformed to match. This dependence on the 
direction of comparison not only complicates the notation but also has serious disad-
vantages.  Firstly, the deformation field depends on which image is assigned the source 
and which image the target. This dependence can be termed inverse inconsistency as 
inconsistency arises if we switch the order of source and target. Secondly, as pointed 
out in [4], these inversely inconsistent approaches penalize the expansion of image 
regions more than the shrinkage of image regions. This imbalance in the penalty was 
also noticed and discussed in another paper [5] by the same group in which shrinking 
brain lesions were found to be easier to detect than expanding ones using inversely 
inconsistent methods. Thus, conventional inverse-inconsistent non-linear registration 
techniques may be problematic in applications where the Jacobian of the transforma-
tion h is interpreted as measuring tissue loss or expansion, a step commonly performed 
in computational neuroanatomy (e.g., in tensor-based morphometry). 

One of the first approaches for inverse consistent registration [6] symmetrized not 
only the matching cost functional, but also the regularization of the displacement.  
Using the sum of squared differences of the intensities as the matching cost func-
tional, the following total cost function E was proposed: 

  

E T,S( )= S h(x)( )− T(x)
2
dx

Ω

+ λR h( )
E1

1 2 4 4 4 4 4 3 4 4 4 4 4 

+ T h−1(x)( )− S(x)
2
dx

Ω

+ λR h−1( )
E2

1 2 4 4 4 4 4 3 4 4 4 4 4 

 (1) 

 

Here λ is a positive scalar weighting of the regularizers applied to the forward and 
inverse mappings. The above cost function is symmetric and does not depend on the 
order of T and S, i.e., E(T,S) =E(S,T). To solve (1) numerically, [6] solved for h and g 
separately as follows and additional inverse consistency constraints were added so 
that g numerically realized h-1. 

Eh T,S( )= S h(x)( )− T(x)
2
dx

Ω

+ λR h( )+ ρ h − g( )−1 2

dx
Ω

;

Eg T,S( )= T g(x)( )− S(x)
2
dx

Ω

+ λR g( )+ ρ g − h( )−1 2

dx .
Ω

  

(2) 
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Iterative gradient descent methods can be employed and the numerical algorithm for 
minimizing eq. (2) can be summarized as follows. At initialization, both h and g are 
set to be the identity map. At each time step, the gradient descent of Eh is computed to 
update h while fixing the map g, and similarly Eg is used to update g while fixing the 
map h. This avoids the highly nonlinear nature of the original minimization problem 
eq. (1) in which both the forward and backward mappings are involved and need to be 
optimized while maintaining the inverse relation between them.  
Although the alternative formulation eq. (2) was extensively tested, with good ex-
perimental results, it has some disadvantages compared to the original formulation in 
eq. (1). Firstly, the algorithm proposed to solve eq. (2) is essentially a two step strat-
egy and creates a lagging-behind situation in estimating h and g. Either h and g has to 
be alternately fixed (i.e., the two maps are not estimated simultaneously). Moreover, 
an extra weighting parameter for the inverse consistency constraints has to be consid-
ered and was tuned case-by-case in [6]. 

2   Method 

2.1   Inverting Gradient Descent Direction 

 We seek to solve the original symmetric formulation for non-linear registration in eq. 
(1) instead of the modified formulation in eq. (2). To this end, we propose to directly 
couple the backward and forward mappings, allowing all driving body forces to be 
combined in the forward direction.  As a result, the corresponding minimization prob-
lem can be optimized in a unidirectional fashion, i.e. by considering the forward map-
ping only. Thus, the proposed algorithm can be thought of as a unidirectional proce-
dure with embedded inverse consistency.   

To simplify the derivation of this procedure, we will illustrate it using the sum of 
squared difference (SSD) as the matching cost functional. This can easily be extended 
to other intensity/feature-based cost functionals. As mentioned before, we will con-
vert the gradient descent direction involving the backward mapping (E2 in eq. (1)) to a 
corresponding gradient descent direction in the forward direction.  More precisely, we 
wish to update h and h-1 by perturbing the mappings from the previous time step in a 
descent direction with respect to the total cost functional E. 

h → h + εη1 + εη2 ; h−1 → h−1 + εξ1 + εξ2 .  (3) 

Here, ε is an infinitesimally small positive number and η1 and ξ1 are vector fields 
that represent the gradient descent direction of E1 in eq. (1) in the forward and back-
ward direction respectively, with η2 and ξ2 similarly defined for the term E2.  Notice 
that the terms η1 and ξ2 can be computed using standard calculus. Formally, we can 
write η1 and ξ2 as follows 

η1(x) = S h(x)( )− T(x)( )∇S h(x)( )+ λ∇R h( );
ξ2 (x) = T h−1(x)( )− S(x)( )∇T h−1(x)( )+ λ∇R h−1( ).

 . 

(4) 
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Here the gradient operator applied to the regularizer denotes the gradient descent 
direction of the regularizer (or a regularized/smoothed body force). In order to nu-
merically compute (3), we need to solve for η2 and ξ1 using eqs. (3) and (4). To this 
end, we first utilize the inverse relationship given in eq. (3)  

 
h−1 + εξ1 + εξ2( )o h + εη1 + εη2( )= id  . (5) 

where id is the identity mapping. By expanding (5) using Taylor’s expansion and 
collecting up to first order terms of ε, we obtain 

Dh−1 h(x)( ) η1 (x) + η2(x){ }= −ξ1 h x( )( )−ξ2 h x( )( ) .  (6) 

Here D denotes the Jacobian matrix operator. Using the relation-

ship: D h(x)( )( )−1
= Dh−1 h(x)( ) , derived by differentiating the identity rela-

tion h−1 h( )= id , we obtain the following alternative form to (6)  

η1 (x) + η2(x) = −D h(x)( ) ξ1 h x( )( )+ξ2 h x( )( ){ }.  (7) 

With (7), we can now express η2 and ξ1 using the known quantities ξ2 and η1 

η2 (x) = −D h(x)( )ξ2 h x( )( );

ξ1 (x) = −D h−1(x)( )η1 h−1 x( )( ).
  

(8) 

With all the quantities known, we now have a recipe for minimizing the symmetric 
forward-backward problem (1) using an iterative approach with the updating formulae 
(3). Moreover, as the two updating formulae in (3) are designed to be consistent with 
each other, we can simply update in the forward direction (first formula) without 
using the backward updating formulae at all. Notice that with eq. (8), the inversion of 
a body force from the backward direction to the forward direction can be carried out 
using only the forward mapping h (without involving h-1). This property is desirable 
due to the unavoidable numerical errors incurred when inverting between h and h-1.  

Thus, at each time step of the gradient descent method, we sum up the total for-
ward body force by combining the forward body force and the inverted backward 
body force obtained by applying (8). To evaluate (8) numerically, interpolations are 
necessary and we use a bi-linear or tri-linear technique to interpolate the backward 
body force in the non-grid point position h(x). 

In this paper, the linear elastic operator is chosen as in [6] for the regularizer 

R(u) = −α∆u − β∇ ∇ ⋅ u( ) 2
dx .  (9) 

where ∆ is the Laplacian and α and β are the Lamé constants (both set to be 1.0). The 
Fast Fourier transform technique (FFT) is applied to parameterize the displacement 
field. A multi-resolution minimization scheme can then be implemented in the fre-
quency domain.  
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2.2   Statistical Properties of Deformation Maps  

In this section, we discuss the statistical properties of the deformation maps arising 
from non-linear image registration. In tensor-based morphometry, the Jacobian de-
terminants of deformation maps are used to index local volume compressions or dila-
tions and their distribution is typically assumed to be log-normal [7]. However, we 
now show that the determinant of the Jacobian operator applied to any bijective (one-
to-one and onto) globally volume-preserving mapping h cannot have a log-normal 
distribution with zero mean. To this end, let us denote the Jacobian matrix of a trans-
formation h as Dh (with the (i,j)-th element ∂h j ∂xi

), and the local volume 

loss/expansion map (Jacobian map) can thus be defined as J(x) = Dh(x) . Notice 

that J encodes the local volume change of the source with respect to the target image, 
and may be considered to reside on the target reference frame. Since h is a diffeomor-
phic and bijective mapping from Ω to itself, we obtain the following using a change 
of variable    

1

Ω
Dh(x) dx

Ω
=

y= h(x ) 1

Ω
dy

Ω
=1. 

(10) 

Here, the first integral should be evaluated with respect to the target domain and the 
second integral with respect to the source domain, and |Ω| is the total volume of Ω. 
Given eq. (10), we can define a probability density function (PDF) P on Ω as 
P(x) = Dh(x) Ω  as it integrates to 1. Let us also use Q(x) = 1 Ω  to denote the 

PDF of the uniform distribution on Ω. Then, using the relation log(1/a)=-log(a), we 
can compute the mean of log(J) in the target reference frame on Ω as follows 

1
Ω

log Dh(x) dx
Ω

= − 1
Ω

log
1 Ω

Dh(x) Ω

 

 
 

 

 
 dx

Ω

= − Q log
Q

P
dx

Ω
= −KL(Q,P).

 

(11) 

Here KL, the non-negative asymmetric Kullback-Leibler (K-L) distance, between 
two PDF’s X and Y is defined as 

KL(X,Y ) = EX

X

Y

 
  

 
  
= X log

X

Y
dx

Ω
≥ 0;

KL(X,Y ) ≠ KL(Y,X); KL(X,Y ) = 0 iff X ≡ Y .

 
(12) 

Eq. (12) suggests that calculating the mean of a log-transformed volume change map 
is the same as computing the negative K-L distance between Q and P, and is always 
non-positive (zero only when J equals 1 everywhere, i.e., when the flow is incompressi-
ble). By contrast, let us also show that the log transform of  J o h−1 = J(h−1(x)) , the 
volume change map pulled back onto the source reference frame, has a mean larger than 
zero, unless the flow is incompressible.  Thus, the pulled-back Jacobian map does not 
have a log-normal distribution with zero mean either. 
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1
Ω

logJ h−1(y)( )dy
Ω

=
y= h(x ) 1

Ω
logJ(x)( ) Dh dx

Ω

= 1

Ω
log Dh(x)( )Dh dx

Ω
=

Dh

Ω
log

Dh(x) Ω
1 Ω

 

 
 

 

 
 dx

Ω

= P log
P

Q
dx

Ω
= KL(P,Q).

 
(13) 

Similarly, calculating the mean of the pulled-back logged volume change map is 
equivalent to computing the K-L distance between P, and Q, and is always non-
negative. Conventional log-normal modeling of the Jacobian distributions may there-
fore be less appropriate than non-parametric estimation, as illustrated in the Results.  

3   Results 

3D T1-weighted magnetic resonance images (MRI) of a 57 year-old male patient 
diagnosed with semantic dementia were obtained using a gradient echo acquisition 
(TR 25ms, TE 5ms, slice thickness 1.5mm, FOV 24x18cm, flip angle 40 degrees, no 
gaps). A total of four serial scans were obtained (baseline scan in 02/1993; follow-up 
scans in 10/1994, 02/1996, and 08/1999). The baseline (target) and the final follow-up 
(source) scans were used to evaluate the proposed approach. The two scans were first 
rigidly aligned and re-sliced to an isotropic volume of size 180×180×180 (a voxel = 
1mm3). The proposed inverse consistent registration algorithm was used to deform the 
source back to the target by maximizing the mutual information (MI) [8] between the 
deforming source and target images. This spatial normalization of scans over time 
allowed local tissue change to be estimated as mentioned in previous sections. A 
multi-resolution scheme  starting from the 32×32×32 FFT resolution was used (λ=1e-
4; time step=3e-6), and numerical convergence was checked every 20 iterations (con-
vergence criteria was met when the MI failed to increase by 0.001 after one iteration). 
40 iterations were computed in each FFT resolution before the resolution was in-
creased by a factor of 2 (with the time step decreased to one-tenth) in each dimension. 
The top panel of Fig. 1 plots the target image (baseline scan) from an angle showing 
temporal lobes bilaterally, the second panel the source image from the same angle. 
The MRI scans show existing left temporal lobe atrophy (LT) with relative preserva-
tion of the right temporal lobe (RT). However, closer inspection of the Jacobian map 
(Fig. 2) shows active atrophy in the right temporal lobe, as well as bilateral caudate 
(RC, LC), putamen (RP, LP), and thalamus (RT, LT) tissue loss, while no active atro-
phy was detected in the left temporal lobe during the same time period (not shown 
here). Fig. 3 plots the values of MI and regularizer versus iterations in the forward and 
backward direction using (1) the proposed inverse consistent approach, and (2) an 
inconsistent approach (minimizing only the term E1 in eq. (1)). The proposed consis-
tent algorithm achieved not only higher MI values, but also lower regularizer values. 

In order to validate the inverse consistency property of the proposed algorithm, we 
compared the deformation with that obtained by switching the source/target. Ideally, 
the deformation should not depend on this order, and thus inverse consistency can be 
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assessed by looking at the difference (Table 1) between the deformation pair. For com-
parison, the corresponding errors using the inconsistent algorithm are also reported. 
Notice that the proposed algorithm yielded smaller errors in all aspects, and on average 
decreased the mean error to about one-seventh compared to the inconsistent algorithm. 

 

Fig. 1.  The first row shows the baseline MRI scan of a patient diagnosed with semantic demen-
tia. The second row shows the follow-up MRI scan of the same patient in which ventricle (V) 
dilation and copus callosum (C) shape change can be observed. The third row shows the fol-
low-up MRI scan deformed to match the baseline scan using the proposed inverse consistency 
algorithm with maximization of mutual information (see text) 

We then examined the statistical properties of the log(J) values. The left panel in 
the first row of Fig. 4 shows the histogram of the log(J) values under the proposed 
inverse consistent mapping (mean –0.0011; skewness –0.01657), and the right panel 
the corresponding histogram using inconsistent matching (mean –0.0017; skewness –
0.648). Notice the slight visual difference in these two histograms. We first tested if 
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Fig. 2. 3D Jacobian map of the semantic dementia patient shows the active right temporal lobe 
atrophy (left panel), and deep nuclei involvement (right panel; see text) 

Table 1. Statistics of inverse consistency error. * denotes the displacement/deformation 
obtained by switching the order of the source/target. The numbers are reported with respect to 
the 64x64x64 resolution of the FFT parameterization of the displacement 

Forward mapping (inverse consistent) 
 | ux-ux* | | uy-uy* | | uz-uz* | | h-h* | 

Maximum 0.3893 0.8290 0.4345 0.8616 
Mean 0.0047 0.0071 0.0049 0.0115 

Backward mapping (inverse consistent) 
 | ux

-1-ux
-1*| | uy

-1-uy
-1*| | uz

-1-uz
-1*| | h-1-h-1*| 

Maximum 0.2751 0.8009 0.4145 0.8107 
Mean 0.0048 0.0071 0.0047 0.0115 

Forward mapping (inverse inconsistent) 
 | ux-ux* | | uy-uy* | | uz-uz* | | h-h* | 

Maximum 0.8343 0.8894 0.9616 0.9617 
Mean 0.0323 0.0297 0.0360 0.0685 

Backward mapping (inverse inconsistent) 
 | ux

-1-ux
-1*| | uy

-1-uy
-1*| | uz

-1-uz
-1*| | h-1-h-1*| 

Maximum 0.8499 0.9009 0.9884 0.9579 
Mean 0.0322 0.0288 0.0362 0.0674 

the log(J) distribution is symmetric around mean zero. To this end, a permutation test 
was performed where 10,000 samples were generated by randomly flipping the sign 
of each element in the observed distribution (under the null hypothesis that the ob-
served is symmetric around zero). The test statistic was the mean value of the re-
sampled distribution. No re-sampled test statistic (maximum 7.67e-5; minimum –
8.23e-5) was as extreme as the observed statistic, and thus the null hypothesis was 
rejected with statistical significance.  We then relaxed the null hypothesis and tested 
the symmetry of log(J) distribution using another permutation test (random flipping 
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around the observed mean –0.0011) with skewness as the test statistic. The left panel 
in the second row of Fig. 4 shows the histogram of the re-sampled statistics. The one-
sided p-value is 0.067, and thus the null hypothesis  (symmetric around its negative 
mean) cannot be rejected at the 5% significance level. By contrast, a similar skewness 
permutation test performed on the log(J) values under the inconsistent mapping 
yielded a p<0.0001. Thus, a statistically significant skewness was detected in the case 
of inconsistent mapping compared to its inverse consistent counterpart. 

Finally, we examined the differences in the log(J) distributions obtained from in-
verse consistent versus inconsistent mappings. As discussed in previous sections, one 
would argue that, by equally penalizing positive and negative log(J) values, an inverse 
 

 

Fig. 3. The Mutual Information (the first row) and the regularizer (the second row) are plotted 
against the iteration number (x axis) in both the forward (left panel) and backward (right panel) 
direction. The transient increase of the values around iteration 40 is due to the upsampling of 
the displacement FFT parameterization 
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Fig. 4. Skewness of Logged Jacobian distributions. The first row shows the histogram of the 
log(J) values of the inverse consistent mapping constructed using the proposed algorithm (left 
panel), and the corresponding histogram using the inconsistent matching (right panel) . Second 
Row: A permutation test is performed to determine if the consistent matching yields log(J) 
values  symmetric around its mean (left panel shows the histogram of the re-sampled skewness 
statistic) with a one-sided p-value of 0.067. Another permutation test is performed to determine 
if the two distributions in the first row are statistically different. The right panel shows the 
histogram of the re-sampled test statistic (the values scaled by 104) where no re-sampled statis-
tic is as extreme as the observed (i.e., p<0.0001) 

consistent mapping would shift the mean log(J) value rightward (less negative). We 
formally tested the statistical significance of this shift using a third permutation test 
(right panel in the second row of Fig. 4). The test statistic in this case was the differ-
ence of the mean log(J) values between consistent and inconsistent mappings with the 
observed statistic 6.066e-4.  10,000 samples of this test statistic were calculated by 
generating two re-sampled distributions using random shuffling of each element in the 
two observed  distributions (under the null hypothesis that the two distributions are 
identical and share the same mean). Again, not a single re-sampled test statistic (max 
9.44e-5, min –8.73e-5) was as extreme as the observed, and thus a statistically signifi-
cant difference was detected between the two observed distributions. 

4   Conclusion 

In this paper, we developed an inverse consistent image registration approach by 
applying variation calculus principles to the forward mapping only. We characterized 
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the statistical properties of the Jacobian maps, both empirically and by applying the 
Kullback-Liebler distance to the set of material density functions in both target and 
source coordinates. We showed that the mean value of any log Jacobian map is al-
ways negative except for the trivial case where the Jacobian map is identically one on 
the whole image domain (incompressible flow). By contrast, any non-trivial log Jaco-
bian map pulled back to the source coordinate must have a positive mean value. Thus, 
contrary to common belief, the values of any non-trivial Jacobian map do not follow a 
log normal distribution with zero mean. We also showed that compared to inconsis-
tent matching, consistent matching reduces the skewness and increases the mean 
value of the log(J) distribution (making it more symmetric and thus allowing more 
unbiased detection of expanding and shrinking regions). Moreover, the statistical 
theory of these distributions has strong ties with formulations in information theory. 
Our conclusion has important consequences when performing statistical tests on maps 
of tissue change in both longitudinal and inter subject/group studies. 

We also proposed a new algorithm that implements consistent matching in an intuitive 
manner without introducing extra penalty functions/parameters. Furthermore, the pro-
posed algorithm provides a general recipe for inverting body forces back and forth be-
tween the forward and backward directions, and thus is applicable to any image registra-
tion schemes that compute displacement fields using incremental updating. We tested the 
proposed algorithm using longitudinal MRI images in a case of semantic dementia and 
demonstrated promising results for tracking atrophic processes in the brain. 
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Abstract. Automatic multi-modal image registration is central to numerous tasks
in medical imaging today and has a vast range of applications e.g., image guid-
ance, atlas construction, etc. In this paper, we present a novel multi-modal 3D
non-rigid registration algorithm where in 3D images to be registered are repre-
sented by their corresponding local frequency maps efficiently computed using
the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid
registration between these local frequency maps is formulated in a statistically
robust framework involving the minimization of the integral squared error a.k.a.
L2E (L2 error). This error is expressed as the squared difference between the true
density of the residual (which is the squared difference between the non-rigidly
transformed reference and the target local frequency representations) and a Gaus-
sian or mixture of Gaussians density approximation of the same. The non-rigid
transformation is expressed in a B-spline basis to achieve the desired smoothness
in the transformation as well as computational efficiency.

The key contributions of this work are (i) the use of Riesz transform to achieve
better efficiency in computing the local frequency representation in comparison to
Gabor filter-based approaches, (ii) new mathematical model for local-frequency
based non-rigid registration, (iii) analytic computation of the gradient of the ro-
bust non-rigid registration cost function to achieve efficient and accurate registra-
tion. The proposed non-rigid L2E-based registration is a significant extension of
research reported in literature to date. We present experimental results for regis-
tering several real data sets with synthetic and real non-rigid misalignments.

1 Introduction

Image registration is a central algorithm to many image processing tasks and has a
vast range of applications including, but not limited to, medical image analysis, remote
sensing, optical imaging, etc. In this section, we will briefly review existing algorithms
reported in literature for achieving multi-modal registration. We will point out their
limitations and hence motivate the need for a new and efficient computational algorithm
for achieving our goal.
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1.1 Previous Work

Image registration methods in literature to date may be classified into feature-based and
“direct” methods. Most feature-based methods are limited to determining the registra-
tion at the feature locations and require an interpolation at other locations. If however,
the transformation/registration between the images is a global transformation e.g., rigid,
affine etc. then, there is no need for an interpolation step. However, in the case of a non-
rigid transformation, it is necessary to interpolate. Also, the accuracy of the registration
is dependent on the accuracy of the feature detector.

Several feature-based methods involve detecting surfaces landmarks [1], edges,
ridges etc. (see [2] for references). Most of these assume a known correspondence with
the exception of the work in Chui et.al., [1]. Work reported in Irani et.al., [3] uses
the energy (squared magnitude) in the directional derivative image as a representation
scheme for matching achieved using the SSD cost function. Recently, Liu et.al., [4]
reported the use of local frequency in a robust statistical framework using the integral
squared error a.k.a., L2E. The primary advantage of L2E over other robust estimators
in literature is that there are no tuning parameters in it. The idea of using local phase
was also exploited by Mellor et. al., [5], who used mutual information (MI) to match
local-phase representation of images and estimated the non-rigid registration between
them. However, robustness to significant non-overlap in the field of view (FOV) of the
scanners was not addressed. For more on feature-based methods, we refer the reader to
the survey by Maintz et.al., [2].

In the context of “direct” methods, the primary matching techniques for intra-
modality registration involve the use of normalized cross-correlation, modified SSD,
and (normalized) mutual information (MI). Recently, Roche et.al., [6] developed a cor-
relation ratio based algorithm for registering MR scans with ultra-sound images. The
results presented were quite impressive however, the issue of robustness to variations
in the FOVs of the scanners was not adequately addressed. Direct methods such as,
variants of optical flow-based registration that accommodate for varying illumination
maybe used for inter-modality registration and we refer the reader to [7, 8] for such
methods. Guimond et. al., [9] reported a multi-modal brain warping technique that uses
Thirion’s Demons algorithm [10] with an adaptive intensity correction. The technique
however was not tested for robustness with respect to significant non-overlap in the
FOVs.

A popular “direct” approach is based on the concept of maximizing mutual infor-
mation (MI) pioneered by Viola and Wells [11] and Collignon et al., [12] and modified
in Studholme et al., [13]. Reported registration experiments in these works are quite
impressive for the case of rigid motion. In [14], Studholme et.al., presented a normal-
ized MI scheme for matching multi-modal image pairs misaligned by a rigid motion.
Normalized MI was shown to cope with image pairs not having exactly the same FOV,
an important and practical problem. The problem of being able to handle non-rigid
deformations in the MI framework is a very active area of research and some recent
papers reporting results on this problem are [5, 15, 16, 17, 18, 19]. Computational effi-
ciency and accuracy (in the event of significant non-overlaps) are issues of concern in
all the MI-based non-rigid registration methods.
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1.2 Overview of Proposed Registration Method

In this paper, we develop a multi-modal registration technique which is based on a lo-
cal frequency representation of the image data. A local frequency image representation
can be obtained by filtering the image with Gabor filters and then computing the gra-
dient of the phase of the filtered images. As an alternative to the Gabor filter, we use
the Riesz transform (see section (2), which is computationally more efficient. Once,
we compute this local frequency representation for each of the two (source and target)
images to be registered, we are ready to find the registration transformation which will
best match these representations. Several matching criteria may be defined and we de-
veloped a statistically robust measure called the L2E defined as the squared difference
between the true density of the residual – defined as the squared difference between
the transformed source and the target local frequency representations – and a Gaussian
density approximation of the same. This matching criteria is minimized over a class of
smooth transformations expressed in a B-spline basis. The algorithm we have developed
is well suited for situations where the source and target images have FOVs with large
non-overlapping regions (which is quite common in practise). This formulation leads to
a nonlinear cost function whose optimization yields the desired non-rigid registration.
Several experiments with synthetic and real 3D data sets are presented to depict the
performance of our algorithm.

Rest of the paper is organized as follows: in section 2.1, we present the local fre-
quency computation using the Riesz transform and section 2.2 contains the details of
our model for matching the local frequency representations. In section 2.3, we present
the numerical algorithm and section 3 contains the experimental results on 2D/3D med-
ical image data sets. Finally, we conclude in section 4.

2 Proposed Registration Method

2.1 Computing Local Frequency Using Riesz Transform

For multi-modal image registration, the relation between the brightness of the corre-
sponding pixels is usually complicated: multiple intensity values in one modality im-
age may map into single intensity in another modality; image feature existing in one
image may not have correspondence in the other image, etc. However, multi-modal im-
age data, acquired either with different sensors, or with the same sensor, mainly differ
in the low frequency components. High frequency components, on the other hand, nor-
mally correspond to the physical structure of the object being imaged, and thus are good
at expressing the commonality existing within the multi-sensor image pair. In the local
frequency representation on which our algorithm is based, edges and ridges will have
high values (since they are associated with high frequency components) and will be the
dominant features for the matching stage.

In 1-D case, the local (instantaneous) frequency is well defined as the rate of change
in phase of analytical signal obtained by Hilbert transform. However, the estimation of
local frequency for higher dimensional images is still an important and open problem
in the field of signal processing and computer vision. Quadrature filters are widely used
as an approach to computing local phase and frequency in an image.
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In this work, we present a novel formulation for computing the local-frequency
using the Riesz transform which can be regarded as a generalization of the Hilbert
transform in higher dimension. The key feature of this formulation is the fact that unlike
the Gabor filter based technique, we do not need a bank of filters for computing the
local frequency representation. A 3-D generalization of the Hilbert transform may be
obtained by the vector sum of 3 Riesz transforms:

H3(I) = F−1

[(
3∑

k=1

−iuk

|u| ek

)
F [I]

]
(1)

where I(x, y, z) is the given 3D image and u = (u1, u2, u3)T is the spatial frequency
vector, ek is the unit vector in the direction of the kth coordinate axis, and F is the
Fourier transform operator. This may be rewritten as:

H3(I) = F−1

[F [∇I]
|u|

]
(2)

After some detailed analysis [20], it is possible to show that the righthand side of equa-
tion (2) can be approximated as:

∇I√
ω2

1(x, y, z) + ω2
2(x, y, z) + ω2

3(x, y, z)
=

∇I(x, y, z)
|ω(x, y, z)| (3)

where ωk(x, y, z) is the kth component of the local frequency. The frequency magni-
tude may therefore be estimated as:

|ω(x, y, z)| ≈ |∇I(x, y, z)|
|H3(I)(x, y, z)| (4)

where H3 is computed using (1). In order to make this approximation less sensitive to
noise, we use a smoothing operator on both the computation of the ∇I and H3. It should
be remarked that a precise computation of ∇I is crucial for the correct approximation
of |ω|; the best results are obtained when this computation is performed in the frequency
domain.

In this way, the estimation of |ω| requires one forward 3-D Fourier transform and
6 inverse 3-D Fourier transforms, plus 2 separable 3-D convolutions. This can be done
in O(NlogN) time, where N is the number of voxels in the image. In comparison, the
Gabor filter bank requires O(4Nm3k) time – where, m3 is the convolution kernel size
and k is the number of filters. In our implementation m3 >> logN . Additional ad-
vantages of our approach accrue in the form of storage savings since, there is a large
storage requirement in the Gabor filter-based approach described in Liu et al., [4] to
keep the responses of a large filter bank at each lattice point for computing the max.
local freq. response. No such filterbanks are used in our approach for computing the
local frequency response.

Our current implementation uses FFTW1 package which is a very efficient imple-
mentation. Even for 3D volumes (210 × 210 × 120), the computation can be done in

1 www.fftw.org



508 B. Jian, B.C. Vemuri, and J.L. Marroquin

Fig. 1. Left: a pair of T1 and T2 images; Right: their corresponding local frequency maps

1 minute, under a Linux system running on a PC equipped with a 2.6GHZ Pentium4.
Figure (1) illustrates two examples of computed local frequency in 2D for two T1 and
T2 slices obtained from BrainWeb [21]. Note the richness of the structure in the repre-
sentation.

2.2 Matching Local Frequency Representations

Let I1 and I2 be two images to be registered, and assume the deformation field from I1

to I2 is u = u(x), i.e. the point x in I1 corresponds to the x + u(x) in I2. Denote by
F1 and F2 the local frequency representations corresponding to I1 and I2 respectively.
The corresponding local frequency constraint is given by

(I + J(u)T)F1(x + u(x)) = F2(x) + ε(x) (5)

where J(u) is the Jacobian matrix of deformation field.
Note the above equation holds for the vector-valued frequency representation. How-

ever, experiments show that the vector-valued representation is much more sensitive to
the noise than the magnitude of frequency and the Jacobian matrix term makes the nu-
merical optimization computationally expensive. Applying Mirsky’s theorem from ma-
trix perturbation theory [22] which states

√∑
i (σ̃i − σi)2 ≤ ‖J(u)T‖F where σ̃i−σi

is the difference in the singular values between the perturbed matrix (I + J(u)T) and
I, and imposing the regularization condition that J(u) is small, we can approximate the
‖(I + J(u)T)F(x)‖ by ‖F(x)‖ to get the following simplified form:

‖F1(x + u(x))‖ = ‖F2(x)‖ + ε(x) (6)

where ‖ · ‖ gives the magnitude of local frequency.
Instead of the popular SSD approach, we develop a statistical robust matching cri-

terion based on the minimization of the integral squared error(ISE) or simply L2E
between a Gaussian model and the true density function of the residual. Traditionally,
the L2E criterion originates in the derivation of the nonparametric least squares Cross-
validation algorithm for choosing the bandwidth h for the kernel estimate of a density
and has been employed as the goodness-of-fit criterion in nonparametric density esti-
mation. Recently, Scott [23] exploited the applicability of L2E to parametric problems
and demonstrated its robustness behavior and nice properties of practical importance.
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In the parametric case, given the r.v. ε from (6) with unknown density g(ε), for
which we introduce the Gaussian model f(ε|θ), we may write the L2E estimator as

θ̂L2E = arg min
θ

∫
[f(ε|θ) − g(ε)]2dx (7)

Simply expand above equation and notice the fact that
∫

g(ε)2dx does not depend on θ
and

∫
f(ε|θ)g(ε)dx = Eg[f(ε|θ)] is the so called expected height of the density which

can be approximated by the estimator 1
n

∑n
i=1 f(εi|θ), hence the proposed estimator

minimizing the L2 distance will be

θ̂L2E = arg min
θ

[
∫

f(ε|θ)2dx − 2
n

n∑
i=1

f(εi|θ)]. (8)

For Gaussian distributions, we have closed form for the integral in the bracketed quan-
tity in (8) and hence can avoid numerical integration which is a practical limitation
not only in computation time but also in accuracy. Thus, we get the following criterion
L2E(u, σ) from (8) for our case,

1
2
√

πσ
− 2

N

N∑
i=1

exp

{
− (‖F1(x + u(x))‖ − ‖F2(x)‖)2

2σ2

}
(9)

Equation (9) differs from the standard SSD approach in that the quadratic error terms
are replaced by robust potentials (in this case, inverted Gaussians), so that the large
errors are not unduly overweighed, but rather are treated as outliers and given small
weight.

Generally, a regularization term is needed for nonrigid registration problem to im-
pose the local consistency or smoothness on the deformation field u. In case u is as-
sumed to be differentiable, this regularization term could be defined as a certain norm of
its Jacobian J(u). For simplicity, the Frobenius norm of Jacobian of deformation field
‖J(u)‖2

F
is used here. Altogether, the proposed non-rigid image registration method is

expressed by the following optimization problem:

θ̂ = arg min
θ=[u,σ]

L2E(u, σ) + λ‖J(u)‖2F (10)

where λ is the Lagrange multiplier and σ is the parameter controlling the shape of
the residual distribution modelled by a zero mean Gaussian φ(x|0, σ). Unlike other
robust estimators, this shape parameter σ need not be set by the user, but rather it is
automatically adjusted during the numerical optimization. Deformation field u, in this
work, is expressed for computational efficiency, by a B-Spline model controlled by a
small number of displacement estimates which lie on a coarser control grid.

2.3 Numerical Implementation

The numerical implementation is achieved using nonlinear optimization techniques to
solve equation (10). In our current implementation, we handle the minimization over σ
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and u separately. At each step, the σ is the minimizer of the L2 distance between the
true density and model density of residual distribution given fixed u. A zero vector is
used as the initial guess for u. In each iteration, we evaluate the gradient of E(u) =
L2E(u, σ) + λ‖J(u)‖2

F
with respect to each of the parameters in u using analytical

formulae which can be computed in laboratory frame:

∇uL2E =
2

N ∗ σ2

N∑
i=1

{
exp

{
− D2

i

2σ2

}
DiGi

}
(11)

∇σL2E = − 1
2
√

πσ2
− 2

N

N∑
i=1

{
exp

{
− D2

i

2σ2

}
D2

i

σ3

}
(12)

where
Di = ‖F1(xi + u(xi))‖ − ‖F2(xi)‖

is the frequency magnitude error at pixel i,

Gi = (∇‖F1‖)(xi + u(xi))

is the spatial gradient of (‖F1‖). Then, a block diagonal matrix is computed as approxi-
mation of Hessian matrix by leaving out the second-derivative terms and observing that
the overall Hessian matrix is sparse multi-banded block-diagonal. Finally, a precondi-
tioned gradient descent technique is used to update the parameter estimates. In this step,
an accurate line search derived by Taylor approximation is performed.

The numerical optimization approach is outlined as follows:

– Set i = 0 and give an initial guess for deformation field u0;
– Gaussian fitting: σi = arg minL2E(ui, σ), this step involves a quasi-Newton non-

linear optimization;
– Update deformation estimates: ui+1 = ui+∆u, this step involves a preconditioned

gradient descent method close to that used by [7];
– Iterate: i = i + 1
– Stopping criteria: ‖∆u‖ ≈ 0

3 Experimental Results

In this section we present three sets of experiments. The first set constitutes of a 2-D
example to depict the robustness of L2E. The second set contains experiments with
2-D MR T1- and T2- weighted data obtained from the Montreal Neurological Institute
database [21]. The data sets were artificially misaligned by known non-rigid transfor-
mations and our algorithm was used to estimate the transformation. The third set of
experiments was conducted with 3-D real data for which no ground truth was available.

3.1 Robustness Property of the L2E Measure

In this section, we demonstrate the robustness property of L2E and, hence, justify the
use of the L2E measure in the registration context.



Robust Nonrigid Multimodal Image Registration Using Local Frequency Maps 511

(a) (b) (c) (d)

Fig. 2. Depiction of the robustness property of the L2E measure. From left to right: (a): a 2-D
MR slice of size 257 × 221; (b): the source image obtained from (a) by cutting the top third
of image; (c): transformed (a) serving as the target; (d) warped source image with the estimated
deformation

In order to depict the robustness property of L2E, we designed a series of experi-
ments as follows: with a 2-D MR slice as the source image, the target image is obtained
by applying a known nonrigid transformation to the source image. Instead of matching
the original source image and transformed image, we cut more than 1/3 of the source
image (to simulate the affect of significant non-overlap in the FOVs), and use it and
the transformed image as the input to the registration algorithms. Figure 2 depicts an
example of this experiment. In spite of missing more than 33% of one of the two im-
ages being registered, our algorithm yields a low average error of 1.32 and a standard
deviation of 0.97 in the estimated deformation field over the uncut region. The error
here is defined by the magnitude of the vector difference between ground truth and es-
timated deformation fields. For comparison purposes, we also tested the MI and the
SSD method on the same data set in this experimental setup. The nonrigid mutual in-
formation registration algorithm was implemented following the approach presented in
[24]. And in both the MI and SSD method, the nonrigid deformations are modeled by
B-Splines with the same configuration as in our method. However, both the MI and the
SSD method fail to give acceptable results due to the significant non-overlap between
the data sets.

3.2 Inter-modality Registration

For problem of inter-modality registration, we tested our algorithm on two MR-T1 and
-T2 2D image slices from the BrainWeb site [21] of size 181 × 217. These 2 images
are originally aligned with each other and are shown in Figure (1) as well as their cor-
responding local frequency maps computed via the application of the Riesz transform
described earlier. In this experiment, a set of synthetic nonrigid deformation fields were
generated using four kinds of kernerl-based spline representations: cubic B-spline, elas-
tic body spline, thin-plate spline and volume spline. In each case, we produced 15 ran-
domized deformations where the possible values of each direction in deformation vary
from -15 to 15 in pixels. The left half of Table 1 shows the statistics of the difference
between the ground truth and estimated deformation fields. For purpose of compari-



512 B. Jian, B.C. Vemuri, and J.L. Marroquin

Table 1. Statistics of the errors between ground truth displacement fields and estimated deforma-
tion fields obtained using our method and the MI method on pairs of T1-T2 MR images

Our Method MI Method
Statistics (in pixels) mean std. dev. median mean std. dev. median
Thin Plate Spline 2.03 1.83 1.33 2.02 1.81 1.31
Elastic Body Spline 1.98 1.87 1.28 1.99 1.87 1.27
Volume Spline 2.13 2.03 1.53 2.12 2.04 1.52
Cubic B-Spline 1.29 1.18 0.79 1.27 1.17 0.79
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Fig. 3. From left to right: the ground truth deformation field; the estimated deformation field; the
cumulative distribution of the estimated error in pixels

son, in this setup we also tested the nonrigid mutual information registration algorithm
which was used in the previous experiment. As shown in the right half of Table 1, MI-
based nonrigid registration produces almost same accuracy in the results as our method
for this fully overlapped data sets. However, the strength of our technique does not lie
in registering image pairs that are full overlapped. Instead, it lies in registering data
pairs with significant non-overlap, as shown in Figure 2. Figure 3 shows plots of the
estimated B-Spline deformation along with the ground truth as well as the cumulative
distribution of the estimated error. Note that the error distribution is mostly concentrated
in the small error range indicating the accuracy of our method.

3.3 3D Data Example

To conclude our experimental section, we show results on a 3D example for which no
ground truth deformations are available. The data we used in our experiments is a pair
of MR images of brains from different rats. The source image is (46.875 × 46.875 ×
46.875) micron resolution with the field of view (2.4×1.2×1.2cm), while the target is
3D diffusion-weighted image with (52.734× 52.734× 52.734) micron resolution with
the field of view (2.7 × 1.35 × 1.35cm). Both the images have the same acquisition
matrix (256 × 512 × 256).
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Fig. 4. Nonrigid registration of an MR-T1 & MR-DWI mouse brain scan. Left to Right: an ar-
bitrary slice from the source image, a slice of the transformed source overlayed with the corre-
sponding slice of the edge map of the target image and the target image slice

Figure 4 shows the registration results for the dataset. As is visually evident, the
misalignment has been fully compensated for after the application of the estimated de-
formation. The registration was performed on reduced volumes (128×128×180) which
took around 10 minutes to obtain the results illustrated in figure 4 with the control knots
placed every 16 × 16 × 16 voxels by running our C++ program on a 2.6GHZ Pentium
PC. Validation of non-rigid registration on real data with the aid of segmentations and
landmarks obtained manually from a group of trained anatomists are the goals of our
ongoing work.

4 Conclusions

In this paper, we presented a novel algorithm for non-rigid 3D multi-modal registration.
The algorithm used the local frequency representation of the input data and applied a
robust matching criteria to estimate the non-rigid deformation between the data. The
key contributions of this paper lie in, (i) efficient computation of the local frequency
representations using the Riesz transform, (ii) a new mathematical model for local-
frequency based non-rigid registration, and (iii) the efficient estimation of 3D non-rigid
registration between multi-modal data sets possibly in the presence of significant non-
overlapping between the data. To the best of our knowledge, these features are unique
to our method. Also the robust framework used here namely, the L2E measure, has the
advantage of providing an automatic dynamic adjustment of the control parameter of
the estimator’s influence function. This makes the L2E estimator robust with respect to
initializations. Finally, we presented several real data (with synthetic and real non-rigid
misalignments) experiments depicting the performance of our algorithm.
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Abstract. Recent advances in molecular biology are providing new op-
portunities for breast cancer imaging. Our approach uses ultrasound to
image viscoelastic features of tumors. These features describe microen-
vironmental factors that stimulate signaling pathways in tumors that
ultimately affect metastatic potential and response to traditional thera-
peutics. This paper explains the motivation for the approach, describes
measurements in phantoms and patients, and defines measurement sen-
sitivity using hydrogels with tissue-like features.

1 Viscoelastic Imaging of the Tumor Microenvironment

Cancer cells communicate locally with other cells and the extracellular matrix
(ECM) using molecular signals. Communication is essential if a cancerous tumor
is to grow and metastasize [Ele01]. Molecular signaling controls many facets of
tumor progression related to outcome including growth rate, degree of invasive-
ness, and metastatic potential. Signals are generated in response to the tissue
microenvironment, which is determined by cell phenotype, spatial organization,
and biochemical and metabolic activities. Current trends in cancer imaging aim
to visualize the signaling pathways and the tumor microenvironment to bet-
ter understand disease progression and design targeted imaging and therapeutic
agents. The goal of cancer imaging is to exploit disease-specific object contrast
mechanisms that provide specific information for tumor detection and disease
management decisions.

Molecular imaging techniques are well suited for this task. Successful tech-
niques enhance object contrast for molecular-scale events by targeting circulating
imaging probes for attachment to specific sites of disease. Standard modalities
then image the energy emitted or reflected from the attached probes. One ap-
proach to molecular imaging employs integrin-based imaging probes to identify
regions of enhanced angiogenic (new blood vessel) activity [Day04].

A less direct approach is to image the causes or effects of molecular signaling.
Metabolic and structural features of the tumor microenvironment are naturally
targeted for imaging because of their key roles in the signaling process. For ex-
ample, 18F-PET probes are applied to quantify changes in tumor cell metabolism
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that are highly correlated with histological markers [Abb04]. Also, with confocal
and multi-photon microscopy, it is possible to visualize the effects of ECM-cell
signaling on stromal microstructure, in vivo [Voy01]. The optical methods use
autofluorescence to generate the contrast necessary to study ECM structure,
whereas the other methods depend on the development of targeted probes.

Our ultrasonic approach provides images of viscoelastic features that de-
scribe the tumor microenviroment without contrast enhancement. Tissues are
mechanically stressed while we image time-varying strains at near-B-mode spa-
tial resolution from sequential frames of echo data. Strain images are analyzed to
separately map the elastic and viscous properties of tissues, as described below.

Elastic properties, we hypothesize, indicate disease-specific changes in colla-
gen density and structural organization. Stromal-epithelial cell signaling modi-
fies fibroblast cell activity to increase production of ECM component proteins
[Ele01]. These changes begin a cascade of events that include formation of a stiff
desmoplastic reaction surrounding the tumor mass. Desmoplasia is the effect
sensed during manual palpation, a common screening procedure for breast can-
cer. To sense the elastic changes, ultrasound is used to track local displacements
in 1-100 µm range [Nig02, Ber03].

Viscous features indicate pH-induced changes from highly metabolic and
poorly perfused regions of the tumor. For example, acidic conditions lead to
protonation of the side-chains on collagen molecules that affect cross linking
[Ush00] and vicinal water structure [Pol01]. Viewing soft tissues as a water-based
polymer, reduced pH softens the medium (lower shear modulus) and causes it
to creep (viscous flow) faster when held under a load. Viscous properties could
reveal regional variations in cell metabolism and oxygenation since these prop-
erties are highly correlated with pH. Fast growing tumors often generate acidic
regions that enhance genetic instability leading to metastatic progression and
reduced therapeutic responsiveness [Gil02]. This paper describes the image sci-
ence of viscoelastic imaging for assessing functional features of breast cancer
development. Our goal is to understand what material property information is
available with viscoelasticity imaging. Feature sensitivity is assessed using colla-
gen hydrogels with known material properties that are similar to those of breast
tissues.

1.1 Physical Models: Gelatin

There is a fibrous collagen matrix within breast tissues and other organs that
provides mechanical integrity as well as signaling sources and receptors. Without
the matrix, tissues would be viscous fluids. The 3-D organization of the collagen
molecules determine the structural stability of the matrix. The structure depends
on the density of surface charges during assembly, which strongly depends on the
microenvironment. Consequently, the viscoelastic response of breast tissue to a
mechanical deformation can describe the concentration of collagen, extracellular
pH, and any other effect that changes the balance of surface charge.

To develop imaging methods we use gelatin as a test material [Hal97, Mad03].
The homogeneity and structural simplicity of the type I collagen in this hydrogel
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allow for interpretation of viscoelastic properties in terms of molecular-scale
structure and forces while preserving essential features of the polymer structure.
Much is already known about the physical chemistry of hydrogels [Roe02, Cha96,
Ell04]. Like proteins in tissue stroma, the collagen molecules in gelatin have
charged hydrophilic surfaces that adsorb water. The collagen molecules cross link
by bonding at charged sites along the amino acid backbone. The dimensional
stability of the gel depends on the interplay of covalent bond, hydrogen bond,
electrostatic, and van der Waals forces [Ush00].

On a macroscopic scale, hydrogels, like tissues, are incompressible viscoelastic
solids. Bulk material properties are determined by the shear modulus G since
deformations produce changes in shape but not volume. The elastic properties
of hydrogels depend on the degree of cross linking between collagen molecules.
Covalently-bonded cross links are very stable; they do not change with elastic
deformations. However, the weaker bonds generate an initial elastic response
that creeps over time. As shown in the results section, the viscous creep is bi-
exponential with the shorter relaxation time T1 between 0.1 and 10 s and the
longer relaxation time T2 in the range of 100 s. It has been postulated that
T1 indicates properties of vicinal water flow and T2 described the relaxation of
weakly bonded cross links [Sri04].

During gelation, collagen self assembles into structures at many spatial scales.
Native structures emerge only within a narrow range of environmental condi-
tions. Confocal microscopy has shown that greater collagen concentration in-
creases fibril density without affecting fibril length or diameter [Roe02]. How-
ever, a shift in pH away from the isoelectric point (pI) 1 induces a transition
to a more amorphous structure. The congealed polymer has shorter and thicker
fibrils under acidic conditions and longer and thinner fibrils under basic condi-
tions. When pH �= pI, the added charges compete for the weakly bound sites
of molecular cross linking, thus weakening the matrix. Elastic measurements
alone do not define pH, but when combined with viscous creep time constants, a
unique description emerges. Viscoelastic imaging can describe average properties
of environmentally induced effects occurring at the molecular scale.

2 Methods

2.1 Gelatin Samples

Tissue-like gelatin samples were prepared for either mechanical testing or vis-
coelastic imaging as described previously [Hal97]. 26 ml of propyl alcohol and
14 g of type A, 275 bloom, animal-hide gelatin were added to 200 ml distilled
water. The solution was heated at 60oC until visually clear before adding 0.3
ml of formaldehyde to increase collagen cross linking. pH values were adjusted
between 3 and 8 (isoelectric point pI = 5) by adding an acid (HCl) or a base

1 pI is defined as the pH of a protein at which there are equal numbers of positive and
negative charges at the molecular surfaces.
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(NaOH). The solution was poured into a testing container and cooled to initiate
gelation. These samples were used for materials testing 24 hours after congealing.

For imaging experiments, 9.1 g of graphite powder is added to the molten gel
and thoroughly mixed to provide tissue-like ultrasonic absorption and backscat-
ter. Most of the collagen molecules assemble into a triple helix fibril structure.
The fibrils are cross linked into a random network trapping graphite particles
and water. Graphite scatters ultrasound but does not affect structures that de-
termine mechanical properties. Conversely the structural matrix only weakly
interacts with ultrasound. Imaging samples were aged 5 days before measure-
ments to increase stiffness. From an earlier analysis of gelatin elasticity [Hal97],
we adjusted image-based measurements to match mechanical-testing measure-
ments for differences in sample age.

2.2 Viscoelastic Modeling

A continuum description of material properties is appropriate at our resolution
scale. The constitutive equation relating material properties to time-dependent
stress σ(t) and strain ε(t) as measured along one axis of a cubic volume is a
differential equation [Tsc89],

N∑

n=0

an

dnσ

dtn
=

M∑

m=0

bm

dmε

dtm
. (1)

For linear time-invariant behavior of the material, the coefficients an and bm are
constant. They are model parameters related to the material properties we seek
to measure.

Assuming the system is initially at rest, σ = ε = 0 for t < 0, we apply the
one-sided Laplace transform to (1) to find

ã(s)σ̃(s) = b̃(s)ε̃(s) , (2)

where σ̃(s) � Lσ(t) =
∫ ∞
0

dt exp(−st)σ(t) and ã and b̃ are polynomials in s:

ã(s) =
∑

n ansn, b̃(s) =
∑

m bmsm. From (2)

ε̃(s) = R̃(s) σ̃(s) and σ̃(s) = Q̃(s) ε̃(s) , where R̃(s) =
ã(s)

b̃(s)
= Q̃−1(s) . (3)

Eq (3) is Hooke’s law for linear, time-varying viscoelastic solids as described in
the complex s-plane. Here, R is the shear retardance; its inverse is Q, the shear
relaxance.

Two experiments are described by (3). In one, we stimulate the medium
with a known, time-varying stress, measure the resulting strain, and the mate-
rial properties are computed. This is the viscous creep experiment and R(t) =
L−1{R̃(s)} is the impulse response of the system. In the other, we stimulate the
medium with a known strain and the stress is measured. This is a stress relax-

ation experiment and Q(t) is the impulse response. Materials testing equipment,
such as a cone viscometer, can measure R or Q to validate imaging experiments
where only R can be measured.
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At this point, we return to our physical model of hydrogel mechanical be-
havior and add some 19th century physics. A standard creep experiment applies
a uniaxial step stress to a sample, σ(t) = σ0 u(t). The initial effect is to elas-
tically deform the matrix. Over time, water flows and the stretched cross links
relax, thus generating a bi-exponential, time-varying strain called viscous creep
(Fig. 1a). Water flow through the compressed polymer gives one viscoelastic
response, like a shock absorber. This is represented mathematically by a Voigt
retardance unit, R̃w(s) = R1/(1 + T1s), where T1 = η1R1 is the relaxation time
for the first viscous component and η1 is its coefficient of viscosity ([Tsc89], Ch
3). The weaker hydrogen and electrostatic bonds contribute a second viscoelas-
tic response, R̃ch(s) = R2/(1 + T2s). Finally, covalently-bonded cross links are
very stable; they do not creep under a load and thus contribute a purely elas-
tic response over the measurement time: R̃cc(s) = R0. Note that Ri, Ti, ηi for
i = 0, 1, 2 are all constants. The three component retardances assemble in series
and in combination with (3) for a step stress stimulus gives strain in the time
domain as

ε(t) = R0σ0 + R1σ0(1 − exp(−t/T1)) + R2σ0(1 − exp(−t/T2)) . (4)

Out of five possible parameters we display three, R0σ0, T1, and T2. R0σ0 is the
instantaneous strain that describes elastic response of the medium. T1 and T2 are
viscous relaxation time constants for water flow and cross linking mechanisms
as described above. We postulate that these three parameters can describe the
local biochemical environment of cancerous tissues.

2.3 Viscoelastic Measurements

Three types of measurements were performed on gelatin samples. A cone vis-
cometer (standard materials testing device) was used to apply and sense the av-
erage stress and strain (Fig. 1a). Strain is measured for 120 s at a sampling rate
of 3 Hz after stimulating the sample with a ramp stress. Samples were allowed
to relax for 300 s before the measurement was repeated. Average measurements
ε̂(t) were fit to (4) is estimate parameters R0σ0, T1 and T2 as a function of
pH. Results from the viscometer studies were used to understand and validate
contrast mechanisms for imaging.

They also indicated the temporal resolution and acquisition times required
for effective viscoelastic imaging. Its near-ideal geometry and high sensitivity
provided an upper bound on sensitivity to pH-induced changes.

To gain further confidence in our estimates, we applied standard indenta-
tion techniques (Fig. 1b) to estimate elastic moduli [Kar01]. Cylindrical gelatin
samples, 60 mm in diameter and 6 mm in height, were placed on a digital
force plate. A flatended, cylindrical indentor 1.5 mm in radius was pressed into
the top surface of samples under computer control at a constant speed of 0.02
mm/s. After cycling 10 times, the indenter position and the resultant force were
recorded (Fig. 1b). The force-displacement data were applied to an equation de-
veloped for the specific measurement geometry to estimate the elastic modulus
Q0 [Hay72, Kar01].
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Fig. 1. Three experiments: (a) and (b) are used to validate imaging experiment (c). (a)
A cone viscometer applies a shear force to measure creep (top) and stress-strain curves
(bottom) for samples at different pH. (b) Indenter applies compressive force to measure
force-displacement that are related to stress-strain curves. (c) Ultrasonic viscoelastic
imaging (steps 1-4). Imaging array applies a compressive force while acquiring RF echo
frames. RF frames are processed to form strain image sequence. Pixels in the target
(x) and background (o) are fit to bi-exponential curves to generate viscoelastic images

We image viscoelastic parameters by applying a stress field to the surface
of tissues and phantoms with an ultrasound transducer while recording frames
of radiofrequency (RF) echo signals (Fig. 1c). A linear array transducer is flush
mounted to a compression plate and positioned with a computer controlled mo-
tion system. Echo frames were recorded at 13 fps synchronous to the transducer
motion from a Siemens Antares ultrasound system with an Ultrasound Research
Interface (URI). Strain was computed between sequential RF frames using ei-
ther a correlation-based algorithm [Cha98] or a regularized optical flow algorithm
[Bar04]. The spatial resolution for strain is normally determined by the corre-
lation window length, but ultimately is limited by the pulse bandwidth. For
each pixel in the strain image sequence, values are plotted as a function of time.
Those curves are fit to (4) using techniques described in [Sri04] to estimate three
images displaying the parameters R0σ0, T1, and T2.

2.4 Free-Hand Clinical Viscoelastic Imaging

To estimate material properties, we use simple sample geometries and precise
movements to mechanically stimulate samples. However, the same precision is
impractical in clinical applications. Studies have shown it is possible to apply a
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stress to a phantom using a hand-held transducer that varies less than 5% up
over the 20 s imaging time [Sri04a]. Some drift is acceptable provided pathology-
specific contrast can be maintained.

3 Results

Figures 2 (a-c) display measurements of elastic modulus Q0 and relaxation time
constants T1, T2 from Eqs. (3) and (4) versus pH as measured by the three
techniques described in Fig. 1: viscometer, indenter, and ultrasonic viscoelastic
imaging. The collagen matrix structure of each sample was adjusted by varying
the pH before the gel congealed, so the properties are spatially homogeneous.
Principal strains give the relationship between the shear modulus obtained in
the viscometer studies G and the elastic modulus from indenter and imaging
measurements Q0 for these incompressible gels: Q0 = 3G [Tsc89].

Elastic modulus estimates are similar for all three techniques below the iso-
electric point; however, viscometer values exceed the indenter and imaging results
at pH > 5. Gel stiffness is greatest at the isoelectric point where the shape of the
collagen fibrils and their surface charge distributions provide dense cross links
via fragile hydrogen and electrostatic bonds. Gelatin softens at lower and higher
pH values because cross-link sites compete for binding locations with the excess
charges.

Relaxation time constant estimates increase linearly over the same pH range.
The correlation coefficients listed suggest a linear dependence on pH, however
for the relaxation time constant T1, a step function at the iso-electric point could
also describe its pH response. The viscometer yielded a slope ∆T1/∆pH = 2.34
that is smaller than ∆T2/∆pH = 41.42, showing that T2 is more sensitive to pH
changes. The slopes for the imaging experiments are lower than those for the
viscometer most likely because the total measurement time is shortened from
200 s (viscometer) to 20 s (imaging), or perhaps because of differences in signal-
to-noise ratios and experimental uncertainties. The acquisition time for imaging
is limited by the memory of the on-board processor, although it can be extended
if the acquisition depth and frame rate are reduced.

Similar trends in the three parameters were observed for stress rates between
20 – 1000 Pa/s (curves not shown), however, the time constants progressively
decreased with stress rate. The relaxation parameters did not change as the peak
applied stress was varied between 20 – 100 Pa, confirming that we are in the
linear, viscoelastic measurement region for these materials. The strain response
is nonlinear for greater applied stress; e.g., see Fig. 1 (b).

To generate the data of Fig. 2 (a-c), we adjusted pH before the gels con-
gealed to alter the 3D structure of the matrix as it formed [Ush00]. We found
no literature to predict what happens if we inject acids or bases into congealed
gelatin after the matrix structure has been set. Our intention was to generate a
focal region with varying pH for imaging experiments, although it was unclear
if or how pH affects a formed matrix. This question was partially addressed in
Fig. 2 (d-g) and (h-m), where small volumes of either a strong acid or strong
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base were slowly infused into isoelectric gelatin. In the B-scan of Fig. 2 (e), you
can see the fluid volume surrounding the needle. We withdrew the needle and
waited one hour for the fluid to diffuse, then we imaged strain: Fig. 2 (d,f,h,k).
A needle-type pH probe was used to estimate local gel pH after imaging. Near
the infusion site, the gel seemed to soften (bright regions in strain images) for
extreme pH values (pH 1 and pH 12) due to local breakdown of collagen struc-
ture as was expected from Fig. 2(a). Neutral-pH fluid injections produced no
detectable strain contrast, thereby confirming that the softening is pH related
and not just from the presence of the added fluid. Close comparison of Figs. 2
(h) and (k) shows that contrast depends on infusion rate. At high flow rates, the
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injected solution produces significant softening whereas at lower flow rates acids
have time to diffuse away from the injection site in addition to being buffered
(pH � 2) by gelatin. The buffering reduces the change in pH, which lowers strain
contrast (compare Figs. 2 (h) and (k)), but it also changes the balance of free
charge such that the region around the infusion site draws water from its sur-
rounding and swells and stiffens according to Figs. 2 (g). This creates the dark
ring around the infusion site as seen in the strain image of Fig. 2 (h). Thus
the softening effects of pH on the collagen matrix compete with the stiffening
induced by the osmotic gradients of added charge.

To test the above theories, we first infused a pH 2 fluid into another gel sam-
ple, where we found a dark lesion consistent with swelling (Fig. 2 (d)). Buffering
and diffusion were monitored when pH 3 acids dissolved in a universal indicator
pH dye (Auspex Scientific) were injected into transparent gels. Color changes
correlated with pH were captured over time using a digital camera. Examples
of such optical images for different flow rates at 1 hour are shown in Figs. 2 (i),
(l). Acids infused at high flow rates homogeneously buffered by approximately 1
pH unit whereas at low flow rates only acids that had diffused away underwent
buffering. Figs. 2 (j), (m) show these regions and were estimated by applying
color-segmentation algorithms to Figs 2 (i), (l). Although all processing was done
in color, all images were converted into gray-scale.

Furthermore, although the relaxation times were sensitive to pH-induced ma-
trix changes from adding an acid or base prior to congealing (Figs. 2 (b,c)), we
found little or no change in T1 or T2 images for acid injections into congealed
gelatin.

In the body, the most dangerous tumors have highly metabolic regions with
inadequate perfusion and poorly formed lymphatics. These edematous and acidic
regions provide an unstable environment for cell growth. Extracellular pH in tis-
sue can fall from the normal isoelectric value of pH 7.4 to 6.4 locally in hetero-
geneous tumors [Gil02]. If tissues are similar to these gels, then we can expect a
variation in relaxation times equal to the slope values. There are no breast tis-
sues measurements equivalent to those of gels in Fig. 2 (a-c). Our plan to obtain
this information is to use gelatin to validate the viscoelastic imaging technique
and then image lesions in vivo to estimate the viscous relaxation times of tissues.

Clearly we are just beginning to understand how pH effects the structure of
collagen matrices. Nevertheless, to see what effects we can expect in vivo, we
scanned a few patients undergoing sonographically-guided breast biopsy. One pa-
tient presented a single nonpalpable mass that was detected mammographically.
That lesion appeared sonographically as a hypoechoic regions that was later de-
termined to be benign (Fig. 3 (a)). The strain image of that lesion (Fig. 3 (b))
showed what appeared to be two moderately stiff lesions. We fit the time varying
strain sequence to a mono-exponential function and displayed that relaxation-
time image in Fig. 3 (c). The bright regions corresponding to lesion areas in the
strain image show longer relaxation times, consistent with the dense collagen
matrix of a fibrotic lesion. The chi-squared (χ2) image provided an indication of
how well the time-varying strain data fit a mono-exponential – bright areas of χ2
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Fig. 3. (a) B-mode breast image with a fibroadenoma. The corresponding (b) strain,
(c) relaxation time, (d) and χ2 images. Lesion margins are outlined

near the lesion margins indicate a poor fit as you might expect near a boundary
between two tissue types.

We were surprised to see two lesions in the viscoelastic images, since only
one appeared in the sonogram and mammogram. Although only the large lesion
was biopsied, our clinical collaborators felt that a second lesion was possible.
The image set of Fig. 3 shows that the fibroadenoma is slightly hypoechoic,
somewhat stiffer than surrounding tissues, and less viscous than the surround
regions that relaxed more quickly. In our experience, tissues usually creep much
more than does gelatin for the same applied stress. Consequently, tissue are more
viscous and therefore could provide higher contrast for relaxation time than that
observed in gelatin phantoms.

4 Summary

Ultrasound is highly sensitive to the collagenous tissue matrix (stroma) that
determines the mechanical properties of breast tissue and plays an important
signaling role in the development of malignant disease. By mechanically stress-
ing this matrix, we observe time-varying deformation patterns that describe the
local biochemical environment. For example, it is possible to image metabolically
driven pH variations that are known to trigger the molecular signals that pro-
mote genetic instability. There is accumulating evidence to show that elasticity
imaging can reveal the fibrotic and desmoplastic reactions of the body specific
to malignant growth [Ple00, Sin00, Nig02]. This report expands on that method
to include viscoelastic properties that image functional features of tumor growth
such as pH.

To explore the capabilities of viscoelastic imaging, we used gelatin, a colla-
gen hydrogel, to mimic some acoustic and mechanical features of breast tissue.
The characteristics of water movement and relaxing cross links that determine
stability of the matrix under a load, provided a physical model for viscoelastic
mechanisms. This physical model is consistent with the bi-exponential, time-
varying strain curve observed experimentally in response to a uniaxial step
stress.
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The dependence of elastic modulus on pH showed a peak near pH = 5, the
isoelectric pH, whereas the relaxation time constants increased linearly with
pH. The long time constant T2 varied much more with pH than T1. When the
molecular surface charges are unbalanced, as they are for pH values away from
pI, charge repulsion does not allow the collagen molecules to form their normal
tightly-folded structure. Additionally, the excess surface charge preferentially
interacts with polar water molecules rather than other cross link sites on the
protein [Ush00]. These occur on either side of the isoelectric point and result in
a peak modulus value at pI and decreased values on either side. Furthermore, the
changes in the binding structure that alters cross-linking mechanisms primarily
affects T2. In particular interactions with water occur in acidic regions and could
result in shorter time constants as seen with the viscometer results.

It seems that detection sensitivity to pH is reduced for relaxation constant
images compared with viscometer measurements. The loss of sensitivity could
result from a number of factors such as reduced acquisition time, more complex
imaging geometry, signal averaging during curve fitting, different experimental
errors and uncertainty in force compensation. We suspect that shortening of
the total acquisition time is the major effect. The situation is analogous to MRI
where TR and TE can affect contrast in T1- and T2-weighted MR images. There
needs to be a balance between the artifacts generated by long measurement times
(analogous to TR in MRI) and the bias in relaxation times generated by short
measurement times. However, the high sensitivity and near-ideal geometry of
the viscometer measurements allow them to serve as an upper limit for imaging
sensitivity.

While creating focal regions of varying pH in congealed isoelectric gels for
imaging, we observed a breakdown of the collagen matrix, resulting in soft re-
gions. However upsetting the charge balance by shifting the pH caused local
swelling from osmotic gradients that stiffen tissues. Thus, pH induces changes in
simple gelatin can be complex. Note that for this type I collagen gel, the pI was
intentionally reduced from pI =7.4 in its natural in vivo state to pH ∼ 5 during
manufacturing of gelatin powder as a preservative mechanism gainst bacterial
growth. Nevertheless, measurements encompassing pH = pI, regardless of the
value of pI, should be equivalent from the point of view of matrix stability.

The clinical example showed there are measurable effects in benign breast
tumors but it is too early to know what the effects reveal about the tissues. We
plan to continue our use of gelatin to develop viscoelastic imaging to probe for
the first time the viscoelastic properties of breast tissue and interpret the results
in terms of the local biochemical environment.
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Abstract. Three dimensional medial paths or curve skeletons (CS) are an es-
sential component of any virtual endoscopy (VE) system, because they serve as
flight paths for a virtual camera to navigate the human organ and to examine its
internal structures. In this paper, we propose a novel framework for computing
flight paths of tubular structures for VE using partial differential equation (PDE).
The method works in two passes. In the first pass, the overall topology of the
organ is analyzed and its important topological nodes are identified, while in the
second pass, the actual flight paths are computed by tracking them starting from
each identified node. The proposed framework is robust, fully automatic, compu-
tationally efficient, and computes CS that are centered, connected, thin, and less
sensitive to boundary noise. We have extensively validated the robustness of the
proposed method both quantitatively and qualitatively against several synthetic
phantoms and clinical datasets.

1 Introduction

Virtual endoscopy (VE) is an integration of medical imaging and virtual reality. VE
gives a computer-based alternative to standard radiological image viewing and to tra-
ditional fiber optic endoscopy for examining the interior structures of human organs.
Unlike traditional fiber optic endoscopy, which is confined to the interior of a hollow
organ, VE enables navigation between the inner and outer mucosal layers. VE has many
advantages, such as being less invasive, cost-effective, free of risks and side effects.
Therefore, VE is ideal for screening purposes and surgical planning. The computation
of flight paths from volumetric objects is still a challenging process due to the complex
nature of the anatomical structures.

Compared with 2D skeletonization methods, few methods have been proposed for
extracting CS, which can be classified as: (1) Ridge based and scale space methods for
intensity data, (2) Topological thinning and distance transform methods for segmented
data, and (3) Hybrid methods for both types of data. We will review only recent repre-
sentative methods of each class.

Aylward and Bullitt [1] proposed a CS tracking approach for intensity images. The
Eigen vectors of the Hessian matrix are used to estimate the local orientation of the ves-
sels, and a normal plane is iteratively updated to follow the vessel’s cross-section. The
method generates CS that are thin and connected. However, it requires user interaction
and a set of heuristics to handle branching and end points.
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Deschamps and Cohen [2] relate the problem of finding CS to that of finding paths of
minimal action in 3D intensity images, which can be found by first solving the Eikonal
equation using the fast marching method and then following the gradient descent be-
tween two points selected by a user on the branch of interest. The method is fast and
generates good quality CS but is limited to one branch at a time. For tree structures, it
generates trajectories rather than CS [3].

Bitter et al. [4] proposed a penalized-distance algorithm to extract CS from volu-
metric data. A graph is first built from a coarse approximation of the 3D skeleton. Each
edge of the graph is assigned a weight which is a function of both the Euclidean distance
from a user defined source point and from the object’s boundary. The CS are then ex-
tracted using Dijkstra’s shortest path algorithm [5]. The parameters of the weight factor
are specified heuristically for each object preventing the algorithm from automation.

Siddiqi et al. [6] extracted CS by thinning the object’s medial surface, which has
been computed by thresholding the negative average outward flux of the gradient field
of the distance map. They have presented nice CS for vascular trees. However, the ac-
curacy of computing CS becomes a function of the accurate computation of the object’s
medial surface. In addition, the user has to choose a suitable threshold value to guaran-
tee connected skeleton.

Zhou and Toga [7] proposed a voxel coding technique, in which each voxel is as-
signed two codes. One is the distance from the object’s boundary, while the other is the
distance from a user defined point. The object is divided into a set of clusters, where
each cluster is assumed to be the object cross section, whose center is the voxel of max-
imum distance from the boundary. CS are initially extracted as trajectories and then
centered using some criteria. The algorithm guarantees connected paths. However, as
the complexity of the object increases, the clusters are no longer normal to the CS, and
hence centeredness is not guaranteed.

In this paper, we present a PDE-based framework for computing flight paths of
tubular structures for VE. The proposed framework is an enhanced version of our recent
work [8]. The key idea is to propagate from a medial voxel that belongs to the CS of
the organ, wave fronts of different speeds. The first front propagates with a moderate
speed to capture the organ’s topology, while the second one propagates much faster at
medial voxels such that CS intersect the propagating fronts at those voxels of maximum
positive curvatures, which are identified by solving an ordinary differential equation.
Unlike previous methods, the new technique automatically and consistently handles
complex anatomical structures with arbitrary number of loops.

2 Higher-Accuracy Fast Marching Method (HAFMM)

Consider a closed curve Γ propagating normal to itself with a speed F (x) in one di-
rection only. The front motion is governed by a nonlinear partial differential equation,
known as the Eikonal equation Eq. (1).

||∇T (x)||F (x) = 1.0 (1)

T (x) is the time at which the front crosses the voxel x. The Fast marching method
(FMM) [9] is a computational technique that approximates the solution of Eq. (1). The
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idea of the algorithm is to introduce an order in the selection of the grid points based
on the fact that the arrival time T (x) at any grid point depends on the neighbors with
smaller values. In this paper, we employ the HAFMM [10], which is an accurate version
of the original FMM. It uses second-order approximation of the gradient whenever
points are available, but reverts to a first-order approximation in the other cases.

3 The Proposed High Speed Propagation Model

One of the essential applications of the fast marching methods is the computation of
distance fields with sub-pixel accuracy, which can be classified as distance from bound-
ary (DFB) field, which computes at each voxel its minimum distance from the object’s
boundary, and distance from source point (DFS) field, which computes at each voxel its
minimum distance from a known source point.

In this paper, we propose a new speed function Eq. (2) for the propagating fronts
such that CS intersect them at those voxels of maximum positive curvatures. λ(x) is a
medial descriptor function that assigns each medial voxel a higher weight than a non-
medial one, D(x) is the minimum distance from the object’s boundary, and α controls
the front convexity at medial voxels.

F (x) = eα λ(x) (2)

λ(x) = D(x) +
1.0

1.0 + ‖∇D(x)‖
Assume that we want to compute the curve skeleton between the two medial voxels A
and B of the single branch structure of Figure 1(a). Let A be a point source PS that
transmits a wave front Wα that evolves over time in the normal direction inside the
object. Since the medial voxels A, z, and B have higher distances from the object’s
boundary than those of the non-medial voxels x, y, u, and v, let λ(A) = λ(z) = R and
λ(u) = λ(v) = λ(x) = λ(y) = R − ∆, where 0 < ∆ < R and ∆ is the minimum
distance between two neighboring voxels. In order to study the role of α, we solve
Eq.(1) around PS numerically [10] with T (A) = 0. The solution is given by Eq.(3).

T (x) = T (y) = e−αR + e−α(R−∆) (3)

T (u) = T (v) = e−α(R−∆)

T (z) = e−αR

Consider the following cases with ∆ = 1.0:

1. α = 0: T (u) = T (v) = T (z) and the voxels u, v, and z form the front W0, whose
positive curvature is κ0 at the front tip z.

2. α = 1: T (u) = T (v) � 2.7T (z). Since T (z) < T (u) and the voxels of the front
have equal travel times from the source point PS , then the front W1 that passes by
z must have a shorter base than that of W0 which passes by u as shown in Figure
1(a). As a consequence, W1 has more positive curvature κ1 > κ0 at z.

3. α = ∞: As α increases indefinitely we get,
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Fig. 1. (a) Single branch structure (b) A curve skeleton intersects the propagating fronts at those
voxels of maximum positive curvatures

(a) (b) (c)

Fig. 2. Trajectories converge to CS with increasing α (a) α = 0.1 (b) α = 0.3 (c) α = 0.8

lim
α−→∞

F (z)
F (u)

= lim
α−→∞

eαR

eα(R−1.0)
= lim

α−→∞ eα = ∞ (4)

lim
α−→∞

T (z)
T (u)

== lim
α−→∞

e−αR

e−α(R−1.0)
= lim

α−→∞ e−α = 0 (5)

Under fast propagation, the interpretation of Eq.(4) is that, each medial voxel is moving
much faster than a non-medial one. Hence, it is one of the tips of the moving front. On
the other hand, the interpretation of Eq.(5) is that, the front has very short base as well
as very high curvature at medial voxels.

The propagating front is monotonically increasing in time; there is only one global
minimum over the cumulative cost field T , that is PS , which has zero travel time. Then,
the path between B and A can be found by backtracking from B along the gradient of T
until A is reached. Let xi and xi−1 be two medial voxels as shown in Figure 1(b). Since
medial voxels have equal distances from the object’s boundary, then the propagating



PDE-Based Three Dimensional Path Planning for Virtual Endoscopy 533

front at xi is symmetric around the line segment −−−−→xi−1xi and perpendicular to it. Also,
since the propagating fronts are level sets, then the direction of the gradient at each me-
dial voxel is normal to its front. Therefore, by backtracking from xi along the gradient
of T , we reach xi−1. As a consequence, the path between A and B is the medial curve
or CS that connects them.

The idea of the proposed speed model is to distinguish medial voxels from others
by making them the front tips of maximum positive curvatures. In fact, this distinction
already exists even at low speed propagation as long as we are dealing with a single
tube-like structure [3]. Unfortunately, at low speed propagation, this distinction disap-
pears near a branching or a merging node, where the propagating fronts at joint CS
superimpose, resulting in a new wave front whose tip is not necessarily a medial voxel.
This fact is illustrated in Figure 2, where trajectories converge to CS with increasing α.

4 Medial Descriptor Function λ(x)

A medial descriptor function λ(x) is a scalar function that distinguishes medial voxels
from others, while satisfying two conditions. Let x be a medial voxel, while y is non-
medial one.

Condition 1: λ(x) ≥ λ(y)
Condition 2: If D(yi) ≥ D(yj), then λ(yi) ≥ λ(yj).

The first condition guarantees that a medial voxel is moving faster than its non-medial
neighbors and hence it is the tip of the moving front. The second condition guarantees
that the moving front is smooth and a non-medial voxel can not be the front tip with
positive curvature. In this paper, we propose two different medial descriptor functions:
the smoothing λ1(x) and the salient λ2(x).

4.1 The Smoothing Medial Descriptor Function λ1(x)

This function assigns each voxel in the object its minimum distance D(x) from the
object’s boundary as given by Eq. (6).

λ1(x) = D(x) (6)

The function has been called smoothing because the distance is monotonically increas-
ing gradually from the boundary of the object to its center. It is obvious that both con-
ditions are satisfied without a proof.

4.2 The Salient Medial Descriptor Function λ2(x)

For a moving front with a unit speed, the solution of Eq. (1) is proportional to D(x) [9].
Therefore ‖∇D(x)‖ = 1.0 except at local maximum voxels (CS), where the gradient
is theoretically zero. According to Eq. (7), λ2(x) assigns medial voxels higher weights
than any other voxel, therefore, the first condition is satisfied. All non-medial voxels
have equal gradient magnitude ‖∇D(x)‖ = 1.0, therefore, the second condition is also
satisfied. The distance field is continuous at the medial voxels but is not differentiable
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(a) λ1(x) (b)

(c) λ2(x) (d)

(e) λ(x) = λ1(x) + λ2(x) (f)

Fig. 3. (a,c,e) Illustration of the proposed λ(x)’s of a 2D shape. (b,d,f) Propagation with the
corresponding λ(x)’s
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and hence it is slightly blurred. Salient features are those which have a low probability
of being mis-classified with any other feature. This descriptor has been called salient
because it identifies only salient medial voxels with sufficiently small gradient values.

λ2(x) =
1.0

1.0 + ‖∇D(x)‖ (7)

Although λ1(x) does not provide much distinction between medial and non-medial
voxels, it provides a smooth transition between them. On the other hand, λ2(x) identi-
fies salient medial voxels of sufficiently small gradient values as shown in Figure 3(c).
If we propagate a front from a source point using only λ2(x) as shown in Figure 3(d),
the resulting fronts will be very sharp at medial voxels because all non-medial voxels
are moving with nearly constant speed but less than that of the medial ones. Unfor-
tunately, the gradient at sharp locations of the front is not defined leading to instable
numerical analysis. To solve the problem, we augment λ1(x) as a smoothing term since
it adds a monotonic increasing distance to each non-medial voxel, and hence they do
not move any more with a constant speed. In Figure 3(e), we show that by augmenting
the proposed medial descriptors, we get a new distance field whose medial voxels are
more distinguished than those of Figure 3(a). The right hand side of Figure 3 shows
the different shapes that the front may take experiencing different medial descriptors.
Notice that by augmenting the proposed descriptors, we get fronts with large curvature
at medial voxels but are still differentiable as shown in Figure 3(f).

5 Identification of Topological Nodes

In order to extract the entire CS of an object, we have to identify first its important
topological nodes such as merging and extreme nodes. In this paper, we propose a
method for identifying those nodes automatically. Initially, we compute the minimum
distance field D(x) with sub-pixel accuracy using the HAFMM by propagating a unit
speed front from the object’s boundary towards its center. Then, we select automatically
one of its CS voxels and consider it a point source PS that transmits a moderate speed
wave front Eq.(8). PS is selected as the voxel of global maximum D(x).

F (x) = Dβ(x) 0 < β ≤ 1.0 (8)

The solution of Eq.(1) under the moderate speed wave will result in a new real-valued
distance field D1(x). We discretize D1(x) by computing its integer values. Therefore,
the object’s basic element is converted from a voxel to a cluster. Each cluster consists
of connected voxels with the same discretized distance value. Two clusters are adjacent
if they share a common voxel. Now, we can construct the cluster graph whose root is
the cluster containing PS with zero cluster value. The cluster graph contains two main
types of clusters; Extreme cluster (Xcluster), which exists at the tail of the cluster
graph and Merging cluster (Mcluster), which has at least two adjacent clusters (Suc-
cessors) with the same distance value but less one than the distance value of Mcluster.
The medial voxel of a cluster is computed by searching the cluster for the voxel with
maximum D(x). Extreme and merging nodes are the medial voxels of the associated
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(a) (b)

Fig. 4. (a) Cluster Graph (b) Curve skeletons around a loop

clusters. Figure 4(a) shows a cross section of the cluster graph of a 3D tree structure
with one loop, where X, M, and S represent extreme, merging, and successor clusters,
respectively.

6 Extraction of Curve Skeletons

In order to extract the CS between two medial voxels A and B, we initialize A to zero
travel time and then propagate a high speed wave inside the object until B is reached.
Finally, we backtrack from B along the gradient of T (x) until A is found. The extraction
process is the solution of the ordinary differential equation Eq.(9). C(t) traces out the
CS, which is found by solving Eq.(9) using Runge-Kutta of order 2. The error of the
method is O(h3), where h is the integration step. To ensure connected CS, h is set to a
small value; h = 0.1.

dC

dt
= − ∇T (x)

|∇T (x)| , C(0) = B (9)

For Ci = [xi, yi, zi]T ,

f(Ci) = − ∇T (Ci)
‖∇T (Ci)‖ , k1 = hf(Ci), Ci+1 = Ci + hf

(
Ci +

k1

2

)
(10)

If the object contains loops, we first extract their CS followed by those that originate
from extreme nodes. Each loop in the object is associated with one merging cluster M
of the cluster graph. For illustration, let M have only two successors S1 and S2 as
shown in Figure 4(b). In order to extract the CS of this loop, three steps are required. In
the first step, we compute the medial voxel s1 of S1 and consider the entire voxels of
both M and S2 as part of the object’s background (construct holes) such that there is a
unique CS from s1 to PS . Finally, we propagate a fast wave from PS until s1 is reached
and then extract the CS between them. In the second step, we extract the CS between s2

and PS in a similar fashion to the first step except that we consider the entire voxels of
both M and S1 as part of the object’s background and those of S2 as part of the object’s



PDE-Based Three Dimensional Path Planning for Virtual Endoscopy 537

foreground. In the third step, we propagate a fast wave from s1 until s2 is reached and
then extract the CS between them. The same concept can be generalized for a merging
cluster with several successors.

The proposed framework can be summarized as follows: (1) Construct the minimum
distance field D(x), (2) Find the point source PS , (3) Propagate a moderate speed wave
from PS , discretize the resultant distance field D1(x), and construct the cluster graph,
(4) Identify extreme and merging nodes, (5) Construct a new distance field D2(x) from
PS by propagating a fast speed wave, (6) If the object contains loops, extract their CS,
and finally, (7) Extract those CS that originate from extreme nodes and ends with PS or
on a previously extracted path.

7 Validation

We have quantitatively validated the proposed method against ground truth CS that are
generated analytically to model different 3D synthetic phantoms. Each phantom is cre-
ated by centering a sphere of a fixed or varying radius at each ground truth voxel. The
voxels of the ground truth and those extracted by the proposed method are represented
by white and black spheres, respectively, while overlapped voxels are represented by
light grey color. The phantoms are designed to measure the performance of the method
when the anatomical structures have the following geometrical or topological prop-
erties: (1) high curvature and torsion (e.g., blood vessels), (2) sudden change in the
organ’s cross section (e.g., colon or aneurysm in vessels), and (3) several branching
nodes (e.g., blood vessels and tracheobronchial trees). To study the sensitivity of the
proposed method to noise, 50% of phantom’s boundary were corrupted with additive
noise to simulate acquisition or segmentation error as shown in the first row of Figure 5.
A quantitative analysis was carried out by computing the amount of overlap, average,
and maximum distance between the ground truth and computed CS for both noise-free
and noisy phantoms. The quantitative results are presented in Table 1. Although the
amount of overlap was less than 90 %, the average and maximum distance never ex-
ceed 0.35 and 1.41 mm (e.g., one voxel), respectively. In the presence of noise, the
amount of overlap has been decreased by only 5 %, while the average and maximum
distance has been increased slightly. For both noise-free and noisy cases, the computed
CS were always adjacent to the ground truth ones, which is quite acceptable for flight
paths, therefore, the proposed method has low sensitivity to boundary noise.

We have also validated the proposed method qualitatively against several clinical
datasets as shown in Figure 5(d-j). Notice the complexity of the datasets and the accu-
racy of the computed CS especially around loops and near branching nodes.

Table 1. Quantitative validation of noise-free and noisy phantoms

Phantom Vessels Spiral Colon
State Noise-Free Noisy Noise-Free Noisy Noise-Free Noisy

Percentage of Overlap 75 % 70 % 90 % 86 % 70 % 65 %
Average Distance (mm) 0.35 0.45 0.08 0.17 0.24 0.52

Maximum Distance (mm) 1.41 2.0 1.0 1.41 1.0 2.0
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(a) Spiral Phantom (b) Vessels Phantom (c) Colon Phantom

(d)
Aorta1

(e)
Spine

(f) Colon1 (g) Colon2

(h)
Aorta2

(i) Trachea (j) Ear

Fig. 5. Computed CS of (a-c) Synthetic phantoms (d-j) Clinical datasets
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8 Discussion

Our experiments have been carried out on a single 400Mhz SGI infinite reality super-
computer. The volume sizes and running times in seconds of the tested datasets are
presented in Table 2. We have implemented a general virtual endoscopy application to
test the quality of the computed flight paths as shown in Figure 6. The surface of the
organ has been color-coded by its mean curvature to facilitate the screening exam.

The proposed model is controlled by two main parameters α in Eq.(2) and β in
Eq.(8). Theoretically α should be very high such that trajectories converge to CS. Prac-
tically, a small value of α can still achieve the goal because λ(x) highly distinguishes
medial voxels from others. The experimental results showed that for α ≥ 0.5, trajecto-
ries converge to CS. We can safely automate the algorithm by setting α = 1.0.

β controls the thickness and orientation of the individual clusters in the cluster
graph. As β increases, clusters become perpendicular to the desired CS (because the
wave is fast at medial voxels) as well as their thickness increases. It is recommended
to keep the thickness as small as possible to capture the small details of the object. Ex-

Table 2. Sizes and running times of different clinical datasets using the proposed method

Anatomical Organ Actual Volume Processed Voxels Time in Sec.
Colon 1 157 × 248 × 180 517462 127
Colon 2 184 × 253 × 231 742563 216
Trachea 145 × 248 × 198 185491 70
Aorta 1 84 × 145 × 365 128086 40
Aorta 2 130 × 259 × 97 297954 55
Spine 253 × 49 × 55 53771 13
Ear 162 × 241 × 125 588823 114

(a) (b)

Fig. 6. Internal views by the virtual camera for (a) Trachea (b) Colon
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perimental results showed that β = 0.5 provides a balance between reasonable cluster
thickness and perpendicular clusters that capture the large curvature parts of the organ.

The core of our method is the HAFMM, which is used in computing all distance
fields. Fortunately, the complexity of the HAFMM for n voxels is O(nlogn). Therefore,
our method is computationally efficient.

9 Conclusion

In this paper, we have presented a robust, fully automatic, and fast method for comput-
ing flight paths of tubular structures for VE applications. The computed flight paths en-
joy several features such as being centered, connected, thin, and less sensitive to noise.
Unlike previous methods, our technique can handle complex anatomical structures with
arbitrary number of loops. The robustness of the proposed method is demonstrated by
correctly extracting all the CS of the tested clinical datasets as well as the successful
validation against synthetic phantoms of different complexity.
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Abstract. Many applications in image analysis are concerned with the
temporal evolution of shapes in video sequences. In situations involving
low-contrast, low-quality images, human aid is often needed to extract
shapes from images. An interesting approach is to use expert help to
extract shapes in certain well-separated frames, and to use automated
methods to extract shapes from intermediate frames. We present a tech-
nique to interpolate between expert generated shapes. This technique
preserves salient features in the interpolated shapes, and allows analysts
to model a continuous evolution of shapes, instead of a coarse sampling
generated by the expert. The basic idea is to establish a correspondence
between points on the two end shapes, and to construct a geodesic flow
on a shape space maintaining that correspondence. This technique is
demonstrated using echocardiagraphic images and infrared human gait
sequences.

1 Introduction

Image-based shape analysis plays an ever increasing role in medical diagnosis
using non-invasive imaging. Shapes and shape variations of anatomical parts are
often important factors in detecting normality/abnormality of imaged patients.
More generally, an important goal in image analysis is to classify and recognize
objects of interest present in observed images. Imaged objects can be charac-
terized in many ways: according to their colors, textures, shapes, movements,
and locations. The past decade has seen large efforts in modeling and analysis
of pixel values or textures in images to attain these goals albeit with limited
success. An emerging opinion in the scientific community is that global features
such as shapes be used to discriminate between images of objects. Character-
ization of complex objects using their global shapes is fast becoming a major
tool in computer vision and medical image analysis. In case the interest lies in
analyzing shapes of silhouettes in images, it is often neccessary to extract curves
depicting these silhouettes before or during the analysis.
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Echo−cardiograph for a 4−C heart for 100001
A
4H0_A4H0 (ED)

Endo
Epi

Echo−cardiograph for a 4−C heart for 100001
A
4H0_A4H0 (ES)

Endo
Epi

Fig. 1. Expert traced curves, denoting epi (solid lines) and endo(broken lines) -cardial
borders, over ED (left) and ES (right) frames of an echocardiographic image sequence

In case of video sequences containing dynamic objects, an interesting prob-
lem is to analyze a sequence of evolution of shapes. The problem modifies to
extraction, tracking, and analysis of shapes of dynamic curves. A statistical
framework for analysis of such dynamic shapes requires modeling and estimating
stochastic processes on shape spaces. In general this problem requires extraction
of curves from each individual image frame. However, an efficient alternative is to
manually extract shapes from images that are separated by a fixed interval, say
T , using expert assistance and then interpolate between those extracted shapes
to fill in the remaining frames. In this paper we present a technique that not only
interpolates between observed shapes but also retains important local features,
such as corners and bends while preserving the global shape structures.

In order to motivate shape-based image analysis, two interesting applications
are presented below.

1. Echo-cardiographic Image Sequences1: Consider the two images dis-
played in Figure 1, acquired as the end diastolic (ED) and end systolic (ES)
frames from a sequence of echocardiographic images during systole, taken
from the apical four chamber view. Note that systole is the squeezing portion
of the cardiac cycle and that the typical acquisition rate in echocardiography
is 30 image frames/second. Among other things, a cardiologist is interested
in temporal evolution of cardiac boundaries: epicardial and endocardial, to
analyze a patient’s health. Superimposed on both images are expert tracings
of the epicardial (solid lines) and endocardial borders (broken lines) of the
left ventricle of the heart. From these four borders, indices of cardiac health,
including chamber area, fractional area change, and wall thickness, can be
easily computed. Since a manual tracing of these borders is too time consum-
ing to be practical in a clinical setting, these borders are currently generated
for research purposes only. The current clinical practice is to estimate these
indices subjectively or (at best) make a few one-dimensional measurements
of wall thickness and chamber diameter. A major goal in echocardiographic
image analysis has been to develop and implement automated methods for
computing these two sets of borders as well as the sets of borders for the 10-
15 image frames that are typically acquired between ED and ES. Different

1 Special thanks to Dr. David Wilson, Department of Mathematics, University of
Florida Gainesville for the use of the echo-cardiographic images.
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Fig. 2. Top two rows: an infrared image sequence showing human gait for a test subject.
Bottom two rows show the corresponding evolution of silhouettes in these images

aspects of past efforts [6, 1] include both the construction of geometric figures
to model the shape of the heart as well as validation. While it is difficult for
cardiologists to generate borders for all the frames, it is possible for them
to provide borders for the first and the last frames in a cardiac cycle. Since
it is not uncommon for the heart walls to exhibit diskinetic (i.e. irregular)
motion patterns, the boundary variations in the intermediate frames can be
important in a diagnosis. Our goal is to estimate epicardial and endocardial
boundaries in the intermediate frames given the boundaries at the ED and
ES frames.

2. Gait Analysis for Human Recognition: Another application requiring
characterization of shape evolution is recognition of humans using gait se-
quences. Image sequences that capture walking patterns of humans, are used
to analyze gaits under the hypothesis that gait can be used to recognize peo-
ple up to a reasonable accuracy. The use of night-vision cameras, such as an
infrared camera, is popular in such surveillance applications. In view of the
low-contrast and low-quality of infrared images, one often needs human as-
sistance for shape extraction. Shown in Figure 2 is an example of an infrared
image sequence of human gait. As earlier, a human can extract shapes form
well-separated time frames, and we seek an automated technique to interpo-
late between those frames. A need for interpolation may also arise when the
capture rate is slow, and the shape changes a lot from frame to frame. When
this happens, in order to register shapes across two shape sequences, inter-
polation between observed shapes helps to provide a continuum of shapes
for matching.

1.1 Past Work

Shape interpolation has seldom been studied explicitly as a topic of research,
although many methods provide techniques for interpolating between shapes.
A large part of the past efforts has been restricted to finite dimensional or
“landmark-based” analysis of shapes. Here shapes are represented by a discrete
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Fig. 3. Geodesic path between hand gestures under the bending metric

sampling of the object contour [2, 5] and key points or landmarks are defined on
the curve. This process however requires an expert intervention, as automatic
detection of landmarks is not straightforward. Since the analysis depends heav-
ily on the landmarks chosen, this approach is limited in its scope. Also, shape
interpolation with geodesics in this framework lacks a physical interpretation,
and does not provide interesting intermediate shapes.

More recently, a geometric approach by Klassen et al. [3] represents shapes
as constrained functions, and analyzes shapes in resulting nonlinear spaces. In
particular, they represent a closed curve by its angle function θ and impose
constraints (

∫
exp(jθ(s))ds = 0, θ(s)ds = π, etc) to form a pre-shape space. It

is important to note that all curves in this approach have arc-length, or unit
speed, parametrization. A further equivalence of all curves, that differ in the
placement of origin, results in the complete shape space. To analyze shapes, this
method uses computation of geodesic paths between arbitrary closed curves in
this space, and statistics, such as mean and tangent covariance, can be computed
accordingly. In view of arc-length parametrization, these geodesic paths exhibit
bending of one shape into another; no stretching or compression is allowed.
Although appropriate in many situations, this approach may not produce inter-
esting results in cases involving elastic curves, where the curves more naturally
can stretch and compress to form a better match, than by simply bending. Paths
generated by bending are liable to lose important features, such as corners, in
going from one shape into another. This is illustrated by Figure 3 that shows a
typical geodesic path between two hand gestures. The intermediate shapes shown
in Figure 3 do not preserve local features like tip of the fingers etc. Elastic for-
mulation of shapes which relaxed the unit-speed curve restriction was proposed
by Mio and Srivastava [4]. Since the main goal of this paper is to interpolate be-
tween biological shapes, we explore this new approach that utilizes elastic curves
to analyze such shapes.

2 Geometric Representation of Elastic Shapes

In this paper we allow for curves to have variable-speed parameterizations [4],
resulting in local stretching and compression of curves when they are being
compared. The framework is similar to that used by Klassen et al. [3], except
that the shape representation now includes a speed function φ, in addition to
the angle function θ. Additionally, the Riemannian metric is modified to account
for this change in representation.
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2.1 Shape Representations

Let α : [0, 2π] → R2 a smooth, non-singular parametric curve in the sense that
α′(t) �= 0, ∀t ∈ [0, 2π]. In addition we also assume that the rotation index of
this curve is 1. We can write its velocity vector as α′(t) = eφ(t)ejθ(t), where
φ : [0, 2π] → R and θ : [0, 2π] → R are smooth, and j =

√−1. The function φ is
the speed of α expressed in logarithmic scale, and θ is the angle function as earlier.
φ(t) is a measurement of the rate at which the interval [0, 2π] was stretched or
compressed at t to form the curve α; φ(t) > 0 indicates local stretching near
t, and φ(t) < 0 local compression. The arc-length element of α is ds = eφ(t) dt.
Curves parameterized by arc length, i.e., traversed with unit speed, are those
with φ ≡ 0. We will represent α via the pair (φ, θ) and denote by H the collection
of all such pairs.

Parametric curves that differ by rigid motions or uniform scalings of the
plane, or by orientation-preserving re-parameterizations are to be viewed as rep-
resenting the same shape. Since the functions φ and θ encode properties of the
velocity field of the curve α, the pair (φ, θ) is clearly invariant to translations
of the curve. The effect of a rotation is to add a constant to θ keeping φ un-
changed, and scaling the curve by a factor k > 0 changes φ to φ + log k leaving
θ unaltered. To obtain invariance under uniform scalings, we restrict pairs (φ, θ)
to those representing curves of length 2π. To get rotational invariance, we fix the
average value of angle functions with respect to the arc-length element to be,
say, π. In other words, we restrict shape representatives to pairs (φ, θ) satisfying
the conditions

C = {(φ, θ) ∈ H :

∫
2π

0

eφ(t)dt = 2π,
1

2π

∫
2π

0

θ(t)eφ(t)dt = π,

∫
2π

0

eφ(t)ejθ(t)dt = 0},
(1)

C is called the pre-shape space of planar elastic strings.
There are two possible ways of re-parameterizing a closed curve, without

changing its shape.

1. Shift of Origin: One way is to change the placement of origin t = 0 on the
curve. This change can be represented as the action of a unit circle S1 on a
shape (φ, θ), according to:

r · (φ(t), θ(t)) = (φ(t − r), θ(t − r) + r), for r ∈ R (2)

2. Non-uniform Speed Parametrizations of Curves: Re-parameterizations
of α that preserve orientation and the property that α is non-singular are
those obtained by composing α with an orientation-preserving diffeomor-
phism γ : [0, 2π] → [0, 2π] such that γt(t) > 0,∀t ∈ [0, 2π]; the action of γ on
α is to produce the curve β which is represented by (φ◦γ+log γt, θ◦γ), where
◦ denotes composition of maps. Hence, reparameterizations define an action
(a right action, to be more precise) of the group DI of orientation-preserving
diffeomorphisms of the interval [0, 2π] on H by

(φ, θ) ◦ γ = (φ ◦ γ + log γt , θ ◦ γ). (3)
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The space of all (shape preserving) re-parameterizations of a shape in C is thus
given by S1 × DI .

2.2 Riemannian Metric

In order to compare curves quantitatively, we assume that they are made of an
elastic material and adopt a metric that measures how difficult it is to reshape a
curve into another taking into account the elasticity of the string. Infinitesimally,
this can be done using a Riemmanian structure on H. Since H is a linear space,
its tangent space at any point is the space H itself. Thus, for each (φ, θ), we wish
to define an inner product 〈 , 〉(φ,θ) on H. We adopt the simplest Riemannian
structure that will make diffeomorphisms γ ∈ DI act by ‘rigid motions’ (or,
isometries) on H, much like the way translations and rotations act on standard
Euclidean spaces. Given (φ, θ) ∈ H, let hi and fi, i = 1, 2, represent infinitesimal
deformations of φ and θ, respectively so that (h1, f1) and (h2, f2) are tangent
vectors to H at (φ, θ). For a, b > 0, define

〈(h1, f1), (h2, f2)〉(φ,θ) = a

∫ 1

0

h1(t)h2(t) eφ(t) dt + b

∫ 1

0

f1(t)f2(t) eφ(t) dt. (4)

It can be shown that re-parameterizations preserve the inner product, i.e., S1 ×
DI acts on H by isometries, as desired. This inner product leads to the norm

‖(h, f))‖(φ,θ) =
√

〈(h, f), (h, f)〉(φ,θ)

The elastic properties of the curves are built-in to the model via the pa-
rameters a and b, which can be interpreted as tension and rigidity coefficients,
respectively. Large values of the ratio χ = a/b indicate that strings offer higher
resistance to stretching and compression than to bending; the opposite holds for
smaller χ.

3 Geodesic Paths Between Elastic Shapes

The task of computing geodesic paths between any two shapes, say (φ1, θ1) and
(φ2, θ2), is accomplished in two steps. The first step seeks an optimal alignment,
or registration, between the two shapes, and the second step finds a geodesic
path in C maintaining that optimal alignment.

3.1 Optimal Alignment Between Shapes

As a first step, we seek an optimal alignment between the pairs by solving the
problem:

(γ̂, r̂) = argmin
S1×DI

(‖(φ1, θ1) − (r · ((φ2, θ2) ◦ γ))‖(φ1,θ1)

)
(5)

This is a joint optimization problem over S1 ×DI . The following steps show
the computation of an optimal diffeomorphism (γ̂) for any two closed pair of



Elastic Shape Models for Interpolations of Curves in Image Sequences 547

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

Fig. 4. Examples of alignment between two shapes alongwith the corresponding γ

shapes. The shapes are assumed to be discretized to N samples for the purpose
of computer representation.

Let s1, s2 be two shapes. s1 ≡ (φ1, θ1), s2 ≡ (φ2, θ2). s1, s2 ∈ RN × RN .

1. Compute

γr = argmin
γ

‖s1 − r · s2 ◦ γ‖s1 , for each r ∈ (1, ...N − 1) (6)

2. The optimal (γ̂, r̂) is given as,

(γ̂, r̂) = argmin
r∈(1,...N−1)

‖s1 − r · s2 ◦ γr‖s1 (7)

The γ in Step 1 above, is solved for using Dynamic Programming in the search
space of DI . Figure 4 shows examples of the alignment between pairs of shapes
obtained using the above procedure. The optimal γ̂ used to form the alignment
is shown in the right panel. It is noted that similar key features across different
shapes are matched successfully. For example, the tip of the nose as well as one
foot is aligned between the shapes of the rabbit and the turtle. The bottom row
of Figure 4 shows the correspondence between two endo-cardial curves during
the End-Diastole cycle. In this case, the apex of each curve as well as the the
centers of the mitral valve are matched together. The non-identity nature of γ
exhibits local stretching and compression.

3.2 Geodesic Paths Between Shapes in C
Now that optimal registration between the shape pairs is established, we derive
an approach for computing geodesic paths between them in C. Similar to ideas
presented in [3], we use a shooting method to construct geodesic paths in C.
Given two shapes s1 and s2 as above, let Ψt(φ1, θ1, h, f) denote the geodesic
flow starting from s1 in the direction (h, f). The shooting method solves for
(h, f) such that Ψ1(φ1, θ1, h, f) = (φ̃2, θ̃2), where (φ̃2, θ̃2) = r̂ · (φ2, θ2) ◦ γ̂. After
choosing an initial direction, we iteratively refine this direction in such a way
that a miss function, denoting the distance (in H) between the shape reached
and (φ2, θ2), is minimized to zero.
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Non-Elastic Geodesic Paths

Elastic Geodesic Paths

Fig. 5. Top two rows (left to right), show the geodesic evolution when stretching is
penalized. Bottom two rows show the evolution when bending is penalized. The right
panel shows the corresponding γ

Figure 5 shows two examples of geodesic paths traversed from left to right
for different values of χ in this framework. As a first example, we set χ to be
large and a resulting geodesic is shown in the top two rows of Figure 5. The
evolution from left to right is via bending, with virtually no stretching. This
observation is supported by a plot of γ̂ which resembles the identity function.
The tick marks show the sampling along the path of the curve. In contrast, we
set χ to a low value for the second example, with the resulting geodesic shown
in the bottom two rows. In this case the graph of the diffeomorphism clearly
shows non-uniform speed along the length of the curve. This is also evident from
regions of dense and sparse sampling along the curve. This path correctly aligns
important features in the two shapes, and preserves them in the evolution from
one to another. For example, the tip of the nose remains aligned and common
key features such as feet are preserved throughout the intermediate shapes in
the geodesic. This demonstrates the strength of this method to match features
in shapes via local deformations.

4 Shape Interpolations in Image Sequences

A closed contour α has two sets of descriptors associated with it: a shape descrip-
tor denoted by (φ, θ) ∈ C and a vector z ∈ Z of nuisance variables. In our ap-
proach, interpolation between two closed curves is performed via interpolations
between their shapes and nuisance components, respectively. The interpolation
of shape is obtained using geodesic paths, while that of the nuisance components
is obtained using linear methods. Let α1 = (φ1, θ1, z1) and α2 = (φ2, θ2, z2) be
the two closed curves, and our goal is to find a path Φ : [0, 1] → C ×Z such that
Φ0 = (φ1, θ1, z1) and Φ1 = (φ2, θ2, z2). For example, in Figure 1, the endocardial
boundary (broken curves) of the ED and ES frames can form α1 and α2, respec-
tively. Alternatively, one can treat the epicardial boundaries (solid curves) of ED
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and ES frames as α1 and α2 as well. The different components are interpolated
as follows:

1. Shape Component: Given the two shapes (φ1, θ1) and (φ2, θ2) in C, we
use the shooting method to find the geodesic that starts from the first and
reaches the other in unit time. This results in the flow Ψt(φ1, θ1, h, f) such
that Ψ0(φ1, θ1, h, f) = (φ1, θ1) and Ψ1(φ1, θ1, h, f) = (φ2, θ2). This also re-
sults in a re-parametrization of (φ2, θ2) such that the origins (points where
s = 0) on the two curves are now registered. With a slight abuse of notation
we will also call the new curve (φ2, θ2). Let a shape along this path be given
by (φt, θt) = Ψt(φ1, θ1, h, f). Since this shape lies in C, the average value of
θt for all t is π.

2. Translation: If p1, p2 represent the locations of the origins on the two
curves, i.e. pi = αi(0), i = 1, 2, then the linear interpolation between them
is given by p(t) = (1 − t)p1 + tp2.

3. Orientation: For a closed curve αi, the average orientation is defined by
βi = 1

2π

∫ 2π

0
1
j log(α̇i(s))ds, i = 1, 2, j =

√−1. Given β1 and β2, a lin-
ear interpolation between them is β(t) = (1 − t)β2 + tβ̃2, where β̃2 =
argminβ∈{β2−2π,β2,β2+2π} |β − β1|.

4. Scale: If ρ1 and ρ2 are the lengths of the curves α1 and α2, then a linear
interpolation on the lengths is simply ρ(t) = (1 − t)ρ1 + tρ2.

Using these different components, the resulting geodesic on the space of closed
curves is given by {Φt : t ∈ [0, 1]} where:

Φt(s) = p(t) + ρ(t)
∫ s

0

ej(θt(τ)−π+β(t))eφtdτ .

Shown in Figure 6 is a sequence of 12 image frames for the same patient
as displayed in Figure 1. Again, each image frame has a set of epicardial and
endocardial borders overlaid on the image. In Figure 6, borders in the first and
last frames have been traced by an expert, while the borders on the intermediate
frames have been generated using the path Φt, one each for epicardial and en-
docardial boundaries. Note that the endocardial border is more distorted than

Fig. 6. Interpolation of echo-cardial curves between ED and ES using geodesics
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Fig. 7. Interpolation of echo-cardial curves between ED and ES using geodesics

Fig. 8. Geodesic interpolation of human motion

the epicardial border in the transition. In view of the geodesic paths in C that
incorporate elastic stretching as well as bending, it is observed, that the apex of
both curves as well as any sharp corners or edges are continuously aligned along
the path. Similarly, Figure 7 shows another example of such an interpolation.

As another application of this approach, it was used to interpolate shapes of
human motion. Each row of Figure 8 shows a geodesic path for a single subject,
where the first shape is the start of a gait sequence that culminates in the last
shape at the end of the cycle. Here the first and the last shapes in each row
are extracted manually from IR images. Interestingly enough, this technique
performs well even in the case where the feet are joined together at the start
and spread wide apart at the end of the sequence.

5 Statistics of Elastic Shapes

There are various techniques to compute the mean of a collection of shapes. One
way is to compute an extrinsic mean, that involves embedding the non-linear
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Item Sample shapes Mean Shape

Endo curves for End-Diastole cycle

Endo curves for End-Systole cycle

Epi curves for End-Diastole cycle

Epi curves for End-Systole cycle

Fig. 9. Mean shapes of echo-cardial curves at different cycles

Sample shapes Mean Shape Mean Shape
(low bending) (low stretching)

Fig. 10. For each row, the center panel shows the mean shape after low stretching,
whereas the last panel shows the average shape after high bending

manifold in a larger vector space e.g.(L2 × L2), computing the Euclidean mean
in that space, and then projecting it down to the manifold. However, we use
an intrinsic notion of mean (Karcher mean) that does not require an Euclidean
embedding. For a collection (φ, θ)i, i = 1, ..., n in C, let d((φ, θ)i, (φ, θ)j) be the
geodesic distance between shapes i and j. The Karcher mean is defined as the
element µ ∈ S that minimizes the quantity

∑n
i=1 d((φ, θ), (φ, θ)i)2. The notion

of a well-defined average shape is pertinent to carry out any statistical analysis
on the space of shapes. In particular, the mean shape can be used in clustering
and classification of for endo- and epi-cardial curves. It also serves as a useful
tool in forming inferences based on normal and abnormal cardiac curves. Figure
9 shows a few sample means of cardiac curves computed at different cycles. It
is observed, that the mean of shapes that have certain common features such as
corners and bends, tends to retain those features.

Another interesting example is that of the mean of sample human shapes. In
Figure 10, the center panel for each row shows the mean shape due to higher
stretching than bending, whereas the last panel, shows the average shape due to
higher bending as compared to stretching. For the diverse poses of human shapes
in the second row of Figure 10, the mean shape in the center panel retains local
features such as arms, and feet, whereas higher bending in the last panel, grossly
smoothes the average and bears no resemeblance to either of the sample shapes.
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6 Conclusion

Based on an elastic model for closed shapes, geodesic flows were constructed to
interpolate between a given pair of shapes. This interpolation was successfully
applied between echo-cardial curves for the ED and the ES cycles. From the
results of human gait interpolation, it is evident that the geodesic paths maintain
the correspondence between key features present in both the shapes. Further a
framework for statistical analysis of shapes was examined. The mean shape of
endo- as well as epi-cardial curves preserves corners as well as edges present in
the original shapes. In case of averages of human shapes, it was seen that greater
bending resulted in smoothing of the overall shape, whereas higher stretching
helped the mean shape to serve as a better representative of a given mix of
shapes.
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Abstract. Having accurate left ventricle (LV) segmentations across a
cardiac cycle provides useful quantitative (e.g. ejection fraction) and
qualitative information for diagnosis of certain heart conditions. Exist-
ing LV segmentation techniques are founded mostly upon algorithms
for segmenting static images. In order to exploit the dynamic structure
of the heart in a principled manner, we approach the problem of LV
segmentation as a recursive estimation problem. In our framework, LV
boundaries constitute the dynamic system state to be estimated, and a
sequence of observed cardiac images constitute the data. By formulating
the problem as one of state estimation, the segmentation at each partic-
ular time is based not only on the data observed at that instant, but also
on predictions based on past segmentations. This requires a dynamical
system model of the LV, which we propose to learn from training data
through an information-theoretic approach. To incorporate the learned
dynamic model into our segmentation framework and obtain predictions,
we use ideas from particle filtering. Our framework uses a curve evolution
method to combine such predictions with the observed images to esti-
mate the LV boundaries at each time. We demonstrate the effectiveness
of the proposed approach on a large set of cardiac images. We observe
that our approach provides more accurate segmentations than those from
static image segmentation techniques, especially when the observed data
are of limited quality.

1 Introduction

Of the cardiac chambers in the heart, the left ventricle (LV) is quite frequently
analyzed because its proper function, pumping oxygenated blood to the entire
body, is vital for normal activity. One quantitative measure of the health of the
LV is ejection fraction (EF). This statistic measures the percentage volume of
blood transmitted out of the LV in a given cardiac cycle. To compute EF, we need
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to have segmentations of the LV at multiple points in a cardiac cycle; namely,
at end diastole (ED) and end systole (ES). In addition, observing how the LV
evolves throughout an entire cardiac cycle allows physicians to determine the
health of the myocardial muscles. Segmented LV boundaries can also be useful
for further quantitative analysis. For example, past work [7, 18] on extracting the
flow fields of the myocardial wall assumes the availability of LV segmentations
throughout the cardiac cycle.

Automatic segmentation of the left ventricle (LV) in bright blood breath-
hold cardiac magnetic resonance (MR) images is non-trivial because the image
intensities of the cardiac chambers vary due to differences in blood velocity [24].
In particular, blood that flows into the ventricles produces higher intensities in
the acquired image than blood which remains in the ventricles [9]. Locating the
LV endocardium is further complicated by the fact that the right ventricle and
aorta often appear jointly with the LV in many images of the heart. Similarly,
automatic segmentation of low signal-to-noise ratio (SNR) cardiac images (e.g.
body coil MR or ultrasound) is difficult because intensity variations can often
obscure the LV boundary.

Several approaches exist for LV segmentation. Goshtasby and Turner [9], as
well as Weng et al. [27] and Geiger et al. [8], apply intensity thresholding and
then a local maximum gradient search to determine the final segmentation. Such
gradient-based methods rely primarily on local information. When the image
statistics inside an object’s boundary are distinctly different from those outside,
the use of region statistics may be more appropriate, especially if the discontinu-
ity at the boundary is weak or non-uniform. Tsai et al. [26] consider region-based
segmentations of the LV. Chakraborty et al. [3] consider combining both gradi-
ent and region techniques in the segmentation of cardiac structures. Similarly,
Paragios [20] uses gradient and region techniques to segment two cardiac con-
tours, the LV endocardium and epicardium. In all three papers, active contours
(or curve evolution) [2, 4, 13, 15, 16, 19], a technique which involves evolving a
curve to minimize (or maximize) a related objective functional, are used to de-
termine the segmentation. In our work, we also take advantage of region-based
information and curve evolution.

Static segmentation methods are limited by the data available in an individ-
ual frame. During a single cardiac cycle, which lasts approximately 1 second, the
heart contracts from end diastole (ED) to end systole (ES) and expands back
to ED. Over this time, MR systems can acquire approximately 20 images of the
heart. Because adjacent frames are imaged over a short time period (approxi-
mately 50 ms), the LV boundaries exhibit strong temporal correlation. Thus,
previous LV boundaries may provide information regarding the location of the
current LV boundary. Using such information is particularly useful for low SNR
images, where the observation from a single frame alone may not provide enough
information for a good segmentation. There exists some past work which simply
uses the previous frame’s LV boundary as the prediction for the boundary in
the current frame [8, 12]. Meanwhile, Zhou et al. [28] consider LV shape tracking
by combining predictions, obtained through linear system dynamics assumed



Segmenting and Tracking the LV by Learning the Dynamics 555

known, with observations. Their technique uses landmark points to represent
the LV boundaries, which introduces the issue of correspondence. All uncertain-
ties are assumed to be Gaussian. Senegas et al. [21] use a Bayesian framework
for tracking using a sample-based approach to estimate the densities. They use
spherical harmonics for the shape model, and a simple linear model to approx-
imate the cardiac dynamics.1 In our work, we use non-linear dynamics in the
recursive estimation of the LV boundary. We represent the LV by level sets to
avoid issues inherent with marker points [23] and apply principal components
analysis on the level sets to determine a basis to represent the shapes. Further-
more, we propose a method for learning a non-trivial dynamic model of the LV
boundaries and apply this model to obtain predictions. Finally, we compute the
maximum a posteriori (MAP) estimate using curve evolution.

In particular, we propose a principled Bayesian approach for recursively esti-
mating the LV boundaries across a cardiac cycle. In our framework, LV bound-
aries constitute the dynamic system state we estimate, and a cardiac cycle of
mid-ventricular images constitutes the data. From a training set of data, we learn
the dynamics using an information-theoretic criterion [11]. More specifically, this
involves finding a non-parametric density estimate of the current boundary con-
ditioned on previous boundaries. The densities are approximately represented
by using sample-based (i.e. particle filtering [1]) methods.

For the test data, we apply a particle filter to recursively estimate the LV
boundary. Starting with the segmentations at the initial frames, we use the non-
linear dynamic model learned from the training data to predict the boundary
at the next frame. We then incorporate the image observation of this frame to
produce a posterior density estimate of the LV boundary at each frame, which
involves computing the MAP estimate at each frame using curve evolution. This
procedure is then repeated for each subsequent frame. We apply the proposed

1 We thank the reviewer who brought Senegas et al.’s related work to our attention.

Fig. 1. (a) Segmentation of the fourth frame in the cardiac cycle. (b) Segmentation
of the eighth frame (near end systole) in the cardiac cycle

Static Seg Method

Proposed Approach

Static Seg Method

Proposed Approach

(a) (b)
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algorithm to high and low SNR cardiac data to illustrate that our technique
works in both regimes. We also demonstrate the improvements provided by the
proposed method over results obtained from static LV segmentation methods,
as shown in Figure 1.

2 Framework and Methodology

We formulate the LV segmentation and tracking problem as an estimation of the
posterior distribution at each time t0 based on data from t = 1 to t = t0. First,
let yt be the image data which are measurements of the blood and tissue intensity
field ft. Then, define Xt as the dynamic system state which contains information
about the LV boundary at t. The segmentation problem involves finding the
(ft, Xt) pair which maximizes p(ft, Xt|Yt), where Yt = [y1, y2, . . . , yt]. We then
recursively compute Xt to track the LV boundary across the entire cardiac cycle.

Mathematically, we apply Bayes’ Theorem to the posterior p(ft, Xt|Yt). As-
suming that Xt is a Markov process and observing that p(Yt−1) and p(Yt) do
not depend on Xt, we have

p(ft, Xt|Yt) ∝ p(yt|ft, Xt)p(ft|Xt)p(Xt|Yt−1) (1)

= p(yt|ft, Xt)p(ft|Xt)

∫
Xt−1

p(Xt|Xt−1)

∫
ft−1

p(ft−1, Xt−1|Yt−1)dft−1dXt−1,

where p(yt|ft, Xt) is the likelihood term, p(ft|Xt) is the field prior, and p(Xt|Yt−1)
is the prediction density. From Eqn. (1), we observe the recursive nature of the
problem (i.e. p(ft, Xt|Yt) is written as a function of p(ft−1, Xt−1|Yt−1)).

Given this framework, applying it to the LV tracking problem is not straight-
forward. One of the challenges involves the presence of arbitrary, non-Gaussian
probability densities. In Section 3, we discuss the use of a sample-based approach

Fig. 2. Block diagram of our technique illustrating both the training and testing
phases. Section data inside each block indicate where we describe the specific actions
in text
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to non-parametrically represent the densities in Eqn. (1). In addition, the dy-
namic model of the LV boundaries, hence the forward density p(Xt|Xt−1), needs
to be learned using statistics from the training data. We discuss the procedure for
learning in Section 4. Finally, we explain in Section 5 how we practically compute
the MAP estimate of Xt and use this information to produce a segmentation as
well as an estimate of the posterior p(ft, Xt|Yt). Experimental results are shown
in Section 6, and we summarize the work in Section 7. Figure 2 shows a block
diagram representation of the algorithmic framework we propose.

3 Sample-Based Methods

Because many of the densities in Eqn. (1) have no simple closed-form, we use
sample-based methods, such as particle filters [1, 5, 6, 14], to approximate these
densities. Such methods represent a probability density using a set of weighted
samples drawn from that density. Suppose we have an equally-weighted set of

N samples x
(i)
t−1 that represent p(Xt−1|Yt−1), a term which appears as part of

p(Xt|Yt−1) in the formulation according to

p(Xt|Yt−1) =

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Yt−1)dXt−1. (2)

From the conditional distribution p(Xt|Xt−1) (assume known for now), we next

obtain M samples x
(i,j)
t|t−1 from p(Xt|Xt−1 = x

(i)
t−1) for each i. Since the sam-

ple points for p(Xt−1|Yt−1) are equally-weighted, p(Xt|Yt−1) can similarly be

approximated by the N × M equally-weighted samples x
(i,j)
t|t−1.

To complete the recursion as shown in Eqn. (1), we make an approximation
for the marginalization of ft−1. In particular, we choose the ft−1 which maxi-
mizes the posterior rather than marginalizing over ft−1. Thus, we have

p(Xt−1|Yt−1) =

∫
ft−1

p(ft−1, Xt−1|Yt−1)dft−1 ≈ max
ft−1

p(ft−1, Xt−1|Yt−1). (3)

In the above discussion, we have described how, given p(ft−1, Xt−1|Yt−1), we
can obtain p(Xt|Yt−1) assuming p(Xt|Xt−1) is known. In the next section, we
explain how we estimate p(Xt|Xt−1) through learning the system dynamics.

4 Learning the Dynamics

A number of approaches can be taken to learn the dynamics of an evolving
system. We can consider purely physics-based models to constrain and explain
the dynamics of a given problem [17, 22]. The drawback is that systems that
accurately model physics may require high dimensional states and/or a com-
plex set of differential equations that model the interaction between adjacent
masses in the system. Alternatively, we may assume a statistical model that
can either be parametric or non-parametric. For the former, the challenge is
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Fig. 3. Illustration of LV shape variability. ±1σ for the first eight primary modes of
variability (left to right). Solid curve represents +1σ while dashed represents −1σ

to find a parametric model that is well-matched to the problem structure and
captures the statistical variability inherent in the problem. For richer modeling
capacity, one can turn to non-parametric models, which can be computation-
ally difficult. In Section 4.2, we explain our non-parametric, yet computationally
tractable approach to learning the dynamics of LV boundaries. Before discussing
this method, we first provide a description of the system state Xt.

4.1 Implicit Parametric Shape Model and State Representation

The set of LV boundaries have different internal areas and different shapes across
a cardiac cycle and between patients. We want to represent these boundaries in
a simple, low-dimensional, yet accurate, manner. To accomplish this, we use
principal components analysis (PCA) on the shape variability to obtain a basis
for the shapes [16]. We then represent each shape by a linear combination of the
basis elements. The tracking problem reduces to learning the time evolution of
the coefficients of the basis elements.

Starting with a training set of manually-segmented and registered data, we
determine the area of each LV. Normalizing with respect to area, we create
signed distance functions whose zero level sets are the shapes [23]. Leveraging
on Leventon’s PCA on shapes [16], we obtain a mean shape ψ̄ and the primary
modes of variability ψi (for i=1,2, . . . , K, where K is the number of shapes in
the dataset) across the entire training set. In effect, we use a single basis to
represent the shapes across the entire cardiac cycle. Figure 3 shows the eight
primary modes of variability from the training set used in the experimental
results presented in Section 6. For a given signed distance function ψ in the
training set, ψ = ψ̄ +

∑K

i=1 αiψi, where αi’s are a set of constants. It is known
that for shapes which do not vary greatly, the primary few modes of variability
can explain the majority of the variability of the data. In our training set, the
first eight modes explain 97% of the variability in our specific training set of
data. Thus, we approximately represent each ψ by the eight element vector
α = [α1;α2; . . . ;α8]

T . By using PCA, a given curve (LV segmentation) can be
approximately represented by a vector containing its area A and α.

Given this representation, we define the state Xt with the notion that the
dynamics are a second-order system. This choice is made because higher-order
systems require a larger state, while first-order systems do not adequately cap-
ture whether we are in the diastolic or systolic phase. Thus, we represent our
state Xt as an eighteen-dimensional vector containing the area of the LV and
the shape variabilities at frames t and t−1, namely Xt = [At;α

T
t ;At−1;α

T
t−1]

T .
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4.2 A Maximally-Informative Statistic

We propose learning the dynamics from a training set of data based on a tech-
nique [11] which produces a non-parametric density estimate of p(Xt|Xt−1). This
estimate is obtained by using an information-theoretic criterion to maximize the
predictive power of the observations.

Since the dimensionality of the conditional density may be large, we consider
only the portion of the state Xt−1 that is statistically pertinent to the prediction
of Xt. Thus, we introduce a function h(Xt−1) which seeks to reduce dimensional-
ity yet capture all information in Xt−1 that relates to Xt (achieved exactly only
when I(Xt;Xt−1) = I(Xt;h(Xt−1)), where I(Xt, Xt−1) is the mutual informa-
tion between Xt and Xt−1). We can then create an estimate of p(Xt|h(Xt−1))
as an equally-informative yet simpler representation of p(Xt|Xt−1).

In practice, we constrain h to be linear, which likely precludes it from be-
ing a sufficient statistic. However, we choose the parameters of h such that
I(Xt;h(Xt−1)) is maximized, thus making h maximally-informative within this
class. Details regarding h and the maximization are in [25]. Once the parameters
of h are determined, we obtain a kernel density estimate of p(Xt|h(Xt−1)), where
for kernel size we use the plug-in method of Hall et al. [10].

5 Finding the MAP Estimate by Curve Evolution

Now, we incorporate the data at time t to obtain the posterior p(ft, Xt|Yt).

Given equally-weighted samples x
(i,j)
t|t−1 for p(Xt|Yt−1) as described in Section 3,

one could in principle weight the particles by the likelihood and field priors
to obtain a representation of p(ft, Xt|Yt). Such an approach may work if the
training data are rich. However, when we have a limited amount of training data,
we make the assumption that the posterior distribution of Xt is Gaussian and
determine this distribution by first computing its MAP estimate to determine
the mean parameter (since we do not have a method in place to compute the
posterior covariance, we approximate it to be a diagonal matrix with individual
variances determined empirically from the shape variability in the training data).
Maximizing p(ft, Xt|Yt) to obtain the MAP estimate is equivalent to minimizing

E(ft, Xt) = −log p(yt|ft, Xt) − log p(ft|Xt) − log p(Xt|Yt−1), (4)

which involves a likelihood term p(yt|ft, Xt), the prior on the field p(ft|Xt), and
a prediction term p(Xt|Yt−1). We discuss each term in Eqn. (4) individually.

5.1 Likelihood Term

Because we are interested in locating the boundary, we apply a simple obser-
vation model which assumes that the intensities are piecewise constant, with
a bright intensity representing blood and a darker one representing the my-
ocardium. Intensity variations in the observation, such as those due to differ-
ences in blood velocity [9], are modeled through a multiplicative random field
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(other choices of noise models can be handled in our framework, with the result
being a different observation model). Mathematically, the observation model is

yt(z) =

{
f

Rin(Xt)
t · n(z) , z ∈ Rin(Xt)

f
Rout(Xt)
t · n(z) , z ∈ Rout(Xt),

(5)

where f
Rin(Xt)
t and f

Rout(Xt)
t are the constant, but unknown, field intensities

for the blood pool region inside, Rin, and the myocardial region immediately
outside (within five pixels), Rout, of the LV boundary, respectively, and n(z)
is spatially independent, identically distributed lognormal random field with
log n(z) a Gaussian random variable having zero mean and variance σ2

n. Note
that we explicitly indicate the dependence of the regions on Xt. Given the field

intensity f
R(Xt)
t and the observation model of Eqn. (5), log yt(z) is normally

distributed with mean log f
R(Xt)
t and variance σ2

n. Thus,

p(yt|ft, Xt) ∝ (6)

exp( −
∫

z∈Rin(Xt)

(log yt(z) − log f
Rin(Xt)
t )2

2σ2
n

dz −
∫

z∈Rout(Xt)

(log yt(z) − log f
Rout(Xt)
t )2

2σ2
n

dz).

Since we have a second order model, Xt contains LV boundary information at
both t and t−1. For the likelihood term, the regions Rin and Rout are determined
by the boundary information from time t.

5.2 Field Priors

In applications where it is possible to extract prior field information, we incorpo-
rate a field prior into the problem. The mean log intensity inside is approximately
stationary across a cardiac cycle. We compute the mean and variance of the log
intensity inside (u and σ2

u, resp.) and that immediately outside the curve (v and
σ2

v , resp.) from the training data and use this as a field prior to obtain

p(ft|Xt) ∝ exp(− (log fRin

t − u)2

2σ2
u

)exp(− (log fRout

t − v)2

2σ2
v

). (7)

5.3 Prediction Term

Next, we want to provide a model for the prediction term. In Section 3, we

described having equally-weighted samples x
(i,j)
t|t−1 to approximately represent

our prediction term p(Xt|Yt−1). We model this prediction density with a Parzen
density estimate using these sample points. Mathematically,

p(Xt|Yt−1) =
1

MN

∑
(i,j)

k(Xt;x
(i,j)
t|t−1, σ

2) =
1

MN

∑
(i,j)

1√
2πσ

exp(
−d2(Xt, x

(i,j)
t|t−1)

2σ2
),

(8)
where k(X;µ, σ2) represents a Gaussian kernel with mean µ and variance σ2 as
determined from the bandwidth [10], MN is the number of samples, and d(Xt, x)
is a distance measure [25] between Xt and sample x.
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5.4 Curve Evolution

Having the likelihood, prediction, and prior as above, and defining F i
t (Xt) =

log f
Rin(Xt)
t and F o

t (Xt) = log f
Rout(Xt)
t , Eqn. (4) becomes

E(ft, Xt) = α(

∫
z∈Rin(Xt)

(log yt(z) − F i
t (Xt))

2

2σ2
n

dz +

∫
z∈Rout(Xt)

(log yt(z) − F o
t (Xt))

2

2σ2
n

dz)

+β(
(F i

t (Xt) − u)2

2σ2
u

+
(F o

t (Xt) − v)2

2σ2
v

) + γ log(
1

MN

∑
(i,j)

1√
2πσ

exp(
−d2(Xt, x

(i,j)

t|t−1)

2σ2
)),

(9)

where α, β, γ are weighting parameters specified based on the quality of data.
For instance, in low SNR images, α is less heavily-weighted relative to β and
γ. Details of the minimization process, which involves coordinate descent and
curve evolution, may be found in [25].

6 Experimental Results

We apply the proposed technique on 2-D mid-ventricular slices of data, although
it is also applicable to 3-D with a corresponding increase in computational com-
plexity. The dataset we use contains twenty frame time sequences of breath-hold
cardiac MR images, each representing a single cardiac cycle. We do not consider
arrhythmia because only patients having sustained and hemodynamically-stable
arrhythmia can be practically imaged and analyzed. Such a condition is very
rare. Anonymized data sets of were obtained from the Cardiovascular MR-CT
Program at Massachusetts General Hospital.

6.1 Training

As discussed in Section 4.1, we represent each manually segmented LV from the
training set (a total of 840 frames) by a shape variability vector α and an area A.
We obtain the state Xt for each frame t in the cardiac cycle. Then, we learn the
dynamics of our system by maximizing I(Xt;h(Xt−1)), where we approximate h
by a linear function, and use gradient ascent on the parameters of h to find the
maximum. We obtain a density estimate of p(Xt|h(Xt−1)) for use in test data.

6.2 Testing

We take sequences of twenty frames (ones not included in the training set), each
a single cardiac cycle, as input for testing. For initialization, we assume that a
user provides a segmentation of the first two frames in the sequence. The seg-
mentations can be approximate segmentations using some automated method,
an expert hand-segmentation, or predicted using a segmentation from a neigh-
boring 2-D slice of the same patient at the same time. From these segmentations,
we obtain the initial posterior p(f2, X2|Y2). Using particle filters and curve evo-
lution as described, we recursively estimate the posterior for each frame.
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Frame 4

Frame 15

(a) (b) (c)

Fig. 4. (a) Curves representing predictions of the LV segmentation (observed MR im-
age in background). (b) Segmentation of an MR image by obtaining the MAP estimate
of Xt. (c) Curves representing samples of the posterior density p(ft, Xt|Yt)

6.3 Results

In Figure 4, we show the segmentation and tracking of the LV based on a test
image sequence. Figure 4(a) shows LV boundaries extracted from samples of
p(Xt|h(Xt−1)). Due to space constraints, we show two representative frames
from the cardiac cycle. Note that these predictions are obtained based on seg-
mentations from previous frames and on the learned dynamic model, but before
incorporating the data shown in Figure 4(a). Figure 4(b) shows the MAP es-
timate of Xt, which involves incorporating the observed data. This estimate is
obtained by minimizing Eqn. (9) and provides what qualitatively appears to
be a reasonable segmentation of the LV boundary. Quantitatively, we measure
accuracy by computing the symmetric difference between the segmentation and
the manually-segmented truth normalized by the area of the truth. Here, the
average value across the cardiac cycle of test data is 0.04. Finally, Figure 4(c)
shows equally-weighted samples of the posterior density p(Xt|Yt). This example
shows good results, but since the quality of the images are very good, static
segmentation methods yield results similar to those shown in Figure 4(b).

We now consider low SNR images where static segmentation may not pro-
duce reasonable results. To simulate low SNR conditions, we add independent,
lognormal multiplicative noise to MR images to produce a noisy dataset. Using
dynamics trained from the MR image training set and initializing again using
hand-segmentations on the first two frames, we estimate the LV boundaries. Fig-
ure 5 shows segmentations for a full cardiac cycle by taking the MAP estimate
of Xt overlaid on the corresponding noisy MR data. The segmentations appear
to provide accurate localizations of the LV boundaries despite low quality data.

Figure 1 provides a visual comparison between our approach and one using
static segmentation. Only two frames are shown due to space limitations, but
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Fig. 5. MAP estimate of segmentations from frame 3 to 20 of a full cardiac cycle

they are representative of the results obtained throughout the cardiac cycle.
Quantitatively across the entire cardiac cycle, the normalized symmetric differ-
ence from our approach is 0.08, while that for static segmentation is 0.17. The
static segmentation method is obtained by replacing the p(Xt|Yt−1) term in our
formulation with a curve length prior and is similar to the region-based segmenta-
tions described in the introduction [3, 20, 26]. In both illustrations, incorporating
dynamics into the segmentation process using the approach we propose results
in better estimates than those using a static segmentation method.

7 Conclusion

We have proposed a principled method to recursively estimate the LV boundary
across a cardiac cycle. In the training phase, we learn the dynamics of the LV
by obtaining a non-parametric density estimate for the system dynamics. From
this, we produce predictions which, used in conjunction with the observations
from a new frame, estimate the LV boundary in this frame. The process is
repeated through a cardiac cycle. This approach uses information from temporal
neighbors to produce better segmentations than using observations at the current
frame alone. We have illustrated this method on high and low SNR images. Our
formulation produces reasonable estimates using either set of measurements.

A number of extensions to this work may be considered. For instance, our
ongoing work considers the generalization to general non-parametric densities for
the posterior when a rich enough training set is available. Also, in the learning
phase, one might be interested in explicitly incorporating physical constraints to
the dynamic system. Adding such constraints may help to eliminate boundary
estimates which are known to be physically impossible. In addition, other forms
of the function h may be considered. More general non-linear functions may yield
a more informative statistic at the cost of greater computational complexity,
while a time-varying one may be more informative if sufficient training data is
available. In this work, we have posed the problem as a forward recursive filter.
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Our current work considers improving the estimates by the use of smoothing.
Finally, we note that although we track only 2-D slices of the LV in this paper, a
natural experimental extension involves applying the technique to 3-D LV data.
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Abstract. Active Shape Models are a popular method for segment-
ing three-dimensional medical images. To obtain the required landmark
correspondences, various automatic approaches have been proposed. In
this work, we present an improved version of minimizing the description
length (MDL) of the model. To initialize the algorithm, we describe a
method to distribute landmarks on the training shapes using a confor-
mal parameterization function. Next, we introduce a novel procedure to
modify landmark positions locally without disturbing established corre-
spondences. We employ a gradient descent optimization to minimize the
MDL cost function, speeding up automatic model building by several
orders of magnitude when compared to the original MDL approach. The
necessary gradient information is estimated from a singular value de-
composition, a more accurate technique to calculate the PCA than the
commonly used eigendecomposition of the covariance matrix. Finally, we
present results for several synthetic and real-world datasets demonstrat-
ing that our procedure generates models of significantly better quality in
a fraction of the time needed by previous approaches.

1 Introduction

Since their introduction by Cootes et al. [1], Active Shape Models (ASMs) have
become popular tools for automatic segmentation of medical images. The main
challenge of the approach is the point correspondence problem in the model
construction phase: On every training sample for the ASM, landmarks have to
be placed in a consistent manner. While manual labeling is a time-consuming but
feasible solution for 2D models with a limited number of landmarks, it is highly
impractical in the 3D domain: Not only is the required number of landmarks
higher than in the 2D case, but it also becomes increasingly difficult to identify
and pinpoint corresponding points, even for experts.

Several automated methods to find the correspondences in 3D have been
proposed. Brett and Taylor [2] use a pairwise corresponder based on a symmet-
ric version of the ICP algorithm. All training shapes are decimated to generate
sparse polyhedral approximations and then merged in a binary tree, which is used
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to propagate landmark positions. Shelton [3] measures correspondence between
surfaces in arbitrary dimensions by a cost function which is composed of three
parts representing Euclidean distance, surface deformation and prior informa-
tion. The function is minimized using a multi-resolution approach that matches
highly decimated versions of the meshes first and iteratively refines the results.
Paulsen and Hilger [4] match a decimated template mesh to all training shapes
using thin plate spline warping controlled by a small set of manually placed
anatomic landmarks. The resulting meshes are relaxed to fit the training shapes
by a Markov random field regularization. Another approach based on matching
templates is presented by Zhao and Teoh [5]: They employ an adaptive-focus
deformable model to match each training shape to all others without the need
for manually placed landmarks. The shape yielding the best overall results in
this process is subsequently used to determine point correspondences, enhanced
by a ”bridge-over” procedure for outliers.

A common characteristic of these methods is that they base their notion of
correspondence on general geometric properties, e.g. minimum Euclidean dis-
tance and low distortion of surfaces. A different approach is presented by Davies
et al. [6] who propose to minimize a cost function based on the minimum descrip-
tion length of the resulting statistical shape model. In a recent comparison [7],
this approach has shown to be superior to other correspondence methods. How-
ever, the optimization of the MDL criterion for 3D shapes is complex to im-
plement and computationally expensive. In this paper, we present an optimized
procedure for minimizing the description length which is easier to implement
and more efficient than the current method.

2 Fundamentals

2.1 Active Shape Models

The most popular kind of ASMs uses point distribution models (PDMs), which
represent each d-dimensional training sample as a set of n landmarks. For every
sample, landmark positions are defined by a single vector x, storing the coor-
dinates for landmark i at (xi, xi+n, xi+2n). The vectors of all training samples
form the columns of the landmark configuration matrix L. Applying principal
component analysis (PCA) to this matrix delivers the principal modes of varia-
tion pm in the training data. Restricting the model to the first c modes, all valid
shapes can be approximated by the mean shape x̄ and a linear combination of
displacement vectors:

x = x̄ +
c∑

m=1

ympm (1)

Cootes used an eigenvector decomposition of the covariance matrix of L to
calculate the PCA [1], a method commonly employed for this purpose. However,
the same results can also be achieved by a singular value decomposition (SVD),
which is numerically more stable and thus more accurate when the covariance
matrix is ill-conditioned [8].
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Theorem 1. Any m×n real matrix A with m ≥ n can be written as the product

A = UDVT (2)

where U and V are column orthogonal matrices of size m×n and n×n, respec-
tively, and D is a n × n diagonal matrix. Then U holds the eigenvectors of the
matrix AAT and D2 the corresponding eigenvalues.

Without calculating the covariance matrix, the PCA can thus be obtained
by the SVD of the matrix A = 1√

s−1
(L − L̄), where s is the number of samples

and L̄ a matrix with all columns set to x̄. In addition to the increased accuracy,
the matrices U and V allow calculating gradient information for the eigenvalues
which we will use during the optimization stage of the model-building process.

2.2 Correspondence by Minimizing Description Length

A prerequisite for statistical shape models is a set of landmark points located at
corresponding positions on all training shapes. To quantify this correspondence,
the MDL approach introduced by Davies et al. [9] defines a cost function F
which is based on the minimum description length of the generated model. In
this work, we use a simplified version of the MDL as proposed by Thodberg [10],
where F is defined as:

F =
∑
m

Lm with Lm =

{
1 + log(λm/λcut) for λm ≥ λcut

λm/λcut for λm < λcut

(3)

This formulation features one free parameter λcut which represents the expected
noise in the training data. Since all shapes are rescaled to produce a mean shape
with RMS radius r = 1/

√
n for the PCA, the optimal value for λcut depends on

the original average radius of the training shapes r̄:

λcut =
(σ

r̄

)2

, (4)

where σ is the standard deviation of noise in the training data. In coherence
with the voxel quantization error, Thodberg choses σ = 0.3 and uses r̄ = 100 in
all his experiments. While we adopt the same σ-value, we modify r̄ depending
on the resolution of the images from which the training shapes are extracted.

3 Mesh Parameterization

To define an initial set of correspondences and a means of manipulating them
efficiently, we need a convenient parameter domain for our training shapes. For
closed 2D objects, the natural choice for this parameter domain is the arc-length
position on the contour: Choosing an arbitrary starting point and normalizing
the total arc-length to 1, all positions on the contour (i.e. all potential landmark
positions) can be described by a single parameter p ∈ [0..1].
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In order to minimize complexity for the parameterization of 3D shapes, we
will restrict the discussion to closed two-manifolds of genus 0 (i.e. surfaces with-
out holes and self-intersections). Objects of this class are topologically equivalent
to a sphere and comprise most shapes encountered in medical imaging (e.g. liver,
kidneys and lungs). The task is to find a one-to-one mapping which assigns every
point on the surface of the mesh a unique position on the unit sphere, described
by two parameters longitude θ ∈ [0..2π] and latitude φ ∈ [0..π].

The mapping of an arbitrary shape to a sphere inevitably introduces some
distortion. There are a number of different approaches which attempt to mini-
mize this distortion, typically preserving either local angles or facet areas while
trying to minimize distortions in the other. An overview of recent work on this
topic can be found in [11].

For an initial parameterization, Davies uses diffusion mapping, a simplified
version of the method described by Brechbühler [12] which is neither angle- nor
area-preserving. Due to our optimization strategy (Sect. 4), our focus lies on
preserving angles: Moving neighboring points on the parameterization sphere
in a specific direction, we expect the corresponding landmarks on the training
shape to move in a coherent direction as well. This behavior is guaranteed by
conformal mapping functions, transformations that preserve local angles.

3.1 Creating a Conformal Mapping

Definition 1. Each training sample for the ASM is represented as a triangu-
lated mesh K = (V,E) with vertices u, v ∈ V and edges [u, v] ∈ E. The vertex
positions are specified by f : V → R3, an embedding function defined on the ver-
tices of K. A second function Ω : V → R3 specifies the coordinates as mapped
on the unit sphere, ∀v ∈ V : |Ω(v)| = 1.

Gu et al. present a variational method to create a conformal parameterization
in [13]. From an initial Gauss map, where Ω(v) represents the normal vector of v,
they use a gradient descent optimization to minimize the string energy of the
mesh, defined as:

E(K,Ω) =
∑

[u,v]∈E

ku,v‖Ω(u) − Ω(v)‖2 (5)

Minimizing the string energy with all edge weights ku,v set to 1 yields the
barycentric mapping, where each vertex is positioned at the center of its neigh-
bors. Subsequently, a conformal mapping can be obtained using edge weights
depending on the opposing angles α, β of the faces adjacent to [u, v] as in:

ku,v =
1
2

(cot α + cot β) (6)

During the optimization process, all vertices must constantly be projected
back onto the sphere by Ω(u) = Ω′(u)/|Ω′(u)|. The formal correctness of this
approach was later proved in [14].
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3.2 Mapping Landmarks

Following the preceding sections, the parameterization is defined by a spherical
mesh with the same topology as the training sample. In order to obtain the
3D position for an arbitrary landmark at the spherical coordinates (θ, φ), which
is generally not a vertex, we have to find the intersection between a ray from the
origin to (θ, φ) and the parameterization mesh. Since mapping landmarks is the
most computationally expensive part of the model-building process, an intelli-
gent search strategy of ordering the triangles according to the likelihood of ray
intersection speeds up the algorithm considerably. Intersected triangle indices for
each landmark are cached and, in the case of a cache miss, neighboring triangles
are given priority when searching for the ray intersection. To test a triangle for
intersection, we use the method described in [15], which conveniently produces
the barycentric coordinates of the intersection point. The same coordinates used
on the respective triangle of the training mesh yield the final landmark position.

4 Optimizing Landmark Correspondences

With an initial conformal parameterization Ωi for each training sample i, we can
acquire the necessary landmarks by mapping a set of spherical coordinates to
each shape. To optimize the point correspondences with the MDL criterion, two
possibilities are available: We can either change the individual Ωi and maintain
a fixed set of global landmarks or modify individual landmark sets Ψi.

In this work, we opted for the first alternative, which has the advantage
that the correspondence is valid for any set of points placed on the unit sphere.
Therefore, it is possible to alter number and placement of landmarks on the unit
sphere at any stage of the optimization, e.g. to better adapt the triangulation
to the training shapes. Moreover, we do not need to worry about the correct
ordering of landmarks: Since the valid set on the unit sphere is fixed, ensuring a
one-to-one mapping to the training shapes is sufficient.

4.1 Re-parameterization

To modify the individual parameterizations in an iterative optimization process,
we need a transformation function of the type Ω′ = Φ(Ω). In [6], Davies et al.
use symmetric theta transformations for that purpose: Employing a wrapped
Cauchy kernel with a certain width and amplitude, landmarks near the kernel
position are spread over the sphere, while landmarks in other regions of the
surface are compressed. By accumulating the effects of thousands of kernels at
different positions, arbitrary parameterizations can be created.

While this re-parameterization method produces the required effect, it is an
inefficient means of modifying surface parameterizations. The main disadvan-
tage is that it is a global modification, i.e. adding one new kernel modifies all
landmark positions on the object. Intuitively, it would be desirable to keep estab-
lished landmark correspondences stable. Therefore, we suggest a new method for
modifying parameterization functions based on kernels with strictly local effects.
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We will assume that we know a principal direction (∆θ,∆φ) in which the
vertices of a local neighborhood on the parameterization mesh should move to
improve landmark correspondences. Then we define a Gaussian envelope function
to change each spherical coordinate by c(x, σ) · (∆θ,∆φ) with

c(x, σ) =

{
e

−x2

2σ2 − e
−(3σ)2

2σ2 for x < 3σ

0 for x ≥ 3σ
(7)

The variable x denotes the Euclidean distance between the center of the kernel
and the specific vertex of the parameterization mesh, while σ specifies the size
of the kernel. The movements are cut off at 3σ to limit the range and keep
the modification local. During the course of the optimization, σ is decreased to
optimize larger regions at the beginning and details at the end. Three examples
for possible kernel configurations with different σ-values are shown in Fig. 1.

The proposed method of modification does not work if a kernel includes
one of the poles of the spherical parameterization mesh (φ = 0 or φ = π)
because vertices would all move either toward or away from this point, depending
on ∆φ. Nevertheless, the positions of the different kernels have to change in
the course of the optimization in order to guarantee an equal treatment for all
vertices of the parameterization mesh. This limitation is overcome by defining
specific kernel configurations as shown in Fig. 1, which do not cover the pole
sections of the sphere. By keeping these configurations fixed and instead rotating
all parameterizations and the global landmark collection by a random rotation
matrix, the relative kernel positions are changed without touching a pole. The
random rotation matrices for these operations are acquired using the method
described in [16].

4.2 Calculating MDL Gradients

Given a kernel at a certain position, we need the direction (∆θ,∆φ) for the
movement which minimizes the cost function. Since all modifications of the pa-
rameterization change landmark positions on the training sample, the first step

Fig. 1. Kernel configurations for σ values of 0.4, 0.3 and 0.2. Bright intensities mark
regions with large vertex movements, dark ones those with no modification
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is to quantify the effect landmark movements have on the MDL value. As shown
in [17], the work of Papadopoulo and Lourakis on estimating the Jacobian of the
SVD [18] can be used for that purpose, calculating the gradients of the MDL
objective function with respect to individual landmarks.

The calculation of the singular value derivatives does not add a significant
computational overhead. Given the centered and un-biased landmark configura-
tion matrix A from Sect. 2.1, the derivative for the m-th singular value dm is
calculated by:

∂dm

∂aij
= uim · vjm (8)

The scalars uim and vjm are elements of the matrices U and V from (2). Since
our MDL cost function uses λm = d2

m, we can derive the MDL gradients as

∂F

∂aij
=
∑
m

∂Lm

∂aij
with

∂Lm

∂aij
=

{
2uimvjm/dm for λm ≥ λcut

2dmuimvjm/λcut for λm < λcut

(9)

This derivation yields a 3D gradient for every landmark, revealing the influence
of its movements on the cost function. Two examples of the resulting gradient
fields are visualized in Fig. 2.

4.3 Putting It All Together

The final step is to transform the calculated gradient fields into optimal kernel
movements k = (∆θ,∆φ) on the parameterization mesh. Using the chain rule,
we get:

∂F

∂k
=

∂F

∂aij

∂aij

∂k
(10)

We use finite differences to estimate the surface gradients ∂aij/∂k.

Fig. 2. Gradients of the MDL cost function visualized for two sample shapes. The
value of the directional derivative is color-coded ranging from black for weak gradients
to white for the strongest gradients
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Both Davies [19] and Thodberg [10] describe cases in which the MDL op-
timization can lead to landmarks piling up in certain regions or collapsing to
a point. Davies keeps one shape as a master example with fixed landmarks to
prevent this effect while Thodberg suggests adding a stabilizing term to the cost
function. Since we have never observed the problematic behavior with our new
re-parameterization, we do not employ any of these methods.

In addition to modifying the mapping functions Ωi by re-parameterization,
other variables which influence landmark positions can be included in the opti-
mization. The rotation of each mapping Ωi determines the position of the first
landmark on the training shape and the relative orientation of all others. By
calculating gradients for rotating the parameterization mesh around the three
Euclidean axes and using those instead of the surface gradients ∂aij/∂k in (10),
we have an efficient method to optimize this variable.

Other possibilities for optimization include scale and rotation of the individ-
ual training shapes, which are normally determined by a generalized procrustes
matching. While we do optimize scale in our procedure, we did not notice sig-
nificant improvements in the resulting MDL values due to this step.

5 Results

5.1 Datasets

We tested the presented method on several synthetic and real-life datasets. Syn-
thetic data has the advantage that the global minimum of the MDL function is
known, since it can be calculated from the correspondences inherent for gener-
ated data. A tabular description of all employed datasets is given in Tab. 1.

Table 1. The collection of datasets used for the evaluation

Cuboids Ellipsoids Lungs Livers

Origin synthetic synthetic clinical clinical
Mean size (radius in voxels) 100 100 25 70
Number of samples 20 20 18 21
Perceived sample variance low medium medium high
Sample complexity (# vertices) 486 962 3250–5000 1500–2000
Model complexity (# landmarks) 642 642 2562 2562

5.2 Performance Measures

In [19], Davies describes three measures to quantify the quality of the created
shape model: Generalization ability, specificity and compactness. The same mea-
sures are also used in the comparison of different correspondence methods by
Styner et al. [7].

Generalization ability quantifies the capability of the model to represent new
shapes. It can be estimated by performing a series of leave-one-out tests on the
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training set, measuring the distance of the omitted training shape to the closest
match of the reduced model. Specificity describes the validity of the shapes the
model produces. The value is estimated by generating random parameter values
from a normal distribution with zero mean and the respective standard deviation
from the PCA. The distance of the generated shape to the closest match of
the training set is averaged over a number of 10,000 runs. Compactness simply
measures the accumulative variance of the model. All measures are defined as
functions of the number of modes or parameters used by the model and displayed
as piecewise linear graphs. Smaller values indicate better models.

While generalization ability and specificity are well-established qualities in-
herent to a good model, compactness is an implementation specific measure: The
MDL approach assumes that low variances result in a good ASM, but this is no
imminent truth. We therefore restrict our evaluation to the first two measures.

5.3 Comparison with Current Standard

For all datasets described in Sect. 5.1, Active Shape Models have been generated
using the gradient descent technique (GD) proposed in this paper and using the
current standard approach (STD) by Davies [19]. Our GD-algorithm was imple-
mented in C++ and run on a 3.0GHz Intel Pentium 4 with Windows XP and
512MB of memory. The code makes use of the Hyper-Threading architecture
to optimize several samples concurrently. The STD-experiments were performed
using the original Matlab code on a 2.8GHz Intel Xenon with Linux and 2GB
of memory. After optimization, the global landmark sets of the GD-optimized
models were adjusted to match the landmark distributions of the STD-models.
For the evaluation, all models were rescaled to the same dimensions as the aver-
age training sample. The results of the experiments are summarized in Tab. 2.
For our GD-optimization, we list additional intermediate values for the point at
which the MDL values surpasses the results of the STD-method.

The GD-optimization reaches the same MDL values as the converged STD-
method up to 5,000 times faster and produces distinctly better final results. Gen-
eralization ability and specificity values for all datasets are displayed in Fig. 3.
In accordance with the MDL values, models optimized with our GD-method
exhibit significantly better generalization ability and specificity values.

Table 2. Resulting MDL values at different stages of optimization using the gradient
descent (GD) and standard (STD) method for all datasets. Times are given in hours
and minutes

Cuboids Ellipsoids Lungs Livers
Optimization Time MDL Time MDL Time MDL Time MDL

Initial values 0:00 1305 0:00 1288 0:00 1216 0:00 2323
STD (converged) 63:24 1297 63:24 1284 432:00 1203 432:00 2275
GD (intermediate) 0:01 1246 0:01 1254 0:05 1180 0:07 2263
GD (converged) 0:36 1243 2:43 1247 17:03 1160 14:45 2140



3D Active Shape Models Using Gradient Descent Optimization 575

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Cuboid Generalization Ability

Initial values
Standard optimization

Gradient descent optimization

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Cuboid Specificity

Initial values
Standard optimization

Gradient descent optimization

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Ellipsoid Generalization Ability

Initial values
Standard optimization

Gradient descent optimization

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Ellipsoid Specificity

Initial values
Standard optimization

Gradient descent optimization

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Lung Generalization Ability

Initial values
Standard optimization

Gradient descent optimization

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Lung Specificity

Initial values
Standard optimization

Gradient descent optimization

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Liver Generalization Ability

Initial values
Standard optimization

Gradient descent optimization

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

rr
or

Used Modes

Liver Specificity

Initial values
Standard optimization

Gradient descent optimization

Fig. 3. Graphs of generalization ability and specificity for different numbers of modes
for all datasets. In addition to the results after standard optimization and our gradient
descent method, the initial values before optimization are displayed as orientation
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6 Conclusions

As demonstrated in the preceding section, our gradient descent optimization pro-
duces significantly better models than the current standard approach while at
the same time being several orders of magnitude faster. Highly detailed models
containing over 2,500 landmarks can be successfully optimized in less than 20
hours on a normal desktop PC. This significant performance gain opens up new
possibilities for building larger and more detailed 3D ASMs. Excluding the plat-
form difference, a major part of the improvements can be attributed to our novel
method of local parameter modification controlled by the estimated gradients of
the MDL cost function. As the lower MDL values after optimization indicate,
our method is less sensitive to convergence to local minima than the original ap-
proach. It offers an efficient, robust and versatile approach to automatic model
building that should further propagate the use of 3D ASMs in clinical practice.
To represent more complex shapes (e.g. brain ventricles), the mesh surface could
be cut and parameterized over multiple domains instead of a single sphere.

Future research will investigate in how far the established correspondences
can be used to reorganize landmarks after the optimization in order to repre-
sent the geometry of the model optimally with a minimum number of points.
Additionally, the stability of our re-parameterization method against landmark
collapse has to be verified using a larger number of test datasets.
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17. Ericsson, A., Åström, K.: Minimizing the description length using steepest descent.
In: Proc. British Machine Vision Conference. (2003) 93–102

18. Papadopoulo, T., Lourakis, M.I.A.: Estimating the Jacobian of the singular value
decomposition: Theory and applications. In: Proc. European Conference on Com-
puter Vision, Springer (2000) 554–570

19. Davies, R.H.: Learning Shape: Optimal Models for Analysing Shape Variability.
PhD thesis, University of Manchester, Manchester, UK (2002)



Capturing Anatomical Shape Variability Using
B-Spline Registration

Thomas H. Wenckebach, Hans Lamecker, and Hans-Christian Hege

Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
{wenckebach, lamecker, hege}@zib.de

www.zib.de/visual

Abstract. Registration based on B-spline transformations has attracted
much attention in medical image processing recently. Non-rigid registra-
tion provides the basis for many important techniques, such as statistical
shape modeling. Validating the results, however, remains difficult - es-
pecially in intersubject registration. This work explores the ability of B-
spline registration methods to capture intersubject shape deformations.
We study the effect of different established and new shape representa-
tions, similarity measures and optimization strategies on the matching
quality. To this end we conduct experiments on synthetic shapes repre-
senting deformations which typically may arise in intersubject registra-
tion, as well as on real patient data of the liver and pelvic bone. The
experiments clearly reveal the influence of each component on the regis-
tration performance. The results may serve as a guideline for assessing
intensity based registration.

1 Introduction

Motivation. Detailed analysis of anatomical shape variability frequently de-
pends on identification of corresponding points on different shapes. Morpholog-
ical studies, like neuroanatomical studies of the brain, generation of anatomical
atlases, and many other applications demand such information. In recent times
statistical shape modeling has been proven a successful method in medical im-
age processing. The performance of statistical shape models crucially depends
on the way anatomical regions of different shapes are mapped to each other.
Anatomical correspondence across different subjects is not well understood, and
hence much harder to validate than in intrasubject matching.

Volumetric registration of medical data using B-spline transformations has
been widely applied in medical image processing [1, 2, 3, 4, 5]. In many cases reg-
istration is performed directly on (tomographic) image data which implicitly
contains the shape of the object. In this work we will explore the capability
of B-spline based registration methods to capture shape variability. Therefore
we focus on registration of surfaces, where the deformation model itself can
be studied more accurately without interference originating from image-related
mismatches. Particularly in intersubject registration large deformations may

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 578–590, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Comparison of different liver registrations with equal surface distance: Left:
Template. Mid: Triangulation registration with boundary constraints (similar result
for distance field registration), Right: Triangulation registration without boundary con-
straints (similar result for label field) leads to incorrect anatomical matching

occur. Anatomically corresponding structures may differ geometrically or may
be separated widely, see for instance Fig. 1.

Contributions. The aim of this work is to study the influence of different shape
representations, similarity measures as well as optimization strategies on the
performance of the B-spline based registration framework. To this end we define
a set of pairs of synthetic shapes that represent deformations which typically may
arise in intersubject registration. Moreover, we consider two anatomical shapes
of different variability: liver consists of soft tissue, and its shape is subject to
respiratory state, patient pose, and configuration of neighbouring organs, while
pelvic bone is basically a rigid structure. Here, additional anatomical expert
knowledge is available for validation. We evaluate the performance measured in
terms of surface distance after registration, regularity of the deformation map,
robustness and landmark placement. These experiments clearly reveal strengths
and weaknesses of the different components under investigation.

Previous Work. Fleute et al. [6] first used intersubject non-rigid registration for
building a statistical shape model of the knee. They employed the algorithm by
Szeliski and Lavallée [1] using asymmetric surface distance as similarity measure.
Frangi et al. applied Rückert’s registration [2] based on label fields for CT bone,
MRI brain data [7], and cardiac images [8]. They compare their method to
the work of Brett et al. [9], who use a symmetric variant of the rigid iterative
closest-points algorithm (ICP) [10] for brain data. Non-rigid extensions to ICP
have been reported recently [11, 12]. Rohlfing et al. [3] employed the algorithm
by Rückert for construction of an anatomical atlas of the honey bee.

The capability of the deformation model has not been analyzed thoroughly
up to now. It was assumed that correspondences based on B-spline registra-
tion are fold-over free [7] as opposed to those obtained by the ICP approach
of Brett et al. We show this to be generally not the case. Usually, validation is
performed indirectly by assessing the performance of the derived shape models
or in terms of the implemented similarity measures. Rohlfing et al. evaluate the
quality (sharpness, entropy) of the averaged intensity image obtained by their
registration. Frangi et al. [8] consider landmark correspondence.
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Instead of surfaces, lower dimensional structures such as landmarks [13] or
feature curves [14] are in use. Unfortunately, for many organs like the liver such
descriptions are difficult to derive due to a lack of characteristic shape features.
Incorporation of geometric features into ICP can be found in [15, 16]. Wang et
al. [17] base their semi-automatic matching on curvature classifiers.

A fundamentally different approach tonon-rigidmatching is basedonmappings
of two-dimensional manifolds [18, 19, 20], as opposed to volumetric mappings.

2 Algorithmic Overview

The task of volumetric registration is to find a spatial mapping T : R3 → R3

between a template shape X and a target shape Y , such that X and Y resemble
each other as much as possible. The similarity of X and Y is defined by some
cost function E(T, X, Y ). We will study the following shape representations:

Label fields (LF). A:ΩA → LA with LA ⊂ Z implicitly contain the boundary
along voxels belonging to different segments LA (= {0, 1} for binary images).
Label fields with smooth boundaries are generated by scan-conversion of trian-
gulated surfaces.

Signed distance fields (SDF). A:ΩA → DA with DA ⊂ R encoding for each
voxel the spatial distance to the closest point of a surface. It‘s level sets implicitly
represent a family of shapes. A is computed via euclidean distance mapping [21].

Triangulated surfaces (TS).5 SA ⊂ R3 are the only parametric shape repre-
sentations considered in this work. Triangulated surfaces are typically generated
by segmentations of tomographic data using the marching cubes algorithm.

In the framework of parametric registration, the transformation T is composed
of an affine transformation Taffine as well as a B-spline deformation TB−spline.
The latter is defined on a 3D discrete uniform control point grid (CPG) with
cubic B-spline interpolation between adjacent control points, see [2, 4] for details.
The B-spline deformation model appears suitable for intersubject registration,
because it provides smooth deformations when a physical model is not known.

The optimal transformation T for a given cost function E is determined by
a nonlinear multilevel optimization scheme. The CPG is refined iteratively, pro-
viding a parameter pyramid, while at the same time there is a data pyramid
consisting of several sampled versions of the shapes. The main intention of this
approach is to prevent optimization from being trapped in a local minimum
of the similarity criterion. By means of B-spline CPG refinement global defor-
mations are corrected at the beginning, while local deformations are iteratively
resolved later on. The minimum T∗ of the cost function E is found by employing
a gradient descent-like search strategy. Instead of numerically approximating
the gradient, a search-direction is computed by scanning the whole parame-
ter space within some capture range depending on the level within the data
pyramid [22].
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Fig. 2. Problem of asymmetric distance measures. Left: Initial template and target.
Mid: Result with one-sided surface distance. Right: Schematic view

The general cost function of the registration consists of a term measuring
shape similarity D, a regularization term R smoothing the transformation, plus
additional boundary constraints:

E(T, X, Y ) = D(T(X), Y ) + λR(T) + boundary constraints , (1)

where the shape similarity D consists of a weighted sum of different measures:

Similarity Measure 1 (Label Consistency). Given label fields A, B, with la-
bels L = {1, . . . , L} and image domain Ω, let pAB(l,m) denote the probability of
cooccurence of labels l,m ∈ L in the overlap domain ΩA,B . Label consistency [8]
is measured by

DL(A, B) =

L∑
l=1

pAB(l, l) . (2)

Similarity Measure 2 (Grey-Value Difference). For distance fields A and
B, grey-value difference is defined as

DD(A, B) =
1

|ΩA,B |
∑

x∈ ΩA,B

[A(x) − B(x)]2 . (3)

For triangulations SA and SB let ds(p,SB) = minq∈B ||p − q||2 denote the
distance of a point p on SA to the surface SB . Based on ds, we define the closest
point c on SB to p on SA by c(p,SB) = arg minq∈SB

||p− q||2. Obviously, this
correspondence is asymmetric (cf. Fig. 2, right). We propose to use a symmetric
surface distance as the fundamental similarity measure for shapes:

Similarity Measure 3 (Surface Distance) is defined by

Ds(SA,SB) =
1

|SA| + |SB |
(√ ∑

p∈SA

ds(p,SB)2 +

√ ∑
q∈SB

ds(q,SA)2

)
. (4)

Note that measures employed on triangulations should be symmetric in order
to match convex or concave regions as illustrated in Fig. 2, left. This implies a
considerable algorithmic complexity in contrast to the conventional asymmetric
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Fig. 3. Ambiguity induced by a spatial attractor. The anatomically corresponding
region in the middle (l. quadr.) is hardly pronounced on the target. Left: Overview.
Mid: Close-up: displacements for correct solution. Right: Displacements for bad solution

scheme: the latter can be implemented efficiently using a distance map of the
target surface, while the former requires at any partial derivative calculation a
search for closest points.

Local geometric characterizations of surfaces are often included in the cost
function to improve the matching. Particularly in intersubject registration, sit-
uations are common where anatomical structures are pronounced to a highly
different degree, yet spatially aligned closely (cf. Fig. 3). Such problems may be
avoided by incorporating the normal vector fields nA and nB of the surfaces:

Similarity Measure 4 (Normal Deviation) is defined by

Dn(SA,SB) =
1

|SA| + |SB |
( ∑

p∈SA

dn(p,SB)2 +
∑

q∈SB

dn(q,SA)2

)
, (5)

with dn(p,SB) = 1 − nA(p) · nB(c(p,SB)).

Other commonly used local geometric characterizations are based on the prin-
cipal curvatures κ1 and κ2 of a surface. Koenderink and van Doorn [23] intro-
duced two suitable classifiers: the so-called shape index S = 2

π arctan κ1+κ2
κ2−κ1

with
κ2 �= κ1 separates a surface into convex, hyperbolic and concave areas, and
transitions between these; the range is continuous within [−1, 1]. Note that S

is invariant under global scaling of the surface. The curvedness C =
√

κ2
1+κ2

2
2 is

a suitable classifier when scale is of interest. It also has some advantages over
the mean curvature: the mean curvature vanishes at points where κ1 = −κ2 and
its magnitude is not intuitive, since it does not grow proportionally with the
radius of a sphere. Both defects are cured by the curvedness C. Misregistrations
as shown in Fig. 4 can be avoided by using such information.

Similarity Measure 5 (Curvature Similarity). Let curv denote either the
shape index S or the curvedness C. Curvature similarity is defined as

Dcurv(SA,SB) =
1

|SA| + |SB |
( ∑

p∈SA

dc(p,SB)2 +
∑

q∈SB

dc(q,SA)2

)
, (6)

with dc(p,SB) = curv(p) − curv(c(p,SB)).
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Fig. 4. Plain LF registration. Left: Target. Mid: Template. Right: Misregistration
(shape index colouring of original template is transferred to deformed template)

Regularization (Grid Energy). Large deformations in intersubject registra-
tion, as well as over-refinement of the CPG may lead to irregular B-spline de-
formations. Therefore, in some applications we use a regularization term R in
the cost function, which models the bending energy of a thin metal plate (bihar-
monic model, see [1, 2]).

Boundary Constraint (Landmarks). We encountered situations in inter-
subject registration where all of the above similarity measures with or without
regularization fail to achieve a reasonable registration. In this case, boundary
constraints expressed by the sum of squared differences of manually specified
corresponding landmarks on the template and the target shape may guide the
optimization towards a better solution. In practice, reliable placement of land-
marks on organs like the liver is possible in rare cases, only.

3 Results

Implementation. All components of the algorithm are implemented in one
software framework in optimized C++ code. Increased performance is achieved
by exploiting separability of B-spline interpolation and incremental evaluation of
similarity measures. Adaptive CPG refinement is accomplished by switching off
control points away from the template surface (for TS and LF registration only).

As a benchmark for evaluating the matching capability of the B-spline regis-
tration framework we identify three classes of deformations typically arising in
intersubject registration:

Large deformations occur when corresponding structures lie spatially far
apart, even after affine registration. As an example, consider Fig. 4: the con-
cave structure (“valley”) should be coloured in blue after successful matching.
Instead, it is mapped to the convex region to the right. The “cigar”/“banana”
pair in Fig. 5 exemplifies this problem.

Spatial attractors may cause ambiguities in the registration. In Fig. 3 the lobus
quadratus of the template shape might be deformed towards the left (lobus dex-
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Fig. 5. Synthetic test shapes with target points (available for download at
www.zib.de/wenckebach/ipmi05). Left: Problem 1: cigar/banana. Mid: Problem 2:
two hills. Right: Problem 3: muffins

ter), or down towards the anatomically correct region, which is hard to detect
on the target. This situation is represented by “two hills” shapes in Fig. 5.

Absent features on one shape, which exist on the other, inevitably introduce
some degree of arbitrariness. In the liver, neighbouring organs or vessels often
cause deformations to a very different degree (cf. Fig. 9). Such cases are accen-
tuated in an extreme fashion by the “muffin” shapes in Fig. 5.

We consider the following criteria in our evaluation of registration performance:
a necessary requirement for a correct matching is a value for surface distance Ds

close to zero. Moreover, the transformation T should be regular, i.e. the deter-
minant of the Jacobian |JT | must be positive for each CPG cell. Additionally, for
synthetic shapes we examine the euclidean distance of manually defined target
points (target point deviation dt in percentage of the shape diameter).

3.1 Experiments: Synthetic Shapes

The optimization starts on a coarse CPG (5×5×5), which is successively refined
to 19 × 19 × 19. The results of all experiments are sensitive to the initial CPG
resolution. As a general rule, we found that matching quality improves when the
resolution of the CPG is adapted to the frequency content of the shape.

The step width for the search direction is iteratively decreased from 10% of
shape diameter on the initial to 0.05% on the final level. A higher initial CPG
resolution was necessary for LF and SDF registration of the muffins. In all cases
the surface distance vanishes after registration except for the muffin shapes using
SDF or LF registration. Regularity is violated whenever using TS registration.
Moreover, all experiments show that registration is not robust with respect to
the weighting of the geometric similarity measures.

Banana. For TS registration, the best result is shown in Fig. 6, left (dt =
3.3%). Carefully adjusting the weight of curvedness in the cost function improves
matching the cusps. Yet, distortions are spread unevenly over the surface and
there is little regularity. Amplifying the grid energy reduces surface distortion at
the cost of larger target point deviation (dt = 8.3%). SDF registration combined
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Fig. 6. Results banana. Left: TS registration with curvedness (1st level, result). Right:
Combination of SDF and TS registration with curvedness (1st level, result)

Fig. 7. Results two hills. Left: TS registration (1st level, result). Right: TS with normal
deviation (1st level, result)

Fig. 8. Results muffin. From left to right: LF, SDF (surface distortion), TS registration
(severe surface foldings), TS with normal deviation (improved matching)

with curvedness yields better results (dt = 2.8%), cf. Fig. 6 right. Neither shape
index (dt = 47.8%) nor normal deviation (dt = 11.7 %) lead to improvements.

Two Hills. Shape representation plays a crucial role in this example: SDF reg-
istration yields nearly perfect target point deviation of dt = 0.7%, whereas LF
works satisfactorily only with a much larger initial search width (dt = 9.3%).
TS registration leads to large mismatches with dt = 13.3%, which is improved
by using normal deviation (dt = 1%) or shape index (dt = 1.3%), cf. Fig. 7.
Curvedness performs better (dt = 0.7%) at the cost of enormous surface dis-
tortions; grid energy alleviates this. Both shape index and curvedness produce
irregular deformations.

Muffin. Implicit representations require higher CPG resolution to accomplish a
satisfactory target point deviation (LF: dt = 6.3%, SDF: dt = 7.9%). TS reg-
istration has larger target point deviation of dt = 8.4%, which is improved by
considering normal deviation (dt = 5.8%); curvature measures yield no improve-
ments. TS registration produces severe surface foldings, while SDF registration
shows massive surface distortions (cf. Fig. 8). SDF registration will often fail in
such cases, since deformations along the surface are ill-defined. Grid energy fails
to alleviate this problem due to unacceptable matching quality.
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The performance in terms of CPU time is – in all cases – best using LF or
TS registration with one-sided surface distance. SDF representation is worse by
a factor of 5, while symmetric TS registration increases the runtime by a factor
of 20, due to the complexity of evaluating the two-sided surface distance.

3.2 Experiments: Anatomical Shapes

The optimization starts on a CPG of about 100 mm grid spacing, which is suc-
cessively refined to 5 mm. For the LF representation an increased search width is
employed. No geometric similarity measures are incorporated into the cost func-
tion, as this would require an extensive parameter study for the relative weights
within the cost function.

Liver. The sample consists of 24 individuals. All shapes are registered to one
target shape. Registration based on distance fields is always performed in combi-
nation with regularization to avoid distortions as present in the muffin example
(cf. Fig. 8). The grid energy is applied adaptively on the last two levels of the
optimization (λ = 0.002/0.01).

Anatomical mismatch is measured by the overlap do of corresponding anatom-
ical regions (patches) of the liver. The surface distance is computed among corre-
sponding patches only, and afterwards divided by Ds: the smaller do, the better
the anatomical match. Although these regions cannot in general be specified
uniquely, this measure is less sensitive to errors than individual landmark place-
ment. The following regions were defined by medical experts (cf. Fig. 9): (1)
lower left lobe, (2) lower right lobe plus caudate lobe, (3) lower quadratic lobe
and (4) whole upper part of the liver. Cases of large anatomical mismatches
(cf. Fig. 1) could be resolved by using landmark based boundary constraints. A
typical result is shown in Fig. 9. Quantitative results are given in Tab. 1.

Fig. 9. SDF registration for the liver. Anatomically corresponding regions can be iden-
tified by their colour; target point locations indicate matching errors. Left: Template
after affine registration. Mid: Target. Right: Resulting deformed template. The “val-
leys” of the template are not matched perfectly, yet the transformation remains regular;
surface distortion is moderate, anatomical matching is satisfactory
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Table 1. Results for registration of real patient data (GE grid energy). Maximum
and median of surface distance over the whole set, as well as the mean percentage of
surface distance above a threshold of 2mm is given. Average CPU times refer to a SGI
system with 500 MHz MIPS R14k processor. For liver data, a histogram of anatomical
mismatch (log. scale) is provided

shape method Ds [mm] > 2[%] CPUtime
class max med mean [hh:mm:ss]

LF 0.71 0.49 4.73 00:42:45
liver SDF GE 1.27 0.44 3.84 25:11:33

TS 0.44 0.32 0.71 11:40:49

LF 0.74 0.61 4.75 01:22:04
pelvic SDF 0.83 0.45 1.98 03:10:09
bone TS 0.38 0.34 0.33 31:35:24
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Fig. 10. SDF registration for pelvic bone. Left: Initial setting, result. Mid, right: De-
formed template (with little surface distortion)

Pelvic Bone. The sample comprises 17 male individuals. The target shape is
reconstructed from the male visible human data set. One exemplary result is
shown in Fig. 10. Quantitative results over the whole sample are given in Tab. 1.
The deformation map is fold-over free for all shape representations. Visual in-
spection shows virtually no anatomical mismatch in all cases apart from the LF
registrations, where the variability of the bending of the sacrum is not captured
correctly (only 6 correct results).

4 Discussion and Conclusion

We studied the ability of a registration framework based on B-spline transfor-
mations to capture intersubject shape variability. To this end we identified three
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different classes of typical deformations, which we represented by three different
synthetic shapes. Moreover, two anatomical objects of different degrees of vari-
ability were examined. For our experiments we varied the essential components
of the framework: shape representation, similarity measure and optimization
strategy. The performance was measured in terms of surface distance between
the deformed template and the target shape, regularity of the transformation T,
robustness and correspondence of landmark points or regions.

Optimization Strategies. The resolution of the CPG plays a crucial role.
Although B-spline transformations are indeed capable of capturing large shape
deviations, the control point spacing should be adapted to the frequency content
of the shapes. This was shown by the banana/cigar example, where most of the
deformation takes place around the cusps. Harmonic analysis of the shapes may
be a suitable pre-processing step for building adaptive control grids.

Similarity Measures. Using the symmetric surface distance is very costly, yet
may be needed in cases where deformations are large. Weighting the terms in
the cost function is a difficult task, especially between surface distance and ge-
ometric features. Although it seems fairly clear for the synthetic shapes, which
geometric similarity is feasable to use, one cannot deduce from this the correct
cost function for the anatomical examples. Completely different cost functions
may certainly be more suitable for other applications. We found that the grid
energy as a regularizer often is too restrictive to recover large deformations. To
prevent large surface distortions, yet obtain good matchings, regularizers con-
straining deformation in the tangential directions of the shapes rather than in
the normal direction should be employed.

Shape Representations. Of all shape representations used the SDF approach
performed best. Triangulation based registration often lead to irregular transfor-
mations, while label field registration yielded deficient matchings, both in terms
of target point deviation for the synthetic shapes and of anatomical correspon-
dence for the medical examples. This can be explained by the fact that distance
fields contain more information than triangulated surfaces or label fields: the
latter encode a single 2-dimensional manifold while distance fields contain a
continuous set of manifolds by extending the surface into R3, which is beneficial
in the optimization process.

Since the shape of anatomical structures is contained only implicitly in medi-
cal image data (e.g. MRI or CT), it is a-priori uncertain whether B-spline trans-
formations represent the appropriate deformation model. The results of our ex-
periments may serve as a guideline for assessing such intensity based registration
tasks.

Future work will be directed towards combining SDF representations with
different regularizers. Moreover, cost functions with different structures than
the one used here should be explored. As a general rule, any a-priori anatomical
knowledge available should be included to support intersubject registration.
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Abstract. We address the problem of the segmentation of cerebral
white matter structures from diffusion tensor images. Our approach is
grounded on the theoretically well-founded differential geometrical prop-
erties of the space of multivariate normal distributions. We introduce a
variational formulation, in the level set framework, to estimate the opti-
mal segmentation according to the following hypothesis: Diffusion tensors
exhibit a Gaussian distribution in the different partitions. Moreover, we
must respect the geometric constraints imposed by the interfaces exist-
ing among the cerebral structures and detected by the gradient of the
diffusion tensor image. We validate our algorithm on synthetic data and
report interesting results on real datasets. We focus on two structures of
the white matter with different properties and respectively known as the
corpus callosum and the corticospinal tract.

1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [1] able to
quantify the anisotropic diffusion of water molecules in highly structured bio-
logical tissues. As of today, it is the only non-invasive method that allows us to
distinguish the anatomical structures of the cerebral white matter. Diffusion ten-
sor imaging [2] models the probability density function of the three-dimensional
molecular motion, at each voxel of a diffusion MR image, by a normal distri-
bution of 0-mean and whose covariance matrix is given by the diffusion tensor.
Numerous algorithms have been proposed to perform a robust estimation of this
tensor field (see [3] and references therein). Among other applications, DTI is ex-
tremely useful in order to identify the neural connectivity patterns of the human
brain [4], [5], [6]. Most of the existing techniques addressing this last issue work
on a fiber-wise basis. In other words, they do not take into account the global
coherence that exists among fibers of a given tract. Recent work by Corouge et
al. [7] has proposed to cluster and align fibers by local shape parameterization
so that a statistical analysis of the tract geometrical and physiological properties
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can be carried out. This work relies on the extraction of a set of streamlines by
the method proposed in [4] which is known to be sensible to noise and unreliable
in areas of fiber crossings. For these reasons, we propose to directly perform the
segmentation of diffusion tensor images in order to extract neural fiber bundles.
To our knowledge, the only approaches addressing the issue of white matter
internal structures segmentation are [8], [9], [10], [11], [12], [13], [14] and [15]

We hereafter draw a quick state of the art of these techniques. Zhukov et
al. [8] define an invariant anisotropy measure in order to drive the evolution of
a level set and isolate strongly anisotropic regions of the brain. Alternatively,
Wiegell et al. [9], Feddern et al. [10], Rousson et al. [11], Wang et al. [12] and
[13], Lenglet et al. [14], and Jonasson et al. [15] use or propose different measures
of dissimilarity between full diffusion tensors. In [9], [12] and [11], the authors
use the Frobenius norm of the difference of tensors. A spatial coherence or a
regularity term was used in the first two methods, respectively in a k-means
algorithm or an active contour model to perform the segmentation of different
cerebral structures such as the thalamus nuclei or the corpus callosum. The third
method used a region-based surface propagation. In [12], a generalization of the
region-based active contours to matrix-valued images is proposed. It is conse-
quently restricted to the 2D case. In [10], partial differential equations based
on mean curvature motion, self-snakes and geodesic active contour models are
extended to two-dimensional and three-dimensional tensor-valued images. This
method still relies on the Euclidean metric between tensors. The authors apply
this framework to the regularization and segmentation of diffusion tensor images.
In [15], the authors introduce a geometric measure of dissimilarity by computing
the normalized tensor scalar product of two tensors, which can be interpreted as
a measure of overlap. Finally, the methods exposed in [13] and [14] rely on the
symmetrized Kullback-Leibler divergence to derive an affine invariant dissimi-
larity measure between diffusion tensors.

Contribution: Our main contributions are threefold: First, the major differ-
ence with all the existing approaches is the rigorous differential geometrical
framework, strongly rooted in the information geometry and used to express
a Gaussian law between diffusion tensors. We overcome the classical hypothe-
sis considering covariance matrices as a linear space. Hence, we define relevant
statistics to model the distribution of diffusion tensors. We also use a consis-
tent gradient of the tensor field to detect the boundaries of various structures in
the white matter. We then propose a variational formulation of the segmentation
problem, in the level set framework, to evolve a surface toward the optimal parti-
tion of the data. We finally validate our approach on synthetic and real datasets.

Organization of the Paper: Section 2 first reviews necessary material re-
lated to the Riemannian geometry of the multivariate normal model. It then
introduces the numerical schemes used to approximate a Gaussian law for diffu-
sion tensors. We finally describe how to compute the gradient of a tensor field.
Section 3 sets up the Bayesian formulation of the segmentation problem that we
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use throughout this paper. Section 4 presents and discusses experimental results
on synthetic and real DTI datasets.

2 Statistics and Geometry of Diffusion Tensors Fields

As in [16], we can consider the family of three-dimensional normal distributions
with 0-mean as the 6-dimensional parameter space of variances-covariances M =
{θ : θ = (θ1, ..., θ6) ∈ R6}. This simply translates the fact that, for diffusion MRI,
the average displacement of spins in a voxel is zero. We identify M with S+(3, R),
the set of 3×3 real symmetric positive-definite matrices, e.g. covariance matrices
whose independent components are denoted by θi.

Following the work by Rao [17] and Burbea-Rao [18], where a Riemannian
metric was introduced in term of the Fisher information matrix, it is possible
to define notions such as the geodesic distance, the curvature, the mean, and
the covariance matrix. The basis of the tangent space TΣS+(3, R) = SΣ(3, R)
at Σ ∈ S+(3, R) is taken to be as in [19] and denoted by Ei, i = 1, ..., 6.

We now detail the geometry of S+(3, R) and propose an original formulation
for a generalized Gaussian law on this manifold. Relying on the explicit, and
very simple, expression of the squared geodesic distance gradient, we show how
to compute the spatial gradient of a diffusion tensor image.

2.1 Differential Geometry of Multivariate Normal Distributions

The fundamental mathematical tools needed to derive our numerical schemes
were detailed in [19], [20], [21], [22], [23] and [24]. Without employing the in-
formation geometry associated to the Fisher information matrix but instead,
identifying S+(3, R) with the quotient space GL+(3, R)/SO(3, R), other works
such as [25] and [26] recently used similar ideas to derive statistical or filtering
tools on tensors fields.

Metric Tensor, Geodesics and Geodesic Distance: The metric tensor for
S+(3, R), derived from the Fisher information matrix is given by the following
theorem:

Theorem 1. The Riemannian metric for the space S+(3, R) of multivariate
normal distributions with zero mean is given, ∀Σ ∈ S+(3, R) by:

gij = g(Ei, Ej) = 〈Ei, Ej〉Σ =
1
2
tr(Σ−1EiΣ

−1Ej) i, j = 1, ..., 6 (1)

In practice, this means that for any tangent vectors A,B, their inner product
relative to Σ is 〈A,B〉Σ = 1

2 tr(Σ−1AΣ−1B).
We recall that, if Σ : t → Σ(t) ∈ S+(3, R), ∀t ∈ [t1, t2] ⊂ R denotes a curve

segment in S+(3, R) between two normal distributions parameterized by Σ1 and

Σ2, its length is expressed as: LΣ(Σ1,Σ2)=
∫ t2

t1

(∑6
i,j=1 gij(Σ(t))dθi(t)

dt
dθj(t)

dt

)1/2

dt

As stated for example in [24], the geodesic starting from Σ(t1) ∈ S+(3, R) in the
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direction V = Σ̇(t1) ∈ S(3, R) is given by:

Σ(t) = Σ(t1)1/2 exp (tΣ(t1)−1/2V Σ(t1)−1/2)Σ(t1)1/2 ∀t ∈ [t1, t2] (2)

We recall that the geodesic distance D between any two element Σ1 and Σ2 is
the length of the minimizing geodesic between Σ1 and Σ2:

D(Σ1, Σ2) = inf
Σ
{LΣ(Σ1, Σ2) : Σ1 = Σ(t1), Σ2 = Σ(t2)}

It is given by the following theorem, whose original proof is available in an
appendix of [27] but different versions can also be found in [19] and [23].

Theorem 2. (S.T. Jensen, 1976)
Consider the family of multivariate normal distributions with common mean vec-
tor but different covariance matrices. The geodesic distance between two members
of the family with covariance matrices Σ1 and Σ2 is given by

D(Σ1, Σ2) =

√
1
2
tr(log2(Σ−1/2

1 Σ2Σ
−1/2
1 )) =

√√√√1
2

m∑
i=1

log2(ηi)

where ηi denote the m eigenvalues of the matrix Σ
−1/2
1 Σ2Σ

−1/2
1 .

2.2 A Gaussian Distribution for Diffusion Tensors

We now show how to compute the empirical mean [28], [29] and the empirical
covariance matrix on S+(3, R) to define a Gaussian law on that manifold.

Intrinsic Mean:

Definition 1. The normal distribution parameterized by Σ ∈ S+(3, R) and de-
fined as the empirical mean of N distributions Σk, k = 1, ..., N , achieves the
minimum of the sum of squared distances µ : S+(3, R) → R+ defined by

µ(Σ,Σ1, ..., ΣN ) =
1
N

N∑
k=1

D2(Σk, Σ)

Karcher proved in [28] that such a mean, known as the Riemannian barycenter,
exists and is unique for manifolds of non-positive sectional curvature. This was
shown to be the case for S+(3, R) in [19]. A closed-form expression of the mean
cannot be obtained [24] but a gradient descent algorithm was proposed in [16]. A
flow is derived from an initial guess Σ0 toward the mean of a subset of S+(3, R):

Σt+1 = Σ
1/2

t exp

(
−dt

N
Σ

1/2

t

(
N∑

k=1

log
(
Σ−1

k Σt

))
Σ

−1/2

t

)
Σ

1/2

t (3)

Intrinsic Covariance Matrix: Based on the explicit solution of the geodesic
distance, we can compute Λ ∈ S+(6, R), the empirical covariance matrix relative
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to the mean Σ of N elements of S+(3, R). As in [30], we associate to Σk the
unique tangent vector βk ∈ S(3, R), seen as an element of R6 and identified with
the gradient of the squared geodesic distance function βk = ∇D2

(
Σk, Σ

)
=

Σ log
(
Σ−1

k Σ
)

[24]. It follows:

Definition 2. Given N elements of S+(3, R) and their mean value Σ, the em-

pirical covariance matrix relative to Σ is defined as: Λ = 1
N−1

∑N
k=1 βkβT

k

Generalized Gaussian Distribution on S+(3, R): The notion of Gaussian
law was generalized to random samples of primitives belonging to a Riemannian
manifold in [29]. Following theorem 4 therein:

Theorem 3. The generalized Gaussian distribution in S+(3, R) for a covariance
matrix Λ of small variance σ2 = tr(Λ) is of the form:

p(Σ|Σ,Λ) =
1 + O(σ3) + ε(σ

ξ )√
(2π)6|Λ| exp

−βT γβ

2
∀Σ ∈ S+(3, R)

β is defined as ∇D2(Σ,Σ) and expressed in vector form. The concentration
matrix is γ = Λ−1 −R/3+O(σ)+ ε(σ

ξ ), with R the Ricci tensor at the mean Σ.

ξ is the injectivity radius at Σ and ε is such that lim0+ r−ωε(r) = 0 ∀ω ∈ R+.

In section 3, we will use our estimates of Σ and Λ together with the above
theorem to evaluate the probability of a diffusion tensor to belong to a given
subset of the diffusion tensor image. The computation of R is performed on the
basis of closed-form expressions for the metric and the Riemann tensor [19],[16].

2.3 Gradient of a Diffusion Tensor Image

We end this section with the definition of the gradient of a tensor field. From now
on Σ : Ω ⊂ R3 → S+(3, R) denotes the diffusion tensor image such that Σ(x)
is a diffusion tensor for all x ∈ Ω. The spatial gradient of Σ can be estimated
from the intrinsic gradient of the squared geodesic distance:

∇±
k=1,2,3Σ(x) � 1

|ek|∇D2 (Σ(x ± ek), Σ(x)) =
1

|ek|Σ(x) log
(
Σ(x ± ek)−1Σ(x)

)
where the ek are the elements of the canonical basis of R3 and are used to access
the neighbors of Σ(x) on the discrete grid. The + and − respectively denote the
forward and backward finite differences. We make use of central finite differences
so that the gradient in the direction ek (we recall that it is a symmetric matrix)
is given by: ∇kΣ(x) � 1

2

(∇+
k Σ(x) −∇−

k Σ(x)
)
. It is then straightforward to

obtain the norm of the gradient as:

|∇Σ(x)|2 =
3∑

k=1

|∇kΣ(x)|2Σ(x) =
1
2

3∑
k=1

tr
((

Σ(x)−1∇kΣ(x)
)2

)

We will use this information in section 3 to localize the boundaries between
structures of the brain white matter.
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3 Segmentation by Surface Evolution

Our goal is to compute the optimal 3D surface separating an anatomical struc-
ture of interest from the rest of a diffusion MRI dataset. The statistical surface
evolution, as developed in [31], is a well-suited framework for our segmentation
problem. We hereafter summarize the basic notions of this technique.

3.1 Bayesian Formulation for Image Partitioning

Following general works on image segmentation [32],[33], [34], we seek the op-
timal partition of the image domain Ω by maximizing the a posteriori frame
partition probability p(P(Ω) |Σ) for the observed diffusion tensor image Σ. The
Bayes rule allows to express this probability as:

p(P(Ω) |Σ) ∝ p(Σ | P(Ω))p(P(Ω)). (4)

This formulation yields a separation of the image-based cues from the geometric
properties of the boundary given by P(Ω). While being valid for any number of
regions, we restrict this formulation to binary partitions: the structure of interest
and the background. The image partition can be represented as the zero-crossing
of a level set function φ [35],[36]. Noting B the interface between the two regions
Ωin and Ωout, φ is constructed as the signed distance function to B:


φ(x) = 0, if x ∈ B
φ(x) = DEucl(x,B), if x ∈ Ωin

φ(x) = −DEucl(x,B), if x ∈ Ωout,

where DEucl(x,B) stands for the Euclidean distance between x and B. Hence, the
optimal partition is obtained by maximizing: p(φ|Σ) ∝ p(Σ|φ)p(φ). At this stage,
these two terms still need to be defined. For this purpose, several assumptions
on the structure of interest need to be introduced. In the following, a smoothness
constraint is imposed with the term p(φ) while p(Σ|φ) expresses the likelihood
of the diffusion tensors to be inside, outside or on the boundary of the structure.
This yields an optimization criterion similar to the Geodesic Active Regions
presented in [34].

3.2 Smoothness Constraint

The second term of (4) expresses the probability of the interface to represent the
structure of interest and can be used to introduce prior shape knowledge. For the
segmentation of diffusion tensor images, we have no high level prior information
but we can use this term to impose shape regularity. Such a constraint can be ob-
tained by favoring structures with a smaller surface |B| with p(φ) ∝ exp (−ν|B|).
This can be expressed with φ by introducing the Dirac function [37]:

p(φ) ∝ exp
(
−ν

∫
Ω

δ(φ)|∇φ(x)| dx

)
. (5)
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3.3 Data Term

To further specify the image term p(Σ|φ), we introduce several hypothesis. First,
for a given level set φ, we can classify the voxels into three classes: inside, outside
or on the boundary. Then, we can define the probability density functions of a
diffusion tensor for each class: pin, pout and pb. Assuming the diffusion tensors
to be independent and identically distributed realizations of the corresponding
random process, the data term is given by:

p(Σ|φ) =
∏

x∈Ωin

pin(Σ(x)) .
∏

x∈Ωout

pout(Σ(x)) .
∏
x∈B

pb(Σ(x)) (6)

This gives two types of probability distributions: region-based with pin/out and
boundary-based with pb. pin and pout are given by the generalized Gaussian dis-
tribution of Theorem 3. The parameters of these laws may be known a priori but
in the absence of such information, they are introduced as unknown parameters.
Regarding pb, the probability should be close to one for high gradients of the
diffusion tensors field and around zero for small variations. This leads to:

pb (Σ(x)) ∝ exp (−gα (|∇Σ(x)|)) ,

with gα(u) = 1/(ε+uα). This boundary term is the basis of several works referred
to as active contours [38] and, often, α = 1 or 2 is chosen while ε is set to a small
constant. For the sake of readability, we will use the notation gα(Σ(x)).

3.4 Energy Formulation

Maximizing the a posteriori segmentation probability is equivalent to minimizing
its negative logarithm. Integrating the regularity constraint (5) and the image
term (6), we end up with the following energy:

E(φ,Σin/out,Λin/out) = ν

∫
Ω

δ(φ)|∇φ| dx +
∫

Ω

δ(φ)|∇φ|gα(Σ(x)) dx

−
∫

Ωin

log p(Σ(x)|Σin, Λin)dx −
∫

Ωout

log p(Σ(x)|Σout, Λout)dx.

The boundary term of this energy corresponds to the Geodesic Active Contours
[38] and naturally includes a regularization1 on the interface. Following [39],
[40], an alternate minimization is employed to perform the optimization for the
two types of unknown parameters. For given statistical parameters, the Euler-
Lagrange equations are computed to derive the implicit front evolution:

∂φ

∂t
= δ(φ)

(
(ν + gα(Σ)) div

( ∇φ

|∇φ|
)

+
∇φ

|∇φ| · ∇gα(Σ) + log
p(Σ|Σin, Λin)

p(Σ|Σout, Λout)

)
,

(7)
while the statistics can be updated after each evolution of φ from their empirical
estimates, as described in section 2. More details on this optimization can be
found in [36], [40].

1 The regularity term (5) could be included in pb by replacing gα by gα,ν = ν + gα.
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4 Results and Validation

4.1 Experimental Setup

In practice, there is a few important points that must be carefully taken care
of when implementing and running our segmentation algorithm: When dealing
with real DTI data, we use a mask of the brain so that the tensors statis-
tics of Ωout are not corrupted by the signal from the outside of the brain.
With regard to the initialization of the algorithm, we always take one to three
small spheres of radius 2 voxels placed inside the structure that we seek to
segment.

Next, there are two parameters that have to be chosen: The first one is
the value of ν in equation 5. It constrains the smoothness of the surface and is
usually set in the range 5 to 10. The second parameter arises from the hypothesis
of theorem 3 regarding the trace of the covariance matrix Λ. This quantity must
be small for the generalized Gaussian law to hold. In other words, this means
that we restrict ourselves to concentrated distributions. Hence, we set a threshold
for the variance which, whenever reached, induces the end of the update for the
statistical parameters. We let the surface evolve while using a fixed mean and
covariance matrix to model the distribution of the tensors in Ωin/out.

Finally, we were able to improve the computational efficiency of the method
by noticing and verifying that, within the limits of theorem 3, the term involving
the Ricci tensor R/3 can be neglected. We found a difference of at least 2 orders
of magnitude between Λ−1 and R/3.

Fig. 1. Segmentation of 2 tori in a noisy synthetic tensor field: [Top Left] Initial data
[Top Right] Final segmentation [Bottom] Surface evolution
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Fig. 2. Segmentation of the corpus callosum (A: anterior, P: posterior)

Fig. 3. Segmentation of the left corticospinal tract (I: inferior, S: superior)
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4.2 Synthetic Data

In order to validate the algorithm on data for which ground truth is available,
we have generated a 50×50×50 synthetic tensor field composed of a background
with a privileged orientation and 2 tori whose internal tensors are oriented ac-
cording to the tangential direction of the principal circle of the tori. Eigenvectors
and eigenvalues of the tensors are independently corrupted by Gaussian noise
(figure 1). Despite the large orientational variation and the fairly high level of
noise, our method is able to correctly extract the structures for different initial-
izations.

4.3 Real Data

Diffusion weighted images were acquired on a 3 Tesla Siemens Magnetom
Trio whole-body scanner. We used 12 gradients directions with a b-factor of
1000s/mm2, TR = 9.2s and TE = 92ms. Voxel size is 2 × 2 × 2mm.

The corpus callosum is a very important part of the brain that connects areas
of each hemisphere together. By initializing our segmentation with only 2 small
spheres within this structure, we managed to extract the volume presented on
figure 2. Finally, we focused on a different part of the white matter, known as the
internal capsule. Mainly oriented in the inferior-superior direction, the posterior
part of this fiber bundle includes the corticospinal tract for which we present, on
figure 3, the result of the segmentation obtained with our method. We also tested,
on this particular example, the overall influence of the boundary term pb. It
turns out that, as expected, if we do not use this term in the energy, the resulting
segmentation incorporates undesired regions of the brain such as the anterior and
posterior parts of the corona radiata. This shows that the interface detection part
of our method does play an important role to discriminate relevant structures.
Visual inspection of the results obtained on several datasets and comparison
with neuroanatomical knowledge validated the proposed segmentations.

5 Conclusion

We have presented a novel statistical and geometric approach to the segmenta-
tion of diffusion tensor images seen as fields of multivariate normal distributions.
We focused on the differential geometrical properties of the space of normal dis-
tributions to derive a generalized Gaussian law on that manifold. This allowed
us to model the distribution of a subset of diffusion tensors. Together with a con-
straint on the variations of the tensor field, we have embedded this information
in a statistical surface evolution framework to perform the segmentation of inner
structures of the cerebral white matter. This method achieved very good results
on synthetic data and was able to capture fine details in real DTI datasets.

Acknowledgments. This work was supported by grants NSF-0404617 US-
France (INRIA) Cooperative Research, NIH-R21-RR019771, NIH-RR08079, the
MIND Institute and the Keck foundation.
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Abstract. Magnetic resonance (MR) images can be acquired by multiple re-
ceiver coil systems to improve signal-to-noise ratio (SNR) and to decrease ac-
quisition time. The optimal SNR images can be reconstructed from the coil data 
when the coil sensitivities are known. In typical MR imaging studies, the in-
formation about coil sensitivity profiles is not available. In such cases the sum-
of-squares (SoS) reconstruction algorithm is usually applied. The intensity of 
the SoS reconstructed image is modulated by a spatially variable function due 
to the non-uniformity of coil sensitivities. Additionally, the SoS images also 
have sub-optimal SNR and bias in image intensity. All these effects might in-
troduce errors when quantitative analysis and/or tissue segmentation are per-
formed on the SoS reconstructed images. In this paper, we present an iterative 
algorithm for coil sensitivity estimation and demonstrate its applicability for op-
timal SNR reconstruction and intensity inhomogeneity correction in phased ar-
ray MR imaging. 

1   Introduction 

Phased array coils (multiple receiver coil systems) have been extensively used for 
acquisition of MR images owing to their benefit of increased SNR, extended field-of-
view (FOV), and reduced acquisition time. The optimal way to merge individual coil 
information into the composite image in terms of the maximum SNR has been pro-
posed by Roemer et al. [1], where each voxel value is obtained by the combination of 
voxel by voxel coil data with each coil’s contribution weighted by the corresponding 
coil sensitivity. This algorithm can only be applied when the coil sensitivities are 
known. To find coil sensitivity profiles additional reference scans are required. In-
crease in imaging time and possible discrepancies between estimated and the true coil 
sensitivity profiles due to patient motion between reference and imaging scans make 
this approach difficult to use in clinical practice. Thus, the SoS algorithm [1] is typi-
cally used for image reconstruction from multi-coil data where the resulting (compos-
ite) image is obtained by the square root of the sum of the squares of the individual 
coil images. In comparison with the images reconstructed by the SNR optimal ap-
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proach [1], the SoS reconstructed images are modulated by a spatially variable func-
tion due to the non-uniformity of coil sensitivities and have systematic error (bias) in 
signal intensity which necessitate intensity inhomogeneity correction and bias com-
pensation before using the images for quantitative analysis. 

A multitude of post processing algorithms [2-6] have been proposed to correct the 
intensity inhomogeneity in the SoS images. In all these techniques, it is assumed that 
the intensity inhomogeneity can be represented by a slowly varying function of posi-
tion. The intensity inhomogeneity in the SoS image is estimated by fitting a low de-
gree polynomial to the SoS image or from the low resolution image obtained by filter-
ing out the higher frequency contributions in the frequency domain representation of 
the SoS image. Finally, the intensity inhomogeneity is corrected by dividing the SoS 
image by the estimate. Reliability of the given approach directly depends on the valid-
ity of the approximation of the intensity inhomogeneity in the SoS reconstructed im-
ages by a slowly varying function. 

The sensitivity of the individual coil element (which is typically a circular loop) 
can be described by a unimodal, smoothly varying function of position [7]. Such a 
function can be accurately represented by a low degree polynomial. However, the 
intensity inhomogeneity in the SoS images must be characterized by the square root 
of the sum of squares of the individual coil sensitivities. Thus, the sensitivity modula-
tion in the SoS images is multimodal and has a large number of higher order terms. 
Therefore, it cannot be reliably approximated by a low order polynomial. In this pa-
per, we have proposed to estimate the intensity inhomogeneity in the individual coil 
images instead of the intensity inhomogeneity in the corresponding SoS image. Using 
this approach, consistent estimates of coil sensitivities can be found by fitting low 
order polynomial function to the image regions occupied by a dominant tissue type. 
Furthermore, the resulting estimates can be used not only for inhomogeneity correc-
tion in the SoS image but also for optimal SNR reconstruction. 

2   Theory 

The complex image acquired by the i-th coil can be described as a product of the true 
image I (r) and the complex coil sensitivity Si (r) with additive Gaussian noise: 

 LiNSIR iii ,..,,,rrrr 21  )()()()( =+=  (1) 

where r denotes the position in the image space, L is the number of coils in the coil 
array and Ni (r) is the complex Gaussian noise. When the coil sensitivities are known, 
the optimal SNR image IOPT(r) is given by [1]: 
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where R(r) is the row vector of coil images: R(r) = [R1 (r), R2 (r),…, RL (r)]; S(r) is 
the row vector of coil sensitivities: S(r) = [S1 (r), S2 (r),…, SL (r)]; is a Hermitian L 

by L matrix which describes the coupling and noise correlations between the coil 
elements and H denotes a Hermitian transpose. In the cases where the coil sensitivi-
ties are unknown, the SoS algorithm is applied: 
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Even though SoS images are within 10% of the maximum SNR limits of the opti-
mal SNR reconstruction [1], the intensity of the SoS reconstructed image is modu-
lated by a spatially variable function due to the non-uniformity of coil sensitivities, 
which limits the usage of the images for quantitative analysis and segmentation. To 
resolve this problem, the algorithm proposed in this paper estimates the sensitivity 
profiles of the individual coil elements by iteratively identifying the image region 
occupied by a dominant tissue type and fitting low order polynomial function to im-
age intensity in the region. Finally, Eq. [2] is used to combine the individual coil 
images to obtain the optimal SNR image without any intensity inhomogeneity. 

2.1   Preliminary Steps: Un-Biasing, Estimation of Individual Coil Phase Maps 
and Noise Correlation Matrix 

The developed iterative algorithm has achieved more reliable results when the pre-
liminary steps described in detail below have been applied before the algorithm ini-
tialization. 

The acquired coil images are corrupted by sensitivity inhomogeneity as well as 
complex Gaussian noise. Hence, it is important to remove the noise related bias in the 
magnitude coil images before they are used to estimate the corresponding sensitivity 
maps. The noise bias in each coil image is calculated by evaluating the standard de-
viation of noise from the histogram of the image. Then, the bias is removed by using 
the technique proposed in [8]. The resulting unbiased coil images )(rc

iR  are used 

instead of the original coil images Ri(r) for the sensitivity estimation. 
For SNR optimal reconstruction it is essential to know both magnitude and phase 

of coil sensitivities. The phase variation in the coil images is mainly linear in nature 
[9] and can be accurately estimated from the low resolution complex coil images. It is 
to be noted that an apodization function (e.g. Hamming window) needs to be used to 
reduce the effect of Gibbs artifact when the phase map of each individual coil )(rˆ

iθ is 

estimated. 
The noise correlation matrix can be found using either a pre-scan noise calibra-

tion [1] or from a set of noise samples in the image field-of-view (FOV) [10]. In the 
case when sufficient numbers of noise samples are not present in the FOV, the noise 
correlation matrix can be assumed to be an identity matrix.  

2.2   Iterative Technique for Coil Sensitivity Estimation 

The developed technique has three main steps: First, dominant tissue spatial distribu-
tion (the region of support) is identified; second, for each coil element, the sensitivity 
maps Si(r) is estimated by fitting low degree polynomial function to the image inten-
sity in the region of support and finally, the sensitivity maps are used in Eq. [2] to 
reconstruct the new image estimate. Since the estimation of the coil sensitivity pro-
files crucially depends on the identification of the region of support, an iterative algo-
rithm has been developed where the first iteration of the algorithm is initialized by the 
SoS image: )()(0 rr)(

SoSOPT II = . On subsequent iterations the current image estimate 
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with substantially suppressed intensity inhomogeneity is used to refine the region of 
support. 

The flowchart for the algorithm is shown in Fig. 1 and the main steps of this algo-
rithm are explained in detail below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Flow chart of the algorithm 

2.2.1 Identification of the Region of Support 
In high SNR MR images, the intensity distribution can be described as a linear com-
bination of Gaussian distributions. The given assumption has been widely used in a 
number of statistics-based techniques for segmentation of brain tissues in the MR 
images [11-13]. A similar approach is utilized in our method to identify a spatial dis-
tribution of the dominant tissue type. The detailed description is illustrated in the 
context of brain MRI. 

The histogram h of the brain MRI image can be modeled by a linear combination 
of Gaussian distributions: 
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where G(µk, σk) is the Gaussian distribution of the k-th tissue type (k=1 corresponds to 
air/bone, k=2 to CSF, k=3 to gray matter and k=4 to white matter) with mean µk and 
variance σk . αk is the number of voxels corresponding to each tissue type within the 
image.  It can be assumed that the intensity value corresponding to the global maxi-
mum of the image histogram (excluding the histogram peak related to tissue free 
image areas) corresponds to the mean of the dominant tissue type. Assuming for sim-
plicity that the dominant tissue is white matter (k=4). Then, the region of support in 
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the n-th iteration, M(n)(r), is identified using the image estimate )(1 r)( −n
OPTI obtained at 

the (n-1)-th iteration  as follows:                  
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where µ4 is equal to the image intensity value corresponding to the peak of the image 
intensity distribution (histogram) of )(1 r)( −n

OPTI . Identification of the dominant tissue 

region support is preferable rather than identifying other tissue spatial distributions as 
dominant tissue region would present a larger number of voxels spread throughout the 
image. This way more precise estimates of coil sensitivities can be found. 

2.2.2 Estimation of Coil Sensitivities 
Each coil image is modulated by complex coil sensitivity. The estimation of the phase 
maps )(rˆ

iθ  is done as a preliminary step of the algorithm (Sec 2.1) and the magni-

tude of the coil sensitivity is estimated in the current step of the algorithm.  
In the absence of noise and image intensity modulation due to non-uniform coil 

sensitivities, the image intensity distribution should consist of a few peaks corre-
sponding to different tissue types. Hence, when the image region defined by M(n)(r)  is 
considered, the image intensity in the region should be equal to µ4. But in the images 
acquired by phased array coils the intensity distribution is mainly spread due to coil 
sensitivity non-uniformity. To restore the original intensity distribution, the coil sensi-
tivities should be identified and their influence on the composite image intensity 
should be compensated. 

For each individual coil image, an estimate of the image intensity modulation due 
to the coil sensitivity magnitude |)(rˆ| n

iS  is found by fitting a polynomial function to 

image intensity values in the region of support M(n)(r). A least-squares algorithm is 
used for polynomial fit because it is optimal for Gaussian noise found in MR images 
[14]. The estimate of the complex coil sensitivity is given by:  
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2.2.3 Reconstruction of Composite Image 
Once the sensitivity maps are found, new image estimate is calculated using the fol-
lowing equation: 

H1

H1

))(()(

))(()(
)(

rˆrˆ

rˆr
r

)()(

)(

)(

nn

n

n
OPTI

SS

SR
−

−

=  (7) 

where ] )(),...,(),([)( 21 rˆrˆrˆrˆ )()()()( n
L

nnn SSS=S . The images obtained in this step of the 

algorithm have substantially suppressed intensity inhomogeneity in comparison with 
the original SoS images.  
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2.2.4 Termination of the Algorithm  
In each iteration, coil sensitivity maps and image estimate are updated based on the 
current region of support. Then the image estimate is used to re-identify the region of 
support for the next iteration. This process is repeated till the region of support does 
not change anymore; i.e. there are no more points added or removed from the identi-
fied dominant tissue region of support. This would cause the estimated sensitivity 
map to remain constant yielding the same image estimate. At this point when the 
region of support converges, the algorithm is terminated. 

2.3   Application to Multi-contrast MR Images 

The proposed technique can also be applied for inhomogeneity correction and recon-
struction of multi-contrast images when they are acquired using the same coils over 
the same imaging volume. The only difference in the algorithm would be the identifi-
cation of the dominant tissue spatial distribution.  

Since all of the multi-contrast images are modulated by the same coil sensitivities, 
the ratios between them are practically free from coil sensitivity intensity modulation 
and can be used to identify the dominant tissue spatial distribution. Given C1i (r), C2i 

(r),...,CKi (r), i=1,…L are individual coil images from a multi-contrast study with K 
different contrasts and  )(K),...,(2),(1 111 rrr )()()( −−− n

OPT
n

OPT
n

OPT CCC are the corresponding 

composite images obtained by the (n-1)-th algorithm iteration and arranged in the 
order of decreasing SNR. The region of support of the dominant tissue in the n-th 
iteration, M(n)(r), is identified using the ratio of the highest SNR images as follows:  
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where γ is the value of the ratio corresponding to the dominant tissue distribution and 
ε is a small value used as a regularization parameter. 

Polynomial fit to the regions of the highest SNR images )(1 1 r)( −n
iC  defined by the 

region of support M(n)(r) is used for obtaining the sensitivity map estimates )(rˆ )( n
iS as 

explained in Sec 2.2.2. These maps are used to reconstruct each of the different con-
trast images using Eq. [7] and this process is repeated till the region of support con-
verges. 

3   Results 

The proposed technique was tested on computer generated as well as real MR images 
acquired on a 1.5 Tesla GE SIGNA Lx 8.4 MR scanner (GE Medical Systems, 
Waukesha, WI) with NV/CVi gradients and on a 3 Tesla Siemens Trio MR scanner 
(Siemens Medical Solutions, Erlangen, Germany) with Sonata gradients using 
standard clinical imaging pulse sequences. Both phantom and patient data were 
acquired. Informed consent was obtained from all human subjects in accordance with 
our institution’s human subject policies. All computations were carried out on a Ultra-
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80 computer with 450 MHz processor (Sun-Microsystems Inc.) using MATLAB (The 
Mathworks, Natick, MA).  

In all the studies, third degree polynomials were used in the proposed algorithm to 
model coil sensitivities. The results obtained by the application of the proposed 
method were compared with the images reconstructed using the conventional SoS 
algorithm. In each of the cases presented, the original SoS and intensity inhomogene-
ity corrected images have been scaled to have the same mean in the region of support 
identified at the final algorithm iteration. The standard deviation (STD) of image 
intensity in the region of support was used as a figure of merit for a quantitative de-
scription of the algorithm performance. 

3.1   Computer Simulation  

For quantitative comparison of our algorithm operating on individual coil images with 
the standard intensity inhomogeneity correction techniques operating on the SoS 
image, computer simulations were performed. The simulations were done assuming 
that a uniform circular object was imaged using a four-coil receiver system. Identical 
circular loop coils were generated using the model presented in [7]. The degree of 
intensity inhomogeneity was varied by adjusting the coil radius. The STD in the im-
age area occupied by the object was evaluated for the SoS image and in the intensity 
inhomogeneity corrected images. The results presented in Fig. 2 demonstrate that our 
algorithm gives better intensity inhomogeneity correction than the standard approach. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

3.2   Phantom Data  

An eight-channel head coil (MRI Devices, Waukesha, WI) was used for phantom 
imaging on the Siemens 3 Tesla MR scanner. To test the efficacy of our algorithm, a 
uniform phantom filled with mineral oil was imaged using a 2D turbo spin-echo pulse 
sequence. The images were reconstructed using SoS (Fig. 3a) and the proposed tech-

Fig. 2. STD of the corrected images vs. the STD in the original SoS image. Solid line corre-
sponds to our algorithm, dashed line corresponds to the standard technique 
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nique (Fig. 3b). Our algorithm converged after three iterations when the complete 
image area occupied by the phantom was identified as the region of support. The 
image histograms shown in Fig. 3c and the intensity profiles shown in Fig. 3d demon-
strate close to perfect phantom intensity uniformity after application of our algorithm. 
STD of image intensity in the region of support for the SoS and the proposed algo-
rithm was 196.1 and 60.1, respectively. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The phantom images reconstructed using a: SoS and b: the proposed technique. c: 
Histograms of the images shown in a (solid line) and b (dashed line). d: Intensity profiles 
through the center of the images shown in a (solid line) and b (dashed line) 

3.3    Human Data 

Brain Imaging. Patient images were acquired using the same pulse sequence as well 
as the hardware as the phantom images (Sec 3.2). Images were reconstructed by the 
SoS algorithm and the proposed iterative technique. The image region occupied by 
the dominant tissue, white matter, was used as the region of support. The algorithm 
converged after four iterations. For better white matter visualization, both images 
were scaled to a user defined intensity window. The intensity inhomogeneity modula-
tion in the SoS image is easily observed in Fig. 4a. The proposed algorithm improved 
image intensity uniformity (Fig. 4b) and substantially reduced STD from 183.3 to 
58.8. Naive intensity based segmentation was performed on both the images. The 
results shown in Fig 4c and 4d demonstrate that the images reconstructed by the new 
algorithm give substantially more trustworthy segmentation than the SoS images. 

d) 

 a) 

  b) 

c) 
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Fig. 4. The brain image reconstructed using a: SoS and b: the proposed technique. White mat-
ter segmentation results c: SoS and d: the proposed technique 

Multi-Contrast Carotid Imaging. A specially designed bilateral four-channel phased 
array coil was used for imaging the carotid arteries on GE 1.5 Tesla MR scanner. 
Images were obtained using a triple contrast pulse sequence [15] that allows acquisi-
tion of spatially co-registered proton density (PD), T1-, and T2-weighted images in 
one scan. These images were used to test the algorithm performance for correction of 
intensity inhomogeneity in multi-contrast datasets. The decreasing order of SNR in 
these images was PD, T1, and T2. Due to incomplete fat signal saturation in T1 im-
ages, the ratio of T2 to PD images was used to identify the dominant tissue (in this 
case, muscle) region of support for the estimation of the coil sensitivities. The algo-
rithm convergence was achieved in three iterations. As can be seen in Fig. 5, the ves-
sel wall and surrounding tissues visualization drastically improves by the application 
of the proposed algorithm allowing robust tissue segmentation. STD of image inten-
sity in the region of support for SOS reconstructed PD, T1-, and T2-weighted images 
was 70.0, 67.2, and 86.3 respectively. The images reconstructed by our algorithm 
have considerably decreased intensity inhomogeneity in comparison with the SoS 
images resulting in STD equal to 29.0, 30.0 and 60.3 for PD, T1-, T2-weighted im-
ages, respectively. Higher STD value for T2 image in comparison with STD in PD 
and T1 images is caused by substantially lower SNR of the T2 image. 

 b) 

 c) 

 d) 

a) 
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Fig. 5. PD, T1, T2 and color composite images from triple contrast scan of the carotid arteries. 
The images reconstructed using: SoS (left row); new algorithm (right row). Color coding used 
for composite images: PD=red, T1=green, T2=blue 

4   Conclusions and Discussion  

Intensity inhomogeneity compensation is an important preliminary step before per-
forming quantitative analysis and/or segmentation on MR images acquired by a multi-
coil receiver system. In this paper, an iterative algorithm for coil sensitivity estimation 
for optimal SNR reconstruction and intensity inhomogeneity correction in phased 
array MR imaging has been presented. The algorithm iteratively identifies the image 
region occupied by the dominant tissue type, fits a polynomial function to this region 
in each coil image to estimate the coil sensitivity, and then combines coil images and 
the corresponding coil sensitivity estimates to achieve the SNR optimal reconstruc-
tion. The estimate of the coil sensitivity is refined in each iteration based on the 
knowledge of the composite image reconstructed in the previous step. The major 
advantage of the algorithm is that it does not require additional reference scans to 

PD 

T2 T2 

T1 T1 

PD 
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perform SNR optimal reconstruction but estimates the sensitivity maps based on the 
individual coil data generated by an MR scanner. Hence, it can be used in a typical 
clinical scan scenario without any time penalty for additional reference scans. The 
application of the proposed algorithm to real MR phantom as well as human datasets 
has demonstrated considerable suppression of intensity inhomogeneity in all proc-
essed images in comparison with the original SoS images. 

The proposed technique is computationally efficient as well as completely auto-
mated. It does not involve any operator intervention at any stage of the algorithm. The 
algorithm typically requires from three to five iterations to converge. To speedup 
processing high resolution three-dimensional datasets, the data should be sub-sampled 
to make it computationally efficient for estimating the coefficients of the three-
dimensional fit. Processing a 512x512x100 image volume from high resolution MR 
angiography study took less than 50 seconds of computational time after sub-
sampling by a factor of four in all dimensions.  

The performance of the proposed method crucially depends on the identification of 
the image regions occupied by the dominant tissue type. It is essential that the tissue 
is represented not only by the significant number of imaging voxels but also the vox-
els are distributed across the entire image to guarantee reliable results of polynomial 
fitting. The assumption that the image contains dominant tissue is valid in many typi-
cal MR imaging applications such as brain, breast, spine, and neck studies. However, 
it is quite problematic to identify dominant tissue distributed throughout the entire 
image in heart or liver studies where cross-sectional images of the entire torso are 
usually acquired. In such cases, an additional preliminary step is required to choose 
the image region containing the anatomical structure of interest (e.g. heart for cardiac 
MR imaging). Then, the algorithm can be applied to the user chosen image region 
without any further modifications. This approach can be extended to the entire image 
by subdividing it into smaller sub-regions with substantial representation of some 
tissue type in each of them. This way, fitting to multiple tissue types can be realized. 

The selection of the region of interest should also be utilized if the image to proc-
ess is corrupted by aliasing (wrap-around) artifacts due to insufficient data sampling 
in phase encoding direction. In such cases, intensity inhomogeneity in the coil images 
cannot be described by slowly varying functions of position resulting in suboptimal 
performance of the proposed algorithm. After the image region without aliasing is 
selected our method can be successfully applied. 
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Abstract. The correction of multiplicative bias in magnetic resonance images is
an important problem in medical image processing, especially as a preprocessing
step for quantitative measurements and other numerical procedures. Most previ-
ous approaches have used a maximum likelihood method to increase the prob-
ability of the pixels in a single image by adaptively estimating a correction to
the unknown image bias field. The pixel probabilities are defined either in terms
of a pre-existing tissue model, or nonparametrically in terms of the image’s own
pixel values. In both cases, the specific location of a pixel in the image does not
influence the probability calculation. Our approach, similar to methods of joint
registration, simultaneously eliminates the bias from a set of images of the same
anatomy, but from different patients. We use the statistics from the same loca-
tion across different patients’ images, rather than within an image, to eliminate
bias fields from all of the images simultaneously. Evaluating the likelihood of a
particular voxel in one patient’s scan with respect to voxels in the same location
in a set of other patients’ scans disambiguates effects that might be due to either
bias fields or anatomy. We present a variety of “two-dimensional” experimental
results (working with one image from each patient) showing how our method
overcomes serious problems experienced by other methods. We also present pre-
liminary results on full three-dimensional volume correction across patients.

1 Introduction

The problem of bias fields in magnetic resonance (MR) images is an important problem
in medical imaging. We illustrate the problem in Figure 1 using a synthetic image from
BrainWeb [10] and an artificial bias field. When a patient is imaged in the MR scan-
ner, the goal is to obtain an image which is a function solely of the underlying tissue
(left of Figure 1). However, typically the desired anatomical image is corrupted by a
multiplicative bias field (second image) that is caused by engineering issues such as
imperfections in the radio frequency coils used to record the MR signal. The result is a
corrupted image (third image). (See [1] for background information on bias fields.) The
goal of bias correction is to estimate the uncorrupted image from the corrupted image.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 615–626, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. On the left is an idealized mid-axial MR image of the human brain with little or no bias
field. The second image is a simulated low-frequency bias field. It has been exaggerated for ease
of viewing. The third image is the result of pixelwise multiplication of the image by the bias field.
On the right is the set of basis images used to parameterize smooth bias fields for the slice-based
algorithm

Radiologists appear to be remarkably immune to the effects of bias fields under
many circumstances.1 This is probably because radiologists seem to make mostly rela-
tive intensity judgments based upon local image information. They use so-called window-
level adjustments to optimize local contrast for discriminating various properties of the
tissues in a specific region. Bias fields, however, are a major problem for automated
computer applications like registration, segmentation or pre-screening which depend
upon similar tissues having consistent values across a scan. In these applications, the ac-
tual numeric brightness value assigned to a tissue is critical and directly affects whether
such algorithms will work.

A variety of statistical methods have been proposed to address this problem. Wells et
al. [9] developed a statistical model using a fixed number of tissues, with the brightness
distribution for each tissue type (in a bias-free image) represented by a one-dimensional
Gaussian distribution or by a nonparametric distribution. An expectation-maximization
(EM) procedure was then used to simultaneously estimate the bias field, the tissue type,
and the residual noise. While this method works well in many cases, it has several
drawbacks: (1) Models must be developed a priori for each type of acquisition (for each
different setting of the MR scanner), for each new area of the body, and for different
patient populations (like infants and adults). (2) Models must be developed from “bias-
free” images, which may be difficult or impossible to obtain in many cases. (3) The
model assumes a fixed number of tissues, which may be inaccurate. For example, during
development of the human brain, there is continuous variability between gray matter
and white matter. In addition, a discrete tissue model does not handle so-called partial
volume effects in which a pixel represents a combination of several tissue types. This
occurs frequently since many pixels occur at tissue boundaries.

Tissue-free modeling approaches have also been suggested, as for example by Viola
[11]. In that work, a nonparametric model of brightness values was developed from a
single image. Using the observation that the entropy of the pixel brightness distribution

1 Anecdotally, moderate bias fields do not seem to significantly effect radiologists’ ability to
make diagnoses.
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Fig. 2. The infant brain image on the left shows a coronal MR image with a strong bias field.
The image is too bright at the top and too dark at the bottom. This is easy to see and can be
corrected successfully by a variety of bias correction techniques. The right image, however, is a
more difficult case. In particular, the subtle increase in intensity in the middle of the image is,
from an algorithmic point of view, difficult to categorize. Is it a subtle increase in intensity due to
a low frequency bias field, or is it a slight increase in intensity due to say, partial myelination of
white matter in a developing infant? Due to the location of the increased intensity, a radiologist
would usually guess that this is developing white matter in an infant brain, but algorithms that do
not take into account spatial location and the appearance of other similar scans cannot make such
an assessment. It is exactly this sort of information which is leveraged by our algorithm

for a single image is likely to increase when a bias field is added, Viola’s method postu-
lates a bias-correction field by minimizing the entropy of the resulting pixel brightness
distribution. This approach addresses several of the problems of fixed-tissue models,
but has its own drawbacks: (1) The statistical model may be weak, since it is based on
data from only a single image. (2) There is no mechanism for distinguishing between
certain low-frequency image components and a bias field. That is, the method may mis-
take signal for noise in certain cases when removal of the true signal reduces the entropy
of the brightness distriibution. We illustrate this problem in Figure 2.

The present method, first presented in [5] overcomes or improves upon problems as-
sociated with both of these methods and their many variations (see, e.g., [1] for recent
techniques). It models tissue brightness nonparametrically, but uses data from multiple
images to provide improved distribution estimates and alleviate the need for bias-free
images for making a model. Most importantly, it conditions the distributions on spa-
tial location, taking advantage of a rich information source ignored in other methods.
Experimental results demonstrate the effectiveness of our method.

2 The Image Model and Problem Formulation

We assume we are given a set I of observed images Ii with 1 ≤ i ≤ N , as shown on the
left side of Figure 3. Each of these images is assumed to be the product of some bias-
free image Li and a smooth bias field Bi ∈ B. We shall refer to the bias-free images as
latent images (also called intrinsic images by some authors). The set of all latent images
shall be denoted L and the set of unknown bias fields B. Then each observed image can
be written as the product Ii(x, y) = Li(x, y) ∗ Bi(x, y), where (x, y) gives the pixel
coordinates of each point, with P pixels per image.
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Fig. 3. Top left. A set of mid-coronal brain images from eight different infants, showing clear
signs of bias fields. A pixel-stack, a collection of pixels at the same point in each image, is
represented by the small square near the top of each image. The plot beneath the images shows
the values of the pixels in the pixel stack (plus points from an additional 13 images). Note the
wide distribution (high entropy) of brightness values in the stack. The estimated entropy of this
distribution was -0.4980. Top right. The same mid-coronal images after bias correction. Note the
uniformity of the images and the higher concentration (lower entropy) of brightness values from
the pixel stack. The estimated entropy for these samples was -0.8389

Consider again Figure 3. A pixel-stack through each image set is shown as the set
of pixels corresponding to a particular location in each image (not necessarily the same
tissue type). Our method relies on the principle that the pixel-stack values are likely, on
average, to have lower empirical entropy when the bias fields have been removed. We
now explain what exactly this means and why it should be true.

2.1 Entropy, Nonparametric Distributions, and Maximum Likelihood

Consider some infinite set of images taken from a fixed population, such as mid-coronal
images of infants between zero and two years of age. Now pick a particular location in
each image, such as the middle pixel. The distribution over tissue values at this loca-
tion, across the images, is a random variable (call it T ). We might expect white matter,
cerebrospinal fluid, vasculature, or a handful of other tissue at this location, each with
some relative frequency. The entropy (defined formally below) of this random variable
gives us a measure of the variability of tissues at this location.

In MR images with no bias fields, each tissue is mapped to a fairly consistent bright-
ness value, another random variable (call it L, for latent image brightness). Thus, the
entropy of the tissue types at a particular spatial location is closely related to the en-
tropy of brightness values in bias-free MRs at that location. An empirical sample of
true brightness values from such a set of images is in the lower right of Figure 3.

Now consider what happens when random bias fields are introduced into each im-
age (going from right to left in Figure 3). If we consider the random variable B to be
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the contribution of a random bias field to each image, then we will be perturbing the
original distribution of brightness values L to values L × B. This tends to spread out
the brightness values in the pixel stack, increasing their empirical entropy, as shown by
the set of samples on the lower left of Figure 3. In fact, in dealing with an infinite sam-
ple, it can be proven [3] that the entropy of a random variable (brightness) will always
increase (or remain the same) when an independent random variable is added to it.2

The idea that entropy increases when random variables are added together has an-
other interpretation in terms of probability theory. In particular, the average log prob-
ability density (which is just the negative entropy) of points in a distribution of one
random variable is guaranteed to be higher than the average log probability density
of another random variable which is the original random variable plus an independent
source of randomness. In other words, the probability density of our data under a bias-
free distribution should be higher than the probability of our data under distribution that
include bias. This is only guaranteed when we have an infinite amount of data, but is
usually true even for the case of finite data. This is true irrespective of the form of the
distributions. That is, these ideas make no assumptions about the parametric form of
the distributions, and are thus completely nonparametric. It is these ideas upon which
our method is based. We now describe the specifics of our model and method.

2.2 The Model

The latent image generation model assumes that each pixel is drawn from a fixed distri-
bution px,y(·) which gives the probability of each gray value at the the location (x, y) in
the image. Furthermore, we assume that all pixels in the latent image are independent,
given the distributions from which they are drawn. It is also assumed that the bias fields
for each image are chosen independently from some fixed distribution over bias fields.
Unlike most models for this problem which rely on statistical regularities within an
image, we take a completely orthogonal approach by assuming that pixel values are in-
dependent given their image locations, but that pixel-stacks in general have low entropy
when bias fields are removed.

We formulate the problem as a maximum a posteriori (MAP) problem, searching
for the most probable bias fields given the set of observed images. Letting B represent
the 25-dimensional product space of smooth bias fields (corresponding to the 25 basis
images of Figure 1), we wish to find

arg max
B∈B

P (B|I) (a)
= arg max

B∈B
P (I|B)P (B) (1)

(b)
= arg max

B∈B
P (I|B) (2)

(c)
= arg max

B∈B
P (L(I,B)) (3)

2 Here we are multiplying random variables rather than adding them, so this result does not
strictly apply. However, when one of the random variables is near 1 (as is the bias random
variable) and we force its mean to be 1, this result will usually hold even for multiplication.
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= arg max
B∈B

∏
x,y

N∏
i=1

px,y(Li(x, y)) (4)

= arg max
B∈B

∑
x,y

N∑
i=1

log px,y(Li(x, y)) (5)

(d)≈ arg min
B∈B

∑
x,y

H(px,y) (6)

(e)≈ arg min
B∈B

∑
x,y

ĤVasicek(L1(x, y), ..., LN (x, y)) (7)

= arg min
B∈B

∑
x,y

ĤVasicek(
I1(x, y)
B1(x, y)

, ...,
IN (x, y)
BN (x, y)

). (8)

Here H is the Shannon entropy (−E(log P (x))) and ĤVasicek is a sample-based en-
tropy estimator discussed below. (a) is just an application of Bayes rule. (b) assumes a
uniform prior over the allowed bias fields. The method can easily be altered to incor-
porate a non-uniform prior. (c) expresses the fact that the probability of the observed
image given a particular bias field is the same as the probability of the latent image
associated with that observed image and bias field. The approximation (d) replaces the
empirical mean of the log probability at each pixel with the negative entropy of the
underlying distribution at that pixel. This entropy is in turn estimated (e) using the en-
tropy estimator of Vasicek [8] directly from the samples in the pixel-stack, without ever
estimating the distributions px,y explicitly.

The inequality (d) becomes an equality as N grows large by the law of large num-
bers, while the consistency of Vasicek’s entropy estimator [2] implies that (e) also goes
to equality with large N . (See [2] for a review of entropy estimators.)

2.3 The Entropy Estimatior

The entropy estimator used is similar to Vasicek’s estimator [8], given (up to minor
details) by

ĤVasicek(Z1, ..., ZN ) =
1

N − m

N−m∑
i=1

log
(

N

m
(Z(i+m) − Z(i))

)
, (9)

where Zi’s represent the values in a pixel-stack, Z(i)’s represent those same values in
rank order, N is the number of values in the pixel-stack and m is a function of N (like
N0.5) such that m/N goes to 0 as m and N go to infinity. These entropy estimators are
discussed at length elsewhere [4].

To understand the intuition behind this estimator, consider the case when m = 1.
In this case Z(i+m) − Z(i) just represents the distance between two adjacent samples.
The result of Vasicek’s estimator is just proportional to the sum of the log of these
distances. Thus, if many points are clustered in one area, many of these values will be
small resulting in a low entropy. If points are spread out, then many of these values will
be large, resulting in a large entropy.
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3 The Algorithm

Using these ideas, it is straightforward to construct algorithms for joint bias field re-
moval. As mentioned above, we chose to optimize Equation (8) over the set of band-
limited bias fields. To do this, we parameterize the set of bias fields using the sine/cosine
basis images shown on the right of Figure 1:

Bi =
25∑

j=1

αjφj(x, y).

We optimize Equation (8) by simultaneously updating the bias field estimates (tak-
ing a step along the numerical gradient) for each image to reduce the overall entropy.
That is, at time step t, the coefficients αj for each bias field are updated using the latent
image estimates and entropy estimates from time step t− 1. After all α’s have been up-
dated, a new set of latent images and pixel-stack entropies are calculated, and another
gradient step is taken. Though it is possible to do a full gradient descent to convergence
by optimizing one image at a time, the optimization landscape tends to have more local
minima for the last few images in the process. The appeal of our joint gradient descent
method, on the other hand, is that the ensemble of images provides a natural smoothing
of the optimization landscape in the joint process. It is in this sense that our method is
“multi-resolution”, proceeding from a smooth optimization in the beginning to a sharper
one near the end of the process.

We now summarize the algorithm:

1. Initialize the bias field coefficients for each image to 0, with the exception of the co-
efficient for the DC-offset (the constant bias field component), which is initialized
to 1. Initialize the gradient descent step size δ to some value.

2. Compute the summed pixelwise entropies for the set of images with initial “neutral”
bias field corrections. (See below for method of computation.)

3. Iterate the following loop until no further changes occur in the images.
(a) For each image:

i. Calculate the numerical gradient ∇αHVasicek of (8) with respect to the bias
field coefficients (αj’s) for the current image.

ii. Set α = α + δ∇αĤVasicek.
(b) Update δ (reduce its value according to some schedule).

Upon convergence, it is assumed that the entropy has been reduced as much as
possible by changing the bias fields, unless one or more of the gradient descents is
stuck in a local minimum. Empirically, the likelihood of sticking in local minima is
reduced by increasing the number of images (N ) in the optimization. In our experiments
described below with only 21 real infant brains, the algorithm appears to have found a
global minimum of all bias fields to the extent that this can be discerned visually.

Note that for a set of identical images, the pixel-stack entropies are not increased by
multiplying each image by the same bias field (since all images will still be the same).
More generally, when images are approximately equivalent, their pixel-stack entropies
are not signficantly affected by a “common” bias field, i.e. one that occurs in all of the
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images.3 This means that the algorithm cannot, in general, eliminate all bias fields from
a set of images, but can only set all of the bias fields to be equivalent. We refer to any
constant bias field remaining in all images after convergence as the residual bias field.

Fortunately, there is an effect that tends to minimize the impact of the residual bias
field in many test cases. The residual bias field tends to consist of components for each
αj that approximate the mean of that component across images. For example, if half of
the observed images have a positive value for a particular component’s coefficient, and
half have a negative coefficient for that component, the residual bias field will tend to
have a coefficient near zero for that component. Hence, the algorithm naturally elimi-
nates bias field effects that are non-systematic, i.e. that are not shared across images.

If the same type of bias field component occurs in a majority of the images, then the
algorithm will not remove it, as the component is indistinguishable, under our model,
from the underlying anatomy. In such a case, one could resort to within-image methods
to further reduce the entropy. However, there is a risk that such methods will remove
components that actually represent smooth gradations in the anatomy. This can be seen
in the bottom third of Figure 5, and will be discussed in more detail below.

4 Slice-Based Experiments

To test our algorithm, we ran two sets of experiments, the first on images with simulated
bias fields, and the second on real brain images. In the first experiment, we started with a
single brain image and created a set of “different” brain images by first adding different
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Fig. 4. Typical convergence of the variance of the difference between bias field coefficient esti-
mates and their true values, across images. This convergence implies that the true bias field is
recovered up to some “shared” component

3 Actually, multiplying each image by a bias field of small magnitude can artificially reduce the
entropy of a pixel-stack, but this is only the result of the brightness values shrinking towards
zero. Such artificial reductions in entropy can be avoided by normalizing a distribution to unit
variance between iterations of computing its entropy, as is done in this work.
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known bias fields to each image and then randomly translating the images from zero to
five pixels in a random direction. The random translation creates an image set in which
the pixel stacks have variability similar to a true set of images, but for which the latent
images are still known.

If our algorithm works as claimed, then the final recovered images should not neces-
sarily be equal to the original images (since shared bias components cannot be detected)
but should recover bias fields that, up to some shared bias field, are equivalent to the
originally introduced bias fields. Another way to say this is that the difference α̂ − α
between the estimated biasfield coefficients α̂ and the original bias field coefficients
α for each image should be constant across images. If this is true, than the variance
of these differences across images should go to zero as the algorithm runs. Figure 4
demonstrates that this is exactly what happens in our experiments. The plot shows that
as the algorithm runs, the difference between the estimated bias field coefficients and
the true bias field coefficients becomes equal (its variance goes to zero).

More interesting are the results on real images, in which the latent images come
from different patients. We obtained 21 pre-registered4 infant brain images (top of Fig-
ure 5) from Brigham and Women’s Hospital in Boston. Large bias fields can be seen in
many of the images. Probably the most striking is a “ramp-like” bias field in the sixth
image of the second row. (The top of the brain is too bright, while the bottom is too
dark.) Because the brain’s white matter is not fully developed in these infant scans, it
is difficult to categorize tissues into a fixed number of classes as is typically done for
adult brain images; hence, these images are not amenable to methods based on specific
tissue models developed for adults (e.g. [9]).

The middle third of Figure 5 shows the results of our algorithm on the infant brain
images. (These results must be viewed in color on a good monitor to fully appreciate
the results.) While a trained technician can see small imperfections in these images, the
results are remarkably good. All major bias artifacts have been removed.

It is interesting to compare these results to a method that reduces the entropy of each
image individually, without using constraints between images. Using the results of our
algorithm as a starting point, we continued to reduce the entropy of the pixels within
each image (using a method akin to Viola’s [11]), rather than across images. These
results are shown in the bottom third of Figure 5. Carefully comparing the central brain
regions in the middle section of the figure and the bottom section of the figure, one
can see that the butterfly shaped region in the middle of the brain, which represents
developing white matter, has been suppressed in the lower images. This is most likely
because the entropy of the pixels within a particular image can be reduced by increasing
the bias field “correction” in the central part of the image. In other words, the algorithm
strives to make the image more uniform by removing the bright part in the middle of
the image. However, our algorithm, which compares pixels across images, does not

4 It is interesting to note that registration is not strictly necessary for this algorithm to work.
The proposed MAP method works under very broad conditions, the main condition being that
the bias fields do not span the same space as parts of the actual medical images. It is true,
however, that as the latent images become less registered or differ in other ways, that a much
larger number of images is needed to get good estimates of the pixel-stack distributions.
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Fig. 5. NOTE: This image must be viewed in color (preferably on a bright display) for full ef-
fect. Top. Original infant brain images. Middle. The same images after bias removal with our
algorithm. Note that developing white matter (butterfly-like structures in middle brain) is well-
preserved. Bottom. Bias removal using a single image based algorithm. Notice that white matter
structures are repressed
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suppress these real structures, since they occur across images. Hence coupling across
images can produce superior results.

5 Volumetric Bias Removal

Extending this basic method to work with a full series of images from each patient,
rather than a single image from each patient, is straightforward and requires only minor
modifications to the source code. First, we must parameterize the set of smooth three-
dimensional bias fields, which means we need a three-dimensional Fourier basis of
volumes. In this work, we used 3-D bases consisting of either 27 or 125 basis volumes,
representing bias fields limited, respectively, to either one Hertz or two Hertz in spatial
frequency. The 125-volume basis is analogous to the basis shown in Figure 1.

To understand the advantage of correcting bias across volumes rather than across
sets of slices one at a time, consider what happens when a set of patient scans are
corrected one slice at a time (still grouped across patients of course). In this case, the
estimates of bias fields may change sharply from one image to the next within the same
patient, ignoring the fact that bias fields tend to be smooth in all three dimensions. This
can be avoided by forcing the volumetric bias fields to be parameterized by a smooth
three-dimensional basis that enforces smoothness of the bias fields in all directions, and
gives us another constraint with which to separate the patients’ true anatomical data
from smooth bias fields.

Fig. 6. This figure shows the results of our volumetric joint bias removal algorithm. 15 patient
volumes were used, and the bias in each volume was reduced using the 27-component basis
volumes for smooth three-dimensional bias fields. The top half of the figure shows 3 images in
each column from 5 different patients (rows). The bottom shows the corrected images
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In Figure 6, we show the results of our volumetric bias removal algorithm. The bias
removal algorithm was done using the 27-volume basis on 15 patients simultaneously.
Results are shown for 3 slices from each of five patients. In future work, we plan to
make specific comparisons of volumetric joint bias removal techniques with sequential
slice-based joint bias removal to see if the former offers any significant advantage.

The idea of minimizing pixelwise entropies to remove nuisance variables from a set
of images is not new. In particular, Miller et al. [6, 7] presented an approach they call
congealing in which the sum of pixelwise entropies is minimized by separate affine
transforms applied to each image. Our method can thus be considered an extension of
the congealing process to non-spatial transformations. We are currently combining such
approaches to do registration and bias removal simultaneously.

This work uses information unused in other methods, i.e. information across im-
ages. This suggests an iterative scheme in which both types of information, both within
and across images, are used. Local models could be based on weighted neighborhoods
of pixels, pixel cylinders, rather than single pixel-stacks, in sparse data scenarios. For
“easy” bias correction problems, such an approach may be overkill, but for difficult
problems in bias correction, where the bias field is difficult to separate from the under-
lying tissue, as discussed in [1], such an approach could produce critical extra leverage.
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brain images for this work. The images were obtained under NIH grant P41 RR13218.
Also, we thank Neil Weisenfeld and Sandy Wells for helpful discussions. This work
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Abstract. This paper presents a unified image processing and analysis
framework for cortical thickness in characterizing a clinical population.
The emphasis is placed on the development of data smoothing and anal-
ysis framework. The human brain cortex is a highly convoluted surface.
Due to the convoluted non-Euclidean surface geometry, data smoothing
and analysis on the cortex are inherently difficult. When measurements
lie on a curved surface, it is natural to assign kernel smoothing weights
based on the geodesic distance along the surface rather than the Eu-
clidean distance. We present a new data smoothing framework that ad-
dress this problem implicitly without actually computing the geodesic
distance and present its statistical properties. Afterwards, the statistical
inference is based on the random field theory based multiple comparison
correction. As an illustration, we have applied the method in detecting
the regions of abnormal cortical thickness in 16 high functioning autistic
children.

1 Introduction

The human cerebral cortex has the topology of a 2D highly convoluted grey
matter shell of average thickness of 3mm. The thickness of the grey matter shell
is usually referred as the cortical thickness and can be obtained from magnetic
resonance images (MRI). The cortical thickness can be used as an anatomical
index for quantifying cortical shape variations. The thickness measures are ob-
tained after a sequence of image processing steps which are described briefly
here. The first step is to classify each voxel into three different tissue types:
cerebrospinal fluid (CSF), grey matter, and white matter. The CSF/grey matter
interface is called the outer cortical surface while the grey/white matter interface
is called the inner cortical surface. These two surfaces bound the gray matter.
The mainstream approach in representing the cortical surface has been to use a
fine triangular mesh that is constructed from deformable surface algorithms [10]
[14]. Cortical thickness is estimated by computing the distance between the two
triangular meshes [11] [14]. In our study, we have used the method presented in
[14]. In order to compare cortical thickness measures across subjects, it is nec-
essary to align the cortical surfaces via surface registration algorithms [16] [20].

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 627–638, 2005.
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For cross-comparison between subjects, surfaces are registered into the template
surface which serves as reference coordinates.

The image segmentation, thickness computation and surface registration pro-
cedures are expected to introduce noise in the thickness measure. In order to
increase the signal-to-noise ratio (SNR) and smoothness of data for the ran-
dom field theory, some type of data smoothing is necessary. For 3D whole brain
MRIs, Gaussian kernel smoothing is widely used to smooth data, in part, due
to its simplicity in numerical implementation. The Gaussian kernel weights an
observation according to its Euclidean distance. However, data residing on the
convoluted brain surface fails to be isotropic in the Euclidean sense. On the
curved surface, a straight line between two points is not the shortest distance
so one may incorrectly assign less weights to closer observations. So when the
observations lie on the cortical surface, it is more natural to assign the weights
based on the geodesic distance along the surface. Previously diffusion smoothing
has been developed for smoothing data along the cortex before the random field
based multiple comparison correction [1] [6] [7]. By solving a diffusion equa-
tion on a manifold, Gaussian kernel smoothing can be indirectly generalized.
Although diffusion smoothing has been used widely in image analysis starting
with [15], most of previous work is about surface fairing [19]. There is a very
few publications that smooth out observations defined on surface for data anal-
ysis [1] [3] [6] [7]. The drawback of the previous diffusion smoothing approach is
the need for setting of up a finite element method (FEM) to solve the diffusion
equation numerically and making the algorithm converges [6]. To address this
problem, we have developed a simpler and more efficient method based on the
heat kernel convolution on a manifold.

As an illustration, the method was applied to groups of autistic and normal
subjects, and we were able to detect the regions of statistically significant cortical
thickness difference between the groups.

2 Heat Kernel Smoothing

The cortical surface ∂Ω can be assumed to be a C2 Riemannian manifold [12].
Let p = X(u1, u2) ∈ ∂Ω be the parametric representation of ∂Ω. We assume the
following model on thickness measure Y :

Y (p) = θ(p) + ε(p),

where θ(p) is a mean thickness function and ε(p) is a zero-mean random field,
possibly a Gaussian white noise process, with covariance function Rε(p, q). The
Laplace-Beltrami operator ∆ corresponding to the surface parameterization p =
X(u1, u2) ∈ ∂Ω is given by

∆ =
1

det g1/2

2∑
i,j=1

∂

∂ui

(
det g1/2gij ∂

∂uj

)
,

where g = (gij) is the Riemannian metric tensor. Solving equation ∆ψ = λψ,
we order eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and corresponding eigenfunc-
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Fig. 1. Top: Heat kernel smoothing of cortical thickness with σ = 1 and k = 20, 100, 200
iterations. Bottom: Heat kernel smoothing on simulated data with σ = 1 and k =
20, 200, 5000 iterations. The mean thickness and the variance are estimated from 12
normal subject data and Gaussian white noise is added to the mean function

tions ψ0, ψ1, · · · . The eigenfunctions ψj form orthonormal basis of L2(∂Ω), the
L2 space of functions defined on ∂Ω. On the unit sphere, the eigenvalues are
m(m+n− 1) and the corresponding eigenfunctions are spherical harmonics Ylm

(|m| ≤ l, 0 ≤ l) [21]. On an arbitrary surface, the explicit representation of eigen-
values and eigenfunction are only obtained through numerical methods. Based
on orthonormal basis, the heat kernel Kσ(p, q) is analytically given as

Kσ(p, q) =
∞∑

j=0

e−λjσψj(p)ψj(q), (1)

where σ is the bandwidth of the kernel [2] [17] . When gij = δij , the heat kernel
becomes the Gaussian kernel, which is the probability density of N(0, σ2). nat-
ural extension of the Gaussian kernel. This can be interpreted as the transition
probability density for an isotropic diffusion process with respect to the surface
area element [22]. The kernel is symmetric, i.e. Kσ(p, q) = Kσ(q, p) and isotropic
with respect to the geodesic distance d(p, q).

Definition 1. Heat kernel smoothing of cortical thickness Y is the convolution:

Kσ ∗ Y (p) =
∫

∂Ω

Kσ(p, q)Y (q) dq. (2)
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Fig. 2. Left: Within-subject variance plotted over the number of iterations of heat
kernel smoothing with σ = 1. Decreasing variance implies the convergence of the heat
kernel smoothing to the mean thickness (Theorem 4). Right: Between-subject variance
plotted over the number of iterations illustrating Theorem 5

It can be written in terms of basis function expansion:

Kσ ∗ Y (p) =
∞∑

j=0

αjφj(p),

where αj = e−λjσ
∫

∂Ω
φj(q)Y (q) dq. We also define the heat kernel estimator of

unknown signal θ(p) to be θ̂σ(p) = Kσ ∗ Y (p). As σ → 0, Kσ(p, q) becomes the
Dirac delta function δ(p, q) so the heat kernel estimator becomes unbiased as
σ → 0, i.e. limσ→0 Eθ̂σ(p) = θ(p). As σ gets larger, the bias increases. However
the total bias over all cortex is always zero, i.e.

∫
∂Ω

[θ(p) − Eθ̂σ(p)] dp = 0. Let
us list important nontrivial properties of heat kernel smoothing.

Theorem 1. Kσ ∗ Y is the unique solution of the following isotropic diffusion
equation at time t = σ2/2:

∂f

∂t
= ∆f, f(p, 0) = Y (p), p ∈ ∂Ω (3)

This is a well known result [17]. This theorem implies that the heat kernel
smoothing isotropically assigns weights on ∂Ω.

Theorem 2.

Kσ ∗ Y (p) = arg min
θ(p)∈L2(∂Ω)

∫
∂Ω

Kσ(p, q)
[
Y (q) − θ(p)]2 dq.

The proof can be found in [5]. This shows that the heat kernel smoothing can
be formulated as a regression on a manifold.
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Theorem 3.
Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

k times

∗Y = K√
kσ ∗ Y.

This can be seen as a scale space property of diffusion. From Theorem 1, Kσ ∗
(Kσ ∗ Y ) can be taken as the diffusion of signal Kσ ∗ Y after time σ2/2 so that
Kσ ∗ (Kσ ∗ Y ) is the diffusion of signal Y after time σ2. Hence

Kσ ∗ Kσ ∗ Y = K√
2σ ∗ Y.

Arguing inductively we see that the general statement holds. We will denote the
k-fold iterated kernel as K

(k)
σ = Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸

k times

. This is the basis of our iterated

heat kernel smoothing. Heat kernel with a large bandwidth will be performed
by iteratively applying heat kernel smoothing with a smaller bandwidth. For
instance iterated heat kernel smoothing with σ = 1 and k = 200 will generate
heat kernel smoothing with the effective bandwidth of

√
200 = 14.14mm. Figure

1 shows the process of iterated heat kernel smoothing.

Theorem 4.

lim
σ→∞Kσ ∗ Y =

∫
∂Ω

Y (q) dq

µ(∂Ω)
.

Here µ(∂Ω) is the total surface area of ∂Ω. This theorem shows that when we
choose large bandwidth, heat kernel smoothing converges to the sample mean of
data on ∂Ω. Figure 1 (bottom) shows the convergence of heat kernel smoothing
to the within-subject mean cortex 4mm as the bandwidth increases. Figure 2
(left) shows the convergence of the within-subject variance indirectly implying
Kσ ∗ Y converges to a constant, which is the average thickness over the cortex.

It is natural to assume the measurements Y (p) and Y (q) to have less cor-
relation when p and q are away so we assume the covariance function to be
Rε(p, q) = ρ(d(p, q)) for some nondecreasing function ρ. Then we can show the
variance reduction property of heat kernel smoothing.

Theorem 5. Var[Kσ ∗ Y (p)] ≤ VarY (p) for each p ∈ ∂Ω.

Figure 2 (right) shows the between-subject variance decreases as σ increases.
The problem with the heat kernel smoothing on an arbitrary surface is that

the explicit analytic form of the heat kernel is unknown. To address this problem
we use the parametrix expansion of the heat kernel [17] [22]:

Kσ(p, q) =
1

(2πσ)1/2
exp

[− d2(p, q)
2σ2

]
[1 + O(σ2)

]
(4)

for small d(p, q). This expansion spells out the exact form of the kernel for small
bandwidth. When the metric is flat, the heat kernel becomes a Gaussian ker-
nel, reconfirming that heat convolution is a generalization of Gaussian kernel.
The expansion is the basis of our heat kernel smoothing formulation. Heat ker-
nel smoothing with a large bandwidth will be decomposed into iterated kernel
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Fig. 3. Thickness maps are projected onto a unit square. Left: original noisy thickness
map. Right: Heat kernel smoothing with σ = 1 and k = 200 iterations

smoothing. We will truncate and normalize the heat kernel using the first order
term. For each p ∈ ∂Ω, we define

K̃σ(p, q) =
exp

[− d2(p,q)
2σ2

]
1Bp

(q)∫
Bp

exp
[− d2(p,q)

2σ2

]
dq

, (5)

where 1Bp
is an indicator function defined on a small compact domain containing

B such that 1Bp
(q) = 1 if q ∈ Bp and 1Bp

(q) = 0 otherwise. Note that for each
fixed p, K̃σ(p, q) defines a probability distribution in Bp and it converges to
Kσ(p, q) as σ → 0 in Bp This implies

K̃(k)
σ ∗ Y (p) → K(k)

σ ∗ Y (p) as σ → 0.

For a discrete triangular mesh, we can take Bp to be a set of points containing
p and its neighboring nodes q1, · · · , qm, and take a discrete measure on Bp, which
still make (5) a probability distribution. This can be viewed as a Gaussian kernel
Nadaraya-Watson type smoothing extended to manifolds [4]. Figure 3 shows a
flattened thickness map illustrating how heat kernel smoothing can enhance the
thickness pattern by increasing the signal-to-noise ratio.

3 Random Field Theory on Cortical Manifold

Here we will describe how to perform multiple comparisons on ∂Ω using the
random field theory. The random field theory based approach is widely used for
correcting multiple comparisons in 3D whole brain volume but rarely used on
2D cortical manifolds [1] [7] [8] [24]. First we combine both the autistic and the
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Fig. 4. Automatically generated traces of the central and superior temporal sulcal
fundi [3]. The first column shows the traces generated for the template surface. The
second column shows the probability of sulcal matching based on 149 normal subjects
before any surface normalization. The third column shows the probabilities after surface
normalization. The first row is the left hemisphere and the second row is the right
hemisphere. Note that the distribution is much more spatially concentrated and the
matching probabilities are much greater after normalization

control subjects in a single indexing j and set up a general linear model (GLM)
on cortical thickness Yj for subject j:

Kσ ∗ Yj(p) = λ1(p) + λ2(p) · agej + λ3(p) · volumej + β(p) · groupj + εj (6)

is used. Here dummy variable group is 1 for the autistic subjects and 0 for the
normal subjects. volume is the total gray matter volume for subject j. The total
gray matter volume is estimated by computing the volume bounded by the both
outer and inner surfaces [8]. The error is modeled as a smooth Gaussian random
field which is viewed as the heat kernel convolution with Gaussian white noise,
i.e. εj = Kσ ∗ W . Then we test the group difference by performing a hypothesis
testing:

H0 : β(p) = 0 for all p ∈ ∂Ω

v.s.
H1 : β(p) �= 0 for some p ∈ ∂Ω.
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Fig. 5. Probability of sulcal matching, after normalization, for 39 manually identified
central sulci defined as the surface region surrounded by gyri, not just the fundus. The
views are illustrated on a slightly-opened version of the template cortical surface in
order to better view inside the sulcus. The warping in 2D localizes the central sulcus
nearly completely inside the template central sulcus. Left (right) figure is the left (right)
central sulci

The test statistic is the ratio of the sum of the squared residual errors under the
null and alternate models. Under H0, the test statistic is a F random random
field with 1 and n = n1 + n2 − 4 degrees of freedom [23]. The null hypothesis
is the intersection of collection of hypothesis H0 =

⋂
p∈∂Ω H0(p), where H0(p) :

β(p) = 0 for each fixed p. The type I error for the multiple comparisons is then
given by

α = P
( ⋃

p∈∂Ω

{F (p) > h}
)

= 1 − P
( ⋂

p∈∂Ω

F (p) ≤ h}
)

= 1 − P ( sup
p∈∂Ω

F (p) ≤ h) = P ( sup
p∈∂Ω

F (p) > h)

for some h. The resulting p-value is usually called the corrected p-value. The
distribution of supp∈∂Ω F (p) is asymptotically given as

P ( sup
p∈∂Ω

F (p) > h) ≈
2∑

d=0

φd(∂Ω)ρd(h) (7)
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Fig. 6. Corrected p value maps of F -test removing the effect of age and relative gray
matter volume difference projected onto the average outer (top) and inner surfaces
(bottom). It shows relatively asymmetric thickness difference between two groups

where φd are the d-dimensional Minkowski functionals of ∂Ω and ρd are the
d-dimensional Euler characteristic (EC) density of F -field with α = 1 and β = n
degrees of freedom [23]. The Minkowski functionals are φ0 = 2, φ1 = 0, φ2 =
area(∂Ω)/2 = 49, 616mm2, the half area of the template cortex ∂Ω. The EC
density is given by

ρ0(h) =
∫ ∞

h

Γ (α+β
2 )

Γ (α
2 )Γ (β

2 )
α

β

(
αx

β

) (α−2)
2

(
1 +

αx

β

)− (α+β)
2

dx,

ρ2(h) =
λ

2π

Γ (α+β−2
2 )

Γ (α
2 )Γ (β

2 )

(
αh

β

) (α−2)
2

(
1 +

αh

β

)− (α+β−2)
2

×
[
(β − 1)

αh

β
− (α − 1)

]
where λ measures the smoothness of fields ε and given as λ = 1/(2σ2). The
resulting corrected p-values maps for F field is shown in Figure 6. The main use
of the corrected p-value maps are the localization and visualization of thickness
difference.

4 Application

T1-weighted MR scans were acquired for 16 autistic and 12 control subjects
on a 3-Tesla GE SIGNA scanner. They are all right-handed males. 16 autis-
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tic subjects were diagnosed with high functioning autism (HFA). The average
age is 17.1 ± 2.8 is for the control subjects and 16.1 ± 4.5 for the autistic sub-
jects. The complete description of the data set, image acquisition parameters,
the subsequent image processing routines, and the interpretation of the result-
ing statistical parametric maps is provided in [5]. Each image underwent several
image preprocessing steps. Image intensity nonuniformity was corrected using
nonparametric nonuniform intensity normalization method [18]. Then using the
automatic image processing pipeline, the image was spatially normalized into
the Montreal neurological institute (MNI) stereotaxic space using a global affine
transformation. Subsequently, an automatic tissue-segmentation algorithm based
on a supervised artificial neural network classifier was used to classify each voxel
as cerebrospinal fluid (CSF), gray matter, or white matter [13]. Brain substruc-
tures such as the brain stem and the cerebellum were removed automatically.
Triangular meshes for inner and outer cortical surfaces were obtained by a de-
formable surface algorithm [14]. Such a deformable surface approach has the
advantage that the surface topology can be fixed to be spherical and the defor-
mation process can maintain a non-intersecting surface at all times, obviating
the need for topology correction [9]. The mesh starts as an ellipsoid located out-
side the brain and is shrunk to obtain the inner cortical surface. Then the inner
surface is expanded, with constraints, to obtain the outer cortical surface. The
triangular meshes are not constrained to lie on voxel boundaries. Instead, the
triangular meshes can cut through a voxel, which serves to reduce discretization
error and partial volume effect. Thickness is measured using the natural anatom-
ical homology between vertices on the inner and outer cortical surface meshes,
since the outer surface is obtained by deforming the inner surface.

Afterwards, thickness measures are smoothed with heat kernel smoothing
with parameters σ = 1 and k = 200 giving the effective smoothness of

√
200 =

14.14 mm. A surface-to-surface registration to a template surface was performed
to facilitate vertex-by-vertex inter-subject thickness comparison. We have for-
mulated it as a registration problem of two functional data on a unit sphere
[20]. First a mapping from a cortical surface onto the sphere is established while
recording the mapping. Then cortical curvatures are mapped onto the sphere.
The two curvature functions on the sphere are aligned by solving a regular-
ization problem that tries to minimize the discrepancy between two functions
while maximizing the smoothness of the alignment in such a way that the pat-
tern of gyral ridges are matched smoothly. This alignment is projected back to
the original surface using the recorded mapping. This regularization mechanism
produces a smooth deformation field, with very little folding. The deformation
field is parameterized using a triangulated mesh and the algorithm proceeds in
a coarse-to-fine manner, with four levels of mesh resolution. Figure 4 and Figure
5 illustrate the effectiveness of this surface registration algorithm by computing
the probability of matching superior temporal sulcal fundi and central sulci.

After smoothing out thickness measurements, statistical analysis is performed
following the procedures described in the previous section. The resulting cor-
rected p-value map (< 0.1) for the F statistic is projected onto the template
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surface for visualization. Figure 6 shows statistically significant regions of cor-
tical thickness between two groups. After removing the effect of age and total
grey matter volume difference, the statistically significant regions of thickness
decreases are highly localized at the right inferior orbital prefrontal cortex, the
left superior temporal sulcus and the left occipito-temporal gyrus in autistic
subjects.

5 Conclusions

This paper has introduced heat kernel smoothing and its statistical proper-
ties for data analysis on the cortical manifolds. The technique can be used
in smooth out data that is necessary in the random field theory based mul-
tiple comparison correction. We have applied the methodology in detecting the
regions of abnormal cortical thickness in a group of autistic subjects; how-
ever, the approach is not limited to a particular clinical population. The al-
gorithm is implemented in MATLAB and freely available to download on the web
http://www.stat.wisc.edu/∼mchung/softwares/hk. A sample cortical mesh
for a subject and its thickness measures can be also downloaded from the same
website for other researchers.
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3. A. Cachia, J.-F. Mangin, Riviére D., D. Papadopoulos-Orfanos, F. Kherif, I. Bloch,
and J. Régis. A generic framework for parcellation of the cortical surface into gyri
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Abstract. Three-dimensional imaging and quantification of myocardial
function are essential steps in the evaluation of cardiac disease. We pro-
pose a tagged magnetic resonance imaging methodology called zHARP
that encodes and automatically tracks myocardial displacement in three
dimensions. Unlike other motion encoding techniques, zHARP encodes
both in-plane and through-plane motion in a single image plane without
affecting the acquisition speed. Postprocessing unravels this encoding in
order to directly track the 3-D displacement of every point within the
image plane throughout an entire image sequence. Experimental results
include a phantom validation experiment, which compares zHARP to
phase contrast imaging, and an in vivo study of a normal human volun-
teer. Results demonstrate that the simultaneous extraction of in-plane
and through-plane displacements from tagged images is feasible.

1 Introduction

The use of magnetic resonance imaging (MRI) for the quantification of regional
function of the heart based on the measurement of motion has great potential
for clinical adoption. Primary limiting factors to date are the lengthy image
acquisition protocols and tedious postprocessing procedures required to yield
regional motion measures. This paper addresses both of these limitations in a
novel combined imaging and postprocessing method based on tagged magnetic
resonance imaging and harmonic phase (HARP) processing [1, 2].

Three main MR imaging protocols that have been used for the quantifi-
cation of myocardial motion: myocardial tagging, displacement encoding with
stimulated echoes (DENSE) [3, 4], and phase contrast (PC) velocity encoding
techniques [5, 6]. In tagging, myocardial spins are modulated at end-diastole in a
prespecified pattern. Later in the cardiac cycle, the displaced tag lines are imaged
and tracked using postprocessing algorithms in order to compute displacement
and strain images. This technique permits rapid imaging and visualization as
well as fast, automatic computation of in-plane (i.e., two-dimensional) motion
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measures using HARP. To date, however, there has been no extension to three-
dimensions in an equally efficient and automatic way.

Phase contrast imaging adds to every myocardial spin a phase value propor-
tional to the velocity in the encoding direction. PC imaging times are generally
long and phase distortion leads to significant measurement errors. Also, since
velocity rather than displacement is the measured quantity, computation of dis-
placement and strain (as opposed to strain rate) at later times in a sequence is
typically corrupted by numerical integration errors. PC is readily extended to
three-dimensions though imaging time becomes prohibitively long.

DENSE encodes position in a manner similar to MR tagging through the
use of stimulated echoes. Automatic processing analogous to HARP can then be
used to compute displacement and strain. The acquisition protocol of DENSE
supports higher spatial resolution than that of conventional HARP techniques,
but the computation of in-plane motion is sensitive to through-plane motion in
DENSE, unlike conventional tagging techniques.

To date, extension of these three basic approaches to three dimensions has re-
quired extensive additional data collection over that of 2-D imaging; and, except
for PC, the result yields only sparse motion information. In all three cases, long
imaging times may be prohibitive due to patient breath-holding constraints or
may produce sub-optimal results due to gross misregistration of images collected
over a long period of time.

In this paper, we present a novel MRI methodology called zHARP, which
images and automatically tracks the 3-D myocardial displacement of all points
in an image plane. A pulse sequence for acquiring an image that encodes both
in-plane and through-plane motion without affecting the acquisition speed of
the underlying pulse sequence is presented. An automatic algorithm, based on
the harmonic phase (HARP) concept, that tracks the 3-D displacements of ev-
ery point in the image plane through the entire image sequence, is also pre-
sented. The zHARP methodology is validated in both phantom and human
studies.

2 Methods

2.1 Pulse Sequence

ZHARP uses a slice-following 3-D tagging imaging sequence. The pulse sequence
is similar to the standard slice-following CSPAMM (SF-CSPAMM) sequence [7]
except that a small z-encoding gradient is applied immediately before the read-
out and again with the opposite polarity to the second orthogonal CSPAMM
acquisition, as shown in Fig. 1. This gradient adds a z-position dependent phase
ϕz to every material point in the acquired slice. This additional phase is linearly
related to the distance of the point from the isocenter of the scanner. Suscepti-
bility and general field inhomogeneities lead to an additional (artifactual) phase
accumulation ϕe. This erroneous phase is identical in both the horizontally and
vertically tagged images, however, and it will be shown to (mathematically)
vanish in the computation of both in-plane and through-plane displacements.
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Fig. 1. ZHARP pulse sequence: A typical CSPAMM tagging spiral acquisition sequence
with and added z-encode gradient with magnitude |Az| in the slice-select direction. A
+Az and a −Az gradients are added to the vertical and horizontal tagging sequences,
respectively

2.2 ZHARP Formulation

The zHARP z-encode gradient has the same strength for both A and B CSPAMM
acquisitions. Upon (complex signal acquisition and) subtraction, the signal from
the untagged tissue is removed, just as in standard CSPAMM. However, the
tagged tissue now has a z-phase, acquired at the imaging moment. Accordingly,
the z-encoded CSPAMM image I(r, t) at r(x, y) and time t can be represented as

I(r, t) = 2
∫ z̄(r)+/2

z̄(r)−/2

ρ(r, t)ejϕe(r) cos(ωTp(r, t))ejκz(r)z(r)dz, (1)

where z̄ is the (tag) slice position, 
 is the (tag) slice thickness, ρ(r, t) is the
effective spin density, ω is the tag frequency, p(r, t) is the reference map (the
position of the 3-D spatial point r at the reference time), and κz is the z-encode
frequency.

If the frequency κz is small enough and the slice thin enough, then we have
the approximation

I(r, t) ≈ 2ρ(r, t)ejϕe(r) cos(ωTp(r, t))ejκz(r)z̄(r) . (2)

Letting ϕz(r) = κz(r)z̄(r), (2) becomes

I(r, t) ≈ 2ρ(r, t)ejϕe(r)ejϕz(r) cos(ωTp(r, t)) . (3)

This is the usual CSPAMM image multiplied by ejϕe(r)ejϕz(r), which means that
the z̄ position of every myocardial material point in the slice is now encoded in
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the phase of the complex image I without affecting the usual CSPAMM magni-
tude content. For simplicity of notation in the following, we omit the argument
of ϕe(r) and ϕz(r).

2.3 ZHARP Images

An image plane is scanned twice in order to compute the in-plane motion, first
with vertical tagging, ω = ωx(1, 0, 0), and then with horizontal tagging, ω =
ωy(0, 1, 0). A positive z-encode gradient is applied to the first scan and a negative
one is applied to the second scan. Using the relation

p(r, t) = r− u(r, t), (4)

where u is the displacement, (3) becomes

Ix(r, t) ∝ ρ(r, t)ejϕeejϕz cos(ωxx − ϕx) , (5)
Iy(r, t) ∝ ρ(r, t)ejϕee−jϕz cos(ωyy − ϕy), (6)

for the first and second scans, where ϕx = ωxux and ϕy = ωyuy. In these equa-
tions, the phases ϕx and ϕy are called either the displacement-encoding phases
or the harmonic phase (HARP) maps in the x and y directions, respectively [2].

2.4 ZHARP Algorithm

ZHARP uses two steps to extract the 3-D displacement of each material point.

Step 1. Extraction of Displacement-Encoding Phase Maps. At first
glance, it appears to be impossible to sort out the in-plane and through-plane
motion components from the image data in (5) and (6). It can be done, how-
ever, by applying the 2-D HARP concept [2, 1] to both the negative and pos-
itive harmonic peaks of Ix and Iy. This idea is illustrated in the block dia-
gram of Fig. 2. Whereas in conventional HARP, there would be only two har-
monic phases that are computed, one for the horizontally tagged image and one
for the vertically tagged image, in zHARP there are four computed harmonic
phases, φA, φB, φC , and φD. Furthermore, these computed phases include not
only the harmonic phases, ϕx and ϕy arising from object in-plane motion, but
also the phases arising from our explicit z-encoding, ϕz, and from erroneous
phase sources, ϕe.

Referring to Fig. 2, we see that the computed harmonic phases form a system
of linear equations,

φA = ϕe + ϕz − ϕx , (7)
φB = ϕe + ϕz + ϕx , (8)
φC = ϕe − ϕz − ϕy , (9)
φD = ϕe − ϕz + ϕy . (10)
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Fig. 2. Extraction of displacement-encoding phase maps. Left flowchart: Extraction
of φA and φB of from vertically tagged images Ix. Right flowchart: Extraction of φC

and φD of from horizontally tagged images, Iy. The ∗ and δ symbols represent linear
convolution and the impulse function, respectively

This system is readily solved for the desired phases that are related to motion,
yielding

ϕx = (φB − φA)/2 , (11)
ϕy = (φD − φC)/2 , (12)
ϕz = ((φA + φB) − (φC + φD))/4 . (13)

Step 2. 3-D Motion Tracking. Consider a material point located at rm at
time tm. The principle of 2-D HARP tracking [1] is based on the fact that HARP
phase is a material property, and therefore that the apparent in-plane position
of this point at time tm+1, given by rm+1, can be determined by the following
relations

ϕx(rm+1, tm+1) = ϕx(rm, tm), (14)
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ϕy(rm+1, tm+1) = ϕy(rm, tm). (15)

Now consider a point on the image plane r0 at the time t0 of tag application.
Since the phases ϕx and ϕy are found using (11) and (12), 2-D HARP track-
ing can be used to track the apparent in-plane position of r0 throughout the
image sequence [1]. This yields a sequence of points in the image plane given
by {r0, . . . , rm, rm+1, . . .}. This is a standard HARP result, a tracking of the
apparent 2-D position of an arbitrary point in the plane [1]. Importantly, it is
shown here that it is possible to obtain this result despite the presence of an
explicit z-encode and the presence of phase anomalies.

Because slice following is used, it is now possible to recover the z position
of r0 throughout the sequence. We note that at the time of tag (and z-encode)
application, we have

ϕz(r0, t0) ≈ κzz0 . (16)

At a later time, if the z phase does not wrap, then we have the relation

ϕz(rm+1, tm+1) − ϕz(rm, tm) ≈ κz(zm+1 − zm) . (17)

Rearranging, and using the wrapping operator W defined in [1] (which recovers
the correct net phase difference), yields

zm+1 = zm +
1
κz

W{ϕz(rm+1, tm+1) − ϕz(rm, tm)} , (18)

which can be used in an iterative fashion to track the z position of r0 throughout
the sequence.

Together, these two steps describe the algorithmic component of zHARP. It is
evident that a single point or an arbitary collection of points in an image slice can
be tracked in three dimensions using this imaging and processing methodology.

3 Experiments and Results

The pulse sequence was implemented on a Philips 1.5 T Intera MRI scanner. Im-
age processing was performed off-line on a personal computer. Three experiments
were conducted: two phantom experiments and a normal human volunteer.

3.1 1-D z Displacement of Phantom

The pulse sequence and the algorithm were first tested on a water-filled-bottle
phantom moving sinusoidally (1′′ peak-to-peak) in parallel to the main magnetic
field (z direction) at a rate of 52 cpm. The orientations of the acquired slice, so-
called short axis (SA) slice, and also the long axis (LA) slice are shown in Fig. 3.
Fourteen axial-plane cardiac phases were acquired during the first 466 ms of
each cycle. Fig. 4 shows the zHARP algorithm steps applied to the 14th frame
and how the through-plane and in-plane displacements were extracted. In this
experiment, only though-plane displacement occurred and was measured.
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Fig. 3. Short axis (SA) and long axis (LA) slice orientations for the experiment in
Sec. 3.1. Motion is along the Bo filed of the magnet. SA slice is along the bottle axis
of symmetry and perpendicular to the direction of motion. LA slice is perpendicular
to axis of symmetry

Fig. 4. Displacement phase maps extraction for the experiment in Sec. 3.1. Phase maps
are shown at a rectangular region of interest (ROI) in the middle of the bottle. The
magnitude image of the bottle is shown in the background of the ROI

For comparison, the phantom was also imaged using a conventional PC
method and a z displacement map was obtained thereafter by integration (see
Fig. 5).

Through-plane motion in the SA slice is shown as in-plane horizontal shift
in the LA slice as shown in Fig. 5. As a reference standard, z displacement
was also computed using a cross correlation method (CC) applied to the LA
tagged dataset. Fig. 6 compares the mean displacement value and the standard
deviation obtained from PC, zHARP, and CC. Relative RMS error between PC
and CC was 10.7% and between zHARP and CC was only 4.0%.

3.2 2-D Combined x and z Displacement

In the second experiment, the phantom and the imaged slice were tilted by
43o about the anterior-posterior axis while the phantom was moving along
the Bo field direction. In addition, a stationary water phantom was inserted
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Fig. 5. Z-displacement (ϕz) maps extraction for the experiment in Sec. 3.1. through
the 14 CINE images. t: time, d:displacement. (a) ϕz left: using zHARP and right: using
phase contrast. (b) Reference standard dataset; tagged long axis slices that used for
displacement calculations using cross correlation method

above the imaging coil for comparison. In this tilted placement, both in-plane
x displacement and through-plane z motion components were generated (see
Fig. 7). Fig. 8 shows the displacement profile through a motion cycle. Both x
and z displacement maps are shown and, as expected, both displacements fol-
low a sinusoidal pattern. Because of the tilting-setup, |mean(x displacement)| =
tan(43◦) × |mean(z displacement)| at any time. The total displacement profile√|z − displacement|2 + |x − displacement|2 is shown with 1′′ peak-to-peak total
displacement as expected.

A rectangular mesh of points was constructed over the stationary and moving
phantoms and tracked throughout the cycle. Tracking results of sample time-
frames are shown in Fig. 9 with the acquisition time shown to the left. The
frames show both a SA slice in the moving phantom (in the center of the image)
and a part of the stationary phantom (at the bottom of the image). In-plane
motion in the x direction is shown as a shift from one time frame to another.
Through-plane motion is displayed as the color of the tracked point with the color
palette shown to the right. Notice the yellow color of the stationary phantom
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Fig. 6. Z-displacement (ϕz) profile in the first 460ms of the phantom motion cycle. (a)
Using zHARP. (b) Using phase contrast (PC). Notice the increasing standard deviation
and the drift of the PC values from the cross correlation values

Fig. 7. Short axis (SA)
and long axis (LA) slice
orientations for the ex-
periment in Sec. 3.2

Fig. 8. Average in-plane and through-plane displacement
profiles with time and the total 1′′ peak-to-peak displace-
ment



648 K.Z. Abd-Elmoniem et al.

and the change of the moving phantom from yellow (z = 0) to green (z = −ve)
then to red (z = +ve) then to green (z = −ve) (compare with the profile in
Fig. 8).

3.3 Normal volunteer

The data presented in this section was obtained from a 26-year-old healthy adult
male subject with a heart rate of approximately 80 bpm. The scanning was done
after a written consent and IRB approval. Four ECG leads were placed on the
chest for triggering of the pulse sequence by the R-wave. The patient position
was head first and supine. An oblique, equatorial short-axis, 6mm-thick slice of
the left ventricle was scouted. The location and orientation of the slice is shown
in Fig. 10(a). Twelve systolic images of size 256×256 were acquired starting from
end-diastole to end-systole with a square FOV of 35cm and temporal resolution of
30ms. The first and last time-frames were scanned 11ms and 341ms, respectively,

Fig. 9. SA CINE time-frames and tracking. Left: Sample tagged images at different
time instants of the motion cycle (notice the horizontal motion of the phantom). Middle:
The corresponding zHARP mesh tracking. In-plane tracking (shown as a shift in the
phantom position from frame to frame) and through-plane tracking is shown as a
change in coloring. Right: The color palette using for representing through-plane motion
tracking
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(a) (b)

Fig. 10. Data used in the experiment of Sec. 3.3. (a) A four-chambers slice (4C). The
line shown is the intersection between the shown 4C and the acquired SA slice. (b)From
right to left: The twelve zHARP SA time-frames used in the experiment

Fig. 11. Mesh tracking result. In-plane displacements are shown as twisting and bind-
ing of the mesh grid lines. Through-plane displacement is shown as the colors of the
points

after the R-wave trigger. Figure 10(b) shows the 97 × 97 LV region-of-interest
(ROI) dataset as they look in the acquired horizontal tag zHARP.

A 97 × 97 mesh of points was tracked on the ROI data. Results in Fig. 11
show in-plane twisting of the mesh and color-encoded z-displacement. Figure 12
shows the though-plane displacement profile of selected tracked points around
the LV myocardium.
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Fig. 12. CW: z Displacement tracking results for points around the myocardium for the
experiment in Sec. 3.3. Vertical axes are in mm and horizontal axes are the time-frame
index

4 Conclusion

In this work, we modified the slice following CSPAMM MRI acquisition process
by adding a z phase encode. Using HARP processing on four spectral peaks, both
the in-plane and through-plane motions can be recovered. Key advantages of this
approach include the ability to compute dense 3-D motion from only a single
acquired image orientation and no increase in imaging time over that of slice
following CSPAMM. In contrast to the PC method, where tracking errors accu-
mulate over time, zHARP shows a consistent tracking performance throughout
the time of tag persistence.

Combining this technique with a multi-slice acquisition will provide a layer-
cake of 3D tracked points which can be used to track the heart and compute a
variety of strains. It may therefore be possible to significantly reduce the number
of planes that are acquired, and still obtain an accurate assessment of the state
of the LV and RV myocardium.
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Analysis of Event-Related fMRI Data Using
Diffusion Maps
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Abstract. The blood oxygen level-dependent (BOLD) signal in response
to brief periods of stimulus can be detected using event-related functional
magnetic resonance imaging (ER-fMRI). In this paper, we propose a new
approach for the analysis of ER-fMRI data. We regard the time series
as vectors in a high dimensional space (the dimension is the number of
time samples). We believe that all activated times series share a com-
mon structure and all belong to a low dimensional manifold. On the
other hand, we expect the background time series (after detrending) to
form a cloud around the origin. We construct an embedding that reveals
the organization of the data into an activated manifold and a cluster
of non-activated time series. We use a graph partitioning technique–the
normalized cut to find the separation between the activated manifold
and the background time series. We have conducted several experiments
with synthetic and in-vivo data that demonstrate the performance of our
approach.

1 Introduction

The goal of functional neuroimaging is to map the activity of the brain in space
and time. Functional magnetic resonance imaging (fMRI) has become one of
the main tools for noninvasive assessment of human brain functions since its
invention in the early 1990s. Event-related fMRI makes it possible to study the
transient changes triggered by cognitive and sensory stimulation. Unlike block
paradigm, event-related fMRI allows mixing of different task conditions on a
trial-by-trial basis and provides a means of examining the dynamics and time-
course of neural activity under various conditions.

However, the increase in the signal during an event-related fMRI experiment
only lasts for a short period of time. The analysis is further complicated by the
variation in the shape and amplitude of the hemodynamic response across dif-
ferent cortical regions [1]. Therefore, methods of analysis that rely on a specific
model of the hemodynamic response will not be optimal. Several methods [2], [3]
address this problem by considering a family of hemodynamic responses con-
structed from a set of basis functions. Others [4], [5] sought solutions via non-
parametric data-driven methods.

Here, we regard the fMRI data as a very large set of time series xi(t) in
RT , indexed by their position i. After removing the low frequency components
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from the time series in the preprocessing, we assume any significant changes in
the fMRI signal are related to the experimental paradigm. Although the experi-
ment could recruit several cortical regions with different temporal responses, we
restrict our attention to scenarios with no more than one type of temporal re-
sponse. We now consider the set of all activated time series taken from the same
cortical region. We assume that this set constitutes a manifold in RT . Clearly,
if we were to use a parametric model for the hemodynamic response, the set of
all hemodynamic responses generated from all the possible values of the param-
eters would form a manifold. The fact that the activated time series belong to
a manifold in RT has two implications. First, the activated time series reside
only in a very small part of RT . Second, the activated time series are similar to
each other, and one can go smoothly from one to the other one. In practice, the
activated times series are corrupted by noise, and the associated manifold may
exhibit some roughness.

A meaningful geometric description of the data in RT would exhibit the
presence of the activated manifold, and thus would have the power to discrim-
inate between the activated and the non-activated time series. The diffusion
maps method [6] is known to be capable of generating efficient representations
of complex geometric structures. In particular, it can be applied to describe the
geometry of a low dimensional manifold in high dimensions. In this work, we
apply this technique to event-related fMRI data. The diffusion maps provide us
with an embedding of the dataset. We then use a graph partitioning technique
called the normalized cut [7] to separate the activated time series from the back-
ground time series. Because the normalized cut is closely related to the diffusion
maps, it provides a natural method to perform the clustering of the time series.
The paper is organized as follows. In the next section, we give a brief review
to diffusion maps and the way we modify the graph construction. In section 3,
we describe the normalized cut criterion and its relation to the diffusion maps.
Results of experiments conducted on synthetic and in-vivo ER-fMRI data are
presented in section 4.

2 Diffusion Maps and Graph Construction

The problem of finding meaningful structures and geometric descriptions of a data
set has been the central interest in many areas like information retrieval, artificial
intelligence and statistical data analysis. Different techniques have been developed
toconstructarepresentationfordatalyingonalow-dimensionalmanifoldembedded
inahigh-dimensional space, amongwhichare the classical linearmethods including
Principle Component Analysis (PCA) and Multidimensional Scaling (MDS), and
thekernelmethods likeLocalLinearEmbedding(LLE)[8],Laplacianeigenmaps [9],
and Hessian eigenmaps [10]. Most recently, Coifman and Lafon [6] have shown that
all kernel methods are special cases of a general framework based on a diffusion
process. By defining a random walk on the data set, they associate a Markov matrix
to this data set. The spectral analysis of the Markov matrix provides a family of
mappings which they termed “diffusion maps”.
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2.1 Diffusion Maps, Diffusion Distances

To construct the diffusion maps, we consider two time series x(t) and y(t) as
being the nodes of a graph G. For two distinct nodes of the graph G we define
a weight function K(x, y) that measures the similarity between the time series
according to

K(x, y) = exp(−‖x − y‖2

σ
),

where ‖x − y‖2 =
∑

t(x(t) − y(t))2. K is a symmetric, positive semi-definite
matrix. We define the diffusion matrix: A = D−1K where D is a diagonal matrix
with dxx =

∑
y k(x, y). By definition, this matrix is row-stochastic and can be

viewed as the transition matrix of a random walk on the data set. Moreover, we
can show that this random walk is reversible, which is the same to say that A is
conjugate to a symmetric matrix:

Ã = D
1
2 AD− 1

2 (1)

Then we define the diffusion distance between x and y at time m by:

D2
m(x, y) = ãm(x, x) + ãm(y, y) − 2ãm(x, y) (2)

=
∑
j≥0

λ2m
j (φj(x) − φj(y))2 (3)

where {λj} and {φj} are the eigenvalues and eigenvectors of Ã, and 1 = λ0 ≥
λ1 ≥ λ2 ≥ ... ≥ 0. The quantity ãm(x, y) denotes the entry of Ã for row x
and column y and it represents the probability of transition from x to y in m
steps. The diffusion distance D2

m(x, y) is then a sum over all paths of length less
than or equal to m between x and y. The value of D2

m(x, y) decreases when the
number of paths between x and y gets larger. So it is a measure of connectivity
of the points in the graph and it is robust to noise.
Last we introduce the family of diffusion maps {Φm} by

Φm(x) =


λm

0 φ0(x)
λm

1 φ1(x)
·
·
·

 (4)

The diffusion maps convert diffusion distances into Euclidean distances:

‖Φm(x) − Φm(y)‖2 =
∑
j≥0

λ2m
j (φj(x) − φj(y))2 = D2

m(x, y) (5)

This embedding is related to the way a random walk propagates over the data
set. In particular, it is sensitive to all sorts of bottleneck effects, therefore it is
able to discover different clusters in the data set.
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2.2 Modified Way of Constructing the Graph

Before applying the diffusion maps described in the previous section to fMRI
data, we need to construct the adjacency graph. We consider each time series
to be a node in the graph, and we put an edge between a pair of time series x
and y if they are similar. Similarity can be defined by the Euclidean distance
between the two time series, ‖x − y‖2 =

∑
t(x(t) − y(t))2. We connect the two

nodes x and y of the graph if x is among the n nearest neighbors of y, or y is
among the n nearest neighbors of x. This approach is chosen for its simplicity
and is guaranteed to give well connected graphs.

However, this definition of connectivity is not adapted to data set with low
SNR, which is the case of fMRI data. Indeed, if the data are noisy, this approach
will create many unfaithful connections between activated time series and non-
activated time series, thereby severely obscuring the geometric structure of the
data set. The idea can be better illustrated by the following computation. Sup-
pose we have activated voxels i, j and non-activated voxel k. The time series
from these voxels are given by:

xi(t) = si(t) + ni(t)
xj(t) = sj(t) + nj(t)
xk(t) = nk(t)

t = 1, 2, ..., T

where s(t) is the signal time course generated by the hemodynamic response of
an activated voxel, and n(t) is the noise. The T dimensional distance between
the time series are:

dij = xi(t) − xj(t) = (si(t) − sj(t)) + (ni(t) − nj(t))
dik = xi(t) − xk(t) = si(t) + (ni(t) − nk(t))

If the variability of the signal across different activated voxels is small, then
(si(t)− sj(t)) is close to a zero. So dij can be viewed as a noise vector, while dik

contains an additional term: the signal information si(t). But the Euclidean norm
maps the T dimensional vector to a single number. Under cases of high SNR,
we have ‖dij‖2 < ‖dik‖2 with high probability. However as the SNR decreases,
this inequality becomes much weaker, making it more difficult to differentiate
between two activated time series and an activated time series and a background
time series. Graphs constructed via the n nearest neighbors (with the Euclidean
norm) are flawed in the sense that the connection between nodes does not always
reflect the intrinsic organization of the original data.

We keep the Euclidean norm to compare time series, but we enforce the ex-
isting the spacial correlation present in the fMRI data during the construction of
the graph. Indeed, truly activated voxels tend to be spatially clustered. There-
fore, we add additional edges to the adjacency graph obtained by the nearest
neighbor search. If two voxels are neighbors spacially, then the corresponding
time series will be connected in the graph, irrespective of the Euclidean between
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these time series. In summary, the criteria for putting an edge between a pair of
nodes in the graph is summarized as follows:

Put an edge between the nodes x and y if

– ‖x − y‖2 is among the n smallest values of ‖x − z‖2, for all z ∈ G or,
– ‖x − y‖2 is among the n smallest values of ‖y − z‖2, for all z ∈ G or,
– if ‖p(x) − p(y)‖2 ≤ r, where p(x) is the spatial position of the voxel from

which the time series x originates.

By imposing this spacial neighborhood criterion, we strengthen the connec-
tions within the activated nodes as well as the connections within the non-
activated nodes in the graph. This feature is very important for the diffusion
process performed over the graph afterward: a random walk starting from an
activated node will have much higher probability landing on another activated
node rather than a non-activated node in a given number of steps. Fig. 2 shows
the improvement in revealing the structure of the data set by the modified ap-
proach of the graph construction.

3 Normalized Cut

3.1 Segmentation by the Normalized Cut

Now that we have a description of the geometry of the dataset provided by the
diffusion maps, separating the activated voxels from the non-activated voxels
becomes a clustering problem. A closely related algorithm for clustering under
a general graph-theoretic framework has been recently proposed [7]. Given a
weighted graph G = (V,E), we seek to partition the vertices into two disjoint
subsets A,B,A ∩ B = ∅, A ∪ B = V , so that the similarity within each subset
A and B is high and across A and B is low. Shi et al defined the following
disassociation measure called the normalized cut (Ncut),

Ncut(A,B) = cut(A,B)(
1

vol(A)
+

1
vol(B)

)

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

vol(A) =
∑

u∈A,v∈V

w(u, v)

The optimal partitioning of the graph can be obtained by minimizing Ncut
over all possible subsets A and B. The combinatorial problem turns out to be
NP-complete. However, we can relax the optimization problem by allowing the
indicator function to take real values. The problem reduces then to minimizing
the Laplacian of the graph, which can be computed efficiently. It is shown in [7]
that

minNcut(A,B) = minf

fT Lf
fT Df

(6)
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with the condition fTD1 = 0, where L is the Laplacian of the graph. We can
minimize (6) by solving the following generalized eigensystem,

Lf = λDf . (7)

The second smallest eigenvector f2 of the above eigensystem is the real valued
solution to the normalized cut problem. However, since the eigenvectors take on
continuous values, they are no longer indicator functions. We can still split the
graph into two components by clustering the nodes according to the sign of f2(i).

3.2 Relationship to Diffusion Maps

The normalized cut approach is one of the clustering techniques developed in
the field of spectral graph theory [11]. Interestingly, the solution obtained in the
previous section has very close ties to diffusion maps. Let g = D

1
2 f , assuming

D is invertible,
fT Lf
fT Df

=
gT D− 1

2 LD− 1
2 g

gT g
=

gT L̃g
gT g

(8)

Recall that in section 2, we have defined a symmetric version of the diffusion
matrix Ã in (1). It is easy to verify that L̃ = I − Ã. So the eigenvectors for
L̃ are the exactly the same ones for Ã. Partitioning the graph subject to the
normalized cut criterion using the embedding given by the diffusion maps is in
a certain sense equivalent to itinerating the diffusion process over the graph,
but with updated weight function dependent on the diffusion distances between
pairs of points.

4 Experiment and Results

4.1 Details About the Implementation of the Algorithm

Given an fMRI dataset, we set up a weighted graph G = (V,E) by taking each
time series as a node and connecting pairs of nodes according to the criterion de-
fined in 2.2. In the experiment we connect each node to 6 of its nearest neighbors
in terms of the Euclidean distance and 4 of its spacial neighbors taking r = 1.
The similarity kernel k(x, y) = exp(−‖x−y‖2

σ ) is chosen for its relative simplicity
and isotropic property. The value of σ is typically set to 10 to 20 percent of
the total range of the Euclidean distance between pairs of time series. Then the
diffusion maps are constructed by computing the eigenvectors of the diffusion
matrix Ã in (1). We eliminate the first eigenvector, and keep the following four
eigenvectors to characterize the structure of the data. The selection is justified
by the fact that we expect to find only one activated manifold in the dataset.
Furthermore, four degrees of freedom should provide enough richness to char-
acterize this manifold. Now we use the new coordinates to rebuild the weighted
graph. By splitting the second smallest eigenvectors of the Laplacian matrix,
we obtain the partition of the graph. In the final step, we label the activated



658 X. Shen and F.G. Meyer

voxels and examine the corresponding time series. Notice the fact that usually
the cluster of the activated voxels has much smaller size than the cluster of the
non-activated voxels. We can use this cue to quickly tell the two clusters apart.
Further examination of the time series from the activated voxels is necessary to
ensure that the activation detected is indeed related to the experiment paradigm.

4.2 Artificial Event-Related Data

We first apply our approach to an artificial data set of event-related fMRI. The
fMRI signal time series are generated by convolving a stimulus time course with
the hemodynamic filter h(t) of SPM [12].

h(t) = (
t

d
)aexp(− t − d

b
) − c(

t

d′
)a′

exp(− t − d′

b′
) (9)

where d = ab is the time to peak, d′ = a′b′ is the time to undershoot, with
a = 6, a′ = 12 and b = b′ = 0.9s; c = 0.35. This model has become the most
frequent one since it models both activation, undershoot and that both modes
are not symmetrical. The signal time series s(t) is shown in the upper plot of
Fig. 1(c). It remains deterministic for all activated voxels.

The synthetic data set contains N = 30 × 30 = 900 brain voxels with one
small activated focus of 13 voxels, see Fig. 1(a) for the spacial localization of
the activation region. We add white Gaussian noise to the signal s(t) to create
the activated time series, and use white Gaussian noise for non-activated time
series. Four data sets with SNR= 0.6, 0.7, 0.8, 1 were generated. We apply the
diffusion maps followed by the normalized cut to each data set.

Fig. 2 compares the result of diffusion process on graphs constructed with
and without spacial information. At SNR= 0.8, the diffusion process on a graph
constructed without the spacial information fails to reveal any interesting struc-
ture of the data set. As one can observe in the upper row in Fig. 2, the red stars
that represent the activated time series are buried by the black circles which
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Fig. 1. Left: the true activation map with activated voxels in white and non-activated
voxels in black; Middle: activation map for a data set with SNR= 0.8, obtained using
our method; Right: (upper) the event-related signal time course s(t), (lower) some of
the activated time courses detected
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Fig. 2. Upper: diffusion on graph constructed without spacial information; Lower: dif-
fusion on graph constructed with spacial information. The majority are non activated
nodes represented by black circles. The activated nodes are represented by red stars

represent the non-activated time series. While for exactly the same data set,
by imposing the connections between spacial neighbors, there is a considerable
improvement in separating the activated nodes from the non-activated nodes,
see the lower row in Fig. 2. Fig. 1(b) shows the activation map obtained for this
data set, and the lower plot in Fig. 1(c) displays some of the activated time series
detected.

We now compare the performance of our approach with the method of re-
gression. The comparison is based on the number of true and false positives for
each value of SNR. The true activation rate is the ratio between the number of
true positives detected by the algorithm and the total number of true positives.
The false activation rate is the ratio between the number of false positives de-
tected by the algorithm and the total number of true negatives. For each SNR, we
generate 10 independent data sets and the averaged statistics are shown in Fig. 3.

The Regression Method. Since we have the absolute knowledge of the signal
time series s(t) of the synthetic data set, we can regress each time series onto the
signal time series, and apply a Student t-test to the regression coefficient to test
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Fig. 3. True activation rate (a) and false activation rate (b) obtained with our diffusion-
normalized cut method and the regression method

its significance. The null hypothesis is that the regression coefficient is not signif-
icant, which means the time series is not from an activated voxel. The activation
map based on the regression method is obtained by thresholding the p value at
p = 0.005. Knowing exactly the signal time series is a very strong condition which
could never be realized in real fMRI experiment. We should expect the method
of regression to give the best performance one can expect statistically. Fig. 3(a)
shows that our method does very well in terms of detecting the activation. But
it suffers from a high false positive rate when the SNR drops below 0.7. One
thing worth mentioning here is that once the SNR is greater than 0.7, the false
positives detected by our method are always spatially isolated, as is shown in
Fig 1(b). This makes it possible to further reduce the number of false positives.

4.3 In-Vivo ER-fMRI Data

We present here the results of an experiment conducted with event-related fMRI
data, provided by Dr. Gregory McCarthy (Brain Imaging and Analysis Center,
Duke University), demonstrate prefrontal cortex activation in the presence of
infrequent events. Visual stimuli were presented to the subjects: most of the
images were squares. Infrequent events (targets) consisted in the appearance
of circles at random times. Occasionally, images of everyday objects (novels)
were also presented. A picture was displayed every 1.5 seconds. The subject
was asked to mentally count the number of occurrences of the circles and re-
port that number at the end of each run for total of 10 runs. The experiment
was designed to study whether the processes that elicit P300, an event-related
potential caused by infrequent target events whose amplitude is dependent on
the preceding sequence of stimuli, could also be measured by fMRI. The data
was acquired with a gradient echoplanar EPI sequence (TR=1500ms, TE=45ms,
NEX=1, FOV=40×20cm, slice thickness =7mm, and imaging matrix 128×64).
More details about the experiment are available in [13].
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Fig. 4. The first few coordinates given by the diffusion maps
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Fig. 5. Left: activation map generated using our method; Middle: activation map gen-
erated using the correlation analysis. Right:Time series from the activated voxels

In order to demonstrate the application of our approach to the study of
activations by infrequent events, we extract 10-image segments consisting of the
10 consecutive images starting at the target onset. We have in each run about 5
to 6 targets for a total of 49 targets (the data for the 10th run were lost). These
segments of images were averaged in order to increase the SNR. The mean value
of the time series was removed voxel-wise before we applied our approach. Fig.
4 shows the data structure represented by the first few coordinates provided by
the diffusion maps.
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A small cluster of four voxels well detached from the mass of the point cloud
can be seen in Fig. 4 especially in sub-plot(a). It indicates the presence of acti-
vated time series. The activation map generated using our approach is shown in
Fig. 5(a). It is compared with the activation map generated by a correlation anal-
ysis, shown in Fig. 5(b). We compute the correlation between the time series and
the hemodynamic response model defined in (9). The correlation threshold is 0.6.
Meanwhile the time series from the four activated voxels are shown in Fig. 5(c).

5 Conclusion

We have presented in this paper a new approach that detects activation in an
fMRI dataset. We view all the time series as vectors in a high dimensional space
(the dimension is the number of time samples). We assume that all activated
times series share a common structure and all belong to a low dimensional man-
ifold. We constructed an embedding that reveals the organization of the data
into an activated manifold and a cluster of non-activated time series. We use a
graph partitioning technique–the normalized cut to find the separation between
the activated manifold and the background time series.

Unlike most fMRI data analysis methods our approach does not require any
model of the hemodynamic response or any a priori information. It could also
be applied to block designed fMRI experiment. In fact, because the signal in
block designed experiment has a stronger statistical power, we should expect our
method to perform well. In our current implementation, we assume that there
is only one type of activation. This assumption makes the presentation of the
method simpler, and leads to easier implementation. The approach extends nat-
urally to multiple activations associated with different hemodynamic responses.
Although we focused our attention on event-related fMRI, our approach could
be applied to the analysis of other biomedical datasets.
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Abstract. A computer-aided diagnosis (CAD) system to detect small-
size (from 2 mm to around 10 mm) pulmonary nodules in helical CT
scans is developed. This system uses different schemes to locate jux-
tapleural nodules and non-pleural nodules. For juxtapleural nodules,
morphological closing, thresholding and labeling are performed to ob-
tain volumetric nodule candidates; gray level and geometric features
are extracted and analyzed using a linear discriminant analysis (LDA)
classifier. To locate non-pleural nodules, a discrete-time cellular neural
network (DTCNN) uses local shape features which successfully capture
the differences between nodules and non-nodules, especially vessels. The
DTCNN was trained using genetic algorithm (GA). Testing on 17 cases
with 3979 slice images showed the effectiveness of the proposed system,
yielding sensitivity of 85.6% with 9.5 FPs/case (0.04 FPs/image). More-
over, the CAD system detected many nodules missed by human visual
reading. This showed that the proposed CAD system acted effectively as
an assistant for human experts to detect small nodules and provided a
“second opinion” to human observers.

1 Introduction

Lung cancer is one of the most lethal kinds of cancer worldwide. Its cure depends
critically on disease detection in the early stages. Computed tomography (CT)
technology is an important tool for detection and diagnosis of pulmonary nod-
ules. Due to the large amount of image data created by thoracic CT examination,
interpreting lung CT images to detect nodules is a very challenging task for the
radiologists. Computer-aided diagnosis (CAD) is considered as a promising tool
to aid the radiologists in lung nodule CT interpretation.

Many techniques of nodule detection have been developed based on chest
radiographs or CT images. Giger [1] obtained nodules using multiple gray-level
thresholding and a rule-based approach. Armato [2] introduced some 3D features,
and performed feature analysis by a linear discriminant analysis (LDA) classifier.
Kanazawa [3] used fuzzy clustering and a rule-based method. Penedo [4] set up 2
Neural networks (NNs), with the first one detecting the suspected areas, and the
second one acting as a classifier. Template-based methods were used to detect

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 664–676, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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nodules by Lee [5]. A prior model [6] was developed by Brown to find nodules
on the baseline scan and located nodules in the follow up scans.

According to locations, nodules can be divided into two groups: juxtapleu-
ral nodules (nodules attached to pleura) and non-pleural nodules. Usually, a
juxtapleural nodule distorts the transversal (axial) lung contour and yields an
indented part, a human observer is able to find this abnormality by a track-
ing procedure along the contour. This method does not work for non-pleural
nodules. A small-sized nodule tends to be ignored by a human observer, when
located near vessels or airways, especially when attached to them.

Based on previous observations, we propose to deal with juxtapleural nodules
and non-pleural nodules respectively. In order to find nodules in initial stages and
compensate for readings of radiologists, detection of small-sized nodules (from
2mm to around 10mm) is of our main interest.

2 Overall Scheme

The overall scheme of nodule detection is outlined in Fig. 1. There are three fun-
damental steps: preprocessing, juxtapleural nodule detection, and non-pleural
nodule detection. The preprocessing consists of isotropic resampling (imple-
mented by trilinear interpolation) and lung segmentation. The isotropic data are
more suitable for 3D processing, and also simplify the structure of the DTCNN.
The cubic voxel size of 0.7mm is always produced. And the lung area is extracted
from the thoracic CT data [7], so that the successive processing is restricted to
the pulmonary zone. In the detection of juxtapleural nodules, morphological
closing is applied to the original segmented lung mask to include juxtapleural
nodules; then thresholding and labeling are performed to yield 3D volumetric
nodule candidates; finally, gray level features and 3D global geometric features
are extracted and fed into a LDA classifier to confirm or refute a nodule. In the
detecting non-pleural nodules, first optimal thresholding is applied to the whole
lung to obtain the non-air part, which consists of nodules, vessels, airway walls
and other high attenuation structures. For each voxel belonging to the non-air
part, local shape index feature is computed. A DTCNN trained using genetic

Fig. 1. Overall scheme of the whole pulmonary nodule CAD system
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algorithm (GA) is applied to the local geometric feature to extract nodule areas.
3D labeling is operated to give the positions of detected nodules.

3 Juxtapleural Nodule Detection

3.1 Juxtapleural nodule candidate generation

In the preprocessing, the lung field extracted from the thoracic CT data [7]
includes two 3D connected components, indicating left and right lung, shown in
Fig. 2 (b). Note that in this step, a juxtapleural nodule is usually treated as
being outside the lung field, shown in Fig. 2 (b).

Morphological closing can be used to include the indented area of a juxta-
pleural nodule, shown in Fig. 2 (c). Note that the closing operation should be
applied to left and right lungs individually so that no regions between the two
lung parts are included. Considering the isometric property of the resampled CT
data, the structural element can be easily chosen as a sphere (3D) or a circle
(2D). Due to heart motion effect, many undesired areas near the heart will be
included if 3D morphological closing is used. Experiments showed that a simple

(a) (b)

(c) (d)

Fig. 2. Juxta-pleural nodule candidate generation. (a) An original CT section image
with a juxtapleural nodule; (b) Segmented lung mask image; (c) Lung mask after 2D
closing; (d) Juxta-pleural nodule candidates created by thresholding



Automated Detection of Small-Size Pulmonary Nodules 667

2D closing in the transversal section image is able to include true nodule areas
without introducing too many false nodule areas caused by heart motion effect.
Considering the voxel size of 0.7mm and the nodule size of our interest ( from
2mm to around 10mm), a circular structural element with radius of 15 voxels
is large enough to include the major part of a juxta-pleural nodule.

Optimal thresholding [8] is used to automatically determine a threshold for
segmentation between the background (air part) and objects (high intensity part,
including nodules). The threshold is detected iteratively. Let T t be the threshold
at iteration step t, and µt

b and µt
o be the mean gray-level of background and

objects. µt
b and µt

o are obtained by applying T t to the image. Then for the next
step t + 1, the threshold is updated by T t+1 = (µt

b + µt
o)/2. This updating

procedure is iterated until the threshold does not change, i.e., T t+1 = T t. The
initial threshold value T 0 is chosen as the mean value of the whole image. 3D
component analysis is followed to organize the connected high intensity image
voxels into 3D objects, but only the objects attached to the lung wall are of
interest. The size property is used to remove the candidates that have very large
volume or very small volume, for example, the main part of the vessel tree is
usually the largest object in the lung. The results of the previous processing are
the nodule candidate objects, shown in Fig. 2 (d).

3.2 Feature Extraction

Given the 3D volume of the nodule candidates, gray level features including
highest value, lowest value, average value, standard deviation can be obtained
directly. Seven geometric features are also extracted: volume size, surface area,
AspectRatio, Sphericity, m1, m2, mRatio.

AspectRatio =
Maximum Diameter

Minimum Diameter
, sphericity =

( 3Size
4π )1/3

(SurfaceArea
4π )1/2

. (1)

The rth contour sequence moments and central moments mr, µr are defined as

mr =
1
N

N∑
i=1

(z(i))r, µr =
1
N

N∑
i=1

(z(i) − m1)r (2)

where z(i) is the distance between the center and boundary surface point i. N
is the number of points on the boundary surface. mRatio is simply defined as
m2/m1.

3.3 Feature Analysis

Leave one case out method is used for training and testing. In this scheme, the
classifier was trained based on nodule candidates in all but one case, and the nod-
ule candidates in the remaining case was employed to test the trained classifier.
The procedure of training and processing was repeated until each case has been
already utilized as the testing case. The idea of choosing this scheme instead of
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common leave one (candidate) out is that each clinical case is independent of
other cases, but a nodule candidate is possibly dependent on other candidates
in the same case. In this work, LDA, neural network (NN), and support vector
machine (SVM) are tried to do the classification.

4 Non-pleural Nodule Detection

4.1 Local Shape Features

Basic observations show that most non-pleural nodules usually take a sphere-
like shape, while vessels and airways are tubular structures. See, for example,
Fig. 3. This shape difference usually was used as a feature of a segmented object,
i.e., a global feature of a suspected nodule area (SNA), as in the detection of
juxtapleural nodules. In order to avoid treating a non-isolated nodule as part
of other structures, a local shape feature associated with each voxel is used. By
assuming the surface of interest to be a level surface locally, local shape features
can be computed for each voxel.

A local shape can be completely described by its two principal curvatures,
i.e., the maximal and minimal curvatures k1, k2. Equivalently, the Gaussian cur-
vature K and the mean curvature H can describe a local shape, like in the HK

Fig. 3. Iso-surface rendering of anatomical structures in the pulmonary zone. The
spherical like objects located close to the center of each image are nodules; the tubular
structures are vessels; the planar shapes are pleural surface. Note that the nodules are
illustrated in a darker gray level
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segmentation introduced by Besl [9]. Neither the k1, k2 nor the HK curvature
pair capture the intuitive notion of “local shape” very well, as two parameters
are needed to “tell” the local shape. Koenderink [10, 11] proposed two mea-
sures of local surface, “shape index” S and “curvedness” C. The shape index is
scale-invariant and captures the intuitive notion of “local shape”, whereas the
curvedness specifies the amount of curvature. The S and C are defined as:

S =
2
π
· arctan

k1 + k2

k1 − k2
, C =

√
k2
1 + k2

2

2
, for k1 ≥ k2 (3)

SC scheme decouples the shape and the magnitude of the curvatures. This is
done by transforming a k1, k2 Cartesian coordinate description of a local shape
into a polar coordinate description. Every distinct shape, except for the plane,
corresponds to a unique value of S. Specifically, S = 1 indicates a cap (like
spherical nodules); S = 0.5 (ridge) corresponds to cylindrical shapes (like ves-
sels). The SC scheme has been successfully been used to detect colonic polyps
in virtual colonoscopy[12].

Many derivations of curvature computation for level surface have been de-
veloped [13, 14, 15]. The resulting formula is essentially identical and a concise
derivation is given in [15]. The Gaussian curvature K and the mean curvature
H have the following formulas:

K =
1

(f2
x + f2

y + f2
z )2

{f2
x(fyyfzz − f2

yz) + 2fyfz(fxyfxz − fxxfyz)

+ f2
y (fxxfzz − f2

xz) + 2fxfz(fxyfyz − fxzfyy)

+ f2
z (fxxfyy − f2

xy) + 2fxfy(fxzfyz − fxyfzz)} (4)

H =
−1

2(f2
x + f2

y + f2
z )3/2

{(f2
y + f2

z )fxx + (f2
x + f2

z )fyy + (f2
x + f2

y )fzz

− 2fxfyfxy − 2fxfzfxz − 2fyfzfyz} (5)

The principal curvatures can be computed from K and H as follows:

k1,2 = H ±
√

H2 − K (6)

The estimation of partial derivatives is implemented by directly convolving
the intensity image with the corresponding derivatives of the Gaussian filter.

Because most small-sized nodules show a sphere-like structure, the shape in-
dex of each voxel belonging to nodules should be around the value of 1. Similarly,
vessels have tube-like structures, represented by the shape index value of 0.5.
Due to the existence of structural noise, the difference of the shape index value
between a nodule and vessels only makes sense for a population of voxels, rather
than a single voxel. What is needed is an information processing system that
synthesizes the information in a neighborhood of a voxel to give a decision on
the voxel’s class, either nodule or non-nodule. In this work, discrete-time cellular
neural networks (DTCNN) act as this classification system.
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Considering the high intensity property of nodules, the local shape based
detection can be applied only to the bright parts inside the lung, i.e., a region of
interest (ROI) can be obtained to reduce the processing. Optimal thresholding
[8] described before is used to determine the threshold.

4.2 Discrete-Time Cellular Neural Networks

The discrete-time cellular neural network (DTCNN) [16, 17] was introduced as a
discrete-time version of the CNN [18, 19]. This first-order, discrete-time dynam-
ical system consists of multiple identical cells on regular spaced positions. The
dynamics of a cell is described by the following discrete-time state equation:

X(n + 1) = AY (n) + BU + I (7)

where X indicates the inner state of the cell, Y the output, and U the input of
the cell. n is a nonnegative integer indicating the time step. A is the feedback
template; B is the control (input) template. I is a constant bias parameter. The
output is described by the following piecewise-linear function:

Y (n) =
1
2
(|X(n) + 1| − |X(n) − 1|) (8)

The two templates A, B and bias I completely determine the behavior of a
DTCNN with given inputs and initial conditions.

The DTCNN can be interpreted as an iterative filter. For the one-step filter
in Equation (7), a new voxel value, X(n + 1) are determined directly by the
old voxel values in the corresponding neighborhood. The r-neighborhood of the
cell C(i, j, k) is a cubic region of dimensions (2r + 1) × (2r + 1) × (2r + 1)
around the center position (i, j, k). This neighborhood is usually chosen to be as
small as possible, typically, r = 1. Therefore, a one-step filter can only extract
the very local properties. The propagation property of iterative filter asserts
that the output image value after n iterations can be indirectly influenced by a
neighborhood n times larger than the original neighborhood.

In our nodule detection application, a 3D DTCNN is built with the same
structure and size as the segmented lung, with each cell representing a voxel at
a corresponding position. The neighborhood of the DTCNN is chosen as 3×3×3,
r = 1. With the aim of quickly detecting nodules in their initial stages (diameters
around or under 10mm), the iteration time N = 9 of the DTCNN is chosen. This
results in an affected neighborhood with size 19× 19× 19, which is sufficient to
cover the various sizes of nodules of our interest. In this work, the output reached
when the iteration stops is defined as the settled output, denoted as Y (N).

Because CNN’s default input and initial condition values are in the interval
[−1, 1], a normalization is needed to make the data suitable for usage in CNN.
The shape index value range [0.5, 1] is linearly transformed to [−1, 1], and all
the values from the interval [−1, 0.5] are mapped to the value of −1. Considering
that the output value of 1 corresponds to the nodule class, this normalization
method actually gives the voxels with the shape index values near 1 a larger
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initial probability of being a nodule. Based on this idea, the DTCNN can be
viewed as a system with the initial state of each cell being the shape index
value of the corresponding voxel. With the iterations increasing, the information
in larger neighborhoods is utilized to make the decision, until either the state
reaches a stable equilibrium point or the iterations stop.

4.3 DTCNN Learning Based on Genetic Algorithm

Due to the piecewise-linear nonlinearity of DTCNN, derivative based methods,
such as the gradient descent procedure cannot be used for training of DTCNN.
Kozek [20] proposed genetic algorithm (GA) for CNN learning. By minimizing
the differences between the settled output and the desired output, this input-
output approach guarantees that the settled output finally approaches the de-
sired output from the initial state.

For each nodule used for training, the image data in a neighborhood are
extracted. The choice of the neighborhood size is a tradeoff between the learning
load and the capability of decreasing the potential FPs. One extreme choice is
the whole lung, but this is not practical due to the heavy load. In our scheme,
31×31×31 (edge about 20mm) neighborhood is chosen. Accurate segmentation
of nodules requires a lot of domain knowledge, so a simple method of creating the
desired output image (DOI) is used instead. An ellipsoid having value 1 inside
and value −1 outside is generated for each nodule, with the center and the size
are adapted to overlap the nodule as much as possible.

Genetic algorithm [21] are stochastic optimization techniques that simulate
the mechanisms of natural selection and genetics. GA uses binary strings (chro-
mosomes) to encode points in parameter space. Chromosomes are evaluated by a
predefined fitness function to quantify the performance of each possible solution.
A higher fitness corresponds to a better solution. Searching from a population
of chromosomes, GA tries to combine information in good chromosomes to get
the optimal solution.

Instead of using the most commonly used cost function of the Euclidean
distance type [20], a more complex metric [22] is used. This method measures
sensitivity and specificity of a classification scheme by a pair of parameters, ρ1

and ρ2. For simplicity, we denote the desired nodule area, i.e., the area with
value 1, as Dj for the jth training image; similarly, the recognized nodule area
is indicated by Rj ; and the intersection between Dj and Rj is represented as
Dj∩Rj . Then ρ1

j = (Dj∩Rj)/Dj , and ρ2
j = (Dj∩Rj)/Rj . Another consideration

is the convergence speed of the DTCNN. We propose a scheme to penalize an
oscillated solution. For the jth training image, an oscillation index is defined as

Oj =
1
2k

k∑
i=1

|yi(N − 1) − yi(N)| (9)

It measures the difference between the settled output and the output at previous
step. The value of Oj falls in the interval [0, 1]. The fitness functions of a chro-
mosome are defined for a single training image j and for all the training images:
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fj = ρ1
jρ

2
j (1 − Oj), f(p) =

1
m

m∑
j=1

fj (10)

Here m is the number of the training images. The ultimate fitness function is
the average of the fitness values for all the training images.

5 Experimental Results

The database consisted of 19 CT scans in lung cancer screening trial. These
cases were selected according to radiology reports showing the existence of lung
nodules. The slice size is 512 × 512 (x, y) pixels, the in-plane resolution, same
for x and y directions, ranges from 0.54mm to 0.93mm. The axial (z) recon-
struction interval varied from 0.70mm to 1.30mm. The 19 cases were divided
into two groups: one group with 2 scans was used for training of DTCNN; the
remaining 17 cases were used for evaluation. The 17 scans were visually read by
a pulmonologist, who was asked to find all nodules and give their locations.

The detection of juxtapleural nodules consisted of candidate creation and
classification. In the candidate creation step, 29 from 31 juxtapleural nodules
in the 17 scans were included, a sensitivity of 93.6% with 145 FPs/case. For
the classification step, LDA, feedforward neural networks, linear support vector
machine with recursive feature elimination (SVM-RFE) were tried. And LDA
gave the best results. The reason for this is probablly due to the curse of di-
mensionality, as the number of samples is small comparing to the number of
features. ROC of the LDA using leave one case out scheme is shown in Fig. 4
(a). The area under the ROC is 0.9735. An operating point with sensitivity of
89.7% (26 from 29) and specificity of 95.4% on this ROC curve resulted in an
overall sensitivity of 83.9% (26 from 31) with an average of 6.7 FPs per case,
Fig. 4 (b).

In the detection of non-pleural nodules, 5 nodules from the two CT scans
formed the training data according to the procedure in Section 4.3. Totally 111
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Fig. 4. ROC curves of juxtapleural nodule detection. (a) ROC curve of the LDA; (b)
ROC curve of the juxtapleural nodule detection system (including both the candidate
creation and classification)
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possible nodule positions were given in the 17 testing cases by the CAD. This
111 positions included 20 from the 30 nodules found by the pulmonologist, a
sensitivity of 66.7%.

One important thing is the presence of nodules missed by the human reader
but identified by the CAD. The pulmonologist annotating nodules in the initial
session visually reviewed the CAD results to confirm nodules that were identified
by the CAD system. Pleural based focal opacities were confirmed by the human
reader as nodule or nodule-like focal opacities if identified by a CAD system as
actionable, and therefore in need of a subsequent visual reading. Linear pleural
opacities that were part of fissures were not included as significantly identifiable
in the visual scanning. Apical opacities were not identified as significantly find-
able/actionable lesions. 11 juxtapleural nodules, which were undetected in the
first visual reading were identified as true nodules in the second review. 13 areas
were indicated as nodule-like focal opacity pleural lesions. For the non-pleural
nodules, 32 nodules undetected in the first reading were identified as true nodules
in the second review after they were identified by the CAD system, and 8 addi-
tional positions were identified as very suspicious areas. The detection results of
the human reader and the CAD are shown in Table 1. The CAD system detected
many nodules originally missed by the human visual reading. This demonstartes
that the proposed CAD system performed effectively as a radiologist’s assistant
to detect small nodules in the pulmonary CT images.

This facts motivated an alternative evaluation method. The union of the nod-
ules detected in the first visual reading and the nodules confirmed in the second
visual review was considered as the truth. Accordingly, for juxtapleural nod-
ule detection (previously chosen operating point), 37 from 42 true nodules were
detected by the CAD, a sensitivity of 88.1% with an average of 6.1 FPs/case; fur-
thermore, if the nodule like focal opacities are considered as TPs, the sensitivity
of our CAD increased to 90.9% (50 from 55) with 5.3 FPs/case. For non-pleural
nodule detection, the total number of true nodules in these 17 cases were 62. The
human reader detected 30 of these 62 nodules, a sensitivity of 48.4%, whereas
our CAD system located 52, a sensitivity of 83.9%. The number of total FPs
by CAD in these 17 cases was 59, corresponding to 3.5FPs/case. If the 8 very
suspicious areas were considered as TPs, the sensitivity of our CAD increased
to 85.7%, and the total number of FPs dropped to 51, equivalent to 3FPs/case.

Considering juxtapleural and non-pleural nodules together, a overall sensi-
tivity of 85.6% (89 from 104) with 9.5 FPs/case was attained. If the possible
lesions are treated as TPs rather than FPs, the sensitivity increased to 88% (110
from 125) with 8.3 FPs/case.

Table 2 shows the performance comparison of our scheme with several other
methods of detecting pulmonary nodules in CT images. Although no strict con-
clusion on the superiority can be given due to the differences of the test images,
the comparison is of interest. The statistical results show that our method at-
tained a much higher sensitivity and much lower FP rate than multiple thresh-
olding method [2] and template matching scheme [5]. A prior model method [6]
gave a similar sensitivity and FP rate, but the results were obtained on a much
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Table 1. The number of correctly detected lesions in terms of locations and detection
method ( Nodule (Nodule like) )

Location/reader Human CAD Human−CAD CAD−Human CAD+Human

Juxtapleural 31 37(50) 5 11(24) 42(55)

Non-pleural 30 52(60) 10 32(40) 62(70)

Table 2. Performance comparisons between several nodule detection CAD systems

Methods Nodule size/number Sensitivity FP

Multiple thresholding [2] 3 − 28mm/187 70% 3/slice

Template matching [5] 5 − 30mm/98 72% 30/case

Prior model [6] 5 − 30mm/36 86% 11/case

This work 2 − 15mm/104 85.6% 9.5/case

smaller dataset. In addition, the goal of our work presented here is to detect
nodules as early as possible, so the CT scans used were collected in a lung can-
cer screening trial for asymptomatic subjects. The nodules in these cases are all
small-size nodules (most of them are from 2 mm to 10mm). Detecting small-size
nodules is more difficult and often leads to a lower sensitivity and higher FP rate.

6 Conclusion

A new CAD system was proposed to locate small nodules in high resolution he-
lical CT scans. Morphological closing, thresholding and 3D component analysis
were used to obtain juxtapleural nodule candidates, gray level and geometric
features were analyzed using a LDA classifier. Leave one case out method was
utilized to evaluate the LDA. This juxtapleural nodule detection method was
able to obtain a sensitivity 88.1% with an average of 6.1 FPs/case. To locate
non-pleural nodules, a DTCNN based scheme was developed. This method em-
ployed the local shape feature to perform voxel classification. The DTCNN was
trained using genetic algorithm (GA). The non-pleural nodule finding scheme
attained sensitivity of 83.9% with an average 3.5 FPs/case. By evaluating the
two subsystems together, an overall performance of 85.6% sensitivity with 9.5
FPs/case (0.04 FPs/image) will be attained. Furthermore, the CAD system lo-
cated many nodules missed by the human reading. This showed that the pro-
posed CAD system was an effective assistant for human experts to detect small
nodules and provide a valuable “second opinion” to the human observer.
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Abstract. This paper presents a novel method for denoising MR im-
ages that relies on an optimal estimation, combining a likelihood model
with an adaptive image prior. The method models images as random
fields and exploits the properties of independent Rician noise to learn
the higher-order statistics of image neighborhoods from corrupted input
data. It uses these statistics as priors within a Bayesian denoising frame-
work. This paper presents an information-theoretic method for charac-
terizing neighborhood structure using nonparametric density estimation.
The formulation generalizes easily to simultaneous denoising of multi-
modal MRI, exploiting the relationships between modalities to further
enhance performance. The method, relying on the information content of
input data for noise estimation and setting important parameters, does
not require significant parameter tuning. Qualitative and quantitative
results on real, simulated, and multimodal data, including comparisons
with other approaches, demonstrate the effectiveness of the method.

1 Introduction

Over the last several decades, magnetic resonance (MR) imaging technology has
benefited from a variety of technological developments resulting in increased reso-
lution, signal to noise ratio (SNR), and acquisition speed. However, fundamental
trade-offs between resolution, speed, and SNR combined with scientific, clinical,
and financial pressures to obtain more data more quickly, result in images that
still exhibit significant levels of noise. In particular, the need for shorter acquisi-
tion times, such as in dynamic imaging, often undermines the ability to obtain
images having both high resolution and high SNR. Furthermore, the efficacy
of higher-level, post processing of MR images, including tissue classification and
organ segmentation, that assume specific models of tissue intensity (e.g. homoge-
neous), are sometimes impaired by even moderate noise levels. Hence, denoising
MR images remains an important problem. From a multitude of statistical and
variational denoising formulations proposed, no particular one appears as a clear
winner in all relevant aspects, including the reduction of randomness and inten-
sity bias, structure and edge preservation, generality, reliability, automation, and
computational cost. The paper proposes a method for denoising MR magnitude
data modeling images as random fields, but unlike statistical methods in liter-
ature, it does not rely on a specific, ad-hoc image prior. Instead, it estimates
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the higher-order signal statistics from the neighborhood statistics of the noisy
input data by deconvolving the latter with the noise statistics. It then uses these
statistics as priors within an optimal Bayesian denoising framework.

2 Related Work

A multitude of variational/nonlinear PDE-based methods have been developed
for a wide variety of images and applications [15, 14], with some of these hav-
ing applications to magnetic resonance imaging (MRI) [8, 11, 7]. However, such
methods impose certain kinds of models on local image structure, and these mod-
els are often too simple to capture the complexity of anatomical MR images. Also
they do not take into account the bias introduced by Rician noise. Furthermore,
they usually involve manual tuning of critical free parameters that control the
conditions under which the models prefer one sort of structure over another; this
has been an impediment to the widespread adoption of these techniques.

The wavelet literature addresses image denoising extensively [16]. Healy et
al. [9] were among the first to apply soft-thresholding based wavelet techniques
for denoising MR images. Hilton et al. [10] applied a threshold-based scheme
for functional MRI data. Nowak [13], operating on the square magnitude MR
image, includes a Rician noise model in the threshold-based wavelet denoising
scheme and thereby corrects for the bias introduced by the noise.

Several statistically based image processing algorithms rely on information
theory such as the mean-shift algorithm [3]. It is a mode seeking process that
operates only on image intensities (scalar/vector valued) and does not account
for the neighborhood structure. As such it has been used for image segmenta-
tion, but not for reconstruction. Some MR nonuniformity correction methods are
based on the quantification of information content in MR images [19, 12]. They
follow from the observation that nonuniformities increase the entropy of the 1D
gray scale probability density functions (PDFs). However, entropy measures on
first-order image statistics are insufficient for denoising; thus this paper extends
the information theoretic strategy to higher-order PDFs.

Another class of statistical methods are based on Markov random fields
[24, 22]. The proposed method also exploits the Markov property of the im-
ages, but rather than imposing an ad-hoc image model, it estimates the relevant
conditional PDFs from the input data. We show that incorporating spatial in-
formation, via neighborhood statistics, is effective for MRI denoising and that
the process can be bootstrapped from the image data, making a very general
algorithm with less tuning of critical free parameters.

Previous work in estimation theory has addressed the use of optimal image
estimation using neighborhood probabilities [21]. That work focuses on discrete
functions and relies on inverting the channel transition matrix (noise model) to
give a closed form estimate for source statistics. The proposed method addresses
continuous-valued signals, which is essential for medical imaging applications,
and thus entails deconvolving nonparametric approximations to PDFs via en-
tropy reduction. It also addresses the effect of noise in the neighborhoods that
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are used to condition the estimate, hence making it more effective for reducing
additive/multiplicative noise, which is important in medical image processing.

The method in this paper builds on our previous work in [1]. That work lays
down the foundations for unsupervised learning of higher-order image statistics
and proposes entropy reduction as a denoising heuristic for independent additive
zero-mean Gaussian noise for single gray scale images. This paper uses entropy
reduction coupled with the Rician noise model as a means to recover higher-order
image statistics from noisy input data. It exploits such statistics for optimal
Bayesian denoising of MR images, with a method for computing the expectation
of the posterior. It also addresses the question of how to utilize multimodal data
within this optimal framework.

3 Neighborhood Statistics for MRI Denoising

This section begins with an overview of the random-field image model and then
describes the formulation that uses a priori information of higher-order (neigh-
borhood) statistics within an optimal Bayesian estimation framework. The next
section (Section 4) describes a way of bootstrapping this process by generating
such priors from the noisy data itself.

3.1 Random Field Image Model

A random field/process [5] is a family of random variables X(Ω;T ), for some
index set T , where, for each fixed T = t, the random variable X(Ω; t) is defined
on the sample space Ω. If we let T be a set of points defined on a discrete
Cartesian grid and fix Ω = ω, we have a realization of the random field called
the digital image, X(ω, T ). In this case {t}t∈T is the set of pixels in the image.
For 2-dimensional images t is a two-vector. We use a shorthand to denote random
variables X(Ω; t) by X(t). We denote a specific realization X(ω; t) (the digital
image), as a deterministic function x(t).

If we associate with T a family of pixel neighborhoods N = {Nt}t∈T such
that Nt ⊂ T , t /∈ Nt, and u ∈ Nt if and only if t ∈ Nu, then N is called a
neighborhood system for the set T and points in Nt are called neighbors of t.
We define a random vector Y (t) = {X(t)}t∈Nt

, denoting its realization by y(t),
corresponding to the set of intensities at the neighbors of pixel t. We denote
the noiseless image by X(ω, T ) and its associated set of neighborhood intensities
by Y (ω, T ). Correspondingly, for the observed noisy image, we use X̃(ω, T ) and
Ỹ (ω, T ). For the formulation in this paper, we assume the noiseless image to be
generated from a stationary ergodic process (in practice this assumption can be
relaxed, somewhat). For notational simplicity, we use the short hand for random
variables X(t) as X and their realizations x(t) as x, dropping the index t.

3.2 Bayesian Estimation with Higher-Order Statistical Priors

The proposed strategy relies on several pieces of technology that interact to
provide accurate, practical models of image statistics. For clarity the discussion
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Fig. 1. Insets of (a) the noiseless image, (b) the noisy image (SNR 12db), (c) one of
the two images forming the higher-order prior, and (d) the denoised image (SNR 23db)

begins at a high level allowing for certain available models and estimates; succes-
sive sections discuss how each of these pieces is developed from the input data.
Our goal is to estimate the true intensity x from the observed noisy intensity x̃ by
exploiting the neighborhood intensities. We begin with the simplest case where
we know the uncorrupted neighborhood intensities y. We consider Bayesian es-
timation with the prior P (X|Y = y) and the likelihood P (X̃ = x̃|X). Assuming
again, for simplicity, that we know the prior, Bayes rule gives the posterior as

P (X|X̃ = x̃, Y = y) =
1
η
P (X̃ = x̃|X)P (X|Y = y) (1)

where η = P (X̃ = x̃|Y = y) is a normalization factor. For a squared error loss
function the optimal estimate is the posterior mean x̂ = E[X|X̃ = x̃, Y = y].

In practice, two problems undermine this strategy. The first concerns obtain-
ing the conditional PDFs that give the priors for an image. We propose to model
these nonparametrically using Parzen windowing with samples of image neigh-
borhoods, as described in subsequent sections. These samples can come from
either a suitable database of high SNR images (e.g. different images of the same
modality and anatomy) or from the noisy input image itself, using a bootstrap-
ping process described in Section 4. The second problem is that, even if we know
the priors, we know only ỹ for the input data (not y). To address this issue, we
start with ỹ as an approximation for y and iterate on the posterior estimates to
a fixed point where the posterior estimate for each pixel is consistent with the
prior given by the estimates of its neighbors. Thus, as the iterations proceed, the
noise in the pixel intensities reduces and the neighborhoods give progressively
better estimates of the prior. The proposed algorithm is therefore:

1. The input image I comprises a set of intensities {x̃}t∈T and neighborhoods
{ỹ}t∈T . These values form the initial values (I0 = I) of a sequence of images
I0, I1, I2, . . ., with corresponding intensities x̂0, x̂1, x̂2, . . . and neighborhoods
ŷ0, ŷ1, ŷ2, . . ..

2. Compute the likelihood PDF P (X̃ = x̃|X), as described in Section 3.4.
3. For each pixel in the current image Im, estimate the higher-order prior

P (X|Y = ŷm), as described in Section 3.3.
4. Construct a new image Im+1 with intensities x̂m+1 as the posterior mean

x̂m+1 = E[X|X̃ = x̃, Y = ŷm].

(a) (b) (c) (d)
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5. If ‖ Im+1 − Im ‖> δ (small threshold), go to Step 3, otherwise Im+1 is the
output.

Figure 1 shows a demonstration of this concept on simulated MRI data from
the BrainWeb [2] project. We corrupt a T1 image with Rician noise and use two
other similar, but not identical, images as priors. We use 9 × 9 neighborhoods.
Figure 1(c) is one of the two images representing the nonparametric prior model
(Parzen windows, 500 local random samples for each t), and Figure 1(d) is the
output image. This example shows the power of the prior—the denoised image
exhibits structures that are barely visible in the noisy version. The coming sec-
tions describe the underlying technology in this estimation process, and give an
algorithm for generating data-driven prior models without an example.

3.3 Modeling the Prior: Nonparametric Density Estimation

Bayesian estimation using higher-order statistics entails the estimation of higher-
order conditional PDFs. Despite theoretical arguments suggesting that density
estimation beyond a few dimensions is impractical, the empirical evidence from
the statistics literature is more optimistic [17, 1]. The results in this paper confirm
that observation. Moreover, stationarity implies that the random vector (X,Y )
exhibits identical marginal PDFs, leading to more accurate density estimates
[17]. In addition, the neighborhoods in natural images have a lower-dimensional
topology in the high-dimensional feature space [4] that aids in density estimation.

We use the Parzen-window nonparametric density estimation technique [6]
with an n-dimensional Gaussian kernel Gn(z, Ψn), where n is the neighborhood
size. Having no a priori information on the structure of the PDFs, we choose an
isotropic Gaussian, i.e. Ψn=σP In, where In is the n × n identity matrix. Using
optimal values of the Parzen-window parameters is critical for success, and that
can be difficult in such high-dimensional spaces; we have developed a method
for automatically choosing this parameter, as described Section 4.3.

For a stationary ergodic process, the estimated prior is

P (X|Ỹ = ỹi) =

∑
tj∈Ai

Gn(ỹi − yj , Ψn)G1(xj , Ψ1)∑
tj∈Ai

Gn(ỹi − yj , Ψn)
(2)

where the set Ai is a small subset of T , chosen at random for each ti, and xj

and yj are shorthand for x(tj) and y(tj) respectively. This results in a stochastic
approximation for the conditional PDFs and the corresponding posteriors.

3.4 Approximating the Rician Likelihood

The Rician PDF of the MRI intensities does not lend itself to analytical, closed-
form representations of quantities, such as the likelihood and the posterior ex-
pectation, which we need for each iteration of this algorithm. In practice we have
found that the shape of the PDF is less important than having good estimates
of variance and bias. Therefore, we develop a method of approximating Rician
noise (via the likelihood) by additive Gaussian noise with a signal-dependent
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Fig. 2. Gaussians (solid lines) approximating likelihood functions (non-solid lines) for
different observed signal magnitudes (underlying noise ≡ N(0, 100))

mean and variance. For the underlying independent noise N(0, σ2), and σ esti-
mated using the method described by Nowak [13], the likelihood is

P
(
X̃ = x̃|X = x

)
=

x̃

σ2
exp(− x̃2 + x2

2σ2
)I0(

x̃x

σ2
) (3)

where I0(·) is the zero-order modified Bessel function of the first kind. For a
discrete set of observed signal magnitudes x̃, we fit a Gaussian to the likelihoods
via a Levenberg-Marquardt optimization scheme. In this way, we create (in a
preprocessing step) a lookup table mapping x̃ to the parameters of the Gaussian
approximation, and interpolate the parameters between sample points as needed
in subsequent likelihood calculations. At high SNR the means are close to x̃ while
at low SNR the means are substantially lower. Figure 2 shows the likelihood
PDFs and the approximated Gaussians for various observed signal magnitudes.

3.5 Computing the Posterior Mean

Equations 1 and 2, and the Gaussian approximated likelihood, give the posterior

P (X|X̃ = x̃, Ỹ = ỹi) =
1
η

∑
tj∈Ai

Gn(ỹi − yj , Ψn)G1(xj , σ
2
P )∑

tj∈Ai
Gn(ỹi − yj , Ψn)

G1(x̃L, σ̃2
L), (4)

where σ̃2
P is the Parzen-window kernel variance, and x̃L and σ̃2

L are the mean and
variance of the Gaussian approximation to the likelihood (from the lookup table).
The posterior mean is given by a sum of expectations of Gaussian products:

E[X|X̃ = x̃, Ỹ = ỹi] =

∑
tj∈Ai

Gn(ỹi − yj , Ψn)KijMij∑
tj∈Ai

Gn(ỹi − yj , Ψn)Kij
; (5)

Kij =
exp(−Aij(Cij − B2

ij/4))√
2π(σ̃2

P + σ̃2
L)

;Mij =
Bij

2
;

Aij =
σ̃2

P + σ̃2
L

2σ̃2
P σ̃2

L

;Bij = 2
xj σ̃

2
P + x̃Lσ2

L

σ̃2
P + σ̃2

L

;Cij =
x2

j σ̃
2
P + x̃2

Lσ2
L

σ̃2
P + σ̃2

L

;

where we exploit the property that the Gaussian is its own conjugate.
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4 Bootstrapping Neighborhood Statistics from Noisy
Input Data

So far we discussed denoising with higher-order statistical priors. In the absence
of noiseless/high-SNR example images, we must estimate these from the noisy
input image. If we wish to construct an approximation to the prior (neighborhood
statistics) from the input data, we must address the affects of noise on this PDF.
We approximate Rician noise as (nonstationary) additive Gaussian. Hence the
proposed method derives from the effects of additive Gaussian noise on PDFs.
Additive noise in the signal corresponds to a convolution of the PDFs of the
signal and noise. Therefore, for probability densities, noise reduction corresponds
to deconvolving the PDF of the input data by the PDF of the noise.

4.1 Estimating Neighborhood Statistics

Rician noise affects the conditional PDFs in two ways: (a) it introduces a bias
(shift), and (b) it increases its entropy h(X̃|Ỹ = ỹ) [18]. Hence, we propose en-
tropy reduction coupled with bias correction in an attempt to recover the PDFs.
Of course, entropy reduction might also partly eliminate the normal variability
in the image. However, we are motivated by the observation that noiseless images
tend to have very low entropies relative to their noisy versions. Thus, entropy
reduction first affects the noise substantially more than the image statistics. We
propose bias correction by shifting intensities x̃ towards their likelihood mean
E[X̃ = x̃|X]. For the case of zero noise these two values coincide, thereby elimi-
nating the need for any correction. Otherwise, we move x̃ towards its likelihood
mean with a force proportional to the difference. Thus, to restore the conditional
PDFs of the input, we minimize the functional∑

t∈T

[
λ1

(
h(X̃|Ỹ = ỹ)

)
+ λ2

(
x̃ − E[X̃ = x̃|X]

)2

/2
]

. (6)

The first term in the functional sharpens the conditional PDFs, and the second
term aids in bias correction. We use an iterative gradient-descent optimization
scheme with finite forward differences. The PDF restoration proceeds as follows:

1. The input image I comprises a set of intensities {x̃}t∈T . These values form
the initial values of a sequence of images I0, I1, I2, . . ..

2. Using the current image Im, construct a new image Im+1 with intensities
x̃m+1 = x̃m − λ1∂h/∂x̃m − λ2

(
x̃m − E[X̃ = x̃m|X]

)
.

3. If the estimated noise level (as per the method in [13]) in Im+1 is zero, then
stop. Otherwise, go to Step 2.

We call the final image generated by this process as the PDF-restored image.
This image forms the example image, from which samples are taken to model
the prior conditional probabilities in Equation 2. In practice, the results are
somewhat insensitive to the values of λ1 and λ2, and we choose λ1, as described
in Section 5, related to a mean-shift update.
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4.2 Entropy Minimization via Gradient Descent

Entropy is the expectation of negative log-probability, and therefore we can
approximate it with the sample mean [20]. For a stationary ergodic process, we
approximate the entropy of the conditional PDF as

h(X̃|Ỹ = ỹi) ≈ − 1
|T |

∑
ti∈T

log

[∑
tj∈Ai

Gn+1(w̃i − w̃j , Ψn+1)

|Ai|P (Ỹ = ỹi)

]
(7)

where w̃i = (x̃i, ỹi), Ai is a small subset of T , chosen at random; as done in
Section 3.3 for computing the prior. A variety of practical issues associated with
this strategy, are discussed in Section 4.3. The gradient descent for wi is

∂x̃i

∂t
= − 1

|T |
∂w̃i

∂x̃i

∑
tj∈Ai

Gn+1(w̃i − w̃j , Ψn+1)∑
tk∈Ai

Gn+1(w̃i − w̃k, Ψn+1)
Ψ−1

n+1(w̃i − w̃j) (8)

where ∂w̃i/∂x̃i projects the n+1 dimensional vector w̃i onto the dimension asso-
ciated with the element x̃i. In previous work [1] we have shown that, a timestep
of |T |σ2

P corresponds to a mean-shift procedure on the conditional PDFs; that
is, each data value moves to the weighted average of the sample data.

4.3 Implementation Issues

This section discusses several practical issues that are crucial for the effectiveness
of the entropy reduction and prior estimation on image neighborhoods. A more
detailed discussion on these issues is given in [1].

Parzen-Window Kernel Width: Parzen-window density estimates, using
finitely many samples, are greatly sensitive to the value of the Gaussian ker-
nel σP [6]. The particular choice of σP is related to the sample size |Ai| in the
stochastic approximation. We automatically compute an optimal σP , that min-
imizes the average entropy of all conditional PDFs in the image, via a Newton-
Raphson optimization scheme. Our experiments show that for sufficiently large
|Ai| additional samples do not significantly affect the estimates of entropy and
σP , and thus |Ai| can also be generated automatically from the input data.

Stationarity and Local Sampling Strategies: In practice, image statistics
are not homogeneous, and statistics for most images are more accurately modeled
as piecewise stationary ergodic. Thus the set Ai of samples used to evaluate
entropy and process pixel ti should consist of pixels that are spatially near ti. To
achieve this, we choose a unique set of samples for each pixel ti at random from
a Gaussian distribution on the image coordinates, centered at ti with standard
deviation 30. Thus, the set Ai comprises pixels biased to be more near ti. This
strategy gives consistently better results than uniform sampling, and we have
found that the it performs well for virtually any choice of the standard deviation
that encompasses more than several hundred pixels. For this sampling strategy,
|Ai| is automatically computed to be 500 for all examples in the paper.
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Neighborhood Shape and Size: Larger neighborhoods generally yield better
results but take longer to compute. Typically 9 × 9 neighborhoods suffice, and
we use them for the results in this paper. To obtain rotational invariance we use
a metric in the feature space (neighborhood mask) that controls the influence of
each neighborhood pixel by making distances in this space less sensitive to neigh-
borhood rotations. Likewise image boundaries are handled through anisotropic
metrics that do not distort the neighborhood statistics of the image.

Computation: The computational complexity of the proposed method is sig-
nificant: O(|T ||Ai|ED) where D is the image dimension and E is the extent of
the neighborhood along a dimension. This is exponential in E, and our current
results are limited to 2D images. The literature suggests some potential improve-
ments (e.g. [23]). However, the purpose of this paper is to introduce the theory
and methodology—algorithmic improvements are the subject of future work.

5 Experiments and Results

We show results using (a) real T1 noisy data, as well as (b) simulated MR
data (181×217 pixels) obtained via BrainWeb [2] for unimodal and multimodal
denoising. We simulate Rician noise by adding zero-mean Gaussian noise to the
real and imaginary parts of the simulated MR data and taking the magnitude.
For entropy minimization in the functional 6, the time step λ1 = |T |σ2 (≡ mean-

Fig. 3. (a) Noiseless T1 image. (b) Noisy image (gray matter SNR 12db, normalized
squared error 1.0). (c) PDF-restored image (13 iterations) (as described in Section 4.1).
(d) Denoised image (5 iterations, gray matter SNR 23db, normalized squared error
0.16). (e)-(h) show zoomed insets of images (a)-(d)

(a) (b) (c) (d)

(e) (f) (g) (h)



686 S.P. Awate and R.T. Whitaker

Fig. 4. Multimodal denoising. (a)-(c) Noisy T1, T2, PD images (signal intensity
range 0:100, underlying noise N(0, 400)) (d) Zoomed inset of noisy T1 image.
(e),(f) Zoomed insets of PDF-restored (as described in Section 4.1) and denoised T1
images. (g),(h) Zoomed insets of PDF-restored and denoised T2 images

shift update) can lead to oscillations, because of interactions of neighborhoods
from one iteration to the next. We have found that a time step of λ1 = 0.2|T |σ2

alleviates this effect. We fix λ2 = 0.2. We compute SNR as 20 log(x/σ) where x is
the signal magnitude and the (estimated) underlying noise PDF is N(0, σ2). Each
iteration on these data sets takes about 2 minutes on a Pentium-IV machine.

Multimodal denoising entails a simultaneous denoising of T1, T2, and PD
images in a coupled manner, treating the combination of images as an image of
vectors with the PDFs in the combined probability space. Although this paper
shows results with multimodal images that are well aligned, we have evidence
that the denoising is fairly robust to minor misregistration errors. The results
show that incorporating more information in the denoising framework, via im-
ages of multiple modalities, produces consistently better results.

Figure 3 shows a denoising example using T1 data (SNR 12db) for the gray
matter. With a normalized sum of squared pixel errors for the noisy image as
1.0, the denoised image has a squared error of 0.16. In general, the PDF-restored
image (as described in Section 4.1) appears more smooth than the denoised image
and may have less error. However the restoration of the neighborhood PDFs
can produce some loss of structure, and the subsequent Bayesian estimation,
which retains a fidelity to the input data, helps retain some of those details. We
can see this behavior in the regions corresponding to the cerebro spinal fluid.
This is even more clear in the next denoising example in Figure 4. With the
same underlying noise PDF the normalized squared errors for the T2 and PD

(a) (b) (c) (d)

(e) (f) (g) (h)
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Fig. 5. (a) Real noisy image. (b) PDF-restored image (as described in Section 4.1).
(c) Denoised image. (d)-(f) are zoomed insets of (a)-(c)

modalities are 0.3 and 0.19, respectively. Performing multimodal denoising with
T1, T2, and PD data gives improved normalized squared errors of 0.10, 0.29,
and 0.16, respectively.

Figure 4 shows T1, T2 and PD images (signal intensity range 0:100) with the
underlying noise PDF as N(0, 400). The SNR is 6db for the gray matter. Here,
with a normalized squared error for the noisy image as 1.0, the squared error for
the T1, T2, and PD denoised images are 0.08, 0.32, and 0.09 respectively. The
squared error for T1 is significantly better than results in [13] for an equivalent
gray matter SNR. Multimodal denoising, using T1, T2 and PD all together, gives
normalized squared errors as 0.06, 0.17 and 0.07, respectively. Figure 5 shows
results using real T1 noisy MRI data.
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Abstract. In this paper, we evaluate different schemes for constructing
a mean shape anatomical atlas for atlas-based segmentation of MR brain
images. Each atlas is constructed and validated using a database of 20
images for which detailed manual delineations of 49 different subcortical
structures are available. Atlas construction and atlas based segmentation
are performed by non-rigid intensity-based registration using a viscous
fluid deformation model with parameters that were optimally tuned for
this particular task. The segmentation performance of each atlas scheme
is evaluated on the same database using a leave-one-out approach and
measured by the volume overlap of corresponding regions in the ground-
truth manual segmentation and the warped atlas label image.

1 Introduction

Segmentation of brain structures in three-dimensional (3D) magnetic resonance
(MR) images is important for image-based brain morphometry. Manual delin-
eation by trained experts is time consuming and susceptible to intra- and inter-
rater subjectivity. On the other hand, automated segmentation approaches re-
lying only on image intensity information cannot cope with the complexity of
the image data and the variability of the structures under study. Robust auto-
mated approaches require model-based strategies that incorporate prior knowl-
edge about the intensity and shape characteristics of the objects to be segmented.
In atlas-based segmentation this knowledge is represented as an annotated image
or atlas, which is warped to the image under study by an appropriate spatial
transformation, such that volumes of interest (VOI) defined in the atlas are
correctly projected onto the anatomically corresponding structures in the study
image. In its simplest form, the atlas consists of an actual image (template)
acquired from a single individual and its associated VOI label image. However,
such an atlas is intrinsically biased towards the anatomy of a single subject.
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To account for the significant biological variability that exists across subjects,
a statistical or probabilistic atlas has to be constructed from a database of ex-
amples that is representative for the population under study. While different
voxel-wise attributes can be considered for statistical modelling, such as image
intensity, anatomical region label or local shape variability, an intensity-based
template is needed to enable the use of automated voxel similarity based regis-
tration approaches for template-to-study image warping. Based on the fact that
the spatial normalization procedures are limited by regularization constraints in
the amount of deformation, the “best” template should minimize (some mea-
sure of) the deformation from the template to all subjects in the population.
The template can therefore be constructed as the “geometrical average” of the
group of images [1].

A popular intensity-based brain template, that is widely used for functional
and morphometrical studies, is the MNI template distributed with SPM [2],
which was constructed by linear registration of a large set of normal brain MR
images. Other approaches [3, 1] construct a mean shape template iteratively
starting from an affine average, whereby in each iteration all images in the set
are aligned with the average image obtained in the previous iteration. Linear
registration, however, can not compensate for local inter-subject shape variabil-
ity and the resulting intensity-averaged template is necessarily blurred in regions
where this variability is large, such as the cortex. Guimond et al. [4] proposed
a method for constructing a mean shape template based on averaging of the
deformation fields obtained by non-rigid image registration between one refer-
ence image and all other images in the database. They evaluated the impact of
the choice of the reference image on the final atlas template and found this to
be not significant. However, only 5 images were used for template construction
and the global indices used to measure the difference of atlas templates con-
structed from different reference images can not assess local shape differences,
which are crucial for atlas-based segmentation. Kochunov et al. [5] construct a
mean shape template by defining a “minimal deformation target” (MDT) that
is constructed by deforming a single reference image in the set such that the
deformed image minimizes the average deformation to all images in the set. The
reference image is selected such that its MDT is optimal in some sense among
all the MDT images that can be constructed from the set. Nevertheless, optimal
MDT is still biased towards the anatomy of the reference image from which it was
constructed. Rohlfing et al. [6] compared different strategies for intensity-based
template selection in the context of atlas-based segmentation of 3D confocal mi-
croscopy images of bee brains, namely by registration of the study images to an
individual intensity image, to a shape-averaged intensity-based template, to the
most similar intensity image from the database, and to all intensity images from
the database followed by multi-classifier decision fusion (MUL). The MUL strat-
egy was found to score the best, but is computationally much more expensive
than when a single template is used.

In this paper, we evaluate different strategies for template and label atlas
construction for atlas-based segmentation of human MR brain images, using a
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database of 20 images with detailed manual delineations of 49 different sub-
cortical structures [7]. For each template constructed from the intensity images
in the database, an associated region label atlas is constructed from the cor-
responding manual segmentations. Inter-subject image registration for template
construction and template-to-image registration for atlas-based segmentation are
performed using the same state-of-the-art non-rigid image registration (NRR)
algorithm based on maximization of mutual information (MI) constrained by a
viscous fluid deformation model [8] with parameters that were optimally tuned
for this particular task. The segmentation performance of each atlas scheme is
evaluated on the same database using a leave-one-out approach and measured by
the volume overlap of corresponding regions in each of the manual segmentations
and the warped atlas label image.

2 Material and Methods

2.1 Image Database

The set of 20 high-resolution normal brain MR images (10 females, 10 males,
median age 31 years) used in this study was acquired at the National Society
for Epilepsy, Chalfont St Peter, Buckinghamshire, UK [7]. All images have voxel
sizes around 0.937 mm3 and image dimensions of [165−195]×[198−199]×[155−
175]. Each brain was manually segmented into 49 sub-structures as illustrated in
figure 3. These include major brain structures such as the ventricles, cerebellum
or corpus callosum, as well as the major lobes and gyri and the deep gray matter
structures such as hippocampus, putamen, caudate nucleus and thalamus. The
volume of the structures varies between about 183 cm3 (left frontal lobe) to
about 0.3 cm3 (nucleus accumbens).

The images are first globally aligned by affine registration of each image to
the SPM T1-weighted MR template using maximization of MI [9]. Probabilistic
white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) segmen-
tation maps are obtained for each image by automated intensity-based tissue
classification using the method described in [10]. These maps are summed to
construct a brain mask that is used to eliminate non-brain voxels from further
analysis.

2.2 Non-rigid Image Registration

Inter-subject image registration for atlas construction and atlas-to-image regis-
tration for atlas-based segmentation are performed using the NRR algorithm of
D’Agostino et al. [8]. The method is based on maximization of MI of correspond-
ing voxel intensities and is constrained by a viscous fluid deformation model. The
Navier Stokes equation of the viscous fluid model is solved approximately by spa-
tial convolution of the MI force field with a Gaussian kernel ψσ of width σ. To
preserve the topology of the deforming image, regridding is applied whenever
the Jacobian of the deformation field becomes negative. The width of the spatial
smoothing kernel ψσ controls the smoothness of the deformation: for too small
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a value, the deformation is not sufficiently constrained and the algorithm con-
verges prematurely; for too large a value, the force field is over-smoothed, and
small features will be lost. An optimal value of σ = 7 voxels was determined by
evaluating the performance of the NRR algorithm for inter-subject registration
of the MR brain images in the database as a function of σ, using volume over-
lap between the warped manual segmentations as evaluation criterion [11]. This
value for σ was adopted for all registrations in this study.

2.3 Atlas Construction

Let I1 to IN denote the N = 20 pre-processed images in the database. With
each image Ii is associated a set of K = 49 binary label images Lik obtained by
manual segmentation of region k in image i. Let Tij denote the deformation field
that results from non-rigid registration of source image Ii to target image Ij .
The deformed source image Ii after warping to the space of Ij is represented as
Ĩij = Tij(Ii). Several schemes for construction of a mean shape average template
are evaluated in this paper:

AT0: Individual Brain Image. Each of the individual brain images Ii and
its label images Lik are used as template and label atlas respectively for atlas-
based segmentation of all other images in the database.

AT1: Minimal Deformation Target. The MDT template derived from im-
age Ii is defined as MDTi = T̄i(Ii) with T̄i = 1

N

∑N
j=1 Tij the average defor-

mation of Ii when warped to all images in the database. The MDT template
requires the least amount of deformation to all images in the database [5]. Ide-
ally, an identical MDT brain should be obtained regardless of the initial image
from which it was constructed. However, because the registration algorithm is
topology preserving, each MDTi will inevitably be biased towards the topology
of the corresponding Ii.

AT2: Intensity-Averaged MDT. Instead of transforming an individual brain
Ii by the mean deformation T̄i to obtain MDTi, AT2i = T̄i(Īi) is obtained by
transforming the intensity-averaged template Īi = 1

N

∑N
j=1 Ĩji to its MDT shape.

Īi is constructed by voxel-wise averaging of all images Ij in the database after
warping to Ii. Hence, some bias of AT2i towards Ii from which it was constructed
can not be excluded.

AT3: Population-Averaged MDT. If all the individuals are representative
of the same (normal) population under study and if the image quality of all
images is similar, all MDTi templates are very close to each other, except for
some unresolved residual topological variations. These are removed by voxel-wise
averaging over all subjects: AT3 = 1

N

∑N
i=1 MDTi. To compensate for global in-

tensity differences between different MDTs, inter-subject intensity normalization
is performed prior to averaging [12].

The construction of the corresponding label atlases requires some consider-
ation. If atlases for AT1 and AT2 are constructed by direct application of the
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mean shape MDT transform to the manually segmented label image, the man-
ual segmentation errors in the original label image would be propagated, and
possibly amplified, into the atlas, which negatively affects segmentation perfor-
mance. Instead, all images in the database are registered to the AT1, AT2 or
AT3 template and the individual binary label images are warped accordingly by
trilinear interpolation and subsequent binarization by thresholding at a value of
50%. A statistical probabilistic anatomical map (SPAM) Rk is constructed for
each region k individually by averaging the warped label images of all subjects
within the space of the atlas.

We compare these mean shape atlas schemes with an atlas-based segmen-
tation strategy based on multi-classifier decision fusion (MUL) [6]. With MUL,
each individual image in the database of N segmented images is used in turn
as template to segment the study image. The final labelling for each voxel in
the study image is decided by majority voting over all N segmentations. This is
an alternative solution to atlas-based image segmentation that does not require
an intensity-averaged template. We evaluated two different MUL strategies, one
using the original images Ii and labels Lik as templates and atlases (MUL0) and
one using the corresponding MDTi templates and MDT labels instead (MUL1).
For MUL1, corresponding label images are obtained by directly warping Lik to
the MDT space, as we anticipate that the MUL decision fusion will introduce
some smoothing anyway.

2.4 Validation

The atlas schemes AT0, AT1, AT2 and AT3 are evaluated for atlas-based seg-
mentation. The intensity-based template is non-rigidly registered to each of the
study MR images Ii, yielding deformation fields Ti. These are used to warp the
atlas SPAMs Rk for each region k into the subject space using trilinear interpo-
lation of probability values. Binary segmentation maps Sik are derived from the
warped SPAMs by setting Sik = 1 in each voxel were region k has the highest
probability over all SPAMs. The volume overlap between the manual ground
truth segmentation Lik and the atlas-based segmentation Sik is evaluated for
each region k by the region similarity index (RSI):

RSIik =
V (Lik&Sik)
V (Lik‖Sik)

(1)

The mean ¯RSIk obtained by averaging RSIik over all images i indicates the
performance of a particular atlas scheme for segmentation of region k. We use
the global similarity index (GSI) obtained by averaging across all K = 49 regions
as a global performance indicator for the algorithm:

GSI =
1
K

K∑
k=1

¯RSIk (2)
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3 Results

Figure 1 shows two different individual brains (AT0) and their corresponding
AT1 (i.e. MDT) and AT2 templates, as well as the population-averaged AT3
template. AT1 and AT2 are in the same mean shape space, transformed by the
same average deformation, but AT2 is a bit blurred due to inter-subject intensity
averaging. The mean shape transformation compensates for shape differences
between individual brains. As a result, the AT1 and AT2 templates derived from
different individual brain images are largely similar in shape (as is apparent for
the ventricles for instance). Nevertheless, the topology of the initial brain image
is preserved in the corresponding templates in both cases and local topological
differences are still present in different AT1 and AT2 templates as indicated in
figure 1. The intensity averaging applied to construct AT2 can not fully remove
this bias. AT3 is designed to further reduce this bias by averaging over the
topologies of all individuals.

To examine the impact of topological differences in the initial images on the
mean shape templates derived from them, 20 different AT2 templates were con-
structed using different individual brains as reference. This set of AT2s was then
voxel-wise averaged after intensity normalization, and voxel-wise intensity vari-
ance was calculated subsequently as shown in figure 2. The voxel-wise averaged
AT2 looks quite similar to AT3 and both are conceptually identical. From fig-
ure 2, we can see that the ventricle structures have almost identical shape in all

(a) (b) (c) (d)

Fig. 1. (a) Brain images for two individuals (top and bottom); (b) MDT and (c)
AT2 brain templates derived from (a); (d) population-averaged AT3 brain. The unique
topologies of each brain are maintained in their MDT and AT2 templates
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(a)

(b) (c) (d)

Fig. 2. (a) Four AT2 templates constructed using 4 different initial individual brain
images; (b) Voxel-wise averaging of 20 intensity-normalized AT2 templates and (c)
the voxel-wise intensity variance map; (d) AT3 template, shown here for comparison
with (b). The intensity variance between different AT2 templates is near zero in the
ventricular region, while significant variability exists in the cortical areas

AT2 templates, as indicated by near zero variance in that area. However, the
neo-cortical area shows large variability in the variance map, which is caused by
unresolved topology-specific bias remaining in each AT2.

Figure 3(a) illustrates the quality of the manual segmentations for two images
in the database. Slice by slice delineation introduces local irregularities in the
segmentation maps that are difficult to avoid. The label image constructed for
AT3 by maximum probability fusion of 49 region SPAMs is shown in figure 3(b).
The AT3 label image is much smoother than the manual delineation of individual
brains and removes most of the iregularities in the manual segmentaion.

Figure 4 summarizes the performance of the atlas schemes AT0, AT1, and AT2,
all constructed from I1, together with AT3, for segmentation of the 19 other images
in the dataset. The figure shows that, using an average RSI threshold of 70%, AT0,
AT1, AT2 and AT3 are able to segment 16, 22, 28 and 30 regions (out of total 49)
respectively. The GSI values are 64.8%, 67.0%, 67.5% and 70.0% respectively.

Figure 5 summarizes the performance of AT0 (I1), AT1 (MDT1), AT2 and
AT3 for segmentation of the deep gray matter structures. AT3 performs system-
atically better than the other schemes for each structure. The average RSI values
vary between 50% for the smallest structures (nucleus accumbens) to 77% for
the largest ones (thalamus).
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(a) (b)

Fig. 3. (a) Manual segmentation for two images in the database; (b) Maximum prob-
ability label image of the AT3 atlas constructed from SPAMs of 49 regions computed
from the 20 segmentations in the database

Fig. 4. Performance of different template construction schemes for atlas-based seg-
mentation. Each color bar in this figure represents the number of regions that, using
a particular atlas, were segmented with an average RSI value in the ranges indicated
by the color of the bar. Figure shows only the statistics for average RSI larger than
40%. The graph compares the AT0, AT1 and AT2 templates, constructed from the
first image in the database, with the population-averaged AT3 template
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Fig. 5. Performance of AT0 (I1), AT1 (MDT1), AT2 and AT3 for segmentation of the
deep gray matter structures

Fig. 6. As figure 4, but comparing AT3 to multi-decision fusion segmentation using the
original images (MUL0) or their MDTs (MUL1) as templates, evaluated for 5 images
in the database. Figure shows only the regions with an average RSI larger than 50%
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The impact of the choice of the initial image used for atlas construction on
the atlas-based segmentation performance was evaluated by using each of the 20
images in the database in turn as template AT0 for segmentation of the 19 other
images in the dataset. The GSI values varied between 58% and 65%, compared
to 70.0% for AT3.

Figure 6 compares the segmentation performance of the mean shape AT3
atlas with the MUL0 and MUL1 segmentation strategies for 5 images in the
dataset. For these 5, both AT3 and MUL0 succeed at segmenting 32 regions
with an average RSI larger than 70%, while only 30 for MUL1. The overall
GSI obtained with each method over all atlas regions is 70% for AT3, 72% for
MUL0 and 69% for MUL1. MUL0 scored somewhat better than AT3, but the
difference is small compared to the much higher computational complexity of
MUL versus AT3. For AT3, only one template-to-study image registration has
to be computed, while for MUL each of the templates (19 in our experiment)
needs to be warped to the study image. Somewhat surprisingly, MUL1, which
uses the MDT images, scores worse than MUL0 which uses the original images.
A possible explanation may be that the label images associated with the MDT
templates in MUL1 were not derived from SPAMs, but by warping of the original
segmentations into MDT space. If the same approach is applied for the AT1 label
image, the GSI of AT1 atlas-based segmentation drops from 67.0% to 63.9%.

4 Discussion and Conclusion

In this paper, several schemes for brain atlas construction were evaluated by the
ability of the constructed intensity template and label atlas to accurately seg-
ment 49 brain regions by atlas-based segmentation using intensity-based NRR.
Our results indicate that a carefully designed intensity-averaged template (AT3),
which explicitly attempts to remove residual topological differences after non-
linear alignment and intensity rectification, has better segmentation performance
compared to individual templates (AT0) and average templates whose shape is
derived from only a single individual image (AT1 and AT2). The NRR algorithm
used in the atlas construction is able to resolve local shape variability. The con-
structed average shape template therefore retains local features in more detail
and is less blurred compared to templates constructed by affine alignment only
(e.g. SPM). The performance of AT3 for atlas-based segmentation of human
brain images was shown to be comparable to that of a MUL strategy, but at a
much lower computational cost.

The validation study can be extended in several aspects. Firstly, other at-
las construction schemes could have been included. In [6] for instance, a mean
shape template was constructed for the bee brain by first performing an affine
registration of all images to a common reference image, followed by non-rigid
warping of the same set of images to the intensity averaged image obtained after
affine registration. This process was iterated until convergence using the average
brain from a previous iteration as template. However, for human brain images
that show substantial inter-subject variability, the averaging of affinely coregis-
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tered images introduces significant blurring that is likely to affect the accuracy
of subsequent NRR steps. Hence, this scheme was not considered here. In [4], the
AT2 atlas, constructed in MDT space starting from a single individual reference
image, is iteratively refined by warping all images again to the AT2 template,
while in [5] the reference image is selected such that the MDT template is opti-
mal with respect to all images in the set. Both approaches aim at reducing the
influence of the initial reference image used for template construction. The effect
of iterating the template construction procedure and the selection of an optimal
MDT should be further investigated and validated.

Secondly, the simplistic similarity index used here to measure volume over-
lap assumes a one-to-one correspondence between objects, and does not account
for the nature of errors in case of imperfect label overlap. Various spatial cor-
respondence indices using information theory have been proposed in [13] that
can evaluate global, local and individual correspondences between observed and
reference objects. Lastly, there should also be some formal distance analysis of
different atlases.

The intensity-based NRR method applied here has been shown to perform
well for inter-subject MR brain image registration [8]. Nevertheless, the algo-
rithm can be improved in several aspects and the impact thereof on atlas con-
struction and atlas-based segmentation performance should be investigated. For
instance, instead of intensity-based alignment by maximization of MI, alterna-
tive similarity measures can be used that incorporate voxel label information
in the registration process, aiming at aligning corresponding voxel labels rather
than voxel intensities [14], so that the registration will not be affected by poor
image quality. An average transformation derived from the label images can sub-
sequently be applied to the corresponding intensity images to create an intensity-
averaged brain template [15]. Moreover, the development of reliable registration
algorithms that can match label images directly to intensity images [16] may
completely eliminate the need to construct an average intensity image for atlas-
based segmentation, such that one can focus on building a probabilistic label
atlas from the available manual segmentations by label-based registration.

Also, the viscous fluid regularization model imposes identical regularization
behaviour everywhere in the image domain. Instead, a spatially varying regu-
larization scheme could be adopted, for instance based on a statistical defor-
mation model, which would allow the deformation of anatomical structures to
be constrained differently in different parts of the brain. Such a model can be
constructed by statistical analysis of the deformation fields obtained by inter-
subject registration [17]. Future work will therefore focus on augmenting the
AT3 atlas with local shape variability information.
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Abstract. Multi-figure m-reps allow us to represent and analyze a com-
plex anatomical object by its parts, by relations among its parts, and by
the object itself as a whole entity. This representation also enables us to
gather either global or hierarchical statistics from a population of such
objects. We propose a framework to train the statistics of multi-figure
anatomical objects from real patient data. This training requires fitting
multi-figure m-reps to binary characteristic images of training objects.
To evaluate the fitting approach, we propose a Monte Carlo method sam-
pling the trained statistics. It shows that our methods generate geomet-
rically proper models that are close to the set of Monte Carlo generated
target models and thus can be expected to yield similar statistics to that
used for the Monte Carlo generation.

1 Introduction

The shape statistics of simple objects with one part have been widely studied.
Methods using various representations have been proposed and shown to be
effective [1, 2]. However, many anatomical objects have multiple named parts,
e.g., the prostate (fig. 1-a) has two seminal vesicles attached to it and the liver
(fig. 1-b) has left and right lobes. Due to the inherent complexity of objects made
from multiple parts, previous statistical descriptions of such objects concentrated
on their global structure [1, 3] or on the extremely local behavior of geometric
primitives, such as points, without reference to the parts’ inter-relations [4, 5].

M-reps [6] have been successfully used to represent anatomical objects and
complexes of objects [7, 8, 9]. An m-rep consists of one or more medial sheets,
with the part corresponding to each sheet called a figure. Previous work on m-
reps has been restricted to single figure objects. Computing statistics of such
m-reps via principal geodesic analysis (PGA) [2, 14] has proved useful.

Medial description is also well suited to represent an object with parts [7, 10],
e.g., an object with a protrusion subfigure, i.e., additive figure to the host (fig.
1-c), or an indentation subfigure, i.e., subtractive figure from the host (fig. 1-d).
We use multi-figure m-reps to represent objects with multiple parts.

In the m-rep of a multi-figure object, each object part is geometrically rep-
resented by a single figure m-rep, and the figures of the object are connected by

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 701–712, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. a) A prostate with two seminal vesicle protrusions. b) A liver represented by
the union of the left and right lobes. c) An object with protrusion. d) A kidney with
the renal pelvis as an indentation subfigure. Object a has three single-figure parts while
objects b-d have two such parts

the hinge geometry briefly reviewed in section 2.2. As with the single figure case,
the multi-figure m-rep describes an object at successively smaller scales following
a coarse-to-fine hierarchy, for which the two top levels are 1) the object and 2)
each individual figure and relations among the figures. In the top level the object
is simply the union of its parts, enabling efficient analysis of the complex object
as a whole. In addition, we can talk about individual part properties, such as
shapes and volumes. Statistically, variation of the object within a population
can be also measured in a multi-scale fashion. For example, we can investigate
the variation of livers as well as of left liver lobes only.

In the process of training object statistics, we assume that each training
object is given by a single binary characteristic image. We need to extract the
m-rep for each object and then do PGA on the set of resulting m-reps. An
efficient and reliable m-rep extraction method based on deformable model fitting
is described in section 3.

The multi-figure m-rep captures the natural hierarchy within a complex ob-
ject. This form of representation also allows statistical analysis following the
same hierarchy. While this approach can begin with global statistics on the
union of the object parts, we describe a statistical description of the parts and
their inter-relations via a hierarchical approach based on the residue. In section
4 we first sketch the global approach and then the residue approach. Both ap-
proaches are applied to the extracted multi-figure m-reps and the results are
shown in section 5.1.

To evaluate the method of fitting m-reps to binary images, we propose a
Monte Carlo technique and a means of data analysis based on geodesic differences
between sample m-reps and the m-reps extracted from corresponding binary
images. This data analysis method and its results are described in section 5.3.

We discuss incorporating the statistics into the training process to improve
the quality of the extracted m-reps and conclude the paper in section 6.

2 Representing Multi-figure Objects

In the multi-figure representation, each part of the object is represented by a
single figure m-rep, which is briefly reviewed in the next subsection.
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2.1 Single Figure M-Rep

An m-rep is an extension of the Blum medial locus [11]; in the extension the
medial locus forms the primitive description. The simplest geometric object is
represented by a single continuous medial sheet with boundary. A discrete m-rep
is formed by sampling the medial sheet over a spatially regular lattice to form a
mesh of medial atoms (fig. 2-left), where each atom consists of a position on the
medial sheet, and two equal length spokes. An internal medial atom is defined
as a 4-tuple {x, r, s0, s1}, consisting of the hub position x ∈ R3, the spoke length
r ∈ R+, and the two spoke directions as two unit vectors s0, s1 ∈ S2 (fig. 2-
middle). The medial atoms on the edge of the medial sheet correspond to crests
of the object boundary. Such an end atom adds a bisector spoke of length ηr
with a corresponding crest sharpness parameter η ∈ R+ (fig. 2-right). In section
3.1 we briefly review the mathematical background behind our representation.

Fig. 2. Left: a single figure m-rep for a kidney and the object boundary implied by it.
Middle: an internal medial atom. Right: an end atom. The local implied boundary is
incident to and orthogonal to the spoke ends

Given an m-rep figure, a smooth object surface is generated to interpolate the
boundary positions and normals implied by the atom spokes; presently a subdi-
vision method [12] is used to generate the object boundary. If u, v parametrizes
the medial sheet, the implied boundary is parametrized by (u, v, φ) , where φ
designates the side of the figure from the top (φ = +π

2 ) to the bottom (φ = −π
2 )

and changes continuously across crests (φ ∈ [−π
2 , +π

2 ]) (fig. 2-right).
The single figure m-rep scheme has been extended to handle the complex

of non-overlapping, single figure objects. Next we briefly review extending the
representation to multi-figure m-rep objects.

2.2 The Multi-figure M-Rep Object with Hinge Geometry

As detailed in [10], a multi-figure object is represented by a directed acyclic graph
(DAG) of figures, each represented by a single figure m-rep. Subfigures can be
recursively attached to their hosts to form any desired object DAG. This allows
representation of arbitrarily complex objects, although most anatomical objects
are adequately represented by a tree of two or three levels. The host and subfig-
ure are determined according to anatomic naming and the tightness of posterior
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Fig. 3. Left: the host figure/subfigure arrangement, with the subfigure (six medial
atoms appearing) on top, the host figure (four medial atoms showing) below, and the
blend region shown darker. Right: different shapes of the blend region

probabilities of the figures. In this paper we restrict our examples to objects with
a single host figure and a single subfigure, e.g., the liver with the right lobe as
the host and the left lobe as the subfigure. In the rest of this subsection we re-
view how two figures are connected by the hinge geometry. Via the hinge the
deformation of a host figure is propagated to its subfigure. A subfigure also has
its own deformation which does not affect its host. A smooth surface boundary
is then generated for the entire object by a method called blending.

Hinge Geometry. The subfigure is attached to its host by a 1D curve of hinge
atoms, which, when sampled, form an end row or column of the subfigure atom
mesh. Each hinge atom rides on the medially implied boundary of the host,
with known figural coordinates of the host figure. The hinge geometry is an
extension of the Blum medial locus that avoids the instability against boundary
noise of the low-volume portion of branches. The host/subfigure arrangement
is demonstrated in (fig. 3-left). The single hinge geometry allows both additive
and subtractive subfigures (fig. 1-a-d).

With the two types of subfigure transformations below, we are able to repre-
sent and describe multi-figure objects with variable inter-figure relations.

Host Figure Implied Subfigure Transformation. As the host figure de-
forms, the hinge atoms at the fixed (u, v, φ) in the host figure’s coordinates
change their locations and orientations. Since each subfigure atom can be repre-
sented as transformations of its neighboring atoms, the deformation of the host
figure is propagated to the subfigure starting from the hinge atoms.

Hinge-Relative Subfigure Transformations. The subfigure can also trans-
late, rotate, hinge, scale, and elongate on the host figure boundary while the
host stays put. These basic hinge-relative transformations all take place in the
host’s figural coordinates and are at the subfigure scale levels. They form a key
component of the coarse-to-fine hierarchy.

2.3 Blending

Blending, a well-studied field within computer graphics, is necessary if a smooth
surface is to be generated from a host figure and its intersecting subfigure. To
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blend a subfigure with its host, an interpolating subdivision method is used to
generate the implied boundary of each single figure. Each host figure and its
attached subfigure meet and merge into each other. Designated sections from
both figures are removed and replaced by a smooth region called the blend (fig.
3-left). The blend between the two figures is parameterized by (w, v, φ) , where
v and φ are the same as those in the subfigure coordinates and w ranges from
+1, at the subfigure, to −1, at the host. Two parameters delimiting the top and
the bottom of the blend control the shape of the blend region (fig. 3-right).

3 Fitting Multi-figure M-Reps to Binary Images

The extraction of an m-rep from a binary characteristic image for statistical
training is done by fitting a deformable m-rep template M0 into the binary image.
A large-scale-to-small optimization process over transformations associated with
each respective stage is applied to the m-rep template. We define the objective
function and then detail the transformations associated with each fitting stage
in the following subsections. Firstly we review some mathematical background
of the m-rep geometry; more details can be found in [2].

3.1 Background Theory Review

As the primitive in an m-rep, each internal(end) medial atom can be understood
as a point on the manifold Mint(1) (Mend(1)) = R3 ×R+ ×S2 ×S2(×R+). Let
M(1) denote the manifold for a medial atom without specifying whether it is an
internal or end atom. Thus an m-rep of n medial atoms can be seen as a point
on the manifold M(n) = [M(1)]n.

The space M(n) is a particular type of manifold known as a Riemannian
symmetric space, which simplifies the calculation of geodesics and distances. Let
dis(y, z) : M(n)×M(n) → R+∪{0} denote the geodesic distance, i.e., the locally
shortest distance on the manifold M(n), between two points y, z ∈ M(n). There
are a pair of maps Expy and Logy that map between M(n) and the tangent
space TyM(n) at y, and are inverse of each other. TyM(n) can be identified
with R8n+next with next as the number of end atoms in y and z.

– Logy(z) maps the point z to the tangent space TyM(n) at y. The geodesic
distance between y and z is preserved and calculated via the Log map.

dis(y, z) = ‖Logy(z)‖ (1)

– Expy(v) maps the tangent vector v ∈ TyM(n) to the point on M(n) along
the geodesic curve γv(t). The distance is preserved as dis(y, Expy(v)) = ‖v‖.

Given dis, we can calculate the Fréchet mean M of N points (m-reps) {Mi|Mi ∈
M(n), i = 1, 2, ..., N} by minimizing the average squared geodesic distance:

M = Mean(Mi) = arg min
M∈M(n)

1
N

N∑
i=1

‖LogM (Mi)‖2 (2)
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In the residue approach described in section 4.2, we need to calculate the
difference between m-reps via the difference between their corresponding atoms.
Let a1, a2 ∈ M(1) be two corresponding atoms. Then their difference is

a1 � a2 = g−1
a2

◦ a1 ∈ M(1), (3)

where g−1
a2

∈ G(1) is the composition of hub translation, spoke magnification(s),
and spoke rotations determining an atom transformation and, G(1) denotes the
Lie-group of such transformations.

Assume an m-rep template ∈ M(n) has n medial atoms {ai}. G(n) = [G(1)]n

acts smoothly on M(n) as the transformation between m-reps. The difference
between two m-reps M1, M2 ∈ M(n) from the same template is defined as

M1 � M2 =
n∏

j=1

(a1j � a2j) ∈ M(n) (4)

3.2 Objective Function

The objective function measuring the mismatch between the m-rep and binary
image [15] is a sum of three terms: an m-rep-to-binary boundary distance, a term
penalizing irregularity of the m-rep atoms, and a term for achieving correspon-
dence across the m-reps in a training population.

Binary Image Match. A distance map image D(x) : R3 → R+ ∪{0} is calcu-
lated for each given binary image Ib by an extension of the Danielsson distance
mapping [13] to 3D. The binary image match term is then calculated by the in-
tegral of the distance map on the m-rep implied object surface B, except that at
the boundary locations where the surface normal differs from the distance gra-
dient by more than a certain threshold, D(x) is replaced by the distance along
the surface normal to the nearest binary object boundary location. L(M, D)
measures how well M fits into the distance map image D.

L(M, D) = α · 1
area(B(M))

∫
B(M)

D2(x)d2A (5)

Regularity Penalty. This term penalizes non-uniform spacing and changes
in spoke length and orientation of the medial atom. It leads to proper object
geometry and correspondence across the training cases.

Reg(M) = β ·
n∑

i=1

‖Logai
(Mean(N(ai))‖2 (6)

For each medial atom ai, the regularity is calculated as the squared geodesic
distance between ai and the Fréchet mean (eqn. 2) of its neighboring atoms
N(ai). The penalties are then accumulated for all the medial atoms of the object.
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Correspondence to a Reference M-Rep The reference penalty depends
on the geodesic distance between the current M and the reference m-rep M0,
which the fitting starts with in our present implementation. This term explicitly
penalizes weak correspondence across m-reps.

Ref(M) = (1 − α − β) · ‖LogM0
(M)‖2 (7)

In equations (5)-(7), α, β � 0, and α + β ∈ [0, 1]. The complete objective
function is the combination of the three terms:

Obj(M, D) = L(M, D) + Reg(M) + Ref(M) (8)

A two-figure m-rep is used as the example in the following subsections. Assume
a two-figure m-rep template M0 has host figure F1 and subfigure F2, and each
figure Fi ⊂ M0 has atoms {ai

j |i = 1, 2, j = 1, 2, ..., ni}.

3.3 Extraction Framework

The objective function is then optimized over the following sequence of trans-
formations, successively finer in scale, applied to the m-rep template.
– Initial alignment of M0 by T1 ∈ R3×R+×SO(3), calculated by the template

M0 and the distance map image D;
– object stage: Tobj ∈ R3 × R+ × SO(3), on the entire object;
– host figure: the host F1 is the target and the subfigure is deformed by an

implied transformation Thost implied ∈ R3 × R+ × SO(3);
• figural stage: Thost fig ∈ R3 × R+ × SO(3), on the host figure;
• atom stage: Thost atom ∈ G(n1), on the host figure atoms a1

1,2,...,n1
;

– subfigure stage: the subfigure F2 is the target in this stage;
• figural stage: Tsub fig ∈ R3 × R+ × SO(3), on the subfigure. At the end

of this stage, the hinge atoms are projected onto the host figure surface;
• atom stage: Tsub atom ∈ G(n2), on the subfigure atoms a2

1,2,...,n2
.

input:
a two-figure m-rep template M0 with host figure F1 and subfigure F2;
a distance map images Di: calculated from the given binary images. Ibi.

output:
extracted two-figure m-reps Mi from the images Di.

framework:
for each Di {
1. Calculate T1 by the 1st and 2nd moments of M0 and Di, M1 = T1 ◦M0;
2. T2 = arg minTobj

(Obj(Tobj ◦ M1, Di)), M2 = T2 ◦ M1;
3. T3 = arg minThost fig

(Obj(Thost fig ◦ F1 ⊂ M2, Di)), M3 = T3 ◦ M2;
4. T4 = arg minThost atom

(Obj(Thost atom ◦ F1 ⊂ M3, Di)), M4 = T4 ◦ M3;
5. T ′

4 = Thost implied, M ′
4 = T ′

4 ◦ F2 ∈ M4;
6. T5 = arg minTsub fig

(Obj(Tsub fig ◦ F2 ⊂ M ′
4, Di)), M5 = T5 ◦ M ′

4
7. M ′

5 = hinge atoms in F2 ⊂ M5 are projected to the surface of F1 ⊂ M5;
8. T6 = arg minTsub atom

(Obj(Tsub atom ◦ F2 ⊂ M ′
5, Di)), Mi = T6 ◦ M ′

5;}
This framework can be extended to arbitrary levels of hierarchy. However in
this paper, our data and experiments focus on objects with two-figures. Next we
describe the statistical analysis on the extracted multi-figure m-reps.
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4 Statistics of Multi-figure Objects

As reviewed in section 3.1, an m-rep consisting of n atoms is a point on the
manifold M(n). The principal geodesic analysis has been proposed to do statis-
tical analysis for single figure object in such a space [2]. Briefly, given N m-reps
{Mi|Mi ∈ M(n)}, the Fréchet mean M is first calculated using (2). Let ui =
LogM (Mi), then the covariance matrix is given by Σ = 1

N

∑N
i=1 uiu

T
i . The PGA

is computed as {p
k
, λk | p

k
∈ TMM(n) are the principal geodesic directions, λk ∈

R are the variances} = {eigenvectors/eigenvalues of Σ}.

4.1 Global Statistics

Assume that a multi-figure object O has N figures as {Fi, i = 1, 2, ..., N} and
each figure Fi has ni medial atoms. Treat O as the union of all its figures and
let nO be the total number of atoms in O. The global statistics of such objects
are computed by the mean object O and the PGA in M(nO).

4.2 Hierarchical Statistics Based on Residue

For multi-figure m-rep statistics we follow the hierarchical statistical framework
for multi-objects detailed in [14]. In the case of two-figure object O consisting
of figures F1 and F2 with n1, n2 atoms, respectively, the host and subfigure are
like the single figure objects in the complexes of multi-objects, and the hinge
atoms act as the augmenting atoms that relate the host figure’s changes to the
sympathetic subfigure changes. Let nO = n1 + n2. Three definitions are needed
to sketch how two-figure object statistics are represented and computed.

– Residue: difference between two m-reps by the operation � (eqn. 3,4);
– Augmentation: U1 = F1 ∪A1 denotes the union of host figure atoms and the

hinge atoms A1 in the subfigure F2;
– Projection: an m-rep M can be projected into the PGA subspace by πH(M) ≈

ExpM

∑k
i=1〈pi

, LogM (M)〉p
i
.

There are three parts PGAg, PGAh, and PGAs in the hierarchical statistics
for a two-figure object.

1. PGAg: statistics on the nO atoms making up the entire object. This captures
the global shape variation of the object. This variation is removed from both
the host figure atoms and the subfigure atoms before steps 2 and 3;

2. PGAh: statistics on the residue of the union U1 of the host figure atoms and
the hinge atoms in the subfigure. This describes the remaining variation of
U1 after the projection to the global variation PGAg has been removed;

3. PGAs: statistics on the residue of subfigure F2 after the residual changes in
the host figure are propagated to the subfigure and have then been removed.
The variation in the host figure is computed by projection to PGAh, and
the propagation is computed via the hinge atoms.

We applied both the global and the hierarchical statistical analysis to the
extracted m-reps of livers. The results are shown in the next section.
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5 Results and Evaluation

5.1 The Data and Results

We use 15 expert segmented binary images of livers. A two-figure m-rep template
is fit into the images by the framework described in section 3. There are 3 × 7
and 3 × 4 sampled atoms in the host figure and subfigure, respectively. Three
atoms in the subfigure are used as the hinge atoms. The total of 33 liver atoms
lie in a manifold of 290-dimensions. The extracted m-reps M1,2,...,15 are used for
the shape statistics. Fig. 4-left shows the cumulative variances in the principal
modes of the global statistics; 4-right shows the variations of the livers in the
host and subfigure residue statistics as parts of the hierarchical statistics.

Fig. 4. Left: accumulated sum of the variances from the global stats PGAg: the first
7 modes capture over 95% of the total variability. Right: the residue shape variation
after the global variation is removed: each column shows the liver −2 standard devia-
tions from the residue mean along the respective eigenmode, the residue mean, and the
liver +2 standard deviations from the mean. The left column shows the first principal
mode of the host residue stats PGAh; the other two columns show the first two modes
of the subfigure residue stats: PGAs describes the remaining shape variation of the
subfigure after the global and host-implied variation have been removed

5.2 Generate New M-Reps Using the Monte Carlo Method

In order to evaluate the extraction method, we need binary images for which
we know the true m-reps. A sampling scheme based on a Monte Carlo method,
described next, is used to generate sample m-reps from the trained statistics.
Sample binary images used as target images are then created as the interior of
the sampled m-reps.

Assume the PGA statistics on the extracted training m-reps (with n atoms)
are the mean m-rep M , the first NPGA principal variances {λ1,2,...,NP GA

}, and the
corresponding first NPGA normalized principal geodesic directions {p

1,2,...,NP GA
},

which is a subset of all the principal directions and sufficient to describe the vari-
ability of the m-rep shape space. New m-reps are generated by using the PGA
as the population distribution p(M) and sampling from it via the Monte Carlo
method.
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Fig. 5. Diagram flow to evaluate the extraction process given an initial population
distribution p(M)

Fig. 6. Left: 4 of the 50 sampled m-reps used in the evaluation. Middle: evaluation
results of the extraction framework shown as a histogram of geodesic distances between
the extracted m-reps M ′

i and the m-reps Mi as the truth. Right: in the first ten passes
of the multi-pass extraction using the shape statistics, the fitting quality improves
while the average distance from the m-rep implied surface points to the closest contour
points in the binary image decreases. The distance is in the unit of image voxel

1. Generate a Gaussian vector α = (α1,2,...,NP GA
), with each αi sampled from

the standard normal distribution N (0, 1);
2. Apply α as the components on the principal directions for a tangent vector

v =
∑NP GA

i=1 αi

√
λi · pi

in the tangent space TM (M(n)) at the mean M ;
3. The exponential map is used to map v to the m-rep manifold as a sampled

m-rep M = ExpM (v).

5.3 Evaluation

The diagram in fig. 5 details this evaluation using the Monte Carlo sample
generation described in the previous section 5.2.

50 liver m-reps (fig. 6-left) were generated using the Monte Carlo sampling
method. The evaluation results are shown in fig. 6-middle as a histogram of
the mismatch (geodesic distance) between the extracted m-reps and their cor-
responding m-reps as the truth, which the target images are created from. The
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average geodesic distance across all the livers is 0.054, in the units of the aver-
age boundary displacement implied by all the atoms together. And the averaged
m-rep-to-binary distance is 0.674 image voxel for all the 50 m-reps.

6 Discussion and Conclusion

Our examples suggest that extracted m-reps are good enough to be useful in ap-
plications requiring statistical analysis, such as segmentation by the posterior op-
timization of m-reps or the characterization of the geometric differences between
object populations.

We have observed that by the incorporation of the PGA statistics into a
multi-pass training, the fitting quality can be improved. The first pass uses the
same method described in section 3.3 to extract the m-reps. A following new pass
uses the shape statistics trained on the extracted m-reps from the previous pass
as the shape prior. Assume the PGA from a previous pass is given by {M, λj , pj

}.
In a new pass, m-reps are extracted from the same images by the optimization
over the coefficients of the principal directions in the following objective function,
combining the object-to-image mismatch and the squared Mahalanobis distance
as the present log shape prior.

arg min
(α1,α2,...,αNpgc )

L(Mi = ExpM (
NP GA∑
j=1

αj

√
λj · pj

), Di) +
NP GA∑
j=1

α2
j

λj
(9)

Results (fig. 6-right) indicate that the first several passes of the fitting with
statistics improve the quality of the extracted m-reps. Y axis in fig. 6-right is
the average image match distance (defined in section 3.2) over all the 15 images.
The decreasing distance in the first 10 passes indicates the improvement of the
extraction. However, the convergence of this process is still under research.

We have shown a framework to extract the medial descriptions represented
by multi-figure m-reps from binary characteristic images of multi-figure objects,
especially the objects with two-figures as demonstrated in the result section 5.1.
A Monte Carlo method has been designed to evaluate the extraction process.
We have also shown how to do either global or hierarchical statistical analysis
on multi-figure objects. We are evaluating our method when applied to the ob-
jects represented by a tree of more than one subfigures (fig. 1-a), as well as the
objects also with indentation subfigure(s) (fig. 1-d). The bias and reliability of
the statistical framework and the convergence of the multi-pass fitting are also
subjects of research.
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The Role of Non- verlap in Image Registration
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Abstract. Here we model the effect of non-overlapping voxels on image
registration, and show that a major defect of overlap-only models—their
limited capture range—can be alleviated. Theoretically, we introduce
a maximum likelihood model that combines histograms of overlapping
and non-overlapping voxels into a common joint distribution. The con-
vex problem for the joint distribution is solved via iterative application
of replicator equations that converge monotonically. We then focus on
rigidly aligning images with unknown translation, where we present a
fast FFT-based method for computing joint histograms for all relative
translations of an image pair. We then apply this method to standard
overlap-only information theoretic registration criteria such as mutual in-
formation as well as to our variants that exploit non-overlap. Our exper-
imental results show that global optima correspond to the correct regis-
tration generally only when non-overlapping image regions are included.

1 Introduction

This paper addresses a long-standing complaint with intensity-based image reg-
istration methods: they generally converge correctly only if given an initial guess
within a limited “capture range” of the correct alignment. We are led to ask:
even if processing were free but no initial guess were given, do current regis-
tration criteria select the correct alignment? Unfortunately not, since the global
optima of information theoretic registration criteria such as entropy may be far
away from the correct result [5–p. R27]. Here we suggest a fix.

Spurious global optima can arise when there is too little overlap of the image
pair for reliable estimation of the joint distribution of corresponding voxels. We
thus revisit the concept of overlap beginning in §2, where we review a common
probabilistic registration model that assumes full overlap and which explains why
the joint histogram of the image pair can be used as an estimate of the joint
distribution of intensities of corresponding voxels. In §3, we generalize this model
to allow for merely partial overlap, and it is here we see terms in the likelihood
that depend on the non-overlapping voxels. The revised model gives rise to a
joint distribution that trades off the joint histogram on the overlapping voxels
with univariate histograms from the non-overlapping voxels, unlike [7, 9]. In §4,
we solve for this joint distribution using a monotonically-convergent iterative
scheme, i.e., where no step size is required.

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 713–724, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To solve for the alignment itself, we focus on the case of unknown translation.
In §5, we compute the globally optimal alignment to within one voxel using a
fast FFT-based method for computing joint and non-overlap histograms over all
translations. This also makes it practical to visualize various registration criteria
over the entire set of transformations, not only those within a local neighborhood
of a potential solution. These complex registration landscapes (§6) highlight
the difficulties that registration search strategies must confront, and put into
question the feasibility of local search for fully automatic (full capture range)
image registration. We suggest that global methods not based on local search
will be necessary in the absence of a good initial guess. In hindsight, the standard
practice of ignoring the non-overlap seems strange since it uses different image
data to evaluate competing alignments that differ in overlap. This violates the
principle that all hypotheses be compared using the same information.

2 Idealized Registration Configuration: Full Overlap

To introduce our argument and notation, we start with the simpler situation
where the effects of overlap are ignored. Let u : X → {1, . . . , M} and v : Y →
{1, . . . , N} be the two images to be aligned, where region X (resp. Y ) is the finite
cardinality set of possible voxels (locations) and M (resp. N) is the number of
possible intensities for image u (resp. v). Typically, X and Y are the vertices
of a finite lattice in 2- or 3-dimensions. Thus ux = u(x) is the intensity (in the
range {1, . . . , M}) at voxel x ∈ X and vy = v(y) is the intensity (in the range
{1, . . . , N}) at voxel y ∈ Y .

The goal of intensity-based image registration is to optimally choose that
spatial transformation y = T (x) that maps between the two image regions so
that ux and vT (x), the intensities at corresponding voxels x and T (x), are in some
sense correlated, suggesting that their joint distribution will be important. We
assume that the intensities for pairs of corresponding voxels are independent and
identically distributed (IID), i.e., if x′ �= x, then (ux, vT (x)) and (ux′ , vT (x′)) are
IID, each pair having joint distribution (probability mass function) p(m,n) =
pm,n,m ∈ {1, . . . , M}, n ∈ {1, . . . , N}. Further assuming full overlap, i.e., that
the mapping T : X → Y is one-to-one and onto, the likelihood (joint probability)
of the two images is therefore

Prob{u, v|full overlap} =
∏
x∈X

p(ux, vT (x)),

and the log likelihood is

Lfull :=
∑
x∈X

log p(ux, vT (x)). (1)

Recall the identity
∑

n δ(k, n) = 1, where the Kronecker delta function δ(k, n)
is equal to 1 if k = n and is 0 otherwise. We apply this identity twice to obtain

Lfull =
∑
x∈X

[∑
m

δ(ux,m)

] [∑
n

δ(vT (x), n)

]
log p(ux, vT (x)). (2)
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By changing the order of summation (permissible because all sums are finite),
we can write

Lfull =
∑
m,n

aT
m,n log pm,n, where aT

m,n := am,n :=
∑
x∈X

δ(ux,m)δ(vT (x), n) (3)

is the joint histogram (raw, unnormalized counts) of intensity pairs at corre-
sponding voxels for transformation T . Observe that

∑
m,n am,n = |X|, the num-

ber of voxels in X. To determine the unknown joint distribution p, we solve an
optimization problem: maximizing the (log) likelihood. We first show Lfull is well
behaved, and then show the solution is the normalized histogram.

Proposition 1. Lfull is a concave function of p.

Proof. Observe in (3) that Lfull is a nonnegatively-weighted sum of the concave
function log [4]. �

Let S be the simplex of distributions1

S := { p ∈ RMN :

pm,n ≥ 0,∀m,n; [Nonnegativity constraint] (4)∑
m,n

pm,n = 1}. [Normalization constraint] (5)

Observe that set S is convex.

Proposition 2. Fix transformation T and suppose aT
m,n > 0, for all m,n. Then

normalized histogram p∗ = aT /|X| is the global optimum of the convex problem

max
p

Lfull(T, p) subject to p ∈ S.

Proof. We first ignore the nonnegativity constraint but later check that it is sat-
isfied. Applying the method of Lagrange multipliers to the constrained optimiza-
tion problem (now with only the normalization equality constraint having the La-
grange multiplier γ), we seek the maximum of φ(p, γ) = Lfull+γ(

∑
m,n pm,n−1).

Recall that the first-order necessary conditions for optimality are obtained by
setting to zero the partial derivatives of φ with respect to the unknowns. Differ-
entiating w.r.t. pm,n, we get aT

m,n/p∗m,n+γ∗ = 0, and therefore p∗m,n = −aT
m,n/γ∗.

Differentiating w.r.t. γ we get the normalization constraint (5), and thus p∗m,n =

aT
m,n/

∑
k,l a

T
k,l = aT

m,n/|X|. Since aT
m,n is strictly positive, so is p∗m,n, and there-

fore the nonnegativity constraint is not active at p∗ and can be ignored. Since
Lfull is concave in p, the unique stationary point p∗ is the global maximizer. �

1 Here all distributions are normalized and histograms are unnormalized, unless oth-
erwise stated.

o



716 J. August and T. Kanade

The following consequence of Prop. 2 may be viewed as a justification, first
shown in [7], for the use of minimum entropy for (fully overlapping) image reg-
istration: the transformation T that minimizes the empirical entropy of distri-
bution aT /|X| maximizes the likelihood.

Corollary 1. L∗
full(T ) := maxp Lfull(T, p) = −|X| entropy (aT /|X|).

3 Realistic Registration Configuration: Partial Overlap

Now we include the effect of partial overlap of the two images. There are three
regions to consider: (a) the voxels that overlap, as before; (b) the voxels in image
u that do not map to voxels in image v; and (c) the voxels in image v that do
not get mapped to from image u. Even if the only dependencies are between
corresponding voxel intensities, as before, what distributions should be used for
the non-overlapping regions (b) and (c)? We suggest that no new information
about the non-overlapping voxels should be assumed; a non-overlapping voxel is
to be treated just the same as an overlapping voxel pair, but where one voxel of
the pair was not observed. In other words, the reason why there are no corre-
sponding v-voxels for the non-overlapping u-voxels is that we have limited our
region of interest (ROI) for image v, and vice versa. Thus we obtain the prob-
ability for intensity ux at non-overlapping voxel x by marginalizing the joint
distribution: sum the joint probability of ux and vy over all possible values of
the unknown vy. Specifically, if p(m,n) = pm,n is the joint distribution for in-
tensities ux = m and vy = n at corresponding voxels x and y, then the intensity
ux = m at non-overlapping voxel x is distributed according to the marginal dis-
tribution

∑
n p(m,n). Similarly, the intensity vy = n at non-overlapping voxel y

is distributed according to the marginal distribution
∑

m p(m,n).
When we explicitly consider partial overlap, both the domain of definition

and the mapping rule can vary (Fig. 1); thus the alignment transformation is
T : AT → Y , where domain AT ⊂ X is the set of voxels in image u that map
to voxels in image v. Note that T (AT ) ⊂ Y is the set of voxels in image v that

Fig. 1. Partially overlapping images u and v represent different regions of interest in
the patient. See text for notation

T(A  )

T

T

T

Image v

Image u

X\A T

T Y\T(A  )
A

Region X Region Y
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get mapped to. Thus the non-overlapping portion of image u is X \ AT , i.e.,
everything in X but AT ; similarly, the non-overlapping part of image v(y) is
Y \ T (AT ). Again assuming IID distributions, the probability of the image pair
u, v at transformation T is

Prob{u, v|partial overlap}

=

[ ∏
x∈AT

p(ux, vT (x))

]
×


 ∏

x∈X\AT

∑
n

p(ux, n)


 ×


 ∏

y∈Y \T (AT )

∑
m

p(m, vy)


 .

Again using the Kronecker identity and changing order of summation as in the
fully-overlapping case, the log likelihood is

Lpartial =
∑

x∈AT

log p(ux, vT (x))

+
∑

x∈X\AT

log
∑

n

p(ux, n) +
∑

y∈Y \T (AT )

log
∑
m

p(m, vy) (6)

=
∑
m,n

aT
m,n log pm,n

+
∑
m

bT
m log

∑
n

pm,n +
∑

n

cT
n log

∑
m

pm,n, (7)

where we define

aT
m,n := am,n :=

∑
x∈AT

δ(ux,m)δ(vT (x), n) (8)

bT
m := bm :=

∑
x∈X\AT

δ(ux,m) (9)

cT
n := cn :=

∑
y∈Y \T (AT )

δ(vT (x), n), (10)

the (T -dependent) joint histogram for the overlapping region, and the histograms
for the non-overlapping regions of image u and v, respectively. Again we can
maximize this likelihood Lpartial to determine the unknown joint distribution
p. But unlike §2, clearly some sort of numerical optimization will be needed to
compute this p ∈ S: we have to trade off the effects of the overlapping versus
the non-overlapping histograms. Fortunately, objective function Lpartial is well-
behaved, leading to a convex problem for p.

Proposition 3. Lpartial is a concave function of p.

Proof. Since log is concave and
∑

n pm,n is affine in p, their composition
log

∑
n pm,n is concave in p; similarly for log

∑
m pm,n [4]. Thus, Lpartial, a

nonnegatively-weighted sum of concave functions, is concave. �

Before introducing our optimization strategy in §4, we suggest how this optimal
p be used.

o
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Proposal 1 (Non-Overlap Imperative) Given partially overlapping images
u and v, to evaluate information-theoretic image comparison measures such as
joint entropy and mutual information, use the distribution p that maximizes
Lpartial instead of the overlap-only-based normalized joint histogram.

4 Replicator Equations for Combining Histograms

Now we present an iterative method for estimating the distribution p that max-
imizes the log likelihood Lpartial for partial overlap. We suppress T for now as
it will be optimized for after we have optimized for p at each fixed T . Since our
problem is to maximize concave Lpartial over convex set S, we could attempt
to exploit the arsenal of convex programming. Instead, we suggest an iterative
technique with a simple implementation, where the iteration cost is low (unlike
other second-order methods that might apply) and which requires no tuning of
parameters at all. Specifically, the replicator equations for updated distribu-
tion p′ are similar to a gradient ascent on the log likelihood, except the gradient
multiplicatively—not additively—updates the previous distribution p, and the
result is normalized to sum to one to remain in the simplex of distributions:

p′m,n :=
pm,nLm,n∑

i,j pi,jLi,j
, where Lm,n :=

∂Lpartial

∂pm,n
=

am,n

pm,n
+

bm∑
j pm,j

+
cn∑
i pi,n

.

(11)

Observe that this simplex-preserving multiplicative update method converges in
one step to the the result in Prop. 2 if b and c are both zero. More importantly,
in contrast to the undesirable instability of (additive) gradient ascent when too
large a step size is chosen, each multiplicative update increases the log likelihood
without choosing a step size.

Definition 1. Continuous mapping f : D → D is growth transformation
for objective function φ : D → R if φ(f(p)) ≥ φ(p), for all p ∈ D.

The concept of growth transformation was used in papers by Baum and cowork-
ers [2, 3] and Pelillo [6] to characterize the dynamics of replicator equations,
which are a particular class of relaxation labeling processes [8], for certain poly-
nomial objective functions φ that arise in evolutionary game theory, computer
vision and parameter estimation for Markov chains. Although our objective func-
tion Lpartial is non-polynomial, we have obtained the same result.

Proposition 4. Update (11) is a growth transformation for Lpartial : S → R.

Explicitly, this states that Lpartial(p
′) ≥ Lpartial(p), for any distribution p ∈ S

and its update p′ from (11): we can depend on the update to monotonically
improve the log likelihood. We have proved Prop. 4 using the log-sum and
arithmetic-geometric means inequalities [1].

Because the replicator equations describe a growth transformation for Lpartial,
the choice of initial distribution p0 that starts the iterations is unimportant,
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but to avoid degeneracies we suggest that all components be non-zero. We use
the normalized version of overlap histogram a as the initial condition in our
experiments. To maximize Lpartial, we iteratively apply the replicator equations
until a termination condition is satisfied. In our experiments, we simply stopped
after completing only two iterations.

5 FFTs for Global Optimization of Translation

Designers of information theoretic objective functions for image registration have
not insisted that global optima approximate the true solution, and have instead
focused on local optima. Perhaps this bias stems from the seeming intractability
of computing the global optimum. To illustrate, even when T is restricted to a
translation and n = |X| ≈ 105 to 109 is the number of voxels, O(n) operations
are required to compute the joint histogram at each of O(n) possible translations,
for an apparent total of O(n2) operations to find the global optimum! These two
onerous O(n) are usually [10] reduced to O(1) by (i) using statistical sampling
to approximate the joint distribution and (ii) abandoning global optimization
entirely for local, greedy search.

Here we introduce a method to allow exact global optimization of translation
for information theoretic objectives in only O(k n log n) operations, where k =
MN is the number of bins in the joint histogram. This technique applies to
both the full overlap and partial overlap likelihoods, as well as to any registration
method that that requires computation of the joint distribution, such as entropy,
mutual information [10], and normalized mutual information [9]. The trade-off
is histogram resolution for image resolution, which is often acceptable because
the joint histogram requires crude quantization just to maintain sufficient bin
counts for reliability.

The main idea is that the (m,n)-th bin of the joint histogram is the cross-
correlation aT

m,n =
∑

x f(x)g(x + t) =: corrf,g(t) between two binary vectors
f(x) := δ(ux,m) and g(y) := δ(vy, n), where y = T (x) := x + t for translation t.
The translation is a 2- or 3-dimensional vector depending on the dimensionality
of images u and v. Zero-padding f and g to an appropriate size l2 or l3 for 2-
or 3-d, resp., we can avoid wrap-around artifacts in assuming their periodicity,
and thus apply Fourier methods. Specifically, if the discrete Fourier transform
of f at spatial frequency vector ω is f̂(ω) :=

∑
x f(x)e−2πiω·x/l, and z∗ is the

complex conjugate of z ∈ C, we know that ĉorrf,g(ω) = f̂∗(ω)ĝ(ω). Thus for the
(m,n)-th bin, computing aT

m,n over all translations takes O(n log n) work using
the FFT. By performing this over all k bins we can calculate the joint histogram
over all translations in O(k n log n) time.

The non-overlap histograms bT and cT require a similar approach, because
they depend on the non-constant region of overlap AT . (We cannot simply com-
pute the histograms for each image; we need a histogram for each possible over-
lap.) For bT , our computation is based on a cross-correlation between f and a
mask (of ones) the size of image v. For cT , the cross-correlation is between a
u-sized mask and g. Each also requires O(k n log n) computations.

o



720 J. August and T. Kanade

Given the overlap and non-overlap histograms, for each translation we can
solve the optimization problem for p in §4 with O(k) work, and all translations
with O(k n) work. Evaluating any of the optimization criteria Lfull, Lpartial,
entropy, mutual information or normalized mutual information is only O(k n)
more work and the selection of its global optimum takes O(n) time for a grand
total of O(k n log n) operations.

Fig. 2. A correlated pair of uniform noise images (bottom left). Registration land-
scapes (other images) indicate confidence (via color: blue=low, red=high) in a trans-
lation represented by (horizontal,vertical) position of the colored pixel. Top row shows
registration landscapes for criteria computed using joint distribution of overlapping
voxels only (left to right: mutual information (MI), normalized mutual information
(NMI), and Lfull=weighted negative entropy (-Ent)). The same criteria are shown in
middle row, except non-overlapping pixels were also included to compute joint distribu-
tion p via minimization of Lpartial (see §4). Bottom right shows evaluation of optimized
L∗

partial(T ) at translation T . The white circle and green triangle indicate the computed
global optimum of landscape and ground truth translation, respectively. Observe that
criteria computed using only the overlap (top) incorrectly have global optima in the
corners due to spurious responses from small sample effects, i.e., the image pair over-
laps by only a few pixels near the corners of these landscapes. The non-overlapping
pixels help make criteria calculations more reliable (middle row and bottom right), so
that the global optima are correct. For all landscapes in this paper, the green triangle

hides a spike with a local optimum, but only for the non-overlap-based landscapes is

this also a global optimum

MI w/overlap only NMI w/overlap only -Ent w/overlap only

MI w/non-overlap NMI w/non-overlap -Ent w/non-overlap

Image u Image v Likelihood w/non-overlap

MI w/overlap only NMI w/overlap only -Ent w/overlap only

MI w/non-overlap NMI w/non-overlap -Ent w/non-overlap

Image u Image v Likelihood w/non-overlap
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Fig. 3. T2- and PD-weighted MRIs images of human head with restricted ROIs. Top
3x3 image grid shows entire registration landscapes (see Fig. 2 for explanation), while
bottom 3x3 grid shows zoom of vicinity of ground truth showing nearby local peak.
Most current registration methods use a local search strategy for finding this peak.
However, the many spurious peaks, especially in overlap-only landscapes, confound
local search unless a close initial guess is provided. The large background in image v

is a major violation of the homogeneity/IID assumption. Fig. 5 reduces these artifacts
by automatically masking out the background

o
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“registration landscape”. For joint distribution estimates using overlapping im-
age portions only, the criteria included mutual information, normalized mutual
information, and Lfull. For the non-overlap-based joint distribution computed
by optimizing Lpartial w.r.t. p, these criteria, as well as Lpartial, were also used
to form landscapes. For joint distribution q = (qm,n), the formula for mutual
information is MI (q) = entropy (

∑
m qm,n) + entropy (

∑
n qm,n) − entropy (q),

and for normalized mutual information it is NMI (q) = [entropy (
∑

m qm,n) +
entropy (

∑
n qm,n)]/entropy (q). All joint histograms had 16 uniformly-spaced

bins to which we added 0.1 to avoid degeneracy. Computations (in Numeri-
cal Python under GNU/Linux) used up to 0.5GB and took tens of seconds
on a 2.4GHz Intel Xeon. We began with a synthetic example where each im-
age started as a common uniform(0,1) noise field, to which independent uni-
form(0,1) noise was added (Fig. 2). Figs. 3, 4, and 5 show registration re-
sults for T1-, T2-, and PD-weighted MRIs of the same brain (images from
http://www.bic.mni.mcgill.ca/brainweb). To combat the spatially nonhomoge-

MI w/overlap only NMI w/overlap only -Ent w/overlap only

MI w/non-overlap NMI w/non-overlap -Ent w/non-overlap

Image u Image v Likelihood w/non-overlap

MI w/overlap only NMI w/overlap only -Ent w/overlap only

MI w/non-overlap NMI w/non-overlap -Ent w/non-overlap

Image u Image v Likelihood w/non-overlap

Fig. 4. T2- and PD-weighted MRIs images of human head with restricted ROIs, with

background elimination via thresholding. Checkerboard indicates background, which
was masked out of histogram computations to ensure greater statistical spatial ho-
mogeneity. Registration landscapes using non-overlap pixels (middle row and bottom
right) have correct global optima; overlap-only landscapes still have only correct local
optima

6 Experimental Results

To test the effect of including non-overlapping image portions, we evaluated sev-
eral registration criteria over all 2-d translations, thus computing a
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Fig. 5. T2- and PD-weighted MRIs (top 3x3 grid) and T2- and T1-weighted MRIs
(bottom 3x3 grid), with full ROI and background-elimination. The spurious global
optima for overlap-only landscapes occur on the outer rim of the Minkowski sum of
the masks of the two brain regions and are due to small sample effects, similar to
the noisy corner/border responses in Fig. 2. Registration landscapes using non-overlap
pixels here also have correct global optima, as well as much smoother response in the
periphery

The Role of Non- verlap in Image Registration 723o
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Histograms were then computed using only non-background pixels. In contrast
to the concave dependency of Lpartial and Lfull on distribution p, observe that
the landscapes are highly non-concave functions of translation T . Thus it will
be difficult to significantly increase the capture range of standard methods that
locally search for T . Unsurprisingly, local search usually finds only local optima.
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Abstract. We extend an information metric from intermodality (2-
image) registration to multimodality (multiple-image) registration so
that we can simultaneously register multiple images of different modal-
ities. And we also provide the normalized version of the extensible in-
formation metric, which has better performance in high noise situations.
Compared to mutual information which can even become negative in the
multiple image case, our metric can be easily and naturally extended
to multiple images. After using a new technique to efficiently compute
high dimensional histograms, the extensible information metric can be
efficiently computed even for multiple images. To showcase the new mea-
sure, we compare the results of direct multimodality registration using
high-dimensional histogramming with repeated intermodality registra-
tion. We find that registering 3 images simultaneously with the new
metric is more accurate than pair-wise registration on 2D images ob-
tained from synthetic magnetic resonance (MR) proton density (PD),
MR T2 and MR T1 3D volumes from Brain Web. We perform the unbi-
ased registration of 5 multimodality images of anatomy, CT, MR PD, T1
and T2 from Visible Human Male Data with the normalized metric and
high-dimensional histogramming. Our results demonstrate the efficacy of
the metrics and high-dimensional histogramming in affine, multimodality
image registration.

1 Introduction

An information metric was proposed and used for multimodality image regis-
tration in our previous work [1]. Compared to mutual information [2, 3, 4], the
information metric can be easily and naturally extended to multiple random vari-
ables and hence can be used to register multiple images simultaneously. (There
is no easy and natural corresponding extension for mutual information.) Mu-
tual information of multiple random variables [5] is not necessarily nonnegative,
which renders it inadequate as an image similarity measure. Others [6, 7, 8] have
proposed different nonnegative definitions, but they are not natural extensions
of the mutual information of two random variables and do not embody the true
(in our eyes) spirit of mutual information: shared information between multiple
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images. Hence, using mutual information to simultaneously register multiple im-
ages is not appropriate despite the fact that mutual information is a very good
measure (though not a metric) for registering two images. Our goals in the paper
are: first, we wish to perform an unbiased registration of multimodality images
and second, we hope to demonstrate that multimodality (multiple images) reg-
istration can achieve better accuracy than repeated intermodality (two images)
registration.

In order to compute the information metric, we need to estimate the high
dimensional probability mass function (PMF) so as to compute the Shannon
entropy of multiple random variables. Due to the curse of dimensionality, and
especially when derivatives of the PMF are required, it is difficult to accurately
estimate a high dimensional probability distribution. The simplest PMF estima-
tion approach is histogramming and has been used in database research such as
multiple-attribute-data query [9]. In multimodality image registration, despite
the fact that we only need to estimate the entropy (of the form p log p) from the
PMF, high dimensional histogramming is not prevalent and due to this, there
is almost no previous work on simultaneous, multimodality image registration.
In this paper, we use an efficient technique to compute high dimensional his-
tograms so as to efficiently compute the Shannon entropy of multiple images.
The technique can compute high dimensional histograms in O(N) time where
N is the number of samples (simultaneously drawn from all images). We also
show a relationship between the maximum number of bins allowed along each
axis of the high dimensional histogram such that the histogram will converge to
the true PMF in the high dimensional space as N → ∞.

In the following sections, we describe the information metric and the high
dimensional histogramming technique.

2 Multimodality Registration Using the Extensible
Metric

Before we move to multimodality registration, we briefly introduce some concepts
and the basic registration framework using a metric (technically a pseudometric)
in intermodality (2-image) registration. More details about the new metric for
intermodality registration can be found in our previous work [1].

2.1 Intermodality Registration Using a Metric

The image similarity metric ρ in the intermodality (2-image) case is the sum of
two conditional entropies. For two random variables X and Y ,

ρ(X, Y ) = H(X|Y ) + H(Y |X) = 2H(X, Y ) − H(X) − H(Y ) (1)

where H(·) is the entropy of a random variable [H(X) = −E{log(p(X)}], where
p(X) is the PMF of X, and E{·} denotes the expectation of a random variable.
We also proposed two normalized versions of the metric: The first is

τ(X, Y ) =
ρ(X, Y )
H(X, Y )

. (2)
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τ(X,Y ) is also a pseudometric [10]. And 0≤ τ(X, Y )≤1, τ(X,Y )=0 if X =Y ;
τ(X,Y )=1 if X and Y are independent. The second normalized version of the
metric ρ(X, Y ) is

η(X, Y ) =
ρ(X, Y )

H(X) + H(Y )
. (3)

And 0 ≤ η(X, Y ) ≤ 1, η(X, Y ) = 0 if X = Y ; η(X,Y ) = 1 if X and Y are
independent. But η(X,Y ) does not satisfy the triangle inequality and hence it
is not a metric (or pseudometric).

From the definition in (1), we see that ρ is very similar to mutual information
(MI) (4) in the 2-image case except that the metric has one more joint entropy
term, which means the metric gives joint entropy more weight than the marginal
entropy in comparison to mutual information

MI(X, Y ) = H(X) + H(Y ) − H(X, Y ) =
H(X) + H(Y ) − ρ(X, Y )

2
. (4)

And we have found that minimizing the normalized metric τ or η is equivalent
to maximizing the normalized mutual information (NMI) [11] (5) in the 2-image
case

NMI(X, Y ) =
H(X) + H(Y )

H(X, Y )
= 2 − τ(X, Y ). (5)

Consequently, from our perspective, NMI is not ad hoc since it is inversely pro-
portional to a pseudometric.

Now we move to our main topic—multimodality image registration.

2.2 Extension to the Multimodality Case

From the definition of the information metric for two random variables (1), we
can easily extend the metric to multiple random variables in two different ways.
The first extension, for n random variables X1, X2, . . . Xn,

ρ(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn) (6)

and the second is,

µ(X1, X2, . . . , Xn) =
n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi). (7)

And after dividing by either the joint entropy H(X1, X2, . . . , Xn) or by the sum
of the marginals

∑n
i=1 H(Xi), we get their normalized counterparts.

If we want to simultaneously register three images I(1), I(2) and I(3), we
obviously need to find more transformations. We define the biased case as one
where I(1) is the reference image and fixed in the registration and we seek two
optimal affine transformations—T ∗

2 for image I(2) and T ∗
3 for image I(3) by

minimizing the metric (8).
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{T ∗
2 , T ∗

3 } = arg min
{T2,T3}

ρ(I(1), I(2)(T2), I(3)(T3)). (8)

We define the unbiased case as one where there is no reference image and we
seek three optimal affine transformations—T ∗

1 for image I(1), T ∗
2 for image I(2)

and T ∗
3 for image I(3) by minimizing the metric (9).

{T ∗
1 , T ∗

2 , T ∗
3 } = arg min

{T1,T2,T3}
ρ(I(1)(T1), I(2)(T2), I(3)(T3)) (9)

where I(1)(T1) is the transformed image of image I(1) using affine transformation
T1, I(2)(T2) is the transformed image of image I(2) using affine transformation T2

and I(3)(T3) is the transformed image of image I(3) using affine transformation
T3. Equivalent minimizations can be carried out for the normalized counterparts
of ρ and µ.

3 Computing the Entropy of Multiple Random Variables

The multimodality image registration measures ρ, µ and their normalized ver-
sions are all entropy-based measures. Consequently, all these measures require
the computation of the joint entropy of many random variables—henceforth
termed “multi-dimensional entropy.”

The approach in [12] used minimum spanning trees (MST) to estimate the
α-entropy in image registration. The MST-based approach directly estimates en-
tropy without estimating the high dimensional PMF. But computing an MST
for a graph with many edges is very expensive [O(E log E)] where E is the
number of voxels and furthermore, the method cannot compute the normalized
versions of the information measure. (Also the method computes the Renyi en-
tropy instead of the Shannon entropy.) Indirect methods compute entropy by
first estimating the high dimensional PMF. While histogramming is a popular
approach for estimating the PMF, it has not been used for computing the high
dimensional entropy in image registration, mainly because naive implementa-
tions are exponential in complexity in the dimensionality of random variables.
Our technique for computing high dimensional histograms (to be explained be-
low) overcomes the aforementioned dimensionality problem. Its computational
complexity is O(N) where N is the number of samples drawn from (correspond-
ing) pixel locations over a set of images. The O(N) computational complexity
is much smaller than some popular high dimensional PMF estimation methods
such as Parzen windows O(N2), Gaussian mixture models O(NK) where K is
the number of clusters, etc. An approximation to the Parzen window entropy
can be computed in O(NM), M < N using fast Gauss transforms [13], but you
have to first cluster the samples. To our knowledge, this approach has not been
explored in medical image registration. Its advantage over the high dimensional
histogramming technique is that it is analytically differentiable.

We now describe the high dimensional histogramming approach. Assume we
have M images I(m), m ∈ {1, . . . , M} and the number of histogram bins for the
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mth image I(m) is K(m), m ∈ {1, . . . , M}. The total number of bins in the multi-
dimensional histogram of M images is

∏M
m=1 K(m), which will be very large if M

or K(m) is large. But in the space of the joint histogram of M images, most of the
bins of the joint histogram are empty. Empty bins do not contribute anything
when we compute the high dimensional Shannon entropy (since p log p → 0 as
p → 0.) Hence, using

∏M
m=1 K(m) bins in the space of the joint histogram of M

images is impractical and furthermore is unnecessary since we only need know
the non-empty bins.

Assume a bounded range [I(m)
min, I

(m)
max] for image I(m). Let B

(m)
i be the binned

intensity value of image I(m) at location i, i ∈ {1, . . . , N}:

B
(m)
i =

[
(K(m) − 1) × I

(m)
i − min1≤j≤N{I(m)

j }
max1≤j≤N{I(m)

j } − min1≤j≤N{I(m)
j }

+ 1

]
, ∀m. (10)

From (10), we see that the binned intensity values of image I(m) are integers
in {1, . . . , K(m)}. Let L(m) be the minimum length of digital bits which can
represent K(m), m ∈ {1, . . . , M}. Then we get a new code Ci = B

(1)
i B

(2)
i · · ·B(M)

i

with length
∑M

m=1 L(m), which is a concatenation of the binned intensity values
of all images at location i, i ∈ {1, . . . , N}. The number of different elements
of the set {Ci, i ∈ {1, . . . , N}} is the number of non-empty bins of the joint
histogram of M images. Hence we can use {Ci, i ∈ {1, . . . , N}} to generate the
joint histogram of M images by counting the number of identical Cis in the code
set. That this is valid is guaranteed by the following theorem.

Theorem 1: Ci = Cj if and only if B
(m)
i = B

(m)
j ∀m ∈ {1, . . . , M}, ∀i, j ∈

{1, . . . , N}. [Proof omitted due to lack of space.]
The number of bins K(m) is the only free parameter in our method but it

is also very important. Below, following [14], we propose a criterion for limiting
the maximum number of bins in the histogram.

Theorem 2: Let U1, U2, . . . , UN be i.i.d. random variables in �M with PMF f .
Let P be a partition of �M into cubes of size h, and define the histogram PMF
estimator by

fN (u) =
1

NhM

N∑
i=1

I{Ui∈A(u)} (11)

where A(u) is the set in P that contains u and I is the indicator function of a
set. Then the estimate is universally consistent in L1 if h → 0 and NhM → ∞
as N → ∞, that is, for any f the L1 error of the estimate

∫ |fN (u) − f(u)| du
converges to zero in probability, or equivalently, for any ε > 0,

lim
N→∞

Pr
(∫

|fN (u) − f(u)| du ≥ ε

)
= 0. (12)

For our case, the domain of PMF is a bounded subset of �M , namely [0, 1]M .
If we use the same number K(m) = K bins for each image in the set, then
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h = 1
K . Thus h → 0 is equivalent to K → ∞ and NhM → ∞ is equivalent to

N
KM → ∞, for which K < N

1
M is necessary. Let K = N

1
M+α , then as K → ∞,

N
KM = N

α
M+α → ∞ for any α > 0 as N → ∞, which satisfies the condition of

the theorem. Hence we use K = N
1

M+α for some α > 0 as a criterion in our
high dimensional histogram. In plain English, Theorem 2 essentially says that
if you have more samples, then use more bins for the histogram but the rate of
increase of the number of bins should be slower than the rate of increase of the
number of samples. (The simplification of K(m) = K has been used for the sake
of exposition. An extension to different K(m) is straightforward.)

From Theorem 1, we know that to compute the high dimensional histogram,
we only need to count the number of identical Ci in the set {Ci, i ∈ {1, . . . , N}}.
From Theorem 2, we know that for any Ci, i ∈ {1, . . . , N}, Ci ∈ [1, N ]. We can
count the number of identical Ci in the set {Ci, i ∈ {1, . . . , N}} by travers-
ing N samples once. Thus the time complexity of computing high dimensional
histograms is O(N).

4 Experimental Results

4.1 Multimodality vs. Intermodality: Simultaneous Registration of
3 Images and Pair-Wise Registration on Synthetic PD, T2 and
T1 MR Images

In the registration experiments of this section, we use the powerful Brainweb
simulated MRI volumes for a normal brain [15]. The main advantage of using
simulated MR data is that the ground truth is known. The size of each image is
256mm×256mm.

We decompose an affine transformation matrix into a product of shear, scale

and rotations. Let T =


a b 0

c d 0
e f 1


 be an affine transformation.

[
a b
c d

]
=

[
2s 0
0 2s

]

R(θ)
[

2t 0
0 2−t

]
R(φ), where s and t are scale and shear parameters, and R(θ) =[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, R(φ) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
are two rotation matrices. In our

experiments, the range of shear and scale parameters is [-1 1], the range of
rotation parameters are [-45 45] degrees and the range of translations is [-10
10] mm. In this decomposition of an affine transformation, reflections are not
allowed.

In the experiments, we use the following ten measures to register 3 triplets
of 2D slices of 3D PD, T2 and T1 MR brain volume images.

1. ρ(X,Y, Z) = H(X|Y,Z) + H(Y |X, Z) + H(Z|X,Y )
2. µ(X,Y, Z) = H(X, Y |Z) + H(Y,Z|X) + H(Z, X|Y )
3. τ(X,Y, Z) = ρ(X,Y,Z)

H(X,Y,Z)

4. η(X, Y, Z) = ρ(X,Y,Z)
H(X)+H(Y )+H(Z)
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5. κ(X, Y, Z) = µ(X,Y,Z)
H(X,Y,Z)

6. σ(X,Y, Z) = µ(X,Y,Z)
H(X)+H(Y )+H(Z)

7. modified mutual information: mMI(X, Y, Z) = H(X) + H(Y ) + H(Y ) −
H(X, Y, Z)

8. sum of pair-wise mutual information: pMI(X, Y, Z) = MI(X, Y )+MI(Y, Z)+
MI(Z,X)

9. modified normalized information: mNMI(X, Y, Z) = H(X)+H(Y )+H(Y )
H(X,Y,Z)

10. sum of pair-wise normalized mutual information: pNMI(X,Y, Z) = NMI(X, Y )+
NMI(Y, Z) + NMI(Z, X)

The slices are chosen in the axial direction. We then transform the MR T2

image with an affine transformation T̂1 =


 1.2496 −0.39666 0

0.39666 0.93006 0
4 4 1


, with s1 = 0.2,

t1 = 0.2, θ1 = 10, φ1 = 10, e1 = 4 and f1 = 4. We also transform the MR T1

image with an affine transformation T̂2 =


 1.4205 −0.88097 0

0.88097 0.67935 0
8 8 1


, with s2 = 0.4,

t2 = 0.4, θ2 = 20, φ2 = 20, e2 = 8 and f2 = 8. We have done two experiments
with these data. Each experiment is repeated 30 times with different Gaussian
noise. We add Gaussian noise with zero mean and standard deviation 0.1 in
the first experiment and zero mean and standard deviation 0.2 in the second
experiment. (The intensity range of all images is normalized to the [0,1] interval.)
We use a coarse-to-fine brute force search strategy to find the optimal T ∗

1 and
T ∗

2 . The finest search resolution of scale and shear is 0.05. The finest search
resolution of rotation is 0.5 degrees in the first experiment and 1 degree in the
second experiment. The finest search resolution of translation is 1 mm. The
registration measures are computed only in the overlap area of the three images
with bilinear interpolation used for transforming the image intensities.

To compare each measure and validate the registration results, we compute
the mean error of each parameter of two affine transformations recovered by ten
measures and the sum of

∥∥∥T̂1 − T ∗
1

∥∥∥ +
∥∥∥T̂2 − T ∗

2

∥∥∥ of 30 experiments.

Figure 1 depicts the sum of
∥∥∥T̂1 − T ∗

1

∥∥∥ +
∥∥∥T̂2 − T ∗

2

∥∥∥ of 30 noise trials in the
first set of experiments. From the results, we see that multimodality registration
is more accurate than repeated pair-wise (intermodality) registration. And the
normalized metric η has best performance. Table 1 shows the mean error of each
parameter of two affine transformations recovered with the ten measures of 30
noise trials in the second experiment. Figure 2 shows the sum of

∥∥∥T̂1 − T ∗
1

∥∥∥ +∥∥∥T̂2 − T ∗
2

∥∥∥ of 30 noise trials in the second experiment. From the results, we see
that the two non-normalized metrics ρ and µ failed in recovering scale because
of high noise. But the normalized metric η (which is based on ρ) still has best
performance. And multimodality registration is more accurate than repeated
pair-wise registration.
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Fig. 1. Plots of sum of
∥∥T̂1 − T ∗

1

∥∥ +
∥∥T̂2 − T ∗

2

∥∥ of 30 trials recovered by ten measures
in the first experiment with noise std. 0.1. Numbers 1 to 10 represent ρ, µ, τ , η, κ, σ,
mMI, pMI, mNMI and pNMI—the ten registration measures

Table 1. Mean errors of different affine parameters in the second experiment with
Gaussian noise with mean 0 and std. 0.2

error of transformation on MR T2 error of transformation on MR T1

measures s t θ φ e f s t θ φ e f

ρ 0.24 0.01 2.53 1.53 2.53 0.7 0.11 0.02 3.77 2.4 1.73 1.2

µ 0.64 0.06 10.57 3.03 5.93 1.57 0.42 0.08 4.87 3.53 2.97 2.03

τ 0 0 1.1 1.33 1.93 0.43 0.0033 0.0083 3.83 1.67 1.833 0.97

η 0 0 0.97 1.33 1.93 0.33 0.0017 0.0083 2.8 1.23 1.77 0.93

κ 0 0 1.03 1.2 2.07 0.37 0.005 0.0117 3.53 1.43 2.13 0.7

σ 0 0 1.03 1.2 2.07 0.37 0.005 0.0117 3.53 1.43 2.13 0.7

mMI 0 0 1.1 1.2 2.03 0.37 0.005 0.0117 3.93 1.4 2 0.9

pMI 0 0 1.2 1.37 2.17 0.3 0.005 0.013 7.43 1.8 2 0.67

mNMI 0 0 1.03 1.2 2.07 0.37 0.005 0.0117 3.53 1.43 2.13 0.7

pNMI 0 0 1.16 1.37 2.17 0.3 0.005 0.0133 7.4 1.8 2.23 0.77

With these experiments on synthetic PD, T2 and T1 MR 2D images, we
see that these ten measures have similar performance in low noise experiments.
Generally, they can correctly recover scale and shear parameters but have error in
recovering rotation and translation. And we see that multimodality registration
is more accurate than repeated pair-wise registration. In the high noise case,
the two non-normalized metrics failed to recover scale because they prefer small
overlaps of images. The normalized metric η still has best performance. And
these experimental results also show that minimizing the normalized metric κ
or σ is equivalent to maximizing the modified normalized mutual information.

In our following experiments, we will only use the normalized measure η.
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0.5
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1.5

2
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Fig. 2. Plots of sum of
∥∥T̂1 − T ∗

1

∥∥ +
∥∥T̂2 − T ∗

2

∥∥ of 30 trials recovered by ten measures
in the second experiment with noise 0.2. Numbers 1 to 10 represent ρ, µ, τ , η, κ, σ,
mMI, pMI, mNMI and pNMI—the ten registration measures

4.2 Unbiased Multiple Image Registration of Visible Human Data

Algorithm 1 Iterated sequential search
1. sequentially search ten translations which minimize η corresponding to 5 images;
2. sequentially search ten scaling and shear parameters which minimize η for 5 images;
3. sequentially search ten rotations which minimize η for 5 images;
4. if η decreases in this iteration then go to 1; else end.

In this section, we register pentads of images of head slice from Visible Human
Male Data. For the pentad, the first image is the photograph of anatomical slice,
the second is the CT image, the third is an MR PD image, the fourth is an MR
T1 image and the fifth is an MR T2 image. The slice number of the pentads
in the Visible Human Male Data is 1165. Because ground truth is unknown, we
register 5 images simultaneously without bias. That means that each image gets
an affine transformation and we minimize the normalized metric η on five affine
transformations:

{T ∗
1 , T ∗

2 , T ∗
3 , T ∗

4 , T ∗
5 } = arg min

T
η(I(1)(T1), I(2)(T2), I(3)(T3), I(4)(T4), I(5)(T5))

(13)
where T = {T1, T2, T3, T4, T5} and T1, T2, T3, T4 and T5 are five affine transfor-
mations. I(m)(Tm) is the transformed image of image I(m) using affine transfor-
mation Tm, m ∈ {1, ..., 5}. Since the time complexity of searching for 30 param-
eters of 5 affine transformations is high, we used iterated sequential search using
algorithm 1 for each parameter until the normalized measure η achieves the min-
imum. The color images of the anatomical slice are converted to grayscale and
the intensity of images is normalized to the interval [0, 1] prior to registration.
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Fig. 3. The first row is the set of images before registration; the second row is the set
after registration. [Dataset index: VHD #1165.]

Fig. 4. Segmented images before (1st row) and after (2nd row) registration. [Dataset
index: VHD #1165.]

The normalized measure η is computed only in the overlap area of the three im-
ages with bilinear interpolation used for transforming the image intensities. The
image size is 256 by 256. (The pixel size is 0.32mm square for a photograph of
anatomical slice and 1mm for MR and CT images.) The histogram of each image
used 8 bins. High dimensional histograms are computed using the technique in
section 3.

In Figure 3, we show the images before and after registration. In order for
human perception to gauge the results of registration, we add a grid to the im-
ages. A careful examination of the images before and after registration reveals
that the images are indeed better aligned. For a quantitative evaluation of the
registration, we coarsely segment these images by basically segmenting the ob-
ject from the background in the images. Then we represent these segmented
images as binary images as shown in Figure 4. (Object is with intensity value 1
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Table 2. Results of unbiased registration of anatomical slice, CT, MR PD, T1 and T2
images.[Dataset index: VHD #1165.]

Anatomy CT MR PD MR T1 MR T2

s -0.1 0.01 0.02 -0.03 0.07

t -0.01 0.09 -0.01 0.08 -0.02

θ -7 3 20 0 0

φ -1 -2 0 0 0

e 4 2 -1 0 0

f -9 1 0 0 0

Table 3. Number of pixels in nonoverlap region of segmented images before and after
registration. upper triangle is before registration and lower triangle is after registration.
[Dataset index: VHD #1165.]

nonoverlap Anatomic CT MR PD MR T1 MR T2

Anatomic 0 8250 8721 7719 9449

CT 2372 0 4173 1915 3853

MR PD 2984 1530 0 4446 3632

MR T1 2980 1234 1118 0 4292

MR T2 3390 1700 1434 800 0

and background is with intensity value 0.) We evaluate the quality of the regis-
tration by comparing the number of pixels in the nonoverlap region of pairwise
segmented images before and after registration. From these results in Table 3,
we see that the number of pixels in the nonoverlap region of segmented pairwise
images after registration is much less prior to registration. Provided that the
segmentation errors are not significant and these can also be gauged by human
perception, we see the images are better aligned after registration. Also, from
the segmented images in Figure 4, we see that these images are better aligned
after registration.

From the affine transformations achieved in the registration as shown in Ta-
ble 2, we see that the affine transformations of all three images include a certain
amount of shear. This serves as a very preliminary justification for using an affine
mapping.

From these anecdotal evaluation results, we see that minimizing the normal-
ized measure η and computing high dimensional histograms works well for the
simultaneous (and unbiased) registration of multimodality images.

5 Conclusions

We have presented an information metric for intermodality image registration,
which can be easily extended to the multimodality case as opposed to mutual
information which is not so easily extended. The information metric is a lin-
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ear combination of conditional entropies and has the properties of symmetry,
non-negativity and triangle inequality. Normalized versions of this extensible
information metric are also proposed and used for multimodality image registra-
tion. We derive and use a new efficient technique for computing high dimensional
histograms so as to efficiently compute the joint entropy of multiple images. We
then demonstrate how the high dimensional histogramming technique can be
used to simultaneously register many images without being biased to a refer-
ence image. The high dimensional histogramming technique can also be used
for feature-based multimodality image registration (where a vector of features
is available at each voxel) and for non-rigid multimodality image registration.
These represent attractive topics for further research.
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Abstract. Spherical navigators are an attractive approach to motion
compensation in Magnetic Resonance Imaging. Because they can be ac-
quired quickly, spherical navigators have the potential to measure and
correct for rigid motion during image acquisition (prospectively as op-
posed to retrospectively). A limiting factor to prospective use of nav-
igators is the time required to estimate the motion parameters. This
estimation problem can be separated into a rotational and translational
component. Recovery of the rotational motion can be cast as a regis-
tration of functions defined on a sphere. Previous methods for solving
this registration problem are based on optimization strategies that are
iterative and require k-space interpolation. Such approaches have un-
desirable convergence behavior for prospective use since the estimation
complexity depends on both the number of samples and the amount
of rotation. We propose and demonstrate an efficient algorithm for re-
covery of rotational motion using spherical navigators. We decompose
the navigator magnitude using the spherical harmonic transform. In this
framework, rigid rotations can be recovered from an over-constrained
system of equations, leading to a computationally efficient algorithm for
prospective motion compensation. The resulting algorithm is compared
to existing approaches in simulated and actual navigator data. These
results show that the spherical harmonic based estimation algorithm is
significantly faster than existing methods and so is suited for prospective
motion correction.

1 Introduction

Subject motion is a significant problem in many applications of Magnetic Res-
onance Imaging (MRI), in particular those that use combinations of long TR
acquisitions and large gradients. Several techniques are available for motion cor-
rection or reduction including physiological gating [9], fast imaging [4], navigator
echoes [11], and registration [16], and are often used in combination. Because
navigator echoes can be acquired quickly, they are an attractive approach to

G.E. Christensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 738–749, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Spherical Navigator Registration Using Harmonic Analysis 739
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Fig. 1. Generic 2D multi-slice MRI sequence using SNAVs for prospective motion
correction

prospective motion correction, that is correction for motion during the imag-
ing sequence. Prospective motion correction does not suffer from interpolation
artifacts and is important where spin history artifacts are of concern, as post-
processing methods cannot correct them [2].

Navigator echoes are a sparse samplings of k-space that take advantage of
the Fourier properties of rigid coordinate transformations. They are interspersed
between portions of the acquisition, such as between volumes (Fig. 1). When
used prospectively, motion parameters, estimated from successive navigators,
are used to update the gradient coordinate system before the next series of
slices is acquired.

Navigators are distinguished by the k-space sampling trajectory employed.
Orbital (2D) navigators [7] sample k-space in circular trajectories, generally
in orthogonal planes. However, orbital navigators are sensitive to out-of-plane
motion and cannot recover arbitrary rotations [12]. Spherical (3D) navigators
(SNAVs) [15], which sample a spherical shell of k-space, can accurately recover
arbitrary rotations and are the focus of this paper.

Recovery of rotational motion from successive navigator acquisitions, either
prospectively or retrospectively, requires registration. Previous work has focused
on iterative matching algorithms for aligning magnitude navigator data to es-
timate the rotational motion[15, 1]. These iterative techniques, while providing
accurate results over a range of angles, are difficult to implement for prospec-
tive motion correction due to their computational requirements and convergence
behavior. These issues limit the clinical application of SNAVs for prospective
motion correction.

This paper presents an approach to SNAV registration based on spherical
harmonic analysis that was motivated by a recent solution to motion estimation
from catadioptric image sequences in computer vision [13]. The resulting algo-
rithm has several advantages over existing methods of navigator registration:
no need for k-space interpolation, simple computational structure suitable for
real-time implementation, and the ability to recover a wide range of arbitrary
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rotation angles. The paper is organized as follows. First we describe the spheri-
cal navigator model and existing motion recovery algorithms. We then develop
a motion estimation algorithm using the discrete spherical harmonic transform.
This algorithm is then tested in both synthetic and real navigator data. We
conclude with a discussion of the results and additional potential applications.

2 Spherical Navigator Echoes

A spherical navigator signal can be modeled as a sampling of the Fourier trans-
form, F (kx, ky, kz) ∈ C, of the object space on the sphere of radius ρ. Without
loss of generality we consider the unit sphere, S2, and the locus of frequencies
on its surface:

F (k) where k = [kx(t) ky(t) kz(t)]T ∈ S2 . (1)

Given two navigator signals, we refer to the source, FS as the signal before
a rigid transformation in the object space, and the target, FT , as the signal
after. The Fourier property of rigid transformations allows recovery of rigid mo-
tion between these successive navigator acquisitions. Consider a rigid coordinate
transformation in the object domain,x′

y′

z′

 = M

x
y
z

+

∆x
∆y
∆z

 ,

where M is a matrix representing a rotation from the orthogonal group, SO(3),
and [∆x ∆y ∆z]T is a translation. Rigid transformations in object space lead to
an equivalent rotation of the k-space coordinates, k, and a linear phase shift:

F (k′
x(t), k′

y(t), k′
z(t)) = F (kx(t), ky(t), kz(t)) exp−ı2π(∆xkx+∆yky+∆zkz) , (2)

where k′ = Mk.
The effect of translational motion can be separated from rotational motion by

treating the magnitude and the phase of F independently. Taking the logarithm
of the phase component leads to an overdetermined system of linear equations,
the solution of which is the translation component [15].

In this paper we are primarily concerned with recovering the rotational com-
ponent of the motion using the magnitude of FS and FT . This component of
the rigid motion estimation is more complex than estimating the translation.
The SNAV rotation estimation problem may may be viewed as a registration of
two functions defined on S2. Previous work on navigators has focused on itera-
tive algorithms that minimizes an objective function comparing a rotated source
navigator to the target navigator. For example, Welch et al. [15] use downhill
simplex minimization of the squared difference between the source and target
navigator magnitudes. In [1] several different objective functions are considered
with the downhill simplex minimization algorithm and hierarchical schemes. A
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drawback of this type of motion recovery is the need to interpolate the naviga-
tor at each iteration, with increasing computation time as the number of SNAV
samples increases. Also, the number of iterations required to locate the mini-
mum increases as the rotation angle increases, making it difficult to predict the
total computation time. In the following section, we develop a similar approach
to rotational motion recovery that uses the spherical harmonic transform of the
SNAV, rather the magnitude component directly.

3 Harmonic Analysis on the Unit Sphere

We treat the magnitude spherical navigator as being in the set of square inte-
grable functions defined on the unit sphere, f(θ, φ) ∈ L2(S2), where θ ∈ [0, π)
is the colatitude coordinate and φ ∈ [0, 2π) is the longitude coordinate. Surface
spherical harmonics are a Fourier expansion of the functions in L2(S2) and have
been studied extensively in the context of quantum mechanics and geophysics.
The description of spherical harmonics that follows is based on [5, 8, 13] and the
text [3].

3.1 Spherical Harmonic Transform

The 2L + 1 spherical harmonics, Y m
l : S2 → C, for each L ≥ 0, form an or-

thonormal basis for any f ∈ L2(S2).

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
Pm

l (cos(θ)) expımφ, (3)

where l is the degree of the harmonic, |m| ≤ l, and Pm
l are the associated

Legendre Polynomials. Thus, any f(θ, φ) can be expanded in this basis, with
coefficients f(l,m), as:

f(θ, φ) =
∑
l∈ℵ

∑
m≤l

f(l,m)Y m
l (θ, φ) (4)

f(l,m) =
∫

θ

∫
φ

f(θ, φ)Ȳ m
l (θ, φ)dθdφ. (5)

If f(θ, φ) is bandlimited with bandlimit, B, then a sampled version, f̂ , with
at least 2B samples in θ and φ, is sufficient to recover the original f . This is
equivalent to the Nyquist theorem in Fourier analysis and leads to a discrete
spherical harmonic transform, first developed in Driscoll and Healy [5],

f̂(l,m) =
√

2π

2B

2B−1∑
j=0

ωjP
m
l (cos θj)

1B−1∑
k=0

exp−ımφk f(θj , φk) , (6)

where |m| ≤ l, θj = π(2j + 1)/4B, and φk = 2πk/4B. The quadrature weights,
ωj , are derived (with a proof) in [5]. Equation (6) can be efficiently computed
using an FFT, followed by the discrete Legendre Transform in O(n(log n)2)[5].
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3.2 Rotation Theorem

We describe the rotation in the object domain, and the equivalent rotation of
the magnitude navigator data, by the Euler angles α, β, and γ using the matrix
representation:

M = Rz(α)Ry(β)Rz(γ) , (7)

where Ry and Rz denote rotations about the y and z axis respectively. Note this
is a nonstandard definition of the Euler angles, but it simplifies the estimation
problem, as we describe below. Let g(α, β, γ) ∈ SO(3) be an element of the
rotation group in 3D space. The rotation theorem of spherical harmonics [8]
states that a rotation g(α, β, γ) of f(θ, φ) induces a linear transformation of
f(l,m) according to:

f̂g(l,m) =
∑
|p|≤l

Upm
l (g)f̂(l, p) , (8)

where f̂g(l,m) indicates the discrete spherical harmonic transform after the ro-
tation. The weighting Upm

l (g) is given by:

Upm
l (g(α, β, γ)) = exp−ıpα P pm

l (cos β) exp−ımγ ,

where P pm
l is the extended Jacobi Polynomial (sometimes called the generalized

associated Legendre polynomial). Consider two sets of magnitude spherical nav-
igator data with a rotation, g(α, β, γ) of object space in between them, fS and
fT . We can compute the discrete spherical harmonic transform for both to obtain
f̂S(l,m) and f̂T (l,m). Equation (8) can be used to define an over-constrained
system of nonlinear equations in α, β, and γ. The solution to this system of
equations is the estimated Euler angles. The rotation matrix resulting from the
motion estimate can be computed from Eqn. (7).

3.3 Objective Function Optimization

Evaluation of Eqn. (8) is complicated by the P pm
l (cos β) term in Upm

l (g) be-
cause the extended Jacobi polynomial can be unstable for large orders, l, or for
angles, β, approaching π

2 [14]. An elegant simplification first used in quantum
mechanics [6], and later in computer vision [13], is to rewrite the rotation, g, as a
composition of two rotations, removing the dependence on cos(β). The rotation
g(α, β, γ) can be written as the composition of two rotations, g1 ◦ g2, using the
definition in Eqn. (7) above, where g1 = g(β+π, π

2 , 0) and g2 = g(α+ π
2 , π

2 , γ+ π
2 ).

Since Eqn. (8) is linear in Upm
l (g), the terms of Upm

l (g1 ◦ g2) can be collected as
follows:

Upm
l (g1 ◦ g2) =

∑
|k|≤l

Upk
l (g1)Ukm

l (g2) . (9)

Expanding the term under the sum over k gives:

Upk
l (g1)Ukm

l (g2) = exp−ım(γ+ π
2 ) P pk

l (0)P km
l (0) exp−ık(β+π) exp−ıp(α+ π

2 ) . (10)
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Now the arguments to the extended Jacobi polynomials are zero. This allows
them to be precomputed in a stable and efficient fashion using recursion [14].

Substitution of Eqn. (10) into Eqn. (8) gives the following non-linear equation
in α, β, and γ:

f̂g(l,m) = exp−ım(γ+ π
2 )
∑
|p|≤l

exp−ıp(α+ π
2 ) f̂(l, p)

∑
|k|≤l

P pk
l (0)P km

l (0) exp−ık(β+π)

(11)
In the prospective motion correction application, we assume the previous

navigator transform, fS(l,m), is available. To estimate the rotation we fix the
largest order we will consider, lmax, and compute the discrete spherical harmonic
transform for the target (current) navigator, fT (l,m). We then form an objective
function comparing the rotated source transform, fg

S to the target. The estimate
of the Euler angles of the rotation is then given by the following minimization
problem:

min
α,β,γ

∑
l≤lmax

∑
m≤l

[fg
S(l,m) − fT (l,m)][fg

S(l,m) − fT (l,m)] , (12)

where the overbar indicates conjugation.
The 3D minimization problem in Eqn. (12) can be separated into a 2D and

1D problem by observing that when m = 0, there is no dependence in Eqn. (11)
on γ [13]. Thus we first minimize∑

l≤lmax

[fg
S(l, 0) − fT (l, 0)][fg

S(l, 0) − fT (l, 0)] , (13)

with respect to α and β. We then fix α and β and minimize∑
l≤lmax

∑
m≤l

[fg
S(l,m) − fT (l,m)][fg

S(l,m) − fT (l,m)] , (14)

with respect to γ.
The computational complexity of evaluating the objective function depends

on the choice of lmax, assuming the discrete spherical harmonic transforms have
been applied.

3.4 Numerical Implementation

Our implementation of the rotation motion recovery, which we call the SPHARM
algorithm, is written in Matlab, with external calls to libraries written in C/C++.
The discrete spherical harmonic transform is computed using the SpharmonicKit
C library1, which implements an algorithm based on an FFT and Fast Legendre
Transform [10].

Several optimization methods are suitable for solving the non-linear mini-
mization problems in Eqn. (13) and Eqn. (14). We have used the Nelder-Mead
algorithm [17] in the results presented here. The evaluation of the objective
functions are implemented as an external library written in C++ for efficiency.

1 http://www.cs.dartmouth.edu/˜geelong/sphere/
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4 Implementation Results

4.1 A Simple Example

Figure 2 demonstrates the algorithm on a simulated object consisting of the
unit cube in the object domain, rotated by an arbitrary g(π/18, π/9, π/6). The
analytic representation of the Fourier transform of the unit cube was sampled
uniformly with B = 128 before and after the rotation was applied (Fig. 2c-d).
The objective functions in Fig. 2e-f show that Eqn. (13) is more sensitive to β
than α. This could lead to scaling problems in the minimization. However, the
Nelder-Mead algorithm was able to reliably locate a minimum within 2 seconds
(Sun-Blade-2000, 900 MHz UltraSPARC III) across a wide range of angles. Total
average time to estimate the motion was 2.12 seconds, including the spherical
harmonic transform for both the source and target navigator, with a variation
of less than 0.25 seconds.

For comparison, we implemented a variation of the rotation motion recovery
algorithm in Welch et al. [15]. The algorithm applies different trial rotations
to the floating SNAV while searching for the minimum of a normalized least
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Fig. 2. Example of the unit cube. (a)-(b) cube in the object domain before and after
rotation by g(π/18, π/9, π/6). (c)-(d) SNAV before and after rotation. (e) Objective
function corresponding to Eqn. (13). (f) Objective function corresponding to Eqn. (14).
Note that objective function in (e) is much more sensitive to β than α. Using a cutoff of
lmax = 10, the L-2 norm between the actual rotation matrix and the estimated rotation
matrix was 6.1e-06
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squares cost function using a multi-scale downhill simplex (ms-DHS) approach
[18]. The cost function is computed by first converting 3-D Cartesian coordinates
of the SNAV (x, y, z) to 2-D latitude and longitude (θ, φ) coordinates. Second,
2-D Delaunay triangulation is performed to generate triangular meshes of non-
uniformly sampled (scattered) SNAV coordinates in the (θ, φ) coordinate system.
Third, these triangular meshes are used for scatter data interpolation through
nearest triangle search to determine the magnitude values of the new trial SNAV
elements after a trial rotation is applied during the search for the best rotation
angle. Finally, the cost function is computed between the reference SNAV and
the trial SNAV. The algorithm was written entirely in Matlab.

For the example in Fig. 2, the ms-DHS algorithm took 22 seconds to find a
minimum, approximately ten times longer than the SPHARM algorithm. Such a
wall-clock comparison alone is unfair because of different optimizations possible.
Examining the code profile however indicates that the majority of the time
spent in the ms-DHS simplex algorithm is in the interpolation, which must be
conducted at each iteration. In contrast, the most time consuming portion of
the SPHARM algorithm is the evaluation of the objective function, which does
not require interpolation. In addition, the choice of lmax restricts the terms in
Eqn. (13) and Eqn. (14) required, further reducing the computation time.

The unit cube example was also used to characterize the SPHARM algorithm
with respect to noise level, angular dependency, sampling rate, and execution
speed. It was found the execution speed is independent of the rotation angle to be
recovered. Accuracy of the rotation recovery was measured using the L-2 norm
of the difference between the estimated rotation matrix and the known (applied)
rotation matrix. Cutoff values of lmax above 10 does not appreciable increase the
accuracy, but does increase the computation time. The algorithm can recover
arbitrary rotations up to 45 degrees in any Euler angle or combination. The
algorithm with no noise works with a sampling rate, B, as low as 16. Increasing
the noise requires an increase in the sampling rate. At a sampling rate of B = 128,
the algorithm can recover rotations with an accuracy less than 0.05 with noise
levels as high as 20 percent (defined as the percent noise as a fraction of the
maximum signal). The lmax cutoff had no appreciable effect on noise immunity.

4.2 Simulated Navigators

To evaluate the behavior of the algorithm in a more realistic k-space, an SNAV sim-
ulator was written using the T1 digital brain phantom from the McConnell Brain
Imaging Centre at McGill University [19]. The magnitude of the Fourier transform
of the T1 volume (1x1x1 mm voxel size) was sampled using a uniform grid (B =
128). Zero mean, independent, identically distributed Gaussian noise was added to
the simulated navigators with different variances. To simulate rotations, the data
was rotated in image space by a rigid transformation, using sinc interpolation, prior
to acquiring the simulated SNAV. The error between the recovered and applied ro-
tation is computed using the L-2 norm of the matrix difference between them.

Figure 3 shows the effect of the SNAV radius (no noise was added), which
determines the signal amplitude, using a Monte Carlo simulation of Euler rota-
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Fig. 3. SNAV brain simulation experiment. Average rotation error versus SNAV ra-
dius in digital frequency. Signal strength decreases as the radius increases leading to
increased error. There were 10 repetitions of the simulations for each radius with Euler
angles uniformly distributed in [0, 10] degrees

tion angles uniformly distributed between zero and ten degrees. The L-2 norm
of the matrix difference between the simulated and recovered rotation matrix
increased appreciably at an SNAV radius of 0.8 radians (in digital frequency),
indicating the effect of decreased signal strength.

Figure 4 shows the effect of SNR on the rotation recovery, again using a Monte
Carlo simulation of rotations (angles uniformly drawn from [0, 10] degrees). Sim-
ilar to the unit cube example, the algorithm performs well below SNR ratios of
20 percent.

4.3 In-Vivo Experiments

A in-vivo study was conducted to demonstrate the rotation motion recovery
using the SPHARM algorithm. We acquired SNAVs from a human volunteer
after obtaining informed consent using a 1.5 T GE TwinSpeed MR Scanner
(General Electric Healthcare, Milwaukee WI). The scanner is equipped with
high performance gradients supporting a 40 mT/m magnitude and a 150 T/m/s
slew rate. A head coil with a maximum 125 kHz sampling rate was used for
both RF transmission and signal reception. The SNAVs were acquired using a
constant velocity trajectory with coordinates given by:

kx[n] = R cos
(

2πTn

N

)
sin

(πn

N

)
ky[n] = R sin

(
2πTn

N

)
sin

(πn

N

)



Spherical Navigator Registration Using Harmonic Analysis 747

0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Percent Noise as Fraction of Maximum Signal

N
or

m
 o

f R
ot

at
io

n 
M

at
rix

 D
iff

er
en

ce

Fig. 4. SNAV brain simulation experiment. Average and standard deviation of the
rotation error versus noise percent of the maximum signal strength. There were 10 rep-
etitions of the simulations for each noise level with Euler angles uniformly distributed
in [0, 10] degrees

kz[n] = R cos
(πn

N

)
,

where n is the sample index, N = 5120 points, and T = 36 threads. A 62.5
kHz receiver bandwidth was used, with an SNAV radius of 0.345 cm−1. A total
of 16 repeated SNAV signals were acquired to evaluate the effect of averaging
and signal SNR. At the end of each acquisition, the subject was asked to rotate
their head a small arbitrary increment. Another SNAV was acquired at this new
position. This process was repeated 8 times, while the subject’s head was at a
different position for each trial. We treated the 7 sequential pairs of navigators
((trial-1,trial-2) (trial-2,trial-3) etc.) as the source and target respectively. The
SNAV data was converted to a uniform sampling of the sphere, required by the
fast spherical harmonic transform, using a Delaunay triangulation. This process
took approximately 2 seconds and would add to the total rotation recovery
computation time in the prospective application.

There is no gold standard for comparison or error estimation for the in-
vivo experiments. However, the rotations recovered were reasonable given the
instructions to the volunteer to move in small increments. Manual inspection
of the objective functions was also used to verify the optimization procedure
was successful. Figure 5 shows the rotations recovered for the 7 cases when the
signal averages was varied between no averaging, 8 averages, and 16 averages.
Trials 2, 3, and 7 with no averaging had norms beyond those expected, given the
small head movements. Thus averaging is recommended to give sufficient SNR
to support rotational motion recovery using the SPHARM algorithm.
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Fig. 5. In-vivo experiment, L-2 norm of identity minus rotation matrix versus the trial
number, grouped by the number of signal averages. The failures in trials 2, 3, and 7
with no averaging is likely due to insufficient SNR

5 Conclusions

In this paper, we have proposed and demonstrated an approach to registration
of spherical navigators that is significantly more efficient than previous methods.
In this new approach, we treat the spherical navigator as a function defined on
a sphere and use the harmonic transform of this function to recover rotational
motion. Our simulated and preliminary in-vivo results indicate the algorithm
is appropriate for use in prospective motion correction. Future work will focus
on integrating the implementation into the navigator sequence and reducing the
number of signal averages required.

The proposed approach to spherical navigator registration has applications in
motion compensation and automated slice prescription for repeated small field
of view acquisitions (e.g spectroscopy) within a single subject.
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Abstract. The presence of speckle in ultrasound images causes many
spurious local minima in the energy function of active contours. These
minima trap the segmentation prematurely under gradient descent and
cause the algorithm to fail. This paper presents a substantially new re-
formulation of Tunneling Descent, which is a deterministic technique to
escape from unwanted local minima. In the new formulation, the evolving
curve is represented by level sets, and the evolution strategy is obtained
as a sequence of constrained minimizations.

The algorithm is used to segment the endocardium in 115 short axis
cardiac ultrasound images. All segmentations are achieved without tweak-
ing the energy function or numerical parameters. Experimental evalua-
tion of the results shows that the algorithm overcomes multiple local
minima to give segmentations that are considerably more accurate than
conventional techniques.

1 Introduction

Classical active contours evolving under gradient descent are poor at the task
of segmenting ultrasound images. The problem is the presence of speckle in the
images. Speckle is a spatial random process and it introduces spurious local
minima in the active contour energy function. Evolving under gradient descent,
active contours get trapped in the spurious minima, which are often far from the
true solution.

Clearly, what is needed is an evolution strategy that avoids getting trapped in
spurious local minima. In this paper, we present such a strategy in the framework
of a level set algorithm. We call the evolution strategy tunneling descent, since
it “tunnels out” of spurious minima and keeps the energy minimization going.

The algorithm has two nice properties:

1. It is deterministic and is faster than stochastic techniques for escaping from
local minima.

2. It segments ultrasound images without any parameter tweaking. We have
successfully segmented 115 images with literally the same algorithm.
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Tunneling descent has been completely reformulated in this paper (an older
version was reported in [4]). The old algorithm was a heuristic extension of
Bayesian sequential decision theory. The new algorithm is reformulated as a de-
terministic sequential constrained optimization problem. This change is not only
conceptual, but has also led to a significantly different mathematical formulation.
For example, the constraints of equations (8), (9),and (10) are completely new.
Considerable effort was involved in getting the constraints just right so that the
resulting optimization problem would have a simple structure. The constraints
now allow the use of convex programming as a numerical technique. This is a
well known numerically stable optimization problem, and the current algorithm
benefits from it.

All of the 115 segmentations are of the blood-tissue boundary of the left
ventricle. We loosely refer to this boundary as the endocardium. The statistics
of speckle in tissue and blood are considerably different and it is this difference
that enables us to find the boundary. We pose endocardium segmentation as an
estimation problem in a maximum-a-posterior (m.a.p.) framework.

2 Background, Literature Review, and Notation

2.1 The Ultrasound Signal and Segmentation

An ultrasound image records the backscatter from a propagating acoustic wave.
Random scatterers in the medium give rise to speckle in the ultrasound signal,
which is manifest as a spatial random process in the image. There are a wide
range of theoretical results for the first-order statistics of ultrasound images, e.g.
[1, 2]. Empirical models for ultrasound distributions have been proposed, e.g. [3].
They are sufficient for the task of segmentation, and we use them here.

The results of empirical modelling of cardiac short axis ultrasound images [3]
can be summarized as follows:

1. As an approximation, the first order gray levels in blood and tissue in short-
axis cardiac images can be modelled by Gamma distributions:

p0(I | α0, β0) =
Iα0−1

Γ (α0)βα0
0

e
−I
β0 , (blood) (1)

and

p1(I | α1, β1) =
Iα1−1

Γ (α1)βα1
1

e
−I
β1 , (tissue). (2)

Here, I is the gray level in blood or tissue, α0, α1 are the shape parameters
of the Gamma distributions for blood and tissue, and β0, β1 are the scale
parameters of the Gamma distributions for the blood and tissue.

The Gamma distribution is only a convenient model. Other distributions
can also be used, as long as they are scalable and can model the overall
shape of the histograms in real images. The main point of this paper, which
is tunneling descent with level sets, is independent of the choice of the dis-
tribution.
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2. Further, the shape parameters α0, α1 can be fixed [3]. The values of β0 and
β1 vary from image to image, but their ratio has a well defined mean and
variance. A simple model is to assume that the log prior of β0, β1 is

log pβ(β0, β1) ∝ −1
2σ2

β

(log
β1

β0
− µβ)2 (3)

where we have dropped all terms that are independent of β0, β1.
The values of α0, α1, µβ , σβ used in our experiments are given in Section 7.

The literature on ultrasound segmentation is vast, and due to lack of space,
we only review a small representative set. Since speckle makes ultrasound seg-
mentation difficult, a number of researchers have developed speckle suppres-
sion techniques, e.g. order statistical filters [6], and adaptive filters [7]. Classical
computer-vision approaches, such as multiresolution texture analysis [8] and
edge and line detectors [9] have also been proposed for ultrasound segmenta-
tion. Multi-frame spatio-temporal approaches to ultrasound segmentation are
reported in [12].

As mentioned before, active contour models perform poorly with ultrasound
images. Many attempts have been made to improve their performance, e.g. Ac-
tive Shape Models [10, 11].

Some words about notation. We will take the domain of the image to be a
square in the plane. The interior of the square is Π . We only consider simple
closed curves in Π . If C is any such curve, then ΩC refers to the “inside” region
of the curve. This is the union of the set of points of C and the interior region of
C. The complement of ΩC in Π is denoted Ω̃C . We use this notation consistently,
so that curves D, E, F, · · · have inside regions ΩD, ΩE , ΩF , · · · etc.

3 M.A.P. Active Contours

As in equations (1-2), assume that p0(I | α0, β0) and p1(I | α1, β1) are models
of the first-order distributions of gray levels inside and outside the true bound-
ary, and that the parameters α0, α1 are known but β0, β1 are unknown. Then,
L(C, β0, β1), which is the posterior log-likelihood that curve C is the boundary
and β0, β1 are the parameters of the data, can be easily shown to be:

L(C, β0, β1) = −
∫

ΩC

log
p1(I | α1, β1)
p0(I | α0, β0)

dA − λ

∮
C

ds + log pβ(β0, β1), (4)

where λ > 0, and the second and third terms are priors on C and β1, β2. The
values of C, β0, β1 that maximize the posterior log-likelihood are the m.a.p. es-
timates of the boundary and the distribution parameters.

In the active contour framework, it is common to define the energy function
by E(C, β0, β1) = −L(C, β0, β1) and speak of minimizing the energy function
instead of maximizing the log-likelihood.
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In the level set method, the curve C ⊂ Π is represented by the zero level
set of a Lipschitz function φ : Π → R, which is negative in ΩC , zero in C and
positive in Ω̃C .

Since the level set function φ defines the curve C, the energy function can be
expressed in terms of φ using the Heaviside function H , and the one-dimensional
Dirac function δ0, defined as:

H(z) =
{

1 if z ≥ 0,
0 if z < 0,

δ0(z) = d
dz H(z). (5)

Then, the energy is given by :

E(φ, β0, β1)

=
∫

Π

(1 − H(φ)) log
p1(I | α1, β1)
p0(I | α0, β0)

dA + λ

∫
Π

δ0(φ)|∇φ|dA − log pβ(β0, β1)(6)

The usual strategy for minimizing energy is gradient descent, which is given
by

∂φ

∂t
= −ρ∇φE(φ, β0, β1) = ρ[log

p1(I | α1, β1)
p0(I | α0, β0)

+ λdiv(
∇φ

|∇φ| )]δ0(φ),

∂(β0, β1)
∂t

= −ρ∇(β0,β1)E(φ, β0, β1), (7)

where, ρ is the step size, ∇φ is the grdient with respect to φ, and ∇(β0,β1) is
the gradient with respect to (β0, β1). The evolving φ becomes stationary at a
local minimum of the energy. The zero level set of φ is taken to be the evolving
contour and its stationary location as the final segmentation.

When used with real life ultrasound images, the evolving contour under gra-
dient descent almost always stops prematurely away from the boundary. Some
examples are shown in Fig. 1. In each figure, the smaller circle is the initial-
ization and the larger curve is the final segmentation. The segmentations are
very inaccurate and clearly demonstrate the problem with gradient descent.

Fig. 1. The contour is trapped in spurious local minima
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4 Escaping from Local Minima

We now make a key observation: When the active contour is initialized in blood
it is almost always trapped in a local minimum within the blood.

To escape from this minima, we need an evolution strategy that monotoni-
cally grows the contour so that it evolves out of the minima towards the bound-
ary. Actually, what is needed is a strategy that does the following:

– The contour starts from its initialization and grows monotonically.
– Among many possible ways of growing monotonically, whenever the growth

is consistent with decreasing the energy, the contour chooses the direction
with maximum decrease.

– At a local minimum, where all changes increase the energy, the contour
continues to grow. It grows in the direction that gives the least increase in
the energy, until the contour escapes from the local minimum and resumes
lowering its energy again.

Thus the contour grows, alternately decreasing or increasing its energy. The
lowest energy curve obtained from the entire evolution is the best estimate of
the boundary. We call this evolution strategy tunneling descent. A mathematical
formulation of the strategy is given below in section 5. The key idea is to replace
gradient descent by a sequence of constrained minimizations that monotonically
grow the curve.

There is one subtle point that arises in this evolution. A continuous growth
of the contour will evolve it out of all local minima – spurious as well as the
correct one. A stopping rule is necessary to stop the evolution once it has grown
past the real boundary. A stopping rule is given below as well.

There is a superficial resemblance of tunneling descent to “balloons,” which
is the strategy of growing an active contour by adding a constant outwards
expanding force to it. One major difference between the two strategies is that
adding a fixed outwards expanding force alters the effective energy function of a
balloon. If the change is substantial, the balloon may penetrate inside the tissue
boundary before becoming stationary. On the other hand, tunneling descent
always minimizes the original energy function. Further, a balloon requires the
user to estimate the correct amount of the expanding force. The correct force is
often image dependent and considerable “tweaking” is required to get it right.
On the other hand, tunneling requires no tweaking.

5 Tunneling Descent

To convert the idea of the previous section into an algorithm we need to define
clearly what it means for one curve to be monotonically larger than another
nearby curve. We use the following notion: A curve D is monotonically larger
than curve C, if (1) no part of D is inside C, i.e. ΩC ⊂ ΩD, (2) the area of D
is greater than the area of C, (3) D is close to C (Fig. 2). Suppose φ and ψ are
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Fig. 2. Curve D is monotonically larger from curve C

the level set functions of C and D, then the constraints written in terms of the
level set functions are respectively :

ψ(x, y) ≤ φ(x, y), ∀(x, y) ∈ Π (8)∫
Π

(1 − H(ψ))dxdy ≥
∫

Π

(1 − H(φ − ∆1))dA, ∆1 > 0, (9)∫
Π

(ψ − φ)2dxdy ≤ ∆2, ∆2 > 0, , (10)

The constraint (8) implies that D lies outside C (i.e. ΩC ⊂ ΩD). The con-
straint (9) says that the area of ΩD is greater than the area of ΩC , and constraint
(10) prevents D having long finger-like extensions (especially when φ and ψ are
distance functions). In our algorithm C and D are close to each other, and we
replace constraint (9) by its linearized version∫

Π

δ0(φ − ∆1)[ψ − (φ − ∆1)]dA ≤ 0. (11)

For any level set function φ, let M(φ) be the set of all level set functions
ψ that satisfy the above constraints. Using M(φ), we can precisely formulate
tunneling descent. Assume for the time being that β0 and β1 are fixed, so that
the energy function E(φ, β0, β1) is only a function of φ. Tunnelling descent begins
with an initial level set function φ0 and creates from it a sequence of functions
φ1, φ2, . . . , φn, . . . by the following minimization:

φn = arg min
φ∈M(φn−1)

E(φ, β0, β1). (12)

That is, φn minimizes the energy function amongst all possible φ ∈ M(φn−1).
Hence, whenever it is possible to decrease the energy, tunneling descent will do
so. Further, if the energy can only be increased, then tunneling descent will find
the level set function that gives the least increase. This is exactly the strategy
we want.

The energy sequence produced by tunneling descent E(φ0), E(φ1), · · · , E(φn)
will have subsequences where the energy is decreasing and subsequences where
the energy is increasing. Define

ωn = φk, where, k = arg min
i=1,···,n

E(φi). (13)
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Fig. 3. Illustration of the Stopping

That is, ωn is the level set function with the least energy amongst φ’s till the nth
iteration. Hence, the zero level set of ωn is the best estimate of the boundary at
the nth iteration. For future reference, note that since the zero level set curves
of φ0, · · · , φn are monotonically getting larger, the zero level set of ωn(= φk) is
always inside that of φn.

5.1 The Stopping Rule

As mentioned before, a stopping rule is necessary to terminate the evolution
generated by tunneling descent. Recall that the stopping rule should terminate
the sequence when the zero level set of φn has passed the real boundary and
penetrated into tissue.

Let Cn denote the zero level set of φn and Bn be the zero level set of ωn.
To create the stopping rule, consider two cases: First, Cn is in blood (Fig. ??a).
Then the current best estimate of the boundary Bn (which is inside Cn) is also in
blood, i.e. the region ΩCn −ΩBn is all blood. Second, Cn is outside the boundary
(Fig. ??b). Here Bn is likely to be at or close to the boundary since the real
boundary is close to the minimum of the energy. Thus, ΩCn − ΩBn is mostly
tissue. Therefore, we can construct a stopping rule by testing whether the gray
levels in ΩCn − ΩBn are from tissue or blood.

The likelihood ratio test for this is∫
ΩCn−ΩBn

log
p1(I(x, y) | α1, β1)
p0(I(x, y) | α0, β0)

dA > T,

for some positive threshold T > 0.. This can be written in terms of the level set
functions as ∫

Π

(1 − H(φn))H(ψ) log
p1(I(x, y) | α1, β1)
p0(I(x, y) | α0, β0)

dA > T, (14)

If the test is successful at n, then the region between Cn and Bn contains tissue,
so the sequence is terminated and Bn is declared to be the boundary. Else the
sequence continues to n + 1 and the test is applied again.
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To sum up, tunneling descent works as follows:

1. Initialize a level set function φ with its zero level set, C0, in the blood region.
Set n = 0.

2. Set n = n + 1. Generate φn using equation (12).
3. Find ωn according to equation (13), and apply the stopping rule of equation

(14). If the rule passes, terminate with ωn with its zero level set Bn as the
boundary. Else go to 2.

5.2 Simultaneous Parameter Estimation

So far we assumed that the parameters β0, β1 were known. We now remove that
assumption, so that the energy function E(φ, β0, β1) is a function of φ and the
parameters. Tunneling descent with parameter estimates is just ordinary tun-
neling descent with parameters estimated simultaneously in the minimization.

Tunneling descent is initialized with φ0, β0,0, β1,0 and it generates the se-
quence {φn, β0,n, β1,n} for n ≥ 1 by

φn = arg min
φ∈M(φn−1)

E(φ, β0,n−1, β1,n−1)

{β0,n, β1,n} = arg min
β0,β1

E(φn, β0, β1). (15)

As before, let φk be the smallest energy level set function in φ0, · · · , φn and set
ωn = φk and (βmin

0,n , βmin
1,n ) = (β0,k, β0,k). We take these to be the best estimates

of the boundary and the parameters till the nth iteration.
Finally, the stopping rule of equation (14) becomes∫

Π

(1 − H(φn))H(ωn) log
p1(I(x, y) | α1, β

min
1,n )

p0(I(x, y) | α0, βmin
0,n )

dA > T. (16)

5.3 Shrinking Tunneling Descent

As formulated so far, tunneling descent monotonically grows the initialized curve
to find the boundary. However, there are no obstructions to creating an algorithm
that monotonically shrinks the contour instead. The contour is now initialized
outside the desired boundary (i.e. in tissue) and shrinks.

Two modifications are required for shrinking tunneling descent: First, a in-
creasing level set function sequence has to be generated, and this is done by
requiring that M(φ) be the set of functions ψ that satisfy:

ψ(x, y) ≥ φ(x, y), ∀(x, y) ∈ Π∫
Π

δ0(φ + ∆1)[ψ − (φ + ∆1)]dxdy ≥ 0, ∆1 > 0,∫
Π

(ψ − φ)2dxdy ≤ ∆2, ∆2 > 0, ,
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Second, the stopping rule has to be modified to test whether the gray levels in
ΩBn − ΩCn come from the blood distribution:

∫
H(φn)(1 − H(ωn)) log

p0(I(x, y) | α0, β
min
0,n )

p1(I(x, y) | α1, βmin
1,n )

dA > T. (17)

6 Numerical Technique

The three constraints (equation(8),(11),(10)) can be easily analyzed to show
that M(φn) is convex set for all n. Thus the minimization in equation (12)
is a constrained optimization problem over a convex set. We use the gradient
projection method [13] for the numerical minimization. The gradient projection
step itself is done by using the classic Dykstra’s Algorithm [14]. The details of
the constrained minimization can be found in [17]. Following [15], the Heaviside
function in equation (5) is approximated by the arc-tan function.

7 Experiments

We extensively tested tunneling descent on 115 clinical short-axis cardiac images
with satisfactory results. The images were acquired from different subjects with
an Acuson Sequoia C256 imaging system. The initial zero level set is in the
blood pool and propagated outwards by tunneling descent in 37 images. In the
remaining 78 images, the initial zero level set is within myocardial tissue and
propagated inwards by shrinking tunneling descent.

The numerical values of all constants used in the experiment are given in
Table 1. The constants α0, α1 are the shape parameters of the Gamma distribu-
tions of the gray levels in the blood pool and tissue. The constants µβ and σβ

are used in the prior for β’s. The constant λ occurs in equation (6). The constant
∆1 and ∆2 are described in equations (11) and (10), and T is the threshold in
the stopping rule (equation (16)). All the outward propagating contours had the
same constants, as did all the inward propagating contours. These constants are
empirically set by running the algorithms on a small number of training images
(different from the 115 images for test), and the algorithm is robust with re-
spect to these parameters. The more detailed study of the effect of changing T
is reported in [16].

Table 1. Values of constants used in experiments

α0 α1 µβ σβ λ ∆1 ∆2 T

Tun. Desc. 3.2 7.8 2.35 1.18 0.5 0.1 50 150

Shrink. Tun. Desc. 3.2 7.8 2.35 1.18 0.5 1 200 200
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Fig. 4. Segmentation by Tunneling Descent and Shrinking Tunneling Descent

7.1 Segmentation Results

Tunneling descent segmented all 115 images successfully. We wish to emphasize
no parameter tweaking was involved in any segmentation. Quite literally, the
same algorithm worked on all images.

The first row of Fig. 4 shows four examples of the zero level set initialized
in blood. In each figure of the first row, the initialization is the round shaped
contour, and the final contour found by tunneling descent. Figures in the second
row plot the energy E(φn, β0,n, β1,n) as a function of n for the descent. The
local minima in the energy function are indicated by vertical lines. Similarly, the
third and the forth row of Fig. 4 show the segmentations by shrinking tunneling
descent and the corresponding energy functions, where the contours are initial-
ized in myocardial tissue. These figures shows that tunneling descent escaped
through multiple local minima to find the endocardium. Gradient descent would
have been trapped in any one of these.

For each of the 115 segmentations, the number of local minima that were
overcome to find the endocardium were recorded. The average number of lo-
cal minima overcome per image for tunneling descent was 6.5 with a standard
deviation of 4.6. The average number of local minima overcome per image for
shrinking tunneling descent was 2.5 with a standard deviation of 2.1. This shows
clearly the need for an algorithm to escape from local minima.
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Fig. 5. Cumulative Error Comparison of Different Segmentation Methods

7.2 Validation

We further compared 19 tunneling descent results and 46 shrinking tunneling
descent results with 2 sets of manual segmentations.

Given two curves C1, C2, we measured the extent of non overlap of the curves
as 1 minus the ratio of the overlap area of the two curves to the average area of
the two curves:

ε = 1 − Area(ΩC1

⋂
ΩC2)

(Area(ΩC1 ) + Area(ΩC2))/2

In any given image, we measured εm, the difference between the manual segmen-
tations, and εt the mean of the ε’s between the boundary found by tunneling
descent and the two manual segmentations.

Since tunneling descent is superficially similar to “balloons” we also imple-
mented a standard gradient descent active contour with a balloon force. Because
the proper balloon force is usually unknown, we used three different values. For
each balloon, we measured the mean difference between the balloon and the man-
ual segmentations and these (for the three balloon forces) are denoted εb1, εb2, εb3.

Fig. 5 shows the cumulative distribution of ε, i.e. for each value on the x-
axis the plot gives the corresponding fraction of segmentations for which the
measured ε was less than this value. In the figures, the thick solid lines are
for εm, and the thin solid lines for εt and the other lines, dashed or dotted,
for εb1, εb2 and εb3. Fig. 5-a shows the case of blood initialization. Tunneling
descent is substantially more accurate than balloons, and its performance is
close to manual segmentations. Fig. 5-b shows the comparison of tissue ini-
tialization. Although balloon performs better than before, tunneling descent
still significantly outperforms balloon.
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8 Conclusion

We reformulated tunneling descent and proposed a level set algorithm for it. The
algorithm overcomes spurious local minima and reliably finds the endocardium
in ultrasound images without tweaking.
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Abstract. Deformable template models, in which a shape model and its
corresponding appearance model are deformed to optimally fit an object
in the image, have proven successful in many medical image segmentation
tasks. In some applications, the number of objects in an image is not
known a priori. In that case not only the most clearly visible object must
be extracted, but the full collection of objects present in the image.

We propose a stochastic optimization algorithm that optimizes a
distribution of shape particles so that the overall distribution explains as
much of the image as possible. Possible spatial interrelationships between
objects are modelled and used to steer the evolution of the particle set
by generating new shape hypotheses that are consistent with the shapes
currently observed.

The method is evaluated on rib segmentation in chest X-rays.

1 Introduction

Statistical shape models are widely applied in image segmentation [1, 2, 3], and
are powerful tools especially in the case of missing or locally ambiguous boundary
evidence. Most approaches perform a local optimization after the shape model
has been initialized on the average position in the image. Alternatively, the best
result of a set of local optimizations with different initializations can be selected.
In the case of multiple objects, one would typically construct a combined model
of all objects and optimize all shapes simultaneously in the image.

In some cases, modelling all objects jointly is not desirable. There may be not
enough training data available to construct a sufficiently flexible and accurate
model, rotation or scaling of one object with respect to another may introduce
unwanted non-linearities in the model, and optimization in a high dimensional
space is computationally more expensive. Moreover, if the number of objects
present in the image is unknown it is impossible to define corresponding points
in all images.

This paper presents a solution to the problem of segmenting an unknown
number of (similar) objects. The segmentation is represented by a distribution
of shape ‘particles’ that evolves under the influence of image terms and inter-
action between neighboring shapes. The particle cloud evolution is similar to
Monte Carlo methods known as ‘Condensation’, ‘particle filtering’, or ‘factored
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sampling’, which have been applied to object localization and tracking [4, 5, 6].
However, the definition of the image term is different in this case in which mul-
tiple objects are modelled with the same particle distribution.

In a previous paper, we proposed the use of particle filtering to optimize
shape-classification templates on a probability map obtained from pixel classi-
fication. Shape particles are weighted by their likelihood and the particle dis-
tribution is evolved using weighted resampling and a small amount of random
perturbation in each iteration. In this way, particles representing unlikely shapes
vanish while successful particles multiply. The initial sparse sampling evolves into
a δ-peak at the maximum likelihood solution [7].

In the current paper we seek to optimize not just one object, but the entire
shape distribution. The segmentation is represented as the maximum likelihood
(soft) classification of the distribution of shape particles. The weights of the
particles are adjusted so that the classification obtained from the shape set
approximates the observed pixel classification as best as possible. The shape set
thus evolves into the maximum likelihood shape collection.

Spatial consistency of the total segmentation can be enforced by neighbor
interactions between particles. In the particle diffusion step each particle is al-
lowed to produce hypotheses for neighboring shapes on basis of its own shape
and position and a learned conditional shape model. This is especially useful in
regular shape patterns such as the spine or the rib cage. If one vertebra or rib
is found in the image, there is a high probability that a second vertebra or rib
is present with approximately the same shape but a few centimeters higher or
lower.

We applied this method to segmenting the ribs in the lung fields in chest
radiographs. Rib segmentations are used for instance as a frame of reference for
localizing abnormalities such as lung nodules, and to eliminate false positives in
abnormality detection that frequently occur at crossings of posterior and anterior
parts of the ribs. Classical approaches which fit geometrical models to edges in
the image may miss some ribs and detect other ribs twice [8]. Loog [9] combined
gray value features and contextual features in an iterative classification scheme,
thus learning an implicit model of local rib structure. Although this produced
significantly smoother and more accurate results than pixel classification based
on intensity features alone, in some cases ribs were completely missed or the
clavicles mistaken for ribs. The fact that consecutive ribs often have similar
shapes and are regularly spaced calls for a global shape model describing the
relations between different ribs, but construction and optimization of a global
shape model is problematic since the number of ribs visible in the lung fields
can vary. Ramachandran et al [10] showed that a pre classification of training
images by the number of visible spaces between the ribs significantly improves
the success of active shape model (ASM) segmentation.

In this work we do not model the full rib cage, but instead model separate
ribs and fit those to the image in a consistent pattern using a model of spatial
interrelationships between neighboring rib shapes. Neighbor relations between
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successive ribs in the same lung field as well as between the ribs at the same
height in the opposite lung field are modelled.

Section 2 explains the main ideas behind the estimation of a maximum like-
lihood shape collection whereas Section 3 explains further how these ideas can
be brought into practice. Section 4 gives more details on all ingredients required
for multiple object segmentation and the algorithm proposed. Specific choices
for rib segmentation and experiments on chest X-rays are described in Section
5. Sections 7 and 8 provide a discussion and conclusions.

2 Image Explanation as Maximum Likelihood

The standard approaches of fitting a shape model to an image can be written in
Bayesian formulation as

p(S|I) ∝ p(I|S)p(S)

where the shape S is searched for in the image I either as maximum a posteriori
(MAP) estimate maximizing p(S|I) or as maximum likelihood estimate (ML)
maximizing p(I|S). In both cases the maximum likelihood term may be evaluated
as an object fit assuming an appropriate spatially independent noise model,
maximizing

log p(I|S) ∝
∫

Ω(S)

U(I(x), S(x, θ))dx (1)

where x are the image coordinates, θ contains the shape model parameters to be
optimized, U is the local log-likelihood function, and Ω(S) is the spatial domain
of S(·, θ). In the following we will generalize this to a collection of shapes.

Let S denote a collection of N shape instances:

S = {S1, S2, . . . , SN}
Now one straightforward generalization of the likelihood term (Eq. 1) is the sum
of the individual terms: ∑

i

∫
Ω(Si)

U(I(x), Si(x, θ))dx

However, this sum of model fits of individual shapes is not the same as the
likelihood of the collection of shapes. Optimization of θ with respect to this sum
would result in all shapes fitting to the one object with the strongest image
evidence. This is due to a simplification made in single-shape modelling that the
integration area is only over the shape model. For a proper ML-estimation, all
data must be modelled, and the integration domain is the full image domain.
The collection likelihood then reads:

log p(I|S) ∝
∫

Ω(S)

U(I(x),S(x, θ))dx

Hence, in every position in the image, it is necessary to take all (overlapping)
shapes into account.
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3 Computational Approach

Let us assume, that the data I(x) takes values in a discrete set C = {c1, c2, . . . , cK}
where ci can be integer pixel values or, as in the example below, pixel classes.
Let us now for simplicity assume that in a given pixel, the pixel class due to the
individual shapes is given deterministically and independent of the other shapes
in the collection, so that

p(cj |S) =
∑

i

p(cj |Si)p(Si) =
∑

i

δ(c(Si(x)), cj)p(Si) (2)

In the simple case where all the overlapping shapes are equally probable, this
is simply the fraction of overlapping shapes that vote for the class ci.

Let us now represent the shape collection S by a weighted set of shape in-
stances Si with shape parameters θi. The weights αi denote the relative prob-
ability of these shape instances. In order to estimate the maximum likelihood
shape collection, we must simultaneously optimize over Si = S(θi) and αi.

This optimization can be achieved by particle filtering iterating over

α = arg maxα p(I|θ, α)
θ = sampling p(S|S) (3)

The first equation may be solved for analytically or obtained by stochastic
optimization. If an infinite number of particles S(θi) were available, S(θ, α) is the
maximum likelihood shape collection after this first optimization. To make the
optimization efficient, we start out with a sparse sampling in p(S) and condense
this distribution around likely shape collections by the sampling step in Eq. 3.
This sampling may be realized by first sampling in p(Si) = αi and then in
p(S|Si). The distribution p(S|Si) represents the belief in S being a true shape
in the image when the shape Si has been observed in the collection.

If the variance of p(S|Si) decreases to zero in successive iterations the choice
of distribution does not influence the point of convergence, as long as p(S1|S2) =
p(S2|S1) and the distribution can explore the full solution. The algorithm is
guaranteed to converge to the maximum likelihood solution for a collection of
shapes. The proof is analogous to the proof for the individual shape fitting by
particle filtering [7].

However, the rate of convergence can be improved by choosing p(S|Si) so
as to explore the solution space most effectively. Here, knowledge of spatial
relationships between different objects can be exploited by letting a selected
particle Si produce a plausible hypothesis for a neighboring shape. p(S|Si) could
then be a mixture of densities describing both the uncertainty in the observation
Si and the conditional densities p(Sn|Si) of all possible neighbors Sn given the
observation Si.

If the variance in p(S|Si) does not vanish during iteration, the distribution
converges to the maximum likelihood shape collection convolved with p(S|Si).
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4 Implementation

This section describes in more detail all ingredients needed to perform multi-
object shape model segmentation, viz. a shape model, an image appearance
model, possible neighbor relations, and an optimization algorithm.

4.1 Shape Model

To constrain the shape of possible solutions, any kind of shape model from which
samples can be drawn can be inserted here. We will use the popular linear point
distribution models (PDM) as proposed by Cootes and Taylor [1] to model the
object shape variations observed in a training set.

Shapes are defined by the coordinates of a set of landmark points which
correspond between different shape instances. A principal component analysis
on a collection of aligned example shapes yields the so-called modes of shape
variation which describe a joint displacement of all landmarks. Each shape can
then be approximated by a linear combination of the mean shape and these
modes of variation. Usually only a small number of modes is needed to capture
most of the variation in the training set.

4.2 Neighbor Interaction

As was described in Section 3, the interaction between neighboring shapes can
be introduced in the step of perturbation of the degenerate particle set after
resampling. This requires P (S1|S2), the probability distribution of the expected
neighbor of a given shape. In the case where both shapes are modelled with a
linear PDM, this is given by the Gaussian conditional density

P (S1|S2) = N (µ,K)

with
µ = Σ12Σ

−1
22 S2

K = Σ11 − Σ12Σ
−1
22 Σ21

and Σij are obtained from the covariance matrix of the combined model

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
as

Σij =
1

n − 1

∑
n

(Sin − S̄i)(Sjn − S̄j)T .

Alternatively, one could leave out the interaction between particles (i.e. per-
turbed particles are always similar to the particle that produced them) to
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obtain a segmentation of an unknown number of objects with unknown spatial
interrelations.

Both approaches are tested on the rib data.

4.3 Image Observation Model

In the following, we will use class probability density measurements rather than
discrete classes as the image observations as given in Equation 2. The class
probability is obtained using a pixel classifier trained to distinguish between
foreground and background pixels on the basis of local image descriptors. We
have used a k-NN classifier and the outputs of a set of Gaussian derivative filters
at multiple scales as image features.

Class probabilities in a pixel x are then defined by

P (ω|x) =
kω

k
,

where kω among the k nearest neighbors of x belong to class ω.
We still assume that the pixel class due to the individual shapes is given

deterministically, that is, each shape Si is associated with a fixed class template
Ti(x, ω) that defines to which class each pixel belongs. Typically, there will be
two classes, one object and one background class. The aim is thus to produce
a shape distribution, expressed as a weighted set of shape particles, of which
the maximum likelihood classification M(x, ω) is as similar as possible to the
observed (soft) classification of the image C(x, ω).

4.4 Algorithm

The algorithm for the desired optimization over θ and α looks as follows:

– Sample N shape particles Si randomly from the prior distribution p(S)
– Repeat:

1. Compute weight αi for each particle (
∑

i αi = 1):
Initialize:
Particles Si receive a weight αi according to their overlap with the ob-
served classification C, normalized for size. If several particles vote for
the same class in the same pixel, they share the weight between them:

αi =
1∑

x,ω Ti(x, ω)

∑
x,ω

C(x, ω) × Ti(x, ω)
H(x, ω)

H(x, ω) =
∑

s

Ti(x, ω)∑
x,ω Ti(x, ω)

Optimize αi:
In random permutation over particles Si, with decreasing step size dα:
(a) select particle Si

(b) increase αi by dα, decrease α¬i so that
∑

s αi = 1
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(c) M(x, ω, α) =
∑

s
αiTi(x,ω)∑

s,ω
αiTi(x,ω)

(d) f =
∑

x,ω M(x, ω, α) × C(x, ω)
(e) if f increased accept new α

2. Produce a new particle set through weighted sampling with replacement
according to αi

3. Perturb the particles from the new sample set by sampling from p(S|Si)

5 Rib Segmentation Using Shape Particle Filtering

A set of leave-one-out experiments was performed on 30 standard digitized
posterior-anterior chest radiographs of size 256 × 256, taken from the publicly
available JSRT (Japanese Society of Radiological Technology) database [11].
This section describes the specific choices made for rib segmentation.

5.1 Shape Models

The proposed algorithm can simultaneously detect and segment an unknown
number of similar objects. This could include several different types of objects
as well.

For the rib application we have constructed two shape models, one for the left
ribs and one for the right ribs. The size and shape of a rib in an X-ray image is
strongly correlated with the position in the image. We therefore do not perform
a full Procrustes alignment as would usually be preferred in shape model based
segmentation. Instead, we translate each image such that the top of the lung
fields (minimal y coordinate) and the horizontal center (median x-coordinate)
coincide. Since the task of lung field segmentation is much less cumbersome than
rib segmentation [8], we will assume that these coordinates are (approximately)
known in a new image.

The lung fields and the part of the ribs that is visible in the lung fields
have been manually delineated in all images. Ribs are subsequently described
by landmarks equidistantly interpolated between the four corner points where a
rib intersects the lung field. Ribs that have fewer than 4 corner points are not
taken into account in model construction, but they can still be segmented as a
variation in position of the ribs is automatically included in the model.

The spatial relations that are modelled are the first neighbor relationships
between consecutive ribs in the same lung field and between the ribs that are at
the same height in the both lung fields. Thus, in the particle perturbation step,
a rib shape from the shape collection can either produce a perturbed version of
itself or of its upper, lower, or left/right neighbor.

A linear PDM of the two shapes concatenated in one shape vector is con-
structed as described in Section 4. The models for a single rib, the combined
models and an example of a conditional model as used in neighbor interaction
are shown in Figure 1.
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Fig. 1. Examples of the shape-and-pose models constructed for rib segmentation. From
left to right, the first three modes of shape variation are visualized with the mean shape
in black and the mean shape ± 2 standard deviations in gray, except for row 4 which
shows the mean shape ± 4 standard deviations. From top to bottom: 1. Right rib
model 2. Right successive ribs model 3. Opposite ribs model 4. Model of the lower rib
conditioned on the mean shape of the upper rib. The axes of the plots correspond to
the true image size for rows 1 – 3; row 4 is a close-up

5.2 Settings

We use a set of Gaussian derivative filters at multiple scales as image features
and a k-NN classifier for probability estimation. Features include the original
image and the derivatives up to the third order computed at a scale of 1, 2,
and 4 pixels, resulting in a 21 dimensional feature space. The set of samples is
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normalized to unit variance for each feature, and k-NN classification is performed
with an approximate k-NN classifier [12] with k=25. These settings were selected
because they previously yielded good results on lung field classification [7] and
have not been adjusted for rib classification.

Class templates as defined for each shape have two classes; inside the rib
and outside the rib but within the lung fields. The template is defined by the
interior of a rib shape plus a border of 5 background pixels (approximately
half the thickness of a rib), so that most of the ribs can be described without
overlapping the rib class of one shape template with the background class of
another shape’s template.

In the experiments presented here, the algorithm was run for 10 iterations
without checking for convergence. The number of particles used for filtering is
1000, starting with 500 left ribs and 500 right ribs. The noise added in the particle
perturbation step is of standard deviation σd = 0.05σ, with σ the standard devi-
ation of the prior shape models. The prior for producing itself or one of its three
first neighbors is chosen as uniform; each case occurs with a probability of 0.25.

6 Results

An example of segmentations obtained, with and without neighbor interactions,
is given in Figure 2. Overall, segmentations using shape set filtering are spatially
more consistent than the original pixel classification which includes spurious pix-

Fig. 2. Examples of segmentations obtained. The top row shows the original X-rays and
the different soft classifications; the bottom row shows the hard classifications obtained
by thresholding the soft classification at 0.5. From left to right: Ground truth, original
pixel classification, shape set filtering without neighbor interaction; shape set filtering
with neighbor interaction
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Fig. 3. Typical segmentation errors by pixel classification (left) and shape set filtering
with user interaction (right). False positives are in black, false negatives in white,
correct classification in gray

Fig. 4. Evolution of the shape set classification. From left to right: First, third, fifth,
and tenth iteration

els and shows holes in the ribs. Without neighbor interaction, shape filtering may
overlap crossing rib shapes to reconstruct the holes in the original classification.
Shape set filtering with neighbor interaction finds the correct consistent rib pat-
tern in most cases.

The error rate of shape set filtering with neighbor interaction is 18.7%, which
is not significantly different from the error for the original pixel classification
(19.1%, p = 0.6). Shape collection filtering without neighbor interaction performs
worse (21.7%, p < 0.0001).

Figure 3 shows an example of the type of misclassifications by standard pixel
classification compared to the proposed method. In general, shape filtering makes
fewer gross errors like missing a rib completely or classifying the clavicles as
ribs. There are, however, more errors near the rib boundaries which indicates
that incorrect shapes have been forced on the segmentation. This may be either
caused by an incorrect shape model or by a too strong neighbor interaction.
Furthermore, the ribs in the lung tops —which is a problematic area for pixel
classification —are difficult to segment also with our method.

The process of evolving the particle set is illustrated in Figure 4.

7 Discussion

In the current paper we have optimized a collection of shapes on the output of a
pixel classifier based on local image descriptors. Such an approach was shown to
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be successful for single-object segmentation in several medical imaging applica-
tions [7]. The incorporation of shape constraints improves the spatial coherence
of the pixel classification. However, as the shapes try to adhere to the pixel
classification, the results will not be correct if the initial pixel classification re-
sults are far from the correct solution. An iterative method in which the method
presented here, optimizing a shape collection to match the classification, is al-
ternated with a pixel classification step in which the current shape collection is
used as a prior, would likely improve the results.

Further improvements can be expected if more advanced shape models are
used. Currently, a large variation in rib shape and position is modelled with a
simple linear model, without optimizing point correspondences. This frequently
results in ‘illegal’ shapes being produced. Although this problem is less severe
in the case of a large set of shapes, it may result in blurred and less consis-
tent classification, especially in the less regular top and bottom parts of the
lungs.

In addition, in this work the variance in the particle perturbation step was
kept constant during iteration. This means that in each iteration new hypotheses
of neighboring particles are introduced in the shape collection. If the observed
shape did not have a neighbor in that location or the neighbor has a different
shape, the weight for these particles will be small, but this still results in a
smearing out of the end result and occasionally in an extra rib being detected at
the top and the bottom of the lung fields. This could be remedied by adjusting
the interaction prior to reflect the fact that ribs in the lung tops are less likely
to have an upper neighbor than those in the bottom of the lung fields, or by
decreasing the variance of the perturbation density p(S|Si) over time.

Interaction between neighbors is currently realized by sampling in p(S|Si)
after a new sample set of particles has been selected by sampling proportionally
to the image likelihood weights αi. Thus, the weight of a particle is determined
by image forces and interaction between particles is achieved only by successful
particles producing hypotheses for their neighbors. A stronger constraint of spa-
tial consistency can be enforced by accepting a particle in the next iteration with
a probability proportionally to its consistency with the rest of the current shape
collection. We are currently investigating the advantages of various schemes.

Although we have for simplicity assumed that the position of the lung fields
in the image is known approximately, in a previous paper we successfully applied
shape particle filtering to segmentation of the lung fields [7]. Rather than first
segmenting the lungs and subsequently finding ribs near the lungs the two tasks
could be elegantly combined by filtering ribs and lungs simultaneously where the
rib model is conditioned on the lung shapes. This would yield a more constrained
shape-and-pose model for the ribs and may lead to better segmentations.

8 Conclusions

We propose a stochastic optimization algorithm which is capable of segmenting
an unknown number of similar objects in an image. This method finds spa-
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tially more consistent segmentations than pixel classification without shape con-
straints. Interaction between neighboring shapes enforces consistency in regular
patterns of similar shapes and improves upon the results without interaction in
segmenting the ribs in chest radiographs.
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