

Lecture Notes in Artificial Intelligence 3559
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Peter Auer Ron Meir (Eds.)

Learning
Theory

18th Annual Conference on Learning Theory, COLT 2005
Bertinoro, Italy, June 27-30, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Peter Auer
University of Leoben
Department of Mathematics and Information Technologies
Franz-Josef-Strasse 18, 8700 Leoben, Austria
E-mail: auer@unileoben.ac.at

Ron Meir
Technion, Israel Institute of Technology
Department of Electrical Engineering
Haifa 3200, P.O. Box, Israel
E-mail: rmeir@ee.technion.ac.il

Library of Congress Control Number: 2005927736

CR Subject Classification (1998): I.2.6, I.2.3, I.2, F.4.1, F.2, F.1.1

ISSN 0302-9743
ISBN-10 3-540-26556-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26556-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11503415 06/3142 5 4 3 2 1 0

Preface

This volume contains papers presented at the Eighteenth Annual Conference
on Learning Theory (previously known as the Conference on Computational
Learning Theory) held in Bertinoro, Italy from June 27 to 30, 2005.

The technical program contained 45 papers selected from 120 submissions, 3
open problems selected from among 5 contributed, and 2 invited lectures. The
invited lectures were given by Sergiu Hart on “Uncoupled Dynamics and Nash
Equilibrium”, and by Satinder Singh on “Rethinking State, Action, and Reward
in Reinforcement Learning”. These papers were not included in this volume.

The Mark Fulk Award is presented annually for the best paper co-authored
by a student. The student selected this year was Hadi Salmasian for the paper
titled “The Spectral Method for General Mixture Models” co-authored with
Ravindran Kannan and Santosh Vempala.

The number of papers submitted to COLT this year was exceptionally high.
In addition to the classical COLT topics, we found an increase in the number
of submissions related to novel classification scenarios such as ranking. This in-
crease reflects a healthy shift towards more structured classification problems,
which are becoming increasingly relevant to practitioners. The large number of
quality submissions placed a heavy burden on the program committee of the
conference: Shai Ben David (University of Waterloo), Avrim Blum (Carnegie
Mellon University), Peter Bartlett (University of California, Berkeley), Nader
Bshouty (Technion), Ran El-Yaniv (Technion), Yoav Freund (Columbia Univer-
sity), Ralf Herbrich (Microsoft Research, Cambridge), Marcus Hutter (IDSIA,
Switzerland), Tony Jebara (Columbia University), Balazs Kegl (University of
Montreal), Vladimir Koltchinskii (University New Mexico), Phil Long (Columbia
University), Gábor Lugosi (Pompeu Fabra University), Shie Mannor (McGill
University), Shahar Mendelson (Australian National University), Massimiliano
Pontil (University College London), Daniel Reidenbach (University of Kaisers-
lautern), Dan Roth (University Illinois Urbana-Champaign), Michael Schmitt
(Ruhr University Bochum), Rocco Servedio (Columbia University), Hans Ulrich
Simon (Ruhr University Bochum), Volodya Vovk (Royal Holloway), Manfred
Warmuth (University of California, Santa Cruz), Tong Zhang (IBM Research,
Yorktown). We take this opportunity to thank all reviewers for the excellent job
performed over a relatively short period of time. Some of them were even willing
to review additional papers beyond those initially assigned. Their efforts have
led to the selection of an exceptional set of papers, which ensured an outstanding
conference. We would like to have mentioned the sub-reviewers who assisted the
program committee in reaching their assessments, but unfortunately space con-
straints do not permit us to include this long list of names and we must simply
ask them to accept our thanks anonymously.

VI Preface

We are particularly grateful to Nicolò Cesa-Bianchi and Claudio Gentile, the
conference local chairs. Together they handled the conference publicity and all
the local arrangements to ensure a successful event. We would also like to thank
Microsoft for providing the software used in the program committee delibera-
tions and Dori Peleg for creating the conference web site. Jyrki Kivinen assisted
the organization of the conference in his role as head of the COLT Steering
Committee.

This work was also supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.

Finally, we would like to thank the Machine Learning Journal, Google Inc.,
the Bertinoro International Center for Informatics, and the Università degli Studi
di Milano for their sponsorship of the conference.

April, 2005 Peter Auer,
Ron Meir

Program Co-chairs COLT 2005

Sponsored by:

Table of Contents

Learning to Rank

Ranking and Scoring Using Empirical Risk Minimization
Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis 1

Learnability of Bipartite Ranking Functions
Shivani Agarwal, Dan Roth . 16

Stability and Generalization of Bipartite Ranking Algorithms
Shivani Agarwal, Partha Niyogi . 32

Loss Bounds for Online Category Ranking
Koby Crammer, Yoram Singer . 48

Boosting

Margin-Based Ranking Meets Boosting in the Middle
Cynthia Rudin, Corinna Cortes, Mehryar Mohri,
Robert E. Schapire . 63

Martingale Boosting
Philip M. Long, Rocco A. Servedio . 79

The Value of Agreement, a New Boosting Algorithm
Boaz Leskes . 95

Unlabeled Data, Multiclass Classification

A PAC-Style Model for Learning from Labeled and Unlabeled Data
Maria-Florina Balcan, Avrim Blum . 111

Generalization Error Bounds Using Unlabeled Data
Matti Kääriäinen . 127

On the Consistency of Multiclass Classification Methods
Ambuj Tewari, Peter L. Bartlett . 143

Sensitive Error Correcting Output Codes
John Langford, Alina Beygelzimer . 158

VIII Table of Contents

Online Learning I

Data Dependent Concentration Bounds for Sequential Prediction
Algorithms

Tong Zhang . 173

The Weak Aggregating Algorithm and Weak Mixability
Yuri Kalnishkan, Michael V. Vyugin . 188

Tracking the Best of Many Experts
András György, Tamás Linder, Gábor Lugosi . 204

Improved Second-Order Bounds for Prediction with Expert Advice
Nicolò Cesa-Bianchi, Yishay Mansour, Gilles Stoltz 217

Online Learning II

Competitive Collaborative Learning
Baruch Awerbuch, Robert D. Kleinberg . 233

Analysis of Perceptron-Based Active Learning
Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni 249

A New Perspective on an Old Perceptron Algorithm
Shai Shalev-Shwartz, Yoram Singer . 264

Support Vector Machines

Fast Rates for Support Vector Machines
Ingo Steinwart, Clint Scovel . 279

Exponential Convergence Rates in Classification
Vladimir Koltchinskii, Olexandra Beznosova . 295

General Polynomial Time Decomposition Algorithms
Nikolas List, Hans Ulrich Simon . 308

Kernels and Embeddings

Approximating a Gram Matrix for Improved Kernel-Based
Learning

Petros Drineas, Michael W. Mahoney . 323

Table of Contents IX

Learning Convex Combinations of Continuously Parameterized Basic
Kernels

Andreas Argyriou, Charles A. Micchelli,
Massimiliano Pontil . 338

On the Limitations of Embedding Methods
Shahar Mendelson . 353

Leaving the Span
Manfred K. Warmuth, S.V.N. Vishwanathan . 366

Inductive Inference

Variations on U-Shaped Learning
Lorenzo Carlucci, Sanjay Jain, Efim Kinber,
Frank Stephan . 382

Mind Change Efficient Learning
Wei Luo, Oliver Schulte . 398

On a Syntactic Characterization of Classification with a Mind Change
Bound

Eric Martin, Arun Sharma . 413

Unsupervised Learning

Ellipsoid Approximation Using Random Vectors
Shahar Mendelson, Alain Pajor . 429

The Spectral Method for General Mixture Models
Ravindran Kannan, Hadi Salmasian, Santosh Vempala 444

On Spectral Learning of Mixtures of Distributions
Dimitris Achlioptas, Frank McSherry . 458

From Graphs to Manifolds – Weak and Strong Pointwise Consistency
of Graph Laplacians

Matthias Hein, Jean-Yves Audibert,
Ulrike von Luxburg . 470

Towards a Theoretical Foundation for Laplacian-Based Manifold
Methods

Mikhail Belkin, Partha Niyogi . 486

X Table of Contents

Generalization Bounds

Permutation Tests for Classification
Polina Golland, Feng Liang, Sayan Mukherjee, Dmitry Panchenko . . . 501

Localized Upper and Lower Bounds for Some Estimation Problems
Tong Zhang . 516

Improved Minimax Bounds on the Test and Training Distortion of
Empirically Designed Vector Quantizers

András Antos . 531

Rank, Trace-Norm and Max-Norm
Nathan Srebro, Adi Shraibman . 545

Query Learning, Attribute Efficiency, Compression
Schemes

Learning a Hidden Hypergraph
Dana Angluin, Jiang Chen . 561

On Attribute Efficient and Non-adaptive Learning of Parities and DNF
Expressions

Vitaly Feldman . 576

Unlabeled Compression Schemes for Maximum Classes
Dima Kuzmin, Manfred K. Warmuth . 591

Economics and Game Theory

Trading in Markovian Price Models
Sham M. Kakade, Michael Kearns . 606

From External to Internal Regret
Avrim Blum, Yishay Mansour . 621

Separation Results for Learning Models

Separating Models of Learning from Correlated and Uncorrelated Data
Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan 637

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes
Peter Grünwald, Steven de Rooij . 652

Table of Contents XI

Teaching Classes with High Teaching Dimension Using Few Examples
Frank J. Balbach . 668

Open Problems

Optimum Follow the Leader Algorithm
Dima Kuzmin, Manfred K. Warmuth . 684

The Cross Validation Problem
John Langford . 687

Compute Inclusion Depth of a Pattern
Wei Luo . 689

Author Index . 691

Ranking and Scoring
Using Empirical Risk Minimization�

Stéphan Clémençon1,3, Gábor Lugosi2, and Nicolas Vayatis3

1 MODALX - Université Paris X,
92001 Nanterre Cedex, France

sclemenc@u-paris10.fr
2 Department of Economics, Universitat Pompeu Fabra,

Ramon Trias Fargas 25-27, 08005 Barcelona, Spain
lugosi@upf.es

3 Laboratoire de Probabilités et Modèles Aléatoires - Université Paris VI,
4, place Jussieu, 75252 Paris Cedex, France

vayatis@ccr.jussieu.fr

Abstract. A general model is proposed for studying ranking problems.
We investigate learning methods based on empirical minimization of the
natural estimates of the ranking risk. The empirical estimates are of the
form of a U -statistic. Inequalities from the theory of U -statistics and U -
processes are used to obtain performance bounds for the empirical risk
minimizers. Convex risk minimization methods are also studied to give
a theoretical framework for ranking algorithms based on boosting and
support vector machines. Just like in binary classification, fast rates of
convergence are achieved under certain noise assumption. General suffi-
cient conditions are proposed in several special cases that guarantee fast
rates of convergence.

1 Introduction

Motivated by various applications including problems related to document re-
trieval or credit-risk screening, the ranking problem has received increasing at-
tention both in the statistical and machine learning literature. In the ranking
problem one has to compare two (or more) different observations and decide
which one is “better”. For example, in document retrieval applications, one may
be concerned with comparing documents by degree of relevance for a particular
request, rather than simply classifying them as relevant or not.

In this paper we establish a statistical framework for studying such ranking
problems. We discuss a general model and point out that the problem may
be approached by empirical risk minimization methods thoroughly studied in

� This research was supported in part by Spanish Ministry of Science and Technology
and FEDER, grant BMF2003-03324, and by the PASCAL Network of Excellence
under EC grant no. 506778.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Clémençon, G. Lugosi, and N. Vayatis

statistical learning theory with the important novelty that natural estimates of
the ranking risk involve U -statistics. Therefore, the methodology is based on the
theory of U -processes. For an excellent account of the theory of U -statistics and
U -processes we refer to the monograph of de la Peña and Giné [9].

In this paper we establish basic performance bounds for empirical minimiza-
tion of the ranking risk. We also investigate conditions under which significantly
improved results may be given. We also provide a theoretical analysis of certain
nonparametric ranking methods that are based on an empirical minimization of
convex cost functionals over convex sets of scoring functions. The methods are in-
spired by boosting-, and support vector machine-type algorithms for classification.

The rest of the paper is organized as follows. In Section 2, the basic models
and the two versions of the ranking problem we consider are introduced. In
Sections 3 and 4, we provide the basic uniform convergence and consistency
results for empirical risk and convex risk minimizers. In Section 5 we describe
the noise assumptions which take advantage of the structure of the U -statistics
in order to obtain fast rates of convergence.

2 The Ranking Problem

Let (X,Y) be a pair of random variables taking values in X × R where X is
a measurable space. The random object X models some observation and Y
its real-valued label. Let (X ′, Y ′) denote a pair of random variables identically
distributed with (X,Y), and independent of it. Denote

Z =
Y − Y ′

2
.

In the ranking problem one observes X and X ′ but not necessarily their labels
Y and Y ′. We think about X being “better” than X ′ if Y > Y ′, that is, if Z > 0.
The goal is to rank X and X ′ such that the probability that the better ranked
of them has a smaller label is as small as possible. Formally, a ranking rule is
a function r : X × X → {−1, 1}. If r(x, x′) = 1 then the rule ranks x higher
than x′. The performance of a ranking rule is measured by the ranking risk

L(r) = P{Z · r(X,X ′) < 0} ,

that is, the probability that r ranks two randomly drawn instances incorrectly.
Observe that in this formalization, the ranking problem is equivalent to a binary
classification problem in which the sign of the random variable Z is to be guessed
based upon the pair of observations (X,X ′). Now it is easy to determine the
ranking rule with minimal risk. Introduce the notation

ρ+(X,X ′) = P{Z > 0 | X,X ′} , ρ−(X,X ′) = P{Z < 0 | X,X ′} .

Then we have the following simple fact:

Proposition 1. Define

r∗(x, x′) = 2I[ρ+(x,x′)≥ρ−(x,x′)] − 1

Ranking and Scoring Using Empirical Risk Minimization 3

and denote L∗ = L(r∗) = E{min(ρ+(X,X ′), ρ−(X,X ′))}. Then for any ranking
rule r, L∗ ≤ L(r).

The purpose of this paper is to investigate the construction of ranking rules of
low risk based on training data. We assume that given n independent, identically
distributed copies of (X,Y), are available: Dn = (X1, Y1), . . . , (Xn, Yn). Given
a ranking rule r, one may use the training data to estimate its risk L(r) =
P{Z · r(X,X ′) < 0}. The perhaps most natural estimate is the U -statistic

Ln(r) =
1

n(n − 1)

∑
i�=j

I[Zi,j ·r(Xi,Xj)<0] where Zi,j =
Yi − Yj

2
.

U -statistics have been studied in depth and their behavior is well understood.
One of the classical inequalities concerning U -statistics is due to Hoeffding [14]
which implies that, for all t > 0, if σ2 = Var(I[Z·r(X,X′)<0]) = L(r)(1 − L(r)),
then

P{|Ln(r) − L(r)| > t} ≤ 2 exp
(
− �(n/2)�t2

2σ2 + 2t/3

)
. (1)

It is important noticing here that the latter inequality may be improved
by replacing σ2 by a smaller term. This is based on the so-called Hoeffding’s
decomposition described below.

Hoeffding’s Decomposition. Hoeffding’s decomposition (see [21] for more de-
tails) is a basic tool for studying U -statistics. Consider the i.i.d. random variables
X,X1, ...,Xn and denote by

Un =
1

n(n − 1)

∑
i�=j

q(Xi, Xj)

a U -statistic of order 2 where q (the so-called kernel) is a symmetric real-valued
function. Assuming that q(X1, X2) is square integrable, Un − EUn may be de-
composed as a sum Tn of i.i.d. r.v’s plus a degenerate U -statistic Wn. In order
to write this decomposition, consider the following function of one variable

h(Xi) = E(q(Xi, X) | Xi) − EUn ,

and the function of two variables

h̃(Xi, Xj) = q(Xi, Xj) − EUn − h(Xi) − h(Xj).

Then Un = EUn + 2Tn + Wn, where

Tn =
1
n

n∑
i=1

h(Xi), Wn =
1

n(n − 1)

∑
i�=j

h̃(Xi, Xj) .

Wn is called a degenerate U -statistic because E

(
h̃(Xi, X) | Xi

)
= 0 . Clearly,

Var(Tn) =
Var(E(q(X1, X) | X1))

n
.

4 S. Clémençon, G. Lugosi, and N. Vayatis

Note that Var(E(q(X1, X) | X1)) is less than Var(q(X1, X)) (unless q is al-
ready degenerate). Furthermore, the variance of the degenerate U -statistic Wn

is of the order 1/n2. Thus, Tn is the leading term in this orthogonal decomposi-
tion. Indeed, the limit distribution of

√
n(Un − EUn) is the normal distribution

N (0, 4Var(E(q(X1, X) | X1)). This suggests that inequality (1) may be quite
loose.

Indeed, exploiting further Hoeffding’s decomposition, de la Peña and Giné
[9] established a Bernstein’s type inequality of the form (1) but with σ2 replaced
by the variance of the conditional expectation (see Theorem 4.1.13 in [9]). This
remarkable improvement is not exploited in our “first-order” analysis (Sections
3 and 4) but will become crucial when establishing fast rates of convergence in
Section 5.

Remark 1. (a more general framework.) One may consider a generaliza-
tion of the setup described above. Instead of ranking just two observations X,X ′,
one may be interested in ranking m independent observations X(1), . . . , X(m).
In this case the value of a ranking function r(X(1), . . . , X(m)) is a permutation
π of {1, . . . ,m} and the goal is that π should coincide with (or at least resemble
to) the permutation π for which Y (π(1)) ≥ · · · ≥ Y (π(m)). Given a loss function
� that assigns a number in [0, 1] to a pair of permutations, the ranking risk is
defined as

L(r) = E�(r(X(1), . . . , X(m)), π) .

In this general case, natural estimates of L(r) involve m-th order U -statistics.
All results of this paper extend in a straightforward manner to this general
setup. In order to lighten the notation, we restrict the discussion to the case
described above, that is, to the case when m = 2 and the loss function is
�(π, π) = I[π �=π].

Another formalization of this problem is the so-called ordinal regression ap-
proach (see Herbrich, Graepel, and Obermayer [13]) in which the relation be-
tween ranking and pairwise classification is also made clear. However, the fact
that a sequence of pairs (Xi, Xj) of i.i.d. individual data (Xi) is no longer inde-
pendent was not considered there.

Remark 2. (ranking and scoring.) In many interesting cases the ranking
problem may be reduced to finding an appropriate scoring function. These are
the cases when the joint distribution of X and Y is such that there exists a
function s∗ : X → R such that

r∗(x, x′) = 1 if and only if s∗(x) ≥ s∗(x′) .

A function s∗ satisfying the assumption is called an optimal scoring function.
Obviously, any strictly increasing transformation of an optimal scoring function
is also an optimal scoring function. Below we describe some important special
cases when the ranking problem may be reduced to scoring.

Ranking and Scoring Using Empirical Risk Minimization 5

Example 1. (the bipartite ranking problem.) In the bipartite ranking prob-
lem the label Y is binary, it takes values in {−1, 1}. Writing η(x)=P{Y =1|X =x},
it is easy to see that the Bayes ranking risk equals

L∗ = E min{η(X)(1 − η(X ′)), η(X ′)(1 − η(X))}

and also,

L∗ = Var
(

Y + 1
2

)
− 1

2
E |η(X) − η(X ′)| ≤ 1/4

where the equality L∗ = Var
(

Y +1
2

)
holds when X and Y are independent and

the maximum is attained when η ≡ 1/2. Observe that the difficulty of the bipar-
tite ranking problem depends on the concentration properties of the distribution
of η(X) = P{Y = 1 | X} through the quantity E{|η(X) − η(X ′)|} which is a
classical measure of concentration, known as Gini’s mean difference. It is clear
from the form of the Bayes ranking rule that the optimal ranking rule is given by
a scoring function s∗ which is any strictly increasing transformation of η. Then
one may restrict the search to ranking rules defined by scoring functions s, that
is, ranking rules of form r(x, x′) = 2I[s(x)≥s(x′)]−1. Writing L(s) def= L(r), one has

L(s) − L∗ = E
(
|η(X ′) − η(X)| I[(s(X)−s(X′))(η(X)−η(X′))<0]

)
.

Observe that the ranking risk in this case is closely related to the auc criterion
which is a standard performance measure in the bipartite setting (see, e.g., [11]).
More precisely, we have:

AUC(s) = P (s(X) ≥ s(X ′) | Y = 1, Y ′ = −1) = 1 − 1
2p(1 − p)

L(s),

where p = P (Y = 1), so maximizing the AUC criterion is equivalent to minimiz-
ing the ranking risk.

Example 2. (a regression model). Assume now that Y is real-valued and the
joint distribution of X and Y is such that Y = m(X) + εσ(X) where m(x) =
E(Y |X = x) is the regression function and ε has a symmetric distribution around
zero and is independent of X. Then clearly the optimal ranking rule r∗ may be
obtained by a scoring function s∗ which may be taken as any strictly increasing
transformation of m.

3 Empirical Risk Minimization

Based on the empirical estimate Ln(r) of the risk L(r) of a ranking rule defined
above, one may consider choosing a ranking rule by minimizing the empirical
risk over a class R of ranking rules r : X × X → {−1, 1}. Define the empirical
risk minimizer, over R, by

rn = arg min
r∈R

Ln(r) .

6 S. Clémençon, G. Lugosi, and N. Vayatis

(Ties are broken in an arbitrary way.) In a “first-order” approach, we may study
the performance L(rn) = P{Z ·rn(X,X ′) < 0|Dn} of the empirical risk minimizer
by the standard bound (see, e.g., [10])

L(rn) − inf
r∈R

L(r) ≤ 2 sup
r∈R

|Ln(r) − L(r)| . (2)

This inequality points out that bounding the performance of an empirical min-
imizer of the ranking risk boils down to investigating the properties of U -
processes, that is, suprema of U -statistics indexed by a class of ranking rules.
In our first-order approach it suffices to use the next simple inequality which
reduces the problem to the study of ordinary empirical processes.

Lemma 1. Let qτ : X × X → R be real-valued functions indexed by τ ∈ T
where T is some set. If X1, . . . , Xn are i.i.d. then for any convex nondecreasing
function ψ,

Eψ

⎛⎝sup
τ∈T

1
n(n − 1)

∑
i�=j

qτ (Xi, Xj)

⎞⎠ ≤ Eψ

⎛⎝sup
τ∈T

1
�n/2�

�n/2	∑
i=1

qτ (Xi, X�n/2	+i)

⎞⎠ ,

assuming the suprema are measurable and the expected values exist.

The proof uses a similar trick Hoeffding’s above-mentioned inequality are
based on. The details are omitted.

Using the lemma with ψ(x) = eλx, we bound the moment generating func-
tion of the U -process by that of an ordinary empirical process. Then standard
methods of handling empirical processes may be used directly. For example, the
bounded differences inequality (see McDiarmid [20]) implies that

log E exp
(
λ sup

r∈R
|Ln(r) − L(r)|

)
≤ λE sup

r∈R
|L̃n(r) − L(r)| + λ2

4(n − 1)
,

where we have set L̃n(r) = 1
�n/2	

∑�n/2	
i=1 I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0]. The ex-

pected value on the right-hand side may now be bounded by standard methods.
For example, if the class R of indicator functions has finite vc dimension V ,
then

E sup
r∈R

1
�n/2�

∣∣∣∣∣∣
�n/2	∑
i=1

I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0] − L(r)

∣∣∣∣∣∣ ≤ c

√
V

n

for a universal constant c (see, e.g., Lugosi [17]). By the Chernoff bound P{X >
t} ≤ E exp(λX − λt) we immediately obtain the following corollary:

Proposition 2. Let R be a class of ranking rules of vc dimension V . Then for
any t > 0,

P

{
sup
r∈R

|Ln(r) − L(r)| > c

√
V

n
+ t

}
≤ e−(n−1)t2 .

Ranking and Scoring Using Empirical Risk Minimization 7

A similar result is proved in the bipartite ranking case by Agarwal, Har-Peled,
and Roth ([1], [2]) with the restriction that their bound holds conditionally on
a label sequence. Their analysis relies on a particular complexity measure called
the rank-shatter coefficient but the core of the argument is the same (since they
implicitly make use of the permutation argument to recover a sum of independent
quantities).

The proposition above is convenient, simple, and, in a certain sense, not
improvable. However, it is well known from the theory of statistical learning and
empirical risk minimization for classification that the bound (2) is often quite
loose. In classification problems the looseness of such a “first-order” approach
is due to the fact that the variance of the estimators of the risk is ignored and
bounded uniformly by a constant. However, in the above analysis of the ranking
problem there is an additional weakness due to the fact that estimators based on
U -statistics have an even smaller variance as we pointed it out above. Observe
that all upper bounds obtained in this section remain true for an empirical risk
minimizer that, instead of using estimates based on U -statistics, estimates the
risk of a ranking rule by splitting the data set into two halves and estimate
L(r) by

1
�n/2�

�n/2	∑
i=1

I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0] .

(The same holds for the results of Section 4 as well.) Thus, in the analysis above
one looses the advantage of using U -statistics. In Section 5 it is shown that un-
der certain, not uncommon, circumstances significantly smaller risk bounds are
achievable. There it will have an essential importance to use the sharp exponen-
tial bounds for U -statistics.

4 Convex Risk Minimization

Several successful algorithms for classification, including various versions of boos-
ting and support vector machines are based on replacing the loss function by a
convex function and minimizing the corresponding empirical convex risk func-
tionals over a certain class of functions (typically over a ball in an appropriately
chosen Hilbert or Banach space of functions). This approach has important com-
putational advantages, as the minimization of the empirical convex functional is
often computationally feasible by gradient descent algorithms. Recently signifi-
cant theoretical advance has been made in understanding the statistical behavior
of such methods see, e.g., Bartlett, Jordan, and McAuliffe [4], Blanchard, Lugosi
and Vayatis [6], Breiman [8], Jiang [15], Lugosi and Vayatis [18], Zhang [23].

The purpose of this section is to extend the principle of convex risk minimiza-
tion to the ranking problem studied in this paper. Our analysis also provides a
theoretical framework for the analysis of some successful ranking algorithms
such as the RankBoost algorithm of Freund, Iyer, Schapire, and Singer [11]. In
what follows we adapt the arguments of Lugosi and Vayatis [18] (where a simple
binary classification problem was considered) to the ranking problem.

8 S. Clémençon, G. Lugosi, and N. Vayatis

The basic idea is to consider ranking rules induced by real-valued functions,
that is, ranking rules of the form

r(x, x′) =
{

1 if f(x, x′) > 0
−1 otherwise

where f : X × X → R is some measurable real-valued function. With a slight
abuse of notation, we will denote by L(f) def= P{sgn(Z) · f(X,X ′) < 0} = L(r)
the risk of the ranking rule induced by f . (Here sgn(x) = 1 if x > 0, sgn(x) =
−1 if x < 0, and sgn(x) = 0 if x = 0.) Let φ : R → [0,∞) a convex cost
function satisfying φ(0) = 1 and φ(x) ≥ I[x≥0]. Typical choices of φ include the
exponential cost function φ(x) = ex, the “logit” function φ(x) = log2(1 + ex),
or the “hinge loss” φ(x) = (1 + x)+. Define the cost functional associated to the
cost function φ by

A(f) = Eφ(− sgn(Z) · f(X,X ′)) .

We denote by A∗ = inff A(f) the “optimal” value of the cost functional where
the infimum is taken over all measurable functions f : X × X → R.

The most natural estimate of the cost functional A(f), based on the training
data Dn, is the empirical cost functional defined by the U -statistic

An(f) =
1

n(n − 1)

∑
i�=j

φ(− sgn(Zi,j) · f(Xi, Xj)) .

The ranking rules based on convex risk minimization we consider in this section
minimize, over a set F of real-valued functions f : X × X → R, the empirical
cost functional An, that is, we choose fn = arg minf∈F An(f) and assign the
corresponding ranking rule

rn(x, x′) =
{

1 if fn(x, x′) > 0
−1 otherwise.

By minimizing convex risk functionals, one hopes to make the excess convex
risk A(fn)−A∗ small. This is meaningful for ranking if one can relate the excess
convex risk to the excess ranking risk L(fn) − L∗. This may be done quite
generally by recalling a recent result of Bartlett, Jordan, and McAuliffe [4]. To
this end, introduce the function

H(ρ) = inf
α∈R

(ρφ(−α) + (1 − ρ)φ(α))

H−(ρ) = inf
α:α(2ρ−1)≤0

(ρφ(−α) + (1 − ρ)φ(α)) .

Defining ψ over R by ψ(x) = H− ((1 + x)/2) − H ((1 + x)/2), Theorem 3 of [4]
implies that for all functions f : X × X → R,

L(f) − L∗ ≤ ψ−1 (A(f) −A∗)

where ψ−1 denotes the inverse of ψ. Bartlett, Jordan, and McAuliffe show that,
whenever φ is convex, limx→0 ψ−1(x) = 0, so convergence of the excess convex

Ranking and Scoring Using Empirical Risk Minimization 9

risk to zero implies that the excess ranking risk also converges to zero. Moreover,
in most interesting cases ψ−1(x) may be bounded, for x > 0, by a constant
multiple of

√
x (such as in the case of exponential or logit cost functions) or

even by x (e.g., if φ(x) = (1 + x)+ is the so-called hinge loss).
Thus, to analyze the excess ranking risk L(f) − L∗ for convex risk min-

imization, it suffices to bound the excess convex risk. This may be done by
decomposing it into “estimation” and “approximation” errors as follows:

A(fn) −A∗(f) ≤
(
A(fn) − inf

f∈F
A(f)

)
+

(
inf
f∈F

A(f) −A∗
)

.

To bound the estimation error, assume, for simplicity, that the class F of func-
tions is uniformly bounded, say supf∈F,x∈X |f(x)| ≤ B. Then once again, we
may appeal to Lemma 1 and the bounded differences inequality which imply
that for any λ > 0,

log E exp

(
λ sup

f∈F
|An(f) −A(f)|

)
≤ λE sup

f∈F

(
Ãn(f) −A(f)

)
+

λ2B2

2(n − 1)
,

where Ãn(f) = 1
�n/2	

∑�n/2	
i=1 φ

(
− sgn(Zi,�n/2	+i) · f(Xi, X�n/2	+i)

)
. Now it suf-

fices to derive an upper bound for the expected supremum appearing in the
exponent. This may be done by standard symmetrization and contraction in-
equalities. In fact, by mimicking Koltchinskii and Panchenko [16] (see also the
proof of Lemma 2 in Lugosi and Vayatis [18]), the expectation on the right-hand
side may be bounded by

4Bφ′(B)E sup
f∈F

⎛⎝ 1
�n/2�

�n/2	∑
i=1

σi · f(Xi, X�n/2	+i)

⎞⎠
where σ1, . . . , σ�n/2	 are i.i.d. Rademacher random variables independent of Dn.
We summarize our findings:

Proposition 3. Let fn be the ranking rule minimizing the empirical convex risk
functional An(f) over a class of functions f uniformly bounded by −B and B.
Then, with probability at least 1 − δ,

A(fn) − inf
f∈F

A(f) ≤ 8Bφ′(B)Rn(F) +

√
2B2 log(1/δ)

2(n − 1)

where Rn(F) = E supf∈F

(
1

�n/2	
∑�n/2	

i=1 σi · f(Xi, X�n/2	+i)
)

.

Many interesting bounds are available for the Rademacher average of vari-
ous classes of functions. For example, in analogy of boosting-type classification
problems, one may consider a class FB of functions defined by

FB =

⎧⎨⎩f(x, x′) =
N∑

j=1

wjgj(x, x′) : N ∈ N,
N∑

j=1

|wj | = B, gj ∈ R

⎫⎬⎭

10 S. Clémençon, G. Lugosi, and N. Vayatis

where R is a class of ranking rules as defined in Section 3. In this case it is easy
to see that

Rn(FB) ≤ BRn(R) ≤ const.
BV√

n

where V is the vc dimension of the “base” class R.
Summarizing, we have shown that a ranking rule based on the empirical

minimization An(f) over a class of ranking functions FB of the form defined
above, the excess ranking risk satisfies, with probability at least 1 − δ,

L(fn) − L∗ ≤ ψ−1

(
8Bφ′(B)c

BV√
n

+

√
2B2 log(1/δ)

n
+

(
inf

f∈FB

A(f) −A∗
))

.

This inequality may be used to derive the universal consistency of such ranking
rules. For example, the following corollary is immediate.

Corollary 1. Let R be a class of ranking rules of finite vc dimension V such
that the associated class of functions FB is rich in the sense that

lim
B→∞

inf
f∈FB

A(f) = A∗

for all distributions of (X,Y). Then if fn is defined as the empirical minimizer of
An(f) over FBn

where the sequence Bn satisfies Bn → ∞ and B2
nφ′(Bn)/

√
n → 0,

then
lim

n→∞
L(fn) = L∗ almost surely.

Classes R satisfying the conditions of the corollary exist, we refer the reader
to Lugosi and Vayatis [18] for several examples.

Proposition 3 can also be used for establishing performance bounds for kernel
methods such as support vector machines. The details are omitted for the lack
of space.

5 Fast Rates

As we have mentioned at the end of Section 3, the bounds obtained there may be
significantly improved under certain conditions. It is well known (see, e.g., §5.2
in the survey [7] and the references therein) that tighter bounds for the excess
risk in the context of binary classification may be obtained if one can control
the variance of the excess risk by its expected value. In classification this can
be guaranteed under certain “low-noise” conditions combined with the fact that
the optimal (Bayes) classifier is in the class of candidate classification rules (see,
e.g., Massart and Nédélec [19], Tsybakov [22]).

The purpose of this section is to examine possibilities of obtaining such im-
proved performance bounds for empirical ranking risk minimization. The main
message is that in the ranking problem one also may obtain significantly im-
proved bounds under some conditions that are analogous to the low-noise con-
ditions in the classification problem, though quite different in nature.

Ranking and Scoring Using Empirical Risk Minimization 11

Here we will greatly benefit from using U -statistics (as opposed to splitting
the sample) as the small variance of the U -statistics used to estimate the ranking
risk gives rise to sharper bounds.

Below we establish improved bounds for the excess risk for empirical ranking
risk minimization introduced in Section 3 above. Similar results also hold for the
estimator based on the convex risk A(s) though some assumptions may be more
difficult to interpret (see [6] for classification), and here we restrict our attention
to the minimizer rn of the empirical ranking risk Ln(r) over a class R of ranking
rules.

Set first

qr((x, y), (x′, y′)) = I[(y−y′)·r(x,x′)<0] − I[(y−y′)·r∗(x,x′)<0]

and consider the following estimate of the excess risk Λ(r) def= L(r) − L∗ =
Eqr((X,Y), (X ′, Y ′)) given by:

Λn(r) def=
1

n(n − 1)

∑
i�=j

qr((Xi, Yi), (Xj , Yj)),

which is a U -statistic of degree 2 with symmetric kernel qr. Clearly, the minimizer
rn of the empirical ranking risk Ln(r) over R also minimizes the empirical excess
risk Λn(r). To study this minimizer, consider the Hoeffding decomposition of
Λn(r):

Λn(r) = Λ(r) + 2Tn(r) + Wn(r) ,

where

Tn(r) =
1
n

n∑
i=1

hr(Xi, Yi)

is a sum of i.i.d. random variables with hr(x, y) = Eqr((x, y), (X ′, Y ′))−Λ(r) and

Wn(r) =
1

n(n − 1)

∑
i�=j

h̃r((Xi, Yi), (Xj , Yj))

is a degenerate U -statistic with symmetric kernel

h̃r((x, y), (x′, y′)) = qr((x, y), (x′, y′)) − Λ(r) − hr(x, y) − hr(x′, y′) .

Now consider the estimator rn obtained as the minimizer of

Ln(r) =
1

n(n − 1)

∑
i�=j

I[(Yi−Yj)·r(Xi,Xj)<0]

over all r ∈ R.
In this section we work under the following basic assumptions:

(a) The class R of ranking rules has a finite vc dimension V .
(b) The optimal ranking rule r∗ is in the class R.
(c) For all r ∈ R,

Var(hr(X,Y)) ≤ cΛ(r)α

with some constants c > 0 and α ∈ [0, 1].

12 S. Clémençon, G. Lugosi, and N. Vayatis

The basic tools we need are an exponential inequality for U -processes in-
dexed by a vc class of degenerate kernels due to Arcones and Giné [3] and a
general inequality for empirical risk minimizers of Bartlett and Mendelson [5].
The Arcones-Giné inequality, simplified to the case we need states that there
exists a universal constant C such that, with probability at least 1 − δ,

sup
r∈R

|Wn(r)| ≤ CV

n − 1
log

(
1
δ

)
. (3)

Theorem 1. Consider the minimizer of the empirical ranking risk Ln(r) over a
class R of ranking rules and assume that conditions (a),(b), and (c) listed above
hold. Then there exists a universal constant C such that, with probability at least
1 − δ, the ranking risk of rn satisfies

L(rn) − L∗ ≤ C

(
V log(n/δ)

n

)1/(2−α)

.

sketch of proof. Let A be the event on which supr∈R |Wn(r)| ≤ ρ, where
ρ = CV

n−1 log
(

2
δ

)
and C denotes the constant in (3). Then by (3), P[A] ≥ 1− δ/2.

By the Hoeffding decomposition of the U -statistic Λn(r), it is clear that, on
A, rn is an ρ-minimizer of (1/n)

∑n
i=1 fr(Xi, Yi) over r ∈ R (in the sense that

the average calculated for r = rn exceeds the minimum by not more than ρ)
where, for every r ∈ R, we write fr(x, y) = Eqr((X,Y), (x, y)). Define r̃n as rn

on A and an arbitrary minimizer of (1/n)
∑n

i=1 fr(Xi, Yi) on Ac. Then clearly,
with probability at least 1 − δ/2, L(rn) = L(r̃n) and r̃n is a ρ-minimizer of
(1/n)

∑n
i=1 fr(Xi, Yi). Thus, we can use a general result of Bartlett and Mendel-

son [5] to bound the excess ranking risk Λ(r̃n) = E(fr̃n
(X,Y)|Dn) of r̃n. To this

end, we need an estimate on the L2 covering numbers of the class of functions
{fr : r ∈ R}. Now observe that for any pair r, r′ ∈ R, by Jensen’s inequality,

d(fr, fr′) =
√

E(fr(X,Y) − fr′(X,Y))2

≤
√

E(I[(Y −Y ′)·r(X,X′)<0] − I[(Y −Y ′)·r′(X,X′)<0])2 .

Thus, the L2 covering numbers of the class {fr : r ∈ R} are not more than those
of the class of indicator functions {I[(y−y′)·r(x,x′)<0] : r ∈ R}. However, since R
has vc dimension V , by Haussler’s inequality [12], the covering numbers of this
class satisfy log N(ε) ≤ cV log(1/ε). Then an argument similar to Theorem 2.12
of [5] may be used to complete the proof.

The Bipartite Ranking Problem. Next we derive a simple sufficient con-
dition for achieving fast rates of convergence for the bipartite ranking prob-
lem. Recall that here it suffices to consider ranking rules of the form r(x, x′) =
2I[s(x)≥s(x′)] − 1 where s is a scoring function. With some abuse of notation we
write hs for hr.

Noise assumption. There exist constants c > 0 and α ∈ [0, 1] such that for all
x ∈ X ,

EX′(|η(x) − η(X ′)|−α) ≤ c . (4)

Ranking and Scoring Using Empirical Risk Minimization 13

Proposition 4. Under (4), we have, for all s ∈ F , Var(hs(X,Y)) ≤ cΛ(s)α.

proof.

Var(hs(X,Y))

≤ EX

[(
EX′(I[(s(X)−s(X′))(η(X)−η(X′))<0])

)2
]

≤ EX

[
EX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0] |η(X) − η(X ′)|α

)
×

(
EX′(|η(X) − η(X ′)|−α)

)]
(by the Cauchy-Schwarz inequality)

≤ c
(
EXEX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0] |η(X) − η(X ′)|

))α

(by Jensen’s inequality and the noise assumption)
= cΛ(s)α .

Condition (4) is satisfied under quite general circumstances. If α = 0 then
clearly the condition poses no restriction, but also no improvement is achieved in
the rates of convergence. On the other hand, at the other extreme, when α = 1,
the condition is quite restrictive as it excludes η to be differentiable, for example,
if X has a uniform distribution over [0, 1]. However, interestingly, for any α < 1,
poses quite mild restrictions as it is highlighted in the following example:

Corollary 2. Consider the bipartite ranking problem and assume that η(x) =
P{Y = 1|X = x} is such that the random variable η(X) has an absolutely
continuous distribution on [0, 1] with a density bounded by B. Then for any
ε > 0,

EX′(|η(x) − η(X ′)|−1+ε) ≤ 2B
ε

and therefore, by Theorem 1 and Proposition 4, for every δ ∈ (0, 1) there is
a constant C such that the excess ranking risk of the empirical minimizer rn

satisfies

L(rn) − L∗ ≤ CBε−1

(
V log(n/δ)

n

)1/(1+ε)

.

proof. The corollary follows simply by checking that (4) is satisfied for any
α = 1 − ε < 1. The details are omitted.

The condition (4) of the corollary requires that the distribution of η(X) is
sufficiently spread out, for example it cannot have atoms or infinite peaks in its
density. Under such a condition a rate of convergence of the order of n−1+ε is
achievable for any ε > 0.

Regression Model with Noise. Now we turn to the general regression model
with heteroscedastic errors in which Y = m(X) + σ(X)ε for some (unknown)

14 S. Clémençon, G. Lugosi, and N. Vayatis

functions m : X → R and σ : X → R, where ε has a Gaussian density and is
independent of X. Set

Δ(X,X ′) =
m(X) −m(X ′)√
σ2(X) + σ2(X ′)

.

We have again s∗ = m (or any strictly increasing transformation of it) and the
optimal risk is L∗ = EΦ (− |Δ(X,X ′)|) whose maximal value is attained when
the regression function m(x) is constant. Furthermore, we have

L(s) − L∗ = E
(
|2Φ (Δ(X,X ′)) − 1| · I[(m(x)−m(x′))·(s(x)−s(x′))<0]

)
where Φ is the distribution function of ε.

Noise Assumption. There exist constants c > 0 and α ∈ [0, 1] such that for
all x ∈ X ,

EX′(|Δ(x,X ′)|−α) ≤ c . (5)

Proposition 5. Under (5), we have, for all s ∈ F , Var(hs(X,Y)) ≤ (2Φ(c) −
1)Λ(s)α.

proof. By symmetry, |2Φ (Δ(X,X ′)) − 1| = 2Φ (|Δ(X,X ′)|) − 1. Then, using
the concavity of the distribution function Φ on R+, we have, by Jensen’s inequal-
ity,

EX′Φ(|Δ(x,X ′)|−α) ≤ Φ(EX′ |Δ(x,X ′)|−α) ≤ Φ(c) ,

where we have used (5) together with the fact that Φ is increasing. Now the
result follows following the argument given in the proof of Proposition 4.

The preceding noise condition is fulfilled in many cases, as illustrated by the
example below.

Corollary 3. Suppose that m(X) has a bounded density and the conditional
variance σ(x) is bounded over X . Then the noise condition 5 is satisfied for any
α < 1.

Acknowledgements. We thank Gilles Blanchard for his valuable comments
on a previous version of this manuscript, and also Gérard Biau for his careful
remarks.

References

1. S. Agarwal, T. Graepel, R. Herbrich, and D. Roth (2004). A large deviation bound
for the area under the ROC curve. In Proceedings of the 18th Annual Conference
on Neural Information Processing Systems, Vancouver, Canada.

2. S. Agarwal, S. Har-Peled, and D. Roth (2005). A uniform convergence bound for
the area under the ROC curve. In Proceedings of the 10th International Workshop
on Artificial Intelligence and Statistics, Barbados.

Ranking and Scoring Using Empirical Risk Minimization 15

3. M.A. Arcones and E. Giné (1994). U -processes indexed by Vapnik-Chervonenkis
classes of functions with applications to asymptotics and bootstrap of U -statistics
with estimated parameters. Stochastic Processes and their Applications, 52, pp.
17-38.

4. P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe (2003). Convexity, classification,
and risk bounds. Technical Report 638, Department of Statistics, U.C. Berkeley.

5. P.L. Bartlett and S. Mendelson (2003). Empirical minimization. Technical Report,
Department of Statistics, U.C. Berkeley.

6. G. Blanchard, G. Lugosi, and N. Vayatis (2003). On the rate of convergence of
regularized boosting classifiers. Journal of Machine Learning Research, 4:861-894.

7. O. Bousquet, S. Boucheron, and G. Lugosi (2004). Theory of classification: a survey
of recent advances. ESAIM: Probability and Statistics, to appear.

8. L. Breiman (2004). Population theory for boosting ensembles. Annals of Statistics,
32, pp. 1–11.

9. V. de la Peña and E. Giné (1999). Decoupling: from dependence to independence.
Springer.

10. L. Devroye, L. Györfi, and G. Lugosi (1996). A Probabilistic Theory of Pattern
Recognition. Springer-Verlag, New York.

11. Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer (2003). An Efficient Boosting
Algorithm for Combining Preferences. Journal of Machine Learning Research, 4,
pp. 933-969.

12. D. Haussler (1995). Sphere packing numbers for subsets of the boolean n-cube
with bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory,
Series A, 69, pp. 217–232.

13. R. Herbrich, T. Graepel, and K. Obermayer (2000). Large margin rank boundaries
for ordinal regression. In A. Smola, P.L. Bartlett, B.Schölkopf, and D.Schuurmans
(eds.), Advances in Large Margin Classifiers, The MIT Press, pp. 115–132.

14. W. Hoeffding (1963). Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58, pp. 13-30.

15. W. Jiang (2004). Process consistency for Adaboost (with discussion). Annals of
Statistics, 32, pp. 13–29.

16. V. Koltchinskii and D. Panchenko (2002). Empirical margin distribution and
bounding the generalization error of combined classifiers. Annals of Statistics,
30, pp. 1–50.

17. G. Lugosi (2002). Pattern classification and learning theory. In L. Györfi (editor),
Principles of Nonparametric Learning, Springer, Wien, New York, pp. 1–56.

18. G. Lugosi and N. Vayatis (2004). On the Bayes-risk consistency of boosting meth-
ods (with discussion). Annals of Statistics, 32, pp. 30–55.

19. P. Massart and E. Nédélec (2003). Risk bounds for statistical learning. Preprint,
Université Paris XI.

20. C. McDiarmid (1989). On the method of bounded differences. In Surveys in
Combinatorics 1989, pp. 148-188, Cambridge University Press.

21. R.J. Serfling (1980). Approximation theorems of mathematical statistics. John
Wiley & Sons.

22. A. Tsybakov (2004). Optimal aggregation of classifiers in statistical learning. An-
nals of Statistics, 32, pp. 135–166.

23. T. Zhang (2004). Statistical behavior and consistency of classification methods
based on convex risk minimization (with discussion). Annals of Statistics, 32, pp.
56–85.

Learnability of Bipartite Ranking Functions

Shivani Agarwal and Dan Roth

Department of Computer Science,
University of Illinois at Urbana-Champaign,

201 N. Goodwin Avenue, Urbana, IL 61801, USA
{sagarwal, danr}@cs.uiuc.edu

Abstract. The problem of ranking, in which the goal is to learn a real-valued
ranking function that induces a ranking or ordering over an instance space, has
recently gained attention in machine learning. We define a model of learnability
for ranking functions in a particular setting of the ranking problem known as the
bipartite ranking problem, and derive a number of results in this model. Our first
main result provides a sufficient condition for the learnability of a class of ranking
functions F : we show that F is learnable if its bipartite rank-shatter coefficients,
which measure the richness of a ranking function class in the same way as do the
standard VC-dimension related shatter coefficients (growth function) for classes
of classification functions, do not grow too quickly. Our second main result gives
a necessary condition for learnability: we define a new combinatorial parameter
for a class of ranking functions F that we term the rank dimension of F , and
show that F is learnable only if its rank dimension is finite. Finally, we investigate
questions of the computational complexity of learning ranking functions.

1 Introduction

Two decades ago, Valiant [1] proposed a theory of learnability for binary classifi-
cation functions defined on Boolean domains. His learning model (known now as
the Probably Approximately Correct (PAC) learning model), and several variants
and extensions thereof, have since been studied extensively, and have led to a rich
set of theoretical results on classes of functions that can and cannot be learned,
on algorithms that can be used to solve the learning problem, and on the com-
putational complexity of learning various function classes. In particular, we now
have a strong theoretical understanding of the learning problem for both classifi-
cation (learning of binary-valued functions) and regression (learning of real-valued
functions), two of the most well-studied problems in machine learning. Recently,
a new learning problem, namely that of ranking, has gained attention in the ma-
chine learning community [2, 3, 4, 5]. In ranking, one learns a real-valued function
that assigns scores to instances, but the scores themselves do not matter; instead,
what is important is the relative ranking of instances induced by those scores.
This problem is distinct from both classification and regression, and it is natu-
ral to ask whether a similar theoretical understanding can be developed for this
problem. This paper constitutes a first step in that direction.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 16–31, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Learnability of Bipartite Ranking Functions 17

1.1 Previous Results

In the binary classification problem, the learner is given a finite sequence of labeled
training examples z = ((x1, y1), . . . , (xm, ym)), where the xi are instances in some
instance space X and the yi are labels in Y = {−1, 1}, and the goal is to learn a binary-
valued function h : X→Y that predicts accurately labels of future instances. In the PAC
model, a learning algorithm for a class H of binary classification functions on X is a
function L :

⋃∞
m=1(X ×Y)m→H with the following property: given any ε, δ ∈ (0, 1),

there is an integer m = m(ε, δ) such that for any distribution D on X and any target
function t ∈ H, given a random training sample z = ((x1, t(x1)), . . . , (xm, t(xm))) of
size m in which the xi are drawn i.i.d. according to D, with probability at least 1 − δ
the classification function h = L(z) output by L has prediction error Px∼D{h(x) �=
t(x)} < ε. The smallest such integer m(ε, δ) is called the sample complexity of L. A
class H is said to be learnable if there is a learning algorithm for H.

In a classic paper, Blumer et al. [6] showed that the PAC learnability of a class of
binary classification functions H is characterized by a single combinatorial parameter
of H, namely its Vapnik-Chervonenkis (VC) dimension, in the sense that H is learnable
if and only if its VC dimension is finite. This characterization comprised two distinct
results. The first made use of a uniform convergence result based on the work of Vap-
nik and Chervonenkis [7] to show the existence of a learning algorithm for H whose
sample complexity could be upper bounded via the shatter coefficients (growth func-
tion) of H, which in turn could be upper bounded in terms of the VC dimension of H;
this established that finiteness of the VC dimension is sufficient for learnability. The
second result made use of the probabilistic method to show that the sample complexity
of any learning algorithm for H is lower bounded by a linear function of the VC di-
mension of H; this established that finiteness of the VC dimension is also necessary for
learnability.

The PAC model assumes the existence of an underlying ‘target function’; this as-
sumption was removed in a generalization of the PAC model studied in [6, 8, 9], often
referred to as the ‘agnostic’ model. In this general model, examples are generated ac-
cording to an arbitrary joint distribution D over X × {−1, 1}, and a learning algorithm
is required to output with high probability a hypothesis h ∈ H with prediction error
P(x,y)∼D{h(x) �= y} close to the best possible within the class H. It has been shown
that the VC dimension characterizes learnability also in this general model. Questions
of the computational complexity of learning have been investigated for a large number
of function classes in both models, leading to efficient algorithms in some cases and
hardness results in others. For many common function classes, learning in the general
model is hard, but polynomial-time algorithms exist for learning in the PAC model.

The regression problem is similar to the classification problem, except that the labels
yi in this case come from Y = R or Y = [a, b] for some a, b ∈ R, and the goal is to
learn a real-valued function f : X→Y that approximates well labels of future instances.
An analogous theory of learnability has been developed for this problem, starting with
the work of Haussler [8] in which it was shown that finiteness of the pseudo-dimension
of a class of (bounded) real-valued functions F is sufficient for learnability of F in the
general learning model. As in the case of classification, this result made use of a uniform
convergence result of [10] to show the existence of a learning algorithm for F whose

18 S. Agarwal and D. Roth

sample complexity could be upper bounded via the covering numbers of F , which in
turn could be upper bounded in terms of the pseudo-dimension of F . However, a lower
bound on the sample complexity remained elusive. Later, Kearns and Schapire [11]
introduced a new measure of the richness of a real-valued function class known now as
the fat-shattering dimension. It was then shown [11, 12, 13] that the sample complexity
of any learning algorithm for a real-valued function class F is lower bounded by a linear
function of the fat-shattering dimension of F , and that the covering numbers of F can
also be upper bounded in terms of this dimension, thus establishing a characterization of
learnability for real-valued functions in terms of the fat-shattering dimension. Questions
of the computational complexity of learning have also been investigated for classes of
real-valued functions, leading again to efficient algorithms in some cases and hardness
results in others.

1.2 Our Results

In the bipartite ranking problem [5, 14], described in detail in Section 2, the learner
is given a sequence of ‘positive’ training examples x+ = (x+

1 , . . . , x+
m) and a se-

quence of ‘negative’ training examples x− = (x−
1 , . . . , x−

n), the x+
i and x−

j being
instances in some instance space X , and the goal is to learn a real-valued ranking
function f : X→R that ranks future positive instances higher than negative ones,
i.e., that assigns higher values to positive instances than to negative ones. We de-
fine a model of learnability for ranking functions in the setting of the bipartite
ranking problem, and derive a number of results in this model. Our first main re-
sult provides a sufficient condition for the learnability of a class of ranking func-
tions F : we show that F is learnable if its bipartite rank-shatter coefficients [14],
which measure the richness of a ranking function class in the same way as do
the standard VC-dimension related shatter coefficients for classes of classification
functions, do not grow too quickly. As in the case of classification and regres-
sion, the proof of this result makes use of a uniform convergence result of [14]
to show the existence of a learning algorithm for F whose sample complexity can
be upper bounded via the bipartite rank-shatter coefficients of F . Our second main
result gives a necessary condition for learnability: we define a new combinatorial
parameter for a class of ranking functions F that we term the rank dimension of
F , and show that F is learnable only if its rank dimension is finite. As in the case
of classification, the proof of this result makes use of the probabilistic method to
show that the sample complexity of any learning algorithm for F is lower bounded
by a linear function of the rank dimension of F . We use the above two results
to give examples of both learnable and non-learnable classes of ranking functions.
Finally, we investigate questions of the computational complexity of learning rank-
ing functions. As in classification, we find that for some common ranking function
classes, learning in a general ‘agnostic’ model is hard, but efficient algorithms can
be found for learning in a PAC-type model.

1.3 Organization

We describe the bipartite ranking problem in greater detail in Section 2, and formu-
late our model of learnability for ranking functions in the setting of this problem in

Learnability of Bipartite Ranking Functions 19

Section 3. A sufficient condition for learnability in this model is derived in Section 4,
and a necessary condition in Section 5. We consider the computational complexity of
learning ranking functions in Section 6.

2 The Bipartite Ranking Problem

In the bipartite ranking problem [5, 14], the learner is given a training sample (x+, x−)
consisting of a sequence of ‘positive’ training examples x+ = (x+

1 , . . . , x+
m) and a

sequence of ‘negative’ training examples x− = (x−
1 , . . . , x−

n), the x+
i and x−

j being
instances in some instance space X , and the goal is to learn a real-valued ranking func-
tion f : X→R that ranks future positive instances higher than negative ones, i.e., that
assigns higher values to positive instances than to negative ones. Such problems arise,
for example, in information retrieval, where one is interested in retrieving documents
from some database that are ‘relevant’ to a given topic. In this case, the training exam-
ples given to the learner consist of documents labeled as relevant (positive) or irrelevant
(negative), and the goal is to produce a list of documents that contains relevant docu-
ments at the top and irrelevant ones at the bottom; in other words, one wants a ranking
of the documents such that relevant documents are ranked higher than irrelevant ones.

We assume that positive instances are drawn randomly and independently accord-
ing to some (unknown) distribution D+ on X , and that negative instances are drawn
randomly and independently according to some (unknown) distribution D− on X . The
quality of a ranking function f : X→R is then measured by its expected ranking error
with respect to D+ and D−, denoted by RD+,D−(f) and defined as follows:

RD+,D−(f) = Ex+∼D+,x−∼D−

{
I{f(x+)<f(x−)} +

1
2
I{f(x+)=f(x−)}

}
, (1)

where I{·} denotes the indicator variable whose value is one if its argument is true
and zero otherwise. The expected ranking error RD+,D−(f) is the probability that a
positive instance drawn randomly according to D+ is ranked lower by f than a negative
instance drawn randomly according to D−, assuming that ties are broken uniformly at
random. A related quantity is the empirical ranking error of f with respect to a sample
(x+, x−) ∈ Xm ×Xn, denoted by R̂x+,x−(f) and defined as follows:

R̂x+,x−(f) =
1

mn

m∑
i=1

n∑
j=1

{
I{f(x+

i)<f(x−
j)} +

1
2
I{f(x+

i)=f(x−
j)}

}
. (2)

This is simply the fraction of positive-negative pairs in (x+, x−) that are ranked incor-
rectly by f , assuming again that ties are broken uniformly at random.

Although the bipartite ranking problem shares similarities with the binary classifica-
tion problem, it should be noted that the two problems are in fact distinct. In particular,
it is possible for binary functions obtained by thresholding different real-valued func-
tions to have the same classification errors, while the ranking errors of the real-valued
functions differ significantly. For a detailed discussion of this distinction, see [15, 14]1.

1 In [15, 14], the performance of a ranking function is measured in terms of the area under the
ROC curve (AUC); this quantity is simply equal to one minus the empirical ranking error.

20 S. Agarwal and D. Roth

3 Learnability

Since the goal of learning is to find a ranking function that ranks accurately future
instances, we would like a learning algorithm to find a ranking function with minimal
expected ranking error. More specifically, if a learning algorithm selects a ranking func-
tion from a class of ranking functions F , we would like it to output a ranking function
f ∈ F with expected error RD+,D−(f) close to the best possible within the class F ,
i.e., close to

R∗
D+,D−(F) = inf

g∈F
RD+,D−(g) . (3)

We formalize this idea below, following closely the notation and terminology of An-
thony and Bartlett [16]. In what follows, Q denotes the set of rationals and N the set of
positive integers.

Definition 1 (Learnability). Let F be a class of real-valued ranking functions on X .
A learning algorithm L for F is a function L :

(⋃∞
m=1 Xm

)
×

(⋃∞
n=1 Xn

)
→F with

the following property: given any ρ ∈ (0, 1) ∩ Q and any ε, δ ∈ (0, 1), there is an
integer M = M(ε, δ, ρ) such that m = ρM ∈ N, n = (1 − ρ)M ∈ N, and for any
distributions D+,D− on X ,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) −R∗

D+,D−(F) ≥ ε
}
≤ δ .

The smallest such integer M(ε, δ, ρ) is called the sample complexity of L, denoted
ML(ε, δ, ρ). We say that F is learnable if there is a learning algorithm for F .

Notice the introduction of the additional parameter ρ in the above definition, which
was not required in classification. This parameter represents the ‘positive skew’, i.e.,
the proportion of positive examples. Its role will become clear in subsequent sections.

As in [16], our main model above corresponds to a general ‘agnostic’ model in
which no assumption is made on the distributions D+ and D−; we refer to this as the
standard model. We can also define a PAC-type model in which the distributions D+

and D− are restricted to correspond to an underlying target function; following [16],
we refer to this as the restricted model.

Definition 2 (Learnability in Restricted Model). Let F be a class of real-valued
ranking functions on X . A learning algorithm L for F in the restricted model is a
function L :

(⋃∞
m=1 Xm

)
×

(⋃∞
n=1 Xn

)
→F with the following property: given any

ρ ∈ (0, 1) ∩ Q and any ε, δ ∈ (0, 1), there is an integer M = M(ε, δ, ρ) such that
m = ρM ∈ N, n = (1 − ρ)M ∈ N, and for any distributions D+,D− on X for which
there is a target function t ∈ F such that RD+,D−(t) = 0,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) ≥ ε

}
≤ δ .

The smallest such integer M(ε, δ, ρ) is called the sample complexity of L, denoted
ML(ε, δ, ρ). We say that F is learnable in the restricted model if there is a learning
algorithm for F in this model.

Learnability of Bipartite Ranking Functions 21

Clearly, if a class of ranking functions F is learnable, then F is learnable in the
restricted model. Note that learnability of F in the restricted model is equivalent to
learnability of the class of classification functions H =

{
h : X→{−1, 1} | h(x) =

θ(f(x) + τ) for some f ∈ F , τ ∈ R
}
, where θ(u) = 1 for u > 0 and θ(u) = −1 for

u ≤ 0, in the restricted (PAC) model for classification. However, this equivalence does
not hold in the standard (agnostic) model.

4 Upper Bound on Sample Complexity

In this section we show that any algorithm that minimizes the empirical ranking error
over a class of ranking functions F is a learning algorithm for F if the bipartite rank-
shatter coefficients [14] of F do not grow too quickly, and obtain an upper bound on
the sample complexity of such an algorithm.

Definition 3 (Bipartite Rank Matrix [14]). Let f : X→R be a ranking function on
X , let m,n ∈ N, and let x = (x1, . . . , xm) ∈ Xm, x′ = (x′

1, . . . , x
′
n) ∈ Xn. The

bipartite rank matrix of f with respect to x, x′, denoted by Bf (x, x′), is defined to be
the matrix in {0, 1/2, 1}m×n whose (i, j)-th element is given by

[Bf (x, x′)]ij = I{f(xi)>f(x′
j)} +

1
2
I{f(xi)=f(x′

j)}

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Definition 4 (Bipartite Rank-Shatter Coefficient [14]). Let F be a class of real-
valued functions on X , and let m,n ∈ N. The (m,n)-th bipartite rank-shatter coef-
ficient of F , denoted by r(F ,m, n), is defined as follows:

r(F ,m, n) = max
x∈Xm,x′∈Xn

|{Bf (x, x′) | f ∈ F}| .

Definition 5 (Empirical Error Minimization (EEM) Algorithm). Let F be a class
of ranking functions on X . Define an empirical error minimization (EEM) algorithm
for F to be any function L :

(⋃∞
m=1 Xm

)
×

(⋃∞
n=1 Xn

)
→ F with the property that

for any m,n ∈ N and any (x+, x−) ∈ Xm ×Xn,

R̂x+,x−(L(x+, x−)) = min
g∈F

R̂x+,x−(g) .

Theorem 1. Let F be a class of ranking functions on X , and let L be any EEM algo-
rithm for F . If there exist constants c1 > 0, c2 ≥ 0 such that r(F ,m, n) ≤ c1(mn)c2

for all m,n ∈ N, then L is a learning algorithm for F with sample complexity

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

(
4c2 ln

(
16
ε

)
+ c2 ln

(
c22

e2ρ(1 − ρ)

)
+ ln

(
4c1
δ

))⌉
ρ

,

where u�ρ denotes the smallest integer M greater than or equal to u for which ρM ∈N.

22 S. Agarwal and D. Roth

The proof of this result makes use of the following uniform convergence result for
the ranking error given in [14]2:

Theorem 2 ([14]). Let F be a class of ranking functions on X , and let m,n ∈ N. Then
for any distributions D+,D− on X and for any ε > 0,

Px+∼Dm
+ ,x−∼Dn

−

{
sup
f∈F

∣∣∣R̂x+,x−(f) −RD+,D−(f)
∣∣∣ ≥ ε

}
≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n) .

Proof (of Theorem 1). It can be shown using standard techniques [16] that for any
m,n ∈ N, any (x+, x−) ∈ Xm ×Xn and any distributions D+,D− on X ,

RD+,D−(L(x+, x−)) −R∗
D+,D−(F) ≤ 2 sup

f∈F

∣∣∣R̂x+,x−(f) −RD+,D−(f)
∣∣∣ .

Now, suppose there exist constants c1 > 0, c2 ≥ 0 such that r(F ,m, n) ≤ c1(mn)c2 for
all m,n ∈ N. Let ρ ∈ (0, 1) ∪ Q and ε, δ ∈ (0, 1), and let D+,D− be any distributions
on X . For any M ∈ N for which m = ρM ∈ N, n = (1 − ρ)M ∈ N, we then have

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) −R∗

D+,D−(F) ≥ ε
}

(4)

≤ Px+∼Dm
+ ,x−∼Dn

−

{
sup
f∈F

∣∣∣R̂x+,x−(f) −RD+,D−(f)
∣∣∣ ≥ ε/2

}
≤ 4 · r(F , 2ρM, 2(1 − ρ)M) · e−ρ(1−ρ)Mε2/32 (by Theorem 2)

≤ 4 · c1(4ρ(1 − ρ)M2)c2 · e−ρ(1−ρ)Mε2/32 .

Therefore, to make the probability in Eq. (4) smaller than δ, it is sufficient if

M ≥ 32
ρ(1 − ρ)ε2

(
2c2 lnM + c2 ln(4ρ(1 − ρ)) + ln

(
4c1
δ

))
.

Since lnu ≤ au − ln a− 1 for all a, u > 0, we have

64c2
ρ(1 − ρ)ε2

lnM ≤ 64c2
ρ(1 − ρ)ε2

(
ρ(1 − ρ)ε2

128c2
M − ln

(
ρ(1 − ρ)ε2

128c2

)
− 1

)
=

M

2
+

64c2
ρ(1 − ρ)ε2

ln
(

128c2
eρ(1 − ρ)ε2

)
.

Using this and simplifying terms, we get that

M ≥ 64
ρ(1 − ρ)ε2

(
4c2 ln

(
16
ε

)
+ c2 ln

(
c22

e2ρ(1 − ρ)

)
+ ln

(
4c1
δ

))
suffices to make the probability in Eq. (4) smaller than δ. The result then follows from
the definition of sample complexity (Definition 1). ��

2 The uniform convergence result in [14] is given for the area under the ROC curve (AUC); as
mentioned previously, this quantity is simply equal to one minus the empirical ranking error.

Learnability of Bipartite Ranking Functions 23

Notice that the upper bound on the sample complexity in ranking for given (ε, δ)
grows larger as the positive skew ρ departs from 1/2, i.e., as the balance between pos-
itive and negative examples becomes more uneven. Similar observations regarding the
role of the skew ρ in ranking have been made in different contexts in [15, 14]. Theo-
rem 1 can be used to show learnability of any class of ranking functions whose bipartite
rank-shatter coefficients can be bounded appropriately; we give some examples below.

Example 1 (Finite function classes). Let F be a finite class of ranking functions on
some instance space X . Then r(F ,m, n) ≤ |F| for all m,n ∈ N. Thus we have from
Theorem 1 that F is learnable; in particular, taking c1 = |F|, c2 = 0, we have that any
EEM algorithm L for F is a learning algorithm for F with sample complexity3

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

ln
(

4|F|
δ

)⌉
ρ

.

Example 2 (Linear ranking functions). Let Flin(d) be the class of linear ranking func-
tions on Rd. Then it can be shown [14] that r(Flin(d),m, n) ≤ (2emn/d)d for all
m,n ∈ N. Thus we have from Theorem 1 that Flin(d) is learnable; in particular, taking
c1 = (2e/d)d, c2 = d, we have that any EEM algorithm L for Flin(d) is a learning
algorithm for Flin(d) with sample complexity

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

(
4d ln

(
16
ε

)
+ d ln

(
2d

eρ(1 − ρ)

)
+ ln

(
4
δ

))⌉
ρ

.

Example 3 (Polynomial ranking functions). Let q ∈ N, and let Fpoly(d,q) be the class of
polynomial ranking functions on Rd with degree less than or equal to q. Then it can be
shown [14] that r(Fpoly(d,q),m, n) ≤ (2emn/C(d, q))C(d,q) for all m,n ∈ N, where

C(d, q) =
q∑

i=1

((
d

i

) q∑
j=1

(
j − 1
i− 1

))
.

Thus we have from Theorem 1 that Fpoly(d,q) is learnable; in particular, taking c1 =
(2e/C(d, q))C(d,q), c2 = C(d, q), we have that any EEM algorithm L for Fpoly(d,q) is
a learning algorithm for Fpoly(d,q) with sample complexity

ML(ε, δ, ρ) ≤
⌈

64

ρ(1 − ρ)ε2

(
4C(d, q) ln

(
16

ε

)
+ C(d, q) ln

(
2C(d, q)

eρ(1 − ρ)

)
+ ln

(
4

δ

))⌉
ρ

.

5 Lower Bound on Sample Complexity

In this section we define a new combinatorial parameter for a class of ranking functions
F that we term the rank dimension of F , and show that the sample complexity of any
learning algorithm for F is lower bounded by a linear function of its rank dimension.

3 It is in fact possible to obtain a slightly tighter upper bound in this case using a different
uniform convergence result of [14] for finite function classes.

24 S. Agarwal and D. Roth

Definition 6 (Rank-Shattering). Let F be a class of real-valued functions on X , let
r ∈ N, and let S = {(w1, w

′
1), . . . , (wr, w

′
r)} be a set of r pairs of instances in X . For

each i ∈ {1, . . . , r}, b ∈ {0, 1}r, define

wb+
i =

{
wi if bi = 1
w′

i if bi = 0 , wb−
i =

{
w′

i if bi = 1
wi if bi = 0 .

We say that F rank-shatters S if for each b ∈ {0, 1}r, there is a ranking function fb ∈ F
such that for all i, j ∈ {1, . . . , r}, fb(wb+

i) > fb(wb−
j).

Definition 7 (Rank Dimension). Let F be a class of real-valued functions on X . De-
fine the rank dimension of F , denoted by rank-dim(F), to be the largest positive integer
r for which there exists a set of r pairs of instances in X that is rank-shattered by F .

Theorem 3. Let F be a class of ranking functions on X with rank-dim(F) = r. Then
for any function L :

(⋃∞
m=1 Xm

)
×

(⋃∞
n=1 Xn

)
→ F , any m,n ∈ N such that

m + n ≥ 2r, and any ε > 0, there exist distributions D+,D− on X such that

Ex+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) −R∗

D+,D−(F)
}

≥ 1
210

√
r

m + n

(
1 −

√
1 − e−(2m/(m+n)+1)

)2 (
1 −

√
1 − e−(2n/(m+n)+1)

)2

.

Proof (sketch). The proof makes use of ideas similar to those used to prove lower
bounds in the case of classification; specifically, a finite set of distributions is con-
structed, and it is shown, using the probabilistic method, that for any function L there
exist distributions in this set for which the above lower bound holds.

Let S = {(w1, w
′
1), . . . , (wr, w

′
r)} be a set of r pairs of instances in X that is rank-

shattered by F . We construct a family of 2r pairs of distributions {(Db+,Db−) : b ∈
{0, 1}r} on X as follows. For each b ∈ {0, 1}r, define

Db+(wi) =
{

(1 + α)/2r if bi = 1
(1 − α)/2r if bi = 0 Db−(wi) =

{
(1 − α)/2r if bi = 1
(1 + α)/2r if bi = 0

Db+(w′
i) =

{
(1 − α)/2r if bi = 1
(1 + α)/2r if bi = 0 Db−(w′

i) =
{

(1 + α)/2r if bi = 1
(1 − α)/2r if bi = 0

Db+(x) = 0 for x �= wi, w
′
i Db−(x) = 0 for x �= wi, w

′
i

Here α is a constant in (0, 1) whose value will be determined later. Using the notation
of Definition 6, it can be verified that for any f : X→R,

RDb+,Db−(f) =
(1 − α

2

)
+

α

r2

r∑
i=1

r∑
j=1

{
I{f(wb+

i)<f(wb−
j)} +

1
2
I{f(wb+

i)=f(wb−
j)}

}
.

Since S is rank-shattered by F , for each b ∈ {0, 1}r there is a function fb ∈ F such
that for all i, j ∈ {1, . . . , r}, fb(wb+

i) > fb(wb−
j). From the above equation this gives

R∗
Db+,Db−(F) =

(1 − α

2

)
.

Learnability of Bipartite Ranking Functions 25

Therefore, for any f ∈ F , we have

RDb+,Db−(f) − R∗
Db+,Db−(F) =

α

r2

r∑
i=1

r∑
j=1

{
I{f(wb+

i)<f(wb−
j)} +

1

2
I{f(wb+

i)=f(wb−
j)}

}
.

Now, let L :
(⋃∞

m=1 Xm
)
×

(⋃∞
n=1 Xn

)
→ F be any function, and for any x =

(x+, x−) ∈ Xm × Xn, denote by fx the ranking function L(x+, x−) ∈ F output by
L. Then we have for any b ∈ {0, 1}r,

Ex+∼Dm
b+,x−∼Dn

b−

{
RDb+,Db−(fx) −R∗

Db+,Db−(F)
}

=
α

r2

r∑
i=1

r∑
j=1

Ex+∼Dm
b+,x−∼Dn

b−

{
I{fx(wb+

i)<fx(wb−
j)} +

1
2
I{fx(wb+

i)=fx(wb−
j)}

}
.

We use the probabilistic method to show that the above quantity is greater than the
stated lower bound for at least one pair of distributions Db+,Db−. In particular, we
show that if b ∈ {0, 1}r is chosen uniformly at random, then the expected value of
the above quantity is greater than the stated lower bound; this implies that there is at
least one b ∈ {0, 1}r for which the bound holds. The techniques we use are similar to
those used in the case of classification (see, for example, [16–Chapter 5]); the details
are considerably more involved and are omitted for lack of space (see [17] for complete
details). Denoting the uniform distribution over {0, 1}r by U , what we get is that for
any α > 0,

Eb∼U

{
Ex+∼Dm

b+,x−∼Dn
b−

{
RDb+,Db−(fx) −R∗

Db+,Db−(F)
}}

≥ α

210

(
1 −

√
1 − e−(2m/r+1)α2/(1−α2)

)2(
1 −

√
1 − e−(2n/r+1)α2/(1−α2)

)2

.

Setting α2 = r/(m + n) and assuming m + n ≥ 2r then gives

Eb∼U

{
Ex+∼Dm

b+,x−∼Dn
b−

{
RDb+,Db−(fx) −R∗

Db+,Db−(F)
}}

≥ 1
210

√
r

m + n

(
1 −

√
1 − e−(2m/(m+n)+1)

)2(
1 −

√
1 − e−(2n/(m+n)+1)

)2

. ��

Corollary 1. Let F be a class of ranking functions on X with rank-dim(F) = r, and
let L be any learning algorithm for F . Then L has sample complexity

ML(ε, δ, ρ) ≥ r

220(ε + δ)2
(
1 −

√
1 − e−(2ρ+1)

)4 (
1 −

√
1 − e−(2(1−ρ)+1)

)4

.

Proof. Let ρ ∈ (0, 1) ∪ Q and ε, δ ∈ (0, 1). Let M = ML(ε, δ, ρ), and let m = ρM ,
n = (1 − ρ)M . Then for all distributions D+,D− on X ,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) −R∗

D+,D−(F) ≥ ε
}
≤ δ .

26 S. Agarwal and D. Roth

Using the fact that any [0, 1]-valued random variable Z satisfies E{Z} ≤ P{Z ≥ ε}+ε
for all ε ∈ (0, 1), we thus get that for all distributions D+,D− on X ,

Ex+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) −R∗

D+,D−(F)
}
≤ ε + δ .

Theorem 3 then implies that

ε + δ ≥ 1
210

√
r

M

(
1 −

√
1 − e−(2ρ+1)

)2 (
1 −

√
1 − e−(2(1−ρ)+1)

)2

.

Solving for M gives the desired result. ��

As in the case of the upper bound, the lower bound on sample complexity grows
larger as the proportion of positive examples ρ departs from 1/2.

Corollary 2. Let F be a class of ranking functions on X . If F is learnable, then
rank-dim(F) is finite.

Proof. This follows directly from Corollary 1. ��

Example 4. Let F be the class of all ranking functions f : R→R on R. Then clearly,
F rank-shatters arbitrarily large sets of pairs of instances in R. The rank dimension of
F is therefore infinite, and hence by Corollary 2, F is not learnable.

Remark 1. We note that since the distributions constructed in the proof of Theorem 3
do not correspond to a target function, the lower bound on sample complexity and
the necessary condition for learnability derived above do not apply to learning in the
restricted model of Definition 2.

6 Computational Complexity

So far, we have viewed a learning algorithm as simply a function that maps training
samples to ranking functions, and have focused only on the sample complexity of this
function. However, in order to be of practical use, this function must also be com-
putable, i.e., the learning algorithm must truly be an algorithm that takes as input a
training sample and returns as output a ranking function. Moreover, the learning algo-
rithm must be computationally efficient.

In order to study the computational complexity of learning algorithms for ranking,
we need to consider learning at a somewhat broader level than we have done above.
In particular, a learning algorithm is usually defined for sets of ranking functions over
domains of arbitrary dimension (e.g., a learning algorithm for the class of linear ranking
functions over Rd for any d), and it is then of interest to study how the computational
complexity of the algorithm grows with the dimension. As in [16, 6], we formalize
this by defining learning algorithms for graded function classes. For each d ∈ N, let
Xd be a subset of Rd, and let Fd be a set of ranking functions on Xd. We refer to

Learnability of Bipartite Ranking Functions 27

the union F =
⋃
Fd as a graded class of ranking functions. A learning algorithm

for F is then a function L :
⋃∞

d=1

((⋃∞
m=1 Xm

d

)
×

(⋃∞
n=1 Xn

d

))
→ F such that if

(x+, x−) ∈ Xm
d ×Xn

d , then L(x+, x−) ∈ Fd, and for each d, L is a learning algorithm
for Fd (in the sense of Definition 1). Assuming that learning algorithms are computable
functions, we can now ask how the computational complexity of a learning algorithm
L for a graded class of ranking functions F =

⋃
Fd grows with d.

Definition 8 (Efficient Learnability). Let F =
⋃
Fd be a graded class of ranking

functions and let L be a learning algorithm for F . We say that L is efficient if

(i) the worst-case time complexity TL(m,n, d) of L on samples (x+, x−) ∈ Xm
d ×Xn

d

is polynomial4 in m, n and d, and
(ii) the sample complexity ML(ε, δ, ρ, d) of L on Fd is polynomial in 1/ε, 1/δ, 1/ρ(1−

ρ) and d (up to an ·�ρ operation).

We say F is efficiently learnable if there is an efficient learning algorithm for F .

Efficient learnability in the restricted model can be defined in a similar manner. The
sufficient and necessary conditions for learnability established in Sections 4 and 5 can
be extended to efficient learnability as follows.

Definition 9 (Efficient EEM Algorithm). Let F =
⋃
Fd be a graded class of ranking

functions. An efficient EEM algorithm for F is an algorithm that takes as input a sample
(x+, x−) ∈ Xm

d ×Xn
d , and in time polynomial in m, n and d, returns a ranking function

f ∈ Fd such that R̂x+,x−(f) = ming∈Fd
R̂x+,x−(g) .

Theorem 4. Let F =
⋃
Fd be a graded class of ranking functions, and suppose

that there exist functions c1 : N→R+, c2 : N→R+ ∪ {0} such that r(Fd,m, n) ≤
c1(d)(mn)c2(d) for all d,m, n ∈ N, and such that c2(d) is polynomial in d. Then any
efficient EEM algorithm for F is an efficient learning algorithm for F .

Proof. Suppose that L is an efficient EEM algorithm for F . Then

(i) by Theorem 1, L is a learning algorithm for Fd for each d and therefore a learning
algorithm for F ,

(ii) by Definition 9, the time complexity TL(m,n, d) of L on Fd is polynomial in m,
n and d, and

(iii) by Theorem 1, the sample complexity ML(ε, δ, ρ, d) of L on Fd is polynomial in
1/ε, 1/δ, 1/ρ(1 − ρ) and d (up to an ·�ρ operation).

Thus, L is an efficient learning algorithm for F . ��

Theorem 5. Let F =
⋃
Fd be a graded class of ranking functions. If there is an effi-

cient learning algorithm for F , then rank-dim(Fd) is polynomial in d.

4 In the logarithmic cost model of computation [18], the time complexity is also allowed to
depend polynomially on the number of bits required to represent the input.

28 S. Agarwal and D. Roth

Proof. This follows directly from Definition 8 and Corollary 1. ��
Next we define the following decision problem associated with a graded ranking

function class F =
⋃
Fd. As in the case of classification [16], it can be shown that if

this problem is NP-hard, then, assuming RP �= NP, F is not efficiently learnable. The
proof is similar to that for classification; we omit the details.

F -FIT

Instance: (x+, x−) ∈ Xm
d ×Xn

d and an integer k ∈ {1, . . . ,mn}.
Question: Is there f ∈ Fd such that R̂x+,x−(f) ≤ k/mn?

Theorem 6. Let F be a graded class of ranking functions. If there is an efficient learn-
ing algorithm for F , then there is a polynomial-time randomized algorithm for F -FIT,
i.e., F -FIT is in RP.

We now have the formal tools necessary to study the computational complexity of
learning ranking functions. Below we use these tools to investigate the computational
complexity of learning for the commonly used classes of linear and polynomial ranking
functions. Our first result is a hardness result for linear ranking functions.

Theorem 7. Let Flin =
⋃
Flin(d), where Flin(d) is the class of linear ranking functions

on Rd. If RP �= NP, then Flin is not efficiently learnable.

Proof. We show that Flin-FIT is NP-hard; the result then follows by Theorem 6. To
show that Flin-FIT is NP-hard, we give a reduction from an NP-hard classification
problem to Flin-FIT. For each d ∈ N, let Hlin(d) =

{
h : Rd→{−1, 0, 1} | h(x) =

sign(
∑d

l=1wlxl + θ) for some w ∈ Rd, θ ∈ R
}
. Given a function h ∈ Hlin(d) and a

sample z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m, define the empirical error
of h with respect to z, denoted by êrz(h), as follows:

êrz(h) =
1
m

m∑
i=1

{
I{h(xi) �=0}I{h(xi) �=yi} +

1
2
I{h(xi)=0}

}
.

Let Hlin =
⋃
Hlin(d), and define the following decision problem associated with Hlin:

Hlin-FIT

Instance: z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m and an integer k′ ∈
{1, . . . ,m}.
Question: Is there h ∈ Hlin(d) such that êrz(h) ≤ k′/m?

Using exactly the same construction as that used to show the NP-hardness of a similar
decision problem relating to linear threshold functions for binary classification [16],
it can be shown that the problem Hlin-FIT defined above is NP-hard. We give now a
reduction from Hlin-FIT to Flin-FIT.

Let z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m, k′ ∈ {1, . . . ,m} be an
instance of Hlin-FIT. We construct from z, k′ an instance (x+, x−) ∈ (Rd+1)m ×
(Rd+1), k ∈ {1, . . . ,m} of Flin-FIT as follows. For each i ∈ {1, . . . ,m}, define
x+

i = (xi, 1) ∈ Rd+1 if yi = 1, and x+
i = (−xi,−1) ∈ Rd+1 if yi = −1. De-

fine x−
1 = 0 ∈ Rd+1. Let x+ = (x+

1 , . . . , x+
m), x− = (x−

1), and k = k′. We claim that

Learnability of Bipartite Ranking Functions 29

there exists h ∈ Hlin(d) with êrz(h) ≤ k′/m if and only if there exists f ∈ Flin(d+1)

with R̂x+,x−(f) ≤ k/m.
First, suppose there exists h ∈ Hlin(d) with êrz(h) ≤ k′/m, given by h(x) =

sign(
∑d

l=1 wlxl + θ) for some w ∈ Rd, θ ∈ R. Define f : Rd+1→R as f(x) =∑d
l=1 wlxl + θxd+1 for all x ∈ Rd+1. Then clearly, f ∈ Flin(d+1), and it can be

verified that R̂x+,x−(f) = êrz(h) ≤ k′/m = k/m. Conversely, suppose there exists

f ∈ Flin(d+1) with R̂x+,x−(f) ≤ k/m, given by f(x) =
∑d+1

l=1 wlxl + θ for some

w ∈ Rd+1, θ ∈ R. Define h : Rd→{−1, 0, 1} as h(x) = sign(
∑d

l=1 wlxl + wd+1) for
all x ∈ Rd. Then clearly, h ∈ Hlin(d), and it can be verified that êrz(h) = R̂x+,x−(f) ≤
k/m = k′/m.

Since the time required to construct the instance (x+, x−), k from z, k′ is polyno-
mial in the size of z, k′, we conclude that Flin-FIT is NP-hard. ��

Our next result shows that Flin is efficiently learnable in the restricted learning
model. We first specialize Definition 9 and Theorem 4 to the restricted model case.

Definition 10 (Efficient Consistent-Hypothesis-Finder). Let F =
⋃
Fd be a graded

class of ranking functions. An efficient consistent-hypothesis-finder for F is an algo-
rithm L such that, given any sample (x+, x−) ∈ Xm

d × Xn
d for which there exists a

target function t ∈ Fd satisfying R̂x+,x−(t) = 0, L halts in time polynomial in m, n

and d and returns a ranking function f ∈ Fd such that R̂x+,x−(f) = 0.

Theorem 8. Let F =
⋃
Fd be a graded class of ranking functions, and suppose

that there exist functions c1 : N→R+, c2 : N→R+ ∪ {0} such that r(Fd,m, n) ≤
c1(d)(mn)c2(d) for all d,m, n ∈ N, and such that c2(d) is polynomial in d. Then any
efficient consistent-hypothesis-finder for F is an efficient learning algorithm for F in
the restricted model.

Theorem 9. The class of linear ranking functions Flin =
⋃
Flin(d) is efficiently learn-

able in the restricted model.

Proof (sketch). As discussed in Example 2 (Section 4), r(Flin(d),m, n) ≤ (2emn/d)d

for all d,m, n ∈ N. Therefore, by Theorem 8, it suffices to show the existence of an
efficient consistent-hypothesis-finder for Flin. This can be done by formulating a linear
program such that, given a training sample (x+, x−) ∈ (Rd)m × (Rd)n for which
there exists a target function t ∈ Flin(d) satisfying R̂x+,x−(t) = 0, the solution of the

linear program gives a ranking function f ∈ Flin(d) such that R̂x+,x−(f) = 0 (see [17]
for details). Solving the linear program using a polynomial-time linear programming
algorithm such as Karmarkar’s [19] then constitutes an efficient consistent-hypothesis-
finder for Flin. ��

Remark 2. We note that since the polynomial time bound for linear programming algo-
rithms such as Karmarkar’s holds only in the logarithmic cost model of computation,
the above proof establishes efficient learnability of Flin in the restricted learning model
only under this model of computation.

30 S. Agarwal and D. Roth

Remark 3. In the above proof, we could also have used a linear program that finds a
classification function h ∈ Hlin(d) of the form h(x) = sign(

∑d
l=1 wlxl + θ) such

that L̂S(h) = 0, where S = ((x+
1 , 1), . . . , (x+

m, 1), (x−
1 ,−1), . . . , (x−

n ,−1)), and then
taken f to be the linear function f(x) =

∑d
l=1 wlxl.

Finally, we show that learning linear ranking functions over Boolean domains is
hard even in the restricted model.

Theorem 10. Let Fb
lin =

⋃
Fb

lin(d), where Fb
lin(d) is the class of linear ranking functions

on {0, 1}d. If RP �= NP, then Fb
lin is not efficiently learnable in the restricted model.

Proof (sketch). Let, if possible, Fb
lin be efficiently learnable in the restricted model.

Then there is an efficient randomized consistent-hypothesis-finder A for Fb
lin (see [16,

17]). Clearly, A can be used to construct an efficient randomized consistent-hypothesis-
finder for Hb

lin =
⋃
Hb

lin(d), where Hb
lin(d) is the class of Boolean threshold functions on

{0, 1}d. This, in turn, implies the existence of an efficient learning algorithm for Hb
lin in

the restricted (PAC) model (see [16]). Since the problem of learning Boolean threshold
functions in the PAC model is known to be NP-hard [20], this implies RP = NP. Thus,
if RP �= NP, then Fb

lin is not efficiently learnable in the restricted model. ��
The techniques used above can be used also to establish that for any q ∈ N, the class

Fpoly(q) =
⋃
Fpoly(d,q), where Fpoly(d,q) is the class of polynomial ranking functions

on Rd with degree at most q, is not efficiently learnable in the standard model, but is
efficiently learnable in the restricted model, and that the class Fb

poly(q) =
⋃
Fb

poly(d,q),

where Fb
poly(d,q) is the class of polynomial ranking functions on {0, 1}d with degree at

most q, is not efficiently learnable even in the restricted model.

7 Conclusion and Open Questions

Our goal in this paper has been to initiate a formal study of learnability for ranking
functions. There are several questions to be answered. First, is there a single quantity
that characterizes learnability of a class of ranking functions, analogous to the VC di-
mension for classification and the fat-shattering dimension for regression? For example,
based on our results, an upper bound of the form r(F ,m, n) = O((mn)rank-dim(F))
on the bipartite rank-shatter coefficients would establish the rank dimension as such a
quantity. Second, can the rank dimension be related to previous quantities (such as the
VC-dimension or pseudo-dimension), or is it a fundamentally new quantity? So far, we
have not been able to find a relation to earlier dimensions. Third, for what other classes
of ranking functions can efficient learning algorithms or hardness results be shown?
Finally, for what other settings of the ranking problem can learnability be studied?

Acknowledgments

We would like to express warm thanks to Sariel Har-Peled for many valuable discus-
sions. The exposition in this paper is influenced in large parts by the excellent text of
Anthony and Bartlett [16]. This research was supported in part by NSF ITR grants IIS
00-85980 and IIS 00-85836 and a grant from the ONR-TRECC program.

Learnability of Bipartite Ranking Functions 31

References

1. Valiant, L.G.: A theory of the learnable. Communications of the ACM (1984) 1134–1142
2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of Artificial

Intelligence Research 10 (1999) 243–270
3. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regres-

sion. Advances in Large Margin Classifiers (2000) 115–132
4. Crammer, K., Singer, Y.: Pranking with ranking. In Dietterich, T.G., Becker, S., Ghahramani,

Z., eds.: Advances in Neural Information Processing Systems 14, MIT Press (2002) 641–647
5. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining

preferences. Journal of Machine Learning Research 4 (2003) 933–969
6. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM 36 (1989) 929–965
7. Vapnik, V.N., Chervonenkis, A.: On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and its Applications 16 (1971) 264–280
8. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other

learning applications. Information and Computation 100 (1992) 78–150
9. Kearns, M.J., Schapire, R.E., Sellie, L.M.: Toward efficient agnostic learning. Machine

Learning 17 (1994) 115–141
10. Pollard, D.: Convergence of Stochastic Processes. Springer-Verlag (1984)
11. Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of probabilistic concepts.

Journal of Computer and System Sciences 48 (1994) 464–497
12. Alon, N., Ben-David, S., Cesa-Bianchi, N., , Haussler, D.: Scale-sensitive dimensions, uni-

form convergence, and learnability. Journal of the ACM 44 (1997) 615–631
13. Bartlett, P.L., Long, P.M., Williamson, R.C.: Fat-shattering and the learnability of real-valued

functions. Journal of Computer and System Sciences 52 (1996) 434–452
14. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for

the area under the ROC curve. Journal of Machine Learning Research (2005) 393–425
15. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural

Information Processing Systems 16, MIT Press (2004)
16. Anthony, M., Bartlett, P.L.: Learning in Neural Networks: Theoretical Foundations. Cam-

bridge University Press (1999)
17. Agarwal, S.: A Study of the Bipartite Ranking Problem in Machine Learning. PhD thesis,

University of Illinois at Urbana-Champaign (2005)
18. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.

Addison-Wesley (1974)
19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica

4 (1984) 373–395
20. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Journal of the

ACM 35 (1988) 965–984

Stability and Generalization of Bipartite Ranking
Algorithms

Shivani Agarwal1 and Partha Niyogi2

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Avenue, Urbana, IL 61801, USA

sagarwal@cs.uiuc.edu
2 Departments of Computer Science and Statistics, University of Chicago,

1100 E. 58th Street, Chicago, IL 60637, USA
niyogi@cs.uchicago.edu

Abstract. The problem of ranking, in which the goal is to learn a real-valued
ranking function that induces a ranking or ordering over an instance space, has
recently gained attention in machine learning. We study generalization properties
of ranking algorithms, in a particular setting of the ranking problem known as the
bipartite ranking problem, using the notion of algorithmic stability. In particular,
we derive generalization bounds for bipartite ranking algorithms that have good
stability properties. We show that kernel-based ranking algorithms that perform
regularization in a reproducing kernel Hilbert space have such stability properties,
and therefore our bounds can be applied to these algorithms; this is in contrast
with previous generalization bounds for ranking, which are based on uniform
convergence and in many cases cannot be applied to these algorithms. A com-
parison of the bounds we obtain with corresponding bounds for classification
algorithms yields some interesting insights into the difference in generalization
behaviour between ranking and classification.

1 Introduction

A central focus in learning theory research has been the study of generalization prop-
erties of learning algorithms. Perhaps the first work in this direction was that of Vapnik
and Chervonenkis [1], who derived generalization bounds for classification algorithms
based on uniform convergence. Since then, a large number of different tools have been
developed for studying generalization, and have been applied successfully to analyze
algorithms for both classification (learning of binary-valued functions) and regression
(learning of real-valued functions), two of the most well-studied problems in machine
learning. Recently, a new learning problem, namely that of ranking, has gained atten-
tion in the machine learning community [2, 3, 4, 5]. In ranking, one learns a real-valued
function that assigns scores to instances, but the scores themselves do not matter; in-
stead, what is important is the relative ranking of instances induced by those scores.
This problem is distinct from both classification and regression, and it is natural to ask
what kinds of generalization properties hold for algorithms for this problem, and in
particular, whether tools that have been applied to study generalization properties of

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 32–47, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Stability and Generalization of Bipartite Ranking Algorithms 33

classification and regression algorithms can be adapted to study generalization proper-
ties of ranking algorithms. It has been shown recently that generalization bounds based
on uniform convergence can be obtained for ranking algorithms in a particular setting of
the ranking problem known as the bipartite ranking problem [5, 6]. In this paper, we ask
whether such a result can be obtained using the notion of algorithmic stability, which
has recently been used to derive generalization bounds for classification and regression
algorithms, and which offers a different viewpoint than uniform convergence [7, 8].

1.1 Previous Results

The question of the generalization behaviour of ranking algorithms has only recently
begun to be addressed. Generalization properties of algorithms for a distinct but closely
related problem, namely that of ordinal regression, were considered in [3]. The first
study of generalization in ranking was that of Freund et al. [5], in which generalization
bounds for the bipartite RankBoost algorithm were derived. These bounds were derived
from uniform convergence results for the classification error rate, and were expressed
in terms of the VC-dimension of a class of binary classification functions derived from
the class of ranking functions searched by RankBoost. More recently, Agarwal et al. [6]
have derived a uniform convergence bound for the bipartite ranking error (see Section 2)
which is expressed in terms of a new set of combinatorial parameters that measure
directly the complexity of the class of ranking functions searched by an algorithm.

Uniform convergence requires the empirical errors of all functions in the searched
class to converge to their expected errors. Generalization bounds based on uniform
convergence are therefore necessarily loose, as they depend only on properties of the
function class being searched, and do not take into account the manner in which the
function class is actually searched by the algorithm. In addition, these bounds can be
applied only to algorithms that search function classes of bounded complexity.

The notion of algorithmic stability, first studied for learning algorithms by Devroye
and Wagner [9], has been used recently to directly obtain generalization bounds, with-
out needing to show uniform convergence, for classification and regression algorithms
that satisfy certain stability conditions [7, 8]. In particular, a stable learning algorithm
is one whose output does not change much with small changes in the training sample;
the above works have shown that classification and regression algorithms that satisfy
this condition have good generalization properties. The stability-based bounds depend
on properties of the algorithm rather than the function class that is searched, and can
be applied also to algorithms that search function classes of unbounded complexity.
Algorithms that have been shown to be stable include, for example, kernel-based clas-
sification and regression algorithms such as support vector machines (SVMs), which
often cannot be analyzed using uniform convergence tools. In this paper, we show that
the notion of algorithmic stability can be used also to analyze the generalization be-
haviour of (bipartite) ranking algorithms.

1.2 Our Results

We define notions of stability for bipartite ranking algorithms, and use these notions to
analyze the generalization behaviour of such algorithms. In particular, we derive gener-
alization bounds for bipartite ranking algorithms that exhibit good stability properties.

34 S. Agarwal and P. Niyogi

We show that kernel-based ranking algorithms that perform regularization in a repro-
ducing kernel Hilbert space (RKHS) have such stability properties, and therefore our
bounds can be applied to these algorithms; this is in contrast with previous generaliza-
tion bounds for ranking, which are based on uniform convergence and in many cases
cannot be applied to these algorithms. A comparison of the bounds we obtain with cor-
responding bounds for classification algorithms yields some interesting insights into the
difference in generalization behaviour between ranking and classification. In particular,
we find that for a training sample of M elements containing m positive and n = M−m
negative instances, the sample size M in the classification bounds is replaced with the
quantity mn/(m + n) in the ranking bounds. If we define the ‘positive skew’ of the
sample as the proportion of positive examples ρ = m/(m + n), then this means that
the‘effective’ sample size in ranking is reduced from M to ρ(1− ρ)M , with the reduc-
tion being more drastic as ρ departs from 1/2, i.e., as the balance between positive and
negative examples becomes more uneven. This further corroborates previous observa-
tions about the importance of the skew ρ in ranking [10, 6, 11].

1.3 Organization

We describe the bipartite ranking problem in detail in Section 2, and define notions of
stability for (bipartite) ranking algorithms in Section 3. Using these notions, we derive
generalization bounds for stable ranking algorithms in Section 4. In Section 5 we show
stability of kernel-based ranking algorithms that perform regularization in an RKHS,
and apply the results of Section 4 to obtain generalization bounds for these algorithms.
We conclude with a discussion in Section 6.

2 The Bipartite Ranking Problem

In the bipartite ranking problem [5, 6], instances come from two categories, positive and
negative; the learner is given examples of instances labeled as positive or negative, and
the goal is to learn a ranking in which positive instances are ranked higher than negative
ones. Such problems arise, for example, in information retrieval, where one is interested
in retrieving documents from some database that are ‘relevant’ to a given topic; in this
case, the training examples given to the learner consist of documents labeled as relevant
(positive) or irrelevant (negative), and the goal is to produce a list of documents that
contains relevant documents at the top and irrelevant documents at the bottom – in
other words, one wants a ranking of the documents such that relevant documents are
ranked higher than irrelevant documents.

Formally, the setting of the bipartite ranking problem can be described as follows.
There is an instance space X from which instances are drawn, and the learner is
given a training sample (S+, S−) ∈ Xm × Xn consisting of a sequence of positive
training examples S+ = (x+

1 , . . . , x+
m) and a sequence of negative training examples

S− = (x−
1 , . . . , x−

n). The goal is to learn from these examples a real-valued ranking
function f : X→R that ranks future positive instances higher than negative ones, where
f is considered to rank an instance x higher than an instance x′ if f(x) > f(x′) and is
considered to rank x lower than x′ if f(x) < f(x′). We assume that positive instances
are drawn randomly and independently according to some (unknown) distribution

Stability and Generalization of Bipartite Ranking Algorithms 35

D+ on the instance space X , and that negative instances are drawn randomly and
independently according to some (unknown) distribution D− on X . The quality of a
ranking function f : X→R is then measured by its expected ranking error, denoted by
R(f) and defined as follows:

R(f) = Ex+∼D+,x−∼D−

{
I{f(x+)<f(x−)} +

1
2
I{f(x+)=f(x−)}

}
, (1)

where I{·} denotes the indicator variable whose value is one if its argument is true
and zero otherwise. The expected error R(f) is the probability that a positive instance
drawn randomly according to D+ is ranked lower by f than a negative instance drawn
randomly according to D−, assuming that ties are broken uniformly at random. In
practice, since the distributions D+ and D− are unknown, the expected error of a
ranking function f must be estimated from an empirically observable quantity such as
its empirical ranking error with respect to a sample (S+, S−) ∈ Xm × Xn, denoted
by R̂(f ;S+, S−) and defined as follows:

R̂(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

{
I{f(x+

i)<f(x−
j)} +

1
2
I{f(x+

i)=f(x−
j)}

}
. (2)

This is simply the fraction of positive-negative pairs in (S+, S−) that are ranked incor-
rectly by f , assuming that ties are broken uniformly at random.

Although the bipartite ranking problem shares similarities with the binary classifi-
cation problem, it should be noted that the two problems are in fact distinct. In partic-
ular, it is possible for binary-valued functions obtained by thresholding different real-
valued functions to have the same classification errors, while the ranking errors of the
real-valued functions may differ significantly. For example, consider the following two
rankings on a sample consisting of 4 positive and 4 negative examples:

In both cases, the error of the best classification function that can be obtained by
applying a threshold is 2/8. However, the ranking error of f1 is 4/16, whereas that of
f2 is 8/16. For a detailed analysis of this distinction, see [10]1.

A bipartite ranking algorithm takes as input a training sample (S+, S−) ∈(⋃∞
m=1 Xm

)
×

(⋃∞
n=1 Xn

)
and returns as output a ranking function fS+,S− : X→R.

For simplicity, we consider only deterministic algorithms. We are concerned in this pa-
per with generalization properties of such algorithms; in particular, we are interested in
bounding the expected error of a learned ranking function in terms of an empirically
observable quantity such as its empirical error on the training sample from which it is
learned. The following definitions will be useful in our study.

Definition 1 (Ranking loss function). A ranking loss function is a function � : RX ×
X × X → R+ ∪ {0} that assigns, for each f : X→R and x, x′ ∈ X , a non-negative
real number �(f, x, x′) interpreted as the loss of f in its relative ranking of x and x′.

1 In [10], the performance of a ranking function is measured in terms of the area under the ROC
curve (AUC); this quantity is simply equal to one minus the empirical ranking error.

36 S. Agarwal and P. Niyogi

Definition 2 (Expected �-error). Let f : X→R be a ranking function on X . Let
� : RX × X × X → R+ ∪ {0} be a ranking loss function. Define the expected �-error
of f , denoted by R
(f), as follows:

R
(f) = Ex+∼D+,x−∼D−

{
�(f, x+

, x−)
}

.

Definition 3 (Empirical �-error). Let f : X→R be a ranking function on X , and let
(S+, S−) ∈ Xm × Xn be a finite sample. Let � : RX × X × X → R+ ∪ {0} be a
ranking loss function. Define the empirical �-error of f with respect to S+ and S−,
denoted by R̂
(f ;S+, S−), as follows:

R̂
(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

�(f, x+
i , x−

j) .

Comparing with Eqs. (1-2), we see that the ranking error can be expressed as the
�b-error, i.e., R ≡ R
b

and R̂ ≡ R̂
b
, where �b is the bipartite ranking loss given by

�b(f, x, x′) = I{f(x)<f(x′)} +
1
2
I{f(x)=f(x′)} . (3)

3 Stability of (Bipartite) Ranking Algorithms

A stable algorithm is one whose output does not change significantly with small
changes in the input. The input to a ranking algorithm is a training sample of the form
(S+, S−) ∈ Xm × Xn for some m,n ∈ N; we consider changes to such a sample
that consist of replacing a single element of the sample with a new instance. For any
i ∈ {1, . . . ,m} and z ∈ X , we use Si,z

+ to denote the sequence obtained from S+ by
replacing x+

i with z; similarly, for any j ∈ {1, . . . , n} and z ∈ X , we use Sj,z
− to denote

the sequence obtained from S− by replacing x−
j with z.

Several different notions of stability have been used in the study of classification and
regression algorithms [9, 12, 7, 8, 13]. The notions of stability that we define for ranking
algorithms below are most closely related to those used by Bousquet and Elisseeff [7].

Definition 4 (Uniform loss stability). Let L be a bipartite ranking algorithm
whose output on a training sample (S+, S−) we denote by fS+,S− , and let
� : RX × X × X → R+ ∪ {0} be a ranking loss function. Let α : N × N→R,
β : N × N→R. We say that L has uniform loss stability (α, β) with respect to � if for
all m,n ∈ N, (S+, S−) ∈ Xm × Xn, z ∈ X , i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we
have for all x+, x− ∈ X ,∣∣�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
∣∣ ≤ α(m,n) ,∣∣�(fS+,S− , x+, x−) − �(fS+,Sj,z

−
, x+, x−)

∣∣ ≤ β(m,n) .

Stability and Generalization of Bipartite Ranking Algorithms 37

Definition 5 (Uniform score stability). Let L be a bipartite ranking algorithm whose
output on a training sample (S+, S−) we denote by fS+,S− . Let μ : N×N→R, ν : N×
N→R. We say that L has uniform score stability (μ, ν) if for all m,n ∈ N, (S+, S−) ∈
Xm ×Xn, z ∈ X , i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we have for all x ∈ X ,∣∣fS+,S−(x) − fSi,z

+ ,S−(x)
∣∣ ≤ μ(m,n) ,∣∣fS+,S−(x) − fS+,Sj,z

−
(x)

∣∣ ≤ ν(m,n) .

4 Generalization Bounds for Stable Ranking Algorithms

In this section we derive generalization bounds for ranking algorithms that exhibit good
stability properties. Our methods are based on those of Bousquet and Elisseeff [7],
who derived such bounds for classification and regression algorithms. We start with the
following technical lemma.

Lemma 1. Let L be a symmetric bipartite ranking algorithm2 whose output
on a training sample (S+, S−) ∈ Xm × Xn we denote by fS+,S− , and let
� : RX ×X ×X → R+ ∪ {0} be a ranking loss function. Then for all i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}, we have

ES+,S−

{
R
(fS+,S−) − R̂
(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Proof. We have,

ES+,S−

{
R̂
(fS+,S− ;S+, S−)

}
=

1
mn

m∑
i=1

n∑
j=1

ES+,S−

{
�(fS+,S− , x+

i , x−
j)

}
.

By symmetry, the term in the summation is the same for all i, j. Therefore, for each
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we get

ES+,S−

{
R̂
(fS+,S− ;S+, S−)

}
= ES+,S−

{
�(fS+,S− , x+

i , x−
j)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+

i , x−
j)

}
.

Interchanging the roles of x+
i with x+ and x−

j with x−, we get

ES+,S−

{
R̂
(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Since by definition

ES+,S−

{
R
(fS+,S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−)

}
,

the result follows. ��

2 A symmetric bipartite ranking algorithm is one whose output is independent of the order of
elements in the training sequences S+ and S−.

38 S. Agarwal and P. Niyogi

Our main tool will be the following powerful concentration inequality of McDi-
armid [14], which bounds the deviation of any function of a sample for which a single
change in the sample has limited effect.

Theorem 1 (McDiarmid [14]). Let X1, . . . , XN be independent random variables,
each taking values in a set A. Let φ : AN→R be such that for each k ∈ {1, . . . , N},
there exists ck > 0 such that

sup
x1,...,xN∈A,x′

k∈A

∣∣φ(x1, . . . , xN) − φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN)

∣∣ ≤ ck .

Then for any ε > 0,

P
{
φ(X1, . . . , XN) − E

{
φ(X1, . . . , XN)

}
≥ ε

}
≤ e−2ε2/

∑N
k=1 c2

k .

We are now ready to give our main result, which bounds the expected �-error of a
ranking function learned by an algorithm with good uniform loss stability in terms of
its empirical �-error on the training sample.

Theorem 2. Let L be a symmetric bipartite ranking algorithm whose output on a train-
ing sample (S+, S−) ∈ Xm×Xn we denote by fS+,S− , and let � : RX×X×X →R+∪
{0} be a ranking loss function such that 0 ≤ �(f, x, x′) ≤ B for all f : X→R and
x, x′ ∈ X . Let α : N × N→R, β : N × N→R be such that L has uniform loss stability
(α, β) with respect to �. Then for any 0 < δ < 1, with probability at least 1 − δ over
the draw of (S+, S−),

R
(fS+,S−) < R̂
(fS+,S− ;S+, S−) + α(m,n) + β(m,n)

+

√{
n(2mα(m,n) + B)2 + m(2nβ(m,n) + B)2

}
ln(1/δ)

2mn
.

Proof. Let φ : Xm ×Xn→R be defined as follows:

φ(S+, S−) = R
(fS+,S−) − R̂
(fS+,S− ;S+, S−) .

We shall show that φ satisfies the conditions of McDiarmid’s inequality (Theorem 1).
Let (S+, S−) ∈ Xm ×Xn, and let z ∈ X . For each i ∈ {1, . . . ,m}, we have∣∣R
(fS+,S−) −R
(fSi,z

+ ,S−)
∣∣ =

∣∣Ex+,x−
{
�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
}∣∣

≤ Ex+,x−
{∣∣�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
∣∣}

≤ α(m,n) ,

and ∣∣R̂
(fS+,S− ;S+, S−) − R̂
(fSi,z
+ ,S− ;Si,z

+ , S−)
∣∣

≤ 1
mn

∑
i′ �=i

n∑
j=1

∣∣�(fS+,S− , x+
i′ , x

−
j) − �(fSi,z

+ ,S− , x+
i′ , x

−
j)

∣∣
+

1
mn

n∑
j=1

∣∣�(fS+,S− , x+
i , x−

j) − �(fSi,z
+ ,S− , z, x−

j)
∣∣

≤ α(m,n) +
B

m
.

Stability and Generalization of Bipartite Ranking Algorithms 39

This gives ∣∣φ(S+, S−) − φ(Si,z
+ , S−)

∣∣ ≤ 2α(m,n) +
B

m
.

Similarly, it can be shown that for each j ∈ {1, . . . , n},∣∣φ(S+, S−) − φ(S+, Sj,z
−)

∣∣ ≤ 2β(m,n) +
B

n
.

Thus, applying McDiarmid’s inequality to φ, we get for any ε > 0,

PS+,S−

{{
R
(fS+,S−) − R̂
(fS+,S− ;S+, S−)

}
− ES+,S−

{
R
(fS+,S−) − R̂
(fS+,S− ;S+, S−)

}
≥ ε

}
≤ e−2ε2/(m(2α(m,n)+B/m)2+n(2β(m,n)+B/n)2)

= e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .

Now, by Lemma 1, we have

ES+,S−

{
R
(fS+,S−) − R̂
(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,S−

, x+, x−)

+ �(f
Si,x+

+ ,S−
, x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
≤ ES+,S−,x+,x−

{∣∣∣�(fS+,S− , x+, x−) − �(f
Si,x+

+ ,S−
, x+, x−)

∣∣∣}
+ ES+,S−,x+,x−

{∣∣∣�(f
Si,x+

+ ,S−
, x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

∣∣∣}
≤ α(m,n) + β(m,n) .

Thus we get for any ε > 0,

PS+,S−

{
R
(fS+,S−) − R̂
(fS+,S− ;S+, S−) −

(
α(m,n) + β(m,n)

)
≥ ε

}
≤ e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .

The result follows by setting the right hand side equal to δ and solving for ε. ��

Theorem 2 gives meaningful bounds when α(m,n) = o(1/
√

m) and β(m,n) =
o(1/

√
n). This means the theorem cannot be applied directly to obtain bounds on the

expected ranking error, since it is not possible to have non-trivial uniform loss stability
with respect to the bipartite ranking loss �b (except by an algorithm that picks the same
ranking function for all training samples of a given size m,n). However, for any ranking
loss � that satisfies �b ≤ �, Theorem 2 can be applied to ranking algorithms that have
good uniform loss stability with respect to � to obtain bounds on the expected �-error;
since in this case R ≤ R
, these bounds apply also to the expected ranking error. We
consider below a specific ranking loss that satisfies this condition.

40 S. Agarwal and P. Niyogi

For γ > 0, let the γ ranking loss, denoted by �γ , be defined as follows:

�γ(f, x, x′) =

⎧⎨⎩
1 if (f(x) − f(x′)) ≤ 0
1 − (f(x)−f(x′))

γ if 0 < (f(x) − f(x′)) < γ

0 if (f(x) − f(x′)) ≥ γ

. (4)

Clearly, for all γ > 0, we have �b ≤ �γ . Therefore, for any ranking algorithm that
has good uniform loss stability with respect to �γ for some γ > 0, Theorem 2 can be
applied to bound the expected ranking error of a learned ranking function in terms of its
empirical �γ-error on the training sample. The following lemma shows that, for every
γ > 0, a ranking algorithm that has good uniform score stability also has good uniform
loss stability with respect to �γ .

Lemma 2. Let L be a bipartite ranking algorithm whose output on a training sample
(S+, S−) we denote by fS+,S− . Let μ : N × N→R, ν : N × N→R be such that L
has uniform score stability (μ, ν). Then for every γ > 0, L has uniform loss stability
(αγ , βγ) with respect to the γ ranking loss �γ , where for all m,n ∈ N,

αγ(m,n) =
2μ(m,n)

γ
, βγ(m,n) =

2ν(m,n)
γ

.

Proof. By the definition of �γ in Eq. (4), we have that

�γ(f, x, x′) ≤ 1 − (f(x)−f(x′)
γ if (f(x) − f(x′)) ≤ 0 , (5)

�γ(f, x, x′) ≥ 1 − (f(x)−f(x′)
γ if (f(x) − f(x′)) ≥ γ . (6)

Now, let m,n ∈ N, (S+, S−) ∈ Xm×Xn, z ∈ X , i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
and let x+, x− ∈ X . The case �γ(fS+,S− , x+, x−) = �γ(fSi,z

+ ,S− , x+, x−) is trivial.

Assume �γ(fS+,S− , x+, x−) �= �γ(fSi,z
+ ,S− , x+, x−). Then, using the observations in

Eqs. (5-6), it can be verified that∣∣∣�γ(fS+,S− , x+, x−) − �γ(fSi,z
+ ,S− , x+, x−)

∣∣∣
≤

∣∣∣∣(1 −
(fS+,S−(x+) − fS+,S−(x−))

γ

)
−

(
1 −

(fSi,z
+ ,S−(x+) − fSi,z

+ ,S−(x−))

γ

)∣∣∣∣
≤ 1

γ

(∣∣∣fS+,S−(x+) − fSi,z
+ ,S−(x+)

∣∣∣ +
∣∣∣fS+,S−(x−) − fSi,z

+ ,S−(x−)
∣∣∣)

≤ 2μ(m,n)
γ

.

Similarly, it can be shown that∣∣∣�γ(fS+,S− , x+, x−) − �γ(fS+,Sj,z
−

, x+, x−)
∣∣∣ ≤ 2ν(m,n)

γ
.

The result follows. ��

Putting everything together, we thus get the following result which bounds the ex-
pected ranking error of a learned ranking function in terms of its empirical �γ-error for
any ranking algorithm that has good uniform score stability.

Stability and Generalization of Bipartite Ranking Algorithms 41

Theorem 3. Let L be a symmetric bipartite ranking algorithm whose output on a
training sample (S+, S−) ∈ Xm × Xn we denote by fS+,S− . Let μ : N × N→R,
ν : N × N→R be such that L has uniform score stability (μ, ν), and let γ > 0. Then
for any 0 < δ < 1, with probability at least 1 − δ over the draw of (S+, S−),

R(fS+,S−) < R̂
γ
(fS+,S− ;S+, S−) +

2μ(m,n)
γ

+
2ν(m,n)

γ

+

√√√√{
n
(4m μ(m,n)

γ + 1
)2 + m

(4n ν(m,n)
γ + 1

)2
}

ln(1/δ)

2mn
.

Proof. The result follows by applying Theorem 2 to L with the ranking loss �γ (using
Lemma 2), which satisfies 0 ≤ �γ ≤ 1, and from the fact that R ≤ R
γ

. ��
We note that although our bounds above are derived for the case when a fixed num-

ber m of positive examples are drawn i.i.d. from D+ and a fixed number n of negative
examples are drawn i.i.d. from D−, the bounds can be extended easily to the case when
M examples are drawn i.i.d. from a joint distribution D over X × {−1, 1}. In partic-
ular, using exactly the same techniques as above, the same confidence intervals can be
derived for a draw conditioned on any fixed label sequence that contains m positive and
n = M−m negative labels. The conditioning can then be removed using an expectation
trick (see [6–Theorems 8 and 19]); in the resulting confidence intervals, the numbers m
and n are replaced by functions of the (random) label sequence that correspond to the
numbers of positive and negative labels drawn.

5 Stable Ranking Algorithms

In this section we show stability of certain ranking algorithms that select a ranking
function by minimizing a regularized objective function. We start by deriving a general
result for regularization-based ranking algorithms in Section 5.1. In Section 5.2 we use
this result to show stability of kernel-based ranking algorithms that perform regulariza-
tion in a reproducing kernel Hilbert space (RKHS). We show, in particular, stability of
an SVM-like ranking algorithm, and apply the results of Section 4 to obtain a general-
ization bound for this algorithm. A comparison with the uniform convergence bound of
[6] demonstrates the benefit of the stability analysis. Again, our methods are based on
those of Bousquet and Elisseeff [7], who showed similar results for classification and
regression algorithms.

5.1 General Regularizers

Given a ranking loss function � : RX × X × X → R+ ∪ {0}, a class F of real-valued
functions on X , and a regularization functional N : F→R+ ∪ {0}, consider the
following regularized empirical �-error of a ranking function f ∈ F (with respect to a
sample (S+, S−) ∈ Xm ×Xn), with regularization parameter λ > 0:

R̂λ

 (f ;S+, S−) =

1
mn

m∑
i=1

n∑
j=1

�(f, x+
i , x−

j) + λN(f) . (7)

42 S. Agarwal and P. Niyogi

We consider bipartite ranking algorithms that minimize such a regularized objective
function, i.e., ranking algorithms that, given a training sample (S+, S−), output a
ranking function fS+,S− ∈ F that satisfies

fS+,S− = arg min
f∈F

R̂λ

 (f ;S+, S−)

= arg min
f∈F

{
R̂
(f ;S+, S−) + λN(f)

}
, (8)

for some fixed choice of ranking loss �, function class F , regularizer N , and regular-
ization parameter λ. We derive below a general result that will be useful for showing
stability of such regularization-based algorithms.

Definition 6 (σ-admissibility). Let � : RX × X × X → R+ ∪ {0} be a ranking loss
and F a class of real-valued functions on X . Let σ > 0. We say that � is σ-admissible
with respect to F if for all f1, f2 ∈ F and all x, x′ ∈ X , we have∣∣�(f1, x, x

′) − �(f2, x, x
′)
∣∣ ≤ σ

(∣∣f1(x) − f2(x)
∣∣ +

∣∣f1(x′) − f2(x′)
∣∣) .

Lemma 3. Let � : RX × X × X → R+ ∪ {0} be a ranking loss such that �(f, x, x′)
is convex in f . Let F be a convex class of real-valued functions on X , and let σ > 0
be such that � is σ-admissible with respect to F . Let λ > 0, and let N : F→R+ ∪ {0}
be a functional defined on F such that for all samples (S+, S−) ∈ Xm × Xn, the
regularized empirical �-error R̂λ

 (f ;S+, S−) has a minimum (not necessarily unique)
in F . Let L be a ranking algorithm defined by Eq. (8), and let (S+, S−) ∈ Xm × Xn,
z ∈ X , i ∈ {1, . . . ,m}, and j ∈ {1, . . . , n}. For brevity, denote

f ≡ fS+,S− , f i,z
+ ≡ fSi,z

+ ,S− , f j,z
− ≡ fS+,Sj,z

−
,

and let
Δf+ =

(
f i,z
+ − f

)
, Δf− =

(
f j,z
− − f

)
.

Then we have that for any t ∈ [0, 1],

N(f) −N(f + tΔf+) + N(f i,z
+) −N(f i,z

+ − tΔf+)

≤ tσ

λmn

n∑
j=1

(
|Δf+(x+

i)| + 2|Δf+(x−
j)| + |Δf+(z)|

)
,

N(f) −N(f + tΔf−) + N(f j,z
−) −N(f j,z

− − tΔf−)

≤ tσ

λmn

m∑
i=1

(
|Δf−(x−

j)| + 2|Δf−(x+
i)| + |Δf−(z)|

)
.

The proof of this result makes use of techniques similar to those used in [7], and is
omitted for lack of space (see [15] for details). As we show below, this result can be
used to establish stability of certain regularization-based ranking algorithms.

Stability and Generalization of Bipartite Ranking Algorithms 43

5.2 Regularization in Hilbert Spaces

Let F be an RKHS with kernel K. Then from the properties of an RKHS (see, for
example, [16]), we have for all f ∈ F and all x ∈ X ,

|f(x)| ≤ ‖f‖K

√
K(x, x) . (9)

Let N : F→R+ ∪ {0} be the regularizer defined by

N(f) = ‖f‖2
K . (10)

We show below that, if the kernel K is such that K(x, x) is bounded for all x ∈ X ,
then a ranking algorithm that minimizes an appropriate regularized error over F , with
regularizer N as defined above, has good uniform score stability.

Theorem 4. Let F be an RKHS with kernel K such that for all x ∈ X ,
K(x, x) ≤ κ2 < ∞. Let � be a ranking loss such that �(f, x, x′) is convex in f
and � is σ-admissible with respect to F . Let λ > 0, and let N be given by Eq. (10). Let
L be a ranking algorithm defined by Eq. (8). Then L has uniform score stability (μ, ν),
where for all m,n ∈ N,

μ(m,n) =
4σκ2

λm
, ν(m,n) =

4σκ2

λn
.

Proof. Let m,n ∈ N, (S+, S−) ∈ Xm × Xn, z ∈ X , and i ∈ {1, . . . ,m}. Since F
is a vector space, we have (using the notation of Lemma 3) that Δf+ ∈ F . Applying
Lemma 3 with t = 1/2, we get that

1
2
‖Δf+‖2

K ≤ σ

2λmn

n∑
j=1

(
|Δf+(x+

i)| + 2|Δf+(x−
j)| + |Δf+(z)|

)
.

By Eq. (9), we thus get that

‖Δf+‖2
K ≤ 4σκ

λm
‖Δf+‖K ,

which gives
‖Δf+‖K ≤ 4σκ

λm
. (11)

Thus, by Eqs. (9) and (11), we have for all x ∈ X ,∣∣fS+,S−(x) − fSi,z
+ ,S−(x)

∣∣ = |Δf+(x)| ≤ 4σκ2

λm
.

Similarly, for each j ∈ {1, . . . , n}, we can show that∣∣fS+,S−(x) − fS+,Sj,z
−

(x)
∣∣ ≤ 4σκ2

λn
.

The result follows. ��

Consider now the following ranking loss function, which we refer to as the hinge
ranking loss due to its similarity to the hinge loss in classification:

�h(f, x, x′) =
{

1 − (f(x) − f(x′)) if (f(x) − f(x′)) < 1
0 if (f(x) − f(x′)) ≥ 1 . (12)

44 S. Agarwal and P. Niyogi

We consider a ranking algorithm L that minimizes the regularized �h-error in an RKHS
F . Specifically, let L be a ranking algorithm which, given a training sample (S+, S−),
outputs a ranking function fS+,S− ∈ F that satisfies (for some fixed λ > 0)

fS+,S− = arg min
f∈F

{
R̂
h

(f ;S+, S−) + λ‖f‖2
K

}
. (13)

We note that this algorithm has an equivalent quadratic programming formulation
similar to SVMs in the case of classification (see [17, 15]). It can be verified that
�h(f, x, x′) is convex in f , and that �h is 1-admissible with respect to F . Thus, if
K(x, x) ≤ κ2 for all x ∈ X , then from Theorem 4 we get that L has uniform score
stability (μ, ν), where for all m,n ∈ N,

μ(m,n) =
4κ2

λm
, ν(m,n) =

4κ2

λn
.

Applying Theorem 3 with γ = 1, we then get that for any 0 < δ < 1, with probability
at least 1− δ over the draw of (S+, S−) ∈ Xm ×Xn, the expected ranking error of the
ranking function fS+,S− learned by the above algorithm L is bounded by

R(fS+,S−) < R̂�1(fS+,S− ; S+, S−) +
8κ2

λ

(
m + n

mn

)
+

(
1 +

16κ2

λ

)√
(m + n) ln(1/δ)

2mn
.

(14)

In particular, for the RKHS corresponding to the linear kernel defined on the unit ball
in Rd, so that K(x,x) ≤ 1 for all x, we have that with probability at least 1 − δ over
the draw of (S+, S−) ∈ Xm × Xn, the ranking function fS+,S− learned by the above
algorithm (defined by Eq. (13)) satisfies

R(fS+,S−) < R̂
1(fS+,S− ;S+, S−) +
8
λ

(m + n

mn

)
+

(
1 +

16
λ

)√ (m + n) ln(1/δ)
2mn

.

On the other hand, the confidence interval obtained for this algorithm using the uniform
convergence bound of [6] gives that, with probability at least 1 − δ,

R(fS+,S−) < R̂(fS+,S− ;S+, S−) +

√
8(m + n)

(
d(ln(8mn/d) + 1) + ln(4/δ)

)
mn

.

The above bounds are plotted in Figure 1 for δ = 0.01, λ = 1, and various values of d
and m/(m+n). As can be seen, directly analyzing stability properties of the algorithm
gives considerable benefit over the general uniform convergence based analysis. In par-
ticular, since the uniform convergence bound depends on the complexity of the function
class that is searched, the bound quickly becomes uninformative in high dimensions; on
the other hand, the stability bound is independent of the dimensionality of the space. In
the case of kernel spaces whose complexity cannot be bounded, e.g., the RKHS corre-
sponding to the Gaussian kernel, the uniform convergence bound cannot be applied at
all, while the stability analysis continues to hold.

Comparing the bound derived in Eq. (14) to the corresponding bound for classifica-
tion derived by Bousquet and Elisseeff [7], we find that if the total number of training
examples is denoted by M = m+n, then the sample size M in their bound is replaced

Stability and Generalization of Bipartite Ranking Algorithms 45

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of generalization bounds: d = 10, m/(m+n) = 1/2

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Stability bound
Uniform convergence bound

0 2 4 6 8 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of generalization bounds: d = 10, m/(m+n) = 1/100

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Stability bound
Uniform convergence bound

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of generalization bounds: d = 100, m/(m+n) = 1/2

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Stability bound
Uniform convergence bound

0 2 4 6 8 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of generalization bounds: d = 100, m/(m+n) = 1/100

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Stability bound
Uniform convergence bound

Fig. 1. A comparison of our stability bound with the uniform convergence bound of [6] for the
kernel-based algorithm described in Section 5.2, with a linear kernel over the unit ball in Rd. The
plots are for δ = 0.01, λ = 1, and show how the confidence interval size ε given by the two
bounds varies with the sample size M = m + n, for various values of d and m/(m + n)

by the quantity mn/(m+n) in our bound.3 If we define the ‘positive skew’ of the sam-
ple as the proportion of positive examples ρ = m/(m + n), then this is equivalent to
replacing M in the classification bound with ρ(1 − ρ)M in our bound. The ‘effective’
sample size in ranking is thus reduced from M to ρ(1−ρ)M , the reduction being more
drastic as the skew ρ departs from 1/2. Interestingly, a similar observation holds for
the uniform convergence and large deviation bounds for the ranking error derived in [6]
when compared to corresponding bounds for the classification error.

As in the case of classification [7], the above results show that a larger regularization
parameter λ leads to better stability and, therefore, a tighter confidence interval in the
resulting generalization bound. In particular, one must have λ �

√
(m + n)/mn in

order for the above bound to be meaningful.

3 The difference in constants in the two bounds is due in part to the difference in loss functions
in ranking and classification, and in part to a slight difference in definitions of stability; in
particular, our definitions are in terms of changes to a training sample that consist of replacing
one element in the sample with a new one, while the definitions of Bousquet and Elisseeff are
in terms of changes that consist of removing one element from the sample.

46 S. Agarwal and P. Niyogi

6 Discussion

The main difference in the mathematical formulation of the (bipartite) ranking problem
as compared to the classification problem is that the loss function in ranking is ‘pair-
wise’ rather than ‘point-wise’. The general analysis of ranking is otherwise similar to
that for classification, and indeed, ranking algorithms often resemble ‘classification on
pairs’. However, generalization bounds from classification cannot be applied directly
to ranking, due to dependences among the instance pairs. Indeed, the bounds we have
obtained for ranking suggest that the effective sample size in ranking is not only smaller
than the number of positive-negative pairs mn, but is even smaller than the number of
instances M = m+n; the dependences reduce the effective sample size to ρ(1−ρ)M ,
where ρ = m/(m + n) is the ‘positive skew’ of the sample.

The notions of uniform stability studied in this paper correspond most closely to
those studied by Bousquet and Elisseeff [7]. These notions are strict in that they re-
quire changes in a sample to have bounded effect uniformly over all samples and re-
placements. Kutin and Niyogi [8] have derived generalization bounds (for classifica-
tion and regression algorithms) using a less strict notion of stability termed ‘almost-
everywhere’ stability; this requires changes in a sample to have bounded effect only
with high probability (over the draw of the sample and the replacement element). The
notion of almost-everywhere stability leads to a distribution-dependent treatment as op-
posed to the distribution-free treatment obtained with uniform stability, and it would
be particularly interesting to see if making distributional assumptions in ranking can
mitigate the reduced sample size effect discussed above.

An open question concerns the analysis of other ranking algorithms using the
algorithmic stability framework. It has been shown [18] that AdaBoost is stability-
preserving, in the sense that stability of base classifiers implies stability of the final
learned classifier. It would be interesting if a similar result could be shown for the bi-
partite RankBoost algorithm [5], which is based on the same principles of boosting as
AdaBoost.

Finally, it is also an open question to analyze generalization properties of ranking
algorithms in other settings of the ranking problem (i.e., other than bipartite).

Acknowledgments

S. A. was supported in part through National Science Foundation (NSF) ITR grants IIS
00-85980 and IIS 00-85836. P. N. thanks the NSF for financial support.

References

1. Vapnik, V.N., Chervonenkis, A.: On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications 16 (1971) 264–280

2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of Artificial
Intelligence Research 10 (1999) 243–270

3. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regres-
sion. Advances in Large Margin Classifiers (2000) 115–132

Stability and Generalization of Bipartite Ranking Algorithms 47

4. Crammer, K., Singer, Y.: Pranking with ranking. In: Advances in Neural Information Pro-
cessing Systems 14, MIT Press (2002) 641–647

5. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research 4 (2003) 933–969

6. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for
the area under the ROC curve. Journal of Machine Learning Research 6 (2005) 393–425

7. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Re-
search 2 (2002) 499–526

8. Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization error. In:
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence. (2002)

9. Devroye, L., Wagner, T.: Distribution-free performance bounds for potential function rules.
IEEE Transactions on Information Theory 25 (1979) 601–604

10. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural
Information Processing Systems 16, MIT Press (2004)

11. Agarwal, S., Roth, D.: Learnability of bipartite ranking functions. In: Proceedings of the
18th Annual Conference on Learning Theory. (2005)

12. Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation. Neural Computation 11 (1999) 1427–1453

13. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity in
learning theory. Nature 428 (2004) 419–422

14. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics 1989,
Cambridge University Press (1989) 148–188

15. Agarwal, S.: A Study of the Bipartite Ranking Problem in Machine Learning. PhD thesis,
University of Illinois at Urbana-Champaign (2005)

16. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines.
Advances in Computational Mathematics 13 (2000) 1–50

17. Rakotomamonjy, A.: SVMs and area under ROC curves. Technical report, PSI- INSA de
Rouen (2004)

18. Kutin, S., Niyogi, P.: The interaction of stability and weakness in AdaBoost. Technical
Report TR-2001-30, Computer Science Department, University of Chicago (2001)

Loss Bounds for Online Category Ranking

Koby Crammer1 and Yoram Singer2,3

1 Dept. of Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, PA 19104

2 School of Computer Sci. & Eng., Hebrew University, Jerusalem 91904, Israel
3 Google Inc., 1600 Amphitheatre Parkway, Mountain View CA 94043, USA

crammer@cis.upenn.edu, singer@{cs.huji.ac.il,google.com}

Abstract. Category ranking is the task of ordering labels with respect to their
relevance to an input instance. In this paper we describe and analyze several al-
gorithms for online category ranking where the instances are revealed in a sequen-
tial manner. We describe additive and multiplicative updates which constitute the
core of the learning algorithms. The updates are derived by casting a constrained
optimization problem for each new instance. We derive loss bounds for the al-
gorithms by using the properties of the dual solution while imposing additional
constraints on the dual form. Finally, we outline and analyze the convergence of
a general update that can be employed with any Bregman divergence.

1 Introduction and Problem Setting

The task of category ranking is concerned with ordering the labels associated with a
given instance in accordance to their relevance to the input instance. Category ranking
often arises in text processing applications (see for instance [8]) in which the instances
are documents and the labels constitute a list of topics that overlap with the subject
matter of the document. The set of labels, or topics using the text processing jargon,
is predefined and does not change along the run of the text processing and learning
algorithm. A closely related problem studied by the machine learning community is
called the multilabel classification problem. Few learning algorithms have been devised
for the category ranking problem. Some notable example are a multiclass version of
AdaBoost called AdaBoost.MH [12], a generalization of Vapnik’s Support Vector Ma-
chines to the multilabel setting by Elisseeff and Weston [10], and a generalization of
the Perceptron algorithm to category ranking [8]. This work employs hypotheses for
category ranking that are closely related to the ones presented and used in [10, 8]. We
generalize the algorithms presented in [10, 8] by providing both a more refined analysis
as well as deriving and analyzing new algorithms for the same problem. First, we give
online bounds for an additive algorithm which is a fusion of a generalization of the
Perceptron for topic ranking [8] and the MIRA algorithm [9, 7]. We also derive a mul-
tiplicative algorithm and a general algorithm based on Bregman divergences that were
not discussed in previous research papers. Last, but not least, previous work focused on
feedback that takes a rather rigid structured form in which the set of labels is partitioned
into relevant and non-relevant subsets. The framework presented here can be used with

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 48–62, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Loss Bounds for Online Category Ranking 49

a rather general feedback which takes the form of a partial order. Experimental results
[6] which unfortunately we do not have room to include in this paper indicate that the
algorithms described in this paper outperform the previously published algorithms for
topic ranking. Our algorithmic framework thus presents a viable practical and provably
correct alternative to previous learning algorithms for the category ranking task.

Let us now describe the formal ingredients of the category ranking problem. As in
supervised learning problems the learning algoritm is introduced to a set of instance-
label pairs. For concreteness we assume that the instances are vectors in Rn and denote
the instance received on round i by xi. The labels that we examine in this paper may
take a rather general form. Specifically, labels are preference relations over a set of k
categories and is denoted by C = {1, 2, . . . , k}. That is, a label y ⊂ C × C is a relation,
where (r, s) ∈ y implies that category r is ranked above, or preferred over, category s.
The only restriction we impose on a label y is that it does not contain any cycle. Put
another way, we represent each label y as a graph. The set of vertices of the graph is
defined as the set of categories in C. Each preference pair (r, s) ∈ y corresponds to
a directed edge from the vertex r to the vertex s. Using this graph-based view, there
is a one-to-one correspondence between relations which do not contain any cycle and
directed acyclic graphs (DAGs). We refer to such relations as semi-orders.

A prediction function h maps instances x ∈ X to total-orders over C denoted by Ŷ .
We restrict ourselves to mappings based on linear functions which are parameterized
by a set of k weight vectors w1, . . . ,wk denoted by W . Formally, such mappings are
defined as h (x) =

(〈
w1,x

〉
, . . . ,

〈
wk,x

〉)
∈ Rk, where 〈·, ·〉 designates the inner-

product operation. A prediction ŷ ∈ Ŷ naturally induces a total order where category
r is ranked above category s iff 〈wr,x〉 > 〈ws,x〉 and ties are broken arbitrarily.
Throughout the paper, we overload the notation and denote by ŷ both a k-dimensional
vector and the total-order it induces.

Online algorithms work in rounds. On the ith round the algorithm receives an in-
stance xi and predicts a total-order ŷi (∈ Rk). It then receives as feedback the semi-
order yi that is associated with xi. We then suffer an instantaneous loss based on the
discrepancy between the semi-order yi and the total order ŷi. The goal of the online
learning algorithm is to minimize a pre-defined cumulative loss. As in other online al-
gorithms the collection of k weight vectors W is updated after receiving the feedback
yi. Therefore, we denote by W i the set of parameters used for ranking the categories
on round i. For brevity, we refer to W i itself as the ranker.

As in other learning algorithms, proper loss functions should be defined in order to
asses the quality of the prediction functions that are learned. In the problem of binary
classification we are usually interested in the event of a misclassification, which in-
duces the so called 0-1 loss. In the more complex category ranking problem there does
not exist a unique and natural loss function. The lack of a natural loss function can be
primarily attributed to the fact that the learning algorithm needs to take into consider-
ation that some mistakes are less drastic than others. Nevertheless, the 0-1 loss can be
also applied in category ranking problems, indicating whether the predicted total order
is consistent with the preference represented by the semi-order received as feedback.
This loss function is crude in the sense that it ignores completely how many preference
pairs in y are in practice mis-ordered. Moving to the other extreme, we can define a loss

50 K. Crammer and Y. Singer

χ1

1

2

4 53

1

2

2

4 53

1

3

2

4 53

1

4

2

4 53

1

5

2

4 53

1

6

2

4 53

1

χ2 χ3 χ4

1

1

3 45

2

1

2

4 53

1

2

2

4 53

1

1

2

4 53

1

2

2

4 53

1

3

2

4 53

1

Fig. 1. Illustrations of various covers. The target semi-order in the example consists of six pairs
(relations). These pairs constitute a bipartite graph with the “good” categories {1, 2} on one side
and the “bad” categories {3, 4, 5} on the other side. The predicted total order is ŷ = {1 > 3 >
4 > 2 > 5}. Four different covers are depicted. Each subset within a cover is designated by
a box. Pairs of categories for which the predicted order agrees with the target are depicted with
bold edges while inconsistencies are designated by dashed edges. Thus, the induced loss is the
number of boxes in which there is at least one dashed edge. Top: The all-pairs cover in which
each subset is a pair of categories. Bottom Left: The 0-1 cover in which the entire set of edges
reside in a single graph. Bottom Center: This cover counts the number of “good” categories that
do not dominate all the “bad’ categories. Bottom Right: The cover counts the number of “bad”
categories that are not dominated by all of the “good” categories

function which is set to be equal to the number of preference relations in the semi-order
which are not consistent with the predicted total-order. In this paper we chose a general
approach which includes the above two choices of loss functions as special cases. Let
(xi,yi) be an instance-label pair. A loss function is parameterized by a partition or a
cover χ of the semi-order y into finite disjoint sets, namely,

∪χ∈χχ = y and ∀p �= q : χp ∩ χq = ∅ .

Let [[π]] denote the indicator function, that is, [[π]] is 1 if the predicate π is true and is 0
otherwise. The loss suffered by a ranker W for a cover χ is defined to be,

I (W ; (x,y,χ)) =
∑
χ∈χ

[[{(r, s) ∈ χ : 〈wr,x〉 ≤ 〈ws,x〉} �= ∅]] , (1)

An illustration of four different covers and their associated loss is given in Fig. 1.
The effect of the specific cover χ that is being used may be crucial: a cover of a

small number of (large) disjoint sets typically induces a loss function which is primar-
ily sensitive to the existence of a mistake and is indifferent to the exact nature of the
induced total-order. In contrast, a cover which includes many sets each of which has
only a small number of elements induces a loss that may be too detailed. The natural
question that arises is what cover to use. Unfortunately, there is no general answer as
the specific choice is domain and task dependent. For example, in the problem of op-
tical character recognition we merely interested in whether a prediction error occurred

Loss Bounds for Online Category Ranking 51

Parameters: γ ; C
Initialize: w1

r = 0 (1≤r≤k)
Loop: For i = 1, 2, . . . ,m

– Get a new instance: xi ∈ Rn

– Predict:
ŷi =

(〈
wi

1,x
i
〉
, . . . ,

〈
wi

k,x
i
〉)

– Get a target yi and its cover χi

– Suffer loss: I
(
W i; (xi;yi;χi)

)
– Set αi

r,s to be the solution αr,s

of Eq. (9) and Eq. (10)

– Set for r = 1...k : τ i
r =

k∑
s=1

αi
r,s

– Update for r = 1, . . . , k:
wi+1

r = wi
r + τ i

rx
i

Output:
h(x) =

(〈
wm+1

1 ,x
〉
, . . . ,

〈
wm+1

k ,x
〉)

Fig. 2. The additive algorithm

Parameters: γ ; C
Initialize: w1

r,l = 1
nk (1≤r≤k, 1≤ l≤n)

Loop: For i = 1, 2, . . . ,m

– Get a new instance: xi ∈ Rn

– Predict:
ŷi =

(〈
wi

1,x
i
〉
, . . . ,

〈
wi

k,x
i
〉)

– Get a target yi and its cover χi

– Suffer loss: I
(
W i; (xi;yi;χi)

)
– Set αi

r,s to be the solution αr,s

of Eq. (13) and Eq. (14)

– Set for r = 1...k: τ i
r =

k∑
s=1

αi
r,s

– Update for r = 1, . . . , k:

wi+1
r,l = wi

r,l
eτi

rxi
l

Zi

where Zi =
∑
s,l

wi
s,le

τ i
sxi

l

Output:
h(x) =

(〈
wm+1

1 ,x
〉
, . . . ,

〈
wm+1

k ,x
〉)

Fig. 3. The multiplicative algorithm

or not. In contrast, in the problem of document categorization, where each document is
associated with a subset of relevant categories, it seems more natural to ask how many
categories were mis-placed by the total order. To underscore the dependency on the
cover, we slightly extend our definitions and denote an example by a triplet (x,y,χ):
an instance x, a target semi-order y, and a cover χ of y. Thus the choice of a loss
function is made part of the problem description and is not a sub-task of the learning
algorithm. Since the loss functions are parameterized by a cover χ of the target y we
call them cover loss functions. To derive our algorithms, we use a generalization of the
hinge loss which depends on a predefined insensitivity parameter γ and is defined as,

Hγ (W ; (x,y,χ)) =
∑
χ∈χ

max
(r,s)∈χ

[γ − (〈wr,x〉 − 〈ws,x〉)]+ . (2)

It is straightforward to verify the bound γI (W ; (x,y,χ)) ≤ Hγ ((x,y,χ)). Note that
if the loss is equal to zero then, independently of the form of the specific loss being
used, 〈wr,x〉 − 〈ws,x〉 ≥ γ for all (r, s) ∈ y.

2 An Additive Algorithm

In this section we present the first algorithm for category ranking which is based on
an additive update. The motivation for the algorithm as well as its analysis build on

52 K. Crammer and Y. Singer

previous research, in particular the MIRA algorithm and the Passive-Aggressive al-
gorithm [9, 7]. As discussed above, we generalize these algorithms by considering a
general class of loss functions and provide tighter loss bounds by modifying the dual
problem described in the sequel. Throughout the paper we denote the norm of the a
category-ranker W by ‖W‖. This norm is defined as the norm of the vector obtained
by concatenating the vectors wr, ‖W‖ = ‖(w1, . . . ,wk)‖. The core of the online al-
gorithm is an update rule that receives the current ranker, denoted W i, along with the
newly observed instance xi, a feedback yi, and a cover χi. The next ranker W i+1 is
set to be the solution of the following optimization problem,

W i+1 = argmin
W

1
2
‖W −W i‖2

2 +
C

k − 1
Hγ

(
W ; (xi;yi;χi)

)
, (3)

where C > 0. The new ranker is thus the solution to a problem that is composed of two
opposing terms. The role of the first term is to try to keep the new ranker W i+1 as close
as possible to the current one, W i. The second term solely focuses on the hinge-loss
achieved by the new ranker on the newest example. Thus, the constant C encapsulates
the tradeoff between the two terms.

Expanding the hinge-loss, we rewrite the optimization problem of Eq. (3) as,

min
W

1
2
‖W −W i‖2

2 + C
∑

χ∈χi

ξχ (4)

subject to : ∀χ ∈ χi , ∀(r, s) ∈ χ :
〈
wr,x

i
〉
−

〈
ws,x

i
〉
≥ γ − ξχ

∀χ ∈ χi : ξχ ≥ 0 ,

where ξχ ≥ 0 are slack variables. To characterize the solution W i+1 we use the dual
form of Eq. (3) and Eq. (4). We do so by introducing the Lagrangian of the problem,

L(W ;α) =
1
2

k∑
r=1

∥∥wr − wi
r

∥∥2
+ C

∑
χ∈χi

ξχ

+
∑

(r,s)∈yi

αi
r,s

(
γ −

〈
wr,x

i
〉

+
〈
ws,x

i
〉)

−
∑

χ∈χi

βχξχ , (5)

where αi
r,s ≥ 0 (defined only for pairs (r, s) ∈ yi) are the Lagrange multipliers. Mun-

dane calculus yields that,

wp = wi
p +

∑
s : (p,s)∈yi

αi
p,sx

i −
∑

r : (r,p)∈yi

αi
r,px

i for 1 ≤ p ≤ k . (6)

To simplify Eq. (6) and the form of the optimal solution we extend αr,s to be defined
over all pairs r, s. For each (r, s) ∈ yi we define αs,r = −αr,s. We also set αr,s = 0
for all other values of r and s. Using this extension of the Lagrange multipliers, Eq. (6)
can be rewritten as,

wi+1
r = wi

r +
∑

s

αi
r,sx

i for 1 ≤ r ≤ k . (7)

Loss Bounds for Online Category Ranking 53

Finally, we write τ i
r

def=
∑

s αi
r,s yielding the following update

wi+1
r = wi

r + τ i
rx

i for 1 ≤ r ≤ k . (8)

Summing up, the resulting dual is,

min
{αi

r,s}

1
2

∥∥xi
∥∥2

k∑
r=1

(∑
s

αi
r,s

)2

+
∑

(r,s)∈yi

αi
r,s

(〈
wi

r,x
i
〉
−

〈
wi

s,x
i
〉
− γ

)

s. t.:

⎧⎨⎩
αi

r,s ≥ 0 (r, s) ∈ yi

αi
s,r = −αi

r,s (r, s) ∈ yi ∀χ ∈ χi :
∑

(r,s)∈χ αi
r,s ≤ C

k−1

αi
s,r = 0 Otherwise

(9)

The transformation from the primal to the dual form is standard. However, the resulting
dual form given by Eq. (9) imposes a rather major difficulty whenever the optimal
solution does not satisfy any of the inequality constraints with equality. In this case
there is no way to distinguish between different covers from the values of αr,s. Since
the proofs of our loss bounds are based on bounding first the cumulative sum of αr,s,
this problem precludes the derivation of mistake bounds that are sensitive to the specific
cover that is used. We illustrate this difficulty with the following toy example. Assume
that there are only three different categories and the instance space is the reals, X = R.
Assume further that the ith weight vectors are wi

1 = −0.5 ,wi
2 = 0 ,wi

3 = 2.5.
Let the ith example be xi = 1 and yi = {(1, 2), (1, 3)}. If we now set C = 3, we
get that the optimal solution of the dual is the same for two different covers, χi =
{{(1, 2)}, {(1, 3)}} and χi = {(1, 2), (1, 3)}. Thus, it is impossible to unravel from
αi

r,s what cover was used and any analysis must unify the two covers into a single loss
bound.

To overcome the problem above, we impose a lower bound on the total sum of the
Lagrange multipliers in each cover. By construction, this lower bound depends on the
particular cover that is being used. Specifically, we replace the constraints on αr,s with
the following constraints that bound the total sum from above and below,

∀χ ∈ χi :
ci

k − 1
[[{(r, s) ∈ χ : (s, r) ∈ ŷ} �= ∅]] ≤

∑
(r,s)∈χ

αi
r,s ≤ C

k − 1
, (10)

where ci = min{C, 1/
∥∥xi

∥∥2}. Put another way, if the predicted total-order is con-
sistent with all the elements of a specific cover χ ∈ χi, then the lower bound is kept
at zero. Alas, if the order of some pair in a cover is not predicted perfectly, then we
aggressively set a lower bound on the sum of the Lagrange multipliers corresponding
to the cover. We discuss briefly the implications of this construction at the end of next
section. The pseudocode of the algorithm is given in Fig. 2.

To derive a loss-bound for the additive algorithm we first bound the cumulative
sum

∑
i,r,s |αi

r,s| as given in Lemma 1 below. We then draw a connection between this
bound and the bound on the cumulative loss suffered by the algorithm.

Lemma 1. Let (x1,y1), . . . , (xm,ym) be an input sequence for the algorithm de-
scribed in Fig. 2 where xi ∈ Rn and yi ∈ Y × Y is a semi-order. Let W ∗ ∈ Rn×k be

54 K. Crammer and Y. Singer

a collection of k vectors and γ∗ > 0. Assume that the algorithm of Fig. 2 is run with
a parameter C > 0. Fix γ > 0, and let αi

r,s be the optimal solution of Eq. (9) with a
modified set of constraints given in Eq. (10). Then, the following bound holds,∑

i,r,s

|αi
r,s| ≤ 4

1
γ∗2 ‖W ∗‖2 + 4

C

(k − 1)γ∗

∑
i

Hγ∗
(
W ∗; (xi;yi;χi)

)
.

The proof is omitted due to the lack of space. The skeleton of the proof is similar to
the proof of Lemma 2 which is given in the next section. Before stating the main theo-
rem of this section, we would like to make a few comments in passing. First, whenever
the category ranking is perfectly consistent with the feedback on all examples, then the
right term of the bound above vanishes for a proper choice of W ∗. Second, the bound
still holds when solving the optimization problem given by Eq. (9) without the addi-
tional constraints provided in Eq. (10). However, as discussed above we incorporated
the set of additional constraints since they enables us to cast the cumulative loss bound
stated in the theorem below.

Theorem 1. Assume that all the instances reside in a ball of radius R (∀i : ‖xi‖2 ≤ R)
and that C ≥ γ/R2. Then, under the same terms stated in Lemma 1 the cumulative
cover loss the algorithm suffers is upper bounded by,∑

i

I
(
W i; (xi;yi;χi)

)
≤ 2(k−1)

R2

γ∗2 ‖W ∗‖2+2
C

γ

R2

γ∗

∑
i

Hγ∗
(
W ∗; (xi;yi;χi)

)
.

Thm. 1 tells us that the cumulative loss of the algorithm with respect to a given cover,
is bounded by the hinge-loss suffered by any category plus a term that depends on the
norm of ranker. The dependency on the number of different labels is distilled to a single
factor: the multiplier of the ranker’s norm, which is proportional to k. Furthermore, the
dependency of the bound in the meta-parameters γ and C appears only through their ra-
tio, and thus one of these parameters can be set to an arbitrary value, often we set γ = 1.

3 A Multiplicative Algorithm

In this section we describe a multiplicative algorithm for category ranking. As in the
previous section, the algorithm maintains a collection of k weight vectors. In the case
of the multiplicative update we add a constraint on the ranker by forcing the �1 norm of
W i to be one for all i. We further assume that all the components of W i are non-
negative. The resulting update incorporates these constraints for each new vector it
constructs. On round i the new ranker W i+1 is again the minimizer of a constrained
optimization problem which is similar to the one given in Eq. (3). The main difference
is that we replace the Euclidean norm appearing in Eq. (3) with the Kullback-Leibler
(KL) divergence [5]. The KL-divergence, also known as the relative entropy, is used
in information theory and statistics to measure the discrepancy between information
sources. The resulting constrained optimization that yields the multiplicative update is,

W i+1 = argmin
W

DKL
(
W

∥∥W i
)

+
2C

k(k − 1)
Hγ

(
W ; (xi;yi;χi)

)
s.t. ‖W‖1 = 1 .

(11)

Loss Bounds for Online Category Ranking 55

We show in the sequel that the resulting update has a multiplicative form. As the addi-
tive update, the multiplicative update can be employed with any cover that satisfies the
requirements listed above. The pseudocode of the algorithm is given in Fig. 3. Before
proceeding to the derivation of the multiplicative update and its loss bound analysis
we would like to underscore two important difference between the additive update of
previous section and the multiplicative update. Setting C = ∞ puts all the emphasis
on the empirical loss of the most recent example. In the additive case this results in a
solution W i+1 such that Hγ

(
W i+1; (xi;yi;χi)

)
= 0. However, due to the additional

constraint that ‖W i‖1 = 1 the inner products
〈
wr,x

i
〉

are upper bounded by ‖xi‖∞.
Hence, depending on γ, it may be impossible to achieve a zero hinge-loss with W i+1

even when C is arbitrarily large. Second, note that the loss term is weighed differently
in both algorithms: we use a factor of 1/(k− 1) (Eq. (3)) for the additive algorithm and
a factor of 2/(k(k − 1)) (Eq. (11)) for the multiplicative one. This difference is due to
the conversion phase, described in the sequel, of the bounds on the weights into loss
bounds.

To derive an update rule we use the dual form of Eq. (11). Similar to Eq. (3) we
write the constraints explicitly, compute the corresponding Lagrangian, and get that the
lth component of the optimal solution satisfies,

log (wp,l) = log
(
wi

p,l

)
+

∑
s : (p,s)∈yi

αi
p,sx

i
l −

∑
r : (r,p)∈yi

αi
r,px

i
l − β . (12)

Taking the exponent of both sides of the above equation results in the multiplicative
update described in Fig. 3 where eβ = Zi. Similar to the line of derivation following
Eq. (6) we simplify Eq. (12) by extending the definition of the Lagrange multipliers
αi

r,s to be defined over all r and s. The end result is the following dual problem,

max
{αi

r,s}
− log

(
Zi

)
+ γ

∑
(r,s)∈yi

αi
r,s

subject to:

⎧⎨⎩
αi

r,s ≥ 0 (r, s) ∈ yi

αi
s,r = −αi

r,s (r, s) ∈ yi ∀χ ∈ χi :
∑

(r,s)∈χ αi
r,s ≤ 2C

k(k−1) .

αi
s,r = 0 Otherwise

(13)

Finally, as in the additive update we impose an additional set of constrains that cast a
lower bound on each αi

r,s,

∀χ ∈ χi :
2ci

k(k − 1)
[[{(r, s) ∈ χ : (s, r) ∈ ŷ} �= ∅]] ≤

∑
(r,s)∈χ

αi
r,s . (14)

where ci depends on the �∞ norm of xi and is equal to,

ci = min

⎧⎨⎩ log
(
1 + γ

‖xi‖∞

)
‖xi‖∞

, C

⎫⎬⎭ .

The technique for deriving a loss bound for the multiplicative update is similar the
one used for the additive update, yet it is more involved. We first find a bound on the

56 K. Crammer and Y. Singer

cumulative sum of coefficients αi
r,s. Then, we tie the cover loss with the value of the

coefficients αi
r,s which enables us to derive a loss bound.

Lemma 2. Let (x1,y1), . . . , (xm,ym) be an input sequence for the algorithm de-
scribed in Fig. 3 where xi ∈ Rn and yi ∈ Y × Y is a semi-order. Assume that
the algorithm is run with a parameter C ≥ 0 and a margin parameter γ > 0. Let
{αi

r,s} be the minimizer of Eq. (13) with the additional constraints given in Eq. (14).
Let W ∗ ∈ Rn×k be any collection of k vectors such that ‖W ∗‖1 = 1 and fix γ∗ > γ.
Then, the cumulative sum of coefficients is upper bounded by,∑

i

∑
(r,s)

|αi
r,s| ≤ 2

log(kn)
γ∗ − γ

+ 4
C

k(k − 1)(γ∗ − γ)

∑
i

Hγ∗
(
W ∗; (xi;yi;χi)

)
.

Proof. Define Δi = DKL
(
W ∗ ∥∥W i

)
− DKL

(
W ∗ ∥∥W i+1

)
. We prove the lemma by

bounding
∑m

i=1 Δi from above and below. First note that
∑m

i=1 Δi is a telescopic sum
and therefore,

m∑
i=1

Δi = DKL
(
W ∗ ∥∥W 1

)
− DKL

(
W ∗ ∥∥Wm+1

)
≤ DKL

(
W ∗ ∥∥W 1

)
.

Using the definition of DKL and substituting the value of w1
r,l with 1/(nk) we get,

m∑
i=1

Δi ≤
∑
r,l

w∗
r,l log

(
w∗

r,l

1/nk

)
= log(nk) +

∑
r,l

w∗
r,l log

(
w∗

r,l

)
≤ log(nk) , (15)

where the last inequality holds since w∗
r,l ≤ 1. This provides an upper bound on

∑
i Δi.

In the following we prove a lower bound on Δi. Expanding Δi we get,

Δi = DKL
(
W ∗ ∥∥W i

)
− DKL

(
W ∗ ∥∥W i+1

)
=

∑
r,l

(
w∗

r,l log w∗
r,l

wi
r,l

− w∗
r,l log w∗

r,l

wi+1
r,l

)
=

∑
r,l w∗

r,l log
(

e
∑

s αi
r,sxi

l

Zi

)
= − log(Zi)

∑
r,l w∗

r,l +
∑

r,s,l α
i
r,sw

∗
r,lx

i
l

= − log(Zi)
∑

r,l w∗
r,l +

∑
r,s αi

r,s

〈
w∗

r ,x
i
〉

.

(16)

We rewrite the right term of the last equality above as,∑
r,s

αi
r,s

〈
w∗

r ,x
i
〉

=
∑

(r,s)∈yi

αi
r,s

(〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉)

. (17)

Substituting Eq. (17) in Eq. (16) while using the constraint that ‖W ∗‖1 = 1 we get,

Δi = − log
(
Zi

)
+

∑
(r,s)∈yi

αi
r,s

(〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉)

= − log
(
Zi

)
+ γ

∑
(r,s)∈yi

αi
r,s (18)

−γ
∑

(r,s)∈yi

αi
r,s +

∑
(r,s)∈yi

αi
r,s

(〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉)

. (19)

Loss Bounds for Online Category Ranking 57

We thus decomposed Δi into two parts denoted by Eq. (18) and Eq. (19). Note that
Eq. (18) is equal to the objective of dual optimization problem given in Eq. (13). We
now show that there exists a feasible assignment (not necessary the optimal one) of the
variables αi

r,s for which

− log
(
Zi

)
+ γ

∑
(r,s)∈yi

αi
r,s ≥ 0 . (20)

Therefore, the optimal solution of Eq. (13) should also satisfy the inequality above. We
hence get that Δi is lower bounded solely by the term given in Eq. (19).

To describe a set of feasible values to the parameters αi
r,s we assume that {(r, s) ∈

χ : (s, r) ∈ ŷ} is not empty. That is, there is a mis-ordered pair in the set χ. We set
αi

r,s = 2ci/(k(k − 1)) and set all other values αi
r′,s′ to zero. For brevity we denote by

bi = ‖xi‖∞
∑

(r,s)∈yi αi
r,s. We thus get

xi
l

∑
s

αi
r,s ≤ ‖xi‖∞

∑
(r,s)∈yi

αi
r,s ≤ bi .

We upper bound Zi as follows,

Zi =
∑
r,l

wi
r,le

xi
l

∑
p αr,p

≤
∑
r,l

wi
r,l

(
bi + xi

l

∑
p αr,p

2bi
ebi

+
bi − xi

l

∑
p αr,p

2bi
e−bi

)

=
∑
r,l

wi
r,l

(
ebi

+ e−bi

2

)
+

∑
r,s,l

αi
r,sw

i
r,lx

i
l

(
ebi − e−bi

2

)
= cosh(bi) + sinh(bi)

∑
(r,s)∈yi

αi
r,s

(〈
wi

r,x
i
〉
−

〈
wi

s,x
i
〉)

≤ cosh(bi) ,

where the first inequality follows from the convexity of the exponential function and
the last inequality holds since either αi

r,s > 0 and
(〈

wi
r,x

i
〉
−

〈
wi

s,x
i
〉)

< 0 , or
αi

r,s = 0. Therefore we get that the objective function is lower bounded by,

− log(cosh(bi)) + γ
∑

(r,s)∈yi

αi
r,s = − log(cosh(bi)) + γ

bi

‖xi‖∞
.

Our particular choice of αi
r,s implies that,

bi = ‖xi‖∞
∑

(r,s)∈yi

αr,s = ci‖xi‖∞2
I
(
W i; (xi;yi;χi)

)
k(k − 1)

(21)

for ci ∈
[
0,

log(1+ γ

‖xi‖∞
)

‖xi‖∞

]
. It can be shown that log(cosh(bi)) − γbi/‖xi‖∞ ≤ 0

both for ci = 0 and for ci = log(1 + γ
‖xi‖∞

)/‖xi‖∞ (note that bi is proportional

58 K. Crammer and Y. Singer

to ci). From the convexity of f(bi) = log(cosh(bi)) − γbi/‖xi‖∞ it follows that
log(cosh(bi)) − γbi/‖xi‖∞ ≤ 0 for all feasible values of bi.

We thus proved that the value of Eq. (18) is lower bounded by 0. This yields the
following lower bound on Δi,

Δi ≥
∑

(r,s)∈yi

αi
r,s

(〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉)

−
∑

(r,s)∈yi

αi
r,sγ . (22)

We further develop the first term and get,∑
(r,s)∈yi

αi
r,s

(〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉)

≥
∑

(r,s)∈yi

αi
r,s

(
γ∗ −

[
γ∗ −

〈
w∗

r ,x
i
〉

+
〈
w∗

s,x
i
〉]

+

)

≥−
∑

χ∈χi

⎛⎝ ∑
(r,s)∈χ

αi
r,s

⎞⎠ max
(r,s)∈χ

[
γ∗−

〈
w∗

r ,x
i
〉

+
〈
w∗

s,x
i
〉]

+
+
∑

χ∈χi

∑
(r,s)∈χ

αi
r,sγ

∗ . (23)

Finally, using the upper bound of Eq. (14) we lower bound the left term in the last
equation with − 2C

k(k−1)Hγ∗
(
W ∗; (xi;yi;χi)

)
. Thus,

Δi ≥ −2
C

k(k − 1)
Hγ∗

(
W ∗; (xi;yi;χi)

)
+

1
2
(γ∗ − γ)

∑
r,s

|αi
r,s| (24)

Substituting Eq. (24) in Eq. (15) we get,

1
2
(γ∗ − γ)

∑
i

∑
(r,s)

|αi
r,s| ≤ log(kn) + 2

C

k(k − 1)
Hγ∗

(
W ∗; (xi;yi;χi)

)
,

which yields the desired bound.

As in the analysis of the additive update, the bound holds true also when the the op-
timization problem given by Eq. (13) is not augmented with the additional constraints
provided in Eq. (14). These additional constraints however are instrumental in the proof
of the following theorem.

Theorem 2. Assume that all the instances lie in a cube of width R (‖xi‖∞ ≤ R) and

that C ≥ log(1+ γ
R)

R . Under the assumptions of Lemma 2, the cumulative loss is bounded
above by,∑

i

I
(
W i; (xi;yi;χi)

)
≤

1
2

Rk(k − 1) log(kn)
log

(
1 + γ

R

)
(γ∗ − γ)

+
RC

log
(
1 + γ

R

)
(γ∗ − γ)

Hγ∗
(
W ∗; (xi;yi;χi)

)
.

Loss Bounds for Online Category Ranking 59

The lemma and the theorem state that for each value of γ used in the algorithm there
is a feasible range of values of the margin parameter γ∗. Furthermore, if the value of
γ∗ is known to the algorithm in advance, then the value of the margin parameter γ can
be set to provide the tightest upper bound as follows. Using the concavity of the log
function we get that log(1 + x) ≥ x and since we assume in Thm. 2 that C ≥ γ/R2 ,
then the bound on the loss that is stated in the theorem becomes,

1
2
Rk(k − 1) log(kn)

(γ/R)(γ∗ − γ)
+

RC

(γ/R)(γ∗ − γ)
Hγ∗

(
W ∗; (xi;yi;χi)

)
.

The above bound is minimized by setting γ = γ∗/2. Substituting this value in the bound
we obtain,∑

i

I
(
W i; (xi;yi;χi)

)
≤ 2

R2k(k − 1) log(kn)
γ∗2 + 4

R2C

γ∗2 Hγ∗
(
W ∗; (xi;yi;χi)

)
.

Substituting the optimal value for C which is γ∗/(2R2) we finally obtain,

∑
i

I
(
W i; (xi;yi;χi)

)
≤ 2k(k−1) log(kn)

R2

γ∗2 +
2
γ∗ Hγ∗

(
W ∗; (xi;yi;χi)

)
. (25)

Before proceeding to the next section let us summarize the results obtained thus
far. Similar algorithms [9, 7] were designed for simple prediction problems. As a con-
sequence the update schemes for these algorithms take closed forms. Their analyses
in turn strive on the existence of an exact form solution. In this paper we address the
more complex problem of category ranking for which there is no close form for the
update. To analyze these algorithms the optimization problems that constitute the in-
frastructure for the update were augmented with additional constraints. Mathematically,
these constraints are equivalent to additional negative slack variables in the primal op-
timization problem. The understanding of the semantics of these variables require fur-
ther investigation. Nonetheless, this construction forces each Lagrange multipliers to
attain a minimal value and distinguishes between the solutions obtained for different
covers.

4 Category-Ranking Based on Bregman Divergences

The additive and multiplicative algorithms described in previous sections share a sim-
ilar structure. On each iteration the online algorithms attempt to minimize the loss as-
sociated with the instantaneous category task while attempting to keep the new ranker,
designated by W i+1, as “close” as possible to W i. The additive algorithm uses the
square of the Euclidean distance as the means for encapsulating quantitatively the no-
tion of closeness while the multiplicative algorithm uses the KL-divergence for that
purpose. In this section we overview a unified approach that is based on Bregman di-
vergences [2]. We would like not that while the use of the Bregman divergences in
the context of category ranking problems is new, Bregman divergences have been used
extensively in other learning settings (see for instance [11, 1, 4]).

60 K. Crammer and Y. Singer

A Bregman divergence is defined via a strictly convex function F : X → R which
is defined on a closed convex set X ⊆ Rn. A Bregman function F needs to satisfy
a set of constraints. We omit the description of the specific constraints and refer the
reader to [3]. We further impose that F is continuously differentiable at all points of
Xint (the interior of X) which is assumed to be nonempty. The Bregman divergence
that is associated with F applied to x ∈ X and w ∈ Xint is defined to be

BF (x ‖w) def= F (x) − [F (w) + ∇F (w) · (x − w)] .

Thus, BF measures the difference between two functions evaluated at x. The first is
the function F itself and the second is the first-order Taylor expansion of F derived at
w. The divergences we employ are defined via a single scalar convex function f such
that F (x) =

∑n
l=1 f(xl), where xl is the lth coordinate of x. The resulting Bregman

divergence between x and w is thus, BF (x ‖w) =
∑n

l=1 Bf (xl‖wl) . The two diver-
gences described in the previous section can be obtained by choosing f(x) = (1/2)x2

(squared Euclidean) and f(x) = x log(x) − x (KL-divergence). For the latter we also
restrict X to the probability simplex Δn = {x | xl ≥ 0 ;

∑
l xl = 1}.

We now describe an online category-ranking algorithm that can be applied with
any Bregman divergence. However, the generality of the algorithm comes with a cost.
Namely, the algorithm and its corresponding analysis are designed for the case where
there exists a ranker W ∗ which is consistent with all the semi-orders that are given as
feedbacks. Equipped with this assumption, the new category-ranker W i+1 is defined
as the solution of the following problem,

W i+1 = argmin
W

BF

(
W

∥∥W i
)

s.t. Hγ

(
W ; (xi;yi)

)
= 0 , (26)

That is, W i+1 is chosen among all rankers which attain a zero hinge loss on the cur-
rent instance-label pair. Due to our assumption this set is not empty. The ranker that is
chosen is the one whose Bregman divergence w.r.t the current ranker W i is the smallest.

Before providing the main result of this section let us elaborate on the form of the
dual of Eq. (26) and the resulting solution. Writing explicitly the constraint given in
Eq. (26) we get that,

W i+1 = argmin
W

BF

(
W

∥∥W i
)

s.t.
〈
wr,x

i
〉
−

〈
ws,x

i
〉
≥ γ, ∀(r, s) ∈ yi . (27)

The corresponding Lagrangian of this optimization problem is,

L(W ;α) =
k∑

r=1

BF

(
wr

∥∥wi
r

)
+

∑
(r,s)∈yi

αi
r,s

(
γ −

〈
wr,x

i
〉

+
〈
ws,x

i
〉)

, (28)

where αi
r,s ≥ 0 (for (r, s) ∈ yi) are Lagrange multipliers and we expanded W into its

constituents wr. To find a saddle point of L we first set to zero the derivative of L with
respect to wp for all p and get,

∇F (wp) = ∇F
(
wi

p

)
+

∑
s : (p,s)∈yi

αi
p,sx

i −
∑

r : (r,p)∈yi

αi
r,px

i . (29)

Loss Bounds for Online Category Ranking 61

The last equation generalizes both Eq. (6) and Eq. (12) for the Euclidean distance and
the KL-divergence, respectively. As before we expand αr,s to be defined over all r and
s and get that,

∇F (wr) = ∇F
(
wi

r

)
+

∑
s

αi
r,sx

i def= ∇F
(
wi

r

)
+ τ i

rx
i . (30)

We thus found an implicit form of W i+1. Substituting Eq. (30) back in the Lagrangian
of Eq. (28) we obtain the dual problem,

min
{αi

r,s}

k∑
r=1

BF

(
∇F−1

(
∇F

(
wi

r

)
+

∑
s

αi
r,sx

i

)∥∥wi
r

)

+
∑

(r,s)∈yi

αi
r,s

(
γ −

〈
∇F−1

(
∇F

(
wi

r

)
+

∑
s

αi
r,sx

i

)
,xi

〉

+

〈
∇F−1

(
∇F

(
wi

s

)
+

∑
r

αi
s,rx

i

)
,xi

〉)
,

subject to:

⎧⎨⎩
αi

r,s ≥ 0 (r, s) ∈ yi

αi
s,r = −αi

r,s (r, s) ∈ yi

αi
s,r = 0 Otherwise

(31)

where ∇F−1 (·) is the component-wise inverse of ∇F (·). It is well defined since F
is strictly convex and thus ∇F is strictly monotone. It remains to describe how we set
the initial ranker W 1. To be consistent with the choice of initial ranker made for the
additive and multiplicative algorithms, we set W 1 = arg minW F (W).

The lemma below states that the cumulative sum of the dual parameters αi
r,s is

bounded. In return, this lemma can be used to derive specific loss bounds that for par-
ticular Bregman divergences.

Lemma 3. Let (x1,y1), . . . , (xm,ym) be an input sequence for the algorithm whose
update rule is described in Eq. (26) where xi ∈ Rn and yi ∈ Y × Y is a semi-order.
Let W ∗ ∈ Rn×k be a collection of k vectors which attains a positive margin γ∗ > 0
on the sequence, γ∗ = mini min(r,s)∈yi{

〈
w∗

r ,x
i
〉
−

〈
w∗

s,x
i
〉
} > 0 . Let BF be a

Bregman divergence derived from a convex function F . Then, for any value of c > γ/γ∗

the cumulative sum of coefficients is bounded by,∑
i

∑
(r,s)

|αi
r,s| ≤

F (cW ∗) − F (W 1)
cγ∗ − γ

.

The proof is omitted due to lack of space however we would like to discuss spe-
cific choices of Bregman divergences. If the Bregman function F is p-homogeneous,
F (ax) = apF (x) for p > 1 and W 1 = 0 then the bound is minimized by setting,
c = γ

(p−1)γ∗ . In this case the bound becomes,

F (W ∗)(p − 1)γp−1

(
p

(p − 1)γ∗

)p

.

62 K. Crammer and Y. Singer

If the Bregman function F is homogeneous, F (ax) = aF (x) . Then the bound is
minimized by setting c → ∞, and we obtain that the bound on the cumulative weights
is simply, F (W∗)

γ∗ .
To conclude the paper we like to mention some open problems. First, comparing

the bounds of the additive algorithm and the multiplicative algorithm we see that the
bound of the additive update is k times smaller than that of the multiplicative update.
This rather large gap between the two updates is not exhibited in other problems online
prediction prboems. We are not sure yet whether the gap is an artifact of the analysis
technique or a property of the category ranking problem. Second, currently we were
not able to convert Lemma 3 into a mistake bound similar to Thm. 1and Thm. 2. We
leave this problem to future research. Third, it is straightforward to employ the online
updates based on Eq. (9) and Eq. (13) in a batch setting. However, it is not clear whether
the additional constraints on the dual variables given in Eq. (10) and Eq. (14) can be
translated into a sensible batch paradigm. The lower bounds on the weights depend
on the instantaneous loss the algorithm suffers where in a batch setting this notion of
temporal loss does not exist.

Acknowledgments. We are in debt to the chairs and members of program committee of
COLT’05 for their constructive and thoughtful comments. This research was funded by
EU Project PASCAL and by the Israeli Science Foundation grant number 522/04. Most
of this work was carried out at the Hebrew University of Jerusalem.

References

1. K.S. Azoury and M.W. Warmuth. Relative loss bounds for on-line density estimation with
the exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

2. L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7:200–217, 1967.

3. Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, New York, NY, USA, 1997.

4. M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman dis-
tances. Machine Learning, 47(2/3):253–285, 2002.

5. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.
6. K. Crammer. Online Learning for Complex Categorial Problems. PhD thesis, Hebrew Uni-

versity of Jerusalem, 2005. to appear.
7. K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive algo-

rithms. In Advances in Neural Information Processing Systems 16, 2003.
8. K. Crammer and Y. Singer. A new family of online algorithms for category ranking. Jornal

of Machine Learning Research, 3:1025–1058, 2003.
9. K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.

Jornal of Machine Learning Research, 3:951–991, 2003.
10. A. Elisseeff and J. Weston. A kernel method for multi-labeled classification. In Advances in

Neural Information Processing Systems 14, 2001.
11. C. Gentile and M. Warmuth. Linear hinge loss and average margin. In Advances in Neural

Information Processing Systems 10, 1998.
12. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-

tions. Machine Learning, 37(3):1–40, 1999.

Margin-Based Ranking Meets Boosting
in the Middle�

Cynthia Rudin1, Corinna Cortes2, and Mehryar Mohri3,
and Robert E. Schapire4

1 Howard Hughes Medical Institute, New York University,
4 Washington Place, Room 809, New York, NY 10003

rudin@nyu.edu
2 Google Research, 1440 Broadway, New York, NY 10018

corinna@google.com
3 Courant Institute, New York University, 719 Broadway,

New York, NY 10003
mohri@cs.nyu.edu

4 Princeton University, Department of Computer Science,
35 Olden St., Princeton NJ 08544
schapire@cs.princeton.edu

Abstract. We present several results related to ranking. We give a gen-
eral margin-based bound for ranking based on the L∞ covering number
of the hypothesis space. Our bound suggests that algorithms that maxi-
mize the ranking margin generalize well.

We then describe a new algorithm, Smooth Margin Ranking, that pre-
cisely converges to a maximum ranking-margin solution. The algorithm
is a modification of RankBoost, analogous to Approximate Coordinate
Ascent Boosting.

We also prove a remarkable property of AdaBoost: under very nat-
ural conditions, AdaBoost maximizes the exponentiated loss associated
with the AUC and achieves the same AUC as RankBoost. This explains
the empirical observations made by Cortes and Mohri, and Caruana and
Niculescu-Mizil, about the excellent performance of AdaBoost as a rank-
ing algorithm, as measured by the AUC.

1 Introduction

Consider the following supervised learning problem: Sylvia would like to get some
recommendations for good movies before she goes to the theater. She would like a
ranked list that agrees with her tastes as closely as possible, since she will see the
movie closest to the top of the list that is playing at the local theater. For many
pairs of movies she has seen, she will tell the learning algorithm whether she likes
the first movie better than the second. This allows her to rank whichever pairs
of movies she wishes, allowing for the possibility of ties between movies, and the

� This work is partially supported by NSF grant CCR-0325463.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 63–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 C. Rudin et al.

possibility that certain movies cannot necessarily be compared by her, e.g, she
may not compare action movies with cartoons. Another advantage of this type
of scoring over real-valued scoring is that Sylvia does not need to normalize her
own scores in order to compare with the rankings of another person; she just
compares rankings on pairs of movies. Sylvia does not need to be consistent,
since she may rank a > b > c > a. Each pair of movies such that Sylvia ranks
the first above the second is called a “crucial pair”.

The learning algorithm has access to a set of n individuals (“weak rankers”, or
“ranking functions”) who also rank pairs of movies. The learning algorithm must
combine the views of the weak rankers in order to match Sylvia’s preferences,
and generate a recommendation list that will generalize her views. This type
of problem was studied in depth by Freund et al. [7], where the RankBoost
algorithm was introduced.

In order to give some indication that an algorithm will generalize well (e.g.,
we want the ranking algorithm to predict movies that Sylvia will like), one often
considers generalization bounds. Generalization bounds show that a small prob-
ability of error will most likely be achieved through a balance of the empirical
error and the complexity of the hypothesis space. This complexity can by mea-
sured by an informative quantity, such as the VC dimension, covering number,
Rademacher complexity, or a more specialized quantity, such as the bipartite
rank shatter coefficient [1], which was used to derive a generalization bound
specifically for the case of bipartite ranking. The “bipartite” ranking problem is
a special case of the ranking problem where there are only two classes, a positive
class, i.e., “good movies”, and a negative class, i.e., “bad movies”.

When deriving generalization bounds, it is illustrative to consider the “sep-
arable” case, where all training instances are correctly handled by the learning
algorithm so the empirical error is zero. The separable case in ranking means
that the algorithm’s chosen ranking is consistent with all crucial pairs; the al-
gorithm ranks the first instance in each crucial pair above the second. In the
bipartite ranking problem, the separable case means that all positive instances
are ranked above all negative instances, and the Area Under the ROC Curve
(AUC) is exactly one.

In the separable case for classification, one important indicator of a classifier’s
generalization ability is the “margin”, e.g., for boosting [15] and support vector
machines. Although the empirical success of an algorithm depends on many
factors (e.g., the type of data and how noisy it is), margin-based bounds often
do provide a reasonable explanation (though not a complete understanding) of
the success of many algorithms, both empirically and theoretically. Although
there has been some work devoted to generalization bounds for ranking [7, 1],
the bounds that we are aware of are not margin-based, and thus do not provide
this useful discrimination between ranking algorithms in the separable case.

In Section 3, we provide a margin-based bound for ranking in a general set-
ting. Our bound uses the L∞ covering number as the complexity measure for
the hypothesis space.

Margin-Based Ranking Meets Boosting in the Middle 65

Since we are providing a general margin-based bound for ranking, we derive
algorithms which create large margins. For the classification problem, it was
proved that AdaBoost does not always maximize the margin [12]. In fact, Ada-
Boost does not even necessarily make progress towards increasing the margin at
every iteration. In analogy, RankBoost does not directly maximize the ranking
margin, and it may not increase the margin at every iteration. In Section 4.1 we
introduce a Smooth Margin Ranking algorithm, and prove that it makes progress
towards increasing the “smooth” ranking margin at every iteration; this is the
main step needed to prove convergence and convergence rates. This algorithm is
analogous to Approximate Coordinate Ascent Boosting [14, 13] in its derivation,
but the analogous proof that progress occurs at each iteration is much trickier;
hence we present a sketch of this proof here.

In the bipartite ranking problem, we want our recommendation list to mini-
mize the misranking error, e.g., the probability that a bad movie is ranked above
a good movie. The empirical version of this misranking error is closely related to
the AUC. RankBoost [7] minimizes an exponentiated version of this misranking
error, in analogy with the classification algorithm AdaBoost, which minimizes
an exponentiated version of the margins of training instances.

Although AdaBoost and RankBoost were derived analogously for the settings
of classification and ranking, the parallels between these algorithms are deeper
than their derivations. Cortes and Mohri [5] and Caruana and Niculescu-Mizil [3]
have noted that AdaBoost experimentally seems to be very good at the bipartite
ranking problem, even though it was RankBoost that was explicitly designed to
solve this problem, not AdaBoost. That is, AdaBoost often achieves a large AUC.
In Section 5, we show an important reason for these observations. Namely, if the
weak learning algorithm is capable of producing the constant classifier, i.e., the
classifier whose value is always one, then remarkably, AdaBoost and RankBoost
will produce the same solution.

We proceed from the most general to the most specific. In Section 3 we
provide a margin based bound for general ranking, which holds for each element
of the hypothesis space. In Sections 4.1 and 4.2 we fix the form of hypothesis
space to match that of RankBoost, i.e., the space of binary functions. Here, we
discuss coordinate-based ranking algorithms such as RankBoost, and introduce
the Smooth Margin Ranking algorithm. In Section 5, we focus on the bipartite
ranking problem. Here, we discuss conditions for AdaBoost to act as a bipartite
ranking algorithm by minimizing the exponentiated loss associated with the
AUC. Sections 3 and 4.2 focus on the separable case, and Sections 4.1 and 5
focus on the non-separable case.

The main contributions of this paper are: 1) a margin-based ranking bound,
2) a theorem stating that our Smooth Margin Ranking algorithm makes progress
at every iteration towards increasing the smooth ranking margin, and 3) condi-
tions when AdaBoost acts as a bipartite ranking algorithm.

66 C. Rudin et al.

2 Notation

The training set, denoted by S, is {xi}i=1,...,m, where xi ∈ X ⊂ RN . The set X
may be finite or infinite. In the case of the movie ranking problem, the xi’s are the
movies and X is the database. The instances xi ∈ X are chosen independently
and at random (iid) from a fixed but unknown probability distribution D on X .
The notation x ∼ D means x is chosen randomly according to D, and S ∼ Dm

means the m elements of the training set S are chosen iid according to D.
The values of the “truth” function π : X ×X → {0, 1}, which is defined over

pairs of instances, are analogous to the “labels” in classification. If π(x̄, x̃) = 1,
the pair x̄, x̃ is a crucial pair, i.e., x̄ should be ranked more highly than x̃. We
require only that π(x̄, x̄) = 0, meaning x̄ cannot be ranked higher than itself,
and also π(x̄, x̃) = 1 implies π(x̃, x̄) = 0, meaning that if x̄ is ranked higher than
x̃, that x̃ cannot be ranked higher than x̄. (It is possible that these assumptions
may be dropped.) It is possible to have π(a, b) = 1, π(b, c) = 1, and π(c, a) = 1;
this forces us to be in the non-separable case. The quantity E := Ex̄,x̃∼Dπ(x̄, x̃) is
the expected fraction of pairs in the database that are crucial pairs, 0 ≤ E ≤ 1/2.
We assume that π is a deterministic (non-noisy) function, and that for each pair
of training instances xi,xk, we receive π(xi,xk).

Our goal is to construct a ranking function f : X → R, which gives a real
valued score to each instance in X . We do not care about the actual values of
each instance, only the relative values; for crucial pair x̄, x̃, we do not care if
f(x̄) = .4 and f(x̃) = .1, only that f(x̄) > f(x̃). Also, f ∈ L∞(X) (or if |X | is
finite, f ∈ �∞(X)).

In the usual setting of boosting for classification, ∀x, |f(x)| ≤ 1, and the
margin of training instance i (with respect to classifier f) is yif(xi), where
yi is the classification label, yi ∈ {−1, 1} [15]. The margin of classifier f is
the minimum margin over all training instances, mini yif(xi). Intuitively, the
margin tells us how much f can change before one of the training instances is
misclassified; it gives us a notion of how stable the classifier is.

For the ranking setting, we define an analogous notion of margin. Here, we
can normalize f so that |f | ≤ 1. The margin of crucial pair i,k with respect
to ranking function f will be defined as f(xi) − f(xk). The margin of ranking
function f , is the minimum margin over all crucial pairs,

μf := min
{i,k|[π(xi,xk)=1]}

f(xi) − f(xk).

Intuitively, the margin tells us how much the ranking function can change be-
fore one of the crucial pairs is misranked. As with classification, we are in the
separable case whenever the margin of f is positive.

3 A Margin-Based Bound for Ranking

In this section, we provide a bound which gives us an intuition for separable-case
ranking and yields theoretical encouragement for margin-based ranking algo-
rithms. The quantity we hope to minimize is analogous to the misclassification

Margin-Based Ranking Meets Boosting in the Middle 67

probability for classification; for two randomly chosen instances, if they are a
crucial pair, we want to minimize the probability that these instances will be
misranked. That is, we want to minimize:

PD{misrankf}:=PD{f(x̄)≤f(x̃)|[π(x̄, x̃)=1]}=
Ex̄,x̃∼D[1[f(x̄)≤f(x̃)]π(x̄, x̃)]

E
.

(1)
The numerator of (1) is the fraction of pairs that are both crucial and incorrectly
ranked by f , and the denominator, E := Ex̄,x̃∼Dπ(x̄, x̃) is the fraction of pairs
that are crucial pairs. Thus, PD{misrankf} is the proportion of crucial pairs that
are incorrectly ranked by f .

Since we do not know D, we may use only empirical quantities that rely on
our training sample. An empirical quantity analogous to PD{misrankf} is:

PS{misrankf} := PS{marginf ≤ 0} := PS{f(xi) ≤ f(xk)|[π(xi,xk) = 1]}

:=
∑m

i=1

∑m
k=1[1(f(xi)≤f(xk))π(xi,xk)]∑m

i=1

∑m
k=1 π(xi,xk)

.

We make this definition more general, by allowing it to include a margin of θ ≥ 0:

PS{marginf ≤ θ} := PS{f(xi) − f(xk) ≤ θ|[π(xi,xk) = 1]}

=
∑m

i=1

∑m
k=1[1(f(xi)−f(xk)≤θ)π(xi,xk)]∑m

i=1

∑m
k=1 π(xi,xk)

,

i.e., PS{marginf ≤ θ} is the fraction of crucial pairs in S × S with margin no
larger than θ.

We want to bound PD{misrankf} in terms of an empirical, margin-based term
and a complexity term. The type of complexity we choose is the L∞ covering
number of the hypothesis space F , F ⊂ L∞(X). (Upper bounds on the covering
number can be calculated; see [6]). The covering number N (F , σ) is defined as
the minimum number of balls of radius σ needed to cover F , using the L∞
metric. The following theorem is proved in Appendix A:

Theorem 1. For ε > 0, θ ≥ 0, for all f ∈ F ,

PS∼Dm

[
PD{misrankf}≤PS{marginf ≤θ}+ε

]
≥1−N

(
F ,

εθ

8

)
2 exp

[
−m(εE)2

8

]
.

That is, with probability depending on m, E, θ, ε, and F , the misranking prob-
ability is less than the fraction of instances with margin below θ, plus ε.

We have chosen to write our bound in terms of E, but we could equally
well have used an analogous empirical quantity, namely Exi,xk∼Sπ(xi,xk) =

1
m(m−1)

∑m
i=1

∑m
k=1 π(xi,xk). This is an arbitrary decision; we cannot maximize

E in practice because the data is random. Either way, the bound tells us that the
margin should be an important quantity to consider in the design of algorithms.

As a special case of the theorem, we consider the case of a finite hypothesis
space F , where the covering number achieves its largest value (for any θ), i.e.,
N

(
F , εθ

4

)
= |F|. Now we can solve for ε:

68 C. Rudin et al.

δ := |F|2 exp
[
−m(εE)2

8

]
=⇒ ε =

1√
m

√
8
E2

(ln 2|F| + ln(1/δ)).

This could be compared directly with Theorem 1 of Schapire et al [15]. Cucker
and Smale [6] have reduced the factor ε2 to a factor of ε in certain cases; it is
possible that this bound may be tightened, especially in the case of a convex com-
bination of weak rankers. An interesting open problem is to prove generalization
bounds using Rademacher complexity or a more specialized bound analogous to
those of Koltchinskii and Panchenko [10]; here the trick would be to find an ap-
propriate symmetrization step. In any case, our bound indicates that the margin
is an important quantity for generalization.

4 Coordinate-Based Ranking Algorithms

In the previous section we presented a uniform bound that holds for all f ∈ F .
In the following we discuss how a learning algorithm might pick one of those
functions, in order to make PD{misrankf} as small as possible, based on intuition
gained from the bound of Theorem 1; the bound reveals the margin to be a
useful quantity in the learning process, so it deserves consideration in our design
of algorithms.

In Section 4.1, we discuss RankBoost’s objective function F̃ . Then, we de-
scribe a coordinate descent algorithm on this objective. In Section 4.2 we define
the smooth ranking margin G̃, present the Smooth Margin Ranking algorithm,
and prove that it makes progress towards increasing G̃ at each iteration and
converges to a maximum margin solution.

4.1 Coordinate Descent on RankBoost’s Objective

We consider the hypothesis space F to be the class of convex combinations of
“weak” rankers {hj}j=1,...,n, where hj : X → {0, 1}. We assume that if hj is
a weak ranker, that 1 − hj is not chosen as a weak ranker; this assumption
avoids the complicated seminorm notation in earlier work [13]. The function f is
constructed as a normalized linear combination of the hj ’s: f =

∑
j λjhj

/
||λ||1,

where ||λ||1 =
∑

j λj .
We construct a structure M, which describes how each individual weak ranker

j ranks each crucial pair i, k. We define M element-wise as: Mikj := hj(xi) −
hj(xk). Thus, Mikj ∈ {−1, 0, 1}. Since M has three indices, we need to define
right multiplication: (Mλ)ik :=

∑n
j=1 Mikjλj =

∑n
j=1 λjhj(xi) − λjhj(xk) for

λ ∈ R
n and left multiplication: (dT M)j :=

∑
i,k|[π(xi,xk)=1] dikMikj for d ∈

R
#crucial, where “#crucial” is the number of crucial pairs.

Just as AdaBoost can be represented as a coordinate descent algorithm on
a specific objective function of λ (see [9]), so can RankBoost. The objective
function for RankBoost is:

F̃ (λ) :=
∑

{i,k|[π(xi,xk)=1]}
e−(Mλ)ik .

Margin-Based Ranking Meets Boosting in the Middle 69

We perform standard coordinate descent on F̃ to derive “Coordinate Descent
RankBoost”. The direction chosen at iteration t (i.e., the choice of weak ranker
jt) in the “optimal” case (where the best weak ranker is chosen at each iteration)
is given by: jt ∈ argmax

j

[
−dF̃ (λt+αej)

dα

∣∣∣
α=0

]
= argmax

j
(dT

t M)j , where the

“weights” dt,ik are defined over pairs of instances by: dt,ik = 0 for non-crucial
pairs, and for crucial pair i, k: dt,ik := e−(Mλt)ik/F̃ (λt). One can see that the
chosen weak ranker is a natural choice, namely, jt is the most accurate weak
ranker with respect to the weighted crucial training pairs.

Define I+ := {i, k|Mikjt
= 1, π(xi,xk) = 1} (although I+ is different for each

t, we eliminate the subscript), also I− := {i, k|Mikjt
= −1, π(xi,xk) = 1}. Also

define d+ :=
∑

I+
dt,ik and d− :=

∑
I− dt,ik. The step size at iteration t is αt,

where αt satisfies the equation for the line search along direction jt:

0 = −dF̃ (λt + αejt
)

dα

∣∣∣
α=αt

⇒ αt =
1
2

ln
d+

d−
. (2)

Thus, we have derived the first algorithm, Coordinate Descent RankBoost.
RankBoost, as it is described by Freund et al. [7], is similar, but differs by the

ordering of steps: the formula for αt is calculated first (via (2)), and afterwards
jt is determined using knowledge of the formula for αt. For RankBoost, there
may not be a natural interpretation of this type of weak learning algorithm as
there is for Coordinate Descent RankBoost.

It is interesting that for AdaBoost’s objective function, the plain coordi-
nate descent algorithm and the variation (choosing the coordinate with knowl-
edge of the step size) actually turn out to both yield the same algorithm, i.e.,
AdaBoost.

4.2 Smooth Margin Ranking

The value of F̃ does not directly tell us anything about the margin, only whether
the margin is positive. Using any λ that yields a positive margin, we can actually
make F̃ arbitrarily small by multiplying λ by a large positive constant, so the
objective is arbitrarily small, yet the margin may not be maximized. Actually,
the same problem occurs for AdaBoost. It has been proven [12] that for certain
M’s, AdaBoost does not converge to a maximum margin solution, nor does it
even make progress towards increasing the margin at every iteration. Since the
calculations are identical for RankBoost, there are certain cases in which we can
similarly expect RankBoost not to converge to a maximum margin solution.

In earlier work, we proposed a smooth margin function which one can maxi-
mize in order to achieve a maximum margin solution for the classification prob-
lem [13]. We also proposed a coordinate ascent algorithm on this function which
makes progress towards increasing the smooth margin at every iteration. Here,
we present the analogous smooth ranking function and the Smooth Margin
Ranking algorithm. The smooth ranking function G̃ is defined as follows:

G̃(λ) :=
− ln F̃ (λ)

||λ|| .

70 C. Rudin et al.

With proofs identical to those of Rudin et al. [13], one can show that:

G̃(λ) < μ(λ) ≤ ρ, where (3)

ρ = min{d|
∑

ik dik=1,dik≥0} maxj(dT M)j = max{λ̄|
∑

j λ̄j=1,λ̄j≥0} mini(Mλ̄)i, i.e.,
the smooth ranking margin is less than the true margin, and the true margin is
no greater than ρ, the min-max value of the game defined by M (see [8]).

We define the Smooth Margin Ranking algorithm, which is approximately
coordinate ascent on G̃. As usual, the input to the algorithm is matrix M.
We will only define this algorithm when G̃(λ) is positive, so that we only use
this algorithm once the data has become separable; we can use RankBoost or
Coordinate Descent RankBoost to get us to this point.

We will define iteration t + 1 in terms of the quantities known at itera-
tion t, namely: the current value of the objective gt := G̃(λt), the weights
dt,ik := e−(Mλt)ik/F̃ (λt), the direction jt = argmax

j
(dT

t M)j , and the edge

rt := (dT
t M)jt

. The choice of jt is the same as for Coordinate Descent Rank-
Boost, also see [13]. The step size αt is chosen to obey (6) below, but we need
more definitions before we state its value. We define recursive equations for F̃
and G̃, and then use these to build up to (6). We also have st = ||λt||1 and
st+1 = st + αt, and gt+1 = G̃(λt + αtejt

).
As before, I+ := {i, k|Mikjt

= 1, π(xi,xk) = 1}, I− := {i, k|Mikjt
= −1,

π(xi,xk) = 1}, and now, I0 := {i, k|Mikjt
= 0, π(xi,xk) = 1}. Also d+ :=∑

I+
dt,ik, d− :=

∑
I− dt,ik, and d0 :=

∑
I0

dt,ik. So, by definition,
d+ + d− + d0 =1. Now, rt becomes rt = d+ − d−. Define the factor τt and its
“derivative” τ ′

t :

τt := d+e−αt + d−eαt + d0, and τ ′
t := −d+e−αt + d−eαt .

We derive a recursive equation for F̃ , true for any α:

F̃ (λt + αejt
) =

∑
{i,k|π(xi,xk)=1}

e(−Mλt)ike−Mikjtα = F̃ (λt)(d+e−α + d−eα + d0).

Thus, we have defined τt so that F̃ (λt+1) = F̃ (λt + αtejt
) = F̃ (λt)τt. We use

this to write a recursive equation for G̃:

G̃(λt + αejt
) =

− ln(F̃ (λt + αejt
))

st + α
= gt

st

st + α
− ln (d+e−α + d−eα + d0)

st + α
.

For our algorithm, we set α = αt in the above expression:

gt+1 = gt
st

st + αt
− ln τt

st + αt
⇒ gt+1 − gt = − 1

st+1
[gtαt + ln τt] . (4)

With this notation we write the equation for αt for Smooth Margin Ranking.
For plain coordinate ascent, the update α∗ solves:

0 =
dG̃(λt + αejt)

dα

∣∣∣
α=α∗

=
1

st + α∗

⎡⎢⎣−G̃(λt+α∗ejt)+

⎡⎢⎣−dF̃ (λt+αejt)/dα
∣∣∣
α=α∗

F̃ (λt)

⎤⎥⎦
⎤⎥⎦ .

Margin-Based Ranking Meets Boosting in the Middle 71

We could solve this equation numerically for α∗ to get a smooth margin coor-
dinate ascent algorithm, however, we avoid this line search. To get the update
rule for Smooth Margin Ranking, we set αt to solve:

0=
1

st+αt

⎡⎢⎣−G̃(λt)+

⎡⎢⎣−dF̃ (λt+αejt
)/dα

∣∣∣
α=αt

F̃ (λt)

⎤⎥⎦
⎤⎥⎦=

1
st+αt

(
−gt+

−τ ′
tF̃ (λt)

τtF̃ (λt)

)

gtτt=−τ ′
t . (5)

This expression can be solved analytically for αt, which makes the algorithm
as easy to implement as RankBoost:

αt = ln

[
−gtd0 +

√
g2

t d
2
0 + (1 + gt)(1 − gt)(1 + rt − d0)(1 − rt − d0)

(1 + gt)(1 − rt − d0)

]
. (6)

The following theorem states that the algorithm makes significant progress
towards increasing the value of G̃ at every iteration. An analogous statement
was an essential tool for proving properties of Approximate Coordinate Ascent
Boosting [13], although the proof here (for which we give a sketch) is significantly
more difficult, since we cannot use the important trick used in our previous work
for (the equivalent of) Lemma 1. As usual, the weak learning algorithm always
achieves an edge of at least ρ for the calculation to hold.

Theorem 2.

gt+1 − gt ≥
1
2
αt(rt − gt)

st+1
.

Sketching the proof, we consider αt, τt, d+, and d− as functions of three basic
independent variables r := rt, g := gt and, d0, with ranges 0 < r < 1, 0 ≤ g < r,
and 0 ≤ d0 ≤ 1 − r. Define

Γr,g,d0 :=
− ln τt

αt
, and Br,g,d0 :=

Γr,g,d0 − g

r − g
.

Lemma 1. Br,g,d0 > 1/2.

This lemma is a monstrous calculus problem in three variables, for which the
proof will be given in a longer version of this paper. Using only this lemma, we
can prove the theorem directly.

Proof. (of Theorem 2) Let us unravel the notation a bit. Lemma 1 says:

− ln τt

αt
= Γr,g,d0 >

rt + gt

2
⇒ − ln τt >

(rt + gt)αt

2
.

Incorporating the recursive equation (4),

gt+1 − gt =
1

st+1
[−gtαt − ln τt] >

αt

st+1

[
−gt +

(rt + gt)
2

]
=

1
2
αt(rt − gt)

st+1
. ��

72 C. Rudin et al.

Theorem 2 is the main step in proving convergence theorems, for example:

Theorem 3. The smooth ranking margin ranking algorithm converges to a max-
imum margin solution, i.e., limt→∞ gt = ρ.

Besides Theorem 2, the only other key step in the proof of Theorem 3 is:
Lemma 2.

lim
t→∞

αt

st+1
= 0.

We omit the proof of Lemma 2, which uses (4), monotonicity and boundedness
of the gt sequence, and then (5).

Proof. (Of Theorem 3) The values of gt constitute a non-decreasing sequence
which is uniformly bounded by 1. Thus, a limit g∞ exists, g∞ := limt→∞ gt.
By (3), we know gt ≤ ρ for all t. Thus, g∞ ≤ ρ. Suppose g∞ < ρ, i.e., that
ρ− g∞ �= 0. One can use an identical calculation to the one in Rudin et al. [13]
to show that this assumption, together with Theorem 2 and Lemma 2 imply
that limt→∞ αt = 0. Using this fact along with (5), we find:

g∞= lim
t→∞

gt=lim inf
t→∞

gt=lim inf
t→∞

−τ ′
t

τt
=lim inf

t→∞

−(−d+e−αt+d−eαt)
d+e−αt+d−eαt+d0

= lim inf
t→∞

rt

1
≥ρ.

This is a contradiction with the original assumption that g∞ < ρ. It follows that
g∞ = ρ, or limt→∞(ρ − gt) = 0. Thus, the smooth ranking algorithm converges
to a maximum margin solution. ��

5 AdaBoost and RankBoost in the Bipartite Problem

In the bipartite ranking problem, every training instance falls into one of two
categories, the “positive class” Y+ and the “negative class” Y−. Here, π(xi,xk) =
1 only when xi ∈ Y+ and xk ∈ Y−. Define yi = +1 when xi ∈ Y+, and yi = −1
otherwise. The function F̃ now becomes an exponentiated version of the AUC,
that is, since the step function obeys 1x<0 ≤ e−x, we have:

|Y+||Y−|(1 − AUC(λ)) =
∑
i∈Y+

∑
k∈Y−

1(Mλ)ik<0 ≤
∑
i∈Y+

∑
k∈Y−

e−(Mλ)ik = F̃ (λ).

The AUC has been written as the Wilcoxon-Mann-Whitney statistic (see [5]).
We now show that AdaBoost minimizes RankBoost’s loss function F̃ under

a very natural condition, namely, whenever the positive and negative instances
contribute equally to AdaBoost’s loss function.

We define AdaBoost’s matrix MAda element-wise by MAda
ij = yihj(xi). Each

crucial pair i, k has i ∈ Y+ and k ∈ Y−, so elements of M are: Mikj =
hj(xi) − hj(xk) = yihj(xi) + ykhj(xk) = MAda

ij + MAda
kj . (To change from Ada-

Boost’s usual {−1, 1} hypotheses to RankBoost’s usual {0, 1} hypotheses, divide
by 2.) Define vector qλ element-wise by qλ,i := e−(MAdaλ)i for i = 1, ...,m. Us-
ing this notation, we will write the objective functions for both AdaBoost and
RankBoost. First, we define the following:

Margin-Based Ranking Meets Boosting in the Middle 73

F+(λ) :=
∑
i∈Y+

qλ,i and F−(λ) :=
∑

k∈Y−

qλ,k.

The objective function for AdaBoost is F (λ) := F+(λ) + F−(λ). The objective
function for RankBoost is: F̃ (λ) = F+(λ)F−(λ). Thus, the balance between the
positive and negative instances is different between the algorithms.

We define “F-skew”, which measures the imbalance between positive and
negative instances.

F-skew(λ) := F+(λ) − F−(λ).

Theorem 4. Assume MAda is such that infλ F̃ (λ) > 0 (the non-separable
case). For any sequence {λt}∞t=1 such that

lim
t→∞

F (λt) = inf
λ

F (λ) (7)

and lim
t→∞

F-skew(λt) = 0, then

lim
t→∞

F̃ (λt) = inf
λ

F̃ (λ). (8)

Proof. It is possible that F or F̃ may have no minimizers. So, to describe (7)
and (8), we use the trick from Collins et al. [4], who considered F and F̃ as
functions of a variable where the infimum can be achieved. Define, for matrix
M̄ ∈ R

m̄×n, the function

FM̄(λ) :=
m̄∑

i=1

e−(M̄λ)i .

Define P̄ := {p|∀i pi ≥ 0, ∀j (pT M̄)j = 0} and Q̄ := {q|∀i qi = e−(M̄λ)i for
some λ}. We may thus consider F̄M̄ as a function of q̄, F̄M̄(q̄) =

∑m̄
i=1 q̄i, where

q̄ ∈ Q̄. We know that since all q̄i’s are positive, the infimum of F̄ occurs in a
bounded region of q̄ space, which is just what we need.

Theorem 1 of Collins et al., which is taken directly from Lafferty, Della Pietra,
and Della Pietra [11] implies that the following are equivalent:

1. q̄∗ ∈ P̄∩ closure (Q̄).
2. q̄∗ ∈ argminq̄∈ closure(Q̄)F̄M̄(q̄).

Moreover, either condition is satisfied by exactly one vector q̄∗.
The objective function for AdaBoost is F = F̄MAda and the objective for

RankBoost is F̃ = F̄M, so the theorem holds for both objectives separately. For
function F , denote q̄∗ as q∗, also P̄ as PAda and Q̄ as QAda. For function F̃ ,
denote q̄∗ as q̃∗, also P̄ as P̃ and Q̄ as Q̃. Rewriting q∗ ∈ PAda:∑

i∈Y+

q∗i M
Ada
ij +

∑
k∈Y−

q∗kM
Ada
kj = 0 ∀ j. (9)

Define qt element-wise by: qt,i := e−(MAdaλt)i , for i = 1, ...,m where the
λt’s are a sequence that obey (7), for example, a sequence produced by Ada-
Boost. Thus, qt ∈ QAda automatically. Since F (qt) converges to the minimum
of F , one can show that the sequence of qt’s converges to q∗ in �p. Now define

74 C. Rudin et al.

vectors q̃t element-wise by q̃t,ik := qt,iqt,k = exp[−(MAdaλt)i − (MAdaλt)k] =
exp[−(Mλt)ik]. Automatically, q̃t ∈ Q̃. For any pair i, k the limit of the q̃t,ik’s
is q̃∞ik := q∗i q

∗
k. Thus, we need only to show q̃∞ = q̃∗. We will do this by showing

q̃∞ ∈ P̃; due to the uniqueness of q̃∗ as P̃ ∩closure(Q̃) , this will yield q̃∞ = q̃∗.
Our assumption that the F-skew vanishes can be rewritten as:

lim
t→∞

[
∑
i∈Y+

qt,i −
∑

k∈Y−

qt,k] = 0, i.e.,

∑
i∈Y+

q∗i =
∑

k∈Y−

q∗k. (10)

Consider the quantities (q̃∞T M)j . Remember, if these quantities are zero for
every j, then q̃∞ ∈ P̃ and we have proved the theorem.

(q̃∞T M)j = (
∑

k∈Y−

q∗k)(
∑
i∈Y+

q∗i M
Ada
ij) + (

∑
i∈Y+

q∗i)(
∑

k∈Y−

q∗kM
Ada
kj).

Incorporating (10), which is the condition that F-skew(q∗) = 0, (11) becomes:

(q̃∞T M)j = (
∑
i∈Y+

q∗i)[
∑
i∈Y+

q∗i M
Ada
ij +

∑
k∈Y−

q∗kM
Ada
kj].

In fact, according to (9), the bracket in this expression is zero for all j. Thus,
q̃∞ ∈ P̃. We have proved the theorem. ��

Corollary 1. If the constant weak hypothesis ∀x, hj(x) = 1 is one of the weak
classifiers used to construct MAda, and the {λt}t sequence obeys (7), then

lim
t→∞

F-skew(λt) = 0, and {λt}t thus obeys (8) by Theorem 4.

That is, any algorithm which minimizes F (such as AdaBoost) solves the rank-
ing problem whenever the weak learning algorithm is capable of producing the
constant hypothesis.

Proof. Recall that q∗ ∈ PAda. Specifically writing this condition just for the
constant weak classifier yields:

0 =
∑
i∈Y+

q∗i yi1 +
∑

k∈Y−

q∗kyk1 =
∑
i∈Y+

q∗i −
∑

k∈Y−

q∗k = lim
t→∞

F-skew(λt). ��

Thus, AdaBoost and RankBoost are closely related indeed, since under this very
weak condition (e.g., when the constant weak classifier is included), AdaBoost
minimizes RankBoost’s objective function. Given these results, it is now under-
standable (but still surprising) that AdaBoost performs so well as a ranking
algorithm. One can directly use the convergence of the qt’s to show that Ada-
Boost produces exactly the same AUC value as RankBoost under this weak
condition (in addition to the same value of the exponential loss). We expand on
this in future work.

Margin-Based Ranking Meets Boosting in the Middle 75

6 Conclusion

The three main results presented in this paper yield many new directions for
future research. We gave a margin-based bound for general ranking. It is worth
investigating the design of more specialized margin-based bounds for ranking.
We described a new ranking algorithm, Smooth Margin Ranking, that maxi-
mizes the margin. It would be natural to compare the empirical performance of
the Smooth Margin Ranking algorithm and RankBoost. Finally, given the AUC
optimization result proved for AdaBoost, one may ask why RankBoost, or an-
other ranking algorithm, is needed in the non-separable case? The answer may
lie in the convergence rate of AdaBoost versus that of RankBoost, which we are
currently studying. Our observations suggest that RankBoost (understandably)
has faster convergence to a high AUC value.

References

1. Shivani Agarwal, Thore Graepel, Ralf Herbich, Sariel Har-Peled, and Dan Roth.
Generalization bounds for the area under the ROC curve. Journal of Machine
Learning Research, 6:393–425, 2005.

2. Olivier Bousquet. New approaches to statistical learning theory. Annals of the
Institute of Statistical Mathematics, 55(2):371–389, 2003.

3. Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of super-
vised learning algorithms using difference performance metrics. Technical Report
TR2005-1973, Cornell University, 2005.

4. Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, Ada-
Boost and Bregman distances. Machine Learning, 48(1/2/3), 2002.

5. Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization.
In Advances in Neural Information Processing Systems 16, 2004.

6. Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
Bull. Amer. Math. Soc., (39):1–49, 2002.

7. Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. In Machine Learning: Proceedings of the
Fifteenth International Conference, 1998.

8. Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999.

9. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: A statistical view of boosting. The Annals of Statistics, 38(2):337–374, April
2000.

10. Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and
bounding the generalization error of combined classifiers. The Annals of Statistics,
30(1), February 2002.

11. John D. Lafferty, Stephen Della Pietra, and Vincent Della Pietra. Statistical learn-
ing algorithms based on Bregman distances. In Proceedings of the Canadian Work-
shop on Information Theory, 1997.

12. Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The dynamics of Ada-
Boost: Cyclic behavior and convergence of margins. Journal of Machine Learning
Research, 5:1557–1595, December 2004.

76 C. Rudin et al.

13. Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Analysis of boost-
ing algorithms using the smooth margin function: A study of three algorithms.
Submitted, 2004.

14. Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based on a
smooth margin. In Proceedings of the Sixteenth Annual Conference on Computa-
tional Learning Theory, pages 502–517, 2004.

15. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods. The Annals of
Statistics, 26(5):1651–1686, October 1998.

A Proof of Theorem 1

We owe inspiration for this proof to the works of Cucker and Smale [6], Koltchin-
skii and Panchenko [10], and Bousquet [2].

We define a Lipschitz function φ : R → R (with Lipschitz constant Lip(φ))
which acts as our loss function, and gives us the margin. We will later use
the same piecewise linear definition of φ as Koltchinskii and Panchenko [10],
but for now, we require ∀z, 0 ≤ φ(z) ≤ 1 and φ(z) = 1 for z < 0. Since
φ(z) ≥ 1[z≤0], we can define an upper bound for the misranking probability,
namely PD{misrankf} ≤ PDφf , where:

PDφf :=
Ex̄,x̃∼D[φ(f(x̄) − f(x̃))π(x̄, x̃)]

Ex̄,x̃∼Dπ(x̄, x̃)
.

The empirical error associated with PDφf is:

PSφf :=
∑m

i=1

∑m
k=1 φ(f(xi) − f(xk))π(xi,xk)∑m

i=1

∑m
k=1 π(xi,xk)

.

First, we upper bound the misranking probability by two terms: the empirical
error term PSφf , and a term characterizing the deviation of PSφf from PDφf

uniformly:

PD{misrankf} ≤ PDφf = PDφf −PSφf +PSφf ≤ sup
f̄∈F

(PDφf̄ −PSφf̄)+PSφf .

The proof of the theorem involves an upper bound on the first term. First, define
L(f) as follows: L(f) := PDφf −PSφf . The following lemma (for which the proof
is omitted) is true for every training set S:

Lemma 3. For any two functions f1, f2 ∈ L∞(X),

L(f1) − L(f2) ≤ 4Lip(φ)||f1 − f2||∞.

The following step is due to Cucker and Smale [6]. Let �ε := N
(
F , ε

8Lip(φ)

)
,

the covering number of F by L∞ disks of radius ε
8Lip(φ) . Define f1, f2, ..., f
ε

to
be the centers of such a cover, i.e., the collection of L∞ disks Dp centered at fp

and with radius ε
8Lip(φ) is a cover for F . The following lemma (proof omitted)

shows we do not lose too much by using fp as a representative for disk Dp.

Margin-Based Ranking Meets Boosting in the Middle 77

Lemma 4.

PS∼Dm{ sup
f∈Dp

L(f) ≥ ε} ≤ PS∼Dm{L(fp) ≥
ε

2
}.

Now we incorporate the fact that the training set is chosen randomly.

Lemma 5.

PS∼Dm{L(f) ≥ ε/2} ≤ 2 exp
[
−m(εE)2

8

]
.

Proof. To make notation easier for this lemma, we introduce some shorthand
notation:

topD := Ex̄,x̃∼Dφ(f(x̄) − f(x̃))π(x̄, x̃), botD := E := Ex̄,x̃∼Dπ(x̄, x̃),

topS :=
1

m(m−1)

m∑
i=1

m∑
k=1

φ(f(xi)−f(xk))π(xi,xk), botS:=
1

m(m−1)

m∑
i=1

m∑
k=1

π(xi,xk).

Since diagonal terms are π(xi,xi)= 0, topD = ES∼DmtopS and botD = ES∼DmbotS .
Thus, we can bound the difference between topS and topD using large deviation
bounds; same for botS and botD. One can show that the replacement of one
instance changes topS (or botS) by at most 1/m. Thus, McDiarmid’s inequality
implies, for every ε1 > 0:

P{topD − topS ≥ ε1} ≤ exp[−2ε21m] and P{botS − botD ≥ ε1} ≤ exp[−2ε21m].

We will specify ε1 in terms of ε later. Consider the following event:

topD − topS < ε1 and botS − botD < ε1.

By the union bound, this event is true with probability at least 1−2 exp[−2ε21m].
When the event is true, we can rearrange the equations to be a bound on L(f) :

L(f) =
topD
botD

− topS

botS
<

topD
botD

− topD − ε1
botD + ε1

=: ε/2.

Above, we have just specified the value for ε1 in terms of ε. Let us solve for ε1:

ε1 =
εbotD

2 − ε + 2 topD
botD

≥ εE

4
.

Here, we have used E := botD, and by definition, topD ≤ botD. We directly
have:

1 − 2 exp[−2ε21m] ≥ 1 − 2 exp

(
−2m

[
εE

4

]2
)

.

Therefore, from our earlier application of McDiarmid, with probability at least
1 − 2 exp

[
−m(εE)2

8

]
the following holds: L(f) < ε/2. ��

78 C. Rudin et al.

Proof. (of Theorem 1) Since the Dp are a cover of F , it is true that

sup
f∈F

L(f) ≥ ε ⇐⇒ ∃p ≤ �ε such that sup
f∈Dp

L(f) ≥ ε.

First applying the union bound, then applying Lemma 4, and then Lemma 5,
we find:

PS∼Dm

{
sup
f∈F

L(f) ≥ ε

}
≤

ε∑
p=1

PS∼Dm

{
sup

f∈Dp

L(f) ≥ ε

}
≤

ε∑
p=1

PS∼Dm {L(fp) ≥ ε/2}

≤

ε∑

p=1

2 exp
[
−m(εE)2

8

]
= N

(
F ,

ε

8Lip(φ)

)
2 exp

[
−m(εE)2

8

]
.

Now, with probability at least 1 −N
(
F , ε

8Lip(φ)

)
2 exp

[
−m(εE)2

8

]
, we have

PD{misrankf} ≤ PSφf + ε. Let φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ θ, and let
φ(z) be linear in between with slope 1/θ. Thus, Lip(φ) = 1/θ. Since φ(z) ≤ 1
for z ≤ θ, we have:

PSφf =
∑m

i=1

∑m
k=1 φ(f(xi) − f(xk))π(xi,xk)∑m

i=1

∑m
k=1 π(xi,xk)

≤ PS{marginf ≤ θ}.

Thus, with probability at least 1 −N
(
F , εθ

8

)
2 exp

[
−

(
m(εE)2

8

)]
, we have

PD{misrankf} ≤ PS{marginf ≤ θ}+ ε. Thus, the theorem has been proved. ��

Martingale Boosting

Philip M. Long1 and Rocco A. Servedio2,�

1 Center for Computational Learning Systems
2 Department of Computer Science,

Columbia University
{plong, rocco}@cs.columbia.edu

Abstract. Martingale boosting is a simple and easily understood tech-
nique with a simple and easily understood analysis. A slight variant of the
approach provably achieves optimal accuracy in the presence of random
misclassification noise.

1 Introduction

Boosting [15, 7] has been an overwhelming practical success. In many applied
domains, the best known algorithms use boosting. Nevertheless, some time ago,
sensitivity to noise was identified as a weakness of the standard boosting tech-
niques [6, 10, 4].

Heuristics have been proposed to combat this [14, 12]. The heuristics are
based on an implicit view that noisy examples tend to be borderline cases: they
penalize noisy examples roughly in proportion to how much they deviate from
the norm. This view has been seen to be useful, but there are applications in
which many examples are not borderline.

Some boosting algorithms have been shown to be provably noise-tolerant
[17, 1, 2, 8, 9]. As in classification in general, the main approaches to theory for
noise-tolerant boosting can be divided into agnostic/malicious and independent
models. In the agnostic/malicious case, essentially nothing is assumed about the
noise, except a limit on its rate. This may appear to be more realistic than
the alternative in which the labels are assumed to be flipped independently
of the sample. However, analysis of agnostic or malicious noise models is by
necessity focused on the worst case; typically, in this case, noisy examples are
the most extreme elements of the opposite class. Sources involving independent
misclassification noise resemble applied problems more than this. Thus, analysis
of learning with independent misclassification noise may be the most effective
way to use theory to guide the design of boosting algorithms that are robust to
noisy data other than borderline cases.

This paper is about an approach that we call martingale boosting. We concen-
trate on the problem of predicting binary classifications, say 0 and 1. As in many
earlier boosting algorithms, learning proceeds incrementally in stages. In each

� Supported in part by NSF CAREER award CCF-0347282.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 79–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 P.M. Long and R.A. Servedio

stage, examples are partitioned into bins, and a separate base classifier is chosen
for each bin. An example is assigned a bin by counting the number of 1 predic-
tions made by the appropriate base classifiers from earlier rounds. The algorithm
halts after a predetermined number of rounds. In the basic version of martingale
boosting, the classifier output by the algorithm processes an item to be classified
in stages that correspond to the stages of training. During each stage, it applies
the appropriate base classifier, and determines its final prediction by comparing
the number of 1 predictions made by the chosen base classifiers with the number
of 0 predictions.

Why call it martingale boosting? By choosing a separate base classifier for
each bin, we can think of the algorithm as trying to push the fraction z of 1
predictions in the correct direction, whatever the current value of z.

The analysis is very simple: it proceeds by thinking of an object to be clas-
sified as taking a random walk on the number of base classifiers that predict 1.
If the error rates are slightly better than random guessing on both positive and
negative examples, it is easy to see that, after a few rounds, it is overwhelmingly
likely that more than half the steps are in the correct direction: such examples
are classified correctly by the boosted classifier.

In some cases, one can promote balanced error rates directly; for example, if
decision stumps are used as base classifiers, one can easily adjust the threshold
to balance the error rates on the training data. We also show that it is possible
to force a standard weak learner to produce a classifier with balanced error rates
in the cases that we need.

Martingale boosting facilitates noise tolerance by the fact that the probability
of reaching a given bin depends on the predictions made by the earlier base
classifiers, and not on the label of an example. (In particular, it does not depend
on the number that are correct or incorrect, as does Boost-by-Majority [5].)
The most technical aspect of the paper is to show that the reweighting to force
balanced errors can be done while preserving noise-tolerance. Ideas from earlier
work by Kalai and Servedio [9] are useful there.

Because it is a simple and easily understood technique that generates highly
noise-tolerant algorithms, ideas from martingale boosting appear likely to be
practically useful.

2 Preliminaries

Given a target concept c : X → {0, 1} and a distribution D over X, we write
D+ to denote the distribution D restricted to the positive examples {x ∈ X :
c(x) = 1}. Thus, for any event S ⊆ {x ∈ X : c(x) = 1} we have PrD+ [x ∈ S] =
PrD[x ∈ S]/PrD[c(x) = 1]. Similarly, we write D− to denote D restricted to the
negative examples {x ∈ X : c(x) = 0}.

Martingale Boosting 81

...
...

v0,1

v0,2 v1,2

v0,3 v1,3 v2,3

v0,T+1 v1,T+1 vT−1,T+1 vT,T+1︸ ︷︷ ︸ ︸ ︷︷ ︸
output 0 output 1

Fig. 1. The branching program produced by the boosting algorithm. Each node vi,t is
labeled with a 0/1-valued function hi,t; left edges correspond to 0 and right edges to 1

3 High-Level Structure of the Boosting Algorithm

The boosting algorithm works in a series of T stages. The hypothesis of the
boosting algorithm is a layered branching program with T + 1 layers in a grid
graph structure, where layer t has t nodes (see Figure 1); we refer to the i-th
node from the left in layer t as vi,t, where i ranges from 0 to t−1. For 1 ≤ t ≤ T,
each node vi,t in layer t has two outgoing edges, one left edge (which is labeled
with a 0) to node vi,t+1 and one right edge (labeled with a 1) to node vi+1,t+1.
Nodes vi,T+1 in layer T + 1 have no outgoing edges.

Before stage t of the boosting algorithm begins, each node at levels 1, . . . , t−1
has been labeled with a 0/1-valued hypothesis function. We write hi,j to denote
the hypothesis function that labels node vi,j . In the t-th stage, hypothesis func-
tions are assigned to each of the t nodes v0,t through vt−1,t at level t. Given
an example x ∈ X in stage t, the branching program routes the example by
evaluating h0,1 on x and then sending the example on the outgoing edge whose
label is h0,1(x), i.e. sending it to node vh0,1(x),1. The example is routed through
successive levels in this way until it reaches level t; more precisely, when example
x reaches some node vi,j in level j, it is routed from there via the outgoing edge
whose label is hi,j(x) to the node vi+hi,j(x),j+1. In this fashion the example x
eventually reaches the node v
,t after being evaluated on t−1 hypotheses, where
� is the number of these t− 1 hypotheses which evaluated to 1 on x.

Thus, in the t-th stage of boosting, given an initial distribution D over exam-
ples x, the hypotheses that have been assigned to nodes at levels 1, . . . , t−1 of the
branching program induce t different distributions D0,t, . . . ,Dt−1,t correspond-
ing to the t nodes v0,t, . . . , vt−1,t in layer t (a random draw x from distribution
Di,t is a draw from D conditioned on x reaching vi,t). In the following sections,
we will carefully specify just how the hypotheses h0,t, . . . , ht−1,t are generated
to label the nodes v0,t, . . . , vt−1,t in the t-th stage of boosting; as we will see in
Section 5, for the boosting algorithms that work in the standard model, it is not
the case that hi,t is obtained simply by running the weak learner on distribution
Di,t and using the resulting hypothesis as hi,t.

82 P.M. Long and R.A. Servedio

Once all T stages of boosting have been performed, the resulting branching
program routes any example x to some node v
,T+1 at level T + 1; observe that
� is the number of hypotheses that evaluated to 1 out of the T hypotheses that
were evaluated on x. The final classifier computed by the branching program is
simple: given an example x to classify, if the final node v
,T+1 that x reaches has
� ≥ T/2 then the output is 1, and otherwise the output is 0.

3.1 Relation to Previous Boosting Algorithms

Readers who are familiar with Freund’s paper on the Boost-by-Majority algo-
rithm [5] may experience a sense of déjà vu on looking at Figure 1, since a very
similar figure appears in [5]. Indeed, both our current boosting scheme and the
Boost-by-Majority algorithm can be viewed as routing an example through a
branching program which has the graph structure shown in Figure 1, and both
boosters work by ultimately predicting 1 or 0 according to whether the major-
ity of T weak hypotheses evaluate to 1 or 0. However, in Boost-by-Majority, in
stage t the weak learning algorithm is only invoked once, using a single distri-
bution Dt that reweights each examples according to which node vi,t at level t
it arrives at. Thus, in Boost-by-Majority there are only T weak hypotheses that
are ever generated in the course of boosting, and each node v0,t, . . . , vt−1,t is
labeled with the same weak hypothesis ht; the final output is a majority vote
over these T hypotheses h1, . . . , hT . In contrast, our algorithm invokes the weak
learner t separate times in stage t, once for each of the t distinct distributions
D0,t, . . . ,Dt−1,t corresponding to the nodes v0,t, v1,t, . . . , vt−1,t. (We remind the
reader again that as we will see in Section 5, the hypothesis hi,t is not obtained
simply by running the weak learner on Di,t and taking the resulting hypothesis
to be hi,t.) A total of T (T + 1)/2 weak hypotheses are constructed, and any
single example x only encounters T of these hypotheses in its path through the
branching program.

As we will see, our algorithm has a very simple proof of correctness which
seems quite different from the Boost-by-Majority proof. Moreover, the fact that
our algorithm constructs a different hypothesis hi,t for each node vi,t seems to
play an important role in enabling our boosting algorithm to tolerate random
classification noise. We will show in Section 7 that a slight variant of our boosting
algorithm can learn to any accuracy rate 1− ε < 1−η in the presence of random
classification noise at rate η; no such guarantee is given for Boost-by-Majority
or any variant of it that we are aware of in the literature, and we were unable to
prove such a guarantee for Boost-by-Majority. It is an interesting question for
future work to determine whether Boost-by-Majority actually has (close to) this
level of noise tolerance.

Another related algorithm is the “boosting by branching programs” algorithm
of Mansour and McAllester [11], which we refer to as the MM algorithm. Kalai
and Servedio [9] modified the MM algorithm to obtain a boosting algorithm
which is robust in the presence of random classification noise.

Like the Mansour/McAllester boosting algorithm, our booster works by build-
ing a branching program. Also, as mentioned earlier, our modification and anal-

Martingale Boosting 83

ysis of this paper’s boosting algorithm to achieve random classification noise
tolerance will follow the approach of Kalai & Servedio. However, there are sig-
nificant differences between our boosting algorithm and this earlier work. The
algorithm and analysis of [11] and [9] are based on the notion of “purity gain;” a
node v is split into two descendents if each of the two labels 0 and 1 is achieved
by a nonnegligible fraction of the examples that reach v, and two nodes v and w
are merged if the ratio of positive to negative examples within v is similar to the
ratio within w. Nodes that are pure (for some b ∈ {0, 1} almost all examples that
reach v are labeled with b) are “frozen” (i.e. not split any more) and assigned
the label b. In contrast, in our new algorithm the label of a given terminal node
in the branching program depends not on the majority vote label of examples
that reach that node, but on the majority vote label of the hypotheses that are
evaluated on the path to the node. In the analysis of our algorithm, progress is
measured not in terms of purity gain achieved by splitting a node, but rather by
the amount of “drift” in the right direction that a node imparts to the examples
that reach it. (We will see, though, that notions of purity do play a role for
efficiency reasons in the example oracle model implementation of the algorithm
that we describe in Section 6.)

The branching program output by our algorithm has a regular structure, and
is easily interpreted, arguably in contrast with the output of previous algorithms
for boosting by branching programs [11, 9].

4 Boosting a Two-Sided Weak Learner

Let c : X → {0, 1} be the target function that we are trying to learn to high
accuracy with respect to distribution D over X. Throughout this section the
distributions D+ and D− are defined with respect to c.

Definition 1. A hypothesis h : X → {0, 1} is said to have two-sided advan-
tage γ with respect to D if it satisfies both Prx∈D+ [h(x) = 1] ≥ 1

2 + γ and
Prx∈D− [h(x) = 0] ≥ 1

2 + γ.

Thus such a hypothesis performs noticeably better than random guessing both
on positive examples and on negative examples. In this section we will assume
that we have access to a two-sided weak learner that, when invoked on target
concept c and distribution D, outputs a hypothesis with two-sided advantage.
(In the next section, we will perform an analysis using the usual assumption of
having just a standard weak learner. That analysis can be viewed as reducing
that problem to the two-side model studied here.)

We now show how the general boosting framework of Section 3 can be used
to boost a two-sided weak learner to high accuracy. This is done very simply:
in stage t, at each node vi,t we just run the two-sided weak learner on examples
drawn from Di,t (recall that this is the distribution obtained by filtering D to ac-
cept only those examples that reach node vi,t), and use the resulting hypothesis,
which has two-sided advantage with respect to Di,t, as the hypothesis function
hi,t labelling node vi,t. We refer to this boosting scheme as Basic MartiBoost.

84 P.M. Long and R.A. Servedio

The idea of the analysis is extremely simple. Let h denote the final branching
program that Basic Martiboost constructs. We will see that a random example
x drawn from D+ (i.e. a random positive example) is routed through h according
to a random walk that is biased toward the right, and a random example x drawn
from D− is routed through h according to a random walk that is biased toward
the left. Since h classifies example x according to whether x reaches a final node
v
,T+1 with � ≥ T/2 or � < T/2, this will imply that h has high accuracy on
both random positive examples and random negative examples.

So consider a random positive example x (i.e. x is distributed according
to D+). For any node vi,t, conditioned on x reaching node vi,t we have that x
is distributed according to (Di,t)+. Consequently, by the definition of two-sided
advantage we have that x goes from node vi,t to node vi+1,t+1 with probability at
least 1/2+γ, so x does indeed follow a random walk biased to the right. Similarly,
for any node vi,t a random negative example that reaches node vi,t will proceed to
node vi,t+1 with probability at least 1/2+γ, and thus random negative examples
follow a random walk biased to the left. Now standard bounds on random walks
are easily seen to imply that if T = O(log 1/ε

γ2), then the probability that a random
positive example x ends up at a node v
,T+1 with � < T/2 is at most ε. The
same is true for random negative examples, and thus h has overall accuracy at
least 1 − ε with respect to D. In more detail, we have the following theorem:

Theorem 1. Let γ1, γ2, . . . , γT be any sequence of values between 0 and 1/2.
For each value t = 1, . . . , T , suppose that each of the t invocations of the weak
learner on distributions Di,t (with 0 ≤ i ≤ t − 1) yields a hypothesis hi,t which
has two-sided advantage γt with respect to Di,t. Then the final output hypoth-
esis h that Basic Martiboost computes will satisfy Prx∈D[h(x) �= c(x)] ≤
exp

(
−(

∑T
t=1 γt)2/(2T)

)
.

Proof. As sketched above, we will begin by bounding the error rate on positive
examples (a nearly identical proof will work for the negative examples).

For t = 1, . . . , T we define the 0/1 valued random variable Xt as follows:
given a draw of x from D+, the random variable Xt takes value hi,t(x) where
i denotes the index of the node vi,t that x reaches at level t of the branching
program. Let the random variable Y denote X1 + · · · + XT , so the final node
at which x terminates is vY,T+1. Let random variables Y0, Y1, . . . , YT denote the
Doob martingale sequence Y0 = E[Y] and Yt = E[Y |X1, . . . , Xt] for t = 1, . . . , T
(see e.g. Section 4.4.3 of [13]). Note that Y0 is a constant and YT equals Y.

Conditioned on x reaching node vi,t, we have that x is distributed according
to (Di,t)+, and thus for each t = 1, . . . , T the expectation E[Xt] equals

t−1∑
i=0

Pr[x reaches vi,t] · Pr
x∈(Di,t)+

[hi,t(x) = 1] ≥
t−1∑
i=0

Pr[x reaches vi,t] · (
1

2
+ γt) =

1

2
+ γt,

so by linearity of expectation we have E[Y] ≥ T
2 +

∑T
t=1 γt. By Azuma’s in-

equality (see e.g. Theorem 4.16 of [13]) we thus have that Prx∈D+ [YT < T/2] ≤
exp

(
− (

∑T
t=1 γt)

2

2T

)
. Recalling that YT equals Y and h(x) = 0 only if fewer than

Martingale Boosting 85

T/2 of the branching program hypotheses hi,t that are evaluated on x yield 1,
we have that Prx∈D+ [h(x) = 0] equals the left-hand side of the above inequality.

The same argument shows that Prx∈D− [h(x) = 1] ≤ exp
(
− (

∑T
t=1 γt)

2

2T

)
. ��

Note that if we have γt ≥ γ for all t, then Theorem 1 gives the familiar bound
Prx∈D[h(x) �= c(x)] ≤ exp(−γ2T

2).

5 Boosting a Standard Weak Learner

We recall the usual definition of a weak learner.

Definition 2. Given a target function c : X → {0, 1} and a distribution D, a
hypothesis h : X → {0, 1} is said to have advantage γ with respect to D if it
satisfies Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

In this section we will assume that we have access to a standard weak learning
algorithm which, when invoked on target concept c and distribution D, outputs a
hypothesis h which has advantage γ with respect to D. This is the usual assump-
tion that is made in the study of boosting, and is clearly less demanding than
the two-sided weak learner we considered in the previous section. We will show
how the Basic Martiboost algorithm of the previous section can be modified
to boost a standard weak learner to high accuracy.

For clarity of exposition, throughout this section we will consider an abstract
version of the boosting algorithm in which all desired probabilities can be ob-
tained exactly (i.e. we do not consider issues of sampling error, etc. here). We
will deal carefully with these issues when we describe an example oracle model
implementation of the algorithm in Section 6.

5.1 Definitions and an Easy Lemma

Let c : X → {0, 1} be a target concept. We say that a distribution D over
X is balanced if D puts equal weight on positive and negative examples, i.e.
Prx∈D[c(x) = 0] = 1

2 . Given an arbitrary distribution D (not necessarily bal-
anced), we write D̂ to denote the balanced version of D which is an equal average
of D+ and D−; i.e. for any S ⊆ X we have PrD̂[S] = 1

2 PrD+ [S] + 1
2 PrD− [S].

Given a distribution D over X and a hypothesis h : X → {0, 1}, we define
ĥ, the balanced version of h, to be the (probabilistic) version of h described
below; the key property of ĥ is that it outputs 0 and 1 equally often under
D. Let b ∈ {0, 1} be the value that h evaluates to more often, and let r =
Prx∈D[h(x) = b] (so 1/2 ≤ r ≤ 1). Given an input x ∈ X, to evaluate ĥ on
x we toss a biased coin which comes up heads with probability 1

2r . If we get
heads we output h(x), and if we get tails we output 1 − b. This ensures that
Prx∈D[ĥ(x) = b] = Pr[coin is heads & h(x) = b] = 1

2r · r = 1
2 .

The following simple lemma shows that if we have a weak hypothesis h that
has advantage γ relative to a balanced distribution D, then the balanced hy-
pothesis ĥ has advantage at least γ/2 relative to D.

86 P.M. Long and R.A. Servedio

Table 1. Each table entry gives the probability of the corresponding event under the
balanced distribution D

c(x) = 1 c(x) = 0

h(x) = 1 p q

h(x) = 0 1/2 − p 1/2 − q

c(x) = 1 c(x) = 0

h(x) = 1, ĥ(x) = 1 p
2r

q
2r

h(x) = 1, ĥ(x) = 0 p(1 − 1
2r

) q(1 − 1
2r

)

h(x) = 0, ĥ(x) = 1 0 0

h(x) = 0, ĥ(x) = 0 1
2
− p 1

2
− q

Table 2. Each table entry gives the probability of the corresponding event under the
balanced distribution D̂i,t

hi,t(x) = 0 hi,t(x) = 1

c(x) = 0 p 1/2 − p

c(x) = 1 1/2 − p p

Lemma 1. If D is a balanced distribution and PrD[h(x) = c(x)] ≥ 1
2 + γ then

PrD[ĥ(x) = c(x)] ≥ 1
2 + γ

2 .

Proof. We may assume without loss of generality that PrD[h(x) = 1] = r ≥ 1
2 ,

i.e. that b = 1 in the above discussion. If we let p denote PrD[h(x) = 1 & c(x) = 1]
and q denote PrD[h(x) = 1 & c(x) = 0], so p + q = r, then the probabilities for
all four possible values of h and c are given in the left side of Table 1. From the
definition of ĥ it is straightforward to verify that the probabilities of all eight
combinations of values for h, ĥ and c are as given in the right side of Table 1.
We thus have that PrD[ĥ(x) = c(x)] = p

2r + q
(
1 − 1

2r

)
+ 1

2 − q = 1
2 + p−q

2r . By
assumption we have PrD[h(x) = c(x)] ≥ 1

2 + γ, so from the left side of Table 1
we have p − q ≥ γ. The claim follows since r ≤ 1. ��

5.2 Boosting a Standard Weak Learner with MartiBoost

Our algorithm for boosting a standard weak learner, which we call MartiBoost,
works as follows. In stage t, at each node vi,t we run the weak learning algorithm
on the balanced version D̂i,t of the distribution Di,t; let gi,t denote the hypothesis
that the weak learner returns. The hypothesis hi,t that is used to label vi,t is
hi,t = ĝi,t, namely gi,t balanced with respect to the balanced distribution D̂i,t.

The following lemma plays a key role in our proof of correctness:

Lemma 2. We have Prx∈(Di,t)+ [hi,t(x) = 1] ≥ 1
2 + γ

2 and Prx∈(Di,t)− [hi,t(x) =
0] ≥ 1

2 + γ
2 .

Proof. Since the original hypothesis gi,t that the weak learner returns when
invoked with D̂i,t has accuracy at least 1

2 + γ with respect to D̂i,t, by Lemma 1
we have that the balanced hypothesis hi,t has accuracy at least 1

2 + γ
2 with

Martingale Boosting 87

respect to D̂i,t. Let p denote Pr
D̂i,t

[hi,t(x) = c(x) = 0]. Since D̂i,t is a balanced
distribution and hi,t is a balanced hypothesis, it is easy to see that all four table
entries must be as given in Table 2, and thus Pr

D̂i,t
[hi,t(x) = c(x)] = 2p ≥ 1

2 + γ
2 ,

i.e. p ≥ 1
4 + γ

4 . But since D̂i,t is an equal mixture of (Di,t)+ and (Di,t)−, this
implies that Prx∈(Di,t)+ [hi,t(x) = 1] ≥ (1

4 + γ
4)/ 1

2 = 1
2 + γ

2 . We similarly have
that Prx∈(Di,t)− [hi,t(x) = 0] ≥ 1

2 + γ
2 , and the lemma is proved. ��

With this lemma in hand it is easy to prove correctness of MartiBoost:

Theorem 2. Let γ1, γ2, . . . , γT be any sequence of values between 0 and 1/2. For
each value t = 1, . . . , T , suppose that each of the t invocations of the weak learner
on distributions D̂i,t (with 0 ≤ i ≤ t−1) yields a hypothesis gi,t which has advan-
tage γt with respect to D̂i,t. Then the final branching program hypothesis h that

MartiBoost constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ exp
(
− (

∑T
t=1 γt)

2

8T

)
.

Proof. The proof is almost identical to the proof of Theorem 1. We define se-
quences of random variables X1, . . . , XT and Y0, . . . , YT as before; the only dif-
ference is that (i) now we have E[Xt] ≥ 1

2 + γt

2 (by Lemma 2) rather than
E[Xt] ≥ 1

2 +γt as in the earlier proof, and (ii) the randomness is now taken over
both the draw of x from D+ and over the internal randomness of each hypothesis
hi,t at each node in the branching program. This loss of a factor of 2 from (i) in
the advantage accounts for the different constant (worse by a factor of 4) in the
exponent of the bound. ��

6 Complexity Issues: Implementation of MartiBoost That
Works with an Example Oracle

Thus far we have described and analyzed an abstract version of MartiBoost
without specifying how the weak learner is actually run on the distribution D̂i,t

at each node. One approach is to run the boosting algorithm on a fixed sample.
In this case all relevant probabilities can be maintained explicitly in a look-up
table, and then Theorem 2 bounds the training set accuracy of the MartiBoost
final hypothesis over this fixed sample.

In this section we describe and analyze an implementation of the algorithm
in which the weak learner runs given access to an example oracle EX(c,D).
As we will see, this version of the algorithm requires some changes for the sake
of efficiency; in particular we will “freeze” the execution of the algorithm at
nodes vi,t where it is too expensive to simulate D̂i,t. We give an analysis of
the time and sample complexity of the resulting algorithm which shows that it
is computationally efficient and can achieve a highly accurate final hypothesis.
Note that the accuracy in this case is measured with respect to the underlying
distribution generating the data (and future test data).

6.1 The Model

We define weak learning in the example oracle EX(c,D) framework as follows:

88 P.M. Long and R.A. Servedio

Definition 3. Given a target function c : X → {0, 1}, an algorithm A is said
to be a weak learning algorithm with advantage γ if it satisfies the following
property: for any δ > 0 and any distribution D over X, if A is given δ and
access to EX(c,D) then algorithm A outputs a hypothesis h : X → {0, 1} which
with probability at least 1 − δ satisfies Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

We let mA(δ) denote the running time of algorithm A, where we charge one time
step per invocation of the oracle EX(c,D). Thus, if we must run algorithm A
using a simulated oracle EX(c,D′) but we only have access to EX(c,D), the
runtime will be at most mA(δ) times the amount of time it takes to simulate a
draw from EX(c,D′) given EX(c,D).

6.2 An Idealized Version of the Oracle Algorithm

We now describe the version of MartiBoost designed to work with a sam-
pling oracle in more detail; we call this algorithm Sampling Martiboost, or
SMartiBoost. While this algorithm is intended to work with random examples,
to keep the focus clear on the main ideas, let us continue for a while to as-
sume that all required probabilities can be computed exactly. In Section 6.3
we will show that the analysis still holds if probabilities are estimated using a
polynomial-size sample.

For convenience, we will use r to denote all of the random bits used by all
the hypotheses hi,t. It is convenient to think of r as an infinite sequence of
random bits that is determined before the algorithm starts and then read off
one at a time as needed by the algorithm (though the algorithm will use only
polynomially many of them).

In stage t of SMartiBoost, all nodes at levels t′ < t have been labeled and
the algorithm is labelling nodes v0,t, . . . , vt−1,t. Let pi,t denote Prx∈D,r[x reaches
vi,t]. For each b ∈ {0, 1}, let pb

i,t denote Prx∈D,r[x reaches vi,t and the label of
x is b], so pi,t = p0

i,t + p1
i,t. In stage t, SMartiBoost does the following for each

node vi,t:

1. If minb∈{0,1} pb
i,t < ε

T (T+1) , then the algorithm “freezes” node vi,t by labelling
it with the bit (1− b) and making it a terminal node with no outgoing edges
(so any example x which reaches vi,t will be assigned label (1 − b) by the
branching program hypothesis).

2. Otherwise, we have minb∈{0,1} pb
i,t ≥ ε

T (T+1) . In this case SMartiBoost works
just like MartiBoost: it runs the weak learning algorithm on the balanced
version D̂i,t of Di,t to obtain a hypothesis gi,t, and it labels vi,t with hi,t =
ĝi,t, which is gi,t balanced with respect to D̂i,t.

The idea is that each node which is “frozen” in step (1) above contributes at
most ε

T (T+1) to the error of the final branching program hypothesis; since there
are at most T (T + 1)/2 many nodes in the branching program, the total error
induced by all frozen nodes is at most ε

2 . On the other hand, for any node vi,t

that satisfies condition (2) and is not frozen, the expected number of draws from

Martingale Boosting 89

EX(c,D) that are required to simulate a draw from EX(c, D̂i,t) is O(T 2

ε), and
thus we can indeed run the weak learner efficiently on the desired distributions.
(We discuss computational efficiency in more detail in the next subsection where
we take sampling issues into account.)

The following theorem establishes correctness of SMartiBoost:

Theorem 3. Let T = 8 ln(2/ε)
γ2 . Suppose that each time it is invoked on some

distribution D̂i,t, the weak learner outputs a hypothesis that has advantage γ with
respect to D̂i,t. Then the final branching program hypothesis h that SMartiBoost
constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ ε.

Proof. Given an unlabeled instance x ∈ X and a particular setting r of the
random bits for each of the (randomized) hypotheses hi,t labelling nodes of the
branching program, we say that (x, r) freezes at node vi,t if the path through
the branching program that x takes under randomness r causes it to termi-
nate at a node vi,t with t < T + 1 (i.e. at a node vi,t which was frozen by
SMartiBoost). We have that Pr[h(x) �= c(x)] = Pr[h(x) �= c(x) & (x, r) freezes]
+ Pr[h(x) �= c(x) & (x, r) does not freeze]. This is at most ε

2 + Pr[h(x) �=
c(x) & (x, r) does not freeze] (here the probabilities, as in the proof of Theo-
rem 2, are taken over the draw of x from D and the choice of r).

It remains to show that Pr[h(x) �= c(x) & (x, r) does not freeze] ≤ ε
2 . As

before, we first will show that Prx∈D+ [h(x) �= c(x) & (x, r) does not freeze] is at
most ε

2 ; the negative examples can be handled similarly.
To show that Prx∈D+ [h(x) �= c(x) & (x, r) does not freeze] ≤ ε

2 , we consider a
slightly different random process than in the proof of Theorem 2. For t = 1, . . . , T
we now define the 0/1 valued random variable X ′

t as follows: given a draw of x
from D+ and a random choice of r,

– If (x, r) does not freeze at any node vj,t′ with t′ ≤ t, then X ′
t takes value

hi,t(x) where i denotes the index of the node vi,t that x reaches under ran-
domess r at level t of the branching program;

– If (x, r) freezes at some node vj,t′ with t′ ≤ t, then X ′
t takes value 1 with

probability 1
2 + γ

2 and takes value 0 with probability 1
2 − γ

2 .

(This part of the proof is reminiscent of [2].) It is clear that E[X ′
t | (x, r) freezes

at some node vj,t′ with t′ ≤ t] = 1
2 + γ

2 . On the other hand, if (x, r) does not freeze
at any such node, then conditioned on x reaching node vi,t under randomness
r we have that x is distributed according to (Di,t)+. It follows from Lemma 2
that E[X ′

t | (x, r) freezes at no node vj,t′ with t′ ≤ t] ≥ 1
2 + γ

2 , and thus overall
we have E[X ′

t] ≥ 1
2 + γ

2 .
Let the random variable Y ′ denote X ′

1 + · · ·+X ′
T ; by linearity of expectation

we have E[Y ′] ≥ T
2 + Tγ

2 . Let random variables Y ′
0 , Y

′
1 , . . . , Y

′
T denote the Doob

martingale sequence Y ′
0 = E[Y ′] and Y ′

t = E[Y ′|X ′
1, . . . , X

′
t] for t = 1, . . . , T ,

so Y ′
T is identical to Y ′. By Azuma’s inequality we have that Pr [Y ′

T < T/2] ≤
exp

(
−γ2T

8

)
. Now recall that if (x, r) never freezes, then the prediction h(x) is

determined by the majority of the values of hi,t(x) obtained from hypotheses hi,t

90 P.M. Long and R.A. Servedio

encountered in its path through the branching program. Thus, in the particular
case of positive examples, Prx∈D+,r[h(x) �= c(x) & (x, r) does not freeze] ≤
Pr [Y ′

T < T/2]. Applying the inequality from above, bounding negative examples
similarly, and recalling our choice of T, we have that Pr[h(x) �= c(x) & (x, r)
does not freeze] ≤ ε

2 and the theorem is proved. ��

6.3 Dealing with Sampling Error

In this section we remove the assumptions that we know all required probabilities
exactly, by showing that sufficiently accurate estimates of them can be obtained
efficiently. We use Õ below notation to hide polylogarithmic factors, and ignore
the dependences on δ – which are everywhere polylogarithmic – throughout for
the sake of readability.

Theorem 4. Let T = Θ(log(1/ε)
γ2). If A is a weak learning algorithm that requires

sA many examples to construct a γ-advantage hypothesis, then SMartiBoost
makes O(sA) · Õ(1

ε) · poly(1
γ) many calls to EX(c,D) and with probability 1 − δ

outputs a final hypothesis h that satisfies Prx∈D[h(x) �= c(x)] ≤ ε.

Proof sketch. Standard sampling bounds let us estimate each pb
i,t and efficiently

simulate EX(c, D̂i,t) for nodes vi,t that have some pb
i,t value that is not too

small. Once we have run the weak learning algorithm with EX(c, D̂i,t) and it has
given us its hypothesis gi,t, we need to construct hi,t, the randomized hypothesis
obtained from gi,t by flipping some of its predictions in order to output 0 and 1
equally often with respect to D̂i,t. In order to do this perfectly as in Section 5.1,
we would need the exact value of r = Pr

x∈D̂i,t
[gi,t(x) = b] ≥ 1

2 . While this exact
value is not available to us, a straightforward generalization of Lemma 1 shows
that an approximate value is good enough for our needs. ��

7 A Noise-Tolerant Version of SMartiBoost

In this section we show how the SMartiBoost algorithm can be modified to with-
stand random classification noise. We follow the approach of Kalai & Servedio
[9], who showed how the branching program boosting algorithm of Mansour and
McAllester can be modified to withstand random classification noise.

Given a distribution D and a value 0 < η < 1
2 , a noisy example oracle is an

oracle EX(c,D, η) defined as follows: each time EX(c,D, η) is invoked, it returns
a labeled example (x, b) ∈ X × {0, 1} where x ∈ X is drawn from distribution
D and b is independently chosen to be c(x) with probability 1 − η and 1 − c(x)
with probability η. Recall the definition of noise-tolerant weak learning:

Definition 4. Given a target function c : X → {0, 1}, an algorithm A is said to
be a noise-tolerant weak learning algorithm with advantage γ if it satisfies the
following property: for any δ > 0 and any distribution D over X, if A is given δ
and access to a noisy example oracle EX(c,D, η) where 0 ≤ η < 1

2 , then A runs

Martingale Boosting 91

in time poly(1
1−2η , 1

δ) and with probability at least 1 − δ A outputs a hypothesis
h such that Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

Ideally, we would like a boosting algorithm that can convert any noise-tolerant
weak learning algorithm into a noise-tolerant strong learning algorithm that can
achieve any arbitrarily low error rate ε > 0. However, in [9] it is shown that in
general it is not possible to boost the error rate ε down below the noise rate η.1

They showed that a variant of the MM boosting algorithm can achieve any error
rate ε = η + τ in time polynomial in 1

τ and the other relevant parameters. We
now show that a variant of SMartiBoost has the same property.

For ease of presentation, we first give the noise-tolerant martingale boost-
ing algorithm under the assumption that all required probabilities are obtained
exactly, and then deal with sample complexity issues.

As a labeled example (x, b) proceeds through levels 1, . . . , t−1 of the branch-
ing program in stage t, the path it takes is completely independent of b. Thus,
given a source EX(c,D, η) of noisy examples, the distribution of examples that
arrive at a particular node vi,t is precisely EX(c,Di,t, η). Once a labeled example
(x, b) arrives at some node vi,t, though, it is clear that the label b must be con-
sulted in the “rebalancing” of the distribution Di,t to obtain distribution D̂i,t.
More precisely, the labeled examples that reach node vi,t are distributed accord-
ing to EX(c,Di,t, η), but in order to use SMartiBoost with a noise-tolerant weak
learner we must simulate the balanced distribution D̂i,t corrupted with random
classification noise, i.e. EX(c, D̂i,t, η

′). (As we show below, it turns out that η′

need not necessarily be the same as η; it is okay to have a higher noise rate η′

for the balanced oracle as long as η′ is not too close to 1
2 .) The following lemma

(Lemma 7 from [9]) shows that it is possible to do this:

Lemma 3. Let τ > 0 be any value satisfying η+ τ
2 < 1

2 . Suppose we have access
to EX(c,D, η). Let ρ denote Prx∈D[c(x) = 1]. Suppose that η + τ

2 ≤ ρ ≤ 1
2 (the

case where η + τ
2 ≤ 1 − ρ ≤ 1

2 is completely analogous). Consider the following
rejection sampling procedure: given a draw (x, b) from EX(c,D, η), (i) if b = 0
then with probability pr = 1−2ρ

1−ρ−η reject (x, b), and with probability 1−pr = ρ−η
1−ρ−η

set b′ = b and accept (x, b′); (ii) if b = 1 then set b′ to 1 − b with probability
pf = (1−2ρ)η(1−η)

(1−ρ−η)(ρ+η−2ρη) (and set b′ to b with probability 1−pf), and accept (x, b′).

Given a draw from EX(c,D, η), with probability prej := (1−2ρ)(ρη+(1−ρ)(1−η))
1−ρ−η

this procedure rejects, and with probability 1− prej = 2(1−2η)(1−ρ)ρ
1−ρ−η the procedure

accepts. Moreover, if the procedure accepts, then the (x, b′) that it accepts is
distributed according to EX(c, D̂, η′) where η′ = 1

2 − ρ−η
2(ρ+η−2ρη) .

1 They showed that if cryptographic one-way functions exist, then there is no efficient
“black-box” boosting algorithm that can always achieve a final error rate ε < η. A
black-box boosting algorithm is a boosting algorithm that can run the weak learning
algorithm in a black-box fashion but cannot “inspect the code” of the weak learner.
All known boosting algorithms are black-box boosters. See [9] for more discussion.

92 P.M. Long and R.A. Servedio

So Noise-Tolerant SMartiBoost works in the following way. As in Sec-
tion 6.2 let pi,t denote Prx∈D,r[x reaches vi,t]. For b = 0, 1 let qb

i,t denote
qb
i,t = Prx∈D,r[c(x) = b | x reaches vi,t] = Prx∈Di,t,r[c(x) = b], so q0

i,t + q1
i,t = 1.

The boosting algorithm (which takes as input a parameter τ > 0, where η + τ is
the desired final accuracy of the hypothesis; we assume WLOG that η + τ < 1

2)
proceeds in stage t as follows: at each node vi,t,

1. If pi,t < 2τ
3T (T+1) , then the algorithm “freezes” node vi,t by labelling it with

an arbitrary bit and making it a terminal node with no outgoing edges.
2. Otherwise, if minb∈{0,1} qb

i,t < η + τ
3 , then the algorithm “freezes” node vi,t

by making it a terminal node labeled with (1 − b).
3. Otherwise the algorithm runs the noise-tolerant weak learner using EX(c,

D̂i,t, η
′) as described in Lemma 3 to obtain a hypothesis gi,t. The balanced

(with respect to D̂i,t) version of gi,t, which we call hi,t, is used to label
node vi,t.

Theorem 5. Let T = 8 ln(3/τ)
γ2 . Suppose that each time it is invoked with some

oracle EX(c, D̂i,t, η
′), the weak learner outputs a hypothesis gi,t with Pr

x∈D̂i,t

[gi,t(x) = c(x)] ≥ 1
2 + γ. Then the final branching program hypothesis h that

Noise-Tolerant SMartiBoost constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ η+
τ.

Proof. As in the proof of Theorem 3, given an unlabeled instance x ∈ X and a
particular setting r of the random bits for each of the (randomized) hypotheses
hi,t labelling nodes of the branching program, we say that (x, r) freezes at node
vi,t if the path through the branching program that x takes under randomness r
causes it to terminate at a node vi,t with t < T +1 (i.e. at a node vi,t which was
frozen by Noise-Tolerant SMartiBoost). We say that a node vi,t is negligible
if pi,t < 2τ

3T (T+1) . We have that Pr[h(x) �= c(x)] = Pr[h(x) �= c(x) & (x, r) does
not freeze]+ Pr[h(x) �= c(x) & (x, r) freezes at a negligible node]+ Pr[h(x) �=
c(x) & (x, r) freezes at a non-negligible node]. Since (x, r) reaches a given
negligible node vi,t with probability at most 2τ

3T (T+1) and there are at most
T (T + 1)/2 many negligible nodes, Pr[h(x) �= c(x)& (x, r) freezes at a negligible
node] is at most τ

3 . Consequently Pr[h(x) �= c(x)] is at most τ
3 + Pr[h(x) �=

c(x) & (x, r) does not freeze] plus∑
i,t : vi,t is non-negligible

Pr[h(x) �= c(x)| (x, r) freezes at vi,t] · Pr[(x, r) freezes at vi,t].

Since Pr[h(x) �= c(x) | (x, r) freezes at vi,t] equals Prx∈Di,t,r[h(x) �= c(x)],
by the fact that the algorithm freezes vi,t if minb∈{0,1} qb

i,t < η + τ
3 (case (2)

above), we have that the sum above is at most η + τ
3 . Thus Pr[h(x) �= c(x)] ≤

Pr[h(x) �= c(x) & (x, r) does not freeze] + η + 2τ
3 , so it remains to show that

Pr[h(x) �= c(x) & (x, r) does not freeze] is at most τ
3 . The proof of this is identical

to the proof that Pr[h(x) �= c(x) & (x, r) does not freeze] ≤ ε
2 in the proof of

Theorem 3 but now with τ
3 in place of ε

2 . ��

Martingale Boosting 93

It remains to remove the assumptions that we know all required probabil-
ities exactly, by showing that sufficiently accurate estimates of them can be
obtained efficiently via a polynomial amount of sampling. A straightforward
but technical analysis (see full version for details) gives the following theorem,
which establishes correctness and efficiency of the sampling-based version of
Noise-Tolerant SMartiBoost:

Theorem 6. Given any τ such that η + τ < 1
2 , let T = Θ(log(1/τ)

γ2). If A is a
noise-tolerant weak learning algorithm with advantage γ, then Noise-Tolerant
SMartiBoost makes poly(1

γ , 1
τ , 1

δ) many calls to EX(c,D, η) and with probability
1 − δ outputs a final hypothesis h that satisfies Prx∈D[h(x) �= c(x)] ≤ η + τ.

8 Conclusion

Because of its simplicity and attractive theoretical properties, we suspect martin-
gale boosting may be useful in practice. The most likely avenue to a practically
useful algorithm appears to involve repeatedly dividing the training data into
bins, as opposed to using fresh examples during each stage, as is analyzed in
Section 6. A generalization analysis for such an algorithm based on the syntactic
complexity of the output classifier seems likely to be conservative, as was the
case for boosting algorithms based on voting [16, 3]. Carrying out a meaningful
formal generalization analysis is a possible topic for future research.

Because of space constraints, we have not presented a detailed computational
complexity analysis. Some mileage can be gained from the fact that the base
classifiers in a given stage are trained on the cells of a partition of the original
dataset, possibly dividing it into small datasets.

References

[1] Shai Ben-David, Philip M. Long, and Yishay Mansour. Agnostic boosting. In
Proceedings of the 14th Annual Conference on Computational Learning Theory,
pages 507–516, 2001.

[2] N. Bshouty and D. Gavinsky. On boosting with optimal poly-bounded distribu-
tions. Journal of Machine Learning Research, 3:483–506, 2002.

[3] S. Dasgupta and P. Long. Boosting with diverse base classifiers. In COLT, 2003.
[4] T.G. Dietterich. An experimental comparison of three methods for construct-

ing ensembles of decision trees: bagging, boosting, and randomization. Machine
Learning, 40(2):139–158, 2000.

[5] Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

[6] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Conference on Machine Learning, pages
148–156, 1996.

[7] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

94 P.M. Long and R.A. Servedio

[8] Dmitry Gavinsky. Optimally-smooth adaptive boosting and application to agnos-
tic learning. Journal of Machine Learning Research, 4:101–117, 2003.

[9] A. Kalai and R. Servedio. Boosting in the presence of noise. In Proceedings of the
35th Annual Symposium on Theory of Computing (STOC), pages 196–205, 2003.

[10] Richard Maclin and David Opitz. An empirical evaluation of bagging and boost-
ing. In AAAI/IAAI, pages 546–551, 1997.

[11] Y. Mansour and D. McAllester. Boosting using branching programs. Journal of
Computer and System Sciences, 64(1):103–112, 2002.

[12] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization
through explicit optimization of margins. Machine Learning, 38(3):243–255, 2000.

[13] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

[14] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, 2001.

[15] R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
1990.

[16] R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: a new ex-
planation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–
1686, 1998.

[17] R. Servedio. Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research, 4:633–648, 2003.

The Value of Agreement, a New Boosting Algorithm�

Boaz Leskes��

University of Amsterdam, ILLC, Plantage Muidergracht 24, 1018 TV Amsterdam
bleskes@science.uva.nl

Abstract. We present a new generalization bound where the use of unlabeled
examples results in a better ratio between training-set size and the resulting clas-
sifier’s quality and thus reduce the number of labeled examples necessary for
achieving it. This is achieved by demanding from the algorithms generating the
classifiers to agree on the unlabeled examples. The extent of this improvement
depends on the diversity of the learners—a more diverse group of learners will
result in a larger improvement whereas using two copies of a single algorithm
gives no advantage at all. As a proof of concept, we apply the algorithm, named
AgreementBoost, to a web classification problem where an up to 40% reduction
in the number of labeled examples is obtained.

1 Introduction

One of the simplest but popular models in machine learning is the so called supervised
learning model. This model represents a scenario where a ‘learner’ is required to solve
a classification problem. The model assumes the existence of a set of possible exam-
ples X which are divided in some way into a set of classes Y ⊆ [−1,+1] (often called
labels). Furthermore, it is assumed that there exists a distribution P over X ×Y , which
represents the ‘chance’ to see a specific example and its label in real life. The learning
algorithm’s task is then to construct a mapping f : X → Y , which predicts the dis-
tribution P well, i.e., minimizes P({ f (x) �= y : (x,y) ∈ X ×Y }). The only information
available to the learner to assist it in its task is a finite training set S =

{
(x j,y j)

}ns

j=1,
generated by repeatedly and independently sampling the distribution P .

Despite of the high abstraction level, many real life applications fall nicely within
this model. Problems like OCR, web pages classification (as done in Internet directo-
ries) and detection of spam e-mail are only a few of many problems that fit into this
scheme. In all the examples above and in many others, it is relatively hard to obtain a
large sample of labeled examples. The sample has to be carefully analyzed and labeled
by humans—a costly and time consuming task. However in many situations it is fairly
easy to obtain unlabeled examples: examples from the example space X without the
class that they belong to. This process can be easily mechanized and preformed by a
machine, much faster then any human-plausible rate. This difference between labeled
and unlabeled examples has encouraged researchers in the recent years to study the
benefits that unlabeled examples may have in various learning scenarios.

� A full version of this paper is available on http://www.illc.uva.nl/Publications/
ResearchReports/MoL-2005-02.text.pdf

�� Eligible for the “Best Student Paper" award.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 95–110, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

96 B. Leskes

At first glance it might seem that nothing is to be gained from unlabeled examples.
After all, unlabeled examples lack the most important piece of information—the class
to which they belong. However, this is not necessarily the case. In some theoretical
settings, it is beneficial to gain knowledge over the examples’ marginal distribution P(x)
(for example in [7]). In these cases, having extra examples, with or without their label,
provides this extra information. On the other hand, there exist situations (for example in
[9]) where knowing P(x) is not helpful and unlabeled examples do not help at all. The
main goal of this sort of research is to determine the amount of information that can be
extracted from unlabeled examples. However, unlabeled examples have also been used
by algorithms in a more practical way: as a sort of a communication platform between
two different learning algorithms. One such usage is the so called Co-Training model
or strategy.

A typical example of Co-Training can be found in [5], a paper often cited with
respect to unlabeled examples. In their paper, Blum and Mitchell provide both an algo-
rithm and a theoretical framework where unlabeled examples are used to communicate
an ‘opinion’ about an unlabeled example from one algorithm to another. As a case study,
the algorithm is then applied to a web-page classification problem involving identifying
courses’ homepages out of a collection of web-pages.

In this Co-Training model, it is assumed that the example space can be split into two
‘views’ X 1 and X 2 (i.e., X = X 1×X 2) and that both views are sufficient for learning the
problem. Furthermore, the theoretical framework in [5] uses a very severe assumption:
for every fixed example

(
x̂1, x̂2

)
∈ X of non-zero probability it must hold that:

P
(
X1 = x̂1 | X2 = x̂2) = P

(
X1 = x̂1 | f 2 (X2) = f 2 (x̂2)) (1)

P
(
X2 = x̂2 | X1 = x̂1) = P

(
X2 = x̂2 | f 1 (X1) = f 1 (x̂1)) .

In other words, that X1and X2 are conditionally independent given the label. As the
authors themselves state, only four hypotheses comply with this assumption (assuming
that P allows for it).

The Co-Training algorithm has been shown to produce better classifiers in the web-
pages problem and in other experiments (for example, [10, 21], for more detailed anal-
ysis and limitations see [11, 14]). However, the theory presented can only be used as a
motivation or a general intuition for the algorithm’s success. Instead of using the train-
ing set to train only one of the learners and produce abundant newly-labeled examples
for the second one, both learners are trained and subsequently label some unlabeled ex-
amples. These newly-labeled examples are then added to the pool of labeled examples,
which is used to train the learners anew. Therefore, after being labeled, an unlabeled
example assumes the same role as a labeled example: a true representation of the tar-
get function. As the authors themselves remark, this process encourages the learners to
slowly agree on the labels of the unlabeled examples. This type of agreement is a side
effect, if not a goal, of many variants of the co-training model [13, 12].

In this paper, we elaborate on this intuition and make it more precise. We show that
agreement is useful and can assist in the task of learning. In other words, we present a
theoretical framework where agreement between different learners has a clear advan-

The Value of Agreement, a New Boosting Algorithm 97

tage. Drawing upon these results, we propose a new boosting1 algorithm—a field where
our theoretical settings are especially applicable.

A similar attempt can be found in [15] where a boosting algorithm is presented,
based on the above intuition. However, no proof is provided that the algorithm does
result in agreeing classifiers nor for the advantage of such an agreement. A proof for the
latter (in a more general settings) was provided by Dasgupta et al. in [16]. Nevertheless,
for the proof to hold one still has to use the strong assumption of view-independence
(Equation 1). Another example for the use of unlabeled examples in boosting can be
found in [19].

2 The Value of Agreement

A typical approach in the supervised learning model is to design an algorithm that
chooses a hypothesis that in some way best fits the training sample. We will show that
an advantage can be gained by taking several such learning algorithms and demanding
that they not only best learn the training set but also ‘agree’ with each other on a set of
extra unlabelled examples.

The discussion below involves several learning algorithms and their accompanying
hypothesis spaces. To avoid confusion, any enumeration or index that relates to different
learners or hypotheses is enumerated using superscripts (typically l). All other indices,
such as algorithm iterations and different examples, are denoted using a subscript.

2.1 Preliminaries

Since the learning algorithm is only given a finite sample of examples, it can only se-
lect a hypothesis based on limited information. However, the task of the algorithm is
a global one. The resulting classifier f must perform well with respect to all examples
in X . The probability of error P({(x,y) : f (x) �= y}) must be small. In order to transfer
the success of a classifier on the training set to the global case, there exist numerous
generalization bounds (two such theorems will be given below). Typically these theo-
rems involve some measure of the complexity or richness of the available hypothesis
space. If the hypothesis space is not too rich, any hypothesis able to correctly classify
the given examples cannot be to far from the target distribution. However, if H is very
rich and can classify correctly any finite sample using different functions, success on a
finite sample does not necessarily imply good global behavior.

As a complexity measure, we use the Rademacher Complexity (see [2]), which is
particularly useful in the boosting scenario.

Definition 1. Let X1, . . . ,Xn be independent samples drawn according to some distri-
bution P on a set X . For a class of functions F, mapping X to R, define the random
variable

R̂n (F) = E

[
sup
f∈F

∣∣∣∣∣2
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣
]

1 For an excellent introduction to boosting, the reader is referred to [1].

98 B. Leskes

where the expectation is taken with respect to σ1, . . . ,σn , independent uniform {±1}-
valued random variables. Then the Rademacher complexity of F is Rn (F) = ER̂n (F)
where the expectation is now taken over X1, . . . ,Xn.

As an example, we present the following generalization bound(adapted from Theorem 3
in [1] and proved in [3]).

Theorem 1. Let F be a class of real-valued functions from X to [−1,+1] and let
θ ∈ [0,1]. Let P be a probability distribution on X ×{−1,+1} and suppose that a
sample of N examples S = {(x1,y1) , . . . ,(xns ,yns)} is generated independently at ran-
dom according to P. Then for any integer N, with probability at least 1−δ over samples
of length ns, every f ∈ F satisfies

P(y �= sign(f (x))) ≤ L̂θ(f)+
2Rns(F)

θ
+

√
log(2/δ)

2ns

where L̂θ(f) = 1
ns

ns

∑
i=1

I(yi f (xi) ≤ θ) and I(yi f (xi) ≤ θ) = 1 if yi f (xi) ≤ θ and 0 other-

wise.

Theorem 1 introduces a new concept named margin.

Definition 2. The margin of a function h : X → [−1,1] on an example x ∈ X with a
label y ∈ {±1} is yh(x).

Margins have been used to give a new explanation to the success of boosting algorithms,
such as AdaBoost [17], in decreasing the global error long after a perfect classification
of the training examples has been achieved [4]. Typically, one would expect a learning
algorithm to eventually over-fit the training sample, resulting in an increase in global
error2.

Theorem 1 represents a rather general type of generalization bounds. Instead of as-
suming that the labels are generated by one of the hypotheses in H, it gives a connection
between the empirical error on samples drawn from any distribution and the global ex-
pected error. As can be seen, the complexity of H plays a crucial role in this relation.
Hence, if one was able to reduce the hypothesis space H without harming its ability to
fit the sampled data, the resulting classifier is expected to have a smaller global error.

2.2 Formal Settings

Let H1, . . . ,HL be a set of hypothesis spaces, each with a fitting learning algorithm, Al .
Further suppose that all learning algorithms are forced to agree and output hypotheses
that agree with probability 1. If it is further assumed that the hypothesis that best fits the
training set belongs to every Hl (thus available to all algorithms), this scheme produces
a set of hypotheses from a potentially much smaller hypothesis spaces which are just as

2 AdaBoost does eventually over-fit the data, if run long enough. However this happens at a
much later stage then originally expected.

The Value of Agreement, a New Boosting Algorithm 99

good on the training sample. Hence, the generalization capability of such hypotheses, as
drawn from theorems such as Theorem 1, is potentially much better than the hypotheses
outputted from any algorithm operating alone.

While the above discussion would yield the expected theoretical gain, it is very hard
to implement. First, demanding that the algorithms output hypothesis that agree with
probability 1 entails an ability that is unlikely to be easily available. Typically the dif-
ferent hypothesis spaces would consist of classifiers as different as neural networks and
Bayes classifiers. It is unrealistic to demand that the hypothesis spaces will have an
intersection which is rich enough to be useful to correctly classify different target dis-
tributions. While this might be feasible for L = 2 (such as the assumption in [5]) it is
highly unlikely for a bigger number of learners. We will therefore present a more re-
laxed agreement demand, along with a simple way of checking it: unlabeled examples.

Definition 3.

1. Define the variance of a vector in RL by V (y1, . . . ,yL) = 1
L ∑L

l=1

(
yl
)2−

(
1
L ∑L

l=1 yl
)2

.

2. Furthermore, define the variance of a set of classifiers f 1, . . . , f L to be the expected
variance on examples from X , i.e., V

(
f 1, . . . , f L

)
= EV

(
f 1(x), . . . , f L(x)

)
.

We will use the variance of a set of classifiers in the following relaxed definition of
intersection as a measures of their disagreement.

Definition 4. For any ν > 0, define the ν-intersection of a set of hypothesis spaces,
H1, . . . ,HL to be:

ν−
L⋂

l=1

Hl =
{

f 1, . . . , f L : ∀l, f l ∈ Hl , and V (f 1, . . . , f L) ≤ ν
}

.

In effect, the ν-intersection of H1, . . . ,HL contains all the hypotheses whose difference
with some of the members of other hypothesis spaces is hard to discover. We use this
relaxed definition of intersection as the space from which the algorithms can draw their
hypotheses. Note that for ν = 0, the 0-intersection is precisely the set of hypotheses that
might be outputted when the algorithms are required to agree with probability 1.

As mentioned before, unlabeled examples will be used to measure the level of agree-
ment between the various learners. Therefore, let U =

{
u j

}nu

j=1 be a set of unlabeled ex-
amples, drawn independently from the same distribution P but without the label being
available. We first show that if enough unlabeled examples are drawn, the disagreement
measured on them is a good representative of the global disagreement. To this end we
define a new hypothesis space V (H1, . . . ,HL) and a target distribution P̃ to be used in a
generalization bound resembling Theorem 1.

Definition 5.

1. Let V
(
H1, . . . ,HL

)
=

{
V ◦

(
f 1, . . . , f L

)
: f 1 ∈ H1, . . . , f L ∈ HL

}
where

V ◦
(

f 1, . . . , f l
)

: X → [0,1] is defined by: V ◦
(

f 1, . . . , f L
)
(x)=V

(
f 1(x), . . . , f L(x)

)
2. Let P̃ be a probability distribution over X × [0,∞] which is defined by:

∀A ⊆ X × [0,∞] P̃(A) = P({(x,y) ∈ X ×Y : (x,0) ∈ A}) .

100 B. Leskes

In essence, P̃ labels all examples in X with 0, while giving them same marginal
probability as before.

Before we can use the generalizing bound, we need to establish the Rademacher com-
plexity of the new hypothesis space V (H1, . . . ,HL).

Lemma 1. Rn
(
V

(
H1, . . . ,HL

))
≤ 8maxl Rn

(
Hl

)
.

Proof. Using Theorem 12 from [2], which gives some structural properties of the
Rademacher complexity, the result follows from the following fact: V

(
H1, . . . ,HL

)
⊆

1
L ∑L

l=1 φ
(
Hl

)
+
[
−φ

(
1
L ∑L

l=1 Hl
)]

where F1+F2=
{

f 1+ f 2 : f 1∈F1, f 2 ∈ F2
}

, φ(F)=
{φ◦ f : f ∈ F} and φ(z) = z2. Note that φ is Lipschitz on Y ⊆ [−1,+1] with Lφ = 2.

Before proving the main theorems of the section, we present the following generaliza-
tion bound (adapted from [2]). This theorem allows the use of an arbitrary loss function
and does not use the concepts of margins.

Theorem 2. Consider a loss function L : Y ×R → [0,1] and let F be a class of func-
tions mapping X to Y . Let {(xi,yi)}n

i=1 be a sample independently selected according to
some probability measure P. Then, for any integer n and any 0 < δ < 1, with probability
of at least 1−δ over samples of length n, every f ∈ F satisfies

EL (Y, f (X)) ≤ ÊnL(Y, f (X))+Rn
(
L̃◦F

)
+

√
8log(2/δ)

n

where Ên is the expectation measured on the samples and

L̃◦F = {(x,y) !→ L (y, f (x))−L (y,0) : f ∈ F} .

The scene is now set to give the first of the two main theorems of this section—a con-
nection between function’s agreement on a finite sample set and their true disagreement:

Theorem 3. Let H1, . . . ,HL be sets of functions from X to Y and let U =
{

u j
}nu

j=1 be
a set of unlabeled examples drawn independently according to a distribution P over
X ×Y . Then for any integer n and 0 < δ < 1, with probability of at least 1−δ every set
of functions f l ∈ Hl, l = 1 . . .L satisfies:

V (f 1, . . . , f L) ≤ V̂ (f 1, . . . , f L)+8max
l

Rnu(H
l)+

√
8log(2/δ)

nu

where V̂ (f 1, . . . , f L) is the sampled expected variance, as measured on U =
{

u j
}nu

j=1.

Proof. The theorem follows directly from Theorem 2 when applied to the function set
V (H1, . . . ,HL) with P̃ as target distribution. The loss function is defined by L (y,z) =
min{|y− z| ,1}.

Theorem 3 allows us to use a finite set of unlabeled examples to make sure (with high
probability) that the classifiers selected by the learning algorithms are indeed in the
desired ν-intersection of the hypothesis spaces. This allows us to adapt generalization
bounds to use smaller hypothesis spaces. As an example, we present an adapted version
of Theorem 1.

The Value of Agreement, a New Boosting Algorithm 101

Theorem 4. Let H1, . . . ,HL be a class of real-valued functions from X to [−1,+1] and
let θ ∈ [0,1]. Let P be a probability distribution on X ×{−1,+1} and suppose that
a sample of ns labeled examples S =

{
(x j,y j)

}ns

j=1 and nu unlabeled examples U ={
u j

}nu

j=1 is generated independently at random according to P. Then for any integer ns,

ν > 0, 0 < δ < 1 and nu such that 8maxl Rnu(H
l)+

√
8ln(4/δ)

nu
≤ ν

2 , with a probability

at least 1− δ, every f 1 ∈ H1, . . . , f L ∈ HL whose disagreement V̂ on U is at most ν
2

satisfies

∀l P(y �= sign(f l(x))) ≤ L̂θ(f l)+

2Rns(ν−
⋂̂
l

Hl̂)

θ
+

√
log(4/δ)

2ns

where L̂θ(f l) = 1
ns

ns

∑
j=1

I
(
yi f l(xi) ≤ θ

)
.

Proof. By using Theorem 3 to reduce the hypothesis space, Theorem 1 can be applied
to v − ⋂̂

l

Hl̂ . By the union bound, the probability that the procedure fails is at most

δ
2 + δ

2 = δ.

To conclude this section, we note that the proposed settings has the following de-
sired property: it doesn’t help to have duplicate copies of the same hypothesis space.
To have any advantage, ν− ⋂̂

l

Hl̂ must be considerably smaller then any of the base

hypothesis spaces. Therefore, using only duplicate copies of the same hypothesis space
H = H1, . . .HL gives ν− ⋂̂

l

Hl̂ = H and hence no improvement. Furthermore, any du-

plicates within the set of different hypothesis spaces can be removed without changing
the results.

2.3 Reduction of Labeled Examples

The previous section presented a formal setting where agreement was used to reduce
the complexity of the set of possible hypotheses. The immediate implication is that
training error serves as a better approximation for global true error. Therefore, for a
given number of labeled examples, if the learning algorithm has produced a classifier
with a low training error one can expect a lower global error. However this reduction in
complexity can be also viewed from a different, though very related, point of view.

Since when given the right hypothesis space most algorithms can reduce the training
error to a very low level, increasing the number of labeled examples gives a mean to
decrease the two other terms in generalization bounds: the complexity of the hypothesis
space and the certainty in the success of the whole procedure (δ). Using more labeled
examples allows using a lower δ value without hindering the expected error of the re-

sulting classifier (for example, Theorem 1 involves a
√

log(2/δ)
2ns

term). The second result
of increasing the number of labeled examples is reduction in the Rademacher complex-
ity (or similar complexity terms). Therefore, decreasing the term relating to hypothesis
space complexity, enables to use less labeled examples while achieving the same bound.

102 B. Leskes

Algorithm 1. Agreement Boost

Denote F
(
g1, . . . ,gL

)
= ∑L

l=1 ∑ns
j=1 er

(
−y jgl(x j)

)
+ηL∑nu

j=1 er
(
V

(
u j

))
where

V (u) = 1
L

L
∑

l=1
gl(u)2 −

[
1
L

L
∑

l=1
gl(u)

]2

, η ∈ R+ is some positive real number and er : R → R is

some convex, strictly increasing function with continuous second derivative.

1. Set gl ≡ 0 for l = 1 . . .L.
2. Iterate until done (counter t):

(a) Iterate over l = 1 . . .L:
i. Set w(x j) = er′

(
−y jgl(x j)

)
y j/Z for all

(
x j,y j

)
∈ S and

w(u j) = 2η
∣∣∣ 1

L ∑L
l̂=1

gl̂(u j)−gl(u j)
∣∣∣er′

(
V (u j)

)
/Z for all u j ∈U where Z is a

renormalization factor s.t. ∑
x j

w(x j)+∑
u j

w(u j) = 1.

Use y(u j) = sign
(

1
L ∑L

l̂=1
gl̂(u j)−gl(u j)

)
as pseudo-labels for u j.

ii. Receive hypothesis f l
t from learner l using the above weights and labels.

iii. Find αl
t ≥ 0 that minimizes F

(
g1, . . . ,gl +αl

t f l
t , . . . ,g

L
)
.

iv. Set gl = gl +αl
t f l

t .

3. Output classifier sign(gl) whose error on the samples is minimal out of the L classifiers.

To illustrate this consider Blumer et al. (Theorem 2.1.ii in [6]) concerning the simple
case of consistent learners. With high probability, a sample of size
max

{
4
ε log 2

δ ,
8d
ε log 13

ε
}

is sufficient to disqualify any function in H that is too ‘far’
from the target f̂ . If H is made smaller, the number of functions which need to be ex-
cluded is reduced. Therefore, less labeled examples are needed in order to exclude high
error functions.

Generalization bounds such as those presented before typically deal with over-fitting
using the following idea: if the algorithm is given enough labeled examples it will not
over-fit. Since the training sample is representative enough of target function, specializ-
ing in it does no harm. In the extreme, this leads to theorems such as the one of Blumer
et al. concerning consistent learning algorithms. In the setting proposed here, the learn-
ing algorithm needs not only fit its training data but also agree with a couple of other
algorithms. If the algorithms are sufficiently different, forcing them to agree inhibits
their specialization on the training data, allowing to use a less representative training
sample, or less labeled examples.

3 The Algorithm

In this section, we propose a new boosting algorithm named AgreementBoost (Algo-
rithm 1), which exploits the benefits suggested by the theory presented in the previ-
ous section. Like AdaBoost, the algorithm is designed to operate in Boolean scenarios
where each example can belong to one of two possible classes denoted by ±1.

As in many boosting algorithms, AgreementBoost creates combined classifiers or
ensembles. However, instead of just one such classifier, AgreementBoost creates L en-

The Value of Agreement, a New Boosting Algorithm 103

sembles, one for each hypothesis space. The ensembles are constructed using L under-
lying learning algorithms, one for each of the L hypothesis spaces

{
Hl

}L
l=1. At each

iteration, one of the learning algorithms is presented with a weighing of both labeled
and unlabeled examples in the form of a weight vector w(x) and pseudo-labels for the
unlabeled examples (y(u)). The underlying learner is then expected to return a hypoth-
esis f l

t with a near-optimal3 edge: γ = ∑
(x j ,y j)∈S

w(x j)y j f l(x j)+ ∑
u j∈U

w(u j)y(u j) f l(u j).

The proposed AgreementBoost can be described as a particular instance of Any-
Boost [18], a boosting algorithm allowing for arbitrary cost functions. Agreement-
Boost’s cost function F has been chosen to incorporate the ensembles’ disagreement
into the normal margin terms. This is achieved using a weighted sum of two terms:
an error or margin-related term (∑L

l=1 ∑ns
j=1 er

(
−y jgl(x j)

)
) and a disagreement term

∑nu
j=1 er (V (u j)). Despite of the fact that the these terms capture different notions, they

are very similar. Both terms use the same underlying function, er(x), to assign a cost
to some example-related measure: The first penalizes low (negative) margins while the
second condemns high variance (and hence disagreement). AgreementBoost allows for
choosing any function as er(x), as long as it is convex and strictly increasing. This free-
dom allows for using different cost schemes and thus for future cost function analysis
(as done, for example, in [18]). In the degenerate case where no unlabeled examples are
used (nu = 0) and ex is used as er(x), AgreementBoost is equivalent to L independent
runs of AdaBoost (using the L underlying learners).

4 Proof of Convergence

In this section, we give a convergence proof for Algorithm 1. The proof considers two
scenarios. The first assumes that the intersection of all conv

(
Hl

)
is able to correctly

classify all labeled examples using classifiers which agree on all unlabeled examples.
Under this assumption, we show that the algorithm will produce classifiers, which in
the limit are fully correct and agree on all unlabeled examples. In other cases, where
this assumption is not valid, the algorithm will produce ensembles which minimize a
function representing a compromise between correctness and agreement.

Both Mason et al. [18] and Rätsch et al. [20] provide similar convergence proofs for
AnyBoost-like algorithms. While both proofs can be used (with minor modifications) in
our settings, they do not fully cover both scenarios. The proof in [20] demands that the
sum of the αl

t coefficients will be bounded and thus cannot be used in cases where the
theoretical assumptions hold. This can be seen easily in the case of AdaBoost, where
a fully correct hypothesis will be assigned an infinite weight. While AgreementBoost
will never assign an infinite weight to a hypotheses (due to the disagreement term), it
is easy to come up with a similar scenario where the coefficient sum grows to infinity.
In [18], Mason et al. present a theorem very similar to Theorem 5 below. However,
they assume that the underlying learner performs perfectly and always returns the best
hypothesis from the hypothesis space. Such a severe assumption is not needed in the

3 For the exact definition of ‘near-optimal’, see Section 4.

104 B. Leskes

proof presented here. Furthermore, due to the generality of AnyBoost, the result in [18]
apply to the cost function alone and is not translated back to training error terms.

The proofs below are based on two assumptions concerning the learning algorithms
and the hypothesis spaces. It is assumed that when presented with an example set S and
a weighing w(x), the underlying learning algorithms return a hypothesis f l whose edge

is at least δ max
f̂∈Hl

(
∑

x j∈S
w(x j)y j f̂ (xi)

)
, for some δ > 0. The second assumption concerns

the hypothesis spaces: it is assumed that for every l and every f l ∈ Hl the negation of
f l is also in Hl i.e.: f ∈ Hl ⇒ − f ∈ Hl . This allows us to use absolute value in the
previous assumption:

∑
x j∈S

w(x j)y j f l(x j) ≥ δ max
f̂∈Hl

∣∣∣∣∣ ∑
x j∈S

w(x j)y j f̂ (xi)

∣∣∣∣∣ for some δ > 0.

In the Lemmas and Theorems to follow, we will sometimes assume that the hy-
pothesis spaces are finite. Due to the fact that there is only finite amount of ways to
classify a finite set of examples with a ±1 label, if some of the hypothesis spaces are
infinite it will be indistinguishable when restricted to S and U . Therefore, without loss
of generality, one can assume that the number of hypotheses is finite.

The convergence of the algorithm is proven taking a different point of view to the
ensembles built by the algorithm. The ensembles can be seen as a mix of all possible
functions in the hypothesis spaces rather then as an accumulation of hypotheses:

Definition 6.

1. Let Hl =
{

f l
i

}
i∈Il be an enumeration of functions in Hl. One can rewrite the en-

sembles gl built by AgreementBoost as functions from X ×R|Hl| to R: gl(x,βl) =

∑
i

βl
i f l

i (x) for βl=
(
βl

1,β
l
2, . . .

)
∈R|Hl|and l=1. . .L. Further denote β =

(
β1, . . . ,βL

)
.

Note that βl
i is the sum of all αl

t such that f l
t ≡ f l

i .
2. Let the variance of g1, . . . ,gL on an example u be V(u,β)=V

(
g1(u,β1), . . . ,gL(u,βL)

)
.

3. Whenever it is clear from context what are the β parameters, V (u) and gl(u) will
be used for brevity.

4. Let er : R → R+ be a convex monotonically increasing function. Denoting E(β) =
∑L

l=1 ∑ns
j=1 er

(
−y jgl(x j)

)
and D(β) = L∑nu

j=1 er (V (u j)), the function F becomes
F(β) = E(β)+ηD(β) for some η > 0.

F(β) represents a weighing between correctness and disagreement. E (β), being a sum
of loss functions penalizing negative margins, relates to the current error of the ensem-
ble classifiers. D(β) captures the ensembles’ disagreement over the unlabeled examples.

Using the above notations and the new point of view, the edge of hypotheses be-
comes proportional to the partial derivative of F (β) with respect to the corresponding
coefficient. Replacing the examples’ weight and labels according to the definition of
AgreementBoost, we have that ∑

x j∈S
w(x j)y j f l

i (x j)+ ∑
u j∈U

w(u)y(u j) f l
i (u j) =− 1

Z
∂F
∂βl

i
(β).

The Value of Agreement, a New Boosting Algorithm 105

Therefore the underlying learners return hypotheses whose corresponding partial deriva-

tives are bounded by − ∂F
∂βl

i
(β)≥ δmax

î
− ∂F

∂βl
î

(β) = δmax
î

∣∣∣∣ ∂F
∂βl

î

(β)
∣∣∣∣. Note that this ensures

that the partial derivative with respect to the returned function coefficient is non-positive
and hence the choice of αl

t in step 2.a.ii of Algorithm 1 is in fact the global optimum4

over all R. Since in every iteration only one coefficient is changed to a value which min-
imizes F(β), Algorithm 1 is equivalent to a coordinate descent minimization algorithm
(for more information about minimization algorithms see, for example, [8]).

As a last preparation before the convergence proof, we show that F(β) is convex.
Apart from having other technical advantages, this guarantees that the algorithm will
not get stuck in a local minimum.

Lemma 2. The function F(β) is convex with respect to β.

Lemma 3. Let {βn} be a sequence of points generated by an iterative linear search
algorithm A, i.e., βn+1 = A(βn) minimizing a non-negative convex function F ∈C2. De-

note the direction in which the algorithm minimizes F in every step by vn = βn+1−βn
‖βn+1−βn‖∞

and Fn(α) = F (βn +αvn) (i.e., A minimizes Fn(α) in every iteration by a linear search).

Then, if ∃M,m > 0 ∈ R+ such that (∀n)
[
m ≤ d2Fn

dα2 (α) ≤ M
]

for every ‘feasible’ α (i.e.,

when Fn(α) ≤ F(βn)) then lim
n→∞

dFn
dα (0) = 0 and lim

n→∞
‖βn+1 −βn‖∞ = 0.

Proof. The results is obtained by using a first order Tailor expansion of Fn (α) and
bounding the remainder with m and M.

Theorem 5. For some non-empty sets of labeled examples S and unlabeled examples
U, suppose that the underlying learners are guaranteed to return a hypothesis f̂ such

that ∑
x

w(x)yx f̂ (x)≥ δ
(

max
f

∣∣∣∣∑
x

w(x)yx f (x)
∣∣∣∣) for some constant δ > 0 and every weigh-

ing w(x) of their examples. Further let er : R → R+ be a non constant convex mono-
tonically increasing function such that:

1. er ∈C2 and er′(0) > 0.

2. ∃M ∈ R+ for which er(x) ≤ max
{

L(|S|+η |U |)er(0), 1
η (|S|+η |U |)er(0)

}
im-

plies that er′′(x) < M.

Then it holds that lim
n→∞

‖∇F(βn)‖∞ = 0.

Proof. We first transform the assumption with respect to er(x) into the bounds nec-
essary for Lemma 3, obtaining that lim

n→∞
∂F

∂βln
in

= 0 where ln and in are the indices of

the hypothesis returned by the underlying learner at iteration n. Using the assumptions

with respect to the underlying learner, it follows that
(
∀i ∈ Iln

)[
lim
n→∞

∣∣∣∣ ∂F
∂βln

i

(βn)
∣∣∣∣ = 0

]
.

The proof is concluded using an induction on the distance of the hypothesis spaces from
ln, i.e., Hln ,H(ln−1) mod L, . . . ,H(ln−L+1) mod L.

4 This involves the convexity of F(β) that will be discussed below.

106 B. Leskes

Theorem 6. Under the assumptions of Theorem 5 with the additional assumption that
er(x) is strictly monotonic and that all underlying hypothesis spaces are able to cor-
rectly classify the data using finite ensemble classifiers from the intersection of the hy-
pothesis spaces, both the error and the disagreement of the ensemble classifiers con-
structed by Algorithm 1 converge to 0.

Proof. Denote the correct classifiers as g̃l = ∑β̃l
i f l

j and by β̃ the corresponding coeffi-

cient vector (β̃1
1, . . . , β̃

L
|HL|). The correctness of the constructed classifiers is established

by looking at the directional derivative ∂F
∂β̃

. Note that by the agreement of g̃l , ∂D
∂β̃

= 0

and therefore ∂F
∂β̃

= ∂E
∂β̃

. The convergence of the disagreement term D(β) is shown by

deriving a contradiction. This is done by bounding the distance of βn from the agree-
ment group B = {β : ∀u ∈U, V (u,β) = 0}. Suppose that a subsequence D(βni) > ε for
some ε > 0. Since the tangent to a convex function is always an under estimator, the
tangent to D(βni) in the direction of B has to drop at least ε between βni and the near-
est point in B. This implies that it must have a negative slope that is bounded away
from 0. However, Theorem 5 implies that the slope must converge to 0, which gives the
contradiction.

5 Experiments

In this section we present a few experiments, testing the algorithm (and theory) pre-
sented in the previous sections. In these experiments, ex was used as the loss function
er(x). This gives an algorithm which is very similar to AdaBoost, with the additional
agreement requirement. In order to have a reference point, we compare the proposed
AgreementBoost algorithm to AdaBoost, which is run separately on each of the un-
derlying learning algorithms. In all experiments done, the η parameter is set using the
following formula: η = ns

nu
c, where c is some constant. This keeps the relative influence

of the disagreement and training error terms in F roughly constant within a single series
of experiments. This compensates for the fact that the number of labeled and unlabeled
examples changes.

As a test case, we return to the problem of classifying web pages from the WebKb
database presented in [5]. The WebKb database contains 1051 web pages, collected
from the websites of computer science faculties of four different universities. For each
web page, the database contains both the words contained in the page itself (referred
to as View 1 in [5]) and words appearing in links referring to that web pages (View 2).
The web pages are split into two classes: homepages of courses (230) and non-course
pages (821). The goal of the learning algorithms presented in this section is to correctly
classify web pages into these two classes.

In order to determine the quality of the resulting classifiers, 25% of the examples in
the database were randomly selected in each experiment and held out as a test group.
The experiments were repeated 20 times for each parameter set. All figures show the
average result and its standard error of the mean.

The Value of Agreement, a New Boosting Algorithm 107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250

T
es

t E
rr

or

Labeled Examples

Agr. Boost - View 1
AdaBoost - View 1

Agr. Boost - View 2
AdaBoost - View 2

(a) Test error: Agreement Boost vs AdaBoost

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000

Boosting Iteration

View 1 - Test Error
View 1 - Train Error
View 2 - Test Error

View 2 - Train Error

(b) Overfitting, AdaBoost, ns = 264

Fig. 1. WebKb database, Naive Bayes applied to content and links

η = 1∗ ns
264 , nu = 525

5.1 Agreeing with the Village Fool...

The first set of experiments on the WebKb database mimics the experiments performed
in [5]. The Naive Bayes algorithm is used as a single underlying learning algorithm,
applied to each of the so called views: Page content and words on incoming links. This
is done in a similar fashion to the toy problem, where AgreementBoost is run using the
same learning algorithm on two different aspects of an example. AgreementBoost was
allowed to run for 1000 iterations, using 525 unlabeled examples and setting η = ns

264 .
As can be seen in Figure 1, the classifiers built by AgreementBoost are roughly as

good as the better of the two AdaBoost classifiers. Both AgreementBoost classifiers
perform roughly the same as the AdaBoost classifier that uses the web pages’ content.

One of the main assumptions used in Section 2 was that the underlying learners
are all capable to produce a good classifier. However, as Figure 1(b) show, this is not
the case in this experiment. While learning the links pointing to the pages produces a
classifier with very low training error, it highly over-fits the data and has a very large
test error. It is therefore not surprising that such a classifier has nothing to contribute.
Nevertheless, AgreementBoost does seem to be able to ‘choose’ the better classifier.
Despite of the fact that the two classifiers are forced to agree, the resulting consensus is
as good as the better independent classifier.

5.2 Using a Better Learner

In light of the performance of the underlying links-based algorithm, it was replaced by
a another learning algorithm which learns the web pages’ content. This new underly-
ing learner is based on a degenerate version of decision trees called tree stumps. Tree
stumps consist of only one decision node, classifying an example only according to a
single test. In these experiments, the web pages are classified by testing the number of

108 B. Leskes

instances of a single word within them. If the word has more instances then a given
threshold, the web page is classified to one class and otherwise to the other.

The results of the experiments per-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250
T

e
st

 E
rr

o
r

Labeled Examples

Agr. Boost - Naive Bayes
AdaBoost - Naive Bayes

Agr. Boost - Tree Stumps
AdaBoost - Tree Stumps

Fig. 2. Using Naive Bayes and Tree Stumps
η = 1∗ ns

264 , nu = 525

formed with the Tree Stumps algorithm
are presented in Figure 2. In these ex-
periments, 526 examples were used as
unlabeled examples, allowing for up to
264 labeled examples. To perform a fair
competition and to avoid over-fitting, the
AdaBoost was run for only 300 iterations.
As can be seen, AgreementBoost
produces substantially better classifiers.
On average, using the full 264 labeled
example set, the tree stumps ensemble
produced by AgreementBoost had 0.04
error on the test set. The naive Bayes clas-
sifier performed even better with a 0.038
test error. In comparison, the tree stumps
ensemble constructed by AdaBoost, which was better than the corresponding naive
Bayes classifier, had a test error of 0.049.

In terms of labeled examples reduction, AgreementBoost has also produced good
results. The final test error achieved by AdaBoost using the full labeled exampled set
(264 examples), was already achieved by AgreementBoost’s classifiers using 158 la-
beled examples—a reduction of 40%.

6 Conclusions and Discussion

In the first section of this paper, we have proven a new generalization bound where
unlabelled examples are used to reduce the penalty corresponding to hypothesis space
complexity. Demanding from the underlying learners to agree limits the amount of hy-
potheses at their disposal and thus reduces the complexity of their effective hypothesis
spaces. However, the theorems do not allow to foresee nor to estimate the magnitude of
the improvement. In the set of experiments which we have performed, a reduction of up
to 40% was observed in the number of labeled examples necessary in order to achieve a
desired classification error. More theoretical and experimental work is needed to better
quantify this advantage.

While agreement successfully reduces the number of labeled examples, it is not
without a price. Increasing the importance assigned to the learners’ agreement causes
a reduction in the algorithm’s convergence speed. Since AgreementBoost constructs its
ensembles iteratively, this results in larger and computationally more expensive classi-
fiers. The exact trade-off between agreement weight and convergence speed is yet to be
established.

When designing AgreementBoost, we have opted for simplicity and thus avoided
using many of the possible improvements and modifications, many of which are non-
trivial and justify new research projects. We name a few:

The Value of Agreement, a New Boosting Algorithm 109

1. Many of the improvements of AdaBoost suggested in the literature can adapted
for AgreementBoost. Modifications like regularization terms for the hypotheses
weights and soft margins will probability improve that algorithm’s performance.

2. For simplicity, we have kept the agreement weight (η) constant along the run. How-
ever, we suspect that changing it during the algorithm’s run might lead to superior
results.

3. Following previous work, we have performed all experiments using only two under-
lying learners. However, the theoretical framework is quite more general, allowing
for an arbitrary number of underlying learners. Further experimental study involv-
ing more learners is required.

Acknowledgement. I am grateful to Leen Torenvliet, Peter Grünwald, Pieter Adriaans
and Peter van Emde Boas for their time, comments and helpful insights, leading to the
final version of this work.

References

1. R.Meir and G. Rätsch: An Introduction to Boosting and Leveraging. Advanced lectures on
machine learning. Pages: 118 - 183. ISBN:3-540-00529-3.

2. P.L. Bartlett and S. Mendelson: Rademacher and Gaussian Complexities: Risk bounds and
Structural Results. The Journal of Machine Learning Research, Vol 3. 2003. Pages 463-482.

3. V. Koltchinskii and D. Panchenko: Empirical margin distributions and bounding the gener-
alization error of combined classifiers. The Annals of Statistics, 30(1), February 2002.

4. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee: Boosting the margin: A
new explanation for the effectiveness of voting methods. In Machine Learning: Proceedings
of the Fourteenth Fourteenth International Conference 1997.

5. A. Blum and T. Mitchell: Combining labeled and unlabeled data with co-training. In Pro-
ceedings of the 11th Annual Conference on Computational Learning Theory. ACM, 1998.

6. Anselm Blumer and A. Ehrenfeucht and David Haussler and Manfred K. Warmuth: Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the ACM Vol. 36, issue 4 1989.

7. K. Nigam, A. McCallum, S. Thrun, and T. Mitchell: Learning to classify text from labeled
and unlabeled documents. In Proc. of the 5th National Conference on Artificial Intelligence.
AAAI Press, 1998.

8. D. Luenberger: Introduction to Linear and Nonlinear Programming. Addison-Wesley pub-
lishing company. 1973. ISBN 0-201-04347-5.

9. T. Zhang and F. Oles, A probability analysis on the value of unlabeled data for classification
problems. In Proc. of the Int. Conference on Machine Learning, 2000.

10. Seong-Bae Park and Byoung-Tak Zhang: Co-trained support vector machines for large scale
unstructured document classification using unlabeled data and syntactic information. In In-
formation Processing and Management: an International Journal Vol. 40(3), 2004.

11. Kamal Nigam and Rayid Ghani: Analyzing the effectiveness and applicability of co-training.
In Proc. of the 9th int. conference on Information and knowledge management 2000.

12. Sally Goldman and Yan Zhou: Enhancing supervised learning with unlabeled data. In Inter-
national Joint Conference on Machine Learning, 2000.

13. R. Hwa, M. Osborne, A. Sarkar, M. Steedman: Corrected Co-training for Statistical Parsers.
In the Proc. of the Workshop on the Continuum from Labeled to Unlabeled Data in Ma-
chine Learning and Data Mining, International Conference of Machine Learning, Washing-
ton D.C., 2003.

110 B. Leskes

14. D. Pierce and C. Cardie: Limitations of Co-Training for Natural Language Learning from
Large Datasets. In Proc. of the Conference on Empirical Methods in Natural Language Pro-
cessing 2001.

15. Michael Collins and Yoram Singer: Unsupervised models for named entity classification. In
Proc. of the Joint SIGDAT Conference on Empirical Methods in Natural Language Process-
ing and Very Large Corpora, 1999.

16. S. Dasgupta, Michael L. Littman, David A. McAllester: PAC Generalization Bounds for Co-
training. In Advances in Neural Information Processing Systems 14 (2001).

17. Yoav Freund and Robert E. Schapire: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1), 1997.

18. L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Boosting algorithms as gradient descent in
function space. Technical report, RSISE, Australian National University 1999.

19. K. P. Bennett and A. Demiriz and R. Maclin: Exploiting unlabeled data in ensemble methods.
In Proceedings of the eighth ACM SIGKDD int. conference on Knowledge discovery and data
mining, 2002.

20. G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging. NeuroCOLT2
Technical Report 98, Royal Holloway College, London, August 2001.

21. A. Levin, P. Viola and Y. Freund: Unsupervised Improvement of Visual Detectors using Co-
Training. Int. Conference on Computer Vision (ICCV), Oct 2003, Nice, France.

A PAC-Style Model for Learning from
Labeled and Unlabeled Data

Maria-Florina Balcan and Avrim Blum

Computer Science Department, Carnegie Mellon University
{ninamf, avrim}@cs.cmu.edu

Abstract. There has been growing interest in practice in using unla-
beled data together with labeled data in machine learning, and a number
of different approaches have been developed. However, the assumptions
these methods are based on are often quite distinct and not captured
by standard theoretical models. In this paper we describe a PAC-style
framework that can be used to model many of these assumptions, and
analyze sample-complexity issues in this setting: that is, how much of
each type of data one should expect to need in order to learn well, and
what are the basic quantities that these numbers depend on. Our model
can be viewed as an extension of the standard PAC model, where in ad-
dition to a concept class C, one also proposes a type of compatibility that
one believes the target concept should have with the underlying distribu-
tion. In this view, unlabeled data can be helpful because it allows one to
estimate compatibility over the space of hypotheses, and reduce the size
of the search space to those that, according to one’s assumptions, are a-
priori reasonable with respect to the distribution. We discuss a number of
technical issues that arise in this context, and provide sample-complexity
bounds both for uniform convergence and ε-cover based algorithms. We
also consider algorithmic issues, and give an efficient algorithm for a
special case of co-training.

1 Introduction

There has recently been substantial interest in using unlabeled data together
with labeled data for machine learning. The motivation is that unlabeled data
can often be much cheaper and more plentiful than labeled data, and so if useful
information can be extracted from it that reduces the need for labeled examples,
this can be a significant benefit. A number of techniques have been developed
for doing this, along with experimental results on a variety of different learning
problems. These include label propagation for word-sense disambiguation [23];
co-training for classifying web pages [5], parsing [15], improving visual detectors
[17], and document classification [19]; transductive SVM [16] and EM [18] for
text classification; graph-based methods [3, 24] and others.

The difficulty from a theoretical point of view, however, is that standard
discriminative learning models do not really capture how and why unlabeled data
can be of help. In particular, in the PAC model there is a complete disconnect

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 111–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 M.-F. Balcan and A. Blum

between the data distribution D and the target function f being learned [6, 21].
The only prior belief is that f belongs to some class C: even if D is known
fully, any function f ∈ C is still possible. For instance, it is perfectly natural
(and common) to talk about the problem of learning a concept class over the
uniform distribution; but clearly in this case unlabeled data is useless — you
can just generate it yourself. For learning over an unknown distribution (the
standard PAC setting), unlabeled data can help somewhat, by allowing one to
use distribution-specific sample-complexity bounds, but this does not seem to
fully capture the power of unlabeled data in practice.

In generative-model settings, one can easily talk theoretically about the use
of unlabeled data, e.g., [9, 10]. However, these results typically make strong as-
sumptions that essentially imply that there is only one natural distinction to be
made for a given (unlabeled) data distribution. For instance, a typical generative-
model setting would be that we assume positive examples are generated by one
Gaussian, and negative examples are generated by another Gaussian. In this
case, given enough unlabeled data, we could recover the Gaussians and would
need labeled data only to tell us which Gaussian is the positive one and which is
the negative one.1 This is too strong an assumption for most real-world settings.
Instead, we would like our model to allow for a distribution over data (e.g., doc-
uments we want to classify) where there are a number of plausible distinctions
we might want to make. In addition, we would like a general framework that can
be used to model many different uses of unlabeled data.

The goal of this paper is to provide a PAC-style framework that bridges be-
tween these positions and captures many of the ways unlabeled data is typically
used. We extend the PAC model in a way that allows one to express relationships
that one hopes the target function and underlying distribution will possess, but
without going so far as is done in generative models. We then analyze sample-
complexity issues in this setting: that is, how much of each type of data one
should expect to need in order to learn well, and also give a few algorithmic
results.

The idea of the proposed model is to augment the notion of a concept class
with a notion of compatibility between a target function and the data distribu-
tion. That is, rather than talking of “learning a concept class C,” we will talk
of “learning a concept class C under compatibility notion χ.” Furthermore, we
require that the degree of compatibility be something that can be estimated
from a finite sample. More specifically, we will require that χ is actually a func-
tion from C ×X to [0, 1], where the compatibility of h with D is Ex∈D[χ(h, x)].
The degree of incompatibility is then something we can think of as a kind of
“unlabeled error rate” that measures how a-priori unreasonable we believe some
proposed hypothesis to be. For example,

Example 1 (Margins): Suppose examples are points in Rn and C is the class
of linear separators. A natural belief in this setting is that data should be “well-

1 Castelli and Cover [9, 10] do not assume Gaussians in particular, but they do assume
the distributions are distinguishable, which from our perspective has the same issue.

A PAC-Style Model for Learning from Labeled and Unlabeled Data 113

separated”: not only should the target function separate the positive and nega-
tive examples, but it should do so by some reasonable margin γ [16]. In this case,
we could define χ(h, x) = 1 if x is farther than distance γ from the hyperplane
defined by h, and χ(h, x) = 0 otherwise. So, the incompatibility of h with D is
probability mass within distance γ of h · x = 0. Or we could define χ(h, x) to
be a smooth function of the distance of x to the separator, if we do not want
to commit to a specific γ in advance. (In contrast, defining compatibility of a
hypothesis based on the largest γ such that D has probability mass exactly zero
within distance γ of the separator would not fit our model: it cannot be written
as an expectation over individual examples and indeed one cannot distinguish
“zero” from “exponentially close to zero” with a small sample.)

Example 2 (Co-training): In co-training [5], we assume examples come as
pairs 〈x1, x2〉, and our goal is to learn a pair of functions 〈h1, h2〉. For instance,
if our goal is to classify web pages, x1 might represent the words on the page
itself and x2 the words attached to links pointing to this page from other pages.
The hope that underlies co-training is that the two parts of the example are
consistent, which then allows the co-training algorithm to bootstrap from unla-
beled data.2 In this case, we might naturally define the incompatibility of some
hypothesis 〈h1, h2〉 as Pr〈x1,x2〉∈D[h1(x1) �= h2(x2)].

Example 3 (Linear Separator Graph Cuts): As a special case of Example
2 above, suppose examples are pairs of points in Rn, C is the class of linear
separators, and we believe the two points in each pair should both be on the
same side of the target function (i.e., like co-training but we are requiring h1 =
h2).3 Again we can define the incompatibility of some h to be the probability
mass on examples 〈x1, x2〉 such that h(x1) �= h(x2). One thing that makes this
problem interesting is that we can view examples as edges, view the data as a
graph embedded in Rn, and given a set of labeled and unlabeled data, view our
objective as finding a linear separator minimum s-t cut.

This setup allows us to analyze the ability of a finite unlabeled sample to reduce
our need for labeled data, as a function of the compatibility of the target function
and various measures of the “helpfulness” of the distribution. In particular, in
our model we find that unlabeled data can help in several distinct ways.

2 For example, iterative co-training uses a small amount of labeled data to get some
initial information (e.g., if a link with the words “my advisor” points to a page then
that page is probably a faculty member’s home page) and then when it finds an
unlabeled example where one half is confident (e.g., the link says “my advisor”), it
uses that to label the example for training its hypothesis over the other half.

3 As a motivating example, consider the problem of word-sense disambiguation: given
the text surrounding some target word (like “plant”) we want to determine which
dictionary definition is intended (tree or factory?). Yarowsky [23] uses the fact that
if a word appears twice in the same document, it is probably being used in the same
sense both times.

114 M.-F. Balcan and A. Blum

– If the target function is highly compatible with D, then if we have enough
unlabeled data to estimate compatibility over all h ∈ C, we can in principle
reduce the size of the search space from C down to just those h ∈ C whose
estimated compatibility is high.

– By providing an estimate of D, unlabeled data can allow us to use a more
refined distribution-specific notion of “hypothesis space size” such as An-
nealed VC-entropy [11] or the size of the smallest ε-cover [2], rather than
VC-dimension. In fact, for natural cases (such as those above) we find that
the sense in which unlabeled data reduces the “size” of the search space is
best described in these distribution-specific measures.

– Finally, if the distribution is especially nice, we may find that not only does
the set of compatible h ∈ C have a small ε-cover, but also the elements of
the cover are far apart. In that case, if we assume the target function is fully
compatible, we may be able to learn from even fewer labeled examples than
the 1/ε needed just to verify a good hypothesis!

Our framework also allows us to address the issue of how much unlabeled
data we should expect to need. Roughly, the “VCdim/ε2” form of standard PAC
sample complexity bounds now becomes a bound on the number of unlabeled
examples we need. However, technically, the set whose VC-dimension we now
care about is not C but rather a set defined by both C and χ: that is, the
overall complexity depends both on the complexity of C and the complexity of
the notion of compatibility (see Section 4).

Relationship to the Luckiness Framework. There is a strong connection between
our approach and the luckiness framework [20]. In both cases, the idea is to de-
fine an ordering of hypotheses that depends on the data, in the hope that we will
be “lucky” and find that not too many other functions are as compatible as the
target. There are two main differences, however. The first is that the luckiness
framework uses labeled data both for estimating compatibility and for learning:
this is a more difficult task, and as a result our bounds on labeled data can be
significantly better. For instance, in Example 3 above, for any non-degenerate
distribution, a dataset of n/2 pairs can with probability 1 be completely shat-
tered by fully-compatible hypotheses, so the luckiness framework does not help.
In contrast, with a larger (unlabeled) sample, one can potentially reduce the
space of compatible functions quite significantly depending on the distribution
– see Section 5 and 6. Secondly, the luckiness framework talks about compati-
bility between a hypothesis and a sample, whereas we define compatibility with
respect to a distribution. This allows us to talk about the amount of unlabeled
data needed to estimate true compatibility. There are also a number of differ-
ences at the technical level of the definitions.

Outline of Results. We begin by describing our formal framework, and then in
Section 3 we give the simplest version of our sample-complexity bounds, for the
case of finite hypothesis spaces. In Section 4 we give uniform-convergence bounds
for infinite hypothesis spaces. To achieve tighter bounds, in Section 5 we consider

A PAC-Style Model for Learning from Labeled and Unlabeled Data 115

ε-cover size, and give bounds that hold for algorithms that first use the unlabeled
data to choose a small set of “representative” hypotheses (every compatible h ∈ C
is close to at least one of them), and then choose among the representatives
based on the labeled data. In Section 6, we give our algorithmic results. We
begin with a particularly simple C and χ for illustration, and then give our main
algorithmic result: an efficient algorithm for learning linear separators in the
Co-training model using just a single labeled example, under the assumption
that the distribution satisfies independence given the label. In the process, we
simplify the noisy halfspace learning algorithm of [4] somewhat.

2 A Formal Framework

We assume that examples (both labeled and unlabeled) come according to a
fixed unknown distribution D over an instance space X, and they are labeled
by some unknown target function c∗. As in the standard PAC model, a concept
class or hypothesis space is a set of functions over the instance space X, and we
will often make the assumption (the “realizable case”) that the target function
belongs to a given class C. For a given hypothesis h, the (true) error rate of h
is defined as err(h) = errD(h) = Prx∈D[h(x) �= c∗(x)]. For any two hypotheses
h1, h2 ∈ C, the distance with respect to D between h1 and h2 is defined as
d(h1, h2) = dD(h1, h2) = Prx∈D[h1(x) �= h2(x)]. We will use êrr(h) to denote
the empirical error rate of h on a given labeled sample and d̂(h1, h2) to denote
the empirical distance between h1 and h2 on a given unlabeled sample.

We define a notion of compatibility to be a mapping from a hypothesis h and
a distribution D to [0, 1] indicating how “compatible” h is with D. In order for
this to be estimable from a finite sample, we require that compatibility be an
expectation over individual examples.4 Specifically, we define:

Definition 1. A legal notion of compatibility is a function χ : C × X → [0, 1]
where we (overloading notation) define χ(h,D) = Ex∈D[χ(h, x)]. Given a sample
S, we define χ(h, S) to be the empirical average over the sample.

Definition 2. Given compatibility notion χ, the incompatibility of h with D is
1−χ(h,D). We will also call this its unlabeled error rate, errunl(h), when χ and
D are clear from context. For a given sample S, we use êrrunl(h) to denote the
empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility is
at most some given value τ .

Definition 3. Given threshold τ , we define CD,χ(τ) = {h ∈ C : errunl(h) ≤ τ}.
So, e.g., CD,χ(1) = C. Similarly, for a sample S, we define CS,χ(τ) = {h ∈ C :
êrrunl(h) ≤ τ}

4 Though one could imagine more general notions with this property as well.

116 M.-F. Balcan and A. Blum

3 Finite Hypothesis Spaces

We now illustrate how unlabeled data, together with a suitable compatibility
notion, can reduce the need for labeled examples. We begin with the case of
finite hypothesis spaces where we measure the “size” of a set of functions by
just the number of functions in it. In the standard PAC model, one typically
talks of either the realizable case, where we assume that c∗ ∈ C, or the agnostic
case where we do not. In our setting, we have the additional issue of unlabeled
error rate, and can either make an a-priori assumption that the target function’s
unlabeled error is low, or else aim for a more “Occam-style” bound in which we
have a stream of labeled examples and halt once they are sufficient to justify the
hypothesis produced. We first give a bound for the “doubly realizable” case.

Theorem 1. If we see mu unlabeled examples and ml labeled examples, where

mu ≥ 1
ε

[
ln |C| + ln

2
δ

]
and ml ≥

1
ε

[
ln |CD,χ(ε)| + ln

2
δ

]
,

then with probability 1 − δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) = 0 have
err(h) ≤ ε.

Proof. Notice that the probability that a given hypothesis h with errunl(h) > ε
has êrrunl(h) = 0 is at most (1 − ε)mu < δ/(2|C|) for the given value of mu.
Therefore, by the union bound, the number of unlabeled examples is sufficient to
ensure that with probability 1−δ/2, only hypotheses in CD,χ(ε) have êrrunl(h) =
0. The number of labeled examples then similarly ensures that with probability
1− δ/2, none of those whose true error is at least ε have an empirical error of 0,
yielding the theorem. ��

So, if the target function indeed is perfectly correct and compatible, Theorem
1 gives sufficient conditions on the number of examples needed to ensure that
an algorithm that optimizes both quantities over the observed data will, in fact,
achieve a PAC guarantee. To emphasize this, we will say that an algorithm
efficiently PACunl-learns the pair (C, χ) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of Theorem 1.

We can think of Theorem 1 as bounding the number of labeled examples we
need as a function of the “helpfulness” of the distribution D with respect to our
notion of compatibility. That is, in our context, a helpful distribution is one in
which CD,χ(ε) is small, and so we do not need much labeled data to identify a
good function among them. We can get a similar bound in the situation when
the target function is not fully compatible:

Theorem 2. Given t ∈ [0, 1], if we see mu unlabeled examples and ml labeled
examples, where

mu ≥ 2
ε2

[
ln |C| + ln

4
δ

]
and ml ≥

1
ε

[
ln |CD,χ(t + 2ε)| + ln

2
δ

]
,

then with probability 1− δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) ≤ t + ε have
err(h) ≤ ε, and furthermore all h ∈ C with errunl(h) ≤ t have êrrunl(h) ≤ t+ ε.

A PAC-Style Model for Learning from Labeled and Unlabeled Data 117

In particular, this implies that if errunl(c∗) ≤ t and err(c∗) = 0 then with high
probability the h ∈ C that optimizes êrr(h) and êrrunl(h) has err(h) ≤ ε.

Proof. Same as Theorem 1 except apply Hoeffding bounds to the unlabeled error
rates. ��

Finally, we give a simple Occam/luckiness type of bound for this setting.
Given a sample S, let us define descS(h) = ln |CS,χ(êrrunl(h))|. That is, descS(h)
is the description length of h (in “nats”) if we sort hypotheses by their empir-
ical compatibility and output the index of h in this ordering. Similarly, define
ε-descD(h) = ln |CD,χ(errunl(h) + ε)|. This is an upper-bound on the descrip-
tion length of h if we sort hypotheses by an ε-approximation to the their true
compatibility.

Theorem 3. For any set S of unlabeled data, given ml labeled examples, with
probability 1 − δ, all h ∈ C satisfying êrr(h) = 0 and descS(h) ≤ εml − ln(1/δ)
have err(h) ≤ ε. Furthermore, if |S| ≥ 2

ε2 [ln |C| + ln 2
δ], then with probability

1 − δ, all h ∈ C satisfy descS(h) ≤ ε-descD(h).

The point of this theorem is that an algorithm can use observable quantities to
determine if it can be confident, and furthermore if we have enough unlabeled
data, the observable quantities will be no worse than if we were learning a slightly
less compatible function using an infinite-size unlabeled sample.

4 Infinite Hypothesis Spaces: Uniform Convergence
Bounds

To reduce notation, we will assume in the rest of this paper that χ(h, x) ∈ {0, 1}
so that χ(h,D) = Prx∈D[χ(h, x) = 1]. However, all our sample complexity
results can be easily extended to the case that χ(h, x) ∈ [0, 1].

For infinite hypothesis spaces, the first issue that arises is that in order to
achieve uniform convergence of unlabeled error rates, the set whose complexity
we care about is not C but rather χ(C) = {χh : h ∈ C} where we define χh(x) =
χ(h, x). For instance, suppose examples are just points on the line, and C =
{ha(x) : ha(x) = 1 iff x ≤ a}. In this case, VCdim(C) = 1. However, we could
imagine a compatibility function such that χ(ha, x) depends on some complicated
relationship between the real numbers a and x. In this case, VCdim(χ(C)) is much
larger, and indeed we would need many more unlabeled examples to estimate
compatibility over all of C.

A second issue is that we need an appropriate measure for the “size” of
the set of surviving functions. VC-dimension tends not to be a good choice: for
instance, if we consider the case of Example 1 (margins), then even if data is
concentrated in two well-separated “blobs”, the set of compatible separators still
has as large a VC-dimension as the entire class even though they are all very
similar with respect to D. Instead, we consider the expected number of splits
of a sample of size m drawn from D (its logarithm is annealed VC-entropy)

118 M.-F. Balcan and A. Blum

which exhibits better behavior. Specifically, for any C, we denote by C[m,D] the
expected number of splits of m points (drawn i.i.d.) from D with concepts in C.
Also, for a given (fixed) S ⊆ X, we will denote by S the uniform distribution
over S, and by C[m,S] the expected number of splits of m points (drawn i.i.d.)
from S with concepts in C. We can now get a bound as follows:

Theorem 4. An unlabeled sample of size

mu = O
(

V Cdim (χ(C))
ε2

log
1
ε

+
1
ε2

log
2
δ

)
and a labeled sample of size

ml >
2
ε

[
log(2s) + log

2
δ

]
, where s = CD,χ(t + 2ε)[2ml, D]

is sufficient so that with probability 1 − δ, all h ∈ C with êrr(h) = 0 and
êrrunl(h) ≤ t + ε have err(h) ≤ ε, and furthermore all h ∈ C have |errunl(h) −
êrrunl(h)| ≤ ε.

This is the analog of Theorem 2 for the infinite case. In particular, this implies
that if err(c∗) = 0 and errunl(c∗) ≤ t, then with high probability the h ∈ C that
optimizes êrr(h) and êrrunl(h) has err(h) ≤ ε.

Proof Sketch: By standard VC-bounds [11, 22], the number of unlabeled examples
is sufficient to ensure that with probability 1 − δ/2 we can estimate, within ε,
Prx∈D[χh(x) = 1] for all χh ∈ χ(C). Since χh(x) = χ(h, x), this implies we have
can estimate, within ε, the unlabeled error rate errunl(h) for all h ∈ C, and so
the set of hypotheses with êrrunl(h) ≤ t + ε is contained in CD,χ(t + 2ε).

The bound on the number of labeled examples follows from [11] (where it
is shown that the expected number of partitions can be used instead of the
maximum in the standard VC proof). This bound ensures that with probability
1 − δ/2, none of the functions in CD,χ(t + 2ε) whose whose true (labeled) error
is at least ε have an empirical (labeled) error of 0. ��

We can also give a bound where we specify the number of labeled examples
as a function of the unlabeled sample; this is useful because we can imagine our
learning algorithm performing some calculations over the unlabeled data and
then deciding how many labeled examples to purchase.

Theorem 5. Given t ≥ 0, an unlabeled sample S of size

O
(

max[V Cdim(C), V Cdim(χ(C))]
ε2

log
1
ε

+
1
ε2

log
2
δ

)
is sufficient so that if we label ml examples drawn uniformly at random from
S, where

ml >
4
ε

[
log(2s) + log

2
δ

]
and s = CS,χ(t + ε)

[
2ml, S

]

A PAC-Style Model for Learning from Labeled and Unlabeled Data 119

then with probability ≥ 1 − δ, all h ∈ C with êrr(h) = 0 and êrrunl(h) ≤ t + ε
have err(h) ≤ ε. Furthermore all h ∈ C have |errunl(h) − êrrunl(h)| ≤ ε.

Proof. Standard VC-bounds (in the same form as for Theorem 4) imply that
the number of labeled examples ml is sufficient to guarantee the conclusion of
the theorem with “err(h)” replaced by “errS(h)” (the error with respect to S)
and “ε” replaced with “ε/2”. The number of unlabeled examples is enough to
ensure that, with probability ≥ 1 − δ/2, for all h ∈ C, |err(h) − errS(h)| ≤ ε/2.
Combining these two statements yields the theorem. ��

So, if err(c∗) = 0 and errunl(c∗) ≤ t, then with high probability the h ∈ C
that optimizes êrr(h) and êrrunl(h) has err(h) ≤ ε. If we assume errunl(c∗) = 0
then we can use CS,χ(0) instead of CS,χ(t + ε).

Notice that for the case of Example 1, in the worst case (over distributions D)
this will essentially recover the standard margin sample-complexity bounds. In
particular, CS,χ(0) contains only those separators that split S with margin ≥ γ,
and therefore, s is no greater than the maximum number of ways of splitting 2ml

points with margin γ. However, if the distribution is nice, then the bounds can be
much better because there may be many fewer ways of splitting S with margin
γ. For instance, in the case of two well-separated “blobs” discussed above, if S
is large enough, we would have just s = 4. We also mention that using [7, 8]
we can give versions of these bounds using other complexity measures such as
Rademacher averages.

5 ε-Cover-Based Bounds

The bounds in the previous section are for uniform convergence: they provide
guarantees for any algorithm that optimizes well on the observed data. In this
section, we consider stronger bounds based on ε-covers that can be obtained for
algorithms that behave in a specific way: they first use the unlabeled examples to
choose a “representative” set of compatible hypotheses, and then use the labeled
sample to choose among these. Bounds based on ε-covers exist in the classical
PAC setting, but in our framework these bounds and algorithms of this type are
especially natural and convenient.

Recall that a set Cε ⊆ 2X is an ε-cover for C with respect to D if for every
c ∈ C there is a c′ ∈ Cε which is ε-close to c. That is, Prx∈D(c(x) �= c′(x)) ≤ ε.

To illustrate how this can produce stronger bounds, imagine examples are
pairs of points in {0, 1}n, C is the class of linear separators, and compatibility is
determined by whether both points are on the same side of the separator (i.e., the
case of Example 3). Now suppose for simplicity that the target function just splits
the hypercube on the first coordinate, and the distribution is uniform over pairs
having the same first coordinate (so the target is fully compatible). It is not hard
to show that given polynomially many unlabeled examples U and 1

4 log n labeled
examples L, with high probability there will exist high-error functions consistent

120 M.-F. Balcan and A. Blum

with L and compatible with U .5 So, we do not yet have uniform convergence.
In contrast, the cover-size of the set of functions compatible with U is constant,
so ε-cover based bounds allow learning from just a constant number of labeled
examples.

Theorem 6. If t is an upper bound for errunl(c∗) and p is the size of a minimum
ε − cover for CD,χ(t + 4ε), then using mu unlabeled examples and ml labeled
examples for

mu = O
(

V Cdim (χ(C))
ε2

log
1
ε

+
1
ε2

log
2
δ

)
and ml = O

(
1
ε

ln
p

δ

)
,

we can with probability 1 − δ identify a hypothesis which is 10ε close to c∗.

Proof Sketch: First, given the unlabeled sample U , define Hε ⊆ C as follows: for
every labeling of U that is consistent with some h in C, choose a hypothesis in C
for which êrrunl(h) is smallest among all the hypotheses corresponding to that
labeling. Next, we obtain Cε by eliminating from Hε those hypotheses f with
the property that êrrunl(f) > t + 3ε. We then apply a greedy procedure on Cε,
and we obtain Gε = {g1, · · · , gs}, as follows:

Initialize H1
ε = Cε and i = 1.

1. Let gi = argmin
f∈Hi

ε

êrrunl(f).

2. Using unlabeled data, determine Hi+1
ε by crossing out from Hi

ε those hy-
potheses f with the property that d̂(gi, f) < 3ε.

3. If Hi+1
ε = ∅ then set s = i and stop; else, increase i by 1 and goto 1.

Our bound on mu is sufficient to ensure that, with probability ≥ 1 − δ/2,
Hε is an ε-cover of C, which implies that, with probability ≥ 1 − δ/2, Cε is an
ε-cover for CD,χ(t). It is then possible to show Gε is, with probability ≥ 1− δ/2,
a 5ε-cover for CD,χ(t) of size at most p. The idea here is that by greedily creating
a 3ε-cover of Cε with respect to distribution U , we are creating a 4ε-cover of Cε

with respect to D, which is a 5ε-cover of CD,χ(t) with respect to D. Furthermore,
we are doing this using no more functions than would a greedy 2ε-cover procedure
for CD,χ(t+ 4ε) with respect to D, which is no more than the optimal ε-cover of
CD,χ(t + 4ε).

Now to learn c∗ we use labeled data and we do empirical risk minimization
on Gε. By standard bounds [2], the number of labeled examples is enough to

5 Proof: Let V be the set of all variables that (a) appear in every positive example of
L and (b) appear in no negative example of L. Over the draw of L, each variable has
a (1/2)2|L| = 1/

√
n chance of belonging to V , so with high probability V has size

at least 1
2

√
n. Now, consider the hypothesis corresponding to the conjunction of all

variables in V . This correctly classifies the examples in L, and whp it classifies every
other example in U negative because each example in U has only a 1/2|V | chance
of satisfying every variable in V , and the size of U is much less than 2|V |. So, this
means it is compatible with U and consistent with L, even though its true error is
high.

A PAC-Style Model for Learning from Labeled and Unlabeled Data 121

ensure that with probability ≥ 1− δ/2 the empirical optimum hypothesis in Gε

has true error at most 10ε. This implies that overall, with probability ≥ 1 − δ,
we find a hypothesis of error at most 10ε. ��

As an interesting case where unlabeled data helps substantially, consider a
co-training setting where the target c∗ is fully compatible and D satisfies the
independence given the label property. As shown by [5], one can boost any weak
hypothesis from unlabeled data in this setting (assuming one has enough labeled
data to produce a weak hypothesis). We show here that given enough unlabeled
data, in fact we can learn from just a single labeled example. Specifically it is
possible to show that, for any concept classes C1 and C2, we have:

Theorem 7. Assume that err(c∗) = errunl(c∗) = 0 and D satisfies indepen-
dence given the label. Then using mu unlabeled examples and ml labeled exam-
ples we can find a hypothesis that with probability 1 − δ has error at most ε,
provided that mu = O

(
1
ε ·

[
(V Cdim(C1) + V Cdim(C2)) · ln

(
1
ε

)
+ ln

(
1
δ

)])
and

ml = O(log 1
ε

1
δ).

In particular, by reducing ε to poly(δ), we can reduce the number of labeled
examples needed ml to 1. In fact, our argument can be extended to the case
considered in [1] that D+ and D− merely satisfy constant expansion. In section
6.2, we give an efficient algorithm for the case that C1 and C2 are the class of
linear separators (though that requires true independence given the label).

6 Algorithmic Results

6.1 A Simple Computational Example

We give here a simple example to illustrate the bounds in Section 3, and for which
we can give a polynomial-time algorithm that takes advantage of them. Let the
instance space X = {0, 1}n, and for x ∈ X, let vars(x) be the set of variables
set to 1 by x. Let C be the class of monotone disjunctions (e.g., x1 ∨ x3 ∨ x6),
and for h ∈ C, let vars(h) be the set of variables disjoined by h. Now, suppose
we say an example x is compatible with function h if either vars(x) ⊆ vars(h)
or vars(x) ∩ vars(h) = φ. This is a very strong notion of “margin”: it says, in
essence, that every variable is either a positive indicator or a negative indicator,
and no example should contain both positive and negative indicators.

Given this setup, we can give a simple efficient PACunl-learning algorithm
for this pair (C, χ). We begin by using our unlabeled data to construct a graph
on n vertices (one per variable), putting an edge between two vertices i and j
if there is any example x in our unlabeled sample with i, j ∈ vars(x). We now
use our labeled data to label the components. If the target function is fully
compatible, then no component will get multiple labels (if some compnent does
get multiple labels, we halt with failure). Finally, we produce the hypothesis h
such that vars(h) is the union of the positively-labeled components. This is fully
compatible with the unlabeled data and has zero error on the labeled data, so

122 M.-F. Balcan and A. Blum

by Theorem 1, if the sizes of the datasets are as given in the bounds, with high
probability the hypothesis produced will have error ≤ ε.

Notice that if we want to view the algorithm as “purchasing” labeled data,
then we can simply examine the graph, count the number of connected compo-
nents k, and then request 1

ε [k ln 2+ln 2
δ] labeled examples. (Here, 2k = |CS,χ(0)|.)

By the proof of 1, with high probability 2k ≤ |CD,χ(ε)|, so we are purchasing no
more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-
helpful” distribution for this problem. An especially non-helpful distribution
would be the uniform distribution over all examples x with |vars(x)| = 1, in
which there are n components. In this case, unlabeled data does not help at all,
and one still needs Ω(n) labeled examples (or, even Ω(n/ε) if the distribution is a
non-uniform as in VC-dimension lower bounds [13]). On the other hand, a helpful
distribution is one such that with high probability the number of components is
small, such as the case of features appearing independently given the label.

6.2 Co-training with Linear Separators

We now consider the case of co-training where the hypothesis class is the class
of linear separators. For simplicity we focus first on the case of Example 3: the
target function is a linear separator in Rn and each example is a pair of points
both of which are assumed to be on the same side of the separator (i.e., an
example is a line-segment that does not cross the target plane).

As in the previous example, a natural approach is to try to solve the “con-
sistency” problem: given a set of labeled and unlabeled data, our goal is to find
a separator that is consistent with the labeled examples and compatible with
the unlabeled ones. Unfortunately, this consistency problem is NP-hard: given a
graph G embedded in Rn with two distinguished points s and t, it is NP-hard
to find the linear separator that cuts the minimum number of edges, even if
the minimum is 0 [14]. For this reason, we will make an additional assumption,
that the two points in an example are each drawn independently given the label.
That is, there is a single distribution D over Rn, and with some probability
p+, two points are drawn iid from D+ (D restricted to the positive side of the
target function) and with probability 1 − p+, the two are drawn iid from D−
(D restricted to the negative side of the target function). Blum and Mitchell
[5] have also given positive algorithmic results for co-training when (a) the two
halves of an example are drawn independently given the label (which we are
assuming now), (b) the underlying function is learnable via Statistical Query
algorithms (which is true for linear separators by [4]), and (c) we have enough
labeled data to produce a weakly-useful hypothesis on one of the halves to begin
with.6 Thus, our key contribution here is to show how we can run that algorithm

6 A weakly-useful predictor is a hypothesis h such that Pr[h(x) = 1|c∗(x) = 1] >
Pr[h(x) = 1|c∗(x) = 0] + ε; it is equivalent to the usual notion of a “weak hypoth-
esis” when the target function is balanced, but requires the hypothesis give more
information when the target function is unbalanced.

A PAC-Style Model for Learning from Labeled and Unlabeled Data 123

with only a single labeled example. In the process, we also simplify the results of
[4] somewhat.

Theorem 8. There is a polynomial-time algorithm (in n and b, where b is the
number of bits per example) to learn a linear separator under the above assump-
tions, using polynomially many unlabeled examples and a single labeled example.

Proof Sketch: Assume for convenience that the target separator passes through
the origin, and let us denote the separator by c∗ · x = 0. We will also assume
for convenience that p+ ∈ [ε/2, 1 − ε/2]; that is, the target function is not over-
whelmingly positive or overwhelmingly negative (if it is, this is actually an easy
case, but it makes the arguments more complicated). Define the margin of some
point x as the distance of x/|x| to the separating plane, or equivalently, the
cosine of the angle between c∗ and x.

We begin by drawing a large unlabeled sample S =
{
〈xi

1, x
i
2〉

}
; denote by

Sj the set
{
xi

j

}
, for j = 1, 2. (We describe our algorithm as working with the

fixed unlabeled sample S, since we just need to apply standard VC-dimension
arguments to get the desired result.) The first step is to perform a transformation
T on S1 to ensure that some reasonable (1/poly) fraction of T (S1) has margin
at least 1/poly, which we can do via the Outlier Removal Lemma of [4, 12].7 The
Outlier Removal Lemma states that one can algorithmically remove an ε′ fraction
of S1 and ensure that for the remainder, for any vector w, maxx∈S1(w · x)2 ≤
poly(n, b, 1/ε′)Ex∈S1 [(w · x)2], where b is the number of bits needed to describe
the input points. We reduce the dimensionality (if necessary) to get rid of any
of the vectors for which the above quantity is zero. We then determine a linear
transformation (as described in [4]) so that in that in the transformed space for
all unit-length w, Ex∈T (S1)[(w · x)2] = 1). Since the maximum is bounded, this
guarantees that at least a 1/poly fraction of the points in T (S1) have at least a
1/poly margin with respect to the separating hyperplane.

To avoid cumbersome notation in the rest of the discussion, we drop our
use of “T” and simply use S and c∗ to denote the points and separator in the
transformed space. (If the distribution originally had a reasonable probability
mass at a reasonable margin from c∗, then T could be the identity anyway.)

The second step is we argue that a random halfspace has at least a 1/poly
chance of being a weak predictor on S1. ([4] uses the perceptron algorithm to
get weak learning; here, we need something simpler since we do not yet have any
labeled data.) Specifically, consider a point x such that the angle between x and
c∗ is π/2− γ, and imagine that we draw h at random subject to h · c∗ ≥ 0 (half
of the h’s will have this property). Then,

Prh(h(x) �= c∗(x)|h · c∗ ≥ 0) = (π/2 − γ)/π = 1/2 − γ/π.

7 If the reader is willing to allow running time polynomial in the margin of the data
set, then this part of the argument is not needed.

124 M.-F. Balcan and A. Blum

Since at least a 1/poly fraction of the points in S1 have at least a 1/poly margin
this implies that: small

Prh,x[h(x) = 1|c∗(x) = 1] > Prh,x[h(x) = 1|c∗(x) = 0] + 1/poly.

small This means that a 1/poly probability mass of functions h must in fact be
weakly-useful predictors.

The final step of the algorithm is as follows. Using the above observation, we
pick a random h, and plug it into the bootstrapping theorem of [5] (which, given
unlabeled pairs 〈xi

1, x
i
2〉 ∈ S, will use h(xi

1) as a noisy label of xi
2, feeding the

result into an SQ algorithm), repeating this process poly(n) times. With high
probability, our random h was a weakly-useful predictor on at least one of these
steps, and we end up with a low-error hypothesis. For the rest of the runs of the
algorithm, we have no guarantees. We now observe the following. First of all,
any function h with small err(h) must have small errunl(h). Secondly, because
of the assumption of independence given the label, as shown in theorem 7, the
only functions with low unlabeled error rate are functions close to c∗, close to
¬c∗, close to the “all positive” function, or close to the “all negative” function.8

So, if we simply examine all the hypotheses produced by this procedure, and
pick some h with a low unlabeled error rate that is at least ε/2-far from the
“all-positive” or “all-negative” functions, then either h or ¬h is close to c∗. We
can now just draw a single labeled example to determine which case is which. ��

We can easily extend our algorithm to the standard co-training (where c∗1 can
be different from c∗2) as follows: we repeat the procedure in a symmetric way,
and then, in order to find a good pair of functions, just try all combinations of
pairs of compatible functions to find one of small unlabeled error rate, not close
to “all positive”, or “all negative” functions; finally use a constant number of
labeled examples to produce a low error hypothesis (and here we use only one
part of the example and only one of the functions in the pair).

7 Conclusions

We have provided a PAC-style model that incorporates both labeled and unla-
beled data, and have given a number of sample-complexity bounds. The intent
of this model is to capture many of the ways unlabeled data is typically used,
and to provide a framework for thinking about when and why unlabeled data
can help. The main implication of our analysis is that unlabeled data is useful
if (a) we have a good notion of compatibility so that the target function indeed
has a low unlabeled error rate, (b) the distribution D is helpful in the sense that
not too many other hypotheses also have a low unlabeled error rate, and (c) we
have enough unlabeled data to estimate unlabeled error rates well.

Our best (ε-cover based) bounds apply to strategies that use the unlabeled
data first to select a small set of “reasonable” rules and then use labeled data

8 I.e., exactly the case of the generative models we maligned at the start of this paper.

A PAC-Style Model for Learning from Labeled and Unlabeled Data 125

to select among them, as do our algorithms of Section 6.2. It is interesting to
consider how this relates to algorithms (like the original co-training algorithm)
that use labeled data first, and then use unlabeled data to bootstrap from them.

Another open problem generally would be to better understand the space of
efficient algorithms in this context. In particular, even though we present two
positive algorithmic results, even for fairly simple pairs (C, χ), it seems difficult to
efficiently make full use of unlabeled data without additional assumptions on the
distribution. A specific open problem is whether there exist efficient algorithms
for the simple problem in Section 6.1 if we allow irrelevant variables. That is,
we assume the set of variables is partitioned into 3 groups A, B, and C, each
positive example has |vars(x) ∩ A| ≥ 1 and |vars(x) ∩ B| = 0, and each negative
example has |vars(x) ∩B| ≥ 1 and |vars(x) ∩A| = 0, but we allow |C| > 0.

Acknowledgements. We thank Santosh Vempala for a number of useful
discussions.

References

1. M. F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging
theory and practice. In NIPS, 2004.

2. G.M. Benedek and A. Itai. Learnability with respect to a fixed distribution. The-
oretical Computer Science, 86:377–389, 1991.

3. A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proc. ICML, pages 19–26, 2001.

4. A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for
learning noisy linear threshold functions. Algorithmica, 22:35–52, 1998.

5. A. Blum and T. M. Mitchell. Combining labeled and unlabeled data with co-
training. In Proc. 11th Annual Conf. Computational Learning Theory, pages 92–
100, 1998.

6. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and
the Vapnik Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

7. S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of
recent advances. Manuscript, 2004.

8. S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequality with
applications. Random Structures and Algorithms, 16:277–292, 2000.

9. V. Castelli and T.M. Cover. On the exponential value of labeled samples. Pattern
Recognition Letters, 16:105–111, 1995.

10. V. Castelli and T.M. Cover. The relative value of labeled and unlabeled samples
in pattern recognition with an unknown mixing parameter. IEEE Transactions on
Information Theory, 42(6):2102–2117, 1996.

11. L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Springer-Verlag, 1996.

12. J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces.
In Proceedings of the 33rd ACM Symposium on Theory of Computing, 2001.

13. A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on
the number of examples needed for learning. Inf. and Comput, 82:246–261, 1989.

14. A. Flaxman. Personal communication, 2003.

126 M.-F. Balcan and A. Blum

15. R. Hwa, M. Osborne, A. Sarkar, and M. Steedman. Corrected co-training for statis-
tical parsers. In ICML-03 Workshop on the Continuum from Labeled to Unlabeled
Data in Machine Learning and Data Mining, Washington D.C., 2003.

16. T. Joachims. Transductive inference for text classification using support vector
machines. In Proc. ICML, pages 200–209, 1999.

17. A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of visual detectors
using co-training. In Proc. 9th Int. Conf. Computer Vision, pages 626–633, 2003.

18. K. Nigam, A. McCallum, S. Thrun, and T.M. Mitchell. Text classification from
labeled and unlabeled documents using EM. Mach. Learning, 39(2/3):103–134,
2000.

19. S.-B. Park and B.-T. Zhang. Co-trained support vector machines for large scale un-
structured document classification using unlabeled data and syntactic information.
Information Processing and Management, 40(3):421 – 439, 2004.

20. J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information
Theory, 44(5):1926–1940, 1998.

21. L.G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
22. V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons Inc., 1998.
23. D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised meth-

ods. In Meeting of the Association for Computational Linguistics, pages 189–196,
1995.

24. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proc. ICML, pages 912–912, 2003.

Generalization Error Bounds
Using Unlabeled Data

Matti Kääriäinen

Department of Computer Science,
P.O. Box 68, FIN-00014 University of Helsinki, Finland

matti.kaariainen@cs.helsinki.fi

Abstract. We present two new methods for obtaining generalization
error bounds in a semi-supervised setting. Both methods are based on
approximating the disagreement probability of pairs of classifiers using
unlabeled data. The first method works in the realizable case. It sug-
gests how the ERM principle can be refined using unlabeled data and
has provable optimality guarantees when the number of unlabeled exam-
ples is large. Furthermore, the technique extends easily to cover active
learning. A downside is that the method is of little use in practice due
to its limitation to the realizable case.

The idea in our second method is to use unlabeled data to transform
bounds for randomized classifiers into bounds for simpler deterministic
classifiers. As a concrete example of how the general method works in
practice, we apply it to a bound based on cross-validation. The result is
a semi-supervised bound for classifiers learned based on all the labeled
data. The bound is easy to implement and apply and should be tight
whenever cross-validation makes sense. Applying the bound to SVMs on
the MNIST benchmark data set gives results that suggest that the bound
may be tight enough to be useful in practice.

1 Introduction

We study an extension of the (supervised) statistical learning model to a model
for semi-supervised learning. In the semi-supervised model, the learner gets a
labeled learning sample (X1, Y1), . . . , (Xn, Yn) and an unlabeled learning sample
(Xn+1, . . . , Xn+m). Here, the labeled examples (Xi, Yi) ∈ X ×Y, 1 ≤ i ≤ n, are
independent copies of a random element (X,Y) having distribution P on X ×Y,
and the unlabeled examples Xn+j ∈ X , 1 ≤ j ≤ m, are independent copies of
X, whose distribution (the marginal distribution of P on X) we denote by PX .
Based on the (labeled and unlabeled) learning samples, the learner is supposed to
pick a classifier f : X → Y with small generalization error ε(f) = P (f(X) �= Y).
In addition to the classifier, we are interested in a generalization error bound for
it, that is, a random variable that upper bounds ε(f) for the learned classifier f
with at least probability 1−δ. The setting extends easily to learning randomized
classifiers which will be defined formally in Section 2.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 127–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 M. Kääriäinen

The usual motivation for studying semi-supervised learning is that in prac-
tice getting unlabeled data is often considerably easier or cheaper than getting
labeled data. We are tempted to go even further and claim that in cases where
the model of statistical learning theory makes sense, unlabeled data should be
almost free. The reason is that if examples distributed according to PX are hard
to get, stating the goal of learning in terms of generalization performance — the
expected loss on such examples — is peculiar. In such cases, it would probably
be better to resort to transduction (in case the unlabeled sample to be labeled is
known at the time of learning) or to state the goal of learning in terms other than
generalization error. The semi-supervised model thus seems to be applicable in
most of the cases in which the model of statistical learning theory is sensible.
An exception to this rule is the case in which unlabeled data will be available
but only after learning has taken place.

If we take the sample of unlabeled data for granted, the next question is
whether and how access to it can help in learning and/or generalization error
analysis. These questions have been subject to intensive research that has pro-
duced many semi-supervised learning algorithms that can be used in practice.
The theoretical aspects of semi-supervised learning have received less attention,
although some interesting results have been published recently [1, 2]. The value
of unlabeled data to learning has been studied in restricted settings [3, 4], but
to our knowledge the general question of whether unlabeled data provably helps
in classifier learning has not been answered.

We prove that unlabeled data is useful in the realizable case, that is, when
the learner is given access to a set F of classifiers that contains a target function
f0 for which Y = f(X) (always or at least with probability 1). More specifically,
we show that we can improve on the best results obtainable for empirical risk
minimization (ERM) [5] provided we have access to a sufficiently large sam-
ple of unlabeled examples. In our second method for obtaining semi-supervised
generalization error bounds we drop the assumption of the existence of a target
function. The method is based on derandomizing generalization error bounds for
randomized classifiers using unlabeled data. As an example of a concrete bound
that can be proved using the proposed method, we transform the cross-validation
estimate into a true generalization error bound for the hypothesis learned based
on all the labeled data. Our empirical experiments indicate that the resulting
bound applied to SVMs on the MNIST benchmark data set gives bounds compa-
rable to cross-validation estimates. Thus, even though our second method lacks
theoretical a priori optimality guarantees, it seems to provide bounds that are
extremely tight in practice.

Our bounds for both the realizable and the general case are based on using
the disagreement probability d(f, g) = P(f �= g) = P(f(X) �= g(X)) as a metric
in the space of randomized classifiers. Variants of d have been used earlier as a
basis for model selection criteria [6, 7], in providing lower bounds and estimates
of the variance of the error of a hypothesis produced by a learning algorithm
in a co-validation setting [1], and as an example of a distance measure that can
be used in the learning by distances model [8]. To our knowledge, using d in

Generalization Error Bounds Using Unlabeled Data 129

proving generalization error bounds is original to our work. The disagreement
probability d is very natural in this context, since the generalization error of a
classifier is its probability of disagreeing with the target. The reason d fits the
semi-supervised setting particularly well is that it can be approximated using
d̂ given by d̂(f, g) = 1

m

∑m
j=1�f(Xn+j) �= g(Xn+j)�, where the notation �φ�

means the function that has value 1 if φ is true and 0 otherwise. Note that
md̂(f, g) is the number of times f and g disagree on the unlabeled sample, so
its distribution is binomial with parameters m and d(f, g). Thus, one can derive
confidence intervals for d(f, g) given d̂(f, g) using the familiar techniques for
binomial distributions.

2 Randomized Classifiers

In addition to standard deterministic classifiers, we work with randomized classi-
fiers, also referred to as Gibbs classifiers in the literature. A randomized classifier
f is simply a Y-valued random variable that may depend on X but is indepen-
dent of other randomized classifiers given X. In particular, the target Y is viewed
as a randomized classifier. To classify an example x ∈ X , a randomized classifier
f chooses a label f(x) ∈ Y from the conditional distribution of f given X = x.
A new copy of f is used each time it is applied.

In practice, a randomized classifier f is usually specified by a set of classi-
fiers {fθ : X → Y}, where the parameter θ is a realization of a random variable
Θ = Θf that specifies the underlying classifier to use. It is assumed that the pa-
rameters Θf are independent of each other and everything else. The randomized
classifier corresponding to a deterministic classifier f : X → Y is simply f(X). It
is admittedly a bit unnatural to incorporate the distribution of X in the defini-
tion of a randomized classifier, but this choice will be technically convenient in
the following. The definition of generalization error is extended to randomized
classifiers f by setting ε(f) = P(f �= Y) = P(fΘ(X) �= Y).

The definition of disagreement probability d(f, g) = P(f �= g) and its empir-
ical approximation d̂(f, g) extend automatically to randomized classifiers. The
fact that d really is a (pseudo-)metric on the space of randomized classifiers can
be easily verified (also for loss functions other than the 0-1 loss). A key property
of d we will take advantage of is that ε(f) = d(f, Y) for all randomized clas-
sifiers f , a fact first noted by Schuurmans and Southey for the special case of
deterministic classifiers [6]. Thus, we can embed all the classifiers and the target
into a metric space, state the goal of learning in terms of this metric, and use
the metric structure of the space both in the learning process and its analysis.

Note that the distance d̂(f, g) between randomized classifiers f and g depends
on the unlabeled data points Xn+j , 1 ≤ j ≤ m, and the random classifications of
f and g only, so it can be computed without knowing the labels for the unlabeled
points. Our strategy will be to use d̂ to relate the generalization error of a learned
classifier to that of a (randomized) classifier for which it is either known or can
be tightly upper bounded. We will show how to do this in the realizable and in
the general case in Sections 3 and 4, respectively.

130 M. Kääriäinen

3 The Realizable Case

In this section we present our bounds for the realizable case, discuss their prop-
erties, and outline extensions to active learning.

3.1 General Bound

Our bound for the realizable case is based on relating the learned classifier
to (other) consistent classifiers — classifiers f for which the empirical error
ε̂(f) = 1

n

∑n
i=1�f(Xi) �= Yi� is zero. The idea is that even though the target

function is unknown, we know that it is among the consistent classifiers and that
its generalization error is zero. Thus, if we can show that the learned classifier
is not too far from any of the consistent classifiers, then it has to be close to
the target function, too. Because the metric d we use for measuring distances
is the disagreement probability, this implies that the generalization error of the
learned classifier is bound to be close to zero as well. We will next show how to
make this idea precise.

Let F0 = {f ∈ F | ε̂(f) = 0} be the set of consistent classifiers, also known
as the version space. Here, F is the given class of classifiers that is known to
contain the target f0 by assumption, so f0 is always in the version space. Let f
be any classifier. The generalization error of f can be written as

ε(f) = d(f, Y) = d(f, f0).

Thus, the generalization error of f is simply its d-distance to f0.
The only thing we know about f0 is that it is by assumption consistent with

the labeled data and in F0, so the best imaginable upper bound for d(f, f0) based
on the knowledge at hand is sup {d(f, g) | g ∈ F0}. But we do not know d, so we
have to replace it by the empirical approximation d̂ to get

ε(f) ≤ sup
g∈F0

[
d̂(f, g) + (d − d̂)(f, g)

]
≤ sup

g∈F0

d̂(f, g) + sup
g∈F0

(d − d̂)(f, g).

Here, only the term supg∈F0
(d− d̂)(f, g) depends directly on the unknown distri-

bution P (through d). This far nothing has been assumed about f , but in order
to bound the error introduced by replacing d by d̂, one has to introduce some
restrictions. A natural choice (suggested by the ERM principle) is to restrict f
to be a consistent classifier chosen from F , that is, to assume f ∈ F0. This gives

ε(f) ≤ sup
g∈F0

d̂(f, g) + sup
g′,g∈F0

(d − d̂)(g′, g).

Optimizing this bound over f suggests choosing the f̂ ∈ F0 whose (empirical)
distance to the farthest point in F0 is minimal (for simplicity we assume such a
minimizer exists). We will call this f̂ the empirical center of the version space
for obvious reasons.

Putting the above reasoning together, we get the following bound for the
empirical center. A similar bound without the infimum holds for any f ∈ F0 and
can be useful, e.g., if finding the empirical center is computationally hard.

Generalization Error Bounds Using Unlabeled Data 131

Theorem 1. Let f̂ be the empirical center of F0. It is always true that

ε(f̂) ≤ inf
f∈F0

sup
g∈F0

d̂(f, g) + sup
g′,g∈F0

(d − d̂)(g′, g).

This bound still depends on the unknown distribution PX through the term
sup {(d − d̂)(g′, g) | g′, g ∈ F0}. We will next show how to get rid of this depen-
dency by using Rademacher penalization (other uniform convergence techniques
familiar from generalization error analysis could have been used as well). If un-
labeled data is abundant, one can also take a course similar to the hold-out
bounds and use an independent sample of unlabeled data to test how close d
and d̂ really are to each other on F0.

3.2 Concrete Bound Based on Rademacher Penalization

The idea here is to apply standard Rademacher penalization bounds to the class
{x !→ �g′(x) �= g(x)� | g′, g ∈ F0} and the sample of unlabeled data to show that
the empirical expectations of these indicators (in our notation d̂) are with high
probability close to their true expectations (in our notation d). This yields an
upper bound for sup {(d − d̂)(g′, g) | g′, g ∈ F0}, the quantity we are interested
in.

Following [9], we define the Rademacher penalty Rm(H) of a class H of
functions from X to {0, 1} as follows:

Rm(H) = sup
h∈H

∣∣∣∣∣∣ 1
m

m∑
j=1

σj(1 − 2h(Xn+j))

∣∣∣∣∣∣ .
Here, the random elements Xn+j are independent copies of X and σ1, . . . , σm is
a sequence of symmetrical {±1}-valued random signs independent of each other
and everything else. With this definition, we have the following:

Theorem 2 ([9]). Let H be any set of functions from X to {0, 1}. With proba-
bility at least 1− δ (over the choice of the random signs and the Xjs), it is true
that

sup
h∈H

∣∣∣∣∣∣ 1
m

m∑
j=1

h(Xn+j) − Eh(X)

∣∣∣∣∣∣ ≤ Rm(H) +
3√
2

√
ln 2/δ

m
.

To use this bound, H has to be independent of Xn+1, . . . , Xn+m. In our case
H depends on the labeled sample through F0, but is independent of the unla-
beled sample. Hence, the previous theorem can be applied, which together with
Theorem 1 gives the following.

Theorem 3. Let f̂ be the empirical center of F0. For all labeled learning sam-
ples, it is true with probability at least 1 − δ (over the choice of the unlabeled
learning sample and the Rademacher signs) that

ε(f̂) ≤ inf
f∈F0

sup
g∈F0

d̂(f, g) + Rm({�g′ �= g� | g′, g ∈ F0}) +
3√
2

√
ln(2/δ)

m
.

132 M. Kääriäinen

This bound depends on the observed data only. Thus, the bound can be evaluated
in practice if the computational problems related to evaluating the Rademacher
penalty term can be overcome. If not or if one is only interested in how the bound
behaves in the worst case as a function of m, one can resort to further upper
bounds based on (upper bounds) for the VC dimension of {�g′ �= g� | g′, g ∈ F0}
to get the following corollary [9, 10].

Corollary 1. Let f̂ be the empirical center of F0 and let D be an upper bound
for the (data-dependent) VC dimension of {�g′ �= g� | g′, g ∈ F0}. Then with
probability at least 1 − δ (over the choice of the unlabeled sample) we have

ε(f̂) ≤ inf
f∈F0

sup
g∈F0

d̂(f, g) +
√

2

√
D(ln(m/D) + 1) + ln(2/δ)

m
+

3√
2

√
ln(4/δ)

m
.

When the corollary is applicable, it implies that the error introduced by ap-
proximating d by d̂ vanishes as the size of the unlabeled sample increases. Even
though tighter bounds could be desired in practical applications, this is all we
need to know in the discussion that follows.

3.3 Properties of the Bound for the Realizable Case

In this section we analyze how our bounds for the realizable case behave as a
function of n and m. The general intuition is as follows. The term supg∈F0

d̂(f, g)
measures the amount of uncertainty about the target that remains after seeing
the labeled sample. The remaining terms measure the inaccuracy introduced by
approximating d by d̂, that is, the remaining uncertainty about PX . These two
kinds of uncertainty depend on each other: The less labeled data, the larger the
version space F0, and thus the more complex the task of approximating d on F0.

Let us first see what happens in the limit m → ∞. In case the loss class
{�g′ �= g� | g′, g ∈ F0} has finite VC dimension, we know by Corollary 1 that
(d− d̂) goes uniformly to zero on F0. In this case, for large m, the bound reduces
essentially to

inf
f∈F0

sup
g∈F0

d̂(f, g) = inf
f∈F0

sup
g∈F0

d(f, g).

The best possible bound for ERM would be sup {d(f, g) | f, g ∈ F0}: Any smaller
bound would be violated by some combinations of a consistent hypothesis f and
a target g. As ERM views all f ∈ F0 equivalently and the target may be any of
the consistent functions, such a worst case situation can be realized.

In geometric terms, the lower bound for bounds for ERM is the true diameter
of the version space, whereas our upper bound for the empirical center is its true
radius. This simple observation immediately yields the following:

Theorem 4. Suppose the Rademacher penalty term in Theorem 3 converges to 0
as m → ∞. Then, for sufficiently large m, the bound for the empirical center is at
least as good as the best possible bound for ERM and cannot be improved without
additional assumptions or labeled data. The bound of Theorem 3 improves upon
the best possible bound for ERM by a factor of 2 if the radius of F0 is only half
its diameter, but in case the radius equals the diameter the bounds may be equal.

Generalization Error Bounds Using Unlabeled Data 133

The other limiting case is when no uncertainty about the labeling remains,
whence F0 reduces to {f0}. In this case the bound of Theorem 1 reduces to
zero, irrespectively of the unlabeled learning sample. This limiting case is prob-
ably not too interesting, but it is still nice that the bound gives the correct
answer.

Of course, the most interesting cases are the ones in between the extremes
outlined above. Here, the exact values of sup {(d − d̂)(g′, g) | g′, g ∈ F0} and
its upper bounds become important. The trade-off is that the more complex F0

is, the more unlabeled data is needed to reveal its structure, that is, to make
sup {(d − d̂)(g′, g) | g′, g ∈ F0} small. If F0 is simple enough (e.g., the related
class of pairs of classifiers has finite VC dimension), we know that this supremum
vanishes as m increases with a speed depending on the complexity of F0. In
practice it is impossible to get or use arbitrarily large samples of unlabeled data,
which makes the non-asymptotic behavior of the penalty terms important. The
quest for tightest possible finite sample bounds on the deviation between d̂ and
d resembles a lot the analogous task for generalization error bounds based on
uniform convergence. Unlike in the case of generalization error analysis, it seems
that uniform convergence is really required here — the approximation has to be
good uniformly on F0 and not only when the distances are small.

3.4 Extensions Towards Active Learning

The only assumption on the labeled learning sample we actually used in deriving
our bounds is that the labels of the examples are assigned according to the target
f0. This is enough to guarantee that f0 ∈ F0, which is all we need in the proofs.
Hence, the bounds will remain true even if we drop the assumption that the
points Xi, 1 ≤ i ≤ n, are sampled from PX . The unlabeled examples Xn+j ,
1 ≤ j ≤ m, have to be distributed according to PX , though, since otherwise the
approximation d̂ would not necessarily converge to d.

A version of the semi-supervised model where only the unlabeled data is
distributed according to PX may be quite natural in many settings. For example,
the set of examples to be labeled might be chosen by stratified sampling or in
some other complex way, because one wants to focus labeling efforts to a set
of points that is in some sense as informative as possible. With respect to our
bounds, the efficiency of such sampling schemes can be measured in terms of the
radius of the resulting version space. The less data is needed to make the radius
of F0 small, the better.

Our bounds can be used in deriving new criteria for actively selecting the
points in X to be labeled, also. Namely, one can try to optimize the bound
by selecting points to be labeled so that the empirical radius — the distance
from the empirical center of F0 to the farthest classifier in F0 — decreases as
much as possible when the labels are revealed. There are many variants of this
active learning setting even if only label queries are considered: The learner
can be forced to select all the points to be labeled before seeing any labeled
examples, the learner may be allowed to query labels of points one by one in

134 M. Kääriäinen

an online fashion, or the active part of learning can start only after the learner
has first obtained a (randomly chosen) labeled sample as in the non-active semi-
supervised setting. From a technical point of view, the choice of the setting affects
the bounds only through the set on which we have to be able to guarantee that d̂
is a good approximation to d. In the first two settings we have to have guarantees
on the whole of F , while in the last setting it is enough that d̂ and d are close to
each other on the version space related to the initial non-actively chosen sample.
This last case is interesting because it models a situation in which the learner
is not satisfied with the bound it got with the (randomly chosen) labeled data,
and tries to improve on it by querying new labels.

4 Bounds for the General Case

The results obtained in the realizable case are interesting mostly from a the-
oretical point of view, since the assumption that the target lies in a (simple)
hypothesis class known to the learner in advance is hardly ever justifiable in
practice. This limitation is not a problem of our setting only, but affects, e.g., all
results obtained in the original PAC model introduced by Valiant [11]. In this
section, we drop all assumptions about the existence of a target, which makes
our results applicable in all situations covered by the semi-supervised learning
model.

Our bounds for the general case build on bounds for randomized classifiers.
The idea is to use a randomized classifier for which a good generalization bound
exists as an anchoring point for the generalization error of the learned determin-
istic classifier. The randomized classifier together with its bound thus plays the
role the target function was in in the realizable case. Randomized bounds that
can be used here include, e.g., the PAC-Bayesian bounds [12], the recent bounds
for ensembles of classifiers created by an online learning algorithm [13], and the
progressive validation bound [14]. Test set bounds can be interpreted as a special
case of this setting in which the randomized classifier is actually deterministic.
Also bagging and cross-validation can be used as bases for generalization error
bounds. We have worked through instances of all the above mentioned bounds,
but will cover only the bound based on cross-validation in this paper.

There are many reasons for being interested in deterministic classifiers even
though the bounds for randomized classifiers are often tighter. First, determin-
istic classifiers are nicer to work with since the predictions they give do not
change randomly over time. Second, using a randomized classifier often requires
storing all the underlying deterministic classifiers in memory or otherwise at
hand, although at times it is possible to represent the randomized classifier in
a more concise form (e.g., as a distribution of perturbations to a single de-
terministic classifier). In many cases the deterministic classifiers are huge and
so is their number, so the memory requirements may be enormous. Third, the
randomization is often introduced only to facilitate (the analysis of) generaliza-
tion performance, while the underlying learning algorithm is originally designed
to learn single deterministic classifiers. This is the case, e.g., with the online

Generalization Error Bounds Using Unlabeled Data 135

bound (when applied to batch algorithms) and the cross-validation bound. In
such cases, aiming at bounds for the deterministic classifier learned based on all
labeled data is very natural indeed.

4.1 Derandomization by Voting

Suppose f is an arbitrary randomized classifier. Let fvote be the deterministic
voting classifier related to f given by fvote(x) = arg max{P(f(x) = y) | y ∈ Y}
(ties are broken arbitrarily). Replacing f by fvote is a standard method of getting
rid of randomness. The drawbacks of using fvote instead of f are that (1) in the
worst case, ε(fvote) = 2ε(f) (this is the case if f is based on fair coin tosses
and the target is 1 − fvote), (2) using fvote as a classifier requires storing all
the classifiers underlying f in memory, and (3) one has to evaluate them all
when classifying an instance. Given these, fvote is probably not the classifier
we are looking for. We know (1) is in general unavoidable if a deterministic
approximation to f is desired, but we will show that the complexity issues (2) and
(3) can be circumvented by accepting a small loss in generalization performance.

In the following theorems, the randomized classifiers f and g and the random
variables α and β may depend on the labeled and unlabeled data in any way.
We leave the choice of α and β intentionally open for the sake of generality. All
probabilities are over the choice of data and the randomness in the classifiers.

The next Theorem is in a key role in all that follows.

Theorem 5. Let f and g be randomized classifiers. If P(ε(f) ≤ α) ≥ 1−δ/2 and
P(d(f, g) ≤ β) ≥ 1−δ/2, then P(ε(g) ≤ α+β) ≥ 1−δ, where the probabilities are
over the labeled and unlabeled data as well as the randomness in the classifiers
f and g.

Proof. If f agrees with Y and g agrees with f , then g agrees with Y . Thus, g
errs only if either f errs or g disagrees with f . By the assumptions, the definition
of d, and the union bound, the probability for this event is at most α + β.

Alternatively, one can use the triangle inequality for d and write

ε(g) = d(g, Y) ≤ d(g, f) + d(f, Y) = d(f, Y) + d(f, g) ≤ α + β,

where the last inequality is true with probability at least 1−δ by the assumptions.
��

As a simple corollary we get the following:

Corollary 2. Let f be a randomized classifier. If P(ε(f) ≤ α) ≥ 1 − δ/2 and
P(d(f, fvote) ≤ β) ≥ 1 − δ/2, then P(ε(fvote) < α + β) ≥ 1 − δ.

In words, derandomizing f by replacing it with fvote incurs a loss of at most
d(f, fvote). If f depends only on the labeled data, then d(f, fvote) is simply the
probability of the event that the classifiers f and fvote (fixed after seeing the
labeled data) disagree. Thus, we can use d̂(f, fvote) to obtain β. The same can
be done in case of Theorem 5 if neither f nor g depend on the unlabeled data.

136 M. Kääriäinen

The next theorem shows that in case the bound for f is good, d(f, fvote) has
to be small.

Theorem 6. For any randomized classifier f , it is true that d(f, fvote) ≤ ε(f).

Proof. Consider the learning problem P ′ defined by f as follows: Choose an X
according to PX , and let Y ′ = f(X). It is easy to see that fvote is the Bayes
classifier for this problem and thus has the minimal probability of misclassi-
fying (X,Y ′) [15]. By the definition of Y ′, this probability is d(f, fvote). Now
d(f, fvote) ≤ infg d(f, g) ≤ d(f, Y) = ε(f), since Y can be viewed as a potential
choice of g. ��

Combining this theorem with Corollary 2 gives the known result that transform-
ing a randomized classifier to a voting classifier at most doubles the generaliza-
tion error. However, it may be that d(f, fvote) is much smaller than ε(f) and at
least much smaller than the best bounds for ε(f), so Corollary 2 may provide
significant improvements over the factor 2 bound.

Another interesting consequence of Theorem 6 is that if a randomized clas-
sifier f does well, it is almost deterministic in the sense that its probability
of disagreeing with the deterministic classifier fvote — that is, d(f, fvote) — is
small. In other words good randomized classifiers are almost deterministic on
the parts of X with significant probability. More exactly, the expected margin
of a good randomized classifier has to be large.

The classifier fvote is the best deterministic approximation to f in the sense
that its probability of disagreeing with f is minimal. As a corollary it also al-
ways optimizes the bound of Theorem 5. However, optimizing the distance to f
(equivalently, the bound in Theorem 5) is equivalent to optimizing the general-
ization error only if fvote happens to be the Bayes classifier for P , which needs
not be the case. This and the complexity of fvote motivates us to look for other
choices of g in Theorem 5.

One evident choice would be the classifier g∗ that minimizes d(g, f) over
the classifiers underlying f . By the Markov inequality, we have d(g∗, fvote) ≤
d(f, fvote). Combining this with the triangle inequality, we get

d(f, g∗) ≤ d(f, fvote) + d(fvote, g
∗) ≤ 2d(f, fvote),

so at most a factor of 2 is lost in β by resorting to the (simple) g∗ instead of the
(complex) fvote. A drawback is that g∗ depends on the unknown d and thus has
to be approximated by the classifier that optimizes d̂(g, f) instead. Hence, to
get good bounds, we have to be able to guarantee that d̂(f, g) is close to d(f, g)
over all g underlying f that we optimize over. This can be easily accomplished
by using the union bound in case the set of these g is small (at least finite),
but in general one may have to resort to more complicated uniform convergence
techniques.

Some bounds for randomized classifiers suggest other choices for deterministic
approximations. For example, in case of the bound for the ensembles of classifiers
produced by an online algorithm and the bound for cross-validation, the most

Generalization Error Bounds Using Unlabeled Data 137

natural choice is to use the classifier ffinal learned based on all the labeled data
in the role of g in Theorem 5. The next subsection is devoted to deriving such a
bound for ffinal starting from a cross-validation estimate.

4.2 A Concrete Bound Based on Cross-Validation

Cross-validation works as follows. First, the labeled data is split into k sub-
sets or folds of equal size, where k is a parameter of the method (for sim-
plicity, we assume that n is divisible by k). The ith fold thus consists of the
points (X(i−1)n/k+1, Y(i−1)n/k+1), . . . , (Xin/k, Yin/k), where i = 1, . . . , k. Then,
the learning algorithm is run k times. In the ith run the examples not in fold i
are used for learning and the examples in fold i for testing the learned hypoth-
esis. This way, one gets k classifiers f1, . . . , fk and unbiased estimates ε̂1, . . . , ε̂k

for their generalization errors ε(f1), . . . , ε(fk). Here,

ε̂i =
k

n

n/k∑
j=1

�fi(X(i−1)n/k+j) �= Y(i−1)n/k+j�.

The average of these estimates is often used in assessing the performance of
the classifier ffinal — the classifier learned by the same learning algorithm that
produced f1, . . . , fk, but this time based on all the labeled data. Cross-validation
is widely used in practice, even though there are no guarantees that the estimates
it gives are meaningful.

We now show how to transform the heuristic cross-validation estimate into
a generalization error bound for ffinal by the method presented in the previous
section. Let f be the randomized classifier obtained by choosing a classifier
among the classifiers fi uniformly at random. That is, let the set of classifiers
underlying f be {f1, . . . , fk} and let Θf have uniform distribution in {1, . . . , k}.

The following generalization error bound for f that builds on tight test set
bounds [16] for the underlying classifiers fi is to our knowledge new.

Theorem 7. Let f be the randomized classifier obtained by cross-validation as
explained above. Then with probability at least 1−δ (over the choice of the labeled
sample), we have

ε(f) ≤ 1
k

k∑
i=1

Bin (ε̂i, n/k, δ/k) ,

where the inverse binomial tail [16] Bin (p̂,m, δ) is the p for which

�p̂m�∑
i=0

(
m

i

)
pi(1 − p)m−i = δ.

Proof. For each i = 1, . . . , k, we have n
k ε̂i ∼ Bin(ε(fi), n

k). Thus, by definition, it
is true for each i that ε(fi) ≤ Bin (ε̂i, n/k, δ/k) with probability at least 1− δ/k.

138 M. Kääriäinen

Using the definitions and the union bound, we get

ε(f) = P (f(X) �= Y) =
k∑

i=1

P (f(X) �= Y |Θf = i)P (Θf = i)

=
1
k

k∑
i=1

ε(fi) ≤
1
k

k∑
i=1

Bin (ε̂i, n/k, δ/k)

with probability at least 1 − δ. ��

Combining the above bound with Theorem 5 gives the following.

Theorem 8. Let ffinal be the classifier learned based on all the data and let f be
as above. With probability at least 1− δ (over the choice of labeled and unlabeled
data and the randomization in f), we have

ε(ffinal) ≤
1
k

k∑
i=1

Bin (ε̂i, n/k, δ/(2k)) + Bin
(
d̂(f, ffinal),m, δ/2

)
.

Proof. Use the result of Theorem 7 (with δ/2 in place of δ) to get α and choose
β = Bin

(
d̂(f, fvote),m, δ/2

)
. The result then follows from Theorem 5. ��

The bound of Theorem 8 assumes nothing about the learning algorithm. For
the bound to be tight, the algorithm has to produce hypotheses fi with good
generalization error. This is reflected to the bound by the (expectations of the)
estimates ε̂i. In addition, the algorithm has to be stable in two senses: First, the
hypotheses fi have to be relatively close to each other. Otherwise, transforming
the bound for f into a bound for any deterministic classifier will incur a large
loss by Theorem 6. Second, the classifier ffinal has to be close to f , too. There
are no guarantees for this in general. However, if d(f, ffinal) is large, using the
cross-validation estimate to assess the performance of ffinal would have been on
shaky grounds anyway. Thus, the conditions required for our bound to be tight
have to be true anyway in order for cross-validation to make sense.

The notion of stability required by our cross-validation bound to be tight
resembles the various notions of stability studied in the learning theory litera-
ture. The connection of these notions to the generalization performance of an
algorithm has received lots of attention recently. It has been shown that training
stability (one notion of algorithmic stability) implies that the empirical and gen-
eralization errors of a learned classifier are close to each other. If the algorithm
is ERM, then training stability is also necessary and sufficient for successful
generalization. For this line of research, see [17] and the references therein.

The notions of algorithmic stability measure how much the error of a learned
hypothesis (on a point or over the whole of X) may change when the labeled
learning sample is perturbed slightly. Estimating these stability parameters based
on the observed data only may be hard, since they are often defined in terms of
expectations involving the unknown distribution P . This seems to seriously limit

Generalization Error Bounds Using Unlabeled Data 139

the applicability of these stability concepts in practice. In contrast, the quanti-
ties in our bounds depend on unlabeled data only and no a priori assumptions of
stability are needed. Of course, we can have no a priori guarantees on the quality
of the bound either, but we hypothesize that if the algorithm is, e.g., training
set stable and the bound of Theorem 7 is small, then our cross-validation bound
is small, too.

4.3 Empirical Experiments with the Cross-Validation Bound

In this section we present results of experiments with the bound of Theorem 8
applied to SVMs and the MNIST dataset. The MNIST dataset consists of 60 000
labeled training examples and 10 000 labeled test examples of 28× 28 gray scale
images of handwritten digits from 0 to 9. We combined the training and test
sets, permuted the data randomly, and used the 60 000 first examples of the
permuted data set as the labeled data and forgot the labels of the remaining
10 000 examples to get a set of unlabeled data. The only preprocessing was
scaling the pixel intensities to [−1, 1].

As the learning algorithm, we used svmlight [18], a standard implemen-
tation of the C-SVM learning algorithm. The algorithm is capable of solving
binary problems only, so we transformed the original learning problem into ten
1 vs rest problems. That is, for each i ∈ {0, . . . , 9}, classifier i was provided with
training examples that were labeled +1 if the class was i and −1 otherwise. The
predictions were combined by choosing the class corresponding to the classifier
whose output was the largest. All this is done internally, so that as far as the
bound is concerned, the classifiers appear to be multi-class classifiers. As a ker-
nel we used a degree 4 polynomial kernel, and chose the default value for C.
The computation time required to transform the cross-validation estimate into a
generalization error bound is only a few seconds on a standard PC (in addition
to the time taken by the SVMs to classify the unlabeled data). In this sense
transforming a cross-validation estimate into a semi-supervised bound is almost
free.

Table 1 summarizes the bounds obtained for various hypotheses. The classifier
ffinal is the final multi-class SVM learned based on all labeled data. The bound

Table 1. Semi-supervised and test set bounds for (combinations of) SVMs on the
MNIST data set with n = 60 000, m = 10 000, k = 10, and δ = 0.01

Bound for the randomized f (Theorem 7) 2.16%

Bound for fvote 2.74%

Bound for ffinal (Theorem 8) 2.84%

Bound for the best fi underlying f 2.89%

Empirical error of ffinal (on the “unlabeled” data) 1.49%

Test set bound for ffinal (on the “unlabeled” data) 1.80%

140 M. Kääriäinen

for ffinal is almost as good as the bound for fvote, and neither overshoots the
exact test set bound [16] (computed by cheating and looking at the labels of the
10 000 “unlabeled” examples) by more than about a percent. This is in striking
contrast with the training set bounds for ffinal in the standard supervised setting
without unlabeled data. The tightest of these bounds are applicable to two class
problems only and usually even then quite loose. We did not experiment with
any of these alternative bounds, but feel that it is safe to claim that they all
would have been way above 100% on the multi-class learning problem at hand
(for a survey on some of these bounds and their looseness, see [19]). Also note
that the bound for the best fi underlying f is worse than the bound for ffinal.
The intuitive explanation is that ffinal has an advantage because it is learned
based on all the labeled data, but it is surprising that this advantage shows up
in the bounds. The test set performance of fvote is slightly better than the test
set performance of f , showing that derandomization may actually increase the
accuracy although its effect on our bound is negative.

In summary, our initial empirical experiments seem to indicate that the pro-
posed cross-validation bound that uses unlabeled data is considerably tighter
than earlier bounds that do not require a separate labeled test set. The bound
is not quite as tight as the test set bound one could use if the labels of the
unlabeled sample were known, but this is to be expected as the semi-supervised
bound has access to less information. In a sense, the unlabeled sample can be
viewed as a cheap but still good replacement for a labeled test set.

5 Future Work

Besides applying the method presented in Section 4 to other bounds for ran-
domized classifiers, we plan to investigate other loss functions than the 0-1 loss
studied in this paper. We also plan to study the use of the bounds for model
selection and other tasks. A problem with the cross-validation bound is that
even though it can be used to tell how well an algorithm did on a dataset, it
gives little guidance in designing algorithms that would do better. This is be-
cause the bound views the algorithm as a black box and hence cannot identify
directly which of its properties are important for generalization. We hope that
other bounds like the bound for ensembles of classifiers learned by an online
algorithm and the PAC-Bayesian bounds may be more useful in this respect.
In the realizable case, the most interesting direction seems to be pursuing the
extensions to active learning and their connections to query learning and other
active learning approaches.

Approximating d is only one of the possible uses of unlabeled data one can
think of, and the use of d is not restricted to derandomizing classifiers. Same
kinds of arguments can be used if one, e.g., wants to switch from a classifier
f with a non-intelligible representation but good generalization performance (a
neural network or SVM) to a classifier g with a more understandable represen-
tation (a rule set or decision tree). If d(f, g) is small, then the good generalization

Generalization Error Bounds Using Unlabeled Data 141

performance of f will be inherited by the more comprehensible g. Of course,
similar things can be done within a representation scheme, e.g., to find good
decision tree prunings. We plan to continue working on these and other uses of
unlabeled data in the near future.

Acknowledgments. I wish to thank John Langford, Jyrki Kivinen, Anssi
Kääriäinen, and Taneli Mielikäinen for helpful discussions.

References

1. Madani, O., Pennock, D.M., Flake, G.W.: Co-validation: Using model disagreement
to validate classification algorithms. In: NIPS 2004 Preproceedings. (2004)

2. Balcan, M.F., Blum, A.: A PAC-style model for learning from labeled and unla-
beled data (2004) Draft.

3. Castelli, V., Cover, T.M.: On the exponential value of labeled samples. Pattern
Recognition Letters 16 (1995) 105–111

4. Ratsaby, J., Venkatesh, S.S.: Learning from a mixture of labeled and unlabeled
examples with parametric side information. In: Proceedings of the 8th Annual
Conference on Computational Learning Theory (COLT’95), New York, NY, USA,
ACM Press (1995) 412–417

5. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
6. Schuurmans, D., Southey, F.: Metric-based methods for adaptive model selection

and regularization. Machine Learning 42 (2002) 51–84
7. Bengio, Y., Chapados, N.: Extensions to metric-based model selection. Journal of

Machine Learning Research 3 (2003) 1209–1227
8. Ben-David, S., Itai, A., Kushilevitz, E.: Learning by distances. Information and

Computation 117 (1995) 240–250
9. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds

and structural results. Journal of Machine Learning Research 3 (2002) 463–482
10. Kääriäinen, M.: Relating the Rademacher and VC bounds. Technical Report Re-

port C-2004-57, Department of Computer Science, Series of Publications C (2004)
11. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27 (1984)

1134–1142
12. McAllester, D.A.: PAC-Bayesian stochastic model selection. Machine Learning 51

(2003) 5–21
13. Cesa-Bianchi, N., Gentile, C.: Improved risk tail bounds for on-line algorithms

(2004) A presentation in the (Ab)use of Bounds workshop.
14. Blum, A., Kalai, A., Langford, J.: Beating the hold-out: bounds for k-fold and

progressive cross-validation. In: Proceedings of the 12th Annual Conference on
Computational Learning Theory, New York, NY, ACM Press (1999) 203–208

15. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Volume 31 of Applications of Mathematics. Springer, Berlin Heidelberg New York
(1996)

16. Langford, J.: Practical prediction theory for classification (2003) A tuto-
rial presented at ICML 2003. Available at http://hunch.net/∼jl/projects/
prediction bounds/tutorial/tutorial.pdf.

142 M. Kääriäinen

17. Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization
error. In: Proceedings of Uncertainty in AI. (2002) 275–282

18. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods – Support Vector Learning. MIT-
Press (1999)

19. Seeger, M.: Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Er-
ror Bounds and Sparse Approximations. PhD thesis, University of Edinburgh
(2003)

On the Consistency
of Multiclass Classification Methods

Ambuj Tewari1 and Peter L. Bartlett2

1 Division of Computer Science, University of California, Berkeley
2 Division of Computer Science and Department of Statistics,

University of California, Berkeley
{ambuj, bartlett}@cs.berkeley.edu

Abstract. Binary classification methods can be generalized in many
ways to handle multiple classes. It turns out that not all generalizations
preserve the nice property of Bayes consistency. We provide a necessary
and sufficient condition for consistency which applies to a large class of
multiclass classification methods. The approach is illustrated by applying
it to some multiclass methods proposed in the literature.

1 Introduction

We consider the problem of classification in a probabilistic setting: n i.i.d. pairs
are generated by a probability distribution on X × Y. We think of yi in a pair
(xi, yi) as being the label or class of the example xi. The |Y| = 2 case is referred
to as binary classification. A number of methods for binary classification involve
finding a real valued function f which minimizes an empirical average of the
form

1
n

∑
i

Ψyi
(f(xi)) . (1)

In addition, some sort of regularization is used to avoid overfitting. Typically,
the sign of f(x) is used to classify an unseen example x. We interpret Ψy(f(x)) as
being the loss associated with predicting the label of x using f(x) when the true
label is y. An important special case of these methods is that of the so-called
large margin methods which use {+1,−1} as the set of labels and φ(yf(x)) as
the loss. Bayes consistency of these methods has been analyzed in the literature
(see [1, 4, 6, 9, 13]). In this paper, we investigate the consistency of multiclass
(|Y| ≥ 2) methods which try to generalize (1) by replacing f with a vector
function f . This category includes the methods found in [2, 5, 10, 11]. Zhang
[11, 12] has already initiated the study of these methods.

Under suitable conditions, minimizing (1) over a sequence of function classes
also approximately minimizes the “Ψ -risk” RΨ (f) = EXY [Ψy(f(x))]. However,
our aim in classification is to find a function f whose probability of misclassifi-
cation R(f) (often called the “risk” of f) is close to the minimum possible (the
so called Bayes risk R∗). Thus, it is natural to investigate the conditions which

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 143–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 A. Tewari and P.L. Bartlett

guarantee that if the Ψ -risk of f gets close to the optimal then the risk of f also
approaches the Bayes risk. Towards this end, a notion of “classification calibra-
tion” was defined in [1] for binary classification. The authors also gave a simple
characterization of classification calibration for convex loss functions. In Section
2, we provide a different point of view for looking at classification calibration
and motivate the geometric approach of Section 3.

Section 3 deals with multiclass classification and defines an analog of classi-
fication calibration (Definition 1). A necessary and sufficient condition for clas-
sification calibration is provided (Theorem 8). It is not as simple and easy to
verify as in the binary case. This helps us realize that the study of multiclass
classification is not a simple generalization of results known for the binary case
but is much more subtle and involved. Finally, the equivalence of classification
calibration and consistency of methods based on empirical Ψ -risk minimization
is established (Theorem 10).

In Section 4, we consider a few multiclass methods and apply the result of
Section 3 to examine their consistency. Interestingly, many seemingly natural
generalizations of binary methods do not lead to consistent multiclass methods.
We discuss further work and conclude in Section 5.

2 Consistency of Binary Classification Methods

If we have a convex loss function φ : R !→ [0,∞) which is differentiable at 0 and
φ′(0) < 0, then it is known [1] that any minimizer f∗ of

EXY [φ(yf(x))] = EX [EY|x[φ(yf(x))]] (2)

yields a Bayes consistent classifier, i.e. P (Y = +1|X = x) > 1/2 ⇒ f∗(x) > 0
and P (Y = −1|X = x) < 1/2 ⇒ f∗(x) < 0. In order to motivate the approach
of the next section let us work with a few examples. Let us fix an x and denote
the two conditional probabilities by p+ and p−. We also omit the argument in
f(x). We can then write the inner conditional expectation in (2) as

p+ φ(f) + p− φ(−f) .

We wish to find an f which minimizes the expression above. If we define the set
R ∈ R2 as

R = {(φ(f), φ(−f)) : f ∈ R} , (3)

then the above minimization can be written as

min
z∈R

〈p, z〉 (4)

where p = (p+, p−).
The set R is shown in Fig. 1(a) for the squared hinge loss function φ(t) =

((1− t)+)2. Geometrically, the solution to (4) is obtained by taking a line whose
equation is 〈p, z〉 = c and then sliding it (by varying c) until it just touches R. It

On the Consistency of Multiclass Classification Methods 145

-1 1 2 3 4

-1

1

2

3

4

p� � p�p� � p�

(a)

-1 1 2 3 4

-1

1

2

3

4

L2L1

P

(b)

Fig. 1. (a) Squared Hinge Loss (b) Inconsistent Case (the thick curve is the set R in
both plots)

is intuitively clear from the figure that if p+ > p− then the line is inclined more
towards the vertical axis and the point of contact is above the angle bisector
of the axes. Similarly, if p+ < p− then the line is inclined more towards the
horizontal axis and the point is below the bisector. This means that sign(φ(−f)−
φ(f)) is a consistent classification rule which, because φ is a decreasing function,
is equivalent to sign(f − (−f)) = sign(f). In fact, the condition φ′(0) < 0 is
not really necessary. For example, if we had the function φ(t) = ((1 + t)+)2, we
would still get the same set R but will need to change the classification rule to
sign(−f) in order to preserve consistency.

Why do we need differentiability of φ at 0? Fig. 1(b) shows the set R for
a convex loss function which is not differentiable at 0. In this case, both lines
L1 and L2 touch R at P but L1 has p+ > p− while L2 has p+ < p−. Thus we
cannot create a consistent classifier based on this loss function. Thus the crux of
the problem seems to lie in the fact that there are two distinct supporting lines
to the set R at P and that these two lines are inclined towards different axes.

It seems from the figures that as long as R is symmetric about the angle
bisector of the axes, all supporting lines at a given point are inclined towards
the same axis except when the point happens to lie on the angle bisector. To
check for consistency, we need to examine the set of supporting lines only at that
point. In case the set R is generated as in (3), this boils down to checking the
differentiability of φ at 0. In the next section, we deal with cases when the set
R is generated in a more general way and the situation possibly involves more
than two dimensions.

3 Consistency of Multiclass Classification Methods

Suppose we have K≥2 classes. For y∈{1, . . . ,K}, let Ψy be a continuous function
from RK to R+ = [0,∞). Let F be a class of vector functions f : X !→RK . Let

146 A. Tewari and P.L. Bartlett

{Fn} be a sequence of function classes such that each Fn ⊆ F . Suppose we
obtain a classifier f̂n by minimizing the empirical Ψ -risk R̂Ψ over the class Fn,

f̂n = arg min
f∈Fn

R̂Ψ (f) = arg min
f∈Fn

1
n

n∑
i=1

Ψyi
(f(xi)) . (5)

There might be some constraints on the set of vector functions over which we
minimize. For example, a common constraint is to have the components of f sum
to zero. More generally, let us assume there is some set C ∈ RK such that

F = {f : ∀x, f(x) ∈ C }. (6)

Let Ψ(f(x)) denote the vector (Ψ1(f(x)), . . . , ΨK(f(x)))T . We predict the label of
a new example x to be pred(Ψ(f(x))) for some function pred : RK !→ {1, . . . ,K}.
The Ψ -risk of a function f is

RΨ (f) = EXY [Ψy(f(x))] ,

and we denote the least possible Ψ -risk by

R∗
Ψ = inf

f∈F
RΨ (f) .

In a classification task, we are more interested in the risk of a function f ,

R(f) = EXY [1[pred(Ψ(f(x))) �= Y]] ,

which is the probability that f leads to an incorrect prediction on a labeled
example drawn from the underlying probability distribution. The least possible
risk is

R∗ = EX [1 − max
y

py(x)] ,

where py(x) = P (Y = y | X = x). Under suitable conditions, one would ex-
pect RΨ (f̂n) to converge to R∗

Ψ (in probability). It would be nice if that made
R(f̂n) converge to R∗ (in probability). In order to understand the behavior of
approximate Ψ -risk minimizers, let us write RΨ (f) as

EXY [Ψy(f(x))] = EX [EY|x[Ψy(f(x))]] .

The above minimization problem is equivalent to minimizing the inner condi-
tional expectation for each x ∈ X . Let us fix an arbitrary x for now, so we can
write f instead of f(x), py instead of py(x), etc. The minimum might not be
achieved and so we consider the infimum of the conditional expectation above1

inf
f∈C

∑
y

pyΨy(f) . (7)

1 Since py and Ψy(f) are both non-negative, the objective function is bounded below
by 0 and hence the existence of an infimum is guaranteed.

On the Consistency of Multiclass Classification Methods 147

Define the subset R of RK
+ as

R = {(Ψ1(f), . . . , ΨK(f)) : f ∈ C} .

Let us define a symmetric set to be one with the following property: if a point z
is in the set then so is any point obtained by interchanging any two coordinates
of z. We assume that R is symmetric. We can write (7) in the equivalent form

inf
z∈R

〈p, z〉 ,

where p = (p1, . . . , pK). For a fixed p, the function z !→ 〈p, z〉 is a linear function
and hence we do not change the infimum by taking the convex hull2 of R.
Defining S as

S = conv{(Ψ1(f), . . . , ΨK(f)) : f ∈ C} , (8)

we finally have
inf
z∈S

〈p, z〉 . (9)

Note that our assumption about R implies that S too is symmetric.
We now define classification calibration of S. The definition intends to capture

the property that, for any p, minimizing 〈p, z〉 over S leads one to z’s which
enable us to figure out the index of (one of the) maximum coordinate(s) of p.

Definition 1. A set S ⊆ RK
+ is classification calibrated if there exists a predic-

tor function pred : RK !→ {1, . . . ,K} such that

∀p ∈ ΔK , inf
z∈S : ppred(z)<maxy py

〈p, z〉 > inf
z∈S

〈p, z〉 , (10)

where ΔK is the probability simplex in RK .

It is easy to reformulate the definition in terms of sequences as the following
lemma states.

Lemma 2. S ⊆ RK
+ is classification calibrated iff ∀p ∈ ΔK and all sequences

{z(n)} in S such that
〈p, z(n)〉 → inf

z∈S
〈p, z〉 , (11)

we have
ppred(z(n)) = max

y
py (12)

ultimately.

This makes it easier to see that if S is classification calibrated then we can
find a predictor function such that any sequence achieving the infimum in (9)
ultimately predicts the right label (the one having maximum probability). The
following lemma shows that symmetry of our set S allows us to reduce the search
space of predictor functions (namely to those functions which map z to the index
of a minimum coordinate).

2 If z is a convex combination of z(1) and z(2), then 〈p, z〉 ≥ min{〈p, z(1)〉, 〈p, z(2)〉}.

148 A. Tewari and P.L. Bartlett

Lemma 3. If there exists a predictor function pred satisfying the condition (10)
of Definition 1 then any predictor function pred′ satisfying

∀z ∈ S, zpred′(z) = min
y

zy (13)

also satisfies (10).

Proof. Consider some p ∈ ΔK and a sequence {z(n)} such that (11) holds. We
have ppred(z(n)) = maxy py ultimately. In order to derive a contradiction, assume
that ppred′(z(n)) < maxy py infinitely often. Since there are finitely many labels,
this implies that there is a subsequence {z(nk)} and labels M and m such that
the following hold,

pred(z(nk)) = M ∈ {y′ : y′ = max
y

py} ,

pred′(z(nk)) = m ∈ {y′ : y′ < max
y

py} ,

〈p, z(nk)〉 → inf
z∈S

〈p, z〉 .

Because of (13), we also have z
(nk)
M ≥ z

(nk)
m . Let p̃ and z̃ denote the vectors

obtained from p and z respectively by interchanging the M and m coordinates.
Since S is symmetric, z ∈ S ⇔ z̃ ∈ S. There are two cases depending on whether
the inequality in

lim inf
k

(
z
(nk)
M − z(nk)

m

)
≥ 0

is strict or not.
If it is, denote its value by ε > 0. Then z

(nk)
M − z

(nk)
m > ε/2 ultimately and

hence we have

〈p, z(nk)〉 − 〈p, z̃(nk)〉 = (pM − pm)(z(nk)
M − z(nk)

m) > (pM − pm)ε/2

for k large enough. This implies lim inf〈p, z̃(nk)〉 < infz∈S〈p, z〉, which is a con-
tradiction.

Otherwise, choose a subsequence3 {z(nk)} such that lim(z(nk)
M − z

(nk)
m) = 0.

Multiplying this with (pM − pm), we have

lim
k→∞

(
〈p̃, z̃(nk)〉 − 〈p̃, z(nk)〉

)
= 0 .

We also have

lim〈p̃, z̃(nk)〉 = lim〈p, z(nk)〉 = inf
z∈S

〈p, z〉 = inf
z∈S

〈p̃, z̃〉 = inf
z∈S

〈p̃, z〉 ,

where the last equality follows because of symmetry. This means

〈p̃, z(nk)〉 → inf
z∈S

〈p̃, z〉

3 We do not introduce additional subscripts for simplicity.

On the Consistency of Multiclass Classification Methods 149

and therefore
p̃pred(z(nk)) = pM

ultimately. This is a contradiction since p̃pred(z(nk)) = p̃M = pm.

From now on, we assume that pred is defined as in (13). We give another
characterization of classification calibration in terms of normals to the convex
set S and its projections onto lower dimensions. For a point z ∈ ∂S, we say p
is a normal to S at z if 〈z′ − z,p〉 ≥ 04 for all z′ ∈ S. Define the set of positive
normals at z as

N (z) = {p : p is a normal to S at z} ∩ΔK .

Definition 4. A convex set S ⊆ RK
+ is admissible if ∀z ∈ ∂S,∀p ∈ N (z), we

have
argmin(z) ⊆ argmax(p) (14)

where argmin(z) = {y′ : zy′ = miny zy} and argmax(p) = {y′ : zy′ = maxy py}.

The following lemma states that in the presence of symmetry points having a
unique minimum coordinate can never destroy admissibility.

Lemma 5. Let S ⊆ RK
+ be a symmetric convex set, z a point in the boundary of

S and p ∈ N (z). Then zy < zy′ implies py ≥ py′ and hence (14) holds whenever
| argmin(z)| = 1.

Proof. Consider z̃ obtained from z by interchanging the y, y′ coordinates. It also
is a point in ∂S by symmetry and thus convexity implies zm = (z+z̃)/2 ∈ S∪∂S.
Since p ∈ N (z), 〈z′ − z,p〉 ≥ 0 for all z′ ∈ S. Taking limits, this inequality also
holds for z′ ∈ S ∪ ∂S. Substituting zm for z′, we get 〈(z̃ − z)/2,p〉 ≥ 0 which
simplifies to (zy′ − zy)(py − py′) ≥ 0 whence the conclusion follows.

If the set S possesses a unique normal at every point on its boundary then the
next lemma guarantees admissibility.

Lemma 6. Let S ⊆ RK
+ be a symmetric convex set, z a point in the boundary

of S and N (z) = {p} is a singleton. Then argmin(z) ⊆ argmax(p).

Proof. We will assume that there exists a y, y ∈ argmin(z), y /∈ argmax(p) and
deduce that there are at least 2 elements in |N (z)| to get a contradiction. Let
y′ ∈ argmax(p). From the proof of Lemma 5 we have (zy′ − zy)(py − py′) ≥ 0
which implies zy′ ≤ zy since py−py′ < 0. But we already know that zy ≤ zy′ and
so zy = zy′ . Symmetry of S now implies that p̃ ∈ N (z) where p̃ is obtained from
p by interchanging the y, y′ coordinates. Since py �= py′ , p̃ �= p which means
|N (z)| ≥ 2.

4 Our sign convention is opposite to that of Rockafellar (1970) because we are dealing
with minimum (instead of maximum) problems.

150 A. Tewari and P.L. Bartlett

Lemma 7. If S ⊆ RK
+ is admissible then for all p ∈ ΔK and all bounded se-

quences {z(n)} such that 〈p, z(n)〉 → infz∈S 〈p, z〉, we have ppred(z(n)) = maxy py

ultimately.

Proof. Let Z(p) = {z ∈ ∂S : p ∈ N (z)}. Taking the limit of a convergent
subsequence of the given bounded sequence gives us a point in ∂S which achieves
the infimum of the inner product with p. Thus, Z(p) is not empty. It is easy
to see that Z(p) is closed. We claim that for all ε > 0, dist(z(n), Z(p)) < ε
ultimately. For if we assume the contrary, boundedness implies that we can
find a convergent subsequence {z(nk)} such that ∀k, dist(z(nk), Z(p)) ≥ ε. Let
z∗ = limk→∞ z(nk). Then 〈p, z∗〉 = infz∈S〈p, z〉 and so z∗ ∈ Z(p). On the other
hand, dist(z∗, Z(p)) ≥ ε which gives us a contradiction and our claim is proved.
Further, there exists ε′ > 0 such that dist(z(n), Z(p)) < ε′ implies argmin(z(n)) ⊆
argmin(Z(p))5. Finally, by admissibility of S, argmin(Z(p)) ⊆ argmax(p) and
so argmin(z(n)) ⊆ argmax(p) ultimately.

The next theorem provides a characterization of classification calibration in
terms of normals to S.

Theorem 8. Let S ⊆ RK
+ be a symmetric convex set. Define the sets

S(i) = {(z1, . . . , zi)T : z ∈ S}

for i ∈ {2, . . . ,K}. Then S is classification calibrated iff each S(i) is admissible.

Proof. We prove the easier ‘only if’ direction first. Suppose some S(i) is not
admissible. Then there exist z ∈ ∂S(i) and p ∈ N (z) and a label y′ such that
y′ ∈ argmin(z) and y′ /∈ argmax(p). Choose a sequence {z(n)} converging to
z. Modify the sequence by replacing, in each z(n), the coordinates specified by
argmin(z) by their average. The resulting sequences is still in S(i) (by symmetry
and convexity) and has argmin(z(n)) = argmin(z) ultimately. Therefore, if we
set pred(z(n)) = y′, we have ppred(z(n)) < maxy py ultimately. To get a sequence
in S look at the points whose projections are the z(n)’s and pad p with K − i
zeros.

To prove the other direction, assume each S(i) is admissible. Consider a se-
quence {z(n)} with 〈p, z(n)〉 → infz∈S 〈p, z〉 = L. Without loss of generality, as-
sume that for some j, 1 ≤ j ≤ K we have p1, . . . , pj > 0 and pj+1, . . . , pK = 0. We
claim that there exists an M < ∞ such that ∀y ≤ j, z

(n)
y ≤ M ultimately. Since

pjz
(n)
j ≤ L + 1 ultimately, M = max1≤y≤j{(L + 1)/py} works. Consider a set of

labels T ⊆ {j + 1, . . . ,K}. Consider the subsequence consisting of those z(n) for
which zy ≤ M for y ∈ {1, . . . , j}∪T and zy > M for y ∈ {j+1, . . . ,K}−T . The
original sequence can be decomposed into finitely many such subsequences corre-
sponding to the 2(K−j) choices of the set T . Fix T and convert the corresponding
subsequence into a sequence in S(j+|T |) by dropping the coordinates belonging to

5 For a set Z, argmin(Z) denotes ∪z∈Z argmin(z).

On the Consistency of Multiclass Classification Methods 151

the set {j+1, . . . ,K}. Call this sequence z̃(n) and let p̃ be (p1, . . . , pj , 0, . . . , 0)T .
We have a bounded sequence with

〈p̃, z̃(n)〉 → inf
z̃∈S(j+|T |)

〈p̃, z̃〉 .

Thus, by Lemma 7, we have p̃pred(z̃(n)) = maxy p̃y = maxy py ultimately. Since
we dropped only those coordinates which were greater than M , pred(z̃(n)) picks
the same coordinate as pred(z(n)) where z(n) is the element from which z̃(n)

was obtained. Thus we have ppred(z(n)) = maxy py ultimately and the theorem is
proved.

We will need the following lemma to prove our final theorem.

Lemma 9. The function p !→ infz∈S〈p, z〉 is continuous on ΔK .

Proof. Let {p(n)} be a sequence converging to p. If B is a bounded subset of
RK , then 〈p(n), z〉 → 〈p, z〉 uniformly over z ∈ B and therefore

inf
z∈B

〈p(n), z〉 → inf
z∈B

〈p, z〉 .

Let Br be a ball of radius r in RK . Then we have

inf
z∈S

〈p(n), z〉 ≤ inf
S∩Br

〈p(n), z〉 → inf
S∩Br

〈p, z〉

Therefore
lim sup

n
inf
z∈S

〈p(n), z〉 ≤ inf
z∈S∩Br

〈p, z〉 .

Letting r → ∞, we get

lim sup
n

inf
z∈S

〈p(n), z〉 ≤ inf
z∈S

〈p, z〉 . (15)

Without loss of generality, assume that for some j, 1 ≤ j ≤ K we have p1, . . . , pj

> 0 and pj+1, . . . , pK = 0. For all sufficiently large integers n and a sufficiently
large ball BM ⊆ Rj we have

inf
z∈S

〈p, z〉 = inf
z∈S(j)

j∑
y=1

pyzy = inf
z∈S(j)∩BM

j∑
y=1

pyzy ,

inf
z∈S

〈p(n), z〉 ≥ inf
z∈S(j)

j∑
y=1

p(n)
y zy = inf

z∈S(j)∩BM

j∑
y=1

p(n)
y zy .

and thus
lim inf

n
inf
z∈S

〈p(n), z〉 ≥ inf
z∈S

〈p, z〉 . (16)

Combining (15) and (16), we get

inf
z∈S

〈p(n), z〉 → inf
z∈S

〈p, z〉 .

152 A. Tewari and P.L. Bartlett

We finally show that classification calibration of S is equivalent to the consistency
of multiclass methods based on (5).

Theorem 10. Let Ψ be a loss (vector) function and C be a subset of RK . Let F
and S be as defined in (6) and (8) respectively. Then S is classification calibrated
iff the following holds. For all sequences {Fn} of function classes (where Fn ⊆ F
and ∪Fn = F) and for all probability distributions P ,

RΨ (f̂n) P→ R∗
Ψ

implies
R(f̂n) P→ R∗ .

Proof. (‘only if’) We need to prove that ∀ε > 0,∃δ > 0 such that ∀p ∈ ΔK ,

max
y

py − ppred(z) ≥ ε ⇒ 〈p, z〉 − inf
z∈S

〈p, z〉 ≥ δ . (17)

Using this it immediately follows that ∀ε,H(ε) > 0 where

H(ε) = inf
p∈ΔK ,z∈S

{〈p, z〉 − inf
z∈S

〈p, z〉 : max
y

py − ppred(z) ≥ ε} .

Corollary 26 in [12] then guarantees there exists a concave function ξ on [0,∞)
such that ξ(0) = 0 and ξ(δ) → 0 as δ → 0+ and

R(f) −R∗ ≤ ξ(RΨ (f) −R∗
Ψ) .

We prove (17) by contradiction. Suppose S is classification calibrated but there
exists ε > 0 and a sequence (z(n),p(n)) such that

p
(n)

pred(z(n))
≤ max

y
p(n)

y − ε (18)

and (
〈p(n), z(n)〉 − inf

z∈S
〈p(n), z〉

)
→ 0 .

Since p(n) come from a compact set, we can choose a convergent subsequence
(which we still denote as {p(n)}) with limit p. Using Lemma 9, we get

〈p(n), z(n)〉 → inf
z∈S

〈p, z〉 .

As before, we assume that precisely the first j coordinates of p are non-zero.
Then the first j coordinates of z(n) are bounded for sufficiently large n. Hence

lim sup
n

〈p, z(n)〉 = lim sup
n

j∑
y=1

p(n)
y z(n)

y ≤ lim
n→∞

〈p(n), z(n)〉 = inf
z∈S

〈p, z〉 .

Now (12) and (18) contradict each other since p(n) → p.

On the Consistency of Multiclass Classification Methods 153

(‘if’) If S is not classification calibrated then by Theorem 8 and Lemmas 5
and 6, we have a point in the boundary of some S(i) where there are at least
two normals and which does not have a unique minimum coordinate. Such a
point should be there in the projection of R even without taking the convex
hull. Therefore, we must have a sequence z(n) in R such that

δn = 〈p, z(n)〉 − inf
z∈S

〈p, z〉 → 0 (19)

and for all n,

ppred(z(n)) < max
y

py . (20)

Without loss of generality assume that δn is a monotonically decreasing sequence.
Further, assume that δn > 0 for all n. This last assumption might be violated
but the following proof then goes through for δn replaced by max(δn, 1/n). Let
gn be the function that maps every x to one of the pre-images of z(n) under Ψ .
Define Fn as

Fn = {gn} ∪ (F ∩ {f : ∀x, 〈p, Ψ(f(x)〉 − inf
z∈S

〈p, z〉 > 4δn}

∩ {f : ∀x,∀j, |Ψj(f(x)| < Mn})

where Mn ↑ ∞ is a sequence which we will fix later. Fix a probability distribution
P with arbitrary marginal distribution over x and let the conditional distribution
of labels be p for all x. Our choice of Fn guarantees that the Ψ -risk of gn is less
than that of other elements of Fn by at least 3δn. Suppose, we make sure that

Pn
(∣∣∣R̂Ψ (gn) −RΨ (gn)

∣∣∣ > δn

)
→ 0 , (21)

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ (f) −RΨ (f)
∣∣∣ > δn

)
→ 0 . (22)

Then, with probability tending to 1, f̂n = gn. By (19), RΨ (gn) → R∗
Ψ which

implies that RΨ (f̂n) → R∗
Ψ in probability. Similarly, (20) implies that R(f̂n) �

R∗ in probability.
We only need to show that we can have (21) and (22) hold. For (21), we

apply Chebyshev inequality and use a union bound over the K labels to get

Pn
(∣∣∣R̂Ψ (gn) −RΨ (gn)

∣∣∣ > δn

)
≤ K3‖z(n)‖∞

4nδ2
n

The right hand side can be made to go to zero by repeating terms in the sequence
{z(n)} to slow down the rate of growth of ‖z(n)‖∞ and the rate of decrease of
δn. For (21), we use standard covering number bounds (see, for example, Section

154 A. Tewari and P.L. Bartlett

II.6 on p. 30 in [7]).

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ (f) −RΨ (f)
∣∣∣ > δn

)

≤ 8 exp
(

64M2
n log(2n + 1)

δ2
n

− nδ2
n

128M2
n

)
Thus Mn/δn needs to grow slowly enough such that

nδ4
n

M4
n log(2n + 1)

→ ∞ .

4 Examples

We apply the results of the previous section to examine the consistency of several
multiclass methods. In all these examples, the functions Ψy(f) are obtained from
a single real valued function ψ : RK !→ R as follows

Ψy(f) = ψ(fy, f1, . . . , fy−1, fy+1, . . . , fK)

Moreover, the function ψ is symmetric in its last K − 1 arguments, i.e. inter-
changing any two of the last K − 1 arguments does not change the value of the
function. This ensures that the set S is symmetric. We assume that we predict
the label of x to be arg miny Ψy(f).

(a) (b)

Fig. 2. (a) Crammer and Singer (b) Weston and Watkins

On the Consistency of Multiclass Classification Methods 155

4.1 Example 1

The method of Crammer and Singer [3] corresponds to

Ψy(f) = max
y′ �=y

φ(fy − fy′), C = RK

with φ(t) = (1 − t)+. For K = 3, the boundary of S is shown in Fig. 2(a). At
the point z = (1, 1, 1), all of these are normals: (0, 1, 1), (1, 0, 1), (1, 1, 0). Thus,
there is no y′ such that py′ = maxy py for all p ∈ N (z). The method is therefore
inconsistent.

Even if we choose an everywhere differentiable convex φ with φ′(0) < 0, the
three normals mentioned above are still there in N (z) for z = (φ(0), φ(0), φ(0)).
Therefore the method still remains inconsistent.

4.2 Example 2

The method of Weston and Watkins [10] corresponds to

Ψy(f) =
∑
y′ �=y

φ(fy − fy′), C = RK

with φ(t) = (1 − t)+. For K = 3, the boundary of S is shown in Fig. 2(b).
The central hexagon has vertices (in clockwise order) (1, 1, 4), (0, 3, 3), (1, 4, 1),
(3, 3, 0), (4, 1, 1) and (3, 0, 3). At z = (1, 1, 4), we have the following normals:
(1, 1, 0), (1, 1, 1), (2, 3, 1), (3, 2, 1) and there is no coordinate which is maximum
in all positive normals. The method is therefore inconsistent.

(a) (b)

Fig. 3. (a) Lee, Lin and Wahba (b) Loss of consistency in multiclass setting

156 A. Tewari and P.L. Bartlett

4.3 Example 3

The method of Lee, Lin and Wahba [5] corresponds to

Ψy(f) =
∑
y′ �=y

φ(−fy′), C = {f :
∑

y

fy = 0} (23)

with φ(t) = (1−t)+. Fig. 3(a) shows the boundary of S for K = 3. In the general
K dimensional case, S is a polyhedron with K vertices where each vertex has a 0
in one of the positions and K’s in the rest. It is obvious then when we minimize
〈p, z〉 over S, we will pick the vertex which has a 0 in the same position where
p has its maximum coordinate. But we can also apply our result here. The set
of normals is not a singleton only at the vertices. Thus, by Lemma 6, we only
need to check the vertices. Since there is a unique minimum coordinate at the
vertices, Lemma 5 implies that the method is consistent.

The question which naturally arises is: for which convex loss functions φ does
(23) lead to a consistent multiclass classification method? Convex loss functions
which are classification calibrated for the two class case, i.e. differentiable at 0
with φ′(0) < 0, can lead to inconsistent classifiers in the multiclass setting. An
example is provided by the loss function φ(t) = max{1 − 2t, 2 − t, 0}. Fig. 3(b)
shows the boundary of S for K = 3. The vertices are (0, 3, 3), (9, 0, 0) and
their permutations. At (9, 0, 0), the set of normals includes (0, 1, 0), (1, 2, 2) and
(0, 0, 1) and therefore condition (14) is violated.

As Zhang shows in [12], a convex function φ differentiable on (−∞, 0] with
φ′(0) < 0 will yield a consistent method.

4.4 Example 4

This is an interesting example because even though we use a differentiable loss
function, we still do not have consistency.

Ψy(f) = φ(fy), C = {f :
∑

y

fy = 0}

with φ(t) = exp(−βt) for some β > 0. One can easily check that

R = {(z1, z2, z3)T ∈ R3
+ : z1z2z3 = 1},

S = {(z1, z2, z3)T ∈ R3
+ : z1z2z3 ≥ 1}

and
S(2) = {(z1, z2)T : z1, z2 > 0} .

This set is inadmissible and therefore the method is inconsistent. We point out
that this method also does not yield a consistent classifier for the choice φ(t) =
(1 − t)+.

On the Consistency of Multiclass Classification Methods 157

5 Conclusion

We considered multiclass generalizations of classification methods based on con-
vex risk minimization and gave a necessary and sufficient condition for their
Bayes consistency. Our examples showed that quite often straightforward gen-
eralizations of consistent binary classification methods lead to inconsistent mul-
ticlass classifiers. This is especially the case if the original binary method was
based on a non-differentiable loss function. Example 4 shows that even differen-
tiable loss functions do not guarantee multiclass consistency. We are currently
trying to find simple and sufficient differentiability conditions that would im-
ply consistency of methods discussed in Examples 2 and 4 (like the one Zhang
provides for Example 3).

Acknowledgement

We gratefully acknowledge the support of NSF under award DMS-0434383.

References

1. Bartlett, P. L., Jordan, M. I. and McAuliffe, J. D.: Large margin classifiers: Con-
vex Loss, Low Noise and Convergence rates. In Advances in Neural Information
Processing Systems 16 (2004)

2. Bredensteiner, E.J. and Bennett, K.P.: Multicategory Classification by Support
Vector Machines. Computational Optimization and Applications 12 (1999) 35–46

3. Crammer, K. and Singer, Y.: On the Algorithmic Implementation of Kernel-based
Vector Machines. Journal of Machine Learning Research 2 (2001) 265–292

4. Jiang, W.: Process Consistency for AdaBoost. Annals of Statistics 32:1 (2004)
13–29

5. Lee, Y., Li, Y. and Wahba, G.: Multicategory Support Vector Machines: Theory
and Application to the Classification of Microarray Data and Satellite Radiance
Data. Journal of the American Statistical Association 99:465 (2004) 67–81

6. Lugosi, G. and Vayatis, N.: On the Bayes-risk Consistency of Regularized Boosting
Methods. Annals of Statistics 32:1 (2004) 30–55

7. Pollard, D.: Convergence of Stochastic Processes. Springer-Verlag, New York (1984)
8. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
9. Steinwart, I.: Consistency of Support Vector Machines and Other Regularized Ker-

nel Classifiers. IEEE Transactions on Information Theory 51:1 (2005) 128–142
10. Weston, J. and and Watkins, C.: Multi-class support vector machines. Technical

Report CSD-TR-98-04, Department of Computer Science, Royal Holloway College,
University of London (1998)

11. Zhang, T.: An Infinity-sample Theory For Multi-category Large Margin Classifi-
cation. In Advances in Neural Information Processing Systems 16 (2004)

12. Zhang, T.: Statistical Analysis of Some Multi-Category Large Margin Classification
Methods. Journal of Machine Learning Research 5 (2004) 1225–1251

13. Zhang, T.: Statistical Behavior and Consistency of Classification Methods Based
on Convex Risk Minimization. Annals of Statistics 32:1 (2004) 56–85

Sensitive Error Correcting Output Codes

John Langford1 and Alina Beygelzimer2

1 Toyota Technological Institute, Chicago IL 60637, USA
jl@tti-c.org

2 IBM T. J. Watson Research Center, Hawthorne NY 10532, USA
beygel@us.ibm.com

Abstract. We present a reduction from cost-sensitive classification to
binary classification based on (a modification of) error correcting out-
put codes. The reduction satisfies the property that ε regret for binary
classification implies l2-regret of at most 2ε for cost estimation. This has
several implications:

1. Any regret-minimizing online algorithm for 0/1 loss is (via the re-
duction) a regret-minimizing online cost-sensitive algorithm. In par-
ticular, this means that online learning can be made to work for
arbitrary (i.e., totally unstructured) loss functions.

2. The output of the reduction can be thresholded so that ε regret for
binary classification implies at most 4

√
εZ regret for cost-sensitive

classification where Z is the expected sum of costs.

3. For multiclass problems, ε binary regret translates into l2-regret of
at most 4ε in the estimation of class probabilities. For classification,
this implies at most 4

√
ε multiclass regret.

1 Introduction

Background: The goal of classification is to predict labels on test examples
given a set of labeled training examples. Binary classification, where the number
of labels is two, is the most basic learning task as it involves predicting just a
single bit for each example. Due to this simplicity, binary learning is (perhaps)
better understood theoretically than any other prediction task, and several em-
pirically good binary learning algorithms exist.

Practical machine learning, on the other hand, often requires predicting more
than one bit. Furthermore, each prediction may generally have a different asso-
ciated loss, and ignoring this information can make the problem more difficult.1

1 For example, consider the following problem: Given some relevant information, we
must predict which of several routes to take. It is easy to design a problem where
there are several paths that are typically good but occasionally very slow. If there is
another path that is never the best but never slow, it may provide the best expected
time of all choices. If the problem is altered into a multiclass problem of predicting
the best route, this path will never be taken.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 158–172, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Sensitive Error Correcting Output Codes 159

Motivation: Reductions allow us to translate performance on well-studied bi-
nary problems into performance on the more general problems arising in practice.
We provide a reduction (called SECOC) from cost-sensitive classification to bi-
nary classification with the property that small regret on the created binary
problem(s) implies small regret on the original cost-sensitive problem. This is
particularly compelling because any loss function on single examples can be ex-
pressed with cost-sensitive classification. Therefore, this reduction can be used
(at least theoretically) to solve a very broad set of learning problems. In addition,
there is convincing empirical evidence that SECOC works well in practice, which
gives further support to this style of analysis. Experiments in Section 7 show that
SECOC results in superior performance on all tested multiclass learning algo-
rithms and problems, compared to several other commonly used algorithms.

The basic SECOC reduction can be reused in several ways.

1. General Online Learning: Any regret-minimizing online algorithm for
0/1 loss is (via the reduction) a regret-minimizing online cost sensitive algo-
rithm. In particular, this means that online learning can be made to work
for arbitrary (i.e., totally unstructured) loss functions.

2. Cost Sensitive Classification: The output of the reduction can be
thresholded so that a small regret for binary classification implies a small re-
gret for cost-sensitive classification. This implies that any consistent binary
classifier is a consistent cost-sensitive classifier.

3. Multiclass Problems: Using the canonical embedding of multiclass clas-
sification into cost-sensitive classification, this reduction implies that small
binary regret translates into small l2 error in the estimation of class proba-
bilities. By thresholding the estimates, we get a bound on multiclass regret.
Note that this implies that any consistent binary classifier is (via the reduc-
tion) a consistent multiclass classifier. This is particularly important because
generalization of SVMs to multiple classes have been done wrong, as shown
in [8].

These applications are discussed in Section 4.

General Comment: It is important to understand that analysis here is or-
thogonal to the sample complexity analysis in, for example, PAC learning [12]
or uniform convergence [14]. We consider measures over sets of examples and
analyze the transformation of losses under mappings between these measures
induced by the algorithms. This allows us to avoid making assumptions (which
cannot be verified or simply do not hold in practice) necessary to prove sample
complexity bounds. Instead, we show relative guarantees in an assumption-free
setting – we bound the performance on general problems arising in practice in
terms of performance on basic problems that are better understood.

Context: SECOC is a variation of error-correcting output codes (ECOC) [3].
Later, in Section 5, we show that this variation is necessary in order to satisfy
a regret transform. The ECOC reduction works by learning a binary classifier,
which decides membership of a label in subsets of labels. Given a sequence of
subsets, each label corresponds to a binary string (or a codeword) defined by the

160 J. Langford and A. Beygelzimer

inclusion of this label in the sequence of subsets. A multiclass prediction is made
by finding the codeword closest in Hamming distance to the sequence of binary
predictions on the test example.

For the ECOC reduction, a basic statement [5] can be made: with a good
code, for all training sets, the error rate of the multiclass classifier on the training
set is at most 4 times the average error rate of the individual binary classifiers.
The proof of this statement is essentially the observation that there exist codes
in which the distance between any two codewords is at least 1

2 . Consequently,
at least 1

4 of the classifiers must err to induce a multiclass classification error,
implying the theorem.

This theorem can be generalized [2] to quantify “for all measures” rather than
“for all training sets”. This generalization is not as significant as it might at first
seem, because the measure implicit in a very large training set can approximate
other measures (and it can do so arbitrarily well when the feature space is finite).
Nevertheless, it is convenient to quantify over all measures, so that the statement
holds for the process generating each individual example. Since there is always
some process generating examples, the result is applicable even to adversarial
processes.

The weighted all pairs algorithm [2] intuitively guarantees that a small er-
ror rate on created classification problems implies a small cost-sensitive loss.
The core result here is similar except that small binary regret implies small
cost-sensitive regret. Regret is the error rate minus the minimum error rate.
Consequently, the results here can have important implications even when, for
example, the binary error induced from a multiclass problem is 0.25. SECOC
does not supercede this result, however, because the regret bounds are weaker,
roughly according to ε error rate going to

√
ε regret.

ECOC was modified [1] to consider margins of the binary classifiers—numbers
internal to some classification algorithms that provide a measure of confidence
in a binary prediction. Decoding proceeds in the same way as for ECOC ex-
cept a “loss”-based2 distance is used instead of the Hamming distance. Roughly
speaking, SECOC uses the motivation behind this approach although not the
approach itself. Instead of working with margins, we define binary classifica-
tion problems, for which the optimal solution computes the relative expected
cost (rather than the margin) of choices. This approach allows us to accomplish
several things: First, we can use arbitrary classifiers rather than margin-based
classifiers. We also remove the mismatch between the margin and the motiva-
tions. Optimizations of hinge loss (for SVMs) or exponential loss (for Adaboost)
cause a distortion where the optimization increases the margin of small-margin
examples at the expense of the margin on large-margin examples. The efficacy of
Platt scaling [10] (i.e., fitting a sigmoid to a margin to get a probabilistic predic-
tion) can be thought of as strong empirical evidence of the deficiency of margins

2 “Loss” is in quotes because the notion of loss is a specification of the optimization
used by the binary learning algorithm rather than the loss given by the problem, as
is used in the rest of the paper.

Sensitive Error Correcting Output Codes 161

as probability estimates. Finally, we can generalize the approach to tackle all
cost-sensitive problems rather than just multiclass problems. This generaliza-
tion comes at no cost in multiclass performance.

2 The SECOC Reduction

We work in an assumption-free learning setting. The SECOC reduction reduces
cost-sensitive classification to importance weighted binary classification, which
in turn can be reduced to binary classification using the Costing reduction [16].
We first define all the problems involved.

Definition 1. An importance weighted binary classification problem is defined
by a measure D on a set X × {0, 1}× [0,∞), where X is some arbitrary feature
space, {0, 1} is the binary label, and [0,∞) is the importance of correct classi-
fication. The goal is to find a binary classifier b : X → {0, 1} which minimizes
the expected importance weighted loss, E(x,y,i)∼D [iI(b(x) �= y)], where I(·) is 1
when the argument is true and 0 otherwise.

Cost-sensitive classification defined below is sufficiently general to express any
loss function on a finite set.

Definition 2. A cost-sensitive k-class problem is defined by a measure D on
a set X × [0,∞)k, where X is some arbitrary feature space, and the additional
information [0,∞)k is the cost of each of the k choices. The goal is to find a
classifier h : X → {1, ..., k} which minimizes the expected cost, E(x,c)∼D

[
ch(x)

]
.

A cost-sensitive learning algorithm typically takes as input a sequence of training
examples in (X × [0,∞)k)∗ as advice in constructing h(x).

The SECOC reduction is a cost-sensitive learning algorithm that uses a given
binary learning algorithm as a black box. As with the ECOC reduction, SECOC
uses a code defined by an n × k binary coding matrix M with columns corre-
sponding to multiclass labels. For example, the columns can form a subset of
any k codewords of a Hadamard code of length n, which has the property that
any two distinct codewords differ in at least n/2 bit positions. Such codes are
easy to construct when k is a power of 2. Thus, for Hadamard codes, the number
n of classification problems needed is less than 2k.

For each subset s of labels, corresponding to a row of M , we create a set of
importance weighted classification problems parameterized by t ∈ [tmin, tmax],
where tmin = 0 and tmax = 1 are always correct, but significant efficiency im-
provements arise from appropriately chosen smaller ranges. Intuitively, the prob-
lem defined by the pair (s, t) is to answer the question “Is the cost of s greater
than t times the total cost?” From the optimal solution of these problems we can
compute the expected relative cost of each subset s. SECOC-Train (Algorithm 1)
has the complete specification.

We write Es to denote an expectation over s drawn uniformly from the rows
of M , and Et to denote expectation over t drawn uniformly from the interval
[tmin, tmax].

162 J. Langford and A. Beygelzimer

Algorithm 1. SECOC-Train (Set of k-class cost-sensitive examples S, impor-
tance weighted binary classifier learning algorithm B, range [tmin, tmax] for t)

1. For each subset s defined by the rows of M :
(a) For (x, c) ∈ S, let |c| =

∑
y cy and cs =

∑
y∈s cy .

(b) For each t in [tmin, tmax]:
Let bst = B({(x, I(cs ≥ t|c|), |cs − |c|t|) : (x, c) ∈ S}).

2. return {bst}

Algorithm 2. SECOC-Predict (classifiers {bst}, example x ∈ X , label y)
return 2 (tmin + (tmax − tmin)EsEt [I(y ∈ s)bst(x) + I(y �∈ s)(1 − bst(x))]) − 1

To make a label cost estimate, SECOC-Predict (Algorithm 2) uses a formula
of the expected prediction of the subsets containing the label.

Single Classifier Trick: Multiple invocations of the oracle learning al-
gorithm B can be collapsed into a single call using a standard trick [2, 1]. The
trick is just to augment the feature space with the name of the call, and then
learn a classifier b on (a random subset of) the union of all training data. With
this classifier, we can define bst(x) ≡ b(〈x, s, t〉), and all of our results hold for
this single invocation classifier. The implication of this observation is that we
can view SECOC-Train as a machine that maps cost-sensitive examples to im-
portance weighted binary examples. We denote the learned binary classifier by
B(SECOC-Train(S)).

3 The Main Theorem

Before stating the theorem, we need to define loss and regret. Given any distri-
bution D on examples X × {0, 1} × [0,∞), the importance weighted error rate
of a binary classifier b is given by

e(D, b) = E(x,y,i)∼D [iI(b(x) �= y)] .

Similarly, given any distribution D on examples X × [0,∞)k, the cost-sensitive
loss of a multiclass classifier h is given by

e(D,h) = E(x,c)∼D

[
ch(x)

]
.

For each of these notions of loss, the regret is the difference between the achieved
performance and best possible performance:

r(D,h) = e(D,h) − min
h′

e(D,h′).

(Note that we mean the minimum over all classifiers h′ not over some class.)
The minimum loss classifier is also known as the “Bayes optimal classifier”.

We must also define how SECOC transforms its distribution D into a distri-
bution on the learned binary classifier. To draw a sample from this distribution,

Sensitive Error Correcting Output Codes 163

we first draw a cost-sensitive sample (x, c) from D, and then apply SECOC-
Train to the singleton set {(x, c)} to get a sequence of importance weighted
binary examples, one for each (s, t) pair. Now, we just sample uniformly from
this set, adding the index in the sequence as a feature. We overload and denote
the induced distribution by SECOC-Train(D).

Throughout the paper, for a cost vector c ∈ [0,∞)k and a subset of labels
s ⊆ {1, . . . , k}, let cs =

∑
y∈s cy. Also let |c| =

∑k
y=1 cy. The distribution D|x

is defined as D conditioned on x.

Theorem 1. (SECOC Regret Transform) For all importance weighted binary
learning algorithms B and cost-sensitive datasets S in (X × [0,∞)k)∗, let b =
B(SECOC-Train(S)). Then for all test distributions D on X × [0,∞)k, for all
labels y ∈ {1, . . . , k} :

E(x,c)∼D

(
SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x

[
c′y

])2

≤ 8(tmax − tmin)2r(SECOC-Train(D), b),

where tmax = max(x,c):D(x,c)>0 maxs(cs/|c|) and tmin = min(x,c):D(x,c)>0

mins(cs/|c|).

This theorem relates the average regret of the created binary importance
weighted classifier to the relative estimation error.

For the proof, note that the dependence on B and S can be removed by
proving the theorem for all b, which is of equivalent generality.

Proof. We first analyze what happens when no regret is suffered, and then
analyze the case with regret. For any s and t, let D(s, t) be the distribu-
tion on X × {0, 1} × [0,∞) induced by drawing (x, c) from D and outputting
(x, I(cs ≥ t|c|), |cs − t|c||).

For any choice of s and t, the optimal classifier is given by

b∗st = arg min
b

E(x,y,i)∼D(s,t) [iI(b(x) �= y)]

= argmin
b

E(x,c)∼D [|cs − |c|t| · I (b(x) �= I(cs ≥ t|c|))] .

For any x, the optimal value of b(x) is either 0 or 1. When it is 0, the expected
cost is

Ec∼D|x max {(cs − t|c|), 0}. (1)

Otherwise, it is
Ec∼D|x max {(t|c| − cs), 0}. (2)

To simplify notation, let Zx = Ec∼D|x|c|. Equations 1 and 2 are continuous in t;
the first decreases while the second increases monotonically with t, so we need
only find the single equality point to describe the optimal behavior for all t. This
equality point is given by

Ec∼D|x max {(cs − t|c|), 0} = Ec∼D|x max {(t|c| − cs), 0},

164 J. Langford and A. Beygelzimer

or
Ec∼D|x(cs − t|c|) = 0,

yielding

t =
Ec∼D|x [cs]

Zx
,

and thus b∗st(x) = I(Ec∼D|x [cs] ≥ tZx).
For any choice of s, we have

Et [b∗st(x)] = EtI
(
Ec∼D|x [cs] ≥ tZx

)
=

Ec∼D|x[cs]

Zx
− tmin

tmax − tmin

since Et∈[tmin,tmax]I(K ≥ t) = K−tmin
tmax−tmin

for all K ∈ [tmin, tmax].
Since decoding is symmetric with respect to all labels, we need analyze only

one label y. Furthermore, since SECOC-Predict (Algorithm 2) is symmetric with
respect to set inclusion or complement set inclusion, we can assume that y is in
every subset (i.e., complementing all subsets not containing y does not change
the decoding properties of the code.) Consequently,

ĉy = EsEt [b∗st(x)] (tmax − tmin) + tmin = Es

Ec∼D|x [cs]
Zx

=
1
2Ec∼D|x(cy + |c|)

Zx
=

1
2

(
Ec∼D|x [cy]

Zx
+ 1

)
,

where the third equality follows from the fact that every label other than y
appears in s half the time in expectation over s. Consequently, SECOC-Predict
outputs 1

Zx
Ec∼D|x [cy] for each y, when the classifiers are optimal.

Now we analyze the regret transformation properties. The remainder of this
proof characterizes the most efficient way that any adversary can induce estima-
tion regret with a fixed budget of importance weighted regret.

Examining equations 1 and 2, notice that the importance weighted loss grows
linearly with the distance of tZx from Ec∼D|x [cs], but on the other hand, each
error has equal value in disturbing the expectation in SECOC-Predict (Algo-
rithm 2). There are two consequences for an adversary attempting to disturb
the expectation the most while paying the least importance weighted cost.

1) It is “cheapest” for an adversary to err on the t closest to 1
Zx

Ec∼D|x [cs]
first. (Any adversary can reduce the importance weighted regret by swapping
errors at larger values of |t− 1

Zx
Ec∼D|x [cs] | for errors at smaller values without

altering the estimation regret.)
2) It is “cheapest” to have a small equal disturbance for each s rather than

a large disturbance for a single s. (The cost any adversary pays for disturb-
ing the overall expectation can be monotonically decreased by spreading errors
uniformly over subsets s.)

Consequently, the optimal strategy for an adversary wanting to disturb the
output of SECOC-Predict by Δ is to disturb the expectation for each s by

Δ
2(tmax−tmin) . The importance weighted regret of erring (with a “1”) for

Sensitive Error Correcting Output Codes 165

t = Δ
2(tmax−tmin) + 1

Zx
Ec∼D|x [cs] can be found by subtracting equation 2 from

equation 1:

Ec∼D|x(t|c| − cs)I(cs < t|c|) − Ec∼D|x(cs − t|c|)I(cs ≥ t|c|)

= Ec∼D|x

((
Δ

2(tmax − tmin)
+

Ec∼D|x [cs]
Zx

)
|c| − cs

)

=
Δ

2(tmax − tmin)
Zx.

The same quantity holds for t = − Δ
2(tmax−tmin) + Ec∼D|x[cs]

Zx
. By observation (1)

above, in order for the adversary to induce an estimation error of Δ an error
must occur for every t ∈

[
Ec∼D|x[cs]

Zx
,

Ec∼D|x[cs]

Zx
+ Δ

2(tmax−tmin)

]
. If we consider a

limit as the discretization of t goes to 0, the average regret is given by an integral
of the differential regret according to:

∫ u= ΔZx
2(tmax−tmin)

u=0

udu =
Δ2Z2

x

8(tmax − tmin)2
.

Solving for Δ2Z2
x and taking an expectation over all x gives the theorem. �

4 Applications and Corollaries

In this section we discuss various uses of SECOC to solve problems other than
relative cost estimation and corollaries of the main theorem.

4.1 Reduction All the Way to Classification

The basic SECOC reduction above reduces to importance weighted binary clas-
sification. However, there are easy reductions from importance weighted binary
classification to binary classification. For example, the Costing reduction [16]
uses rejection sampling to alter the measure. When SECOC is composed with
this reduction we get the following corollary:

Corollary 1. (SECOC Binary Regret Transform) For any importance weighted
binary learning algorithm B and cost-sensitive dataset S in (X × [0,∞)k)∗, let
b = B(Costing(SECOC-Train(S))). Then for all test distributions D on X ×
[0,∞)k and all labels y ∈ {1, . . . , k} :

E(x,c)∼D

(
SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x

[
c′y

])2

≤ 4(tmax − tmin)r(Costing(SECOC-Train(D)), b)E(x,c)∼D [|c|]

166 J. Langford and A. Beygelzimer

Algorithm 3. SECOC-Hard-Predict (classifiers {bst}, example x ∈ X)
return arg miny SECOC-Predict({bst}, x, y)

Proof. The basic result from importance weighted analysis is that for every im-
portance weighted test measure D, we have

r(D, b) = r(Costing(D), b)E(x,y,i)∼D [i] ,

where the regret on the left is the importance weighted regret of b with respect
to D, and the regret on the right is the regret with respect to the induced binary
distribution.

Consequently, we need only compute an upper bound on the average impor-
tance over t and s. The average importance for fixed x and s is given by

1
tmax − tmin

∫ tmax

tmin

Ec∼D|x |t|c| − cs| dt.

This quantity is maximized (over all x and s) when Ec∼D|x [cs] = 0. In this

case the integral is (tmax−tmin)2

2(tmax−tmin)Ec∼D|x|c| = (tmax−tmin)
2 Ec∼D|x|c|. Taking the

expectation over x and s, we get the corollary. �

4.2 Cost Sensitive Classification

If we use the decoding function SECOC-Hard-Predict in Algorithm 3, we can
choose a class in a regret transforming manner.

Corollary 2. (Hard Prediction Regret Transform) For any importance weighted
binary learning algorithm B and multiclass dataset S in (X × {1, ..., k})∗, let
b = B(SECOC-Train(S)). Then for all test distributions D over X × {1, .., k}:

r (D, SECOC-Hard-Predict(b, x)) ≤ 4(tmax − tmin)
√

2r(SECOC-Train(D), b)

Proof. We can weaken Theorem 1 so that for all y:

E(x,y)∼D

∣∣SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x
[
c′y

]∣∣
≤ 2(tmax − tmin)

√
2r(SECOC-Train(D), b)

since for all X ,
√

E(X) ≥ E
√

X. When doing a hard prediction according to
these outputs, our regret at most doubles because the relative cost estimate of
the correct class can be increased by the same amount that the relative cost
estimate of the wrong class can be decreased. �

Sensitive Error Correcting Output Codes 167

Algorithm 4. PECOC-Train (Set of k-class multiclass examples S, impor-
tance weighted binary classifier learning algorithm B)
1. Let S′ = {(x,∀i ci = I(i �= y)) : (x, y) ∈ S}.

2. return SECOC-Train

(
S′, B,

[
� k

2 �−1

k−1
,
� k

2 �
k−1

])

Algorithm 5. PECOC-Predict (classifiers {bst}, example x ∈ X , label y)
return 1 − SECOC-Predict({bst}, x, y)(k − 1)

4.3 Multiclass Probability Estimation

SECOC can be used to predict the probability of class labels with the training
algorithm PECOC-Train (Algorithm 4) for any k a power3 of 2. Similarly, the
prediction algorithm PECOC-Predict (Algorithm 5) is a slight modification of
SECOC-Predict (Algorithm 2).

Corollary 3. (Multiclass Probability Regret Transform) For any importance
weighted binary learning algorithm B and a multiclass dataset S in (X × {1, ...,
k})∗ with k a power of 2, let b = B(PECOC-Train(S)). Then for all test distri-
butions D over X × {1, ..., k} and all labels y ∈ {1, . . . , k},

E(x,y)∼D (PECOC-Predict(b, x, y) − D(y|x))2 ≤ 8

(k − 1)2
r(PECOC-Train(D), b).

This corollary implies that probability estimates (up to l2 loss) are accurate
whenever the classifier has small regret. When we reduce all the way to classifi-
cation as in Corollary 1, the factor of 1/(k − 1)2 disappears so the l2 regret in
class probability estimation is independent of the number of classes.

Proof. The proof just uses Theorem 1. In this case |c| = k − 1, Ec′∼D|x
[
c′y

]
=

1 −D(y|x), and tmax − tmin = 1
k−1 .

E(x,y)∼D (SECOC-Predict(b, x, y)(k − 1) − (1 −D(y|x)))2

≤ 8
(k − 1)2

r(PECOC-Train(D), b).

Applying algebra finishes the corollary. �

4.4 Multiclass Classification

When a hard prediction is made with PECOC-Hard-Predict (Algorithm 6), we
achieve a simple algorithm that translates any consistent binary classifier into a
consistent multiclass classifier.

3 This limitation is not essential. See Section 6.

168 J. Langford and A. Beygelzimer

Algorithm 6. PECOC-Hard-Predict (classifiers {bst}, example x ∈ X)
return arg maxy∈{1,...,k} PECOC-Predict({bst}, x, y)

Corollary 4. (Multiclass Classification Regret Transform) For any importance
weighted binary learning algorithm B and multiclass dataset S in (X×{1, ..., k})∗
with k a power of 2, let b = B(PECOC-Train(S)). For all test distributions D
over X × {1, ..., k}:

r (D,PECOC-Hard-Predict(b, x)) ≤ 4
k − 1

√
2r(PECOC-Train(D), b).

Note again that if we reduce to binary classification, the factor of k−1 is removed
and the result is independent of the number of classes.

This guarantee can not be satisfied by ECOC (as we show in Section 5). A
guarantee of this sort may be provable with other variants of ECOC (such as
[1]), but this seems to be the tightest known regret transform. Since consistent
generalization of binary classifiers to multiclass classifiers has historically been
problematic (see [8] for a fix for SVMs), this result may be of interest.

Proof. The regret of a multiclass prediction is proportional to the difference in
probability of the best prediction and the prediction made. Weakening corollary
3 gives, for all y,

E(x,y)∼D |PECOC-Predict(b, x, y) −D(y|x)| ≤ 2
k − 1

√
2r(PECOC-Train(D), b)

since for all X ,
√

E(X) ≥ E
√

X. When doing a hard prediction according to
these outputs, our regret at most doubles because the probability estimate of the
correct class can be reduced by the same amount that the probability estimate
of the wrong class increases. �

4.5 Online Learning and Loss

Notice that all basic transformations are applied to individual examples, as in
line 1(b) of SECOC-Train. Consequently, the transformation can be done online.
The theorems apply to any measure on (x, c), so they also apply to the uniform
measure over past examples; thus online regret minimizing binary predictors can
be used with SECOC to minimize cost-sensitive regret online.

In particular, this means that SECOC can be used with online learning al-
gorithms such as weighted majority [9] in order to optimize regret with respect
to any loss function.

Note that the notion of regret in online learning is typically defined with
respect to some set of “experts” rather than the set of all possible experts as
here. This distinction is not essential, because the weighted majority algorithm
can be applied to an arbitrary measure over the set of all experts.

Sensitive Error Correcting Output Codes 169

5 ECOC Can Not Transform Regret

Is it possible to get similar guarantees with ECOC? The answer is no. It is easy
to show that even when ECOC is supplied with an optimal binary classifier, the
reduction fails to provide an optimal multiclass classifier.

Theorem 2. (ECOC Inconsistency) For all k > 2, there exists a distributions
D over multiclass test examples (x, y) such that for all codes M , with c∗ =
arg minc r(ECOC-Train(D), c),

r(D,ECOC-Predict(c∗)) >
1
8

where ECOC-Train and ECOC-Predict are as defined in the introduction.

Proof. The proof is constructive. We choose a D which places probability on
three labels: ‘1’, ‘2’, and ‘3’.

A few observations about symmetry simplify the proof. First, since only three
labels have positive probability, we can rewrite any code M as a new weighted
code M ′ over the three labels where each subset has a weight ws corresponding
to the number of times the subset of the three labels exists in M after projection.
The second observation is that the symmetry with respect to complementarity
implies that each row (and each codeword) has one ‘1’ in it.

These observations imply that ECOC essentially uses the binary classifier to
ask, “Is the probability of label i > 0.5?” for each i ∈ {1, 2, 3}. These answers
are then combined with a weighted sum. If we let the probability of one label be
0.5 − ε and the probability of the other two labels be 0.25 + ε

2 each, the answer
to every question will be “no”.

Since we have a weighted sum, the exact weighting determines the outcome
(possibly with randomization to break ties). The exact distribution therefore
picks a label at random to have probability 0.5− ε, encodes that choice in the x
value, and then draws the label from this associated distribution.

Under any code, the probability of predicting the label with greatest prob-
ability is at most 1

3 implying a regret of 2
3 (0.5 − ε − (0.25 + ε

2)), which can be
made arbitrarily close to 1

6 . �

A margin-based version of ECOC [1] has the same lower bound whenever the
coding matrices are limited to “-1” and “1” entries. This is because consistent
binary classifiers might have margin 1 or −1 for each example, and the proof
above holds.

However, this version of ECOC also allows “don’t cares” in the coding matrix.
The existence of “don’t cares” allows questions of the form, “Is the probability
of this label greater than that label?” In general, these are sufficiently powerful
to support regret transformation consistency, with the exact quantity of regret
transformation efficiency dependent on the coding matrix. We are not aware of
any margin based code with “don’t cares” with a better regret transform than
SECOC with the Hadamard Code.

170 J. Langford and A. Beygelzimer

Take as an example the all-pairs code, which is consistent with margin-based
ECOC. The all-pairs code creates a classifier for every pair of classes deciding
(for an optimal classifier) “Is class i more probable than class j?” The problem
with this question is that the classifier is applied when class i and class j each
have zero probability. In this situation, an adversarial classifier can choose to
report either pi > pj or pj > pi without paying any regret. Consequently, an
adversarial binary classifier could make some label with 0 conditional probability
beat all labels except for the correct label for free. This is not robust, because
one error in one classifier (out of k − 1 active classifiers) can alter the result.
Consequently, the regret transform for this code scales with k.

6 Discussion

Variants. There are several variants of the basic SECOC algorithm.

Random Code. One simple variant code is “pick a random subset s and pick a
random t”. This code has essentially the same analysis as the Hadamard code
presented here in expectation over the random choices.

Optimal codes. For small values of k (the number of classes), it is possible to
derive a better regret transform with other codes. For example, when k = 2 there
is only one useful subset (up to symmetry in complementation), so the prediction
algorithm can simply output the cost estimate for that one subset rather than 2
times the average predicted cost, minus 1. This removes a factor of 2 loosening
in the last paragraph of the proof of the main theorem. When used for class
probability prediction the above observation improves on the regret transform
analysis of the probing algorithm [7] by a factor of

√
2. The reason for this

improvement is (essentially) the use of a unified measure over the classification
problem rather than many different measures for different problems.

Varying interval. The range of t can be made dependent on s. This is useful when
embedding multiclass classification into cost-sensitive classification for k not a
power of 2. Roughly speaking, allowing the range of t to vary with s eliminates
the use of classifiers for which the correct prediction is “always 0” or “always
1”. Eliminating these classifiers improves the regret transform by reducing the
size of the set over which regret is averaged.

Clipping. Our prediction algorithms can output relative costs or probability es-
timates above “1” or below “0”. In such cases, clipping the prediction to the
interval [0, 1] always reduces regret.

Why Regret Isn’t Everything. Other work [2] defines a reduction with the
property that small error on the subproblem implies small error on the original
problem. The definition of regret we use here is superior because the theorems
can apply nontrivially even on problems with large inherent noise. However,

Sensitive Error Correcting Output Codes 171

the mathematical form of the regret transforms is weaker, typically by ε loss
changing to

√
εregret. Tightening the regret transform by removal of the square

root seems to require a different construction.

Difficulty of Created Learning Problems. A natural concern when using
any reduction is that it may create hard problems for the oracle. And in fact,
learning to distinguish a random subset may be significantly harder than learning
to distinguish (say) one label from all other labels, as in the One-Against-All
(OAA) reduction, as observed in [1, 5]. The best choice of code is a subtle affair.
The method here is general and can be used with sparser coding matrices as
well. Nevertheless, there is some empirical evidence in support of SECOC with
Hadamard codes (presented in the next section).

7 Experimental Results

We compared the performance of SECOC, ECOC and One-Against-All (OAA)
on several multiclass datasets from the UCI Machine Learning Repository [11]
(ecoli, glass, pendigits, satimage, soybean, splice, vowel, and yeast). Hadamard
matrices were used for both SECOC and ECOC. As oracles, we used a decision
tree learner (J48), a (linear) support vector machine learner (SMO) and logistic
regression (denoted LR), all available from Weka [15]. Default parameters were
used for all three learners in all experiments. For datasets that do not have a
standard train/test split, we used a random split with 2/3 for training and 1/3
for testing. The figures below show test error rates of SECOC plotted against
those of ECOC and OAA (the axes are labeled).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
E

C
O

C
 te

st
 e

rr
or

 r
at

e

ECOC test error rate

SMO
J48
LR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
E

C
O

C
 te

st
 e

rr
or

 r
at

e

OAA test error rate

SMO
J48
LR

For SECOC, we used six thresholds for each row of the matrix. SECOC
resulted in superior (or equal) performance on every dataset tested, for every
learner used. We do not report any statistical significance tests because the
assumptions they are based on are not satisfied by the datasets. Instead we re-
port all experiments performed; we believe that the observed consistency across
different datasets and learners gives sufficient empirical evidence in support of
SECOC. The code is available from the authors.

172 J. Langford and A. Beygelzimer

References

1. Erin Allwein, Robert Schapire, and Yoram Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113–141, 2000.

2. Alina Beygelzimer, Varsha Dani, Tom Hayes, and John Langford. Reductions be-
tween classification tasks. Electronic Colloquium on Computational Complexity,
TR04-077, 2004.

3. Thomas Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–
286, 1995.

4. Yoav Freund and Robert Schapire. A decision-theoretic generalization of online
learning and an application to boosting. Journal of Computer and System Sciences,
55(1), 119–139, 1997.

5. Venkat Guruswami and Amit Sahai. Multiclass learning, boosting, and error-
correcting codes. In Proceedings of the 12th Annual Conference on Computational
Learning Theory (COLT), 145–155,1999.

6. Adam Kalai and Rocco Servedio. Boosting in the Presence of Noise. In Proceedings
of the 35th Annual ACM Symposium on the Theory of Computing (STOC), 195–
205, 2003.

7. John Langford and Bianca Zadrozny. Estimating class membership probabilities
using classifier learners. In Proceedings of the 10th International Workshop on Ar-
tificial Intelligence and Statistics, 2005.

8. Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory Support Vector Ma-
chines: Theory and Application to the Classification of Microarray Data and
Satelite Radiance Data, Journal of the American Statistical Association, 99, 465
(2004) 67-81.

9. Nick Littlestone and Manfred Warmuth, The Weighted Majority Algorithm, Foun-
dations of Computer Science, 1992.

10. John Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D.
Schuurmans, editors, Advances in Large Margin Classifiers, 61–74, 1999.

11. C. Blake and C. Merz, UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California,
Irvine.

12. Leslie Valiant. Learning disjunctions of conjunctions, In Proceedings of the 9th
IJCAI, 560–566, 1985.

13. Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
14. Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative

frequencies of event to their probabilities. Theory of Probability and its Applica-
tions, 16(2), 264–280, 1971.

15. Ian H. Witten and Eibe Frank, Data Mining: Practical machine learning tools with
Java implementations, Morgan Kaufmann, 2000,
http://www.cs.waikato.ac.nz/ml/weka/.

16. Bianca Zadrozny, John Langford, and Naoki Abe. Cost-Sensitive Learning by Cost-
Proportionate Example Weighting. In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM) 435–442, 2003.

Data Dependent Concentration Bounds
for Sequential Prediction Algorithms

Tong Zhang

IBM T.J. Watson Research Center,
Yorktown Heights, NY, 10598, USA

tzhang@watson.ibm.com

Abstract. We investigate the generalization behavior of sequential pre-
diction (online) algorithms, when data are generated from a probability
distribution. Using some newly developed probability inequalities, we are
able to bound the total generalization performance of a learning algo-
rithm in terms of its observed total loss. Consequences of this analysis
will be illustrated with examples.

1 Introduction

In statistical learning, we are interested in predicting output Y ∈Y based on ob-
servation X∈X . Given a set of n training examples Zn

1 ={Z1 =(X1, Y1), . . . , Zn

=(Xn, Yn)}, a learning algorithm A produces a function A(Zn
1 ; ·) on X . With a

future example Zn+1 = (Xn+1, Yn+1), it produces an output A(Zn
1 ;Xn+1), and

suffers a loss L(A(Zn
1 ;Xn+1), Yn+1). Assume that the data are generated from

an unknown underlying probability distribution D, then the instantaneous risk
of the function produced by the algorithm is defined as the expected loss:

EZn+1∼D L(A(Zn
1 ;Xn+1), Yn+1).

In statistical learning, we assume that the training data Z1, . . . , Zn are drawn
from the same underlying distribution D as the test data. In this paper, we are
interested in the concentration of the total instantaneous generalization risk

n∑
i=1

EZi
L(A(Zi−1

1 ;Xi), Yi) (1)

to the total empirical loss of the algorithm on the training data

n∑
i=1

L(A(Zi−1
1 ;Xi), Yi). (2)

The former is the generalization behavior of the algorithm on the test data, and
the latter is the online performance of the algorithm on the training data. The
problem of estimating (1) in terms of (2) has been investigated in [3, 4, 10]. There

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 173–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 T. Zhang

are two motivations for studying this problem. One is that this gives a probability
inequality for the performance of online algorithm on future test data based on
the observable “mistake” it makes on the training data. Such a concentration
bound can also be used to convert many known online learning mistake bound
results into PAC style probability bounds. The second motivation is somewhat
different. As pointed out in [3], if we use the total empirical risk of an algorithm
as a criterion to select the best learning algorithm (that is, we want to choose
the algorithm with the smallest total risk), then the concentration behavior is
similar to using n independent random samples. It can thus be argued that the
total empirical risk of an algorithm makes better use of the data (than say, cross-
validation), and thus is theoretically an attractively quantity for the purpose of
model selection. We shall discuss both aspects in the paper.

The purpose of this paper is to develop data-dependent estimates of the total
generalization performance (1) based on the observed total loss (2). In order to
do so, we need to prove some new probability inequalities for dependent random
variables that are suitable for this purpose.

2 Conditional Probability Inequalities for Sums of
Dependent Random Variables

We consider a sequence of possibly dependent random variables Z1, Z2, . . . , Zn.
For each k, Zk may depend on the preceding random variables Z1, . . . , Zk−1.
Consider also a sequence of functionals ξk(Z1, . . . , Zk) (k = 1, . . . , n). For ex-
ample, in online mistake bound analysis, we may let ξk = 1 if a mistake is
made on the k-th example, and ξk = 0 otherwise. Denote by EZk

ξk(Z1, . . . , Zk)
the conditional expectation of ξk with respect to Zk, conditioned on Zk−1

1 =
{Z1, . . . , Zk−1}. Given an observed sequence Z1, . . . , Zn, we are interested in the
following two quantities:

sn =
1
n

n∑
i=1

ξi(Z1, . . . , Zi), μn =
1
n

n∑
i=1

EZi
ξi(Z1, . . . , Zi). (3)

The first quantity is the empirical average of ξk, and the second quantity is the
average (over k) of conditional expectation of ξk with respect to Zk. We are
interested in showing that sn and μn are close with large probability. Note that
if we let Zk = (Xk, Yk) and ξk = L(A(Zk−1

1 ;Xk), Yk), then these two quantities
can be interpreted as the total empirical and generalization risks of the learning
algorithm A in equations (2) and (1).

The starting point of our analysis is the following simple equality.

Lemma 1. Consider a sequence of random functionals ξ1(Z1), . . . , ξn(Z1,
. . . , Zn). We have

EZ1,...,Zn
exp

(
n∑

i=1

ξi −
n∑

i=1

lnEZi
eξi

)
= 1.

Data Dependent Concentration Bounds 175

Proof. We prove the lemma by induction on n. When n = 1, the equality is easy
to verify. Assume that the claim holds for all n ≤ k. Now for n = k + 1, we have

EZ1,...,Zn
exp

(
n∑

i=1

ξi −
n∑

i=1

lnEZi
eξi

)

=EZ1,...,Zn−1

[
exp

(
n−1∑
i=1

ξi −
n−1∑
i=1

lnEZi
eξi

)
EZn

exp(ξn − lnEZn
eξn)

]

=EZ1,...,Zn−1 exp

(
n−1∑
i=1

ξi −
n−1∑
i=1

lnEZi
eξi

)
= 1.

Note that the last equation follows from the induction hypothesis.

The following result is a direct consequence of Lemma 1, which we will use to
develop more concrete concentration bounds later in the paper. In the literature,
related inequalities have been used to derive conditional probability inequalities
for Martingales. The technique used here simplifies and improves such results.
Some tight probability bounds suitable for our purpose can be obtained as con-
sequences of the following lemma.

Lemma 2. Consider a sequence of random functionals ξ1(Z1), . . . , ξn(Z1,
. . . , Zn). Then ∀t ≥ 0 and ρ,

Pr

[
−

n∑
i=1

lnEZi
e−ρξi ≥ ρ

n∑
i=1

ξi + t

]
≤ e−t.

Proof. Let ξ(ρ) = −
∑n

i=1 lnEZi
e−ρξi −ρ

∑n
i=1 ξi, then we have from Lemma 1:

E eξ(ρ) = 1. Now ∀t, we have

Pr(ξ(ρ) ≥ t)et ≤ E eξ(ρ) = 1.

Therefore Pr(ξ(ρ) ≥ t) ≤ exp(−t).

Remark 1. Both in Lemma 1 and Lemma 2, the fixed size n can be replaced
by a random stopping time that depends on Z1, . . . , Zn. We can simply define
ξm = 0 for m > n when the sequence stops at n after seeing Z1, . . . , Zn.

Remark 2. Given a random variable Z, the function lnEZe−ρZ of ρ is often re-
ferred to as its logarithmic moment generating function. It is used in the large
deviation literature to obtain tight asymptotic tail probability estimates. The
left side of Lemma 2 is the sum of (conditional) logarithmic moment generating
functions of ξk with respect to Zk. The bound obtain is essentially identical to
the large deviation bounds for independent variables. Therefore, we are able to
translate well-known inequalities in the independent setting to the dependent
setting with appropriate estimations of logarithmic moment generating func-
tions. This is the approach we will take later on.

176 T. Zhang

Based on Lemma 2, we are now ready to derive results that are direct general-
izations of the corresponding cases for independent variables, using appropriate
estimates of the logarithmic moment generating functions. These generalizations
are the main results of this section.

2.1 Conditional Hoeffding Inequalities

For a bounded random variable ξ ∈ [0, 1], it is well-known that its logarithmic
moment generating function can be estimated as (see [9]):

lnEe−ρξ ≤ ln
[
1 + (e−ρ − 1)Eξ

]
. (4)

In fact, this is a simple consequence of Jensen’s inequality. Using this estimate,
we can obtain

Lemma 3. Assume that ξk ∈ [0, 1] for all k = 1, . . . , n. Then ∀t ≥ 0 and ρ,

Pr
[
− ln

[
1 + μn(e−ρ − 1)

]
≥ ρsn + t

]
≤ e−nt,

where μn and sn are defined in (3).

Proof. Using the concavity of logarithm, we have
n∑

i=1

lnEZi
e−ρξi ≤ n ln

[
1
n

n∑
i=1

EZi
e−ρξi

]
.

Now using (4) on the right hand side of the above inequality, we obtain the result
as a direct consequence of Lemma 2.

Theorem 1. Under the conditions of Lemma 3. We have

Pr
[
μn ≥ ρsn + t

1 − e−ρ

]
≤ e−nt, Pr

[
μn ≥ sn +

√
t/2

]
≤ e−nt.

Proof. Using the fact − ln(1 − x) ≥ x, we obtain from Lemma 3 that with
probability at most e−nt,

μn(1 − e−ρ) ≥ ρsn + t.

This implies the first inequality.
For the second inequality, we substitute the following bound (which can be

verified using Taylor expansion around ρ = 0; for example, see [9])

− ln
[
1 + x(e−ρ − 1)

]
≥ ρx − ρ2

8

into Lemma 3: with probability at most e−nt,

μn − sn ≥ t + ρ2/8
ρ

.

Now take ρ =
√

t/8, we obtain the second inequality.

Data Dependent Concentration Bounds 177

The second inequality is well-known [1]. We simply reproduce it here. The
first inequality is superior (with any fixed ρ) when sn is small. However, it is not
tight when sn is large. The best possible inequality can be obtained by picking
the optimal ρ in Lemma 3. This is what we shall explore next.

Before introducing the next theorem, we shall introduce the following defini-
tions: ∀α, β ∈ [0, 1] and t ≥ 0:

KL(α||β) = α ln(α/β) + (1 − α) ln((1 − α)/(1 − β)),

KL−1
2 (α||t) = sup{β : KL(α||β) ≤ t}.

Theorem 2. Under the conditions of Lemma 3. We have ∀α ∈ [0, 1] and t ≥ 0:

Pr
[
μn ≥ KL−1

2 (α||t), sn ≤ α
]
≤ e−nt.

Proof. We know from Lemma 3 that ∀ρ ≥ 0 and β ∈ [α, 1], the following two
inequalities hold with probability of at most e−nt:

μn ≥ β, sn ≤ α, −ρα − ln
[
1 + β(e−ρ − 1)

]
≥ t.

Since the claim holds for all ρ ≥ 0, we may take the parameter ρ that maxi-
mizes the left hand side of the third inequality. That is, we take ρ = ln(β(1 −
α)) − ln(α(1 − β)), and the third inequality becomes KL(α||β) ≥ t. Now, let
β = KL−1

2 (α||t), the third inequality is trivially satisfied. We thus obtain the
statement of the theorem.

The function KL−1
2 (α||t) may not be intuitive at first sight. The following

result gives a more intuitive form, which can be used to replace KL−1
2 (α||t) in

Theorem 2 as well as other theorems in the sequel.

Proposition 1. The following bound holds for all α ∈ [0, 1] and t ≥ 0:

KL−1
2 (α||t) ≤ α +

√
2α(1 − α)t + 1.5(1 − α)t.

Proof. Let Δα =
√

2α(1 − α)t + 0.752(1 − α)2t2+0.75(1−α)t. In the following,
we assume α + Δα ≤ 1 since the bound holds trivially otherwise. Using Taylor
expansion, we have

KL(α||α + Δα) = α ln
(

1 − Δα

α + Δα

)
− (1 − α) ln

(
1 − Δα

1 − α

)
≥α

[
− Δα

α + Δα
− Δα2

2(α + Δα)2
1 − Δα

3(α+Δα)

1 − Δα
(α+Δα)

]
− (1 − α)

[
− Δα

1 − α
− Δα2

2(1 − α)2

]
=

Δα2

2(α + Δα)
+

Δα3

6(α + Δα)2
+

Δα2

2(1 − α)

≥ Δα2

2(α + 0.75Δα)
+

Δα2

2(1 − α)
≥ Δα2

2(1 − α)(α + 0.75Δα)
= t.

This implies that KL−1
2 (α||t) ≤ α + Δα.

178 T. Zhang

The bound in the Theorem 2 is asymptotically best possible for large devi-
ation probability with fixed t since it matches the large deviation lower bound
for independent random variables (this claim is also true for moderate devia-
tion when t decreases sufficiently slower than O(1/n)). However, in the above
theorem, we require that α is chosen in advance. If we remove this condition, a
slightly weaker data dependent inequality still holds. The extra penalty of the
resulting deviation is no more than O(lnn/n) = o(1); consequently in the large
deviation situation (with fixed t), the bound is also asymptotically the best
possible. However, it might be possible to improve the extra O(lnn)/n penalty
we pay for achieving data-dependency because our proof technique may be sub-
optimal.

The technique we use is rather standard in proving data-dependent general-
ization bounds in the statistical learning theory literature. The application here
is new. We shall state a general result as a lemma (which will also be used later),
and then use it to derive a more concrete theorem.

Lemma 4. Under the conditions of Lemma 3. Consider a finite sequence 0 ≤
α1 ≤ · · · ≤ αm = 1, and a sequence {Δt
} such that

∑m

=1 e−Δt� ≤ 1. Let

�∗(x) : [0, 1] → {1, . . . ,m} be any function such that �∗(x) ≥ inf{� : α
 ≥ x}.
Then for all t ≥ 0, we have

Pr
[
μn ≥ KL−1

2 (α
∗(sn)||n−1Δt
∗(sn) + t)
]
≤ e−nt.

Proof. Let t
 = t + Δt
/n. We obtain from Theorem 2 that for each �:

Pr
[
μn ≥ KL−1

2 (α
||t
), sn ≤ α

]
≤ e−Δt�e−nt.

Take a union bound over � = 1, . . ., we have:

Pr
[
� = �∗(sn) : μn ≥ KL−1

2 (α
||t
)
]

≤Pr
[
∃� ∈ {1, . . . ,m} : μn ≥ KL−1

2 (α
||t
), sn ≤ α

]
≤

m∑

=1

e−Δt�e−nt ≤ e−nt.

This proves the lemma.

Theorem 3. Under the conditions of Lemma 3. For all t ≥ 0, we have

Pr
[
μn ≥ KL−1

2 (n−1nsn�||2n−1 ln(nsn� + 2) + t)
]
< e−nt.

Proof. In Lemma 4, we take α
 =(�− 1)/n for � = 1, . . . , n+1, Δt
 =2 ln(�+1),
and �∗(x) = nx� + 1.

Data Dependent Concentration Bounds 179

2.2 Conditional Bennett Inequalities

In Bernstein and Bennett inequalities, the resulting bounds depend on the vari-
ance of the random variables (for example, see [2]).

These inequalities are useful for some statistical estimation problems includ-
ing least squares regression and density estimation with log-loss. This is because
for these problems, the variance of a random variable can be bounded by its
mean: ∃b > 0 : EZk

(ξk − EZk
ξk)2 ≤ bEZk

ξk. Probability inequalities that use
variance become crucial to obtain good bounds.

Bernstein inequalities for dependent random variables have been investigated
in the literature (for example, see [6, 7] and references therein). However, they
were not in the form most suitable for our purpose. We shall thus derive some
new bounds here that are directly applicable to statistical estimation problems.
Our bounds depend on the following additional quantity:

σ2
n =

1
n

n∑
i=1

EZk
(ξk − EZk

ξk)2.

A standard estimate of moment generating function leads to the following
result.

Lemma 5. Assume that ξk − EZk
ξk ≥ −1 for each k. We have ∀ρ > 0:

Pr
[
μn ≥ eρ − ρ − 1

ρ
σ2

n + sn +
t

ρ

]
≤ e−nt.

Proof. Let ξ̃k = ξk − EZk
ξk. We start with the following estimate

lnEZk
e−ρξ̃k ≤EZk

e−ρξ̃k − 1

=EZk
ξ̃2
k

e−ρξ̃k + ρξ̃k − 1
ξ̃2
k

≤EZk
ξ̃2
k

eρ − ρ − 1
12

.

The first inequality uses lnx ≤ x − 1. The last inequality uses the fact that
f(x) = x−2(ex − x − 1) is a non-decreasing function of x, and −ρξ̃k ≤ ρ. By
using this estimate in Lemma 2, we obtain the desired bound.

The condition ξk − EZk
ξk ≥ −1 was considered by Bennett. It can be

changed to appropriate moment conditions (in Bernstein inequalities). The proof
of Lemma 5 follows a standard argument for proving Bennett bounds. This same
method was also used in [7] to obtain a related bound (also see [6]). However, for
statistical estimation problems, results in [7] are not directly applicable. This is
because the most common application of this theorem is under the assumption
that there exists a constant b > 0 such that bEZk

ξk ≥ EZk
(ξk −EZk

ξk)2. Under
this assumption, a more suitable bound can be derived from Lemma 5 as follows.

180 T. Zhang

Theorem 4. Assume that ξk − EZk
ξk ≥ −1 for each k. If there exists b > 0

such that bEZk
ξk ≥ EZk

(ξk − EZk
ξk)2 for all k, then ∀α ≥ 0 and t ≥ 0:

Pr
[
μn ≥ sn +

√
2αbt + cbt, sn ≤ α

]
≤ e−nt,

where cb =
√

(b + 2/3)b + b + 1/3.

Proof. It is easy to verify that for ρ ∈ (0, 3):

eρ − ρ − 1 ≤ ρ2

2

∞∑
u=0

(ρ/3)u =
ρ2

2(1 − ρ/3)
.

Using Lemma 5, for any fixed ρ ∈ (0, 6/(3b + 2)), we have with probability at
least 1 − e−nt, sn ≤ α and

μn <

(
1 − ρb

2(1 − ρ/3)

)−1

(sn + t/ρ) ≤ sn −α +
(

1 − ρb

2(1 − ρ/3)

)−1

(α + t/ρ).

Since this inequality is true for all ρ, we may optimize over ρ. In particular,
let ρ−1 = (0.5b + 1/3) +

√
0.5b(α + 0.5bt + t/3)/t. and simplify, we obtain the

theorem.

Similar to Lemma 4, we may obtain a data-dependent version of Theorem 4
with the same proof.

Lemma 6. Under the conditions of Theorem 4. Consider a sequence α1 ≤
α2 · · · and a sequence {Δt
} such that

∑

 e−Δt� ≤ 1. Let �∗(x) be a integer

valued function such that �∗(x) ≥ inf{� : α
 ≥ x}. Then for all t ≥ 0, we have

Pr
[
μn ≥ sn +

√
2bα
∗(sn)t(sn) + cbt(sn)

]
≤ e−nt,

where t(sn) = t + Δt
∗(sn)/n and cb =
√

(b + 2/3)b + b + 1/3.

Theorem 5. Under the conditions of Theorem 4. For all t ≥ 0, we have

Pr
[
μn ≥ sn +

√
2bn−1 max(0, nsn�)t(sn) + cbt(sn)

]
≤ e−nt,

where t(sn) = t + 2n−1 ln(nsn� + 2) and cb =
√

(b + 2/3)b + b + 1/3.

Proof. In Lemma 6, we take α
 = (� − 1)/n for � = 1, 2, · · · , Δt
 = 2 ln(� + 1),
and �∗(x) = nx� + 1.

Note that if ξ ∈ [0, 1], then the condition of Theorem 5 is satisfied with b = 1.
However, Theorem 3 is tighter in this case (using Proposition 1).

3 Generalization Bounds for Some Online Algorithms

We consider two scenarios. One is classification, which requires the Hoeffding
inequality developed in Section 2.1. The other is regression, which utilizes the
Bennett inequality in Section 2.2.

Data Dependent Concentration Bounds 181

3.1 Classification

We consider multi-category classification problem, with zero-one classification
loss. We are interested in a classification function h : X → Y = {1, . . . ,K}, with
the classification loss

err(h(x), y) =

{
0 if h(x) = y

1 otherwise.

The risk (expected classification error) of h is

err(h) = E(X,Y)∼Derr(h(X), Y).

Consider training data Zn
1 = (Z1, . . . , Zn) that are independently drawn from

D. Consider a learning algorithm A that learns from the first k samples Zk
1 a

classifier ĥk(x) = A(Zk
1 ;x) : X → Y . We restate from Theorem 3 the following

generalization bound.

Theorem 6. Let ĥk be a classifier learned from an algorithm after seeing train-
ing data Z1, . . . , Zk. Let M̂n =

∑n
i=1 err(ĥi−1(Xi), Yi) be the number of mistakes

the algorithm makes online after n examples. Then with probability at most e−nt,

1
n

n∑
i=1

err(ĥi) ≥ KL−1
2 (n−1M̂n||2n−1 ln(M̂n + 2) + t).

We may also apply the analysis to specific algorithms with known mistake
bounds. For example, we may consider the multi-category perceptron algorithm
[5], and obtain a margin bound accordingly. The multi-category perceptron al-
gorithm is a natural generalization of the binary perceptron algorithm, popular
in natural language processing due to its simplicity and effectiveness.

In the setting of multi-category perceptron [5], a data-point x ∈ X is rep-
resented by K vectors {x[1], . . . , x[K]}, each corresponding to a class-label. A
classifier h is represented by a linear weight vector w, with the corresponding
classification rule:

h(x) = arg max

=1,...,K

wT x[�].

Let y be the true label of x. One may define the corresponding margin for the
data point z = (x, y) as

γ(w, z) =
1

‖w‖2
2

(
wT x[y] − max

 �=y
wT x[�]

)
.

The multi-category perceptron method maintains a weight vector starting
from w0 = 0. After seeing a data-point (Xi, Yi), the algorithm uses the current
weight wi−1 to make a prediction, which produces a label Y . We then update
the weight vector as wi = wi−1 + (Xi[Yi] −Xi[Y]).

Assume there is a linear separator w∗ for the training data Z1, . . . , Zn such
that the margin infi γ(w∗, Zi) ≥ γ > 0, then the standard perceptron bound can
be extended to show (see [5]) that the number of mistakes that the perceptron
method makes is no more than (R/γ)2, where R ≥ supi,Y ‖Xi[Yi] −Xi[Y]‖2.

182 T. Zhang

Theorem 7. Consider a linear separator w∗(Zn
1) for the training data Z1,

. . . , Zn such that infi γ(w∗, Zi) ≥ γ(Zn
1) > 0. For all R(Zn

1) ≥ supi,Y ‖Xi[Yi] −
Xi[Y]‖2. We have with probability of at most e−nt:

M =
R(Zn

1)2

γ(Zn
1)2

≤ n,
1
n

n∑
i=1

err(ĥi) ≥ KL−1
2 (n−1M ||2n−1 ln(M + 2) + t).

Again, Proposition 1 can be used to obtain a more intuitive bound. If the mis-
taken bound R2/γ2 = O(1), then the generalization performance in Theorem 7
is O(1/n) at constant probability t = O(1/n). This can be compared to well-
known batch margin bounds in the literature, which (to the author’s knowledge)
do not achieve the O(1/n) rate under the same assumptions.

Assume further that there is a linear separator w∗ that does not only separate
the training data, but also all the test data. Let R and γ be defined with respect
to all data, then by the data independent bound in Theorem 2, we have with
probability no more than e−nt:

1
n

n∑
i=1

err(ĥi) ≥ KL−1
2 (n−1R2/γ2||t).

3.2 Regression

It is known that some learning problems have loss functions that satisfy the fol-
lowing self-bounding condition: bEL(h(X), Y) ≥ EL(h(X), Y)2 for some b > 0.
For such problems, the Bennett inequality in Section 2.2 should be applied.

To illustrate the idea, in the following, we shall consider the least squares
regression problem:

L(h(X), Y) = (h(X) − Y)2,

where Y ∈ [0, 1]. Let S be a closed convex set of functions such that h(X) ∈ S
implies that h(X) ∈ [0, 1]. Let hS be the optimal predictor in S:

EX,Y (hS(X) − Y)2 = inf
h∈S

EX,Y (h(X) − Y)2.

We have the following inequality

Lemma 7. Let Z = (X,Y), and ΔLS(h,Z) = (h(X) − Y)2 − (hS(X) − Y)2.
For all h ∈ S:

4EZΔLS(h,Z) ≥ EZΔLS(h,Z)2.

Proof. The convexity of S and optimality of hS implies that ∀h ∈ S, the deriva-
tive of EZ(hS(X) + t(h(X)− hS(X))− Y)2 as a function of t is non-negative at
t = 0. That is, EZ(hS(X) − Y)(h(X) − hS(X)) ≥ 0. Therefore

EZ ΔLS(h,Z)2 =EZ (h(X) − hS(X))2(h(X) + hS(X) − 2Y)2

≤4EZ (h(X) − hS(X))2

≤4EZ [(h(X) − hS(X))2 + 2(h(X) − hS(X))(hS(X) − Y)]
=4EZΔLS(h,Z).

Data Dependent Concentration Bounds 183

Let A be a learning algorithm, and S be a set of convex functions. Assume
that all hypothesis learned by A belong to S, we can obtain the following theorem
from Theorem 5.

Theorem 8. Let ĥk ∈ S be a function learned from an algorithm after seeing
training data Z1, . . . , Zk. Let

M̂n = max

(
0,

n∑
i=1

(ĥi−1(Xi) − Yi)2 − inf
h∈S

n∑
i=1

(h(Xi) − Yi)2
)

.

Then with probability at most e−nt,

1
n

n∑
i=1

EZ (ĥi(X) − Y)2 ≥ EZ (ĥS(X) − Y)2 +
M̂n

n
+

√
8n−1M̂n�t̂ + 9t̂,

where t̂ = t + 2n−1 lnM̂n + 2�.

Proof. We apply Theorem 5 with ξk = ΔLS(ĥk, Z) and b = 4. We only need to
note that nsn ≤ M̂n and cb ≤ 9.

Bounds that relate the performance of an learning algorithm to the best
possible performance (within a function class) is often referred to as oracle in-
equality in the learning theory literature. Theorem 8 can be viewed as a data-
dependent oracle inequality. If M̂n is small, then the total generalization per-
formance (compared with hS) can be faster than O(1/

√
n). In particular, if

M̂n = O(lnn), then the performance can be as fast as O(lnn/n) with constant
probability t = O(1/n). The theorem can be applied to any online algorithm for
least squares regression based on the observed loss. For some algorithms, it is
also possible to prove data-dependent or data-independent mistake bounds for
M̂n. Similar to Theorem 7, we may derive more specific performance bounds for
these specific algorithms, assuming M̂n can be bounded using some quantities
that depend on the data. We shall skip the details here.

4 Expert Aggregation Algorithms

We consider learning algorithms Aθ parameterized by θ ∈ Γ . For notation sim-
plicity, given a sample Z = (X,Y), we let

Lθ(Zk
1 ;Z) = L(Aθ(Zk

1 ;X), Y).

That is, Lθ(Zk
1 ; ·) is the loss of the function learned by Aθ using the first k

training data.
In the expert framework, as in [12], we consider a prior distribution on Γ ,

which we denote as dπ0(θ). We maintain and update a distribution on Γ , and the
update rule depends on a parameter η. With each sample Zk, the distribution
imposed on the experts are updated as follows:

dπη
k(θ) ∼ e−ηLθ(Zk−1

1 ;Zk) dπη
k−1(θ),

184 T. Zhang

where η > 0 is a fixed learning rate. We also let πη
0 (θ) = π0(θ). It follows that

the distribution after seeing the first k samples Zk
1 , is the Gibbs distribution

dπη
k(θ) ∼ e−η

∑k
i=1 Lθ(Zi−1

1 ;Zi) dπ0(θ). (5)

For specific expert algorithms devised in the literature, our earlier analy-
sis can be applied to obtain generalization bounds. In the following, we show
that it is also natural to study the concentration behavior of expert aggregating
algorithms directly, using tools we developed in Section 2.

Lemma 8. ∀η ≥ 0, the following inequality holds:

Pr

[
−

n∑
i=1

ln
∫

dπη
i (θ)EZi

e−ηLθ(Zi−1
1 ;Zi) ≥ Mn(η)

]
≤ e−t,

where
Mn(η) = − ln

∫
e−η

∑n
i=1 Lθ(Zi−1

1 ;Zi)dπ0(θ).

Proof. If we let ξk = − ln
∫

dπη
i (θ)e−ηLθ(Zi−1

1 ;Zi), then it is easy to verify that∑n
i=1 ξi = Mn. We can now apply Lemma 2 with ρ = 1, and use the fact that

EZi
e−ξi =

∫
dπη

i (θ)EZi
e−ηLθ(Zi−1

1 ;Zi).

The desired bound is now a direct consequence of Lemma 2.

Note that η in Lemma 8 has a similar effect of ρ in Lemma 2. If we only
have one expert, then we can obtain Lemma 2 from Lemma 8. Similar to the
development in Section 2, we may obtain more specific bounds from Lemma 8
using appropriate estimates of logarithmic moment generating functions.

For simplicity, we will only consider Hoeffding inequality for bounded ran-
dom variables. The aggregating algorithm which we shall investigate is the per-
formance averaged over θ with respect to the distribution πη

i , and time steps
i = 1, . . . , n. This method was referred to as Hedge in [8], and is closely re-
lated to boosting. Its generalization performance is represented as μn(η) in the
following lemma, which plays the same role of Lemma 3.

Lemma 9. If the loss function L(·, ·) ∈ [0, 1], then

Pr
[
− ln

(
1 + μn(η)(e−η − 1)

)
≥ 1

n
ln

∫
e−ηnsn(θ)dμ0(θ) + t

]
≤ e−nt,

where

μn(η) =
1
n

n∑
i=1

∫
dπη

i (θ)EZi
Lθ(Zi−1

1 ;Zi)

and

sn(θ) =
1
n

n∑
i=1

Lθ(Zi−1
1 , Zi).

Data Dependent Concentration Bounds 185

Now, with a fixed learning rate η, similar to the first inequality of Theorem 1,
we obtain from Lemma 9 the following generalization bound:

Pr

[
μn(η) ≥

− 1
n ln

∫
e−ηnsn(θ)dμ0(θ) + t

1 − e−η
.

]
≤ e−nt.

As a simple example, if we only have a finite number of experts: |Γ | < ∞, then
we may take μ0 to be the uniform distribution. This gives

sn(η) ≤ η inf
θ∈Γ

sn(θ
) +
1
n

ln |Γ |.

We have

Pr
[
μn(η) ≥

η infθ∈Γ sn(θ
) + 1
n ln |Γ | + t

1 − e−η

]
≤ e−nt.

This generalization bound holds for fixed η, which may not be optimal for the
observed data.

An important question is to select η based on the training data Zn
1 so as to

achieve a small generalization error μn(η). This is essentially a model selection
problem, which requires us to develop a data dependent bound (η depends on
the training data). In order to do so, we shall use the following result to obtain
a simpler representation of Mn(η). It is a direct consequence of a convex du-
ality, widely used in the machine learning literature in recent years. For space
limitation, we skip the proof.

Proposition 2. Consider all possible distributions π over Γ , we have

− 1
n

ln
∫

e−ηnsn(θ,η)dπ0(θ) = inf
π

[
η

∫
sn(θ)dπ +

1
n

KL(π||π0)
]
,

where KL(π||π0) =
∫

ln dπ(θ)
dπ0(θ)dπ(θ).

We are now ready to present the following bound, which is similar to Theo-
rem 2. A related bound can be found in [11].

Theorem 9. Under the conditions of Lemma 9. We have ∀α ∈ [0, 1] and t, δ ∈
[0,∞):

Pr

[
μn(η(α, t + δ)) ≥ KL−1

2 (α||t + δ), ∃π :

∫
sn(θ)dπ ≤ α, KL(π||π0) ≤ nδ

]
≤ e−nt,

where η(α, u) = ln(KL−1
2 (α||u)(1 − α)) − ln(α(1 − KL−1

2 (α||u))).

Proof. We have with probability of at most e−nt, ∃π:

− ln
(
1 + μn(η)(e−η − 1)

)
≥ η

∫
sn(θ)dπ +

1
n

KL(π||π0) + t.

186 T. Zhang

Now, let β = KL−1
2 (α||t + δ). This implies that with probability at most e−nt,

∃π such that:

μn(η) ≥ β,

∫
sn(θ)dπ ≤ α,

1
n

KL(π||π0) ≤ δ,

− ln(1 + β(e−η − 1)) ≥ ηα + KL(α||β).

Note that the last inequality holds trivially with η = η(α, t + δ). This leads to
the theorem.

Using the standard union bound trick, we can obtain a version of Theorem 9
with data-dependent α and δ. The proof of the following result is a straight-
forward extension of that of Lemma 4. Again, due to the space limitation, we
skip the proof.
Lemma 10. Using notations of Theorem 9. Consider a set of triples {(α
, δ
,
Δt
)} indexed by �, where α
 ∈ [0, 1], δ
 ≥ 0, and

∑

 e−Δt� ≤ 1. Let �∗(α, δ) be

a function such that α
 ≥ α and δ
 ≥ δ. Then we have ∀t ≥ 0:

Pr
[
∃π : � = �n(π), μn(η(α
, t
)) ≥ KL−1

2 (α
||t
)
]
≤ e−nt,

where �n(π) = �∗(
∫

sn(θ)dπ,KL(π||π0)/n) and t
 = t + δ
 + Δt
/n.
With specific choices of (α
, δ
,Δt
), we can obtain the following result.

Theorem 10. Using notations of Theorem 9. We have ∀t ≥ 0:

Pr
[
∃π : μn(ηπ

n) ≥ KL−1
2 (n−1nsπ

n�||t + tπn)
]
≤ e−nt,

where

sπ
n =

∫
sn(θ)dπ,

tπn = n−1[KL(π||π0)� + 2 ln(nsπ
n� + 2) + 2 ln(KL(π||π0)� + 2)],

ηπ
n = η(n−1nsπ

n�, t + tπn).

Proof. In Lemma 10, we let � be represented by a pair of positive integers (p, q)
such that α(p,q) = (p− 1)/n, δ(p,q) = (q − 1)/n,Δ(p,q) = 2 ln(p + 1) + 2 ln(q + 1).
It can be easily checked that

∑
e−Δ(p,q) ≤ 1. Now we can simply let �∗(u, v) =

(nu�, nv�) to obtain the desired result.

With constant probability t = O(1/n), a convergence rate of O(1/n) can be
achieved when there exists a π such that

∫
sπ

n(θ)dπ = O(1) and KL(π||π0) =
O(1). The main part of tπn is n−1KL(π||π0). By focusing on the main part, we
approximately have the following bound from Theorem 10 and Proposition 1.
With probability of at least 1 − e−nt, ∀π, we can appropriately chose learning
rate η that depends on the data such that

μn(η) < sπ
n +

√
2sπ

n(1 − sπ
n)(t + n−1KL(π||π0)) + 1.5(1− sπ

n)(t+n−1KL(π||π0)).

As an application, assume there are only a finite number of experts. We may
just pick π0 to be the uniform distribution and π to be concentrated on the
expert with the smallest number of empirical loss such that KL(π||π0) = ln |Γ |
and sπ

n = infθ∈Γ sn(θ).

Data Dependent Concentration Bounds 187

5 Conclusion

In this paper, we considered the problem of estimating the total generalization
performance of a learning algorithm based on its observed total loss. This is
achieved through some newly obtained probability inequalities concerning the
concentration of dependent random variables. Consequences of our analysis in
classification and regression were discussed. If the observed loss is small, then
the estimated generalization performance can be as fast as O(1/n) with constant
probability. Moreover, we showed that the technique used to prove probability
inequalities for dependent variables can be naturally applied to analyze the gen-
eralization behavior of expert aggregating algorithms. In this case, by minimizing
the resulting data-dependent bound, we obtain a method of choosing the learning
rate η with optimal total generalization performance (according to the bound).

References

1. K. Azuma. Weighted sums of certain dependent random variables. Tohoku Math.
Journal, 3:357–367, 1967.

2. George Bennett. Probability inequalities for the sum of independent random vari-
ables. Journal of the American Statistical Association, 57:33–45, 1962.

3. Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for
k-fold and progressive cross-validation. In COLT’ 99, pages 203–208, 1999.

4. N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, pages
2050–2057, 2004.

5. Michael Collins. Discriminative training methods for hidden markov models: The-
ory and experiments with perceptron algorithms. In Proc. EMNLP’02, 2002.

6. Victor H. de la Pẽna. A general class of exponential inequalities for martingales
and ratios. The Annals of Probability, 27:537–564, 1999.

7. David A. Freedman. On tail probabilities for martingales. The Annals of Proba-
bility, 3:100–118, 1975.

8. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

9. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963.

10. Nick Littlestone. From on-line to batch learning. In COLT’ 89, pages 269–284,
1989.

11. Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Information and Computation, 108:212–261, 1994.

12. Volodya Vovk. Aggregating strategies. In COLT’ 90, pages 371–383, 1990.

The Weak Aggregating Algorithm
and Weak Mixability�

Yuri Kalnishkan and Michael V. Vyugin

Department of Computer Science, Royal Holloway,
University of London, Egham, Surrey, TW20 0EX, UK

{yura, misha}@cs.rhul.ac.uk

Abstract. This paper resolves the problem of predicting as well as the
best expert up to an additive term o(n), where n is the length of a
sequence of letters from a finite alphabet. For the bounded games the
paper introduces the Weak Aggregating Algorithm that allows us to
obtain additive terms of the form C

√
n. A modification of the Weak

Aggregating Algorithm that covers unbounded games is also described.

1 Introduction

This paper deals with the problem of prediction with expert advice. We consider
the on-line prediction protocol, where outcomes ω1, ω2, . . . occur in succession
while a prediction strategy tries to predict them. Before seeing an event ωt the
prediction strategy produces a prediction γt. We are interested in the case of a
discrete outcome space, i.e., ω1, ω2, . . . ∈ Ω such that |Ω| < +∞.

We use a loss function λ(ω, γ) to measure the discrepancies between predic-
tions and outcomes. A loss function and a prediction space (a set of possible
predictions) Γ specify the game, i.e., a particular prediction environment. The
performance of a learner S w.r.t. a game is measured by the cumulative loss
suffered on the sequence of outcomes ω1, ω2, . . . , ωn

LossS(ω1, ω2, . . . , ωn) =
n∑

t=1

λ(ωt, γt) . (1)

In the problem of prediction with expert advice we have N prediction strategies
E1, E2, . . . , EN that try to predict elements of the same sequence. Their predic-
tions become available to the merging prediction strategy M every time before
M outputs its own prediction. The goal of M is to predict nearly as well as
the best expert, i.e., to suffer loss that is little bigger than the smallest of the
experts’ losses.

� An early version of this paper was published in November, 2003 as Technical Report
CLRC-TR-03-01, Computer Learning Research Centre, Royal Holloway, University
of London available at http://www.clrc.rhul.ac.uk/publications/techrep.htm

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 188–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Weak Aggregating Algorithm and Weak Mixability 189

This problem has been studied intensively; see, e.g., [CBFH+97, HKW98].
Papers [Vov90, Vov98] propose the Aggregating Algorithm that allows M to
achieve loss satisfying the inequality

LossM(ω1, ω2, . . . , ωn) ≤ cLossEi
(ω1, ω2, . . . , ωn) + a lnN (2)

for all i = 1 . . . , N and all possible sequences of outcomes ω1, ω2, . . . , ωn, n =
1, 2, . . ., where the constants c and a are optimal and are specified by the game.
Note that neither c nor a depend on n.

If we can take c equal to 1, the game is called mixable. It is possible to provide
a geometrical characterisation of mixable games in terms of the so called sets
of superpredictions. The Aggregating Algorithm fully resolves the problem of
predicting as well as the best expert up to an additive constant.

There are interesting games that are not mixable, e.g., the absolute loss game
introduced in Sect. 2. The Aggregating Algorithm still works for some of such
games, but it only allows us to achieve values of c greater than 1.

In this paper we take a different approach to non-mixable games. We fix
c = 1 but consider a(n) that can grow when the length n of the sequence
increases. We study the problem of predicting as well as the best expert up
to o(n) as n → +∞, where n is the length of the sequence. Sect. 3 introduces
the corresponding concept of weak mixability. The main result of this paper,
Theor. 1, shows that weak mixability is equivalent to a very simple geometric
property of the set of superpredictions, namely, the convexity of its finite part.

If the loss function is bounded, it is possible to predict as well as the best
expert up to an additive term of the form C

√
n, provided the finite part of the

set of superpredictions is convex. This result follows from a recent paper [HP04].
We shall present our own construction, which is based on ideas from [CBFH+97].

If the game is not bounded, our construction can be applied in a different
form to predict as well as the best expert up to o(n).

2 Preliminaries

2.1 On-line Prediction

A game G is a triple 〈Ω,Γ, λ〉, where Ω is an outcome space, Γ is a predic-
tion space, and λ : Ω × Γ → [0,+∞] is a loss function. We assume that Ω
is a finite set of cardinality M < +∞; we will refer to elements of Ω as to
ω(0), ω(1), . . . , ω(M−1). In the simplest binary case M = 2 and Ω may be identi-
fied with B = {0, 1}. We also assume that Γ is a compact topological space and
λ is continuous w.r.t. the extended topology of [−∞,+∞]. Since we treat Ω as a
discrete space, the continuity of λ in two arguments is the same as continuity in
the second argument. These assumption hold throughout the paper except for
Remark 1, where negative losses are discussed.

The square-loss game, the absolute-loss game, and the logarithmic game with
the outcome space Ω = B, prediction space Γ = [0, 1], and loss functions
λ(ω, γ) = (ω − γ)2, λ(ω, γ) = |ω − γ|, and

190 Y. Kalnishkan and M.V. Vyugin

λ(ω, γ) =
{
− log(1 − γ) if ω = 0 ,
− log γ if ω = 1 ,

respectively, are examples of (binary) games. A slightly different example is
provided by the simple prediction game with Ω = Γ = B = {0, 1} and λ(ω, γ) = 0
if ω = γ and λ(ω, γ) = 1 otherwise.

It is essential to allow λ to accept the value +∞; this assumption is necessary
in order to take into account the logarithmic game as well as other unbounded
games. However we impose the following restriction: if λ(ω0, γ0) = +∞ for some
ω0 ∈ Ω and γ0 ∈ Γ , then there is a sequence γn ∈ Γ such that γn → γ0 and
λ(ω, γn) is finite for all ω ∈ Ω and all positive integers n. In order words, any
prediction that leads to infinite loss on some outcomes can be approximated by
predictions that can only lead to finite loss no matter what outcome occurs.
This restriction allows us to exclude some degenerate cases and to simplify the
statements of theorems.

Suppose that λ can be computed by an oracle. We assume that the oracle
is capable of more than just outputting the values of λ, e.g., it can solve some
simple inequalities involving λ (see Sect. 6 for more details). All natural loss
functions specified by simple analytical expression satisfy these requirements.

A prediction strategy S works according to the following protocol:

(1) FOR t = 1, 2, . . .
(2) S chooses a prediction γt ∈ Γ
(3) S observes the actual outcome ωt ∈ Ω
(4) END FOR

One can identify a prediction strategy with a function from Ω∗ to Γ . Over the
first n trials, the strategy S suffers the total loss

LossG
S(ω1, ω2, . . . , ωn) =

n∑
t=1

λ(ωt, γt) .

By definition, put LossS(Λ) = 0, where Λ denotes the empty string.

2.2 Expert Advice

The problem of prediction with expert advice involve a pool of N experts
E(1), E(2), . . . , E(N), which are working according to the aforementioned proto-
col. On trial t they output predictions γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t . A merging strategy M

is allowed to observe the experts’ prediction before outputting its own, i.e., it
works according to the following protocol:

(1) FOR t = 1, 2, . . .
(2) E(1), E(2), . . . , E(N) output predictions γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t ∈ Γ

(3) M chooses a prediction γt ∈ Γ
(4) M observes the actual outcome ωt ∈ Ω
(5) END FOR

The Weak Aggregating Algorithm and Weak Mixability 191

The goal of the merging strategy is to suffer loss that is not much worse than
the loss of the best expert. By the best expert after trial t we mean the expert
that has suffered the smallest loss over t trials.

One may think of a merging strategy as of a function

M :
+∞⋃
N=0

+∞⋃
t=1

(
Ωt−1 ×

(
ΓN

)t
)
→ Γ . (3)

Here N is the number of experts and t is the number of a trial; the information
available to M before making a prediction on trial t consists of t − 1 previous
outcomes and t arrays each consisting of N experts’ predictions.

When we speak about computability, we assume that the algorithm comput-
ing M receives experts’ predictions as inputs. The experts do not have to be
computable in any sense. The learner has no access to their internal ‘mechanics’;
the only thing it knows about them is their predictions.

2.3 Geometric Interpretation of a Game

Take a game G = 〈Ω,Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} and |Ω| = M .
We say that an M -tuple (s0, s1, . . . , sM−1) ∈ (−∞,+∞]M is a superpredic-
tion if there is γ ∈ Γ such that the inequalities λ(ω(i), γ) ≤ si hold for ev-
ery i = 0, 1, 2, . . . ,M − 1. The set of superpredictions S is an important object
characterising the game.

3 Weak Mixability

One may wonder whether the learner can predict as well as the best expert up to
an additive constant, i.e., to suffer loss within an additive constant range of the
loss of the best expert. It is possible for the so called mixable games; for more
details see [Vov90, Vov98]. Examples of mixable games include the square-loss
game and the logarithmic game; the simple prediction game and the absolute-loss
game are not mixable.

For non-mixable games it is not possible to predict as well as the best expert
up to an additive constant. Let us relax this requirement and ask whether it is
possible to predict as well as the best expert up to a larger term.

In the worst case, loss grows linearly in the length of the sequence. Therefore
all terms of slower growth can be considered small as compared to loss. This
motivates the following definition.

A game G is weakly mixable if there is a function f : N → R such that
f(n) = o(n) as n → +∞ and a merging strategy M such that, for every finite
set of experts E(1), E(2), . . . , E(N) (N = 1, 2, . . .), the inequality

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + f(n) (4)

holds for all i = 1, 2, . . . , N and every finite sequence ω1, ω2, . . . , ωn ∈ Ω, n =
1, 2,

192 Y. Kalnishkan and M.V. Vyugin

The following theorem is the main result of the paper.

Theorem 1. A game G = 〈Ω,Γ, λ〉 with the set of superpredictions S is weakly
mixable if and only if the finite part of S, the set S ∩ RM , is convex.

The merging strategy in the definition of weak mixability is polynomial-time
computable modulo the oracle computing λ (see Sect. 6).

The examples of the weakly mixable games are the logarithmic and the
square-loss game, which are also mixable, and the absolute-loss game, which
is not mixable. The simple prediction game is not weakly mixable.

The rest of the paper contains the proof of the theorem. The ‘only if’ part
follows from Theor. 2 that is proved in Appendix A.

The ‘if’ splits into two parts, for bounded and for unbounded games. The
‘if’ part for bounded games follows from [HP04]. In Sect. 4 we shall give an
alternative derivation, which gives a slightly better value of the constant C in
the additive term C

√
n. The unbounded case is described in Sect. 5.

Remark 1. Let us allow (within this remark) λ to accept negative values; they
can be interpreted as ‘gain’ or ‘reward’. If λ accepts the value −∞, the expression
for the total loss may include the sum (−∞)+(+∞), which is undefined. In order
to avoid this ambiguity, it is natural to prohibit λ to take the value −∞. Since
λ is assumed to be continuous, this implies that λ is bounded from below, i.e.,
there is a > −∞ such that λ(ω, γ) ≥ a for all values of ω and γ.

Consider another game with the loss function λ′(ω, γ) = λ(ω, γ) + a, which
is nonnegative. A merging strategy working with nonnegative loss functions can
be easily adapted to work with the original game: let the learner just imagine
that it is playing the game with λ′. The losses w.r.t. the two games on a string
ω1ω2 . . . ωn will differ by an and the upper bounds of the type (4) will be pre-
served. On the other hand, the sets of superpredictions for the two games will
differ by a shift, which preserves convexity. Therefore Theor. 1 remains true for
games with loss functions bounded from below.

4 ‘If’ Part for Bounded Games

4.1 Weak Aggregating Algorithm

In this subsection we formulate the Weak Aggregating Algorithm (WAA). Let
G = 〈Ω,Γ, λ〉 be a game such that |Ω| = M < +∞ and let N be the number of
experts. Let Ω = {ω(0), ω(1), . . . , ω(M−1)}.

We describe the WAA using pseudo-code. The WAA accepts N initial nor-
malised weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and a positive

number c as parameters. The role of c is similar to that of the learning rate in
the theory of prediction with expert advice. Let βt = e−c/

√
t, t = 1, 2,

(1) l
(i)
1 := 0, i = 1, 2, . . . , N

(2) FOR t = 1, 2, . . .

The Weak Aggregating Algorithm and Weak Mixability 193

(3) w
(i)
t := qiβ

l
(i)
t

t , i = 1, 2, . . . , N

(4) p
(i)
t := w

(i)
t∑N

j=1 w
(j)
t

, i = 1, 2, . . . , N

(5) read experts’ predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

(6) gk :=
∑N

j=1 λ
(
ω(k), γ

(j)
t

)
p
(j)
t , k = 0, 1, . . . ,M − 1

(7) output γt ∈ Γ such that λ(ω(k), γt) ≤ gk for all
k = 0, 1, . . . ,M − 1

(8) observe ωt

(9) l
(i)
t+1 := l

(i)
t + λ

(
ωt, γ

(i)
t

)
, i = 1, 2, . . . , N

(10) END FOR

The variable l
(i)
t stores the loss of the i-th expert E(i), i.e., after trial t we have

l
(i)
t+1 = LossG

E(i)(ω1, ω2, . . . , ωt). The values w
(i)
t are weights assigned to experts

during the work of the algorithm; they depend on the loss suffered by experts
and initial weights qi. The values p

(i)
t are obtained by normalising w

(i)
t . Note

that it is sufficient to have only one set of variables p(i), i = 1, 2, . . . , N , one set
of variables w(i), i = 1, 2, . . . , N , and one set of variables l(i), i = 1, 2, . . . , N to
save memory. The subscript t has been added in order to simplify referring to
these variables in the proofs below.

This algorithm is applicable if the set of superpredictions S has a convex
finite part S ∩ RM . If this is the case, then the point (g0, g1, . . . , gM−1) belongs
to S and thus γt can be found on step (7).

A game G = 〈Ω,Γ, λ〉 is bounded if and only if λ is bounded, i.e., there is
L ∈ (0,+∞) such that λ(ω, γ) ≤ L for each ω ∈ Ω and γ ∈ Γ . Examples of
bounded games include the square-loss game, the absolute-loss game, and the
simple prediction game. The logarithmic game is unbounded.

For bounded games the following lemma holds.

Lemma 1. For every L > 0, every game G = 〈Ω,Γ, λ〉 such that |Ω| < +∞
and λ(ω, γ) ≤ L for all ω ∈ Ω and γ ∈ Γ , and every finite set of experts
E(1), E(2), . . . , E(N) (N = 1, 2, . . .), the merging strategy M following the WAA
with initial weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and c > 0

achieves loss satisfying

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) +

(
cL2 +

1
c

ln
1
qi

)√
n

for every i = 1, 2, . . . , N and every finite sequence ω1, ω2, . . . , ωn ∈ Ω.

The proof of Lemma 1 is given in Appendix B.

Remark 2. It is easy to see that the result of Lemma 1 will still hold for a
countable pool of experts E1, E2, . . . We take weights

∑+∞
i=1 qi = 1; the sums in

lines (4) and (6) from the definition of the WAA become infinite but they clearly
converge.

194 Y. Kalnishkan and M.V. Vyugin

Let us take equal initial weights q1 = q2 = . . . = qN = 1/N in the WAA.
The additive term then reduces to (cL2 +(lnN)/c)

√
n. When c =

√
lnN/L this

expression reaches its minimum. We get the following corollary.

Corollary 1. Under the conditions of Lemma 1, there is a merging strategy M
achieving loss satisfying

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + 2L

√
n lnN .

5 ‘If’ Part for Unbounded Games

5.1 Counterexample

The WAA can be applied even in the case of an unbounded game; indeed, the
only requirement is that the finite part of the set of superpredictions S is convex.
However we cannot guarantee that a reasonable upper bound on the loss of the
strategy using it will exist. The same applies to any strategy that uses a linear
combination in the same fashion as WAA.

Indeed, consider a game with an unbounded loss function λ. Let ω0 be such
that the function λ(ω0, γ) attains arbitrary large values.

Suppose that there are two experts E1 and E2 and on some trial they are
ascribed weights p(1) and p(2) such that p(2) > 0. Suppose that E1 outputs γ(1)

such that λ(ω0, γ
(1)) < +∞. The upper estimate on the loss of the learner in

the case when the outcome ω0 occurs is

g0 = p(1)λ(ω0, γ
(1)) + p(2)λ(ω0, γ

(2)) ,

where γ(2) is the prediction output by E2. Let us vary γ(2). The weights depend on
the previous behaviour of the experts and they cannot be changed. If λ(ω0, γ

(2))
tends to infinity, then g0 tends to infinity and therefore the difference g0 −
λ(ω0, γ

(1)) tends to infinity. Thus the learner cannot compete with the first
expert.

This example shows that the WAA cannot be straightforwardly generalised
to unbounded games. It needs to be altered.

5.2 Approximating Unbounded Games with Bounded

The following lemma allows us to ‘cut off’ the infinity at a small cost.

Lemma 2. Let G = 〈Ω,Γ, λ〉 be a game such that |Ω| < +∞. Then for every
ε > 0 there is L > 0 with the following property. For every γ ∈ Γ there is γ∗ ∈ Γ
such that λ(ω, γ∗) ≤ L and λ(ω, γ∗) ≤ λ(ω, γ) + ε for all ω ∈ Ω.

The proof of Lemma 2 is given in Appendix C.
We assume that the game is such that the numbers L = Lε can be computed

efficiently for every ε and that γ∗ can be computed efficiently given γ ∈ Γ . This
is a restriction we impose on games.

The Weak Aggregating Algorithm and Weak Mixability 195

E1
WAA

λ(ω0, γ
(2))λ(ω0, γ

(1))
g0

E2

Fig. 1. A counterexample for un-
bounded games in dimension 2

D

C + ε

D + ε

C

L1

L0

Fig. 2. Computing Lε in the case of
two outcomes

In the case of two outcomes |Ω| = 2 computations are particularly straight-
forward. See Fig. 2, where

C = inf
γ∈Γ

λ(ω(0), γ) and D = inf
γ∈Γ

λ(ω(1), γ);

we can take Lε = max(L0, L1). If γ is such that the point (λ(ω(0), γ), λ(ω(1), γ))
falls into the area to the right of the straight line x = L0, we can take γ∗ such
that (λ(ω(0), γ∗), λ(ω(1), γ∗)) = (L0, D + ε).

5.3 Merging Experts in the Unbounded Case

Consider an unbounded game G = 〈Ω,Γ, λ〉 and N experts E1, E2, . . . , EN .
Fix some ε > 0. Let Lε be as above. After obtaining experts’ predictions
γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t we can find γ

(1)∗
t , γ

(2)∗
t , . . . , γ

(N)∗
t as in Lemma 2 and then

apply the results for the bounded case to them. By proceeding in this fashion, a
strategy M suffers loss such that

LossG
M(ω1, ω2, . . . , ωn) ≤ LossG

E(i)(ω1, ω2, . . . , ωn) + Cε

√
n + εn (5)

for all i = 1, 2, . . . , N and ω1, ω2, . . . , ωn ∈ Ω, n = 1, 2, . . ., where Cε = 2L2
ε

√
lnN

(we are applying WAA with equal weights).
This inequality does not allow us to prove Theor. 1. In order to achieve an

extra term of the order o(n) we will vary ε.
Take a strictly increasing sequence of integers Nk, k = 1, 2, . . ., and a sequence

εk > 0, k = 0, 1, 2, Consider the merging strategy M defined as follows. The
strategy first takes ε0 and merges the experts’ predictions using the WAA and ε0

in the fashion described above. This continues while n, the length of the sequence
of outcomes, is less than or equal to N1. Then the strategy switches to ε1 and
applies the WAA and ε1 until n exceeds N2 etc (see Fig. 4). Note that each time

196 Y. Kalnishkan and M.V. Vyugin

n passes through a limit Ni, the current invocation of the WAA terminates and
a completely new invocation of the WAA starts working. It does not have to
inherit anything from previous invocations.

In Appendix D we show how to choose the sequences εk and Nk in such a
way as to achieve the desired extra term.

6 Computability Issues

In this section we summarise the properties that an oracle computing λ should
satisfy. The general principle is that the oracle should be capable of answering
all ‘reasonable’ questions that can be easily answered for a loss function specified
by a simple analytical expression. Thus these requirements are not particularly
restrictive.

First, the oracle should be able to evaluate the values λ(ω, γ), where ω ∈ Ω
and γ ∈ Γ . Secondly, given x1, x2, . . . , xn ∈ [−∞,+∞], it should be able to find
γ (if any) such that λ(ω(i), γ) ≤ xi, i = 1, 2, . . . , N . Thirdly, the oracle should
be able to compute numbers Lε and to find γ∗ by γ ∈ Γ (see Subsect. 5.2).

When we say that the oracle is supplied with a number x ∈ [−∞,+∞], we
assume that it is given a sequence of rational intervals Ii that shrinks to x, i.e.,
x = ∩+∞

i=1 Ii. A rational interval is one of the intervals [−∞, p], [p, q], or [q,+∞],
where p and q are rational.

If we say that the oracle outputs x ∈ [−∞,+∞], we mean that it outputs a
sequence of rational intervals that shrinks to x. We assume that elements γ ∈ Γ
can be approximated and dealt with in a similar fashion.

Acknowledgements

We would like to thank participants of the Kolmogorov seminar on complexity
theory at the Moscow State University and Alexander Shen in particular for
useful suggestions that allowed us to simplify the WAA. We would also like to
thank Volodya Vovk for suggesting an idea that helped us to strengthen an upper
bound on the performance of WAA.

We are grateful to anonymous COLT reviewers for their detailed comments.
Unfortunately, we could not incorporate all their suggestions into the conference
version of the paper due to lack of space.

References

[CBFH+97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth. How to use expert advice. Journal of the ACM,
44(3):427–485, 1997.

[HKW98] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of
individual sequences under general loss functions. IEEE Transactions on
Information Theory, 44(5):1906–1925, 1998.

The Weak Aggregating Algorithm and Weak Mixability 197

[HP04] M. Hutter and J. Poland. Predictions with expert advice by following the
perturbed leader for general weights. In Algorithmic Learning Theory,
15th International Conference, ALT 2004, Proceedings, volume 3244 of
Lecture Notes in Artificial Intelligence, pages 279–293. Springer, 2004.

[Vov90] V. Vovk. Aggregating strategies. In M. Fulk and J. Case, editors, Pro-
ceedings of the 3rd Annual Workshop on Computational Learning Theory,
pages 371–383, San Mateo, CA, 1990. Morgan Kaufmann.

[Vov98] V. Vovk. A game of prediction with expert advice. Journal of Computer
and System Sciences, 56:153–173, 1998.

Appendix A. Proof: ‘Only If’ Part

Here we will derive a statement that is slightly stronger than that required by
Theor. 1.

Theorem 2. If a game G = 〈Ω,Γ, λ〉, |Ω| = M < +∞, has the set of super-
predictions S such that its finite part S ∩ RM is not convex, then there are two
strategies S1 and S2 and a constant θ > 0 such that for any strategy S there is
a sequence ωn ∈ Ω, n = 1, 2, . . ., such that

max
i=1,2

(
LossG

S(ω1, ω2, . . . , ωn) − LossG
Si

(ω1, ω2, . . . , ωn)
)
≥ θn (6)

for all positive integers n.

If the loss function is computable, the strategies can be chosen to be com-
putable.

Proof. We will use vector notation. If X = (x1, . . . , xn), Y = (y1, . . . , yn) and
α ∈ R, then X +Y and αX are defined in the natural way. By 〈X,Y 〉 we denote
the scalar product

∑n
i=1 xiyi.

For brevity we will denote finite sequences by bold letters, e.g., x = ω1...ωn ∈
Ωn. Let |x| be the length of x, i.e., the total number of symbols in x. We will
denote the number of elements equal to ω(0) in a sequence x by 0x, the number
of elements equal to ω(1) by 1x etc. It is easy to see that

∑M−1
i=0 ix = |x| for

every x ∈ Ω∗. The vector (0x, 1x, . . . , M−1x) will be denoted by x.
There exists a couple of points B1 =

(
b
(0)
1 , b

(1)
1 , . . . , b

(M−1)
1

)
and B2 =(

b
(0)
2 , b

(1)
2 , . . . , b

(M−1)
2

)
such that B1, B2 ∈ S∩RM but the segment [B1, B2] con-

necting them is not a subset of S. Let α ∈ (0, 1) be such that C = αB1+(1−α)B2

does not belong to S (see Fig. 3). Since λ is continuous and Γ is compact, the
set S is closed and thus there is a small vicinity of C that is a subset of RM \S.

Without restricting the generality one may assume that all coordinates of B1

and B2 are strictly positive. Indeed, the points B′
1 = B1 + t · (1, 1, . . . , 1) and

B′
2 = B2 + t · (1, 1, . . . , 1) belong to S for all positive t. If t > 0 is sufficiently

198 Y. Kalnishkan and M.V. Vyugin

S

l

B2

B1 A

C

Fig. 3. The drawing for the proof of
Theor. 2

length

Nk+1n

Mk

εk

Nk

Fig. 4. The sequences of Nk, Mk, and
εk

small, then C ′ = αB′
1 + (1 − α)B′

2 still belongs to the vicinity mentioned above
and thus C ′ does not belong to S.

Let us draw a half-line l starting from the origin through C. Let A =(
a(0), a(1), . . . , a(M−1)

)
be the intersection of l with the boundary ∂S. Such a

point really exists. Indeed, l = {X ∈ RM | ∃t ≥ 0 : X = tC}. For sufficiently
large t all coordinates of tC are greater than the corresponding coordinates of
B1 and thus tC ∈ S. Now let t0 = inf{t ≥ 0 | tC ∈ S} and A = t0C. Since
C /∈ S, we get t0 > 1 and thus A = (1 + δ)C, where δ > 0.

We now proceed to constructing the strategies S1 and S2. There are pre-
dictions γ1, γ2 ∈ Γ such that λ(ω(i), γ1) ≤ b

(i)
1 and λ(ω(i), γ2) ≤ b

(i)
2 for all

i = 0, 1, 2, . . . ,M − 1. Let S1 be the oblivious strategy that always predicts
γ1, no matter what outcomes actually occur. Similarly, let S2 be the strategy
that always predicts γ2. Without loss of generality it can be assumed that S1

and S2 are computable. Indeed, the points B1 and B2 can be replaced by com-
putable points from their small vicinities. The definitions of S1 and S2 imply
the inequalities

LossS1(x) ≤
M−1∑
i=0

 ixb
(i)
1 = 〈B1, x〉 and LossS2(x) ≤

M−1∑
i=0

 ixb
(i)
2 = 〈B2, x〉

(7)
for all strings x ∈ B∗.

Now let us consider an arbitrary strategy S and construct a sequence xn =
ω1ω2 . . . ωn satisfying the requirements of the theorem. The sequence is con-
structed by induction. Let x0 = Λ. Suppose that xn has been constructed. Let
γ be the prediction output by S on the (n + 1)-th trial, provided the previous
outcomes were elements constituting the strings xn in the correct order. There
is some ω(i0) ∈ Ω such that λ(ω(i0), γ) ≥ a(i0). Indeed, if this is not true and
the inequalities λ(ω(i), γ) < a(i) hold for all i = 1, 2, . . . ,M − 1, then there is a
vicinity of A that is a subset of S. This contradicts the definition of A. We let
xn+1 = xnωi0 . The construction implies

The Weak Aggregating Algorithm and Weak Mixability 199

LossS(xn) ≥
M−1∑
i=0

 ixna(i) = 〈A, xn〉 . (8)

Let ε = minj=1,2; i=0,1,2,...,M−1 b
(i)
j > 0. We get 〈Bj ,x〉 =

∑M−1
i=0 b

(i)
j ix ≥

ε|x| for all strings x ∈ B∗ and j = 1, 2. Since A = (1 + δ)(αB1 + (1 − α)B2)
we get

〈A, x〉 = (1 + δ)(α〈B1, x〉 + (1 − α)〈B2, x〉)
≥ α〈B1, x〉 + (1 − α)〈B2, x〉 + δε|x|

for all strings x. Let θ = δε; note that ε and δ do not depend on S. By combining
this inequality with (7) and (8) we obtain the inequality

LossS(xn) ≥ αLossS1(xn) + (1 − α) LossS2(xn) + θn

for all positive integers n.
It is easy to see that

LossS(xn) − LossS1(xn) ≥ (1 − α)(LossS2(x) − LossS1(x)) + θn ,

LossS(xn) − LossS2(xn) ≥ α(LossS1(x) − LossS2(x)) + θn .

If LossS2(x) ≥ LossS1(x) the former difference is greater than or equal to θn,
otherwise the latter difference is greater than or equal to θn. By combining these
facts we obtain (6). ��

Appendix B. Proof of Lemma 1

In this appendix we prove Lemma 1. We start with the following lemma.

Lemma 3. Let G = 〈Ω,Γ, λ〉 be a game such that |Ω| < +∞ and let N be the
number of experts. Let the finite part of the set of superpredictions S ∩ RM be
convex. If M is a merging strategy following the WAA, then for every t = 1, 2, . . .
we get

β
LossG

M(ω1,...,ωt)
t ≥ β

∑ t
j=1 α(j)

t

N∑
i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t , (9)

where

α(j) = logβj

β
∑N

i=1 λ(ωj ,γ
(i)
j)p

(i)
j

j∑N
i=1 β

λ(ωj ,γ
(i)
j)

j p
(i)
j

(10)

for j = 1, 2, . . . , t, in the notation introduced above.

Proof (of Lemma 3). The proof is by induction on t. Let us assume that (9)
holds and then derive the corresponding inequality for the step t + 1.

200 Y. Kalnishkan and M.V. Vyugin

The function xα, where 0 < α < 1, is increasing in x, x ≥ 0. If is also concave
in x, x ≥ 0. For every set of weights pi ∈ [0, 1], i = 1, . . . , n such that

∑n
i=1 pi = 1

and every array of xi ≥ 0, i = 1, . . . , n, we get (
∑n

i=1 pixi)
α ≥

∑n
i=1 pix

α
i .

Therefore (9) implies

β
LossG

M(ω1,...,ωt)
t+1 =

(
β

LossG
M(ω1,...,ωt)

t

)logβt
βt+1

(11)

≥
(

β
∑ t

j=1 α(j)

t

N∑
i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t

)logβt
βt+1

(12)

≥ β
∑ t

j=1 α(j)

t+1

N∑
i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t+1 (13)

Step (7) of the algorithm implies that λ(ωt+1, γt+1) ≤
∑N

i=1 λ
(
ωt+1, γ

(i)
t+1

)
p
(i)
t+1.

By exponentiating this inequality we get

β
λ(ωt+1,γt+1)
t+1 ≥ β

∑N
i=1 λ

(
ωt+1,γ

(i)
t+1

)
p
(i)
t+1

t+1 (14)

=
β

∑N
i=1 λ

(
ωt+1,γ

(i)
t+1

)
p
(i)
t+1

t+1∑N
i=1 β

λ
(

ωt+1,γ
(i)
t+1

)
t+1 p

(i)
t+1

N∑
i=1

β
λ
(

ωt+1,γ
(i)
t+1

)
t+1 p

(i)
t+1 (15)

= β
α(t+1)
t+1

N∑
i=1

β
λ
(

ωt+1,γ
(i)
t+1

)
t+1 p

(i)
t+1 . (16)

Multiplying (13) by (16) and substituting

p
(i)
t+1 =

wt+1∑N
j=1 w

(j)
t+1

=
qiβ

LossG

E(i) (ω1,...,ωt)

t+1∑N
j=1 qjβ

LossG

E(j) (ω1,...,ωt)

t+1

completes the proof on the lemma. ��

By taking the logarithm of (9) we get

LossG
M(ω1, . . . , ωt) ≤

t∑
j=1

α(j) + logβt

N∑
i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t

≤
t∑

j=1

α(j) + logβt
qi + LossG

E(i)(ω1, . . . , ωt)

for every i = 1, 2, . . . , N . We have logβt
qi = −

√
t

c ln qi. It remains to estimate
the first term.

The Weak Aggregating Algorithm and Weak Mixability 201

Recall that L is an upper bound on λ. By applying the inequality lnx ≤ x−1
we get

α(t) =
N∑

i=1

λ(ωt, γ
(i)
t)p(i)

t +
√

t

c
ln

N∑
i=1

β
λ(ωt,γ

(i)
t)

t p
(i)
t

≤
N∑

i=1

λ(ωt, γ
(i)
t)p(i)

t +
√

t

c

(
N∑

i=1

β
λ(ωt,γ

(i)
t)

t p
(i)
t − 1

)

By using Taylor’s series with Lagrange’s remainder term we obtain

β
λ(ωt,γ

(i)
t)

t = e−cλ(ωt,γ
(i)
t)/

√
t = 1 − cλ(ωt, γ

(i)
t)√

t
+

1
2

(
cλ(ωt, γ

(i)
t)√

t

)2

eξ ,

where ξ ∈ [−cλ(ωt, γ
(i)
t)/

√
t, 0] and thus

β
λ(ωt,γ

(i)
t)

t ≤ 1 − cλ(ωt, γ
(i)
t)√

t
+

c2L2

2t
.

Therefore α(t) ≤ cL2/2
√

t and summing yields

t∑
j=1

α(j) ≤
t∑

j=1

cL2

2
√

t
≤ cL2

2

∫ t

0

dx√
x

= cL2
√

t .

This completes the proof.

Appendix C. Proof of Lemma 2

Let |Ω| = M and Ω = {ω(0), ω(1), . . . , ω(M−1)}.
For every L > 0 let ΓL = {γ ∈ Γ | λ(ω, γ) ≤ L for all ω ∈ Ω} and let

PL =
{(

λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)
)
| γ ∈ ΓL

}
. In other terms, PL =

P ∩ [0, L]M , where P = {
(
λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)

)
| γ ∈ Γ} is the

set of all ‘predictions’. For every ε > 0 let UL,ε be the ε-vicinity of the set PL,
i.e., the union of all open balls of radius ε having points of PL as their centres.
Finally, let SL,ε = {X ∈ [−∞,+∞]M | X ≥ Y for some Y ∈ UL,ε}.

Now fix ε > 0. We have S ⊆
⋃

L>0 SL,ε. Indeed, consider a point X =(
λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)

)
for some γ ∈ Γ . If all coordinates of X

are finite, X ∈ PL for some sufficiently large L. If some of the coordinates are
infinite, γ can still be approximated by predictions that can only lead to finite
loss and thus X belongs to some SL,ε.

The covering
⋃

L>0 SL,ε has a finite subcovering. Indeed, let us take some
β ∈ (0, 1) and apply the transformation Bβ specified by

Bβ(x0, x1, . . . , xM−1) = (βx0 , βx1 , . . . , βxM−1) .

202 Y. Kalnishkan and M.V. Vyugin

The set Bβ(S) is a compact set and all sets Bβ(SL,ε) are open if considered as
subsets of the space [0,+∞)M with the standard Euclidean topology.

Therefore there is L > 0 such that S ⊆ SL,ε. The lemma follows.

Appendix D. Choosing the Sequences

Take M0 = N1 and Mj = Nj+1 − Nj , j = 1, 2 Let a positive integer n be
such that Nk < n ≤ Nk+1 (see Fig. 4). Applying (5) yields

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + α(n)

for all i = 1, 2, . . . , N , where N is the number of experts and

α(n) =
k∑

j=0

Mjεj +
k∑

j=0

Cεj

√
Mj + εk(n −Nk) + Cεk

√
n −Nk ; (17)

note that the former two terms correspond to the previous invocations of WAA
and the later two correspond to the current invocation.

We will formulate conditions sufficient for the terms in (17) to be of o(n)
order of magnitude. First, note that

(1) limj→+∞ εj = 0

is sufficient to ensure that εk(n−Nk) = o(n) as n → +∞. Secondly, if, moreover,

(2) Mj is non-decreasing in j and

(3) εj is non-increasing,

then
∑k

j=0 Mjεj = o(n). Indeed, let m be a positive integer such that m ≤ k.
Condition (2) implies that Mm ≤ n/(k−m+1). Indeed, if Mm > n/(k−m+1),
then the same holds for all Mj , j ≥ m and thus

∑k
j=m Mj > n. We get

1
n

k∑
j=0

Mjεj =
1
n

m∑
j=0

Mjεj +
1
n

k∑
j=m+1

Mjεj

≤ (m + 1)Mmε0

n
+

εm+1

n

k∑
j=m+1

Mj ≤ (m + 1)ε0

k −m + 1
+ εm+1 .

If we let m =
√

k, both the terms tend to 0 as k tends to +∞, i.e., as n → +∞.
Thirdly, similar considerations imply that if, moreover,

(4) limj→+∞ Mj = +∞ and

(5) Cεj
≤ 8

√
Mj , j = 0, 1, 2, . . .,

The Weak Aggregating Algorithm and Weak Mixability 203

then
∑k

j=0 Cεj

√
Mj ≤

∑k
j=0 Mj/M

3/8
j = o(n).

It remains to consider the last term in (17). There are two cases, either
n −Nk ≤ M

3/4
k or n −Nk > M

3/4
k . If the former case we get

1
n
Cεk

√
n −Nk ≤ M

1/8
k

√
n −Nk

Nk
≤ M

1/8
k M

3/8
k

Mk−1
=

√
Mk

Mk−1
,

while in the latter case we get

1
n
Cεk

√
n −Nk ≤ M

1/8
k

√
Mk

M
3/4
k

=
1

M
1/8
k

→ 0

as k → +∞. To ensure the convergence in the former case it is sufficient to have

(6) Mj−1 ≥ M
3/4
j , j = 1, 2,

Let us show that the conditions (1)–(6) are consistent, i.e., construct the se-
quences εj and Mj . Let M0 = max(2, C8

ε0
�) and Mj+1 = M4/3

j �, j = 0, 1, 2,
The sequence εj is constructed as follows. Suppose that all εj have been con-
structed for j ≤ k. If Cεk/2 ≤ M

1/8
k , we let εk+1 = εk/2; otherwise we let

εk+1 = εk. Since Mk → +∞ and Cε is finite for every ε > 0, we will be able to
divide εk by 2 eventually and thus ensure that εj → 0 as j → +∞.

Tracking the Best of Many Experts�

András György1, Tamás Linder2, and Gábor Lugosi3

1 Informatics Laboratory, Computer and Automation Research Institute
of the Hungarian Academy of Sciences,

Lágymányosi u. 11, Budapest, Hungary, H-1111
gya@szit.bme.hu

2 Department of Mathematics and Statistics,
Queen’s University, Kingston, Ontario,

Canada K7L 3N6
linder@mast.queensu.ca

3 Department of Economics, Universitat Pompeu Fabra,
Ramon Trias Fargas 25-27, 08005 Barcelona, Spain

lugosi@upf.es

Abstract. An algorithm is presented for online prediction that allows
to track the best expert efficiently even if the number of experts is expo-
nentially large, provided that the set of experts has a certain structure
allowing efficient implementations of the exponentially weighted average
predictor. As an example we work out the case where each expert is rep-
resented by a path in a directed graph and the loss of each expert is the
sum of the weights over the edges in the path.

1 Introduction

The basic theoretical results of prediction using expert advice were pioneered by
Hannan [7] and Blackwell [2] in the 1950’s and brought to the center of atten-
tion in learning theory in the 1990’s by Vovk [16], Littlestone and Warmuth [11],
Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth [4]. These
results show that it is possible to construct algorithms for online prediction that
predict an arbitrary sequence of outcomes almost as well as the best of N ex-
perts in the sense that the cumulative loss of the predictor is at most as large
as that of the best expert plus a term proportional to

√
T lnN for any bounded

loss function, where T is the number of rounds in the prediction game. The
logarithmic dependence on the number of experts makes it possible to obtain
meaningful bounds even if the pool of experts is very large. However, the ba-
sic prediction algorithms, such as the exponentially weighted average predictor,

� This research was supported in part by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada, the NATO Science Fellowship of Canada, the
János Bolyai Research Scholarship of the Hungarian Academy of Sciences, Spanish
Ministry of Science and Technology and FEDER, grant BMF2003-03324, and by the
PASCAL Network of Excellence under EC grant no. 506778.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 204–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tracking the Best of Many Experts 205

have a computational complexity proportional to the number of experts and are
therefore infeasible when the number of experts is very large.

However, in many applications the set of experts has a certain structure that
may be exploited to construct efficient prediction algorithms. Perhaps the best
known such example is the problem of tracking the best expert. In this problem
there is a small number of “base” experts and the goal of the predictor is to
predict as well as the best of “meta” experts defined by any sequence of m + 1
base experts and any partition of the time indexes up to T into m+1 contiguous
blocks such that in block i a meta expert predicts according to the ith base expert
in its defining sequence for i = 0, . . . ,m. If there are N base experts and the
length of the prediction game is T then the total number of meta experts is∑m

k=0

(
T−1

k

)
N(N − 1)k. This problem was solved by Herbster and Warmuth [8]

who exhibited computationally efficient algorithms that predict almost as well
as the best of the meta experts and have regret bounds that depend on the
logarithm of the number of the (meta) experts. Vovk [17] has shown that the
forecasters of Herbster and Warmuth correspond to efficient implementations of
the exponentially weighted forecaster run over the set of meta experts with a
specific choice of the initial weights. We also refer to Auer and Warmuth [1],
Bousquet and Warmuth [3], Herbster and Warmuth [9], for various extensions
and powerful variants of the problem.

Another class of problems that has been investigated is when, even though
no “tracking” is performed, the class of experts is very large and has a certain
structure. Examples of structured classes of experts for which efficient algorithms
have been constructed include prunings of decision trees (Helmbold and Schapire
[5], Pereira and Singer [12]), and planar decision graphs (Takimoto and Warmuth
[13]), as well as scalar quantizers for lossy data compression (György, Linder,
and Lugosi [6]). These algorithms are all based on efficient implementations of
the exponentially weighted average predictor. A different approach was taken by
Kalai and Vempala [10] who consider Hannan’s original predictor and show that
it may be used to obtain efficient algorithms for a large class of problems that
they call “geometric experts.”

The purpose of this paper is to develop efficient algorithms to track the best
expert in the case when the class of “base” experts is already very large and has
some structure. Thus, in a sense, we consider a combination of the two types of
problems described above. Our approach is based on a suitable modification of
the original tracking algorithm of Herbster and Warmuth that allows one to ap-
ply it in the case of large, structured expert classes for which there exist efficient
implementations of the exponentially weighted average prediction method. This
modification is described in Section 2. In Section 3 we illustrate the method on
a problem in which a base expert is associated with a path in a directed graph
and the loss of a base expert is the sum of the weights over the path (that may
change in every time instant). Another application involves “tracking the best
quantizer” in lossy zero-delay data compression which we describe elsewhere.
We also indicate how the method may be generalized to handle the tracking of
general geometric experts.

206 A. György, T. Linder, and G. Lugosi

2 Tracking the Best Expert: A Variation

The aim of this section is to modify the prediction algorithm of Herbster and
Warmuth [8] for tracking the best expert to allow efficient implementation if the
number of experts is very large. In order to handle cases in which the set of
experts is not convex, we consider randomized prediction algorithms.

The online prediction problem considered in this paper is described as follows.
Suppose we want to predict the sequence y1, . . . , yT taking values in the set Y
of outcomes using a sequential prediction scheme. We assume that the predictor
has access to a sequence U1, . . . , UT of independent random variables distributed
uniformly over the interval [0, 1]. At each time instant t = 1, . . . , T , the predictor
observes Ut, and based on Ut and the past input values yt−1 = (y1, . . . , yt−1)
produces an “estimate” ŷt ∈ Ŷ of yt, where Ŷ is the set of predictor actions
that may not be the same as Y. Then the predictor can observe the next input
symbol yt. For simplicity we assume throughout that the total number of rounds
T is fixed and known to the predictor in advance.

Formally, the prediction game is defined as follows:

Parameters: number N of base experts, outcome space Y, action
space Ŷ, loss function � : Y × Ŷ → [0, 1], number T of rounds.
For each round t = 1, . . . , T,

(1) each (base) expert forms its prediction fi,t ∈ Ŷ, i = 1, . . . , N ;
(2) the forecaster observes the predictions of the base experts and

the random variable Ut and chooses an estimate ŷt ∈ Ŷ;
(3) the environment reveals the next outcome yt ∈ Y.

The cumulative loss of the sequential scheme at time T is given by

LT =
T∑

t=1

�(yt, ŷt) .

The goal of the predictor is to achieve a cumulative loss (almost) as small as
the best tracking of the N base experts. More precisely, to describe the loss the
predictor is compared to, consider the following “m-partition” prediction scheme:
The sequence of examples is partitioned into m+1 contiguous segments, and on
each segment the scheme assigns exactly one of the N base experts. Formally, an
m-partition P(T,m, t, e) of the T samples is given by an m-tuple t = (t1, . . . , tm)
such that t0 = 1 < t1 < · · · < tm < T + 1 = tm+1, and an (m + 1)-vector
e = (e0, . . . , em) where ei ∈ {1, . . . , N}. At each time instant t, ti ≤ t < ti+1,
expert ei is used to predict yt. The cumulative loss of a partition PT,m,t,e is

L(P(T,m, t, e)) =
m∑

i=0

ti+1−1∑
t=ti

�(yt, fei,t) =
m∑

i=0

L([ti, ti+1 − 1], ei)

Tracking the Best of Many Experts 207

where for any time interval I, L(I, i) =
∑

t∈I �(yt, fi,t) denotes the cumulative
loss of expert i in I. Here and later in the paper we adopt the convention that
in case a summation is empty, we define the sum to be zero (e.g., for a > b,
L([a, b], i) = 0 by definition).

The goal of the predictor is to perform as well as the best partition, that is,
to keep the normalized regret

1
T

(
LT − min

t,e
L(P(T,m, t, e))

)
as small as possible (with high probability) for all possible outcome sequences.

Next we present a variation of the “fixed-share” share update algorithm of
Herbster and Warmuth [8].

Algorithm 1. Fix the positive numbers η and α < 1, and initialize
weights ws

1,i = 1/N for i = 1, . . . , N . At time instants t = 1, 2, . . . , T

let v
(i)
t = ws

t,i/Wt where Wt =
∑N

i=1 ws
t,i, and predict ŷt randomly

according to the distribution

P{ŷt = fi,t} = v
(i)
t . (1)

After observing yt, for all i = 1, . . . , N , let

wm
t,i = ws

t,ie
−η
(yt,fi,t) (2)

and
ws

t+1,i =
αWt+1

N
+ (1 − α)wm

t,i (3)

where Wt+1 =
∑N

i=1 wm
t,i.

Observe that
∑N

i=1 ws
t+1,i =

∑N
i=1 wm

t,i = Wt+1, thus there is no ambiguity in
the definition of Wt+1. Note that equation (3) is slightly changed compared to
the original algorithm of [8].

First we present a bound on the loss of the algorithm. The proof is a straight-
forward adaptation of the proof of [8] and therefore it is omitted.

Theorem 1. For any positive integers m,T , real numbers 0 < α < 1, η > 0,
and δ ∈ (0, 1), and for any sequence y1, . . . , yT taking values from [0, 1], with
probability at least 1 − δ, the regret LT of Algorithm 1 can be bounded as

LT − min
t,e

L(P(T,m, t, e))

≤ 1
η

ln
(

Nm+1

αm(1 − α)T−m−1

)
+

Tη

8
+

√
T ln(1/δ)

2
. (4)

208 A. György, T. Linder, and G. Lugosi

In particular, if α = m
T−1 and η =

√
8 ln

(
Nm+1

αm(1−α)T−m−1

)
/T is chosen to mini-

mize the above bound, we have

LT − min
t,e

L(P(T,m, t, e))

≤
√

T

2

√
(m + 1) lnN + m ln

T − 1
m

+ m +

√
T ln(1/δ)

2
. (5)

Remark. If the number of experts N is proportional to T γ for some γ > 0,
then, for any fixed δ > 0, the bound in (5) is of order

√
(mT) lnT for large T ,

and so the normalized regret is

1
T

(
LT − min

t,e
L(P(T,m, t, e))

)
= O

(√
(m/T) lnT

)
with probability at least 1 − δ. That is, the rate of convergence is the same (up
to a constant factor) as if we competed with the best static expert on a segment
of average length.

2.1 Implementation of Algorithm 1

If the number of experts N is large, for example, N = T γ for some large γ > 1,
then the implementation of Algorithm 1 may become computationally very hard.
As it is mentioned in the introduction, for several large classes of (base) experts,
efficient algorithms are known to compute the exponentially weighted average
predictor when no tracking is performed. The purpose of this section is to show
that, whenever such an efficient algorithm is available, the tracking forecaster can
also be computed efficiently by implementing Algorithm 1 in a computationally
feasible way.

The main step to this direction is an alternative expression of the weights in
Algorithm 1.

Lemma 1. For any t = 2, . . . , T , the probability v
(i)
t and the corresponding

normalization factor Wt can be obtained as

v
(i)
t =

(1−α)t−1

NWt
e−ηL([1,t−1],i)+

α

NWt

t−1∑
t′=2

(1−α)t−t′Wt′e
−ηL([t′,t−1],i)+

α

N
(6)

Wt =
α

N

t−1∑
t′=2

(1 − α)t−1−t′Wt′Zt′,t−1 +
(1 − α)t−2

N
Z1,t−1 (7)

where Zt′,t−1 =
∑N

i=1 e−ηL([t′,t−1],i) is the sum of the (unnormalized) weights
assigned to the experts by the exponentially weighted prediction method for the
input samples (yt′ , . . . , yt−1).

Tracking the Best of Many Experts 209

Proof. The expressions in the lemma follow directly from the recursive defini-
tion of the weights {ws

t,i}. First we show that for t = 1, . . . , T ,

wm
t,i =

α

N

t∑
t′=2

(1 − α)t−t′Wt′e
−ηL([t′,t],i) +

(1 − α)t−1

N
e−ηL([1,t],i) (8)

ws
t+1,i =

α

N
Wt+1+

α

N

t∑
t′=2

(1−α)t+1−t′Wt′e
−ηL([t′,t],i)+

(1−α)t

N
e−ηL([1,t],i). (9)

Clearly, for a given t, (8) implies (9) by the definition (3). Since ws
1,i = 1/N for

every expert i, (8) and (9) hold for t = 1 and t = 2 (for t = 1 the summations
are 0 in both equations). Now assume that they hold for some t ≥ 2. We show
that then (8) holds for t + 1. By definition,

wm
t+1,i = ws

t+1,ie
−η
(yt+1,fi,t+1)

=
α

N
Wt+1e

−η
(yt+1,fi,t+1) +
α

N

t∑
t′=2

(1 − α)t+1−t′Wt′e
−ηL([t′,t+1],i)

+
(1 − α)t

N
e−ηL([1,t+1],i)

=
α

N

t+1∑
t′=2

(1 − α)t+1−t′Wt′e
−ηL([t′,t+1],i) +

(1 − α)t

N
e−ηL([1,t+1],i)

thus (8) and (9) hold for all t = 1, . . . , T . Now (6) follows from (9) by normal-
ization for t = 2, . . . , T +1. Finally, (7) can easily be proved from (8), as for any
t = 2, . . . , T ,

Wt =
N∑

i=1

wm
t−1,i

=
N∑

i=1

(
α

N

t−1∑
t′=2

(1 − α)t−1−t′Wt′e
−ηL([t′,t−1],i) +

(1 − α)t−2

N
e−ηL([1,t−1],i)

)

=
α

N

t−1∑
t′=2

(1 − α)t−1−t′Wt′

N∑
i=1

e−ηL([t′,t−1],i) +
(1 − α)t−2

N

N∑
i=1

e−ηL([1,t−1],i)

=
α

N

t−1∑
t′=2

(1 − α)t−1−t′Wt′Zt′,t−1 +
(1 − α)t−2

N
Z1,t−1.

�

Examining formula (6), one can see that the t′-th term in the summation
(including the first and last individual terms) is some multiple of e−ηL([t′,t−1],i).
The latter expression is the weight assigned to expert i by the exponentially
weighted prediction method for the last t − t′ samples of the sequence, that is,

210 A. György, T. Linder, and G. Lugosi

for (yt′ , . . . , yt−1) (the last term in the summation corresponds to the case where
no previous samples of the sequence are taken into consideration). Therefore, for
t ≥ 2, the random choice (1) of a predictor can be performed in two steps. First
we choose a random time τt, which specifies how many most recent samples we
are going to use for the prediction. Then we choose the predictor according to
the exponentially weighted prediction for these samples. Thus, P{τt = t′} is the
sum of the t′-th terms with respect to the index i in the expressions for v

(i)
t ,

and given τt = t′, the probability that ŷt = fi,t is just the probability assigned
to expert i using the exponentially weighted average prediction based on the
samples (yt′ , . . . , yt−1). Hence we obtain the following algorithm.

Algorithm 2. For t = 1, choose ŷ1 uniformly from the set
{f1,1, . . . , fN,1}. For t ≥ 2, choose τt randomly according to the dis-
tribution

P{τt = t′} =

⎧⎨⎩
(1−α)t−1Z1,t−1

NWt
for t′ = 1

α(1−α)t−t′Wt′Zt′,t−1
NWt

for t′ = 2, . . . , t
(10)

where we define Zt,t−1 = N . Given τt = t′, choose ŷt randomly
according to the probabilities

P{ŷt = fi,t|τt = t′} =

{
e−ηL([t′,t−1],i)

Zt′,t−1
for t′ = 1, . . . , t− 1

1
N for t′ = t

(11)

The discussion preceding the algorithm shows that Algorithm 2 provides an
alternative implementation of Algorithm 1.

Theorem 2. Algorithm 1 and Algorithm 2 are equivalent in the sense that the
generated predictor sequences have the same distribution. In particular, the se-
quence (ŷ1, . . . , ŷT) generated by Algorithm 2 satisfies

P{ŷt = fi,t} = v
(i)
t (12)

for all t and i, where v
(i)
t are the normalized weights generated by Algorithm 1.

It is not immediately obvious why Algorithm 2 is more efficient than Al-
gorithm 1. However, in many cases the probabilities P{ŷt = fi,t|τt = t′} and
normalization factors Zt′,t−1 may be computed efficiently, and in all those cases,
since Wt can be obtained via the recursion formula (7), Algorithm 2 becomes
feasible.

We need the following assumptions: For a given set of N (base) experts,

(a) the exponentially weighted average prediction method can be implemented in
O(g(T)) time, that is, for time instants t = 1, . . . , T , predictions ŷ1, . . . , ŷT

Tracking the Best of Many Experts 211

can be chosen sequentially according to the probabilities P{ŷt = fi,t} =
e−ηL([1,t−1],i) in O(g(T)) time for any η > 0;

(b) the sums of the weights Zt−1 =
∑N

i=1 e−ηL([1,t−1],i) can be computed in
O(g(T)) time for t = 1, . . . , T .

Note that condition (b) is implied by the following two natural assumptions,
which are often satisfied as byproducts of the efficient implementation of the
exponentially weighted prediction method according to (a): for t = 1, . . . , T ,

(c1) P{ŷt = fit,t} can be computed for the chosen expert it (that is, ŷt = fit,t)
in O(g(T)) time;

(c2) the cumulative losses L([1, t−1], it) of the chosen experts it can be computed
in O(g(T)) time.

Then Zt−1 can be calculated as Zt−1 = e−ηL([1,t−1],it)/P{ŷt = fit,t}.
The next theorem shows that, under assumptions (a) and (b) on the class of

the base experts, Algorithm 2 can be implemented efficiently, and thus tracking
can be performed with low computational complexity.

Theorem 3. Assume that for the set of base experts conditions (a) and (b) are
satisfied. Then Algorithm 2 can be implemented in O

(
T 2 +

∑T
t=1 g(t)

)
time for

T rounds.

Proof. For t = 1 choose ŷ1 uniformly from {f1,1, . . . , fN,1}, and set W1 = 1.
For each t = 2, . . . , T , run the exponentially weighted prediction algorithm for
the base experts with the reverse set of examples yt−1, . . . , y1 as input data and
compute the constants Zt′,t−1 for all t′ = 1, . . . , t − 1 in O(g(t)) time. Then
compute Wt from Z1,t−1, . . . , Zt,t−1 (recall that Zt,t−1 = N) and W1, . . . ,Wt−1

according to (7) in O(t) time. Then the choice of τt according to (10) can be
performed in O(t) time, and the prediction according to (11) can be chosen in
O(g(t)) time. Thus, at time instant t, O(g(t))+O(t) computations are required,
giving overall computational complexity O(T 2 +

∑T
t=1 g(t)). �

We illustrate the use of this algorithm in just one special case when the
losses of the base experts are given by weights of a path in a directed graph. This
application, that is, in a sense, a generic example, should serve as an illustration.
In the full version of the paper other examples will be given.

3 Minimum Weight Path in a Directed Graph

In this section we present an application of Algorithm 2 where the constants
Zt′,t can be computed efficiently as discussed at the end of the previous section.
We consider the problem of tracking the minimum-weight path of a given length
in a weighted directed graph. Other efficient implementations of exponentially
weighted prediction methods, such as for finding the minimum weight path (of

212 A. György, T. Linder, and G. Lugosi

unrestricted length) in a weighted directed acyclic graph in Takimoto and War-
muth [14],[15], can also be combined with our tracking method in a similar way.

Formally, we have a directed graph (V, E), where V and E denote the set
of nodes and edges, respectively. Given a fixed pair of nodes s and u, let RM

denote the set of all directed paths of length M from s to u, let N = |RM |
denote the number of such paths, and assume that RM is not empty (that is,
N > 0). We also assume that for all z �= u, z ∈ V, there is an edge starting
from z. (Otherwise node z is of no use in finding a path from s to u, and all
such nodes can be removed from the graph at the beginning of the algorithm in
O(|V|)+O(|E|) time, parallel with reading the description of the graph.) At time
instants t = 1, 2, . . . the predictor picks a path ŷt ∈ RM . The cost of this path is
the sum of the weights δt(a) on the edges a of the path (the weights are assumed
to be nonnegative real numbers), which are revealed for each a ∈ E only after
the path has been chosen. To use our previous definition for prediction, we may
define yt = {δt(a)}a∈E , and the loss function as

�(yt, ŷt) =
∑
a∈ŷt

δt(a)

for each pair (yt, ŷt). The cumulative loss at time instant T is given as

LT =
T∑

t=1

�(yt, ŷt).

Our goal is to perform as well as the best combination of paths (base experts)
which is allowed to change the path m times during time instants t = 1, . . . , T .
As in the prediction context, such a combination is given as an m-partition
P(T,m, t, e), where t = (t1, . . . , tm) such that t0 = 1 < t1 < · · · < tm < tm+1 =
T + 1, and e = (e0, . . . , em), where ei ∈ RM (that is, expert e ∈ RM predicts
fe,t = e). The cumulative loss of a partition P(T,m, t, e) is

L(P(T,m, t, e)) =
m∑

i=0

ti+1−1∑
t=ti

�(yt, ei) =
m∑

i=0

ti+1−1∑
t=ti

∑
a∈ei

δt(a).

Now Algorithms 1 and 2 can be used to choose the path ŷt randomly at each
time instant t = 1, . . . , T , and the regret

LT − min
t,e

L(P(T,m, t, e))

can be bounded by Theorem 1. The question is whether in this setup we can com-
pute efficiently a path based on the exponentially weighted prediction method
and the constants Zt′,t. The following theorem gives a positive answer.

Theorem 4. For the minimum weight path problem described in this section,
Algorithm 2 can be implemented in O(T 2M |E|) time. If α = m/(T − 1), δt(a) <

1/M for all time instants t and edges a ∈ E, and η =
√

8 ln
(

Nm+1

αm(1−α)T−m−1

)
/T ,

Tracking the Best of Many Experts 213

then the regret of the algorithm can be bounded from above, with probability at
least 1 − δ, as

LT − min
t,e

L(P(T,m, t, e))

≤
√

T

2

√
(m + 1) lnN + m ln

T − 1
m

+ m +

√
T ln(1/δ)

2
.

Proof. The bound in the theorem follows trivially from the optimized bound
(5) in Theorem 1. All we need to show is that the algorithm can be implemented
in O(T 2M |E|) time. To do this, we show that the exponentially weighted average
prediction method for T rounds can be implemented in O(TM |E|) time for the
above described minimum weight path problem. Then the result follows by The-
orem 3. In the following we modify the algorithm of György, Linder, and Lugosi
[6] to choose a path ŷt randomly based on (y1, y2, . . . , yt−1) (that is, based on
the weights {δj(a)}a∈E , j ∈ [1, t − 1]) according to the probabilities

P{ŷt = r} =
e−η

∑
a∈r Δt−1(a)∑

r′∈RM
e−η

∑
a∈r′ Δt−1(a)

(13)

where Δt−1(a) =
∑t−1

j=1 δj(a), and compute

Zt−1 =
∑

r∈RM

e−η
∑

a∈r Δt−1(a).

We show that for t = 1, . . . , T , this can be done in O(TM |E|) time, yielding that
the problem satisfies conditions (a) and (b) with g(T) = TM |E|.

For any z ∈ V and k = 1, . . . ,M , let Rz
k denote the set of paths of length

k from z to u, and let Gt−1(z, k) denote the sum of the exponential cumulative
losses in the interval [1, t − 1] of all paths in Rz

k. Formally, if Rz
k is empty then

we define Gt−1(z, k) = 0, otherwise

Gt−1(z, k) =
∑

r∈Rz
k

e−η
∑

a∈r Δt′,t−1(a). (14)

The function Gt−1(z,k)will prove useful in computing Zt−1, as Zt−1=Gt−1(s,M),
and in drawing ŷt randomly for a given τt: Instead of computing the
cumulative losses

∑
a∈r Δt−1(a) for all r ∈ RM (needed by (13)), following the

algorithm of [6], we can draw the path ŷt by drawing its edges successively.
Denote the jth node along a path r ∈ RM by zr,j for j = 0, . . . ,M , where
zr,0 = s and zr,M = u. Then, for any k = 1, . . . ,M − 1, the probability that the
kth node in the path ŷt is zk given that the previous nodes are z0, z1, . . . , zk−1

is given by

214 A. György, T. Linder, and G. Lugosi

P{zŷt,k = zk|zŷt,j = zj , j = 0, . . . , k − 1}

=
P{zŷt,j = zj , j = 0, . . . , k}

P{zŷt,j = zj , j = 0, . . . , k − 1}

=

∑
r:zr,i=zi,i=0,...,k e−η

∑M
j=1 Δt−1((zr,j−1,zr,j))∑

r:zr,i=zi,i=0,...,k−1 e−η
∑M

j=1 Δt−1((zr,j−1,zr,j))

= e−ηΔt−1((zk−1,zk)) Gt−1(zk,M − k)
Gt−1(zk−1,M − k + 1)

. (15)

Therefore, given the functions Δt−1 and Gt−1, ŷt and its probability can be
computed in O(M |V|) steps using the exponentially weighted average prediction
method.

Next we show how to compute Gt−1. For any node z ∈ V, let E(z) denote
the set of edges starting at z. As any path of length k ≥ 2 can be decomposed
as the first edge in the path and the remaining path of length k − 1, it is easy
to see that for any M ≥ k ≥ 2, Gt−1(z, k) can be computed recursively as

Gt−1(z, k) =
∑

ẑ:(z,ẑ)∈E(z)

Gt−1(ẑ, k − 1)e−ηΔt−1((z,ẑ)) (16)

and

Gt−1(z, 1) =

{
e−ηΔt−1((z,u)) if (z, u) ∈ E ;
0 otherwise.

When calculating (16) for a given k, each edge is taken into consideration exactly
once (and we have to do the update of G for each node). Thus, assuming that the
cumulative weights Δt−1(a) are known for each edge a ∈ E , the computational
cost of calculating Gt−1(z, k) for a given k is O(|E|) + O(|V|) = O(|E|) (as by
assumption, |E| ≥ |V|−1). Therefore, the computational complexity of calculat-
ing Gt−1(z, k) for all z and k, given the cumulative weights Δt−1(a) are known,
is O(M |E|). Now as t increases from 1 to T , if we store the cumulative weights
Δt−1(a) for each edge a, then only O(|E|) computations are needed to update
the cumulative weights at the edges for each value of t. Therefore, calculating
Gt−1(z, k) for all z ∈ V, 1 ≤ k ≤ M , and t = 1, . . . , T requires O(TM |E|) com-
putations. This shows that conditions (a) and (b) are satisfied for this problem
with g(T) = TM |E|. Applying Theorem 3 finishes the proof. �
Remarks

(i) If we assume that the graph contains no cycle with a negative weight
at any time instant, then the minimum weight path (of unrestricted length) is
of length at most |V − 1|. Therefore, the algorithm can easily be modified to
compete with paths of unrestricted length. All we require is an additional cycle
in which M goes from 1 to |V| − 1 to examine all possible paths. Then, in the
random choice of the path, after choosing τt, we randomly decide the length
of the path and choose a path of that length using exponential weighting. The
bound on the regret remains the same as in Theorem 4; the price we pay is an
increase in the complexity of the algorithm which becomes O(T 2|V|2|E|).

Tracking the Best of Many Experts 215

(ii) If the graph is acyclic, then the above algorithm can be simplified as
there is no need to keep track the second parameter of the function Gt−1 (this
is basically an application of the weight pushing algorithm of Takimoto and
Warmuth [14],[15] to the graph for the time interval [1, t−1]). Then the minimum
weight path (of unrestricted length) can be tracked in O(T 2|E|) time, while the
bound on the regret still holds.

(iii) It is also possible to apply the above algorithm for tracking the best
geometric expert. A geometric expert is a combination of “sub-experts” from a
given set, such that the loss of a geometric expert equals the sum of the losses of
its “sub-experts”; however, not all possible combinations of the “sub-experts” are
allowed (for a formal definition of the problem, see Kalai and Vempala [10]). An
example of the geometric expert problem is the minimum weight path problem
in a graph, where the “sub-experts” are the edges and the allowed geometric
(combined) experts are the paths. However, the geometric expert problem can
also be treated as a special case of the minimum weight path problem, as one can
easily construct a graph such that there is a one-to-one correspondence between
paths of the graph (between to given nodes) and the allowed geometric experts:
each edge of the graph corresponds to a “sub-expert”, and each path corresponds
to the geometric expert combined from the “sub-experts” corresponding to its
edges. Note that usually several edges correspond to each “sub-expert”. In this
way it is possible to track the best geometric expert using the graph algorithms
of this section. However, the complexity of the algorithm depends heavily on the
number of edges of the graph, and it is not clear at all how one can create a
graph with a minimum number of edges for a given set of geometric experts.

References

1. P. Auer and M.K. Warmuth. Tracking the best disjunction. Machine Learning,
32(2):127–150, 1998.

2. D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956.

3. O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past
posteriors. Journal of Machine Learning Research, 3:363–396, Nov. 2002.

4. N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schapire, and M. K.
Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

5. R.E. Schapire D.P. Helmbold. Predicting nearly as well as the best pruning of a
decision tree. Machine Learning, 27:51–68, 1997.

6. A. György, T. Linder, and G. Lugosi. Efficient algorithms and minimax bounds
for zero-delay lossy source coding. IEEE Transactions on Signal Processing, pages
2337–2347, Aug. 2004.

7. J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

8. M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning,
pages 1–29, 1998.

9. M. Herbster and M.K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1:281–309, 2001.

216 A. György, T. Linder, and G. Lugosi

10. A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In
B. Schölkopf and M. K. Warmuth, editors, COLT 2003, LNAI 2777, pages 26–40,
Berlin–Heidelberg, 2003. Springer-Verlag.

11. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

12. F. Pereira and Y. Singer. An efficient extension to mixture techniques for prediction
and decision trees. Machine Learning, 36:183–199, 1999.

13. E. Takimoto and M. Warmuth. Predicting nearly as well as the best pruning of a
planar decision graph. Theoretical Computer Science, 288:217–235, 2002.

14. E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. In
J. Kivinen and R. H. Sloan, editors, COLT 2002, LNAI 2375, pages 74–89, Berlin–
Heidelberg, 2002. Springer-Verlag.

15. E. Takimoto and M. K. Warmuth, “Path kernels and multiplicative updates,”
Journal of Machine Learning Research, vol. 4, pages 773–818, 2003.

16. V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop
on Computational Learning Theory, pages 372–383, New York, 1990. Association
of Computing Machinery.

17. V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning,
35(3):247–282, 1999.

Improved Second-Order Bounds
for Prediction with Expert Advice�

Nicolò Cesa-Bianchi1, Yishay Mansour2,��, and Gilles Stoltz3

1 DSI, Università di Milano, via Comelico 39, 20135 Milano, Italy
cesa-bianchi@dsi.unimi.it

2 School of computer Science, Tel-Aviv University, Tel Aviv, Israel
mansour@cs.tau.ac.il

3 DMA, Ecole Normale Supérieure, 45, rue d’Ulm, 75005 Paris, France
gilles.stoltz@ens.fr

Abstract. This work studies external regret in sequential prediction
games with arbitrary payoffs (nonnegative or non-positive). External re-
gret measures the difference between the payoff obtained by the forecast-
ing strategy and the payoff of the best action. We focus on two important
parameters: M , the largest absolute value of any payoff, and Q∗, the sum
of squared payoffs of the best action. Given these parameters we derive
first a simple and new forecasting strategy with regret at most order of√

Q∗(ln N) + M ln N , where N is the number of actions. We extend the
results to the case where the parameters are unknown and derive similar
bounds. We then devise a refined analysis of the weighted majority fore-
caster, which yields bounds of the same flavour. The proof techniques we
develop are finally applied to the adversarial multi-armed bandit setting,
and we prove bounds on the performance of an online algorithm in the
case where there is no lower bound on the probability of each action.

1 Introduction

The study of online forecasting strategies in adversarial settings has received con-
siderable attention in the last few years in the computational learning literature
and elsewhere. The main focus has been on deriving simple online algorithms
that have low external regret. The external regret of an online algorithm is the
difference between its expected payoff and the best payoff achievable using some
strategy from a given class. Usually, this class includes a strategy, for each action,
which always plays that action. In a nutshell, one can show that the average ex-
ternal regret per time step vanishes, and much of the research has been to both

� The work of all authors was supported in part by the IST Programme of the Euro-
pean Community, under the PASCAL Network of Excellence, IST-2002-506778.

�� The work was done while the author was a fellow in the Institute of Advance studies,
Hebrew University. His work was also supported by a grant no. 1079/04 from the
Israel Science Foundation and an IBM faculty award.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 217–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

improve and refine the bounds. Ideally, in an adversarial setting one should be
able to show that the regret with respect to any action only depends on the vari-
ance of the observed payoffs for that action. In a stochastic setting such a result
seems like the most natural bound, and deriving its analogue in an adversarial
setting would be a fundamental result. We believe that our results make a sig-
nificant step toward this goal, although, unfortunately, fall short of completely
achieving it.

In order to describe our results we first set up our model and notations, and
relate them to previous works. In this paper we consider the following game-
theoretic version of the prediction-with-expert-advice framework [5, 11, 13]. A
forecaster repeatedly assigns probabilities to a fixed set of actions. After each
assignment, the real payoff associated to each action is revealed and new payoffs
are set for the next round. The forecaster’s reward on each round is the average
payoff of actions for that round, where the average is computed according to
the forecaster’s current probability assignment. The goal of the forecaster is to
achieve, on any sequence of payoffs, a cumulative reward close to X∗, the high-
est cumulative payoff among all actions. As usual, we call regret the difference
between X∗ and the cumulative reward achieved by the forecaster on the same
payoff sequence.

The special case of “one-sided games”, when all payoffs have the same sign
(they are either always non-positive or always nonnegative) has been considered
by Freund and Schapire [9], and by Auer et al. [3] in a related context. These
papers show that Littlestone and Warmuth’s weighted majority algorithm [11]
can be used as a basic ingredient to construct a forecasting strategy achieving a
regret of O(

√
M |X∗| lnN) in one-sided games, where N is the number of actions

and M is a known upper bound on the size of payoffs. (If all payoffs are non-
positive, then the absolute value of each payoff is called loss and |X∗| is the
cumulative loss of the best action.) By a simple rescaling of payoffs, it is possible
to reduce the more general “signed game”, in which each payoff might have an
arbitrary sign, to either one of the one-sided games (note that this reduction
assumes knowledge of M). However, the regret becomes O(M

√
n lnN), where

n is the number of game rounds. Recently, Allenberg and Neeman [2] proposed
a direct analysis of the signed game avoiding this reduction. Before describing
their results, we introduce some convenient notation and terminology.

Our forecasting game is played in rounds. At each time step t = 1, 2, . . .
the forecaster computes an assignment pt = (p1,t, . . . , pN,t) of probabilities over
the N actions. Then the payoff vector xt = (x1,t, . . . , xN,t) ∈ RN for time t is
revealed and the forecaster’s reward is x̂t = x1,tp1,t + . . . + xN,tpN,t. We define
the cumulative reward of the forecaster by X̂n = x̂1+. . .+x̂n and the cumulative
payoff of action i by Xi,n = xi,1 + . . .+xi,n. For all n, let X∗

n = maxi=1,...,N Xi,n

be the cumulative payoff of the best action up to time n. The forecaster’s goal
is to keep the regret X∗

n − X̂n as small as possible uniformly over n.
The one-sided games, mentioned above, are the loss game, where xi,t ≤ 0

for all i and t, and the gain game, where xi,t ≥ 0 for all i and t. We call
signed game the setup in which no assumptions are made on the sign of the

Improved Second-Order Bounds for Prediction 219

payoffs. For the signed game, Allenberg and Neeman [2] show that weighted
majority (used in conjunction with a doubling trick) achieves the following: on
any sequence of payoffs there exists an action j such that the regret is at most
of order

√
M(lnN)

∑n
t=1 |xj,t|, where M = maxi,t |xi,t| is a known upper bound

on the size of payoffs. Note that this bound does not relate the regret to the
sum |x∗

1|+ . . .+ |x∗
n| of payoff sizes for the optimal action (i.e., the one achieving

X∗
n). In particular, the bound O(

√
M |X∗

n| lnN) for the one-sided games is only
obtained if an estimate of X∗

n is available in advance.
In this paper we show new regret bounds for the signed game. Our analysis

has two main advantages: first, no preliminary knowledge of the payoff size M or
about the best cumulative payoff X∗

n is needed; second, our bounds are expressed
in terms of sums of squared payoffs, such as x2

i,1 + . . . + x2
i,n and related forms.

These quantities replace the larger terms M(|xi,1| + . . . + |xi,n|) appearing in
the previous bounds. As an application of our results we obtain, without any
preliminary knowledge on the payoff sequence, an improved regret bound for the
one-sided games of the order of

√
(Mn − |X∗

n|)(|X∗
n|/n)(lnN).

Expressions involving squared payoffs are at the core of many analyses in the
framework of prediction with expert advice, especially in the presence of limited
feedback. (See, for instance, the bandit problem [3] and more generally predic-
tion under partial monitoring [6, 7, 12]). However, to the best of our knowledge,
our bounds are the first ones to explicitely include second-order information
extracted from the payoff sequence. In particular, our bounds are stable under
many transformations of the payoff sequence, and therefore are in some sense
more “fundamental”.

Some of our bounds are achieved using forecasters based on weighted major-
ity run with a dynamic learning rate. However, we are able to obtain second-
order bounds of a different flavour using a new forecaster that does not use the
exponential probability assignments of weighted majority. In particular, unlike
virtually all previously known forecasting schemes, the weights of this forecaster
can not be represented as the gradient of an additive potential [8].

In bandit problems and, more generally, in all incomplete information prob-
lems like label-efficient prediction or prediction with partial monitoring, a crucial
point is to estimate the unobserved losses. In such settings, a probability distri-
bution is formed by using weighted averages of the cumulative estimated losses,
and a common practice is to mix this probability distribution, so that the result-
ing distribution have all the probabilities above a certain value. Technically, this
is important since it is common to divide by the probabilities (see [3, 6, 7, 10, 12]).
We show that, for the algorithm of [3], using our proof technique one can simply
use the original probability distribution computed with the estimates without
any adjustments.

2 A New Algorithm for Sequential Prediction

We introduce a new forecasting strategy for the signed game. In Theorem 3, the
main result of this section, we show that, without any preliminary knowledge of

220 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

the sequence of payoffs, the regret of a variant of this strategy is bounded by
a quantity defined in terms of the sums Qi,n = x2

i,1 + . . . + x2
i,n. Since Qi,n ≤

M(|xi,1| + . . . + |xi,n|), such second-order bounds are generally better than the
previously known bounds (see Section 4).

Our basic forecasting strategy, which we call prod(η), has an input parameter
η > 0 and maintains a set of N weights. At time t = 1 the weights are initialized
with wi,1 = 1 for i = 1, . . . , N . At each time t = 1, 2, . . ., prod(η) computes
the probability assignment pt = (p1,t, . . . , pN,t), where pi,t = wi,t/Wt. After the
payoff vector xt is revealed, the weights are updated using the rule wi,t+1 =
wi,t(1+ ηxi,t). We use the notation Wt = w1,t + . . .+wN,t. The following simple
fact, whose proof is omitted, plays a key role in our analysis.

Lemma 1. For all z ≥ −1/2, ln(1 + z) ≥ z − z2.

Lemma 2. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M
for t = 1, . . . , n and i = 1, . . . , N . For any sequence of payoffs, for any action
k, for any η ≤ 1/(2M), and for any n ≥ 1, the cumulative reward of prod(η) is
lower bounded as

X̂n ≥ Xk,n − lnN

η
− η Qk,n .

Proof. For any k = 1, . . . , N , note that xk,t ≥ −M and η ≤ 1/(2M) imply
ηxk,t ≥ −1/2. Hence, we can apply Lemma 1 to ηxk,t and get

ln
Wn+1

W1
= − lnN + ln

n∏
t=1

(1 + ηxk,t) = − lnN +
n∑

t=1

ln(1 + ηxk,t)

≥ − lnN +
n∑

t=1

(
ηxk,t − η2x2

k,t

)
= − lnN + ηXk,n − η2Qk,n . (1)

On the other hand,

ln
Wn+1

W1
=

n∑
t=1

ln
Wt+1

Wt
=

n∑
t=1

ln

(
N∑

i=1

pi,t (1 + ηxi,t)

)
≤ ηX̂n (2)

where in the last step we used ln(1+ zt) ≤ zt for all zt = η
∑N

i=1 xi,tpi,t ≥ −1/2.
Combining (1) and (2), and dividing by η > 0, we get

X̂n ≥ − lnN

η
+ Xk,n − η Qk,n

which completes the proof of the lemma. ��

By choosing η appropriately, we can optimize the bound as follows.

Theorem 1. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M
for t = 1, . . . , n and i = 1, . . . , N . For any Q > 0, if prod(η) is run with

η = min
{

1/(2M),
√

(lnN)/Q
}

Improved Second-Order Bounds for Prediction 221

then for any sequence of payoffs, for any action k, and for any n ≥ 1 such that
Qk,n ≤ Q,

X̂n ≥ Xk,n − max
{

2
√

Q lnN, 4M lnN
}

.

To achieve the bound stated in Theorem 1, the parameter η must be tuned using
preliminary knowledge of a lower bound on the payoffs and an upper bound on
the quantities Qk,n. The next two results remove these requirements one by one.
We start by introducing a new algorithm that, using a doubling trick over prod,
avoids any preliminary knowledge of a lower bound on the payoffs.

Let prod-M(Q) be the prediction algorithm that receives a number Q > 0
as input parameter and repeatedly runs prod(ηr), where ηr = 1/(2Mr) and Mr

is defined below. We call epoch r the sequence of time steps when prod-M is
running prod(ηr). At the beginning, r = 0 and prod-M(Q) runs prod(η0), where

M0 =
√

Q/(4 lnN) and η0 = 1/(2M0) =
√

(lnN)/Q .

The last step of epoch r ≥ 0 is the time step t = tr when maxi=1,...,N |xi,t| > Mr

happens for the first time. When a new epoch r + 1 begins, prod is restarted
with parameter ηr+1 = 1/(2Mr+1), where Mr+1 = maxi 2�log2 |xi,tr |�. Note that
M1 ≥ M0 and, for each r ≥ 1, Mr+1 ≥ 2Mr.

Theorem 2. For any sequence of payoffs, for any action k, and for any n ≥ 1
such that Qk,n ≤ Q, the cumulative reward of algorithm prod-M(Q) is lower
bounded as

X̂n ≥ Xk,n − 2
√

Q lnN − 4M (2 + 3 lnN)

where M = max1≤i≤N max1≤t≤n |xi,t|.

Proof. We denote by R the index of the last epoch and let tR = n. If we have
only one epoch, then the theorem follows from Theorem 1 applied with a lower
bound of −M0 on the payoffs. Therefore, for the rest of the proof we assume
R ≥ 1. Let

Xr
k =

∑tr−1
s=tr−1+1 xk,s, Qr

k =
∑tr−1

s=tr−1+1 x2
k,s, X̂r =

∑tr−1
s=tr−1+1 x̂s ,

where the sums are over all the time steps t in epoch r except the last one,
tr. (Here t−1 is conventionally set to 0.) Applying Lemma 1 to each epoch
r = 0, . . . , R we get that X̂n −Xk,n is equal to

R∑
r=0

(
X̂r −Xr

k

)
+

R−1∑
r=0

(x̂tr
− xk,tr

) ≥ −
R∑

r=0

lnN

ηr
−

R∑
r=0

ηrQ
r
k +

R−1∑
r=0

(x̂tr
− xk,tr

) .

We bound each sum separately. For the first sum note that

R∑
r=0

lnN

ηr
=

R∑
r=0

2MrlnN ≤ 6MR lnN

222 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

since MR ≥ 2R−rMr for each r ≥ 1 and M0 ≤ MR. For the second sum, using
that the ηr decrease, we have

R∑
r=0

ηrQ
r
k ≤ η0

R∑
r=0

Qr
k ≤ η0Qk,n ≤

√
lnN

Q
Q =

√
Q lnN .

Finally,
R−1∑
r=0

|x̂tr
− xk,tr

| ≤
R∑

r=1

2Mr ≤ 4MR .

The resulting lower bound 2MR(2 + 3 lnN) +
√

Q lnN implies the one stated in
the theorem by noting that, when R ≥ 1, MR ≤ 2M . ��

We now show a regret bound for the case when M and the Qk,n are both
unknown. Let k∗

t be the index of the best action up to time t; that is, k∗
t ∈

argmaxk Xk,t (ties are broken by choosing the action k with minimal associated
Qk,t). We denote the associated quadratic penalty by

Q∗
t = Q∗

k∗
t

=
∑t

s=1 x2
k∗

t ,s .

Ideally, our final regret bound should depend on Q∗
n. However, note that the

sequence Q∗
1, Q

∗
2, . . . is not necessarily monotone, as Q∗

t and Q∗
t+1 cannot be

possibly related when the actions achieving the largest cumulative payoffs at
rounds t and t + 1 are different. Therefore, we cannot use a straightforward
doubling trick, as this only applies to monotone sequences. Our solution is to
express the bound in terms of the smallest nondecreasing sequence that upper
bounds the original sequence (Q∗

t)t≥1. This is a general trick to handle situations
where the penalty terms are not monotone. Allenberg and Neeman [2] faced a
similar situation, and we improve their results.

We define a new (parameterless) prediction algorithm prod-MQ in the follow-
ing way. The algorithm runs in epochs using prod-M(Q) as a subroutine. The
last step of epoch r is the time step t = tr when Q∗

t > 4r happens for the first
time. At the beginning of each new epoch r = 0, 1, . . ., algorithm prod-M(Q) is
restarted with parameter Q = 4r.

Theorem 3. For any sequence of payoffs and for any n ≥ 1, the cumulative
reward of algorithm prod-MQ satisfies

X̂n ≥ X∗
n − 8

√
(lnN)max

{
1, max

s≤n
Q∗

s

}
− 12M

(
2 + log4 max

s≤n
Q∗

s

)
(1 + lnN)

where M = max1≤i≤N max1≤t≤n |xi,t|.

Proof. We denote by R the index of the last epoch and let tR = n. Assume that
R ≥ 1 (otherwise the proof is concluded by Theorem 2). Similarly to the proof
of Theorem 2, for all epochs r and actions k introduce

Xr
k =

∑tr−1
s=tr−1+1 xk,s , Qr

k =
∑tr−1

s=tr−1+1 x2
k,s , X̂r =

∑tr−1
s=tr−1+1 x̂s

Improved Second-Order Bounds for Prediction 223

where t−1 = 0. We also denote kr = k∗
tr−1 the index of the best overall expert

up to time tr −1 (one time step before the end of epoch r). We have that Qr
kr

≤
Qkr,tr−1 = Q∗

tr−1. Now, by definition of the algorithm, Q∗
tr−1 ≤ 4r. Theorem 2

(applied to time steps tr−1 + 1, . . . , tr − 1) shows that X̂r ≥ Xr
kr

− Φ (M, 4r),
where Φ(M,x) = 2

√
x lnN +4M(2+3 lnN). Summing over r = 0, . . . , R we get

X̂n =
R∑

r=0

X̂r + x̂kr,tr
≥

R∑
r=0

(
x̂kr,tr

+ Xr
kr

− Φ (M, 4r)
)

. (3)

Now, since k1 is the index of the expert with largest payoff up to time t1 − 1,
we have that Xk2,t2−1 = X1

k2
+ xk2,t1 + X2

k2
≤ X1

k1
+ X2

k2
+ M . By a simple

induction, we in fact get

XkR,tR−1 ≤
R−1∑
r=0

(
Xr

kr
+ M

)
+ XR

kR
. (4)

As, in addition, XkR,tR−1 and Xk∗
n,n may only differ by at most M , combining (3)

and (4) we have indeed proven that

X̂n ≥ Xk∗
n,n −

(
2(1 + R)M +

R∑
r=0

Φ (M, 4r)

)
.

The sum over r is now bounded as follows
R∑

r=0

Φ (M, 4r) ≤ 4M(1 + R) (2 + 3 lnN) + 2R+1
(
2
√

lnN
)

.

The proof is concluded by noting that, as R ≥ 1, sups≤n Q∗
s ≥ 4R−1 by definition

of the algorithm. ��

3 Second-Order Bounds for Weighted Majority

In this section we derive new regret bounds for the weighted majority forecaster
of Littlestone and Warmuth [11] using a time-varying learning rate. This allows
us to avoid the doubling trick of Section 2 and keep the assumption that no
knowledge on the payoff sequence is available to the forecaster beforehand.

Similarly to the results of Section 2, the main term in the new bounds depends
on second-order quantities associated to the sequence of payoffs. However, the
precise definition of these quantities makes the bounds of this section generally
not comparable to the bounds obtained in Section 2.

The weighted majority forecaster using the sequence η2, η3, . . . > 0 of learning
rates assigns at time t a probability distribution pt over the N experts defined
by p1 = (1/N, . . . , 1/N) and

pi,t =
eηtXi,t−1∑N

j=1 eηtXj,t−1
for i = 1, . . . , N and t ≥ 2. (5)

224 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

Note that the quantities ηt > 0 may depend on the past payoffs xi,s, i = 1, . . . , N
and s = 1, . . . , t − 1. The analysis of Auer, Cesa-Bianchi, and Gentile [4], for a
related variant of weighted majority, is at the core of the proof of the following
lemma (proof omitted from this extended abstract).

Lemma 3. Consider any nonincreasing sequence η2, η3, . . . of positive learning
rates and any sequence x1,x2, . . . ∈ RN of payoff vectors. Define the nonnegative
function Φ by

Φ(pt, ηt, xt) = −
N∑

i=1

pi,txi,t +
1
ηt

ln
N∑

i=1

pi,te
ηtxi,t =

1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)
Then the weighted majority forecaster (5) run with the sequence η2, η3, . . . satis-
fies, for any n ≥ 1 and for any η1 ≥ η2,

X̂n −X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
lnN −

n∑
t=1

Φ(pt, ηt, xt) .

Let Zt be the random variable with range {x1,t, . . . , xN,t} and law pt. Note that
EZt is the expected payoff x̂t of the forecaster using distribution pt at time t.
Introduce

VarZt = EZ2
t − E2Zt =

N∑
i=1

pi,tx
2
i,t −

(
N∑

i=1

pi,txi,t

)2

.

Hence VarZt is the variance of the payoffs at time t under the distribution pt

and the cumulative variance Vn = VarZ1 + . . .VarZn is the main second-order
quantity used in this section. The next result bounds Φ(pt, ηt, xt) in terms of
VarZt.

Lemma 4. For all payoff vectors xt = (x1,t, . . . , xN,t), all probability distribu-
tions pt = (p1,t, . . . , pN,t), and all learning rates ηt ≥ 0, we have

Φ(pt, ηt, xt) ≤ 2M

where M is such that |xi,t| ≤ M for all i. If, in addition, 0 ≤ ηt|xi,t| ≤ 1/2 for
all i = 1, . . . , N , then

Φ(pt, ηt, xt) ≤ (e− 2)ηt VarZt .

Proof. The first inequality is straightforward. To prove the second one we use
ea ≤ 1 + a+ (e− 2) a2 for |a| ≤ 1. Consequently, noting that ηt|xi,t − x̂t| ≤ 1 for
all i by assumption, we have that

Φ(pt, ηt, xt) =
1
ηt

ln

(
N∑

i=1

pi,te
ηt(xi,t−x̂t)

)

≤ 1
ηt

ln

(
N∑

i=1

pi,t

(
1 + ηt(xi,t − x̂t) + (e − 2)η2

t (xi,t − x̂t)2
))

.

Improved Second-Order Bounds for Prediction 225

Using ln(1 + a) ≤ a for all a ≥ −1 and some simple algebra concludes the proof
of the second inequality. ��

In [3] a very similar result is proven, except that there the variance is further
bounded (up to a multiplicative factor) by the expectation x̂t of Zt.

We now introduce a time-varying learning rate based on Vn. For any sequence
of payoff vectors x1,x2, . . . and for all t = 1, 2, . . . let Mt = 2k, where k is the
smallest nonnegative integer such that maxs=1,...,t maxi=1,...,N |xi,s| ≤ 2k. Now
let the sequence η2, η3, . . . be defined as

ηt = min

{
1

2Mt−1
, C

√
lnN

Vt−1

}
for t ≥ 2, with C =

√
2

e− 2

(√
2 − 1

)
. (6)

Note that ηt depends on the forecaster’s past predictions. This is in the same
spirit as the self-confident learning rates considered in [4].

We are now ready to state and prove the main result of this section.

Theorem 4. Consider the weighted majority forecaster using the time-varying
learning rate (6). Then, for all sequences of payoffs and for all n ≥ 1,

X̂n −X∗
n ≥ −4

√
Vn lnN − 16 max{M, 1} lnN − 8 max{M, 1} −M2

where M = maxt=1,...,n maxi=1,...,N |xi,t|.

Proof. We start by applying Lemma 3 using the learning rate (6), and setting
η1 = η2 for the analysis,

X̂n −X∗
n ≥ −

(
2

ηn+1
− 1

η1

)
lnN −

n∑
t=1

Φ(pt, ηt, xt)

≥ −2max
{

2Mn lnN, (1/C)
√

Vn lnN
}
−

n∑
t=1

Φ(pt, ηt, xt)

= −2max
{

2Mn lnN, (1/C)
√

Vn lnN
}

−
∑
t∈T

Φ(pt, ηt, xt) −
∑
t�∈T

Φ(pt, ηt, xt)

where C is defined in (6), and T is the set of times rounds t ≥ 2 when ηt|xi,t| ≤
1/2 for all i = 1, . . . , N (note that 1 �∈ T by definition). Using the second bound
of Lemma 4 on t ∈ T and the first bound of Lemma 4 on t �∈ T , which in this
case reads Φ(pt, ηt, xt) ≤ 2Mt, we get

X̂n −X∗
n ≥ −2max

{
2Mn lnN, (1/C)

√
Vn lnN

}
− (e − 2)

∑
t∈T

ηt VarZt −
∑
t�∈T

2Mt (7)

226 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

(where 2M1 appears in the last sum). We first note that

∑
t�∈T

Mt ≤
�log2 max{M,1}�∑

r=0

2r ≤ 21+�log2 max{M,1}� ≤ 4 max{M, 1} .

We now denote by T the first time step t when Vt > M2. Using that ηt ≤ 1/2
for all t and VT ≤ 2M2, we get

∑
t∈T

ηt VarZt ≤ M2 +
n∑

t=T+1

ηt VarZt . (8)

We bound the sum using ηt ≤ C
√

(lnN)/Vt−1 for t ≥ 2 (note that, for t > T ,
Vt−1 ≥ VT > M2 > 0). This yields

n∑
t=T+1

ηt VarZt ≤ C
√

lnN

n∑
t=T+1

Vt − Vt−1√
Vt−1

.

Let vt = VarZt = Vt − Vt−1. Since Vt ≤ Vt−1 + M2 and Vt−1 ≥ M2, we have

vt√
Vt−1

=
√

Vt +
√

Vt−1√
Vt−1

(√
Vt −

√
Vt−1

)
≤ (

√
2 + 1)

(√
Vt −

√
Vt−1

)
. (9)

Therefore, using that
√

2 + 1 = 1/(
√

2 − 1),

n∑
t=T+1

ηt VarZt ≤
C
√

lnN√
2 − 1

(√
Vn −

√
VT

)
≤ C√

2 − 1

√
Vn lnN .

When
√

Vn ≥ 2CMn

√
lnN , using Mn ≥ M we have that X̂n −X∗

n is at least

− 2
C

√
Vn lnN − C(e − 2)√

2 − 1

√
Vn lnN − 8 max{M, 1} − (e − 2)M2

≥ −4
√

Vn lnN − 8 max{M, 1} −M2

where we substituted the value of C and obtained a constant for the leading
term equal to 2

√
2(e − 2)/

√√
2 − 1 ≤ 3.75. When

√
Vn ≤ 2CMn

√
lnN , using

Mn ≤ max{1, 2M} we have that X̂n −X∗
n is at least

− 8M lnN − C24(e − 2)√
2 − 1

max{1/2, M} lnN − 8 max{M, 1} − (e − 2)M2

≥ −16 max{M, 1} lnN − 8 max{M, 1} −M2 .

This concludes the proof. ��

Improved Second-Order Bounds for Prediction 227

4 Applications

To demonstrate the usefulness of the bounds proven in Theorems 3 and 4 we
show that they lead to several improvements or extensions of earlier results.

Improvements for Loss Games. Recall the definition of quadratic penalties Q∗
t in

Section 2. In case of a loss game (i.e., all payoffs are non-positive), Q∗
t ≤ ML∗

t ,
where L∗

t is the cumulative loss of the best action up to time t. Therefore,
maxs≤n Q∗

s ≤ ML∗
n and the bound of Theorem 3 is at least as good as the

family of bounds called “improvements for small losses” (see, e.g., [4]), whose
main term is of the form

√
ML∗

n lnN . However, it is easy to exhibit examples
where the new bound is far better by considering sequences of outcomes where
there are some “outliers” among the xi,t. These outliers may raise the maximum
M significantly, whereas they have only little impact on the maxs≤n Q∗

s.

Using Translations of Payoffs. Recall that Zt is the random variable which takes
the value xi,t with probability pi,t, for i = 1, . . . , N . The main term of the
bound stated in Theorem 4 contains Vn = VarZ1 + . . .+VarZn. Note that Vn is
smaller than all quantities of the form

∑n
t=1

∑N
i=1 pi,t (xi,t − μt)

2 where (μt)t≥1

is any sequence of real numbers which may be chosen in hindsight, as it is not
required for the definition of the forecaster. (The minimal value of the expression
is obtained for μt = x̂t.) This gives us a whole family of upper bounds, and we
may choose for the analysis the most convenient sequence of μt.

To provide a concrete example, denote the effective range of the payoffs
at time t by Rt = maxi=1,...,N xi,t − minj=1,...,N xj,t and consider the choice
μt = minj=1,...,N xj,t + Rt/2. The next result improves on a result of Allenberg
and Neeman [2], who show a regret bound, in terms of the cumulative effective
range, whose main term is 5.7

√
2(lnN)M

∑n
t=1 Rt, for a given bound M over

the payoffs.

Corollary 1. The regret of the weighted majority forecaster with variable learn-
ing rate (6) satisfies

X̂n −X∗
n ≥ −2

√√√√(lnN)
n∑

t=1

R2
t − 16 max{M, 1} lnN − 8 max{M, 1} −M2 .

The bound proposed by Corollary 1 shows that for an effective range of M , say
if the payoffs all fall in [0,M], the regret is lower bounded by a quantity equal to
−2M

√
n lnN (a closer look at the proof of Theorem 4 shows that the constant

factor may be even equal to 1.9). The best leading constant for such bounds is,
to our knowledge,

√
2 (see [8]). This shows that the improved dependence in the

bound does not come at a significant increase in the magnitude of the leading
coefficient.

Improvements for One-sided Games. The main drawback of Vn, used in Theo-
rem 4, is that it is defined directly in terms of the forecaster’s distributions pt.

228 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

We now show how this dependence could be removed. Assume |xi,t| ≤ M for
all t and i. The following corollary of Theorem 4 reveals that weighted majority
suffers a small regret in one-sided games whenever |X∗

n| or Mn − |X∗
n| is small

(where |xi,t| ≤ M for all t and i); that is, whenever |X∗
n| is very small or very

large. Improvements of the same flavour were obtained by Auer, Cesa-Bianchi,
and Gentile [4] for loss games; however, their result cannot be converted in a
straightforward manner to a corresponding useful result for gain games. Allen-
berg and Neeman [2] proved, in a gain game and for a related algorithm, a bound
of the order of 11.4

√
M min

{√
X∗

n,
√

Mn −X∗
n

}
. That algorithm was specifi-

cally designed to ensure a regret bound of this form, and is different from the
algorithm whose performance we discussed before the statement of Corollary 1.
Our weighted majority forecaster achieves a better bound, even though it was
not directly constructed to do so.

Corollary 2. Consider the weighted majority forecaster using the time-varying
learning rate (6). Then, for all sequences of payoffs in a one-sided game (i.e.,
payoffs are all non-positive or all nonnegative),

X̂n −X∗
n ≥ −4

√
|X∗

n|
(
M − |X∗

n|
n

)
lnN − 65 max {1 ,M}max {1 , lnN}− 5M2

where M = maxt=1,...,n maxi=1,...,N |xi,t|.

Proof. We give the proof for a gain game. Since the payoffs are in [0,M], we can
write

Vn ≤
n∑

t=1

⎛⎝M

N∑
i=1

pi,txi,t −
(

N∑
i=1

pi,txi,t

)2
⎞⎠ =

n∑
t=1

(M − x̂t)x̂t

≤ n

⎛⎝MX̂n

n
−

(
X̂n

n

)2
⎞⎠ = X̂n

(
M − X̂n

n

)

where we used the concavity of x !→ Mx−x2. Assume that X̂n ≤ X∗
n (otherwise

the result is trivial). Then, Theorem 4 ensures that

X̂n −X∗
n ≥ −4

√√√√X∗
n

(
M − X̂n

n

)
lnN − κ

where κ = 16 max{M, 1} lnN +8 max{M, 1}+M2. We solve for X̂n obtaining

X̂n −X∗
n ≥ −4

√
X∗

n

(
M − X∗

n

n
+

κ

n

)
lnN − κ − 16

X∗
n

n
lnN .

Using the crude upper bound X∗
n/n ≤ M and performing some simple algebra,

we get the desired result. ��

Improved Second-Order Bounds for Prediction 229

Quite surprisingly, a bound of the same form as the one shown in Corollary 2 can
be derived as a Corollary of Theorem 3. The derivation uses a payoff translation
technique similar to the one we discussed in the previous paragraph. However,
unlike the approach presented there for the weighted majority based forecaster,
here the payoffs have to be explicitely translated by the forecaster. (And each
translation rule corresponds to a different forecaster.)

A simplified Algorithm for Bandit Loss Games. We close this section with a
result that is not a direct consequence of Theorems 3 or 4. Rather, we derive it
via an extension of Lemma 4, one of our key results at the core of the second-
order analysis in Section 3.

Recall that payoffs xi,t in loss game are all non-positive. We use �i,t = −xi,t

to denote the loss of action i at time t. Similarly, �̂t = �1,tp1,t + . . . + �N,tpN,t is
the loss of the forecaster using pt as probability assignment at time t. We make
the simplifying assumption �i,t ∈ [0, 1] for all i, t.

The bandit loss game (see [3] and references therein) is a loss game with the
only difference that, at each time step t, the forecaster has no access to the loss
vector �t = (�1,t, . . . , �N,t). Therefore, the loss �̂t cannot be computed and the
individual losses �i,t can not be used to adjust the probability assignment pt.
The only information the forecaster receives at the end of each round t is the
loss �It,t, where It takes value i with probability pi,t for i = 1, . . . , N .

In bandit problems and, more generally, in all incomplete information prob-
lems like label-efficient prediction or prediction with partial monitoring, a cru-
cial point is to estimate the unobserved losses. In bandit algorithms based on
weighted majority, this is usually done by shifting the probability distribution
pt so that all components are larger than a given threshold. Allenberg and
Auer [1] apply the shifting technique to weighted majority obtaining, in ban-
dit loss games, a regret bound of order

√
NL∗

n lnN +N ln(nN) lnn where L∗
n is

the cumulative loss of the best action after n rounds (note that using the results
of [3], derived for gain games, one would only obtain

√
Nn ln(nN)). We show

that without any shifting, a slight modification of weighted majority achieves a
regret of order N

√
L∗

n lnn + N lnn. The new bound becomes better than the
one by Allenberg and Auer when L∗

n is so small that L∗
n = o((lnn)3).

The bandit algorithm, which we call Exp3Light, performs the weight update
wi,t+1 = wi,t e

−η
̃i,t . The pseudo-losses �̃i,t are defined by �̃i,t = (�i,t/pi,t)Zi,t for
i = 1, . . . , N . The Bernoulli random variable Zi,t takes value 1 if the forecaster
has drawn action i at time t; i.e., It = i.

We start with a variant of Lemma 4 for loss games (proof omitted from this
extended abstract).

Lemma 5. For all η > 0, all losses �i,t ≥ 0, and all sets St ⊆ {1, . . . , N},

Φ(pt, η, −�t) ≤
η

2

∑
i∈St

pi,t �
2
i,t +

∑
i∈St

pi,t �i,t .

Lemma 5 is applied as follows (the proofs of Proposition 1 and Theorem 5 are
omitted from this extended abstract).

230 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

Proposition 1. Assume the forecaster Exp3Light plays a bandit loss game,
with losses bounded between 0 and 1. For all η > 0, the cumulative pseudo-loss
of Exp3Light satisfies

L̃n ≤ (lnN) + N(lnn)
η

+
η

2
NL̃∗ + Δn

where L̃n =
n∑

t=1

N∑
i=1

pi,t�̃i,t , L̃k,n =
n∑

t=1

�̃k,t , L̃∗ = min
k=1,...,N

L̃k,n ,

and Δn is a random variable with expectation less than 2N .

Theorem 5. Consider the forecaster that runs algorithm Exp3Light in epochs
as follows. In each epoch r = 0, 1 . . . the algorithm uses

ηr =

√
2 ((lnN) + N lnn)

N4r

and epoch r stops whenever the pseudo-loss L̃∗ in this epoch is larger than 4r.
For any bandit loss game with �i,t ∈ [0, 1] for all i and t, the expected cumulative
loss of this forecaster satisfies

E

[
n∑

t=1

�It,t

]
− L∗

n ≤ 2
√

2 ((lnN) + N lnn)N (1 + 3L∗
n)

+(2N + 1) (1 + log4(3n + 1)) .

5 Discussion and Open Problems

Though the results of Sections 2 and 3 cannot be easily compared, the two un-
derlying algorithms apply to loss games, gain games, as well as to signed games.
In addition, note that the bounds proposed by Theorem 3 and by Theorem 4
(or, more precisely, the variant of this bound using payoffs translated by x̂t)
are both stable under many transformations, such as translations or changes of
signs. Consequently, and most importantly, they are invariant under the change
�i,t = M − xi,t, that converts bounded nonnegative payoffs into bounded losses,
and vice versa. However, the occurrence of terms like max{M, 1} and M2 makes
these bounds not stable under rescaling of the payoffs. This means that if the
payoffs are all multiplied by a positive number α (which may be more or less
than 1), then the bounds on the regret are not necessarily multiplied by the
same quantity α.

Modifying the proof of Theorem 4 we also obtained a regret bound equal to
−4

√
Vn lnN − 16M lnN − 8M − 2M log M2/V1. This bound is indeed stable

under rescalings and improves on Theorem 4 for instance when M much smaller
than 1, or even when M is large and V1 is not too small. We hope that the
unconvenient factor 1/V1 could be removed soon.

Improved Second-Order Bounds for Prediction 231

A practical advantage of the weighted majority forecaster is that its update
rule is completely incremental and never needs to reset the weights. This in
contrast to the forecaster prod-MQ of Theorem 3 that uses a nested doubling
trick. On the other hand, the bound proposed in Theorem 4 is not in closed
form, as it still explicitely depends through Vn on the forecaster’s rewards x̂t.
Several issues are left open. The following list mentions some of them.

– Design and analyze incremental updates for the forecaster prod(η) of Sec-
tion 2.

– Obtain second order bounds with updates that are not multiplicative; for
instance, updates based on the polynomial potentials (see [8]).

– Extend the analysis of prod-MQ to obtain an oracle inequality of the form

X̂n ≥ max
k=1,...,N

(
Xk,n − γ1

√
Qk,n lnN

)
− γ2M lnN

where γ1 and γ2 are absolute constants. Inequalities of this form can be
viewed as game-theoretic versions of the model selection bounds in statistical
learning theory.

References

1. C. Allenberg-Neeman and P. Auer. Personal communication.
2. C. Allenberg-Neeman and B. Neeman. Full information game with gains and losses.

Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova,
Italy, October 2004, Proceedings, volume 3244 of Lecture Notes in Artificial Intel-
ligence, pages 264-278. Springer, 2004.

3. P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

4. P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line
learning algorithms. Journal of Computer and System Sciences, 64:48–75, 2002.

5. N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R. Schapire, and M.K.
Warmuth. How to use expert advice. Journal of the ACM, 3:427–485, 1997.

6. N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, to appear.

7. N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial
monitoring. Submitted for journal publication, 2004.

8. N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, to appear.

9. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

10. S. Hart and A. Mas-Colell. A Reinforcement Procedure Leading to Correlated
Equilibrium. Economic Essays, Gerard Debreu, Wilhelm Neuefeind and Walter
Trockel (editors), Springer (2001), 181-200

11. N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

232 N. Cesa-Bianchi, Y. Mansour, and G. Stoltz

12. A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary
feedback and loss. In Proceedings of the 14th Annual Conference on Computational
Learning Theory, pages 208–223, 2001.

13. V.G. Vovk. A Game of Prediction with Expert Advice. Journal of Computer and
System Sciences, 56(2):153–73, 1998.

Competitive Collaborative Learning

Baruch Awerbuch1,� and Robert D. Kleinberg2,��

1 Department of Computer Science, Johns Hopkins University,
Baltimore MD 21218, USA

baruch@cs.jhu.edu
2 Department of Mathematics, Massachusetts Institute of Technology,

Cambridge MA 02139, USA
rdk@math.mit.edu

Abstract. We develop algorithms for a community of users to make
decisions about selecting products or resources, in a model characterized
by two key features:

– The quality of the products or resources may vary over time.
– Some of the users in the system may be dishonest, manipulating

their actions in a Byzantine manner to achieve other goals.

We formulate such learning tasks as an algorithmic problem based on the
multi-armed bandit problem, but with a set of users (as opposed to a
single user), of whom a constant fraction are honest and are partitioned
into coalitions such that the users in a coalition perceive the same ex-
pected quality if they sample the same resource at the same time. Our
main result exhibits an algorithm for this problem which converges in
polylogarithmic time to a state in which the average regret (per honest
user) is an arbitrarily small constant.

1 Introduction

Only a fool learns from his own mistakes. The wise man learns from the
mistakes of others.

— Otto von Bismarck

It is clear that leveraging trust or shared taste enables a community of users to
be more productive, as it allows them to repeat each other’s good decisions while
avoiding unnecessary repetition of mistakes. Systems based on this paradigm are
becoming increasingly prevalent in computer networks and the applications they
support. Examples include reputation systems in e-commerce (e.g. eBay, where
buyers and sellers rank each other), collaborative filtering (e.g. Amazon’s rec-
ommendation system, where customers recommend books to other customers),
and link analysis techniques in web search (e.g., Google’s PageRank, based on

� Supported by NSF grants ANIR-0240551 and CCR-0311795.
�� Supported by a Fannie and John Hertz Foundation Fellowship.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 233–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 B. Awerbuch and R.D. Kleinberg

combining links — i.e. recommendations — of different web sites). Not surpris-
ingly, many algorithms and heuristics for such systems have been proposed and
studied experimentally or phenomenologically [5, 11, 12, 13, 15, 16, 17]. Yet well-
known algorithms (e.g. eBay’s reputation system, the Eigentrust algorithm [10],
the PageRank [5, 13] and HITS [11] algorithms for web search) have thus far not
been placed on an adequate theoretical foundation.

Our goal in this paper is to provide a theoretical framework for understanding
the capabilities and limitations of such systems as a model of distributed compu-
tation. We propose a new paradigm for addressing these issues, which is inspired
by online learning theory, specifically the multi-armed bandit problem [1]. Our
approach aims to highlight the following challenges which confront the users of
collaborative decision-making systems such as those cited above.

Malicious users. Since the Internet is open for anybody to join, the above sys-
tems are vulnerable to fraudulent manipulation by dishonest (”Byzantine”)
participants.

Distinguishing tastes. Agents’ tastes may differ, so that the advice of one
honest agent may not be helpful to another.

Temporal fluctuation. The quality of resources varies of time, so past expe-
rience is not necessarily predictive of future performance.

While our learning theory paradigm is different from prior approaches, the re-
sulting algorithms exhibit a resemblance to algorithms previously proposed in
the systems and information retrieval literature [5, 10, 11, 13] indicating that our
approach may be providing a theoretical framework which sheds light on the
efficacy of such algorithms in practice while suggesting potential enhancements
to these algorithms.

1.1 Our Approach

The problem we will consider is a generalization of the multi-armed bandit prob-
lem studied in [1]. In that problem there is a single learner and a set Y of m
resources. In each of T consecutive trials, the learner chooses one of the resources
while the adversary chooses a cost (taking values in [0, 1]) for each resource; after
the trial, the cost of the resource chosen by the learner is revealed, and this cost
is charged to the learner. We generalize this by considering a set X of n agents,
some of which (possibly, a majority) may be dishonest. In each trial, each of the
n agents chooses a resource, and the adversary chooses a cost for each resource.
Each agent then learns the cost of the resource it selected, and this cost is charged
to the agent. We assume that the honest agents belong to k coalitions, such that
agents in the same coalition who choose the same resource at the same time will
perceive the same expected cost. All agents may communicate with each other
between trials, to exchange information (or possibly disinformation, in the case
of dishonest agents) about the costs of resources they have sampled. However,
agents are unaware of which coalitions exist and which ones they belong to.

If an agent chooses to ignore the feedback from other agents, and simply
runs the multi-armed bandit algorithm by itself, then the classical analysis of

Competitive Collaborative Learning 235

the multi-armed bandit algorithm [1] ensures that for any constant δ > 0, if
T = Ω(m log m), then the expected average cost of the resources chosen by
that agent will exceed the average cost of the best resource in hindsight by no
more than δ. However, it is possible that the honest agents may require much
fewer than Ω(m log m) trials to achieve this goal, if they can find a way to pool
their information without being fooled by the bad advice from dishonest agents
and agents from other coalitions. Here, we show that this is in fact possible,
by presenting an algorithm whose convergence time is polynomial in k log(n),
assuming that a constant fraction of the agents are honest and that m = O(n).

Briefly, our algorithm works by having each agent select a resource in each
trial by taking a random walk on a “reputation network” whose vertex set is the
set of all agents and resources. Resources are absorbing states of this random
walk, while the transition probabilities at an agent x may be interpreted as the
probability that x would select a given resource y, or would ask a given other
agent x′ for advice. When an agent learns the cost of the resource chosen in a
given trial, it uses this feedback to update its transition probabilities according
to the multi-armed bandit algorithm. In this way, agents will tend to raise the
probability of asking for advice from other agents who have given good advice in
the past. In particular, though the initial transition probabilities do not reflect
the partition of the honest agents into coalitions, over time the honest agents
will tend to place greater weight on edges leading to other agents in the same
coalition, since the advice they receive from such agents is generally better, on
average, than the advice they receive from agents in other coalitions.

1.2 Comparison with Existing Work

Above, we cited the adversarial multi-armed bandit problem [1] which forms
the basis for our work, and we have indicated the ways in which our model
generalizes the existing multi-armed bandit model to the setting of collaborative
learning with dishonest users. Our work is also related to several other topics
which we now discuss.

Collaborative filtering — spectral methods: Our problem is similar, at
least in terms of motivation, to the problem of designing collaborative filtering
or recommendation systems. In such problems, one has a community of users
selecting products and giving feedback on their evaluations of these products.
The goal is to use this feedback to make recommendations to users, guiding them
to subsequently select products which they are likely to evaluate positively. The-
oretical work on collaborative filtering has mostly dealt with centralized algo-
rithms for such problems. Typically, theoretical solutions have been considered
for specific (e.g., stochastic) input models [7, 8, 9, 14, 4], In such work, the goal
is typically to reconstruct the full matrix of user preferences based on small
set of potentially noisy samples. This is often achieved using spectral methods.
In constrast, we consider a general, i.e. adversarial, input model. Matrix recon-
struction techniques do not suffice in our model. Firstly, they are vulnerable to
manipulation by dishonest users, as was observed in [3] and [2]. Dishonest users,
who may be in the overwhelming majority, may certainly disrupt the low rank

236 B. Awerbuch and R.D. Kleinberg

assumption which is crucial in matrix reconstruction approaches. Alternatively,
they may report phony data so as to perturb the singular vectors of the matrix,
directing all the agents to a particularly bad action, e.g. an unscrupulous seller.

Collaborative filtering — random sampling methods: The only known
collaborative filtering algorithm which tolerates Byzantine behavior is the “Ran-
dom Advice Random Sample” algorithm in [2, 3]; it achieves a logarithmic learn-
ing time. The model in [2] deals with the static case, in which bad resources are
consistently bad and good resources are consistently good; the only changes in
the operating environment over time occur when resources arrive or depart. The
algorithm in [2] uses the notion of “recommendation”: once an agent finds a
good resource, it sticks to it forever and recommends it to others. As the time
elapses, progressively more agents ‘stick” with the good advice. The bounds
on regret and convergence time in [2] are analogous to ours, and are in fact
poly-logarithmically superior, to those in our Theorem 1. However, [2] does not
handle costs which evolve dynamically as a function of time, and is limited to
{0, 1}-valued rather than real-valued costs.

Reputation management in P2P networks: Kamvar et al [10] proposed an
algorithm, dubbed EigenTrust, for the problem of locating resources in peer-to-
peer networks. In this problem, users of a peer-to-peer network wish to select
other peers from whom to download files, with the aim of minimizing the number
of downloads of inauthentic files by honest users; the problem is made difficult
by the presence of malicious peers who may attempt to undermine the algo-
rithm. Like our algorithm, EigenTrust defines reputation scores using a random
walk on the set of agents, with time-varying transition probabilities which are
updated according to the agents’ observations. Unlike our algorithm, they use a
different rule for updating the transition probabilities, and they demonstrate the
algorithm’s robustness against a limited set of malicious exploits, as opposed to
the arbitrary adversarial behavior against which our algorithm is provably ro-
bust. The problem considered here is less general than the peer-to-peer resource
location problem considered in [10]; for instance, we assume that in each trial,
any agent may select any resource, whereas they assume that only a subset of
the resources are available (namely, those peers who claim to have a copy of
the requested file). Despite these differences, we believe that our work may shed
light on the efficacy of EigenTrust while suggesting potential enhancements to
make it more robust against Byzantine malicious users.

The rest of this paper is organized as follows. In Section 2 we specify our pre-
cise models and results. This is followed by a section specifying a general outline
of our approach. The precise specification of the main algorithm, TrustFilter,
appears in Section 3. The description of the algorithm is complete except for
a rather complicated subroutine, BBA, which is specified and analyzed in the
following section. Finally, in Section 5, we analyze the main algorithm, modulo
a random graph lemma which is proved in the full version of this paper.

Competitive Collaborative Learning 237

2 Statements of the Problem and the Results

The operating environment consists of a set X of n agents and a set Y of m
products. A subset H ⊆ X of the agents are honest, and the rest are dishonest.
Honest agents are assumed to obey the distributed protocol to be specified, and
to report their observations truthfully, while dishonest agents may behave in a
Byzantine manner, disobeying the protocol or reporting fictitious observations
as they wish. We will assume throughout that the number of honest agents is
at least αn, where α > 0 is a parameter which may be arbitrarily small. The
agents do not initially know which ones are honest and which are dishonest, nor
are they assumed to know the value of α.

In each of T consecutive rounds, a cost function Ct : X×Y → [0, 1] is given.
We think of the cost Ct(x, y) as agent x’s perception of the cost of resource y. The
costs may be set by an adaptive adversary who is allowed to choose Ct based on
the agents’ actions in rounds 1, . . . , t−1 but not on their random decisions in the
present or future rounds; the adversary may also use randomization in determin-
ing Ct. Define two agents x1, x2 to be consistent if the costs Ct(x1, y), Ct(x2, y)
are random variables with the same expected value (conditional on the choices
of all agents in all rounds preceding t), for all y ∈ Y, 1 ≤ t ≤ T .1 We will assume
that the honest agents may be partitioned into k coalitions, such that two agents
belonging to the same coalition are consistent; the honest agents do not initially
know which coalitions the other honest agents belong to.

At the beginning of each round, each agent x ∈ X must choose a product
y = yt(x) ∈ Y . Any agent is allowed to choose any product in any round.
The cost of the choice is Ct(x, y), and this cost (but not the cost of any other
product) is revealed to x. The agents may communicate with each other between
rounds, and this communication may influence their decisions in future rounds.
To simplify the exposition we will assume all messages are exchanged using
a shared, synchronous, public channel. In any round t all agents (including the
Byzantine dishonest agents) must commit to their message on this channel before
being able to read the messages posted by other agents in round t. This public-
channel assumption is for expositional clarity only: in the full version of this
paper we will indicate how to achieve the same results (with slightly worse
bounds) in a message-passing model where agents may only exchange messages
bilaterally on point-to-point communication links, subject to the assumption
that all agents can synchronize clocks and have enough time to perform Ω(log n)
communication rounds in between consecutive decision rounds. (The Byzantine
agents may eavesdrop on all such communications, whereas honest agents may
not eavesdrop on any message if they are not the sender or receiver.) As might
be expected, some subtleties arise in the message-passing model, due to ability of
the Byzantine nodes to give differing advice to different parties, and to eavesdrop
on others’ messages.

1 The randomness of the variables Ct(x1, y), Ct(x2, y) is due to the adversary’s poten-
tial use of randomness in determining Ct.

238 B. Awerbuch and R.D. Kleinberg

The goal of the algorithm is to minimize the total cost incurred by hon-
est agents. As is typical with online decision problems, we will evaluate the
algorithm’s performance by measuring the expected difference between the al-
gorithm’s total cost and the cost of the best assignment in which each agent
chooses a single fixed product and selects this product every time. This param-
eter is called regret and will be denoted by R.

R = E

[∑
x∈H

T∑
t=1

Ct(x, yt(x)) − min
y:H→Y

∑
x∈H

T∑
t=1

Ct(x, y(x))

]
. (1)

The following two parameters, closely related to R, are also of interest:

– The normalized individual regret R̂ = R/αnT is the regret per unit time
of the average honest agent. For all of the algorithms we will consider, R̂
converges to zero as T → ∞.

– The δ-convergence time of such an algorithm, denoted by T (δ), is defined as
the minimum value of T necessary to guarantee that R̂ = O(δ). Here, δ is a
positive constant which may be arbitrarily close to zero.

2.1 Our Results

We present a distributed algorithm, named TrustFilter, in Section 3. Let β =
1+m/n. We will typically be interested in the case where α, β, δ are all positive
constants. For ease of exposition, we will adhere to this assumption when stating
the theorems in this section, absorbing such constants into the O(·) notation. See
equations (11),(12),(13), (14) in Section 5 for bounds which explicitly indicate
the dependence on α, β, and δ; in all cases, this dependence is polynomial.

Theorem 1. Suppose the set of honest agents may be partitioned into k subsets
S1, S2, . . . , Sk, such that the agents in each subset are mutually consistent. Then
the normalized regret R̂ and δ-convergence time T (δ) of TrustFilter satisfy

R̂ = O

(
k · log4(n)

T 1/4

)
(2)

T (δ) = O(k4 log16(n)). (3)

The δ-convergence time bound follows from the regret bound. Typically we
are interested in the case where α, β, δ, k are constants, hence we will summarize
this result by saying that the algorithm has polylogarithmic convergence time.
This is the first distributed algorithm with polylogarithmic convergence time in
a dynamic environment.

3 The Algorithm TrustFilter

3.1 Intuition

As stated in the introduction, our algorithm is based on a Markov chain rep-
resenting a random walk in a directed graph, whose vertices represent the set

Competitive Collaborative Learning 239

of resources and agents. We refer to this directed graph as the “reputation net-
work.” At each time, each agent picks an outgoing edge in the reputation network
with appropriate probability, and then traverses this edge. If the edge leads to an
agent, “advice” is sought from that agent. Else, if the edge leads to a resource,
this resource is selected for sampling. Depending on the observed cost of the
sampled resource, the agent updates its transition probabilities.

As an aid in developing intuition, consider the special case of this algorithm
when the Markov chain is based on a random graph. Specifically, each agent picks
at random a small subset of other agents and a small subset of the resources,
and sets equal transition probabilities to all outgoing edges leading to members
of that subset. All other outgoing probabilities are zero. Assume that agents
adopt the following simple rule for updating their transition probabilities: if the
agent chooses an outgoing edge and it leads to a product with cost 0, assign
probability 1 permanently to that edge and probability 0 to all other edges;
otherwise leave the transition probabilities unchanged. It is easy to prove, that
for the static case with binary resource costs, this algorithm can be viewed as
an alternative to Random Advice Random Sample algorithm in [3]; like that
algorithm, it achieves logarithmic convergence time. The invariant used in the
proof is the fact that the set of agents who recommend the optimal resource
is growing exponentially with time. This invariant is proved by induction on
time. Indeed, with high probability there is an edge in the reputation network
from some honest agent to the optimal resource, and in constant time that
neighboring agent will either directly sample this resource, or will stumble on
an equivalent resource following advice of others. Consider the set S of honest
agents who “saw the light,” i.e., discovered the optimal resource. Note that the
set N of neighbors of S, namely nodes with outgoing edges leading into S, is
at least |N | = |S| · ρ where ρ is the expansion ratio of the underlying random
graph. Note that within constant time, a constant fraction of agents in N will
also discover the optimal resource by sampling nodes in S or following advice
to other equivalent resources. Thus, within expected logarithmic time, all the
agents discover the optimal resource.

Our algorithm for the case of dynamic costs looks quite different from the
algorithm for static costs presented in the preceding paragraph, but it is based on
the same intuition: by structuring the reputation network as a random graph, the
set of honest agents who are selecting an optimal or near-optimal resource will
grow exponentially over time. The main technical difference is that agents must
update their transition probabilities using the multi-armed bandit algorithm,
rather than shifting all of their probability mass to one outgoing edge as soon
as they discover a resource with zero cost. This modification is necessary in
order to deal with the fact that a resource which has zero cost at one time
may not have zero cost at future times. More subtly, when agents are using
the multi-armed bandit algorithm to update their transition probabilities, they
must use a modification of the classical multi-armed bandit algorithm which
we denote by BBA. This is because the agents do not know how many other
honest agents belong to their coalition, so they must potentially consider all βn

240 B. Awerbuch and R.D. Kleinberg

other vertices of the reputation network as potential neighbors. (Recall from
Section 2 that β = (m + n)/n, so that βn is the cardinality X ∪ Y , the vertex
set of the reputation network.) Classical multi-armed bandit algorithms, e.g.
Exp3 [1], will have a convergence time of Ω(n log(n)) in such a scenario, whereas
we seek a polylogarithmic convergence time. Accordingly, we present a modified
bandit algorithm BBA whose salient feature is that it satisfies a significantly
better bound on regret when stopped at times T < n log(n). The details of
this algorithm will be explained in Section 4. For now, it is best for the reader
to consider it as a black box (instantiated separately by each agent x) which
outputs, at each time t, a probability distribution πt(x) on the set of all agents
and resources. We will use the notation πt(x, y) to denote the probability that
πt(x) assigns to the element y ∈ X ∪ Y.

3.2 The Algorithm

Here we present an algorithm TrustFilter which solves the collaborative learning
problem, establishing Theorem 1. We use, as a subroutine, the algorithm BBA
whose existence is asserted by Theorem 2. We defer the specification of this
subroutine until later.

At the beginning of each round t, each agent x queries its local bandit algo-
rithm BBA(x) to obtain a probability distribution πt(x) on the set of agents and
resources, and posts this distribution on the public channel. This enables each
agent to construct an (m + n)-by-(m + n) matrix Mt whose rows and columns
are indexed by the elements of X ∪ Y , and whose entries are given by:

(Mt)ij =

⎧⎨⎩πt(i, j) if i ∈ X
1 if i ∈ Y and j = i
0 if i ∈ Y and j �= i.

We may think of Mt as the transition matrix for a Markov chain with state
space X ∪ Y , in which elements of Y are absorbing states, and the transition
probabilities at an element x of X are determined by the bandit algorithm
BBA(x). This Markov chain corresponds to the intuitive notion of “taking a
random walk by following the advice of the bandit algorithm at each node.”

The random walk starting from x ∈ X will, with probability 1, be absorbed
by some state y ∈ Y ; this enables us to define a matrix At by

(At)ij = Pr(absorbing state is j | starting state is i).

Algebraically, At satisfies the equations MtAt = At and At1 = 1, where 1
represents a column vector whose components are all equal to 1.

To select a product y = yt(x) ∈ Y , x uses BBA(x) to choose a strategy
s = st(x) ∈ X∪Y . It then samples y randomly using the probability distribution
in the row of At corresponding to s, learns the cost Ct(y), and returns this
feedback score to BBA(x). The probability distribution from which y is drawn
can be determined either by computing At algebraically, or by simulating the
random walk with transition matrix Mt starting from state s until it hits an

Competitive Collaborative Learning 241

absorbing state. We call this probability distribution on Y harmonic measure
relative to x, by analogy with the harmonic measure defined on the boundary of
a bounded domain U ⊂ Rd according the hitting probability of Brownian motion
starting from a point x ∈ U .

4 The Biased Bandit Algorithm BBA

Our multi-agent learning algorithms require each agent to instantiate a single-
agent learning algorithm called the biased bandit algorithm, or BBA, which we
describe in this section. For a multi-armed bandit algorithm with strategy set
S = {1, 2, . . . ,K} (whose selection at time t is denoted by it ∈ S) define its
regret profile to be the function R(T, i) which specifies the algorithm’s regret
relative to strategy i ∈ S at time T ≥ 1, i.e.

R(T, i) = max

{
E

(
T∑

t=1

Ct(it) − Ct(i)

)}
,

the maximum being taken over the set of all adaptive adversarial policies assign-
ing costs Ct in [0, 1]. For example, the regret profile of the classical multi-armed
bandit algorithm Exp3 is known to satisfy R(T, i) = O(

√
TK log(K)); we call

this a uniform regret profile since the value of R(T, i) does not depend on i.
Which non-uniform regret profiles are achievable by multi-armed bandit algo-
rithms? The BBA supplies a non-trivial upper bound for this question.

Theorem 2. Let a strategy set S of size K be given, along with positive real
weights {wi}i∈S which sum to 1. There exists a multi-armed bandit algorithm
BBA whose regret profile satisfies

R(T, i) = O

(
1
wi

log2

(
1
wi

)
T 3/4

)
.

In fact, the theorem holds even if the feedback for choosing strategy i, rather
than being equal to Ct(i), is a random variable Xt(i) (taking values in [0, 1])
whose conditional expectation is bounded above by Ct(i). We call this the “noisy
feedback model”; see Section 4.1 for details.

When the BBA algorithm is applied as a subroutine in TrustFilter, its strategy
set is S = X ∪ Y , which has m + n elements. The weights assigned to these
elements are a random permutation of the set{

1
Hm+n

,
1

2Hm+n
, . . . ,

1
(m + n)Hm+n

}
.

(Here Hm+n represents the harmonic number
∑m+n

i=1 1/i.)
One way of interpreting BBA is as an anytime version of the multi-armed

bandit algorithm, in that it meets a non-trivial performance guarantee when

242 B. Awerbuch and R.D. Kleinberg

stopped at any time T , even if T ' K. This contrasts with traditional multi-
armed bandit algorithms such as Exp3 whose performance at time T = o(K)
is generally indistinguishable from random guessing. The anytime guarantee for
BBA can be made precise as follows. For any threshold λ > 0 let S(λ) = {i ∈
S : wi log−3(1/wi) > λ}. Theorem 2 establishes that by time T , the normalized
regret of BBA relative to the strategies in S(δ−1T−1/6) is at most δ. This set of
strategies may be quite large even when T ' K, and grows to encompass all of
S as T → ∞.

We will now describe the algorithm BBA. The high-level idea of the algorithm
is to partition the strategy set into two subsets of approximately equal weight,
then to further partition each of these two subsets into two pieces of approxi-
mately equal weight, and so on, building a tree T whose leaves are labeled with
elements of the strategy set S. We will use, as a black box, the multi-armed
bandit algorithm Exp3 from [1]. An instance of Exp3 at the root of the tree is
responsible for deciding whether to select a strategy from the left or right sub-
tree; the task of picking a leaf of this subtree is recursively delegated to the
descendants of the root. Each node z of the tree is therefore running an instance
of Exp3, but gets feedback only for a random subset of the rounds, namely those
in which the chosen leaf lies in its subtree. The analysis of Exp3 in models such
as this, where the feedback is noisy or sporadic, is carried out in Appendix 4.1.
Applying the relevant bound on Exp3’s regret (Theorem 3) at each level of T,
we will obtain the desired global upper bound on regret. A subtlety which arises
in designing the algorithm is that we must ensure that each internal node z gets
feedback reasonably often, which necessitates devoting a small fraction of the
rounds to explicitly sampling a descendant of z.

To specify the tree T, we may assume without loss of generality that the
weights wi are powers of 2, say wi = 2−di . (If not, we may round each wi

down to the next-lowest power of 2, then round some of them up to restore
the property that their sum is 1.) Now define T to be the Huffman tree of the
distribution {wi} [6]. This tree has the property that for any node at depth d,
the combined weight of all leaves in its subtree is 2−d. For a node z of depth d
in T, let w̃(z) = 2−d · d−2; note that if z is a leaf corresponding to an element i,
then

1
w̃(z)

= O

(
1
wi

log2

(
1
wi

))
.

In the BBA algorithm, each internal node z of T maintains an instance Exp3(z)
of the multi-armed bandit algorithm, with a two-element strategy set identified
with the two children, zL and zR, of z in T. In each round t, each internal node
z chooses a child χt(z) according to the probability distribution supplied by
Exp3(z). These choices define a mapping �t from the nodes of T to the leaves of
T, defined recursively by the rule that �t(i) = i for a leaf i, and �t(z) = �t(χt(z))
for an internal node z. A random node zt ∈ T is sampled in round t according
to the distribution which assigns probability ρ(z) = T−1/4w̃(z) to each node
z other than the root r, and assigns all remaining probability mass to r. The
algorithm BBA chooses strategy it = �t(zt). Let Pt denote the path in T from

Competitive Collaborative Learning 243

zt to it. After learning the cost Ct(it), each internal node z updates Exp3(z) by
attributing a feedback value Xt(z′) to its child z′ = χt(z) as follows.

Xt(z′) =
{

Ct(�t(z′)) if z = zt

0 otherwise,

4.1 Analysis of BBA

To prove Theorem 2 we must first recall some properties of the multi-armed
bandit algorithm Exp3 from [1] and extend the analysis of this algorithm to a
slightly more general setting, which we call the “noisy feedback model.”

Theorem 3 ([1]). For any ε > 0, there is a multi-armed bandit algorithm Exp3
with strategy set S = {1, 2, . . . ,K} whose regret relative to strategy i ∈ S, i.e.
the number

R = E

(
T∑

t=1

Ct(it) −
T∑

t=1

Ct(i)

)
,

satisfies R = O(
√

TK log(K)).

For the applications in this paper, we actually need to work with a slight
generalization of the model considered in [1]. This generalization, which we call
the “noisy feedback” model, is described as follows. In each round t, in addi-
tion to specifying a cost function Ct : S → [0, 1], the adversary specifies, for
each i ∈ S, a random variable Xt(i) which depends only on i1, i2, . . . , it−1 and
on some random bits independent of the algorithm’s random bits. This random
variable takes values in [0, 1] and satisfies E[Xt(i) ‖F<t] = Ct(i), where F<t

denotes the σ-field generated by all random variables revealed by the algorithm
and adversary prior to time t. Rather than receiving Ct(it) as feedback, the algo-
rithm’s feedback is Xt(it). The following easy proposition, whose proof appears
in the full version of this paper, demonstrates that the regret of algorithm Exp3
is unaffected by the noisy feedback.

Proposition 1. In the noisy feedback model, the regret R experienced by algo-
rithm Exp3 relative to strategy i still satisfies R = O(

√
TK log K). This bound

holds regardless of whether R is defined as RX := E
(∑T

t=1 Xt(it) − Ct(i)
)

or

as RC := E
(∑T

t=1 Ct(it) − Ct(i)
)
.

We are now ready to finish the analysis of the BBA algorithm.

Proof (Theorem 2). The analysis of BBA depends on a reduction to the noisy-
feedback bandit problem defined above. If z is a node of T and z′ is one of its
two children, define:

C̃t(z′) = ρ(z)Ct(�t(z′)).

Then C̃t(z′), Xt(z′) take values in [0, 1], and they are independent of Exp3(z)’s
random choices at times t, t + 1, . . . , T . Moreover, recalling that ρ(z) = Pr(z =

244 B. Awerbuch and R.D. Kleinberg

zt ‖ F<t), we have E[Xt(z′) ‖ F<t] = C̃t(z′). Therefore, Exp3(z) is following the
algorithm Exp3 in the noisy feedback model with cost functions C̃t and random
feedback variables Xt(z′). Applying Proposition 1 with K = 2,

ρ(z)E

(
T∑

t=1

Ct(�t(z)) − Ct(�t(z′))

)
= O(

√
T).

This inequality holds for every edge (z, z′) in T. Rescaling and summing over all
the edges on the path P from r to i, we obtain:

E

(
T∑

t=1

(Ct(�t(r)) − Ct(i))

)
=

∑
(z,z′)∈P

E

(
T∑

t=1

(Ct(�t(z)) − Ct(�t(z′)))

)

= O

(∑
z∈P

ρ(z)−1T 1/2

)

= O

(∑
z∈P

w̃(z)−1T 3/4

)
= O

(
w̃(i)−1T 3/4

)
= O

(
1
wi

log2

(
1
wi

)
T 3/4

)
. (4)

Finally, we may account for the cost of the steps in which zt �= r as follows:

E

(
T∑

t=1

Ct(it) − Ct(�t(r))

)
≤

T∑
t=1

Pr(it �= �t(r))

≤
T∑

t=1

Pr(zt �= r)

= T ·
∑
z �=r

ρ(z) = O(T 3/4). (5)

Summing the bounds (4) and (5) we obtain the desired bound on the regret of
BBA:

R = E

(
T∑

t=1

Ct(it) − Ct(�t(r))

)
+ E

(
T∑

t=1

Ct(�t(r)) − Ct(i)

)

= O(T 3/4) + O

(
1
wi

log2

(
1
wi

)
T 3/4

)
= O

(
1
wi

log2

(
1
wi

)
T 3/4

)
.

Competitive Collaborative Learning 245

5 Analysis of Algorithm TrustFilter

In this section we complete the analysis of algorithm TrustFilter by proving The-
orem 1.

Proof (Theorem 1.). For x ∈ X, s ∈ X ∪ Y , let

C̃t(x, s) =
{

Ct(x, s) if s ∈ Y
E[Ct(x, yt(s))] if s ∈ X.

From the standpoint of agent x, the bandit algorithm BBA(x) is running in the
noisy feedback model with cost functions C̃t(x, ·) and random feedback variables
Xt(s) distributed according to the cost (Ct(x, y)) of a random product y ∈ Y
sampled according to the harmonic measure relative to s. It follows from the
analysis of BBA that for each pair of elements u, v in H ∪ Y ,

E

(
T∑

t=1

(C̃t(u, u) − C̃t(u, v))

)
= O

(
1

w(u, v)
log2

(
1

w(u, v)

)
T 3/4

)
. (6)

Here w(u, v) denotes the random weight assigned to strategy v by BBA(u) at
initialization time. Using the fact that 1/w(u, v) = O(βn log(βn)), and that
C̃(u, v) = C̃(v, v) when u, v are consistent, we may rewrite (6) as

E

[(
T∑

t=1

C̃t(u, u)

)
−

(
T∑

t=1

C̃t(v, v)

)]
= O

(
1

w(u, v)
T 3/4 log2(βn)

)
, (7)

provided that u and v are consistent. Let’s introduce the following notations:

C̄(u) = E

(
1
T

T∑
t=1

C̃t(u, u)

)
B = log3(βn)T−1/4

d(u, v) = (Hm+nw(u, v))−1.

Then (7) may be rewritten as

C̄(u) − C̄(v) = d(u, v) · O(B) (8)

Note that for a product y ∈ Y , C̄(y) is simply the average cost of y, and for
an agent x ∈ H, C̄(x) is the average cost of the products sampled by x. Let S
be a consistent cluster containing x, and let α(S) = |S|/n. Letting y∗ denote a
product with minimum average cost for members of S, and letting P denote a
shortest path from x to y∗ in the directed graph with vertex set S ∪Y and edge
lengths given by d(·, ·), we may sum up the bounds (8) over the edges of P to
obtain

C̄(x) − C̄(y∗) = O(length(P) · B) (9)

246 B. Awerbuch and R.D. Kleinberg

Observe that the left side is the expected normalized regret of agent x. The
random edge lengths d(u, v) on the m + n outgoing edges from u are simply
the numbers {1, 2, . . . ,m + n} in a random permutation. For graphs with ran-
dom edge lengths specified according to this distribution, the expected distance
between two given vertices is O((β/α) log n).2 We may conclude that the expec-
tation of the right side of (9) is

O((β/α(S)) log(n)B) = O((β/α(S)) log4(βn)T−1/4). (10)

It follows that the normalized regret and δ-convergence time for agents in the
cluster S satisfy

R̂ = O

((
β

α(S)

)
log4(βn)T−1/4

)
(11)

T (δ) = O

((
β

α(S)δ

)4

log16(βn)

)
. (12)

Note that (12) can be interpreted as saying that the large consistent clusters
learn to approximate the cost of the best resource much more rapidly than do the
small clusters, which accords with one’s intuition about collaborative learning.
To obtain Theorem 1, we must average over the k consistent clusters S1, . . . , Sk.
We may multiply the regret bound for a cluster S in (10) by the size of S, to
obtain an upper bound of O(βn log4(βn)T−1/4) on the aggregate regret of users
in S. Summing over k such clusters, the cumulative regret of all honest users is
O(kβn log4(βn)T−1/4), so the normalized regret and convergence time satisfy:

R̂ = O

(
k ·

(
β

α

)
log4(βn)T−1/4

)
(13)

T (δ) = O

(
k4 ·

(
β

αδ

)4

log16(βn)

)
. (14)

6 Open Problems

In this paper we have introduced and analyzed an algorithm for a simple model
of collaborative learning. A key feature of our model is the presence of a large
number of dishonest agents who are assumed to behave in an arbitrary Byzantine
manner. However, other aspects of our model are quite idealized, and there are
some very natural extensions of the model which more closely reflect the reality
of collaborative learning systems such as eBay’s reputation system and peer-to-
peer resource discovery systems. It would be desirable to identify algorithms for
some of the following extensions.

2 A proof of this random graph lemma appears in the full version of this paper.

Competitive Collaborative Learning 247

1. Study asynchronous collaborative learning, in which only a subset of the
agents act as decision-makers in each round and the rest are inactive.

2. Study cases in which agents are constrained to choose from a proper subset
of the resources, e.g. because the set of available resources is changing over
time or because of limitations on the set of resources that a given agent is
ever allowed to select.

3. Consider stronger models of collaborative filtering, by relaxing the consis-
tency condition for two agents x1, x2 to belong to the same cluster. For exam-
ple, consider the case where x1, x2 are consistent if |Ct(x1, y)−Ct(x2, y)| < ε
for all y, t, or consider the mixture model as in [9].

4. Study more structured collaborative decision-making problems, e.g. selecting
routing paths in a network, some of whose nodes are identified with the
agents.

References

1. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling
in a rigged casino: the adversarial multi-armed bandit problem. In Proceedings of
the 36th Annual Symposium on Foundations of Computer Science, pages 322–331.
IEEE Computer Society Press, Los Alamitos, CA, 1995.

2. Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark Tuttle. Collaboration
of untrusting peers. In Proc. of ACM conference on Electronic Commerce (EC),
May 2004.

3. Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark Tuttle. Improved
recommendation systems. In Proc. of ACM SIAM Conference on Discreet Algo-
rithms (SODA), January 2005.

4. Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral
analysis of data. In Proc. 33rd Ann. ACM Symp. on Theory of Computing (STOC),
pages 619–626, 2001.

5. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. 2nd Edition. MIT Press, 2001.

7. Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive rec-
ommendation systems. In Proc. 34th Ann. ACM Symp. on Theory of Computing
(STOC), pages 82–90, 2002.

8. David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collab-
orative filtering to weave an information tapestry. Communications of the ACM,
35(12):61–70, December 1992.

9. Thomas Hofmann and Jan Puzicha. Latent class models for collaborative filter-
ing. In Proceedings of the International Joint Conference in Artificial Intelligence
(IJCAI), pages 688–693, 1999.

10. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks. In Proc. 12th Int.
World Wide Web Conference (WWW), 2003.

11. Jon Kleinberg. Finding authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, 1999.

248 B. Awerbuch and R.D. Kleinberg

12. Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents that buy
and sell. Communications of the ACM, 42(3):81–91, 1999.

13. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

14. Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, pages 175 – 186, October 1994.

15. Bin Yu and Munindar P. Singh. A social mechanism of reputation management in
electronic communities. In Cooperative Information Agents, pages 154–165, 2000.

16. Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collaborative reputation
mechanisms in electronic marketplaces. In HICSS, 1999.

17. Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstra-
tion. In Research and Development in Information Retrieval, pages 46–54, 1998.

Analysis of Perceptron-Based Active Learning

Sanjoy Dasgupta1,�, Adam Tauman Kalai2, and Claire Monteleoni3,��

1 UCSD CSE, 9500 Gilman Drive #0114, La Jolla, CA 92093
dasgupta@cs.ucsd.edu

2 TTI-Chicago, 1427 East 60th Street, Second Floor, Chicago, IL 60637
kalai@tti-c.org

3 MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139
cmontel@csail.mit.edu

Abstract. We start by showing that in an active learning setting, the
Perceptron algorithm needs Ω(1

ε2
) labels to learn linear separators within

generalization error ε. We then present a simple selective sampling algo-
rithm for this problem, which combines a modification of the perceptron
update with an adaptive filtering rule for deciding which points to query.
For data distributed uniformly over the unit sphere, we show that our
algorithm reaches generalization error ε after asking for just Õ(d log 1

ε
)

labels. This exponential improvement over the usual sample complexity
of supervised learning has previously been demonstrated only for the
computationally more complex query-by-committee algorithm.

1 Introduction

In many machine learning applications, unlabeled data is abundant but labeling
is expensive. This distinction is not captured in the standard PAC or online
models of supervised learning, and has motivated the field of active learning, in
which the labels of data points are initially hidden, and the learner must pay for
each label it wishes revealed. If query points are chosen randomly, the number
of labels needed to reach a target generalization error ε, at a target confidence
level 1− δ, is similar to the sample complexity of supervised learning. The hope
is that there are alternative querying strategies which require significantly fewer
labels.

To date, the single most dramatic demonstration of the potential of active
learning is perhaps Freund et al.’s analysis of the query-by-committee (QBC)
learning algorithm [7]. In their selective sampling model, the learner observes
a stream of unlabeled data and makes spot decisions about whether or not to
ask for a point’s label. They show that if the data is drawn uniformly from the
surface of the unit sphere in Rd, and the hidden labels correspond perfectly to a
homogeneous (i.e., through the origin) linear separator from this same distribu-
tion, then it is possible to achieve generalization error ε after seeing Õ(d

ε log 1
ε)

� Funded by the NSF, under grant IIS-0347646.
�� Work done primarily while at TTI-Chicago.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 249–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 S. Dasgupta, A.T. Kalai, and C. Monteleoni

points and requesting just Õ(d log 1
ε) labels:1 an exponential improvement over

the usual Õ(d
ε) sample complexity of learning linear separators in a supervised

setting.2 This remarkable result is tempered somewhat by the complexity of
the QBC algorithm, which involves random sampling from intermediate version
spaces; the complexity of the update step scales (polynomially) with the number
of updates performed.

In this paper, we show how a simple modification of the perceptron update
can be used to achieve the same sample complexity bounds (within Õ factors),
under the same streaming model and the same uniform input distribution. Unlike
QBC, we do not assume a distribution over target hypotheses, and our algorithm
does not need to store previously seen data points, only its current hypothesis.

Our algorithm has the following structure.

Set initial hypothesis v0 ∈ Rd

For t = 0, 1, 2, . . .
Receive unlabeled point xt

Make a prediction SGN(vt · xt)
Filtering step: Decide whether to ask for xt’s label
If label yt is requested:

Update step: Set vt+1 based on vt, xt, yt

Adjust filtering rule
else: vt+1 = vt

Update Step. It turns out that the regular perceptron update, that is,

if (xt, yt) is misclassified then vt+1 = vt + ytxt

cannot yield an error rate better than Ω(1/
√

lt), where lt is the number of labels
queried up to time t, no matter what filtering scheme is used. In particular:

Theorem 1. Consider any sequence of data points x0, x1, x2, . . . which is per-
fectly classified by some linear separator u ∈ Rd. If θt is the angle between u and
vt, then for any t ≥ 0, if θt+1 ≤ θt then sin θt ≥ 1/(5

√
lt + ‖v0‖2).

This holds regardless of how the data is produced. When the points are dis-
tributed uniformly over the unit sphere, θt ≥ sin θt (for θt ≤ π

2) is proportional
to the error rate of vt.

So instead we use a slightly modified update rule:

if (xt, yt) is misclassified then vt+1 = vt − 2(vt · xt)xt

(where xt is assumed normalized to unit length). Note that the update can also
be written as vt+1 = vt +2yt|vt ·xt|xt, since updates are only made on mistakes,

1 In this paper, the Õ notation is used to suppress terms in log d, log log 1
ε

and log 1
δ
.

2 This label complexity can be seen to be optimal by counting the number of spherical
caps of radius ε that can be packed onto the surface of the unit sphere in Rd.

Analysis of Perceptron-Based Active Learning 251

in which case yt �= SGN(vt · xt), by definition. Thus we are scaling the standard
perceptron’s additive update by a factor of 2|vt · xt| to avoid oscillations caused
by points close to the hyperplane represented by the current hypothesis. The
same rule, but without the factor of two, has been used in previous work [3]
on learning linear classifiers from noisy data, in a batch setting. We are able
to show that our formulation has the following generalization performance in a
supervised (non-active) setting.

Theorem 2. When the modified Perceptron algorithm is applied in a sequential
supervised setting, with data points xt drawn independently and uniformly at
random from the surface of the unit sphere in Rd, then with probability 1 − δ,
after O(d(log 1

ε + log 1
δ)) mistakes, its generalization error is at most ε.

This contrasts favorably with the Õ(d
ε2) mistake bound of the Perceptron algo-

rithm, and a more recent variant, on the same distribution [2, 12]. As a lower
bound for standard Perceptron, Theorem 1 also applies in the supervised case,
as it holds for all filtering rules, including viewing all the labels. The bound
on labels, Ω(1

ε2), lower bounds mistakes as well, since the number of labels is
minimized when every label yields a mistake, and thus an update.

The PAC sample complexity of the problem under the uniform distribution
is Θ̃(d

ε) (lower bound [10], and upper bound [11]). Yet since not all examples
yield mistakes, mistake bounds can be lower than sample bounds. A similar
statement holds in the active learning case: bounds on labels can be lower than
sample bounds, since the algorithms are allowed to filter which samples to label.

Filtering Step. Given the limited information the algorithm keeps, a natural
filtering rule is to query points xt when |vt · xt| is less than some threshold st.
The choice of st is crucial. If it is too large, then only a miniscule fraction of the
points queried will actually be misclassified – almost all labels will be wasted.
On the other hand, if st is too small, then the waiting time for a query might be
prohibitive, and when an update is actually made, the magnitude of this update
might be tiny.

Therefore, we set the threshold adaptively: we start s high, and keep dividing
it by two until we reach a level where there are enough misclassifications amongst
the points queried. This filtering strategy makes possible our main theorem,
again for data from the uniform distribution over the unit sphere in Rd.

Theorem 3. With probability 1− δ, if the active modified Perceptron algorithm
is given a stream of Õ(d

ε log 1
ε) unlabeled points, it will request Õ(d log 1

ε) labels,
make Õ(d log 1

ε) errors (on all points, labeled or not), and have final error ≤ ε.

2 Related Work

Our approach relates to the literature on selective sampling [7, 4]. We have al-
ready discussed query-by-committee [7], which is perhaps the strongest positive
result in active learning to date. There have been numerous applications of this
method and also several refinements (see, for instance, [8, 6]).

252 S. Dasgupta, A.T. Kalai, and C. Monteleoni

Cesa-Bianchi, Gentile, and Zaniboni [4] have recently analyzed an algorithm
which conforms to roughly the same template as ours but differs in both the
update and filtering rule – it uses the regular perceptron update and it queries
points xt according to a fixed, randomized rule which favors small |vt · xt|. The
authors make no distributional assumptions on the input and they show that in
terms of worst-case hinge-loss bounds, their algorithm does about as well as one
which queries all labels. The actual fraction of points queried varies from data set
to data set. In contrast, our objective is to achieve a target generalization error
with minimum label complexity, although we do also obtain a mistake bound
(on both labeled and unlabeled points) under our distributional assumption.

It is known that active learning does not always give a large improvement in
the sample complexity of learning linear separators. For instance, in our setting
where data is distributed uniformly over the unit sphere, recent work has shown
that if the target linear separator is allowed to be non-homogeneous, then the
number of labels required to reach error ε is Ω(1/ε), no matter what active learn-
ing scheme is used [5]. This lower bound also applies to learning homogeneous
linear separators with respect to an arbitrary distribution.

Many active learning schemes for linear separators (or probabilistic ana-
logues) have been proposed in the literature. Several of these are similar in
spirit to our heuristic, in that they query points close to the margin, and seem
to have enjoyed some empirical success; e.g., [9]. Finally, there is a rich body
of theory on a related model in which it is permissible to create query points
synthetically; a recent survey by Angluin [1] summarizes key results.

3 Preliminaries

In our model, all data xt lie on the surface of the unit ball in Rd, which we will
denote as S:

S =
{
x ∈ Rd

∣∣ ‖x‖ = 1
}
.

Their labels yt are either −1 or +1, and the target function is a half-space
u ·x ≥ 0 represented by a unit vector u ∈ Rd which classifies all points perfectly,
that is, yt(u · xt) > 0 for all t, with probability one.

For any vector v ∈ Rd, we define v̂ = v
‖v‖ to be the corresponding unit vector.

Our lower bound (Theorem 1) holds regardless of how the data are generated;
thereafter we will assume that the data points xt are drawn independently from
the uniform distribution over S. This implies that any hypothesis v ∈ Rd has
error

ε(v) = Px∈S [SGN(v · x) �= SGN(u · x)] =
arccos(u · v̂)

π
.

We will use a few useful inequalities for θ on the interval (0, π
2].

4
π2

≤ 1 − cos θ
θ2

≤ 1
2
, (1)

2
π
θ ≤ sin θ ≤ θ (2)

Analysis of Perceptron-Based Active Learning 253

Equation (1) can be verified by checking that for θ in this interval, 1−cos θ
θ2 is a

decreasing function, and evaluating it at the endpoints.
We will also make use of the following lemma.

Lemma 1. For any fixed unit vector a and any γ ≤ 1,

γ

4
≤ Px∈S

[
|a · x| ≤ γ√

d

]
≤ γ (3)

The proof is deferred to the appendix.

4 A Lower Bound for the Perceptron Update

Consider an algorithm of the following form:

Pick some v0 ∈ Rd

Repeat for t = 0, 1, 2, . . .:
Get some (x, y) for which y(vt · x) ≤ 0
vt+1 = vt + yx

On any update,
vt+1 · u = vt · u + y(x · u). (4)

Thus, if we assume for simplicity that v0 · u ≥ 0 (we can always just start count
when this first occurs) then vt · u ≥ 0 always, and the angle between u and vt is
always acute. Denoting this angle by θt, we get

‖vt‖ cos θt = vt · u.

The update rule also implies

‖vt+1‖2 = ‖vt‖2 + 1 + 2y(vt · x). (5)

Thus ‖vt‖2 ≤ t + ‖v0‖2 for all t. In particular, this means that Theorem 1 is an
immediate consequence of the following lemma.

Lemma 2. Assume v0 · u ≥ 0 (i.e., start count when this first occurs). Then

θt+1 ≤ θt ⇒ sin θt ≥ min
{

1
3
,

1
5‖vt‖

}
.

Proof. Figure 1 shows the unit circle in the plane defined by u and vt. The
dot product of any point x ∈ Rd with either u or vt depends only upon the
projection of x into this plane. The point is misclassified when its projection lies
in the shaded region. For such points, y(u · x) is at most sin θt (point (i)) and
y(vt · x) is at least −‖vt‖ sin θt (point (ii)).

Combining this with equations (4) and (5), we get

vt+1 · u ≤ vt · u + sin θt

‖vt+1‖2 ≥ ‖vt‖2 + 1 − 2‖vt‖ sin θt

254 S. Dasgupta, A.T. Kalai, and C. Monteleoni

(i)

(ii)

θt

vt

u

Fig. 1. The plane defined by u and vt

To establish the lemma, we first assume θt+1 ≤ θt and sin θt ≤ 1
5‖vt‖ , and then

conclude that sin θt ≥ 1
3 .

θt+1 ≤ θt implies

cos2 θt ≤ cos2 θt+1 =
(u · vt+1)2

‖vt+1‖2
≤ (u · vt + sin θt)2

‖vt‖2 + 1 − 2‖vt‖ sin θt
.

The final denominator is positive since sin θt ≤ 1
5‖vt‖ . Rearranging,

(‖vt‖2 + 1 − 2‖vt‖ sin θt) cos2 θt ≤ (u · vt)2 + sin2 θt + 2(u · vt) sin θt

and using ‖vt‖ cos θt = (u · vt):

(1 − 2‖vt‖ sin θt) cos2 θt ≤ sin2 θt + 2‖vt‖ sin θt cos θt

Again, since sin θt ≤ 1
5‖vt‖ , it follows that (1 − 2‖vt‖ sin θt) ≥ 3

5 and that
2‖vt‖ sin θt cos θt ≤ 2

5 . Using cos2 = 1 − sin2, we then get

3
5
(1 − sin2 θt) ≤ sin2 θt +

2
5

which works out to sin2 θt ≥ 1
8 , implying sin θt > 1

3 . ��

The problem is that the perceptron update can be too large. In R2 (e.g.
Figure 1), when θt is tiny, the update will cause vt+1 to overshoot the mark and
swing too far to the other side of u, unless ‖vt‖ is very large: to be precise, we
need ‖vt‖ = Ω(1/ sin θt). But ‖vt‖ grows slowly, at best at a rate of

√
t. If sin θt

is proportional to the error of vt, as in the case of data distributed uniformly over
the unit sphere, this means that the perceptron update cannot stably maintain
an error rate ≤ ε until t = Ω(1/ε2).

Analysis of Perceptron-Based Active Learning 255

Inputs: dimensionality d and desired number of updates
(mistakes) M.
Let v1 = x1y1 for the first example (x1, y1).
For t = 1 to M:
Let (xt, yt) be the next example with y(x · vt) < 0.
vt+1 = vt − 2(vt · xt)xt.

Fig. 2. The (non-active) modified Perceptron algorithm. The standard Perceptron up-
date, vt+1 = vt + ytxt, is in the same direction (note yt = −SGN(vt · xt)) but different
magnitude (scaled by a factor of 2|vt · xt|)

5 The Modified Perceptron Update

We now describe the modified Perceptron algorithm. Using a simple modification
to the standard perceptron update yields the fast convergence we will prove
subsequently. Unlike with standard Perceptron, this modification ensures that
vt · u is increasing, i.e., the error of vt is monotonically decreasing. Another
difference from the standard update (and other versions) is that the magnitude
of ‖vt‖ = 1, which is convenient for our analysis.

The modified Perceptron algorithm is shown in Figure 2. We now show that
the norm of vt stays at one. Note that ‖v1‖ = 1 and

‖vt+1‖2 = ‖vt‖2 + 4(vt · xt)2‖xt‖2 − 4(vt · xt)2 = 1

by induction. In contrast, for the standard perceptron update, the magnitude of
vt is important and normalized vectors cannot be used.

With the modified update, the error can only decrease, because vt · u only
increases:

vt+1 · u = vt · u − 2(vt · xt)(xt · u) = vt · u + 2|vt · xt||xt · u|.

The second equality follows from the fact that vt misclassified xt. Thus vt · u
is increasing, and the increase can be bounded from below by showing that
|vt · xt||xt · u| is large. This is a different approach from previous analyses.

Blum et al. [3] used an update similar to ours, but without the factor of two.
In general, one can consider modified updates of the form vt+1 = vt−α(vt ·xt)xt.
When α �= 2, the vectors vt no longer remain of fixed length; however, one can
verify that their corresponding unit vectors v̂t satisfy

v̂t+1 · u = (v̂t · u + α|v̂t · xt||xt · u|)/
√

1 − α(2 − α)(v̂t · xt)2,

and thus any choice of α ∈ [0, 2] guarantees non-increasing error. Blum et al. used
α = 1 to guarantee progress in the denominator (their analysis did not rely on
progress in the numerator) as long as v̂t ·u and (v̂t ·xt)2 were bounded away from
0. Their approach was used in a batch setting as one piece of a more complex
algorithm for noise-tolerant learning. In our sequential framework, we can bound
|v̂t · xt||xt · u| away from 0 in expectation, under the uniform distribution, and

256 S. Dasgupta, A.T. Kalai, and C. Monteleoni

hence the choice of α = 2 is most convenient, but α = 1 would work as well.
Although we do not further optimize our choice of the constant α, this choice
itself may yield interesting future work, perhaps by allowing it to be a function
of the dimension.

5.1 Analysis of (Non-active) Modified Perceptron

How large do we expect |vt · xt| and |u · xt| to be for an error (xt, yt)? As we
shall see, in d dimensions, one expects each of these terms to be on the order of
d−1/2 sin θt, where sin θt =

√
1 − (vt · u)2. Hence, we might expect their product

to be about (1 − (vt · u)2)/d, which is how we prove the following lemma.
Note, we have made little effort to optimize constant factors.

Lemma 3. For any vt, with probability at least 1
3 ,

1 − vt+1 · u ≤ (1 − vt · u)
(

1 − 1
50d

)
.

There exists a constant c > 0, such that with probability at least 63
64 , for any vt,

1 − vt+1 · u ≤ (1 − vt · u)
(
1 − c

d

)
.

Proof. We show only the first part of the lemma. The second part is quite similar.
We will argue that each of |vt · xt|,|u · xt| is “small” with probability at most
1/3. This means, by the union bound, that with probability at least 1/3, they
are both sufficiently large.

The error rate of vt is θt/π, where cos θt = vt · u. Also define the error region
ξt = {x ∈ S |SGN(vt · x) �= SGN(u · x)}. By Lemma 1, for an x drawn uniformly
from the sphere,

Px∈S

[
|vt · x| ≤

θt

3π
√

d

]
≤ θt

3π
.

Using P [A|B] ≤ P [A]/P [B], we have,

Px∈S

[
|vt · x| ≤

θt

3π
√

d

∣∣∣∣ x ∈ ξt

]
≤

Px∈S [|vt · x| ≤ θt

3π
√

d
]

Px∈S [x ∈ ξt]
≤ θt/(3π)

θt/π
=

1
3

Similarly for |u · x|, and by the union bound the probability that x ∈ ξ is within
margin θ

3π
√

d
from either u or v is at most 2

3 . Since the updates only occur if x

is in the error region, we now have a lower bound on the expected magnitude of
|vt · x||u · x|.

Px∈S

[
|vt · x||u · x| ≥ θ2

t

(3π
√

d)2

∣∣∣∣x ∈ ξt

]
≥ 1

3
.

Analysis of Perceptron-Based Active Learning 257

Hence, we know that with probability at least 1/3, |vt ·x||u ·x| ≥ 1−(vt·u)2

100d , since
θ2

t ≥ sin2 θt = 1 − (vt · u)2 and (3π)2 < 100. In this case,

1 − vt+1 · u ≤ 1 − vt · u − 2|vt · xt||u · xt|

≤ 1 − vt · u − 1 − (vt · u)2

50d

≤ (1 − vt · u)
(

1 − 1 + vt · u
50d

)
��

Finally, we give a high-probability bound, i.e. Theorem 2, stated here with proof.

Theorem 2. With probability 1 − δ, after M = O(d(log 1
ε + log 1

δ)) mistakes,
the generalization error of the modified Perceptron algorithm is at most ε.

Proof. By the above lemma, we can conclude that, for any vector vt,

Ext∈ξt
[1 − vt+1 · u] ≤ (1 − vt · u)

(
1 − 1

3(50d)

)
.

This is because with ≥ 1/3 probability it goes down by a factor of 1 − 1
50d

and with the remaining ≤ 2/3 probability it does not increase. Hence, after M
mistakes,

E[1 − vM · u] ≤ (1 − v1 · u)
(

1 − 1
150d

)M

≤
(

1 − 1
150d

)M

,

since v1 · u ≥ 0. By Markov’s inequality,

P

[
1 − vM · u ≥

(
1 − 1

150d

)M

δ−1

]
≤ δ.

Finally, using (1) and cos θM = vM · u, we see P [4
π2 θ

2
M ≥ (1 − 1

150d)Mδ−1] ≤ δ.
Using M = 150d log(1/εδ) gives P [θM

π ≥ ε] ≤ δ as required. ��

6 An Active Modified Perceptron

The active version of the modified Perceptron algorithm is shown in Figure 3.
The algorithm is similar to the algorithm of the previous section, in its update
step. For its filtering rule, we maintain a threshold st and we only ask for labels
of examples with |vt · xt| ≤ st. We decrease this threshold adaptively over time,
starting at s1 = 1/

√
d and reducing it by a factor of two whenever we have a

run of labeled examples on which we are correct.
For Theorem 3, we select values of R,L that yield ε error with probability at

least 1 − δ. The idea of the analysis is as follows:

258 S. Dasgupta, A.T. Kalai, and C. Monteleoni

Inputs: Dimensionality d, maximum number of labels L,
and patience R.

v1 = x1y1 for the first example (x1, y1).
s1 = 1/

√
d

For t = 1 to L:
Wait for the next example x : |x · vt|≤st and query its label.
Call this labeled example (xt, yt).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

else:
vt+1 = vt

If predictions were correct on R consecutive labeled
examples (i.e. (xi · vi)yi ≥ 0 ∀i ∈ {t −R + 1, t −R + 2, . . . , t}),
then set st+1 = st/2, else st+1 = st.

Fig. 3. An active version of the modified Perceptron algorithm

Definition 1. We say the tth update is “good” if,

1 − vt+1 · u ≤ (1 − vt · u)
(
1 − c

d

)
.

(The constant c is from Lemma 3.)

1. (Lemma 4) First, we argue that st is not too small (we do not decrease st

too quickly). Assuming this is the case, then 2 and 3 hold.
2. (Lemma 6) We query for labels on at least an expected 1/32 of all errors. In

other words, some errors may go undetected because we do not ask for their
labels, but the number of mistakes total should not be much more than 32
times the number of updates we actually perform.

3. (Lemma 7) Each update is good (Definition 1) with probability at least 1/2.
4. (Theorem 3) Finally, we conclude that we cannot have too many label

queries, updates, or total errors, because half of our updates are good, 1/32
of our errors are updates, and about 1/R of our labels are updates.

We first lower-bound st with respect to our error, showing that, with high
probability, the threshold st is never too small.

Lemma 4. With probability at least 1 − L
(

3
4

)R, we have:

st ≥
√

1 − (u · vt)2

16d
for t = 1, 2, . . . , L, simultaneously. (6)

Before proving this lemma, it will be helpful to show the following lemma. As
before, let us define ξt = {x ∈ S|(x · vt)(x · u) < 0}.

Analysis of Perceptron-Based Active Learning 259

Lemma 5. For any γ ∈
(

0,
√

1−(u·vt)2

4d

]
,

Pxt∈S

[
xt ∈ ξt

∣∣ |xt · vt| < γ
]
≥ 1

4

Proof. Let x be a random example from S such that |x · vt| < γ and, without
loss of generality, suppose that 0 ≤ x · vt ≤ γ. Then we want to calculate the
probability we err, i.e. u · x < 0. We can decompose x = x′ + (x · vt)vt where
x′ = x−(x ·vt)vt is the component of x orthogonal to vt, i.e. x′ ·vt = 0. Similarly
for u′ = u − (u · vt)vt. Hence,

u · x = (u′ + (u · vt)vt) · (x′ + (x · vt)vt) = u′ · x′ + (u · vt)(x · vt)

In other words, we err iff u′ · x′ < −(u · vt)(x · vt). Using u · vt ∈ [0, 1] and since
x · vt ∈ [0,

√
(1 − (u · vt)2)/(4d)], we conclude that if,

u′ · x′ < −
√

1 − (u · vt)2

4d
(7)

then we must err. Also, let x̂′ = x′
‖x′‖ be the unit vector in the direction of x′.

It is straightforward to check that ‖x′‖ =
√

1 − (x · vt)2. Similarly, for u we
define û′ = u′√

1−(u·vt)2
. Substituting these into (7), we must err if, û′ · x̂′ <

−1/
√

4d(1 − (x · vt))2, and since
√

1 − (x · vt)2 ≥
√

1 − 1/(4d), it suffices to
show that,

Px∈S

[
û′ · x̂′ <

−1√
4d(1 − 1/(4d))

∣∣∣∣∣ 0 ≤ x · vt ≤ γ

]
≥ 1

4

What is the probability that this happens? Well, one way to pick x ∈ S would
be to first pick x · vt and then to pick x̂′ uniformly at random from the set
S′ = {x̂′ ∈ S|x̂′ · vt = 0}, which is a unit sphere in one fewer dimensions. Hence
the above probability does not depend on the conditioning. By Lemma 1, for
any unit vector a ∈ S′, the probability that |û′ · a| ≤ 1/

√
4(d − 1) is at most

1/2, so with probability at least 1/4 (since the distribution is symmetric), the
signed quantity û′ · x̂′ < −1/

√
4(d − 1) < −1/

√
4d(1 − 1/(4d)). ��

We are now ready to prove Lemma 4.

Proof (of Lemma 4). Suppose that condition (6) fails to hold for some t’s. Let
t be the smallest number such that (6) fails. By our choice of s1, clearly t > 1.
Moreover, since t is the smallest such number, and u · vt is increasing, it must
be the case that st = st−1/2, that is we just saw a run of R labeled examples
(xi, yi), for i = t −R, . . . , t − 1, with no mistakes, vi = vt, and

si = 2st <

√
1 − (u · vt)2

4d
=

√
1 − (u · vi)2

4d
. (8)

260 S. Dasgupta, A.T. Kalai, and C. Monteleoni

Such an event is highly unlikely, however, for any t. In particular, from Lemma 5,
we know that the probability of (8) holding for any particular i and the algorithm
not erring is at most 3/4. Thus the chance of having any such run of length R
is at most L(3/4)R.

Lemma 5 also tells us something interesting about the fraction of errors that
we are missing because we do not ask for labels. In particular,

Lemma 6. Given that st ≥
√

(1 − (u · vt)2)/(16d), upon the tth update, each
erroneous example is queried with probability at least 1/32, i.e.,

Px∈S

[
|x · vt| ≤ st

∣∣x ∈ ξt

]
≥ 1

32
.

Proof. Using Lemmas 5 and 1, we have

Px∈S [x ∈ ξt ∧ |x · vt| ≤ st] ≥ Px∈S

[
x ∈ ξt ∧ |x · vt| ≤

√
1 − (u · vt)2

16d

]

≥ 1
4
Px∈S

[
|x · vt| ≤

√
1 − (u · vt)2

16d

]

≥ 1
64

√
1 − (u · vt)2 =

1
64

sin θt

≥ θt

32π

For the last inequality, we have used (2). However, Px∈S [x ∈ ξt] = θt/π, so
we are querying an error x ∈ ξt with probability at least 1/32, i.e., the above
inequality implies,

Px∈S

[
|x · vt| ≤ st

∣∣ x ∈ ξt

]
=

Px∈S [x ∈ ξt ∧ |x · vt| ≤ st]
Px∈S [x ∈ ξt]

≥ θt/(32π)
θt/π

=
1
32

.

��

Next, we show that the updates are likely to make progress.

Lemma 7. Assuming that st ≥
√

(1 − (u · vt)2)/(16d), a random update is good
with probability at least 1/2, i.e.,

Pxt∈S

[
(1 − vt+1 · u) ≤ (1 − vt · u)

(
1 − c

d

) ∣∣∣ |x · vt| ≤ st ∧ xt ∈ ξt

]
≥ 1

2
.

Proof. By Lemma 6, each error is queried with probability 1/32. On the other
hand, by Lemma 3 of the previous section, 63/64 of all errors are good. Since
we are querying at least 2/64 fraction of all errors, at least half of our queried
errors must be good. ��

We now have the pieces to guarantee the convergence rate of the active algorithm,
thereby proving Theorem 3. This involves bounding both the number of labels
that we query as well as the number of total errors, which includes updates as
well as errors that were never detected.

Analysis of Perceptron-Based Active Learning 261

Theorem 3. With probability 1 − δ, using L = O
(
d log

(
1
εδ

)
(log d

δ + log log 1
ε)

)
labels and making a total number of errors of O

(
d log

(
1
εδ

)
(log d

δ +log log 1
ε)

)
, the

final error of the active modified Perceptron algorithm will be ε, when run with
the above L and R = O(log d

δ + log log 1
ε).

Proof. Let U be the number of updates performed. We know, by Lemma 4 that
with probability 1 − L(3

4)R,

st ≥
sin θt

4
√

d
≥ θt

2π
√

d
(9)

for all t. Again, we have used (2). By Lemma 7, we know that for each t which
is an update, either (9) fails or

E[1 − u · vt+1|vt] ≤ (1 − u · vt)
(
1 − c

2d

)
.

Hence, after U updates, using Markov’s inequality,

P

[
1 − u · vL ≥ 4

δ

(
1 − c

2d

)U
]
≤ δ

4
+ L

(
3
4

)R

.

In other words, with probability 1 − δ/4 − L(3/4)R, we also have

U ≤ 2d
c

log
4

δ(1 − u · vL)
≤ 2d

c
log

π2

δθ2
L

= O

(
d log

1
δε

)
,

where for the last inequality we used (1). In total, L ≤ R (U + log2 1/sL). This
is because once every R labels we either have at least one update or we decrease
sL by a factor of 2. Equivalently, sL ≤ 2U−L/R. Hence, with probability 1 −
δ/4 − L(3/4)R,

θL

2π
√

d
≤ sL ≤ 2O(d log(1/δε))−L/R

Working backwards, we choose L/R = Θ(d log 1
εδ) so that the above expression

implies θL

π ≤ ε, as required. We choose,

R = 10 log
2L
δR

= Θ

(
log

d log 1
εδ

δ

)
= O

(
log

d

δ
+ log log

1
ε

)
.

The first equality ensures that L(3/4)R ≤ δ/4. Hence, for the L and R chosen
in the theorem, with probability 1 − 3

4δ, we have error θL/π < ε. Finally, either
condition (9) fails or each error is queried with probability at least 1/32. By the
multiplicative Chernoff bound, if there were a total of E > 64U errors, then
with probability ≥ 1− δ/4, at least E/64 > U would have been caught and used
as updates. Hence, with probability at most 1 − δ, we have achieved the target
error using the specified number of labels and incurring the specified number of
errors. ��

262 S. Dasgupta, A.T. Kalai, and C. Monteleoni

7 Future Directions

The theoretical terrain of active learning is largely an unexplored wilderness.
The one nontrivial scenario in which active learning has been shown to give
an exponential improvement in sample complexity is that of learning a linear
separator for data distributed uniformly over the unit sphere. In this paper, we
have demonstrated that this particular case can be solved by a much simpler
algorithm than was previously known. It is possible that our algorithm can
be molded into something of more general applicability, and so it would be
interesting to study its behavior under different circumstances, for instance a
different distributional assumption. The uniform distribution is an impressive
one to learn against because it is difficult in some ways – most of the data is
close to the decision boundary, for instance – but a more common assumption
would be to make the two classes Gaussian, or to merely stipulate that they are
separated by a margin. How would our algorithm fare under these circumstances?

Acknowledgements

Claire Monteleoni would like to thank Adam Klivans, Brendan McMahan, and
Vikas Sindhwani, for various discussions at TTI, and David McAllester for the
opportunity to visit. The authors thank the anonymous reviewers for helpful
comments used in revision.

References

1. D. Angluin. Queries revisited. In Proc. 12th Int. Conference on Algorithmic Learn-
ing Theory, LNAI,2225:12–31, 2001.

2. E. B. Baum. The perceptron algorithm is fast for nonmalicious distributions.
Neural Computation, 2:248–260, 1997.

3. A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for
learning noisy linear threshold functions. In Proc. 37th IEEE Symposium on the
Foundations of Computer Science, 1996.

4. N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective
sampling for linear-threshold algorithms. In Advances in Neural Information Pro-
cessing Systems 17, 2004.

5. S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural
Information Processing Systems 17. 2004.

6. S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation
and random walks. Theoretical Computer Science, 284(1):25–51, 2002.

7. Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the
query by committee algorithm. Machine Learning, 28(2-3):133–168, 1997.

8. R. Gilad-Bachrach, A. Navot, and N. Tishby. Kernel query by committee (KQBC).
Technical Report 2003-88, Leibniz Center, the Hebrew University, 2003.

9. D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers.
In Proc. of SIGIR-94, 17th ACM International Conference on Research and De-
velopment in Information Retrieval, 1994.

Analysis of Perceptron-Based Active Learning 263

10. P. M. Long. On the sample complexity of PAC learning halfspaces against the
uniform distribution. IEEE Transactions on Neural Networks, 6(6):1556–1559,
1995.

11. P. M. Long. An upper bound on the sample complexity of PAC learning halfs-
paces with respect to the uniform distribution. Information Processing Letters,
87(5):229–23, 2003.

12. R. A. Servedio. On PAC learning using winnow, perceptron, and a perceptron-like
algorithm. In Computational Learning Theory, pages 296 – 307, 1999.

A Proof of Lemma 1

Let r = γ/
√

d and let Ad be the area of a d-dimensional unit sphere, i.e. the
surface of a (d + 1)-dimensional unit ball.

Px [|a · x| ≤ r] =

∫ r

−r
Ad−2(1 − z2)

d−2
2 dz

Ad−1
=

2Ad−2

Ad−1

∫ r

0

(1 − z2)d/2−1dz (10)

First observe,

r(1 − r2)d/2−1 ≤
∫ r

0

(1 − z2)d/2−1dz ≤ r (11)

For x ∈ [0, 0.5], 1 − x ≥ 4−x. Hence, for 0 ≤ r ≤ 2−1/2,

(1 − r2)d/2−1 ≥ 4−r2(d/2−1) ≥ 2−r2d.

So we can conclude that the integral of (11) is in [r/2, r] for r ∈ [0, 1/
√

d]. The
ratio 2Ad−2/Ad−1 can be shown to be in the range [

√
d/3,

√
d] by straightforward

induction on d, using the definition of the Γ function, and the fact that Ad−1 =
2πd/2/Γ (d/2). ��

A New Perspective on an Old Perceptron Algorithm

Shai Shalev-Shwartz1,2 and Yoram Singer1,2

1 School of Computer Sci. & Eng., The Hebrew University, Jerusalem 91904, Israel
2 Google Inc., 1600 Amphitheater Parkway, Mountain View CA 94043, USA

{shais, singer}@cs.huji.ac.il

Abstract. We present a generalization of the Perceptron algorithm. The new al-
gorithm performs a Perceptron-style update whenever the margin of an example
is smaller than a predefined value. We derive worst case mistake bounds for our
algorithm. As a byproduct we obtain a new mistake bound for the Perceptron
algorithm in the inseparable case. We describe a multiclass extension of the algo-
rithm. This extension is used in an experimental evaluation in which we compare
the proposed algorithm to the Perceptron algorithm.

1 Introduction

The Perceptron algorithm [1, 15, 14] is a well studied and popular classification learn-
ing algorithm. Despite its age and simplicity it has proven to be quite effective in prac-
tical problems, even when compared to the state-of-the-art large margin algorithms [9].
The Perceptron maintains a single hyperplane which separates positive instances from
negative ones. Another influential learning paradigm which employs separating hyper-
planes is Vapnik’s Support Vector Machine (SVM) [16]. Learning algorithms for SVMs
use quadratic programming for finding a separating hyperplane attaining the maximal
margin. Interestingly, the analysis of the Perceptron algorithm [14] also employs the
notion of margin. However, the algorithm itself does not exploit any margin informa-
tion. In this paper we try to draw a connection between the two approaches by analyzing
a variant of the Perceptron algorithm, called Ballseptron, which utilizes the margin. As
a byproduct, we also get a new analysis for the original Perceptron algorithm.

While the Perceptron algorithm can be used as linear programming solver [4] and
can be converted to a batch learning algorithm [9], it was originally studied in the on-
line learning model which is also the main focus of our paper. In online learning, the
learner receives instances in a sequential manner while outputting a prediction after
each observed instance. For concreteness, let X = Rn denote our instance space and
let Y = {+1,−1} denote our label space. Our primary goal is to learn a classification
function f : X → Y . We confine most of our discussion to linear classification func-
tions. That is, f takes the form f(x) = sign(w·x) where w is a weight vector in Rn. We
briefly discuss in later sections how to use Mercer kernels with the proposed algorithm.
Online algorithms work in rounds. On round t an online algorithm receives an instance
xt and predicts a label ŷt according to its current classification function ft : X → Y . In
our case, ŷt = ft(xt) = sign(wt · xt), where wt is the current weight vector used by
the algorithm. The true label yt is then revealed and the online algorithm may update

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 264–278, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A New Perspective on an Old Perceptron Algorithm 265

its classification function. The goal of the online algorithm is to minimize its cumula-
tive number of prediction mistakes which we denote by ε. The Perceptron initializes its
weight vector to be the zero vector and employs the update rule wt+1 = wt + τtytxt

where τt = 1 if ŷt �= yt and τt = 0 otherwise.
Several authors [14, 3, 13] have shown that whenever the Perceptron is presented

with a sequence of linearly separable examples, it suffers a bounded number of pre-
diction mistakes which does not depend on the length of the sequence of examples.
Formally, let (x1, y1), . . . , (xT , yT) be a sequence of instance-label pairs. Assume that
there exists a unit vector u (‖u‖ = 1) and a positive scalar γ > 0 such that for all
t, yt(u · xt) ≥ γ. In words, u separates the instance space into two half-spaces such
that positively labeled instances reside in one half-space while the negatively labeled
instances belong to the second half-space. Moreover, the distance of each instance to
the separating hyperplane {x : u · x = 0}, is at least γ. We refer to γ as the margin
attained by u on the sequence of examples. Throughout the paper we assume that the
instances are of bounded norm and let R = maxt ‖xt‖ denote the largest norm of an
instance in the input sequence. The number of prediction mistakes, ε, the Perceptron
algorithm makes on the sequence of examples is at most

ε ≤
(

R

γ

)2

. (1)

Interestingly, neither the dimensionality of X nor the number of examples directly effect
this mistake bound. Freund and Schapire [9] relaxed the separability assumption and
presented an analysis for the inseparable case. Their mistake bound depends on the
hinge-loss attained by any vector u. Formally, let u be any unit vector (‖u‖ = 1).
The hinge-loss of u with respect to an instance-label pair (xt, yt) is defined as �t =
max{0, γ − ytu · xt} where γ is a fixed target margin value. This definition implies
that �t = 0 if xt lies in the half-space corresponding to yt and its distance from the
separating hyperplane is at least γ. Otherwise, �t increases linearly with −yt(u·xt). Let
D2 denote the two-norm of the sequence of hinge-losses suffered by u on the sequence
of examples,

D2 =

(
T∑

t=1

�2t

)1/2

. (2)

Freund and Schapire [9] have shown that the number of prediction mistakes the Percep-
tron algorithm makes on the sequence of examples is at most,

ε ≤
(

R + D2

γ

)2

. (3)

This mistake bound does not assume that the data is linearly separable. However, when-
ever the data is linearly separable with margin γ, D2 is 0 and the bound reduces to the
bound given in Eq. (1). In this paper we also provide analysis in terms of the one-norm
of the hinge losses which we denote by D1 and is defined as,

D1 =
T∑

t=1

�t . (4)

266 S. Shalev-Shwartz and Y. Singer

�
�

�
�

�

�
��w

+
−

�
��
��

�r
x

�
�

�
�

�

�
��w

+
−

�
��
��

�
r

x

�
�

�
�

�

�
��w

+
−

�
��
��

�r

x�̂
x

Fig. 1. An illustration of the three modes constituting the Ballseptron’s update. The point x is
labeled +1 and can be in one of three positions. Left: x is classified correctly by w with a margin
greater than r. Middle: x is classified incorrectly by w. Right: x is classified correctly but the
ball of radius r is intersected by the separating hyper-plane. The point x̂ is used for updating w

While the analysis of the Perceptron employs the notion of separation with margin,
the Perceptron algorithm itself is oblivious to the absolute value of the margin attained
by any of the examples. Specifically, the Perceptron does not modify the hyperplane
used for classification even for instances whose margin is very small so long as the pre-
dicted label is correct. While this property of the Perceptron has numerous advantages
(see for example [8]) it also introduces some deficiencies which spurred work on algo-
rithms that incorporate the notion of margin (see the references below). For instance, if
we know that the data is linearly separable with a margin value γ we can deduce that
our current hyperplane is not optimal and make use of this fact in updating the current
hyperplane. In the next section we present an algorithm that updates its weight vector
whenever it either makes a prediction mistake or suffers a margin error. Formally, let
r be a positive scalar. We say that the algorithm suffers a margin error with respect to
r if the current instance xt is correctly classified but it lies too close to the separating
hyper-plane, that is,

0 < yt

(
wt

‖wt‖
· xt

)
≤ r . (5)

Analogously to the definition of ε, we denote by ε̃ the number of margin errors our
algorithm suffers on the sequence of examples.

Numerous online margin-based learning algorithms share similarities with the work
presented in this paper. See for instance [12, 10, 11, 2, 5]. Many of the algorithms can be
viewed as variants and enhancements of the Perceptron algorithm. However, the mistake
bounds derived for these algorithms are not directly comparable to that of the Percep-
tron, especially when the examples are not linearly separable. In contrast, under certain
conditions discussed in the sequel, the mistake bound for the algorithm described in
this paper is superior to that of the Perceptron. Moreover, our analysis carries over to
the original Perceptron algorithm.

The paper is organized as follows. We start in Sec. 2 with a description of our new
online algorithm, the Ballseptron. In Sec. 3 we analyze the algorithm using the mistake
bound model and discuss the implications on the original Perceptron algorithm. Next, in
Sec. 4, we describe a multiclass extension of the Ballseptron algorithm. This extension
is used in Sec. 5 in which we present few experimental results that underscore some of
the algorithmic properties of the Ballseptron algorithm in the light of its formal analysis.
Finally, we discuss possible future directions in Sec. 6.

A New Perspective on an Old Perceptron Algorithm 267

2 The Ballseptron Algorithm

PARAMETER: radius r
INITIALIZE: w1 = 0
For t = 1, 2, . . .

Receive an instance xt

Predict: ŷt = sign(wt · xt)
If yt(wt · xt) ≤ 0

Update: wt+1 = wt + ytxt

Else If yt(wt · xt)/‖wt‖ ≤ r
Set: x̂t = xt − ytrwt/‖wt‖
Update: wt+1 = wt + ytx̂t

Else // No margin mistake
Update: wt+1 = wt

End
Endfor

Fig. 2. The Ballseptron algorithm

In this section we present the Ballseptron algo-
rithm which is a simple generalization of the clas-
sical Perceptron algorithm. As in the Perceptron
algorithm, we maintain a single vector which is
initially set to be the zero vector. On round t, we
first receive an instance xt and output a prediction
according to the current vector, ŷt = sign(wt ·xt).
We then receive the correct label yt. In case of a
prediction mistake, i.e. ŷt �= yt, we suffer a unit
loss and update wt by adding to it the vector ytxt.
The updated vector constitutes the classifier to be
used on the next round, thus wt+1 = wt + ytxt.
In contrast to the Perceptron algorithm, we also
update the classifier whenever the margin attained
on xt is smaller than a pre-specified parameter r.
Formally, denote by B(xt, r) the ball of radius r
centered at xt. We impose the assumption that all
the points in B(xt, r) must have the same label as
the center xt (see also [6]). We now check if there is a point in B(xt, r) which is mis-
classified by wt. If such a point exists then wt intersects B(xt, r) into two parts. We
now generate a pseudo-instance, denoted x̂t which corresponds to the point in B(xt, r)
attaining the worst (negative) margin with respect to wt. (See Fig. 1 for an illustration.)
This is obtained by moving r units away from xt in the direction of −ytwt, that is
x̂t = xt − ytr

‖wt‖wt. To show this formally, we solve the following constrained mini-
mization problem,

x̂t = argmin
x∈B(xt,r)

yt(wt · x) . (6)

To find x̂t we recast the constraint x ∈ B(xt, r) as ‖x − xt‖2 ≤ r2. Note that both
the objective function yt(wt · x) and the constraint ‖x − xt‖2 ≤ r2 are convex in x.
In addition, the relative interior of the B(xt, r) is not empty. Thus, Slater’s optimality
conditions hold and we can find x̂t by examining the saddle point of the problem’s
Lagrangian which is, L(x, α) = yt(wt ·x)+α

(
‖x − xt‖2 − r2

)
. Taking the derivative

of the Lagrangian w.r.t. each of the components of x and setting the resulting vector to
zero gives,

ytwt + 2α(x − xt) = 0 . (7)

Since yt(wt · xt) > 0 (otherwise, we simply undergo a simple Perceptron update)
we have that wt �= 0 and α > 0. Hence we get that the solution of Eq. (7) is x̂t =
xt − (yt/2α)wt. To find α we use the complementary slackness condition. That is,
since α > 0 we must have that ‖x− xt‖ = r. Replacing x− xt with −ytwt/(2α), the
slackness condition yields that, ‖wt‖

2α = r which let us express 1
2α as r

‖wt‖ . We thus get
that x̂t = xt − ytr

‖wt‖wt. By construction, if yt(wt · x̂t) > 0 we know that all the points
in the ball of radius r centered at xt are correctly classified and we set wt+1 = wt.

268 S. Shalev-Shwartz and Y. Singer

(See also the left-most plot in Fig. 1.) If on the other hand yt(wt · x̂t) ≤ 0 (right-most
plot in Fig. 1) we use x̂t as a pseudo-example and set wt+1 = wt + ytx̂t.

Note that we can rewrite the condition yt(wt · x̂t) ≤ 0 as yt(wt · xt)/‖wt‖ ≤ r.
The pseudocode of the Ballseptron algorithm is given in Fig. 2. and an illustration of
the different cases encountered by the algorithm is given in Fig. 1. Last, we would
like to note in passing that wt can be written as a linear combination of the instances,
wt =

∑t−1
i=1 αtxt, and therefore, wt ·xt =

∑t−1
i=1 αi(xi ·xt). The inner products xi ·xt

can be replaced with an inner products defined via a Mercer kernel, K(xi,xt), without
any further changes to our derivation. Since the analysis in the next section does not
depend on the dimensionality of the instances, all of the formal results still hold when
the algorithm is used in conjunction with kernel functions.

3 Analysis

In this section we analyze the Ballseptron algorithm. Analogous to the Perceptron
bounds, the bounds that we obtain do not depend on the dimension of the instances
but rather on the geometry of the problem expressed via the margin of the instances
and the radius of the sphere enclosing the instances. As mentioned above, most of our
analysis carries over to the original Perceptron algorithm and we therefore dedicate the
last part of this section to a discussion of the implications for the original Perceptron
algorithm. A desirable property of the Ballseptron would have been that it does not
make more prediction mistakes than the Perceptron algorithm. Unfortunately, without
any restrictions on the radius r that the Ballseptron algorithm employs, such a property
cannot be guaranteed. For example, suppose that the instances are drawn from R and
all the input-label pairs in the sequence (x1, y1), . . . , (xT , yT) are the same and equal
to (x, y) = (1, 1). The Perceptron algorithm makes a single mistake on this sequence.
However, if the radius r that is relayed to the Ballseptron algorithm is 2 then the algo-
rithm would make T/2 prediction mistakes on the sequence. The crux of this failure
to achieve a small number of mistakes is due to the fact that the radius r was set to
an excessively large value. To achieve a good mistake bound we need to ensure that
r is set to be less than the target margin γ employed by the competing hypothesis u.
Indeed, our first theorem implies that the Ballseptron attains the same mistake bound as
the Perceptron algorithm provided that r is small enough.

Theorem 1. Let (x1, y1), . . . , (xT , yT) be a sequence of instance-label pairs where
xt ∈ Rn, yt ∈ {−1,+1}, and ‖xt‖ ≤ R for all t. Let u ∈ Rn be a vector whose norm
is 1, 0 < γ ≤ R an arbitrary scalar, and denote �t = max{0, γ − ytu · xt}. Let D2

be as defined by Eq. (2). Assume that the Ballseptron algorithm is run with a parameter
r which satisfies 0 ≤ r < (

√
2 − 1) γ. Then, the number of prediction mistakes the

Ballseptron makes on the sequence is at most,(
R + D2

γ

)2

.

Proof. We prove the theorem by bounding wT+1 ·u from below and above while com-
paring the two bounds. Starting with the upper bound, we need to examine three differ-
ent cases for every t. If yt(wt · xt) ≤ 0 then wt+1 = wt + ytxt and therefore,

A New Perspective on an Old Perceptron Algorithm 269

‖wt+1‖2 = ‖wt‖2 + ‖xt‖2 + 2yt(wt · xt) ≤ ‖wt‖2 + ‖xt‖2 ≤ ‖wt‖2 + R2 .

In the second case where yt(wt · xt) > 0 yet the Ballseptron suffers a margin mistake,
we know that yt(wt · x̂t) ≤ 0 and thus get

‖wt+1‖2 = ‖wt + ytx̂t‖2 = ‖wt‖2 + ‖x̂t‖2 + 2yt(wt · x̂t) ≤ ‖wt‖2 + ‖x̂t‖2 .

Recall that x̂t = xt − ytrwt/‖wt‖ and therefore,

‖x̂t‖2 = ‖xt‖2 + r2 − 2ytr(xt · wt)/‖wt‖ < ‖xt‖2 + r2 ≤ R2 + r2 .

Finally in the third case where yt(wt · x̂t) > 0 we have ‖wt+1‖2 = ‖wt‖2. We can
summarize the three different scenarios by defining two variables: τt ∈ {0, 1} which
is 1 iff yt(wt · xt) ≤ 0 and similarly τ̃t ∈ {0, 1} which is 1 iff yt(wt · xt) > 0 and
yt(wt · x̂t) ≤ 0. Unraveling the bound on the norm of wT+1 while using the definitions
of τt and τ̃t gives,

‖wT+1‖2 ≤ R2
T∑

t=1

τt + (R2 + r2)
T∑

t=1

τ̃t .

Let us now denote by ε =
∑T

t=1 τt the number of mistakes the Ballseptron makes and
analogously by ε̃ =

∑T
t=1 τ̃t the number of margin errors of the Ballseptron. Using the

two definitions along with the Cauchy-Schwartz inequality yields that,

wT+1 · u ≤ ‖wT+1‖ ‖u‖ = ‖wT+1‖ ≤
√

εR2 + ε̃(R2 + r2) . (8)

This provides us with an upper bound on wT+1 · u. We now turn to derive a lower
bound on wT+1 · u. As in the derivation of the upper bound, we need to consider three
cases. The definition of �t immediately implies that �t ≥ γ − ytxt · u. Hence, in the
first case (a prediction mistake), we can bound wt+1 · u as follows,

wt+1 · u = (wt + ytxt) · u ≥ wt · u + γ − �t ,

In the second case (a margin error) the Ballseptron’s update is wt+1 = wt+ytx̂t which
results in the following bound,

wt+1 · u = (wt + ytx̂t) · u =
(
wt + ytxt − r

wt

‖wt‖

)
· u

≥ wt · u + γ − �t − r

(
wt

‖wt‖
· u

)
.

Since the norm of u is assumed to be 1, by using Cauchy-Schwartz inequality we can
bound wt

‖wt‖ ·u by 1. We thus get that, wt+1 ·u ≥ wt ·u+γ−�t−r. Finally, on rounds
for which there was neither a prediction mistake nor a margin error we immediately get
that, wt+1 ·u = wt ·u. Combining the three cases while using the definitions of τt, τ̃t, ε
and ε̃ we get that,

wT+1 · u ≥ εγ + ε̃(γ − r) −
T∑

t=1

(τt + τ̃t)�t . (9)

270 S. Shalev-Shwartz and Y. Singer

We now apply Cauchy-Schwartz inequality once more to obtain that,

T∑
t=1

(τt + τ̃t)�t ≤
(

T∑
t=1

(τt + τ̃t)2
) 1

2
(

T∑
t=1

(�t)2
) 1

2

= D2

√
ε + ε̃ .

Combining the above inequality with Eq. (9) we get the following lower bound on
wT+1 · u,

wT+1 · u ≥ εγ + ε̃(γ − r) −D2

√
ε + ε̃ . (10)

We now tie the lower bound on wT+1 · u from Eq. (10) with the upper bound
from Eq. (8) to obtain that,√

εR2 + ε̃(R2 + r2) ≥ εγ + ε̃(γ − r) −D2

√
ε + ε̃ . (11)

Let us now denote by g(ε, ε̃) the difference between the two sides of the above equation,
that is,

g(ε, ε̃) = εγ + ε̃(γ − r) −
√

εR2 + ε̃(R2 + r2) −D2

√
ε + ε̃ . (12)

Eq. (11) implies that g(ε, ε̃) ≤ 0 for the particular values of ε and ε̃ obtained by
the Ballseptron algorithm. We now use the this fact to show that ε cannot exceed
((R + D2)/γ)2. First note that if ε̃ = 0 then g is a quadratic function in

√
ε and there-

fore
√

ε is at most the positive root of the equation g(ε, 0) = 0 which is (R + D2)/γ.
We thus get,

g(ε, 0) ≤ 0 ⇒ ε ≤
(

R + D2

γ

)2

.

If ε̃ ≥ 1 and ε+ ε̃ ≤ ((R +D2)/γ)2 then the bound stated in the theorem immediately
holds. Therefore, we only need to analyze the case in which ε̃ ≥ 1 and ε + ε̃ > ((R +
D2)/γ)2. In this case we derive the mistake bound by showing first that the function
g(ε, ε̃) is monotonically increasing in ε̃ and therefore g(ε, 0) ≤ g(ε, ε̃) ≤ 0. To prove
the monotonicity of g we need the following simple inequality which holds for a > 0,
b ≥ 0 and c > 0,

√
a + b + c−

√
a + b =

c√
a + b + c +

√
a + b

<
c

2
√

a
. (13)

Let us now examine g(ε, ε̃ + 1) − g(ε, ε̃). Expanding the definition of g from Eq. (12)
and using Eq. (13) we get that,

g(ε, ε̃ + 1) − g(ε, ε̃) = γ − r −
√

εR2 + ε̃(R2 + r2) + R2 + r2

+
√

εR2 + ε̃(R2 + r2) −D2

√
ε + ε̃ + 1 + D2

√
ε + ε̃

≥ γ − r − R2 + r2

2R
√

ε + ε̃
− D2

2
√

ε + ε̃

= γ − r − R + D2 + r2/R

2
√

ε + ε̃
.

A New Perspective on an Old Perceptron Algorithm 271

We now use the assumption that ε + ε̃ > ((R + D2)/γ)2 and that γ ≤ R to get that,

g(ε, ε̃ + 1) − g(ε, ε̃) ≥ γ

(
1 − r

γ
− R + D2

2γ
√

ε + ε̃
− r2

2R(R + D2)

)
> γ

(
1 − r

γ
− 1

2
− 1

2

(
r

γ

)2
)

. (14)

The condition that r ≤ (
√

2−1) γ implies that the term 0.5−r/γ−0.5(r/γ)2 is strictly
positive. We have thus shown that g(ε, ε̃ + 1) − g(ε, ε̃) > 0 hence g is monotonically
increasing in ε̃. Therefore, from Eq. (11) we get that 0 ≥ g(ε, ε̃) > g(ε, 0). Finally, as
already argued above, the condition 0 ≥ g(ε, 0) ensures that ε ≤ ((R + D2)/γ)2. This
concludes our proof. ��

The above bound ensures that whenever r is less than (
√

2 − 1) γ, the Ballseptron
mistake bound is as good as Freund and Schapire’s [9] mistake bound for the Per-
ceptron. The natural question that arises is whether the Ballseptron entertains any ad-
vantage over the less complex Perceptron algorithm. As we now argue, the answer is
yes so long as the number of margin errors, ε̃, is strictly positive. First note that if
ε + ε̃ ≤ ((R + D2)/γ)2 and ε̃ > 0 then ε ≤ ((R + D2)/γ)2 − ε̃ which is strictly
smaller than the mistake bound from [9]. The case when ε+ ε̃ > ((R+D2)/γ)2 needs
some deliberation. To simplify the derivation let β = 0.5−r/γ−0.5 (r/γ)2. The proof
of Thm. 1 implies that g(ε, ε̃ + 1) − g(ε, ε̃) ≥ βγ. From the same proof we also know
that g(ε, ε̃) ≤ 0. We thus get that g(ε, 0) + ε̃βγ ≤ g(ε, ε̃) ≤ 0. Expanding the term
g(ε, 0) + ε̃βγ we get the following inequality,

εγ −
√

εR2 −D2

√
ε + ε̃βγ = εγ −

√
ε(R + D2) + ε̃βγ ≤ 0 . (15)

The left-hand side of Eq. (15) is a quadratic function in
√

ε. Thus,
√

ε cannot exceed
the positive root of this function. Therefore, the number of prediction mistakes, ε, can
be bounded above as follows,

ε ≤
(

R + D2 +
√

(R + D2)2 − 4βγ2ε̃

2γ

)2

≤ (R + D2)2 + 2 (R + D2)
√

(R + D2)2 − 4βγ2ε̃ + (R + D2)2 − 4βγ2ε̃

4γ2

≤
(

R + D2

γ

)2

− βε̃ .

We have thus shown that whenever the number of margin errors ε̃ is strictly positive, the
number of prediction mistakes is smaller than ((R + D2)/γ)2, the bound obtained by
Freund and Schapire for the Perceptron algorithm. In other words, the mistake bound
we obtained puts a cap on a function which depends both on ε and on ε̃. Margin errors
naturally impose more updates to the classifier, yet they come at the expense of sheer
prediction mistakes. Thus, the Ballseptron algorithm is most likely to suffer a smaller
number of prediction mistakes than the standard Perceptron algorithm. We summarize
these facts in the following corollary.

272 S. Shalev-Shwartz and Y. Singer

Corollary 1. Under the same assumptions of Thm. 1, the number of prediction mistakes
the Ballseptron algorithm makes is at most,(

R + D2

γ

)2

− ε̃

(
1
2
− r

γ
− 1

2

(
r

γ

)2
)

,

where ε̃ is the number of margin errors of the Ballseptron algorithm.

Thus far, we derived mistake bounds that depend on R,γ, and D2 which is the square-
root of the sum of the squares of hinge-losses. We now turn to an analogous mistake
bound which employs D1 instead of D2. Our proof technique is similar to the proof of
Thm. 1 and we thus confine the next proof solely to the modifications that are required.

Theorem 2. Under the same assumptions of Thm. 1, the number of prediction mistakes
the Ballseptron algorithm makes is at most,(

R +
√

γ D1

γ

)2

.

Proof. Following the proof outline of Thm. 1, we start by modifying the lower bound
on wT+1 · u. First, note that the lower bound given by Eq. (9) still holds. In addition,
τt + τ̃t ≤ 1 for all t since on each round there exists a mutual exclusion between a
prediction mistake and a margin error. We can therefore simplify Eq. (9) and rewrite it
as, wT+1 · u ≥ εγ −

∑T
t=1 �t + ε̃(γ − r). Combining this lower bound on wT+1 · u

with the upper bound on wT+1 · u given in Eq. (8) we get that,

εγ + ε̃(γ − r) −
T∑

t=1

�t ≤
√

εR2 + ε̃(R2 + r2) . (16)

Similar to the definition of g from Thm. 1, we define the following auxiliary function,

q(ε, ε̃) = εγ + ε̃(γ − r) −
√

εR2 + ε̃(R2 + r2) −D1 .

Thus, Eq. (16) yields that q(ε, ε̃) ≤ 0. We now show that q(ε, ε̃) ≤ 0 implies that ε
cannot exceed ((R +

√
γD1)/γ)2. First, note that if ε̃ = 0 then q becomes a quadratic

function in
√

ε. Therefore,
√

ε cannot be larger than the positive root of the equation
q(ε, 0) = 0 which is,

R +
√

R2 + 4γD1

2γ
≤ R +

√
γD1

γ
.

We have therefore shown that,

q(ε, 0) ≤ 0 ⇒ ε ≤
(

R +
√

γD1

γ

)2

.

We thus assume that ε̃ ≥ 1. Again, if ε + ε̃ ≤ (R/γ)2 then the bound stated in the
theorem immediately holds. We are therefore left with the case ε + ε̃ > (R/γ)2 and

A New Perspective on an Old Perceptron Algorithm 273

ε̃ > 0. To prove the theorem we show that q(ε, ε̃) is monotonically increasing in ε̃.
Expanding the function q and using as before the bound given in Eq. (13) we get that,

q(ε, ε̃ + 1) − q(ε, ε̃) = γ − r −
√

εR2 + (ε̃ + 1)(R2 + r2) +
√

εR2 + ε̃(R2 + r2)

> γ − r − R2 + r2

2
√

(ε + ε̃)R2
= γ − r − R + r2/R

2
√

ε + ε̃
.

Using the assumption that ε + ε̃ > (R/γ)2 and that γ ≤ R let us further bound the
above as follows,

q(ε, ε̃ + 1) − q(ε, ε̃) > γ − r − γ

2
− γr2

2R2
≥ γ

(
1
2
− r

γ
− 1

2

(
r

γ

)2
)

.

The assumption that r ≤ (
√

2 − 1)γ yields that q(ε, ε̃ + 1) − q(ε, ε̃) ≥ 0 and therefore
q(ε, ε̃) is indeed monotonically increasing in ε̃ for ε + ε̃ > R2/γ2. Combining the
inequality q(ε, ε̃) ≤ 0 with the monotonicity property we get that q(ε, 0) ≤ q(ε, ε̃) ≤ 0
which in turn yields the bound of the theorem. This concludes our proof. ��

The bound of Thm. 2 is similar to the bound of Thm. 1. The natural question that arises
is whether we can obtain a tighter mistake bound whenever we know the number of
margin errors ε̃. As for the bound based on D2, the answer for the D1-based bound is
affirmative. Recall that we define the value of 1/2 − r/γ − 1/2(r/γ)2 by β. We now
show that the number of prediction mistakes is bounded above by,

ε ≤
(

R +
√

γD1

γ

)2

− ε̃β . (17)

First, if ε + ε̃ ≤ (R/γ)2 then the bound above immediately holds. In the proof of
Thm. 2 we have shown that if ε + ε̃ > (R/γ)2 then q(ε, ε̃ + 1) − q(ε, ε̃) ≥ βγ.
Therefore, q(ε, ε̃) ≥ q(ε, 0) + ε̃βγ. Recall that Eq. (16) implies that q(ε, ε̃) ≤ 0 and
thus we get that q(ε, 0) + ε̃βγ ≤ 0 yielding the following,

εγ −R
√

ε −D1 + ε̃βγ ≤ 0 .

The left-hand side of the above inequality is yet again a quadratic function in
√

ε. There-
fore, once more

√
ε is no bigger than the positive root of the equation and we get that,

√
ε ≤ R +

√
R2 + 4γD1 − 4γ2βε̃

2γ
,

and thus,

ε ≤ R2 + 2R
√

R2 + 4γD1 − 4γ2βε̃ + R2 + 4γD1 − 4γ2βε̃

4γ2

≤ R2 + 2R
√

γD1 + γD1

γ2
− βε̃ ,

which can be translated to the bound on ε from Eq. (17).

274 S. Shalev-Shwartz and Y. Singer

Summing up, the Ballseptron algorithm entertains two mistake bounds: the first is
based on the root of the cumulative square of losses (D2) while the second is based di-
rectly on the cumulative sum of hinge losses (D1). Both bounds imply that the Ballsep-
tron would make fewer prediction mistakes than the original Perceptron algorithm so
long as the Ballseptron suffers margin errors along its run. Since margin errors are likely
to occur for reasonable choices of r, the Ballseptron is likely to attain a smaller number
of prediction mistakes than the Perceptron algorithm. Indeed, preliminary experiments
reported in Sec. 5 indicate that for a wide range of choices for r the number of online
prediction mistakes of the Ballseptron is significantly lower than that of the Perceptron.

The bounds of Thm. 1 and Thm. 2 hold for any r ≤ (
√

2 − 1)γ, in particular for
r = 0. When r = 0, the Ballseptron algorithm reduces to the Perceptron algorithm.
In the case of Thm. 1 the resulting mistake bound for r = 0 is identical to the bound
of Freund and Schapire [9]. Our proof technique though is substantially different than
the one in [9] which embeds each instance in a high dimensional space rendering the
problem separable. Setting r to zero in Thm. 2 yields a new mistake bound for the
Perceptron with

√
γD1 replacing D2 in the bound. The latter bound is likely to be

tighter in the presence of noise which may cause large margin errors. Specifically, the
bound of Thm. 2 is better than that of Thm. 1 when

γ

T∑
t=1

�t ≤
T∑

t=1

�2t .

We therefore expect the bound in Thm. 1 to be better when �t is small and otherwise
the new bound is likely to be better. We further investigate the difference between the
two bounds in Sec. 5.

4 An Extension to Multiclass Problems

In this section we describe a generalization of the Ballseptron to the task of multiclass
classification. For concreteness we assume that there are k different possible labels and
denote the set of all possible labels by Y = {1, . . . , k}. There are several adaptations
of the Perceptron algorithm to multiclass settings (see for example [5, 7, 16, 17]), many
of which are also applicable to the Ballseptron. We now outline one possible multiclass
extension in which we associate a weight vector with each class. Due to the lack of
space proofs of the mistake bound obtained by our construction are omitted. Let wr

denote the weight vector associated with a label r ∈ Y . We also refer to wr as the
r’th prototype. As in the binary case we initialize each of the prototypes to be the zero
vector. The predicted label of an instance xt is defined as,

ŷt = argmax
r∈Y

wr
t · xt .

Upon receiving the correct label yt, if ŷt �= yt we perform the following update which
is a multiclass generalization of the Perceptron rule,

wyt

t+1 = wyt

t + xt ; wŷt

t+1 = wŷt

t − xt ; wr
t+1 = wr

t (∀r ∈ Y \ {yt, ŷt}) . (18)

A New Perspective on an Old Perceptron Algorithm 275

In words, we add the instance xt to the prototype of the correct label and subtract xt

from the prototype of ŷt. The rest of the prototypes are left intact. If ŷt = yt, we check
whether we still encounter a margin error. Let ỹt denote the index of the prototype
whose inner-product with xt is the second largest, that is,

ỹt = argmax
y �=yt

(wy
t · xt) .

Analogous to the definition of x̂t in the binary classification problem, we define x̂t as
the solution to the following optimization problem,

x̂t = argmin
x∈B(xt,r)

(
wyt

t · x − wŷt

t · x
)

. (19)

Note that if wyt

t · x̂t > wỹt

t · x̂t then all the points in B(xt, r) are labeled correctly and
there is no margin error. If this is the case we leave all the prototypes intact. If however
wyt

t · x̂t ≤ wỹt

t · x̂t we perform the update given by Eq. (18) using x̂t instead of xt and
ỹt instead of ŷt. The same derivation described in Sec. 2, yields that x̂t = xt +r(wỹt

t −
wyt

t)/‖wỹt

t − wyt

t ‖. The analysis of the Ballseptron from Sec. 3 can be adapted to the
multiclass version of the algorithm as we now briefly describe. Let {u1, . . . ,uk} be
a set of k prototype vectors such that

∑k
i=1 ‖ui‖2 = 1. For each multiclass example

(xt, yt) define the hinge-loss of the above prototypes on this example as,

�t = max
{

0 , max
y �=yt

(γ − (uyt − uy) · xt)
}

.

We now redefine D2 and D1 using the above definition of the hinge-loss. In addition,
we need to redefine R to be R =

√
2 maxt ‖xt‖. Using these definitions, it can be

shown that slightly weaker versions of the bounds from Sec. 3 can be obtained.

5 Experimental Results

In this section we present experimental results that demonstrate different aspects of the
Ballseptron algorithm and its accompanying analysis. In the first experiment we exam-
ine the effect of the radius r employed by the Ballseptron on the number of prediction
mistakes it makes. We used two standard datasets: the MNIST dataset which consists of
60, 000 training examples and the USPS dataset which has 7291 training examples. The
examples in both datasets are images of handwritten digits where each image belongs
to one of the 10 digit classes. We thus used the multiclass extension of the Ballseptron
described in the previous section. In both experiments we used a fifth degree polyno-
mial kernel with a bias term of 1/2 as our inner-product operator. We shifted and scaled
the instances so that the average instance becomes the zero vector and the average norm
over all instances becomes 1. For both datasets, we run the online Ballseptron algorithm
with different values for the radius r. In the two plots on the top of Fig. 3 we depict ε/T ,
the number of prediction mistakes ε divided by the number of online rounds T as a func-
tion of r. Note that r = 0 corresponds to the original Perceptron algorithm. As can be
seen from the figure, many choices of r result in a significant reduction in the number

276 S. Shalev-Shwartz and Y. Singer

0 0.05 0.1 0.15 0.2
0.03

0.035

0.04

0.045

0.05

0.055

r

ε
/ T

0 0.1 0.2 0.3 0.4

0.045

0.05

0.055

0.06

0.065

0.07

0.075

r

ε
/ T

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

η

ε
/ T

Perceptron
D

1
 bound

D
2
 bound

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

σ

ε
/ T

Perceptron
D

1
 bound

D
2
 bound

Fig. 3. Top plots: The fraction of prediction mistakes (ε/T) as a function of the radius parameter
r for the MNIST (left) and USPS (right) datasets. Bottom plots: The behavior of the mistake
bounds as a function of a label noise rate (left) and an instance noise rate (right)

of online prediction mistakes. However, as anticipated, setting r to be excessively large
deteriorates the performance of the algorithm.

The second experiment compares the mistake bound of Thm. 1 with that of Thm. 2.
To facilitate a clear comparison, we set the parameter r to be zero hence we simply
confined the experiment to the Perceptron algorithm. We compared the mistake bound
of the Perceptron from Eq. (3) derived by Freund and Schapire [9] to the new mis-
take bound given in Thm. 2. For brevity we refer to the bound of Freund and Schapire
as the D2-bound and to the new mistake bound as the D1-bound. We used two syn-
thetic datasets each consisting of 10,000 examples. The instances in the two datasets,
were picked from the unit circle in R2. The labels of the instances were set so that the
examples are linearly separable with a margin of 0.15. Then, we contaminated the in-
stances with two different types of noise, resulting in two different datasets. For the first
dataset we flipped the label of each example with probability η. In the second dataset
we kept the labels intact but added to each instance a random vector sampled from a
2-dimensional Gaussian distribution with a zero mean vector and a covariance matrix
σ2I . We then run the Perceptron algorithm on each of the datasets for different values
of η and σ. We calculated the mistake bounds given in Eq. (3) and in Thm. 2 for each of

A New Perspective on an Old Perceptron Algorithm 277

the datasets and for each value of η and σ. The results are depicted on the two bottom
plots of Fig. 3. As can be seen from the figure, the D1-bound is clearly tighter than the
D2-bound in the presence of label noise. Specifically, whenever the label noise level is
greater than 0.03, the D2-bound is greater than 1 and therefore meaningless. Interest-
ingly, the D1-bound is also slightly better than the D2-bound in the presence of instance
noise. We leave further comparisons of the two bounds to future work.

6 Discussion and Future Work

We presented a new algorithm that uses the Perceptron as its infrastructure. Our algo-
rithm naturally employs the notion of margin. Previous online margin-based algorithms
yielded essentially the same mistake bound obtained by the Perceptron. In contrast,
under mild conditions, our analysis implies that the mistake bound of the Ballseptron
is superior to the Perceptron’s bound. We derived two mistake bounds, both are also
applicable to the original Perceptron algorithm. The first bound reduces to the original
bound of Freund and Schpire [9] while the second bound is new and is likely to be
tighter than the first in many settings. Our work can be extended in several directions.
A few variations on the proposed approach, which replaces the original example with a
pseudo-example, can be derived. Most notably, we can update wt based on x̂t even for
cases where there is a prediction mistake. Our proof technique is still applicable, yield-
ing a different mistake bound. More complex prediction problems such as hierarchical
classification may also be tackled in a similar way to the proposed multiclass extension.
Last, we would like to note that the Ballseptron can be used as a building block for find-
ing an arbitrarily close approximation to the max-margin solution in a separable batch
setting.

Acknowledgments

We would like to thank the COLT committee members for their constructive comments.
This research was funded by EU Project PASCAL and by NSF ITR award 0205594.

References

1. S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics,
6(3):382–392, 1954.

2. J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Advances in
Neural Information Processing Systems 17, 2004.

3. H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962. Reprinted in ”Neurocomputing” by Anderson and Rosenfeld.

4. A. Blum and J.D. Dunagan. Smoothed analysis of the perceptron algorithm for linear pro-
gramming. In SODA, 2002.

5. K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive algo-
rithms. In Advances in Neural Information Processing Systems 16, 2003.

6. K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis of the LVQ
algorithm. In Advances in Neural Information Processing Systems 15, 2002.

278 S. Shalev-Shwartz and Y. Singer

7. K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.
Jornal of Machine Learning Research, 3:951–991, 2003.

8. S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis
dimension. Machine Learning, 21(3):269–304, 1995.

9. Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296, 1999.

10. C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research, 2:213–242, 2001.

11. J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In Advances in
Neural Information Processing Systems 14. MIT Press, 2002.

12. Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning,
46(1–3):361–387, 2002.

13. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. The
MIT Press, 1969.

14. A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

15. F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing
(MIT Press, 1988).).

16. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
17. J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In

Proceedings of the Seventh European Symposium on Artificial Neural Networks, April 1999.

Fast Rates for Support Vector Machines

Ingo Steinwart and Clint Scovel

CCS-3, Los Alamos National Laboratory, Los Alamos NM 87545, USA
{ingo, jcs}@lanl.gov

Abstract. We establish learning rates to the Bayes risk for support vec-
tor machines (SVMs) using a regularization sequence λn = n−α, where
α ∈ (0, 1) is arbitrary. Under a noise condition recently proposed by Tsy-
bakov these rates can become faster than n−1/2. In order to deal with the
approximation error we present a general concept called the approxima-
tion error function which describes how well the infinite sample versions
of the considered SVMs approximate the data-generating distribution.
In addition we discuss in some detail the relation between the “classical”
approximation error and the approximation error function. Finally, for
distributions satisfying a geometric noise assumption we establish some
learning rates when the used RKHS is a Sobolev space.

1 Introduction

The goal in binary classification is to predict labels y ∈ Y := {−1, 1} of unseen
data points x ∈ X using a training set T =

(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y)n.

As usual we assume that both the training samples (xi, yi) and the new sample
(x, y) are i.i.d. drawn from an unknown distribution P on X × Y . Now given a
classifier C that assigns to every T a function fT : X → R the prediction of C for
y is sign fT (x), where we choose a fixed definition of sign(0) ∈ {−1, 1}. In order
to “learn” from T the decision function fT : X → R should guarantee a small
probability for the misclassification, i.e. sign fT (x) �= y, of the example (x, y).
To make this precise the risk of a measurable function f : X → R is defined by

RP (f) := P
(
{(x, y) : sign f(x) �= y}

)
,

and the smallest achievable risk RP := inf{RP (f) | f : X → R measurable}
is known as the Bayes risk of P . A function fP attaining this risk is called a
Bayes decision function. Obviously, a good classifier should produce decision
functions whose risks are close to the Bayes risk with high probability. To make
this precise, we say that a classifier is universally consistent if

ET∼P nRP (fT) −RP → 0 for n → ∞. (1)

Unfortunately, it is well known that no classifier can guarantee a convergence
rate in (1) that simultaneously holds for all distributions (see [1–Thm. 7.2]).
However, if one restricts considerations to suitable smaller classes of distributions

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 279–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

280 I. Steinwart and C. Scovel

such rates exist for various classifiers (see e.g. [2, 3, 1]). One interesting feature of
these rates is that they are not faster than n−1/2 if the considered distributions
P are allowed to be noisy in the sense of RP > 0. On the other hand, if one
restricts considerations to noise-free distributions P in the sense of RP = 0 then
some empirical risk minimization (ERM) methods can actually learn with rate
n−1 (see e.g. [1]). Remarkably, it was only recently discovered (see [4, 5]) that
there also exists classes of noisy distributions which can be learned with rates
between n−1/2 and n−1. The key property of these classes is that their noise
level x !→ 1/2−|η(x)−1/2| with η(x) := P (y = 1|x) is well-behaved in the sense
of the following definition.

Definition 1. A distribution P on X × Y has Tsybakov noise exponent q ∈
[0,∞], if there exists a C > 0 such that for all sufficiently small t > 0 we have

PX

(
{x ∈ X : |2η(x) − 1| ≤ t}

)
≤ C · tq . (2)

Obviously, all distributions have at least noise exponent 0. At the other ex-
treme, (2) is satisfied for q = ∞ if and only if the conditional probability η is
bounded away from the critical level 1/2. In particular this shows that noise-free
distributions have exponent q = ∞.

The aim of this work is to establish learning rates for support vector machines
(SVMs) under Tsybakov’s noise assumption which are comparable to the rates
of [4, 5]). Therefore let us now recall these classification algorithms: let X be
a compact metric space and H be a RKHS over X with continuous kernel k.
Furthermore, let l : Y ×R → [0,∞) be the hinge loss which is defined by l(y, t) :=
max{0, 1 − yt}. Then given a training set T ∈ (X × Y)n and a regularization
parameter λ > 0 SVMs solve the optimization problems

(f̃T,λ, b̃T,λ) := arg min
f∈H
b∈R

λ‖f‖2
H +

1
n

n∑
i=1

l
(
yi, f(xi) + b

)
, (3)

or

fT,λ := arg min
f∈H

λ‖f‖2
H +

1
n

n∑
i=1

l
(
yi, f(xi)

)
, (4)

respectively. Furthermore, in order to control the size of the offset we always
choose b̃T,λ := y∗ if all samples of T have label y∗. As usual we call algorithms
solving (3) L1-SVMs with offset and algorithms solving (4) L1-SVMs without
offset. For more information on these methods we refer to [6].

The rest of this work is organized as follows: In Section 2 we first introduce
two concepts which describe the richness of RKHSs. We then present our main
result and discuss it. The following sections are devoted to the proof of this result:
In Section 3 we recall some results from [7] which are used for the analysis of
the estimation error, and in Section 4 we then prove our main result. Finally,
the relation between the approximation error and infinite sample SVMs which
is of its own interest is discussed in the appendix.

Fast Rates for Support Vector Machines 281

2 Definitions and Results

For the formulation of our results we need two notions which deal with the
richness of RKHSs. While the first notion is a complexity measure in terms of
covering numbers which is used to bound the estimation error, the second one
describes the approximation properties of RKHSs with respect to distributions.

In order to introduce the complexity measure let us recall that for a Banach
space E with closed unit ball BE , the covering numbers of A ⊂ E are defined by

N (A, ε,E) := min
{
n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂

n⋃
i=1

(xi+εBE)
}
, ε > 0.

Given a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y)n we denote the space
of all equivalence classes of functions f : X × Y → R equipped with norm

‖f‖L2(T) :=

(
1
n

n∑
i=1

∣∣f(xi, yi)
∣∣2) 1

2

(5)

by L2(T). In other words, L2(T) is a L2-space with respect to the empirical
measure of T . Note, that for a function f : X×Y → R a canonical representative
in L2(T) is the restriction f|T . Furthermore, we write L2(TX) for the space of all
(equivalence classes of) square integrable functions with respect to the empirical
measure of x1, . . . , xn. Now our complexity measure is:

Definition 2. Let H be a RKHS over X and BH its closed unit ball. We say
that H has complexity exponent 0 < p ≤ 2 if there exists a constant c > 0 such
that for all ε > 0 we have

sup
TX∈Xn

logN
(
BH , ε, L2(TX)

)
≤ cε−p .

By using the theory of absolutely 2-summing operators one can show that
every RKHS has complexity exponent p = 2. However, for meaningful rates we
need complexity exponents which are strictly smaller than 2.

In order to introduce the second notion describing the approximation prop-
erties of RKHSs we first have to recall the infinite sample versions of (3) and (4).
To this end let l be the hinge loss function and P be a distribution on X × Y .
Then for f : X → R the l-risk of f is defined by Rl,P (f) := E(x,y)∼P l(y, f(x)).
Now given a RKHS H over X and λ > 0 we define

(f̃P,λ, b̃P,λ) := arg min
f∈H
b∈R

(
λ‖f‖2

H + Rl,P (f + b)
)

(6)

and
fP,λ := arg min

f∈H

(
λ‖f‖2

H + Rl,P (f)
)

(7)

(see [8] for the existence of these minimizers). Note that these definitions give
the solutions (f̃T,λ, b̃T,λ) and fT,λ of (3) and (4), respectively, if P is an empirical

282 I. Steinwart and C. Scovel

distribution with respect to a training set T . In this case we write Rl,T (f) for
the (empirical) l-risk.

With these notations in mind we define the approximation error function by

a(λ) := λ‖fP,λ‖2
H + Rl,P (fP,λ) −Rl,P , λ ≥ 0 , (8)

where Rl,P := inf{Rl,P (f) | f : X → R} denotes the smallest possible l-risk.
Note that since the obvious variant of a(.) that involves an offset is not greater
than the above approximation error function, we restrict our attention to the
latter. Furthermore, we discuss the relationship between a(.) and the standard
approximation error in the appendix.

The approximation error function quantifies how well an infinite sample L1-
SVM with RKHS H approximates the minimal l-risk. It was shown in [8] that
if H is dense in the space of continuous functions C(X) then for all P we have
a(λ) → 0 if λ → 0. However, in non-trivial situations no rate of convergence
which uniformly holds for all distributions P is possible. The following definition
characterizes distributions which guarantee certain polynomial rates:

Definition 3. Let H be a RKHS over X and P be a probability measure on
X × Y . We say that H approximates P with exponent 0 ≤ β ≤ 1 if there exists
a constant C > 0 such that for all λ > 0 we have

a(λ) ≤ Cλβ .

Note, that H approximates every distribution P with exponent β = 0. We
will see in the appendix that the other extremal case β = 1 is equivalent to the
fact that the minimal l-risk can be achieved by an element fl,P ∈ H.

With the help of the above notations we can now formulate our main result.

Theorem 1. Let H be a RKHS of a continuous kernel on a compact metric
space X with complexity exponent 0 < p < 2, and let P be a probability measure
on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞. Furthermore, assume that
H approximates P with exponent 0 < β ≤ 1. We define λn := n−α for some
α ∈ (0, 1) and all n ≥ 1. If α < 4(q+1)

(2q+pq+4)(1+β) then there exists a C > 0 with

Pr∗
(
T ∈ (X × Y)n : RP (fT,λn

) ≤ RP + Cx2n−αβ
)

≥ 1 − e−x

for all n ≥ 1 and x ≥ 1. Here Pr∗ is the outer probability of Pn in order to
avoid measurability considerations. Furthermore, if α ≥ 4(q+1)

(2q+pq+4)(1+β) then for
all ε > 0 there is a C > 0 such that for all x ≥ 1, n ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n : RP (fT,λn

) ≤ RP + Cx2n− 4(q+1)
(2q+pq+4)+α+ε

)
≥ 1 − e−x .

Finally, the same results hold for the L1-SVM with offset whenever q > 0.

Fast Rates for Support Vector Machines 283

Remark 1. The best rates Theorem 1 can guarantee are (up to an ε) of the form

n− 4β(q+1)
(2q+pq+4)(1+β) ,

and an easy calculation shows that these rates are obtained for the value α :=
4(q+1)

(2q+pq+4)(1+β) . This result has already been announced in [9] and presented in an
earlier (and substantially longer) version of [7]. The main difference of Theorem
1 to its predecessors is that it does not require to choose α optimally. Finally
note that unfortunately the optimal α is in terms of both q and β, which are in
general not accessible. At the moment we are not aware of any method which
can adaptively find the (almost) optimal values for α.

Remark 2. In [5] it is assumed that a Bayes classifier is contained in the base
function classes the considered ERM method minimizes over. This assumption
corresponds to a perfect approximation of P by H, i.e. β = 1, as we will see in
the apppendix. If in this case we rescale the complexity exponent p from (0, 2) to
(0, 1) and write p′ for the new complexity measure our optimal rate essentially
becomes n

− q+1
q+p′q+2 . Recall that this is exactly the form of Tsybakov’s result in

[5] which is known to be optimal in a minmax sense for some specific classes
of distributions. However, as far as we know our complexity measure cannot be
compared to Tsybakov’s and thus the above reasoning only indicates that our
optimal rates may be optimal in a minmax sense.

Let us finally present an example which shows how the developed theory can
be used to establish learning rates for specific types of kernels and distributions.

Example 1 (SVMs using Sobolev spaces). Let X ⊂ Rd be the closed unit Euclid-
ian ball, Ω be the centered open ball of radius 3, and Wm(Ω) be the Sobolev
space of order m ∈ N over Ω. Recall that Wm(Ω) is a RKHS of a continuous
kernel if m > d/2 (see e.g. [10]). Let us write Hm := {f|X : f ∈ Wm(Ω)} for
the restriction of Wm(Ω) onto X endowed with the induced RKHS norm. Then
(see again [10]) the RKHS Hm has complexity exponent p := d/m if m > d/2.

Now let P be a distribution on X × Y which has geometric noise exponent
α ∈ (0,∞] in the sense of [7], and let kσ(x, x′) := exp(−σ2‖x−x′‖), x, x′ ∈ Ω, be
a Gaussian RBF kernel with associated integral operator Tσ : L2(Ω) → L2(Ω),
where L2(Ω) is with respect to the Lebesgue measure. Then by the results in [7–
Secs. 3 & 4] there exist constants cd, cα,m,d ≥ 1 such that for all σ > 0 there exists
an fσ ∈ L2(Ω) with ‖fσ‖L2(Ω) = cdσ

d, Rl,P ((Tσfσ)|X) − Rl,P ≤ cα,m,dσ
−αd,

and ‖(Tσfσ)|X‖Hm
≤ cα,m,dσ

m−d/2‖fσ‖L2(Ω). This yields a constant c > 0 with

a(λ) ≤ c
(
λσ2m+d + σ−αd

)
for all σ > 0 and all λ > 0. Minimizing with respect to σ then shows that
Hm approximates P with exponent β := αd

(α+1)d+2m . Consequently we can use
Theorem 1 to obtain learning rates for SVMs using Hm for m > d/2. In particular
the resulting optimal rates in the sense of Remark 1 are (essentially) of the form

n− 4αdm(q+1)
(2mq+dq+4m)(2αd+d+2m) .

284 I. Steinwart and C. Scovel

3 Prerequisites

In this section we recall some important notions and results that we require in
the proof of our main theorem. To this end let H be a RKHS over X that has
a continuous kernel k. Then recall that every f ∈ H is continuous and satisfies

‖f‖∞ ≤ K‖f‖H ,

where we use
K := sup

x∈X

√
k(x, x).

The rest of this section recalls some results from [7] which will be used to
bound the estimation error of L1-SVMs. Before we state these results we have to
recall some notation from [7]: let F be a class of bounded measurable functions
from a set Z to R, and let L : F × Z → [0,∞) be a function. We call L a loss
function if L ◦ f := L(f, .) is measurable for all f ∈ F . Moreover, if F is convex,
we say that L is convex if L(., z) is convex for all z ∈ Z. Finally, L is called line-
continuous if for all z ∈ Z and all f, f̂ ∈ F the function t !→ L(tf +(1− t)f̂ , z) is
continuous on [0, 1]. Note that if F is a vector space then every convex L is line-
continuous. Now, given a probability measure P on Z we denote by fP,F ∈ F a
minimizer of the L-risk

f !→ RL,P (f) := Ez∼P L(f, z).

If P is an empirical measure with respect to T ∈ Zn we write fT,F and RL,T (.)
as usual. For simplicity, we assume throughout this section that fP,F and fT,F
do exist. Also note that although there may exist multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of
this symbol can be expected. Furthermore, an algorithm that produces solutions
fT,F for all possible T is called an empirical L-risk minimizer.

Now the main result of this section, shown in [7], reads as follows:

Theorem 2. Let F be a convex set of bounded measurable functions from Z to
R and let L : F ×Z → [0,∞) be a convex and line-continuous loss function. For
a probability measure P on Z we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F

}
. (9)

Suppose we have c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ
and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is separable with
respect to ‖.‖∞ and that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN
(
B−1G, ε, L2(T)

)
≤ aε−p (10)

for all ε > 0. Then there exists a constant cp > 0 depending only on a and p
such that for all n ≥ 1 and all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RL,P (fT,F) > RL,P (fP,F) + cp ε(n,B, c, δ, x)

)
≤ e−x ,

Fast Rates for Support Vector Machines 285

where

ε(n,B, c, δ, x) := B
2p

4−2α+αp c
2−p

4−2α+αp n− 2
4−2α+αp + B

p
2 δ

2−p
4 n− 1

2 + Bn− 2
2+p

+
(δx

n

) 1
2

+
(cx

n

) 1
2−α

+
Bx

n
.

Let us now recall some variance bounds of the form EP g2 ≤ c (EP g)α + δ for
SVMs proved in [7]. To this end let H be a RKHS of a continuous kernel over
X, λ > 0, and l be the hinge loss function. We define

L(f, x, y) := λ‖f‖2
H + l

(
y, f(x)

)
(11)

and
L(f, b, x, y) := λ‖f‖2

H + l
(
y, f(x) + b

)
(12)

for all f ∈ H, b ∈ R, x ∈ X, and y ∈ Y . Since RL,T (.) and RL,T (., .) coincide with
the objective functions of the L1-SVM formulations we see that the L1-SVMs
actually implement an empirical L-risk minimization in the sense of Theorem 2.
Now the first variance bound from [7] does not require any assumptions on P .

Proposition 1. Let 0 < λ < 1, H be a RKHS over X, and F ⊂ λ− 1
2 BH .

Furthermore, let L be defined by (11), P be a probability measure and G be
defined as in (9). Then for all g ∈ G we have

EP g2 ≤ 2λ−1(2 + K)2EP g .

Finally, the following variance bound from [7] shows that the previous bound
can be improved if one assumes a non-trivial Tsybakov exponent for P .

Proposition 2. Let P be a distribution on X×Y with Tsybakov noise exponent
0 < q ≤ ∞. Then there exists a constant C > 0 such that for all λ > 0,
all 0 < r ≤ λ−1/2 satisfying f̃P,λ ∈ rBH , all f ∈ rBH , and all b ∈ R with
|b| ≤ Kr + 1 we have

E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)2

≤ C(Kr + 1)
q+2
q+1

(
E
(
L ◦ (f, b) − L ◦ (f̃P,λ, b̃P,λ)

)) q
q+1

+ C(Kr + 1)
q+2
q+1 a

q
q+1 (λ) .

Furthermore, the same result holds for SVMs without offset.

4 Proof of Theorem 1

In this section we prove Theorem 1. To this end we write f(x)) g(x) for two
functions f, g : D → [0,∞), D ⊂ (0,∞), if there exists a constant C > 0 such
that f(x) ≤ Cg(x) holds over some range of x which usually is implicitly defined
by the context. However for sequences this range is always N. Finally we write
f(x) ∼ g(x) if both f(x)) g(x) and g(x)) f(x) for the same range.

Since our variance bounds have different forms for the cases q = 0 and q > 0
we have to prove the theorem for these cases separately. We begin with the case
q = 0 and an important lemma which describes a “shrinking technique”.

286 I. Steinwart and C. Scovel

Lemma 1. Let H and P be as in Theorem 1. For γ > −β we define λn :=
n− 1

1+β+γ . Now assume that there are constants 0 ≤ ρ < β and C ≥ 1 such that

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Cxλ
ρ−1
2

n

)
≥ 1 − e−x

for all n ≥ 1, x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for
ρ̂ := min

{
β, ρ+β+γ

2 , β + γ
}

and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Ĉxλ
ρ̂−1
2

n

)
≥ 1 − e−x .

Proof. Let f̂T,λn
be a minimizer of RL,T on Cxλ

ρ−1
2

n BH , where L is defined by
(11). By our assumption we have f̂T,λn

= fT,λn
with probability not less than

1 − e−x since fT,λn
is unique for every training set T by the strict convexity of

L. We will show that for some C̃ > 0 and all n ≥ 1, x ≥ 1 the improved bound

‖f̂T,λn
‖ ≤ C̃xλ

ρ̂−1
2

n (13)

holds with probability not less than 1 − e−x. Consequently, ‖fT,λn
‖ ≤ C̃xλ

ρ̂−1
2

n

will hold with probability not less than 1 − 2e−x. Obviously, the latter implies
the assertion. In order to establish (13) we will apply Theorem 2 to the mod-
ified L1-SVM classifier that produces f̂T,λn

. To this end we first observe that
the separability condition of Theorem 2 is satisfied since H is separable and
continuously embedded into C(X). Furthermore it was shown in [7] that the
covering number condition holds and by Proposition 1 we may choose c such
that c ∼ xλ−1

n , and δ = 0. Additionally, we can obviously choose B ∼ λ
(ρ−1)/2
n .

The term ε(n,B, c, δ, x) in Theorem 2 can then be estimated by

ε(n,B, c, δ, x)) xλ
(ρ−1)p
2+p

n λ
− 2−p

2+p
n n− 2

2+p + x2λ
ρ−1
2

n n− 2
2+p + xλ−1

n n−1

) x2λ
pρ+2β+2γ

2+p
n + x2λβ+γ

n .

Now for ρ ≤ β + γ we have ρ+β+γ
2 ≤ pρ+2β+2γ

2+p , and hence we obtain

ε(n,B, c, δ, x)) x2λ
ρ+β+γ

2
n + x2λβ+γ

n .

Furthermore, if ρ > β + γ we have both β + γ < pρ+2β+2γ
2+p and β + γ < ρ+β+γ

2 ,
and thus we again find

ε(n,B, c, δ, x)) x2λβ+γ
n ∼ x2λβ+γ

n + x2λ
ρ+β+γ

2
n .

Now, in both cases Theorem 2 gives a constant C̃1 > 0 independent of n and x
such that for all n ≥ 1 and all x ≥ 1 the estimate

λn‖f̂T,λn
‖2 ≤ λn‖f̂T,λn

‖2 + Rl,P (f̂T,λn
) −Rl,P

≤ λn‖f̂P,λn
‖2 + Rl,P (f̂P,λn

) −Rl,P + C̃1x
2λ

ρ+β+γ
2

n +C̃1x
2λβ+γ

n

Fast Rates for Support Vector Machines 287

holds with probability not less than 1 − e−x. Furthermore, by Theorem 4 we
obtain ‖fP,λn

‖ ≤ λ
(ρ−1)/2
n ≤ Cxλ

(ρ−1)/2
n for large n which gives fP,λn

= f̂P,λn

for such n. With probability not less than 1 − e−x we hence have

λn‖f̂T,λn
‖2 ≤ λn‖fP,λn

‖2 + Rl,P (fP,λn
) −Rl,P + C̃1x

2λ
ρ+β+γ

2
n +C̃1x

2λβ+γ
n

≤ C̃2λ
β
n + C̃1x

2λ
ρ+β+γ

2
n +C̃1x

2λβ+γ
n

for some constants C̃1, C̃2 > 0 independent of n and x. From this we easily
obtain that (13) holds for all n ≥ 1 with probability not less than 1 − e−x. ��

Proof (of Theorem 1 for q = 0). We first observe that there exists a γ > −β

with α = 4(q+1)
(2q+pq+4)(1+β+γ) . We fix this γ and define ρ0 := 0 and ρi+1 :=

min
{
β, ρi+β+γ

2 , β + γ
}
. Then it is easy to check that this definition gives

ρi = min
{
β, (β + γ)

i∑
j=1

2−j , β + γ
}

= min
{
β, (β + γ)(1 − 2−i)

}
.

Now, iteratively applying Lemma 2 gives a sequence of constants Ci > 0 with

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Cixλ
ρi−1

2
n

)
≥ 1 − e−x (14)

for all n ≥ 1 and all x ≥ 1. Let us first consider the case −β < γ ≤ 0. Then we
have ρi = (β + γ)(1 − 2−i), and hence (14) shows that for all ε > 0 there exists
a constant C > 0 such that

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Cxλ
(1−ε)(β+γ)−1

2
n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. We write ρ := (1−ε)(β+γ). As in the proof of Lemma

1 we denote a minimizer of RL,T on Cxλ
ρ−1
2

n BH by f̂T,λn
. We have just seen

that f̂T,λn
= fT,λn

with probability not less than 1 − e−x. Therefore, we only
have to apply Theorem 2 to the modified optimization problem which defines
f̂T,λn

. To this end we first see as in the proof of Lemma 1 that

ε(n,B, c, δ, x)) x2λ
pρ+2β+2γ

2+p
n + x2λβ+γ

n) x2λ
pρ+2β+2γ

2+p
n) x2λβ+γ−ε

n ,

where in the last two estimates we used the definition of ρ. Furthermore, we have
already seen in the proof of Lemma 1 that λn‖f̂P,λn

‖2 + Rl,P (f̂P,λn
) −Rl,P ≤

a(λn) holds for large n. Therefore, applying Theorem 2 and an inequality of
Zhang (see [11]) between the excess classification risk and the excess l-risk we
find that for all n ≥ 1 we have with probability not less than 1 − e−x:

RP (f̂T,λn
) −RP ≤ 2λn‖f̂T,λn

‖2 + 2Rl,P (f̂T,λn
) − 2Rl,P

≤ 2λn‖f̂P,λn
‖2 + 2Rl,P (f̂P,λn

) − 2Rl,P + C̃1x
2λβ+γ−ε

n

≤ C̃2λ
β+γ−ε
n , (15)

288 I. Steinwart and C. Scovel

where C̃1, C̃2 > 0 are constants independent of n and x. Now, from (15) we
easily deduce the assertion using the definition of λn and γ.

Let us finally consider the case γ > 0. Then for large integers i we have
ρi = β, and hence (14) gives a C > 0 such that for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Cxλ
β−1

2
n

)
≥ 1 − e−x .

Proceeding as for γ ≤ 0 we get ε(n,B, c, δ, x)) x2λ
pβ+2β+2γ

2+p
n + x2λβ+γ

n) x2λβ
n ,

from which we easily obtain the assertion using the definition of λn and γ. ��

In the rest of this section we will prove Theorem 1 for q > 0. We begin with
a lemma which is similar to Lemma 1.

Lemma 2. Let H and P be as in Theorem 1. For γ > −β we define λn :=
n− 4(q+1)

(2q+pq+4)(1+β+γ) . Now assume that there are ρ ∈ [0, β) and C ≥ 1 with

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Cxλ
ρ−1
2

n

)
≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for
ρ̂ := min

{
β, ρ+β+γ

2

}
and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n : ‖fT,λn

‖ ≤ Ĉxλ
ρ̂−1
2

n

)
≥ 1 − e−x .

The same result holds for L1-SVM’s with offset.

Proof. For brevity’s sake we only prove this Lemma for L1-SVM’s with offset.
The proof for L1-SVM’s without offset is almost identical.

Now, let L be defined by (12). Analogously to the proof of Lemma 1 we denote

a minimizer of RL,T (., .) on Cxλ
ρ−1
2

n (BH × [−K − 1,K + 1]) by (f̂T,λn
, b̂T,λn

).

By our assumption (see [7]) we have |b̃T,λn
| ≤ Cxλ

ρ−1
2

n (K + 1) with probability
not less than 1 − e−x for all possible values of the offset. In addition, for such
training sets we have f̂T,λn

= f̃T,λn
since the RKHS component f̃T,λn

of L1-SVM
solutions is unique for T by the strict convexity of L in f . Furthermore, by the
above considerations we may define b̂T,λn

:= b̃T,λn
for such training sets. As in

the proof of Lemma 1 it now suffices to show the existence of a C̃ > 0 such that

‖f̂T,λn
‖ ≤ C̃xλ

ρ̂−1
2

n with probability not less than 1 − e−x. To this end we first
observe by Proposition 2 that we may choose B, c and δ such that

B ∼ xλ
ρ−1
2

n , c ∼ x
q+2
q+1 λ

ρ−1
2 · q+2

q+1
n , and δ ∼ x

q+2
q+1 λ

ρ−1
2 · q+2

q+1+ βq
q+1

n .

Some calculations then show that ε(n,B, c, δ, x) in Theorem 2 satisfies

ε(n,B, c, δ, x)) x2λ
ρ+β+γ

2
n + x2λ

(ρ+β+γ)(2q+pq+4)+2βq(2−p)
8(q+1)

n .

Fast Rates for Support Vector Machines 289

Furthermore observe that we have ρ ≤ β − γ if and only if ρ + β+γ ≤
(ρ+β+γ)(2q+pq+4)+2βq(2−p)

4(q+1) . Now let us first consider the case ρ ≤ β − γ. Then
the above considerations show

ε(n, a,B, c, δ, x)) x2λ
ρ+β+γ

2
n .

Furthermore, we obviously have λβ
n ≤ λ

ρ+β+γ
2

n . As in the proof of Lemma 1 we
hence find a constant C̃ > 0 such that for all x ≥ 1, n ≥ 1 we have

λ‖f̂T,λn
‖2 ≤ C̃x2λ

ρ+β+γ
2

n

with probability not less than 1 − e−x. On the other hand if ρ > β − γ we have

ε(n, a,B, c, δ, x)) x2λ
(ρ+β+γ)(2q+pq+4)+2βq(2−p)

8(q+1)
n ≤ x2λβ

n ,

so that we get λ‖f̂T,λn
‖2 ≤ C̃x2λβ

n in the above sense. ��

Proof (of Theorem 1 for q > 0). By using Lemma 2 the proof in the case q > 0
is completely analogous to the case q = 0. ��

References

1. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer, New York (1996)

2. Yang, Y.: Minimax nonparametric classification—part I and II. IEEE Trans.
Inform. Theory 45 (1999) 2271–2292

3. Wu, Q., Zhou, D.X.: Analysis of support vector machine classification. Tech.
Report, City University of Hong Kong (2003)

4. Mammen, E., Tsybakov, A.: Smooth discrimination analysis. Ann. Statist. 27
(1999) 1808–1829

5. Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. Ann.
Statist. 32 (2004) 135–166

6. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
7. Steinwart, I., Scovel, C.: Fast rates for support vector machines using Gaus-

sian kernels. Ann. Statist. submitted (2004) http://www.c3.lanl.gov/∼ingo/
publications/ann-04a.pdf.

8. Steinwart, I.: Consistency of support vector machines and other regularized kernel
machines. IEEE Trans. Inform. Theory 51 (2005) 128–142

9. Steinwart, I., Scovel, C.: Fast rates to bayes for kernel machines. In Saul, L.K.,
Weiss, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems
17. MIT Press, Cambridge, MA (2005) 1345–1352

10. Edmunds, D., Triebel, H.: Function Spaces, Entropy Numbers, Differential Oper-
ators. Cambridge University Press (1996)

11. Zhang, T.: Statistical behaviour and consistency of classification methods based
on convex risk minimization. Ann. Statist. 32 (2004) 56–134

12. Rockafellar, R.: Convex Analysis. Princeton University Press (1970)

290 I. Steinwart and C. Scovel

Appendix

Throughout this section P denotes a Borel probability measure on X × Y and
H denotes a RKHS of continuous functions over X. We use the shorthand ‖ · ‖
for ‖ · ‖H when no confusion should arise. Unlike in the other sections of this
paper, here L denotes an arbitrary convex loss function, that is, a continuous
function L : Y × R → [0,∞) convex in its second variable. The corresponding
L-risk RL,P (f) of a function f : X → R and its minimal value RL,P are defined
in the obvious way. For simplicity we also assume RL,P (0) = 1. Note that all
the requirements are met by the hinge loss function. Furthermore, let us define
fP,λ by replacing Rl,P by RL,P in (7). In addition we write

f∗
P,λ = arg min

{
‖f‖ : f ∈ arg min

‖f ′‖≤ 1√
λ

RL,P (f ′)
}

. (16)

Of course, we need to prove the existence and uniqueness of f∗
P,λ which is done

in the following lemma.

Lemma 3. Under the above assumptions f∗
P,λ is well defined.

Proof. Let us first show that there exists an f ′ ∈ λ−1/2BH which minimizes
RL,P (.) in λ−1/2BH . To that end consider a sequence (fn) in λ−1/2BH such
that RL,P (fn) → inf‖f‖≤λ−1/2 RL,P (f). By the Eberlein-Smulyan theorem we
can assume without loss of generality that there exists an f∗ with ‖f∗‖ ≤ λ−1/2

and fn → f∗ weakly. Using the fact that weak convergence in RKHS’s imply
pointwise convergence, Lebesgue’s theorem and the continuity of L then give

RL,P (fn) → RL,P (f∗) .

Hence there is a minimizer of RL,P (.) in 1√
λ
BH , i.e. we have

A :=
{
f : f ∈ arg min

‖f ′‖≤ 1√
λ

RL,P (f ′)
}
�= ∅ .

We now show that there is exactly one f∗ ∈ A having minimal norm.

Existence: Let (fn) ⊂ A with ‖fn‖ → inff∈A ‖f‖ for n → ∞. Like in the proof
establishing A �= ∅, we can show that there exists an f∗ ∈ A with fn → f∗

weakly, and RL,P (fn) → RL,P (f∗). This shows f∗ ∈ A. Furthermore, by the
weak convergence we always have

‖f∗‖ ≤ lim inf
n→∞

‖fn‖ = inf
f∈A

‖f‖ .

Uniqueness: Suppose we have two such elements f and g with f �= g. By convex-
ity we find 1

2 (f + g) ∈ arg min‖f‖≤ 1√
λ
RL,P (f). However, ‖.‖H is strictly convex

which gives ‖1
2 (f + g)‖ < ‖f‖. ��

Fast Rates for Support Vector Machines 291

In the following we will define the approximation error and the approximation
error function for general L. In order to also treat non-universal kernels we first
denote the minimal L-risk of functions in H by

RL,P,H := inf
f∈H

RL,P (f) .

Furthermore, we say that f ∈ H minimizes the L-risk in H if RL,P (f) = RL,P,H .
Note that if such a minimizer exists then by Lemma 3 there actually exists a
unique element f∗

L,P,H ∈ H minimizing the L-risk in H with ‖f∗
L,P,H‖ ≤ ‖f‖ for

all f ∈ H minimizing the L risk in H. Moreover we have ‖fP,λ‖ ≤ ‖f∗
L,P,H‖ for

all λ > 0 since otherwise we find a contradiction by

λ‖f∗
L,P,H‖2 + RL,P (f∗

L,P,H) < λ‖fP,λ‖2 + RL,P (fP,λ) .

Now, for λ ≥ 0 we write

a(λ) := λ‖fP,λ‖2 + RL,P (fP,λ) −RL,P,H , (17)
a∗(λ) := RL,P (f∗

P,λ) −RL,P,H . (18)

Recall, that for universal kernels and the hinge loss function we have
RL,P,H = RL,P (see [8]), and hence in this case a(.) equals the approxima-
tion error function defined in Section 2. Furthermore, for these kernels, a∗(λ) is
the “classical” approximation error of the hypothesis class λ−1/2BH . Our first
theorem shows how to compare a(.) and a∗(.).

Theorem 3. With the above notations we have a(0) = a∗(0) = 0. Furthermore,
a∗(.) is increasing, and a(.) is increasing, concave, and continuous. In addition,
we have

a∗(λ) ≤ a(λ) for all λ ≥ 0,

and for any h : (0,∞) → (0,∞) with a∗(λ) ≤ h(λ) for all λ > 0, we have

a
(
λh(λ)

)
≤ 2h(λ) for all λ > 0.

Proof. It is clear from the definitions (17) and (18) that a(0) = a∗(0) = 0 and
a∗(.) is increasing. Since a(.) is an infimum over a family of linear increasing
functions of λ it follows that a(.) is also concave and increasing. Consequently
a(.) is continuous for λ > 0 (see [12–Thm. 10.1]), and continuity at 0 follows
from the proof of [8–Prop. 3.2]. To prove the second assertion, observe that
‖fP,λ‖2 ≤ 1/λ implies RL,P (f∗

P,λ) ≤ RL,P (fP,λ) for all λ > 0 and hence we find
a∗(λ) ≤ a(λ) for all λ ≥ 0. Now let λ̃ := h(λ)‖f∗

P,λ‖−2. Then we obtain

λ̃‖fP,λ̃‖
2 + RL,P (fP,λ̃) ≤ λ̃‖f∗

P,λ‖2 + RL,P (f∗
P,λ) ≤ λ̃‖f∗

P,λ‖2 + RL,P,H + h(λ)
≤ RL,P,H + 2h(λ) .

This shows a(λ̃) ≤ 2h(λ). Furthermore we have λh(λ) ≤ ‖f∗
P,λ‖−2h(λ) = λ̃ and

thus the assertion follows since a(.) is an increasing function. ��

292 I. Steinwart and C. Scovel

Our next goal is to show how the asymptotic behaviour of a(.), a∗(.) and λ !→
‖fP,λ‖ are related to each other. Let us begin with a lemma that characterizes
the existence of f∗

L,P,H ∈ H in terms of the function λ !→ ‖fP,λ‖.

Lemma 4. The minimizer f∗
L,P,H ∈ H of the L-risk in H exists if and only

if there exists a constant c > 0 with ‖fP,λ‖ ≤ c for all λ > 0. In this case we
additionally have limλ→0+ ‖fP,λ − f∗

L,P,H‖H = 0.

Proof. Let us first assume that f∗
L,P,H ∈ H exists. Then we have already seen

‖fP,λ‖ ≤ ‖f∗
L,P,H‖ for all λ > 0, so that it remains to show the convergence. To

this end let (λn) be a positive sequence converging to 0. By the boundedness of
(fP,λn

) there then exists an f∗ ∈ H and a subsequence (fP,λni
) with fP,λni

→ f∗

weakly. This implies RL,P (fP,λni
) → RL,P (f∗) as in the proof of Lemma 3.

Furthermore, we always have λni
‖fP,λni

‖2 → 0 and thus

RL,P,H = lim
i→∞

λni
‖fP,λni

‖2 + RL,P (fP,λni
) = RL,P (f∗) , (19)

where the first equality can be shown as in [8] for universal kernels. In other
words f∗ minimizes the L-risk in H and hence we have

‖fP,λni
‖ ≤ ‖f∗

L,P,H‖ ≤ ‖f∗‖ ≤ lim inf
j→∞

‖fP,λnj
‖

for all i ≥ 1. This shows both ‖fP,λni
‖ → ‖f∗‖ and ‖f∗

L,P,H‖ = ‖f∗‖, and
consequently we find f∗

L,P,H = f∗ by (19). In addition an easy calculation gives

‖fP,λni
−f∗‖2 = ‖fP,λni

‖2−2〈fP,λni
, f∗〉+‖f∗‖2 → ‖f∗‖2−2‖f∗‖2+‖f∗‖2 = 0.

Now assume that fP,λn
�→ f∗

L,P,H . Then there exists a δ > 0 and a subsequence
(fP,λnj

) with ‖fP,λnj
− f∗

L,P,H‖ > δ. On the other hand applying the above
reasoning to this subsequence gives a sub-subsequence converging to f∗

L,P,H and
hence we have found a contradiction.

Let us now assume ‖fP,λ‖ ≤ c for some c > 0 and all λ > 0. Then there
exists an f∗ ∈ H and a sequence (fP,λn

) with fP,λn
→ f∗ weakly. As in the first

part of the proof we easily see that f∗ minimizes the L-risk in H. ��

Note that if H is a universal kernel, i.e. it is dense in C(X), P is an empirical
distribution based on a training set T , and L is the (squared) hinge loss func-
tion then f∗

L,T,H ∈ H exists and coincides with the hard margin SVM solution.
Consequently, the above lemma shows that both the L1-SVM and the L2-SVM
solutions fT,λ converge to the hard margin solution if T is fixed and λ → 0.

The following lemma which shows that the function fP,λ minimizes RL,P (.)
over the ball ‖fP,λ‖BH is somewhat well-known:

Lemma 5. Let λ > 0 and γ := 1/‖fP,λ‖2. Then we have f∗
P,γ = fP,λ.

Proof. We first show that fP,λ minimizes RL,P (.) over the ball ‖fP,λ‖BH . To
this end assume the converse RL,P (f∗

P,γ) < RL,P (fP,λ). Since we also have
‖f∗

P,γ‖ ≤ 1/
√

γ = ‖fP,λ‖ we then find the false inequality

λ‖f∗
P,γ‖2 + RL,P (f∗

P,γ) < λ‖fP,λ‖2 + RL,P (fP,λ) , (20)

Fast Rates for Support Vector Machines 293

and consequently fP,λ minimizes RL,P (.) over ‖fP,λ‖BH . Now assume that
fP,λ �= f∗

P,γ , i.e. ‖fP,λ‖ > ‖f∗
P,γ‖. Since RL,P (f∗

P,γ) = RL,P (fP,λ) we then again
find (20) and hence the assumption fP,λ �= f∗

P,γ must be false. ��

Let us now turn to the main theorem of this section which describes asymp-
totic relationships between the approximation error, the approximation error
function, and the function λ !→ ‖fP,λ‖.

Theorem 4. The function λ !→ ‖fP,λ‖ is bounded on (0,∞) if and only if
a(λ)) λ and in this case we also have a(λ) ∼ λ. Moreover for all α > 0 we have

a∗(λ)) λα if and only if a(λ)) λ
α

α+1 .

If one of the estimates is true we additionally have ‖fP,λ‖2) λ− 1
α+1 and

RL,P (fP,λ) − RL,P,H) λ
α

α+1 . Furthermore, if λα+ε) a∗(λ)) λα for some
α > 0 and ε ≥ 0 then we have both

λ− α
(α+ε)(α+1)) ‖fP,λ‖2) λ− 1

α+1 and λ
α+ε
α+1) RL,P (fP,λ) −RL,P) λ

α
α+1 ,

and hence in particular λ
α+ε
α+1) a(λ)) λ

α
α+1 .

Theorem 4 shows that if a∗(λ) behaves essentially like λα then the approxima-
tion error function behaves essentially like λ

α
α+1 . Consequently we do not loose

information when considering a(.) instead of the approximation error a∗(.).

Proof (of Theorem 4). If λ !→ ‖fP,λ‖ is bounded on (0,∞) the minimizer f∗
L,P,H

exists by Lemma 4 and hence we find

a(λ) ≤ λ‖f∗
L,P,H‖2 + RL,P (f∗

L,P,H) −RL,P,H = λ‖f∗
L,P,H‖2 .

Conversely, if there exists a constant c > 0 with a(λ) ≤ cλ we find λ‖fP,λ‖2 ≤
a(λ) ≤ cλ which shows ‖fP,λ‖ ≤

√
c for all λ > 0. Moreover by Theorem 3 we

easily find λa(1) ≤ a(λ) for all λ > 0.
For the rest of the proof we observe that Theorem 3 gives a(λ) ≤ a(cλ) ≤

c a(λ) for λ > 0 and c ≥ 1, and c a(λ) ≤ a(cλ) ≤ a(λ) for λ > 0 and 0 < c ≤ 1.
Therefore we can ignore arising constants by using the “)”–notation.

Now let us assume a∗(λ)) λα for some α > 0. Then from Theorem 3 we
know a(λ1+α)) λα which leads to a(λ)) λ

α
α+1 . The latter immediately implies

‖fP,λ‖2) λ− 1
α+1 . Conversely, if a(λ)) λ

α
α+1 we define γ := ‖fP,λ‖−2. By

Lemma 5 we then obtain

a∗(γ) = RL,P (fP,λ) −RL,P,H ≤ a(λ)) λ
α

α+1) ‖fP,λ‖−2α = γα .

Now, if f∗
L,P,H does not exists then the function λ !→ ‖fP,λ‖−2 tends to 0 if

λ → 0 and thus a∗(λ)) λα. In addition, if f∗
L,P,H exists the assertion is trivial.

For the third assertion recall that Lemma 5 states fP,λ = f∗
P,γ with γ :=

‖fP,λ‖−2 and hence we find

a(λ) = λ‖fP,λ‖2 + a∗
(
‖fP,λ‖−2

)
. (21)

294 I. Steinwart and C. Scovel

Furthermore, we have already seen ‖fP,λ‖−2 * λ
1

α+1 , and hence we get

λ
α

α+1 * RL,P (fP,λ) −RL,P = a∗
(
‖fP,λ‖−2

)
* ‖fP,λ‖−2(α+ε) * λ

α+ε
α+1 .

Combining this with (21) yields the third assertion. ��

Exponential Convergence Rates in Classification

Vladimir Koltchinskii� and Olexandra Beznosova

Department of Mathematics and Statistics, The University of New Mexico,
Albuquerque, NM 87131-1141, USA
{vlad, beznosik}@math.unm.edu

Abstract. Let (X, Y) be a random couple, X being an observable in-
stance and Y ∈ {−1, 1} being a binary label to be predicted based on
an observation of the instance. Let (Xi, Yi), i = 1, . . . , n be training
data consisting of n independent copies of (X, Y). Consider a real valued
classifier f̂n that minimizes the following penalized empirical risk

1

n

n∑
i=1

�(Yif(Xi)) + λ‖f‖2 → min, f ∈ H

over a Hilbert space H of functions with norm ‖ · ‖, � being a convex
loss function and λ > 0 being a regularization parameter. In particu-
lar, H might be a Sobolev space or a reproducing kernel Hilbert space.
We provide some conditions under which the generalization error of the
corresponding binary classifier sign(f̂n) converges to the Bayes risk ex-
ponentially fast.

1 Introduction

Let (S, d) be a metric space and (X,Y) be a random couple taking values in
S×{−1, 1} with joint distribution P. The distribution of X (which is a measure
on the Borel σ-algebra in S) will be denoted by Π. Let (Xi, Yi), i ≥ 1 be a
sequence of independent copies of (X,Y). Here and in what follows all random
variables are defined on some probability space (Ω,Σ, P). Let H be a Hilbert
space of functions on S such that H is dense in the space C(S) of all continuous
functions on S and, in addition,

∀x, y ∈ S |f(x)| ≤ ‖f‖ and |f(x) − f(y)| ≤ ‖f‖d(x, y). (1)

Here ‖ · ‖ = ‖ · ‖H is the norm of H and 〈·, ·〉 = 〈·, ·〉H is its inner product.
We have in mind two main examples. In the first one, S is a compact domain

in Rd with smooth boundary. For any s ≥ 1, one can define the following inner
product in the space C∞(S) of all infinitely differentiable functions in S :

〈f, g〉s :=
∑
|α|≤s

∫
S

DαfDαgdx.

� Partially supported by NSF grant DMS-0304861.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 295–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 V. Koltchinskii and O. Beznosova

Here α = (α1, . . . , αd), αj = 0, 1, . . . , |α| :=
∑d

i=1 αi and

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαd

d

.

The Sobolev space Hs(S) is the completion of
(
C∞(S), 〈·, ·〉s

)
. There is also a

version of the definition for any real s > 0 that utilizes Fourier transforms. If
s > d/2 + 1, then it follows from Sobolev’s embedding theorems that conditions
(1) hold with metric d being the Euclidean distance (possibly, after a proper
”rescaling” of the inner product or of the metric d to make constants equal
to 1).

In the second example, S is a metric compact and H = HK is the reproducing
kernel Hilbert space (RKHS) generated by a Mercer kernel K. This means that
K is a continuous symmetric nonnegatively definite kernel and HK is defined as
the completion of the linear span of functions {Kx : x ∈ S}, Kx(y) := K(x, y),
with respect to the following inner product:〈∑

i

αiKxi
,
∑

j

βjKyj

〉
K

:=
∑
i,j

αiβjK(xi, yj).

It is well known that HK can be identified with a subset of C(S) and

∀f ∈ HK f(x) = 〈f,Kx〉K ,

implying that

|f(x)| ≤ ‖f‖K sup
x∈S

‖Kx‖K and |f(x) − f(y)| ≤ ‖f‖K‖Kx −Ky‖K ,

so again conditions (1) hold with d(x, y) := ‖Kx − Ky‖K (as before, a simple
rescaling is needed to ensure that the constants are equal to 1).

In binary classification problems, it is common to look for a real valued clas-
sifier f̂n that solves the following penalized empirical risk minimization problem

1
n

n∑
i=1

�(Yif(Xi)) + λ‖f‖2 → min, f ∈ H, (2)

where � is a nonnegative decreasing convex loss function such that � ≥ I(−∞,0]

and λ > 0 is a regularization parameter. For instance, if � is a ”hinge loss”, i.e.
�(u) = (1 − u) ∨ 0, and ‖ · ‖ is a RKHS-norm, this is a standard approach in
kernel machines classification.

Given a real valued classifier f : S !→ R, the corresponding binary classifier
is typically defined as x !→ sign(f(x)), where sign(u) = +1 for u ≥ 0 and −1
otherwise. The generalization error or risk of f is then

RP (f) := P{(x, y) : y �= sign(f(x))}.

Exponential Convergence Rates in Classification 297

It is well known that the minimium of RP (f) over all measurable functions f is
attained at the regression function η defined as

η(x) := E(Y |X = x).

The corresponding binary classifier sign(η(x)) is called the Bayes classifier, the
quantity R∗ := RP (η) is called the Bayes risk and, finally, the quantity RP (f)−
R∗ is often referred to as the excess risk of a classifier f.

Our goal in this note is to show that under some (naturally restrictive) as-
sumptions the expectation of the excess risk of f̂n converges to 0 exponentially
fast as n → ∞. Recently, Audibert and Tsybakov [1] observed a similar phe-
nomenon in the case of plug-in classifiers and our analysis here continues this
line of work.

Denote
δ(P) := sup{δ > 0 : Π{x : |η(x)| ≤ δ} = 0}.

We will assume that
(a) η is a Lipschitz function with constant L > 0 (which, for the sake of

simplicity of notations, will be assumed to be 1 in what follows):

|η(x) − η(y)| ≤ Ld(x, y).

(b) δ(P) > 0.
These will be two main conditions that guarantee the possibilty of exponen-

tially fast convergence rates of the generalization error to the Bayes risk. Note
that condition (b), which is an extreme case of Tsybakov’s low noise assumption,
means that there exists δ > 0 such that Π-a.e. either η(x) ≥ δ, or η(x) ≤ −δ.
The function η (as a conditional expectation) is defined up to Π-a.e. Condi-
tion (a) means that there exists a smooth (Lipschitz) version of this conditional
expectation. Since smooth functions can not jump immediately from the value
−δ to value δ, the combination of conditions (a) and (b) essentially means that
there should be a wide enough ”corridor” between the regions {η ≥ δ} and
{η ≤ −δ}, but the probability of getting into this corridor is zero. The fact that
in such situations it is possible to construct classifiers that converge to Bayes
exponentially fast is essentially rather simple, it reduces to a large deviation
type phenomenon, and it is even surprising that, up to our best knowledge, the
possibility of such superfast convergence rates in classification has not been ob-
served before Audibert and Tsybakov [1] (we apologize if someone, in fact, did
it earlier).

Subtle results on convergence rates of the generalization error of large margin
classifiers to the Bayes risk have been obtained relatively recently, see papers by
Bartlett, Jordan and McAuliffe [3] and by Blanchard, Lugosi and Vayatis [5] on
boosting, and papers by Blanchard, Bousquet and Massart [4] and by Scovel
and Steinwart [7] on SVM. These papers rely heavily on general exponential
inequalities in abstract empirical risk minimization in spirit of papers by Bartlett,
Bousquet and Mendelson [2] or Koltchinskii [6] (or even earlier work by Birgé
and Massart in the 90s). The rates of convergence in classification based on this

298 V. Koltchinskii and O. Beznosova

general approach are at best of the order O(n−1). In classification problems, there
are many relevant probabilistic, analytic and geometric parameters to play with
when one studies the convergence rates. For instance, both papers [4] and [7]
deal with SVM classifiers (so, essentially, with problem (2) in the case when H is
RKHS). In [4], the convergence rates are studied under the assumption (b) above
and under some conditions on the eigenvalues of the kernel. In [7], the authors
determine the convergence rates under the assumption on the entropy of the unit
ball in RKHS of the same type as our assumption (3) below, under Tsybakov’s
low noise assumption and some additional conditions of geomeric nature. The
fact that under somewhat more restrictive assumptions imposed in this paper
even exponential convergence rates are possible indicates that, probably, we have
not understood to the end rather subtle interplay between various parameters
that influence the behaviour of this type of classifiers.

2 Main Result

We now turn to precise formulation of the results. Our goal will be to explain
the main ideas rather than to give the results in the full generality, so, we will
make below several simplifying assumptions.

First, we need some conditions on the loss function � and to get this out of
the way, we will just assume that � is the so called logit loss,

�(u) = log2(1 + e−u), u ∈ R

(other loss functions of the same type that are decreasing, strictly convex, satisfy
the assumption � ≥ I(−∞,0] and grow slower than u2 as u → ∞ will also do).
We denote

(� • f)(x, y) := �(yf(x)).

For a function g on S × {−1, 1}, we write

Pg =
∫

S×{−1,1}
gdP = E g(X,Y).

Let Pn be the empirical measure based on the training data (Xi, Yi), i = 1, . . . , n.
We will write

Png =
∫

S×{−1,1}
gdPn = n−1

n∑
i=1

g(Xi, Yi).

We use similar notations for functions defined on S. A simple and well known
computation shows that the function f !→ P (� • f) attains its minimum at f∗
defined by

f∗(x) = log
1 + η(x)
1 − η(x)

.

We will assume in what follows that f∗ ∈ H. This assumption is rather restrictive.
Since functions in H are uniformly bounded (see (1)) it means, in particular, that

Exponential Convergence Rates in Classification 299

η is bounded away from both +1 and −1. Although, there is a version of the
main result below without this assumption, we are not discussing it in this note.

Next we need an assumption on so called uniform L2-entropy of the unit ball
in H,

BH := {f ∈ H : ‖f‖ ≤ 1}.

Given a probability measure Q on S, let N
(
BH;L2(Q); ε

)
denote the minimal

number of L2(Q)-balls needed to cover BH. Suppose that for some ρ ∈ (0, 2)
and for some constant A > 0

∀Q ∀ε > 0 : log N
(
BH;L2(Q); ε

)
≤

(
A

ε

)ρ

. (3)

Denote B(x, δ) the open ball in (S, d) with center x and radius δ. Also, let
H(x, δ) be the set of all functions h ∈ H satisfying the following conditions:

(i) ∀y ∈ S 0 ≤ h(y) ≤ 2δ
(ii) h ≥ δ on B(x; δ/2)

(iii)
∫

B(x;δ)c

hdΠ ≤ δ

∫
S

hdΠ

It follows from (i) − (iii) that

δΠ(B(x; δ/2)) ≤ Eh(X) ≤ 2δ
1 − δ

Π(B(x; δ)).

Since there exists a continuous function h such that 0 ≤ h ≤ 3
2δ, h ≥ 4

3δ on
B(x, δ/2) and h = 0 on B(x, δ)c, and, on the other hand, H is dense in C(S), it
is easy to see that H(x, δ) �= ∅. Denote

q(x, δ) := inf
h∈H(x,δ)

‖h‖.

The quantity q(x, δ) is, often, bounded from above uniformly in x ∈ S by a
decreasing function of δ, say by q̄(δ), and this will be assumed in what follows.
Often, q̄(δ) grows as δ−γ , δ → 0 for some γ > 0.

Example. For instance, if H = Hs(S) is a Sobolev space of functions in a
compact domain S ⊂ Rd, s > d/2 + 1, define

h(y) := δϕ

(
x − y

δ

)
,

where ϕ ∈ C∞(Rd), 0 ≤ ϕ ≤ 2, ϕ(x) ≥ 1 if |x| ≤ 1/2 and ϕ(x) = 0 if |x| ≥ 1.
Then h satisfies conditions (i)–(iii) (moreover, h = 0 on B(x, δ)c). A straightfor-
ward computation of Sobolev’s norm of h shows that

‖h‖Hs(S) ≤ Cδ1+d/2−s,

300 V. Koltchinskii and O. Beznosova

implying that q(x, δ) is uniformly bounded from above by q̄(δ) = Cδ−γ with
γ = s− d

2 −1. Similar results are also true in the case of RKHS for some kernels.
Let

p(x, δ) := δ2Π(B(x, δ/2)).

In what follows, K,C > 0 will denote sufficiently large numerical constants
(whose precise values might change from place to place). Recall our assumption
that δ(P) > 0. In this case it is also natural to assume that for all δ ≤ δ(P)

K and
for all x such that |η(x)| ≥ δ(P)

p(x, δ) ≥ p̄(δ) > 0

for some fixed function p̄. This would be true, for instance, if S is a domain in Rd

and Π has density uniformly bounded away from 0 on the set {x : |η(x)| ≥ δ(P)}.
In this case we have for all x from this set

p(x, δ) ≥ cδd+2 =: p̄(δ).

Define now

r(x, δ) :=
p(x, δ)
q(x, δ)

.

Then on the set {x : |η(x)| ≥ δ(P)}

r(x, δ) ≥ p̄(δ)
q̄(δ)

.

We set U := K
(
‖f∗‖ ∨ L ∨ 1

)
(here and in what follows ∨ stands for the

maximum and ∧ for the minimum) and define

λ+ = λ+(P) :=
1

4U
inf

{
r

(
x;

δ(P)
U

)
: |η(x)| ≥ δ(P)

}
and, for a fixed ε > K log log n

n ,

λ− :=
A2ρ/(2+ρ)

n2/(2+ρ)

∨
ε.

Clearly,

λ+ ≥ 1
4U

p̄(δ(P)/U)
q̄(δ(P)/U)

> 0,

so, λ+ is a positive constant. Then if n is large enough and ε is not too large,
we have λ− ≤ λ+.

Now, we are ready to formulate the main result.

Theorem 1. Let λ ∈ [λ−, λ+]. Then there exists β = β(H, P) > 0 such that

E (RP (f̂n) −R∗) ≤ exp{−βn}.

In fact, with sufficiently large K,C > 0, β is equal to C−1

(
p̄

(
δ(P)

U

)∧
ε

)
,

which is positive and does not depend on n, establishing the exponential con-
vergence rate.

Exponential Convergence Rates in Classification 301

3 Proof

We use a well known representation of the excess risk

RP (f) −R∗ =
∫
{sign(f) �=sign(η)}

|η|dΠ

to get the following bound:

E (RP (f̂n) −R∗) ≤

E

∫
{f̂n(x)η(x)≤0}

|η(x)|Π(dx) = E

∫
|η(x)|I{f̂n(x)η(x)≤0}Π(dx) =∫

|η(x)|E I{f̂n(x)η(x)≤0}Π(dx) =
∫

|η(x)|P {f̂n(x)η(x) ≤ 0}Π(dx) (4)

Our goal now is to bound, for a given x, P {f̂n(x)η(x) ≤ 0}. Let us assume that
η(x) = δ > 0 (the other case, when η(x) < 0, is similar). We have

P {f̂n(x)η(x) ≤ 0} = P {f̂n(x) ≤ 0} ≤
P {f̂n(x) ≤ 0, ‖f̂n‖ ≤ U} + P {‖f̂n‖ > U}. (5)

We start with bounding the first term. For δ0 > 0 (to be chosen later), let
h ∈ H(x, δ0). Define

Ln(α) := Pn(� • (f̂n + αh)) + λ‖f̂n + αh‖2.

Since f̂n minimizes the functional

H + f !→ Pn(� • f) + λ‖f‖2,

the function α !→ Ln(α) attains its minimum at α = 0. This function is differ-
entiable, implying that

dLn

dα

(
0
)

=
1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) + 2λ〈f̂n, h〉 = 0.

Assuming that η(x) = δ > 0, ‖f̂n‖ ≤ U and f̂n(x) ≤ 0, we need to bound from
above

1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) + 2λ〈f̂n, h〉,

trying to show that everywhere except the event of small probability the last
expression is strictly negative. This would contradict the fact that it is equal
to 0, implying a bound on the probability of the event {f̂n(x) ≤ 0, ‖f̂n‖ ≤ U}.

First note that

1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj)

=
1
n

∑
j:Yj=+1

�′(f̂n(Xj))h(Xj) −
1
n

∑
j:Yj=−1

�′(−f̂n(Xj))h(Xj).

302 V. Koltchinskii and O. Beznosova

Note also that function �′ is negative and increasing, h is nonnegative and f̂n is
a Lipschitz function with Lipschitz norm bounded by ‖f̂n‖. The last observation
and the assumption that f̂n(x) ≤ 0 imply that, for all y ∈ B(x, δ0),

f̂n(y) ≤ ‖f̂n‖δ0 ≤ Uδ0

and, as a result,

�′(f̂n(y)) ≤ �′(Uδ0), �′(−f̂n(y)) ≥ �′(−Uδ0).

Also, for all y ∈ S, |f̂n(y)| ≤ ‖f̂n‖ ≤ U, implying that

|�′(f̂n(y))| ≤ |�′(−U)|, |�′(−f̂n(y))| ≤ |�′(−U)|.

This leads to the following upper bound:

1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) ≤

�′(Uδ0)
n

∑
j:Xj∈B(x,δ0),Yj=+1

h(Xj) −
�′(−Uδ0)

n

∑
j:Xj∈B(x,δ0),Yj=−1

h(Xj) +

|�′(−U)|
n

∑
j:Xj∈B(x,δ0)c

h(Xj) =

�′(Uδ0)
n

∑
j:Xj∈B(x,δ0)

1 + Yj

2
h(Xj) −

�′(−Uδ0)
n

∑
j:Xj∈B(x,δ0)

1 − Yj

2
h(Xj) +

|�′(−U)|
n

∑
j:Xj∈B(x,δ0)c

h(Xj) =

�′(Uδ0) − �′(−Uδ0)
2n

n∑
j=1

h(Xj)IB(x,δ0)(Xj) +

�′(Uδ0) + �′(−Uδ0)
2n

n∑
j=1

Yjh(Xj)IB(x,δ0)(Xj) +

|�′(−U)|
n

n∑
j=1

h(Xj)IB(x,δ0)c(Xj).

Using the fact that for logit loss �′′ has its maximum at 0, we get∣∣∣∣�′(Uδ0) + �′(−Uδ0)
2

− �′(0)
∣∣∣∣ ≤

|�′(Uδ0) − �′(0)|
2

+
|�′(−Uδ0) − �′(0)|

2
≤ �′′(0)Uδ0

and ∣∣∣∣�′(Uδ0) − �′(−Uδ0)
2

∣∣∣∣ ≤ �′′(0)Uδ0.

Exponential Convergence Rates in Classification 303

Therefore,

1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) ≤

�′(0)
1
n

n∑
j=1

Yjh(Xj)IB(x;δ0)(Xj) + 2�′′(0)Uδ0
1
n

n∑
j=1

h(Xj)IB(x;δ0)(Xj) +

|l′(−U)|
n

n∑
j=1

h(Xj)IB(x;δ0)c(Xj) =

1
n

n∑
j=1

ξj , (6)

where ξ, ξj , j ≥ 1 are i.i.d.

ξ := �′(0)Y h(X)IB(x,δ0)(X) +
2�′′(0)Uδ0h(X)IB(x,δ0)(X) + |�′(−U)|h(X)IB(x;δ0)c(X).

To bound the sum of ξjs, we will use Bernstein inequality. To this end, we first
bound the expectation and the variance of ξ. We have

E ξ = �′(0) EY h(X)IB(x;δ0)(X) + 2�′′(0)Uδ0 Eh(X)IB(x;δ0)(X)
+|�′(−U)|Eh(X)IB(x;δ0)c(X).

Since η is Lipschitz with the Lipschitz constant L and η(x) = δ,

η(y) ≥ δ − Lδ0

for all y ∈ B(x; δ0). Since also h ∈ H(x, δ0), we have:

EY h(X)IB(x;δ0)(X) = E η(X)h(X)IB(x;δ0)(X)
≥ (δ − Lδ0) Eh(X)IB(x;δ0)(X) ≥ (δ − Lδ0)(1 − δ0) Eh(X),

Eh(X)IB(x;δ0)(X) ≤ Eh(X),

and
Eh(X)IB(x;δ0)c(X) ≤ δ0 Eh(X)

Recall that �′(0) < 0 and �′′(0) ≥ 0. So, the following bound for the expectation
of ξ is immediate:

E ξ ≤
[
�′(0)(δ − Lδ0)(1 − δ0) + 2�′′(0)Uδ0 + |�′(−U)|δ0

]
Eh(X).

We will choose δ0 small enough to make

[�′(0)(δ − Lδ0)(1 − δ0) + 2�′′(Uδ0)Uδ0 + |�′(−U)|δ0] ≤ −δ0.

304 V. Koltchinskii and O. Beznosova

A simple computation shows that it is enough to take

δ0 =
1
C

δ

U ∨ L
≤ δ

L + 4U + 12
,

which can be always achieved by making the numerical constant C large enough.
Then the expectation satisfies the bound

E ξ ≤ −δ0 Eh(X).

As far as the variance of ξ is concerned, using an elementary bound (a+b+c)2 ≤
3a2 + 3b2 + 3c2, it is easy to check that

Var(ξ) ≤ Cδ0 Eh(X)

with a sufficiently large numerical constant C. Finally, it is also straightforward
that with some C > 0 |ξ| ≤ Cδ0.

Now Bernstein inequality easily yields with a sufficiently large numerical
constant C > 0

P

{
1
n

∑
ξj ≥ −1

2
δ0 Eh(X)

}
≤ 2 exp

{
−nδ0 Eh(X)

C

}
.

Then, since
δ0 Eh(X) ≥ δ2

0Π(B(x; δ0/2)) = p(x, δ0),

we have with probability at least 1 − 2 exp
{
−np(x,δ0)

C

}
:

1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) + 2λ〈f̂n, h〉 ≤

≤ −1
2
δ0 Eh(X) + 2λ〈f̂n, h〉 ≤

≤ −1
2
δ0 Eh(X) + 2λU‖h‖ ≤

≤ −1
2
p(x, δ0) + 2λUq(x, δ0) (7)

So, if

λ <
p(x, δ0)

4Uq(x, δ0)
=

r(x, δ0)
4U

,

then
1
n

n∑
j=1

�′(Yj f̂n(Xj))Yjh(Xj) + 2λ〈f̂n, h〉 < 0

with probability at least 1−2 exp
{
−np(x,δ0)

C

}
. The conclusion is that if η(x) = δ

and λ < r(x,δ0)
4U , then

P {f̂n(x) ≤ 0, ‖f̂n‖ ≤ U} ≤ 2 exp
{
−np(x, δ0)

C

}
.

Exponential Convergence Rates in Classification 305

Thus, for λ ≤ λ+, we have

P {f̂n(x) ≤ 0, ‖f̂n‖ ≤ U} ≤ 2 exp
{
−np̄(δ0)

C

}
. (8)

We now turn to bounding the probability P {‖f̂n‖ ≥ U} for a properly cho-
sen U. This is the only part of the proof where the condition (3) on the uniform
entropy of the unit ball BH is needed. It relies heavily on recent excess risk
bounds in Koltchinskii [6] as well as on some of the results in spirit of Blan-
chard, Lugosi and Vayatis [5] (see their Lemma 4). We formulate the bound we
need in the following lemma.

Lemma 1. Suppose that condition (3) holds and (for simplicity) that � is the
logit loss. Let R ≥ 1. Then, there exists a constant K > 0 such that for any
t > 0, the following event

∀f ∈ H with ‖f‖ ≤ R (9)

Pn(� • f) − inf
‖g‖≤R

Pn(� • g) ≤

2
(
P (� • f) − inf

‖g‖≤R
P (� • g)

)
+ K

(
RA2ρ/(2+ρ)

n2/(2+ρ)
+

tR

n

)
, (10)

has probability at least 1 − e−t.

The argument that follows will provide a bound that is somewhat akin to
some of the bounds in [7] and in [4].

Denote E(R) the event of the lemma. Let R ≥ ‖f∗‖ ∨ 1. On the event E(R),
the condition R/2 < ‖f̂n‖ ≤ R implies

λ‖f̂n‖2 ≤ Pn(� • f̂n) − inf
‖g‖≤R

Pn(� • g) + λ‖f̂n‖2 =

inf
‖f‖≤R

[
Pn(� • f) − inf

‖g‖≤R
Pn(� • g) + λ‖f‖2

]
≤

2 inf
‖f‖≤R

[
P (� • f) − inf

‖g‖≤R
P (� • g) + λ‖f‖2 + K

(
RA2ρ/(2+ρ)

n2/(2+ρ)
+

tR

n

)]
≤

2
[
P (� • f∗) − inf

‖g‖≤R
P (� • g) + λ‖f∗‖2

]
+ 2K

(
RA2ρ/(2+ρ)

n2/(2+ρ)
+

tR

n

)
≤

2λ‖f∗‖2 + 2K
(

RA2ρ/(2+ρ)

n2/(2+ρ)
+

tR

n

)
,

which implies that

R2

4
≤ ‖f̂n‖2 ≤ 2‖f∗‖2 + 2K

(
RA2ρ/(2+ρ)

λn2/(2+ρ)
+

tR

λn

)
.

306 V. Koltchinskii and O. Beznosova

Solving this inequality with respect to R shows that on E(R) the condition
R/2 ≤ ‖f̂n‖ ≤ R implies

R ≤ K

(
‖f∗‖

∨
1
∨ A2ρ/(2+ρ)

λn2/(2+ρ)

∨ t

λn

)
.

If now t = nε and λ ≥ λ−, then it yields

R ≤ K(‖f∗‖ ∨ 1).

Note that
Pn(� • f̂n) + λ‖f̂n‖2 ≤ �(0)

(just plug in f = 0 in the target functional). Therefore, we have λ‖f̂n‖2 ≤ �(0),
or

‖f̂n‖ ≤
√

�(0)
λ

=: R̄.

Define Rk = 2k, k = 0, 1, 2, . . . , N := log2 R̄ + 1. Note that, for our choice of λ,
we have N ≤ C log n with some numerical constant C > 0. Let Ek := E(Rk).
Clearly, P (Ek) ≥ 1−e−t and, on the even Ek, the condition Rk−1 ≤ ‖f̂n‖ ≤ Rk

implies
‖f̂n‖ ≤ Rk ≤ K(‖f∗‖ ∨ 1).

Thus, ‖f̂n‖ can be larger than the right hand side of the last bound only on the
event

⋃N
k=1 Ec

k, whose probabilty is smaller than Ne−nε. This establishes the
following inequality:

P

{
‖f̂n‖ ≥ K(‖f∗‖ ∨ 1)

}
≤ Ne−nε ≤ e−nε/2, (11)

provided that ε ≥ K log log n
n , as it was assumed.

Combining bounds (8) and (11) and plugging the resulting bound in (5) and
then in (4) easily completes the proof (subject to a minor adjustment of the
constants).

Acknowledgement. The first author is very thankful to Alexandre Tsybakov
for several useful and interesting conversations on the subject of the paper.

References

1. Audibert, J.–Y. and Tsybakov, A. Fast convergence rates for plug-in estimators
under margin conditions. Unpublished manuscript, 2004.

2. Bartlett, P., Bousquet, O. and Mendelson, S. Local Rademacher Complexities.
Annals of Statistics, 2005, to appear.

3. Bartlett, P., Jordan, M. and McAuliffe, J. Convexity, Classification and Risk
Bounds. J. American Statistical Soc., 2004, to appear.

4. Blanchard, G., Bousquet, O. and Massart, P. Statistical Performance of Support
Vector Machines. Preprint, 2003, 4, 861-894.

Exponential Convergence Rates in Classification 307

5. Blanchard, G., Lugosi, G. and Vayatis, N. On the rates of convergence of regularized
boosting classifiers. Journal of Machine Learning Research, 2003, 4, 861-894.

6. Koltchinskii, V. Local Rademacher Complexities and Oracle Inequalities in Risk
Minimization. Preprint. Preprint, 2003.

7. Scovel, C. and Steinwart, I. Fast Rates for Support Vector Machines. Preprint,
2003.

General Polynomial Time
Decomposition Algorithms�

Nikolas List and Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum,
44780 Bochum, Germany

{nlist, simon}@lmi.rub.de

Abstract. We present a general decomposition algorithm that is uni-
formly applicable to every (suitably normalized) instance of Convex
Quadratic Optimization and efficiently approaches the optimal solution.
The number of iterations required to be within ε of optimality grows
linearly with 1/ε and quadratically with the number m of variables. The
working set selection can be performed in polynomial time. If we re-
strict our considerations to instances of Convex Quadratic Optimization
with at most k0 equality constraints for some fixed constant k0 plus some
so-called box-constraints (conditions that hold for most variants of SVM-
optimization), the working set is found in linear time. Our analysis builds
on a generalization of the concept of rate certifying pairs that was intro-
duced by Hush and Scovel. In order to extend their results to arbitrary
instances of Convex Quadratic Optimization, we introduce the general
notion of a rate certifying q-set. We improve on the results of Hush and
Scovel [8] in several ways. First our result holds for Convex Quadratic
Optimization whereas the results of Hush and Scovel are specialized to
SVM-optimization. Second, we achieve a higher rate of convergence even
for the special case of SVM-optimization (despite the generality of our
approach). Third, our analysis is technically simpler.

1 Introduction

Support vector machines (SVMs) introduced by Vapnik and co-workers [1, 29]
are a promising technique for classification, function approximation, and other
key problems in statistical learning theory. In this paper, we consider the opti-
mization problems that are induced by SVMs, which are special cases of Convex
Quadratic Optimization.

The difficulty of solving problems of this kind is the density of the matrix that
represents the “quadratic part” of the cost function. Thus, a prohibitive amount
of memory is required to store the matrix and traditional optimization algorithms

� This work was supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778. This publica-
tion only reflects the authors’ views. This work was furthermore supported by the
Deutsche Forschungsgemeinschaft Grant SI 498/7-1.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 308–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

General Polynomial Time Decomposition Algorithms 309

(such as Newton, for example) cannot be directly applied. Several authors have
proposed (different variants of) a decomposition method to overcome this diffi-
culty [25, 9, 26, 27, 21, 22, 3, 11, 16, 4, 23, 12, 10, 17, 18, 13, 7, 14, 8, 20, 19, 5]. Given
an instance of Convex Quadratic Optimization, this method keeps track of a
current feasible solution which is iteratively improved. In each iteration the vari-
able indices are split into a “working set” I ⊆ {1, . . . ,m} and its complement
J = {1, . . . ,m} \ I. Then, the simplified instance with the variables xi, i ∈ I,
is solved, thereby leaving the values for the remaining variables xj , j ∈ J , un-
changed. The success of the method depends in a quite sensitive manner on the
policy for the selection of the working set I (whose size is typically bounded
by a small constant). Ideally, the selection procedure should be computationally
efficient and, at the same time, effective in the sense that the resulting sequence
of feasible solutions converges (with high speed) to an optimal limit point.

Our Results and their Relation to Previous Work: Hush and Scovel considered
a special SVM-optimization problem that we denote as SVO in our paper. They
introduced the notion of an “α-rate certifying pair” and showed that every de-
composition algorithm for SVO that always inserts an α-rate certifying pair
in its current working set comes within ε of optimality after O(1/(εα2)) itera-
tions. Building on a result of Chang, Hsu, and Lin [3], they presented further-
more an algorithm that constructs an 1/m2-rate certifying pair in O(m log m)
steps.1 Combining these results, we see that the decomposition algorithm of
Hush and Scovel for problem SVO is within ε of optimality after O(m4/ε)
iterations.

In this paper we present an extension of (and an improvement on) this result.
We first define the general notion of an α-rate certifying q-set and show (with a
simplified analysis) that it basically fits the same purpose for Convex Quadratic
Optimization (denoted as CQO in our paper) as the α-rate certifying pair for
SVO, where the number of iterations needed to be within ε of optimality is
proportional to q/(εα2). We present a general decomposition algorithm that
is uniformly applicable to every (suitably normalized) instance of CQO. Given
an instance with k equality constraints and m variables, it finds an 1/m-rate
certifying (k+1)-set in polynomial time.2 Combining these results, we are within
ε of optimality after O(km2/ε) iterations of our decomposition algorithm. The
SVM-optimization problem SV O (considered by Hush and Scovel) has only one
equality constraint. Plugging in k = 1 in our general result, we arrive at an
upper bound on the number of iterations that improves on the bound obtained
by Hush and Scovel by factor m2. The analysis of Hush and Scovel in [8] builds
on an earlier analysis of conditional gradient algorithms by Dunn [6]. For this
part of the analysis, we will present simpler arguments.

1 Time bound O(m log m) can be improved to O(m) by using the method from [28].
2 Moreover, the algorithm can be implemented such as to find this set even in linear

time when we restrict its application to instances of CQO with at most k0 equality
constraints for some fixed constant k0. If we restrict its application to SV O, we may
use the the highly efficient method from [28].

310 N. List and H.U. Simon

There are some alternatives to the approach with rate certifying pairs. The
most prominent one is the selection of the maximally KKT-violating pairs as
implemented for example in SVMlight [9] or LIBSVM [4]. A paper by Lin [15]
seems to imply the following quite strong result for SVO (although not stating
it explicitly): decomposition algorithms following the approach of maximally
KKT-violating pairs are within ε of optimality after only O(log 1/ε) iterations.3

However, the analysis is specialized to SVO. Furthermore it has to assume strict
convexity of the objective function and some non-degeneracy conditions. The
convergence rate is only given in terms of ε whereas the dependence on problem
parameters (like, for example, m) is not clarified.

Another algorithm (related to but different from decomposition algorithms)
is SimpleSVM [30] which tries to iteratively include the support vectors in the
working set. Assuming strict convexity of the objective function, the authors
of [30] claim a linear convergence of the method (but do neither give a complete
proof nor exhibit the dependence on the various parameters explicitly). The
main difference between SimpleSVM and decomposition algorithms is the size
of the working set which can grow-up to the number of support vectors in the
former case and is kept constant in the latter. Note that the number of support
vectors is particularly large on noisy data.

There are many other papers about decomposition algorithms or related ap-
proaches that are noteworthy but cannot be mentioned properly in this abstract.
The reader interested in finding more pointers to the relevant literature is re-
ferred to the full paper.

2 Preliminaries

We are mainly concerned with the problem “Convex Quadratic Optimization
with box-constraints”. It is denoted simply as CQO in this paper and is formally
given as follows:

Definition 1 (CQO). An instance P of CQO is given by

min
x

f(x) =
1
2
x�Qx + w�x s.t. Ax = b, l ≤ x ≤ r ,

where

– Q ∈ Rm×m is a symmetric positive semi-definite matrix over the reals and
w ∈ Rm, i.e., f(x) is a convex quadratic cost function in m scalar variables,

– A ∈ Rk×m and b ∈ Rk such that Ax = b represents k linear equality con-
straints,

– l, r ∈ Rm and l ≤ x ≤ r is the short-notation for the “box-constraints”

∀i = 1, . . . ,m : li ≤ xi ≤ ri .

3 See [5] for a generalization of this result to similar but more general policies for
working set selection.

General Polynomial Time Decomposition Algorithms 311

In this paper, we will sometimes express f(x′) by means of the Taylor-
expansion around x:

f(x′) = f(x) + ∇f(x)�(x′ − x) +
1
2
(x′ − x)�Q(x′ − x) ,

where ∇f(x) = Qx + w. For d := x − x′, this can be rewritten as follows:

f(x) − f(x′) = ∇f(x)�d − 1
2
d�Qd . (1)

Note that d�Qd ≥ 0 because Q is positive semi-definite.
In the sequel,

R(P) = {x ∈ Rm| Ax = b, l ≤ x ≤ r}

denotes the compact and convex set of feasible points for P. The well-known
first-order condition for convex function optimization4 (valid for an arbitrary
convex cost function) states that x is an optimal feasible solution iff

∀x′ ∈ R(P) : ∇f(x)�(x′ − x) ≥ 0 .

We briefly note that any instance of the general convex quadratic optimization
problem with cost function f(x), linear equality constraints, linear inequality
constraints (not necessarily in the form of box-constraints) and a compact region
of feasible points can be transformed into an equivalent instance of CQO because
we may convert the linear inequalities into linear equations by introducing non-
negative slack variables. By the compactness of the region of feasible points, we
may also put a suitable upper bound on each slack variable such that finally all
linear inequalities take the form of box-constraints.

We now define a subproblem of CQO, denoted as SVO in this paper, that is
actually one of the most well studied SVM-optimization problems:

Definition 2 (SVO). An instance P0 of SVO is given by

min
x

f(x) s.t. y�x = 0 , l ≤ x ≤ r ,

where f(x), l, r are understood as in Definition 1 and y ∈ {−1, 1}m is a vector
whose components represent binary classification labels.

The main difference between SVO and the general problem CQO is that SVO
has only a single equality constraint. Furthermore, this equality constraint is of
a special form.

We are now prepared to introduce (informally) the notion of “decomposition
algorithms”. A decomposition algorithm for CQO with working sets of size at
most q (where we allow that q depends on k) proceeds iteratively as follows:
given an instance P of CQO and a feasible solution x ∈ R(P) (chosen arbitrarily

4 See for example [2].

312 N. List and H.U. Simon

in the beginning), a so-called working set I ⊆ {1, . . . ,m} of size at most q is
selected. Then x is updated by the optimal solution for the simplified instance
with variables xi, i ∈ I (leaving the values xj with j /∈ I unchanged). Decom-
position algorithms for SVO are defined analogously. The policy for working set
selection is a critical issue that we discuss in the next sections.

Notational Conventions:

– The parameters m, k, f,A, y, b, l, r are consistently used in this paper as the
components of an instance of CQO or SVO. Similarly, parameter q (possibly
dependent on k) always represents the (maximal) size of the working set.

– Lmax and Smax are two more parameters that we associate with an instance
of CQO or SVO (where Lmax depends also on q). Lmax denotes the largest
among the eigenvalues of all the principal (q × q)-submatrices of Q. Smax

denotes the maximum side length of the box spanned by l and r, i.e., Smax :=
max1≤i≤m(ri − li).

– For a decomposition algorithm A, we denote the current feasible solution
obtained after n iterations by xn (such that x0 is the feasible solution A
starts with). The optimal feasible solution is denoted by x∗. Then

Δn := f(xn) − f(x∗) (2)

denotes the difference between the value of the current solution and the
optimal value.

3 Rate Certifying Sets and the Main Theorem

In section 3.1, we recall the concept of rate certifying pairs. In section 3.2, we
present the new notion of rate certifying sets and state our main result, whose
proof is given in sections 3.3 and 3.4.

3.1 Rate Certifying Pairs

We consider again the problem SVO from Definition 2 along with a problem
instance P0. Let x ∈ R(P0) be a feasible solution and x∗ ∈ R(P0) an optimal
feasible solution. In the sequel, we will often use the following first-order ap-
proximation of the maximal distance (with regard to the value of the objective
function) between a given point x and any other feasible solution x′:

σ(x) := sup
x′∈R(P0)

∇f(x)�(x − x′) .

As already noted by Hush and Scovel [8], the following holds:5

f(x) − f(x∗) ≤ ∇f(x)�(x − x∗) ≤ σ(x) . (3)

5 The first inequality follows from (1) and the positive semi-definiteness of Q; the
second-one is trivial.

General Polynomial Time Decomposition Algorithms 313

In other words, f(x) is always within σ(x) of optimality. Note that σ(x∗) =
0 (which immediately follows from the first-order optimality condition). Thus,
σ(x) > 0 if and only if x is suboptimal.

Since we are dealing with working sets whose size is bounded by a (small)
parameter q, it is natural to restrict the range of x′ to feasible solutions that
differ from x in at most q coordinates. For q = 2, this leads to the following
definition:

σ(x|i1, i2) := sup
x′∈R(P0):x′

i=xi for i �=i1,i2

∇f(x)�(x − x′) .

The following notion is crucial: (i1, i2) is called an α-rate certifying pair for x if

σ(x|i1, i2) ≥ α(f(x) − f(x∗)) .

Let α be a function in m with strictly positive values. An α-rate certifying
algorithm is a decomposition algorithm for SVO that, for every m and every
input instance P0 with m variables, always includes an α(m)-rate certifying
pair in the current working set. As mentioned already in the introduction, the
main results in [8] are as follows:

Theorem 1 (Hush and Scovel [8]).

1. Let A be an α-rate certifying algorithm. Consider any instance P0 of SVO
with, say, m variables. Let Lmax and Smax be the quantities associated with
P0.6 For sake of brevity, let α = α(m). Then, A is within ε of optimality
after

1 +
2max{1, 2S2

max}
α

(
max{1, αΔ0/Lmax}Lmax

αε
− 1

)
=

O

(
Lmax(1 + Smax)2

α2ε
+

Δ0(1 + Smax)2

αε

)
iterations.

2. For function α given by α(m) = 1/m2, there exists an α-rate certifying
algorithm. It constructs a working set (given P0 and a suboptimal feasible
solution x) in O(m log m) steps (or in O(m) steps when the method from [28]
is applied). Furthermore, it is within ε of optimality after

O

(
Lmax(1 + Smax)2m4

ε
+

Δ0(1 + Smax)2m2

ε

)
iterations.

6 See our notational conventions in section 2 for a definition (where q = 2).

314 N. List and H.U. Simon

3.2 Rate Certifying Sets

The definition of σ(x) is easily extended to any instance P of CQO:

σ(x) := sup
x′∈R(P)

∇f(x)�(x − x′) . (4)

Clearly, inequality (3) and the subsequent comments are still valid without any
change. However, since CQO deals with several equality constraints, one can in
general not expect to find rate certifying pairs. Instead, the following general
definition for I ⊆ {1, . . . ,m} will prove useful:

σ(x|I) := sup
x′∈R(P):x′

i=xi for i/∈I

∇f(x)�(x − x′) .

I is called an α-rate certifying q-set if |I| ≤ q and

σ(x|I) ≥ α(f(x) − f(x∗)) . (5)

Let α be a function in m with strictly positive values and let q be a function in k
whose values are strictly positive integers. An (α, q)-rate certifying algorithm is a
decomposition algorithm for CQO that, for every m, k and any problem instance
P with m variables and k equality constraints, includes an α(m)-rate certifying
q(k)-set in the current working set.7 With these notations, the following holds:

Theorem 2. 1. Let A be an (α, q)-rate certifying algorithm. Consider an in-
stance P of CQO with, say, m variables and k equality constraints. For sake
of brevity, let α = α(m), q = q(k), and let Lmax, Smax be the quantities
associated with P and q. Then, A is within ε of optimality after⌈

2qLmaxS
2
max

α2ε

⌉
+ max

{
0,

⌈
2
α

ln
(

Δ0

ε

)⌉}
(6)

iterations. Moreover, if qLmaxS
2
max ≤ εα, then max{0, 2 ln(Δ0/ε)/α�} ite-

rations (the second term in (6)) are enough.
2. For functions α, q given by α(m) = 1/m and q(k) = k + 1, there exists an

(α, q)-rate certifying algorithm A. It constructs a working set (given P and
a suboptimal feasible solution x) in polynomial time. Moreover, if we restrict
its application to instances of CQO with at most k0 equality constraints for
some fixed constant k0, there is a linear time bound for the construction of
the working set.8

3. The algorithm A from the preceding statement is within ε of optimality after⌈
2(k + 1)m2LmaxS

2
max

ε

⌉
+ max

{
0,

⌈
2m ln

(
Δ0

ε

)⌉}
7 Finding an initial feasible solution in the beginning is equivalent to solving a standard

LP. For an instance of an SVM-optimization problem an initial guess usually is the
zero vector.

8 If we restrict its application to instances of SVO, we may use the the highly efficient
method from [28].

General Polynomial Time Decomposition Algorithms 315

iterations. Moreover, if (k+1)LmaxS
2
max≤ ε/m, then max{0,2m ln(Δ0/ε)�}

iterations are enough.

Clearly, the third statement in Theorem 2 follows directly from the first two
statements (which will be proven in subsections 3.3 and 3.4, respectively).

A few comments on Theorem 2 are in place here. One might be tempted to
think that an (α, q)-rate certifying algorithm decreases (an upper bound on)
the distance between the current feasible solution and the best feasible solution
(with regard to the objective value) roughly by factor 1 − α (for α := α(m)).
If such a “contraction” took place, we would be within ε of optimality after
only O(log(1/ε)/α) iterations. This is however spurious thinking because the
σ-function is not concerned with this distance itself but rather with a first-order
approximation of it. We will see in the proof of Theorem 2 that a run of an
(α, q)-rate certifying algorithm can be decomposed into two phases. As long as
the distance from the optimal value is large in comparison to (an upper bound
on) the second order terms (phase 1), a contraction by factor 1 − α/2 takes
place. However when we come closer to the optimal value (phase 2), the effect of
the neglected second order terms becomes more significant and the convergence
slows down (at least within our perhaps somewhat pessimistic analysis). Phase 1
leads to the term max{0, 2 ln(Δ0/ε)/α�} in (6) whereas phase 2 leads to the
term (2qLmaxS

2
max)/(α2ε)�.

3.3 Proof of the 1st Statement in Theorem 2

We will use the notation introduced in Theorem 2 and consider an arbitrary
iteration of the (α, q)-rate certifying algorithm A when it is applied on input P.
To this end, let x denote a feasible but suboptimal solution, and let x∗ be the
optimal feasible solution. Let I be the subset of the working set that satisfies
|I| ≤ q and (5). Let x′ be a feasible solution that satisfies xi = x′

i for every i /∈ I
and

σ(x|I) = ∇f(x)�(x − x′) = ∇f(x)�d , (7)

where d = x − x′. Combining (5) with (7), we get

∇f(x)�d ≥ α(f(x) − f(x∗)) = αΔ , (8)

where Δ = f(x) − f(x∗) ≥ 0. For some parameter 0 ≤ λ ≤ 1 (suitably chosen
later), consider the feasible solution

x′′ = x − λd

on the line segment between x and x′. Taylor-expansion around x allows to relate
f(x) and f(x′′) as follows:

f(x) − f(x′′) = λ∇f(x)�d − λ2 1
2
d�Qd .

Note that x′′ (like x′) satisfies x′′
i = xi for every i /∈ I. Thus, x′′ = x − λd is a

feasible solution that coincides with x outside the current working set. Thus, A

316 N. List and H.U. Simon

(finding the optimal feasible solution that coincides with x outside the working
set) achieves in the next iteration a “cost reduction” of at least f(x) − f(x′′).9

x′′ depends on the parameter 0 ≤ λ ≤ 1. In the sequel, we tune parameter
λ such as to obtain a “large” cost reduction. To be on the safe side, we will
however perform a “pessimistic analysis” where we substitute worst case bounds
for ∇f(x)�d and d�Qd respectively. Clearly

max
0≤λ≤1

(
λ∇f(x)�d − λ2 1

2
d�Qd

)
≥ max

0≤λ≤1

(
λB − 1

2
λ2B′

)
for any lower bound B on ∇f(x)�d and any upper bound B′ on d�Qd. According
to (8), αΔ can serve as a lower bound on ∇f(x)�d. It is easily seen that the
following parameter U can serve as an upper bound on d�Qd:

U := qLmaxS
2
max ≥ d�Qd . (9)

This immediately follows from the definition of Lmax and Smax and from the
fact that d has at most q non-zero components. We conclude from this discussion
that, for every 0 ≤ λ ≤ 1, A achieves in the next iteration a cost reduction of at
least

h(λ) := λαΔ − 1
2
λ2U .

It is easily seen that function h(λ) is maximized by setting

λ :=
{

1 if Δ > U/α
αΔ/U if Δ ≤ U/α

.

Case 1. Δ > U/α. Then A achieves a cost reduction of at least

h(1) = αΔ− 1
2
U > αΔ/2 .

Thus the difference Δ = f(x) − f(x∗) will shrink after the next iteration to

Δ − α

2
Δ = Δ

(
1 − α

2

)
,

or to a smaller value, which is a proper contraction.
Case 2. Δ ≤ U/α. Then A achieves a cost reduction of at least

h

(
αΔ

U

)
=

α2Δ2

2U
= γΔ2 ,

where

γ :=
α2

2U
. (10)

9 “Achieving a cost reduction of a in the next iteration” means that the next iteration
decreases the distance between the value of the current feasible solution and the
value of the optimal feasible solution by at least a.

General Polynomial Time Decomposition Algorithms 317

Thus, the difference Δ = f(x)− f(x∗) will shrink after the next iteration to

Δ − γΔ2

or to a smaller value.

Recall from (2) that sequence (Δn)n≥0 keeps track of the difference between the
value of the current feasible solution and the value of the optimal solution. In
view of the two cases described above, our pessimistic analysis obviously runs
through two phases:

Phase 1. As long as Δn > U/α, we calculate with cost reduction αΔn/2.
Phase 2. As soon as Δn ≤ U/α, we calculate with cost reduction γΔ2

n.

Let us first assume that ε < U/α (and postpone the case ε ≥ U/α to the end
of this subsection). The number of iterations in phase 1 is not larger than the
smallest n0 ≥ 0 that satisfies the second inequality in

Δ0

(
1 − α

2

)n0

< Δ0e
−n0α/2 ≤ ε <

U

α
,

i.e.,

n0 := max
{

0,
⌈

2
α

ln
(

Δ0

ε

)⌉}
. (11)

In phase 2, (Δn)n≥n0 evolves according to

Δn+1 ≤ Δn − γΔ2
n = Δn(1 − γΔn) . (12)

Recall that Δi = f(xi)−f(x∗) ≥ 0 for every i. As for the iterations considered in
phase 2 within our analysis, we can make the stronger (pessimistic) assumption
Δi > 0.10 Following Dunn [6], we can therefore consider the reciprocals δn :=
1/Δn. Note that (12) and Δn+1 > 0 imply that 0 ≤ γΔn < 1 and so for each
n ≥ n0 the following relation holds:

δn+1 − δn ≥ 1
Δn(1 − γΔn)

− 1
Δn

=
γ

1 − γΔn
≥ γ .

Therefore

δn = δn0 +
n−1∑
j=n0

(δj+1 − δj) ≥ γ(n − n0)

and consequently

Δn =
1
δn

≤ 1
γ(n − n0)

.

It follows that Δn ≤ ε after

n − n0 :=
⌈

1
γε

⌉
10 Otherwise phase 2 ends with the optimal solution even earlier.

318 N. List and H.U. Simon

iterations in phase 2. Thus the total number of iterations in both phases needed
to be within ε of optimality is bounded by

n0 +
⌈

1
γε

⌉
(10),(11)

≤
⌈

2U
α2ε

⌉
+ max

{
0,

⌈
2
α

ln
(

Δ0

ε

)⌉}
iterations. Plugging in the definition of U from (9), we obtain (6).

Let us now finally discuss the case U = qLmaxS
2
max ≤ εα. Since ε ≥ U/α, we

come within ε of optimality during phase 1. The number of iterations required
for this is the smallest n0 that satisfies

Δ0

(
1 − α

2

)n0

< Δ0e
−n0α/2 ≤ ε .

Thus, we are within ε of optimality after

max
{

0,
⌈

2
α

ln
(

Δ0

ε

)⌉}
iterations. This completes the proof of the first statement in Theorem 2.

3.4 Proof of the 2nd Statement in Theorem 2

We first give a short outline of the proof. Let x be a feasible but suboptimal
solution for P. According to (3), it is sufficient to efficiently construct a working
set I such that |I| ≤ k + 1 and

σ(x|I) ≥ 1
m

σ(x) . (13)

To this end, we will proceed as follows. We consider auxiliary instances Px,P ′
x,P ′′

x

of the Linear Programming Problem (denoted as LP in the sequel). The optimal
values for Px and P ′

x, are both shown to coincide with σ(x). From P ′
x, we de-

rive (basically by aggregating several equality constraints into a single-one) the
instance P ′′

x , whose optimal basic solution will represent a working set I of size
at most k + 1. A comparison of the three problem instances will finally reveal
that I satisfies (13).

We now move on to the technical implementation of this plan. Recall from (4)
that

σ(x) = sup
x′∈R(P)

∇f(x)�(x − x′) = ∇f(x)�d ,

where d = x− x′. Thus σ(x) is the optimal value of the following instance Px of
LP:

max
d

∇f(x)�d s.t. Ad = 0, l ≤ x − d ≤ r .

We set
μ+ := x − l and μ− := r − x

and split d into positive and non-positive components d+ and d− respectively:

d = d+ − d−, d+, d− ≥ 0, ∀i = 1, . . . ,m : d+
i d−i = 0 . (14)

General Polynomial Time Decomposition Algorithms 319

With these notations, σ(x) also coincides with the optimal value of the following
instance P ′

x of LP:

max
d+,d−

(
∇f(x)

−∇f(x)

)� (
d+

d−

)
subject to

[A,−A]
(

d+

d−

)
= 0

0 ≤ d+ ≤ μ+ , 0 ≤ d− ≤ μ−

The third instance P ′′
x of LP that we consider has an additional slack variable ξ

and is given as follows:

max
d+,d−,ξ

(
∇f(x)

−∇f(x)

)� (
d+

d−

)
subject to

∀i = 1, . . . ,m : μ−
i = 0 ⇒ d−i = 0 , μ+

i = 0 ⇒ d+
i = 0 (15)

[A,−A]
(

d+

d−

)
= 0 (16)∑

i:μ+
i >0

1
μ+

i

d+
i +

∑
i:μ−

i >0

1
μ−

i

d−i + ξ = 1 (17)

d+, d− ≥ 0 , ξ ≥ 0 (18)

We briefly note that we do not have to count the equality constraints in (15)
because we may simply remove the variables that are set to zero from the problem
instance. Recall that matrix A represents k equality constraints. Thus, P ′′

x is a
linear program in canonical form with k + 1 equality constraints. Its optimal
basic feasible solution has therefore at most k + 1 non-zero components. The
following observations (where d, d+, d− are related according to (14)) are easy
to verify:

1. If
(

d+

d−

)
is a feasible solution for P ′

x with value p, then 1
m

(
d+

d−

)
is a feasible

solution for P ′′
x with value p/m.

2. If
(

d+

d−

)
is a feasible solution for P ′′

x with value p, then
(

d+

d−

)
is also a

feasible solution for P ′ with value p.

Recall that σ(x) is the value of the optimal solution for P ′
x. We may conclude

from our observations that the value of the optimal solution for P ′′
x , say σ′(x),

satisfies σ′(x) ≥ σ(x)/m. Now consider an optimal basic feasible solution
(

d+

d−

)
for P ′′

x with value σ′(x). Let

I := {i ∈ {1, . . . ,m}| d+
i �= 0 or d−i �= 0} .

320 N. List and H.U. Simon

Clearly, |I| ≤ k+1. Since d = d+−d− is a feasible solution for P (still with value
σ′(x)) that differs from x only in coordinates from I, we may conclude that

σ(x|I) ≥ σ′(x) ≥ 1
m

σ(x) .

In other words, working set I satisfies (13). The time required to compute I
is dominated by the time required to solve the linear program P ′′

x . This can
be done in polynomial time. Since a linear program with a constant number
of variables (or a linear program in standard form with a constant number of
equality constraints11) can be solved in linear time [24], the proof for the 2nd
statement of Theorem 2 is completed.

4 Conclusions and Open Problems

We have presented an analysis of a decomposition algorithm that leads to the
up-to-date strongest theoretical performance guarantees within the “rate certi-
fying pair” approach. Our analysis holds uniformly for any instance of Convex
Quadratic Optimization (with box-constraints) and certainly covers most of the
variants of SVM-optimization. As explained in the introduction already, there
are competing approaches like, for example, the approach based on maximally
KKT-violating pairs or approaches based on an iterative inclusion of support
vectors. As should become clear from the introduction, none of these approaches
beats the other-ones in all respects (uniform analysis for a broad variety of prob-
lems, high speed of convergence, efficient working set selection). It remains an
object of future research to gain more insight (theoretically and empirically) into
the (perhaps complementary) strength and weakness of the various approaches
such that their combined power can be exploited to full extent.

References

1. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training al-
gorithm for optimal margin classifiers. In Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152, 1992.

2. Steven Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

3. Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decomposi-
tion methods for support vector machines. IEEE Transactions on Neural Networks,
11(4):248–250, 2000.

4. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines, 2001. Available from http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

5. Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin. A study on SMO-type
decomposition methods for support vector machines, 2005. Available from
http://www.csie.ntu.edu.tw/∼cjlin/papers/generalSMO.pdf.

11 Such that the dual linear program has constant number of variables.

General Polynomial Time Decomposition Algorithms 321

6. J. Dunn. Rates of convergence for conditional gradient algorithms near singular
and non-singular extremals. SIAM J. Control and Optimization, 17(2):187–211,
1979.

7. Chih-Wei Hsu and Chih-Jen Lin. A simple decomposition method for support
vector machines. Machine Learning, 46(1–3):291–314, 2002.

8. Don Hush and Clint Scovel. Polynomial-time decomposition algorithms for support
vector machines. Machine Learning, 51(1):51–71, 2003.

9. Thorsten Joachims. Making large scale SVM learning practical. In Bernhard
Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances
in Kernel Methods—Support Vector Learning, pages 169–184. MIT Press, 1998.

10. S. Sathiya Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm
for SVM classifier design. Machine Learning, 46(1–3):351–360, 2002.

11. S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and
K. R. K. Murthy. Improvements to SMO algorithm for SVM regression. IEEE
Transactions on Neural Networks, 11(5):1188–1193, 2000.

12. S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and
K. R. K. Murthy. Improvements to Platt’s SMO algorithm for SVM classifier
design. Neural Computation, 13(3):637–649, 2001.

13. Pavel Laskov. Feasible direction decomposition algorithms for training support
vector machines. Machine Learning, 46(1–3):315–349, 2002.

14. Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin. A note on the decomposi-
tion methods for support vector regression. Neural Computation, 14(6):1267–1281,
2002.

15. Chih-Jen Lin. Linear convergence of a decomposition
method for support vector machines, 2001. Available from
http://www.csie.ntu.edu.tw/∼cjlin/papers/linearconv.pdf.

16. Chih-Jen Lin. On the convergence of the decomposition method for support vector
machines. IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

17. Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any assump-
tions. IEEE Transactions on Neural Networks, 13(1):248–250, 2002.

18. Chih-Jen Lin. A formal analysis of stopping criteria of decomposition methods
for support vector machines. IEEE Transactions on Neural Networks, 13(5):1045–
1052, 2002.

19. Nikolas List. Convergence of a generalized gradient selection approach for the
decomposition method. In Proceedings of the 15th International Conference on
Algorithmic Learning Theory, pages 338–349, 2004.

20. Nikolas List and Hans Ulrich Simon. A general convergence theorem for the decom-
position method. In Proceedings of the 17th Annual Conference on Computational
Learning Theory, pages 363–377, 2004.

21. Olvi L. Mangasarian and David R. Musicant. Successive overrelaxation for support
vector machines. IEEE Transactions on Neural Networks, 10(5):1032–1037, 1999.

22. Olvi L. Mangasarian and David R. Musicant. Active support vector machine
classification. In Advances in Neural Information Processing Systems 12, pages
577–583. MIT Press, 2000.

23. Olvi L. Mangasarian and David R. Musicant. Lagrangian support vector machines.
Journal of Machine Learning Research, 1:161–177, 2001.

24. Nimrod Megiddo. Linear programming in linear time when the dimension is fixed.
Journal of the Association on Computing Machinery, 31(1):114–127, 1984.

25. Edgar E. Osuna, Robert Freund, and Federico Girosi. Training support vector
machines: an application to face detection. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 130–136, 1997.

322 N. List and H.U. Simon

26. John C. Platt. Fast training of support vector machines using sequential minimal
optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J.
Smola, editors, Advances in Kernel Methods—Support Vector Learning, pages 185–
208. MIT Press, 1998.

27. Craig Saunders, Mark O. Stitson, Jason Weston, Leon Bottou, Bernhard Schölkopf,
and Alexander J. Smola. Support vector machine reference manual. Technical
Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK, 1998.

28. Hans Ulrich Simon. On the complexity of working set selection. In Proceedings of
the 15th International Conference on Algorithmic Learning Theory, pages 324–337,
2004.

29. Vladimir Vapnik. Statistical Learning Theory. Wiley Series on Adaptive and
Learning Systems for Signal Processing, Communications, and Control. John Wiley
& Sons, 1998.

30. S. V. N. Vishwanthan, Alexander J. Smola, and M. Narasimha Murty. SimpleSVM.
In Proceedings of the 20th International Conference on Machine Learning, 2003.

Approximating a Gram Matrix for Improved
Kernel-Based Learning

(Extended Abstract)

Petros Drineas1 and Michael W. Mahoney2

1 Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, New York 12180
drinep@cs.rpi.edu

2 Department of Mathematics, Yale University,
New Haven, CT 06520
mahoney@cs.yale.edu

Abstract. A problem for many kernel-based methods is that the amount
of computation required to find the solution scales as O(n3), where n is
the number of training examples. We develop and analyze an algorithm
to compute an easily-interpretable low-rank approximation to an n × n
Gram matrix G such that computations of interest may be performed
more rapidly. The approximation is of the form G̃k = CW+

k CT , where
C is a matrix consisting of a small number c of columns of G and Wk

is the best rank-k approximation to W , the matrix formed by the inter-
section between those c columns of G and the corresponding c rows of
G. An important aspect of the algorithm is the probability distribution
used to randomly sample the columns; we will use a judiciously-chosen
and data-dependent nonuniform probability distribution. Let ‖·‖2 and
‖·‖F denote the spectral norm and the Frobenius norm, respectively, of
a matrix, and let Gk be the best rank-k approximation to G. We prove
that by choosing O(k/ε4) columns∥∥∥G − CW+

k CT
∥∥∥

ξ
≤ ‖G − Gk‖ξ + ε

n∑
i=1

G2
ii,

both in expectation and with high probability, for both ξ = 2, F , and
for all k : 0 ≤ k ≤ rank(W). This approximation can be computed using
O(n) additional space and time, after making two passes over the data
from external storage.

1 Introduction

1.1 Background

Given a collection X of data points, which are often but not necessarily elements
of Rm, techniques such as linear Support Vector Machines (SVMs), Gaussian
Processes (GPs), Principle Component Analysis (PCA), and the related Sin-
gular Value Decomposition (SVD), identify and extract structure from X by

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 P. Drineas and M.W. Mahoney

computing linear functions, i.e., functions in the form of dot products, of the
data. For example, in PCA the subspace spanned by the first k eigenvectors is
used to give a k dimensional model of the data with minimal residual; thus, it
provides a low-dimensional representation of the data. Such spectral analysis has
a rich theoretical foundation and has numerous practical applications.

In many cases, however, there is nonlinear structure in the data (or the data,
e.g. text, may not support the basic linear operations of addition and scalar
multiplication). In these cases, kernel-based learning methods have proved to be
quite useful [7, 27]. Kernel-based learning methods are a class of statistical learn-
ing algorithms, the best known examples of which are SVMs [7]. In this approach,
data items are mapped into high-dimensional spaces, where information about
their mutual positions (in the form of inner products) is used for constructing
classification, regression, or clustering rules. Kernel-based algorithms exploit the
information encoded in the inner product between all pairs of data items and
are successful in part because there is often an efficient method to compute in-
ner products between very complex or even infinite dimensional vectors. Thus,
kernel-based algorithms provide a way to deal with nonlinear structure by re-
ducing nonlinear algorithms to algorithms that are linear in some feature space
F that is nonlinearly related to the original input space.

More precisely, assume that the data consists of vectors X(1), . . . , X(n) ∈ X ⊂
Rm and let X ∈ Rm×n be the matrix whose i-th column is X(i). In kernel-based
methods, a set of features is chosen that define a space F , where it is hoped rele-
vant structure will be revealed, the data X are then mapped to the feature space
F using a mapping Φ : X → F , and then classification, regression, or clustering
is performed in F using traditional methods such as linear SVMs, GPs, or PCA.
If F is chosen to be a dot product space and if one defines the kernel matrix, also
known as the Gram matrix, G ∈ Rn×n as Gij = k(xi, xj) = (Φ(xi), Φ(xj)), then
any algorithm whose operations can be expressed in the input space in terms of
dot products can be generalized to an algorithm which operates in the feature
space by substituting a kernel function for the inner product. In practice, this
means presenting the Gram matrix G in place of the input covariance matrix
XT X. Relatedly, using the kernel k instead of a dot product in the input space
corresponds to mapping the data set into a (usually) high-dimensional dot prod-
uct space F by a (usually nonlinear) mapping Φ : Rm → F , and taking dot
products there, i.e., k(xi, xj) = (Φ(xi), Φ(xj)). Note that for the commonly-used
Mercer kernels, G is a symmetric positive semidefinite (SPSD) matrix.

The generality of this framework should be emphasized. For example, there
has been much work recently on dimensionality reduction for nonlinear manifolds
in high-dimensional spaces. See, e.g., Isomap, local linear embedding, and graph
Laplacian eigenmap [29, 26, 4] as well as Hessian eigenmaps and semidefinite
embedding [9, 30]. These methods first induce a local neighborhood structure
on the data and then use this local structure to find a global embedding of
the manifold in a lower dimensional space. The manner in which these different
algorithms use the local information to construct the global embedding is quite

Approximating a Gram Matrix for Improved Kernel-Based Learning 325

different, but in [22] they are interpreted as kernel PCA applied to specially
constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlinear struc-
ture in large data sets when the features are chosen such that the structure
in the data is more manifest in the feature space than in the original space.
Although in many cases the features are chosen such that the Gram matrix
is sparse, in which case sparse matrix computation methods may be used, in
other applications the Gram matrix is dense, but is well approximated by a low-
rank matrix. In this case, calculations of interest (such as the matrix inversion
needed in GP prediction, the quadratic programming problem for SVMs, and
the computation of the eigendecomposition of the Gram matrix) will still gen-
erally take space which is O(n2) and time which is O(n3). This is prohibitive
if n, the number of data points, is large. Recent work in the learning theory
community has focused on taking advantage of this low-rank structure in order
to perform learning tasks of interest more efficiently. For example, in [2], several
randomized methods are used in order to speed up kernel PCA. These meth-
ods have provable guarantees on the quality of their approximation and may
be viewed as replacing the kernel function k by a “randomized kernel” which
behaves like k in expectation. Relatedly, in [33], uniform sampling without re-
placement is used to choose a small set of basis training points, from which
an approximation to the Gram matrix is constructed. Although this algorithm
does not come with provable performance guarantees, it may be viewed as a
special case of our main algorithm, and it was shown empirically to perform
well on two data sets for approximate GP classification and regression. It was
also interpreted in terms of the Nyström method from integral equation theory;
this method has also been applied recently in the learning theory community to
approximate the solution of spectral partitioning for image and video segmen-
tation [20] and to extend the eigenfunctions of a data-dependent kernel to new
data points [5, 23]. Related work taking advantage of low-rank structure includes
[28, 19, 32, 6, 24, 31, 3].

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easily-
interpretable low-rank approximation to an n × n Gram matrix G. Our main
result, the Main Approximation algorithm of Section 3.2, is an algorithm that,
when given as input a SPSD matrix G ∈ Rn×n, computes a low-rank approxi-
mation to G of the form G̃k = CW+

k CT , where C ∈ Rn×c is a matrix formed
by randomly choosing a small number c of columns (and thus rows) of G and
Wk ∈ Rc×c is the best rank-k approximation to W , the matrix formed by the in-
tersection between those c columns of G and the corresponding c rows of G. The
columns are chosen in c independent random trials (and thus with replacement)
according to a judiciously-chosen and data-dependent nonuniform probability
distribution. The nonuniform probability distribution will be carefully chosen
and will be important for the provable bounds we obtain. Let ‖·‖2 and ‖·‖F de-
note the spectral norm and the Frobenius norm, respectively, and let Gk be the

326 P. Drineas and M.W. Mahoney

best rank-k approximation to G. Our main result, presented in a more precise
form in Theorem 1, is that under appropriate assumptions:

∥∥G − CW+
k CT

∥∥
ξ
≤ ‖G −Gk‖ξ + ε

n∑
i=1

G2
ii, (1)

in both expectation and with high probability, for both ξ = 2, F , for all k : 0 ≤
k ≤ rank(W). This approximation can be computed in O(n) space and time
after two passes over the data from external storage.

1.3 Technical Report

In the interests of space, several sections have not been included in this extended
abstract. For more details and discussion related to the results presented here, see
the associated technical report [18]. In particular, [18] contains a discussion of the
relationship between our work, recent work on Nyström-based kernel methods
[33, 31, 20], and the low-rank approximation algorithm of Frieze, Kannan, and
Vempala [21, 14].

2 Review of Relevant Linear Algebra

For the review of the linear algebra used in this paper, see the associated technical
report [18]. Recent work in the theory of randomized algorithms has focused on
matrix problems [21, 10, 1, 2, 11, 12, 13, 14, 15, 16, 17, 25]. In particular, our previ-
ous work has applied random sampling methods to the approximation of several
common matrix computations such as matrix multiplication [13], the computa-
tion of low-rank approximations to a matrix [14], the computation of the CUR
matrix decomposition [15], and approximating the feasibility of linear programs
[16, 17]. For the review of two results from this random sampling methodology
that will be used in this paper, see the associated technical report [18].

3 Approximating a Gram Matrix

Consider a set of n points in Rm, denoted by X(1), . . . , X(n), and let X be the
m×n matrix whose i-th column is X(i). These points may be either the original
data or the data after they have been mapped into the feature space. Then,
define the n × n Gram matrix G as G = XT X. Thus, G is a SPSD matrix and
Gij = (X(i), X(j)) is the dot product between the data vectors X(i) and X(j).
If G is dense but has good linear structure, i.e., is well-approximated by a low-
rank matrix, then a computation of a easily-computable and easily-interpretable
low-rank approximation to G, with provable error bounds, is of interest. In this
section, two algorithms are presented that compute such an approximation to a
Gram matrix G.

Approximating a Gram Matrix for Improved Kernel-Based Learning 327

3.1 A Preliminary Nyström-Based Algorithm

In [33], a method to approximate G was proposed that, in our notation, chooses
c columns from G uniformly at random and without replacement, and constructs
an approximation of the form G̃ = CW−1CT , where the n × c matrix C con-
sists of the c chosen columns and W is a matrix consisting of the intersection
of those c columns with the corresponding c rows. Analysis of this algorithm
and issues such as the existence of the inverse were not addressed in [33], but
computational experiments were performed and the procedure was shown to
work well empirically on two data sets [33]. This method has been referred to
as the Nyström method [33, 31, 20] since it has an interpretation in terms of the
Nyström technique for solving linear integral equations [8]. See [18] for a full
discussion.

In Algorithm 1, the Preliminary Approximation algorithm is presented.
It is an algorithm that takes as input an n × n Gram matrix G and returns as
output an approximate decomposition of the form G̃ = CW+CT , where C and
W are as in [33], and where W+ is the Moore-Penrose generalized inverse of W .
The c columns are chosen uniformly at random and with replacement. Thus, the
Preliminary Approximation algorithm is quite similar to the algorithm of
[33], except that we sample with replacement and that we do not assume the
existence of W−1. Rather than analyzing this algorithm (which could be done
by combining the analysis of Section 3.3 with the uniform sampling bounds of
[13]), we present and analyze a more general form of it, for which we can obtain
improved bounds, in Section 3.2. Note, however, that if the uniform sampling
probabilities are nearly optimal, in the sense that 1/n ≥ βG2

ii/
∑n

i=1 G2
ii for

some positive β ≤ 1 and for every i = 1, . . . , n, then bounds similar to those in
Theorem 1 will be obtained for this algorithm, with a small β-dependent loss in
accuracy; see [13, 18].

Data : n × n Gram matrix G and c ≤ n.

Result : n × n matrix G̃.
• Pick c columns of G in i.i.d. trials, uniformly at random with replacement; let I
be the set of indices of the sampled columns.
• Let C be the n × c matrix containing the sampled columns.
• Let W be the c × c submatrix of G whose entries are Gij , i ∈ I, j ∈ I.
• Return G̃ = CW+CT .

Algorithm 1: The Preliminary Approximation algorithm

3.2 The Main Algorithm and the Main Theorem

In [13, 14, 15, 16, 17], we showed the importance of sampling columns and/or
rows of a matrix with carefully chosen nonuniform probability distributions in
order to obtain provable error bounds for a variety of common matrix opera-
tions. In Algorithm 2, the Main Approximation algorithm is presented. It is a
generalization of the Preliminary Approximation algorithm that allows the
column sample to be formed using arbitrary sampling probabilities. The Main

328 P. Drineas and M.W. Mahoney

Approximation algorithm takes as input an n × n Gram matrix G, a proba-
bility distribution {pi}n

i=1, a number c ≤ n of columns to choose, and a rank
parameter k ≤ c. It returns as output an approximate decomposition of the form
G̃k = CW+

k CT , where C is an n × c matrix consisting of the chosen columns
of G, each rescaled in an appropriate manner, and where Wk is a c × c matrix
that is the best rank-k approximation to the matrix W , which is a matrix whose
elements consist of those elements in G in the intersection of the chosen columns
and the corresponding rows, each rescaled in an appropriate manner.

Data : n× n Gram matrix G, {pi}n
i=1 such that

∑n
i=1 pi = 1, c ≤ n, and k ≤ c.

Result : n × n matrix G̃.
• Pick c columns of G in i.i.d. trials, with replacement and with respect to the
probabilities {pi}n

i=1; let I be the set of indices of the sampled columns.
• Scale each sampled column (whose index is i ∈ I) by dividing its elements by√

cpi; let C be the n × c matrix containing the sampled columns rescaled in this
manner.
• Let W be the c × c submatrix of G whose entries are Gij/(c

√
pipj), i ∈ I, j ∈ I.

• Compute Wk, the best rank-k approximation to W .
• Return G̃k = CW+

k CT .

Algorithm 2: The Main Approximation algorithm

To implement this algorithm, two passes over the Gram matrix G from
external storage and O(n), i.e. sublinear in O(n2), additional space and time
are sufficient (assuming that the sampling probabilities of the form, e.g., pi =
G2

ii/
∑n

i=1 G2
ii or pi =

∣∣G(i)
∣∣2 / ‖G‖2

F or pi = 1/n are used). Thus, this algorithm
is efficient within the framework of the Pass-Efficient model; see [13] for more
details. Note that if the sampling probabilities of the form pi = G2

ii/
∑n

i=1 G2
ii

are used, as in Theorem 1 below, then one may store the m× n data matrix X
in external storage, in which case only those elements of G that are used in the
approximation need to be computed.

In the simplest application of this algorithm, one could choose k = c, in
which case Wk = W , and the decomposition is of the form G̃ = CW+CT ,
where W+ is the exact Moore-Penrose generalized inverse of the matrix W . In
certain cases, however, computing the generalized inverse may be problematic
since, e.g., it may amplify noise present in the low singular values. Note that,
as a function of increasing k, the Frobenius norm bound of Theorem 2 of [18] is
not necessarily optimal for k = rank(C). Also, although the bounds of Theorem
1 for the spectral norm for k ≤ rank(W) are in general worse than those for
k = rank(W), the former are of interest since our algorithms hold for any input
Gram matrix and we make no assumptions about a model for the noise in the
data.

The sampling matrix formalism of [13] is used in the proofs of Theorem 1 in
Section 3.3, and thus we introduce it here. Let us define the sampling matrix S ∈
Rn×c to be the zero-one matrix where Sij = 1 if the i-th column of A is chosen

Approximating a Gram Matrix for Improved Kernel-Based Learning 329

in the j-th independent random trial and Sij = 0 otherwise. Similarly, define
the rescaling matrix D ∈ Rc×c to be the diagonal matrix with Dtt = 1/√cpit

.
Then, the n × c matrix

C = GSD

consists of the chosen columns of G, each of which has been rescaled by 1/√cpit
,

where it is the label of the column chosen in the t-th independent trial. Similarly,
the c× c matrix

W = (SD)T GSD = DST GSD

consists of the intersection between the chosen columns and the corresponding
rows, each element of which has been rescaled by with 1/c√pit

pjt
. (This can also

be viewed as forming W by sampling a number c of rows of C and rescaling. Note,
however, that in this case the columns of A and the rows of C are sampled using
the same probabilities.) In Algorithm 3, the Main Approximation is restated
using this sampling matrix formalism. It should be clear that Algorithm 3 and
Algorithm 2 yield identical results.

Data : n× n Gram matrix G, {pi}n
i=1 such that

∑n
i=1 pi = 1, c ≤ n, and k ≤ c.

Result : n × n matrix G̃.

• Define the (n × c) matrix S = 0n×c;
• Define the (c × c) matrix D = 0c×c;
• for t = 1, . . . , c do

Pick it ∈ [n], where Pr(it = i) = pi;
Dtt = (cpit)

−1/2;
Sitt = 1;

end
• Let C = GSD and W = DST GSD.
• Compute Wk, the best rank-k approximation to W .
• Return G̃k = CW+

k CT .

Algorithm 3: The Main Approximation algorithm, restated

Before stating our main theorem, we wish to emphasize the structural sim-
plicity of our main result. If, e.g., we choose k = c, then our main algorithm
provides a decomposition of the form G̃ = CW+CT :⎛⎝ G

⎞⎠ ≈

⎛⎝ G̃

⎞⎠ =

⎛⎝C

⎞⎠(
W

)+ (
CT

)
. (2)

Up to rescaling, the Main Approximation algorithm returns an approximation
G̃ which is created from two submatrices of G, namely C and W . In the uniform
sampling case, pi = 1/n, the diagonal elements of the rescaling matrix D are all
n/c, and these all cancel out of the expression. In the nonuniform sampling case,
C is a rescaled version of the columns of G and W is a rescaled version of the
intersection of those columns with the corresponding rows. Alternatively, one

330 P. Drineas and M.W. Mahoney

can view C as consisting of the actual columns of G, without rescaling, and W
as consisting of the intersection of those columns with the corresponding rows,
again without rescaling, in the following manner. Let Ĉ = GS, let Ŵ = ST GS,
and let

Ŵ+ = Ŵ+
D2,D−2 = D

(
DŴD

)+

D (3)

be the {D2, D−2}-weighted-{1, 2}-generalized inverse of Ŵ . Then, G ≈ G̃ =
ĈŴ+ĈT .

The following theorem states our main result regarding the Main Approx-
imation algorithm. Its proof may be found in Section 3.3.

Theorem 1. Suppose G is an n × n SPSD matrix, let k ≤ c be a rank param-
eter, and let G̃k = CW+

k CT be constructed from the Main Approximation
algorithm of Algorithm 2 by sampling c columns of G with probabilities {pi}n

i=1

such that

pi = G2
ii/

n∑
i=1

G2
ii. (4)

Let r = rank(W) and let Gk be the best rank-k approximation to G. In addition,
let ε > 0 and η = 1 +

√
8 log(1/δ). If c ≥ 64k/ε4, then

E
[∥∥∥G − G̃k

∥∥∥
F

]
≤ ‖G −Gk‖F + ε

n∑
i=1

G2
ii (5)

and if c ≥ 64kη2/ε4 then with probability at least 1 − δ∥∥∥G − G̃k

∥∥∥
F
≤ ‖G −Gk‖F + ε

n∑
i=1

G2
ii. (6)

In addition, if c ≥ 4/ε2 then

E
[∥∥∥G − G̃k

∥∥∥
2

]
≤ ‖G −Gk‖2 + ε

n∑
i=1

G2
ii (7)

and if c ≥ 4η2/ε2 then with probability at least 1 − δ∥∥∥G − G̃k

∥∥∥
2
≤ ‖G −Gk‖2 + ε

n∑
i=1

G2
ii. (8)

Several things should be noted about this result. First, if k ≥ r = rank(W)
then Wk = W , and an application of Theorem 2 of [18] leads to bounds of
the form

∥∥∥G − G̃r

∥∥∥
2

≤ ε
∑n

i=1 G2
ii, in expectation and with high probabil-

ity. Second, the sampling probabilities used in Thoerem 1 may be written as
pi =

∣∣X(i)
∣∣2 / ‖X‖2

F , which only depend on dot products from the data ma-
trix X. This is useful if X consists of the data after it has been mapped to

Approximating a Gram Matrix for Improved Kernel-Based Learning 331

the feature space F . Finally, if the sampling probabilities were of the form
pi =

∣∣G(i)
∣∣2 / ‖G‖2

F then they would preferentially choose data points that are
more informative (in the sense of being longer) and/or more representative of
the data (in the sense that they tend to be more well correlated with more data
points). Instead the probabilities (4) ignore the correlations. As discussed in [18],
this leads to somewhat worse error bounds. To the best of our knowledge, it is
not known how to sample with respect to correlations while respecting the SPSD
property and obtaining provably good bounds with improved error bounds. This
is of interest since in many applications it is likely that the data are approxi-
mately normalized by the way the data are generated, and it is the correlations
that are of interest. Intuitively, this difficulty arises since it is difficult to identify
structure in a matrix to ensure the SPSD property, unless, e.g., the matrix is di-
agonally dominant or given in the form XT X. As will be seen in Section 3.3, the
proof of Theorem 1 depends crucially on the decomposition of G as G = XT X.

3.3 Proof of Theorem 1

Since G = XT X it follows that both the left and the right singular vectors of
G are equal to the right singular vectors of X and that the singular values of G
are the squares of the singular values of X. More formally, let the SVD of X be
X = UΣV T . Then,

G = V Σ2V T = XUUT XT . (9)

Now, let us consider CX = XSD ∈ Rm×c, i.e., the column sampled and rescaled
version of X, and let the SVD of CX be CX = ÛΣ̂V̂ T . Thus, in particular, Û
contains the left singular vectors of CX . We do not specify the dimensions of Û
(and in particular how many columns Û has) since we do not know the rank of
CX . Let Ûk be the m × k matrix whose columns consist of the singular vectors
of CX corresponding to the top k singular values. Instead of exactly computing
the left singular vectors U of X, we can approximate them by Ûk, computed
from a column sample of X, and use this to compute an approximation G̃ to G.

We first establish the following lemma, which provides a bound on
∥∥∥G − G̃k

∥∥∥
ξ

for ξ = 2, F .

Lemma 1. If G̃k = CW+
k CT then

∥∥∥G − G̃k

∥∥∥
F

=
∥∥∥XT X −XT ÛkÛkX

∥∥∥
F

(10)∥∥∥G − G̃k

∥∥∥
2

=
∥∥∥X − ÛkÛ

T
k X

∥∥∥2

2
. (11)

Proof: Recall that C = GSD and W = (SD)T GSD = CT
XCX . Thus, W =

V̂ Σ̂2V̂ and Wk = V̂ Σ̂2
kV̂

T , where Σ̂k is the diagonal matrix with the top k
singular values of CX on the diagonal and the remainder set to 0. Then since

332 P. Drineas and M.W. Mahoney

CX = XSD = ÛΣ̂V̂ T and W+
k = V̂ Σ̂−2

k V̂ T

G̃k = GSD (Wk)+ (GSD)T (12)

= XT ÛΣ̂V̂ T
(
V̂ Σ̂2

kV̂
T
)+

V̂ Σ̂ÛT X (13)

= XT ÛkÛ
T
k X, (14)

where ÛkÛ
T
k is a projection onto the space spanned by the top k singular vectors

of W . (10) then follows immediately, and (11) follows since

XT X −XT ÛkÛ
T
k X =

(
X − ÛkÛ

T
k X

)T (
X − ÛkÛ

T
k X

)
and since ‖Ω‖2

2 =
∥∥ΩT Ω

∥∥
2

for any matrix Ω. -

By combining (11) with Theorem 2 of [18], we see that∥∥∥G − G̃k

∥∥∥
2
≤ ‖X −Xk‖2

2 + 2
∥∥XXT − CXCT

X

∥∥
2

≤ ‖G −Gk‖2 + 2
∥∥XXT − CXCT

X

∥∥
2
.

Since the sampling probabilities (4) are of the form pi =
∣∣X(i)

∣∣2 / ‖X‖2
F , this

may be combined with Theorem 1 of [18], from which, by choosing c appropri-
ately, the spectral norm bounds (7) and (8) of Theorem 1 follow.

To establish the Frobenius norm bounds, define E = XXT XXT −
CXCT

XCXCT
X . Then, we have that:∥∥∥G − G̃k

∥∥∥2

F
=

∥∥XT X
∥∥2

F
− 2

∥∥∥XXT Ûk

∥∥∥2

F
+

∥∥∥ÛT
k XXT Ûk

∥∥∥2

F
(15)

≤
∥∥XT X

∥∥2

F
−2

(
k∑

t=1

σ4
t (CX)−

√
k ‖E‖F

)
+

k∑
t=1

σ4
t (CX)+

√
k ‖E‖F(16)

=
∥∥XT X

∥∥2

F
−

k∑
t=1

σ4
t (CX) + 3

√
k ‖E‖F (17)

≤
∥∥XT X

∥∥2

F
−

k∑
t=1

σ2
t (XT X) + 4

√
k ‖E‖F , (18)

where (15) follows by Lemmas 1 and 2, (16) follows by Lemmas 3 and 4, and
(18) follows by Lemma 5. Since

∥∥XT X
∥∥2

F
−

k∑
t=1

σ2
t (XT X) = ‖G‖2

F −
k∑

t=1

σ2
t (G) = ‖G −Gk‖2

F ,

it follows that∥∥∥G − G̃k

∥∥∥2

F
≤ ‖G −Gk‖2

F + 4
√

k
∥∥XXT XXT − CXCT

XCXCT
X

∥∥
F

. (19)

Approximating a Gram Matrix for Improved Kernel-Based Learning 333

Since the sampling probabilities (4) are of the form pi =
∣∣X(i)

∣∣2 / ‖X‖2
F , this

may be combined with Lemma 6 and Theorem 1 of [18]. Since (α2+β2)1/2 ≤ α+β
for α, β ≥ 0, by using Jensen’s inequality, and by choosing c appropriately, the
Frobenius norm bounds (5) and (6) of Theorem 1 follow.

The next four lemmas are used to bound the right hand side of (10).

Lemma 2. For every k : 0 ≤ k ≤ rank(W) we have that:∥∥∥XT X −XT ÛkÛ
T
k X

∥∥∥2

F
=

∥∥XT X
∥∥2

F
− 2

∥∥∥XXT Ûk

∥∥∥2

F
+

∥∥∥ÛT
k XXT Ûk

∥∥∥2

F

Proof: Define Y = X − ÛkÛ
T
k X. Then,∥∥∥XT X −XT ÛkÛ

T
k X

∥∥∥2

F
=

∥∥Y T Y
∥∥2

F

= Tr
(
Y T Y Y T Y

)
=

∥∥XT X
∥∥2

F
− 2Tr

(
XXT ÛkÛ

T
k XXT

)
+Tr

(
ÛT

k XXT ÛkÛ
T
k XXT Ûk

)
,

where the last line follows by multiplying out terms and since the trace is sym-
metric under cyclic permutations. The lemma follows since ‖Ω‖2

F = Tr
(
ΩΩT

)
for any matrix Ω. -

Lemma 3. For every k : 0 ≤ k ≤ rank(W) we have that:∣∣∣∣∣ ∥∥∥XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX)

∣∣∣∣∣ ≤ √
k
∥∥XXT XXT − CXCT

XCXCT
X

∥∥
F

Proof: Since σt(CXCT
X) = σ2

t (CX) and since Û is a matrix consisting of the
singular vectors of CX = XSD, we have that∣∣∣∣∣∥∥∥XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX)

∣∣∣∣∣=
∣∣∣∣∣

k∑
t=1

∣∣∣XXT Û (t)
∣∣∣2 − k∑

t=1

∣∣∣CXCT
X Û (t)

∣∣∣2∣∣∣∣∣
=

∣∣∣∣∣
k∑

t=1

Û (t)T (
XXT XXT − CXCT

XCXCT
X

)
Û (t)

∣∣∣∣∣
≤
√

k

(
k∑

t=1

(
Û (t)T(

XXT XXT−CXCT
XCXCT

X

)
Û (t)

)
2

)1/2

,

where the last line follows from the Cauchy-Schwartz inequality. The lemma then
follows. -

Lemma 4. For every k : 0 ≤ k ≤ rank(W) we have that:∥∥∥ÛT
k XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX) ≤

√
k
∥∥XXT XXT − CXCT

XCXCT
X

∥∥
F

334 P. Drineas and M.W. Mahoney

Proof: Recall that if a matrix U has orthonormal columns then
∥∥UT Ω

∥∥
F

≤
‖Ω‖F for any matrix Ω. Thus, we have that∥∥∥ÛT

k XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX) ≤

∥∥∥XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX)

≤
∣∣∣∣∣ ∥∥∥XXT Ûk

∥∥∥2

F
−

k∑
t=1

σ4
t (CX)

∣∣∣∣∣
The remainder of the proof follows that of Lemma 3. -

Lemma 5. For every k : 0 ≤ k ≤ rank(W) we have that:∣∣∣∣∣
k∑

t=1

σ4
t (CX) − σ2

t (XT X)

∣∣∣∣∣ ≤ √
k
∥∥XXT XXT − CXCT

XCXCT
X

∥∥
F

Proof:∣∣∣∣∣
k∑

t=1

σ4
t (CX) − σ2

t (XT X)

∣∣∣∣∣ ≤ √
k

(
k∑

t=1

(
σ4

t (CX) − σ2
t (XT X)

)2

)1/2

=
√

k

(
k∑

t=1

(
σt(CXCT

XCXCT
X)−σt(XXT XXT)

)2

)1/2

≤
√

k
∥∥XXT XXT − CXCT

XCXCT
X

∥∥
F

,

where the first inequality follows from the Cauchy-Schwartz inequality and the
second inequality follows from matrix perturbation theory. -

The following is a result of the BasicMatrixMultiplication algorithm
that is not found in [13], but that will be useful for bounding the additional
error in (19). We state this result for a general m × n matrix A.

Lemma 6. Suppose A ∈ Rm×n, c ∈ Z+ such that 1 ≤ c ≤ n, and {pi}n
i=1 are

such that pk =
∣∣A(k)

∣∣2 / ‖A‖2
F . Construct C with the BasicMatrixMultipli-

cation algorithm of [13]. Then,

E
[∥∥AAT AAT − CCT CCT

∥∥
F

]
≤ 2√

c
‖A‖4

F . (20)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

8 log(1/δ). Then, with probability at
least 1 − δ, ∥∥AAT AAT − CCT CCT

∥∥
F
≤ 2η√

c
‖A‖4

F . (21)

Proof: First note that:

AAT AAT − CCT CCT = AAT AAT −AAT CCT + AAT CCT − CCT CCT

= AAT
(
AAT − CCT

)
+

(
AAT − CCT

)
CCT .

Approximating a Gram Matrix for Improved Kernel-Based Learning 335

Thus, by submultiplicitivity and subadditivity we have that for ξ = 2, F :∥∥AAT AAT − CCT CCT
∥∥

F
≤ ‖A‖2

F

∥∥AAT − CCT
∥∥

F
+

∥∥AAT − CCT
∥∥

F
‖C‖2

F .

The lemma follows since ‖C‖2
F = ‖A‖2

F when pk =
∣∣A(k)

∣∣2 / ‖A‖2
F , and by ap-

plying Theorem 1 of [18]. -

4 Conclusion

We have presented and analyzed an algorithm that provides an approximate de-
composition of an n×n Gram matrix G which is of the form G ≈ G̃k = CW+

k CT

and which has provable error bounds of the form (1). A crucial feature of this
algorithm is the probability distribution used to randomly sample columns.
We conclude with two open problems related to the choice of this distribu-
tion.

First, it would be desirable to choose the probabilities in Theorem 1 to be
pi =

∣∣G(i)
∣∣2 / ‖G‖2

F and to establish bounds of the form (1) in which the scale
of the additional error was ‖G‖F =

∥∥XT X
∥∥

F
rather than

∑n
i=1 G2

ii = ‖X‖2
F .

This would entail extracting linear structure while simultaneously respecting
the SPSD property and obtaining improved scale of error. This would likely be
a corollary of a CUR decomposition [15] for a general m × n matrix A with
error bounds of the form found in [15] and in which U = W+

k , where W is now
the matrix consisting of the intersection of the chosen columns and (in general
different) rows; see [18]. This would simplify considerably the form of U found
in [15] and would lead to improved interpretability. Second, we should also note
that if capturing coarse statistics over the data is not of interest, but instead
one is interested in other properties of the data, e.g., identifying outliers, then
probabilities that depend on the data in some other manner, e.g., inversely with
respect to their lengths squared, may be appropriate. We do not have provable
bounds in this case.

Acknowledgments. We would like to thank Ravi Kannan for many fruitful
discussions and the Institute for Pure and Applied Mathematics at UCLA for
its generous hospitality.

References

1. D. Achlioptas and F. McSherry. Fast computation of low rank matrix approxima-
tions. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 611–618, 2001.

2. D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel
methods. In Annual Advances in Neural Information Processing Systems 14: Pro-
ceedings of the 2001 Conference, pages 335–342, 2002.

336 P. Drineas and M.W. Mahoney

3. Y. Azar, A. Fiat, A.R. Karlin, F. McSherry, and J. Saia. Spectral analysis of data.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 619–626, 2001.

4. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396, 2003.

5. Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet.
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral cluster-
ing. In Annual Advances in Neural Information Processing Systems 16: Proceedings
of the 2003 Conference, pages 177–184, 2004.

6. C.J.C. Burges. Simplified support vector decision rules. In Proceedings of the 13th
International Conference on Machine Learning, pages 71–77, 1996.

7. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, Cam-
bridge, 2000.

8. L.M. Delves and J.L. Mohamed. Computational Methods for Integral Equations.
Cambridge University Press, Cambridge, 1985.

9. D.L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding tech-
niques for high-dimensional data. Proc. Natl. Acad. Sci. USA, 100(10):5591–5596,
2003.

10. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large
graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 291–299, 1999.

11. P. Drineas and R. Kannan. Fast Monte-Carlo algorithms for approximate matrix
multiplication. In Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 452–459, 2001.

12. P. Drineas and R. Kannan. Pass efficient algorithms for approximating large ma-
trices. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 223–232, 2003.

13. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algo-
rithms for matrices I: Approximating matrix multiplication. Technical Report
YALEU/DCS/TR-1269, Yale University Department of Computer Science, New
Haven, CT, February 2004.

14. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. Technical Report
YALEU/DCS/TR-1270, Yale University Department of Computer Science, New
Haven, CT, February 2004.

15. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for ma-
trices III: Computing a compressed approximate matrix decomposition. Technical
Report YALEU/DCS/TR-1271, Yale University Department of Computer Science,
New Haven, CT, February 2004.

16. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of het-
erogeneous Max-Cut problems and approximation algorithms. Technical Report
YALEU/DCS/TR-1283, Yale University Department of Computer Science, New
Haven, CT, April 2004.

17. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of hetero-
geneous Max-Cut problems and approximation algorithms. In Proceedings of the
22nd Annual International Symposium on Theoretical Aspects of Computer Sci-
ence, pages 57–68, 2005.

18. P. Drineas and M.W. Mahoney. On the Nyström method for approximating a
Gram matrix for improved kernel-based learning. Technical Report 1319, Yale
University Department of Computer Science, New Haven, CT, April 2005.

Approximating a Gram Matrix for Improved Kernel-Based Learning 337

19. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2001.

20. C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the
Nyström method. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(2):214–225, 2004.

21. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, pages 370–378, 1998.

22. J. Ham, D.D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimension-
ality reduction of manifolds. Technical Report TR-110, Max Planck Institute for
Biological Cybernetics, July 2003.

23. S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University,
2004.

24. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In Proceedings of the 1997 IEEE Workshop on Neural Networks
for Signal Processing VII, pages 276–285, 1997.

25. L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective
clustering via iterative sampling. manuscript.

26. S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by local linear
embedding. Science, 290:2323–2326, 2000.

27. B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

28. A.J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine
learning. In Proceedings of the 17th International Conference on Machine Learning,
pages 911–918, 2000.

29. J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

30. K.Q. Weinberger, F. Sha, and L.K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proceedings of the 21st International Conference on
Machine Learning, pages 839–846, 2004.

31. C.K.I. Williams, C.E. Rasmussen, A. Schwaighofer, and V. Tresp. Observations on
the Nyström method for Gaussian process prediction. Technical report, University
of Edinburgh, 2002.

32. C.K.I. Williams and M. Seeger. The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the 17th International Conference on
Machine Learning, pages 1159–1166, 2000.

33. C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In Annual Advances in Neural Information Processing Systems 13: Pro-
ceedings of the 2000 Conference, pages 682–688, 2001.

Learning Convex Combinations of Continuously
Parameterized Basic Kernels�

Andreas Argyriou1, Charles A. Micchelli2, and Massimiliano Pontil1

1 Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, England, UK

{a.argyriou, m.pontil}@cs.ucl.ac.uk
2 Department of Mathematics and Statistics, State University of New York,

The University at Albany, 1400 Washington Avenue,
Albany, NY, 12222, USA

Abstract. We study the problem of learning a kernel which minimizes
a regularization error functional such as that used in regularization net-
works or support vector machines. We consider this problem when the
kernel is in the convex hull of basic kernels, for example, Gaussian kernels
which are continuously parameterized by a compact set. We show that
there always exists an optimal kernel which is the convex combination of
at most m + 1 basic kernels, where m is the sample size, and provide a
necessary and sufficient condition for a kernel to be optimal. The proof
of our results is constructive and leads to a greedy algorithm for learning
the kernel. We discuss the properties of this algorithm and present some
preliminary numerical simulations.

1 Introduction

A common theme in machine learning is that a function can be learned from
a finite set of input/output examples by minimizing a regularization functional
which models a trade-off between an error term, measuring the fit to the data,
and a smoothness term, measuring the function complexity. In this paper we
focus on learning methods which, given examples {(xj , yj) : j ∈ INm} ⊆ X × IR,
estimate a real-valued function by minimizing the regularization functional

Qμ(f,K) =
∑

j∈INm

q(yj , f(xj)) + μ‖f‖2
K (1)

where q : IR × IR → IR+ is a prescribed loss function, μ is a positive parameter
and INm := {1, . . . ,m}. The minimum is taken over f ∈ HK , a reproducing
kernel Hilbert space (RKHS) with kernel K, see [1].

This approach has a long history. It has been studied, from different per-
spectives, in statistics [16], in optimal recovery [10], and more recently, has been

� This work was supported by EPSRC Grant GR/T18707/01, NSF Grant ITR-
0312113 and the PASCAL European Network of Excellence.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 338–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Convex Combinations of Continuously Parameterized Basic Kernels 339

a focus of attention in machine learning theory, see, for example [14, 15] and
references therein. The choice of the loss function q leads to different learning
methods among which the most prominent have been square loss regularization
and support vector machines.

As new parametric families of kernels are being proposed to model functions
defined on possibly complex/structured input domains (see, for example, [14]
for a review) it is increasingly important to develop optimization methods for
tuning kernel-based learning algorithms over a possibly large number of kernel
parameters. This motivates us to study the problem of minimizing functional
(1) not only over f but also over K, that is, we consider the variational problem

Qμ(K) = inf{Qμ(f,K) : f ∈ HK ,K ∈ K} (2)

where K is a prescribed convex set of kernels. This point of view was proposed
in [3, 8] where the problem (2) was mainly studied in the case of support vector
machines and when K is formed by combinations of a finite number of basic
kernels. Other related work on this topic appears in the papers [4, 9, 11, 18].

In this paper, we present a framework which allows us to model richer families
of kernels parameterized by a compact set Ω, that is, we consider kernels of the
type

K =
{∫

Ω

G(ω)dp(ω) : p ∈ P(Ω)
}

(3)

where P(Ω) is the set of all probability measures on Ω. For example, when
Ω ⊆ IR+ and the function G(ω) is a multivariate Gaussian kernel with variance
ω then K is a subset of the class of radial kernels. The set-up for the family
of kernels in (3) is discussed in Section 2, where we also review some earlier
results from [9]. In particular, we establish that if q is convex then problem (2)
is equivalent to solving a saddle-point problem. In Section 3, we derive optimality
conditions for problem (2). We present a necessary and sufficient condition which
characterizes a solution to this problem (see Theorem 2) and show that there
always exists an optimal kernel K̂ with a finite representation. Specifically, for
this kernel the probability measure p in (3) is an atomic measure with at most
m+1 atoms (see Theorem 1). As we shall see, this implies, for example, that the
optimal radial kernel is a finite mixture of Gaussian kernels when the variance is
bounded above and away from zero. We mention, in passing, that a version of our
characterization also holds when Ω is locally compact (see Theorem 4). The proof
of our results is constructive and can be used to derive algorithms for learning
the kernel. In Section 4, we propose a greedy algorithm for learning the kernel
and present some preliminary experiments on optical character recognition.

2 Background and Notation

In this section we review our notation and present some background results from
[9] concerning problem (2).

We begin by recalling the notion of a kernel and RKHS HK . Let X be a set.
By a kernel we mean a symmetric function K : X ×X → IR such that for every

340 A. Argyriou, C.A. Micchelli, and M. Pontil

finite set of inputs x = {xj : j ∈ INm} ⊆ X and every m ∈ IN, the m × m
matrix Kx := (K(xi, xj) : i, j ∈ INm) is positive semi-definite. We let L(IRm)
be the set of m × m positive semi-definite matrices and L+(IRm) the subset of
positive definite ones. Also, we use A(X) for the set of all kernels on the set X
and A+(X) for the set of kernels K such that, for each m ∈ IN and each choice
of x, Kx ∈ L+(IRm).

According to Aronszajn and Moore [1], every kernel is associated with an
(essentially) unique Hilbert space HK with inner product 〈·, ·〉K such that K is
its reproducing kernel. This means that for every f ∈ HK and x ∈ X , 〈f,Kx〉K =
f(x), where Kx(·) := K(x, ·). Equivalently, any Hilbert space H of real-valued
functions defined everywhere on X such that the point evaluation functionals
Lx(f) := f(x), f ∈ H are continuous on H, admits a reproducing kernel K.

Let D := {(xj , yj) : j ∈ INm} ⊆ X × IR be prescribed data and y the
vector (yj : j ∈ INm). For each f ∈ HK , we introduce the information operator
Ix(f) := (f(xj) : j ∈ INm) of values of f on the set x := {xj : j ∈ INm}. We let
IR+ := [0,∞), prescribe a nonnegative function Q : IRm → IR+ and introduce
the regularization functional

Qμ(f,K) := Q(Ix(f)) + μ‖f‖2
K (4)

where ‖f‖2
K := 〈f, f〉K and μ is a positive constant. Note that Q depends on

y but we suppress it in our notation as it is fixed throughout our discussion.
For example, in equation (1) we have, for w = (wj : j ∈ Nn), that Q(w) =∑

j∈INm
q(yj , wj), where q is a loss function.

Associated with the functional Qμ and the kernel K is the variational problem

Qμ(K) := inf{Qμ(f,K) : f ∈ HK} (5)

which defines a functional Qμ : A(X) → IR+. We remark, in passing, that all
of what we say about problem (5) applies to functions Q on IRm which are
bounded from below as we can merely adjust the expression (4) by a constant
independent of f and K. Note that if Q : IRm → IR+ is continuous and μ is a
positive number then the infimum in (5) is achieved because the unit ball in HK

is weakly compact. In particular, when Q is convex the minimum is unique since
in this case the right hand side of equation (4) is a strictly convex functional of
f ∈ HK . Moreover, if f is a solution to problem (5) then it has the form

f(x) =
∑

j∈INm

cjK(xj , x), x ∈ X (6)

for some real vector c = (cj : j ∈ INm). This result is known as the Representer
Theorem, see, for example, [14]. Although it is simple to prove, this result is
remarkable as it makes the variational problem (5) amenable to computations.
In particular, if Q is convex, the unique minimizer of problem (5) can be found
by replacing f by the right hand side of equation (6) in equation (4) and then
optimizing with respect to the vector c. That is, we have the finite dimensional
variational problem

Qμ(K) := min{Q(Kxc) + μ(c,Kxc) : c ∈ IRm} (7)

Learning Convex Combinations of Continuously Parameterized Basic Kernels 341

where (·, ·) is the standard inner product on IRm. For example, when Q is the
square loss defined for w = (wj : j ∈ INm) ∈ IRm as Q(w) = ‖w − y‖2 :=∑

j∈INm
(wj − yj)2 the function in the right hand side of (7) is quadratic in the

vector c and its minimizer is obtained by solving a linear system of equations.
The point of view of this paper is that the functional (5) can be used as

a design criterion to select the kernel K. To this end, we specify an arbitrary
convex subset K of A(X) and focus on the problem

Qμ(K) := inf{Qμ(K) : K ∈ K}. (8)

Every input set x and convex set K of kernels determines a convex set of
matrices in L(IRm), namely K(x) := {Kx : K ∈ K}. Obviously, it is this set of
matrices that affects the variational problem (8). For this reason, we say that the
set of kernels K is compact and convex provided that for all x the set of matrices
K(x) is compact and convex. The following result is taken directly from [9].

Lemma 1. If K is a compact and convex subset of A+(X) and Q : IRm → IR is
continuous then the minimum of (8) exists.

The lemma requires that all kernels in K are in A+(X). If we wish to use
kernels K only in A(X) we may always modify them by adding any positive
multiple of the delta function kernel Δ defined, for x, t ∈ X , as

Δ(x, t) =
{

1, x = t
0, x �= t

that is, replace K by K + aΔ where a is a positive constant.
There are two useful cases of the set K of kernels which are compact and

convex. The first is formed by the convex hull of a finite number of kernels in
A+(X). The second case generalizes the above one to a compact Hausdorff space
Ω (see, for example, [12]) and a mapping G : Ω → A+(X). For each ω ∈ Ω, the
value of the kernel G(ω) at x, t ∈ X is denoted by G(ω)(x, t) and we assume
that the function of ω !→ G(ω)(x, t) is continuous on Ω for each x, t ∈ X . When
this is the case we say G is continuous. We let P(Ω) be the set of all probability
measures on Ω and observe that

K(G) :=
{∫

Ω

G(ω)dp(ω) : p ∈ P(Ω)
}

(9)

is a compact and convex set of kernels in A+(X). The compactness of this set
is a consequence of the weak∗-compactness of the unit ball in the dual space of
C(Ω), the set of all continuous real-valued functions g on Ω with norm ‖g‖Ω :=
max{|g(ω)| : ω ∈ Ω}, see [12]. For example, we choose Ω = [ω1, ω2], where
0 < ω1 < ω2 and G(ω)(x, t) = e−ω‖x−t‖2

, x, t ∈ IRd, ω ∈ Ω, to obtain radial
kernels, or G(ω)(x, t) = eω(x,t) to obtain dot product kernels. Note that the
choice Ω = INn corresponds to the first case.

Next, we establish that if the loss function Q : IRm → IR is convex then
the functional Qμ : A+(X) → IR+ is convex as well, that is, the variational

342 A. Argyriou, C.A. Micchelli, and M. Pontil

problem (8) is a convex optimization problem. To this end, we recall that the
conjugate function of Q, denoted by Q∗ : IRm → IR∪{+∞}, is defined, for every
v ∈ IRm, as

Q∗(v) = sup{(w, v) −Q(w) : w ∈ IRm} (10)

and it follows, for every w ∈ IRm, that

Q(w) = sup{(w, v) −Q∗(v) : v ∈ IRm} (11)

see [5]. See also [17] for a nice application of the conjugate function to linear
statistical models. For example, for the square loss defined above, the conjugate
function is given, for every v ∈ IRm, by

Q∗(v) = max
{
(w, v) − ‖w − y‖2 : w ∈ IRm

}
=

1
4
‖v‖2 + (y, v).

Note that Q∗(0) = − inf{Q(w) : w ∈ IRm} < ∞ since Q is bounded from below.
This observation is used in the proof of the lemma below.

Lemma 2. If K ∈ A(X), x is a set of m points of X such that Kx ∈ L+(IRm)
and Q : IRm → IR a convex function then there holds the formula

Qμ(K) = max
{
− 1

4μ
(v,Kxv) −Q∗(v) : v ∈ IRm

}
. (12)

The fact that the maximum above exists follows from the hypothesis that
Kx ∈ L+(IRm) and the fact that Q∗(v) ≥ −Q(0) for all v ∈ IRm, which follows
from equation (10). The proof of the lemma is based on a version of the von
Neumann minimax theorem (see the appendix). This lemma implies that the
functional Qμ : A+(X) → IR+ is convex. Indeed, equation (12) expresses Qμ(K)
as the maximum of linear functions in the kernel K.

3 Characterization of an Optimal Kernel

Our discussion in Section 2 establishes that problem (8) reduces to the minimax
problem

Qμ(K) = −max{min{R(c,K) : c ∈ IRm} : K ∈ K} (13)

where the function R is defined as

R(c,K) =
1
4μ

(c,Kxc) + Q∗(c), c ∈ IRm, K ∈ K. (14)

In this section we show that problem (13) admits a saddle point, that is, the
minimum and maximum in (13) can be interchanged and describe the properties
of this saddle point. We consider this problem in the general case that K is
induced by a continuous mapping G : Ω → A+(X) where Ω is a compact
Hausdorff space, so we write K as K(G), see equation (9).

We assume that the conjugate function is differentiable everywhere and de-
note the gradient of Q∗ at c by ∇Q∗(c).

Learning Convex Combinations of Continuously Parameterized Basic Kernels 343

Theorem 1. If Ω is a compact Hausdorff topological space and G : Ω → A+(X)
is continuous then there exists a kernel K̂ =

∫
Ω

G(ω)dp̂(ω) ∈ K(G) such that p̂
is a discrete probability measure on Ω with at most m + 1 atoms and, for any
atom ω̂ ∈ Ω of p̂, we have that

R(ĉ, G(ω̂)) = max{R(ĉ, G(ω)) : ω ∈ Ω} (15)

where ĉ is the unique solution to the equation

1
2μ

K̂xĉ + ∇Q∗(ĉ) = 0. (16)

Moreover, for every c ∈ IRm and K ∈ K(G), we have that

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂). (17)

Proof. Let us first comment on the nonlinear equation (16). For any kernel
K ∈ K(G) the extremal problem

min{R(c,K) : c ∈ IRm}

has a unique solution, since the function c !→ R(c,K) is strictly convex and
lim‖c‖→∞ R(c,K) = ∞. Moreover, if we let cK ∈ IRm be the unique minimizer,
it solves the equation

1
2μ

KxcK + ∇Q∗(cK) = 0.

Hence, equation (16) says that ĉ = cK̂ .
Now let us turn to the existence of the kernel K̂ described above. First, we

note the immediate fact that

max{R(c,K) : K ∈ K(G)} = max{R(c,G(ω)) : ω ∈ Ω}.

Next, we define the function ϕ : IRm → IR by

ϕ(c) := max{R(c,G(ω)) : ω ∈ Ω}, c ∈ IRm.

According to the definition of the conjugate function in equation (10) and the
hypotheses that G is continuous and {G(ω) : ω ∈ Ω} ⊆ A+(X) we see that
lim‖c‖→∞ ϕ(c) = ∞. Hence, ϕ has a minimum. We call a minimizer c̃. This
vector is characterized by the fact that the right directional derivative of ϕ at c̃
in all directions d ∈ IRm is nonnegative. We denote this derivative by ϕ′

+(c̃; d).
Using Lemma 4 in the appendix, we have that

ϕ′
+(c̃; d) = max

{
1
2μ

(d,Gx(ω)c̃) + (∇Q∗(c̃), d) : ω ∈ Ω∗
}

where the set Ω∗ is defined as

Ω∗ := {ω : ω ∈ Ω, R(c̃, G(ω)) = ϕ(c̃)} .

344 A. Argyriou, C.A. Micchelli, and M. Pontil

If we define the vectors z(ω) = 1
2μGx(ω)c̃ +∇Q∗(c̃), ω ∈ Ω∗, the condition that

ϕ′
+(c̃; d) is nonnegative for all d ∈ IRm means that

max{(z(ω), d) : ω ∈ Ω∗} ≥ 0, d ∈ IRm.

Since G is continuous, the set N := {z(ω) : ω ∈ Ω∗} is a closed subset of IRm.
Therefore, its convex hull M := co(N) is closed as well. We claim that 0 ∈ M.
Indeed, if 0 /∈ M then there exists a hyperplane {c : c ∈ IRm, (w, c) + α = 0},
α ∈ IR, w ∈ IRm, which strictly separates 0 from M, that is, (w, 0) + α > 0 and
(w, z(ω)) +α ≤ 0, ω ∈ Ω∗, see [12]. The first condition implies that α > 0 and,
so we conclude that

max{(w, z(ω)) : ω ∈ Ω∗} < 0

which contradicts our hypothesis that c̃ is a minimum of ϕ.
By the Caratheodory theorem, see, for example, [5–Ch. 2], every vector in

M can be expressed as a convex combination of at most m + 1 of the vectors in
N . In particular, we have that

0 =
∑

j∈INm+1

λjz(ωj) (18)

for some {ωj : j ∈ INm+1} ⊆ Ω∗ and nonnegative constants λj with∑
j∈INm+1

λj = 1. Setting

K̂ :=
∑

j∈INm+1

λjG(ωj) =
∫

Ω

G(ω)dp̂(ω)

where p̂ =
∑

j∈INm+1
λjδωj

, (we denote by δω the Dirac measure at ω), we can
rewrite equation (18) as

1
2μ

K̂xc̃ + ∇Q∗(c̃) = 0.

Hence, we conclude that c̃ = ĉ which means that

min{R(c, K̂) : c ∈ IRm} = R(ĉ, K̂).

This establishes the upper inequality in (17). For the lower inequality we observe
that

R(ĉ, K̂) =
∫

Ω

R(ĉ, G(ω))dp̂(ω) =
∑

j∈INm+1

λjR(ĉ, G(ωj)).

Since ĉ = c̃, we can use the definition of the ωj to conclude for any K ∈ K(G)
by equation (18) and the definition of the function ϕ that

R(ĉ, K̂) = ϕ(ĉ) ≥ R(ĉ, K). ��
This theorem improves upon our earlier results in [9] where only the square

loss function was studied in detail. Generally, not all saddle points (ĉ, K̂) of R

Learning Convex Combinations of Continuously Parameterized Basic Kernels 345

satisfy the properties stated in Theorem 1. Indeed, a maximizing kernel may be
represented as K̂ =

∫
Ω

G(ω)dp̂(ω) where p̂ may contain more than m + 1 atoms
or even have uncountable support (note, though, that the proof above provides a
procedure for finding a kernel which is the convex combination of at most m+1
kernels). With this caveat in mind, we show below that the conditions stated in
Theorem 1 are necessary and sufficient.

Theorem 2. Let ĉ ∈ IRm and K̂ =
∫

Ω
G(ω)dp̂(ω), where p̂ is a probability

measure with support Ω̂ ⊆ Ω. The pair (ĉ, K̂) is a saddle point of problem (13)
if and only if ĉ solves equation (16) and every ω̂ ∈ Ω̂ satisfies equation (15).

Proof. If (ĉ, K̂) is a saddle point of (13) then ĉ is the unique minimizer of the
function R(·, K̂) and solves equation (16). Moreover, we have that∫

Ω̂

R(ĉ, G(ω))dp̂(ω) = R(ĉ, K̂) = max{R(ĉ, G(ω)) : ω ∈ Ω}

implying that equation (15) holds true for every ω̂ ∈ Ω̂.
On the other hand, if ĉ solves equation (16) we obtain the upper inequality

in equation (17) whereas equation (15) brings the lower inequality. ��

Theorem 1 can be specified to the case that Ω is a finite set, that is K =
co(Kn) where Kn = {K
 : � ∈ INn} is a prescribed set of kernels. Below, we use
the notation Kx,
 for the matrix (K
)x.

Corollary 1. If Kn = {Kj : j ∈ INn} ⊂ A+(X) there exists a kernel K̂ =∑
j∈INn

λjKj ∈ co(Kn) such that the set J = {j : j ∈ INn, λj > 0} contains at
most min(m + 1, n) elements and, for every j ∈ J we have that

R(ĉ, Kj) = max{(R(ĉ, K
) : � ∈ INn} (19)

where ĉ is the unique solution to the equation

1
2μ

K̂xĉ + ∇Q∗(ĉ) = 0. (20)

Moreover, for every c ∈ IRm and K ∈ co(Kn) we have that

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂). (21)

In the important case that Ω = [ω1, ω2] for 0 < ω1 < ω2 and G(ω) is a
Gaussian kernel, G(ω)(x, t) = exp(−ω‖x−t‖2), x, t ∈ IRd, Theorem 1 establishes
that a mixture of at most m + 1 Gaussian kernels provides an optimal kernel.
What happens if we consider all possible Gaussians, that is, take Ω = IR+?
This question is important because Gaussians generate the whole class of radial
kernels. Indeed, we recall a beautiful result by I.J. Schoenberg [13].

Theorem 3. Let h be a real-valued function defined on IR+ such that h(0) = 1.
We form a kernel K on IRd × IRd by setting, for each x, t ∈ IRd, K(x, t) =

346 A. Argyriou, C.A. Micchelli, and M. Pontil

h(‖x − t‖2). Then K is positive definite for any d if and only if there is a
probability measure p on IR+ such that

K(x, t) =
∫

IR+

e−ω‖x−t‖2
dp(ω), x, t ∈ IRd.

Note that the set IR+ is not compact and the kernel G(0) is not in A+(IRd).
Therefore, on both accounts Theorem 1 does not apply in this circumstance. In
general, we may overcome this difficulty by a limiting process which can handle
kernel maps on locally compact Hausdorff spaces. This will lead us to an exten-
sion of Theorem 1 where Ω is locally compact. However, we only describe our
approach in detail for the Gaussian case and Ω = IR+. An important ingredi-
ent in the discussion presented below is that G(∞) = Δ, the diagonal kernel.
Furthermore, in the statement of the theorem below it is understood that when
we say that p̂ is a discrete probability measure on IR+ we mean that p̂ can have
an atom not only at zero but also at infinity. Therefore, we can integrate any
function relative to such a discrete measure over the extended positive real line
provided such a function is defined therein.

Theorem 4. Let G : IR+ → A(X) be defined as

G(ω)(x, t) = e−ω‖x−t‖2
, x, t ∈ IRd, ω ∈ IR+.

Then there exists a kernel K̂ =
∫
IR+

G(ω)dp̂(ω) ∈ K(G) such that p̂ is a discrete
probability measure on IR+ with at most m+1 atoms and, for any atom ω̂ ∈ IR+

of p̂, we have that

R(ĉ, G(ω̂)) = max{R(ĉ, G(ω)) : ω ∈ IR+} (22)

where ĉ is a solution to the equation

1
2μ

K̂xĉ + ∇Q∗(ĉ) = 0 (23)

and the function Q∗ is continuously differentiable. Moreover, for every c ∈ IRm

and K ∈ K(G), we have that

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂). (24)

Proof. For every � ∈ IN we consider the Gaussian kernel map on the interval
Ω
 := [�−1, �] and appeal to Theorem 1 to produce a sequence of kernels K̂
 =∫

Ω�
G(ω)dp̂
(ω) and ĉ
 ∈ IRm with the properties described there. In particular, p̂

is a discrete probability measure with at most m+1 atoms, a number independent
of �. Let us examine what may happen as � tends towards infinity. Each of the
atoms of p̂
 as well as their corresponding weights have subsequences which
converge. Some atoms may converge to zero while others to infinity. In either
case, the Gaussian kernel map approaches a limit. Therefore, we can extract a

Learning Convex Combinations of Continuously Parameterized Basic Kernels 347

convergent subsequence {p̂n�
: � ∈ IN} of probability measures and kernels {K̂n�

:
� ∈ IN} such that lim
→∞ p̂n�

= p̂, lim
→∞ K̂n�
= K̂, and K̂ =

∫
IR+

G(ω)dp̂(ω)
with the provision that p̂ may have atoms at either zero or infinity. In either case,
we replace the Gaussian by its limit, namely G(0), the identically one kernel, or
G(∞), the delta kernel, in the integral which defines K̂.

To establish that K̂ is an optimal kernel, we turn our attention to the sequence
of vectors ĉn�

. We claim that this sequence also has a convergent subsequence.
Indeed, from equation (17) for every K =

∫
Ω�

G(ω)dp(ω), p ∈ P(Ω
) we have
that

R(ĉn�
,K) ≤ R(0, K̂n�

) = Q∗(0) < ∞.

Using the fact that the function Q∗ is bounded below (see our comments after
the proof of Lemma 2) we see that the sequence ĉn�

has Euclidean norm bounded
independently of �. Hence, it has a convergent subsequence whose limit we call
ĉ. Passing to the limit we obtain equations (23) and (24) and, so, conclude that
(ĉ, K̂) is a saddle point. ��

We remark that extensions of the results in this section also hold true for non-
differentiable convex functions Q. The proofs presented above must be modified
in this general case in detail but not in substance. We postpone the discussion
of this issue to a future occasion.

4 A Greedy Algorithm for Learning the Kernel

The analysis in the previous section establishes necessary and sufficient condi-
tions for a pair (ĉ, K̂) ∈ IRm ×K(G) to be a saddle point of the problem

−Qμ(G) := max {min {R(c,K) : c ∈ IRm} : K ∈ K(G)} .

The main step in this problem is to compute the optimal kernel K̂. Indeed, once
K̂ has been computed, ĉ is obtained as the unique solution cK to the equation

1
2μ

KxcK + ∇Q∗(cK) = 0 (25)

for K = K̂.
With this observation in mind, in this section we focus on the computational

issues for the problem

−Qμ(G) = max{g(K) : K ∈ K(G)} (26)

where the function g : A+(X) → IR is defined as

g(K) := min {R(c,K) : c ∈ IRm} , K ∈ A+(X). (27)

We present a greedy algorithm for learning an optimal kernel. The algorithm
starts with an initial kernel K(1) ∈ K(G) and computes iteratively a sequence of
kernels K(t) ∈ K(G) such that

g(K(1)) < g(K(2)) < · · · < g(K(s)) (28)

348 A. Argyriou, C.A. Micchelli, and M. Pontil

Initialization: Choose K(1) ∈ K(G)
For t = 1 to T:

1. Compute c(t) = argmin{R(c, K(t)) : c ∈ IRm} using equation (25)

2. Find ω̂ ∈ Ω : (c(t), Gx(ω̂)c(t)) > (c(t), K
(t)
x c(t)). If such ω̂ does not

exist terminate

3. Compute λ̂ = argmax{g(λG(ω̂) + (1 − λ)K(t)) : λ ∈ (0, 1]}
4. Set K(t+1) = λ̂G(ω̂) + (1 − λ̂)K(t)

Fig. 1. Algorithm to compute an optimal convex combination of kernels in the set
{G(ω) : ω ∈ Ω}

where s is the number of iterations. At each iteration t, 1 ≤ t ≤ s, the algorithm
searches for a value ω̂ ∈ Ω, if any, such that

(c(t), Gx(ω̂)c(t)) > (c(t),K(t)
x c(t)) (29)

where we have defined c(t) := cK(t) . If such ω̂ is found then a new kernel K(t+1)

is computed to be the optimal convex combination of the kernels G(ω̂) and K(t),
that is,

g(K(t+1)) = max
{
g(λG(ω̂) + (1 − λ)K(t)) : λ ∈ [0, 1]

}
. (30)

If no ω̂ ∈ Ω satisfying inequality (29) can be found, the algorithm terminates.
The algorithm is summarized in Figure 1.

Step 2 of the algorithm is implemented with a local gradient ascent in Ω.
If the value of ω found locally does not satisfy inequality (29), the smallest
hyperrectangle containing the search path is removed and a new local search is
started in the yet unsearched part of Ω, continuing in this way until either the
whole of Ω is covered or inequality (29) is satisfied. Although in the experiments
below we will apply this strategy when Ω is an interval, it also naturally applies to
more complex parameter spaces, for example a compact set in a Euclidean space.
Step 3 is a simple maximization problem which we solve using Newton method,
since the function g(λG(ω̂) + (1 − λ)K(t)) is concave in λ and its derivative
can be computed by applying Lemma 4. We also use a tolerance parameter ε
to enforce a non-zero gap in inequality (29). A version of this algorithm for the
case when Ω = INn has also been implemented (below, we refer to this version
as the “finite algorithm”). It only differs from the continuous version in Step 2,
in that inequality (29) is tested by trial and error on randomly selected kernels
from Kn.

We now show that after each iteration, either the objective function g increases
or the algorithm terminates, that is, inequality (28) holds true. To this end, we
state the following lemma whose proof follows immediately from Theorem 2.

Lemma 3. Let K1,K2 ∈ A+(X). Then, λ = 0 is not a solution to the problem

max {g(λK1 + (1 − λ)K2) : λ ∈ [0, 1]}

if and only if R(cK2 ,K1) > R(cK2 ,K2).

Learning Convex Combinations of Continuously Parameterized Basic Kernels 349

Applying this lemma to the case that K1 = G(ω̂) and K2 = K(t) we conclude
that

g(K(t+1)) > g(K(t))

if and only if ω̂ satisfies the inequality

R(c(t), G(ω̂)) > R(c(t),K(t))

which is equivalent to inequality (29).

4.1 Experimental Validation

We have tested the above algorithm on eight handwritten digit recognition tasks
of varying difficulty from the MNIST data-set1. The data are 28×28 images with
pixel values ranging between 0 and 255. We used Gaussian kernels as the basic
kernels, that is, G(σ)(x, t) = exp(−‖x − t‖2/σ2), σ ∈ [σ1, σ2]. In all the experi-
ments, the test error rates were measured over 1000 points from the MNIST test
set.

The continuous and finite algorithms were trained using the square loss and
compared to an SVM2. In all experiments, the training set consisted of 500
points. For the finite case, we chose ten Gaussian kernels with σ’s equally spaced
in an interval [σ1, σ2]. For both versions of our algorithm, the starting value of
the kernel was the average of these ten kernels and the regularization parameter
was set to 10−7. This value typically provided the best test performance among
the nine values μ = 10−
, � ∈ {3, . . . , 11}. The performance of the SVM was
obtained as the best among the results for the above ten kernels and nine values
of μ. This strategy slightly favors the SVM but compensates for the fact that
the loss functions are different. The parameters ε and T of our algorithm were
chosen to be 10−3 and 100 respectively.

Table 1 shows the results obtained. The range of σ is [75, 25000] in columns
2–4, [100, 10000] in columns 5–7 and [500, 5000] in columns 8–10. Note that, in
most cases, the continuous algorithm finds a better combination of kernels than
the finite version. In general, the continuous algorithm performs better than the
SVM, whereas most of the time the finite algorithm is worse than the SVM.
Moreover, the results indicate that the continuous algorithm is not affected by
the range of σ, unlike the other two methods.

Typically, the continuous algorithm requires less than 20 iterations to termi-
nate whereas the finite algorithm may require as much as 100 iterations. Figure
2 depicts the convergence behavior of the continuous algorithm on two different
tasks. In both cases σ ∈ [100, 10000]. The actual values of Qμ are six orders of
magnitude smaller, but they were rescaled to fit the plot. Note that, in agreement
with inequality (28), Qμ decreases and eventually converges. The misclassifica-
tion error also converges to a lower value, indicating that Qμ provides a good
learning criterion.

1 Available at: http://yann.lecun.com/exdb/mnist/index.html
2 Trained using SVM-light, see: http://www.cs.cornell.edu/People/tj/svm light

350 A. Argyriou, C.A. Micchelli, and M. Pontil

Table 1. Misclassification error percentage for the continuous and finite versions of
the algorithm and the SVM on different handwritten digit recognition tasks. See text
for description

Task \ Method Cont. Finite SVM Cont. Finite SVM Cont. Finite SVM
σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 6.6 18.0 11.8 6.6 10.9 8.6 6.5 6.7 6.9

3 vs. 8 3.8 6.9 6.0 3.8 4.9 5.1 3.8 3.7 3.8

4 vs. 7 2.5 4.2 2.8 2.5 2.7 2.6 2.5 2.6 2.3

1 vs. 7 1.8 3.9 1.8 1.8 1.8 1.8 1.8 1.9 1.8

2 vs. 3 1.6 3.9 3.1 1.6 2.8 2.3 1.6 1.7 1.6

0 vs. 6 1.6 2.2 1.7 1.6 1.7 1.5 1.6 1.6 1.5

2 vs. 9 1.5 3.2 1.9 1.5 1.9 1.8 1.5 1.4 1.4

0 vs. 9 0.9 1.2 1.1 0.9 1.0 1.0 0.9 0.9 1.0

5 10 15 20
0.062

0.064

0.066

0.068

0.07

0.072

1 2 3 4 5 6 7
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Fig. 2. Functional Qμ (solid line) and misclassification error (dotted line) after the first
iteration of the algorithm of Figure 1 for even vs. odd (left) and 3 vs. 8 (right)

5 Conclusion

We have studied the problem of learning a kernel which minimizes a convex error
functional over the convex hull of prescribed basic kernels. The main contribution
of this paper is a general analysis of this problem when the basic kernels are
continuously parameterized by a compact set. In particular, we have shown that
there always exists an optimal kernel which is a finite combination of the basic
kernels and presented a greedy algorithm for learning a suboptimal kernel. The
algorithm is simple to use and our preliminary findings indicate that it typically
converges in a small number of iterations to a kernel with a competitive statistical
performance. In the future we shall investigate the convergence properties of the
algorithm, compare it experimentally to previous related methods for learning
the kernel, such as those in [3, 6, 8], and study generalization error bounds for
this problem. For the latter purpose, the results in [4, 18] may be useful.

Learning Convex Combinations of Continuously Parameterized Basic Kernels 351

References

1. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686, pp.
337–404, 1950.

2. J.P. Aubin. Mathematical Methods of Game and Economic Theory. Studies in
Mathematics and its applications, Vol. 7, North-Holland, 1982.

3. F.R. Bach, G.R.G Lanckriet and M.I. Jordan. Multiple kernels learning, conic
duality, and the SMO algorithm. Proc. of the Int. Conf. on Machine Learning,
2004.

4. O. Bousquet and D.J.L. Herrmann. On the complexity of learning the kernel
matrix. Advances in Neural Information Processing Systems, 15, 2003.

5. J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimization. The-
ory and Examples. CMS (Canadian Math. Soc.) Springer-Verlag, New York, 2000.

6. O. Chapelle, V.N. Vapnik, O. Bousquet and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1), pp. 131–159,
2002.

7. M. Herbster. Relative Loss Bounds and Polynomial-time Predictions for the K-
LMS-NET Algorithm. Proc. of the 15-th Int. Conference on Algorithmic Learning
Theory, October 2004.

8. G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M.I. Jordan. Learn-
ing the kernel matrix with semi-definite programming. J. of Machine Learning
Research, 5, pp. 27–72, 2004.

9. C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. To
appear in J. of Machine Learning Research (see also Research Note RN/04/11,
Department of Computer Science, UCL, June 2004)..

10. C. A. Micchelli and T. J. Rivlin. Lectures on optimal recovery. In Lecture Notes
in Mathematics, Vol. 1129, P. R. Turner (Ed.), Springer Verlag, 1985.

11. C.S. Ong, A.J. Smola, and R.C. Williamson. Hyperkernels. Advances in Neural
Information Processing Systems, 15, S. Becker, S. Thrun, K. Obermayer (Eds.),
MIT Press, Cambridge, MA, 2003.

12. H.L. Royden. Real Analysis. Macmillan Publ. Company, New York, 3rd ed., 1988.

13. I.J. Schoenberg. Metric spaces and completely monotone functions. Annals of
Mathematics, 39, pp. 811–841, 1938.

14. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

15. V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

16. G. Wahba. Spline Models for Observational Data. Series in Applied Mathematics,
Vol. 59, SIAM, Philadelphia, 1990.

17. T. Zhang. On the dual formulation of regularized linear systems with convex risks.
Machine Learning, 46, pp. 91–129, 2002.

18. Q. Wu, Y. Ying and D.X. Zhou. Multi-kernel regularization classifiers. Preprint,
City University of Hong Kong, 2004.

A Appendix

The first result we record here is a useful version of the classical von Neumann
minimax theorem we have learned from [2–Ch. 7].

352 A. Argyriou, C.A. Micchelli, and M. Pontil

Theorem 5. Let h : A× B → IR where A is a closed convex subset of a Haus-
dorff topological vector space X and B is a convex subset of a vector space Y. If
the function x !→ h(x, y) is convex and lower semi-continuous for every y ∈ B,
the function y !→ h(x, y) is concave for every x ∈ A and there exists a y0 ∈ B
such that for all λ ∈ IR the set {x : x ∈ A, h(x, y0) ≤ λ} is compact then there
is an x0 ∈ A such that

sup{h(x0, y) : y ∈ B} = sup{inf{h(x, y) : x ∈ A} : y ∈ B}.

In particular, we have that

min{sup{h(x, y) : y ∈ B} : x ∈ A} = sup{inf{h(x, y) : x ∈ A} : y ∈ B}. (31)

The hypothesis of lower semi-continuity means, for all λ ∈ IR and y ∈ B, that
the set {x : x ∈ A, h(x, y) ≤ λ} is a closed subset of A.

The next result concerns differentiation of a “max” function. Its proof can
be found in [9].

Lemma 4. Let X be a topological vector space, T a compact set and G(t, x) a
real-valued function on T × X such that, for every x ∈ X G(·, x) is continuous
on T and, for every t ∈ T , G(t, ·) is convex on X . We define the real-valued
convex function g on X as

g(x) := max{G(t, x) : t ∈ T }, x ∈ X

and the set M(x) := {t : t ∈ T , G(t, x) = g(x)}. Then the right derivative of g
in the direction y ∈ X is given by

g′+(x, y) = max{G′
+(t, x, y) : t ∈ M(x)}

where G′
+(t, x, y) is the right derivative of G with respect to its second argument

in the direction y.

Proof of Lemma 2. Theorem 5 applies since Kx ∈ L+(IRm). Indeed, we let
h(c, v) = (Kxc, v)−Q∗(v) + μ(c,Kxc), A = IRm, B = {v : Q∗(v) < ∞, v ∈ IRm}
and v0 = 0. Then, B is convex and, for any λ ∈ IR, the set {c : c ∈ IRm, h(c, v0) ≤
λ} is compact. Therefore, all the hypotheses of Theorem 5 hold. Consequently,
using (11) in (7) we have that

Qμ(K) = sup{min{(Kxc, v) −Q∗(v) + μ(c,Kxc) : c ∈ IRm} : v ∈ B}. (32)

For each v ∈ B, the minimum over c satisfies the equation Kxv + 2μKxc = 0,
implying that

min{(Kxc, v) −Q∗(v) + μ(c,Kxc) : c ∈ IRm} = − (v,Kxv)
4μ

−Q∗(v)

and the result follows. ��

On the Limitations of Embedding Methods

Shahar Mendelson

Centre for Mathematics and its Applications,
The Australian National University, Canberra,

ACT 0200, Australia
shahar.mendelson@anu.edu.au

Abstract. We show that for any class of functions H which has a rea-
sonable combinatorial dimension, the vast majority of small subsets of
the combinatorial cube can not be represented as a Lipschitz image of a
subset of H, unless the Lipschitz constant is very large. We apply this
result to the case when H consists of linear functionals of norm at most
one on a Hilbert space, and thus show that “most” classification prob-
lems can not be represented as a reasonable Lipschitz loss of a kernel
class.

1 Introduction

The aim of this article is to investigate the limitations of embedding methods
(or, as we prefer to call them here, representation methods), which are commonly
used in Machine Learning. Our focus is not on the statistical side, but rather
on the degree by which embedding methods can be used to approximate subsets
of the combinatorial cube. To be more precise, consider a class of functions H,
which we call the base class, defined on a metric space (Ω, dΩ), and let φ be
a Lipschitz function with a Lipschitz constant at most L. One can represent
a subset A ⊂ {−1, 1}n in H using φ if there are t1, ..., tn ∈ Ω, such that for
every v ∈ A there is some hv ∈ H for which φ(hv(tj)) = v(j), where v(j) is the
j-th coordinate of v. Hence, if this is the case, we were able to represent A as a
Lipschitz image (with constant at most L) of a subset of H.

In the context of Learning Theory, one should think of φ as a loss functional,
and the question we wish to focus on is which classification problems (each
problem corresponds to a subset of the combinatorial cube) can be represented
in a useful manner. One could view the representation as a richness parameter
of subsets of the cube. If a subset is a Lipschitz image of a subset of H (i.e. a
loss class associated with a subset of H), it has to be simple.

Having this in mind, it seems likely that for a representation to be useful
one needs two key ingredients. First of all, the class H has to be simple and
canonical in some sense - otherwise, there is no point in using it. The second is
that the Lipschitz constant of φ is not “too large”; if it is, the distortion caused
by φ might make the image very rich, even if H is simple.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 353–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 S. Mendelson

The natural example in this context is margin based classifiers. For every
γ > 0, define the γ margin function (which has a Lipschitz constant of 1/γ) as

φγ(t) =

⎧⎪⎨⎪⎩
1 if t ≥ γ,
t
γ if −γ < t < γ,

−1 if t ≤ −γ.

The base class H consists of linear functionals of norm one on a Hilbert space
and φ is generated by the desired margin. Our question in this restricted setup
is as follows.

Question 1. Set B
2 to be the unit ball in the Hilbert space �2. Let A ⊂ {−1, 1}n,
|A| = N (representing a classification problem), and let γ > 0. Can one find
x1, ..., xn ∈ B
2 and x∗

1, ..., x
∗
N ∈ B
2 such that for every i, j, x∗

i (xj) ≥ γ if
ai(j) = 1 and x∗

i (xj) ≤ −γ if ai(j) = −1, where ai(j) is the j-th component of
the i-th element of A?

The original motivation for this study was to understand whether embedding
(or kernel) techniques using the margin or a more general loss functional could
serve as a generic method in Learning Theory.

Roughly speaking, in kernel methods one embeds Ω in the unit ball of a
Hilbert space using the feature map, and considers the set of linear functionals
in the dual unit ball as the class of functions H. It is therefore natural to ask
(though, unfortunately, this question has never been studied extensively) which
classification problems can be captured as a margin loss of a kernel. Of course,
a small Lipschitz constant of φ is translated to a large margin.

The first result (at least as far as this author is aware of) that showed the
limitations of kernel methods in the context of Question 1 is due to Ben-David,
Eiron and Simon [2]. They proved the remarkable fact that for every n, the vast
majority of subsets of {−1, 1}n with n elements and VC dimension at most d can
not be represented for a nontrivial γ in �2. To be exact, the authors showed that
for a fixed d, only a vanishing fraction (at most ∼ 2−cn) of such subsets can be
represented in �2 with a margin better than 1/nα, where α = 1/2−1/2d−1/2d−1.
It is easy to check that {−1, 1}n itself is represented in �2 for γ = 1/

√
n; thus,

most of the small subsets of {−1, 1}n in the sense of VC theory are not an image
of a kernel class with the margin loss - unless the margin is extremely small, i.e.,
close to the scale at which the entire cube is represented in �2.

The basis for this result and for others of the same flavour [4, 6, 9] has to do
with incompatibility of structures. On one hand, one selects H to have a simple
structure. On the other, there are various notions of simplicity for subsets of the
combinatorial cube. Representation methods are an attempt of imposing one
structure on the other. For example, the hope that kernel methods are universal
in some sense, means that every reasonable classification problem (e.g. a subset
of the combinatorial cube with a small VC dimension) can be represented as
a reasonable Lipschitz image of a class of linear functionals. Unfortunately, it
turns out that this is impossible unless the subset of the cube has a very special
structure.

On the Limitations of Embedding Methods 355

Not only is it impossible to find such a linear structure in most small subsets
of the cube, we show here that the situation is equally bad even if one replaces
the kernel class with any other simple class H. It turns out that unless H itself
contains a large “cubic” structure, (and in which case, H is no longer simple),
the vast majority of small subsets of the combinatorial cube are not a reasonable
Lipschitz image of a subset of H. Our aim is to find the quantitative connection
between the “richness” of the set H, the Lipschitz constant of the “loss” φ and
the number of subsets of the cube that one can reconstruct using H and φ with
such a Lipschitz constant. The richness parameter we use for H is a variant of
the combinatorial dimension, and was introduced by Pajor in [11].

Definition 1. We say that {t1, ..., tn} is ε P-shattered by H if there are sets
V+, V− ⊂ R satisfying d(V+, V−) ≥ ε, such that for every J ⊂ {1, ..., n} there is
hJ ∈ H for which hJ(tj) ∈ V+ if j ∈ J and hJ(tj) ∈ V− otherwise. We denote
by P − V C(H, ε) the largest cardinality of a set which is ε P-shattered by H.

Note that this definition extends the notion of level shattering, in which V+ =
[α + ε,∞) and V− = (−∞, α − ε] for some fixed α.

Here, we denote by V C(H, ε) the combinatorial dimension (also known in
Learning Theory literature as the fat-shattering dimension) of the class H at
level ε.

To compare the notion of P-shattering with the standard combinatorial di-
mension, let us recall the definition of packing and covering numbers, which will
be required throughout this article.

Definition 2. If (Y, d) is a metric space and K ⊂ Y , then for every ε > 0,
N(ε,K, d) is the minimal number of open balls (with respect to the metric d)
needed to cover K.

A set is ε-separated with respect to a metric d if the distance between every
two distinct points in the set is larger than ε. We denote the maximal cardinality
of an ε-separated subset of Y by D(ε, Y, d).

It is possible to show [7] that if H is a class of functions bounded by 1 then
for any probability measure μ,

D(ε,H,L2(μ)) ≤
(

2
ε

)K·V C(H,cε)

, (1.1)

where K and c are absolute constants.
Assume that H consists of functions bounded by 1. Then, one can verify

(see the proof of Theorem 4) that if {t1, ..., tn} is ε P-shattered, there is a set
H ′ ⊂ H, |H ′| ≥ 2cn which is ε/4-separated in L2(μn), where μn is the empirical
measure supported on {t1, ..., tn}. Hence, by (1.1),

cn ≤ log D (ε/4,H, L2 (μn)) ≤ K · V C(H, c′ε) log
(

2
ε

)
,

implying that for any ε < 1

356 S. Mendelson

P − V C(H, ε) ≤ K · V C(H, cε) log
(

2
ε

)
,

for suitable absolute constants K and c.
In the reverse direction, if H is a convex and symmetric class of functions

(that is, if the fact that f ∈ H implies that −f ∈ H), then for any ε > 0,
V C(H, ε) ≤ P −V C(H, ε). Indeed, in this case the combinatorial dimension can
be attained by taking the fixed levels αi = 0 (see, e.g. [8]), and thus if a set is
ε-shattered, it is also ε P-shattered.

The main result we present here connects the P -dimension of the base class
H with the ability to represent “many” subsets of {−1, 1}n as a Lipschitz image
of that class, using a function with a small Lipschitz constant. The notion of
representation we focus on here is rather weak, and originated from the soft
margin.

Definition 3. Let H be a class of functions on Ω, and set 1/2 < δ ≤ 1. If A is
a subset of {−1, 1}n, |A| = N , we say that A can be (L, δ) weakly represented in
H if there are x1, ..., xn ∈ Ω, h1, ...hN ∈ H and φ : R → R such that

1. ‖φ‖lip ≤ L, and
2. for every 1 ≤ i ≤ N there is a set Ji ⊂ {1, ..., n} of cardinality |Ji| ≥ δn, and

for every i and j ∈ Ji, φ (hi (xj)) = ai(j), where ai(j) is the j-th component
of the i-th element in A.

To formulate our main result, let (Ωn, dn) be the n product of Ω endowed
with the metric

dn(u, v) =
1
n

sup
h∈H

n∑
i=1

|h(ui) − h(vi)| ,

where u = (u1, ..., un), v = (v1, ..., vn) and ui, vi ∈ Ω. For every integer N ≤ 2n,
the probability measure we use on the subsets of {−1, 1}n of cardinality N is
the counting probability measure.

Theorem 1. There exist absolute constants k and k′, and for every 1/2 < δ ≤ 1
there are constants c(δ), c′(δ), c′′(δ) and n0(δ) depending only on δ for which the
following holds. Let H be a class of functions on Ω which are bounded by 1. For
every L > 0, if n ≥ n0(δ), P − V C(H, k/L) ≤ c(δ)n and

N ≥ c(δ)max
{

k′L

n
,
log N(c′(δ)/L,Ωn, dn)

n

}
,

then with probability at least 1 − exp (−c′′(δ)Nn), a set A ⊂ {−1, 1}n of cardi-
nality N is not (L, δ) weakly represented in H.

The main novelty in Theorem 1, compared with results of a similar flavour
(see, for example, [2, 4, 6, 9]), is in its nonlinear nature. Although its proof uses
essentially the same ideas as in [9], what we do here goes beyond the situation
where H is a class of linear functionals, which was studied in [9]. It also allows
us to improve the best known estimates in what is arguably the most important
case - when H = B
2 .

On the Limitations of Embedding Methods 357

In Section 3 we will present a detailed survey of the known estimates when
H = B
2 , but for now, let us formulate.

Corollary 1. Let H = B
2 , considered as a set of linear functionals on Ω =
B
2 . For any 1/2 < δ ≤ 1, if n ≥ n0(δ) and N ≥ c(δ)n, then with probability at
least 1− exp(−c′′(δ)Nn), A ⊂ {−1, 1}n with |A| = N is not (c′(δ)

√
n, δ) weakly

represented in H.

To put Corollary 1 in the right perspective, {−1, 1}n itself is represented in B
2

with a constant
√

n. And, in fact, one can use the margin function φ1/
√

n for
the representation. However, by Corollary 1, for any 1/2 < δ ≤ 1 and a slightly
smaller constant (which depends on δ), the vast majority of even the very small
subsets of {−1, 1}n are not weakly represented in B
2 .

The rest of this article is devoted to the proofs of Theorem 1 and Corollary 1.
Although it is possible to find truly nonlinear applications, (for example, when
H is the set of Lipschitz functions with constant 1 on the unit ball in Rd), we
decided not to present them here, as they involve routine estimates.

We end the introduction with a notational convention. Throughout, all abso-
lute constants are denoted by c or k. Their values may change from line to line
or even within the same line. C(ϕ) denotes constants which depend only on the
parameter ϕ. For a set A, let |A| be its cardinality and if A,B are subsets of a
vector space, put A + B = {a + b|a ∈ A, b ∈ B}.

2 Proof of Theorem 1

The first step in the proof of Theorem 1 is a covering argument. Here, one shows
that is suffices to control a fine enough net in (Ωn, dn) and a finite set of Lipschitz
functions.

2.1 Covering

We shall construct a finite approximating set to the set of all “meaningful”
Lipschitz functions φ : R → R and all possible elements x = (x1, ..., xn) ∈ Ωn

that can be used in an (L, δ) weak representation. Since H consists of functions
which are bounded by 1, it is enough to consider Lipschitz functions φ that
map [−1, 1] to [−1, 1]. Indeed, if the range of φ exceeds [−1, 1], it is possible
to compose it with the retraction onto [−1, 1] without increasing the Lipschitz
constant. For every fixed L one can identify each “legal” φ with the pair of
nonempty subsets of [−1, 1], W+ = {t |φ(t) = 1} and W− = {t |φ(t) = −1},
such that d(W+,W−) > 2/L ≡ γ. Divide the interval [−1, 1] to intervals with
disjoint interiors Yi = [ai, bi], where bi = ai+1, and each Yi has length at most
γ/10. One can find such decomposition with at most cL intervals Yi for some
absolute constant c.

Recall that A + B = {a + b : a ∈ A, b ∈ B}, and for every φ, define φ′ as
follows. If Yi intersects W+ + (−γ/100, γ/100) then φ′ = 1 on that set, and if it
intersects W−+(−γ/100, γ/100) it is −1 on that set. On the complement, which
is a finite union of intervals, define φ′ as the linear interpolation of the boundary

358 S. Mendelson

values at each interval. Clearly, W+ ⊂ {φ′ = 1}, W− ⊂ {φ′ = −1}, ‖φ′‖lip < cL,
and there are at most 3cL different functions φ′. Denote this set of functions by
Φ′ and let Dn(ε) be an ε cover of (Ωn, dn).

Lemma 1. There exists an absolute constant k and for every 1/2 < δ ≤ 1 there
is a constant k′(δ) for which the following holds. Let A ⊂ {−1, 1}n and assume
that x = (x1, ..., xn) ∈ Ωn and φ can be used in an (L, δ) representation of A. If
δ′ satisfies δ′ − 1/2 = (δ − 1/2)/2, then there are y = (y1, ..., yn) ∈ Dn(k′(δ)/L)
and φ′ ∈ Φ′ which can be used to (kL, δ′) weakly represent A.

Proof. Let ρ > 0 be a constant which will be specified later, set φ′ to be as
above, and put y such that dn(x, y) ≤ ργ for γ = 2/L. By the definition of dn,
suph∈H

∑n
i=1 |h(xi) − h(yi)| < ργn. Thus, for any ρ and every h ∈ H there is a

set Jh ⊂ {1, ..., n}, |Jh| ≥ (1−1000ρ)n, such that on Jh, |h(xi)−h(yi)| < γ/1000.
Note that by the definition of φ′, if h(xi) ∈ W+ (resp, h(xi) ∈ W−), then
φ′ (h(yi)) = 1 (resp. φ′ (h(yi)) = −1).

Let h1, ..., hN be functions that can be used to represent A. Then, since the
functions can be used in a (L, δ)-weak representation, it is evident that for every
i, there is a set Ji, |Ji| ≥ δn for δ > 1/2 such that φ(hi(xj)) = ai(j). Setting δ′

by δ′ − 1/2 = (δ − 1/2)/2, then for ρ sufficiently small, |Ji ∩ Jhi
| ≥ δ′n, and on

that intersection, φ′(hi(yj)) = ai(j), as claimed.

From Lemma 1 it is clear that it suffices to show that A is not represented
using any (φ′, y) ∈ Φ′×Dn(k′(δ)/L), and there are at most 3kL ·N(k′(δ), Ωn, dn)
such pairs.

2.2 Controlling a “Rectangle”

A source of difficulty in the analysis of this problem stems in the “weakness”
of the representation, namely, that one does not control every pair hi(xj), but
only a proportional set of indices for every 1 ≤ i ≤ N . Next, we will show
how to bypass this obstacle. We will show that there is a relatively small set
B ⊂ {−1, 1}n, such that for any φ which has a Lipschitz constant at most L and
x ∈ Ωn, if A ⊂ {−1, 1}n is represented using (φ, x) then A ⊂ B. Note that the
Lipschitz condition on φ is equivalent to having two sets, W+ and W− which are
2/L apart; on the first φ = 1 and on the second φ = −1.

The philosophy of the proof is as follows. Suppose that there is a “large
set” B ⊂ {−1, 1}n, such that for every v ∈ B there is some hv ∈ H for which
φ (hv(xj)) = v(j) on δn coordinates. If this is the case, it is possible to find
a large subset of B and a large subset of {1, ..., n} on which for every i, j,
φ (hi(xj)) = vi(j). We will show that this implies that H has a large P-shattering
dimension at a scale proportional to L, in contradiction to our assumption.

The combinatorial part of the proof could be described in the following way.
If one views the vectors (hv(xj))n

j=1 as rows in a matrix, and if in each row
one can control δn of the entries for δ > 1/2, then if there are enough rows in
the matrix, one can find a large “rectangle”, or sub-matrix on which one has
complete control. The exact formulation of this claim is:

On the Limitations of Embedding Methods 359

Lemma 2. For every 1/2 < δ ≤ 1 there exist constants α, β and n0, all depend-
ing only on δ, for which the following holds. Assume that n ≥ n0, that T is an
m × n, {0, 1}-valued matrix and that each row in T has at least δn entries that
are 1. If we set Δ = 1

2 (δ− 1
2)(1− log2(3− 2δ)) > 0, and if m ≥ 2n(1−Δ), then T

contains an (s, t) sub-matrix of 1s, for s ≥ 2βn, t ≥ αn, and α + β ≥ 1 + Δ/2.

The proof is based on the following estimate on the so-called “problem of
Zarankiewicz”.

Lemma 3. [3] Let G be a bipartite graph with (m,n) vertices and denote by
Z(m,n, s, t) the maximal number of edges in G such that G does not contain an
(s, t)-complete bipartite subgraph. Then,

Z(m,n, s, t) ≤ (s − 1)1/t(n − t + 1)m1−1/t + (t − 1)m.

Proof of Lemma 2. Assume that m > 2n(1−Δ) and define a bipartite graph
in the following manner. One side consists of the rows of T and the other side
is the elements of {1, ..., n}. There is an edge between a the i-th row and {j} if
and only if Ti,j = 1. Using the notation of Lemma 3, the graph contains at least
δmn edges. Hence, by Lemma 3, if s and t satisfy

δmn > (s − 1)1/t(n − t + 1)m1−1/t + (t − 1)m (2.1)

then G contains a complete (s, t) bipartite subgraph, which corresponds to T
having an s×t sub-matrix of 1s. Setting α = δ−1/2, t−1 = αn and (s−1) = 2βn,
an easy computation shows that

β < 1 + α log2

(
δ − α

1 − α

)
+

1
n

(
log2

(
δ − α

1 − α

)
−Δn

)
(2.2)

is enough to ensure (2.1). Note that one can choose β > 0 satisfying (2.2) such
that, if n ≥ n0, α + β ≥ 1 + Δ/2, as claimed.

Theorem 2. For every 1/2 < δ ≤ 1 there are constants c(δ) and n0 depending
only on δ, for which the following holds. Fix n ≥ n0 and L > 0, assume that
P − V C(H, 2/L) ≤ c(δ)n and set Δ = 1

2 (δ − 1
2)(1 − log2(3 − 2δ)). If x =

(x1, ..., xn) ∈ Ωn and φ is a Lipschitz function with constant at most L, there is
a set B ⊂ {−1, 1}n, |B| ≤ 2n(1−Δ), such that if x and φ can be used to (L, δ)
weakly represent A, then A ⊂ B.

Proof. Let c(δ) be a constant which will be specified later, set n0 to be as in
Lemma 2 and assume that P − V C(H, 2/L) ≤ c(δ)n. Note that v ∈ {−1, 1}n

can be (L, δ)-weakly represented using x and φ if and only if there is hv ∈ H
and Jv ⊂ {1, ..., n} such that |Jv| ≥ δn and for every j ∈ Jv, φ (hv(xj)) = v(j).
Define B as the set of all such elements v, and thus, if A can be (L, δ) weakly
represented using (φ, x) then A ⊂ B. Assume that |B| > 2(1−Δ)n, and define
the |B| × n {0, 1}-valued matrix T by Ti,j = 1, if j ∈ Jvi

. Applying Lemma 2
(and using its notation), T contains an (s, t) sub-matrix of 1s, where s ≥ 2βn,
t ≥ αn and α+β ≥ 1+Δ/2. In other words, since n ≥ n0, there is a set B′ ⊂ B,

360 S. Mendelson

|B′| ≥ 2βn and a set J ⊂ {1, ..., n}, |J | ≥ αn such that for every v ∈ B′ there is
hv ∈ H and for every j ∈ J , φ (hv(xj)) = vj .

Consider the coordinate PJ projection (restriction) of B′ onto J . Since |B′| ≥
2βn and |J | ≥ αn, then |PJB′| ≥ 2βn/2n−αn. Indeed, any point in PJB′ is
the image of at most 2n−αn elements in {−1, 1}n. As α + β − 1 ≥ Δ/2, it is
evident that |PJB′| ≥ 2nΔ/2. Applying the Sauer-Shelah Lemma, there is a
subset J1 ⊂ J , such that |J1| ≥ c(δ)n and PJ1B

′ = PJ1PJB = {−1, 1}|J1|.
Hence, for every a ∈ {−1, 1}|J1| there is some ha ∈ H such that φ (ha(xj)) =

a(j) for every j ∈ J1. Because d ({φ = 1} , {φ = −1}) ≥ 2/L, it follows that
P − V C(H, 2/L) ≥ |J1| = c(δ)n, which contradicts our assumption.

Proof of Theorem 1. By Lemma 1 (and using its notation), it suffices to show
that “most” subsets of the cube are not (kL, δ′) weakly represented using any
element from Φ′ ×Dn(k′(δ)/L,Ωn, dn). The cardinality of this product set is at
most 3cL|Dn(k′(δ)/L)| for an absolute constant c. Now, fix such a pair (φ, x).
By the assumption of the Theorem, P − V C(H, 2/(kL)) ≤ c(δ)n, where c(δ) is
selected as in Theorem 2, and set Δ′ = 1

2 (δ′− 1
2)(1− log2(3−2δ′)). If n ≥ n0(δ′),

then by Theorem 2 applied to (kL, δ′), there is a set B ⊂ {−1, 1}n of cardinality
|B| ≤ 2n(1−Δ′), such that if x and φ can be used to (kL, δ′) weakly represent A,
then A ⊂ B.

Clearly, the probability that a random point v ∈ {−1, 1}n belongs to B is at
most |B|/2n = 2−nΔ′

, and thus, if |A| = N , the probability that A ⊂ B is at
most 2−nNΔ′

. Therefore, if 3cL|Dn(k′(δ)/L)| ≤ 2−nNΔ′/2, it follows that with
probability at least 1 − exp (c′(δ)Nn), A is not (L, δ) weakly represented in H.

3 Application: H = B�2

A natural base class which one should consider, and which was studied in [9], is
H = BX∗ - the dual unit ball of some n-dimensional Banach space X, acting as
functionals on Ω = BX . Although we do not wish to focus on this general case, as
it requires some knowledge in convex geometry, let us point out several relatively
easy observations. Since H consists of Lipschitz functions of norm 1 then

dn(u, v) ≤ max
1≤i≤N

sup
h∈H

|h(ui) − h(vi)| ≤ max
1≤i≤N

dΩ(ui, vi).

Therefore,
N(ε,Ωn, dn) ≤ (N(ε,Ω, dΩ))n

, (3.1)

and for H = BX∗ , dΩ(u, v) = ‖u − v‖X . Moreover, if X is an n dimensional Ba-
nach space then by a standard volumetric estimate (see, e.g. [12]), N(ε,Ω, dΩ) ≤
(3/ε)n, implying that

log N(ε,Ωn, dn)
n

≤ cn log(c′/ε).

As mentioned in the introduction, for every class of functions bounded by 1,

P − V C(H, ε) ≤ K · V C(H, cε) log(2/ε).

On the Limitations of Embedding Methods 361

Hence, as long as V C(H, 2/(kL)) log(2L) ≤ c(δ)n, the assumption of Theorem 1
holds. It turns out that up to a log(n) factor, the “critical level” L for which this
assumption is still valid is determined by a notion of distance between Banach
spaces. The critical L is proportional to the so-called Banach-Mazur distance
between X and �n

1 (we refer the reader to [9] for more details). On the other
hand, if L is the distance between X and �n

1 , then the entire cube {−1, 1}n is
(L, 1) represented in H = BX∗ . Thus, the situation one often encounters when
H is the unit ball of the dual to an n dimensional Banach space is a surprising
dichotomy. For L = d(X, �n

1), the entire cube, and thus all its subsets can be
represented in H. For a slightly smaller constant, c(δ)L, the vast majority of
subsets of cardinality N ≈ c′(δ)n log n are not even (c(δ)L, δ) weakly represented
in H.

The case of H = B
2 has been studied, in one form on another, by several
authors. A careful examination of the proof in [2] shows that only a vanishing
fraction of the subsets of {−1, 1}n with N elements is represented in �2 with
a margin better than c

√
(log N)/n for suitable absolute constant c, as long as

N/n2 → ∞. This implies that, at least when φ is taken from the margin function
family, and as long as L ≤ c

√
n/ log N and N ≥ cn2, most of the subsets of

{−1, 1}n are not (L, 1) weakly represented in B
2 .
A different approach, based on operator ideal theory, was used in [6] to prove

that if N ≥ cn, then with probability at least 1− exp(cN), a subset of {−1, 1}n

with N elements is only represented in �2 with the trivial margin of c1/
√

n;
in other words, it improves [2] in the way N depends on n and because the
restriction on L is the optimal one - L ≤ c

√
n. However, it too only applies when

the Lipschitz function is taken from the margin family.
These two results are limited since they are completely Hilbertian in nature.

They do not extend to the case H = BX∗ for a non-Hilbert space X, let alone
to when H is not a class of linear functionals.

In [9], the method of proof (which is essentially the same as the proof of The-
orem 1) enables one to deal with weak representation by an arbitrary Lipschitz
function, and to treat H = BX∗ for a general n-dimensional Banach space. For
H = B
2 it was shown that if N ≥ c(δ)n log n then with probability at least
1− exp(c′(δ)Nn) a subset of {−1, 1}n of cardinality N is not (L, δ)-weakly rep-
resented in B
2 if L ≤ c′′(δ)

√
n. The price paid for the extension to an arbitrary

Lipschitz function was that N was no longer linear in n. The main result of this
section is to remove this parasitic logarithmic factor.

Although the analysis we present for B
2 goes beyond the Hilbertian case, it
still only works under additional structural assumptions on the space X. And,
though under such assumptions it is possible to remove the parasitic logarithmic
factor, doing the same in the general case seems (at least to this author) a
worthwhile challenge.

Theorem 3. For every 1/2 < δ ≤ 1, there exist constants c(δ), c′(δ), c′′(δ)
and n0(δ), depending only on δ, for which the following holds. For every integer
n ≥ n0, if L ≤ c(δ)

√
n and N ≥ c′(δ)n, then with probability 1− exp(c′′(δ)nN),

a set with N elements is not (L, δ) weakly represented in B
2 .

362 S. Mendelson

Clearly, because of the structure of �2, it suffices to consider the n-dimensional
Euclidean space �n

2 , rather than the infinite dimensional one. Thus, H = Bn
2 ,

consisting of linear functionals on Ω = Bn
2 .

The proof of Theorem 3 requires two preliminary steps before one can use
Theorem 1. First of all, one has to identify the critical level at which P −
V C(B
2 , ε) ≤ c(δ)n for the constant c(δ) appearing in Theorem 1. Then, one
has to estimate N (ε, (Bn

2)n
, dn).

Lemma 4. There exists an absolute constant c such that for every 0 < ε < 1,

P − V C(ε,B
2) ≤
c

ε2
.

Let us mention that the same estimate holds true for the combinatorial dimen-
sion (see, e.g [8]), and thus, for this class of functions, the two dimensions are
equivalent.

The proof of Lemma 4 is based on Sudakov’s minoration (see, for example,
[5, 12]).

Lemma 5. There exists an absolute constant c for which the following holds. If
T ⊂ �n

2 then

c sup
ε>0

ε
√

log N(ε, T, �n
2) ≤ E sup

t∈T

∣∣∣∣∣
n∑

i=1

giti

∣∣∣∣∣ ,
where (gi)n

i=1 are independent, standard gaussian random variables and t =
(t1, ..., tn).

Note that if μn is the empirical measure on {1, ..., n} and if one views each t ∈ �n
2

as a function on {1, ..., n} in the natural way, then ‖t‖
n
2

=
√

n‖t‖L2(μn). Thus,
by Lemma 5,

sup
ε>0

ε
√

log N (ε, T, L2(μn)) ≤ C√
n

E sup
t∈T

∣∣∣∣∣
n∑

i=1

giti

∣∣∣∣∣ . (3.2)

Proof of Lemma 4. Assume that {x1, ..., xn} ∈ B
2 is ε P -shattered by B
2 .
Then, there is a set H ′ ⊂ H, |H ′| ≥ 2cn which is ε/4-separated in L2(μn), where
μn is the empirical measure supported on {x1, ..., xn}. Indeed, each h ∈ B
2

can be associated with a point in {−1, 1}n according to whether h(xi) ∈ V+ or
h(xi) ∈ V−. By a standard probabilistic argument, there is a subset of {−1, 1}n

of cardinality 2cn which is n/4 separated in the Hamming metric. Consider the
elements in H that correspond to the separated set and let h, h′ be two such
elements. Thus, there is a set I ⊂ {1, ..., n} of cardinality at least n/4 such
that for every i ∈ I, if h(xi) ∈ V+ then h′(xi) ∈ V− and vice-versa. Therefore,∑n

i=1 |h(xi) − h′(xi)| ≥
∑

i∈I |h(xi) − h′(xi)| ≥ |I|ε.

On the Limitations of Embedding Methods 363

Let (gi)n
i=1 be standard independent gaussian variables. By (3.2), the fact

that ‖x‖
2 = suph∈B�2
h(x) and a standard estimate on E‖

∑n
i=1 gixi‖
2 ,

cε
√

n ≤ c sup
δ>0

δ
√

log N (δ,H,L2(μn)) ≤ 1√
n

Eg sup
h∈B�2

n∑
i=1

gih(xi)

≤ 1√
n

Eg

∥∥∥∥∥
n∑

i=1

gixi

∥∥∥∥∥

2

≤ 1.

Therefore, n ≤ c/ε2, as claimed.

To conclude the proof of Theorem 3, it remains to bound N(ε,Ωn, dn), and,
as we already mentioned, one can take Ω = Bn

2 . Note that the “easy” way to
upper-bound N(ε, (Bn

2)n, dn), as presented in (3.1), leads to the superfluous logn
factor, and thus a different argument is required.

Theorem 4. There exists an absolute constant c such that for any integer n and
any ε ≥ c/

√
n, D(ε, (Bn

2)n, dn) ≤ 2n2+1, and thus, N(ε, (Bn
2)n, dn) ≤ 2n2+1.

Before presenting the proof let us introduce the following notation. For two sets
A,B ⊂ Rm let D(A,B) be the maximal number of points ai ∈ A such that the
sets ai + B are disjoint. Observe that if B is a ball of radius ε with respect to a
norm ‖ ‖X then D(A,B) is the maximal cardinality of an ε separated subset of
A with respect to dX .

Proof of Theorem 4. Since Bn
2 consists of linear functionals, then for every

u, v ∈ (Bn
2)n, dn(u, v) = 1

n suph∈Bn
2

∑n
i=1 |h(ui − vi)|. In fact, this metric is

induced by a norm on the product space Πn
i=1Rn,

‖(x1, ..., xn)‖ =
1
n

sup
h∈Bn

2

n∑
i=1

|h(xi)|.

Consider the unit ball of this norm, which we denote by K. Fix ε > 0, and
observe that our aim is to find the maximal number of disjoint translates of εK
that are centered at points in B = Πn

i=1B
n
2 . To that end, we use a well known

volumetric argument, which we present for the sake of completeness.
Let U = εK∩B which is also a convex, symmetric set, and clearly, D(B, εK) ≤

D(B,U). Let y1, ..., ym be elements in B such that for every i �= j, yi + U and
yj + U are disjoint. Since U ⊂ B then

m⋃
i=1

(yi + U) ⊂ 2B.

Let vol(A) be the Lebesgue measure of A ⊂ Πn
i=1Rn. Since the sets yi + U

are disjoint, then
∑m

i=1 vol(yi + U) ≤ vol(2B) = 2n2
vol(B), and thus m ≤

2n2
vol(B)/vol(U). To conclude the proof it is enough to show that as long as

ε ≥ c/
√

n, vol(B)/vol(U) ≤ 2.

364 S. Mendelson

Let μ be the normalized volume measure on Bn
2 , and set μn to be the product

measure on B. Therefore, if X is a random vector distributed according to μ,
and if X1, ...,Xn are independent copies of X, then

vol(U) = vol(B) · Pr ((X1, ...,Xn) ∈ U) .

Since Xi ∈ Bn
2 , then

Pr ((X1, ...,Xn) ∈ U) =

Pr ((X1, ...,Xn) ∈ εK) = Pr

(
1
n

sup
h∈Bn

2

n∑
i=1

|h(Xi)| ≤ ε

)
,

and to estimate this probability we can use the uniform law of large numbers.
Note that for every h ∈ Bn

2 , c1
√

n ≤ E|h(X)| ≤ c2
√

n for suitable absolute
constants c1 and c2; this could be verified by a tedious computation, or by
a representation of the volume measure on Bn

2 in terms of gaussian random
variables (see, for example, [12, 10] for the basic facts and [1] for representations
of the volume measure on the unit balls of other �n

p spaces).
Thus, as long as ε ≥ c/

√
n for an appropriate c > 0, it suffices to estimate

Pr

(
1
n

sup
h∈Bn

2

∣∣∣∣∣
n∑

i=1

|h(Xi)| − E|h(X)|
∣∣∣∣∣ ≥ c′√

n

)

and to show that for a large enough c′, this probability is smaller than 1/2.
And indeed, by a symmetrization argument and the contraction principle for
the absolute value function (see, e.g. [5]),

E sup
h∈Bn

2

∣∣∣∣∣ 1n
n∑

i=1

|h(Xi)| − E|h(X)|
∣∣∣∣∣ ≤ 2

n
E sup

h∈Bn
2

∣∣∣∣∣
n∑

i=1

εih(Xi)

∣∣∣∣∣ =
2
n

E

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥

2

≤ 2
n

E

(
n∑

i=1

‖Xi‖2
2

)1/2

≤ 2√
n
,

and the claim follows from Chebyshev’s inequality.

4 Concluding Remarks

Despite several attempts to apply the method developed here to the case studied
in [2], as of yet we were not able to find a unified approach to resolve both
questions. The reason for that stems in the different subsets of the cube that
one considers. Here, we focus on random sets with c(δ)n elements, while in [2]
the authors considered subsets of cardinality n but with VC dimension at most
d. Since a “typical” subset of {−1, 1}n with n elements has VC dimension of
the order log n, the sets studied in [2] can not be reached using the counting
measure we use. One possible way forward could be to find a representation

On the Limitations of Embedding Methods 365

of the counting probability measure on the set of subsets of {−1, 1}n with VC
dimension at most d, and to combined it with Theorem 2, though finding such
a representation seems highly nontrivial.

The main point of this note belongs to the “no free lunch” philosophy. It is
natural to assume that there are no simple, universal classes of functions, which
is what could be seen here. The only way one can reach most of the small subsets
of the cube is if the base class itself is so rich, that it is pointless to use it in a
representation.

Of course, the result presented here, much like that ones it followed, does
not imply that embedding/represetation type methods are useless, as real world
problems most likely do not correspond to “typical” subsets of the combinatorial
cube. They have a special symmetry or a geometric structure that makes them
easier to handle. Our goal should be to find the significant symmetries and to
exploit them by matching the correct H to the given learning problem. The
main objective in writing this article was to point out to this important, yet
under-studied problem: find out which classification problems (subsets of the
cube) can be represented, and by which base classes H; that is, for each H, find
the subsets of the cube that have a compatible structure with that of H, and
vice-versa.

References

1. F. Barthe, O. Guédon, S. Mendelson, A. Naor, A probabilistic approach to the
geometry of the �n

p ball, Annals of Probability, 33 (2) 480-513, 2005.
2. S. Ben-David, N. Eiron, H.U. Simon, Limitations of learning via embeddings in

Euclidean half spaces, Journal of Machine Learning Research 3, 441-461, 2002.
3. B. Bollobás, Extremal graph theory, Academic Press, 1978.
4. J. Forster, N. Schmitt, and H.U. Simon, Estimating the optimal margins of em-

beddings in Euclidean halfspaces, in Proceedings of the 14th Annual Conference
on Computational Learning Theory, 2001, LNCS volume 2111, 402-415. Springer,
Berlin, 2001.

5. M. Ledoux, M. Talagrand, Probability in Banach spaces, Springer, 1991.
6. N. Linial, S. Mendelson, G. Schechtman, A. Shraibman, Complexity measures of

sign matrices, preprint.
7. S. Mendelson, R. Vershynin, Entropy and the combinatorial dimension, Inventiones

Mathematicae, 152(1), 37-55, 2003.
8. S. Mendelson, G. Schechtman, The shattering dimension of sets of linear function-

als, Annals of Probability, 32 (3A), 1746-1770, 2004.
9. S. Mendelson, Embedding with a Lipschitz function, Random Structures and Al-

gorithms, to appear (available on the journal’s web-page).
10. V.D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed

spaces, Lecture Notes in Mathematics 1200, Springer, 1986.
11. A. Pajor, Sous espaces �n

1 des espaces de Banach, Hermann, Paris, 1985.
12. G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge

University Press, 1989.
13. A.W. Van der Vaart, J.A. Wellner, Weak convergence and Empirical Processes,

Springer-Verlag, 1996.

Leaving the Span

Manfred K. Warmuth1,� and S.V.N. Vishwanathan2

1 Computer Science Department, University of California, Santa Cruz,
CA 95064, U.S.A.

manfred@cse.ucsc.edu
2 Machine Learning Program, National ICT Australia��,

Canberra, ACT 0200, Australia
SVN.Vishwanathan@nicta.com.au

Abstract. We discuss a simple sparse linear problem that is hard to
learn with any algorithm that uses a linear combination of the training
instances as its weight vector. The hardness holds even if we allow the
learner to embed the instances into any higher dimensional feature space
(and use a kernel function to define the dot product between the em-
bedded instances). These algorithms are inherently limited by the fact
that after seeing k instances only a weight space of dimension k can be
spanned.

Our hardness result is surprising because the same problem can be
efficiently learned using the exponentiated gradient (EG) algorithm: Now
the component-wise logarithms of the weights are essentially a linear
combination of the training instances and after seeing k instances. This
algorithm enforces additional constraints on the weights (all must be
non-negative and sum to one) and in some cases these constraints alone
force the rank of the weight space to grow as fast as 2k.

1 Introduction

Linear methods are inadequate for many learning problems. However, if linear
methods are enhanced by the kernel trick, then they can lead to powerful learning
methods. For this purpose, the instance domain X is mapped to a Reproducing
Kernel Hilbert Space (RKHS) F via a possibly non-linear embedding map Φ.
Now linear models in the feature space F can describe highly non-linear models
in the original instance space X and linear learning algorithms (in feature space)
can become powerful learning methods. The caveat is that this method requires a
restriction to learning algorithms whose weight vectors are linear combinations of

� Supported by NSF grant CCR 9821087. Part of this work was done while the first
author visited NICTA.

�� mm National ICT Australia is funded by the Australian Government’s Department
of Communications, Information Technology and the Arts and the Australian Re-
search Council through Backing Australia’s Ability and the ICT Center of Excellence
program.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 366–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Leaving the Span 367

the embedded training instances.1 In this case, computing dot products between
the weight vector and a new embedded instance reduces to efficiently computing
the dot product between two embedded instances, i.e., 〈φ(x), φ(x̃)〉. This is done
via the so-called kernel function k(x, x̃) = 〈φ(x), φ(x̃)〉.

In this paper the following set of conditions is called kernel paradigm: The
weight vector (in feature space) is a linear combination of embedded training
instances, the dot product of this weight vector with new instances is computed
via a kernel function and the individual features (components of the embedded
instances φ(x)) are not accessed by the algorithm.

Now, consider the following sparse linear learning problem first discussed in
Kivinen and Warmuth (1997), Kivinen et al. (1997): The instances xt are the
rows of an n-dimensional Hadamard matrix and the possible targets are one of
the n columns of the matrix. In other words, if the target is the i-th column,
then the instances are labeled by the i-th feature and this target corresponds to
the standard basis vector ei (This vector has a one in the i-th position and zeros
elsewhere). Hadamard matrices have ±1 entries and orthogonal rows. Therefore,
as argued before in Kivinen and Warmuth (1997), Kivinen et al. (1997), this
problem is hard to learn when the weight vector is required to be a linear com-
binations of instances: Any linear combination of past instances predicts zero on
any new instance (labeled ±1) and thus incurs constant loss.

In this paper, we show that even if the learner is allowed to embed the
instances into any Euclidean space (via the use of a kernel), the above sparse
linear problem is still hard to learn2. Any algorithm that predicts with a linear
combination of the embedded instances seen so far has the property that after
k instances it can only span a weight space of rank k. However, the n standard
basis vectors vectors (our possible target weight vectors) form a matrix of rank
n. We show that for any k training instances and any embedding into some
Euclidean space (of any dimension), there always is one of the targets for which
the average square loss is at least 1− k

n . Thus, after seeing half of all the instances,
the average square loss is still a half.

The first question is, what is the family of algorithms that always pre-
dicts with a linear combination of the instances. The Representer Theorem and
various extensions (Kimeldorf and Wahba, 1971, Schölkopf et al., 2001) provide
minimization problems whose solutions are always linear combinations of in-
stances. A more general geometric condition on the learning algorithm is given
in Kivinen et al. (1997): Any linear algorithm whose predictions are invariant
with respect to a rotation of the embedded instances must predict with a weight
vector that is a linear combination of the embedded instances. However, it is
important to note that our lower bounds hold for any algorithm that predicts

1 The only specialized exceptions are the algorithms of Takimoto and Warmuth
(2003).

2 Our hardness result does not hold for embeddings in arbitrary dot product spaces.
However, we believe that this is only a technical restriction.

368 M.K. Warmuth and S.V.N. Vishwanathan

with a linear combination of instances.3 This includes algorithms that choose the
coefficients of the linear combination by accessing the individual components of
the embedded instances - which breaks the kernel paradigm.

Our lower bound currently only holds for linear regression with respect to
the square loss. We conjecture that changing the loss function for the linear
prediction algorithm does not alleviate this problem, i.e., we conjecture that for
any non-negative convex loss function L, s.t. L(y, ŷ) ≥ 1 whenever |y − ŷ| ≥ 1,
there always is one of the targets with average loss 1 − k

n . Along these lines, we
prove in the full paper that the lower bounds hold for the following generalization
of the square loss: Lp(y, ŷ) = |y − ŷ|p, for 1 < p ≤ ∞. The proof requires
considerably more tools from linear algebra.

The lower bounds may be surprising because there are simple linear learning
algorithms that can easily learn the above sparse linear problem. One such algo-
rithm belongs to the Exponentiated Gradient (EG) family of algorithms which
essentially have the property that the component-wise logarithms of the linear
weights are a linear combination of the (embedded) training instances. By vary-
ing the coefficient of a single instance, the set of possible weight vectors reachable
is already as high as the number of distinct components in the instance. Also the
weight space based on k instances can contain up to 2k standard basis vectors.

The crucial feature of the EG algorithm seems to be that it maintains con-
straints on the weights: the weights must be non-negative and sum to one. We
can show that in some special cases these constraints alone let us reach a weight
space of rank 2k after seeing k examples. Not surprisingly, the EG algorithm, as
well as any algorithm that enforces the constraints explicitly, require access to
the weights of the individual features, and this breaks the kernel paradigm4.

Following Kivinen and Warmuth (1997), the goal of this type of research is to
characterize which type of linear learning algorithm is suitable for a given class
of linear problems. The focus of this paper is to explore which linear prediction
algorithms are suitable for sparse linear problems.

Key Open Problem: Can similar lower bounds be proven for linear thresholded
predictors, i.e., now ŷ = σ(〈w, φ(x)〉), where σ is the threshold function and w
a linear combination of the embedded instances.

Related Work: There has been an on-going discussion of the advantages and
disadvantages of kernel algorithms versus the multiplicative algorithms such as
the EG algorithm and the Winnow algorithm (Littlestone, 1988). In short, mul-
tiplicative algorithms often generalize well after seeing only few examples in the
case when the target is sparse. However, for harder learning problems, exponen-
tially many weights need to be manipulated explicitly and this is too expensive

3 This includes the work of Cristianini et al. (1999) that uses the EG algorithm to
determine the coefficients of the linear combination.

4 The only exceptions to this that we know of are the updates discussed in
Takimoto and Warmuth (2003), where, in polynomial time exponentially many
weights are updated with the EG algorithm. Curiously enough special kernels are
used for this update.

Leaving the Span 369

((e.g., Section 9.6 of Kivinen and Warmuth, 1997) and Khardon et al. (2001)).
In contrast, the kernel algorithm may converge slower for the same problems, but
the kernel trick allows us to implicitly manipulate exponentially many feature
weights at a low computational cost.

The embedding map can be seen as a special case of a reduction between pre-
diction problems. For a more general notion of reduction and non-reducibility re-
sults that take the complexity of the learning problem into account see
Pitt and Warmuth (1993), Warmuth (1989). Many worst-case loss bounds (e.g.,
Gentile and Warmuth, 1999) and generalization bounds (Schapire et al., 1998)
are known to improve with the size of the margin. The goal is therefore to choose
embeddings with large margins. To obtain a scaling-invariant notion of margin
we must normalize the margin by the product of a pair of dual norms: the maxi-
mum p-norm of the instances and the q-norm of the target weight vector, where
1
p + 1

q = 1. In Ben-David et al. (2002) it was shown that with high probability
a large fraction of the concept classes with a fixed VC dimension cannot be em-
bedded with a 2-2-margin other than the trivial margin of 1√

n
, where n is the

number of points. On the other hand (Forster et al., 2001) showed upper bounds
on the 2-2 margin of a concept class in terms of its operator norm (the largest
singular value of a matrix).

The family of algorithms whose weight vector is a linear combination of the
instances seems to relate to the 2-2-margin. However, the performance of the
EG algorithm seems to relate to the 1-∞-margin. For our simple Hadamard
problem there is no embedding with a 2-2-margin better than 1√

n
(the trivial

2-2-margin) (Forster et al., 2001). However, the 1-∞-margin is 1 for this prob-
lem and this seems to be the key reason why the EG algorithm does well in this
case.

In this paper we prove lower bounds for the family of algorithms that pre-
dicts with a linear combination of the instances. However, we don’t use pairs
of dual norms (as was done in Kivinen and Warmuth (1997)) and we also com-
pletely bypass the concept of margins. Linear classifiers with large margins have
good generalization error, but we know of no lower bounds in terms of margins
(see Herbrich et al. (2005) for related experiments). Instead, we prove our lower
bounds using the Singular Value Decomposition5 (SVD) of the matrix defining
the linear problem and a simple averaging argument.

2 Hadamard Matrices and SVD

We make use of properties of Hadamard matrices in various proofs. A Hadamard
matrix is an orthogonal matrix with {±1} elements. The following definition
allows us to recursively define Hadamard matrices: When n = 2d for some d, the
n × n Hadamard matrix Hn is given by the following recurrence:

5 In Forster et al. (2001) it was shown that the 2-2 margin of a concept class is upper
bounded by the largest singular value over n.

370 M.K. Warmuth and S.V.N. Vishwanathan

H1 = (+1) H2 =
(

+1 +1
+1 −1

)
H4 =

⎛⎜⎜⎝
+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎞⎟⎟⎠ H2n =
(

Hn Hn

Hn −Hn

)
We use the shorthand H = Hn, where the dimension n is understood from

the context. Note that all rows of the Hadamard matrix H are orthogonal and
of length

√
n.

In the Hadamard Learning Problem, the examples are the rows of the
Hadamard matrix labeled by one of the columns. So there are n instances and
n possible targets.

A matrix M ∈ R
n×m can be decomposed as M = USV� where U ∈ R

n×n,
V ∈ R

m×m are orthogonal and S ∈ R
n×m is a diagonal matrix, i.e., Sij = 0

for i �= j. Furthermore, the diagonal elements of S are sorted and non-negative,
i.e., S11 ≥ S22 ≥ . . . ≥ Sqq ≥ 0, where q = min{m,n}. Henceforth, we will
use si to denote Si,i. If the rank r of M is less than q, then exactly the last
q − r diagonal entries are zero. Furthermore, the numbers si (singular values)
are uniquely determined by the square roots of the eigenvalues of MM�. The
columns of U are eigenvectors of MM� and the columns of V are eigenvectors of
M� M (arranged in the same order as the corresponding eigenvalues s2

i). Such a
decomposition is called the Singular Value Decomposition (SVD) (e.g., Theorem
7.3.5 of Horn and Johnson, 1985). Under some mild technical assumptions, the
SVD can also be extended to bounded linear operators.

The Frobenius norm of a matrix M ∈ R
n×m is defined as ||M ||F =√∑n

i=1

∑m
j=1 |Mi,j |2. It is invariant under orthogonal transformations and

||M ||2F = s2
1 + . . . + s2

q q = min{m,n}. (1)

The following theorem allows us to write the best rank-k approximation to a
given matrix M in terms of its SVD (Page 450 (Problem 1) and Example 7.4.5,
Horn and Johnson, 1985).

Theorem 1. Let M = USV� denote the SVD of M ∈ R
n×m. For k < r =

rank(M) define Mk = UŜV� where Ŝ ∈ R
n×m with ŝi = si for i = 1, . . . , k

and ŝj = 0 for k < j ≤ m. Then

min
rank(M̂)=k

||M− M̂ ||2F = ||M−Mk ||2F =
q∑

j=k+1

s2
j , q = min{m,n}.

For a Hadamard matrix H of dimension n×n, it is easy to see that rank(H) =
n and HH� = n I. Thus all eigenvalues of HH� are equal to n and the n
singular values si are equal to

√
n. The flat spectrum of the Hadamard matrix

will be used later to prove our lower bounds.

3 No Embedding Leads to Small Loss

As discussed before, each of the n possible linear targets in the Hadamard Learn-
ing Problem corresponds to a standard basis vector ei. In our first theorem, we

Leaving the Span 371

show that any linear combination of the instances (rows of the Hadamard matrix)
in which not all instances are used is far away from all targets. So any algorithm
that predicts with a linear combination of the instances cannot express any of
the targets unless all examples have been observed.

Theorem 2. Any linear combination of k < n instances/rows of the n-

dimensional Hadamard matrix has distance at least
√

1 − k
n from any of the

n-dimensional standard basis vectors.

We now show that linear combinations of k < n rows are not just far away
from any standard basis vector, but they also have large average square loss
w.r.t. any such target. In the theorem below we give lower bounds for the noise-
free case, i.e., when the labels are consistent with a target (which is one of the
components of the instances).

Theorem 3. For any linear combination of k rows of the n-dimensional
Hadamard matrix and any n dimensional standard basis vector, the average
square loss over all n examples is at least 1 − k

n .

Next we show that a similar lower bound can be proven even if the instances
can be embedded into any higher dimensional space (for instance by using a
kernel function). So this lower bound applies to all algorithms that predict with
a linear combination of the expanded instances. Our proof exploits the flat SVD
spectrum of Hadamard matrices.

Our theorem applies to any learning algorithm that follows the following
protocol: It first chooses an embedding of all n instances. It then receives a set
of k embedded training instances labeled by one of the targets (i.e., we are in
the noise-free case)6. The algorithm then produces a linear combination of the
embedded training instances as its linear weight vector in feature space and is
then evaluated w.r.t. the same target on all n instances.

Theorem 4. For any embedding of the rows of the n-dimensional Hadamard
matrix H, any subset of k rows and any n linear combinations wi of the embedded
k rows (one per target), the following holds: If �i is the average square loss of
wi on the i-th target (where the average is taken over all n examples), then∑

i
i

n ≥ 1 − k
n .

The generality of the theorem might be confusing: The theorem holds for any
weight vectors that are linear combinations of the k embedded training instances,
where the coefficients of the linear combination can depend arbitrarily on the
target and the training instances. In particular, the lower bound holds for the
following learning model: The k training instances are drawn at random w.r.t.
any distribution. If the k training instances are drawn with replacement, then
the learner might end up with k′ < k unique instances and the lower bound

6 Our results hold even if the learner embeds the instances after seeing the k training
instances. The only restriction is that the embedding must be the same for all targets.

372 M.K. Warmuth and S.V.N. Vishwanathan

for those draws is then 1 − k′
n instead of 1 − k

n . More discussion of probabilistic
models is given in Section 5.

Note that this lower bound is weaker than the previous one in that we now
average over instances and targets. However, since we have a lower bound on
the average over targets, that same lower bound must hold for at least one of
the targets. The average loss is measured w.r.t. the uniform distribution on all
n instances. This is crucial because it disallows the case in which the algorithm
predicts badly on the k training instances and well on the n − k remaining test
instances. Averaging over targets is also necessary because as we shall see later,
for some embeddings there are linear combinations of k expanded instances that
predict perfectly on k of the n targets.

Proof. Let φ : R
n → R

m denote an arbitrary function that is used to map the
rows of the n×n Hadamard matrix H to a matrix Z ∈ R

n×m. We use Ĥ and Ẑ
to denote the sub-matrices of H and Z which contain the k rows corresponding
to the training instances. The weight vector must be a linear combination of the
embedded instances, i.e., the k rows of Ẑ. Let wi = Ẑ

�
ai denote the weight

vector when the instances are labeled with the i-th column of H. We use matrix
notation to combine all n learning problems into one. Let A ∈ Rk×n be the
matrix whose columns are the coefficient vectors ai. All n weight vectors form
the matrix [w1, . . . ,wn] = Ẑ

�
A. Observe that the prediction of the algorithm

on the n rows of the Hadamard matrix is given by Z Ẑ
�

A, while the target
predictions are HI = H. For the square loss we can write the total loss of the n

linear classifiers as ||Z Ẑ
�

A−H ||2F . The Hadamard matrix H has rank n while

Ẑ has rank at most k and hence Z Ẑ
�

A has rank at most k. From Theorem 1 it
is clear that the loss is minimized when Z Ẑ

�
A = UŜV� where H = USV�

is the SVD of H and ŝi = si =
√

n for i = 1, . . . , k while ŝk+1 = . . . = ŝn = 0.
The squared Frobenius norm of the residual or the total loss incurred by the
algorithm is therefore (n−k)s2

n = n(n−k). By uniformly averaging the loss over
the n targets and n instances, the expected value of the loss is 1 − k

n .

If the hypotheses are allowed to be a bias plus a linear combination of the
k chosen training instances, then the total loss of the n classifiers becomes
||Z Ẑ

�
A+B−H ||2F , where the bias matrix B is any n× n matrix with identi-

cal entries in each column. Since B has rank one, Z Ẑ
�

A+B has rank at most
k +1. Thus the lower bound in the above theorem changes to 1− k+1

n instead of
1− k

n . So the lower bounds discussed in this section are not majorly affected by
allowing a bias, and for the sake of simplicity we only state our results for the
homogeneous case.

There is a trivial kernel that shows that the above theorem can be tight: We
let the ith row of H map to the n-dimensional standard basis vector ei (i.e.,
Z = I). After seeing a subset of k training instances (labeled by one of the
targets), we build a hypothesis weight vector w as follows: wi is set to yi if the
ith row was a training instance labeled with yi and zero otherwise. This weight

Leaving the Span 373

vector w ∈ R
n is a linear combination of the training instances (which are all

standard basis vectors ej s.t. row j of Z is one of the k training instances). The
predictions of w are as follows: They agree with the labels of the target on the
k training instances and are zero on the remaining n− k instances. We call any
weight vector with the above predictions a memorizing weight vector. Whenever
the target labels are ±1, any memorizing weight vector has average loss 1 − k

n
on the n instances. So for any of the n standard basis vectors the average loss
on the n instances is exactly 1 − k

n .
Note that the Hadamard matrix itself is a rotated and scaled unit matrix. So

the embedding Z = H (i.e., the identity embedding) could also be used to realize
memorizing weight vectors for each target. In other words an optimal embedding
for the Hadamard problem is the identity embedding (used in theorems 2 and
3). Theorem 4 shows that no kernel can lead to an improvement (when averaged
over targets).

The following embedding shows that averaging over targets is necessary in
the above theorem and the lower bound does not necessarily hold for the average
loss w.r.t. each target (as was the case for the identity kernel (Theorem 3)). In
this embedding Z consists of the first k columns of H (i.e., the dimension of
the instances is shrunk from n down to k). Furthermore let Ẑ be the first k

rows of Z (in other words Ẑ = H(1 : k, 1 : k) and is nonsingular). We first
define a weight vector wi for each target ei and then show that these weight
vectors are realizable as linear combinations of the k training instances: Let wi

be zero if i > k and wi = ei otherwise. To realize these weight vectors as linear
combinations of the k training instances set the coefficient vector ai to zero if
i > k and to the ith column of (Ẑ

T
)−1 otherwise. Now the prediction vector Zwi

is the ith column of H, if i ≤ k, and zero otherwise. In other words, using this
embedding, k of the targets can be predicted perfectly (average loss 0), and the
remaining n−k targets have average loss 1. When we average over all n instances
and targets, then this average is still 1− k

n (So again the above theorem is tight).
However now the average loss for each target is not lower bounded by 1− k

n , and
therefore Theorem 4 cannot be strengthened as discussed above.

Note that the only fact about the Hadamard matrix that enters into the
previous theorem is that its SVD spectrum is flat and it is straightforward to
generalize the above theorems to arbitrary matrices. For the sake of simplicity
we go back to averaging over all instances.

Corollary 1. As in Theorem 4, but now H is any n × n dimensional matrix
with SVD spectrum si. Then the lower bound on the expected square loss over
all n instances changes to 1

n2

∑n
i=k+1 s2

i . When all singular values are equal to
s, then the lower bound becomes (1 − k

n) s2

n .

4 Random Matrices Are Hard

Hadamard matrices seem rather special. However we will show that if the
Hadamard matrix is replaced by a random ±1 matrix, then (with high prob-

374 M.K. Warmuth and S.V.N. Vishwanathan

ability) the lower bound of Theorem 4 holds with slightly smaller constants.
The reason for this is that the SVD spectrum of random ±1 matrices has a
heavy tail and hence when learning the columns of a random matrix, the ex-
pected loss is large for at least one column (as in Corollary 1). In Figure 1 we
plot the spectrum si (as a function of i) of the Hadamard matrix which is a
flat line at level

√
n, where n = 1024. We also plot the spectra of 500 random

1024 × 1024 matrices with ±1 entries. Each such spectrum si is a line that
is closely approximated by the linear curve 2

√
n − 2i√

n
. Notice the heavy tail

and low variance of the spectra: In the plot, the 500 lines become one thick
line.

Recall that after seeing half of the examples, the expected square loss for
the Hadamard Learning Problem is at least 1

2 for at least one of the tar-
get columns (Theorem 4). When the ma-
trix is chosen at random, then Corol-
lary 1 implies that this loss is still
about 1

4 .
Before we detail what is provable for

random matrices we would like to discuss
some related work. In Ben-David et al.
(2002) it was shown that most concept
classes of VC dimension d can be em-
bedded only with a trivial 2-2 margin.
This is seen as evidence that most con-
cept classes of VC dimension d “may” be
hard to learn by kernel based algorithms.
(Note that random concept classes of
VC dimension d might not even be effi-
ciently learnable by any algorithm.) Fur-
thermore, we are not aware of any for-
mal lower bound in terms of the 2-2
margin.

In contrast, we completely bypass the

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Fig. 1. The horizontal line represents
the spectrum si (as a function of i) of
the 1024 dimensional Hadamard matrix
(at level

√
1024). The plot also contains

the spectra of 500 random 1024 × 1024
matrices with {±1} entries. The vari-
ance of these spectra lines is small and
therefore the 500 lines form one thick
line

notion of the margin and give a stronger result. We define a class of easy to learn
linear problems characterized by a random n × n matrix with ±1 entries7. The
instances are the rows of this matrix and the target concepts are the columns of
this matrix.

In the full paper we show analytically that, with high probability, any algo-
rithm that predicts with a linear combination of the instances cannot learn
random problems of this type. By Corollary 1 it suffices to investigate the
properties of the random variable Q = 1

n2

∑n
i=k+1 s2

i . Using techniques from
Davidson and Szarek (2003), Meckes (2004), we show that Q is sharply concen-
trated around 1 − c · k

n where c is a scalar constant.

7 The VC dimension of our learning problem is at most lg n.

Leaving the Span 375

5 Probabilistic Models

In this section we prove lower bounds for the case when the training examples
are chosen based on some probabilistic model.

Theorem 5. Assume we have a uniform distribution on the n rows of the
Hadamard matrix. Assume the algorithm first embeds8 the n rows and then draws
k random training examples without replacement that are all labeled by one of
the n targets. It then forms its hypothesis by choosing a linear combination of
the embedded k training instances.

If �i is the expected average square loss when the target is the i-th target and
the loss is averaged over all n examples, then

∑
i
i

n ≥ 1 − k
n .

Proof. Follows from Theorem 4.

The lower bound on
∑

i
i

n is tight for the identity kernel and the memorizing
weight vector.

Note that we always average the loss over all n instances. We believe that
this is the only reasonable model for the case when the instance domain is finite.
In the full paper we also develop lower bounds for the case when the loss is
averaged over the n − k test instances. There are no surprises but the bounds
are slightly more complicated to state.

We now prove a similar theorem for the case when the training examples are
drawn with replacement.

Theorem 6. Assume we have a uniform distribution on the n rows of the
Hadamard matrix. Assume the algorithm first embeds the n rows and then draws
t training examples independently at random with replacement that are labeled
by one of the n targets. It then forms its hypothesis by choosing the linear com-
bination of the t embedded training instances.

If �i is the expected average square loss when the target is the i-th target and
the loss is averaged over all n examples, then

∑
i
i

n ≥
(
1 − 1

n

)t.

Proof. By Theorem 4 the average square loss (over all instances and targets)
conditioned on the fact that k distinct training examples were drawn is at least
1 − k

n = n−k
n . Note that n− k is the number of examples missed in the training

set. Let M be a random variable denoting the number of missed examples. By
the above argument the lower bound is E(M)

n .
Clearly, M =

∑
i Mi, where Mi is a binary random variable indicating

whether the ith example was missed, and

E(M) = E(
∑

i

Mi) =
∑

i

E(Mi) = nE(M1) = n(1 − 1
n

)t.

8 Theorem 4 guarantees that the lower bound also holds for the following protocol:
The algorithm first draws k rows without replacement. It then chooses its embedding
(that may depend on the chosen rows). Finally the chosen rows are labeled by one of
the targets and a linear combination of the embedded k training instances is chosen
as the hypothesis.

376 M.K. Warmuth and S.V.N. Vishwanathan

6 Rotation Invariance

Kernel algorithms are commonly motivated by weight updates derived from a
“Representer Theorem” (Kimeldorf and Wahba, 1971, Schölkopf et al., 2001).
This type of theorem states that if the weight vector is produced by a certain
minimization problem, then it must be a linear combination of the expanded
instances. In the simplest form

w = arginf
w′

(
Ω(||w′ ||2) + L(w′)

)
, (2)

where Ω is a monotonic non-decreasing function and L is a convex real-valued
loss function that only depends on the dot products between the weight vector
w′ (in feature space) and the expanded instances φ(xi).

Here, we follow Kivinen and Warmuth (1997) and first point out that there is
a simple geometric property of an algorithm that guarantees that the algorithm
produces a linear combination of the expanded instances. This property is the
notion of rotation invariance of an algorithm. Representer theorems are a special
case of this characterization because the objective functions (eg. (2)) used in
these theorems are rotation invariant.

Representer theorems (and more generally rotation invariance) guarantee
that the weight vector of an algorithm is a linear combination of the expanded
instances. However, the lower bounds of our paper hold for any algorithm whose
hypotheses are such linear combinations. This includes (see example at the end
of section) algorithms that are not rotation invariant and algorithms that break
the kernel paradigm.

We denote the examples as (x, y) and assume that instances x already lie in
some expanded feature space X and the labels y in some label domain Y ⊆ R. For
the sake of simplicity the instance domain X = R

n for some n. An algorithm
maps arbitrary sequences of examples 〈 S 〉 = {(x1, y1), (x2, y2), . . . , (xT , yT)}
to a weight vector w(〈 S 〉) in the instance domain. We study the behavior of
algorithms when they receive rotated sequences. If U is an orthonormal matrix in
R

n×n, then 〈US 〉 denotes the sequence {(Ux1, y1), (Ux2, y2), . . . , (UxT , yT)}.
(Note that the rotation only affects the instances.)

Theorem 7. Let 〈 S 〉 = {(x1, y1), (x2, y2), . . . , (xT , yT)} ⊆ R
n ×R be any se-

quence of examples and let w be the input-output mapping of an algorithm from
sequences of examples in R

n ×R to vectors in R
n. Consider the following three

statements:

1. w is rotation invariant in the sense that

w(〈 S 〉)� x = w(〈US 〉)� Ux,

for all sequences 〈 S 〉, orthonormal matrices U ∈ R
n×n, and x ∈ R

n.
2. For all 〈 S 〉, w(〈 S 〉) must be a linear combination of the instances of 〈 S 〉.
3. For all 〈 S 〉 and rotation matrices U, w(〈US 〉) = Uw(〈 S 〉).

Now, 1 =⇒ 2 ∧ 3 and 3 =⇒ 1.

Leaving the Span 377

The following example shows that the implications 2 =⇒ 3 and 2 =⇒ 1
do not hold in general:

w(〈 S 〉) =
{

0 if x1,1 > 0
x1 otherwise.

Clearly, w(〈 S 〉) is a linear combination of the instances in 〈 S 〉 and therefore
Statement 2 holds for this algorithm. Choose U as − I, i.e., minus the identity
matrix and the first instance in 〈 S 〉 as x1 = (1, 0, . . . , 0)�. Now, w(〈 S 〉) = 0
and w(〈US 〉) = x1 and therefore statements 1 and 3 are both false. Note that
in this example the individual components of the instances are accessed and thus
the kernel paradigm is violated. However, as long as the hypotheses produced
are linear combinations, our lower bounds apply.

Even though we only defined rotation invariance in R
n, it should be apparent

that this notion can easily be generalized to arbitrary RKHS.

7 Leaving the Span with Constraints

Consider a set of k instances (rows) of the following form (Figure 2): All compo-
nents are ±1 and all 2k bit patterns exactly appear once as a column. Assume
the instances are labeled by one of the n = 2k columns (i.e., the target is one
of the n standard basis vectors). Consider two algorithms: The first is any al-
gorithm that predicts with a linear combination
of the instances and the second any algorithm
that produces a weight vector consistent with
the examples and the additional constraints that
the weights are non-negative and sum to one.
For each of the algorithms, form a matrix whose
columns are the n weight vectors produced by
the respective algorithm as the target is varied.
Clearly, the rank of the first algorithm’s weight

−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1 +1 +1

Fig. 2. Each bit pattern ap-
pears once as a column of the
lg n instances (n = 8).

matrix is at most k (even if the instances are allowed to be embedded). However,
we will show now that the rank of the second algorithms weight matrix is at least
2k.

Lemma 1. Assume the examples are the rows of a k × n dimensional matrix
with entries ±1 which are labeled by one of the columns of the matrix. Then
any weight vector w that is consistent with the examples and satisfies the above
additional constraints has the following property: If wi > 0 then the i-th column
coincides with the labels. If all columns are unique, then the w is always the
standard basis vector that identifies the target column.

Proof. W.l.o.g. the labels are all ones. Otherwise, multiply the corresponding
instance and label by −1 and keep the weights unchanged. Now, because of the
additional constraints on the weights, it is easy to see that all non-zero weights
must be on columns that contain only ones.

378 M.K. Warmuth and S.V.N. Vishwanathan

This means that the weight matrix of the second algorithm is the n-dimensional
unit matrix (rank n = 2k). So adding the constraint forced the rank of the weight
matrix to grow exponentially with the number of examples instead of linearly.

See Figure 3 for a simple problem where imposing these additional constraints
makes the weight of the consistent column grow exponentially. Maintaining con-
straints can be expensive. In particular, the non-negativity constraints access
the individual features and this breaks the kernel paradigm.

0 20 40 60 80 100 120 140
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3. The examples are the rows of a random 128×128 dimensional matrix with ±1
entries labeled by column one. Let wt be the shortest weight vector consistent with
the first t examples. For 1 ≤ i ≤ 128, we plot (left) the wt

i as a function of t (x−axis).
The line representing the first weight wt

1 grows roughly linearly and only after seeing
all 128 examples the target weight vector e1 is found. On the right we have the same
plot, but we enforce the additional constraints that wt

i ≥ 0 and
∑n

i=1 wt
i = 1. Now the

first weight grows much faster and the target weight vector is found much sooner

One simple algorithm that maintains the additional constraints is the Ex-
ponentiated Gradient (EG) Algorithm whose weight vector has the following
exponential form:

wi =
w1

i exp
(∑k

t=1 atx
t
i

)
Z

, where Z =
n∑

j=1

w1
j exp

(
k∑

t=1

atx
t
j

)
. (3)

Here w1 is an initial weight vector satisfying the additional constraints. Note that
lnwi =

∑k
t=1 atx

t
i + lnw1

i − lnZ. So except for the additional terms introduced
by the initial weights and the normalization, the logarithms of the weights are
a linear combination of examples 9.

If the EG algorithm is used as our second algorithm then it realizes the n
standard basis vectors as follows: Set the coefficients at of the k examples to

9 Set the nth weight to wn = 1 −
∑n−1

j=1 wj . If the initial weights are uniform then

ln
wj

1−∑n−1
j′=1

wj′
=

∑k
t=1(atx

t
j − anxt

n).

Leaving the Span 379

±η and let the learning rate η go to infinity. Each such weight vector converges
to a standard basis vector, one for each of the 2k = n sign patterns of the
coefficients. The cost of the EG algorithm is O(1) per example and feature
(Kivinen and Warmuth, 1997) and again the kernel paradigm is broken because
individual features are accessed.

In general, weight updates can be defined in terms of a link function10 f or
its associated Bregman divergence (Azoury and Warmuth, 2001). The updated
weights minimize a Bregman divergence plus η times the loss on the last instance
and the Bregman divergence serves as a barrier function for maintaining the
constraints (e.g., Kivinen and Warmuth, 2001, Helmbold et al., 1999).

Bounds: We only sketch the bounds provable for a slightly more general version
of the EG algorithm called EG± (Kivinen and Warmuth, 1997). This algorithm
maintains the constraint ||w ||1 ≤ U1. Assume the instances have infinity norm at
most X∞ and there is a consistent weight vector u s.t. ||u ||1 ≤ U1. (Both U1 and
X∞ are parameters to the algorithm). One can show that after receiving k train-
ing examples drawn from any fixed distribution, the expected loss11 of this algo-
rithm (w.r.t. the same distributions) is X2

∞U2
1 ln n

k (e.g., Kivinen and Warmuth,
1997). If the learning rate is properly tuned, then these algorithms also have
good bounds in the noisy case.

It is important to note that even though the bounds provable for these al-
gorithms are messy to state, the essentials are quite simple. The weight vectors
are defined using a relative entropy regularization term (in general any Bregman
divergence) instead of the squared Euclidean distance used for the kernel based
algorithms (which predict with a linear combination of the instances).

8 Conclusion

In Kivinen and Warmuth (1997) and Gentile and Littlestone (1999) a pair of
dual norms was used to characterize the generalization performance of different
families of learning algorithms. For each algorithm there are certain settings in
which its bound beats the bounds of the other algorithm. In this paper we showed
how the lower bounds for one important family (the one predicting with a linear
combination of the instances) still hold even if the instances can be embedded
into any Euclidean space.

Kernel methods are often described as “non-linear” methods because they
allow the use of non-linear features. However, no matter what embedding is
used, kernel methods build linear models in feature space and for some problems
this is highly restrictive.

10 Now f(〈 S 〉) is a linear combination of the (embedded) instances and
f(w(〈 S 〉))� x = f(w(〈US 〉))� Ux for any orthonormal matrix U.

11 The bound only holds for the average weight vector: Do one pass over all k ex-
amples; starting from the initial weight vector, update the weights after each ex-
ample is processed and average the resulting k + 1 weight vectors (e.g., Section 8
Kivinen and Warmuth, 1997).

380 M.K. Warmuth and S.V.N. Vishwanathan

Acknowledgments. We thank Claudio Gentile, Adam Kowalczyk, Alan Pajor
and Stéphane Canu for insightful discussions.

References

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation
with the exponential family of distributions. Machine Learning, 43(3):211 – 246,
2001. Special issue on Theoretical Advances in On-line Learning, Game Theory and
Boosting.

S. Ben-David, N. Eiron, and H. U. Simon. Limitations of learning via embeddings
in Euclidean half-spaces. Journal of Machine Learning Research, 3:441 – 461, Nov.
2002.

Nello Cristianini, Colin Campbell, and John Shawe-Taylor. Multiplicative updatings
for support vector learning. In Proc. of European Symposium on Artificial Neural
Networks, pages 189 – 194, 1999.

K. R. Davidson and S. J. Szarek. Banach space theory and local operator theory. In
J. Lindenstrauss and W. Johnson, editors, Handbook of the Geometry of Banach
Spaces. North-Holland, 2003.

J. Forster, N. Schmitt, and H. U. Simon. Estimating the optimal margins of embeddings
in Euclidean half spaces. In Proc. of the 14th Annual Conference on Computational
Learning Theory, pages 402 – 415. Springer, 2001.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. In Proc. 12th
Annu. Conf. on Comput. Learning Theory, pages 1–11. ACM Press, New York, 1999.

Claudio Gentile and M. K. Warmuth. Linear hinge loss and average margin. In M. S.
Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Pro-
cessing Systems 11, pages 225 – 231, Cambridge, MA, 1999. MIT Press.

D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds for single
neurons. IEEE Transactions on Neural Networks, 10(6):1291 – 1304, Nov. 1999.

R. Herbrich, T. Graepel, and R. C. Williamson. Innovations in Machine Learning,
chapter The Structure of Version Space. Springer, January 2005. D. Holmes and
L. C. Jain Editors.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cam-
bridge, 1985.

R. Khardon, D. Roth, and R. Servedio. Efficiency versus convergence of Boolean
kernels for on-line learning algorithms. In Advances in Neural Information Processing
Systems 14, pages 423–430, 2001.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82 – 95, 1971.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression
problems. Machine Learning, 45(3):301 – 329, 2001.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1 – 64, January 1997.

J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron learning algorithm vs. Win-
now: Linear vs. logarithmic mistake bounds when few input variables are relevant.
Artificial Intelligence, 97(1 - 2):325 – 343, 1997.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285 – 318, 1988.

M. W. Meckes. Concentration of norms and eigenvalues of random matrices. Journal
of Functional Analysis, 211(2):508–524, June 2004.

Leaving the Span 381

L. Pitt and M. K. Warmuth. The minimum consistent DFA problem cannot be ap-
proximated within any polynomial. Journal of the ACM, 40(1):95 – 142, 1993.

R. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651 –
1686, 1998.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
Proc. of the Annual Conference on Computational Learning Theory, pages 416 – 426,
2001.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal
of Machine Learning Research, 4:773 – 818, October 2003.

M. K. Warmuth. Towards representation independence in PAC-learning. In J. P.
Jantke, editor, Proc. of AII-89 Workshop on Analogical and Inductive Inference,
volume 397 of Lecture Notes in Artificial Intelligence 397, pages 78 – 103. Springer-
Verlag, October 1989.

Variations on U-Shaped Learning

Lorenzo Carlucci1,�, Sanjay Jain2,��, Efim Kinber3, and Frank Stephan4,� � �

1 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716-2586,USA and Dipartimento di Matematica,

Università di Siena, Pian dei Mantellini 44, Siena, Italy
carlucci5@unisi.it

2 School of Computing, National University of Singapore,
Singapore 117543

sanjay@comp.nus.edu.sg
3 Department of Computer Science, Sacred Heart University,

Fairfield, CT 06432-1000, U.S.A
kinbere@sacredheart.edu

4 School of Computing and Department of Mathematics,
National University of Singapore, Singapore 117543

fstephan@comp.nus.edu.sg

Abstract. The paper deals with the following problem: is returning
to wrong conjectures necessary to achieve full power of learning? Re-
turning to wrong conjectures complements the paradigm of U-shaped
learning [2, 6, 8, 20, 24] when a learner returns to old correct conjectures.
We explore our problem for classical models of learning in the limit:
TxtEx-learning – when a learner stabilizes on a correct conjecture, and
TxtBc-learning – when a learner stabilizes on a sequence of grammars
representing the target concept. In all cases, we show that, surprisingly,
returning to wrong conjectures is sometimes necessary to achieve full
power of learning. On the other hand it is not necessary to return to old
“overgeneralizing” conjectures containing elements not belonging to the
target language. We also consider our problem in the context of so-called
vacillatory learning when a learner stabilizes to a finite number of correct
grammars. In this case we show that both returning to old wrong conjec-
tures and returning to old “overgeneralizing” conjectures is necessary for
full learning power. We also show that, surprisingly, learners consistent
with the input seen so far can be made decisive [2, 21] – they do not have
to return to any old conjectures – wrong or right.

1 Introduction

U-shaped learning is a well-known pattern of learning behaviour in which the
learner first learns the correct behaviour, then abandons it, and finally returns

� Supported in part by NSF grant number NSF CCR-0208616.
�� Supported in part by NUS grant number R252–000–127–112.

� � � Supported in part by NUS grant number R252–000–212–112.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 382–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Variations on U-Shaped Learning 383

to the correct behaviour once again. The phenomenon of U-shaped learning
has been observed by cognitive and developmental psychologists in many dif-
ferent cases of child development – such as language learning [6, 20, 24], under-
standing of temperature [24, 25] and face recognition [7]. The ability of mod-
els of human learning to accommodate U-shaped learning progressively be-
came one of the important criteria of their adequacy; see [20, 22] and the
recent [26].

Cognitive and developmental psychology deals primarily with the problem
of designing models of learning that adequately accommodate U-shaped be-
haviour. Baliga, Case, Merkle, Stephan and Wiehagen [2] who initiated study of
U-shaped learning in the context of Gold-style algorithmic learning, asked a dif-
ferent question: is U-shaped behaviour really necessary for full learning power?
In particular, they showed that U-shaped behaviour is avoidable for so-called
TxtEx-learning (explanatory learning) – when the learner stabilizes in the limit
on a single correct conjecture. This result contrasts with the result by Fulk,
Jain and Osherson [13] who demonstrated that U-shaped learning is necessary
for the full power of so-called TxtBc-learners (behaviourally correct learners)
that stabilize on a (possibly infinite) sequence of different grammars represent-
ing the target language. In a sequel paper [8], Carlucci, Case, Jain and Stephan
investigated U-shaped behaviour with respect to the model of vacillatory (or
TxtFex) learning, where the learner is required to stabilize on a finite number
of correct conjectures. Vacillatory learning, introduced by Case [9], forms a hier-
archy of more and more powerful learning criteria between TxtEx and TxtBc
identification. It was shown in [8] that forbidding U-shaped behaviour for vac-
illatory learners makes the whole hierarchy collapse to simple TxtEx-learning,
i.e. nullifies the extra power of allowing vacillation between a finite number of
conjectures.

U-shaped learning can be viewed as a special case of a more general pattern
of learning behaviour, when a learner chooses a hypothesis, then abandons it,
then returns to it once again1. If a learner returns to a correct conjecture that
the learner has previously abandoned, it is, of course, dictated by the goal of
correctly learning the target concept. On the other hand, when a learner returns
to a previously abandoned wrong conjecture, this is not desirable if a learner
wants to be efficient. In this paper, we study the following question: if and when
returning to wrong conjectures is necessary for the full power of learnability? In
particular, we consider

(a) a model in which a learner cannot return to a previously abandoned wrong
conjecture;

(b) a model in which a learner cannot return to a previously abandoned conjec-
ture that “overgeneralizes” – more precisely, contains elements not belonging

1 These two meanings of U-shaped behaviour are explicitly distinguished at the
beginning of [24], the main reference for the study of U-shaped behaviour.

384 L. Carlucci et al.

to the target concept.2 The latter model is motivated by the fact that over-
generalization is one of the major concerns in the study of learning be-
haviour [20].

We compare both models with regular types of learning in the limit and
provide a full answer to the question when and how returning to wrong conjec-
tures is necessary. The results that we obtained lead us to the following general
conclusions. If we take TxtEx or TxtBc identification as a model of learning
behaviour, then returning to previously abandoned wrong conjectures is neces-
sary to achieve full power of learnability; however, it is not necessary to return
to old “overgeneralizing” conjectures. On the other hand, for vacillatory identifi-
cation, both returning to wrong conjectures and returning to “overgeneralizing”
conjectures is necessary in a very strong sense: forbidding this kind of U-shapes
collapses the whole TxtFex-hierarchy to simple TxtEx-learning. We compare
more thoroughly these conclusions with results from [8] on returning to correct
conjectures.

The paper has the following structure. Section 2 contains necessary notation
and basic definitions. Section 3 contains definitions of all variants of previously
known models of non U-shaped learning, as well as the models introduced in the
present paper. In Section 4 we explore our variants of non U-shaped learning in
the context of TxtEx-learning – when learners stabilize on one correct grammar
for the target language. Firstly, we show, that, surprisingly, returning to wrong
conjectures may be necessary for the full power of TxtEx-learning. To prove
this result, we establish that learners not returning to wrong conjectures are as
powerful as so-called decisive learners – the ones that never return to old conjec-
tures (Theorem 7); decisive learners are known [2] to be generally weaker than
general TxtEx-learners. On the other hand, any TxtEx-learner can be replaced
by a learner not returning to “overgeneralizing” conjectures (Theorem 8).

In Section 5 we consider our two variants of non U-shaped learning in the
context of vacillatory learning – when a learner stabilizes to a finite set of gram-
mars describing the target language. We extend a result of Section 4 to show
that vacillatory learners without returning to wrong conjectures do no better
than just decisive TxtEx-learners. As for vacillatory learners not returning to
“overgeneralizing” conjectures, they turn out to be doing no better than regu-
lar TxtEx-learners of this type. It was shown in [8] that the same collapse of
the vacillatory hierarchy occurs when return to correct conjectures is forbidden.
Thus, forbidding any of the three known variants of U-shaped behaviour nulli-

2 A more appropriate term for this could be “partial overgeneralization”, since,
strictly speaking, overgeneralization means the situation when the language gen-
erated by a conjectured grammar is a proper superset of the target language [1],
rather than just containing elements not in the target language. Still, we opted to
use just the word “overgeneralization” to emphasize the “over the board” aspects
of such type of conjectures. Note that (by Theorem 8 and 22), using the usual
definition of “overgeneralization” from [1] for NOEx and NOBc, does not change
these classes. However, the class NOFex might change.

Variations on U-Shaped Learning 385

fies the extra power of finite vacillation with respect to convergence to a single
correct conjecture.

In Section 6 we explore our two variants of non U-shaped learning in the
context of TxtBc-learnability – when learners stabilize on (potentially infinite)
sequences of grammars correctly describing the target language. First, we show
that there exist TxtEx-learnable classes of languages that cannot be learned
without returning to wrong conjectures even by TxtBc-learners. From this The-
orem and results from [2] it follows that TxtBc-learners not returning to correct
conjectures sometimes do better than those never returning to wrong conjec-
tures. On the other hand, we then show that, interestingly, TxtBc-learners not
returning to wrong conjectures can sometimes do better than those never return-
ing to right conjectures. Therefore these two forms of non U-shaped behaviour
(avoiding to return to wrong conjectures and avoiding to return to correct conjec-
tures) are of incomparable strength in the context of TxtBc-learning. The main
result of this section is that, as in case of TxtEx-learnability, returning to old
“overgeneralizing” conjectures can be circumvented: every TxtBc-learner can be
replaced by one not returning to “overgeneralizing” conjectures (Theorem 22).

In Section 7 we discover a relationship between the strongest type of non U-
shaped learners, that is decisive learners, and consistent learners [3, 21], whose
conjectures are required to be consistent with the input data seen so far. Consis-
tent learnability is known to be weaker than general TxtEx-learnability [3, 21];
moreover, sacrificing consistency, one can learn pattern languages faster than any
consistent learner [18]. We show that consistent TxtEx-learners can be made
consistent and decisive (Theorem 25). The result is surprising, since not return-
ing to already used conjectures and being consistent with the input seen so far
does not seem to be related – at least on the surface. On the other hand, some
decisive learners cannot be made consistent (even if we sacrifice decisiveness).

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [23]. The symbol N denotes
the set of natural numbers, {0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote
empty set, subset, proper subset, superset, and proper superset, respectively.
Cardinality of a set S is denoted by card(S). card(S) ≤ ∗ denotes that S is finite.
The maximum and minimum of a set are denoted by max(·),min(·), respectively,
where max(∅) = 0 and min(∅) = ∞. We let 〈x, y〉 = 1

2 (x + y)(x + y + 1) + y, a
standard pairing function.

By ϕ we denote a fixed acceptable programming system for the partial com-
putable functions mapping N to N [19, 23]. By ϕi we denote the partial com-
putable function computed by the program with number i in the ϕ-system. The
symbol R denotes the set of all recursive functions, that is total computable
functions. By Φ we denote an arbitrary fixed Blum complexity measure [5, 15]
for the ϕ-system.

By Wi we denote domain(ϕi). That is, Wi is then the recursively enumer-
able (r.e.) subset of N accepted by the ϕ-program i. Note that all acceptable

386 L. Carlucci et al.

numberings are isomorphic and that one therefore could also define Wi to be
the set generated by the i-th grammar. The symbol E will denote the set of all
r.e. languages. The symbol L ranges over E . By L, we denote the complement
of L, that is N − L. The symbol L ranges over subsets of E . By Wi,s we denote
the set {x < s | Φi(x) < s}.

We now present concepts from language learning theory. A sequence σ is a
mapping from an initial segment of N into (N ∪ {#}). The empty sequence is
denoted by Λ. The content of a sequence σ, denoted content(σ), is the set of
natural numbers in the range of σ. The length of σ, denoted by |σ|, is the number
of elements in σ. So, |Λ| = 0. For n ≤ |σ|, the initial sequence of σ of length n
is denoted by σ[n]. So, σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ and γ
range over finite sequences. We denote the sequence formed by the concatenation
of τ at the end of σ by στ . Sometimes we abuse the notation and use σx to denote
the concatenation of sequence σ and the sequence of length 1 which contains
the element x. SEQ denotes the set of all finite sequences. We let δ0, δ1, . . .
denote a standard recursive 1–1 listing of all the finite sequences. We assume
that max(content(δi)) ≤ i. We let ind(σ) denote i such that δi = σ.

A text T for a language L [14] is a mapping from N into (N ∪{#}) such that
L is the set of natural numbers in the range of T . T (i) represents the (i + 1)-th
element in the text. The content of a text T , denoted by content(T), is the set
of natural numbers in the range of T ; that is, the language which T is a text for.
T [n] denotes the finite initial sequence of T with length n.

A language learning machine from texts [14] is an algorithmic device which
computes a mapping from SEQ into N . We note that, without loss of generality,
for all criteria of learning discussed in this paper, except for consistent learning
discussed in Section 7, a learner M may be assumed to be total.

We let M range over learning machines. M(T [n]) is interpreted as the gram-
mar (index for an accepting program) conjectured by the learning machine M
on the initial sequence T [n]. We say that M converges on T to i, (written:
M(T)↓ = i) iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a lan-
guage. Below we define some of them.

Definition 1. (a) [10, 14] M TxtEx-identifies a text T just in case (∃i | Wi =
content(T)) (∀∞n)[M(T [n]) = i].
(b) [10] M TxtBc-identifies a text T just in case (∀∞n)[WM(T [n]) = content(T)].
(c) [9] M TxtFexa-identifies a text T just in case there exists a set D such that
card(D) ≤ a, (∀i ∈ D)[Wi = content(T)] and (∀∞n)[WM(T [n]) ∈ D].

Furthermore, for I ∈ {TxtEx,TxtBc,TxtFexa}: M I-identifies an r.e. lan-
guage L (written: L ∈ I(M)) just in case M I-identifies each text for L; M
I-identifies a class L of r.e. languages (written: L ⊆ I(M)) just in case M
I-identifies each language from L; I = {L ⊆ E | (∃M)[L ⊆ I(M)]}.

[9, 10, 11] show that, TxtEx ⊂ TxtFex2 ⊂ TxtFex3 ⊂ . . . ⊂ TxtFex∗ ⊂
TxtBc.

Variations on U-Shaped Learning 387

Definition 2. (a) [12] σ is said to be a stabilizing sequence for M on L iff
content(σ) ⊆ L, and for all τ ⊇ σ such that content(τ) ⊆ L, M(σ) = M(τ).

(b) [4] σ is said to be a TxtEx-locking sequence for M on L iff σ is a stabilizing
sequence for M on L, and WM(σ) = L.

(c) (Based on [4]) σ is said to be a TxtBc-locking sequence for M on L iff
content(σ) ⊆ L, and for all τ ⊇ σ such that content(τ) ⊆ L, WM(σ) = L.

If M TxtEx-identifies L, then there exists a TxtEx-locking sequence for M
on L [4]. Similar result holds for TxtBc and TxtFexa criteria of learning.

Let INIT = {L | (∃i)[L = {x | x ≤ i}]}. Let INITk = {x | x ≤ k}.

3 Decisive, Non U-Shaped and Related Criteria of
Learning

Part (a) below gives the strongest type of non U-shaped behaviour – when
a learner is not allowed to return to any old conjectures. Part (b) gives the
definition of non U-shaped learning. Parts (c) and (d) give our two models of
non U-shaped learning when a learner is not allowed to return to previously used
wrong conjectures. ‘NO’ in part (d) stands for non-overgeneralizing.

Definition 3. (a) [21] M is decisive on text T , if there do not exist any m,n, t
such that m < n < t, WM(T [m]) = WM(T [t]) and WM(T [m]) �= WM(T [n]).
(b) [2] M is non U-shaped on text T , if there do not exist any m,n, t such that
m < n < t, WM(T [m]) = WM(T [t]) = content(T) and WM(T [m]) �= WM(T [n]).
(c) M is Wr-decisive on text T , if there do not exist any m,n, t such that
m < n < t, WM(T [m]) = WM(T [t]) �= content(T) and WM(T [m]) �= WM(T [n]).
(d) M is NO-decisive on text T , if there do not exist m,n, t such that m < n < t,
WM(T [m]) = WM(T [t]) �⊆ content(T) and WM(T [m]) �= WM(T [n]).

Furthermore, M is decisive (non U-shaped, Wr-decisive, NO-decisive) on L
if M is decisive (non U-shaped, Wr-decisive, NO-decisive) on each text for L.

M is decisive (non U-shaped, Wr-decisive, NO-decisive) on L if M is decisive
(non U-shaped, Wr-decisive, NO-decisive) on each L ∈ L.

We now define the learning criteria formed by placing the various constraints
described above on the learner. Note that the definition used for decisive learning
is class version of decisive, that is decisiveness is required to hold only for texts for
the languages in the class. We do this to make it consistent with the definitions
of non U -shaped, WR-decisive and NO-decisive criteria, where only the class
version seems sensible.

Definition 4. (a) [21] M DecEx-identifies L (written: L ∈ DecEx(M)), iff
M TxtEx-identifies L, and M is decisive on L. M DecEx-identifies L, iff M
DecEx-identifies each L ∈ L. DecEx = {L | (∃M)[L ⊆ DecEx(M)]}.
(b) [2] M NUShEx-identifies L (written: L ∈ NUShEx(M)), iff M TxtEx-
identifies L, and M is non U-shaped on L. M NUShEx-identifies L, iff M
NUShEx-identifies each L ∈ L. NUShEx = {L | (∃M)[L ⊆ NUShEx(M)]}.

388 L. Carlucci et al.

(c) M WrEx-identifies L (written: L ∈ WrEx(M)), iff M TxtEx-identifies L,
and M is Wr-decisive on L. M WrEx-identifies L, iff M WrEx-identifies each
L ∈ L. WrEx = {L | (∃M)[L ⊆ WrEx(M)]}.
(d) M NOEx-identifies L (written: L ∈ NOEx(M)), iff M TxtEx-identifies
L, and M is NO-decisive on L. M NOEx-identifies L, iff M NOEx-identifies
each L ∈ L. NOEx = {L | (∃M)[L ⊆ NOEx(M)]}.

One can similarly define DecI, WrI, NOI and NUShI, for I ∈ {Fex∗,Bc}.
It is easy to verify that for all a ∈ N ∪ {∗} and I ∈ {Ex,Fexa,Bc}, (a) DecI ⊆
WrI ⊆ NOI ⊆ I; (b) DecI ⊆ NUShI ⊆ I.

4 Explanatory Learning

Our first goal is to show that, in the context of TxtEx-learnability, learners
not returning to wrong conjectures do no better than decisive learners. To prove
this, we first establish two lemmas. We omit the proof of Lemma 5.

Lemma 5. Suppose there exists a finite set A such that L does not contain any
extension of A. Then L ∈ TxtEx ⇒ L ∈ DecEx.

Lemma 6. Suppose every finite set has at least two extensions in L. Suppose
a ∈ N ∪ {∗} and I ∈ {Ex,Fexa,Bc}. Then, L ⊆ DecI(M) iff L ⊆ WrI(M).

Proof. Suppose by way of contradiction that L ⊆ WrI(M), L �⊆ DecI(M).
Thus, M is not decisive. Let τ1 ≺ τ2 ≺ τ3 be such that WM(τ1) = WM(τ3) �=
WM(τ2). Let L be an extension of content(τ3) such that WM(τ1) �= L and L ∈ L.
Such an L exists by the hypotheses on L. Let T be a text for L extending τ3.
Then T witnesses that M does not WrI-identify L since M returns to the wrong
conjecture WM(τ1) on text T . A contradiction. Lemma follows.

Now we can establish one of our main results.

Theorem 7. DecEx = WrEx.

Proof. Suppose L ∈ WrEx. We consider the following cases.
Case 1: L contains at least two extensions of every finite set. Then by

Lemma 6, L is in DecEx.
Case 2: Not Case 1. Let A′ be a finite set such that L contains at most one

extension of A′.
Case 2.1: N ∈ L. Then by Proposition 17 in [2], we have that L ∈ DecEx.
Case 2.2: N /∈ L. If L contains no extension of A′, then let A = A′. If L

contains L �= N , L ⊇ A′, then let A = A′ ∪ {w}, where w /∈ L. Now, L does not
contain any superset of A. Thus, by Lemma 5, we have that L ∈ DecEx.

As DecEx ⊂ TxtEx [2], we conclude that some families of languages in
TxtEx cannot be learned without returning to wrong conjectures.

However, if we allow to return to subsets of the target language (that is,
wrong conjectures that do not overgeneralize), then all classes of languages in
TxtEx become learnable, as the following result shows.

Variations on U-Shaped Learning 389

Theorem 8. TxtEx ⊆ NOEx.

Proof. Suppose L ∈ TxtEx.
If N ∈ L, then L ∈ DecEx as shown by Baliga, Case, Merkle and Stephan

[2]. So assume N �∈ L. Let M be a machine such that, (i) M TxtEx-identifies
L ∪ INIT, (ii) M is prudent3 and (iii) all texts for L ∈ L ∪ INIT, start with a
TxtEx-locking sequence for M on L. Note that Fulk [12] shows that this can be
assumed without loss of generality. Also note that, for all k, if σ is a stabilizing
sequence for M on INITk, then content(σ) = INITk.

For a segment σ, let f(σ) = min(N − content(σ)). Let valid = {T [m] |
m = 0 or M(T [m − 1]) �= M(T [m])}. Let consseq = {T [m] | content(T [m]) ⊆
WM(T [m])}. Let gram be a recursive function such that

Wgram(T [m]) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅,
if content(T [m]) �⊆ WM(T [m]);

WM(T [m]),
if T [m] is a stabilizing sequence for WM(T [m]);

INIT〈ind(T[m]),w〉,
otherwise, for some w ≥ f(T [m]).

It is easy to verify that for T [m] ∈ consseq, content(T [m]) ⊆ Wgram(T [m]).
Define M′ as follows. M′(T [n]) = gram(T [m]), for the largest m ≤ n, such

that T [m] is valid and WM(T [m]),n ⊇ content(T [m]) (there exists such an m, as
m = 0 satisfies the constraints). Note that the mapping from n to that m for
which M′(T [n]) = gram(T [m]), is monotonically non-decreasing in n.

Now suppose T is a text for L ∈ L. We now show that if WM′(T [m′]) =
WM′(T [n′]) �= WM′(T [s′]), for m′ < s′ < n′, then WM′(T [m′]) ⊆ L. So suppose
m′, s′, n′ as above are given. Suppose M′(T [m′]) = gram(T [m]), M′(T [s′]) =
gram(T [s]), and M′(T [n′]) = gram(T [n]). By monotonicity of M′ mentioned
above, m′ < s′ < n′ implies m ≤ s ≤ n. If m = n, then we are done, as M′(T [s′])
would also be equal to gram(T [m]). So assume m < n. As content(T [n]) ⊆
Wgram(T [n]), and T [n] is valid, we immediately have that T [m] is not a stabilizing
sequence for M on WM(T [m]) = WM(T [n]) ⊇ content(T [n]). Thus, gram(T [m])
follows the third clause in its definition. Since, 〈ind(T[m]), ·〉 �= 〈ind(T[n]), ·〉,
for m �= n, it follows that gram(T [n]) must follow the second clause, and thus
T [n] is a stabilizing sequence for WM(T [n]). As Wgram(T [m]) (= Wgram(T [n]))
is in INIT, it follows that content(T [n]) = Wgram(T [n]) (since σ being sta-
bilizing sequence for M on INITk implies that content(σ) = INITk). Thus,
Wgram(T [m]) = Wgram(T [n]) = content(T [n]) ⊆ L.

It follows that M′ NOEx-identifies L.

We now compare Theorems 7 and 8 with the following result about NUSh-
learners from [2].

Theorem 9. [2] (a) TxtEx �⊆ DecBc; (b) TxtEx = NUShEx.

3 M is said to be prudent [21] iff M TxtEx-identifies every language Wi, such that
i is in the range of M.

390 L. Carlucci et al.

Thus, Theorem 7 implies that forbidding return to abandoned wrong conjectures
is more restrictive than forbidding return to abandoned correct conjectures in
the context of TxtEx-learning, while, from Theorem 8, the latter requirement is
equivalent to forbidding to return to abandoned “overgeneralizing” conjectures.
We summarize these observations in the following immediate corollary.

Corollary 10. WrEx ⊂ NUShEx = NOEx.

5 Vacillatory Learning

In this section we show that when returning to wrong conjectures is not allowed
in vacillatory learning, then the vacillatory hierarchy TxtFex1 ⊂ TxtFex2 ⊂
. . . ⊂ TxtFex∗ collapses to TxtFex1 = TxtEx, so that the extra learning
power given by vacillation is lost. That the same collapse occurs when returning
to correct abandoned conjectures is forbidden was shown in [8].

Theorem 11. (a) WrFex∗ ⊆ TxtEx. (b) NOFex∗ ⊆ TxtEx.

Proof. (a) Suppose M WrFex∗-identifies L.
Given a text T for a language L (∈ L), let us define an equivalence relation

E(i, j) as follows: If there exist n1, n2, n3, n4 such that n1 < n2 < n3 < n4,
M(T [n1]) = M(T [n3]) = i and M(T [n2]) = M(T [n4]) = j, then E(i, j) (and
E(j, i)) holds. Intuitively, E(i, j) implies that Wi is a grammar for L iff Wj is
a grammar for L. This follows by definition of WrFex∗ as either Wi = Wj , or
both Wi and Wj are grammars for L. By taking reflexive and transitive closure
of E, we get an equivalence relation.

It is easy to verify that all grammars which are output infinitely often by M
on T are equivalent (as they will pairwise satisfy E(·, ·)).

Define M′ as follows. M′(T [n]) first builds an approximation to E above
based on T [n], by setting E(i, j) and E(j, i) to true iff there exist n1, n2, n3, n4

such that n1 < n2 < n3 < n4 ≤ n, M(T [n1]) = M(T [n3]) = i and M(T [n2]) =
M(T [n4]) = j. It then takes reflexive and transitive closure of E so formed.
M′(T [n]), then outputs on T [n] the union of languages enumerated by members
of the equivalence class of M(T [n]).

Now for all but finitely many n, as M outputs a grammar for L, M′(T [n])
will be a grammar for L. Furthermore, there will be syntactic convergence as
equivalence relation E eventually stabilizes. Thus, M′ TxtEx-identifies L.

(b) Similar to part (a), except that in this case, the meaning of equivalence
relation is E(i, j) implies Wi ⊆ L ⇔ Wj ⊆ L. This follows from the definition of
NOFex-identification as either Wi = Wj or both are subsets of input language.

As TxtEx = NOEx, we get the following result.

Corollary 12. NOFex∗ = NOEx.

The following corollary extends Theorem 7 from the previous section.

Variations on U-Shaped Learning 391

Corollary 13. WrFex∗ = DecEx.

From the above Corollaries we can conclude that, as was the case for TxtEx-
learning, Wr is more restrictive than NUSh while NO is equivalent to NUSh.
A closer look reveals a finer picture. We have shown that more learning power
is lost, in the vacillatory case, by forbidding to return to abandoned wrong con-
jectures than by forbidding to return to correct conjectures. Also, some results
from [8] seem to suggest that the necessity of returning to wrong conjectures
is even deeper than the necessity of returning to correct conjectures, from the
TxtFex3 level of the TxtFex hierarchy up, in the following sense. Recall the
following result from [8].

Theorem 14. [8] TxtFex2 ⊆ NUShBc; TxtFex3 �⊆ NUShBc.

Thus, returning to correct conjectures is avoidable for the TxtFex2 level of the
vacillatory hierarchy by shifting to the more liberal criterion of TxtBc identi-
fication, while there are classes learnable in the TxtFexb sense for every b > 2
that cannot be learned by a NUSh-learner even in the TxtBc sense. In the next
section we prove (Theorem 15) that there are TxtEx-learnable classes that can-
not be TxtBc-learned by any Wr-learner. Thus, the necessity of returning to
wrong abandoned conjectures is not avoidable by allowing infinitely many cor-
rect grammars in the limit, not even for the TxtFex2 level of the vacillatory
hierarchy, while the necessity of returning to correct abandoned conjectures is
so avoidable for this level of the vacillatory hierarchy.

6 Behaviourally Correct Learning

Our first result shows that, in the context of TxtBc-learnability, similarly to
TxtEx-learnability, disallowing to return to wrong conjectures significantly lim-
its the power of a learner: even TxtEx-learners can sometimes learn more than
any TxtBc-learner if returning to wrong conjectures is not allowed. The reason
is that the class L in TxtEx−DecBc from [2] contains two distinct extensions
of every finite set and thus the next theorem follows from Lemma 6.

Theorem 15. TxtEx �⊆ WrBc.

Now we compare non U-shaped learning (when a learner cannot abandon a
correct conjecture) with learning by disallowing to return to wrong conjectures.
From the previous Theorem and from the fact that TxtEx = NUShEx ⊆
NUShBc, we have the following.

Corollary 16. NUShBc �⊆ WrBc.

We now show that, interestingly, the converse is true: Wr learners can sometimes
do better than NUSh learners in the TxtBc setting. So Wr and NUSh are
incomparable restrictions in the context of TxtBc-identification.

Theorem 17. WrBc �⊆ NUShBc.

392 L. Carlucci et al.

We omit the proof of above theorem. Observe that, in contrast to the case of
TxtEx and TxtFex-learning, Theorem 17 implies that WrBc does not coincide
with DecBc. We have in fact the following corollary of Theorem 17.

Corollary 18. DecBc ⊂ WrBc.

Our next goal is to show that, by contrast to Theorem 15, any TxtBc-learner can
be transformed into one that does not return to “overgeneralizing” conjectures.
First, we need to establish a number of preliminary facts.

Theorem 19. (Based on [17]) Suppose L ∈ TxtBc. Then there exists a ma-
chine M′ such that M′ TxtBc-identifies L, and every text T for L ∈ L starts
with a TxtBc-locking sequence for M′ on L.

Lemma 20. Suppose M is given. Then there exists an r.e. set P (σ) such that

– A grammar for P (σ) can be effectively obtained from σ;
– If σ is a TxtBc-locking sequence for M on WM(σ), then P (σ) contains only

grammars for WM(σ);
– If σ is not a TxtBc-locking sequence for M on WM(σ), then P (σ) is either

empty or contains grammars for at least two distinct languages.

Proof. Define P (σ) as follows. If content(σ) �⊆ WM(σ), then let P (σ) = ∅, else
let P (σ) = {M(τ) | σ ⊆ τ, content(τ) ⊆ WM(σ)}. Now if σ is a TxtBc-locking
sequence for M on L, then P (σ) consists only of grammars for L. On the other
hand if σ is not a TxtBc-locking sequence for M on L, then either P (σ) is
empty or it contains grammars for at least two distinct languages.

Lemma 21. Given M, there exists a recursive function g such that:
(a) If σ is a TxtBc-locking sequence for M on WM(σ), then Wg(σ) = WM(σ).
(b) If σ is not a TxtBc-locking sequence for M on WM(σ), then Wg(σ) is finite.

Proof. For a finite set X and number s, let

– CommonTime(X, s) = max({t ≤ s | (∀p, p′ ∈ X)Wp,t ⊆ Wp′,s});
– CommonElem(X, s) =

⋂
p∈X Wp,CommonTime(X,s).

Let f be a recursive function with Wf(X) =
⋃

s∈N CommonElem(X, s). Here
we assume that Wf(∅) = ∅. Intuitively, CommonTime(X, s) finds the largest s
such that enumerations upto time CommonTime(X, s) by grammars in X are
included in all languages enumerated by grammars in X. CommonElem(X, s)
then gives intersection of elements enumerated by grammars in X upto time
CommonTime(X, s). Note that

(i) lims→∞ CommonTime(X, s) is infinite iff all grammars in X are for the
same language;

(ii) If X ⊆ X ′, then CommonTime(X, s) ≥ CommonTime(X ′, s);
(iii) If Wp �= Wp′ then for all s, CommonTime({p, p′}, s) is bounded by the least

t such that Wp,t ∪Wp′,t �⊆ Wp ∩Wp′ .

Variations on U-Shaped Learning 393

Let Y be the set of all y such that there is an s ≥ y, such that y ∈ Wf(Xs). Note
that (ii) and (iii) above imply that if X0 ⊆ X1 ⊆ X2 ⊆ . . ., {p, p′} ⊆

⋃
i∈N Xi

and Wp �= Wp′ , then Y is finite. On the other hand, if all p, p′ ∈
⋃

i∈N Xi are
grammars for the same language, then Y = Wp for any p ∈

⋃
i∈N Xi.

Let P be as in Lemma 20 and let Ps(σ) denote P (σ) enumerated in s steps.
Now let g(σ) be such that Wg(σ) =

⋃
s∈N [{y ≤ s ∧ y ∈ Wf(Ps(σ))}]. It is

now easy to verify that Lemma holds.

Now we can prove one of our main results: any TxtBc-learner can be replaced
by the one not returning to “overgeneralizing” conjectures.

Theorem 22. TxtBc ⊆ NOBc.

Proof. Suppose M TxtBc-identifies L. Without loss of generality (Theorem 19)
assume that for any text T for L ∈ L, there exists a σ ⊆ T , such that σ is a
TxtBc-locking sequence for M on L. Intuitively, the proof employs two tricks.
First trick (as given by g in Lemma 21) is to make sure that the infinite languages
output by the learner are only on σ’s which are TxtBc-locking sequences for the
language output. This automatically ensures no semantic mind changes occur
between different grammars output for the same infinite language by the learner.
The second trick makes sure that finite languages output by the learner, which
go beyond what is seen in the input at the time of conjecture, are for pairwise
different languages. We now proceed formally.

Let g be as in Lemma 21. Let q0, q1, . . . be an increasing sequence of primes
and M′′(σ) = h(σ) where Wh(σ) is defined as follows.

Begin Wh(σ)

Enumerate content(σ)
Loop
Search for s such that Wh(σ) enumerated upto now is a proper subset of

Wg(σ),s, and card(Wg(σ),s) is (qind(σ))k for some k.
If and when such s is found, enumerate Wg(σ),s.
Forever

End

Thus, Wh(σ) is Wg(σ) if Wg(σ) is infinite. Furthermore, if Wh(σ) is finite, then
it is either content(σ) or has cardinality a power of qind(σ).

It follows that if Wh(σ) = Wh(τ), for σ ⊂ τ , then either Wh(σ) is infinite and
σ is a TxtBc-locking sequence for M on Wg(τ) = Wg(σ) = Wh(σ), and thus,
there is no semantic mind change by M′′ in between σ and τ , or Wh(σ) is finite,
and thus, it must be the case that Wh(σ) = Wh(τ) = content(τ) (otherwise,
qind(σ) �= qind(τ) would imply that Wh(σ) �= Wh(τ)).

It follows from above cases that M′′ does not return to “overgeneralizing”
hypothesis. To see TxtBc-identification of L ∈ L, let T be a text for L. Let T [n]
be a TxtBc-locking sequence for M on L (such an n exists by Theorem 19).
Thus, g(T [n]) is a grammar for L. If L is finite, then without loss of generality we
also assume that n is large enough such that L ⊆ content(T [n]). Now consider

394 L. Carlucci et al.

any m ≥ n. It is easy to verify that if L is infinite then Wh(T [m]) = Wg(T [m]) = L.
On the other hand, if L is finite, then again Wh(T [m]) does not go beyond first
step, and thus equals L.

7 Consistency

Consistency is a natural and important requirement for TxtEx and TxtBc
types of learning. While for the latter, consistency requirement can be easily
achieved, it is known to be restrictive for TxtEx-learnability [3, 21]. In this sec-
tion, we establish a new interesting boundary on consistent TxtEx-learnability
– in Theorem 25 we show that consistent TxtEx-learners can be made decisive
(still being consistent) – contrast this result with Theorem 9(a).

Definition 23. [3, 21] M is said to be consistent on T iff, for all n, M(T [n])↓
and content(T [n]) ⊆ WM(T [n]).

M is said to be consistent on L iff, M is consistent on each text for L.

Definition 24. (a) [3, 21] M ConsTxtEx-identifies L iff M is consistent on L,
and M TxtEx-identifies L.
(b) [3] M ConsTxtEx-identifies L iff M ConsTxtEx-identifies each L ∈ L.
ConsTxtEx = {L | (∃M)[M ConsTxtEx-identifies L]}.

Note that for M to ConsTxtEx-identify a text T , it must be defined on each
initial segment of T .4 One can similarly define combination of consistency with
decisive (called ConsDecEx) and other related criteria such as ConsNUShEx,
ConsNOEx, ConsWrEx, etc. We omit proof of theorems in this section.

Theorem 25. ConsTxtEx ⊆ ConsDecEx.

Theorem 26. NUShBc = ConsNUShBc.
Next we show that decisive learning is stronger than consistent learning.

Theorem 27. DecEx − ConsTxtEx �= ∅

The proof of Theorem 22 also shows that TxtBc ⊆ ConsNOBc. Thus, we
have

Theorem 28. TxtBc ⊆ ConsNOBc.

The proof of Theorem 11 also works for the case when we are considering con-
sistent identification, so we have

4 There are two other versions of consistency considered in the literature, namely
RCons [16] where the learner must be total but might be inconsistent on data
not belonging to the class to be learned and T Cons [27] where the learner must
be total and consistent on every input, whether it belongs to some language to be
learnt or not. Our results also hold for T Cons, however some of our results do not
hold for RCons.

Variations on U-Shaped Learning 395

Theorem 29. ConsWrFex∗ ⊆ ConsTxtEx; ConsNOFex∗ ⊆ ConsTxtEx.

Corollary 30. ConsWrFex∗⊆ ConsDecEx; ConsNOFex∗⊆ ConsDecEx.

The proof of Theorem 17 shows the following as well.

Theorem 31. ConsWrBc �⊆ NUShBc.

The following are open: (a) ConsWrBc = WrBc? (b) ConsDecBc = DecBc?

8 Conclusions

We summarize our results on the impact of the Wr and NO variants of non U-
shaped behaviour and how they compare to previous results about the original
notion NUSh from [2] and [8].

Returning to abandoned wrong conjectures turned out to be necessary for full
learning power in all three of the models TxtEx,TxtFex and TxtBc, while re-
turning to abandoned wrong “overgeneralizing” conjectures is necessary only for
the vacillatory case and avoidable otherwise. This can be compared to results
in [2] and [8] showing that returning to abandoned correct conjectures is avoid-
able in the TxtEx case while being necessary for vacillatory and behaviourally
correct identification.

Also, we can conclude that forbidding to return to abandoned wrong conjec-
tures is more restrictive than forbidding to return to correct conjectures in the
TxtEx and in the TxtFex models, while the two restrictions are incomparable
in the TxtBc case. On the other hand, forbidding to return to wrong “overgen-
eralizing” conjectures is equivalent to forbidding to return to correct conjectures
for TxtEx and TxtFex identification.

Also, while, for the level TxtFex2 of the vacillatory hierarchy, the necessity
of returning to correct conjectures is avoidable by shifting to the more liberal
criterion of TxtBc-identification, the necessity of returning to wrong conjectures
is not avoidable in this way: there are TxtFex2-learnable classes that cannot be
TxtBc-learned by any Wr learner. This and the above observations seem to
suggest that the freedom of returning to wrong abandoned conjectures is even
more central for full learning power, than the freedom of returning to correct
conjectures. We defer a deeper analysis of the possible significance of these results
from the perspective of cognitive science to a more appropriate place.

We would like to thank Rolf Wiehagen for useful discussions, and referees
of COLT 2005 for several helpful comments.

References

1. D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

2. G. Baliga, J. Case, W. Merkle, F. Stephan, and R. Wiehagen. When unlearn-
ing helps. Manuscript, http://www.cis.udel.edu/˜case/papers/decisive.ps, 2005.
Preliminary version of the paper appeared in ICALP, 2000.

the

396 L. Carlucci et al.

3. J. Bārzdiņš. Inductive inference of automata, functions and programs. In Int.
Math. Congress, Vancouver, pages 771–776, 1974.

4. L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

5. M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322–336, 1967.

6. M. Bowerman. Starting to talk worse: Clues to language acquisition from children’s
late speech errors. In S. Strauss and R. Stavy, editors, U-Shaped Behavioral Growth.
Developmental Psychology Series. Academic Press, New York, 1982.

7. S. Carey. An analysis of a learning paradigm. In S. Strauss and R. Stavy, editors,
U-Shaped Behavioral Growth. Developmental Psychology Series. Academic Press,
New York, 1982.

8. L. Carlucci, J. Case, S. Jain, and F. Stephan. U-shaped learning may be neces-
sary. Technical Report TRA11/04, School of Computing, National University of
Singapore, Nov 2004.

9. J. Case. The power of vacillation in language learning. SIAM Journal on Comput-
ing, 28(6):1941–1969, 1999.

10. J. Case and C. Lynes. Machine inductive inference and language identification.
In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International
Colloquium on Automata, Languages and Programming, volume 140 of Lecture
Notes in Computer Science, pages 107–115. Springer-Verlag, 1982.

11. J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

12. M. Fulk. Prudence and other conditions on formal language learning. Information
and Computation, 85:1–11, 1990.

13. M. Fulk, S. Jain, and D. Osherson. Open problems in systems that learn. Journal
of Computer and System Sciences, 49(3):589–604, 1994.

14. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

15. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

16. K. Jantke and H. Beick. Combining postulates of naturalness in inductive inference.
Journal of Information Processing and Cybernetics (EIK), 17:465–484, 1981.

17. S. Kurtz and J. Royer. Prudence in language learning. In D. Haussler and L. Pitt,
editors, Proceedings of the Workshop on Computational Learning Theory, pages
143–156. Morgan Kaufmann, 1988.

18. S. Lange and R. Wiehagen. Polynomial time inference of arbitrary pattern lan-
guages. New Generation Computing, 8:361–370, 1991.

19. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

20. G. Marcus, S. Pinker, M. Ullman, M. Hollander, T. Rosen, and F. Xu. Overreg-
ularization in Language Acquisition. Monographs of the Society for Research in
Child Development, vol. 57, no. 4. University of Chicago Press, 1992. Includes
commentary by Harold Clahsen.

21. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

22. K. Plunkett and V. Marchman. U-shaped learning and frequency effects in a
multi-layered perceptron: implications for child language acquisition. Cognition,
38(1):43–102, 1991.

23. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted by MIT Press in 1987.

Variations on U-Shaped Learning 397

24. S. Strauss and R. Stavy. U-Shaped Behavioral Growth. Developmental Psychology
Series. Academic Press, New York, 1982.

25. S. Strauss, R. Stavy, and N. Orpaz. The child’s development of the concept of
temperature. Manuscript, Tel-Aviv University, 1977.

26. N.A. Taatgen and J.R. Anderson. Why do children learn to say broke? a model of
learning the past tense without feedback. Cognition, 86(2):123–155, 2002.

27. R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics
(EIK), 12:421–438, 1976.

Mind Change Efficient Learning

Wei Luo and Oliver Schulte

School of Computing Science, Simon Fraser University,
Vancouver, Canada

{wluoa, oschulte}@cs.sfu.ca

Abstract. This paper studies efficient learning with respect to mind changes.
Our starting point is the idea that a learner that is efficient with respect to mind
changes minimizes mind changes not only globally in the entire learning prob-
lem, but also locally in subproblems after receiving some evidence. Formalizing
this idea leads to the notion of uniform mind change optimality. We character-
ize the structure of language classes that can be identified with at most α mind
changes by some learner (not necessarily effective): A language class L is iden-
tifiable with α mind changes iff the accumulation order of L is at most α. Accu-
mulation order is a classic concept from point-set topology. To aid the construc-
tion of learning algorithms, we show that the characteristic property of uniformly
mind change optimal learners is that they output conjectures (languages) with
maximal accumulation order. We illustrate the theory by describing mind change
optimal learners for various problems such as identifying linear subspaces and
one-variable patterns.

1 Introduction

One of the goals of computational learning theory is to design learning algorithms for
which we can provide performance guarantees. Identification in the limit is a central
performance goal in Gold’s language learning paradigm [9]. A well-studied refinement
of this notion is identification with bounded mind changes [8, 1]. In this paper we in-
vestigate a further refinement that we term uniform mind change optimality (UMC-
optimality). Briefly, a learner is UMC-optimal if the learner achieves the best possible
mind change bound not only for the entire problem, but also relative to data sequences
that the learner may observe.

The general theory in this paper has two main goals. (1) To provide necessary and
sufficient conditions for a language collection to be identifiable with a given (ordinal)
mind-change bound by some learner (not necessarily effective). (2) To provide neces-
sary and sufficient conditions for a learner to be UMC-optimal. The results addressing
(1) help us determine when a UMC-optimal learning algorithm exists, and the results
addressing (2) help us to construct optimal learning algorithms when they do exist.

We situate our study in the framework of point-set topology. Previous work has
shown the usefulness of topology for learning theory [25–Ch.10], [21, 14, 4]. We show
how to view a language collection as a topological space; this allows us to apply Can-
tor’s classic concept of accumulation order which assigns an ordinal acc(L) to a lan-
guage collection, if L has bounded accumulation order. We show that a language collec-
tion L is identifiable with mind change bound α by a learner if and only if acc(L) = α.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 398–412, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Mind Change Efficient Learning 399

This result establishes a purely information-theoretic and structural necessary condition
for identification with bounded mind changes. Based on the concept of accumulation
order, we provide necessary and sufficient conditions for a learner to be UMC-optimal.
These results show that UMC-optimality strongly constrains the conjectures of learners.
We illustrate these results by analyzing various learning problems, such as identifying
a linear subspace and a one-variable pattern.

The paper is organized as follows. Sect. 2 reviews standard concepts for language
identification and presents our definition of mind change optimality. Then we establish
the correspondence between mind change complexity and accumulation order. Sect. 4
gives necessary and sufficient conditions for a learner to be uniformly mind change
optimal. Finally, we describe a general approach to constructing UMC-optimal effective
learners and illustrate it with one-variable pattern languages.

2 Preliminaries: Language Identification

2.1 Standard Concepts

We employ notation and terminology from [12], [20–Ch.1], and [9]. We write N for
the set of natural numbers: {0, 1, 2, ...}. The symbols ⊆,⊇,⊂,⊃, and ∅ respectively
stand for subset, superset, proper subset, proper superset, and the empty set. We view
a language as a set of strings. We identify strings with natural numbers encoding them.
Thus we define a language to be a subset of N and write L for a generic language [9–
p.449]. A language learning problem is a collection of languages; we write L for a
generic collection of languages. A text T is a mapping of N into N ∪ {#}, where #
is a symbol not in N. (The symbol # models pauses in data presentation.) We write
content(T) for the intersection of N and the range of T . A text T is for a language L
iff L = content(T). The initial sequence of text T of length n is denoted by T [n]. The
set of all finite initial sequences over N∪{#} is denoted by SEQ. We let σ and τ range
over SEQ. We write content(σ) for the intersection of N and the range of σ. The initial
sequence of σ of length n is denoted by σ[n].

We say that a language L is consistent with σ iff content(σ) ⊆ L. We write σ ⊂ T
or T ⊃ σ to denote that text T extends initial sequence σ. For a language collection L,
the set of all finite sequences consistent with L is denoted by SEQ(L) (i.e., SEQ(L) ≡
{σ ∈ SEQ : ∃L ∈ L. content(σ) ⊆ L}).

Examples
(1) Let Li ≡ {n : n ≥ i}, where i ∈ N; we use COINIT to denote the class of
languages {Li : i ∈ N} [1–p.324].
(2) In the n-dimensional linear space Qn over the field of rationals Q, we can effectively
encode every vector v by a natural number. Then a linear subspace of Qn corresponds to
a language. We write LINEARn for the collection of all (encodings of) linear subspaces
of Qn.

A learner is a function that maps a finite sequence to a language or the ques-
tion mark ?, meaning “no answer for now”. We normally use the Greek letter Ψ and
variants to denote a learner. Our term “learner” corresponds to the term “scientist” in
[20–Ch.2.1.2]. In typical applications we have available a syntactic representation for

400 W. Luo and O. Schulte

each member of the language collection L under investigation. In such settings we as-
sume the existence of an index for each member of L, that is, a function index : L !→ N

(cf. [10–p.18]), and we can take a learning function to be a function that maps a finite
sequence to an index for a language (learning functions are called “scientists” in [10–
Ch.3.3]). A computable learning function is a learning algorithm. We use the general
notion of a learner for more generality and simplicity until we consider issues of com-
putability.

Let L be a collection of languages. A learner Ψ for L is a mapping of SEQ into L∪
{?}. Thus the learners we consider are class-preserving; for the results in this paper, this
assumption carries no loss of generality. Usually context fixes the language collection
L for a learner Ψ .

We say that a learner Ψ identifies a language L on a text T for L, if Ψ(T [n]) = L for
all but a finite number of stages n. Next we define identification of a language collection
relative to some evidence.

Definition 1. A learner Ψ identifies L given σ ⇐⇒ for every language L ∈ L, and
for every text T ⊃ σ for L, we have that Ψ identifies L on T .

Thus a learner Ψ identifies a language collection L if Ψ identifies L given the empty
sequence Λ.

Examples
(1) The following learner ΨCO identifies COINIT: If content(σ) = ∅, then ΨCO(σ)
:=?. Otherwise set m := min(content(σ)), and set ΨCO(σ) := Lm.
(2) Let vectors(σ) be the set of vectors whose code numbers appear in σ. Then define
ΨLIN(σ) = span(vectors(σ)), where span(V) is the linear span of a set of vectors V .
The learner ΨLIN identifies LINEARn. The problem of identifying a linear subspace of
reactions arises in particle physics, where it corresponds to the problem of finding a set
of conservation principles governing observed particle reactions [17, 27]. Interestingly,
it appears that the theories accepted by the particle physics community match the output
of ΨLIN [28, 26].

A learner Ψ changes its mind at some nonempty finite sequence σ ∈ SEQ if
Ψ(σ) �= Ψ(σ−) and Ψ(σ−) �=?, where σ− is the initial segment of σ with σ’s last
element removed [7, 1]. (No mind changes occur at the empty sequence Λ.)

Definition 2 (based on [1]). Let Ψ be a learner and c be a function that assigns an
ordinal to each finite sequence σ ∈ SEQ.

1. c is a mind-change counter for Ψ and L if c(σ) < c(σ−) whenever Ψ changes its
mind at some nonempty sequence σ ∈ SEQ(L). When L is fixed by context, we
simply say that c is a mind change counter for Ψ .

2. Ψ identifies a class of languages L with mind-change bound α given σ ⇐⇒ Ψ
identifies L given σ and there is a mind-change counter c for Ψ and L such that
c(σ) = α.

3. A language collection L is identifiable with mind change bound α given σ ⇐⇒
there is a learner Ψ such that Ψ identifies L with mind change bound α given σ.

Mind Change Efficient Learning 401

Examples
(1) For COINIT, define a counter c0 as follows: c0(σ) := ω if content(σ) = ∅, where
ω is the first transfinite ordinal, and c0(σ) := min(content(σ)) otherwise. Then c0 is
a mind change counter for ΨCO given Λ. Hence ΨCO identifies COINIT with mind
change bound ω (cf. [1–Sect.1]).
(2) For LINEARn, define the counter c1(σ) by c1(σ) := n− dim(span(vectors(σ))),
where dim(V) is the dimension of a space V . Then c1 is a mind change counter for
ΨLIN given Λ, so ΨLIN identifies LINEARn with mind change bound n.
(3) Let FIN be the class of languages {D ⊆ N : D is finite}. Then a learner that always
conjectures content(σ) identifies FIN. However, there is no mind change bound for
FIN [1].

2.2 Uniform Mind Change Optimality

In this section we introduce a new identification criterion that is the focus of this paper.
Our point of departure is the idea that learners that are efficient with respect to mind
changes should minimize mind changes not only globally in the entire learning problem
but also locally after receiving specific evidence. For example, in the COINIT problem,
the best global mind change bound for the entire problem is ω [1–Sect.1], but after
observing initial data 〈5〉, a mind change efficient learner should succeed with at most 5
more mind changes, as does ΨCO. However, there are many learners that require more
than 5 mind changes after observing 〈5〉 yet still succeed with the optimal mind change
bound of ω in the entire problem.

To formalize this motivation, consider a language collection L. If a mind change
bound exists for L given σ, we write MCL(σ) for the least ordinal α such that L is
identifiable with α mind changes given σ. It may be natural to require that a learner
should succeed with MCL(σ) mind changes after each data sequence σ ∈ SEQ(L);
indeed the learner ΨCO achieves this performance for COINIT. However, in general
this criterion appears too strong. The reason is the following possibility: A learner Ψ
may output a conjecture Ψ(σ) = L �=?, then receive evidence σ inconsistent with L,
and “hang on” to a refuted conjecture L until it changes its mind to L′ at a future stage.
This may lead to one extra mind change (from L to L′) compared to the optimal number
of mind changes that a learner may have achieved starting with evidence σ, for example
by outputting ? until σ was observed.

A weaker requirement is that a learner Ψ has to be optimal for a subproblem L
given σ only if Ψ(σ) is consistent with σ. This leads us to the following definition. A
conjecture Ψ(σ) is valid for a sequence σ ∈ SEQ if Ψ(σ) �=? and Ψ(σ) is consistent
with σ.

Definition 3. A learner Ψ is uniformly mind change optimal for L given σ ∈ SEQ if
there is a mind change counter c for Ψ such that (1) c(σ) = MCL(σ), and (2) for all
data sequences τ ⊇ σ, if Ψ(τ) is valid, then c(τ) = MCL(τ).

We use the abbreviation “UMC-optimal” for “uniformly mind change optimal” (the
terminology and intuition is similar to Kelly’s in [15, 16]). A learner Ψ is simply UMC-
optimal for L if Ψ is UMC-optimal given Λ.

402 W. Luo and O. Schulte

Examples
(1) In the COINIT problem, MCL(Λ) = ω, and MCL(σ) = min(content(σ)) when
content(σ) �= ∅. Since c0 is a mind change counter for ΨCO, it follows that ΨCO is
UMC-optimal. Any learner Ψ such that (1) Ψ(σ) = ΨCO(σ) if content(σ) �= ∅ and (2)
Ψ(σ) = Ψ(σ−) if content(σ) = ∅ is also UMC-optimal. (The initial conjecture Ψ(Λ)
is not constrained.)
(2) The learner ΨLIN is UMC-optimal. We will see that ΨLIN is the only learner that is
both UMC-optimal and always outputs valid conjectures. Thus for the problem of in-
ferring conservation laws, UMC-optimality coincides with the inferences of the physics
community.

3 A Topological Characterization of Mind-Change Bounded
Identifiability

Information-theoretical aspects of inductive inference have been studied by many learn-
ing theorists (e.g., [10] and [20]). As Jain et. al. observe [10–p.34]:

Many results in the theory of inductive inference do not depend upon com-
putability assumptions; rather, they are information theoretic in character. Con-
sideration of noncomputable scientists thereby facilitates the analysis of proofs,
making it clearer which assumptions carry the burden.

As an example, Angluin showed that her Condition 1 characterizes the indexed fam-
ilies of nonempty recursive languages inferable from positive data by computable learn-
ers [3–p.121] and that the noneffective version, Condition 2, is a necessary condition
for inferability by computable learners.1 Variants of Angluin’s Condition 2 turn out
to be both sufficient and necessary for various models of language identifiability by
noncomputable learners ([20–Ch.2.2.2][10–Thm.3.26]). Information theoretic require-
ments such as Condition 2 constitute necessary conditions for computable learners, and
are typically the easiest way to prove the unsolvability of some learning problems when
they do apply. For example, Apsitis used the Baire topology on total recursive functions
to show that EXα �= EXα+1 [4–Sect.3]. On the positive side, if a sufficient condition
for noneffective learnability is met, it often yields insights that lead to the design of a
successful learning algorithm.

It has often been observed that point-set topology, one of the most fundamental
and well-studied mathematical subjects, provides useful concepts for describing the in-
formation theoretic structure of learning problems [25–Ch.10], [21, 4, 14]. In particular,
Apsitis investigated the mind change complexity of function learning problems in terms
of the Baire topology [4]. He showed that Cantor’s 1883 notion of accumulation order
in a topological space [6] defines a natural ordinal-valued measure of complexity for
function learning problems, and that accumulation order provides a lower bound on the
mind change complexity of a function learning problem. We generalize Apsitis’ use of
topology to apply it to language collections. The following section briefly reviews the
relevant topological concepts.

1 Condition 2 characterizes BC-learnability for computable learners [5].

Mind Change Efficient Learning 403

3.1 Basic Definitions in Point-Set Topology

A topological space over a set X is a pair (X,O), where O is a collection of subsets of
X , called open sets, such that ∅ and X are in O and O is closed under arbitrary union
and finite intersection. One way to define a topology for a set is to find a base for it. A
base B for X is a class of subsets of X such that

1.
⋃
B = X , and

2. for every x ∈ X and any B1, B2 ∈ B that contain x, there exists B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

For any base B, the set {
⋃
C : C ⊆ B} is a topology for X [18–p.52]. That is, an

open set is a union of sets in the base. Let L be a class of languages and σ ∈ SEQ.
We use L|σ to denote all languages in L that are consistent with σ (i.e., {L ∈ L :
L is consistent with σ}); similarly L|D denotes the languages in L that include a given
finite subset D. The next proposition shows that BL = {L|σ : σ ∈ SEQ} constitutes a
base for L.

Proposition 1. BL = {L|σ : σ ∈ SEQ} is a base for L; hence TL = {
⋃

S : S ⊆ BL}
is a topology for L.

The topology TL generalizes the positive information topology from recursion
theory [24–p.186] if we consider the graphs of functions as languages (as in [10–
Ch.3.9.2][20–Ch.2.6.2]).

Examples For the language collection COINIT we have that COINIT |{2, 3} =
{L0, L1, L2} and COINIT |{0} = {L0}.

In a topological space (X, T), a point x is isolated if there is an open set O ∈ T such
that O = {x}. If x is not isolated, then x is an accumulation point of X . Following
Cantor [6], we define the derived sets using the concept of accumulation points.

Definition 4 (Cantor). Let (X, T) be topological space.

1. The 0-th derived set of X , denoted by X(0), is just X .
2. For every successor ordinal α, the α-th derived set of X , denoted by X(α), is the

set of all accumulation points of X(α−1).
3. For every limit ordinal α, the set X(α) is the intersection of all β-th derived sets,

where β < α. That is, X(α) =
⋂

β<α X(β).

We give an example from the topology of the real plane that illustrates the geomet-
rical intuitions behind the topological concepts.

Example. Let

A = {(1
n
,

1
m

) : n,m ∈ N} ∪ {(1
n
, 0) : n ∈ N} ∪ {(0, 1

m
) : m ∈ N}

be a set of points in the real plane R2 with the standard topology. We use iso(X) to
denote all isolated points in X . Then iso(A) = {(1

n , 1
m) : n,m ∈ N}. Therefore

404 W. Luo and O. Schulte

A(1) = {(1
n
, 0) : n ∈ N} ∪ {(0, 1

m
) : m ∈ N}.

Similarly, we have A(2) = (0, 0), and A(3) = ∅.
In the topology TL, a language L is an isolated point of L iff there is a finite subset

D ⊆ L such that the observation of D entails L (i.e., L|D = {L}). The derived sets
of L can be defined inductively as shown in Def. 4. Note if α < β then L(α) ⊇ L(β).
It can be shown in set theory that there is an ordinal α such that L(β) = L(α), for all
β > α [13]. In other words, there must be a fix point for the derivation operation. If L
has an empty fix point, then we say L is scattered [18–p.78]. In a non-scattered space,
the nonempty fixed point is called a perfect kernel.

The accumulation order of a language L in L, denoted by accL(L) is the max-
imum ordinal α such that L ∈ L(α); when L is fixed by context, we simply write
acc(L) = α. The accumulation order of a class of languages L, denoted by acc(L),
is the supremum of the accumulation order of all languages in it. Therefore a language
collection has an accumulation order if and only if it is scattered.2

Examples
(1) The only isolated point in COINIT is L0 = N, for COINIT |{0} = {L0}. There-
fore COINIT(1) = {Li : i ≥ 1}. Similarly L1 is the only isolated point in COINIT(1);
hence COINIT(2) = {Li : i ≥ 2}. It is easy to verify that COINIT(n) = {Li : i ≥ n}.
Therefore the accumulation order of language Li in COINIT is i and the accumulation
order of COINIT is ω = sup N.
(2) In LINEARn = {linear subspaces of Qn}, the only isolated point is Qn itself:
Let S be a set of n linearly independent points in Qn; then LINEARn |S = {Qn}.
Similarly every (n − i)-dimensional linear subspace of Qn is an isolated point in
LINEAR(i)

n . Therefore the accumulation order of LINEARn is n.
(3) In FIN, there is no isolated point. This is because for every finite subset S of N,
there are infinitely many languages in FIN that are consistent with S. Therefore FIN is
a perfect kernel of itself and FIN has no accumulation order.

3.2 Accumulation Order Characterizes Mind Change Complexity

In this section we show that the accumulation order of a language collection L is an
exact measure of its mind change complexity for (not necessarily effective) learners: if
acc(L) is unbounded, then L is not identifiable with any ordinal mind change bound;
and if acc(L) = α, then L is identifiable with a mind change bound.3

In a language topology, accumulation order has two fundamental properties that
we apply often. Let accL(σ) ≡ sup{accL(L) : L ∈ L|σ}; as usual, we omit the
subscript in context. A language L in L has the highest accumulation order given σ
if accL(L) = accL(σ) and for every L′ ∈ L|σ, L′ �= L implies accL(L′) < accL(L).

Lemma 1. Let L be a scattered class of languages with bounded accumulation order.

2 Accumulation order is also called scattering height, derived length, Cantor-Bendixson rank, or
Cantor-Bendixson length [13].

3 Necessary and sufficient conditions for finite mind change identifiability by learning algo-
rithms appear in [19, 23].

Mind Change Efficient Learning 405

1. For every language L ∈ L, for every text T for L, there exists a time n such that L
has the highest accumulation order given T [n].

2. For any two languages L1, L2 ∈ L such that L1 ⊂ L2 it holds that accL(L1) >
accL(L2).

Proof. Part 2 is immediate. Part 1: For contradiction, assume there is a text T for L such
that for all n, L|(T [n]) contains some language L′ such that acc(L′) ≥ acc(L) = α.
Then L is an accumulation point of L(α), the subclass of L that contains all languages
with accumulation order less than or equal to α. Therefore acc(L) ≥ α + 1, which is a
contradiction. ��

We now establish the correspondence between mind change complexity and accu-
mulation order: MCL(σ) = accL(σ).

Theorem 1. Let L be a language collection and let σ be a finite data sequence. Then
there is a learner Ψ that identifies L given σ with mind change bound α ⇐⇒ accL(σ)
≤ α.

Proof. (⇐) We first prove by transfinite induction the auxiliary claim (*): if there is
Lτ ∈ L that has the highest accumulation order given data sequence τ , then there is
a learner Ψτ and a counter cτ such that (1) Ψτ (τ) = Lτ , (2) Ψτ identifies L given τ ,
(3) cτ is a mind change counter for Ψτ given τ , and (4) cτ (τ) = acc(L|τ). Assume
(*) for all β < α and consider α = acc(L|τ). Note that (a) if τ∗ ⊃ τ and there
is another language Lτ∗ �= Lτ that has the highest accumulation order for τ∗, then
acc(L|τ∗) < acc(L|τ). Hence by inductive hypothesis, we may choose a learner Ψτ∗

and cτ∗ with the properties (1)–(4). Now define Ψτ and cτ as follows for τ ′ ⊇ τ .

1. Ψτ (τ) := Lτ , and cτ (τ) := α.
2. if there is a τ∗ such that: τ ⊂ τ∗ ⊆ τ ′ and there is Lτ∗ �= Lτ with the highest

accumulation order for τ∗, then let τ∗ be the least such sequence and set Ψτ (τ ′) :=
Ψτ∗(τ ′), and cτ (τ ′) := cτ∗(τ ′). (Intuitively, Ψτ follows Ψτ∗ after τ∗).

3. otherwise Ψτ (τ ′) := Lτ and cτ (τ ′) := α.

(1) and (4) are immediate. We verify (2) and (3): Let T ⊃ σ be a text for a target
language L ∈ L. If L = Lτ , then Clause 2 never applies and Ψτ converges to Lτ on T
without any mind changes after σ. Otherwise by Lemma. 1, there is a first stage n such
that Clause 2 applies at T [n]. Then Ψτ converges to L by choice of ΨT [n]. Also, no mind
change occurs at T [n′] for |σ| < n′ < n. By (a) and definition of cτ , cT [n], we have that
cτ (T [n − 1]) > cT [n](T [n]). And cτ follows cT [n] after stage n. This establishes (*).

Now we construct a learner Ψ as follows for all τ ⊇ σ.

1. if there is a τ∗ such that: σ ⊆ τ∗ ⊆ τ and there is Lτ∗ with the highest accumulation
order for τ∗, then let τ∗ be the least such sequence and set Ψ(τ) := Ψτ∗(τ), and
c(τ) := cτ∗(τ). (Intuitively, Ψ follows Ψτ∗ after τ∗).

2. Otherwise Ψ(τ) :=? and c(τ) := acc(L|σ).

We show that Ψ identifies L given σ. Let L ∈ L and let T ⊃ σ be any text for L.
Then by Lemma 1, there is a least time n such that some language L′ has the highest

406 W. Luo and O. Schulte

accumulation order for T [n]. So the learner Ψ converges to L by choice of ΨT [n]. No
mind change occurs at or before T [n], and acc(L|σ) ≥ acc(L|T [n]); this shows that c
is a mind change counter for Ψ given σ.

(⇒) Let Ψ be a learner that identifies L given σ and c is a mind change counter
such that c(σ) = α. We prove by transfinite induction that if acc(σ) > α, then c is
not a mind change counter for L. Assume the claim holds for all β < α and consider
α. Suppose acc(σ) > α; then there is L ∈ L|σ such that acc(L) = α + 1. Case 1:
Ψ(σ) = L. Then since L is a limit point of L(α), there is L′ in L(α) such that L′ �= L
and acc(L′) = α. Let T ′ ⊃ σ be a text for L′. Since Ψ identifies L′, there is a time
n > |σ| such that Ψ(T ′[n]) = L′. Since Ψ(T ′[n]) �= Ψ(σ) and Ψ(σ) �=?, this is a mind
change of Ψ , hence c(T ′[n]) < c(σ). That is, c(T ′[n]) = β < α. On the other hand,
since acc(L′) = α, we have acc(T ′[n]) > β. By inductive hypothesis, c is not a mind
change counter for Ψ . Case 2: Ψ(σ) �= L. Let T ⊃ σ be a text for L. Since Ψ identifies
L, there is a time n > |σ| such that Ψ(T [n]) = L. Since c(T [n]) ≤ c(σ) = α and
acc(T [n]) > α, as in Case 1, c is not a mind change counter for Ψ . ��

Corollary 1. Let L be a class of languages. Then there exists a mind-change bound for
L if and only if L is scattered in the topology TL.

4 Necessary and Sufficient Conditions for Uniformly Mind
Change Optimal Learners

The goal of this section is to characterize the behaviour of uniformly mind-change
optimal learners. These results allow us to design mind change optimal learners and
to prove their optimality. The next definition specifies the key property of uniformly
MC-optimal learners.

Definition 5. A learner Ψ is order-driven given σ if for all finite data sequences τ, τ ′ ∈
SEQ(L) such that σ ⊆ τ ⊂ τ ′: if (1) τ = σ or Ψ(τ) is valid for τ , and (2) accL(τ) =
accL(τ ′), then Ψ does not change its mind at τ ′.

Informally, a learner Ψ is order-driven if once Ψ makes a valid conjecture Ψ(τ) at τ ,
then Ψ “hangs on” to Ψ(τ) at least until the accumulation order drops at some sequence
τ ′ ⊃ τ , that is, acc(τ ′) < acc(τ). Both the learners ΨCO and ΨLIN are order-driven
given Λ.

A data sequence σ is topped if there is a language L ∈ L consistent with σ such
that accL(L) = accL(σ). Note that if accL(σ) is a successor ordinal (e.g., finite), then
σ is topped. All data sequences in SEQ(LINEARn) are topped. In COINIT, the initial
sequence Λ is not topped. As the next proposition shows, if σ is topped, the conjecture
Ψ(σ) of a UMC-optimal learner Ψ is highly constrained: either Ψ(σ) is not valid, or
else Ψ(σ) must uniquely have the highest accumulation order in L|σ.

Proposition 2. Let L be a language collection such that accL(σ) = α for some ordinal
α and data sequence σ. Suppose that learner Ψ is uniformly mind change optimal and
identifies L given σ. Then

Mind Change Efficient Learning 407

1. Ψ is order-driven given σ.
2. for all data sequences τ ⊇ σ, if τ is topped and Ψ(τ) is valid for τ , then Ψ(τ) is

the unique language with the highest accumulation order for τ .

Proof Outline. Clause 1. Suppose that τ = σ or that Ψ(τ) is valid for τ ⊃ σ; then
c(τ) = acc(τ). If Ψ changes its mind at τ ′ when acc(τ ′) = acc(τ), then c(τ ′) <
c(τ) = acc(τ ′). Hence by Theorem 1, c is not a mind change counter for Ψ .

Clause 2. Suppose for reductio that Ψ(τ) is valid for τ but Ψ(τ) does not have
the highest accumulation order for τ . Then there is a language L ∈ L|τ such that (1)
acc(L) = acc(τ), and (2) acc(L) ≥ acc(Ψ(τ)), and (3) L �= Ψ(τ). Choose any text
T ⊃ τ for L. Since Ψ identifies L, there is an n > |τ | such that Ψ(T [n]) �= Ψ(τ) and
acc(T [n]) = acc(τ). Hence Ψ is not order-driven. ��

To illustrate, in COINIT, since the initial sequence Λ is not topped, Prop. 2 does
not restrict the conjectures of UMC-optimal learners at Λ.

A learner Ψ is regular given σ if for all data sequences τ ⊃ σ, if Ψ changes its
mind at τ , then Ψ(τ) is valid. Intuitively, there is no reason for a learner Ψ to change
its conjecture to an invalid one. The learners ΨCOINIT and ΨLIN are regular. Accord-
ing to Prop. 2, being order-driven is necessary for a UMC-optimal learner. The next
proposition shows that for regular learners, this property is sufficient as well.

Proposition 3. Let L be a language collection such that acc(σ) = α for some ordinal
α and data sequence σ. If a learner Ψ identifies L and is regular and order-driven given
σ, then Ψ is uniformly mind change optimal given σ.

Proof. Let Ψ be regular and order-driven given σ. Define a counter c as follows for σ
and τ ⊃ σ.

(1) c(σ) = acc(σ).
(2) c(τ) = acc(τ) if Ψ(τ) is valid for τ .
(3) c(τ) = c(τ−) if Ψ(τ) is not valid for τ .
Clearly c(τ) = acc(τ) if Ψ(τ) is valid for τ . So it suffices to show that c is a mind

change counter for Ψ . Let Ψ change its mind at τ ⊃ σ. Then since Ψ is regular given σ,
we have that Ψ(τ) is valid for τ and hence (a) c(τ) = acc(τ).

Case 1: There is a time n such that (1) |σ| ≤ n ≤ lh(τ−), where lh(τ−) is the length
of τ−, and (2) Ψ(τ−[n]) is valid for τ−[n]. WLOG, let n be the greatest such time.
Then by the definition of c, we have that (b) c(τ−[n]) = c(τ−). Since τ−[n] ⊂ τ , and
Ψ changes its mind at τ , and Ψ is order-driven, it follows that (c) acc(τ−[n]) > acc(τ).
Also, by (2), we have that (d) c(τ−[n]) = acc(τ−[n]). Combining (a), (b), (c) and (d),
it follows that c(τ−) > c(τ).

Case 2: There is no time n such that |σ| ≤ n ≤ lh(τ−)and (2) Ψ(τ−[n]) is valid
for τ−[n]. Then by definition of c, we have that (e) c(τ−) = acc(σ). And since Ψ is
order-driven given σ, (f) acc(σ) > acc(τ). Combining (a), (e), and (f), we have that
c(τ−) > c(τ).

So in either case, if Ψ changes its mind at τ ⊃ σ, then c(τ−) > c(τ), which
establishes that c is a mind change counter for Ψ given σ. Hence Ψ is UMC-optimal
given σ. ��

In short, Propositions 2 and 3 show that being order-driven is the key property of a
uniformly mind change optimal learner.

408 W. Luo and O. Schulte

Examples
(1) In COINIT, for any data sequence σ ∈ SEQ such that content(σ)�= ∅, we have that
L|σ is topped and there is a unique language L(σ) with the highest accumulation order.
Since ΨCO(σ) = L(σ) whenever content(σ) �= ∅, the learner ΨCO(σ) is order-driven
and regular, and hence a UMC-optimal learner for COINIT by Prop. 3. But ΨCO is not
the unique UMC-optimal learner: Define a modified learner Ψk

0 by setting Ψk
0 (σ) := Lk

if content(σ) = ∅, and Ψk
0 (σ) := ΨCO(σ) otherwise. Any such learner Ψk

0 is a valid
uniformly MC-optimal learner.

(2) Since LINEARn is finite, it is a topped language collection. In fact, for all data
sequences σ, the language with the highest accumulation order is given by span(vectors
(σ)). Thus the learner ΨLIN is the unique uniformly MC-optimal learner for LINEARn

such that ΨLIN(σ) is valid for all data sequences σ ∈ SEQ(LINEARn).

5 Effective Uniformly Mind Change Optimal Learning

It is straightforward to computationally implement the learners ΨCO and ΨLIN. These
learners have the feature that whenever they produce a conjecture L on data σ, the
language L is the ⊆-minimum among all languages consistent with σ. It follows im-
mediately from Clause 2 of Lemma. 1 that ΨCO and ΨLIN always output an order-
maximizing hypothesis (the language uniquely having the highest accumulation order).
For many problems, e.g., COINIT and LINEARn, a language has the highest accu-
mulation order iff it is the ⊆-minimum. For such a language collection L, if we can
compute the ⊆-minimum, a UMC-optimal learning algorithm for L can be constructed
on the model of ΨCO and ΨLIN. However, these conditions are much stronger than nec-
essary in general. In general, it suffices that we can eventually compute a ⊆-minimum
along any text. We illustrate this point by specifying a UMC-optimal learning algorithm
for P1, the languages defined by Angluin’s well-known one-variable patterns [2–p.48].

Let X be a set of variable symbols and let Σ be a finite alphabet of at least two
constant symbols (e.g., 0, 1, . . . , n). A pattern, denoted by p, q etc., is a finite non-
null sequence over X ∪ Σ. If a pattern contains exactly one distinct variable, then it
is a one-variable pattern (e.g., x01 or 0x00x1). Following [2], we denote the set of
all one-variable patterns by P1. A substitution θ replaces x in a pattern p by another
pattern. For example, θ = [x/0] maps the pattern xx to the pattern 00 and θ′ = [x/xx]
maps the pattern xx to the pattern xxxx. Substitutions give rise to a partial order) over
all patterns. Let p and q be two patterns. We define p) q if there is a substitution θ
such that p = qθ. The language generated by a pattern p, denoted by L(p), is the set
{q ∈ Σ∗ : q) p}.

Angluin described an algorithm that, given a finite set S of strings as input, finds
the set of one-variable patterns descriptive of S, and then (arbitrarily) selects one with
the maximum length [2–Th.6.5]. A one-variable pattern p is descriptive of a sample
S if S ⊆ L(p) and for every one-variable pattern q such that S ⊆ L(q), the language
L(q) is not a proper subset of L(p) [2–p.48]. To illustrate, the pattern 1x is descriptive
of the samples {10} and {10, 11}, the pattern x0 is descriptive of the samples {10}
and {10, 00}, and the pattern x is descriptive of the sample {10, 00, 11}. We give an
example (summarised in Fig. 1) to show that Angluin’s algorithm is not a mind-change

Mind Change Efficient Learning 409

Text T : 10 00 11 0 . . .

Stage n : 1 2 3 4 . . .

Patterns consistent
with T [n] : 1x, x0, x x0, x x x . . .

Patterns descriptive of T [n] : 1x, x0 x0 x x . . .

Accumulation order of T [n] : 1 1 0 0 . . .

Output of Angluin’s
learner MA

: 1x x0 x x . . .

Output of a UMC-optimal
learner M

: ? x0 x x . . .

Fig. 1. An illustration of why Angluin’s learning algorithm for one-variable patterns is not uni-
formly mind change optimal

optimal learner. Let x be the target pattern and consider the text T = 〈10, 00, 11, 0, . . . 〉
for L(x). Let us write P1|S for the set of one-variable patterns consistent with a sample
S. Then P1|{10} = {1x, x0, x}, P1|{10, 00} = {x0, x}, P1|{10, 11} = {1x, x} and
P1|{10, 00, 11} = {x}. The accumulation orders of these languages are determined as
follows:

1. accP1(L(x)) = 0 since L(x) is isolated; so accP1(〈10, 00, 11〉) = 0 .
2. accP1(L(1x)) = 1 since P1|{10, 11} = {1x, x}; so accP1(〈10, 11〉) = 1.
3. accP1(L(x0)) = 1 since P1|{10, 00} = {x0, x}; so accP1(〈10, 00〉) = 1.

Also, we have accP1(〈10〉) = 1. Since for T [1] = 〈10〉, the one-variable patterns 1x
and x0 are both descriptive of {10}, Angluin’s learner MA conjectures either 1x or x0;
suppose MA(〈10〉) = 1x. Now let cA be any mind change counter for MA. Since 1x is
consistent with 〈10〉, UMC-optimality requires that cA(〈10〉) = accP1(〈10〉)= 1. The
next string 00 in T refutes 1x, so MA changes its mind to x0 (i.e., MA(T [2]) = x0),
and cA(〈10, 00〉) = 0. However, MA changes its mind again to pattern x on T [3] =
〈10, 00, 11〉, so cA is not a mind change counter for MA, and MA is not UMC-optimal.
In short, after the string 10 is observed, it is possible to identify the target one-variable
pattern with one more mind change, but MA requires two.

The issue with MA is that MA changes its mind on sequence 〈10, 00〉 even though
accP1(〈10〉) = accP1(〈10, 00〉) = 1, so MA is not order-driven and hence Proposi-
tion 2 implies that MA is not UMC-optimal. Intuitively, an order-driven learner has to
wait until the data decide between the two patterns 1x and x0. As Proposition 3 indi-
cates, we can design a UMC-optimal learner M for P1 by “procrastinating” until there
is a pattern with the highest accumulation order. For example on text T our UMC-
optimal learner M makes the following conjectures: M(〈10〉) =?, M(〈10, 00〉) = x0,
M(〈10, 00, 11〉) = x.

The general specification of the UMC-optimal learning algorithm M is as follows.
For a terminal a ∈ Σ let pa ≡ p[x/a]. The proof of [2–Lemma 3.9] shows that if q
is a one-variable pattern such that L(q) ⊇ {pa, pb} for two distinct terminals a, b, then
L(q) ⊇ L(p). Thus a UMC-optimal learning algorithm M can proceed as follows.

410 W. Luo and O. Schulte

1. Set M(Λ) :=?.
2. Given a sequence σ with S := content(σ), check (*) if there is a one-variable

pattern p consistent with σ such that S ⊇ {pa, pb} for two distinct terminals a, b. If
yes, output M(σ) := p. If not, set M(σ) := M(σ−).

Since there are at most finitely many patterns consistent with σ, the check (*) is effec-
tive. In fact, (*) and hence M can be implemented so that computing M(σ) takes time
linear in |σ|. Outline: Let m = min{|s| : s ∈ S}. Let Sm be the set of strings in S of
length m. Define pS(i) := a if s(i) = a for all s ∈ Sm, and pS(i) := x otherwise for
1 ≤ i ≤ m. For example, p{10,11,111} = 1x and p{10,01} = x. Then check for all s ∈ S
if s ∈ L(pS). For a one-variable pattern, this can be done in linear time because |θ(x)|,
the length of θ(x), must be |s|−term(pS)

|pS |−term(pS) where term(pS) is the number of terminals
in pS . For example, if s = 111 and pS = 1x, then |θ(x)| must be 2. If pS is consistent
with S, then there are distinct a, b ∈ Σ such that {pa, pb} ⊆ S. Otherwise no pattern p
of length m is consistent with S and hence (*) fails.

6 Summary and Future Work

The topic of this paper was learning with bounded mind changes. We applied the classic
topological concept of accumulation order to characterize the mind change complexity
of a learning problem: A language collection L is identifiable by a learner (not neces-
sarily computable) with α mind changes iff the accumulation order of L is at most α.
We studied the properties of uniformly mind change optimal learners: roughly, a learner
Ψ is uniformly mind change optimal if Ψ realizes the best possible mind change bound
not only in the entire learning problem, but also in subproblems that arise after observ-
ing some data. The characteristic property of UMC-optimal learners is that they output
languages with maximal accumulation order. Thus analyzing the accumulation order of
a learning problem is a powerful guide to constructing mind change efficient learners.
We illustrated these results in several learning problems such as identifying a linear
subspace and a one-variable pattern. For learning linear subspaces, the natural method
of conjecturing the least subspace containing the data is the only mind change optimal
learner that does not “procrastinate” (i.e., never outputs ? or an inconsistent conjec-
ture). Angluin’s algorithm for learning a one-variable pattern is not UMC-optimal; we
described a different UMC-optimal algorithm for this problem.

We outline several avenues for future work. The next challenge for pattern languages
is to find a UMC-optimal algorithm for learning a general pattern with arbitrarily many
variables. An important step towards that goal would be to determine the accumulation
order of a pattern language L(p) in the space of pattern languages. Another applica-
tion is the design of UMC-optimal learners for logic programs. For example, Jain and
Sharma have examined classes of logic programs that can be learned with bounded
mind changes using explorer trees [12]. Do explorer trees lead to mind change optimal
learning algorithms?

There are a number of open issues for the general theory of UMC-optimal learning.
The proof of Theorem 1 shows that if there is any general learner that solves a learning
problem L with α mind changes, then there is a UMC-optimal general learner for L.

Mind Change Efficient Learning 411

However, this may well not be the case for effective learning algorithms: Is there a lan-
guage collection L such that there is a computable learner M that identifies L with α
mind changes, but there is no computable UMC-optimal learner for L? Such a sepa-
ration result would show that for computable learners, UMC-optimality defines a new
class of learning problems.

As the example of one-variable patterns shows, there can be a trade-off between
time efficiency and producing consistent conjectures, on the one hand, and the pro-
crastination that minimizing mind changes may require on the other (see Sect. ??). We
would like to characterize the learning problems for which this tension arises, and how
great the trade-off can be.

Another project is to relate the topological concept of accumulation order to other
well-known structural properties of a language collection L. For example, it can be
shown that if L has unbounded accumulation order (i.e., if L contains a nonempty per-
fect subset), then L has infinite elasticity, as defined in [29, 22]. Also, we can show
that accumulation order corresponds to intrinsic complexity as defined in [7, 11], in
the following sense: If L1 is weakly reducible to L2, then the accumulation order of
L2 is at least as great as the accumulation order of L1. It follows immediately that
COINIT �≤weak SINGLE, where SINGLE is the class of all singleton languages
and has accumulation order 0, and FIN �≤weak COINIT, two results due to Jain and
Sharma [11].

In sum, uniform mind change optimality guides the construction of learning algo-
rithms by imposing strong and natural constraints; and the analytical tools we estab-
lished for solving these constraints reveal significant aspects of the fine structure of
learning problems.

Acknowledgments

This research was supported by a Discovery Grant from the Natural Sciences and En-
gineering Research Council of Canada. We would like to thank the anonymous COLT
referees for their comments and suggestions.

References

1. A. Ambainis, S. Jain, and A. Sharma. Ordinal mind change complexity of language identifi-
cation. Theor. Comput. Sci., 220(2):323–343, 1999.

2. D Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,
1980.

3. D Angluin. Inductive inference of formal languages from positive data. Information and
Control, 45(2):117–135, 1980.

4. K. Apsitis. Derived sets and inductive inference. In S. Arikawa and K. P. Jantke, editors,
Proceedings of ALT 1994, pages 26–39. Springer, Berlin, Heidelberg, 1994.

5. G. Baliga, J. Case, and S. Jain. The synthesis of language learners. Information and Com-
putation, 152:16–43, 1999.

6. G. Cantor. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. In William Ewald, editor,
From Kant to Hilbert, volume 2, pages 878–920. Oxford Science Publications, 1996.

412 W. Luo and O. Schulte

7. R. Freivalds, E. Kinber, and C. H. Smith. On the intrinsic complexity of learning. Inf.
Comput., 123(1):64–71, 1995.

8. R. Freivalds and C. H. Smith. On the role of procrastination in machine learning. Inf.
Comput., 107(2):237–271, 1993.

9. E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

10. S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn. M.I.T. Press, 2
edition, 1999.

11. S. Jain and A. Sharma. The intrinsic complexity of language identification. J. Comput. Syst.
Sci., 52(3):393–402, 1996.

12. S. Jain and A. Sharma. Mind change complexity of learning logic programs. TCS,
284(1):143–160, 2002.

13. A. J. Jayanthan. Derived length for arbitrary topological spaces. International Journal of
Mathematics and Mathematical Sciences, 15(2):273–277, 1992.

14. K. Kelly. The Logic of Reliable Inquiry. Oxford University Press, 1996.
15. K. Kelly. Efficient convergence implies Ockham’s Razor. In Proceedings of the 2002 Inter-

national Workshop on Computation Models of Scientific Reasoning and Applications, pages
24–27, 2002.

16. K. Kelly. Justification as truth-finding efficiency: How ockham’s razor works. Minds and
Machines, 14(4):485–505, 2004.

17. S. Kocabas. Conflict resolution as discovery in particle physics. Machine Learning, 6:277–
309, 1991.

18. K. Kuratowski. Topology, volume 1. Academic Press, 1966. Translated by J. Jaworowski.
19. S. Lange and T. Zeugmann. Language learning with a bounded number of mind changes. In

Symposium on Theoretical Aspects of Computer Science, pages 682–691, 1993.
20. E. Martin and D. N. Osherson. Elements of Scientific Inquiry. The MIT Press, Cambridge,

Massachusetts, 1998.
21. E. Martin, A. Sharma, and F. Stephan. Learning, logic, and topology in a common frame-

work. In Proceedings of the 13th International Conference on Algorithmic Learning Theory,
pages 248–262. Springer-Verlag, 2002.

22. T. Motoki, T. Shinohara, and K. Wright. The correct definition of finite elasticity: corrigen-
dum to identification of unions. In Proceedings of COLT 1991, page 375. Morgan Kaufmann
Publishers Inc., 1991.

23. Y. Mukouchi. Inductive inference with bounded mind changes. In S. Doshita, K. Furukawa,
K. P. Jantke, and T. Nishida, editors, Proceedings of ALT 1992, pages 125–134. Springer,
Berlin, Heidelberg, 1993.

24. P. Odifreddi. Classical Recursion Theory. North-Holland, October 1999.
25. D. N. Osherson, M. Stob, and S. Weinstein. Systems that learn: an introduction to learning

theory for cognitive and computer scientists. MIT Press, 1986.
26. O. Schulte. Automated discovery of conservation principles and new particles in particle

physics. Manuscript submitted to Machine Learning, 2005.
27. R. Valdés-Pérez. Algebraic reasoning about reactions: Discovery of conserved properties in

particle physics. Machine Learning, 17:47–67, 1994.
28. R. Valdés-Pérez. On the justification of multiple selection rules of conservation in particle

physics phenomenology. Computer Physics Communications, 94:25–30, 1996.
29. K. Wright. Identification of unions of languages drawn from an identifiable class. In Pro-

ceedings of the second annual workshop on Computational learning theory, pages 328–333.
Morgan Kaufmann Publishers Inc., 1989.

On a Syntactic Characterization of Classification
with a Mind Change Bound

Eric Martin1 and Arun Sharma2

1 School of Computer Science and Engineering, National ICT Australia�,
UNSW Sydney, NSW 2052, Australia

emartin@cse.unsw.edu.au
2 Division of Research and Commercialisation, Queensland University of Technology,

2 George street, GPO Box 2434, Brisbane QLD 4001, Australia
Arun.Sharma@qut.edu.au

Abstract. Most learning paradigms impose a particular syntax on the
class of concepts to be learned; the chosen syntax can dramatically affect
whether the class is learnable or not. For classification paradigms, where
the task is to determine whether the underlying world does or does not
have a particular property, how that property is represented has no im-
plication on the power of a classifier that just outputs 1’s or 0’s. But is it
possible to give a canonical syntactic representation of the class of con-
cepts that are classifiable according to the particular criteria of a given
paradigm? We provide a positive answer to this question for classifica-
tion in the limit paradigms in a logical setting, with ordinal mind change
bounds as a measure of complexity. The syntactic characterization that
emerges enables to derive that if a possibly noncomputable classifier can
perform the task assigned to it by the paradigm, then a computable clas-
sifier can also perform the same task. The syntactic characterization is
strongly related to the difference hierarchy over the class of open sets of
some topological space; this space is naturally defined from the class of
possible worlds and possible data of the learning paradigm.

Keywords: Mind changes, difference hierarchies, normal forms.

1 Introduction

The field of Inductive inference has mainly focused on two general classes of
problems: identification of a language (r.e. subset of N) from its members (pos-
itive data), possibly together with its nonmembers (negative data) (see [5] for
an overview); classification of languages w.r.t. a concept (set of languages) from

� National ICT Australia is funded by the Australian Government’s Department of
Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Centre of Excellence Pro-
gram.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 413–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

414 E. Martin and A. Sharma

the data generated by the languages (see [4, 10]). More precisely, classification
of languages w.r.t. a concept C requires that for all languages L, a classifier out-
puts 1 if L belongs to C, and 0 otherwise, from an enumeration of the members
of L. Inductive inference considers the case of limiting classification, where the
correct output has to be produced in response to all but finitely many initial
segments of a stream of data generated by the language to be classified. A notion
of complexity is provided by considering upper bounds on the number of mind
changes allowed before the sequence of outputs stabilizes to the correct output,
for any order of data presentation (see [2, 1, 3]). Moreover, a distinction can be
made between classification, positive classification, and negative classification:
positive (respect., negative) classification requires converging to 1 (respect., 0)
on streams of data for a language that belongs (respect., does not belong) to
the concept, and only on those streams; hence classification is equivalent to both
positive and negative classification.

In this paper we study positive classification, negative classification and clas-
sification with a bounded number of mind changes in a logical setting rather
than in a numerical setting: structures play the role of languages, data can be
richer—the only condition is that they can be represented by logical sentences,
and the concepts themselves will be definable by logical sentences (see [8]). While
it would not make sense to try and provide a syntactic characterization of clas-
sification with a mind change bound in a numerical setting, the logical setting
provides the necessary expressive power for that task. When classification is cast
in a logical setting, it is possible to view the task of a classifier as that of discov-
ering the truth of the sentence that defines the concept to be learned, w.r.t. to
a generalized notion of logical consequence. More precisely, classification can be
formalized as the task of discovering whether a sentence ϕ is a generalized logi-
cal consequence of some theory which the classifier receives an enumeration of.
Also, though computability is an essential feature of practical classification sce-
narios, the basic definitions we use make no a priori computability assumption.
Indeed, one of our aims is to discover sufficient (and natural) conditions that
guarantee that if classification is possible, then computable classification is pos-
sible as well. In [8] the relationship between generalized logical consequence and
(possibly noncomputable) classification has been studied. Here we show that un-
der some conditions, (possibly noncomputable) classification implies computable
classification.

In [9] it is shown that a sentence is classifiable in the limit iff it is Δ0
2; this

result is generalized to a larger class of paradigms in [7]. The nontrivial direc-
tion is of course that classification implies Δ0

2 logical complexity. The framework
presented here goes a step further, and enables to also prove a similar result for
classification with a bounded number of mind changes. This requires looking at
links with concepts from topology, in particular the difference hierarchies over
some topological space (see [6]), and defining a notion of syntactic complexity
based on a new normal form: the DNF or CNF are not appropriate to estab-
lish connections with classification with a bounded number of mind changes. We
proceed as follows. In Section 2 we define the notion of normal form we need. In

On a Syntactic Characterization of Classification 415

Section 3 we present the logical framework and its concept of generalized logical
consequence, we define the classification scenario, and we introduce the funda-
mental topological notions. Section 4 presents the main results. We conclude in
Section 5.

2 Syntax

2.1 General Notation

We fix a nonempty vocabulary V, i.e., a set of (possibly nullary) predicate and
function symbols, possibly with equality. We say structure for V-structure. A
literal is either an atom or the negation of an atom. The presentation of the
normal form that will characterize classification with a bounded number of mind
changes in the kind of learning paradigm we will focus on is simpler and cleaner
if we depart slightly from the usual definitions of a formula, and use a syntax
that results in no loss in generality, but precisely suits our needs. This is why we
(a) impose a negation normal form, and (b) define disjunction and conjunction
as unary operators whose arguments are sets. More precisely, the set LV

ωω of
(finite) formulas is inductively defined as follows.

– All literals belong to LV
ωω.

– For all finite D ⊆ LV
ωω,

∨
D and

∧
D belong to LV

ωω.
– For all ϕ ∈ LV

ωω and variables x, ∃xϕ and ∀xϕ belong to LV
ωω.

In particular,
∨
∅ and

∧
∅ are formulas, that are logically equivalent to false and

true, respectively. We denote by L the set of closed members of LV
ωω. We refer

to a member of L as a sentence and to a subset of L as a theory.
We denote by LV

ω1ω the extension of LV
ωω that accepts disjunctions and con-

junctions of countable sets of expressions. The members of LV
ω1ω, called infinitary

formulas, are needed to express some definability notions.1 Still all results will be
stated in terms of L, whose members are finite: the role played by infinitary for-
mulas is only indirect, in characterizing the syntactic or topological complexity
of a member of L.

We introduce a defined symbol ∼ that, applied to a (possibly infinitary)
formula ϕ, abbreviates another (possibly infinitary) formula. For all ϕ ∈ LV

ω1ω,
∼ϕ is logically equivalent to what would be ¬ϕ if the application of negation
were not restricted to atoms; moreover, ∼∼ϕ = ϕ.

Notation 1. Given a member ϕ of LV
ω1ω, ∼ϕ is inductively defined as follows.

– If ϕ is atomic then ∼ϕ = ¬ϕ.
– If ϕ is of the form ¬ψ then ∼ϕ = ψ.
– If ϕ is of the form

∨
X then ∼ϕ =

∧
{∼ψ : ψ ∈ X}.

– If ϕ is of the form
∧

X then ∼ϕ =
∨
{∼ψ : ψ ∈ X}.

1 The occurrence or nonoccurrence of = in V determines whether LV
ωω and LV

ω1ω are
languages with or without equality.

416 E. Martin and A. Sharma

– If ϕ is of the form ∃xψ then ∼ϕ = ∀x∼ψ.
– If ϕ is of the form ∀xψ then ∼ϕ = ∃x∼ψ.

Given a set I and a family (ϕi)i∈I of members of LV
ω1ω, we usually write

∨
i∈I ϕi

for
∨
{ϕi : i ∈ I} and

∧
i∈I ϕi for

∧
{ϕi : i ∈ I}. Given ϕ1, ϕ2 ∈ LV

ω1ω, we write
either ϕ1 ∨ ϕ2 or ϕ2 ∨ ϕ1 for

∨
{ϕ1, ϕ2}; we write either ϕ1 ∧ ϕ2 or ϕ2 ∧ ϕ1 for∧

{ϕ1, ϕ2}; ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 are also used as abbreviations.
We will need the following technical notions:

Definition 2. Let a set X of infinitary formulas be given.

– An infinitary formula that is built from X by disjunction and conjunction
over finite sets is said to be finitely positive over X.

– A subset Y of LV
ω1ω is said to be a generator of X iff X is equal to the set

of closed instances of all members of Y .

2.2 Simple Normal Form

The class of ordinals is denoted by Ord. Let a subset X of LV
ω1ω and a member

ϕ of LV
ω1ω be given. For all ordinals α, we say that ϕ is in Σα[X] normal form

iff ∼ϕ is in Πα[X] normal form. We say that ϕ is in Π0[X] normal form iff ϕ is
finitely positive over the set of (not necessarily closed) instances of X. Given a
nonnull ordinal α, the set of infinitary formulas that are in Πα[X] normal form
is inductively defined as the set Z of all members ψ of LV

ω1ω such that:

– ψ is in Σβ [X] normal form for some β < α, or
– ψ is finitely positive over Z, or
– ψ is of the form

∧
T for some T ⊆ Z, or

– ψ is of the form ∀xξ for some ξ ∈ Z.

Note that for all α, β ∈ Ord with α ≤ β and β > 1, if ϕ is in � Σα[X] | Πα[X] �
normal form, then ϕ is also in � Σβ [X] | Πβ [X] � normal form. On the other
hand, if ϕ is in � Σ0[X] | Π0[X] � normal form, then ϕ is not necessarily in
� Σ1[X] | Π1[X] � normal form. We say that ϕ is in simple normal form over X
if ϕ is in Σα[X] or Πα[X] normal form for some ordinal α.

We will look at learning paradigms that determine a set X such that Δ2[X]
normal form characterizes classifiability in the limit. In these paradigms, a double
normal form defined from the notion of Σ1[X] normal form will characterize
classifiability with a bounded number of mind changes. We intuitively motivate
the definition of the double normal form before we define it formally.

2.3 Double Normal Form

Assume that V consists of the nullary predicate symbols p, q, r and s. Hence
p, q, r, s are also sentences, and we can define the set D of possible data as
{p, q, r, s}. Let ϕ be a sentence whose meaning is given by:

On a Syntactic Characterization of Classification 417

p 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
q 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
s 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
ϕ 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0

Consider the following scenario involving a classifier. A structure M is chosen,
but remains unknown to the classifier, and the members of D that are true in M
are presented to the classifier, possibly with repetitions, and possibly together
with an extra symbol that denotes ‘no piece of information.’ The aim is to
discover in the limit whether ϕ is true in M. In response to an initial segment
of the enumeration, the classifier can output either 1 (a guess that M |= ϕ) or 0
(a guess that M �|= ϕ). A straightforward strategy that minimizes the number of
mind changes is to assume that only the predicate symbols that have appeared
in the enumeration are true in M, and output the value given by the truth table
above for that particular assignment. The strategy would require to output 1
in response to , 0 in response to , p, and 0 in response to , p, q—a possible
sequence of data if M is a model of both p and q. This suggests building a
labeled forest (set of labeled trees) F over the set of subsets of D as follows. The
roots of the members of F , if any, are labeled with the ⊆-minimal members D
of D such that the truth value of ϕ as given by D is equal to 1 (meaning that
if all members of D get the value 1 and all members of D \ D get the value 0,
then ϕ gets the value 1). Given a node in F labeled with D, the children of this
node, if any, are labeled with the ⊆-minimal members E of D such that D ⊂ E
and the truth value of ϕ as given by E differs from the truth value of ϕ as given
by D. With our example, F consists of a unique labeled tree, namely:

∅

{p}

{p, s}

{p, q, r, s}

{q, r} {q, s}

{p, q, s}

{p, q, r, s}

Clearly, since the height of this labeled tree is equal to 3, the strategy sketched
above will produce less than 4 mind changes, and no strategy could do better.
Set ϕ3 =

∧
∅, ϕ2 =

∧
{p} ∨

∧
{q, r} ∨

∧
{q, s}, ϕ1 =

∧
{p, s} ∨

∧
{p, q, s}, and

ϕ0 =
∧
{p, q, r, s}. Then ϕ is also logically equivalent to

∨
i∈{1,3}(ϕi∧

∧
j<i ∼ϕj).

Since all members of D are in Σ1[D] normal form, the previous expression will
turn out to be in Σ1,4[D] normal form.

More generally, let X ⊆ LV
ω1ω, ϕ ∈ LV

ω1ω, and a nonnull ordinal α be given.
For all β ∈ Ord \ {0}, we say that ϕ is in Πα,β [X] normal form iff ∼ϕ is in
Σα,β [X] normal form. We say that ϕ is in Σα,1[X] normal form iff ϕ is in Σα[X]

418 E. Martin and A. Sharma

normal form. Given an ordinal β greater than 1, we say that ϕ is in Σα,β [X]
normal form iff there exists a nonnull ordinal γ < β such that ϕ is in Σα,γ [X]
or Πα,γ [X] normal form, or there exists a sequence (ϕγ)γ<β of closed infinitary
formulas that are in Σα[X] normal form such that

ϕ =
∨
γ∈I

(ϕγ ∧
∧

γ′<γ

∼ϕγ′),

where I is the set of all γ < β whose parity is opposite to the parity of β. We
say that ϕ is in double normal form over X if ϕ is in Σα,β [X] or Πα,β [X] normal
form for some nonnull ordinals α, β.

3 Relationships Between Learning and Topology

3.1 Learning in a Logical Setting

Let a class X be given. The class of finite sequences of members of X, including
the empty sequence (), is represented by X�. Given two sets X,Y , a partial
function f from X into Y , and x, x′ ∈ X, we write f(x) = f(x′) when both f(x)
and f(x′) are defined and equal; we write f(x) �= f(x′) otherwise.

We denote by W a set of structures2 and by D a set of sentences, referred
to as possible data. Given T ⊆ L, ModW(T) represents the set of models of
T in W. We put P = (V,W,L,D), to represent the (logical) paradigm under
investigation.

A structure M is said to be Henkin iff M’s individuals are the nonempty sets
of closed terms that they interpret; it is said to be Herbrand iff M is Henkin and
M’s individuals are singletons; and it is said to be standard if either V contains
equality and M is Henkin, or V is equality-free and M is Herbrand. We will need
the easy but fundamental result that follows.

Lemma 3. Suppose that V contains infinitely many constants and W is the set
of all standard structures over V. Every consistent theory in which infinitely
many constants in V do not occur is consistent in W.

Given a structure M, the D-diagram of M, denoted DiagD(M), is the set of all
members of D that are true in M.

A classifier is presented with an enumeration of DiagD(M) (plus possibly)
for some possible world M. The aim is to discover in the limit whether ϕ is true
in all possible worlds whose D-diagram agrees with the D-diagram of M. This
corresponds to discovering in the limit whether ϕ is a generalized logical conse-
quence of DiagD(M), this notion being defined in the next couple of definitions.

Definition 4. Given a theory T , a D-minimal model of T in W is a structure M
such that M ∈ ModW(T) and for all N ∈ ModW(T), DiagD(N) �⊂ DiagD(M).

2 The requirement that W cannot be a proper class is mainly due to the fact that we
need to consider a topology over W; this results in no loss in generality.

On a Syntactic Characterization of Classification 419

Definition 5. Given a theory T , a sentence ϕ is a logical consequence of T in
P, written T |=D

W ϕ, iff every D-minimal model of T in W is a model of ϕ.

Suppose for instance that V contains a unary predicate symbol P , a constant
0, and a unary function symbol s. Given n ∈ N, we write n to represent the
term obtained from 0 by n applications of s. Take for W the set of all Herbrand
structures. Put D = {P (n) : n ∈ N} and ϕ = P (0)∧∀x(P (x) ↔ ¬P (s(x))). Then
for all M ∈ W, DiagD(M) |=D

W ϕ iff for all n ∈ N, P (n) is true in M just in case
n is even. The task of the classification scenario is then to determine whether the
extension of P in the underlying possible world represents 2N. This is a case of
classification from positive data only. Putting D = {P (n),¬P (n) : n ∈ N} would
formalize a classification scenario where data are both positive and negative.

When P captures a learning paradigm, the D-diagrams of the members of W

are the only theories that are legitimate starting points for logical investigation:

Definition 6. We denote {DiagD(M) : M ∈ W} by B, and refer to a member
of B as a possible knowledge base.

Moreover, most classification paradigms satisfy the following notion (if not the
stronger condition that distinct members of W have different D-diagrams):

Definition 7. Given a possible knowledge base T and a sentence ϕ, we say that
T D-minimally decides ϕ in W iff either T |=D

W ϕ or T |=D
W ∼ϕ.

We use environment to refer to an enumeration of a possible knowledge base:

Definition 8. Given a member T of B, an environment for T is any member e
of (D ∪ { })N such that for all ϕ ∈ D, ϕ occurs in e iff ϕ belongs to T .

Given σ ∈ (D ∪ { })�, denote by cnt(σ) the set of members of D that occur in
σ. The concepts of classifier and classification, possibly with a bounded number
of mind changes, are defined next, the latter using the following notion.

Definition 9. We say that a member σ of (L ∪ { })� is consistent in W just in
case there exists a possible world M such that M |= cnt(σ).

Definition 10. A classifier is a partial function from (D ∪ { })� into {0, 1}.

Definition 11. Let a sentence ϕ and a classifier f be given.
We say that f positively classifies B in the limit following ϕ (in P) just in

case for all T ∈ B and environments e for T :

– T |=D
W ϕ iff {σ ∈ (D ∪ { })� : σ ⊂ e and f(σ) = 1} is cofinite.

– If {σ ∈ (D ∪ { })� : σ ⊂ e and f(σ) = 0} is cofinite then T |=D
W ¬ϕ.

We say that f negatively classifies B in the limit following ϕ (in P) just in case
for all T ∈ B and environments e for T :

420 E. Martin and A. Sharma

– T |=D
W ¬ϕ iff {σ ∈ (D ∪ { })� : σ ⊂ e and f(σ) = 0} is cofinite.

– If {σ ∈ (D ∪ { })� : σ ⊂ e and f(σ) = 1} is cofinite then T |=D
W ϕ.

We say that f classifies B in the limit following ϕ (in P) just in case f positively
and negatively classifies B in the limit following ϕ.

Note that we only consider classifiability of members of L, which are finite,
not infinitary, closed formulas—infinitary formulas play a technical role only.

Definition 12. Let a nonnull ordinal β, a sentence ϕ, and a classifier f be given.
Let X be the set of all σ ∈ (D ∪ { })� such that σ is consistent in W and f(τ)

is defined for some initial segment τ of σ. We denote by Rf the binary relation
over X such that for all σ, τ ∈ X, Rf (σ, τ) holds iff τ ⊂ σ and f(σ) �= f(τ).

We say that f � positively classifies | negatively classifies | classifies � B with
less than β mind changes following ϕ (in P) just in case the length of Rf is
defined and smaller than or equal to β, and f � positively classifies | negatively
classifies | classifies � B in the limit following ϕ.

For all ordinals β we also say ‘at most β mind changes’ rather than ‘less
than β + 1 mind changes.’ If β is a limit ordinal, then converging after at most
β mind changes can mean either converging after less than β mind changes, or
converging after less than β +1 mind changes. The ‘less than‘ formulation is not
only more precise than the ‘at most’ formulation. It is also naturally related to
the topological notions that we now introduce.

3.2 Topological Definability

Some topological space is closely related to the logical notions previously intro-
duced. It is defined as follows.

Definition 13. We denote by W the topological space over W generated by all
sets of the form ModW(ϕ) where ϕ ranges over D.

We call the sets built from {ModW(ϕ) : ϕ ∈ D} by finite unions and finite
intersections, the Π0 Borel sets of W. Their complements are the Σ0 Borel sets
of W. Let α > 0 be given. The Σα Borel sets of W are built from the Πβ Borel
sets of W, with β < α, by countable unions. Their complements are the Πα Borel
sets of W. A sentence ϕ can represent a Borel subset X of W if it is possible to
obtain X from the generators of W using countable disjunctions and conjunc-
tions, in such a way that the resulting representation of X can be mapped to a
sentence with members of D replacing the generators of the topology, countable
disjunctions replacing countable unions, and countable conjunctions replacing
countable intersections:

Definition 14. Let a sentence ϕ be given.
ϕ is said to be � ΣL

0 | ΠL
0 � Borel in W iff ModW(ϕ) is � Σ0 | Π0 � Borel

in W.
Let a nonnull ordinal α be given. We say that ϕ is � ΣL

α | ΠL
α � Borel in W

iff there exists a set X of sentences each of which is � ΠL
β | ΣL

β � Borel in W for
some β < α such that ϕ and �

∨
X |

∧
X � have the same models in W.

On a Syntactic Characterization of Classification 421

Given an ordinal α, we say that ϕ is ΔL
α Borel in W iff ϕ is both ΣL

α Borel
and ΠL

α Borel in W.

The difference hierarchy introduces a further granularity in the Borel hierar-
chy. More precisely, every nonnull ordinal α determines a difference hierarchy,
built from the Σα and Πα Borel sets of W; this hierarchy consists of sets that are
all Δα+1 Borel in W. We can directly define the notion of a sentence representing
a set of one of the difference hierarchies:

Definition 15. Let a nonnull ordinal α and a sentence ϕ be given.
We say that ϕ is � ΣL

α,1 | ΠL
α,1 � Borel in W iff ϕ is � ΣL

α | ΠL
α � Borel in W.

Given β ∈ Ord greater than 1, we say that ϕ is � ΣL
α,β | ΠL

α,β � Borel in W

iff there exists two families (ψi)i∈N and (ϕi)i∈N of sentences and a family (βi)i∈N

of nonnull ordinals smaller than β such that the following holds.

– For all i ∈ N, ψi is � ΣL
α | ΠL

α � Borel in W.
– For all i ∈ N, ϕi is � ΠL

α,βi
| ΣL

α,βi
� Borel in W.

– For all i, j ∈ N, ψi ∧ ψj |=W ϕi ↔ ϕj .
– ϕ and �

∨
i∈N

(ψi ∧ ϕi) |
∧

i∈N
(ψi ∨ ϕi) � have the same models in W.

Given a nonnull ordinal β, we say that ϕ is ΔL
α,β Borel in W iff ϕ is ΣL

α,β Borel
and ΠL

α,β Borel in W.
We say that ϕ is L-Borel in W on level α iff ϕ is ΣL

α,β Borel in W for some
nonnull ordinal β.

The next proposition shows that an alternative notion of topological defin-
ability can be proposed, that follows closely the classical definition of the differ-
ence hierarchies. Since the proofs of the our main results are based directly on
Definition 15, we prefer Definition 15 to Proposition 16 for a primitive expres-
sion of the notion involved. Note that the concept expressed in Definition 15 is
inductive, whereas the property expressed in Proposition 16 is not.

Proposition 16. For all nonnull α, β ∈ Ord and ϕ ∈ L, ϕ is ΣL
α,β Borel in W

iff there exists a ⊆-increasing sequence (Yγ)γ<β of sets of sentences that are ΣL
α

Borel in W such that for all M ∈ W, M |= ϕ iff M |=
∨

γ<β

∨
Yγ and the parity

of the least γ < β such that M |=
∨

Yγ is opposite to the parity of β.

We will need the next technical results.

Property 17. Let two families (ψi)i∈N and (ϕi)i∈N of sentences be such that
for all i, j ∈ N, ψi ∧ ψj |=W ϕi ↔ ϕj. Let ϕ be a sentence that has the same
models in W as

∨
i∈N

(ψi ∧ϕi). Then for all i ∈ N, |=W (ψi ∧∼ϕ) ↔ (ψi ∧∼ϕi).

Lemma 18. Let C be an infinite set of constants. Assume that:

– V includes C;
– some subset of L

V\C
ωω is a generator of D;

422 E. Martin and A. Sharma

– W is the set of standard models of a subset of L
V\C
ωω .

Let nonnull ordinals α, β and a sentence ϕ be such that ϕ is � ΣL
α,β | ΠL

α,β | ΔL
α,β �

Borel in W. Then for all constants c in C and for all closed terms t, ϕ[t/c] is
� ΣL

α,β | ΠL
α,β | ΔL

α,β � Borel in W.

Proposition 19. Let nonnull ordinals α, β, a sentence ϕ, and two families
(ψi)i∈N and (ϕi)i∈N of sentences be such that the following holds.

– For all i ∈ N, ψi is � ΣL
α | ΠL

α � Borel in W.
– For all i ∈ N, ϕi is � ΣL

α,β | ΠL
α,β � Borel in W.

– For all i, j ∈ N, ψi ∧ ψj |=W ϕi ↔ ϕj.
– ModW(ϕ) is equal to � ModW(

∨
i∈N

(ψi ∧ ϕi)) | ModW(
∧

i∈N
(ψi ∨ ϕi)) �.

Then ϕ is � ΣL
α,β | ΠL

α,β � Borel in W.

Proof. Choose two families (ψi,j)i,j∈N and (ϕi,j)i,j∈N of sentences and a family
(βi,j)i,j∈N of nonnull ordinals smaller than β such that the following holds.

i. For all i, j ∈ N, ψi,j is ΣL
α Borel in W and ϕi,j is ΠL

α,βi,j
Borel in W.

ii. For all i, j, k ∈ N, ψi,j ∧ ψi,k |=W ϕi,j ↔ ϕi,k.
iii. For all i ∈ N, |=W ϕi ↔

∨
j∈N

(ψi,j ∧ ϕi,j).

Let i, i′, j, j′ ∈ N be given, and let M be a model of ψi ∧ ψi,j ∧ ψi′ ∧ ψi′,j′ ∧ ϕi,j

in W. Using ii, iii and the second clause in the statement of the proposition, it
is immediately verified that M |= ψi,j ∧ϕi,j , hence M |= ϕi, hence M is a model
of ψi ∧ ψi′ ∧ ϕi, hence M |= ϕi′ , hence M |= ψi′,k ∧ ϕi′,k for some k ∈ N, hence
M |= ψi′,j′ ∧ ψi′,k ∧ ϕi′,k for some k ∈ N, hence M |= ϕi′,j′ . We infer that:

iv. for all i, i′, j, j′ ∈ N, ψi ∧ ψi,j ∧ ψi′ ∧ ψi′,j′ |=W ϕi,j ↔ ϕi′,j′ .

Moreover, iii and the third clause in the statement of the proposition imply that:

v. |=W ϕ ↔
∨

i,j∈N
(ψi ∧ ψi,j ∧ ϕi,j).

From iv, v and i, together with the first clause in the statement of the proposition,
we conclude that ϕ is ΣL

α,β Borel in W, as wanted.

We use of the topological notions when they are technically more convenient,
but thanks to the proposition below, it is possible to restate the results in the
next sections in terms of classifiability with a bounded number of mind changes:

Proposition 20. Let a sentence ϕ be D-minimally decided in W by every pos-
sible knowledge base. For all nonnull ordinals β, the following are equivalent.

– ϕ is � ΣL
1,β | ΠL

1,β | ΔL
1,β � Borel in W.

– B is � positively classifiable | negatively classifiable | classifiable � with less
than β mind changes following ϕ.

On a Syntactic Characterization of Classification 423

Example 21. Suppose that V = {=, 0, s, R} where R is a binary predicate
symbol. Let W be the set of Herbrand structures where R is interpreted as a
total ordering. Let D be equal to the set of atomic sentences. Set

ϕ = ∃x∃y(x �= y ∧R(x, y) ∧ ∀z(x = z ∨R(y, z))).

So ϕ expresses that the ordering has a first and a second element. It is easily
verified that B is positively classifiable in the limit following ϕ, but not with any
mind change bound. Let M ∈ W have a first element, namely 4, and a second
element, namely 2. So ϕ is a logical consequence of DiagD(M) in P. Then

χ = ¬R(0, 2) ∧ ¬R(1, 2) ∧ ¬R(3, 2) ∧ ∀x¬R(s(s(s(s(s(x))))), 2)

is ΠL
1 Borel in W.

Note that for all T ∈ B, if {R(4, 2)} ⊆ T and T |=D
W χ then T |=D

W ϕ.

4 Relationships Between Syntax and Topology

4.1 Syntactic Complexity

Having the concepts of simple and double normal form, it is then easy to define
a notion of syntactic complexity, that takes into account the set W of possible
worlds and a set X that will be related to the set D of possible data. More
precisely, let two nonnull ordinals α, β, a set X of (not necessarily closed) for-
mulas, and a sentence ϕ be given. We say that ϕ is � ΣL

α,β [X] | ΠL
α,β [X] �

in W iff ModW(ϕ) is equal to the set of models in W of a sentence which is
in � Σα,β [X] | Πα,β [X] � normal form. We say that ϕ is ΔL

α,β [X] in W iff ϕ

is both ΣL
α,β [X] and ΠL

α,β [X] in W. If X is the set of literals, then we say
� ΣL

α,β | ΠL
α,β | ΔL

α,β � in W for � ΣL
α,β [X] | ΠL

α,β [X] | ΔL
α,β [X] � in W. Note that

in case W contains an isomorphic copy of any countable structure, a sentence is
� ΣL

α,1 | ΠL
α,1 | ΔL

α,1 � in W iff it is � Σα | Πα | Δα � in the usual sense.

4.2 From Syntactic to Topological Complexity

It is easy to verify that the topological complexity of a sentence is bounded by
its syntactic complexity.

Proposition 22. Suppose that all members of W are standard. Let X be a set
formulas that subsumes D. For all nonnull ordinals α, β, all sentences that are
� ΣL

α,β [X] | ΠL
α,β [X] | ΔL

α,β [X] � in W, are � ΣL
α,β | ΠL

α,β | ΔL
α,β � Borel in W.

Proof. The case where β = 1 is easy, and the case where β > 1 is easily proved
by induction using Proposition 16.

Corollary 23. Suppose that W is a set of standard structures, and D contains
all literals. For all α, β ∈ Ord\{0}, all sentences that are � ΣL

α,β | ΠL
α,β | ΔL

α,β �

in W, are � ΣL
α,β | ΠL

α,β | ΔL
α,β � Borel in W.

424 E. Martin and A. Sharma

4.3 From Topological to Syntactic Complexity

We have examined the easy direction of the relationship between syntactic and
topological complexity. The other direction is more involved, and requires specific
but natural assumptions on the vocabulary, the set of possible worlds, and the
set of possible data. These assumptions will be used in Propositions 24 and 25,
Corollary 26, and Proposition 27; we will discuss their intuitive meaning at the
end of the section. We first state a result that deals with the Borel hierarchy,
before we state and prove the corresponding result for the difference hierarchies.

Proposition 24. Let C be an infinite set of constants. Assume that:

– V includes C;
– some subset X of L

V\C
ωω is a generator of D;

– W is the set of standard models of a subset of L
V\C
ωω .

Then every sentence that is L-Borel in W, is ΣL
n Borel in W for some n ∈ N.

Moreover, for all n ∈ N and sentences ϕ, ϕ is � ΣL
n | ΠL

n | ΔL
n � Borel in W

iff ϕ is � ΣL
n [X] | ΠL

n [X] | ΔL
n [X] � in W.

In the proof of the next proposition, ∀ϕ and ∃ϕ denote the universal and the
existential closure of ϕ, respectively.

Proposition 25. Let C be an infinite set of constants. Assume that:

– V includes C;
– some subset X of L

V\C
ωω is a generator of D;

– W is the set of standard models of a subset of L
V\C
ωω .

For all nonnull n ∈ N and sentences ϕ, if ϕ is L-Borel in W on level n, then
ϕ is ΣL

n,m Borel in W for some nonnull m ∈ N.
Moreover, for all nonnull n,m ∈ N and ϕ ∈ L, ϕ is � ΣL

n,m | ΠL
n,m | ΔL

n,m �
Borel in W iff ϕ is � Σn,m[X] | Πn,m[X] | Δn,m[X] � in W.

Proof. Let B ⊆ L
V\C
ωω be such that W is the set of standard models of B. Given

a formula ψ, denote by ψ̂ a formula of the form ψ[x1/c1, . . . , xk/ck] where k ∈ N

is the number of members of C that occur in ψ but not in ϕ, c1, . . . , ck is an
enumeration of the members of C that occur in ψ but not in ϕ, and x1, . . . , xk

are distinct variables that do not occur in ψ (note that c1, . . . , ck do not occur
in B). Given a set X of formulas, set X̂ = {ψ̂ : ψ ∈ X}. Let a nonnull n ∈ N be
given. We first show the following.

(∗) Let an ordinal β greater than 1, a sentence ϕ, a sequence (βi)i∈N of
nonnull ordinals smaller than β, and two families (ψi)i∈N and (ϕi)i∈N of
sentences be such that the following holds.
– For all i ∈ N, ψi is ΣL

n Borel and ϕi is ΠL
n,βi

Borel in W.
– For all i, j ∈ N, ψi ∧ ψj |=W ϕi ↔ ϕj .
– |=W ϕ ↔

∨
i∈N

ψi ∧ ϕi.
Then B |= ϕ ↔ (∃

∨
i≤r ψ̂i ∧ ϕ) for some r ∈ N.

On a Syntactic Characterization of Classification 425

Clearly, |=W ϕ ↔
∨

i∈N
(ψi ∧ ϕ). Set Y = {ψi : i ∈ N}. Let a finite subset D

of Y be given. To prove (∗), it suffices to show that B |= ϕ → (∃
∨

D̂ ∧ ϕ)
for some finite subset D of Y . Suppose otherwise for a contradiction. Then
B ∪ {ϕ,∀∼

∨
D̂} is consistent for all finite D ⊆ Y . By compactness, we infer

that B ∪ {ϕ} ∪ {∀∼ψ̂ : ψ ∈ Y } is consistent. Using Lemma 3, it follows that
{ϕ} ∪ {∀∼ψ̂ : ψ ∈ Y } is consistent in W. But this is in contradiction with the
fact that |=W ϕ →

∨
Y . This completes the proof of (∗), which implies that for

all sentences ϕ, if ϕ is ΣL
n,ω Borel in W, then ϕ is ΣL

n,m Borel in W for some
nonnull m ∈ N. We immediately derive that every sentence that is L-Borel in
W on level n, is ΣL

n,m Borel in W for some nonnull m ∈ N.
Let a nonnull n ∈ N be given. To complete the proof of the proposition, it

suffices to show that the following holds for all nonnull m ∈ N.

(∗∗) A sentence ϕ is ΣL
n,m Borel in W iff there exists a sentence ψ such

that B |= ϕ ↔ ψ and ψ is in Σn,m[X] normal form.

The case m = 1 is trivial by the choice of X. Let a nonnull m ∈ N be given,
and suppose that (∗∗) has been proved for m. Let a sentence ϕ be given. If there
exists a sentence ψ such that B |= ϕ ↔ ψ and ψ is in Σn,m+1[X] normal form,
then Proposition 22 implies that ϕ is ΣL

n,m+1 Borel in W. Conversely, suppose
that ϕ is ΣL

n,m+1 Borel in W. Let two families (ψi)i∈N and (ϕi)i∈N of sentences
be such that for all i ∈ N, ψi is ΣL

n Borel in W and ϕi is ΠL
n,m Borel in W, for

all i, j ∈ N, ψi ∧ψj |=W ϕi ↔ ϕj , and |=W ϕ ↔
∨

i∈N
(ψi ∧ϕi). By (∗), let r ∈ N

be such that B |= ϕ ↔ (∃
∨

i≤r ψ̂i ∧ ϕ). Then:

(†) B |= ϕ ↔ (∃
∨
i≤r

ψ̂i ∧ ∼(∃
∨
i≤r

ψ̂i ∧ ∼ϕ)).

Let Z be the set of closed instances of ψ̂i, where i ranges over {1, . . . , r}. Then
|=W (∃

∨
i≤r ψ̂i) ↔

∨
Z, and we infer from Lemma 18 applied to α = 1 that

∃
∨

i≤r ψ̂i is ΣL
n Borel in W. We now show that ∃

∨
i≤r ψ̂i ∧∼ϕ is ΣL

n,m Borel in
W. Obviously:

(‡) |=W (∃
∨
i≤r

ψ̂i ∧ ∼ϕ) ↔
∨

{ψ ∧ (ψ ∧ ∼ϕ) : ψ ∈ Z}).

For all i ∈ N, ψi∧∼ϕi is clearly ΣL
n,m Borel in W, and we derive from Property 17

that ψi ∧∼ϕ is ΣL
n,m Borel in W. Together with Lemma 18, this implies that for

all ψ ∈ Z, ψ∧∼ϕ is ΣL
n,m Borel in W. From this, (‡) and Proposition 19, we infer

that ∃
∨

i≤r ψ̂i ∧∼ϕ is ΣL
n,m Borel in W. By inductive hypothesis, we can choose

p ≤ m and a sequence (ϕq)q<p of members of X such that B ∪{∃
∨

i≤r ψ̂i ∧∼ϕ}
has the same models as B ∪ {

∨
q∈I(ϕq ∧

∧
q′<q ∼ϕq′)}, where I is the set of all

q < p whose parity is opposite to the parity of p. Then the class of models of
B ∪ {∃

∨
i≤r ψ̂i ∧ ∼ψ} is the class of models in Mod(B) of

(∃
∨
i≤r

ψ̂i ∧
∧
q≤p

∼ϕq) ∧
∨
q∈J

(ϕq ∧
∧

q′<q

∼ϕq′)

426 E. Martin and A. Sharma

where J is the set of all q < p whose parity is equal to the parity of p. This implies
immediately that the models of ∃

∨
i≤r ψ̂i ∧ ∼ψ in Mod(B) are the models in

Mod(B) of some sentence which is in Σn,m+1[X] normal form. We conclude with
(†) that Mod(B∪{ϕ}) is equal to the class of models in Mod(B) of some sentence
that is in Σn,m+1[X] normal form. This completes the proof of (∗∗), hence of
the proposition.

Corollary 26. Let C be an infinite set of constants. Assume that:

– V includes C;
– D is the set of closed literals;
– W is the set of standard models of a subset of L

V\C
ωω .

Then for all nonnull n,m ∈ N and sentences ϕ, ϕ is � ΣL
n,m | ΠL

n,m | ΔL
n,m �

Borel in W iff ϕ is � ΣL
n,m | ΠL

n,m | ΔL
n,m � in W.

In the statements of Proposition 25 and Corollary 26, the members of C
should be thought of as an infinite reserve of arbitrary names for arbitrary objects
in the underlying world. The class of possible worlds is axiomatized: it is the
class of standard models of some background knowledge that does not mention
any of the arbitrary names (any of the member of C). In the statement of
Proposition 25, the set of possible data can be thought of as a set of properties
such that if a property applied to an object having an arbitrary name can be
provided as evidence, then the same property applied to any object should also
be provided as evidence.

4.4 Computable Classification

Proposition 25, together with Proposition 20, does not only provide a syntactic
characterization of classifiability with a bounded number of mind changes, for a
large and natural class of logical paradigms. With Lemma 3, it also proves the
existence of a universal computable classifier:

Proposition 27. Let C be an infinite set of constants. Assume that:

– V includes C;
– some r.e. subset X of L

V\C
ωω is a generator of D;

– W is the set of standard models of an r.e. subset of L
V\C
ωω ;

– all possible knowledge bases D-minimally decide all sentences in W.

Then there exists a partial recursive function F from N × L × (D ∪ { })� into
{0, 1} such that for all n ∈ N and ϕ ∈ L, F (n, ϕ, ·) is a classifier that � positively
classifies | negatively classifies | classifies � B with at most n mind changes
following ϕ iff B is � positively classifiable | negatively classifiable | classifiable �
B with at most n mind changes following ϕ.

Proof. By Lemma 3, for all sentences ψ, ψ ∈ ModW(B) iff B |= ψ, hence
ModW(B) is recursively enumerable. Hence there exists an effective procedure H

On a Syntactic Characterization of Classification 427

that outputs, for all n ∈ N and ϕ ∈ L, a sentence ψ such that ψ is in Σ1,n[X]
normal form and ϕ ↔ ψ ∈ ModW(B) if such a sentence exists, or equivalently,
if B is positively classifiable with at most n mind changes following ϕ. More-
over, it is easily verified that there exists a partial recursive function G from
L× (D ∪ { })� into {0, 1} such that for all ψ ∈ L, if ψ is in Σ1,1[X] normal form
then G(ψ, ·) positively classifies B with no mind change following ψ. Using H
and G, it is then easily verified that there exists a partial recursive function F
from N × L × (D ∪ { })� into {0, 1} that satisfies the claim of the proposition,
together with the following property. Let a possible knowledge base T , a sen-
tence ϕ, and an n ∈ N be such that T |=D

W ϕ and B is positively classifiable
with at most n mind changes following ϕ. Then there exists a sentence ψ in
Σ1,n[X] normal form such that ϕ ↔ ψ ∈ ModW(B). Moreover, in response to
longer and longer initial segments from e, F (n, ϕ, ·) generates more and more of
the sentences in Σ1,1[X] normal form from which ψ is built, assumes that the
other sentences χ in Σ1,1[X] normal form from which ψ is built are such that
T |=D

W ¬χ, and based on that assumption, determines whether T |=D
W ψ. The

answer is correct iin the limit, after at most n mind changes.

5 Conclusion

Conjunctive and disjunctive normal forms are natural canonical representations
of concepts. Still they are not directly related to the notion of mind change
bound in classification scenarios in a logical setting. We have shown that another
normal form could provide a notion of syntactic complexity that, under general
and interesting assumptions, turns out to characterize the least upper bound on
the number of mind changes necessary for successful classification. A consequence
of this result is that if classification is possible, then computable classification is
also possible.

References

1. A. Ambainis, R. Freivalds and C. Smith: Inductive Inference with Procrastination:
Back to Definitions. Fundamenta Informaticae. 40 pp. 1–16 (1999)

2. A. Ambainis, S. Jain and A. Sharma: Ordinal mind change complexity of language
identification. Theoretical Computer Science. 220(2) pp. 323–343 (1999)

3. R. Freivalds and C. Smith: On the role of procrastination for machine learning.
Inform. Comput. 107(2) pp. 237–271 (1993)

4. W. Gasarch, M. Pleszkoch, F. Stephan and M. Velauthapillai: Classification using
information. Annals of Mathematics and Artificial Intelligence. Selected papers
from ALT 1994 and AII 1994, vol. 23, pp. 147–168 (1998)

5. S. Jain, D. Osherson, J. Royer and A. Sharma: Systems that learn: An Introduction
to Learning Theory, Second Edition. The MIT Press (1999)

6. A. Kechris: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156,
Springer Verlag (1994)

7. E. Martin and D. Osherson: Elements of Scientific Inquiry. The MIT Press (1998)

428 E. Martin and A. Sharma

8. E. Martin, A. Sharma and F. Stephan: Unifying Logic, Topology and Learning in
Parametric Logic. Theoretical Computer Science, special issue for ALT 2002, to
appear.

9. D. Osherson, M. Stob and S. Weinstein: A universal inductive inference machine.
Journal of Symbolic Logic, vol. 56(2), pp. 661–672 (1991)

10. F. Stephan: On one-sided versus two-sided classification. Archive for Mathematical
Logic, vol. 40, pp. 489–513 (2001)

Ellipsoid Approximation Using Random Vectors

S. Mendelson1 and A. Pajor2

1 Centre for Mathematics and its Applications, The Australian National University,
Canberra, ACT 0200, Australia
shahar.mendelson@anu.edu.au

2 Equipe d’Analyse et Mathématiques Appliquées, Université de Marne-la-Vallée, 5,
boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée Cedex 2, France

pajor@math.univ-mlv.fr

Abstract. We analyze the behavior of a random matrix with indepen-
dent rows, each distributed according to the same probability measure
on Rn or on �2. We investigate the spectrum of such a matrix and the
way the ellipsoid generated by it approximates the covariance structure
of the underlying measure. As an application, we provide estimates on
the deviation of the spectrum of Gram matrices from the spectrum of
the integral operator.

1 Introduction

Our objective is to explore the behavior of random vectors in Rn (resp. �2),
particularly in the context of kernel methods and kernel Principal component
analysis. To be more exact, let us formulate the two questions that motivated
this study (though are not necessarily the main focus here).

Question 1. Let (Ω,μ) be a probability space and let K : Ω × Ω → R be a
positive definite kernel. Set TK : L2(μ) → L2(μ) to be the integral operator
associated with K and μ, given by

(TKf)(t) =
∫

K(s, t)f(s)dμ(s).

Let t1, ..., tN be independent random variables distributed according to μ, and let
T̂ =

(
1
N K(ti, tj)

)N

i,j=1
be the corresponding Gram matrix. Does the spectrum of

T̂ converge (in an appropriate sense) to the spectrum of TK?

Question 1 was studied by Koltchinskii and Giné [8] for a very wide range of
kernels. They showed, among other things, that if K is a finite dimensional
kernel, then the spectrum of T̂ converges to that of T in an appropriate sense
as N tends to infinity, and obtained estimates on the rate of convergence, which
we improve here. Let us mention that most of the effort in [8] was devoted to
the study of kernels which are not trace class (that is, EK(t, t) = ∞), for which
additional arguments are required, and our results do not cover that situation.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 429–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 S. Mendelson and A. Pajor

The second question is connected to kernel PCA [11, 4]. Let X be a random
vector in �2 (that is, a function from the probability space (Ω,μ) to �2), and let
X1, ...,XN be independent copies of X. Set {e1, ..., eN} to be the standard unit
basis in the N -dimensional Euclidean space �N

2 and put K to be the image of
the N -dimensional Euclidean ball, BN

2 , by the random operator Γ : �N
2 → �2

defined by Γei = Xi.
For d ≤ N , let ad = inf {supx∈K d(x,E) : E ⊂ �2, dim(E) = d}, that is, ad

is the best degree of approximation by which a d-dimensional subspace approx-
imates the random ellipsoid K.

Question 2. Let Ed be the best approximating d-dimensional subspace as above.
What estimates can one provide on the random variable d(Ed, XN+1)?

In other words, the question is how close XN+1 is to the d-dimensional sub-
space that best approximates ΓBN

2 . Although we do not tackle this problem
directly here, we present a method of attack which should be explored further,
as explained below.

It turns out that both these questions are connected to the structure of
random ellipsoids. Indeed, if X(t) is a random vector in �2, it can be used to
define a new Euclidean structure on its span, given by

‖v‖2 = E |〈X, v〉|2 . (1.1)

Since this norm is given by the inner product [u, v] = E 〈X,u〉 〈X, v〉, its unit
ball is an ellipsoid (usually called the Binet ellipsoid) and is denoted by EB .

As an example, consider the integral operator TK . Under mild assumptions
on K and Ω, by Mercer’s Theorem, there is an orthonormal basis of L2, denoted
by (φi)∞i=1, such that K(s, t) =

∑∞
i=1 λiφi(s)φi(t) almost surely, where (λi)∞i=1

are the eigenvalues of the integral operator TK arranged in a non-increasing
order (in fact, for our needs it is enough that the convergence is in the L2 sense
rather than almost surely, for which it suffices that K is a positive definite,
square integrable kernel, and we will make these assumptions on K throughout
this note). Let X(t) =

∑∞
i=1

√
λiφi(t)φi ∈ �2 (here we identify L2(μ) with �2

and (φi) with the standard basis in �2), and consider the ellipsoid

E =

{
v ∈ �2 :

∞∑
i=1

〈v, φi〉2

λi
≤ 1

}
.

Hence, E is an ellipsoid with principal directions φi and the “principal lengths”
are

√
λi. We define the polar body of E by

E◦ = {y ∈ �2 : ∀x ∈ E | 〈x, y〉 | ≤ 1} .

Let us mention that the polar of a unit ball of some finite dimensional normed
space X is the unit ball of the dual space X∗. Hence, in this case E◦ is simply
the unit ball of dual norm to the one defined by E . Indeed, it is easy to verify
that E◦ is an ellipsoid, and with respect to the norm ‖ ‖E◦ , for which E◦ is its
unit ball,

Ellipsoid Approximation Using Random Vectors 431

‖v‖2
E◦ =

∞∑
i=1

λi 〈v, φi〉2 = E| 〈X(t), v〉 |2.

Thus, the Binet ellipsoid associated with X(t) is the polar body of the ellipsoid E .
In general, we define the ellipsoid E as the polar of EB . Both these ellipsoids

are generated according to the covariance structure endowed by the random
vector X.

Let X1, ...,XN be independent copies of X, set ΓN : �N
2 → �2 to be the

random operator defined by ΓNei = 1√
N

Xi and denote Ê = ΓNBN
2 . There are

three natural questions that one can ask regarding various approximations of E
using Ê .

1. How close are the lengths of the principal directions of Ê to those of E?
2. Is Ê close to being a section of E? (in other words, if E = span{X1, ...,XN},

is Ê close to E ∩ E?
3. How close is Ê to E ∩ WN , where WN is the subspace of �2 spanned by the

N largest principal directions of E?

Observe that understanding these questions would lead to answers to Question
1 and Question 2. Indeed, if X(t) =

∑∞
i=1

√
λiφi(t)φi is generated by the kernel

K, then the lengths of the principal directions of Ê are the square roots of the
eigenvalues of the matrix Γ ∗

NΓN , which is the Gram matrix
(

1
N K(ti, tj)

)N

i,j=1
.

On the other hand, the principal lengths of E are (
√

λi)∞i=1. And thus, (1) for
this specific choice of the random vector X(t) is simply Question 1.

Next, suppose that the answer to (3) is affirmative, and the random ellipsoid Ê
approximates the section of E generated by the first N principal directions. Thus,
the best d-dimensional approximating subspace is close to the space spanned by
the first d principal directions of E , implying that d(Ed, XN+1) ≈ d(Wd, XN+1)
which can be easily estimated.

It turns out that the degree of difficulty of (1)-(3) is increasing. Roughly
speaking, (1) deals with the fact that Ê is an ellipsoid which is close to a “ro-
tation” of E ∩ WN , as the principal lengths of Ê are close to the N largest of
E . On the other hand, (2) identifies Ê as being close to a section of E , and de-
pends on approximating both the principal lengths and the principal directions.
Intuitively, (3) follows from a combination of (1) and (2) (under some mild as-
sumptions on E); if Ê is almost a section of E and has the same principal lengths
as the first N largest of E , it must be close to E ∩WN .

Here, we will only investigate (2) and (3) when X is a vector in Rn and
N > n. In this case we will show that Ê is a good approximation of E rather
than of a section of E , and (2) and (3) coincide.

The main stumbling block in the study of the singular values of the random
operator ΓN which maps ei to Xi/

√
N (or, for that matter, the singular values

of the Gram matrix
(

1
N 〈Xi, Xj〉

)N

i,j=1
) is that the random matrix defined by this

operator has dependent entries. One can bypass this problem by considering the
operator ΓΓ ∗ =

∑N
i=1 Xi ⊗Xi (where Xi ⊗Xi is the projection onto the vector

Xi, that is, for any v ∈ �2, (Xi ⊗ Xi)(v) = 〈Xi, v〉Xi). Observe that the N

432 S. Mendelson and A. Pajor

largest eigenvalues of ΓΓ ∗ are the same as the squares of the singular values of
Γ and the advantage is that

∑N
i=1 Xi ⊗ Xi is a sum of independent, identically

distributed, operator-valued variables. One can define the average operator (also
known as the covariance operator) Λ = E(X⊗X) as the operator which satisfies
for any u, v ∈ �2, 〈Λu, v〉 = E 〈(X ⊗X)u, v〉 = E 〈X,u〉 〈X, v〉, and it is stan-
dard to verify that such an operator exists under mild integrability assumptions
on X.

We will investigate the way the random operator 1
N

∑N
i=1 Xi ⊗ Xi deviates

from the average operator Λ with respect to various operator norms. Recall that
for any normed space (E, ‖ ‖E), if Y is a E-valued random variable, the process∥∥∥ 1

N

∑N
i=1(Yi − EY)

∥∥∥
E

is the supremum of an empirical process which is indexed
by the unit ball of the dual space of E. Thus, one can apply standard tools from
empirical processes theory, such as symmetrization inequalities and concentra-
tion results. Let us point out that unlike most situations studied in Learning
Theory, the random vector Y we deal with here need not be bounded; thus the
class of functions defined by the dual unit ball is not uniformly bounded and
Talagrand’s concentration inequality for empirical processes indexed by bounded
classes no longer applies.

Two types of assumptions are often used to compensate for the absence of
an L∞ bound on the class of functions. The first deals with the rate of decay of
the linear forms x∗(Y), and the other is on the rate of decay of the norm ‖Y ‖E .
To formulate these assumptions, let us recall the notion of Orlicz norms.

Definition 1. For a random variable V and α ≥ 1, the ψα norm of V is

‖V ‖ψα
= inf

{
C > 0 ; E exp

(
|V |α
Cα

)
≤ 2

}
.

A standard argument [14] shows that if V has a bounded ψα norm then its tail
decays faster than 2 exp(−uα/‖V ‖α

ψα
). In particular, a ψ2 random variable has

a subgaussian tail and a ψ1 variable has a sub-exponential tail. If one assumes
that the linear forms decay quickly, that is, are bounded with respect to an
appropriate ψα norm, then using the Generic Chaining method [13], it is possible
to upper bound the expectation of the supremum of an empirical process indexed
by the dual unit ball BE∗ , using the metric structure of the space (BE∗ , ψα).
We will not explore this direction here, but rather, formulate without a proof a
relatively standard result which follows from this method.

Theorem 1. For every K > 0 and 0 < δ < 1, there exist a constant c(K, δ)
for which the following holds. Let X be a random vector in �n

2 and let EB be
its Binet ellipsoid, which is assumed to have a full rank. If, for every v ∈ �n

2 ,
‖ 〈X, v〉 ‖ψ2 ≤ K(E| 〈X, v〉 |2)1/2 = K‖v‖EB

, then for any 0 < ε < 1 and N ≥
c(K, δ)n/ε2, with probability at least 1 − δ, every v ∈ Rn satisfies,

(1 − ε)‖v‖EB
≤

(
1
N

N∑
i=1

〈Xi, v〉2
)1/2

≤ (1 + ε)‖v‖EB
. (1.2)

Ellipsoid Approximation Using Random Vectors 433

Theorem 1 gives an equivalence between the ellipsoid Ê◦, which is the polar of
ΓNBN

2 , and the Binet ellipsoid. Unfortunately, such a result has several intrinsic
limitations. First of all, the degree of approximation it provides is possibly too
strong for our goals, in the following sense. Let λ

1/2
1 , ..., λ

1/2
n be the n (nonzero)

singular values of ΓN . Then, for any v ∈ Rn, ‖v‖2
EB

=
∑n

i=1 λiv
2
i , and if many

of the λis are very small, one can have vectors on the �n
2 unit sphere, but with

a small ellipsoid norm. Since Theorem 1 states that EB ⊂ (1 + ε)Ê◦ and Ê◦ ⊂
(1 + ε)EB , its assertion is more restrictive than, say,

EB ⊂ Ê◦ + εBn
2 and Ê◦ ⊂ EB + εBn

2 , (1.3)

where A + B = {a + b : a ∈ A, b ∈ B}. Equation (1.3) implies that each
point in EB can be written as a sum of a point in the random ellipsoid and a
point with a small Euclidean norm and vice-versa, which would suffice in many
applications.

The price one pays for the strong degree of approximation in Theorem 1 is
that the bound holds only when the number of sample points N is of the order
of the dimension n. And, there is no advantage if the singular values of ΓN are
small. This perhaps helps to explain the remark we made - that to see how well
the random ellipsoid approximates the deterministic one is intrinsically more
difficult if one selects this strong sense of approximation, because the fact that
one has many “small” principal directions does not play to ones advantage.

The second problem with this approach is that the ψ2 assumption on the
linear forms 〈X, v〉 is very difficult to check, and is often not even true. In
certain problems in convex geometry one can verify such an assumption, but
in general, it is too much to hope for. Moreover, even in geometric scenarios, a
more realistic assumption is a ψ1 condition rather than a ψ2 condition, which
makes the analysis of the problem much more difficult, and Theorem 1 is no
longer true as stated (see [2, 12, 3] for more details).

The approach we take here is to assume that probability that ‖X‖ is large
decays quickly (though ‖X‖ need not be bounded) rather than the linear forms.
In the context of integral operators, the motivation for this type of assumption
is clear, since ‖X(t)‖2

2 = K(t, t). Thus, one only has to consider the decay
properties of the diagonal of the kernel. To that end, in most of the results we
present, we require the following assumption:

Assumption 1. Let X be a random vector in �n
2 (resp. �2). Assume that

1. There is some ρ > 0 such that for every θ of norm 1,
(
E| 〈X, θ〉 |4

)1/4 ≤ ρ.
2. Set Z = ‖X‖. Then ‖Z‖ψα

< ∞ for some α ≥ 1.

In other words, the assumptions we make are on the fourth moment of linear
forms 〈X, θ〉, and (which is the more important part), on the decay properties
of ‖X‖. The first assumption follows if the second one is verified (and with
essentially the same constant), using a Cauchy-Schwarz inequality and the fact
that the Lp norm is upper bounded by the ψα norm, although in some cases one
can obtain a better estimate on ρ.

434 S. Mendelson and A. Pajor

1.1 Some Preliminaries

To derive tail estimates for
∥∥∥ 1

N

∑N
i=1 Xi ⊗Xi − E(X ⊗X)

∥∥∥
2→2

(where ‖ ‖2→2

is the operator norm from �2 to �2), we shall use a well known symmetrization
theorem [14] that originated in the works of Kahane and Hoffman-Jørgensen.
Recall that a Rademacher random variable is a random variable taking values
±1 with probability 1/2.

Theorem 2. Let Z be a stochastic process indexed by a set F and let N be an
integer. For every i ≤ N , let μi : F → R be arbitrary functions and set (Zi)i≤N

to be independent copies of Z. Under mild topological conditions on F and (μi)
ensuring the measurability of the events below, for any x > 0,

βN (x)Pr

(
sup
f∈F

∣∣∣∣∣
N∑

i=1

Zi(f)

∣∣∣∣∣ > x

)
≤ 2Pr

(
sup
f∈F

∣∣∣∣∣
N∑

i=1

εi (Zi(f) − μi(f))

∣∣∣∣∣ >
x

2

)
,

where (εi)N
i=1 are independent Rademacher random variables and

βN (x) = inf
f∈F

Pr

(∣∣∣∣∣
N∑

i=1

Zi(f)

∣∣∣∣∣ <
x

2

)
.

Observe that in the case of the �2 operator norm, the supremum of an em-
pirical process is taken with respect to U - the set of tensors v ⊗ w, where v
and w are vectors in the unit Euclidean ball, in which case, ‖X ⊗X −Λ‖2→2 =
supU∈U 〈X ⊗X − Λ,U〉. The next corollary follows from a standard estimate on
βN (x), and its proof is omitted.

Corollary 1. Let X be a random vector which satisfies Assumption 1 and let
X1, ...,XN be independent copies of X. Then,

Pr

(∥∥∥∥∥
N∑

i=1

(Xi ⊗Xi − Λ)

∥∥∥∥∥
2→2

> xN

)
≤ 4Pr

(∥∥∥∥∥
N∑

i=1

εiXi ⊗Xi

∥∥∥∥∥
2→2

>
xN

2

)
,

provided that x ≥ c
√

ρ4/N , for some absolute constant c.

Thanks to the symmetrization argument and to the fact that for every em-
pirical process

E sup
f∈F

∣∣∣∣∣
N∑

i=1

(f(Xi) − Ef)

∣∣∣∣∣ ≤ 2EX×ε sup
f∈F

∣∣∣∣∣
N∑

i=1

εif(Xi)

∣∣∣∣∣ ,
it is enough to analyze the way operators of the form

∑N
i=1 εixi ⊗ xi behave for

a fixed set x1, ..., xN in Rn, or more generally, in �2.

Remark 1. Observe that even if xi ∈ �2, in order to compute the operator norm
of

∑N
i=1 εixi⊗xi, it suffices to restrict the operator to the span of x1, ..., xN , and

thus we can assume that xi ∈ �d
2 for d = min{N,n}.

Ellipsoid Approximation Using Random Vectors 435

We will use several operator norms in what follows - all of which are connected
to the singular values of an operator between two Hilbert spaces. The next
definition is presented only in the finite dimensional case, but it has an obvious
infinite dimensional analog.

Definition 2. For 1 ≤ p < ∞, let Cd
p be the space of operators on Rd, endowed

with the norm ‖T‖Cn
p

=
(∑n

i=1 sp
j (T)

)1/p, where sj(T) is the j-th singular value
of T . The space Cd

p is called the p-th Schatten class of Rd.

Note that Cd
2 is the space of operators on Rd with the Hilbert-Schmidt norm.

Also, for p = ∞, Cd
p is the standard �2 operator norm, and it is easy to verify

that for p = log d, ‖T‖2→2 ≤ ‖T‖Cd
p
≤ e‖T‖2→2.

The following inequality plays a central role in our analysis and is due to
Lust-Piquard (see [9] for an exposition of that, and other results of a similar
flavor). The estimate on the constant Bp was established by Rudelson [12].

Theorem 3. There exists an absolute constant C, and for every 2 ≤ p < ∞
there is a constant Bp depending only on p, which satisfies Bp ≤ C

√
p, for

which the following holds. Let y1, ..., yN be operators on Rd, and denote

A = max

⎧⎪⎨⎪⎩
∥∥∥∥∥∥
(

N∑
i=1

y∗i yi

)1/2
∥∥∥∥∥∥

Cd
p

,

∥∥∥∥∥∥
(

N∑
i=1

yiy
∗
i

)1/2
∥∥∥∥∥∥

Cd
p

⎫⎪⎬⎪⎭ .

Then,

A ≤

⎛⎝Eε

∥∥∥∥∥
N∑

i=1

εiyi

∥∥∥∥∥
p

Cd
p

⎞⎠1/p

≤ BpA.

We will use Theorem 3 for yi = xi ⊗ xi, and, as in Remark 1, without loss
of generality, yi ∈ Cd

p , for d = min{n,N}. One can verify that in this case,

A =
∥∥∥∥(∑N

i=1 ‖xi‖2xi ⊗ xi

)1/2
∥∥∥∥

Cd
p

, and thus, for p ≥ 2,

A ≤

⎛⎝E

∥∥∥∥∥
N∑

i=1

εixi ⊗ xi

∥∥∥∥∥
p

Cd
p

⎞⎠1/p

≤ C
√

pA (1.4)

The final preliminary result we require is Lidskii’s inequality, on the dif-
ferences of the sequences of the singular values of symmetric operators. For
an operator T , denote by μ(T) the vector of singular values of T , arranged
in a non-increasing order. Recall that for a vector v ∈ Rd, and 1 ≤ p < ∞,

‖v‖
d
p

=
(∑d

i=1 |vi|p
)1/p

and for p = ∞, ‖v‖∞ = max1≤i≤d |vi| (with obvious
analogs for d = ∞).

Theorem 4. [7] Let A and B be symmetric operators on Rd. Then, for every
1 ≤ p ≤ ∞, ‖μ(A) − μ(B)‖
d

p
≤ ‖μ(A −B)‖
d

p
.

436 S. Mendelson and A. Pajor

The two most interesting cases here are p = 2 and p = ∞. For p = 2 it follows
that the Euclidean distance between the vectors μ(A) and μ(B) is bounded by
the Hilbert-Schmidt norm of A−B. For p = ∞, ‖μ(A)−μ(B)‖
d∞ ≤ ‖A−B‖2→2.

2 Results

Let us begin with two estimates on the singular values of ΓN : �N
2 → �2 defined

by ΓNei = 1√
N

Xi. Clearly, the nonzero eigenvalues of ΓNΓ ∗
N = 1

N

∑N
i=1 Xi⊗Xi,

denoted by λ̂1 ≥ λ̂2 ≥ ..., are the same as the nonzero eigenvalues of the Gram
matrix

(
1
N 〈Xi, Xj〉

)N

i,j=1
. As a notational convention, we will extend the finite

vector (λ̂1, ..., λ̂N) to an infinite one, by adding 0 in the N + 1 component and
beyond. Thus, one can consider the �2 and �∞ norms of the difference λ − λ̂.

Our aim is to compare the eigenvalues of ΓNΓ ∗
N to those of the average

operator E(X ⊗ X) (denoted by λ1 ≥ λ2 ≥ ...) with respect to the two norms.
Since both

∑N
i=1 Xi⊗Xi and E(X⊗X) are symmetric, and as long as E(X⊗X)

is in the appropriate Schatten class, then by Theorem 4 and approximating
E(X ⊗X) by a finite dimensional operator, it follows that

‖λ − λ̂‖∞ = sup
i

∣∣∣λi − λ̂i

∣∣∣ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

Xi ⊗Xi − E(X ⊗X)

∥∥∥∥∥
2→2

,

‖λ − λ̂‖2 =

(∞∑
i=1

|λi − λ̂i|2
)1/2

≤
∥∥∥∥∥ 1
N

N∑
i=1

Xi ⊗Xi − E(X ⊗X)

∥∥∥∥∥
C2

.

The following bounds the expectation of the two norms of 1
N

∑N
i=1 Xi ⊗ Xi −

E(X ⊗X). Its first part is a minor extension to a result due to Rudelson [12].

Theorem 5. There exists an absolute constant C for which the following holds.
Let X be a random vector in �n

2 (resp. �2), set d = min{N,n} put QN =
(E max1≤i≤N ‖Xi‖2)1/2, recall that Λ = E(X ⊗ X) and set T = 1

N

∑N
i=1 Xi ⊗

Xi − Λ. Then,

E ‖T‖2→2 ≤ C max

{
log d

N
Q2

N , min

{
‖Λ‖2→2,

√
log d

N
‖Λ‖1/2

2→2QN

}}
.

Also, if E‖X‖4 < ∞, then, E ‖T‖C2
≤ C√

N

(
E‖X‖4

)1/2
.

Remark 2. It follows from a standard integration argument (see, e.g. [14]) that
if Z is a random variable with a bounded ψα norm, and if Z1, ..., ZN are inde-
pendent copies of Z then∥∥∥∥ max

1≤i≤N
Zi

∥∥∥∥
ψα

≤ C‖Z‖ψα
log1/α N

Ellipsoid Approximation Using Random Vectors 437

for an absolute constant C. Hence, for any integer p,(
E max

1≤i≤N
|Zi|p

)1/p

≤ Cp1/α‖Z‖ψα
log1/α N. (2.1)

In particular, if Z = ‖X‖ has a bounded ψα norm, then one can bound QN using
‖Z‖ψα

.

Proof of Theorem 5. Because the first part of the claim is an easy extension
of a result from [12] we omit its proof. Some of the ideas required are also used
in the proof of Theorem 7, below.

Turning to the second part of the claim, using a symmetrization argument,
Hölder’s inequality and applying Theorem 3 for Yi = Xi ⊗Xi, it follows that

E

∥∥∥∥∥ 1
N

n∑
i=1

Xi ⊗Xi − E(X ⊗X)

∥∥∥∥∥
C2

≤ 1
N

EX

⎛⎝Eε

∥∥∥∥∥
N∑

i=1

εiXi ⊗Xi

∥∥∥∥∥
2

C2

⎞⎠1/2

≤ C

N
EX

⎛⎝∥∥∥∥∥∥
(

N∑
i=1

‖Xi‖2Xi ⊗Xi

)1/2
∥∥∥∥∥∥

C2

⎞⎠ .

Let Ui = ‖Xi‖Xi and set (μ̂i)N
i=1 to be the singular values of the symmetric

operator
∑N

i=1 Ui ⊗ Ui. Since the nonzero singular values of
∑N

i=1 Ui ⊗ Ui are
the same as that of (〈Ui, Uj〉)N

i,j=1, then
∑N

i=1 μ̂i =
∑N

i=1 ‖Ui‖2 =
∑N

i=1 ‖Xi‖4.
Hence, ∥∥∥∥∥∥

(
N∑

i=1

Ui ⊗ Ui

)1/2
∥∥∥∥∥∥

C2

=

(
N∑

i=1

μ̂i

)1/2

=

(
N∑

i=1

‖Xi‖4

)1/2

,

from which the claim follows.

It is possible to obtain estimates (which are probably suboptimal) on higher
moments of

∥∥∥ 1
N

∑N
i=1 Xi ⊗Xi − E(X ⊗X)

∥∥∥
2→2

, and thus establish a deviation

inequality, even when ‖X‖ is not bounded. Of course, if ‖X‖ is a bounded vari-
able, one can apply Talagrand’s concentration inequality for uniformly bounded
empirical processes. To prove the desired deviation inequality in the unbounded
case, one uses a “high moment” analog of the first part of Theorem 5, which
builds on Theorem 3 and on Rudelson’s approach from [12].

Theorem 6. There exists an absolute constant c such that for any integers n
and N , any x1, ..., xN ∈ Rn and any p ≥ 1,(

Eε

∥∥∥∥∥
N∑

i=1

εixi ⊗ xi

∥∥∥∥∥
p

2→2

) 1
p

≤ cmax{
√

log d,
√

p}
∥∥∥∥∥

N∑
i=1

xi ⊗ xi

∥∥∥∥∥
1/2

2→2

max
1≤i≤N

‖xi‖,

where (εi)N
i=1 are independent Rademacher random variables and d=min{N,n}.

438 S. Mendelson and A. Pajor

Note that this moment inequality immediately leads to a ψ2 estimate on the
random variable

∥∥∥∑N
i=1 εixi ⊗ xi

∥∥∥
2→2

.

Corollary 2. There exists an absolute constant c such that for any integers n
and N , any x1, ..., xN ∈ Rn and any t > 0,

Pr

({∥∥∥∥∥
N∑

i=1

εixi ⊗ xi

∥∥∥∥∥
2→2

≥ t

})
≤ 2 exp

(
− t2

Δ2

)
,

where Δ = c
√

log d
∥∥∥∑N

i=1 xi ⊗ xi

∥∥∥1/2

2→2
max1≤i≤N ‖xi‖ and d = min{N,n}.

Let us formulate and prove the desired tail estimate.

Theorem 7. There exists an absolute constant c for which the following holds.
Let X be a random vector in �n

2 (resp. �2) which satisfies Assumption 1 and set
Z = ‖X‖, Λ = E(X ⊗ X) and β = (1 + 2/α)−1. For any integers n and N let
d = min{N,n},

Ad,N = ‖Z‖ψα

√
log d(log N)1/α

√
N

and Bd,N =
ρ2

√
N

+ ‖Λ‖1/2
2→2Ad,N .

Then, for 1 ≤ p < ∞,(
E

∥∥∥∥∥ 1
N

N∑
i=1

(Xi ⊗Xi) − Λ

∥∥∥∥∥
p

2→2

)1/p

≤ cp
1
β max

{
ρ2

√
N

+ ‖Λ‖1/2
2→2Ad,N , A2

d,N

}
,

and thus,(
E

(
sup

i
|λ̂i − λi|

)p)1/p

≤ cp
1
β max

{
ρ2

√
N

+ λ
1/2
1 Ad,N , A2

d,N

}
.

In particular, for any x > 0

Pr

(∥∥∥∥∥
N∑

i=1

(Xi ⊗Xi) − Λ

∥∥∥∥∥
2→2

≥ xN

)
≤ exp

⎛⎝−
(

cx

max{Bd,N , A2
d,N}

)β
⎞⎠ ,

and the same tail estimate holds for supi

∣∣∣λi − λ̂i

∣∣∣.
Proof. Consider the random variables

S =

∥∥∥∥∥ 1
N

N∑
i=1

εiXi ⊗Xi

∥∥∥∥∥
2→2

and V =

∥∥∥∥∥ 1
N

N∑
i=1

(Xi ⊗Xi − Λ)

∥∥∥∥∥
2→2

.

It follows from Corollaries 1 and 2 that for any t ≥ c
√

ρ4/N ,

Pr (V ≥ t) ≤ 4Pr (S ≥ t/2) = 4EXPrε (S ≥ t/2|X1, ...,XN)

≤ 8 EX exp
(
− t2N2

Δ2

)
,

Ellipsoid Approximation Using Random Vectors 439

where Δ = c
√

log d
∥∥∥∑N

i=1 Xi ⊗Xi

∥∥∥1/2

2→2
max1≤i≤N ‖Xi‖ for some absolute con-

stant c. Setting c0 to be the constant from Corollary 1, then by Fubini’s Theorem
and dividing the region of integration to t ≤ c0

√
ρ4/N (in this range one has no

control on Pr(V ≥ t)) and t > c0
√

ρ4/N , it is evident that

EV p =
∫ ∞

0

ptp−1Pr (V ≥ t) dt

≤
∫ c0

√
ρ4/N

0

ptp−1dt + 8 EX

∫ ∞

0

ptp−1 exp
(
− t2N2

Δ2

)
dt

≤
(
c0

√
ρ4/N

)p

+ cppp/2 EX

(
Δ

N

)p

for some new absolute constant c.

The second term is bounded by

cp

(
p log n

N

) p
2

E

⎛⎝∥∥∥∥∥ 1
N

N∑
i=1

Xi ⊗Xi

∥∥∥∥∥
p
2

2→2

max
1≤i≤N

‖Xi‖p

⎞⎠
≤ cp

(
p log n

N

) p
2

E

⎛⎝(∥∥∥∥∥ 1
N

N∑
i=1

Xi ⊗Xi − Λ

∥∥∥∥∥
2→2

+ ‖Λ‖2→2

) p
2

max
1≤i≤N

‖Xi‖p

⎞⎠
≤ cp

(
p log n

N

) p
2

(E (V + ‖Λ‖2→2)
p)

1
2

(
E max

1≤i≤N
‖Xi‖2p

) 1
2

for some new absolute constant c. Hence, setting Z = ‖X‖ and applying As-
sumption 1 and (2.1), we arrive at

(EV p)
1
p ≤ c

ρ2

√
N

+ cp
1
α + 1

2

(
log n

N

) 1
2

(log
1
α N)‖Z‖ψα

(
(EV p)

1
p + ‖Λ‖2→2

) 1
2
,

for some absolute constant c. Set Ad,N =
(

log d
N

) 1
2

(log1/α N)‖Z‖ψα
and β =

(1 + 2/α)−1. Thus,

(EV p)
1
p ≤ c

ρ2

√
N

+ cp
2
β ‖Λ‖

1
2
2→2Ad,N + cp

2
β Ad,N (EV p)

1
2p ,

implying that (EV p)
1
p ≤ cp

1
β max

{
ρ2
√

N
+ ‖Λ‖1/2

2→2Ad,N , A2
d,N

}
.

Therefore, ‖V ‖ψβ
≤ cmax

{
Bd,N , A2

d,N

}
, from which the estimate of the

Theorem follows by a standard argument.

Let us give an example of how the previous theorem can be used to compare
the spectrum of the integral operator TK with that of the Gram matrix.

440 S. Mendelson and A. Pajor

Corollary 3. Let K : Ω × Ω → R be a positive definite kernel, such that
‖K‖ψα

< ∞ for some α ≥ 1. If (λi) is the spectrum of the integral operator
(arranged in a non-increasing order) and (λ̂i) is the spectrum of the Gram ma-
trix

(
1
N K(ti, tj)

)N

i,j=1
also arranged in a non-increasing order, then

1. For 1 ≤ p < ∞,(
E sup

i

∣∣∣λi − λ̂i

∣∣∣p)1/p

≤

cp1+2/α‖K(t, t)‖ψα/2 max

{√
log d log1/α N√

N
,
log d log2/α N

N

}
.

2. If EK2(t, t) < ∞ then E‖λ − λ̂‖2 ≤ C
(

EK2(t,t)
N

)1/2

.

Note that the second part of Corollary 3 generalizes and improves the follow-
ing Lemma (Lemma 4.1) from [8].

Lemma 1. Let K(x, y) =
∑R

i=1 λiφi(x)φi(y) for R < ∞, and set ξ2(R) =∑
1≤i,j≤R(λ2

i + λ2
j)Eφ2

i φ
2
j . Then,

Eδ2
2(λ, λ̂) ≤ ξ2(R)

N
− 2

∑R
i=1 λ2

i

N
,

where for u, v ∈ �2 δ2(u, v) = infπ ‖u − π(v)‖
2 , π is a permutation of {1, ...}
and π(v) = (vπ(1),).

Our result extends this lemma in several ways. First of all, ours is an infinite di-
mensional result. Second, for every finite dimensional kernel, ξ2(R) ≥ EK2(t, t),
and finally, δ2(λ, λ̂) ≤ ‖λ − λ̂‖2.

Corollary 3 is different from the results in [15], where the difference between
the empirical trace and the actual one, and between the “tails” of the traces∑∞

d+1 λi and
∑∞

d+1 λ̂i were established, rather than the �∞ and �2 distances of
the vectors of the singular values, as in Corollary 3.

2.1 Approximation by Ellipsoids

Turning to (2), we will see how, for a finite dimensional vector X, the random
operator ΓN (defined by ΓNei = 1√

N
Xi) approximates the polar of the Binet el-

lipsoid (the latter is generated by the covariance structure of X and was defined
in (1.1)). Such an approach could be helpful in the analysis of Question 2. In-
deed, if ΓNBN

2 asymptotically converges to E◦
B , then its principal directions must

converge to the principal directions of E◦
B , and thus, the best d-approximating

subspace of ΓNBN
2 will coincide in the limit with the space spanned by the d

largest principal directions of E◦
B .

Fix an integer n, let X be a random vector in �n
2 , set EB to be the Bi-

net ellipsoid generated by X, and put (ψi) to be the orthonormal basis of the

Ellipsoid Approximation Using Random Vectors 441

principal directions of EB . Without loss of generality, assume that EB has full
rank. Then, X =

∑n
i=1 〈X,ψi〉ψi, the covariance operator can be represented

in the basis (ψi) by the matrix A = diag(λ1, ..., λn), and it is standard to ver-
ify that EB = A−1/2Bn

2 . Set Y = A−1/2X, and observe that Y is an isotropic
vector; that is, for every y ∈ �n

2 , E| 〈Y, y〉 |2 = ‖y‖2

n
2
. The question of how well

K =
{∑n

i=1 aiYi :
∑n

i=1 a2
i ≤ 1

}
approximates a multiple of the Euclidean ball

has been thoroughly studied (see, e.g., [10, 6, 2, 12, 3]) under various assumptions
on the vector Y . To that end, one has to show that for every y ∈ Bn

2 ,∣∣∣∣∣ 1
N

N∑
i=1

〈Yi, y〉2 − 1

∣∣∣∣∣ ≤ δ. (2.2)

By duality, (2.2) is equivalent to

(1 − δ′)
√

NBn
2 ⊂ K ⊂ (1 + δ′)

√
NBn

2

for a suitable δ′, that is, to

(1 − δ′)A1/2Bn
2 ⊂ ΓNBn

2 ⊂ (1 + δ′)A1/2Bn
2 ,

implying that, ΓNBn
2 is equivalent to the dual of the Binet ellipsoid. One can

verify that sup{y:‖y‖=1}

∣∣∣ 1
N

∑N
i=1 〈Y, y〉2 − 1

∣∣∣ ≤ δ if and only if all the singular

values of the random operator ei → Yi/
√

N satisfy |μi − 1| ≤ δ. Therefore, it
suffices to show that, with high probability,∥∥∥∥∥ 1

N

N∑
i=1

Yi ⊗ Yi − Id

∥∥∥∥∥
2→2

≤ δ,

which is the question we studied in the previous section.
Note that to apply Theorem 5, it suffices to control the decay of the �n

2 norm
of the random vector A−1/2X, which is∥∥∥A−1/2X

∥∥∥2

2
=

n∑
j=1

1
λj

〈Xi, ψj〉2 =
n∑

j=1

〈Xi, ψj〉2

E| 〈X,ψj〉 |2
.

Define fj = 〈X,ψj〉
(E|〈X,ψj〉|2)1/2 , observe that (fi)n

i=1 are orthonormal with respect to

L2(μ) and that
∥∥A−1/2X

∥∥2

2
=

∑
j f2

j .
The next corollary can be derived from Theorem 5.

Corollary 4. There exists an absolute constant c for which the following holds.
Let Y be an isotropic random vector in �n

2 , put Y1, ..., YN to be independent copies
of Y and set QN =

(
E max1≤i≤N ‖Yi‖2

2

)1/2. If Q2
N log n

N ≤ 1 then

E

∥∥∥∥∥ 1
N

N∑
i=1

Yi ⊗ Yi − Id

∥∥∥∥∥
2→2

≤ c · QN

√
log n

N
.

442 S. Mendelson and A. Pajor

From the corollary applied to the random vector Y = A−1/2X, it follows that
if Z = ‖Y ‖2 and ‖Z‖ψ2 ≤ c

√
n then for δ = c · QN

√
log n/N ≤ c

√
n/N log n,

with high probability,

(1 − δ)E◦
B ⊂ ΓNBN

2 ⊂ (1 + δ)E◦
B .

Example. Let K be a finite dimensional, continuous kernel and set (φi) to be
its Mercer basis. Then, 〈X(t), φi〉 =

√
λiφi(t), fi(t) = φi(t), and Y = (φi(t))n

i=1.
Assume that the eigenfunctions are bounded by M (such a bound always exists
because each eigenfunction is bounded by Mercer’s Theorem, and there is a
finite number of eigenfunctions). Thus , Z ≡ ‖Y ‖2 ≤ M

√
n and the same holds

for QN . Therefore, if N ≥ c(M)n log n, ΓNBN
2 is a good approximation of the

ellipsoid
{∑n

i=1 ai

√
λiφi :

∑n
i=1 a2

i ≤ 1
}
.

2.2 Some Remarks

The assumption that ‖Z‖ψα
≤ c

√
n is the best that one can hope for. Indeed,

‖Z‖ψα
≥ cα

(
EZ2

)1/2 ≥ cα
√

n. It also says something about the geometry of the
random vector, since it implies that it is impossible for many of the functions fi

to be “peaked” at the same place. The most extreme case in which this condition
holds is when the functions 〈X,ψi〉 are supported on disjoint sets of measure 1/n,
which implies that X is always in the direction of one of the ψis. More generally,
the condition means that the random vector X can not have a components “much
larger” than

√
λj in many of the directions ψj simultaneously. For example, if

A = {i : | 〈X,ψj〉 | ≥
√

tλj}, then by the ψα assumption,

Pr ({|A| ≥ k}) ≤ Pr

({
n∑

i=1

f2
j ≥ kt

})
≤ 2 exp

(
−c

(
kt

n

)α/2
)

.

Let us mention that such an assumption on the random vector is not that far-
fetched. First of all, if E is an n dimensional ellipsoid in L2(μ), one can find
orthonormal vectors φi and positive scalars θi, such that

E =

{
n∑

i=1

ai

√
θiφi :

n∑
i=1

a2
i ≤ 1

}

and
∑n

i=1 φ2
i = n pointwise. This basis is a simple example of the so-called Lewis

basis, which has many applications in convex geometry (see, for example, [5]).
Hence, one can approximate any ellipsoid by the random ellipsoid ΓNBN

2 using
X(t) =

∑n
i=1

√
θiφi(t)φi.

The second remark we wish to make is that if Y is an isotropic vector in
Rn which distributed according to a log-concave measure, and if Z = ‖Y ‖, then
‖Z‖ψ2

≤ c
√

n . This fact was shown in [3], and generalized the analogous result
for a random point selected from a convex body, due to Alesker [1].

To conclude, because this notion of approximation is very strong, one must
impose restrictive conditions on the random vector X which also depend on

Ellipsoid Approximation Using Random Vectors 443

the structure of the eigenfunctions. Perhaps a possible way of improving the
rate of

√
n/N log n is to consider a weaker notion of approximation, namely

that Ê ⊂ E + δBn
2 and E ⊂ Ê + δBn

2 . It seems likely that for this notion of
approximation, one could use the fact that E has small eigenvalues and obtain
a better bound. The disadvantage is that the analysis of this question could
be difficult, because one has to simultaneously control three different Euclidean
structures (of E , Ê and Bn

2), and thus we leave it open for further investigation.

References

1. S. Alesker, ψ2 estimates for the Euclidean norm on a convex body in isotropic
position, Operator Theory Adv. Appl. 77, 1-4 1995.

2. J. Bourgain, Random points in isotropic convex bodies, in Convex Geometric Anal-
ysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ. 34 (1999), 53-58.

3. A.A. Giannopoulos, V.D. Milman, Concentration property on probability spaces,
Adv. Math. 156, 77-106, 2000.

4. R. Herbrich, Learning kernel classifiers, MIT Press, 2002.
5. W.B. Johnson, G. Schechtman: Finite dimensional subspaces of Lp, in Handbook

of the Geometry of Banach Spaces, Vol 1 (W.B. Johnson, J. Lindenstrauss eds.),
North Holland, 2001.

6. R. Kannan, L. Lovász, M. Simonovits, Random walks and O∗(n5) volume algorithm
for convex bodies, Random structures and algorithms, 2(1) 1-50, 1997.

7. T. Kato, A short introduction to perturbation theory for linear operators, Springer-
Verlag, 1982.

8. V. Koltchinskii, E. Giné, Random matrix approximation of spectra of integral
operators. Bernoulli, 6 (2000) 113-167.

9. F. Lust-Piquard, G. Pisier, Non-commutative Khinchine and Paley inequalities,
Ark. Mat. 29, 241-260, 1991.

10. V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the
unit ball of a normed n-dimensional space, Lecture notes in mathematics 1376,
64-104, Springer, 1989.

11. B. Schölkopf, A.J. Smola, Learning with kernels, MIT Press, 2002.
12. M. Rudelson, Random vectors in the isotropic position, Journal of Functional Anal-

ysis, 164, 60-72, 1999.
13. M. Talagrand, The generic chaining, forthcoming.
14. A.W. Van der Vaart, J.A. Wellner, Weak convergence and Empirical Processes,

Springer-Verlag, 1996.
15. L. Zwald, O. Bousquet, G. Blanchard, Statistical properties of kernel principal

component analysis, in Proceedings of COLT 2004, J. Shawe-Taylor and Y. Singer
(Eds), LNAI 3120, 594-608, Springer-Verlag 2004.

The Spectral Method
for General Mixture Models

Ravindran Kannan1, Hadi Salmasian1, and Santosh Vempala2

1 Yale University, New Haven CT 06511, USA
kannan@cs.yale.edu, hadi.salmasian@yale.edu

2 MIT, Cambridge MA 02139, USA
vempala@math.mit.edu

Abstract. We present an algorithm for learning a mixture of distri-
butions based on spectral projection. We prove a general property of
spectral projection for arbitrary mixtures and show that the resulting
algorithm is efficient when the components of the mixture are logconcave
distributions in �n whose means are separated. The separation required
grows with k, the number of components, and log n. This is the first
result demonstrating the benefit of spectral projection for general Gaus-
sians and widens the scope of this method. It improves substantially on
previous results, which focus either on the special case of spherical Gaus-
sians or require a separation that has a considerably larger dependence
on n.

1 Introduction

Mixture models are widely used for statistical estimation, unsupervised concept
learning, text and image classification etc. [11, 17]. A finite mixture model for
an unknown distribution is a weighted combination of a finite number of dis-
tributions of a known type. The problem of learning or estimating a mixture
model is formulated as follows. We assume that we get samples from a distri-
bution F on 4n which is a mixture (convex combination) of unknown distri-
butions F1, F2, . . . , Fk, with (unknown) mixing weights w1, w2, . . . , wk > 0 i.e.,
F =

∑k
i=1 wiFi and

∑k
i=1 wi. The goal is to (a) classify the sample points ac-

cording to the underlying distributions and (b) estimate essential parameters of
the components, such as the mean and covariance matrix of each component.
This problem has been widely studied, particularly for the special case when
each Fi is a Gaussian.

One algorithm that is often used is the EM (Expectation-Maximization) al-
gorithm. It is quite general, but does not have guarantees on efficiency and could
even converge to an incorrect or suboptimal classification. A second known tech-
nique, from statistics, projects the sample points to a random low-dimensional
subspace and then tries to find the right classification by exploiting the low di-
mensionality and exhaustively examining all possible classifications. The trouble
is that two different densities may overlap after projection — the means of the

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 444–457, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Spectral Method for General Mixture Models 445

projected densities may coincide (or get closer), making it hard to separate the
samples.

In this paper, we investigate the method known as spectral projection, i.e.,
the representation of the data in the subspace spanned by its top k principal
components. We present our results following a discussion of the relevant liter-
ature.

1.1 Recent Theoretical Work

There has been progress in recent years in finding algorithms with rigorous the-
oretical guarantees [3, 2, 4, 19], mostly for the important special case of learning
mixtures of Gaussians. These algorithms assume a separation between the means
of each pair of component distributions which depends on the variances of the
two distributions and also on n and k. For a component Fi of the mixture let
μi denotes its mean and σi denote the maximum standard deviation along any
direction in 4n. In order for the classification problem to have a well-defined
(unique) solution with high probability, any two components i, j must be sep-
arated by σi + σj times a logarithmic factor; if the separation is smaller than
this, then the distributions overlap significantly and some of the samples have
a good chance of coming from more than one component. Dasgupta [3] showed
that if each mixing weight is Ω(1/k) and the variances are within a bounded
range, then a separation of (the Ω∗ notation suppresses logarithmic terms and
error parameters)

|μi − μj | = (σi + σj)Ω∗(n1/2)

is enough to efficiently learn the mixture.
Shortly thereafter, this result was improved by Dasgupta and Schulman [4]

and Arora and Kannan [2] who reduced the separation required to

|μi − μj | = (σi + σj)Ω∗(n1/4).

In [4], the algorithm used is a variant of EM (and requires some technical as-
sumptions on the variances), while the result of [2] works for general Gaussians
using distance-based classification. The idea is that at this separation, it is pos-
sible to examine just the pairwise distances of the sample point and infer the
right classification with high probability.

The dependence on n is critical; typically n represents the number of at-
tributes and is much larger than k, the size of the model. Further, the underly-
ing method used in these papers, namely, distance-based classification, inherently
needs such a large separation that grows with n [2].

In [19], a spectral algorithm was used for the special case of spherical Gaus-
sians and the separation required was reduced to

|μi − μj | = (σi + σj)Ω∗(k1/4).

Since k is usually a constant and much less than n, this is a substantial improve-
ment for the spherical case. The algorithm uses a projection of the sample to
the subspace spanned by the top k singular vectors of the distribution (i.e., the

446 R. Kannan, H. Salmasian, and S. Vempala

singular vectors of a matrix, each of whose rows is one of the iid samples drawn
according to the mixture), also called the SVD subspace. The idea there is that
the SVD subspace of a mixture of spherical Gaussians contains the means of the
k components. Hence, after projection to this subspace the separation between
the means is preserved. On the other hand each component is still a Gaussian
and the dimension is only k, and so the separation required is only a function
of k. Further, even for a sample, the SVD subspace is “close” to the means and
this is used in the algorithm.

1.2 New Results

Given the success of the spectral method for spherical Gaussians, a natural
question is whether it can be used for more general distributions, in particular
for nonspherical Gaussians. At first sight, the method does not seem to be ap-
plicable. The property that the SVD subspace of the distribution contains the
means is clearly false for nonspherical Gaussians, e.g., see Figure 1. In fact, the
SVD subspace can be orthogonal to the one spanned by the means and so using
spectral methods might seem hopeless.

Fig. 1. The SVD subspace W , the plane that minimizes the average squared distance,
might miss the means of the components entirely

The key insight of this paper is that this example is misleading and while
the SVD subspace does not contain the means, it is always close (in an average
sense) to the means of the distributions (Theorem 1). As a result, upon projec-
tion to this subspace, the inter-mean distances are approximately preserved “on
average”. Moreover, this property is true for a mixture of arbitrary distributions.

It is then a reasonable idea to project the sample to the SVD subspace to
reduce the dimensionality. To identify individual components in this subspace,
we need them to remain nonoverlapping. If the mixture is arbitrary, then even
though the means are separated on average, the samples could intermingle. To
overcome this, we assume that the component distributions are logconcave.

A function f : 4n → 4+ is logconcave if its logarithm is concave, i.e., for any
two pointx x, y ∈ 4n and any λ ∈ [0, 1],

The Spectral Method for General Mixture Models 447

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ.

These functions have many useful properties, e.g., the product, minimum and
convolution of two logconcave functions are also logconcave [5, 10, 15]. Logcon-
cave densities are a powerful generalization of Gaussians. Besides Gaussians,
many other common probability measures, like the exponential family and the
uniform measure over a convex set are logconcave. So, for example, one compo-
nent of a mixture could be a Gaussian while another is the uniform distribution
over a cube. The following properties make these distributions suitable for our
purpose: (a) the projection of a logconcave distribution remains logconcave (b)
the distance of a random point from the mean has an exponential tail.

In Section 3, we give an iterative spectral algorithm that identifies one com-
ponent of the mixture in each iteration. It should be emphasized that there are
many possible alternatives for identifying the components after projection (e.g.,
the EM algorithm) and we expect they will also benefit from the enhancement
provided by projection. For the post-projection algorithm presented here, we as-
sume that each mixing weight is at least ε and the pairwise separation satisfies

|μi − μj | = (σi + σj)Ω∗(k
3
2 /ε2).

More precisely, our algorithm only requires a lower bound ε, a probability of
error δ, an upper bound k, and a sample set from an n-dimensional mixture
distribution of size Ω(n

ε log5(nk/δ)) which satisfies the given separation, and it
classifies all but a fixed number with probability at least 1 − δ (Theorem 3). It
is easy to see that it requires time polynomial in n, ε, log(1

δ). The means and
covariance matrices of the components can be estimated using O(n

ε log5(nk/δ))
samples (Theorem 2). For the special case of Gaussians, O(n log3(n/δ)/ε) sam-
ples suffice. Table 1 presents a comparison of algorithms for learning mixtures
(logarithmic terms are suppressed).

Table 1. Comparison

Authors Separation Assumptions Method

Dasgupta [3] n
1
2 Gaussians, bounded variances Random projection

and wi = Ω(1/k)

Dasgupta-Schulman [4] n
1
4 Spherical Gaussians EM+distances

Arora-Kannan [2] n
1
4 Gaussians Distances

Vempala-Wang [19] k
1
4 Spherical Gaussians Spectral projection

This paper k
3
2

ε2 Logconcave distributions Spectral projection

1.3 Notation

A mixture F has k components F1, . . . , Fk. We denote their mixing weights
by w1, . . . , wk and their means by μ1, . . . μk. The maximum variance of Fi in

448 R. Kannan, H. Salmasian, and S. Vempala

any direction is denoted by σ2
i . For any subspace W , we denote the maximum

variance of Fi along any direction in W by σ2
i,W .

Let S be a set of iid samples S from F . One can think of S as being picked
as follows: first i is picked from {1, 2, . . . , k} with probability wi (unknown to
the algorithm); then a sample is picked from Fi. We can partition S as S =
S1 ∪S2 ∪ . . .∪Sk where each Si is from Fi (note: this partition of S is unknown
to the algorithm). For each i, we denote by μS

i the sample mean, i.e.,

μS
i =

1
|Si|

∑
x∈Si

x.

For a subspace V and a vector x, we write d(x, V) for the orthogonal distance
of x from V .

For any set of points S, we can form a matrix A whose rows are the points in
S. The subspace spanned by the top k right singular vectors of A will be called
the SVD subspace of S. For any subspace W , we denote the maximum variance
of a set of sample points in S = S1 ∪ . . . ∪ Sk which belong to Si along any
direction in W by σ̂2

i,W (S).

2 The SVD Subspace

In this section, we prove an important property of spectral projection. The theo-
rem says that the SVD subspace of a sample is close to the means of the samples
from each component of the mixture, where “close” is in terms of the sample
variances. Note that the theorem holds for any mixture. In the analysis of our
algorithm, we will apply it only to mixtures of logconcave distributions.

Theorem 1. Let S = S1 ∪ S2 . . . ∪ Sk be a sample from a mixture F with k
components such that Si is from the ith component Fi and let W be the SVD
subspace of S. For each i, let μS

i be the mean of Si and σ̂2
i,W (S) be the maximum

variance of Si along any direction in W . Then,

k∑
i=1

|Si|d(μS
i ,W)2 ≤ k

k∑
i=1

|Si|σ̂2
i,W (S).

Proof. Let M be the span of μS
1 , μS

2 , . . . , μS
k . For x ∈ 4n, write πM (x) for the

projection of x onto M and πW (x) for the projection of x onto W .
Using the facts that μS

i is the average of x ∈ Si and μS
i ∈ M , we write

∑
x∈S

|πM (x)|2 =
k∑

i=1

∑
x∈Si

|πM (x) − μS
i |2 +

k∑
i=1

|Si||μS
i |2

≥
k∑

i=1

|Si||μS
i |2

=
k∑

i=1

|Si||πW (μS
i)|2 +

k∑
i=1

|Si|d(μS
i ,W)2. (1)

The Spectral Method for General Mixture Models 449

On the other hand,

∑
x∈S

|πW (x)|2 =
k∑

i=1

∑
x∈Si

|πW (x − μS
i)|2 +

k∑
i=1

|Si||πW (μS
i)|2

≤ k

k∑
i=1

|Si|σ̂2
i,W (S) +

k∑
i=1

|Si||πW (μS
i)|2. (2)

It is well-known that the SVD subspace maximizes the sum of squared projec-
tions among all subspaces of rank at most k (alternatively, it minimizes the sum
of squared distances to the subspace; see e.g. [7]). From this, we get∑

x∈S

|πW (x)|2 ≥
∑
x∈S

|πM (x)|2.

Using this, the RHS of (2) is at least the RHS of (1) and the theorem follows. ��
The same proof also yields an inequality for the entire distribution:

k∑
i=1

wid(μi,W)2 ≤ k

k∑
i=1

wiσ
2
i .

Here W is the SVD subspace of the entire distribution (subspace spanned by
the top k principal components of the distribution).

Although we will apply the inequality only for logconcave component dis-
tributions, it suggests a benefit for spectral projection more generally. The in-
equality puts a lower bound on the average squared distance between component
means after projection; if the means are well-separated to begin with, they con-
tinue to be, in an average sense. On the other hand, the distance of a point from
the mean of its distribution can only shrink upon projection, thus magnifying
the ratio of inter-component distance to intra-component distance. This aspect
is studied further along with empirical results in [20].

3 An Iterative Spectral Algorithm

In this section, we describe the algorithm. It follows the method suggested by
Theorem 1, namely, to project on the SVD subspace and to try to identify com-
ponents in that subspace. However, since pairwise distances are only preserved
in an average sense, it is possible that some means are very close to each other in
the projected subspace and we cannot separate the corresponding samples. To
get around this, we will show that all “large” components remain well-separated
from the rest and there is at least one large component. We identify this com-
ponent, filter it from the sample and repeat. For technical reasons (see below),
the samples used to compute the SVD are discarded. The input to the algorithm
below is a set of N iid samples and a parameter N0 < N .

450 R. Kannan, H. Salmasian, and S. Vempala

Algorithm.

Repeat while there are samples left:

1. For a subset S of size N0, find the k-dimensional SVD
subspace W.

2. Discard S and project the rest, T, to the subspace W.
3. For each projected point p:

--- Find the closest εN/2 points. Let this set be T (p)
with mean μ(p).
--- Form the matrix A(p) whose rows are x-μ(p) for each x
in T (p). Compute the largest singular value σ(p) of A(p)
(Note: this is the maximum standard deviation of T (p) over
all directions in W).

4. Find a point p0 for which σ(p0) is maximum. Let T0 be the
set of all points of T whose projection to W is within

distance
√

k log N
ε σ(p) of p0.

5. Label T0 as one component; estimate its mean and
covariance matrix.

6. Delete T0 from T.

In Step 3 of the algorithm, for any point p, the top singular value σ(p) of
A(p) can also be expressed as follows:

σ(p)2 = max
v∈W,|v|=1

1
|Tp|

∑
q∈Tp

|q · v|2 −

⎛⎝ 1
|Tp|

∑
q∈Tp

q · v

⎞⎠2

.

This value is an estimate of the maximum variance of the entire subsample of
the component to which p belongs.

There is a technical issue concerning independence. If we use the entire sample
to compute the SVD subspace W , then the sample is not independent from W .
So we use a subset S to compute the SVD subspace in each iteration and discard
it. The rest of the sample, i.e., the part not used for SVD computation is classifed
correctly with high probability. The size of the subset S in each iteration is N0.

We can state guarantees for the algorithm in two different ways. The first
is a guarantee that the estimated means and covariances are approximations of
the means and covariances of individual components. Recall that the covariance
matrix of a distribution G with mean μ is EG((x−μ)(x−μ)T), the matrix whose
ij’th is the covariance of the ith and jth coordinates of a random point x drawn
from G.

Theorem 2. For 0 < η < 1, let

N0 = C
n

εη2
log5

(
n

ηδ

)
.

The Spectral Method for General Mixture Models 451

Suppose that have have 2kN0 iid samples from a mixture F of k logconcave
distributions in 4n, with mixing weights at least ε and the means separated as

∀ i, j |μi − μj | ≥ 1024(σi + σj)

(
k

3
2

ε2

)
log 2kN0.

Then the iterative spectral algorithm with this setting of N0 finds approximations
μ′

1, . . . , μ
′
k to the means and A1, . . . , Ak to the covariance matrices such that with

probability at least 1 − δ, for 1 ≤ i ≤ k,

|μi − μ′
i| ≤ ησi and

∥∥A−1
i EFi

(
(x − μi)(x − μi)T

)
− I

∥∥
F
≤ η

where || · ||F is the Frobenius norm, the square root of the sum of the squares of
all the entries.

A second guarantee is when we have N samples and the separation grows
with logN . In this case, we can classify all but kN0 samples.

Theorem 3. Suppose we have N iid samples from a mixture F of k logconcave
distributions with mixing weights at least ε and the means of the components
separated as

∀ i, j |μi − μj | ≥ 1024(σi + σj)

(
k

3
2

ε2

)
log N.

Then, for any 0 < δ < 1, with

N0 = C
n

ε
log5 n

δ
,

the iterative spectral algorithm correctly classifies N − 2kN0 samples with prob-
ability at least 1 − δ (a subset of 2kN0 samples are used by the algorithm and
discarded).

We will prove Theorem 3 in the next section. The proof of Theorem 2 is very
similar.

4 Analysis

4.1 Preliminaries

We begin with some properties of logconcave distributions, paraphrased from
[12, 13]. The proof of the first uses a theorem from [16] (see also [6]).

Lemma 1. Let 0 < η < 1 and y1, . . . , ym be iid samples from a logconcave
distribution G in 4n whose mean is the origin. There is an absolute constant C
such that for

m > C
n

η2
log5

(
n

ηδ

)

452 R. Kannan, H. Salmasian, and S. Vempala

with probability at least 1 − δ, for any vector v ∈ Rn,

(1 − η)EG((vT y)2) ≤ 1
m

n∑
i=1

(vT yi)2 ≤ (1 + η)EG((vT y)2).

Lemma 2. Let F be any logconcave distribution in 4n with mean μ and second
moment EF (|X − μ|2) = R2. There is an absolute constant c such that for any
t > 1,

Pr(|X − μ| > tR) < e−ct.

Lemma 3. Let f : 4 → 4+ be a logconcave density function with variance σ2.
Then

max
�

f(x) ≤ 1
σ
.

4.2 Sample Properties

Assume that N > 2kN0. If T is the subset of samples that are not used for SVD
computation, then there is a partition T as T = T1 ∪ T2 ∪ . . . ∪ Tk where Ti is
the set of samples from Fi.

Lemma 4. With probability at least 1 − δ/4k, for every i ∈ {1, 2, . . . , k},

a. wi|T | − ε
4 |T | ≤ |Ti| ≤ wi|T | + ε

4 |T |.
b. |μi − μT

i | ≤ σi

4 .
c. For any subspace W , 7

8σi,W ≤ σ̂2
i,W (T) ≤ 8

7σ
2
i,W .

Proof. a. Follows easily from a Chernoff bound [14].
b. For any fixed |Ti|, the random variable μT

i = 1
|Ti|

∑
x∈Ti

x is a convolution of
logconcave distributions and hence is also logconcave. Its variance is nσ2

i /|Ti|.
We apply Lemma 2 to this distribution to get the bound.

c. Follows immediately from Lemma 1.
��

In our proof, we would like to apply Theorem 1. However, the theorem holds
for the sample S that is used to compute the SVD subspace. The next lemma
derives a similar bound for an independent sample T that is not used in the
SVD computation.

Lemma 5. Suppose T = T1 ∪ . . . ∪ Tk is the set of sample points not used for
the SVD computation in the algorithm. Then we have

k∑
i=1

|Ti|d(μS
i ,W)2 ≤ 2k

k∑
i=1

|Ti|σ̂2
i (3)

where σ̂2
i = σ̂2

i,W (T) is the maximum variance of Ti along any direction in W .

The Spectral Method for General Mixture Models 453

Proof. First, we apply Theorem 1 to S. Then, using Lemma 4(a), we can relate
|Ti| to |Si| and we have

k∑
i=1

|Ti|d(μS
i ,W) ≤ 3

2
k

k∑
i=1

|Ti|σ̂2
i,W (S).

Next, Lemma 1 implies that

σ̂2
i,W (S) ≤ 7

6
σ2

i,W .

Finally, we use the lower bound in Lemma 4(c) to get the desired inequality. ��

4.3 Proof of Theorem 3

We will prove the following claim: With probability at least 1 − (δ/2k), the
algorithm identifies one component exactly in any one iteration. We will prove
the claim for the first iteration and it will follow inductively for all subsequent
iterations.

Let T = T1 ∪T2 ∪ . . .∪Tk be the partition of the current sample T according
to the components Fi. For each i, recall that μT

i is the sample mean and define
μ̂T

i to be the projection of μT
i to the subspace spanned by W . Similarly, we have

μS
i and μ̂S

i . For convenience, we write σ̂i,W (T)2 as σ̂2
i . Let

α = 1024
k

3
2

ε2
log N and β =

ε3

8096k
.

We say that a component Fr is large if the following condition holds:

|Tr|σ̂2
r ≥ β max

i
|Ti|σ̂2

i . (4)

The proof is based on the next two lemmas.

Lemma 6. For any large component Fr, for every i �= r,

|μ̂T
i − μ̂T

r | >
α

8
(σi + σr).

Proof. Let dr = d(μS
r ,W). For any large component r satisfying (4), by (3),

|Tr|d2
r ≤ 2k

∑
i

|Ti|σ̂2
i ≤ 2k2

β
|Tr|σ̂2

r . (5)

Thus,

d2
r ≤ 2k2

β
σ̂2

r ≤ α2

16
σ̂2

r .

Next, let
R = {i �= r : |μ̂S

i − μ̂S
r | ≤

α

4
(σi + σr)}.

454 R. Kannan, H. Salmasian, and S. Vempala

Then, by the assumed separation, for each i ∈ R, we must have (using Lemma 4b)

di = d(μS
i ,W) ≥ |μi − μr| − |μi − μS

i | − |μr − μS
r | − dr − |μ̂S

i − μ̂S
r |

≥ α

3
σr ≥ α

4
σ̂r.

Therefore, using (5),

2k2

β
|Tr|σ̂2

r ≥ 2k
k∑

i=1

|Ti|σ̂2
i ≥

k∑
i=1

|Ti|d2
i

≥
∑
i∈R

|Ti|d2
i ≥

∑
i∈R

|Ti|
α2

16
σ̂2

r .

As a result, ∑
i∈R

|Ti| ≤
32k2

α2β
|Tr| <

ε

2
|T |.

However, since each |Ti| ≥ ε
2 |T | (by Lemma 4(a)), this implies that R is empty.

To complete the lemma, we note that by Lemma 4(b), for any j,

|μ̂T
j − μ̂S

j | ≤ |μT
j − μS

j | ≤ |μT
j − μj | + |μj − μS

j | ≤ 2σj ,

and then use triangle inequality. ��

Lemma 7. Let p ∈ Ti. With probability at least 1 − δ/4k,

σ(p)2 ≤ 16kσ̂2
i .

Further, if i is a large component, then

σ(p)2 ≥ w2
i

512
σ̂2

i .

Proof. By Lemma 2, within a radius of
√

2kσi,W of any point p from Ti, there
will be at least εN/2 points from the same component. Even if some points from
other components are within this distance of p, they cannot increase σ(p) beyond
this value. To complete the proof, we use Lemma 4(c).

For the second iequality, note that by Lemma 6 the set of samples used to
compute σ(p) are all from Ti. If v is the direction in W for which the distribution
Fi has maximum variance, then Lemma 3 implies that for

H = {x ∈ 4n : μT (p) · v − ε

8
σi,W ≤ v.x ≤ μT (p) · v +

ε

8
σi,W }

we have Fi(H) ≤ 1
σi,W

× 2 εσi,W

8 = ε
4 .

Now we apply VC-dimension techniques (see [9]). Suppose |Ti| > 1
ε . This is

guaranteed by Lemma 4a. Since the VC-dimension of intervals on a line is 2,
with probability 1 − δ

4 the following statement is true:

The Spectral Method for General Mixture Models 455

• For any interval I along the direction v, if HI = {x ∈ 4n : x · v ∈ I}, then

| |Ti ∩HI |
|Ti|

− Fi(HI)| ≤
ε

8
.

Therefore |T (p) ∩ H| ≤ 3ε
8 |Ti| ≤ 3

4 × ε|Ti|
2 ≤ 3|T (p)|

4 . This means that at least
|T (p)|

4 samples in T (p) are out of the strip H, i.e. they are at least as far as ε
8σi,W

apart from μT (p) in the direction of v. Hence, using Lemma 4c,

σ(p)2 ≥ 1
|T (p)|

∑
x∈T (p)

(x · v − μT (p) · v)2

≥ 1
|T (p)| ×

|T (p)|
4

× (
ε

8
σi,W)2

≥ ε2

256
σ2

i,W ≥ ε2σ̂2
i

512

which completes the proof.
��

We continue with the proof of Theorem 3. By Lemma 2, and the first part
of Lemma 7, if the point p0 in Step 4 that maximizes σ(p) is from a component
r satisfying (4), then the set of samples identified is entirely from Tr. Next we
will show that the point p0 in step (4) must indeed be from a large component.
Let r be the component for which |Tr|σ̂2

r is maximum. Take any p ∈ Ti for an i
which is not large, i.e.,

|Ti|σ̂2
i < β|Tr|σ̂2

r . (6)

Therefore,

σ̂2
i ≤ β

|Tr|
|Ti|

σ̂2
r ≤ β

ε
σ̂2

r .

By Lemma 7,

σ(p)2 < 16kσ̂2
i ≤ 16kβ

ε
σ̂2

r =
ε2

512
σ̂2

r .

On the other hand, for any point q ∈ Tr,

σ(q)2 ≥ ε2

512
σ̂2

r > σ(p)2.

Hence the point p0 chosen in step 4 will be from a large component.
Now by Lemma 4, the number of samples we have in T0 is enough to estimate

the mean and covariance matrix. Finally, using these estimates, by Lemma 2,
the set T0 contains all the sample points from a single component with high
probability.

5 Concluding Remarks

As pointed out by a referee, the dimensionality of the SVD subspace can be
reduced as k, k − 1, . . ., in successive iterations of the algorithm.

456 R. Kannan, H. Salmasian, and S. Vempala

From the example in Figure 1.2, it is not hard to see that spectral pro-
jection requires a separation between means that grows with the largest vari-
ance of individual components. Following the preliminary version of our results
[18, 8], Achlioptas and McSherry [1] have improved the polynomial dependence
on k and ε using a more sophisticated algorithm after projection. It remains
an open problem to learn (nonspherical) Gaussians at smaller separation. The
near-disjointness of Gaussian components (e.g., total variation distance nearly 1
for two Gaussians), and thus their learnability, is implied by the assumption that
the distance between two means is of the order of the variance in the direction
of the line joining the means. Spectral projection fails at such a small separation
and a different technique will have to be used.

On the other hand, the main technique used in this paper is fairly easy to
implement and commonly used in practice for many applications. In [20], Vem-
pala and Wang present empirical evidence and propose an explanation for why
the method is effective for real data where the assumption that the components
are Gaussian (or logconcave) might not be valid.

Finally, most guarantees for spectral methods assume that the data is gener-
ated from some restricted model such as a random model. Our algorithm is also
for “random” data, but the distributions considered are more general. Spectral
projection seem to be well-suited for such models and our result can be viewed
as further evidence of this.

Acknowledgement. We thank the NSF (awards ITR-0312354 and ITR-
0312339) and the Sloan foundation.

References

1. D. Achlioptas and F. McSherry: On Spectral Learning of Mixtures of Distributions,
this proceedings.

2. S. Arora, R. Kannan. Learning mixtures of arbitrary Gaussians. Proc. 33st ACM
STOC, 2001.

3. S. DasGupta: Learning mixtures of Gaussians. Proc. of FOCS, 1999.
4. S. DasGupta, L. Schulman: A two-round variant of EM for Gaussian mixtures.

Uncertainty in Artificial Intelligence, 2000.
5. A. Dinghas: Über eine Klasse superadditiver Mengenfunktionale von Brunn–

Minkowski–Lusternik-schem Typus, Math. Zeitschr. 68, 111–125, 1957.
6. A. A. Giannopoulos and V. D. Milman: Concentration property on probability

spaces. Adv. Math. 156(1), 77–106, 2000.
7. G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press,

1989.
8. R. Kannan, H. Salmasian and S. Vempala: The Spectral Method for Mixture Mod-

els. ECCC Tech. Rep. 067, 2004.
9. M. Kearns and U. Vazirani: An Introduction to Computational Learning Theory,

MIT Press, 1994.
10. L. Leindler: On a certain converse of Hölder’s Inequality II, Acta Sci. Math. Szeged

33 (1972), 217–223.
11. B. Lindsay. Mixture models: theory, geometry and applications. American Statisti-

cal Association, Virginia 1995.

The Spectral Method for General Mixture Models 457

12. L. Lovász and S. Vempala: Logconcave functions: Geometry and Efficient Sampling
Algorithms, Proc. of FOCS, 2003.

13. L. Lovász and S. Vempala: The Geometry of Logconcave Functions and an O∗(n3)
sampling algorithm, Microsoft Research Tech. Report MSR-TR-2003-04.

14. R. Motwani and P. Raghavan: Randomized Algorithms, Cambridge University
Press, 1995.

15. A. Prékopa: Logarithmic concave measures and functions, Acta Sci. Math. Szeged
34 (1973), 335–343.

16. M. Rudelson: Random vectors in the isotropic position, J. Funct. Anal. 164 (1999),
60–72.

17. D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite
mixture distributions, Wiley, 1985.

18. S. Vempala: On the Spectral Method for Mixture Models, IMA workshop on Data
Analysis and Optimization, 2003. http://www.ima.umn.edu/talks/workshops/5-6-
9.2003/vempala/vempala.html

19. S. Vempala and G. Wang: A spectral algorithm for learning mixtures of distribu-
tions, Proc. of FOCS, 2002; J. Comput. System Sci. 68(4), 841–860, 2004.

20. S. Vempala and G. Wang: The benefit of spectral projection for document clus-
tering. Proc. of the 3rd Workshop on Clustering High Dimensional Data and its
Applications, SIAM International Conference on Data Mining, 2005.

On Spectral Learning
of Mixtures of Distributions

Dimitris Achlioptas1 and Frank McSherry2

1 Microsoft Research, One Microsoft Way, Redmond WA 98052, USA
2 Microsoft Research, 1065 La Avenida, Mountain View CA 94043, USA

{optas, mcsherry}@microsoft.com

Abstract. We consider the problem of learning mixtures of distribu-
tions via spectral methods and derive a characterization of when such
methods are useful. Specifically, given a mixture-sample, let μi, Ci, wi

denote the empirical mean, covariance matrix, and mixing weight of the
samples from the i-th component. We prove that a very simple algo-
rithm, namely spectral projection followed by single-linkage clustering,
properly classifies every point in the sample provided that each pair of
means μi, μj is well separated, in the sense that ‖μi − μj‖2 is at least

‖Ci‖2(1/wi +1/wj) plus a term that depends on the concentration prop-
erties of the distributions in the mixture. This second term is very small
for many distributions, including Gaussians, Log-concave, and many oth-
ers. As a result, we get the best known bounds for learning mixtures of ar-
bitrary Gaussians in terms of the required mean separation. At the same
time, we prove that there are many Gaussian mixtures {(μi, Ci, wi)} such
that each pair of means is separated by ‖Ci‖2(1/wi + 1/wj), yet upon
spectral projection the mixture collapses completely, i.e., all means and
covariance matrices in the projected mixture are identical.

Keywords: learning mixtures of distributions, spectral methods, sin-
gular value decomposition, gaussians mixtures, log-concave and concen-
trated distributions.

1 Introduction

A mixture of k distributions D1, . . . , Dk with mixing weights w1, . . . , wk, where∑
i w1 = 1, is the distribution in which each sample is drawn from Di with prob-

ability wi. Learning mixtures of distributions is a classical problem in statistics
and learning theory (see [4, 5]). Perhaps the most studied case is that of learning
Gaussian mixtures. In such a mixture, each constituent distribution is a mul-
tivariate Gaussian, characterized by a mean vector μi ∈ Rd and an arbitrary
covariance matrix Ci = RiR

T
i ∈ Rd×d. That is, a sample from the i-th Gaussian

is a vector μi+Rix, where x ∈ Rd is a vector whose components are i.i.d. N(0, 1)
random variables. We let σ2

i = ‖Ci‖ denote the maximum directional variance
of each Gaussian, where ‖ · ‖ denotes the matrix spectral norm.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 458–469, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Spectral Learning of Mixtures of Distributions 459

We begin with discussing some earlier works on learning Gaussian mixtures,
which serve as the motivation (and canonical model) for our work. A generally
fruitful approach to learning mixtures of Gaussians is to start by projecting the
samples onto a low dimensional space. This idea, originated in non-parametric
statistics in the 60s, is motivated by the fact that reducing the dimensional-
ity of the host space, dramatically reduces the number of potential component
separators, thus affording a more complete search among them. Moreover, it is
well-known that the projection of a Gaussian mixture onto a fixed subspace is
also a Gaussian mixture, one in which the means and mixing weights behave in
the obvious way, while the covariance matrices get transformed to new matrices
of no greater maximum directional variance.

Dasgupta [2] pioneered the idea of projecting Gaussian mixtures onto random
low-dimensional subspaces. For a typical subspace, the separation of each mean
μi from the other means shrinks at the same rate as E[‖Rix‖2], i.e., in proportion
to the reduction in dimension. Thus, the random projection’s main feature is to
aid clustering algorithms that are exponential in the dimension. But, in order
for a mixture to not collapse under a typical projection the separation between
means μi, μj needs to grow as (σi +σj)× d1/2, i.e., not only must the Gaussians
not touch but, in fact, they must be pulled further and further apart as their
dimensionality grows.

In [3], Dasgupta and Schulman reduced this requirement to (σi+σj)×d1/4 for
spherical Gaussians by showing that, in fact, under this conditions the EM algo-
rithm can be initialized so as to learn the μi in only two rounds. Arora and Kan-
nan [1] combined random projections with sophisticated distance-concentration
arguments in the context of learning mixtures of general Gaussians. In their
work, the separation of means is not the only relevant parameter and their re-
sults apply to many cases where a worst-case mixture with the given separation
characteristics is not learnable by any algorithm. That said, the worst case sep-
aration required by the results in [1] is also (σi + σj) × d1/4.

Rather than projecting the mixture onto a random subspace, we could dream
of projecting it onto the subspace spanned by the mean vectors. This would
greatly enhance the “contrast” in the projected mixture since E[‖Rix‖2] is re-
duced as before, but the projected means remain fixed and, thus, at the same
distance. Recently, Vempala and Wang [6] did just this, by exploiting the fact
that in the case of spherical Gaussians, as the number of samples grows, the
subspace spanned by the top singular vectors of the data set converges to the
subspace spanned by the mean vectors. This allowed them to give a very simple
and elegant algorithm for learning spherical Gaussians which works as long as
each pair of means μi, μj is separated by (σi + σj)× k1/4, i.e., a length indepen-
dent of the original dimensionality.

Unfortunately, for non-spherical Gaussians the singular vector subspace does
not in general convergence to the subspace spanned by the means. Vempala and
Wang [6] observed this and asked if spectral projections can be useful for dis-
tributions that are not weakly isotropic, e.g. non-spherical Gaussians. In recent
related work, Kannan, Salmasian, and Vempala [8] show how to use spectral

460 D. Achlioptas and F. McSherry

projections to learn mixtures of Log-concave distributions in which each pair of
means μi, μj is separated by, roughly, k3/2(σi + σj)/w2

min.
Here, we show that combining spectral projection with single-linkage cluster-

ing gives a method for recursively dissecting mixtures of concentrated distribu-
tions, e.g., Gaussian mixtures, when each pair of means μi, μj in the mixture is
separated by (σi +σj)(1/wi +1/wj)1/2, plus a term describing the concentration
of the constituent distributions. For example, for Gaussian mixtures this second
term is of order (σi + σj)(k + (k log n)1/2).

At the same time, we also provide a lower bound that demonstrate that for
spectral projection, separation in excess of (σi + σj)(1/wi + 1/wj)1/2 is manda-
tory. That is, we prove that for any set of mixing weights w1, . . . , wk, there is an
arrangement of identical Gaussians, with maximal directional variance σ where
every pair of means μi, μj is separated by σ(1/wi + 1/wj)1/2, yet upon spec-
tral projection the mixture collapses completely, i.e., all means and covariance
matrices in the projected mixture are identical. Thus, with the exception of the
concentration term, our upper and lower bounds coincide.

We should mention briefly an important difference of our approach as com-
pared to much previous work. Given as input some k′ ≥ k, our algorithm re-
cursively subdivides the data set using cuts that respect mixture boundaries
whenever applied to mixtures with at least two components present. Unlike
previous work, our algorithm does not terminate with a partition of the input
samples into k sets, but instead continues subdivision, returning a hierarchy
that describes many legitimate k-partitions for varying values of k. This subdi-
vision tree admits simple dynamic programming algorithms that can reconstruct
k-partitions minimizing a variety of loss functions, which we discuss later in fur-
ther detail. Importantly, it gives the flexibility to explore several values of k in
a uniform manner. Computing each cut in this tree reduces to computing the
top k singular vectors of a sample submatrix followed by a Minimum Spanning
Tree computation on the corresponding projected sample. As a result, a naive
implementation of our algorithm runs in time O(kd3n2). If one is a bit more
careful and performs the MST computations on appropriately large subsamples,
the running time becomes linear in n, specifically O(n(k2d2 + d3)/wmin).

2 Our Techniques and Results

From this point on, we adopt the convention of viewing the data set as a col-
lection of samples with hidden labels, rather than samples from a pre-specified
mixture of distributions. This will let us describe sufficient conditions for cor-
rect clustering that are independent of properties of the distributions. Of course,
we must eventually determine the probability that a specific distribution yields
samples with the requisite properties, but deferring this discussion clarifies the
results, and aids in their generality.

Our exposition uses sample statistics: μi, σi, and wi. These are the empirical
analogues of μi, σi, and wi, computed from a d×n matrix of labeled samples A.
We also use ni to denote the number of samples in the mixture with label i.

On Spectral Learning of Mixtures of Distributions 461

The advantages of sample statistics are twofold: i) they allow for more concise
and accurate proofs, and ii) they yield pointwise bounds that may be applied
to arbitrary sets of samples. We will later discuss the convergence of the sample
statistics to their distributional equivalents, but for now the reader may think
of them as equivalent.

2.1 Spectral Projection and Perturbation

We start our analysis with an important tool from linear algebra: the optimal
rank k column projection. For every matrix A and integer k, there exists a rank
k projection matrix PA such that for any other matrix X of rank at most k,

‖A − PAA‖ ≤ ‖A −X‖ . (1)

The matrix PA is spanned by the top k left singular vectors of A, read from A’s
singular value decomposition.

Our key technical result is that the sample means μi are only slightly per-
turbed when projected through PA. We use the notation σ2 =

∑
i wiσ

2
i for the

weighted maximum directional variance.

Theorem 1. For any set A of labeled samples, for all i, ‖μi−PAμi‖ ≤ σ/w
1/2
i .

Proof. Let xi ∈ {0, 1/ni}n be the scaled characteristic vector of samples in A
with label i, i.e., xq

i = 1/ni iff the q-th sample has label i. Thus, μi = Axi and

‖μi −PAμi‖ = ‖(A−PAA)xi‖ ≤ ‖A−PAA‖ ‖xi‖ ≤ ‖A−PAA‖/n1/2
i . (2)

Let B be the d× n matrix that results by replacing each sample (column) in A
by the empirical mean of its component. B has rank at most k, and so by (1)

‖A − PAA‖ ≤ ‖A−B‖ . (3)

Write D = A − B and let Dj be the d × nj submatrix of samples with label j,
so that ‖DjD

T
j /nj‖ = σ2

j . Then

‖D‖2 = ‖DDT ‖ = ‖
∑

j

DjD
T
j ‖ ≤

∑
j

‖DjD
T
j ‖ =

∑
j

σ2
jnj = σ2n . (4)

Combining (2),(3) and (4) we get ‖μi − PAμi‖ ≤ σ(n/ni)1/2 = σ/w
1/2
i . ��

Theorem 1 and the triangle inequality immediately imply that for every i, j
the separation of μi, μj is reduced by the projection onto PA by no more than

‖(μi − μj) − PA(μi − μj)‖ ≤ σ(1/w1/2
i + 1/w1/2

j) . (5)

In Theorem 2 below we sharpen (5) slightly (representing an improvement of no
more than a factor of

√
2). As we will prove in Section 4, the result of Theorem 2

is tight.

462 D. Achlioptas and F. McSherry

Theorem 2. For any set A of labeled samples, for all i, j, ‖(μi −μj)−PA(μi −
μj)‖ ≤ σ(1/wi + 1/wj)1/2.

Proof. Analogously to Theorem 1, we now choose xij ∈ {0, 1/ni,−1/nj}n so
that μi − μj = Axij and ‖xij‖ = (1/ni + 1/nj)1/2. Recall that by (3) and (4)
we have ‖(A − PAA)‖ ≤ σn1/2. Thus,

‖(μi − μj) − PA(μi − μj)‖ = ‖(A − PAA)xij‖
≤ ‖A − PAA‖(1/ni + 1/nj)1/2

= σ(1/wi + 1/wj)1/2 .

��
2.2 Combining Spectral Projection and Single-Linkage

We now describe a simple partitioning algorithm combining spectral projection
and single-linkage that takes as input a training set A, a set to separate B, and
a parameter k. The algorithm computes an optimal rank k projection for the
samples in A which it applies to the samples in B. Then, it applies single-linkage
to the projected samples, i.e., it computes their minimum spanning tree and
removes the longest edge from it.

Separate(A,B, k):

1. Construct the Minimum Spanning Tree on PAB with respect to the 2-norm.
2. Cut the longest edge, and return the connected components.

Separate will be the core primitive we build upon in the following sections, and
so it is important to understand the conditions under which it is guaranteed to
return a proper cut.

Theorem 3. Assume that A,B are sets of samples containing the same set of
labels and that the sample statistics of A satisfy, with i = arg maxi σi,

∀j �= i : ‖μi − μj‖ > σi(1/wi + 1/wj)1/2 + 4 max
xu∈B

‖PA(xu − μu)‖ . (6)

If B contains at least two labels, then Separate(A,B, k) does not separate sam-
ples of the same label.

Proof. The proof idea is that after projecting B on PA, the samples in B with
label i will be sufficiently distant from all other samples so that the following is
true: all intra-label distances are shorter than the shortest inter-label distance
involving label i. As a result, by the time an inter-label edge involving label i is
added to the Minimum Spanning Tree, the samples of each label already form a
connected component.

By the triangle inequality, the largest intra-label distance is at most

‖PA(xi − xj)‖ ≤ 2 max
xv∈B

‖PA(xv − μv)‖ . (7)

On Spectral Learning of Mixtures of Distributions 463

On the other hand, also by the triangle inequality, all inter-label distances are
at least

‖PA(xi − xj)‖ ≥ ‖PA(μi − μj)‖ − 2 max
xv∈B

‖PA(xv − μv)‖ . (8)

To bound ‖PA(μi − μj)‖ from below we first apply the triangle inequality one
more time to get (9). We then bound the first term in (9) from below using (6)
and the second term using Theorem 2, thus getting

‖PA(μi − μj)‖ ≥ ‖μi − μj‖ − ‖(I − PA)(μi − μj)‖ (9)

> (σi − σ)(1/wi + 1/wj)1/2 + 4 max
xv∈B

‖PA(xv − μv)‖ . (10)

As σi ≥ σ, combining (8) and (10) we see, by (7), that all inter-label distances
involving label i have length exceeding the upper bound on intra-label distances.

��

2.3 k-Partitioning the Full Sample Set

Given two sets of samples A,B and a parameter k, Separate bisects B by pro-
jecting it onto the optimal rank k subspace of A and applying single-linkage
clustering. Now, we show how to use Separate recursively and build an al-
gorithm Segment which on input A,B, k outputs a full k-partition of B. To
classify n sample points from a mixture of distributions we simply partition
them at random into two sets X,Y and invoke Segment twice, with each set
being used once as the training set and once as the set to be partitioned.

Applying Separate recursively is non-trivial. Imagine that we are given sets
A,B meeting the conditions of Theorem 3 and by running Separate(A,B, k)
we now have a valid bipartition B = B1 ∪B2. Recall that one of the conditions
in Theorem 3 is that the two sets given as input to Separate contain the same
set of labels. Therefore, if we try to apply Separate to either B1 or B2 using A
as the training set we are guaranteed to not meet that condition! Another, more
technical, problem is that we would like each recursive invocation to succeed or
fail independently of the rest. Using the same training set for all invocations
introduces probabilistic dependencies among them that are very difficult to deal
with.

To address these two problems we will need to be a bit more sophisticated
in our use of recursion: given sets A,B rather than naively running Sepa-
rate(A,B, k), we will instead first subsample A to get a training set A1 and
then invoke Separate(A1, A ∪ B − A1, k). The idea is that if A1 is big enough
it will have all the good statistical properties of A (as demanded by Theorem 3)
and Separate will return a valid bipartition of A ∪ B − A1. The benefit, of
course, is that each part of B will now be accompanied by the subset of A−A1

of same labels. Therefore, we can now simply discard A1 and proceed to apply
the same idea to each of the two returned parts, as we know which points in
each part came from A and which came from B.

464 D. Achlioptas and F. McSherry

Our algorithm Segment will very much follow the above idea, the only dif-
ference being that rather than doing subsampling with each recursive call we
will fix a partition of A = A1 ∪ · · · ∪Ak at the outset and use it throughout the
recursion. More specifically, we will think of the execution of Segment as a full
binary tree with 2k − 1 nodes, each of which will correspond to an invocation
of Separate. In each level 1 ≤ � ≤ k of the tree, all invocations will use A

as the training set and they will partition some subset of A
+1 ∪ · · · ∪ Ak ∪ B.
So, for example, at the second level of the tree, there will be two calls to Sepa-
rate, both using A2 as the training set and each one partitioning the subset of
A∪B−A1 that resulted by the split at level 1. Clearly, one of these two parts can
already consist of samples from only one label, in which case the invocation at
level 2 will produce a bipartition which is arbitrary (and useless). Nevertheless,
as long as these are the only invocations in which samples with the same label
are split, there exists a subset of k nodes in the tree which corresponds exactly
to the labels in B. As we will see, we will be able to identify this subset in time
O(k2 min(n, 2k)) by dynamic programming.

Formally, Segment takes as input a sample set S ⊆ A ∪B and a parameter
� indicating the level. Its output is the hierarchical partition of S as captured by
the binary tree mentioned above. To simplify notation below, we assume that
the division of A into A1, . . . , Ak is known to the algorithm.

Segment(S, �)
1. Let [L,R] = Separate(A
 ∩ S, S \A
, k).
2. If � < k invoke Segment(L, � + 1) and Segment(R, � + 1).

To state the conditions that guarantee the success of Segment we need to
introduce some notation. For each i, �, let μ

i , σ

i , and w

i be the sample statistics
associated with label i in A
. For each vector v ⊆ {1, . . . , k} let Av

 denote the set
of samples from A
 with labels from v, and let Bv

 denote the set of samples from⋃
m>
 Am ∪ B with labels from v. Finally, we say that a hierarchical clustering

is label-respecting if for any set of at least two labels, the clustering does not
separate samples of the same label.

Theorem 4. Assume that A1, . . . , Ak and B each contain the same set of labels
and that for every pair (�,v), with i = arg maxi∈v σ

i , we have:

∀ j ∈ v − i : ‖μ

i − μ

j‖ ≥ σ

i(1/w

i + 1/w

j)
1/2 + 4 max

xu∈Bv
�

‖PAv
�
(xu − μ

u)‖ .

The hierarchical clustering Segment(A ∪B, 1) produces will be label-respecting.

Proof. The proof is inductive, starting with the inductive hypothesis that in any
invocation of Segment(S, �) where S contains at least two labels, the set S
equals Bv

−1for some v. Therefore, we need to prove that Separate(A
 ∩ S, S \
A
, k) = Separate(Av

 , B
v

 , k) will produce sets L and R that do not share labels.

For every (v, �), if i = arg maxi∈v σ

i , our assumed separation guarantees that

label i satisfies

∀ j ∈ v − i : ‖μ

i − μ

j‖ ≥ σ

i(1/w

i + 1/w

j)
1/2 + 4 max

xu∈Bv
�

‖PAv
�
(xu − μ

u)‖ .

On Spectral Learning of Mixtures of Distributions 465

While the above separation condition refers to the sample statistics of A
, when
we restrict our attention to Av

 , the samples means and standard deviations do
not change and the sample mixing weights only increase. Therefore, the require-
ments of Theorem 3 hold for Av

 , B
v

 concluding the proof. ��

Given the hierarchical clustering generated by Segment we must still deter-
mine which set of k−1 splits is correct. We will, in fact, solve a slightly more gen-
eral problem. Given an arbitrary function scoring subsets of B, score : 2B → R,
we will find the k-partition of the samples with highest total (sum) score. For
many distributions, such as Gaussians, there are efficient estimators of the likeli-
hood that a set of data was generated from the distribution and such estimators
can be used as the score function. For example, in cross training log-likelihood es-
timators, the subset under consideration is randomly partitioned into two parts.
First, the parameters of the distribution are learned using one part and then the
likelihood of the other part given these parameters is computed.

We will use dynamic programming to efficiently determine which subset set
of k− 1 splits corresponds to a k-partition for which the sum of the scores of its
parts is highest. As one of the options in the k−1 splits by labels, our result will
score at least as high as the latent partition. The dynamic program computes,
for every node S in the tree and integer i ≤ k, the quantity opt(S, i), the optimal
score gained by budgeting i parts to the subset S. If we let S = L ∪ R be the
cut associated with S, the dynamic program is defined by the rules

opt(S, 1) = score(S) and opt(S, i) = max
j<i

[opt(L, j) + opt(R, i− j)] .

We are ultimately interested in opt(B, k) which we can be computed efficiently
in a bottom up fashion in time O(k2 min(n, 2k)).

Finally, all of the techniques that we have used to partition B can be used
to partition A. We can divide B into k sets B1, . . . Bk to use as training in
the classification of A. For all but the most obtuse sets of samples, a random
partition into A and B will yield samples for which ‖μA

i − μB
j ‖ is minimized at

i = j allowing us to merge the partition of A with the partition of B. We avoid
stating a theorem generally about the combination of these three steps, but do
so in the next section with concrete distributions.

3 Results for Gaussian, Log-Concave, and Concentrated
Mixtures

We now examine how our results apply to specific distributions, such as Gaussian
and Log-concave distributions, as well as a more general class that we define
below. In fact, we will start with the more general class, and instantiate the
other two from it.

First, we say that a distribution x is f -concentrated for a function f : R → R

if for every unit vector v

Pr
[
|vT (x − E[x])| > f(δ)

]
≤ δ . (11)

466 D. Achlioptas and F. McSherry

In words, when we project the distribution onto any fixed line, a random sample
will be within f(δ) of the mean with probability 1 − δ. Second, we say that a
distribution is g-convergent for a function g : R → R if a sample of size g(δ) with
probability 1 − δ satisfies

‖μ − μ‖ ≤ σ/8 and σ/2 ≤ σ ≤ 2σ , (12)

where μ and σ2 denote the sample mean and the sample maximum directional
variance, respectively.

Before proceeding, we prove an extension of f -concentration to low dimen-
sional projections:

Lemma 1. Let x be a distribution that is f-concentrated. For any fixed k di-
mensional projection P ,

Pr
[
‖P (x − E[x])‖ > k1/2f(δ/k)

]
≤ δ .

Proof. Given any set of k orthogonal basis vectors v1, . . . , vk for the space asso-
ciated with P , we can write P =

∑
i viv

T
i . As the vi are orthonormal, we can

use the Pythagorean equality

‖P (x − E[x])‖2 = ‖
∑

i

viv
T
i (x − E[x])‖2 =

∑
i

|vT
i (x − E[x])|2 . (13)

Taking a union bound, the probability that any of the k terms in the last sum
exceeds f(δ/k)2 is at most δ, giving a squared distance of at most kf(δ/k)2 and
completing the proof. ��

With these definitions in hand, we now state and prove a result about the clas-
sification of concentrated, convergent distributions.

Theorem 5. Consider any mixture of k distributions where each distribution i
is fi-concentrated and gi-convergent. Assume that A contains at least

k × max
i

((
gi(δ/k2) + 8 log(k2/δ)

)
w−1

i

)
samples from the mixture and that B contains n samples. If

∀ i, ∀ j �= i : ‖μi − μj‖ > 4σi(1/wi + 1/wj)1/2 + 4k1/2 max
σv<4σi

fv

(
δ

nk2k

)
then with probability at least 1 − 3δ, the hierarchical clustering produced by
Segment(A ∪B, 1) will be label-respecting.

Proof. We argue that with probability 1 − 3δ the sets A1, . . . , Ak, B meet the
conditions of Theorem 4.

As A is broken uniformly into A1, . . . , Ak, each of these k sets will contain a
number of samples that is at least maxi

(
gi(δ/k2)/wi + 8 log(k2/δ)/wi

)
. Impor-

tantly, the first term is sufficient to ensure that with probability 1 − δ each of

On Spectral Learning of Mixtures of Distributions 467

the mixtures in each of A
 have “converged”, in the sense of (12). The second
term ensures that with probability 1 − δ we have w

i ≥ wi/2 for each i, �.
Given these bounds relating the sample statistics to their limits, and letting

s = δ
nk2k to simplify notation, the assumed separation of ‖μi −μj‖ ensures that

for all �, for all i, and for all j �= i,

‖μ

i − μ

j‖ > σ

i(1/w

i + 1/w

j)
1/2 + 4 max

σu<4σi

(
k1/2fu(s) + ‖μu − μ

u‖
)

(14)

As there are at most k2k matrices Av

 , the fi-concentration of the distributions

ensures that with probability at least 1 − δ, for all Av

 , B

v

max
xu∈Bv

�

‖PAv
�
(xu − μu)‖ ≤ k1/2 max

j∈v
fj(s) . (15)

By the triangle inequality and submultiplicativity,

max
xu∈Bv

�

‖PAv
�
(xu − μ

u)‖ ≤ max
j∈v

(
k1/2fj(s) + ‖μj − μ

j‖
)

. (16)

Now, for each �,v, from (12) we have that for any σ

j ≤ σ

i , it is the case that
σj ≤ 4σi. Specifically, considering i = arg maxi∈v σ

i we have that

max
j∈v

(
k1/2fj (s) + ‖μj − μ

j‖
)
≤ max

σu≤4σi

(
k1/2fu(s) + ‖μu − μ

u‖
)

. (17)

Combining (15), (16), and (17) with (14), we see that for all �,v, if we let
i = arg maxi∈v σ

i , then

∀j ∈ v − i ‖μ

i − μ

j‖ > σ

i(1/w

i + 1/w

j)
1/2 + 4 max

xu∈Bv
�

‖PAv
�
(xu − μ

u)‖ .

��

3.1 Gaussian and Log-Concave Mixtures

We now show that for mixtures of both Gaussian and Log-concave distributions,
Segment produces a hierarchical clustering that is label-respecting, as desired.
From this, using dynamic programming as discussed in Section 2.3, we can ef-
ficiently find the k-partition that maximizes any scoring function which scores
each part independently of the others. For example, in the case of Gaussians,
this allows us to find a k-partition with cross-training log-likelihood at least as
high as the latent partition in time O(k2 min(n, 2k)).

Theorem 6. Consider any mixture of k Gaussian distributions with parameters
{(μi, σi, wi)} and assume that n � k(d + log k)/wmin is such that

∀i ∀j : ‖μi − μj‖ ≥ 4σi(1/wi + 1/wi)1/2 + 4σi(k log(nk) + k2)1/2 .

Let A and B each contain n samples from the mixture and partition A = A1 ∪
. . . ∪ Ak randomly. With probability that tends to 1 as n → ∞, the hierarchical
clustering produced by Segment(A ∪B, 1) will be label-respecting.

468 D. Achlioptas and F. McSherry

Proof. Standard results show that any Gaussian is f -concentrated for f(δ) =
σ(2 log(1/δ))1/2. Using techniques from Soshnikov [7] describing concentration
of the median of σ

i for various sample counts, one can show that a d-dimensional
Gaussian with maximum directional variance σ2 is g-convergent for g(δ) =
cd log(1/δ) for a universal constant c. ��

A recent related paper of Kannan et al. [8] shows that Log-concave distri-
butions, those for which the logarithm of the probability density function is
concave, are also reasonably concentrated and convergent.

Theorem 7. Given a mixture of k Log-concave distributions with parameters
{(μi, σi, wi)} assume that for some fixed n � k(d(log d)5 + log k)/wmin the fol-
lowing holds:

∀i ∀j : ‖μi − μj‖ ≥ 4σi(1/wi + 1/wi)1/2 + 4σik
1/2(log(nk) + k) .

Let A and B each contain n samples from the mixture and partition A = A1 ∪
. . . ∪ Ak randomly. With probability that tends to 1 as n → ∞, the hierarchical
clustering produced by Segment(A ∪B, 1) will be label-respecting.

Proof. Lemma 2 of [8] shows that any Log-concave distribution is f -concentrated
for f(δ) = σ log(1/δ). Lemma 4 of [8] shows that for any Log-concave dis-
tribution there is a constant c such that the distribution is g-convergent for
g(δ) = cd(log(d/δ))5. ��

4 Lower Bounds

We now argue that for any set of mixing weights w1, . . . , wk, there is an arrange-
ment of identical Gaussians for which spectral projection is not an option. This
also demonstrates that the bound in Theorem 1 is tight.

Theorem 8. For any
∑

i wi = 1, there exists a mixture of Gaussians with
‖Ci‖ = σ2 satisfying

‖μi − μj‖ = σ(1/wi + 1/wj)1/2 (18)

for which the optimal rank k subspace for the distribution is arbitrary.

Proof. We choose the μi to be mutually orthogonal and of norm σ/w
1/2
i . To each

we assign the common covariance matrix C = σ2I −
∑

i wiμiμ
T
i . The optimal

rank k subspace for the distribution is the optimal rank k subspace for the
expected outer product of a random sample x from the mixture which is

E[xxT] =
∑

i

wiμiμ
T
i +

∑
i

wiC = σ2I .

Since the identity matrix favors no dimensions for its optimal approximation,
the proof is complete. ��

On Spectral Learning of Mixtures of Distributions 469

Remark: The theorem above only describes a mixture for which there is no
preference for a particular subspace. By diminishing the norms of the μi ever so
slightly, we can set the optimal rank k subspace arbitrarily and ensure that it
does not intersect the span of the means.

Remark: One can construct counterexamples with covariance matrices of great
generality, so long as they discount the span of the means

∑
i wiμiμ

T
i , and pro-

mote some other k dimensions. In particular, the d − 2k additional dimensions
can have 0 variance, demonstrating that the maximum variance σ2 = ‖C‖2

2 is
the parameter of interest, as opposed to the average variance ‖C‖2

F /d, or any
other function that depends on more than the first k singular values of C.

Remark: If one is willing to weaken Theorem 8 slightly by dividing the RHS
of (18) by 2, then we can take as the common covariance matrix C = 2σ2I −∑

i wiμiμ
T
i , which has eccentricity bounded by 2. Bounded eccentricity was an

important assumption of Dasgupta [2], who used random projections, but we see
here that it does not substantially change the lower bound.

References

1. S. Arora and R. Kannan, Learning mixtures of arbitrary Gaussians, In Proc. 33rd
ACM Symposium on Theory of Computation, 247–257, 2001.

2. S. Dasgupta, Learning mixtures of Gaussians, In Proc. 40th IEEE Symposium on
Foundations of Computer Science, 634–644, 1999.

3. S. Dasgupta, L. Schulman, A 2-round variant of EM for Gaussian mixtures, In
Proc. 16th Conference on Uncertainty in Artificial Intelligence, 152–159, 2000.

4. B. Lindsay, Mixture models: theory, geometry and applications, American Statistical
Association, Virginia, 2002.

5. D.M. Titterington, A.F.M. Smith, and U.E. Makov, Statistical analysis of finite
mixture distributions, Wiley, 1985.

6. S. Vempala and G. Wang, A Spectral Algorithm of Learning Mixtures of Distri-
butions, In Proc. 43rd IEEE Symposium on Foundations of Computer Science,
113–123, 2002.

7. A. Soshnikov, A Note on Universality of the Distribution of the Largest Eigenvalues
in Certain Sample Covariance Matrices, J. Stat. Phys., v.108, Nos. 5/6, pp. 1033-
1056, (2002)

8. H. Salmasian, R. Kannan, S. Vempala, The Spectral Method for Mixture Models,
In Electronic Colloquium on Computational Complexity (ECCC) (067), 2004.

From Graphs to Manifolds – Weak and Strong
Pointwise Consistency of Graph Laplacians

Matthias Hein1, Jean-Yves Audibert2, and Ulrike von Luxburg3

1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
2 CERTIS, ENPC, Paris, France

3 Fraunhofer IPSI, Darmstadt, Germany

Abstract. In the machine learning community it is generally believed
that graph Laplacians corresponding to a finite sample of data points
converge to a continuous Laplace operator if the sample size increases.
Even though this assertion serves as a justification for many Laplacian-
based algorithms, so far only some aspects of this claim have been rigor-
ously proved. In this paper we close this gap by establishing the strong
pointwise consistency of a family of graph Laplacians with data-
dependent weights to some weighted Laplace operator. Our investigation
also includes the important case where the data lies on a submanifold
of Rd.

1 Introduction

In recent years, methods based on graph Laplacians have become increasingly
popular. In machine learning they have been used for dimensionality reduction
[1], semi-supervised learning [12], and spectral clustering (see [11] for references).
The usage of graph Laplacians has often been justified by their relations to the
continuous Laplace operator. Most people believe that for increasing sample size,
the Laplace operator on the similarity graph generated by a sample converges
in some sense to the Laplace operator on the underlying space. It is all the more
surprising that rigorous convergence results for the setting given in machine
learning do not exist. It is only for some cases where the graph has certain
regularity properties such as a grid in Rd that results are known.

In the more difficult setting where the graph is generated randomly, only
some aspects have been proven so far. The approach taken in this paper is first
to establish the convergence of the discrete graph Laplacian to a continuous
counterpart (“variance term”), and in a second step the convergence of this con-
tinuous operator to the continuous Laplace operator (“bias term”). For compact
submanifolds in Rd the second step has already been studied by Belkin [1] for
Gaussian weights and the uniform measure, and was then generalized to gen-
eral isotropic weights and general densities by Lafon [7]. Belkin and Lafon show
that the bias term converges pointwise for h → 0, where h is the bandwidth of
isotropic weights. However, the convergence of the variance term was left open
in [1] and [7].

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 470–485, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Graphs to Manifolds 471

The first work where, in a slightly different setting, both limit processes have
been studied together is Bousquet et al. [3]. Using the law of large numbers
for U -statistics, the authors studied the convergence of the regularizer Ωn(f) =
〈f, Lnf〉 for sample size n → ∞ (where f ∈ Rn and Ln is the unnormalized
graph Laplacian on n sample points). Then taking the limit for the bandwidth
h → 0 they arrived at a weighted Laplace operator in Rd. The drawback of this
approach is that the limits in n and h are not taken simultaneously.

In contrast to this work, in [11] the bandwidth h was kept fixed while the
large sample limit n → ∞ of the graph Laplacian (normalized and unnormalized)
was considered. In this setting, the authors show strong convergence results of
graph Laplacians to certain limit integral operators, which then even imply the
convergence of the eigenvalues and eigenfunctions of the graph Laplacian.

The goal of this paper is to surpass the limitations of previous approaches.
We study the convergence of both bias and variance term, where the limits
n → ∞ and h → 0 are taken simultaneously. The main achievement of this
paper is Theorem 3, where the strong pointwise consistency of the normalized
graph Laplacian with varying data dependent weights as introduced in [4] is
shown. The limit operator is in general a weighted Laplace-Beltrami operator.
Based on our analysis we argue against using the unnormalized graph Laplacian.

We would like to mention that after submission of our manuscript, we learned
that a result related to a special case of Theorem 2 has been proven indepen-
dently by Belkin and Niyogi in their parallel COLT paper [2] and has been
announced in [8] (see Section 4 for a short discussion).

Theorem 3 is proven as follows. In section 2 we introduce general graph
Laplacians. Then in Section 3, we establish the first step of Theorem 3, namely
the convergence of the bias term in the general case where the data lies on
a submanifold M in Rd. We prove that the difference between the weighted
Laplace-Beltrami operator and its kernel-based approximation goes to zero when
the bandwidth h → 0. Then in Section 4 we show that the variance term, namely
the difference between the normalized graph Laplacian and the kernel-based
approximation, is small with high probability if nhd+4/ log n → ∞. Plugging
both results together we arrive at the main result in Theorem 3.

2 The Graph Laplacian

In this section we define the graph Laplacian on an undirected graph. To this
end one has to introduce Hilbert spaces HV and HE of functions on the vertices
V resp. edges E, define a difference operator d, and then set the graph Laplacian
as Δ = d∗d. This approach is well-known in discrete potential theory and was
independently introduced in [13]. In many articles, graph Laplacians are used
without explicitly mentioning d, HV and HE . This can be misleading since there
always exists a whole family of choices for d, HV and HE which all yield the
same graph Laplacian.

Hilbert Space Structure on the Vertices V and the Edges E: Let (V,W)
be a graph, where V denotes the set of vertices with |V | = n, and W is a positive,

472 M. Hein, J.-Y. Audibert, and U. von Luxburg

symmetric n×n similarity matrix, that is wij = wji and wij ≥ 0, i, j = 1, . . . , n.
We say that there is an (undirected) edge from i to j if wij > 0. Moreover, the
degree function d is defined as di =

∑n
j=1 wij . We assume here that di > 0, i =

1, . . . , n. That means that each vertex has at least one edge. The inner products
on the function spaces RV resp. RE are defined as 〈f, g〉V =

∑n
i=1 fi gi χ(di)

and 〈F,G〉E = 1
2

∑n
i,j=1 Fij Gij φ(wij), where χ : R∗

+ → R∗
+, φ : R∗

+ → R∗
+, and

R∗
+ = {x ∈ R|x > 0}. By our assumptions on the graph both inner products are

well-defined. Let H(V, χ) = (RV , 〈·, ·〉V) and H(E, φ) = (RE , 〈·, ·〉E).

The Difference Operator d and its Adjoint d∗: We define the difference
operator d : H(V, χ) → H(E, φ) as follows:

∀ eij ∈ E, (df)(eij) = γ(wij)(f(j) − f(i)),

where γ : R∗
+ → R∗

+. In the case of a finite graph (i.e., |V | < ∞) d is always a
bounded operator. The adjoint operator d∗ is defined by 〈df, u〉E = 〈f, d∗u〉V ,
for any f ∈ H(V, χ), u ∈ H(E, φ). It is straightforward to derive

(d∗u)(l) =
1

2χ(dl)

n∑
i=1

γ(wil)φ(wil)(uil − uli).

The two terms in the right hand side of Equation (1) can be interpreted as the
outgoing resp. ingoing flow.

The General Graph Laplacian: The operator Δ : H(V, χ) → H(V, χ) defined
as Δ = d∗d is obviously self-adjoint and positive semi-definite:

〈f, Δg〉V = 〈df, dg〉E = 〈Δf, g〉V , 〈f, Δf〉V = 〈df, df〉E ≥ 0.

Using the definitions of the difference operator d and its adjoint d∗ we can
directly derive the graph Laplacian:

(Δf)(l) = (d∗df)(l) =
1

χ(dl)

[
f(l)

n∑
i=1

γ(wil)
2φ(wil) −

n∑
i=1

f(i)γ(wil)
2φ(wil)

]
.

The following operators are usually defined as the ’normalized’ and ’unnormal-
ized’ graph Laplacian Δnm resp. Δunm:

(Δnmf)(i) = f(i) − 1

di

n∑
j=1

wijf(j), (Δunmf)(i) = dif(i) −
n∑

j=1

wijf(j).

We observe that there exist several choices of χ,γ and φ which result in Δnm

or Δunm. Therefore it can cause confusion if one speaks of the ’normalized’ or
’unnormalized’ graph Laplacian without explicitly defining the corresponding
Hilbert spaces and the difference operator. We just note that one can resolve
this ambiguity at least partially if one not only asks for consistency of the graph
Laplacian but also for consistency of HV . Unfortunately, due to space restrictions
we cannot further elaborate on this topic.

From Graphs to Manifolds 473

3 The Weighted Laplacian and Its Approximations

The Laplacian is one of the most prominent operators in mathematics. Never-
theless, most books either deal with the Laplacian in Rd or the Laplace-Beltrami
operator on a manifold M . Not so widely used is the weighted Laplacian on a
manifold. This notion is useful when one studies a manifold with a measure,
in our case the probability measure generating the data, which in the following
we assume to be absolutely continuous wrt the natural volume element of the
manifold1. In this section we show how the weighted Laplacian can be approx-
imated pointwise by using kernel-based averaging operators. The main results
are Theorem 1 and Corollary 1.

Approximations of the Laplace-Beltrami operator based on averaging with
the Gaussian kernel have been studied in the special case of the uniform mea-
sure on a compact submanifold without boundary in Smolyanov et al.[9, 10] and
Belkin [1]. Belkin’s result was then generalized by Lafon [7] to general densities
and to a wider class of isotropic, positive definite kernels. Whereas the proof of
Theorem 1 in [7] applies for compact hypersurfaces2 in Rd, a proof for general
compact submanifolds using boundary conditions is stated in [4]. In this section,
we will prove Theorem 1 for general submanifolds M , including the case where
M is not compact and without the assumptions of positive definiteness of the
kernel nor with any boundary conditions3. Especially for dimensionality reduc-
tion the case of low-dimensional submanifolds in Rd is important. Notably, the
analysis below also includes the case where due to noise the data is only concen-
trated around a submanifold. In this section we will use the Einstein summation
convention.

Definition 1 (Weighted Laplacian). Let (M, gab) be a Riemannian manifold
with measure P , where P has a density p with respect to the natural volume
element dV =

√
det g dx and let ΔM be the Laplace-Beltrami operator on M .

Then we define the s-th weighted Laplacian Δs as

Δs := ΔM +
s

p
gab(∇ap)∇b =

1

ps
gab∇a(ps∇b) =

1

ps
div(ps grad). (1)

In the family of weighted Laplacians there are two cases which are particularly
interesting. The first one, s = 0, corresponds to the standard Laplace-Beltrami
operator. This notion is interesting if one only wants to use properties of the
geometry of the manifold, but not of the data generating probability measure.
The second case, s = 1, corresponds to the weighted Laplacian Δ1 = 1

p∇a(p∇a).

1 Note that the case when the probability measure is absolutely continuous wrt the
Lebesgue measure on Rd is a special case of our setting.

2 A hypersurface is a submanifold of codimension 1.
3 Boundary conditions are hard to transfer to the graph setting.

474 M. Hein, J.-Y. Audibert, and U. von Luxburg

This operator can be extended to a self-adjoint operator4 in L2(M,p dV), which
is the natural function space on M given P = p dV .

Let us introduce the following notations: Ck(M) is the set of Ck-functions on
M with finite norm5 given by ‖f‖Ck(M) = sup∑m

i=1 li≤k, x∈M

∣∣∣ ∂| ∑m
i=1 li|

∂(x1)l1 ...∂(xm)lm
f(x)

∣∣∣ .
B(x, ε) denotes a ball of radius ε. To bound the deviation of the extrinsic distance
in Rd in terms of the intrinsic distance in M we define for each x ∈ M the
regularity radius r(x) as

r(x) = sup{r > 0
∣∣ ‖i(x) − i(y)‖2

Rd ≥ 1

2
d2

M (x, y), ∀ y ∈ BM (x, r)}. (3)

Assumption 1 – i : M → Rd is a smooth, isometric embedding6,
– The boundary ∂M of M is either smooth or empty,
– M has a bounded second fundamental form,
– M has bounded sectional curvature,
– for any x ∈ M , r(x) > 0, and r is continuous,
– for any x ∈ M, δ(x) := inf

y∈M\BM (x, 1
3 min{inj(x),r(x)})

‖i(x) − i(y)‖
Rd > 0 , where

inj(x) is the injectivity radius at x 7.

The first condition ensures that M is a smooth submanifold of Rd with the metric
induced from Rd (this is usually meant when one speaks of a submanifold in Rd).
The next four properties guarantee that M is well behaved. The last condition
ensures that if parts of M are far away from x in the geometry of M , they do not
come too close to x in the geometry of Rd. In order to emphasize the distinction
between extrinsic and intrinsic properties of the manifold we always use the
slightly cumbersome notations x ∈ M (intrinsic) and i(x) ∈ Rd (extrinsic). The
reader who is not familiar with Riemannian geometry should keep in mind that
locally, a submanifold of dimension m looks like Rm. This becomes apparent if
one uses normal coordinates. Also the following dictionary between terms of the
manifold M and the case when one has only an open set in Rd (i is then the
identity mapping) might be useful.

Manifold M open set in Rd

gij ,
√

det g δij , 1
natural volume element Lebesgue measure

Δs Δs =
∑d

i=1
∂2f

∂(zi)2
+ s

p

∑d
i=1

∂p
∂zi

∂f
∂zi

4 When M is compact, connected and oriented and for any f, g ∈ C∞(M) vanishing
on the boundary, by the first Green identity, we have∫

M

f(Δsg) psdV =

∫
M

f
(
Δg +

s

p
〈∇p,∇g〉

)
psdV = −

∫
M

〈∇f,∇g〉 psdV. (2)

5 We refer to Smolyanov et al.[9] for the technical details concerning this definition.
6 i.e. the Riemannian metric gab on M is induced by Rd, gM

ab = i∗gR
d

ab , where gR
d

ab = δab.
7 Note that the injectivity radius inj(x) is always positive.

From Graphs to Manifolds 475

The kernels used in this paper are always isotropic, that is they can be written
as functions of the norm in Rd. Furthermore we make the following assumptions
on the kernel function k:

Assumption 2 – k : R+→ R is measurable, non-negative and non-increasing,
– k ∈ C2(R+), that is in particular k and ∂2k

∂x2 are bounded,
– k, |∂k

∂x | and |∂2k
∂x2 | have exponential decay: ∃c, α,A ∈ R+ such that for any

t ≥ A, f(t) ≤ ce−αt, where f(t) = max{k(t), |∂k
∂x |(t), |

∂2k
∂x2 |}.

Also let us introduce the helpful notation8 kh(t) = 1
hm k

(
t

h2

)
, where we call h the

bandwidth of the kernel. Let us now define our kernel-based averaging operators
similar to Lafon [7]9. We define the h-averaged density as:

ph(x) =

∫
M

kh

(
‖i(x) − i(y)‖2

Rd

)
p(y)

√
det g dy.

Note that the distance used in the kernel function is the distance in the ambient
space Rd. In this paper we use a family of measure-dependent kernels parame-
terized by λ ≥ 0 introduced in [4] defined as:

k̃λ,h

(
‖i(x) − i(y)‖2

Rd

)
:=

kh

(
‖i(x) − i(y)‖2

Rd

)
[ph(x)ph(y)]λ

.

Let d̃λ,h(x) =
∫

M
k̃λ,h

(
‖i(x) − i(y)‖2

Rd

)
p(y)

√
det g dy.

Definition 2 (Kernel-based approximation of the Laplacian). We intro-
duce the following kernel-based averaging operator Aλ,h:

(Aλ,hf)(x) =
1

d̃λ,h(x)

∫
M

k̃λ,h

(
‖i(x) − i(y)‖2

Rd

)
f(y)p(y)

√
det g dy (4)

and the approximation of the Laplacian Δλ,hf := 1
h2 (f −Aλ,hf) .

A very useful tool in the proof of our main theorems is the following Proposition
of Smolyanov et al.[9], which locally relates the extrinsic distance in Rd with the
intrinsic distance dM (x, y) of the manifold.

Proposition 1. Let i : M → Rd be an isometric embedding of the smooth m-
dimensional Riemannian manifold M into Rd. Let x ∈ M and V be a neighbor-
hood of 0 in Rm and let Ψ : V → U provide normal coordinates of a neighborhood
U of x, that is Ψ(0) = x. Then for all y ∈ V :

‖y‖2
Rm = d2

M (x, Ψ(y)) = ‖(i ◦ Ψ)(y) − i(x)‖2
Rd +

1

12
‖Π(γ̇, γ̇)‖2

TxRd + O(‖x‖5
Rm)

where Π is the second fundamental form of M and γ the unique geodesic from
x to Ψ(y) such that γ̇ = yi∂yi .

8 In order to avoid problems with differentiation the argument of the kernel function
will be the squared norm.

9 But note that we do not require the kernel to be positive definite and we integrate
with respect to the natural volume element.

476 M. Hein, J.-Y. Audibert, and U. von Luxburg

The volume form dV =
√

det gij(y)dy of M satisfies in normal coordinates

dV =

(
1 +

1

6
Riuvi yuyv + O(‖y‖3

Rm)

)
dy

in particular (Δ
√

det gij)(0) = − 1
3
R , where R is the scalar curvature (i.e.,

R = gikgjlRijkl).

The following proposition describes the asymptotic expression of the convolution
parts in the averaging operators Aλ,h. This result is interesting in itself since it
shows the interplay between intrinsic and extrinsic geometry of the submanifold
if one averages locally. The proof is similar to that of [10], but we now use general
kernel functions, which makes the proof a little bit more complicated. We define
C1 =

∫
Rm k(‖y‖2)dy < ∞, C2 =

∫
Rm k(‖y‖2)y2

1dy < ∞.

Proposition 2. Let M and k satisfy Assumptions 1 and 2. Furthermore let P
have a density p with respect to the natural volume element and p ∈ C3(M).
Then for any x ∈ M\∂M , there exists an h0(x) > 0 for any f ∈ C3(M) such
that for all h < h0(x),∫

M

kh

(
‖i(x) − i(y)‖2

Rd

)
f(y)p(y)

√
det g dy = C1p(x)f(x)

+
h2

4
C2

(
p(x)f(x)

[
− R +

1

2

∥∥∥∥∥∑
a

Π(∂a, ∂a)

∥∥∥∥∥
2

Ti(x)Rd

]
+ 2(ΔM (pf))(x)

)
+ O(h3),

where O(h3) is a function depending on x, ‖f‖C3 and ‖p‖C3 .

Proof: See appendix. �
Now we are ready to formulate the asymptotic result for the operator Δλ,h,
which extends the result of Lafon mentioned before.

Theorem 1. Let M and k satisfy Assumptions 1 and 2. Furthermore let k now
have compact support on [0, R2]10 and let P have a density p with respect to
the natural volume element which satisfies p ∈ C3(M) and p(x) > 0, for any
x ∈ M . Then for any λ ≥ 0, for any x ∈ M\∂M , there exists an h1(x) > 0 for
any f ∈ C3(M) such that for all h < h1(x),

(Δλ,hf)(x) = − C2

2 C1

(
(ΔMf)(x) +

s

p(x)
〈∇p,∇f〉TxM

)
+ O(h2)

= − C2

2 C1
(Δsf)(x) + O(h2), (5)

where ΔM is the Laplace-Beltrami operator of M and s = 2(1 − λ).

Proof: The need for compactness of the kernel k comes from the fact that the
modified kernel k̃ depends on ph(y). Now we can use the Taylor expansion of
Proposition 2 for ph(y) only for h in the interval (0, h0(y)). Obviously it can

10 That means k(t) = 0, if t > R2.

From Graphs to Manifolds 477

happen that h0(y) → 0 when we approach the boundary. Therefore, when we
have to control h0(y) over the whole space M , the infimum could be zero, so
that the estimate holds for no h. By restricting the support of the kernel k to a
compact set [0, R2], it can be directly seen from the proof of Proposition 2 that
h0(y) has the form h0(y) = ε(y)/R, where ε(y) = 1

3 min{r(y), inj(y)}. Now h0(x)
is continuous since r(x) is continuous by assumption and inj(x) is continuous on
the compact subset B(x, 2ε), see [6][Prop. 2.1.10]. Therefore we conclude that
since h0(y) is continuous on B(x, 2ε) and h0(y) > 0, h1(x) = inf

y∈B(x,2ε)
h0(y) >

0. Then for the interval (0, h1(x)) the estimate for ph(y) holds uniformly over
the whole ball B(x, ε). That is, using the definition of k̃ as well as Proposition 2
and the expansion 1

(a+h2b)λ = 1
aλ −λ h2b

aλ+1 +O(h4) we get for h ∈ (0, h1(x)) that∫
M

k̃λ,h

(
‖i(x) − i(y)‖2) f(y)p(y)

√
det g dy

=
1

pλ
h(x)

∫
B(x,ε)

kh

(
‖i(x) − i(y)‖2) f(y)[

C1p(y) − λ/2C2h
2(p(y)S + Δp)

Cλ+1
1 p(y)λ

+ O(h3)

] √
det g dy (6)

where the O(h3)-term is continuous on B(x, ε) and we have introduced the ab-
breviation S = 1

2 [−R + 1
2 ‖

∑
a Π(∂a, ∂a)‖2

Ti(x)R
d]. Using f(y) = 1 we get

d̃λ,h(x) =
1

pλ
h(x)

∫
B(x,ε)

kh

(
‖i(x) − i(y)‖2)

[
C1p(y) − λ/2C2h

2(p(y)S + Δp)

Cλ+1
1 p(y)λ

+ O(h3)

] √
det g dy (7)

as an estimate for d̃λ,h(x). Now using Proposition 2 again we arrive at:

Δλ,hf =
f − Aλ,hf

h2
=

1

h2

d̃λ,hf − d̃λ,hAλ,hf

d̃λ,h

= − C2

2 C1

(
ΔMf +

2(1 − λ)

p
〈∇p,∇f〉

)
+ O(h2)

where all O(h2)-terms are finite on B(x, ε) since p is strictly positive. �
Note that the limit of Δλ,h has the opposite sign of Δs. This is due to the fact
that the Laplace-Beltrami operator on manifolds is usually defined as a negative
definite operator (in analogy to the Laplace operator in Rd), whereas the graph
Laplacian is positive definite. But this varies through the literature, so the reader
should be aware of the sign convention. From the last lines of the previous proof,
it is easy to deduce the following result for the unnormalized case. Let

(Δ′
λ,hf)(x) =

1

h2

(
d̃λ,h(x)f(x) −

∫
M

k̃λ,h

(
‖i(x) − i(y)‖2) f(y)p(y)

√
det gdy

)
. (8)

478 M. Hein, J.-Y. Audibert, and U. von Luxburg

Corollary 1. Under the assumptions of Theorem 1, for any λ ≥ 0, any x ∈
M\∂M , any f ∈ C3(M) there exists an h1(x) > 0 such that for all h < h1(x),

(Δ′
λ,hf)(x) = −p(x)1−2λ C2

2Cλ
1

(Δsf)(x) + O(h2), where s = 2(1 − λ). (9)

This result is quite interesting. We observe that in the case of a uniform density
it does not make a difference whether we use the unnormalized or the normal-
ized approximation of the Laplacian. However, as soon as we have a non-uniform
density, the unnormalized one will converge only up to a function to the Lapla-
cian, except in the case λ = 1

2 where both the normalized and unnormalized
approximation lead to the same result. This result confirms the analysis of von
Luxburg et al. in [11], where the consistency of spectral clustering was studied.
There the unnormalized Laplacian is in general not consistent since it has a con-
tinuous spectrum. Obviously the limit operator Δ′

λ,h = −p1−2λ C2
2Cλ

1
Δs has also a

continuous spectrum even if Δs is compact since it is multiplied with p1−2λ.

4 Strong Pointwise Consistency of Graph Laplacians

In the last section we identified certain averaging operators Δλ,h which in the
limit h → 0 converge pointwise to the corresponding Laplacian Δs, where s =
2(1− λ). In this section we will provide the connection to the normalized graph
Laplacian Δλ,n,h with data-dependent weights w̃λ(Xi, Xj) defined as

w̃λ(Xi, Xj) =
k
(
‖i(Xi) − i(Xj)‖2 /h2

)
[d(Xi)d(Xj)]λ

, λ ≥ 0 (10)

where d(Xi) =
∑n

r=1 k(‖i(Xi) − i(Xr)‖2
/h2). Note that the weights are not

multiplied with 1/hm, as it was usual for the kernel function in the last section.
There are two reasons for this. The first one is that this factor would lead to
infinite weights for h → 0. The second and more important one is that this
factor cancels for the normalized Laplacian. This is very important in the case
where the data lies on a submanifold of unknown dimension m, since then also
the correct factor 1

hm would be unknown. Note also that for the unnormalized
Laplacian this factor does not cancel if λ �= 1

2 . This means that for λ �= 1
2 the

unnormalized Laplacian cannot be consistently estimated if the data lies on a
proper submanifold of unknown dimension, since the estimate in general blows
up or vanishes. Therefore we will consider only the normalized graph Laplacian
in the following and for simplicity omit the term ’normalized’.

The graph Laplacian is defined only for functions on the graph, but it is
straightforward to extend the graph Laplacian to an estimator of the Laplacian
for functions defined on the whole space by using the kernel function,

(Δλ,h,nf)(x) =
1

h2
(f − Aλ,h,nf) (x) :=

1

h2

(
f(x) − 1

d̃λ(x)

n∑
j=1

w̃λ(x, Xj)f(Xj)

)
,

(11)

From Graphs to Manifolds 479

where d̃λ(x) =
∑n

r=1 w̃λ(x,Xi). The factor 1
h2 comes from introducing an 1

h -
term in the definition of the derivative operator d on the graph. It is natural to
introduce this factor since we want to estimate a derivative. Especially interesting
is the form of the second term of the graph Laplacian for λ = 0 where the
weights are not data-dependent. In this case, this term can be identified with
the Nadaraya-Watson regression estimate. Therefore, for λ = 0 we can adapt the
proof of pointwise consistency of the Nadaraya-Watson estimator of Greblicki,
Krzyzak and Pawlak [5] and apply it to the graph Laplacian. The following
Lemma will be useful in the following proofs.

Lemma 1. Let X1, . . . , Xn be n i.i.d. random vectors in Rd with law P , which
is absolutely continuous with respect to the natural volume element dV of a
submanifold M ⊂ Rd satisfying Assumption 1. Let p denote its density, which
is bounded, continuous and positive p(x) > 0, for any x ∈ M . Furthermore
let k be a kernel with compact support on [0, R2] satisfying Assumption 2. Let
x ∈ M\∂M , define b1 = ‖k‖∞ ‖f‖∞ , b2 = C ‖k‖∞ ‖f‖2

∞, where C is a constant
depending on x, ‖p‖∞ and ‖k‖∞. Then for any f ∈ C3(M),

P
(∣∣∣ 1

n

n∑
i=1

kh(‖i(x) − i(Xi)‖2)f(Xi) −
∫

M

kh(‖i(x) − i(y)‖2)f(y)p(y)
√

det g dy
∣∣∣ ≥ ε

)
≤ 2 exp

(
− nhmε2

2b2 + 2b1ε/3

)
Now the proof of pointwise consistency in the case λ = 0 is straightforward.

Theorem 2 (Weak and strong pointwise consistency for λ = 0). Let Xi ∈
Rd, i = 1, . . . , n be random vectors drawn i.i.d. from the probability measure P
on M ⊂ Rd, where M satisfies Assumption 1 and has dimM = m. Furthermore
let P be absolutely continuous with respect to the volume element dV with density
p ∈ C3(M) and p(x) > 0, ∀x ∈ M , and let Δ0,h,n be the graph Laplacian in (11)
with weights of the form (10), where k has compact support on [0, R2]. Then for
every x ∈ M\∂M and for every function f ∈ C3(M), if h → 0 and nhm+4 → ∞

lim
n→∞

(Δ0,h,nf)(x) = −2C1

C2
(Δ2f)(x) in probability.

If even nhm+4/ log n → ∞, then almost sure convergence holds.

Proof: We rewrite the estimator Δ0,h,nf in the following form

(Δ0,h,nf)(x) =
1

h2

[
f(x) − (A0,h f)(x) + B1n

1 + B2n

]
(12)

where

(A0,h f)(x) =
EZ kh(‖i(x) − i(Z)‖2)f(Z)

EZ kh(‖i(x) − i(Z)‖2)

B1n =
1
n

∑n
j=1 kh(‖i(x) − i(Xj)‖2)f(Xj) − EZ kh(‖i(x) − i(Z)‖2)f(Z)

EZ kh(‖i(x) − i(Z)‖2)

B2n =
1
n

∑n
j=1 kh(‖i(x) − i(Xj)‖2) − EZ kh(‖i(x) − i(Z)‖2)

EZ kh(‖i(x) − i(Z)‖2)

480 M. Hein, J.-Y. Audibert, and U. von Luxburg

In Theorem 1 we have shown that

lim
h→0

(Δ0,hf)(x) = lim
h→0

1

h2
[f(x) − (A0,h f)(x)] = −2 C1

C2
(Δ2f)(x) (13)

Let hR ≤ inj(x) , then EZ kh(‖i(x) − i(Z)‖2) ≥ K infy∈BM (x,hR) p(y) , where K

is a constant and using Lemma 1 we get with d2 = ‖f‖2
∞

(K infy∈BM (x,hR) p(y))2 , d1 =
‖f‖∞

K infy∈BM (x,ε) p(y) :

P(|B1n| ≥ h2t) ≤ exp

(
− nhm+4 t2

2 ‖k‖∞ (d2 + t d1/3)

)
,

Note that since p is continuous and p is strictly positive the infimum is achieved
and positive. The same analysis can be done for B2n, where we do not have
to deal with the 1/h2-factor. This shows convergence in probability. Complete
convergence (which implies almost sure convergence) can be shown by proving
for all t > 0 the convergence of the series

∑∞
n=0 P

(
|B1n| ≥ h2t

)
< ∞ . A sufficient

condition for that is nhd+4/ log n → +∞ when n → ∞ . �
Under the more restrictive assumption that the data is sampled from a uniform
probability measure on a compact submanifold we learned that Belkin and Niyogi
have independently proven the convergence of the unnormalized graph Laplacian
in [2]. It is clear from Theorem 1 and Corollary 1 that in the case of a uniform
measure the limit operators for normalized and unnormalized graph Laplacian
agree up to a constant. However, as mentioned before the unnormalized graph
Laplacian has the disadvantage that in order to get convergence one has to know
the dimension m of the submanifold M , which in general is not the case.

Lemma 2. Let Xi ∈ Rd, i = 1, . . . , n be random vectors drawn i.i.d. from the
probability measure P on M ⊂ Rd, where M satisfies Assumption 1 and has
dimM = m. Furthermore let P be absolutely continuous with respect to the
volume element dV with continuous density p(x). Let k(‖x − y‖2) be a bounded
kernel with compact support on [0, R2]. Let λ ≥ 0, x ∈ M with p(x) > 0,
f ∈ C(M) and n ≥ 2. Then there exists a constant C > 1 such that for any
0 < ε < 1/C, 0 < h < 1

C with probability at least 1 − Cne−
nhmε2

C , we have

|(Aλ,h,nf)(x) − (Aλ,hf)(x)| ≤ ε.

Proof: For sufficiently large C, the assertion of the lemma is trivial for ε <
2‖k‖∞

(n−1)hm . So we will only consider 2‖k‖∞
(n−1)hm ≤ ε ≤ 1. The idea of the proof is to

use deviation inequalities to show that the empirical terms, which are expressed
as a sum of i.i.d. random variables, are close to their expectations. Then we can
prove that the empirical term

(Aλ,h,nf)(x) =

∑n
j=1 kh(‖i(x) − i(Xj)‖2)f(Xj)[d(Xj)]

−λ∑n
r=1 kh(‖i(x) − i(Xr)‖2)[d(Xr)]−λ

(14)

From Graphs to Manifolds 481

is close to the term (Aλ,hf)(x). Consider the event E for which we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any j ∈ {1, . . . , n},
∣∣∣ d(Xj)

n−1
− ph(Xj)

∣∣∣ ≤ ε∣∣∣ d(x)
n

− ph(x)
∣∣∣ ≤ ε∣∣∣ 1

n

n∑
j=1

kh(‖i(x)−i(Xj)‖2)[ph(Xj)]
−λ−

∫
M

kh(‖i(x)−i(y)‖2)[ph(y)]−λp(y)
√

det gdy
∣∣∣ ≤ ε∣∣∣ 1

n

n∑
j=1

kh(‖i(x)−i(Xj)‖2
)f(Xj)

[ph(Xj)]λ
−

∫
M

kh(‖i(x)−i(y)‖2)f(y)

[ph(y)]λ
p(y)

√
det gdy

∣∣∣ ≤ ε∣∣∣ 1
n

n∑
j=1

kh(‖i(x) − i(Xj)‖2)f(Xj) −
∫
M

kh(‖i(x) − i(y)‖2)f(y)p(y)
√

det gdy
∣∣∣ ≤ ε

We will now prove that for sufficiently large C, the event E holds with probability
at least 1 − Cne−

nhmε2
C . For the second assertion defining E , we use Lemma 1

(with N = n − 1 and the conditional probability wrt Xj for a given 1 ≤ j ≤ d)
to obtain that for ε ≤ 1,

P
(∣∣∣ 1

n−1

∑
i�=j kh(‖i(x) − i(Xi)‖2) − ph(x)

∣∣ ≥ ε
∣∣∣Xj

)
≤ 2e−

(n−1)hmε2

C .

First integrating wrt to the law of Xj and then using an union bound we get

P
(∣∣∣ 1

n−1

∑
i�=j kh(‖i(x) − i(Xi)‖2) − ph(x)

∣∣∣ ≥ ε
)
≤ 2e−

(n−1)hmε2

C and

P
(
for any j ∈ {1, . . . , n},

∣∣∣ d(Xj)

n−1
− kh(0)

n−1
− ph(Xj)

∣∣∣ ≤ ε
)
≥ 1 − 2ne−

(n−1)hmε2

C .

Therefore for 2‖k‖∞
(n−1)hm ≤ ε ≤ 1 we have11

P
(
for any j ∈ {1, . . . , n},

∣∣∣ d(Xj)

n−1
− ph(Xj)

∣∣∣ ≤ ε
)
≥ 1 − 2ne−

(n−1)hmε2

C .

Similarly we can prove that for 2‖k‖∞
nhm ≤ ε ≤ 1 with probability at least 1 −

2e−Cnhmε2
, the third assertion defining E holds. For the three last assertions, a

direct application of Lemma 1 shows that they also hold with high probability.
Finally, combining all these results, we obtain that for 2‖k‖∞

(n−1)hm ≤ ε ≤ 1, the

event E holds with probability at least 1 − Cne−
nhmε2

C . Let us define⎧⎪⎪⎪⎨⎪⎪⎪⎩
A :=

∫
M

kh(‖i(x) − i(y)‖2)f(y)[ph(y)]−λp(y)
√

det gdy
Â := 1

n

∑n
j=1 kh(‖i(x) − i(Xj)‖2)f(Xj)

[d(Xj)
n−1

]−λ

B :=
∫

M
kh(‖i(x) − i(y)‖2)[ph(y)]−λp(y)

√
det gdy

B̂ := 1
n

∑n
j=1 kh(‖i(x) − i(Xj)‖2)

[d(Xj)
n−1

]−λ

and let us now work only on the event E . Let pmin = p(x)/2 and pmax = 2p(x).
By continuity of the density, for C large enough and any h < 1/C, the density
satisfies 0 < pmin ≤ p ≤ pmax on the ball BM (x, 2hR). So for any y ∈ BM (x, hR),

11 We recall that the value of the constant C might change from line to line.

482 M. Hein, J.-Y. Audibert, and U. von Luxburg

there exists a constant D1 > 0 such that D1 pmin ≤ ph(y) ≤ D1

√
2 pmax. Using

the first order Taylor formula of [x !→ x−λ], we obtain that for any λ ≥ 0 and
a, b > β,

∣∣a−λ − b−λ
∣∣ ≤ λβ−λ−1|a − b|. So we can write∣∣B̂ − B

∣∣ ≤ ∣∣∣ 1
n

∑n
j=1 kh(‖i(x) − i(Xj)‖2)

([d(Xj)
n−1

]−λ − [ph(Xj)]−λ
)∣∣∣

+
∣∣∣ 1
n

∑n
j=1 kh(‖i(x) − i(Xj)‖2)[ph(Xj)]−λ − B

∣∣∣
≤

∣∣d(x)
n

∣∣λ (D1pmin)−λ−1ε + ε

≤
∣∣d(x)

n − ph(x)
∣∣λ (D1pmin)−λ−1ε + ph(x)λ (D1pmin)−λ−1ε + ε

≤ λ(D1pmin)−λ−1ε +
√

2D1pmaxλ (C1pmin)−λ−1ε + ε := C ′ε

Similarly we prove that
∣∣Â−A

∣∣ ≤ C′′ε. Let ζ := 1
2

D1pmin

(
√

2 D1pmax)λ
. We have B ≥ 2ζ.

Let us introduce ε0 := min{ ζ
C′ , 1}. For 2‖k‖∞

(n−1)hm ≤ ε ≤ ε0, we have also B̂ ≥ ζ.

Combining the last three results, we obtain that there exists D2 > 0 such that∣∣∣AB − Â
B̂

∣∣∣ ≤ |A−Â|
B̂ + A |B−B̂|

BB̂ ≤ C′′ε
ζ + D2pmax(C1pmin)−λ C′ε

2ζ2 ≤ Cε.

Noting that Aλ,hf = A/B and Aλ,h,nf = Â/B̂, we have proved that there exists
a constant C > 1 such that for any 0 < ε < 1/C

|(Aλ,h,nf)(x) − (Aλ,hf)(x)| ≤ Cε

with probability at least 1 − Cne−
nhmε2

C . This leads to the desired result. �
Combining Lemma 2 with Theorem 1 we arrive at our main theorem.

Theorem 3 (Weak and strong pointwise consistency). Let Xi ∈ Rd, i =
1, . . . , n be random vectors drawn i.i.d. from the probability measure P on M ⊂
Rd, where M satisfies Assumption 1 and has dimM = m. Let P be absolutely
continuous with respect to the volume element dV with density p ∈ C3(M) and
p strictly positive. Let Δλ,h,n be the graph Laplacian in (11) with weights of
the form (10), where k has compact support on [0, R2] and satisfies Assumption
2. Define s = 2(1 − λ). Then, for every x ∈ M\∂M and for every function
f ∈ C3(M), if h → 0 and nhm+4/ log n → ∞

lim
n→∞

(Δλ,h,nf)(x) = −2C1

C2
(Δsf)(x) almost surely.

Proof: The proof consists of two steps. By Theorem 1 the bias term converges.

lim
h→0

∣∣∣∣(Δλ,hf)(x) −
[
−

(
2 C1

C2
Δsf

)
(x)

]∣∣∣∣ → 0. (15)

Next we consider the variance term |(Δλ,h,nf)(x) − (Δλ,hf)(x)| . We have

|(Δλ,h,nf)(x) − (Δλ,hf)(x)| =
1

h2
|(Aλ,h,nf)(x) − (Aλ,hf)(x)| .

From Graphs to Manifolds 483

Up to the factor 1/h2 this is the term studied in Lemma 2, so that we get under
the conditions stated there:

P
(∣∣∣(Δλ,h,nf)(x) − (Δλ,hf)(x)

∣∣∣ ≥ ε
)
≤ C n e−

nhm+4 ε2
C

Then, using the same technique as in Theorem 2, one shows complete conver-
gence for nhm+4/ log n → ∞, which implies almost sure convergence. �
This theorem states conditions for the relationship of the sample size n and the
bandwidth h for almost sure convergence. It is unlikely that this rate can be
improved (up to the logarithmic factor), since the rates for estimating second
derivatives in nonparametric regression are the same. Another point which can-
not be underestimated is that we show that the rate that one gets only depends
on the intrinsic dimension m of the data (that is the dimension of the sub-
manifold M). This means that even if one has data in a very high-dimensional
Euclidean space Rd one can expect to get a good approximation of the Laplacian
if the data lies on a low-dimensional submanifold. Therefore, our proof provides
a theoretical basis for all algorithms performing dimensionality reduction using
the graph Laplacian. Another point is that one can continuously control the in-
fluence of the probability distribution with the parameter λ and even eliminate it
in the case λ = 1. The conditions of this theorem are very mild. We only require
that the submanifold is not too much twisted and that the kernel is bounded
and compact. Note that in large scale practical applications, compactness of the
kernel is necessary for computational reasons anyway.

Acknowledgments

We would like to thank Olaf Wittich for his help with [9, 10] and Bernhard
Schölkopf for helpful comments and support.

References

[1] M. Belkin. Problems of Learning on Manifolds. PhD thesis, University of Chicago,
2003. http://www.people.cs.uchicago.edu/˜misha/thesis.pdf.

[2] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based
manifold methods. to appear in the Proc. of COLT, 2005.

[3] O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In Ad-
vances in Neural Information Processing Systems, volume 16, 2003.

[4] S. Coifman and S. Lafon. Diffusion maps. Preprint, Jan. 2005, to appear in
Applied and Computational Harmonic Analysis, 2005.

[5] W. Greblicki, A. Krzyzak, and M. Pawlak. Distribution-free pointwise consistency
of kernel regression estimate. Annals of Statistics, 12:1570–1575, 1984.

[6] W. Klingenberg. Riemannian Geometry. De Gruyter, 1982.

[7] S. S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale Univer-
sity, 2004. http://www.math.yale.edu/˜sl349/publications/dissertation.pdf.

484 M. Hein, J.-Y. Audibert, and U. von Luxburg

[8] P. Niyogi. Learning functional maps on Riemannian submani-
folds. Talk presented at IPAM workshop on multiscale struc-
tures in the analysis of high-dimensional data, 2004. available at
http://www.ipam.ucla.edu/publications/mgaws3/mgaws3 5188.pdf.

[9] O. G. Smolyanov, H. von Weizsäcker, and O. Wittich. Brownian motion on a man-
ifold as limit of stepwise conditioned standard Brownian motions. In Stochastic
processes, physics and geometry: new interplays, II, 2000.

[10] O. G. Smolyanov, H. von Weizsäcker, and O. Wittich. Chernoff’s theorem and dis-
crete time approximations of Brownian motion on manifolds. Preprint, available
at http://lanl.arxiv.org/abs/math.PR/0409155, 2004.

[11] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.
Technical Report 134, Max Planck Institute for Biological Cybernetics, 2004.

[12] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. In NIPS 16, 2004.

[13] D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on directed
graphs. In NIPS 17, 2005.

A Appendix: Proof of Proposition 2

The following lemmas are needed in the proof of the asymptotics of Aλ,h.

Lemma 3. If the kernel k : R → R satisfies the assumptions in Assumption 2,∫
Rm

∂k

∂x
(‖u‖2)uiujukuldu = −1

2
C2

[
δijδkl + δikδjl + δilδjk

]
. (16)

Lemma 4. Let k satisfy Assumption 2 and let Vijkl be a given tensor. Assume
now ‖z‖2 ≥ ‖z‖2 + Vijklz

izjzkzl + β ‖z‖5 ≥ 1
2
‖z‖2 on B(0, rmin) ⊂ Rm . Then

there exists a constant C and a h0 > 0 such that for all h < h0 and for all
f ∈ C3(B(0, rmin))

∣∣∣ ∫
B(0,rmin)

kh

(
‖z‖2 + Vijklz

izjzkzl + β ‖z‖5)

h2

)
f(z)dz

−
(
C1f(0) + C2

h2

2

[
(Δf)(0) − f(0)

m∑
i,k

Viikk + Vikik + Vikki

])∣∣∣ ≤ Ch3. (17)

To prove Proposition 2, let ε = 1
3 min{inj(x), r(x)}12, where ε is positive by the

assumptions on M . Then we decompose M in M = B(x, ε) ∪ (M\B(x, ε)) and
integrate separately. The integral over M\B(x, ε) can be estimated by using the
definition of δ(x) (see Assumption 1) and the fact that k is non-increasing:∫

M\B(x,ε)

kh

(
‖i(x) − i(y)‖2

Rd

)
f(y)p(y)

√
det g dy ≤ 1

hm
k

(
δ(x)2

h2

)
‖f‖∞

12 The factor 1/3 is needed in Theorem 1.

From Graphs to Manifolds 485

Since δ(x) is positive by the assumptions on M and k decays exponentially, we
can make the upper bound smaller than h3 for small enough h. Now we deal with
the integral over B(x, ε). Since ε is smaller than the injectivity radius inj(x), we
can introduce normal coordinates z = exp−1(y) with origin 0 = exp−1(x) on
B(x, ε), so that we can write the integral over B(x, ε) as:∫

B(0,ε)

kh

(
‖z‖2 − 1

12

∑d
α=1

∂2iα

∂za∂zb
∂2iα

∂zu∂zv zazbzuzv + O(‖z‖5)

h2

)
p(z)f(z)

√
det g dz

(18)

by using our assumption that pf
√

det g is in C3(B(0, ε)). Therefore we can apply
Lemma 4 and compute the integral in (18) which results in:

[
p(0)f(0)

(
C1 + C2

h2

24

d∑
α=1

∂2iα

∂za∂zb

∂2iα

∂zc∂zd

[
δabδcd + δacδbd + δadδbc

])
+ C2

h2

2
ΔM (pf

√
det g)

∣∣∣
0

+ O(h3)
]
, (19)

where we have used that the Laplace-Beltrami operator ΔM in normal coordi-
nates zi at 0 is given as ΔMf

∣∣∣
x

=
∑m

i=1
∂2f

∂(zi)2

∣∣∣
0

. The second term in the above
equation can be evaluated using the Gauss equations, see [10–Proposition 6].

d∑
α=1

∂2iα

∂za∂zb

∂2iα

∂zc∂zd

[
δabδcd + δacδbd + δadδbc

]
= −2R + 3

∥∥∥∥∥
m∑

j=1

Π(∂zj , ∂zj)

∥∥∥∥∥
2

Ti(x)Rd

where R is the scalar curvature. Plugging this result into (19) and using from
Proposition 1, ΔM

√
det g

∣∣
0

= − 1
3R, finishes the proof.

Towards a Theoretical Foundation
for Laplacian-Based Manifold Methods

Mikhail Belkin and Partha Niyogi

The University of Chicago, Department of Computer Science
{misha, niyogi}@cs.uchicago.edu

Abstract. In recent years manifold methods have attracted a consider-
able amount of attention in machine learning. However most algorithms
in that class may be termed “manifold-motivated” as they lack any ex-
plicit theoretical guarantees. In this paper we take a step towards closing
the gap between theory and practice for a class of Laplacian-based man-
ifold methods. We show that under certain conditions the graph Lapla-
cian of a point cloud converges to the Laplace-Beltrami operator on the
underlying manifold. Theorem 1 contains the first result showing conver-
gence of a random graph Laplacian to manifold Laplacian in the machine
learning context.

1 Introduction

Manifold methods have become increasingly important and popular in machine
learning and have seen numerous recent applications in data analysis including
dimensionality reduction, visualization, clustering and classification. The central
modeling assumption in all of these methods is that the data resides on or
near a low-dimensional submanifold in a higher-dimensional space. It should be
noted that such an assumption seems natural for a data-generating source with
relatively few degrees of freedom.

However in almost all modeling situations, one does not have access to the
underlying manifold but instead approximates it from a point cloud. The most
common approximation strategy in these methods it to construct an adjacency
graph associated to a point cloud. Most manifold learning algorithms then pro-
ceed by exploiting the structure of this graph. The underlying intuition has
always been that since the graph is a proxy for the manifold, inference based on
the structure of the graph corresponds to the desired inference based on the ge-
ometric structure of the manifold. However few theoretical results are available
to justify this intuition.

In this paper we take the first steps towards a theoretical foundation for
manifold-based methods in learning. An important and popular class of learning
methods makes use of the graph Laplacian for various learning applications. It
is worth noting that in almost all cases, the graph itself is an empirical object,
constructed as it is from sampled data. Therefore any graph-theoretic technique
is only applicable, when it can be related to the underlying process generating the
data. This is an implicit assumption, which is rarely formalized in the literature.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 486–500, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 487

We will show that under certain conditions the graph Laplacian is directly
related to the manifold Laplace-Beltrami operator and converges to it as data
goes to infinity.

This paper presents and extends the unpublished results obtained in [1]. A
version of Theorem 1 showing empirical convergence of the graph Laplacian to
the manifold Laplacian was stated in [19].

1.1 Prior Work

Many manifold and graph-motivated learning methods have been recently pro-
posed, including [22, 27, 3, 12] for visualization and data representation, [30, 29,
9, 23, 4, 2, 26] for partially supervised classification and [25, 28, 24, 18, 14] among
others for spectral clustering. A discussion of various spectral methods and their
out-of-sample extensions is given in [5].

The problem of estimating geometric and topological invariants from point
cloud data has recently attracted some attention. Some of the recent work in-
cludes estimating geometric invariants of the manifold, such as homology [31, 20],
geodesic distances [6], and comparing point clouds using Gromov-Hausdorff dis-
tance [15].

In particular, we note the closely related Ph.D. thesis of Lafon, [16], which
generalized the convergence results from [1] to the important case of an arbitrary
probability distribution on a manifold. Those results are further generalized
and presented with an empirical convergence theorem in the parallel COLT
paper [13].

We also note [17], where convergence of a class of graph Laplacians and the
associated spectral objects, such as eigenfunctions and eigenvalues, is shown,
which in particular, implies consistency of normalized spectral clustering. How-
ever connections to geometric objects, such as the Laplace-Beltrami operator,
are not considered in that work.

Finally we point out that while the parallel between the geometry of manifolds
and the geometry of graphs is well-known in spectral graph theory and in certain
areas of differential geometry (see, e.g., [10]) the exact nature of that parallel is
usually not made precise.

2 Notation and Preliminaries

Before we can formulate the main result we need to fix some notation. In general,
we denote vectors and points on a manifold with bold letters and one-dimensional
quantities with ordinary letters. Matrices will be denoted by capital letters,
operators on functions by bold capital letters.

A weighted graph G = (V,E) is a set of vertices v1, . . . , vn ∈ V and weighted
edges connecting these vertices represented by an adjacency matrix W . W is a
symmetric matrix with nonnegative entries. Recall that the Laplacian matrix of
a weighted graph G is the matrix L = D − W , where D is a diagonal matrix
D(i, i) =

∑
j W (i, j).

488 M. Belkin and P. Niyogi

Given a set of points Sn = {x1, . . . ,xn} in Rk, we construct a graph G,

whose vertices are data points. We put W t
n(i, j) = e−

‖xi−xj‖2

4t . We will denote
the corresponding graph Laplacian by Lt

n = Dt
n − W t

n. Note that we suppress
the dependence on Sn to simplify notation.

We may think of Lt
n as an operator on functions, defined on the graph of

data points. If f : V → R

Lt
nf(xi) = f(xi)

∑
j

e−
‖xi−xj‖2

4t −
∑

j

f(xj)e−
‖xi−xj‖2

4t

This operator can be naturally extended to an integral operator (with respect
to the empirical measure of the dataset) on functions in Rk:

Lt
n(f)(x) = f(x)

∑
j

e−
‖x−xj‖2

4t −
∑

j

f(xj)e−
‖x−xj‖2

4t

Of course, we have Lt
nf(xi) = Lt

nf(xi). We will call Lt
n the Laplacian operator

associated to the point cloud Sn.

3 Main Result

Our main contribution is to establish a connection between the graph Laplacian
associated to a point cloud and the Laplace-Beltrami operator on the underlying
manifold from which the points are drawn.

Consider a compact1 k-dimensional differentiable manifold M isometrically
embedded in RN . We will assume that the data is sampled from a uniform
distribution in the induced measure on M.

Given data points Sn = {x1, . . . ,xn} in RN sampled i.i.d. from this proba-
bility distribution we construct the associated Laplacian operator Lt

n. Our main
result shows that for a fixed function f ∈ C∞(M) and for a fixed point p ∈ M,
after appropriate scaling the operator Lt

n converges to the true Laplace-Beltrami
operator on the manifold.

Theorem 1. Let data points x1, . . . ,xn be sampled from a uniform distribution
on a manifold M ⊂ RN Put tn = n− 1

k+2+α , where α > 0 and let f ∈ C∞(M).
Then there is a constant C, s.t. in probability,

lim
n→∞

C
(4πtn)−

k+2
2

n
Ltn

n f(x) = ΔMf(x)

Without going into full details we then outline the proof of the following

1 It is possible to provide weaker but more technical conditions, which we will not
discuss here.

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 489

Theorem 2. Let data points x1, . . . ,xn be sampled from a uniform distribution
on a compact manifold M ⊂ RN . Let F be the space of functions f ∈ C∞(M),
such that Δf is Lipschitz a fixed Lipschitz constant. Then there exists a sequence
of real numbers tn → 0, and a constant C, such that in probability

lim
n→∞

sup
x∈M
f∈F

∣∣∣∣∣C (4πtn)−
k+2
2

n
Ltn

n f(x) −ΔMf(x)

∣∣∣∣∣ = 0

This stronger uniform result (with, however, a potentially worse rate of con-
vergence) will in our opinion lead to consistency results for various learning
algorithms in the future work.

3.1 Laplace Operator and the Heat Equation

We will now recall some results on the heat equation and its connection to the
Laplace-Beltrami operator and develop some intuitions about the methods used
in the proof.

Now we need to recall some results about the heat equation and heat kernels.
Recall that the Laplace operator in Rk is defined as

Δf(x) =
∑

i

∂2f

∂x2
i

(x)

We say that a sufficiently differentiable function u(x, t) satisfies the heat
equation if

∂

∂t
u(x, t) −Δu(x, t) = 0 (1)

The heat equation describes diffusion of heat with the initial distribution
u(x, t). The solution to the heat equation is given by a semi-group of heat oper-
ators Ht. Given an initial heat distribution f(x), Ht(f) is the heat distribution
at time t.

It turns out that this operator is given by convolution with the heat kernel,
which for Rk is the usual Gaussian.

Htf(x) =
∫

Rk

f(y)Ht(x,y)dy

Ht(x,y) = (4πt)−
k
2 e−

‖x−y‖2

4t

We summarize this in the following

Theorem 3 (Solution to the heat equation in Rk). Let f(x) be a suffi-
ciently differentiable bounded function. We then have

Htf = (4πt)−
k
2

∫
Rk

e−
‖x−y‖2

4t f(y)dy (2)

f(x) = lim
t→0

Htf(x) = (4πt)−
k
2

∫
Rk

e−
‖x−y‖2

4t f(y)dy (3)

490 M. Belkin and P. Niyogi

∂

∂t
u(x, t) −Δu(x, t) = 0

The heat equation is the key to approximating the Laplace operator. Recall-
ing that a Gaussian integrates to 1, we observe that

−Δf(x) =
∂

∂t
Htf(x)

∣∣∣∣
t=0

=

lim
t→0

1
t

(
(4πt)−

k
2

∫
Rk

e−
‖x−y‖2

4t f(y)dy − f(x) (4πt)−
k
2

∫
Rk

e−
‖x−y‖2

4t dy
)

This quantity can easily be approximated from a point cloud2 x1, . . . ,xn by
computing the empirical version of the integrals involved:

Δ̂f(x) =
1
t

(4πt)−
k
2

n

(
f(x)

∑
i

e−
‖xi−x‖2

4t −
∑

i

e−
‖xi−p‖2

4t f(xi)

)
=

(4πt)−
k+2
2

n
Lt

n(f)(p)

This intuition can be easily turned into a convergence result for Rk.
Extending this analysis to an arbitrary manifold, however, is not as straight-

forward as it might seem at first blush. The two principal technical issues are
the following:

1. With some very rare exceptions we do not know the exact form of the heat
kernel Ht

M(x,y).
2. Even the asymptotic form of the heat kernel requires knowing the geodesic

distance between points in the point cloud. However we can only observe
distances in the ambient space RN .

Remarkably both of these issues can be overcome as certain intrinsic quan-
tities (scalar curvature) make an appearance and ultimately cancel out in the
final computation!

4 Proof of the Main Results

4.1 Basic Differential Geometry

Before we proceed further, let us briefly review some basic notions of differential
geometry. Assume we have a compact3 differentiable k-dimensional submanifold

2 We are ignoring the technicalities about the probability distribution for the moment.
It is not hard however to show that it is sufficient to restrict the distribution to some
open set containing the point x.

3 We assume compactness to simplify the exposition. A weaker condition will suffice
as noted above.

The function u(x, t) = Htf satisfies the heat equation

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 491

of RN with the induced Riemannian structure. That means that we have a notion
of length for curves on M. Given two points x,y ∈ M the geodesic distance
distM(x,y) is the length of the shortest curve connecting x and y. It is clear
that distM(x,y) ≥ ‖x − y‖.

Given a point p ∈ M, one can identify the tangent space TpM with an affine
subspace of RN passing through p. This space has a natural linear structure
with the origin at p. Furthermore it is possible to define the exponential map
expp : TpM → M. The key property of the exponential map is that it takes
lines through origin in TpM to geodesics passing through p. The exponential
map is a local diffeomorphism and produces a natural system of coordinates for
some neighborhood of p. The Hopf-Rinow theorem (see, e.g., [11]) implies that a
compact manifold is geodesically complete, i.e. that any geodesic can be extended
indefinitely which, in particular, implies that there exists a geodesic connecting
any two given points on the manifold.

The Riemannian structure on M induces a measure corresponding to the
volume form, which we will denote as μ. For a compact M total volume of M
is guaranteed to be finite, which gives rise to the canonical uniform probability
distribution on M.

Before proceeding with the main proof we state one curious property of
geodesics, which will be needed later. It concerns the relationship between
distM(x,y) and ‖x − y‖. The geodesic and chordal distances are shown pic-
torially in Fig. 1. It is clear that when x and y are close, the difference between
these two quantities is small. Interestingly, however, this difference is smaller
than one (at least the authors) would expect initially. It turns out (cf. 7) that
when the manifold is compact

distM(x,y) = ‖x − y‖ + O(‖x − y‖3)

In other words chordal distance approximates geodesic distance up to order
three. This observation and certain consequent properties of the geodesic map
make the approximations used in this paper possible.

||x−y||

x

y

M

dist (x,y)M

Fig. 1. Geodesic and chordal distance

492 M. Belkin and P. Niyogi

The Laplace-Beltrami operator ΔM is a second order differential operator.
The family of diffusion operators Ht

M satisfies the following properties:

ΔMHt
M(f) =

∂

∂t
Ht

M(f) Heat Equation

lim
t→0

Ht
M(f) = f δ-family property

It can be shown (see, e.g., [21]) that Ht
M(f) is an integral operator, a con-

volution with the heat kernel. Our proof hinges on the fact that in geodesic
coordinates the heat kernel can be approximated by a Gaussian for small values
of t and the observations about the geodesics above.

4.2 Main Proof

We will now proceed with the proof of the main theorem.
First we note that the quantities∫

M
e−

‖p−x‖2

4t f(x) dμx

and
f(p)

∫
M

e−
‖p−x‖2

4t dμx

can be empirically estimated from the point cloud.
We will show how the Laplace-Beltrami operator can be estimated using these

two empirical quantities. This estimate will provide a connection to Lt
n.

The main theorem will be proved in several steps.

Lemma 1. Given any open set B ⊂ M, p ∈ B, for any l ∈ N ,∫
B⊂M

e−
‖p−y‖2

4t f(y) dμy −
∫
M

e−
‖p−y‖2

4t f(y) dμy = o(tl)

as t → 0.

Proof. Let d = infx�∈B ‖p−x‖2 and let M be the measure of the complement to
B, i.e., M = μ(M−B). Since B is open and M is locally compact, d > 0. We
thus see that∣∣∣∣∫

B
e−

‖p−y‖2

4t f(y) dμy −
∫
M

e−
‖p−y‖2

4t f(y) dμy

∣∣∣∣ ≤ M sup
x∈M

(|f(x)|)e− d2
4t

The first two terms are constant and e−
d2
4t approaches zero faster then any

polynomial as t tends to zero.

This Lemma allows us to replace the integral over the manifold by an integral
over some small open set around p. We will need it in order to change the
coordinates to the standard geodesic coordinate system given by the following
equation:

y = expp(x)

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 493

Given a function f : M → R, we rewrite it in geodesic coordinates by putting
f̃(x) = f(exp(x)).

We will need the following key statement relating the Laplace-Beltrami op-
erator and the Euclidean Laplacian:

Lemma 2.
ΔMf(p) = ΔRk f̃(0) (4)

Proof. See, e.g., [21], page 90.

This allows one to reduce Laplace-Beltrami operator to a more easily analyzed
Laplace operator on Rk.

Since expp : TMp = Rk → M is a locally invertible, we can choose an open
B̃ ⊂ Rk, s.t. expp is a diffeomorphism onto its image B ⊂ M.

Lemma 3. The following change of variable formula holds:∫
B
e−

‖p−y‖2

4t f(y) dμy =
∫
B̃
e−

φ(x)
4t f̃(x) det(d exp(x)) dx (5)

where φ(x) is a function, such that φ(x) = ‖x2‖ + O(‖x4‖).

Proof. We obtain the result by applying the usual change of variable formula for
manifold integrals and observing the relationship between geodesic and chordal
distances from Lemma 7.

Lemma 4. There exists a constant C, such that

∂

∂t

(
(4πt)−

k
2

∫
B
e−

‖p−y‖2

4t f(y) dμy

)∣∣∣∣
0

= ΔMf(p) +
1
3
ks(p)f(p) + Cf(p) (6)

Proof. We first use Eq. 5 from the previous Lemma to rewrite the integral in
the geodesic normal coordinates. We then apply Eq. 12 to obtain

∂

∂t

(
(4πt)−

k
2

∫
B
e−

‖p−y‖2

4t f(y) dμy

)∣∣∣∣
0

= ΔRk(f̃ det(d expp))(0) + Cf̃(0) (7)

From the asymptotics of the exponential map (Eq. 10), we know that

|ΔRk det(d expp(x))| =
s(p)

3
+ O(‖x‖)

Using properties of the Laplacian and recalling that f̃(0) = f(p) yields and that
det(d expp(x))| has no terms of degree 1 in its Taylor expansion at 0, we have

ΔRk(f̃ det(d expp))(0) = ΔRk f̃(0) +
1
3
ks(p)f(p)

Noticing that by Eq. 4 ΔRk f̃(0) = ΔMf(p), we obtain the result.

494 M. Belkin and P. Niyogi

Thus we get the following

Lemma 5.

lim
t→0

(4πt)−
k+2
2

(∫
M

e
‖p−y‖2

4t f(p) dμy −
∫
M

e
‖p−y‖2

4t f(y) dμy

)
= ΔMf(p)

Proof. Consider the constant function g(y) = f(p). By applying the Eq. 6 to
this function we obtain

∂

∂t

(
(4πt)−

k
2

∫
B
e−

‖p−y‖2

4t f(p) dμy

)∣∣∣∣
0

=
1
3
ks(p)f(p) + Cf(p) (8)

To simplify the formulas put A(t) = (4πt)−
k+2
2

∫
M e

‖p−y‖2

4t f(y) dμy. Using the
δ-family property of the heat kernel, we see that

A(0) = lim
t→0

(4πtn)−
k
2

∫
B
e−

‖p−y‖2

4t f(p) dμy = f(p)

From the definition of the derivative and Eqs. 6,8 we obtain

ΔMf(p) = lim
t→0

A(t) −A(0)
t

=

lim
t→0

(4πtn)−
k+2
2

(∫
M

e
‖p−y‖2

4t f(p) dμy −
∫
M

e
‖p−y‖2

4t f(y) dμy

)
Theorem 4. Let data points x1, . . . ,xn be sampled in i.i.d. fashion from a uni-
form distribution on a compact submanifold M ⊂ RN . Fix p ∈ M. Let Ltn

n

be the associated operator. Put tn = n− 1
k+2+α , where α > 0, α ∈ R. Then in

probability

lim
n→∞

(4πtn)−
k+2
2 Ltn

n f(x) =
ΔMf(p)
vol(M)

Proof. Recall that (the extension of) the graph Laplacian Lt
n applied to f at p

is

Lt
nf(p) =

1
n

(
n∑

i=1

e−
‖p−xi‖2

4t f(p) −
n∑

i=1

e−
‖p−xi‖2

4t f(xi)

)
We note that Lt

nf(p) is the empirical average of n independent random vari-
ables with the expectation

ELt
nf(p) =

(
f(p)

∫
M

e−
‖p−y‖2

4t dy −
∫
M

f(y)e−
‖p−y‖2

4t dy
)

(9)

By an application of Hoeffding’s inequality 6, we have

P

[
(4πt)−(k+2)/2|Lt

nf(p) − ELt
nf(p)| > ε

]
≤ e−ε2n(4πt)(k+2)

Choosing t as a function of n by letting t = tn = (1
n)

1
k+2+α , where α > 0, we see

that for any fixed ε > 0

lim
n→∞

P

[
(4πtn)−(k+2)/2|Ltn

n f(p) − 1
n

ELtn
n f(p)| > ε

]
= 0.

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 495

Noting that by Lemma 5 and Eq. 9

lim
n→∞

(4πtn)−
1

(k+2)/2 Ltn
n =

ΔMf(p)
vol(M)

we obtain the theorem.

5 Uniform Convergence

For a fixed function f , let

Af (t) = (4πt)−
k+2
2

(∫
M

e−
‖p−y‖2

4t f(p) dμy −
∫
M

e−
‖p−y‖2

4t f(y) dμy

)
Its empirical version from the point cloud is simply

Âf (t) = (4πt)−
k+2
2

1
n

n∑
i=1

e−
‖p−y‖2

4t (f(p) − f(xi)) =
−(4πt)

k+2
2

n
Lt

nf(p)

By the standard law of large numbers, we have that Âf (t) converges to Af (t)
in probability. One can easily extend this uniformly over all functions in the
following proposition

Proposition 1. Let F be the space of functions f ∈ C∞(M), such that Δf is
Lipschitz with Lipschitz constant C. For each fixed t, we have

lim
n→∞

P

[
sup
f∈F

|Âf (t) −Af (t)| > ε

]
= 0

Proof. Let Fγ ⊂ F be a γ-net in F in the L∞ topology (guaranteed by the
Sobolev embedding theorem) and let N(γ) be the size of this net. This guarantees
that for any f ∈ F , there exists g ∈ Fγ such that ‖f − g‖∞ < γ. By a standard
union bound over the finite elements of Fγ , we have

lim
n→∞

P

[
sup
g∈Fγ

|Âg(t) −Ag(t)| >
ε

2

]
= 0

Now for any f ∈ F , we have that

|Âf (t) −Af (t)| ≤ |Âf (t) − Âg(t) + Âg(t) + Ag(t) −Ag(t) −Af (t)|

≤ |Âf (t) − Âg(t)| + |Âg(t) −Ag(t)| + |Ag(t) −Af (t)|

It is easy to check that for γ = ε
4 (4πt)

k+2
2 , we have

|Âf (t) −Af (t)| < ε

2
+ sup

g∈Fγ

|Âg(t) −Ag(t)|

496 M. Belkin and P. Niyogi

Therefore

P

[
sup
f∈F

|Âf (t) −Af (t)| > ε

]
≤ P

[
sup
g∈Fγ

|Âg(t) −Ag(t)| >
ε

2

]

Taking limits as n goes to infinity, the result follows.

Now we note from Lemma 5 that for each f ∈ F , we have

lim
t→0

(Af (t) −ΔMf(p)) = 0

By an analog of the Arzela-Ascoli Theorem, the uniform convergence over a ball
in a suitable Sobolev space over a compact domain can be shown, i.e.,

lim
t→0

sup
f∈F

(Af (t) −ΔMf(p)) = 0

Therefore, from Proposition 1 and the above fact, we see that there exists
a monotonically decreasing sequence tn such that limn→∞ tn = 0 for which the
following theorem is true.

Theorem 5. Let data points x1, . . . ,xn be sampled from a uniform distribution
on a compact manifold M ⊂ RN and let FC be the space of functions f ∈
C∞(M), such that Δf is Lipschitz with Lipschitz constant C. Then there exists
a sequence of real numbers tn, tn → 0, such that in probability

lim
n→∞

sup
f∈FC

∣∣∣∣∣ (4πtn)−
k+2
2

n
Ltn

n f(x) −ΔMf(x)

∣∣∣∣∣ = 0

A similar uniform convergence bound can be shown using the compactness of
M and leads to Theorem 2.

6 Auxiliary and Technical Lemmas

6.1 Exponential Map and Geodesics

Lemma 6. Asymptotics for the derivative of the exp.

|ΔRk det(d expp(x))| =
s(p)

3
+ O(‖x‖) (10)

where s(p) is the scalar curvature of M at p.

Proof. This fairly standard result of differential geometry follows from properties
of Jacobi fields. While the proof goes beyond the scope of this paper, cf. the
discussion on page 115 in [11]. The result above follows from Eq. 6 together
with some basic linear algebra after writing the curvature tensor in the geodesic
normal coordinates.

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 497

Lemma 7.
‖ expp(x)‖2 = ‖x − p‖2 + O(‖x − p‖4)

Proof. The geodesic distance from a fixed point x ∈ Mk as a function of y can
be written as

distMk(x,y) = ‖y − x‖ + O(‖y − x‖3)

where ‖y − x‖ is the ordinary norm in RN . Thus the geodesic distance can be
approximated by Euclidean distance in the ambient space up to terms of order
three. We outline the proof. We first prove the statement for the curve length in
R2. Let f(x) be a differentiable function. Without the loss of generality we can
assume that f(0) = 0, f ′(0) = 0. Therefore f(x) = ax2 +O(x3). Now the length
of the curve along the graph of f(x) is given by

distM,0(t) =
∫ t

0

√
1 + (f ′)2 dx

We have
√

1 + (f ′)2 = 1 + 2ax2 + O(x3). Thus∫ t

0

√
1 + (f ′)2 dx = t +

2
3
at3 + O(t4)

Similarly,we canalso see that segment of the line connecting thepoint t to the origin
is equal in length to both the curve length and to t up to some terms of order 3.

In general, we can take a section of the manifold by a 2-dimensional plane
through x and y, such that the plane intersects the manifold at a curve. It is
not hard to see, that such a plane always exists.

It is clear that the length of the geodesic is bounded from below by the length
of the line segment connecting x to the y and from above by the length of the
curve formed by intersection of the plane and Mk. By applying the case of R2,
we see that the latter is equal to ‖x − y‖ plus order three terms, which implies
the statement.

6.2 Technical Results in Rk

Lemma 8. Let B ∈ Rk be an open set, such that x ∈ B. Then as t → 0∫
Rk−B

(4πt)−
k
2 e−

‖x−y‖2

4t dx = o

(
1
t
e−

1
t

)
Proof. Without a loss of generality we can assume that x = 0. There exists a

cube Cs with side s, such that 0 ∈ Cs ∈ B. We have
∫

Rk−B
(4πt)−

k
2 e−

‖z‖2

4t dx <∫
Rk−Cs

(4πt)−
k
2 e−

‖z‖2

4t dx. Using the standard substitution z = ‖z|√
t
, we can rewrite

the last integral as∫
Rk−Cs

(4πt)−
k
2 e−

‖z‖2

4t dx =
∫

Rk−C s√
t

(4π)−
k
2 e−

‖z‖2

4 dz

498 M. Belkin and P. Niyogi

The last quantity is the probability that all coordinates of a standard multivari-
ate Gaussian are greater than than s√

t
in absolute value and is therefore equal

to 2 − 2(1 − Erf(s√
t
))k < 2k − 2k Erf (s√

t
). Applying a well-known inequality

1 − Erf(t) < 1
t exp(t2) yields the statement.

Lemma 9. Let φ : Rk → Rk be a differentiable function such that φ(x) =
x + O(x3), i.e. the Taylor expansion for each coordinate of φ does not have any
terms of degree 2, [φ(x)]i = xi + O(‖x‖3) at the origin. Then for any open set
B containing the origin the following two expressions hold (the first one is true
even if φ has terms of degree 2.

f(0) = lim
t→0

(4πt)−
n
2

∫
B⊂Rk

e−
φ(y)2

4t f(y) dy (11)

Δf(0) = − ∂

∂t

(
(4πt)−

n
2

∫
B⊂Rk

e−
φ(y)2

4t f(y) dy
)∣∣∣∣

0

+ Cf(0) (12)

C here is a constant depending only on φ.

Proof. We will concentrate on proving formula (12), formula (11) is a corollary
of the computation below. From the previous Lemma, it can be easily seen that
the set B can be replaced by the whole space Rk. For simplicity we will show
the formula when n = 1. The case of arbitrary n is no different but requires
rather cumbersome notation. We can write f(y) = a0 + a1y + a2y

2 + . . . and
φ(y) = y + b0y

3 + Put y =
√

tx. Changing the variable, we get:

1√
t

∫
R

e−
φ(y)2

4t f(y)dy =
1√
t

∫
R

e−
ty2+t2b0y4+...

4t f(
√

ty)
√

tdy =

=
∫

R

e−
y2+tb0y4+o(t)

4 f(
√

ty)dy

Note that e−
y2+tb0y4+o(t)

4 = e−
y2

4 e−
tb0y4+o(t)

4 = e−
y2

4 (1 − t b0
4 y4 + o(t)).

Thus the previous integral can be written as∫
R

e−
x2
4

(
1 − t

b0
4

x4 + o(t)
)

f(
√

tx)dx

=
∫

R

e−
x2
4

(
1 − t

b0
4

x4 + o(t)
)(

a0 + a1

√
tx + a2tx

2 + o(t)
)
dx

=
∫

R

e−
x2
4

(
a0 + a1

√
tx + t(a2x

2 − a0
b0
4

x4) + o(t)
)

dx

Note that the second term a1

√
tx is an odd function in x and therefore∫

R
e−

x2
4 a1

√
txdx = 0.

Thus

∂

∂t

(
1

2
√

tπ

∫
R

e−
y2+y4φ(y)

4t f(y)dy
)∣∣∣∣

0

=
1

2
√

π

∫
R

e−
x2
4 a2x

2dx− 1
2
√

π

∫
R

e−
x2
4 a0

b0
4

x4dx

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods 499

The first integral in the sum is exactly the Laplacian of f at 0, Δf(0) =
1

2
√

π

∫
R
e−

x2
4 a2x

2dx. The second summand depends only on the value a0 = f(0)
and the function φ, which completes the proof.

6.3 Probability

Theorem 6 (Hoeffding). Let X1, . . . , Xn be independent identically distributed
random variables, such that |Xi| ≤ K. Then

P

{∣∣∣∣∑i Xi

n
− EXi

∣∣∣∣ > ε

}
< 2 exp

(
− ε2n

2K2

)

Acknowledgements

We thank Matthias Hein for pointing out an error in Claim 4.2.6. in [1] and an
earlier version of Lemma 6.

References

1. M. Belkin, Problems of Learning on Manifolds, The University of Chicago, Ph.D.
Dissertation, 2003.

2. M. Belkin, P. Niyogi, Using Manifold Structure for Partially Labeled Classification,
NIPS 2002.

3. M. Belkin, P. Niyogi. (2003). Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation, Neural Computation, Vol. 15, No. 6, 1373-1396.

4. M. Belkin, P. Niyogi, V. Sindhwani, On Manifold Regularization, AI Stats 2005.
5. Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, M. Ouimet, Out-

of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,
NIPS 2003.

6. M. Bernstein, V. de Silva, J.C. Langford, J.B. Tenenbaum, Graph approximations
to geodesics on embedded manifolds, Technical Report, 2000.

7. O. Bousquet, O. Chapelle, M. Hein, Measure Based Regularization, NIPS 2003.
8. Y. Bengio, J-F. Paiement, and P. Vincent,Out-of-Sample Extensions for LLE,

Isomap, MDS, Eigenmaps, and Spectral Clustering, NIPS 2003.
9. Chapelle, O., J. Weston and B. Schoelkopf, Cluster Kernels for Semi-Supervised

Learning, NIPS 2002.
10. F. R. K. Chung. (1997). Spectral Graph Theory. Regional Conference Series in

Mathematics, number 92.
11. M. do Carmo, Riemannian Geometry, Birkhauser, 1992.
12. D. L. Donoho, C. E. Grimes, Hessian Eigenmaps: new locally linear embedding

techniques for high-dimensional data, Proceedings of the National Academy of Arts
and Sciences vol. 100 pp. 5591-5596.

13. M. Hein, J.-Y. Audibert, U. von Luxburg, From Graphs to Manifolds – Weak and
Strong Pointwise Consistency of Graph Laplacians, COLT 2005, (to appear).

14. M. Meila, J. Shi, Learning segmentation by random walks, NIPS 2000.
15. F. Memoli, G. Sapiro, Comparing Point Clouds, IMA Technical Report, 2004.

500 M. Belkin and P. Niyogi

16. S. Lafon, Diffusion Maps and Geodesic Harmonics, Ph. D. Thesis, Yale University,
2004.

17. U. von Luxburg, M. Belkin, O. Bousquet, Consistency of Spectral Clustering, Max
Planck Institute for Biological Cybernetics Technical Report TR 134, 2004.

18. A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm,
NIPS 2001.

19. P. Niyogi, Estimating Functional Maps on Riemannian Submanifolds from Sampled
Data, http://www.ipam.ucla.edu/publications/mgaws3/mgaws3 5188.pdf, pre-
sented at IPAM Workshop on Multiscale structures in the analysis of High-
Dimensional Data, 2004.

20. P. Niyogi, S. Smale, S. Weinberger, Finding the Homology of Submanifolds with
High Confidence from Random Samples, Univ. of Chicago Technical Report TR-
2004-08, 2004.

21. S. Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge University
Press, 1997.

22. Sam T. Roweis, Lawrence K. Saul. (2000). Nonlinear Dimensionality Reduction by
Locally Linear Embedding, Science, vol 290.

23. A. Smola and R. Kondor, Kernels and Regularization on Graphs, COLT/KW 2003.
24. J. Shi, J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22, 8, 2000.
25. D. Spielman, S. Teng, Spectral partitioning works: planar graphs and finite element

meshes, FOCS 1996.
26. Martin Szummer, Tommi Jaakkola, Partially labeled classification with Markov

random walks, NIPS 2001.
27. J.B.Tenenbaum, V. de Silva, J. C. Langford. (2000). A Global Geometric Frame-

work for Nonlinear Dimensionality Reduction, Science, Vol 290.
28. R. Kannan, S. Vempala, A. Vetta, On Clusterings - Good, Bad and Spectral, Tech-

nical Report, Computer Science Department, Yale University, 2000.
29. D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Schoelkopf, Learning with Local

and Global Consistency, NIPS 2003.
30. X. Zhu, J. Lafferty and Z. Ghahramani, Semi-supervised learning using Gaussian

fields and harmonic functions, ICML 2003.
31. A. Zomorodian, G. Carlsson, Computing persistent homology, 20th ACM Sympo-

sium on Computational Geometry, 2004.

Permutation Tests for Classification

Polina Golland1, Feng Liang2, Sayan Mukherjee2,3, and Dmitry Panchenko4

1 Computer Science and Artificial Intelligence Laboratory,

2 Institute of Statistics and Decision Sciences,
3 Institute for Genome Sciences and Policy, Duke University,

Durham, NC 27708, USA
4

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

pollina@csail.mit.edu, {feng, sayan}@stat.duke.edu
panchenk@math.mit.edu

Abstract. We describe a permutation procedure used extensively in
classification problems in computational biology and medical imaging.
We empirically study the procedure on simulated data and real examples
from neuroimaging studies and DNA microarray analysis. A theoretical
analysis is also suggested to assess the asymptotic behavior of the test.
An interesting observation is that concentration of the permutation pro-
cedure is controlled by a Rademacher average which also controls the
concentration of empirical errors to expected errors.

1 Introduction

Many scientific studies involve detection and characterization of predictive pat-
terns in high dimensional measurements, which can often be reduced to training
a binary classifier or a regression model. Examples of this type of data include
medical image studies and gene expression analysis. Image-based clinical stud-
ies of brain disorders attempt to detect neuroanatomical changes induced by
diseases, as well as predict development of the disease. The goals of gene ex-
pression analysis include classification of the tissue morphology and prediction
of the treatment outcome from DNA microarray data. Data in both fields are
characterized by high dimensionality of the input space (thousands of features)
and small datasets (tens of independent examples), typical of many biological
applications.

A basic question is in this setting is how can one have any modicum of faith
in the accuracy of the trained classifier. One approach to this problem would be
to estimate the test error on a hold-out set – or by applying a cross-validation
procedure, such as a jackknife [2] – which, in conjunction with a variance-based
convergence bound, provides a confidence interval for the expected error. Small
sample sizes render this approach ineffective as the variance of the error on a
hold-out set is often too large to provide a meaningful estimate on how close
we are to the true error. Applying variance-based bounds to the cross-validation
error estimates produces misleading results as the cross-validation iterations are

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 501–515, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

502 P. Golland et al.

not independent, causing us to underestimate the variance. Classical generaliza-
tion bounds are also not appropriate in this regime due to the high dimensionality
and small sample size. In addition, even if a consistent algorithm is used that
produces a classifier with low variance the data itself may have no structure.
Neither cross-validation nor classical generalization bounds address this issue.

Recently, several research groups, including ours, proposed using permuta-
tion tests [10, 8] to assess the reliability of the classifier’s accuracy via a notion
of statistical significance [7, 16, 13, 15, 6]. Intuitively, statistical significance is a
measure of how likely the observed accuracy would be obtained by chance, only
because the training algorithm identified some pattern in the high-dimensional
data that happened to correlate with the class labels as an artifact of a small
data set size. A significant classifier would reject the null hypothesis that the
features and the labels are independent, that is, there is no difference between
the two classes. The cross-validation error or the test error on a hold-out set
is used as a test statistic that measures how different the two classes are with
respect to the family of classifiers we use in training, and its distribution under
the null hypothesis is estimated by permuting the labels.

A notion of statistical significance or of variance does not always add more
information to the classification problem than the classification error. For exam-
ple, for a fixed classifier [9] shows that statistical significance estimates carry at
most as much information as the classification error. This is due to the fact that
a fixed classifier can be modeled as a Bernoulli distribution and the variance
will be determined by the mean, which is an estimate of the classifiers accu-
racy. However, this will not hold for a family of classifiers, the family needs to be
restricted to control the variance and for a uniform law of large numbers to hold.

The objective of this paper is to examine with some care permutation tests
for classification both empirically and theoretically so as to provide users with
some practical recommendations and suggest a theoretical basis to the procedure.
The remaining of the paper is organized as follows. The next section describes
the permutation procedure to estimate statistical significance of classification
results. Section 3 applies the procedure to simulated data as well as real data
from the fields of brain imaging and gene expression analysis and offers practical
guidelines for applying the procedure. In Section 4, we suggest a theoretical
analysis of the procedure that leads to convergence bounds governed by similar
quantities to those that control standard empirical error bounds, closing with a
brief discussion of open questions.

2 Permutation Test for Classification

In two-class comparison hypothesis testing, the differences between two data
distributions are measured using a dataset statistic

T : (Rn × {−1, 1})l !→ R,

such that for a given dataset S = {(xk, yk)}l
k=1, where xk ∈ Rn are observations

and yk ∈ {−1, 1} are the corresponding class labels, T (x1, y1, . . . ,xl, yl) is a

Permutation Tests for Classification 503

measure of the similarity of the subsets {xk|yk=1} and {xk|yk=−1}. The null
hypothesis typically assumes that the two conditional probability distributions
are identical, p(x|y=1) = p(x|y=−1), or equivalently, that the data and the
labels are independent, p(x, y) = p(x)p(y). The goal of the hypothesis test
is to reject the null hypothesis at a certain level of significance α which sets
the maximal acceptable probability of false positive (declaring that the classes
are different when the null hypothesis is true). For any value of the statistic,
the corresponding p-value is the highest level of significance at which the null
hypothesis can still be rejected.

The test statistics used in this paper are training errors, cross-validation
errors, or jackknife estimates. Here we give as an example the jackknife estimate

T (x1, y1, . . . ,xl, yl) =
1
l

l∑
i=1

I(fSi(xi) �= yi),

where Si is the dataset with the ith sample removed and fSi is the function
obtained by the classification algorithm given the dataset Si and I(·) is the
indicator function.

Suppose we have chosen an appropriate statistic T and the acceptable signifi-
cance level α. Let Πl be the set of all permutations of the samples (xi)l

i=1, where
for the permutation π, xπ

i is the i-th sample after permutation. The permutation
test procedure is described as follows:

– Repeat M times (with index m = 1, . . . ,M):
• sample a permutation πm from a uniform distribution over Πl,
• compute the statistic value for this permutation of samples

tm = T (xm
1 , y1, . . . ,xm

l , yl).

– Construct an empirical cumulative distribution (ecdf)

P̂ (T ≤ t) =
1

M

M∑
m=1

Θ(t − tm),

where the step function Θ(x − y) = 1 if x ≥ y and otherwise is 0.

– Compute t0 = T (x1, y1, . . . ,xl, yl) and the corresponding p-value p̂0 =
P̂ (t0). If p̂0 ≤ α, then reject the null hypothesis.

Ideally, we would like to use the entire set of permutations Πl to calculate
the corresponding p-value p0, but it might be not feasible for computational
reasons. Instead, we resort to sampling from Πl and use Monte Carlo methods
to approximate p0. The Monte Carlo approximation p̂0 has a standard deviation

given by
√

p0(1−p0)
M [3]. Since p0 is unknown in practice, the corresponding upper

bound 1
2
√

M
is often used to determine the number of iterations required to

achieve desired prevision of the test.

504 P. Golland et al.

3 Application of the Test

In this section, we demonstrate the procedure on simulated data and then on two
different examples, a study of changes in the cortical thickness due to Alzheimer’s
disease using MRI scans for measurement and a discrimination between two
types of leukemia based on DNA microarray data. For a more extensive exposi-
tion over various datasets see [12].

The simulated data was generated as follows: 160 samples were generated
from two normal distributions in R2 with means (±1, 0) and identity covariance
with half the samples drawn from each distribution. Samples from group one
were assigned a label y = +1 with probability p and y = −1 with probabil-
ity (1 − p). The opposite was done for group two. The probability p ∈ [0, .5]
denotes the noise level. We used linear discriminant analysis to train the classi-
fier. The results are shown in Figures (1, 2, 3) for training error, leave-one-out
error, and test error (the hold-out set is 20 samples per group), respectively.
The black lines in the graphs plot the ecdfs of various errors for 5000 permu-
tations of the data. As the noise parameter p is scanned over {.1, .2, .3, .4, .5}
the value of the unpermuted statistic, the red bar, shifts right. The value at
which the red bar meets the black line determines the p-value (given in the cap-
tion for each figure). When the noise level increases, that is, the labels and
features become more independent, the p-value increases as shown in those
figures.

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Training error: p-values = {0.0002, 0.0002, 0.0574, 0.1504, 0.8290}

For the real dataset we used linear Support Vector Machines [19] to train a
classifier, and jackknifing (i.e., sampling without replacement) for cross-
validation. The number of cross-validation iterations was 1, 000, and the number
of permutation iterations was 10, 000.

Permutation Tests for Classification 505

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2. Leave-one-out error: p-values = {0.0002, 0.0002, 0.0430, 0.1096, 0.7298}

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3. Test error: p-values = {0.0764, 0.0012, 0.0422, 0.1982, 0.7594}

The first example compares the thickness of the cortex in 50 patients diag-
nosed with dementia of the Alzheimer type and 50 normal controls of matched
age [5, 4]. The dimensionality of the input space was 300, 000.

The statistic and its null distribution as a function of training set and hold-out
set size is plotted in Figure (4). Every point in the first two graphs is character-
ized by a corresponding training set size N and hold-out set size K, drawn from
the original dataset. It is not surprising that increasing the number of training
examples improves the robustness of classification as exhibited by both the ac-

506 P. Golland et al.

0 20 40 60
0.2

0.3

0.4

0.5
Jacknife error

Training set size N

E
rr

o
r

K=10
K=20
K=40

0 20 40 60

0.05
0.1

0.2

0.4

Statistical significance

Training set size N

p
−

va
lu

e

K=10
K=20
K=40

0 0.3 0.7 1
0.05

0.2

0.5

1

error

p
−

va
lu

e

Empirical cdf for N=50

K=10
K=20
K=40

Fig. 4. Estimated test error (left) and statistical significance (middle) computed for
different training set sizes N and test set sizes K, and empirical error distribution
(right) constructed for N = 50 and different test set sizes K in the cortical thickness
study. Filled circles on the right graph indicate the classifier performance on the true
labels (K = 10: e = .30, p = .19; K = 20: e = .29, p = .08; K = 40: e = .29, p = .03)

0 20 40 60 80
0.2

0.3

0.4

0.5
Jacknife error

Training set size N

er
ro

r

0 20 40 60 80
0.01

0.02

0.05

0.1

0.5
Statistical significance

Training set size N

p−
va

lu
e

(lo
g−

sc
al

e)

0 10 20 30 40

0.05

0.1

0.2

0.3

0.4
Jacknife error

Training set size N

er
ro

r

0 10 20 30 40

0.001

0.01

0.05

0.5
Statistical significance

Training set size N

p−
va

lu
e

(lo
g−

sc
al

e)

Fig. 5. Estimated test error and statistical significance for different training set sizes
N for (top) the cortical thickness study and (bottom) the leukemia morphology study.
Unlike the experiments in Figure (4), all of the examples unused in training were used
to test the classifier. The p-values are shown on a logarithmic scale

curacy and the significance estimates. By examining the left graph, we conclude
that at approximately N = 40, the accuracy of the classification saturates at
71% (e = .29). After this point decreasing the number of hold-out samples does
not significantly affect the estimated classification error, but does substantially
decrease the statistical significance of the same error value. The right graph in
Figure (4) illustrates this point for a particular training set size of N = 50.

Permutation Tests for Classification 507

Figure (5) shows the estimated classification error and the corresponding
p-values that were estimated using all of the examples left out in the training
step in the hold-out set. While the error graph looks very similar to that in
Figure (4), the behavior of significance estimates is quite different. The p-values
originally decrease as the training set size increases, but after a certain point,
they start growing. Two conflicting factors control p-value estimates as the num-
ber of training examples increases: improved accuracy of the classification, which
causes the point of interest to slide to the left – and as a result, down – on the
ecdf curve, and the decreasing number of test examples, which causes the ecdf
curve to become more shallow.

The second example compares DNA microarray expression data from two
types of leukemia acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL) [7, 16]. The data set contains 48 samples of AML and 25 samples
of ALL. The dimensionality of the input space was 7, 129. Figure 5 shows the
results for this study. The cross-validation error reduces rapidly as we increase
the number of training examples, dropping below 5% at N = 26 training ex-
amples. The p-values also decrease very quickly as we increase the number of
training examples, achieving minimum of .001 at N = 28 training examples. Like
the previous example, the most statistically significant result lies in the range of
relatively slow error change.

4 A Theoretical Motivation for the Permutation
Procedure

The point of the permutation procedure is to examine if a classifier selected from
a family of classifiers given a dataset is predictive. By predictive we mean that the
dependence relationship between y and x learned by the classifier is significantly
different from the independent one. In the examples shown previously in the
paper we used the training error as well as the leave-one-out or cross-validation
error as the statistic used in the permutation procedure. Our theoretical moti-
vation will focus on the training error. We will remark on generalizations to the
leave-one-out error.

In Section 4.2 we relate the concentration of the permutation procedure to
p-values and comment on generalizing the proof to account for the leave-one-out
error as the statistic used in the permutation procedure. In Section 4.3 we note
that for classifiers finite VC dimension is a necessary and sufficient condition for
the concentration of the permutation procedure.

4.1 Concentration of the Permutation Procedure

We are given a class of classifiers C. Since there are only two classes, any classifier
c ∈ C can be regarded as a subset of Rn to which class label {+1} is assigned.
Without loss of generality we will assume ∅ ∈ C. Assume there is an unknown
concept c0: y = +1, if x ∈ c0 and y = −1, otherwise. For a permutation π of
the training data, the smallest training error on the permuted set is

508 P. Golland et al.

el(π) = min
c∈C

Pl(c5c0) (1)

= min
c∈C

[
1
l

l∑
i=1

I(xi ∈ c,xπ
i �∈ c0) + I(xi �∈ c,xπ

i ∈ c0)

]
,

where xi is the i-th sample and xπ
i is the i-th sample after permutation. For a

fixed classifier c ∈ C the average error is

EPl(c5c0) =
(

1 − 1
l

)
[P (c)(1 − P (c0)) + (1 − P (c))P (c0)] +

1
l
[P (c) + P (co) − 2P (c ∩ c0)],

where the expectation is taken over the data x and permutations π. As l gets
large the average error is approximately P (c)(1 − P (c0)) + (1 − P (c))P (c0) and
since we can assume P (c0) ≤ 1/2 taking c = ∅ minimizes the average error at
P (c0). We later refer to P (c0) as the random error because, a classifier such as
c = ∅ is not informatively at all. Our goal is to show that under some complexity
assumptions on class C the smallest training error el(π) is close to the random
error P (c0).

Minimizing (1) is equivalent to the following maximization problem

max
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
,

since

el(π) = Pl(x ∈ c0) − max
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
,

and Pl(x ∈ c0) is the empirical measure of the target concept. We would like
to show that el(π) is close to the random error P (x ∈ c0) and give rates of
convergence. We will do this by bounding the process

Gl(π) = sup
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
and using the fact that, by Chernoff’s inequality, Pl(x ∈ c0) is close to P (x ∈ c0):

IP

(
P (x ∈ c0) − Pl(x ∈ c0) ≤

√
2P (c0)(1 − P (c0))t

l

)
≥ 1 − e−t. (2)

Theorem 1. If the concept class C has VC dimension V then with probability
1 −Ke−t/K

Gl(π) ≤ K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
+

√
Kt

l
.

Permutation Tests for Classification 509

Remark. The second quantity in the above bound comes from the application
of Chernoff’s inequality similar to (2) and, thus, has a “one dimensional nature”
in a sense that it doesn’t depend on the complexity (VC dimension) of class
C. An interesting property of this result is that if P (c0) < 1/2 then first term
that depends on the VC dimension V will be of order V log l

l which, ignoring the
“one dimensional terms”, gives the zero-error type rate of convergence of el(π)
to P (x ∈ c0). Combining this theorem and equation (2) we can state that with
probability 1 −Ke−t/K .

P (x ∈ c0) ≤ Pl(x ∈ c0) + K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
+

√
Kt

l
.

Throughtout this paper K designates a constant the value of which can change
over the equations.

In order to prove Theorem 1, we require several preliminary results. We first
prove the following useful lemma.

Lemma 1. It is possible to construct on the same probability space two i.i.d
Bernoulli sequences ε = (ε1, . . . , εn) and ε′ = (ε′1, . . . , ε

′
n) such that ε is inde-

pendent of ε′1 + . . . + ε′n and
∑n

i=1 |εi − ε′i| = |
∑n

i=1 εi −
∑n

i=1 ε′i|.

Proof. For k = 0, . . . , n, let us consider the following probability space Ek. Each
element w of Ek consists of two coordinates w = (ε, π). The first coordinate
ε = (ε1, . . . , εn) has the marginal distribution of an i.i.d. Bernoulli sequence.
The second coordinate π implements the following randomization. Given the
first coordinate ε, consider a set I(ε) = {i : εi = 1} and denote its cardinality
m = card{I(ε)}. If m ≥ k, then π picks a subset I(π, ε) of I(ε) with cardinality
k uniformly, and if m < k, then π picks a subset I(π, ε) of the complement
Ic(ε) with cardinality n − k also uniformly. On this probability space Ek, we
construct a sequence ε′ = ε′(ε, π) in the following way. If k ≤ m = card{I(ε)}
then we set ε′i = 1 if i ∈ I(π, ε) and ε′i = −1 otherwise. If k > m = card{I(ε)}
then we set ε′i = −1 if i ∈ I(π, ε) and ε′i = 1 otherwise. Next, we consider a
space E = ∪k≤nEk with probability measure P(A) =

∑n
k=0 B(n, p, k)P(A ∩ Ek),

where B(n, p, k) =
(
n
k

)
pk(1 − p)n−k. On this probability space the sequence ε

and ε′ will satisfy the conditions of the lemma. First of all, X = ε′1 + . . . + ε′n
has binomial distribution since by construction P(X = k) = P(Ek) = B(n, p, k).
Also, by construction, the distribution of ε′ is invariant under the permutation
of coordinates. This, clearly, implies that ε′ is i.i.d. Bernoulli. Also, obviously,
ε is independent of ε′1 + . . . + ε′n. Finally, by construction

∑n
i=1 |εi − ε′i| =

|
∑n

i=1 εi −
∑n

i=1 ε′i|. �

Definition 1. Let u > 0 and let C be a set of classifiers. Every finite set of
concepts c1, ..., cn with the property that for all c ∈ C there is a cj such that

1
l

l∑
i=1

|cj(xi) − c(xi)|2 ≤ u

510 P. Golland et al.

is called a u-cover with respect to ||·||L2(xl).The covering number N (C, u, {x1, ..xl})
is the smallest number for which the above holds.

Definition 2. The uniform metric entropy is logN (C, u) where N (C, u) is the
smallest integer for which

∀l, ∀(x1, ...,xl), N (C, u, {x1, ..xl}) ≤ N (C, u).

Lemma 2. The following holds with probability greater than 1 −Ke−t/K

Gl(π)≤ sup
r

[
K

1√
l

∫ √
μr

0

√
logN (u, C)du − μr

2
(1 − 2P (c0)) +

√
μr(t + 2 log(r + 1))

l

]

+2

√
2tP (c0)(1 − P (c0))

l
,

where μr = 2−r and logN (C, u) is the uniform metric entropy for the class C.

Proof. The process

Gl(π) = sup
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
.

can be rewritten as

Gl(π) = sup
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)εi

]
,

where εi = 2I(xπ
i ∈ c0) − 1 = ±1 are Bernoulli random variables with P (εi =

1) = P (c0). Due to permutations the random variables (εi) depend on (xi) only
through the cardinality of {xi ∈ c0}. By lemma 1 we can construct a random
Bernoulli sequence (ε′i) that is independent of x and for which

Gl(π) ≤ sup
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
+

∣∣∣∣∣1l
l∑

i=1

εi −
1
l

l∑
i=1

ε′i

∣∣∣∣∣ .
We first control the second term∣∣∣∣∣1l

l∑
i=1

εi −
1
l

l∑
i=1

ε′i

∣∣∣∣∣ ≤
∣∣∣∣∣1l

l∑
i=1

ε′i − (2P (c0) − 1)

∣∣∣∣∣ +

∣∣∣∣∣1l
l∑

i=1

εi − (2P (c0) − 1)

∣∣∣∣∣ ,
then using Chernoff’s inequality twice we get with probability 1 − 2e−t∣∣∣∣∣1l

l∑
i=1

εi −
1
l

l∑
i=1

ε′i

∣∣∣∣∣ ≤ 2

√
2tP (c0)(1 − P (c0))

l
.

Permutation Tests for Classification 511

We block concepts in C into levels

Cr =

{
c ∈ C :

1
l

l∑
i=1

I(xi ∈ c) ∈ (2−r−1, 2−r]

}
and denote μr = 2−r. We define the processes

R(r) = sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
,

and obtain

sup
c∈C

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
≤ sup

r
R(r).

By Talagrand’s convex hull inequality on the two point space [17], we have for
each level r

IPε′

(
R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
+

√
μrt

l

)
≥ 1 −Ke−t/K .

Note that for this inequality to hold, the random variables (ε′) need only be
independent, they do not need to be symmetric. This bound is conditioned on
a given {xi}l

i=1 and by taking the expectation w.r.t. {xi} we get,

IP

(
R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
+

√
μrt

l

)
≥ 1 −Ke−t/K .

If, for each r, we set t → t + 2 log(r + 1), we can write

IP

(
∀r R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]
+

√
μr(t + 2 log(r + 1))

l

)

≥ 1 −
∞∑

r=0

1
(r + 1)2

e−t/4 ≥ 1 − 2e−t/4.

Using standard symmetrization techniques we add and subtract an independent
sequence ε′′i such that Eε′′i = Eε′i = (2P (c0) − 1):

Eε′ sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i

]

≤ Eε′ sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ε′i−
1
l

l∑
i=1

I(xi ∈ c)Eε′′i +
1
l

l∑
i=1

I(xi ∈ c)(2P (c0) − 1)
]

≤ Eε′ ε′′ sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)(ε′ − ε′′)
]
− (1 − 2P (c0)) inf

c∈Cr

(
1
l

l∑
i=1

I(xi ∈ c)

)

≤ 2Eηi
sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ηi

]
− μr(1 − 2P (c0))

2
,

512 P. Golland et al.

where ηi = (ε′i − ε′′i)/2 takes values {−1, 0, 1} with probability P (ηi = 1) =
P (ηi = −1). One can easily check that the random variables ηi are subgaussian,
i.e.

IP

(
l∑

i=1

ηiai > t

)
≤ e

− t2

2
∑l

i=1 a2
i ,

which is the only prerequisite for the chaining method. Thus, one can write
Dudley’s entropy integral bound, [18]

Eηi
sup
c∈Cr

[
1
l

l∑
i=1

I(xi ∈ c)ηi

]
≤ K

1√
l

∫ √
μr

0

√
logN (u, C)du.

We finally get

IP

(
∀r R(r) ≤ K

1√
l

∫ √
μr

0

√
logN (u, C)du +

√
μr(t + 2 log(r + 1))

l
− μr(1 − 2P (c0))

2

)
≥ 1 − 2e−t/4.

This completes the proof of Lemma 2. �
Proof of Theorem 1. For a class with VC dimension V , it is well known
that [18]

1√
l

∫ √
μr

0

√
logN (u, C)du ≤ K

√
V μr log 2

μr

l
.

Since without loss of generality we only need to consider μr > 1/l, it remains to
apply lemma 2 and notice that

sup
r

[
K

√
V μr log l

l
− μr

2
(1 − 2P (c0))

]
≤ K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
.

All other terms that do not depend on the VC dimension V can be combined to
give

√
Kt/l. �

4.2 Relating p-Values to Concentration and the Leave-One-Out
Error as the Permutation Statistic

The result of the previous section states that for VC classes the training error
concentrates around q = min{P (y = 1), P (y = −1)}.

We can relate this concentration result to the p-value computed by the per-
mutation procedure. The purpose of this is to give a theoretical justification for
the empirical procedure outlined in section 2. We do not recommend replacing
the empirical procedure with the theoretical bound in practical applications. We
assume the statistic used in the permutation procedure is the training error

τ =
1
l

l∑
i=1

I(fS(xi) �= yi),

Permutation Tests for Classification 513

and fS is the function obtained by the classification algorithm given the dataset
S. If we were given the distribution of the training errors over random draws and
random label permutations we would have the distribution under the null hy-
pothesis Pnull(ξ) and the p-value of the statistic τ would simply be Pnull(ξ ≤ τ).
In the empirical procedure outlined in section 2 we used an empirical estimate
P̂ (ξ) to computed the p-value.

The results of section 4.1 give us a bound of the deviation of the training
error of the permuted data from P (c0) under the null hypothesis, namely,

IP (|el(π) − P (c0)| ≥ ε) ≤ Ke−ε2O(l), (3)

where O(l) ignores log l terms. We assume that we know P (c0), otherwise it can
be accurately estimated by a frequency count of y = ±1. We can bound the
p-value by setting |t − P (c0)| = ε and computing Ke−ε2O(l).

The difference between the p-value computed using the inequality (3) and
that outlined in section 2 is the later is a one-sided test and is based upon
empirical approximations rather than bounds. A one-sided test can be derived
from the results in section 4.1 in a similar fashion as the two-sided test.

We can also use the leave-one-out error as the statistic used in the permuta-
tion procedure

τ =
1
l

l∑
i=1

I(fSi(xi) �= yi),

where Si is the dataset with the ith sample removed and fSi is the function
obtained by the classification algorithm given the dataset Si. In this case, for
certain algorithms we can make the same theoretical arguments for the leave-
one-out estimator as we did for the training error since with high probability the
training error is close to the leave-one-out error.

Proposition 1. If independent of measure μ(x, y) with probability greater than
1 −Ke−t/K∣∣∣∣∣1l

l∑
i=1

I(fSi(xi) �= yi) −
1
l

l∑
i=1

I(fS(xi) �= yi)

∣∣∣∣∣ ≤ K

√
t log l

l
,

then the leave-one-out estimate on the permuted data will concentrate around
P (c0) with the same rates of convergence as the training error.

The proof is obvious in that if the deviation between the leave-one-out esti-
mator and the training error is of the same order as that of the deviation between
the training error and P (c0) and both hold with exponential probability then we
can simply replace the leave-one-out error with the training error and maintain
the same rate of convergence.

The condition in Proposition 1 holds for empirical risk minimization on a VC
class in the realizable setting [11] and for Tikhonov regularization with Lipschitz
loss functions [1].

514 P. Golland et al.

4.3 A Necessary and Sufficient Condition for the Concentration of
the Permutation Procedure

In this section we note that for a class of classifiers finite VC dimension is a
necessary and sufficient condition for the concentration of the training error on
the permuted data.

The proof of lemma 2 makes no assumptions of the class C except that it is
a class of indicator functions and the bounds used in the proof are tight in that
the equality can be achieved under certain distributions. A step in the proof
of the lemma involved upper-bounding the Rademacher process by Dudley’s
entropy integral. The assumptions on the class C are introduced to control the
Rademacher process in the inequality in lemma 2. For finite VC dimension the

process can be upper bounded by O
(√

1
l

)
using Dudley’s entropy integral which

proves sufficiency. The Rademacher process can also be lower bounded by a
function of the metric entropy by Sudakov minorization [18]. If C has infinite VC
dimension this lower bound is a constant and the process does not concentrate
which proves necessity.

5 Open Problems

The following is a list of open problems related to this methodology:

1. Leave-one-out error and training error. In the theoretical motivation, we
relate the leave-one-out error to the training error for certain algorithms.
The result would be stronger if proposition 1 held for VC classes in the
nonrealizable setting.

2. Feature selection. Both in neuroimaging studies and in DNA microarray
analysis, finding the features which most accurately classify the data is very
important. Permutation procedures similar to the one described in this paper
have been used to address this problem [7, 16, 14]. It would be very interesting
to extend the type of analysis here to the feature selection problem.

References

1. O. Bousquet and A. Elisseeff. Stability and generalization. Journal Machine Learn-
ing Research, 2:499–526, 2002.

2. B. Efron. The Jackknife, The Bootstrap, and Other Resampling Plans. SIAM,
Philadelphia, PA, 1982.

3. Bradley Efron and Robert Tibshirani. An introduction to the bootstrap. Chapman
& Hall Ltd, 1993.

4. B. Fischl and A.M. Dale. Measuring the thickness of the human cerebral cortex
from magnetic resonance images. PNAS, 26:11050–11055, 2000.

5. B. Fischl, M.I. Sereno, R.B.H. Tootell, and A.M. Dale. High-resolution intersubject
averaging and a coordinate system for the cortical surface. Human Brain Mapping,
8:262–284, 1999.

Permutation Tests for Classification 515

6. P. Golland and B. Fischl. Permutation tests for classification: Towards statistical
significance in image-based studies. In IPMI’2003: The 18th International Confer-
ence on Information Processing and Medical Imaging, volume LNCS 2732, pages
330–341, 2003.

7. T.R. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,
H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular Classification of Cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286:531–537, 1999.

8. P. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypothesis. Springer-Verlag, 1994.

9. T. Hsing, S. Attoor, and E. Dougherty. Relation between permutation-test p values
and classifier error estimates. Machine Learning, 52:11–30, 2003.

10. M.G. Kendall. The treatment of ties in ranking problems. Biometrika, 33:239–251,
1945.

11. S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and generalization
error. Technical report TR-2002-03, University of Chicago, 2002.

12. S. Mukherjee, P. Golland, and D. Panchenko. Permutation tests for classification.
AI Memo 2003-019, Massachusetts Institute of Technology, 2003.

13. S. Mukherjee, P. Tamayo, S. Rogers, R. Rifkin, A. Engle, C. Campbell, T.R. Golub,
and J.P. Mesirov. Estimating dataset size requirements for classifying dna microar-
ray data. Journal Computational Biology, 10(2):119–142, 2003.

14. T.E. Nichols and A.P. Holmes. Nonparametric permutation tests for functional
neuroimaging: A primer with examples. Human Brain Mapping, 15:1–25, 2001.

15. S. Pomeroy, P. Tamayo, M. Gaasenbeek, L. Sturlia, M. Angelo, j. Y. H. Kim
M. E. McLaughlin, L. C. Goumnerova, P. M. Black, C. Lauand J. C. Lau, J. C.
Allen, D. Zagzag, M. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio,
S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov,
E. S. Lander, and T. R. Golub. Prediction of embryonal tumor outcome based on
gene expression. Nature, 415:436–442, 2002.

16. D. Slonim, P. Tamayo, J.P. Mesirov, T.R. Golub, and E. Lander. Class prediction
and discovery using gene expression data. In Proceedings of the Fourth Annual
Conference on Computational Molecular Biology (RECOMB), pages 263–272, 2000.

17. M. Talagrand. Concentration of measure and isoperimetric inequalities in product
spaces. Publications Mathématiques de l’I.H.E.S., 81:73–205, 1995.

18. A. van der Vaart and J. Wellner. Weak convergence and Empirical Processes With
Applications to Statistics. Springer-Verlag, 1996.

19. V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

Localized Upper and Lower Bounds for Some
Estimation Problems

Tong Zhang

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
tzhang@watson.ibm.com

Abstract. We derive upper and lower bounds for some statistical esti-
mation problems. The upper bounds are established for the Gibbs algo-
rithm. The lower bounds, applicable for all statistical estimators, match
the obtained upper bounds for various problems. Moreover, our frame-
work can be regarded as a natural generalization of the standard minimax
framework, in that we allow the performance of the estimator to vary
for different possible underlying distributions according to a pre-defined
prior.

1 Introduction

The purpose of this paper is to derive upper and lower bounds for some pre-
diction problems in statistical learning. The upper bounds are obtained for the
Gibbs algorithm. The lower bounds are obtained from some novel applications
of well-known information theoretical inequalities (specifically, data-processing
theorems). We show that the upper bounds and lower bounds have very similar
forms, and match under various conditions.

In statistical prediction, we have input space X and output space Y, and a
space of predictors G. For any X ∈ X , Y ∈ Y, and any predictor θ ∈ G, we
incur a loss Lθ(X,Y) = Lθ(Z), where Z = (X,Y) ∈ Z = X × Y. Consider a
probability measure D on Z. Our goal is to find θ from a random sample Ẑ
from D, such that the loss EZ Lθ(Z) is small, where EZ is the expectation with
respect to D.

In the standard learning theory, we consider n random samples instead of
one sample. The two formulations are in fact equivalent. To see this, consider
X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn}. Let Lθ(Z) =

∑n
i=1 Li,θ(Xi, Yi). If

Zi = (Xi, Yi) are independent random variables, then it follows that EZLθ(Z) =∑n
i=1 EZi

Li,θ(Xi, Yi). We shall thus focus on the one-sample case first without
loss of generality.

In this paper, we consider randomized estimators. They are defined with
respect to a prior π on G, which is a probability measure on G. For a random-
ized estimation method, given sample Ẑ from D, we select θ from G based on
a sample-dependent probability measure dπ̂Ẑ(θ) on G, In this paper, we shall
call such a sample-dependent probability measure as a posterior randomization
measure (or simplified as posterior). The word posterior in this paper is not

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 516–530, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Localized Upper and Lower Bounds for Some Estimation Problems 517

necessarily the Bayesian posterior distribution in the traditional sense. For no-
tational simplicity, we also use the symbol π̂ to denote π̂Ẑ . The randomized
estimator associated with a posterior randomization measure is thus completely
determined by its posterior π̂. Its posterior averaging risk is the averaged risk
of the randomized estimator drawn from this posterior randomization measure,
which can be defined as

Eθ∼π̂EZLθ(Z) = EZ

∫
Lθ(Z)dπ̂(θ).

In this paper, we are interested in estimating this average risk for an arbitrary
posterior π̂. The statistical complexity of this randomized estimator π̂ will be
measured by its KL-entropy respect to the prior, which is defined as:

DKL(π̂||π) =
∫
G

ln
dπ̂(θ)
dπ

dπ̂(θ), (1)

assuming it exists.

2 Analysis of the Gibbs Algorithm

Theoretical properties of the Gibbs algorithm have been studied by various re-
searchers. In particular, some bounds obtained in this paper are related (but not
identical) to independently obtained results in [3]. The main technical tool used
here, based on the following lemma, is simpler and more general. See [8, 9] for
its proof.

Lemma 1. Consider randomized estimation, where we select posterior π̂ on G
based on Ẑ, with π a prior. Consider a real-valued function Lθ(Z) on G × Z.

c(α) = lnEθ∼πEα
Ze−Lθ(Z),

then ∀t, the following event holds with probability at least 1 − exp(−t):

−(1 − α)Eθ∼π̂ lnEZ e−Lθ(Z) ≤ Eθ∼π̂Lθ(Ẑ) + DKL(π̂||π) + c(α) + t.

Moreover, we have the following expected risk bound:

−(1 − α)EẐEθ∼π̂ lnEZ e−Lθ(Z) ≤ EẐ

[
Eθ∼π̂Lθ(Ẑ) + DKL(π̂||π)

]
+ c(α).

If we choose α = 0 in Lemma 1, then c(α) = 0. However, choosing α ∈ (0, 1) is
useful for some parametric problems, where we would like to obtain a convergence
rate of the order O(1/n). In such cases, the choice of α = 0 would lead to a rate
of O(lnn/n), which is suboptimal.

We shall consider the case of n iid samples Ẑ = (Ẑ1, . . . , Ẑn) ∈ Z = Z1 ×
· · · × Zn, where Z1 = · · · = Zn. The loss function is Lθ(Ẑ) = ρ

∑n
i=1 �θ(Ẑi),

518 T. Zhang

where � is a function on G ×Z1 and ρ > 0 is a constant. The Gibbs algorithm is
a randomized estimator π̂ρ defined as:

dπ̂ρ =
exp(−ρ

∑n
i=1 �θ(Ẑi))

Eθ∼π exp(−ρ
∑n

i=1 �θ(Ẑi))
dπ. (2)

It is not difficult to verify that it minimizes the right hand side of Lemma 1
among all probability distributions on G:

π̂ρ = arg inf
π̂

[
ρEθ∼π̂

n∑
i=1

�θ(Ẑi) + DKL(π̂||π)

]
. (3)

Lemma 2. Define resolvability

rρ = − 1
ρn

lnEθ∼πe−ρnEZ1
θ(Z1).

Then ∀α ∈ [0, 1), the expected generalization performance of the Gibbs algorithm
(2) can be bounded as

−EẐ Eθ∼π̂ρ
lnEZ1e

−ρ
θ(Z1) ≤ ρ

1 − α

[
rρ +

1
ρn

lnEθ∼πEαn
Z1

e−ρ
θ(Z1)

]
.

Proof. We obtain from (3)

EẐ

[
ρEθ∼π̂ρ

n∑
i=1

�θ(Ẑi) + DKL(π̂ρ||π)

]

≤ inf
π′

EẐ

[
ρEθ∼π′

n∑
i=1

�θ(Ẑi) + DKL(π′||π)

]
≤ inf

π′

[
ρnEθ∼π′EẐi

�θ(Ẑi) + DKL(π′||π)
]

= ρnrρ.

Let Lθ(Ẑ) = ρ
∑n

i=1 �θ(Ẑi). Substituting the above bound into the right hand
side of the second inequality of Lemma 1, and using the fact that EZe−Lθ(Z) =
En

Z1
e−ρ
θ(Z1), we obtain the desired inequality.

Theorem 1. Consider the Gibbs algorithm in (2). Assume there exist positive
constants K such that ∀θ:

EZ1�θ(Z1)2 ≤ KEZ1�θ(Z1).

Under either of the following conditions:

– Bounded loss: ∃M ≥ 0 s.t. − infθ,Z1 �θ(Z1) ≤ M ; let βρ = 1 − K(eρM −
ρM − 1)/(ρM2).

Localized Upper and Lower Bounds for Some Estimation Problems 519

– Bernstein loss: ∃M, b > 0 s.t. EZ1(−�θ(Z1))m ≤ m!Mm−2KbEZ1�θ(Z1) for
all θ ∈ G and integer m ≥ 3; let βρ = 1 −Kρ(1 − ρM + 2bρM)/(2 − 2ρM).

Assume we choose a sufficiently small ρ such that βρ > 0. Let the (true) expected
loss of θ be R(θ) = EZ1�θ(Z1), then the expected generalization performance of
the Gibbs algorithm is bounded by

EẐ Eθ∼π̂ρ
R(θ) ≤ 1

(1 − α)βρ

[
rρ +

1
ρn

lnEθ∼πe
−αρβρnR(θ)

]
, (4)

where rρ is the resolvability defined in Lemma 2.

Proof. (Sketch) Under the bounded-loss condition, we can use the following mo-
ment generating function estimate:

lnEZ1e
−ρ
θ(Z1) ≤− ρEZ1�θ(Z1) +

eρM − ρM − 1
M2

EZ1�θ(Z1)2

≤−
(
ρ − K

M2
(eρM − ρM − 1)

)
EZ1�θ(Z1) = −ρβρEZ1�θ(Z1).

Now substitute this bound into Lemma 2, and simplify, we obtain the desired
result. The proof is similar for the Bernstein-loss condition (with appropriate
logarithmic moment generating function estimate).

Remark 1. Since (ex − x− 1)/x → 0 as x → 0, we know that the first condition
βρ > 0 can be satisfied as long as we pick a sufficiently small ρ. In fact, using
the inequality (ex − x − 1)/x ≤ 0.5xex (when x ≥ 0), we may also take βρ =
1 − 0.5ρKeρM in the first condition of Theorem 1.

We shall now study consequences of (4) under some general conditions on
the local prior structure π(ε) = π({θ : R(θ) ≤ ε}) around the best achievable
parameter. For some specific forms of local prior conditions, convergence rates
can be stated very explicitly.

Theorem 2. If (4) holds with a non-negative function R(θ), then

EẐ Eθ∼π̂ρ
R(θ) ≤ Δ(αβρ, ρn)

(1 − α)βρρn
,

where

Δ(a, b) = ln inf
u,v

[
sup
ε≤u

max(0, π(ε/a) − v)
π(ε)

+ inf
ε

v + (1 − v) exp(−bu)
π(ε)e−bε

]
,

and π(ε) = π({θ : R(θ) ≤ ε}).

Proof. We have

rρ = − 1
ρn

lnEθ∼πe
−ρnR(θ) = − 1

ρn
ln

∫
π(ε/(ρn)) e−εdε︸ ︷︷ ︸

A

.

520 T. Zhang

Similarly, the second term on the right hand side of (4) is

1
ρn

lnEθ∼πe
−αρβρnR(θ) =

1
ρn

ln
∫

π(ε/(αβρρn)) e−εdε

≤ 1
ρn

ln

⎡⎢⎢⎣∫ ρnu

0

(π(ε/(αρβρn)) − v) e−εdε︸ ︷︷ ︸
B

+
(
v + (1 − v)e−ρnu

)︸ ︷︷ ︸
C

⎤⎥⎥⎦ .

To finish the proof, we only need to show that (B + C)/A ≤ eΔ(αβρ,ρn).
Consider arbitrary real numbers u and v. From the expressions, it is easy to

see that B/A ≤ supε≤u
max(0,π(ε/(αβρ))−v)

π(ε) . Moreover, since A ≥ supε(π(ε)e−ρnε),
we have C/A ≤ C/ supε(π(ε)e−ρnε). Combining these inequalities, we have (B +
C)/A ≤ eΔ(αβρ,ρn). The desired bound is now a direct consequence of (4).

In the following, we give two simplified bounds, one with global entropy, which
gives correct rate of convergence for non-parametric problems. The other bound
is a refinement that uses localized entropy, useful for parametric problems. They
direct consequences of Theorem 2.

Corollary 1 (Global Entropy Bound). If (4) holds, then

EẐ Eθ∼π̂ρ
R(θ) ≤ infε[ρnε − lnπ(ε)]

βρρn
≤ 2ε̄global

βρ
,

where π(ε) = π({θ : R(θ) ≤ ε}) and ε̄global = inf
{
ε : ε ≥ 1

ρn ln 1
π(ε)

}
.

Proof. For the first inequality, we take v = 1 in Theorem 2, and let α → 0.
For the second inequality, we simply note from the definition of ε̄global that
infε[ρnε − lnπ(ε)] ≤ 2ρnε̄global.

Corollary 2 (Local Entropy Bound). If (4) holds, then

EẐ Eθ∼π̂ρ
R(θ) ≤ ε̄local

(1 − α)βρ
,

where π(ε) = π({θ : R(θ) ≤ ε}), and

ε̄local =
2
ρn

+ inf

{
ε

αβρ
: ε ≥ sup

ε′∈[ε,2u]

αβρ

ρn
ln

[
π(ε′/(αβρ))

π(ε′)
+

exp(−ρnu)
π(u)

]}
.

Proof. For the first inequality, we simply take u = u2 and v = π(u1/(αβρ)) in
Theorem 2, and use the following bounds

sup
ε≤u

max(0, π(ε/(αβρ)) − v)
π(ε)

≤ sup
ε∈[u1,u2]

π(ε/(αβρ))
π(ε)

,

v

supε(π(ε)e−ρnε)
≤ v

ve−ρnu1/(αβρ)
= exp(

ρnu1

αβρ
),

(1 − v) exp(−ρnu)
supε(π(ε)e−ρnε)

≤ exp(−ρnu2)
π(u2/2)e−ρnu2/2

=
exp(−ρnu2/2)

π(u2/2)
.

Localized Upper and Lower Bounds for Some Estimation Problems 521

For the second inequality, we let u2 = 2u and u1/(αβρ) = ε̄local − ln 2/(ρn).
Then by the definition of ε̄local, we have supε∈[u1,u2]

π(ε/(αβρ))
π(ε) + exp(ρnu1

αβρ
) +

exp(−ρnu2/2)
π(u2/2) ≤ 2 exp(ρnu1

αβρ
) = exp(ρnε̄local). This gives the second inequality.

Remark 2. By letting u → ∞ in the definition of ε̄local, we can see easily that
ε̄local ≤ ln 2/(ρn) + ε̄global/(αβρ). Therefore using the localized complexity ε̄local

is always better (up to a constant) than using ε̄global. If the ratio π(ε/(αβρ))/π(ε)
is much smaller than π(ε), the localized complexity can be much better than the
global complexity.

In the following, we consider three cases of local prior structures, and derive
the corresponding rates of convergence. Comparable lower-bounds are given in
Section 4.

2.1 Non-parametric Type Local Prior

It is well known that for standard nonparametric families such as smoothing
splines, etc, the ε-entropy often grows at the order of O(ε−r) for some r > 0.
We shall not list detailed examples here, and simply refer the readers to [5, 6, 7]
and references there-in. Similarly, we assume that there exists constants C and
r such that the prior π(ε) satisfies the condition:

C1ε
−r ≤ ln

1
π(ε)

≤ C2ε
−r.

This implies that ε̄global ≤ (C2/(ρn))1/(1+r). It is easy to check that ε̄local is
the same order of ε̄global when C1 > 0. Therefore, for prior that behaves non-
parametrically around the truth, it does not matter whether we use global com-
plexity or local complexity.

2.2 Parametric Type Local Prior

For standard parametric families, the prior π has a density with an underlying
dimensionality d: π(ε) = O(ε−d). We may assume that the following condition
holds:

C1 + d ln
1
ε
≤ ln

1
π(ε)

≤ C2 + d ln
1
ε
.

This implies that ε̄global is of the order d lnn/n. However, we have

ε̄local ≤
ln 2 + C2 − C1 − d ln(αβρ)

ρn
,

which is of the order O(d/n) for large d. In this case, we obtain a better rate of
convergence using localized complexity measure.

2.3 Singular Local Prior

It is possible to obtain a rate of convergence faster than O(1/n). This cannot
be obtained with either ε̄global or ε̄local, which are of the order no better than n−1.

522 T. Zhang

The phenomenon of faster than O(1/n) convergence rate is related to super-
efficiency and hence can only appear at countably many isolated points.

To see that it is possible to obtain faster than 1/n convergence rate (super
efficiency) in our framework, we only consider the simple case where

sup
ε≤2u

π(ε/(αβρ))
π(ε)

= 1.

That is, we have a point-like prior mass at the truth with zero density around it
(up to a distance of 2u). In this case, we can apply Corollary 2 with u1 = −∞
and u2 = 2u, and obtain

EẐ Eθ∼π̂ρ
R(θ) ≤

ln
[
1 + exp(−ρnu)

π(u)

]
(1 − α)βρρn

.

This gives an exponential rate of convergence. Clearly this example can be gen-
eralized to the case that a point is not completely isolated from its neighbor.

3 Some Examples

We focus on consequences and applications of Theorem 1. Specifically, we give
two important examples for which (4) holds with some positive constants α, ρ,
and βρ.

3.1 Conditional Density Estimation

Conditional density estimation is very useful in practical applications. It includes
the standard density estimation problem widely studied in statistics as a special
case. Moreover, many classification algorithms (such as decision trees or logistic
regression) can be considered as conditional density estimators.

Let Z1 = (X1, Y1), where X1 is the input variable, and Y1 is the output
variable. We are interested in estimating the conditional density p(Y1|X1). In
this framework, we assume (with a slight abuse of notation) that each parameter
θ corresponds to a conditional density function: θ(Z1) = p(Y1|θ,X1). In density
estimation, we consider negative log loss function − ln θ(Z1). Our goal is to
find a randomized conditional density estimator θ from the data, such that the
expected log-loss −EZ1 ln θ(Z1) is as small as possible.

In this case, the Gibbs estimator in (2) becomes

dπ̂ρ ∝
n∏

i=1

θ(Ẑi)ρdπ, (5)

which corresponds to the Bayesian posterior distribution when ρ = 1. Lemma 2
can be directly applied since the left hand side can be interpreted as a (Hellinger-
like) distance between distributions. This approach has been taken in [8]. How-
ever, in this section, we are interested in using the log-loss on the left-hand
side.

Localized Upper and Lower Bounds for Some Estimation Problems 523

We further assume that θ is defined on a domain G which is a closed convex
density class. However, we do not assume that G contains the true conditional
density. We also let θG be the optimal density in G with respect to the log loss:

EZ1 ln
1

θG(Z1)
= inf

θ∈G
EZ1 ln

1
θ(Z1)

.

In the following, we are interested in a bound which compare the performance
of the randomized estimator (5) to the best possible predictor θG ∈ G, and thus
define

�θ(Z1) = ln
θG(Z1)
θ(Z1)

.

In order to apply Theorem 1, we need the following variance bound. We skip
the proof due to the space limitation.

Proposition 1. If there exists a constant MG ≥ 0 such that −MGEZ1�θ(Z1)2 ≤
EZ1�θ(Z1)3. Then EZ1�θ(Z1)2 ≤ 8MG

3 EZ1�θ(Z1).

Using this result, we obtain the following theorem from Theorem 1.

Theorem 3. Consider the estimator (5) for conditional density estimation (un-
der log-loss). Then ∀α ∈ [0, 1), inequality (4) holds with R(θ) = EZ1 ln θG(Z1)

θ(Z1)

under either of the following two conditions:

– supθ1,θ2∈G,Z1
ln θ1(Z1)

θ2(Z1)
≤ MG: we pick ρ such that βρ = (11ρMG + 8 −

8eρMG)/(3ρMG) > 0.
– ∀θ ∈ G and m ≥ 3, EZ1(ln

θ(Z1)
θG(Z1)

)m ≤ m!Mm−2
G bEZ1(ln

θ(Z1)
θG(Z1)

)2: we pick ρ

such that βρ = 1 − 8bρMG(1 − ρMG + 2bρMG)/(1 − ρMG) > 0.

Proof. Under the first condition, using Proposition 1, we may take K = 8/3MG
and M = MG in Theorem 1 (bounded loss case). Under the second condition,
using Proposition 1, we may take K = 16MGb and M = MG in Theorem 1
(Bernstein loss case).

Similar to the remark after Theorem 1, we may also let βρ =(3−4ρMGeρMG)/3
under the first condition of Theorem 3. The second condition involves moment
inequalities that needs to be verified for specific problems. It applies to certain
unbounded conditional density families such as conditional Gaussian models
with bounded variance. We shall discuss a related scenario in the least squares
regression case. Note that under Gaussian noise with identical variance, the
conditional density estimation using the log-loss is equivalent to the estimation
of conditional mean using least squares regression.

Since for log-loss, (4) holds under appropriate boundedness or moment as-
sumptions on the density family, consequences in Section 2 applies. As we shall
show in Section 4, similar lower bounds can be derived.

524 T. Zhang

3.2 Least Squares Regression

Let Z1 = (X1, Y1), where X1 is the input variable, and Y1 is the output variable.
We are interested in predicting Y1 based on X1. We assume that each parameter
θ corresponds to a predictor: θ(X1). The quality of the predictor is measured by
the mean squared error EZ1(θ(X1)−Y1)2. In this framework, the Gibbs estimator
in (2) becomes

π̂ρ ∝ exp

[
−ρ

n∑
i=1

(θ(Xi) − Yi)2
]
. (6)

We further assume that θ is defined on a domain G, which is a closed convex
function class. Let θG be the optimal predictor in G with respect to the least
squares loss:

EZ1(θG(X1) − Y1)2 = min
θ∈G

EZ1(θ(X1) − Y1)2.

In the following, we are interested in comparing the performance of the ran-
domized estimator (5) to the best possible predictor θG ∈ G. Define

�θ(Z1) = (θ(X1) − Y1)2 − (θG(X1) − Y1)2.

We have the following proposition. Again, we skip the proof due to the limi-
tation of space.

Proposition 2. Let AG = supX1,θ∈G |θ(X1) − θG(X1)| and supX1,θ∈G EY1|X1

|θ(X1) − Y1|m ≤ m!Bm−2
G MG for m ≥ 2. Then we have:

EZ1(−�θ(Z1))m ≤ m!(2AGBG)m−24MGEZ1�θ(Z1).

The moment estimates can be combined with Theorem 1, and we obtain the
following theorem.

Theorem 4. Consider the estimator (6) for least squares regression. Then ∀α ∈
[0, 1), inequality (4) holds with R(θ) = EZ1(θ(X1)−Y1)2−EZ1(θG(X1)−Y1Z)2,
under either of the following conditions:

– supθ∈G,Z1
(θ(X1) − Y1)2 ≤ MG: we pick ρ such that βρ = (5ρMG + 4 −

4eρMG)/(ρMG) > 0.
– Proposition 2 holds for all integer m ≥ 2: we pick small ρ such that βρ =

1 − 4MGρ/(1 − 2AGBGρ) > 0.

Proof. Under the first condition, using Proposition 2, we have MG ≤ supθ∈G,Z1

(θ(X1)−Y1)2. We may thus take K = 4MG and M = MG in Theorem 1 (bounded
loss case). Under the second condition, using Proposition 2, we can let K = 8MG ,
M = 2AGBG and b = 1/2 in Theorem 1 (Bernstein loss case).

The theorem applies to unbounded regression problems with exponentially
decaying noise such as Gaussian noise. For example, the following result holds.

Localized Upper and Lower Bounds for Some Estimation Problems 525

Corollary 3. Assume that there exists function y0(X) such that

– For all X1, the random variable |Y1 − y0(X1)|, conditioned on X1, is domi-
nated by the absolute value of a zero-mean Gaussian random variable1 with
standard deviation σ.

– ∃ constant b > 0 such that supX1
|y0(X) − θ(X1)| ≤ b.

If we also choose A such that A ≥ supX1,θ∈G |θ(X1) − θG(X1)|, then (4) holds
with βρ = 1 − 4ρ(b + σ)2/(1 − 2A(b + σ)ρ) > 0.

4 Lower Bounds

The purpose of this section is to prove some lower bounds which hold for ar-
bitrary statistical estimators. Our goal is to match these lower bounds to the
upper bounds proved earlier (at least for certain problems), which implies that
the Gibbs algorithm is near optimal.

Upper bounds we obtained in previous sections are for every possible real-
ization of the underlying distribution. It is not possible to obtain a lower bound
for any specific realization since we can always design an estimator that picks
a parameter that achieves the best possible performance under this particular
distribution. However, such an estimator will not work well for a different dis-
tribution. Therefore as far as lower bounds are concerned, we are interested in
the performance averaged over a set of underlying distributions.

In order to obtain lower bounds, we associate each parameter θ with a prob-
ability distribution qθ(x, y) so that we can take samples Zi = (Xi, Yi) from this
distribution. In addition, we shall design the map in such a way that the opti-
mal parameter under this distribution is θ. For (conditional) density estimation,
the map is the density itself. For regression, we associate each predictor θ with
a conditional Gaussian distribution with constant variance and the conditional
mean given by the prediction θ(X1) of each input X1.

We consider the following scenario: we put a prior π on θ, which becomes a
prior on the distribution qθ(x, y). Assume that we are interested in estimating
θ, under a loss function �θ(Z1), then the quantity

Rθ(θ′) = EZ1∼qθ
�θ′(Z1)

is the true risk between an estimated parameter θ′ and the true distribution
parameter θ. The average performance of an arbitrary randomized estimator
θ̂(Z) can thus be expressed as

Eθ∼πEZ∼qθ(Z)Rθ(θ̂(Z)), (7)

where Z consists of n independent samples Z = {(X1, Y1), . . . , (Xn, Yn)} from
the underlying density. In this section, we are mainly interested in obtaining a

1 That is, conditioned on X1, the moments of |Y1 − y0(X1)| with respect to Y1 are no
larger than the corresponding moments of the dominating Gaussian random variable.

526 T. Zhang

lower bound for any possible estimator, so that we can compare this lower bound
to the upper bound for the Gibbs algorithm developed earlier.

Note that (7) only gives one performance measure, while the upper bound for
the Gibbs method is specific for every possible truth qθ. It is thus useful to study
the best local performance around any possible θ with respect to the underlying
prior π. To address this issue, we observe that for every partition of the θ space
into the union of disjoint small balls Bk, we may rewrite (7) as∑

j

π(Bk)Eθ∼πBk
EZ∼qθ(Z)Rθ(θ̂(Z)),

where for each small ball Bk, the localized prior is defined as:

πBk
(A) =

π(A ∩Bk)
π(Bk)

.

Therefore, instead of bounding the optimal Bayes risk with respect to the global
prior π in (7), we shall bound the optimal risk with respect to a local prior
πB for a small ball B around any specific parameter θ, which gives a more
refined performance measure. In this framework, if for some small local ball πB ,
the Gibbs algorithm has performance not much worse than the best possible
estimator, then we can say that it is locally near optimal.

The main theorem in our lower bound analysis is presented below. Related
techniques appeared in [2, 4, 7].

Theorem 5. Consider an arbitrary randomized estimator θ̂(Z) that takes value
in B′⊂G, where Z consists of n independent samples Z ={(X1, Y1), . . . ,(Xn, Yn)}
from some underlying density qθ, then for all non-negative functions Rθ(θ′), we
have

Eθ∼πB
EZ∼qθ(Z)Rθ(θ̂(Z))≥0.5 sup

{
ε : inf

θ′∈B′
ln

1
πB({θ : Rθ(θ′) < ε}) ≥ 2nΔB+4

}
,

where ΔB = Eθ∼πB
Eθ′∼πB

DKL(qθ(Z1)||qθ′(Z1)).

Proof. The joint distribution of (θ, Z) is given by
∏n

i=1 qθ(Zi)dπB(θ). Denote by
I(θ, Z) the mutual information between θ and Z. Now let Z ′ be a random variable
independent of θ and with the same marginal of Z, then by definition, the mutual
information can be regarded as the KL-divergence between the joint distributions
of (θ, Z) and (θ, Z ′), which we write (with a slight abuse of notation) as:

I(θ, Z) = DKL((θ, Z)||(θ, Z ′)).

Now consider an arbitrary estimator θ̂ : Z → B′. By the data processing theorem
for KL-divergence (that is, processing does not increase KL-divergence), with
input (θ, Z) ∈ G × Z and binary output 1(Rθ(θ̂(Z)) ≤ ε), we obtain

Localized Upper and Lower Bounds for Some Estimation Problems 527

DKL(1(Rθ(θ̂(Z)) ≤ ε)||1(Rθ(θ̂(Z ′)) ≤ ε))
≤DKL((θ, Z)||(θ, Z ′)) = I(θ, Z)

=Eθ1∼πB
EZ∼qθ1 (Z) ln

qθ1(Z)
Eθ2∼πB

qθ2(Z)

≤Eθ1∼πB
EZ∼qθ1 (Z)Eθ2∼πB

ln
qθ1(Z)
qθ2(Z)

=nEθ1∼πB
Eθ2∼πB

DKL(qθ1 ||qθ2) = nΔB .

The second inequality is a consequence of Jensen’s inequality and the concavity
of logarithm.

Now let p1 = P (Rθ(θ̂(Z)) ≤ ε) and p2 = P (Rθ(θ̂(Z ′)) ≤ ε), then the above
inequality can be rewritten as:

DKL(p1||p2) = p1 ln
p1

p2
+ (1 − p1) ln

1 − p1

1 − p2
≤ nΔB .

Since θ̂(Z ′) is independent of θ, we have

p2 ≤ sup
θ′∈B′

πB({θ : Rθ(θ′) ≤ ε}).

Now we consider any ε such that supθ′∈B′ πB({θ : Rθ(θ′) < ε}) ≤ 0.25e−2nΔB .
This implies that p2 ≤ 0.25e−2nΔB ≤ 0.25.

We now show that in this case, p1 ≤ 1/2. Since DKL(p1||p2) is increasing in
[p2, 1], we only need to show that DKL(0.5||p2) ≥ nΔB . This easily follows from
the inequality

DKL(0.5||p2) ≥ 0.5 ln
0.5
p2

+ 0.5 ln
0.5
1

≥ nΔB .

Now, we have shown that p1 ≤ 0.5, which implies that P (Rθ(θ̂(Z)) ≥ ε) ≥
0.5. Therefore we have Eθ∼πB

EZ∼qθ(Z)Rθ(θ̂(Z)) ≥ 0.5ε.

Theorem 5 has a form that resembles Corollary 2. In the following, we state
a result which shows the relationship more explicitly.

Corollary 4 (Local Entropy Lower Bound). Under the notations of Theo-
rem 5. Consider a reference point θ0 ∈ G, and balls B(θ0, ε) ⊂ G which contains
θ0 and indexed by ε > 0, such that

sup
θ1,θ2∈B(θ0,ε)

DKL(qθ(Z1)||qθ′(Z1)) ≤ ε.

Given u > 0, consider ε(θ0, u) which satisfies:

ε(θ0, u) = sup
ε>0

{
ε : inf

θ′∈B′
ln

π(B(θ0, uε))
π({θ : Rθ(θ′) < ε} ∩B(θ0, uε))

≥ 2nuε + 4
}

,

then locally around θ0, we have

Eθ∼πB(θ0,uε(θ0,u))EZ∼qθ(Z)Rθ(θ̂(Z)) ≥ 0.5ε(θ0, u).

528 T. Zhang

The definition of B(θ0, ε) requires that within the B(θ0, ε) ball, the distribu-
tions qθ are nearly indistinguishable up to a scale of ε, when measured by their
KL-divergence. Corollary 4 implies that the local performance of an arbitrary
statistical estimator cannot be better than ε(θ0, u)/2. The bound in Corollary 4
will be good if the ball π(B(θ0, ε)) is relatively large. That is, there are many dis-
tributions that are statistical nearly indistinguishable (in KL-distance). There-
fore the bound of Corollary 4 is similar to Corollary 2, but the localization is
within a small ball which is statistically nearly indistinguishable (rather than
the R(·) localization for the Gibbs estimator). From an information theoretical
point of view, this difference is rather intuitive and clearly also necessary since
we allow arbitrary statistical estimators (which can simply estimate the specific
underlying distribution qθ if they are distinguishable).

It follows that if we want the upper bound in Corollary 2 to match the lower
bound in Corollary 4, we need to design a map θ → qθ such that locally around
θ0, a ball with small R(·) risk is also small information theoretically in terms of
the KL-distance between qθ and qθ0 . Consider the following two types of small
R balls:

B1(θ, ε) = {θ′ : Rθ(θ′) < ε}, B2(θ, ε) = {θ′ : Rθ′(θ) < ε}.

Now assume that we can find a map θ → qθ such that locally around θ0, qθ

within a small B1-ball is also small in the information theoretical sense (small
KL-distance). That is, we have for some c > 0 that

sup{DKL(qθ(Z1)||qθ′(Z1)) : θ, θ′ ∈ B1(θ0, cε)} ≤ ε. (8)

For problems such as density estimation and regression studied in this paper, it
is easy to design such a map (under mild conditions such as the boundedness of
the loss). We shall not go into the details for verifying specific examples of (8).
Now, under this condition, we can take

ε(θ0, u) = sup
ε>0

{
ε : inf

θ′∈B′
ln

π(B1(θ0, cuε))
π(B2(θ′, ε) ∩B1(θ0, cuε))

≥ 2nuε + 4
}

.

As a comparison, according to Corollary 2, the Gibbs method at θ0 gives an
upper bound of the following form (which we simplify to focus on the main
term) with some constant u′ ∈ (0, 1):

ε̄local ≤
2
ρn

+ inf
{
ε : ρnε ≥ sup

ε′≥ε
ln

π(B1(θ0, ε
′))

π(B1(θ0, u′ε′))

}
.

Essentially, the local upper bound for the Gibbs algorithm is achieved at ε̄local

such that

nε̄local ∼ sup
ε′≥ε̄local

ln
π(B1(θ0, ε

′))
π(B1(θ0, u′ε′))

,

where we use ∼ to denote approximately the same order, while the lower bound
in Corollary 4 implies that (let u′ = 1/(cu)):

nε ∼ inf
θ′∈B′

ln
π(B1(θ0, ε))

π(B2(θ′, u′ε) ∩B1(θ0, ε))
.

Localized Upper and Lower Bounds for Some Estimation Problems 529

From this, we see that our upper and lower bounds are very similar. There are
two main differences which we outline below.

– In the lower bound, for technical reasons, B2 appears in the definition of the
local entropy. In order to argue that the difference does not matter, we need
to assume that the prior probabilities of B1 and B2 are of the same order.

– In the lower bound, we use the smallest local entropy in a neighbor of θ0,
While in the upper bound, we use the largest local entropy at θ0 across
different scales. This difference is not surprising since the lower bound is
with respect to the average in a small neighborhood of θ0.

Both differences are relatively mild and somewhat expected. We consider two
situations which parallel Section 2.1 and Section 2.2.

4.1 Non-parametric Type Local Prior

Similar to Section 2.1, we assume that for some sufficiently large constant v:
there exist 0 < C1 < C2 such that

C2ε
−r ≤ inf

θ′∈B′
ln

1
π(B2(θ′, ε) ∩B1(θ0, vε))

, ln
1

π(B1(θ0, vε))
≤ C1ε

−r,

which measures the order of global entropy around a small neighborhood of θ0.
Now under the condition (8) and let u = v/c, Corollary 4 implies that

ε ≥ sup
{
ε : 2unε + 4 ≤ (C2 − C1)ε−r

}
.

This implies that ε is of the order n−1/(1+r), which matches the order of the
Gibbs upper bound ε̄global in Section 2.1.

4.2 Parametric Type Local Prior

Similar to Section 2.2, we assume that for some sufficiently large constant v:
there exist 0 < C1 < C2 such that

C2 + d ln
1
ε
≤ inf

θ′∈B′
ln

1
π(B2(θ′, ε) ∩B1(θ0, vε))

, ln
1

π(B1(θ0, vε))
≤ C1 + d ln

1
ε
.

which measures the order of global entropy around a small neighborhood of θ0.
Now under the condition (8) and let u = v/c, Corollary 4 implies that

ε ≥ sup
{
ε : 2c−1nε ≤ C2 − C1 − 4

}
.

That is, we have a convergence rate of the order 1/n, which matches the para-
metric upper bound ε̄local for the Gibbs algorithm in Section 2.2.

5 Discussions

In this paper, we established upper and lower bounds for some statistical estima-
tion problems. Our upper bound analysis is based on a simple information theo-
retical inequality, which can be used to analyze randomized estimation methods

530 T. Zhang

such as Gibbs algorithms. The resulting upper bounds rely on the local prior de-
caying rate in some small ball around the truth. Moreover, we are able to obtain
lower bounds that have similar forms as the upper bounds. For some problems
(such as density estimation and regression), the upper and lower bounds match
under mild conditions. This suggests that both of our upper bound and lower
bound analysis are relatively tight.

This work can be regarded as an extension of the standard minimax frame-
work since we allow the performance of the estimator to vary for different under-
lying distributions, according to the pre-defined prior. The framework we study
here is closely related to the concept of adaption in the statistical literature. At
the conceptual level, both seek to find locally near optimal estimators around
any possible true underlying distribution within the class.

This paper also shows that in theory, the Gibbs algorithm is better behaved
than (possibly penalized) empirical risk minimization that picks an estimator
to minimize the (penalized) empirical risk. In particular, for certain problems
such as density estimation and regression, the Gibbs algorithm can achieve the
best possible convergence rate under relatively mild assumptions on the prior
structure. However, it is known that for non-parametric problems, empirical risk
minimization can lead to sub-optimal convergence rate if the covering number
grows too rapidly (or in our case, prior decays too rapidly) when ε (the size of
the covering ball) decreases [1].

References

1. Lucien Birgé and Pascal Massart. Rates of convergence for minimum contrast esti-
mators. Probab. Theory Related Fields, 97(1-2):113–150, 1993.

2. R.E. Blahut. Information bounds of the Fano-Kullback type. IEEE Transactions
on Information Theory, 22:410–421, 1976.

3. Olivier Catoni. A PAC-Bayesian approach to adaptive classification. Available
online at http://www.proba.jussieu.fr/users/catoni/homepage/classif.pdf.

4. Te Sun Han and Sergio Verdú. Generalizing the Fano inequality. IEEE Transactions
on Information Theory, 40:1247–1251, 1994.

5. S.A. van de Geer. Empirical Processes in M-estimation. Cambridge University
Press, 2000.

6. Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical pro-
cesses. Springer Series in Statistics. Springer-Verlag, New York, 1996.

7. Yuhong Yang and Andrew Barron. Information-theoretic determination of minimax
rates of convergence. The Annals of Statistics, 27:1564–1599, 1999.

8. Tong Zhang. Learning bounds for a generalized family of Bayesian posterior distri-
butions. In NIPS 03, 2004.

9. Tong Zhang. On the convergence of MDL density estimation. In COLT 2004, pages
315–330, 2004.

Improved Minimax Bounds on the Test
and Training Distortion of Empirically Designed

Vector Quantizers�

András Antos

Informatics Laboratory, Research Division,
Computer and Automation Research Institute of the Hungarian

Academy of Sciences, H-1518 Lágymányosi u.11,
Budapest, Hungary
antos@szit.bme.hu

Abstract. It is shown by earlier results that the minimax expected
(test) distortion redundancy of empirical vector quantizers with three or
more levels designed from n independent and identically distributed data
points is at least Ω(1/

√
n) for the class of distributions on a bounded set.

In this paper, a much simpler construction and proof for this are given
with much better constants. There are similar bounds for the training
distortion of the empirically optimal vector quantizer with three or more
levels. These rates, however, do not hold for a one-level quantizer. Here
the two-level quantizer case is clarified, showing that it already shares the
behavior of the general case. Given that the minimax bounds are proved
using a construction that involves discrete distributions, one suspects
that for the class of distributions with uniformly bounded continuous
densities, the expected distortion redundancy might decrease as o(1/

√
n)

uniformly. It is shown as well that this is not so, proving that the lower
bound for the expected test distortion remains true for these subclasses.

1 Introduction

Designing empirical vector quantizers is an important problem in data compres-
sion. In many practical situations we do not have a good source model in hand,
but we are able to collect source samples, called also the training data, to get
information on the source distribution. Here our aim is to design a quantizer
with a given rate, based on these samples, whose expected distortion on the
source distribution is as close to the distortion of an optimal quantizer (that is,
one with minimum distortion) of the same rate as possible.

One approach to this problem is, for example, the empirical distortion min-
imization, supported by the idea that if the samples are from the real source,
then a quantizer that performs well on the training data (i.e., that has small
training distortion) should have a good performance on this source, as well. In

� This research was supported in part by the NATO Science Fellowship.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 531–544, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

532 A. Antos

fact, Pollard [1], [2] showed that this method is consistent under general condi-
tions on the source μ when the training sample is n consecutive elements of a
stationary and ergodic sequence drawn according to this source. He proved that
the mean-squared error (MSE) D(μ, q∗n) of the empirically optimal quantizer q∗n
(when applied to the true source) tends almost surely (a.s.) to the optimum
MSE D∗(μ) achieved by an optimal quantizer. It is also shown there that the
training distortion D(μn, q∗n) of q∗n tends as well to D∗(μ) a.s., that is, D(μn, q∗n)
is a strongly consistent estimate of D∗(μ), however ED(μn, q∗n) ≤ D∗(μ).

These consistency results do not inform us about the number of training
samples required to ensure that the test or training distortion of q∗n is close to
the optimum MSE. To answer this question one usually studies the rates of the
convergences above, that is, gives upper bounds for the distortion redundancy
D(μ, q∗n)−D∗(μ) and for D∗(μ)−D(μn, q∗n) for finite sample sizes. It was shown
by Linder et al. [3] (see also [4],[5]) that the expected distortion redundancy
J(μ, q∗n) = ED(μ, q∗n) − D∗(μ) as well as D∗(μ) − ED(μn, q∗n) can be bounded
as O(1/

√
n) uniformly for all distributions over a given bounded region. These

results have several extensions; see, for example, [6], [7], and [8].
In case of one-level quantizing, the only code point of q∗n is the average of

the samples, and it is easy to show that J(μ, q∗n) = D∗(μ) − ED(μn, q∗n) =
O(1/n) uniformly for all distributions over a given bounded region, that is, the
convergences rate of both the test and the training distortion are much faster
than the general O(1/

√
n) rate.

However, it is known that for three or more quantization levels, the O(1/
√

n)
upper bounds on J(μ, q∗n) and D∗(μ)−ED(μn, q∗n) are tight in the minimax sense:
It is shown in [9] for these cases that for any empirical quantizer design algorithm,
that is, when the resulting quantizer qn is an arbitrary function of the samples,
and for any n large enough, there is a distribution in the class of distributions
over a bounded region such that J(μ, qn) = ED(μ, qn)−D∗(μ) ≥ c0/

√
n. These

”bad” distributions used in the proof are supported on finitely many atoms, but
the proof is really complicated, which also leads to losses in the constants. As [9]
words: “The constant c0 of the theorem is rather small [...], and it can probably
be improved upon at the expense of a more complicated analysis.” However, in
Theorem 1 of this paper, we give an even simpler and much shorter proof for
this minimax lower bound with about 107-times better constant c0.

For the training distortion of q∗n, Linder [4] showed for three or more quantiza-
tion levels that there is a distribution in the class of distributions over a bounded
region such that for all sample size large enough D∗(μ)−ED(μn, q∗n) = Ω(1/

√
n).

However, the above lower bounds in [9] and [4] leave open the case of two-level
quantizers. We prove in Theorems 2 and 3 for the test and training distortion,
respectively, that in this case we already get the same lower rates as in the
general (at least three-level) case.

Based on certain considerations, one might think that for the class of dis-
tributions over a bounded region with uniformly bounded continuous densities,
J(μ, q∗n) = O(1/nα) uniformly, where α > 1/2 constant. We also show that this

Improved Minimax Bounds on the Test 533

is not so proving that the lower bound for the expected distortion redundancy
remains true restricting ourselves to these type of distribution classes.

The rest of the paper is organized as follows. In Sect. 2 we give the necessary
definitions and earlier results in details. In Sect. 3 we present our lower bound
results. Section 4 contains the proofs of some theorems.

2 Empirical Vector Quantizer Design

Nearest Neighbor Quantizers. A d-dimensional N -level vector quantizer
(N ≥ 1 is an integer) is a measurable mapping q : Rd → C, where the code-
book C = {y1, . . . , yN} ⊂ Rd is a collection of N distinct d-vectors, called the
code points. The quantizer is completely characterized by its codebook and the
sets Si = {x ∈ Rd : q(x) = yi}, i = 1, . . . , N called the partition cells (as they
form a partition of Rd) via the rule q(x) = yi, if x ∈ Si. The set {S1, . . . , SN} is
called the partition of q.

The performance of the quantizer q, when quantizing a random vector X ∈
Rd with distribution μ called the source, is measured by the expected distortion
(or mean-squared error)

D(μ, q) def= E{‖X − q(X)‖2}

where ‖ · ‖ denotes the Euclidean norm. Throughout this paper we assume
E{‖X‖2} < ∞, thus the distortion is finite. The goal of quantization is to find
quantizers with a given number of code points that have minimum distortion.
We define the optimum distortion by

D∗(μ) def= inf
q∈QN

D(μ, q)

where QN denotes the set of all N -level quantizers. If D(μ, q∗) = D∗(μ) then
q∗ ∈ QN is called optimal.

A quantizer q is called a nearest neighbor quantizer, if it satisfies

‖x − q(x)‖ = min
yi∈C

‖x − yi‖, for all x ∈ Rd .

It is well known (see, e.g., [2]) that it suffices to consider nearest neighbor
quantizers when searching for an optimal quantizer. Thus any optimal quantizer
can be assumed to be nearest neighbor, and so finding an optimal quantizer
is equivalent to finding its codebook. Using this, it is proved in [2] that there
always exists an optimal quantizer.

Empirical Design. In many situations, the distribution μ is unknown, and the
only available information about it is in the form of training data, that is, a
sequence Xn

1
def= X1, . . . , Xn of n independent and identically distributed (i.i.d.)

copies of X. It is assumed that Xn
1 and X are also independent. The training data

is used to construct an empirically designed quantizer qn(·) = qn(·, X1, . . . , Xn),

534 A. Antos

which is a random function depending on the training sample. The goal is to
produce such quantizers with performance approaching D∗(μ). The performance
of qn in quantizing X is measured by the test distortion

D(μ, qn) = E{‖X − qn(X)‖2|Xn
1 } =

∫
Rd

‖x − qn(x)‖2 μ(dx) .

Note that D(μ, qn) is a random variable.
Also of interest is the training distortion (or empirical distortion) of any q,

defined as its distortion in quantizing the training data

D(μn, q) =
1
n

n∑
i=1

‖Xi − q(Xi)‖2

where μn is the empirical distribution corresponding to the training data defined
by

μn(A) =
1
n

n∑
i=1

I{Xi∈A}

for every Borel set A ⊂ Rd, where IE denotes the indicator function of the event
E. Note that although q is a deterministic mapping, the training distortion
D(μn, q) is also a random variable depending on the training data Xn

1 .
We define an empirically optimal vector quantizer (which is a specific empiri-

cally designed quantizer) as a quantizer q∗n that minimizes the training distortion:

q∗n
def= arg min

q∈QN

D(μn, q) .

q∗n is an optimal quantizer for μn. Note that q∗n always exists (although it is not
necessarily unique), and we can assume that it is a nearest neighbor quantizer.

It is well known that {q∗n;n = 1, 2, . . .} is consistent in the sense that
lim

n→∞
D(μ, q∗n) = D∗(μ) a.s. for any N ≥ 1 [1],[2]. Similarly, it is also shown that

D(μn, q∗n) is a strongly consistent estimate of D∗(μ), that is, lim
n→∞

D(μn, q∗n) =

D∗(μ) a.s. However the training distortion is always optimistically biased, that
is, ED(μn, q∗n) < D∗(μ) (unless ED(μn, q∗n) = D∗(μ) = 0).

Finite Sample Upper Bounds. To determine the number of samples needed
to achieve a given level of distortion, the finite sample behavior of the expected
distortion redundancy

J(μ, qn) def= ED(μ, qn) −D∗(μ)

has to be analyzed.
Denote the closed ball of radius r centered at x ∈ Rd by S(x, r) and, in

particular, let S = S(0, 1). Let P(1) denote the family of distributions supported
on S. From this point, we assume that μ ∈ P(1), hence μ is supported on

Improved Minimax Bounds on the Test 535

S, that is, P{‖X‖ ≤ 1} = 1. (One can generalize the results to cases when
P{‖X‖ ≤ T} = 1 for some fixed T < ∞ by straightforward scaling, see, e.g.,
[5].)

It is of interest how fast J(μ, q∗n) converges to 0. To our knowledge the best ac-
cessible upper bound concerning its dependence on n, N , and d, can be obtained
by combining results of [3] with recent developments of [4], implying:

0 ≤ J(μ, q∗n) ≤ 2C1

√
Nd

n

for all n ≥ 1 and μ ∈ P(1), where C1 = 96. The result in [4] also implies an
upper bound on the size of the bias of D(μn, q∗n):

0 ≤ D∗(μ) − ED(μn, q∗n) ≤ C1

√
Nd

n

for all n ≥ 1 and μ ∈ P(1). (Sometimes this bound is referred to as a lower
bound on ED(μn, q∗n).)

Minimax Lower Bounds. A natural question is whether there exists a method,
perhaps different from empirical distortion minimization, which provides an em-
pirically designed quantizer with substantially smaller test distortion. In case of
N = 1, it is easy to check that J(μ, q∗n) = VarX/n. Similarly, for the train-
ing distortion D∗(μ) − ED(μn, q∗n) = VarX/n. Thus the convergence rate is
O(1/n) in both cases, substantially faster than the O(1/

√
n) rate above. How-

ever, for N ≥ 3 lower bounds in [9] and [4] show that the O(1/
√

n) convergence
rate above cannot be improved in the following sense (Φ denotes the standard
normal distribution function):

Proposition 1 (Bartlett, Linder, and Lugosi [9]). If N ≥ 3, then for any
empirically designed N -level quantizer qn trained on n ≥ n0 = 16N/(3Φ(−2)2) ≈
10305N samples, we have

sup
μ∈P(1)

J(μ, qn) ≥ CN−2/d

√
N

n

where C = Φ(−2)42−12/
√

6 ≈ 2.67 · 10−11.

The construction and the proof in [9] is extremely complicated, which also
leads to losses in the constants. In what follows, we give a much simpler construc-
tion and a shorter proof for Proposition 1 with about 107-times better constant
C and better n0.

A somewhat similar lower bound on the bias of the training distortion of
empirically optimal quantizers is the following:

Proposition 2 (Linder [4]). If N ≥ 3, then there exists a distribution μ ∈
P(1) such that for all training set size n ≥ n0 = 2N/3

D∗(μ) − ED(μn, q∗n) ≥ cN−2/d

√
N

n

where c = 2−8/3.

536 A. Antos

This is often referred to as an upper bound on ED(μn, q∗n). Note that this
Proposition holds only for one empirically designed quantizer, the empirically
optimal one, but on the other hand, it gives also an individual rate in the sense,
that it provides a fix distribution for all n.

3 Main Results

Improved Minimax Lower Bounds. First we state the improved versions of
Proposition 1:

Theorem 1. Proposition 1 holds also with n0 = 8N and C = 211
3602

√
3
Φ(−0.92) ≈

1.68 · 10−4.

The idea behind our proof and its differences from the one in [9] are best
illustrated by the special case d = 1, N = 6. Assume that μ is concentrated
on four pairs of points: (−1,−1 + Δ), (−1/3,−1/3 + Δ), (1/3 − Δ, 1/3), and
(1 − Δ, 1), such that μ(−1) = μ(−1 + Δ) = (1 + u1δ)/8, μ(1) = μ(1 − Δ) =
(1−u1δ)/8, μ(−1/3) = μ(−1/3+Δ) = (1+u2δ)/8, and μ(1/3) = μ(1/3−Δ) =
(1 − u2δ)/8, where u1, u2 ∈ {−1,+1}. This gives four distributions. Then if
Δ is sufficiently small, the code points of the 6-level optimal quantizer consist
of {−1 + Δ/2, 1 − Δ, 1} if u1 = −1 or {−1,−1 + Δ, 1 − Δ/2} if u1 = 1, plus
{−1/3+Δ/2, 1/3−Δ, 1/3} if u2 = −1 or {−1/3,−1/3+Δ, 1/3−Δ/2} if u2 = −1.
Therefore, an empirical quantizer should “learn” from the data which of the four
distributions generates that. This leads to a hypothesis testing problem for u1

and u2 whose error may be approximated through inequalities for the binomial
distribution. Proper choice of Δ and δ provides the desired Ω(1/

√
n) lower bound

for the expected distortion redundancy. The idea is the same for general case.
For the four distributions above, the weights are (1− δ)/8 and (1+ δ)/8, and

exactly two of the pairs have mass (1− δ)/4. In the original proof in [9], for the
N = 6 case, all the

(
4
2

)
= 6 distributions with this property were involved. In the

general case, this meant an exponentially (in N) larger distribution class and
more involved parameterization than in our proof, led to expressions which were
really difficult to handle, and resulted in significant loss in the constants. Our
simplified proof is somewhat suggested also by ideas in [4–Proof of Theorem 1].
Although our result gives an improvement only in the constant factor of the lower
bound and thus it leaves the gap compared to the upper bound, we conjecture
that it is sharp in respect of the factor N−2/d and that the upper bound might
be improved in this respect.

Note that, as a special case of Theorem 1 for N = 3, we can get the following
constants by careful analysis (see also [5]):

Corollary 1. For any empirically designed 3-level quantizer qn trained on n ≥
n0 = 9 samples,

sup
μ∈P(1)

J(μ, qn) ≥ C√
n

where C = 3Φ(−7/
√

54)/80 ≈ 6.39 · 10−3.

Improved Minimax Bounds on the Test 537

Two-Level Quantizers. The results so far leave open the N = 2 case. In the
following, we prove that in this case we already get the same rates as in the
general case of N ≥ 3. Thus, as soon as the criterion function (the expected
distortion of nearest neighbor quantizers as a function of the code vectors) is
not convex, the rate is slower than for N = 1 when the criterion function is
convex. This requires some modification of the constructions in the proofs of
Propositions 1 and 2. For the test distortion, we have:

Theorem 2. Corollary 1 holds also for N = 2 with n0 = 25 and C =
1557
30625Φ(− 7√

54
) ≈ 8.66 · 10−3.

The idea behind the proof and its differences from the N = 3 case is the
following: In the proof for N = 3, μ was concentrated on four (two pairs) of
points. Now assume that μ is concentrated on three points: −1, 0, and 1, such
that μ(0) = 0.4, μ(−1) = 0.3+uδ/2 and μ(1) = 0.3−uδ/2, where u is either −1
or +1. Then the code points of the 2-level optimal quantizer consist of {− 3−5δ

7−5δ , 1}
if u = −1, and {−1, 3−5δ

7−5δ} if u = 1. Though these depend on δ, they remain in a
small interval distinguishing sharply the two cases. Thus, though the family of
sensible quantizers are richer now, we can proceed similarly to the N ≥ 3 case.
For a detailed proof, see the forthcoming full version.

For the training distortion, we have:

Theorem 3. Proposition 2 holds also for N = 2 with n0 = 1 and c = 1/24.

Continuous Distributions. Certain considerations suggest that for classes
of more regularized distributions a faster uniform rate of convergence can be
achieved for J(μ, qn) for some empirical quantizer qn. For example,
[10–Theorem 2, Corollary 1] and their proofs imply O(log n/n) uniform rate
of J(μ, q∗n) for a class of scalar distributions with continuous densities supported
on S such that

(*) there is a fixed ε > 0 that for all these densities the second derivative matrices
of the criterion function have only eigenvalues greater than ε at each optimal
codebook.

(Note that, under similar smoothness assumptions, Chou [11] pointed out that
D(μ, q∗n) − D∗(μ) decreases as O(1/n) in probability based on an asymptotic
normality result of Pollard [12].) On the other hand, approximating the discrete
distributions used in the proof of Proposition 1 by higher and higher density
function peaks would lead to an unbounded sequence of densities. Considering
this, one might think that the ugly technical condition (*) can be omitted in
proving faster uniform convergence rates, that is, for example, for the class DK

of distributions with continuous densities supported on S and bounded by K > 0,
there is a sequence {an} = o(1/

√
n) depending only on N , d, and K such that

for all n ≥ 1 and μ ∈ DK ,
J(μ, q∗n) ≤ an .

Here we show that, surprisingly, this conjecture is false, moreover it fails for
any empirical quantizer qn, proving that Proposition 1 remains true restricting

538 A. Antos

ourselves for the case μ ∈ DK . For simplicity, this is given only for the special
case d = 1 and N = 3. The basic idea is the same for the general case.

Theorem 4. If K ≥ 12/5 then Corollary 1 holds with C = 3
80 (1− 6

5K)2Φ(− 7√
54

)

≈ 6.39 · 10−3
(
1 − 6

5K

)2 also if the supremum is taken over only DK .

For the limit K → ∞, we get

Corollary 2. Corollary 1 holds also if the supremum is taken over only for
μ ∈ P(1) with continuous densities.

Theorem 4 might be surprising, also because replacing the atoms by intervals
of a density, the cell interval boundaries of the quantizers can split them any-
where, which seems to be an essential difference compared to the discrete case.
The idea behind the proof is the following: Introduce h = 3/(10K). Note that
h ≤ 1/8 for K ≥ 12/5. In contrast with the discrete case, where μ was concen-
trated on the set {−1,−1/2, 1/2, 1}, here assume instead that μ is concentrated
on the set

A = [−1,−1 + 2h] ∪ [−1/2 − 2h,−1/2] ∪ [1/2, 1/2 + 2h] ∪ [1 − 2h, 1] (1)

such that μ([−1,−1+2h]) = μ([−1/2−2h,−1/2]) = (1+uδ)/4 and μ([1/2, 1/2+
2h]) = μ([1−2h, 1]) = (1−uδ)/4, where u is either −1 or +1, and the distribution
inside all of these intervals have a symmetric continuous density vanishing at
the end points. Then the code points of the 3-level optimal quantizer consist of
{−3/4, 1/2+h, 1−h} if u = −1, and {−1+h,−1/2−h, 3/4} if u = 1. Using small
(but n-independent) h, we can assure that none of the cell interval boundaries
of the sensible quantizers actually splits any interval of the support A, thus we
can proceed similarly to the discrete case. See the forthcoming full version for a
detailed proof which uses the following lemma:

Lemma 1. If h ≤ 1/8 and δ ≤ 1/4 then for any 3-level scalar quantizer q
there exists a 3-level nearest neighbor scalar quantizer q′ whose two cell interval
boundaries do not intersect the support A in (1) and, in particular, one of these
boundaries is in (−1/2, 1/2), such that for u = ±1, D(μu, q

′) ≤ D(μu, q).

4 Proofs

Proof of Theorem 1. For the sake of simplicity, we assume that N is divisible
by 3. (This assumption is clearly insignificant, see [4–proof of Theorem 1] for an
argument.) Certainly,

sup
μ∈P(1)

J(μ, qn) ≥ sup
μ∈D

J(μ, qn) (2)

where D ⊆ P(1) is any restricted class. Define D as follows: each member of D
is concentrated on the set of 4k = 4N/3 fixed points {zi, z

′
i ∈ S : i = 1, . . . , 2k},

where z′i = zi + (Δ, 0, 0, . . . , 0) and 0 < Δ ≤ 1/4. The positions of z1, . . . , z2k

Improved Minimax Bounds on the Test 539

satisfy the property that the distance between any two of them is greater than
3Δ. The members of D are parameterized by the sign vectors u = (u1, . . . , uk) ∈
{−1,+1}k. For 1 ≤ i ≤ k, denote zk+i and z′k+i also by yi and y′i, respectively,
and define uk+i = −ui. For 0 < δ ≤ 1/2 and i = 1, . . . , k, set

μu({zi}) def= μu({z′i})
def=

1 + uiδ

4k

μu({yi}) def= μu({y′i})
def=

1 − uiδ

4k
.

(The total mass adds up to one.) Let D contain all such distributions. Thus
|D| = 2k and N = 3k.

Let Q∗ denote the collection of N -level nearest neighbor quantizers q such
that for each 1 ≤ i ≤ k, q has code points either at zi, z′i, and (yi + y′i)/2, or at
(zi + z′i)/2, yi, and y′i. Then for each μu the essentially unique optimal N -level
quantizer is in Q∗. It is easy to see that for all u,

D∗(μu) = min
q∈Q∗

D(μu, q) =
Δ2

8
(1 − δ) .

Let Q denote the collection of N -level nearest neighbor quantizers q such that
for some k values of i ∈ {1, . . . , 2k}, q has code points at both zi and z′i, and for
the remaining k values of i, q has a single code point at (zi + z′i)/2. Note that
Q ⊇ Q∗. One can show that for any N -level quantizer q there is a q′ ∈ Q such
that

D(μu, q
′) ≤ D(μu, q), for all u . (3)

See [9–Appendix, Proof of Step 3] for a proof.
Let Q(n) denote the family of empirically designed quantizers qn such that

for every fixed x1, . . . , xn, we have qn(·, x1, . . . , xn) ∈ Q. Then (3) implies that
it is enough to take the infimum over Q(n), that is,

inf
qn

sup
μ∈P(1)

J(μ, qn) ≥ inf
qn

max
u∈{−1,1}k

J(μu, qn) = inf
qn∈Q(n)

max
u∈{−1,1}k

J(μu, qn) . (4)

Any qn ∈ Q(n) can be represented by the 3-tuple (An, A′
n, {un,i}i≤k), where

An,A′
n, and {un,i} are determined by qn (and thus depend on the data Xn

1) the
following way:

– An = {i ≤ k : (zi + z′i)/2 (exclusive) or (yi + y′i)/2 is code point of qn},
– A′

n = {i ≤ k : all of zi, z′i, yi, y′i are code points of qn},

– un,i =
{

+1 if zi and z′i are code points of qn

−1 otherwise (i = 1, . . . , k).

Note that 2|A′
n| + |An| = k. For any u and qn ∈ Q(n),

D(μu, qn) −D∗(μu) =
Δ2δ

4k

(
|A′

n| +
∑

i∈An

I{un,i �=ui}

)

540 A. Antos

=
Δ2δ

4k

⎛⎝ ∑
i≤k,i/∈An

1
2

+
∑

i∈An

I{un,i �=ui}

⎞⎠
=

Δ2δ

4k

k∑
i=1

(
I{i/∈An}

1
2

+ I{i∈An}I{un,i �=ui}

)

≥ Δ2δ

4k

k∑
i=1

1
2
I{un,i �=ui} =

Δ2δ

8k

k∑
i=1

I{un,i �=ui}

and thus

max
u∈{−1,1}k

J(μu, qn) ≥ Δ2δ

8k
max

u∈{−1,1}k

k∑
i=1

P{un,i �= ui} . (5)

We write Xn
1 (u) for Xn

1 to indicate how the samples depend on u, and use
randomization such that u is replaced by a vector U = (U1, . . . , Uk) ∈ {−1,+1}k

of i.i.d. zero mean random signs. Then for any qn ∈ Q(n),

max
u∈{−1,+1}k

k∑
i=1

P{un,i(Xn
1 (u)) �= ui} ≥ E

{
k∑

i=1

P{un,i(Xn
1 (U)) �= Ui|U}

}

≥
k∑

i=1

P{un,i(Xn
1 (U)) �= Ui} . (6)

Here P{un,i(Xn
1 (U)) �= Ui} is the error probability of the classification problem

of whether Ui is −1 or +1 based on the observation Xn
1 (U), and thus it is not less

than the corresponding optimal error probability, which is given by the following
formula (see, e.g., [13]):

inf
un,i

P{un,i(Xn
1 (U)) �= Ui} ≥ E{min(P{Ui = 1|Xn

1 },P{Ui = −1|Xn
1 })}

= E{min(P{U1 = 1|Xn
1 },P{U1 = −1|Xn

1 })} (7)

by symmetry. Let M = |{j ≤ n : Xj ∈ {z1, z
′
1}}| and M̄ = |{j ≤ n : Xj ∈

{y1, y
′
1}}|. It is easy to check that (M,M̄) is a sufficient statistics of Xn

1 for U1,
and that if M ≤ (or ≥) M̄ then P{U1 = 1|M,M̄} ≤ (or ≥)P{U1 = −1|M,M̄},
respectively. Thus

E{min(P{U1 = 1|Xn
1 },P{U1 = −1|Xn

1 })}
= E{min(P{U1 = 1|M,M̄},P{U1 = −1|M,M̄})}
≥ E{I{M≤M̄} min(P{U1 = 1|M,M̄},P{U1 = −1|M,M̄})}
= E{I{M≤M̄}P{U1 = 1|M,M̄}} (8)

= P{M ≤ M̄, U1 = 1}

=
1
2
P{M ≤ M̄ |U1 = 1} .

Improved Minimax Bounds on the Test 541

From (4)–(8) we conclude that

inf
qn

sup
μ∈P(1)

J(μ, qn) ≥ Δ2δ

16
P{M ≤ M̄ |U1 = 1} . (9)

Let B = M + M̄ , which has binomial distribution with parameters (n, 1/k) for
any u. Now

P{M ≤ M̄ |U1 = 1} = P{M̄ ≥ B/2|U1 = 1} (10)
= E{P{M̄ ≥ B/2|U1 = 1, B}|U1 = 1} .

Note that given U1 = 1 and B, M̄ has binomial distribution with parameters B
and p = (1− δ)/2. We lower bound the above probability using an inequality by
Slud [14] which states that for all Bp ≤ l ≤ B(1 − p),

P{M̄ ≥ l|U1 = 1, B} ≥ Φ

(
− l −Bp√

Bp(1 − p)

)
. (11)

For 1/δ ≤ B ≤ 9/(25δ2), the choice l = B/2� satisfies the conditions of Slud’s
inequality, and for δ < 0.1 we obtain

P{M̄ ≥ B/2|U1 = 1, B} ≥ P{M̄ ≥ B/2�|U1 = 1, B}

≥ Φ

(
−B/2� − B(1 − δ)/2√

B(1 − δ2)/4

)

≥ Φ

(
− 1 + Bδ√

B(1 − δ2)

)
(12)

≥ Φ

(
− 1 + 3

√
B/5√

B(1 − 9/(25B))

)
= Φ

(
− 5 + 3

√
B√

25B − 9

)

≥ Φ

(
− 5 + 3

√
11√

25 · 11 − 9

)
> Φ(−0.92)

where we used the conditions δ ≤ 3/(5
√

B) and B ≥ 1/δ > 10 above. Hence,
using that B and U1 are independent,

P{M ≤ M̄ |U1 = 1} ≥ E
{

I{ 1
δ ≤B≤ 9

25δ2 }Φ(−0.92)
∣∣∣U1 = 1

}
= Φ(−0.92)P

{
1
δ
≤ B ≤ 9

25δ2

}
. (13)

For n ≥ 24k = 8N , letting

δ =
12
25

√
k

n
(< 0.1) (14)

542 A. Antos

by Chebyshev’s inequality

P
{

1
δ
≤ B ≤ 9

25δ2

}
= P

{
25
12

√
n

k
≤ B ≤ 25

16
n

k

}
≥ P

{
7
16

n

k
≤ B ≤ 25

16
n

k

}
= 1 − P

{
|B − EB| > 9

16
n

k

}
≥ 1 − n/k(1 − 1/k)

92

162
n2

k2

≥ 1 − 162k

92n
(15)

≥ 1 −
(

2
3

)5

=
211
243

.

Combining (9), (13)–(15), we obtain

inf
qn

sup
μ∈P(1)

J(μ, qn) ≥ 211Δ2

8100
Φ(−0.92)

√
k

n

where 0 < Δ ≤ 1/4 such that there exist z1, . . . , z2k ∈ S with distance at least
3Δ between any two of them and with each z′i ∈ S. The latter is ensured if each
zi ∈ S(0, 3/4) ⊆ S(0, 1 − Δ). Thus, we need a lower bound for the cardinality
of the maximal 3Δ-packing of S(0, 3/4). It is well known (e.g., [15]) that this
is lower bounded by the cardinality of the minimal 3Δ-covering of S(0, 3/4),
which is clearly bounded below by the ratio of the volume of S(0, 3/4) and that
of S(0, 3Δ), that is, by (1/4Δ)d. Hence 2k points can be packed in S(0, 3/4) as
long as 2k ≤ (1/4Δ)d, thus the choice

Δ =
1

4(2k)1/d

satisfies the required property. Resubstitution of this value and 2k = 2N/3 proves
the theorem. �

Proof of Theorem 3. Define μ ∈ P(1) as the uniform distribution concentrated
on three fixed points {−1, 0, 1}. It is easy to see that there are exactly two
optimal 2-level quantizers for μ; with codebooks

C1 = {−1/2, 1} and C2 = {−1, 1/2}

respectively. Consequently, D∗(μ) = 1/6.
Let M and M̄ be the number of training data points falling on −1 and

1, respectively. Let qn be the training set dependent 2-point nearest neighbor
quantizer whose codebook is C1 if M < M̄ and C2 if M ≥ M̄ . Then the expected
training distortion of qn is

ED(μn, qn) = E

⎧⎨⎩ 1
n

n∑
j=1

(Xj − qn(Xj))2

⎫⎬⎭

Improved Minimax Bounds on the Test 543

=
1
4n

E{n − max(M,M̄)} (16)

=
1
4
− 1

4n
E{max(M,M̄)} .

Since the empirically optimal quantizer q∗n minimizes the training distortion
over all 2-point quantizers, we have

ED(μn, qn) ≥ ED(μn, q∗n) .

Therefore, using (16) and that EM = EM̄ = n/3, we can lower bound the
difference D∗(μ) − ED(μn, q∗n) as

D∗(μ) − ED(μn, q∗n) ≥ 1
6
− 1

4
+

1
4n

E{max(M,M̄)}

= − 1
12

+
1
4n

E
{

M + M̄

2
+

|M̄ −M |
2

}
(17)

= − 1
12

+
1
12

+
E{|M̄ −M |}

8n
=

E{|
∑n

j=1 Xj |}
8n

.

We lower bound the the last expectation using the following inequality: for any
random variable Z with finite fourth moment,

E|Z| ≥ (E{Z2})3/2

(E{Z4})1/2
(18)

(see [16–p. 194] or [13–Lemma A.4]). Since Xj ’s are independent, identically
distributed, and have zero mean, we have

E

⎧⎪⎨⎪⎩
⎛⎝ n∑

j=1

Xj

⎞⎠2
⎫⎪⎬⎪⎭ = nE{X2

1} = 2n/3 .

On the other hand, expanding (
∑n

j=1 Xj)4 yields

E

⎧⎪⎨⎪⎩
⎛⎝ n∑

j=1

Xj

⎞⎠4
⎫⎪⎬⎪⎭ = nE{X4

1} + 3n(n − 1)(E{X2
1})2

=
2n
3

+ 3n(n − 1)
4
9

=
2n(2n − 1)

3
≤ 4n2/3 .

Hence (18) gives

E

⎧⎨⎩
∣∣∣∣∣∣

n∑
j=1

Xj

∣∣∣∣∣∣
⎫⎬⎭ ≥ (2n/3)3/2

(4n2/3)1/2
=

√
2n
3

.

544 A. Antos

Combining this with (17), we conclude that for all n ≥ 1,

D∗(μ)−ED(μn, q∗n) ≥ 1
12
√

2
1√
n

. �

References

1. Pollard, D.: Strong consistency of k-means clustering. Annals of Statistics 9 (1981)
135–140

2. Pollard, D.: Quantization and the method of k-means. IEEE Transactions on
Information Theory IT-28 (1982) 199–205

3. Linder, T., Lugosi, G., Zeger, K.: Rates of convergence in the source coding the-
orem, in empirical quantizer design, and in universal lossy source coding. IEEE
Transactions on Information Theory 40 (1994) 1728–1740

4. Linder, T.: On the training distortion of vector quantizers. IEEE Trans. Inform.
Theory IT-46 (2000) 1617–1623

5. Linder, T.: Learning-theoretic methods in vector quantization. In Györfi, L., ed.:
Principles of nonparametric learning. Number 434 in CISM Courses and Lectures.
Springer-Verlag, Wien, New York (2002) 163–210

6. Linder, T., Lugosi, G., Zeger, K.: Empirical quantizer design in the presence of
source noise or channel noise. IEEE Trans. Inform. Theory IT-43 (1997) 612–623

7. Merhav, N., Ziv, J.: On the amount of side information required for lossy data
compression. IEEE Trans. Inform. Theory IT-43 (1997) 1112–1121

8. Zeevi, A.J.: On the performance of vector quantizers empirically designed from
dependent sources. In Storer, J., Cohn, M., eds.: Proceedings of Data Compres-
sion Conference, DCC’98, Los Alamitos, California, IEEE Computer Society Press
(1998) 73–82

9. Bartlett, P., Linder, T., Lugosi, G.: The minimax distortion redundancy in em-
pirical quantizer design. IEEE Transactions on Information Theory IT-44 (1998)
1802–1813

10. Antos, A., Györfi, L., György, A.: Improved convergence rates in empirical vector
quantizer design. In: Proceedings 2004 IEEE International Symposium on Infor-
mation Theory, IEEE, IEEE Information Theory Society (2004) 301 (Chicago, IL,
June 28–July 2, 2004.) Full paper submitted.

11. Chou, P.A.: The distortion of vector quantizers trained on n vectors decreases
to the optimum as Op(1/n). In: Proceedings 1994 IEEE International Sympo-
sium on Information Theory. IEEE, IEEE Information Theory Society (1994) 457
(Trondheim, Norway, June 27–July 1, 1994.).

12. Pollard, D.: A central limit theorem for k-means clustering. Annals of Probability
10 (1982) 919–926

13. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Number 31 in Applications of Mathematics, Stochastic Modelling and Applied
Probability. Springer-Verlag, New York (1996)

14. Slud, E.V.: Distribution inequalities for the binomial law. Annals of Probability
5 (1977) 404–412

15. Kolmogorov, A.N., Tikhomirov, V.M.: ε-entropy and ε-capacity of sets in function
spaces. Translations of the American Mathematical Society 17 (1961) 277–364

16. Devroye, L., Györfi, L.: Nonparametric Density Estimation: The L1 View. John
Wiley, New York (1985)

Rank, Trace-Norm and Max-Norm

Nathan Srebro1 and Adi Shraibman2

1 University of Toronto Department of Computer Science,
Toronto ON, Canada

2 Hebrew University Institute of Computer Science,
Jerusalem, Israel

nati@cs.toronto.edu, adidan@cs.huji.ac.il

Abstract. We study the rank, trace-norm and max-norm as complexity
measures of matrices, focusing on the problem of fitting a matrix with
matrices having low complexity. We present generalization error bounds
for predicting unobserved entries that are based on these measures. We
also consider the possible relations between these measures. We show
gaps between them, and bounds on the extent of such gaps.

1 Introduction

Consider the problem of approximating a noisy (or partially observed) target
matrix Y with another matrix X. This problem arises often in practice, e.g.
when analyzing tabulated data such as gene expressions, word counts in a corpus
of documents, collections of images, or user preferences on a collection of items.

A common general scheme for solving such problems is to select a matrix X
that minimizes some combination of the complexity of X and the discrepancy
between X and Y . The heart of the matter is the choice of the measure of
complexity for X and the measure of discrepancy between X and Y .

The most common notion of complexity of a matrix in such tasks is its rank
(as in PCA, Latent Semantic Analysis, the Aspect Model and a variety of other
factor models and generalizations of these approaches). Recently, the trace-norm
and max-norm were suggested as alternative measures of complexity with strong
connections to maximum-margin linear classification [1]. Whereas bounding the
rank corresponds to constraining the dimensionality of each row of U and V in
a factorization X = UV ′, bounding the trace-norm and max-norm corresponds
to constraining the norms of rows of U and V (average row-norm for the trace-
norm, and maximal row-norm for the max-norm). Unlike low-rank factorizations,
such constraints lead to convex optimization problems.

In this paper we study the rank, trace-norm and max-norm as measures of
matrix complexity, concentrating on the implications to the problem mentioned
above.

We begin by considering the problem of predicting unknown entries in a
partially observed matrix Y (as in collaborative prediction). We assume the
prediction is made by choosing a matrix X for which some combination of the

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 545–560, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

546 N. Srebro and A. Shraibman

discrepancy between X and Y on the one hand, and the complexity of X on the
other hand, is minimized. We present generalization error bounds for general
measures of discrepancy and for the cases where the complexity measure for
X is either rank (Section 3.1, repeating a previous analysis [2]), trace-norm or
max-norm (Sections 3.2 and 3.3, elaborating on and proving previously quoted
bounds [1]). We make no assumptions about the matrix Y , other than that
the observed entries are chosen at random. The bounds, and the complexity
measures used to obtain them (cardinality, pseudodimension and Rademacher
complexity), are insightful in comparing the three measures of matrix complexity
we are considering.

In addition to results about generic measures of discrepancy, we also specif-
ically consider binary target matrices: For Y ∈ ±1n×m, we study the mini-
mum rank, max-norm and (normalized) trace-norm of a matrix X such that
XijYij ≥ 1 for all i, j. We refer to these as the dimensional-complexity dc(Y),
max-complexity mc(Y) and trace-complexity tc(Y) of a binary matrix Y .

We study relations between the three matrix complexity measures. Matri-
ces that can be approximated by a matrix of low max-norm can also be ap-
proximated by a matrix with low rank. In Section 4 we show this for general
measures of discrepancy, generalizing previous results [3, 4] for binary target
matrices. But this relationship is not reversible: We give examples of explicit bi-
nary matrices with low dimensional-complexity that have high max-complexity.
Previously, examples in which the max-complexity is a polynomial function of
the dimensional-complexity [5], or where the dimensional-complexity is constant
but the max-complexity is logarithmic in the matrix size [4] have been shown.
We present an explicit construction establishing that the max-complexity is not
bounded by any polynomial of the dimensional-complexity and the logarithm of
the matrix size.

Similarly we give examples of matrices with low trace-complexity but high
dimensional-complexity and max-complexity. This gap is related to a require-
ment for uniform sampling of observed entries, which we show to be necessary
for generalization error bounds based on the trace-norm but not on the max-
norm or rank. We also show that the gap we obtain is the largest possible gap,
establishing a first lower bound on the trace-complexity in terms of the max-
complexity or dimensional-complexity (Section 5).

Embedding Classifiers as Linear Separators. The dimensional-complexity
and max-complexity have been studied in the context of embedding concept
classes as low-dimensional, or large-margin, linear separators. A concept class
H = {h : Φ → ±1} of binary valued functions can be represented as a |Φ| × |H|
matrix Y , with Yφ,h = h(φ). The dimensional-complexity of Y is the minimum
d such that each φ ∈ Φ can be embedded as a point uφ ∈ Rd and each classifier
h ∈ H can be embedded as a separating homogeneous hyperplane determined
by its normal vh ∈ Rd, such that h(φ) = sign v′huφ. The max-complexity is the
smallest M such that Φ can be embedded as points and H as linear separators in
an infinite dimensional unit ball, where all separators separate with a margin of
at least 1/M , i.e. |v′

huφ|
|vh| ≥ 1/M . Studying linear separators (in particular using

Rank, Trace-Norm and Max-Norm 547

kernel methods) as a generic approach to classification leads one to ask what
concept classes can or cannot be embedded as low-dimensional or large-margin
linear separators; that is, what matrices have high dimensional-complexity and
max-complexity [4, 6].

These questions are existential questions, aimed at understanding the limits
of kernel-based methods. Here, the concept class of interest is the class of matri-
ces themselves, and we apply much of the same techniques and results in order
to understand the performance of a concrete learning problem.

2 Preliminaries

Notation. For vectors, |v|p is the lp norm and |v| = |v|2. For matrices, ‖X‖Fro =√∑
ij X2

ij is the Frobenius norm; ‖X‖2 = max|u|=|v|=1 u′Xv is the spectral norm

and is equal to the maximum singular value of X; ‖X‖2→∞ = max|u|2=1 |Xu|∞ =
maxi |Xi·| is the maximum row norm of X; |X|∞ = maxij |Xij |.

Discrepancy. We focus on element-wise notions of discrepancy between two
n × m matrices Y and X: D(X;Y) = 1

nm

∑
ij g(Xij ;Yij), where g(x; y) is some

loss function. The empirical discrepancy for a subset S ⊂ [n]×[m] of the observed
entries of Y is DS(X;Y) = 1

|S|
∑

ij∈S g(Xij ;Yij). The discrepancy relative to a
distribution P over entries in the matrix (i.e. over [n] × [m]) is DP(X;Y) =
Eij∼P [g(Xij ;Yij)].

Since the norms are scale-sensitive measures of complexity, the scale in which
the loss function changes is important. This is captured by Lipschitz continuity:
A loss function g : R × Y → R is L-Lipschitz if for every y, x1, x2, |g(x1; y) −
g(x2; y)| ≤ L|x1 − x2|.

For the special case of binary target matrices Y ∈ {±1}n×m, the discrepancy
with respect to the sign-agreement zero-one error is the (normalized) Hamming
distance between signX and signY . It will be useful to consider the set of ma-
trices whose sign patterns agree with the target matrix: SP(Y) = {X| signX =
signY }. For scale-dependent (e.g. norm-based) complexity measures of X, con-
sidering the signs of entries in X is no longer enough, and their magnitudes must
also be bounded. We consider SP1(Y) = {X|∀ijXijYij ≥ 1}, corresponding to a
margin sign-agreement error.

Complexity. The rank of a matrix X is the minimum k such that X = UV ′,
U ∈ Rn×k, V ∈ Rm×k. The dimensional-complexity of a sign matrix is:

dc(Y) .= min{rankX|X ∈ SP(Y)} = min{rankX|X ∈ SP1(Y)} (1)

The max-norm (also known as the γ2-norm [7]) of a matrix X is given by:

‖X‖max
.= min

X=UV ′
‖U‖2→∞ ‖V ‖2→∞ (2)

While the rank constrains the dimensionality of rows in U and V , the max-
norm constrains the norms of all rows in U and V . The max-complexity for a
sign matrix Y is mc(Y) .= min{‖X‖max |X ∈ SP1(Y)}

548 N. Srebro and A. Shraibman

The trace-norm1 ‖X‖Σ is the sum of the singular values of X (i.e. the roots
of the eigenvalues of XXt).

Lemma 1. ‖X‖Σ = minX=UV ′ ‖U‖Fro ‖V ‖Fro = minX=UV ′ 1
2 (‖U‖2

Fro+‖V ‖2
Fro)

While the max-norm constrains the maximal norm of the rows in U and
V , the trace-norm constrains the sum of the norms of the rows in U and V .
That is, the max-norm constrains the norms uniformly, while the trace-norm
constrains them on average. The trace-complexity of a sign matrix Y is
tc(Y) .= min{‖X‖Σ/

√
nm|X ∈ SP1(Y)}.

Since the maximum is greater than the average, the trace-norm is bounded
by the max-norm: ‖X‖Σ /

√
nm ≤ ‖X‖max and tc(Y) ≤ mc(Y). In Section 5 we

see that there can be a large gap between ‖X‖Σ /
√

nm and ‖X‖max.

Extreme Values. For any sign matrix Y , 1 ≤ tc(Y) ≤ mc(Y) ≤ ‖Y ‖max ≤
√

n.
Rank-one sign matrices Y have dc(Y) = mc(Y) = tc(Y) = 1 and are the only
sign matrices for which any of the three quantities is equal to one. To obtain
examples of matrices with high trace-complexity, note that:

Lemma 2. For any Y ∈ {±1}n×m, tc(Y) ≥
√

nm/ ‖Y ‖2.

Proof. Let X ∈ SP(Y) s.t. ‖X‖Σ =
√

nmtc(Y), then by the duality of the
spectral norm and the trace-norm, ‖X‖Σ ‖Y ‖2 ≥

∑
ij XijYij ≥ nm. ��

An example of a sign matrix with low spectral norm is the Hadamard matrix
Hp ∈ {±1}2p×2p

, where Hij is the inner product of i and j as elements in
GF (2p). Using ‖Hp‖2 = 2p/2 we get mc(Hlog n) = tc(Hlog n) =

√
n [5]. Although

counting arguments prove that for any n, there exist n×n sign matrices for which
dc(Y) > n/11 (Lemma 3 below, following Alon et al [8] who give a slightly weaker
bound), the Hadamard matrix, for which it is known that

√
n ≤ dc(Hlog n) ≤ n0.8

[6], is the most extreme known concrete example.

3 Generalization Error Bounds

Consider a setting in which a random subset S of the entries of Y is observed.
Based on the observed entries YS we would like to predict unobserved entries in
Y . This can be done by fitting a low-complexity matrix X to YS and using X to
predict unobserved entries. We present generalization error bounds on the overall
discrepancy in terms of the observed discrepancy. The bounds do not assume any
structure or probabilistic assumption on Y , and hold for any (adversarial) target
matrix Y . What is assumed is that the sample S is chosen at random.

We are interested in predicting unobserved entries not only as an application
of matrix learning (e.g. when predicting a user’s preferences based on preferences
of the user and other users, or completing missing experimental data), but also
as a conceptual learning task where the different measures of complexity can

1 Also known as the nuclear norm and the Ky-Fan n-norm.

Rank, Trace-Norm and Max-Norm 549

arbitrary source distribution ⇔ target matrix Y
random training set ⇔ random set S of observed entries

hypothesis ⇔ concept matrix X
training error ⇔ observed discrepancy DS(X; Y)

generalization error ⇔ true discrepancy D(X; Y)

Fig. 1. Correspondence with post-hoc bounds on the generalization error for standard
feature-based prediction tasks

be compared and related. Even when learning is done for some other purpose
(e.g. understanding structure or reconstructing a latent signal), the ability of
the model to predict held-out entries is frequently used as an ad-hoc indicator
of its fit to the true underlying structure. Bounds on the generalization ability
for unobserved entries can be used as a theoretical substitute to such measures
(with the usual caveats of using generalization error bounds).

The Pseudodimension and the Rademacher Complexity. To obtain gen-
eralization error bounds, we consider matrices as functions from index pairs to
entry values, and calculate the pseudodimension of the class of low-rank ma-
trices and the Rademacher complexity of the classes of low max-norm and low
trace-norm matrices. Recall that:

Definition 1. A class F of real-valued functions pseudo-shatters the points
x1, . . . , xn with thresholds t1, . . . , tn if for every binary labeling of the points
(s1, . . . , sn) ∈ {+,−}n there exists f ∈ F s.t. f(xi) ≤ ti iff si = −. The pseu-
dodimension of a class F is the supremum over n for which there exist n points
and thresholds that can be shattered.

Definition 2. The empirical Rademacher complexity of a class F over a specific
sample S = (x1, x2, . . .) is given by: R̂S(F) = 2

|S|Eσ

[
supf∈F |

∑
i σif(xi)|

]
, where

the expectation is over the uniformly distributed random signs σi.
The Rademacher complexity with respect to a distribution D is the expecta-

tion, over a sample of |S| points drawn i.i.d. from D: RD
|S|(F) = E

S

[
R̂S(F)

]
.

It is well known how to obtain Generalization error bounds in terms of the
pseudodimension and Rademacher complexity. Our emphasis is on calculating
the pseudodimension and the Rademacher complexity. We do not present the
tightest possible bounds in terms of these measures.

3.1 Low-Rank Matrices

Generalization error bounds for prediction with low-rank matrices can be ob-
tained by considering the number of sign configurations of low-rank matrices [2]
(following techniques introduced in [8]):

Lemma 3 ([9]). |{Y ∈ {±1}n×m|dc(Y) ≤ k}| ≤ (8em/k)k(n+m)

550 N. Srebro and A. Shraibman

This bound is tight up to a multiplicative factor in the exponent: for m > k2,
|{Y ∈ {±1}n×m|dc(Y) ≤ k}| ≥ m

1
2 (k−1)n.

Using the bound of Lemma 3, a union bound of Chernoff bounds yields a
generalization error bound for the zero-one sign agreement error (since only
signs of entries in X are relevant). Generalization error bounds for other loss
functions can be obtained by using a similar counting argument to bound the
pseudodimension of the class X k = {X| rankX ≤ k}. To do so, we need to bound
not only the number of sign configurations of such matrices, but the number of
sign configurations relative to any threshold matrix T :

Lemma 4 ([2]). ∀T∈Rn×m |{sign(X − T)| rankX ≤ k}| ≤
(

8em
k

)k(n+m)

Corollary 1. pseudodimension(X k) ≤ k(n + m) log 8em
k

Theorem 1 ([2]). For any monotone loss function bounded by M , any n × m
matrix Y , any distribution P of index pairs (i, j), n,m > 2, δ > 0 and integer k,
with probability at least 1 − δ over choosing a set S of |S| index pairs according
to P, for all matrices X with rankX ≤ k:

DP(X;Y) < DS(X;Y) + 6

√√√√k(n + m) log 8em
k log M |S|

k(n+m) − log δ

|S|

3.2 Low Trace-Norm Matrices

In order to calculate the Rademacher complexity of the class X [M] = {X| ‖X‖Σ ≤
M}, we observe that this class is convex and that any unit-trace-norm matrix
is a convex combination of unit-norm rank-one matrices X =

∑
Daa(U·aV

′
·a),

where X = UDV ′ is the SVD and U·a, V·a are columns of U, V . Therefore,
X [1] = convX1[1], where X1[1] .= {uv′ | u ∈ Rn, v ∈ Rm, |u| = |v| = 1} is
the class of unit-norm rank-one matrices. We use the fact that the Rademacher
complexity does not change when taking convex combinations, and calculate the
Rademacher complexity of X1[1]. We first analyze the empirical Rademacher
complexity for any fixed sample S, possibly with repeating index pairs. We then
bound the average Rademacher complexity for a sample of |S| index pairs drawn
uniformly at random from [n] × [m] (with repetitions).

The Empirical Rademacher Complexity. For an empirical sample S =
{(i1, j1), (i2, j2), . . .} of |S| index pairs, the empirical Rademacher complexity of
rank-one unit-norm matrices is the expectation:

R̂S(X1[1]) = Eσ

⎡⎣ sup
|u|=|v|=1

∣∣∣∣∣∣ 2
|S|

|S|∑
α=1

σαuiα
vjα

∣∣∣∣∣∣
⎤⎦ (3)

where σα are uniform ±1 random variables. For each index pair (i, j) we will
denote by sij the number of times it appears in the empirical sample S, and
consider the random variables σij =

∑
α s.t. (iα,jα)=(i,j) σα.

Rank, Trace-Norm and Max-Norm 551

Since the variables σα are independent, E
[
σ2

ij

]
= sij , and we can calculate:

R̂S(X1[1]) = Eσ

⎡⎣ sup
|u|,|v|=1

∣∣∣∣∣∣ 2
|S|

∑
i,j

σijuivj

∣∣∣∣∣∣
⎤⎦ = 2

|S|Eσ

[
sup

|u|,|v|=1

|u′σv|
]

=
2Eσ[‖σ‖2]

|S|

where σ is an n ×m matrix of σij .
The Rademacher complexity is equal to the expectation of the spectral norm

of the random matrix σ (with a factor of 2
|S|). Using the Frobenius norm to

bound the spectral norm, we have:

R̂S(X1[1]) ≤ 2
|S|Eσ[‖σ‖Fro] ≤

2
|S|

√
|S| =

2√
|S|

(4)

As a supremum over all sample sets S, this bound is tight: consider a sam-
ple of |S| index pairs, all in the same column. The rank-one unit-norm matrix
attaining the supremum would match the signs of the matrix with ±1/

√
|S|

yielding an empirical Rademacher complexity of 2/
√

|S|. The form of (4) is very
disappointing, and does not lead to meaningful generalization error bounds.

Even though the empirical Rademacher complexity for a specific sample
might be very high, in what follows we show that the expected Rademacher
complexity, for a uniformly chosen sample, is low. Using the Frobenius norm to
bound the Spectral norm of σ will no longer be enough, and in order to get a
meaningful bound we must analyze the expected spectral norm more carefully.

Bounding Eσ[‖σ‖2]. In order to bound the expected spectral norm of σ, we
apply Theorem 3.1 of [10], which bounds the expected spectral norm of matrices
with entries of fixed magnitudes but random signs in terms of the maximum
row and column magnitude norms. If S contains no repeated index pairs (sij =
0 or 1), we are already in this situation, as the magnitudes of σ are equal to
s. When some index pairs are repeated, we consider a different random matrix,
σ̃ij = εijsij , where εij are i.i.d. unbiased signs. Using σ̃ instead of σ gives us
an upper bound on the empirical Rademacher complexity (Lemma 12 from the
Appendix). Applying Theorem 3.1 of [10] to σ̃ij , we obtain:

R̂S(X1[1]) ≤ 2
|S|Eε[‖σ̃‖2]

2
|S| ≤ K(lnm)

1
4

(
max

i
|si·| + max

j
|s·j |

)
(5)

where |si·| and |s·j | are norms of row and column vectors of the matrix s, and
K is the absolute constant guaranteed by Theorem 3.1 of [10].

Bounding the Row and Column Norms. For the worst samples, the norm
of a single row or column vector of s might be as high as |S|, but for random
uniformly drawn samples, we would expect the row and column norms to be
roughly

√
|S|/n and

√
|S|/m. To make this estimate precise we proceed in two

steps2. We first use Bernstein’s inequality to bound the maximum value of sij ,

2 We assume here nm > |S| > n ≥ m > 3. See [9] for more details.

552 N. Srebro and A. Shraibman

uniformly over all index pairs: PrS(maxij sij > 9 lnn) ≤ 1
|S| . When the maxi-

mum entry in s is bounded, the norm of a row can be bounded by the square
root of the number of observations in the row. In the second step we use Bern-
stein’s inequality again to bound the expected maximum number of observations
in a row (similarly column) by 6(|S|

n + ln |S|). Combining these results we can
bound the Rademacher complexity, for a random sample set where each index
pair is chosen uniformly and independently at random:

Runiform
|S| (X1[1]) = ES

[
R̂S(X1[1])

]
≤ Pr

(
max

ij
sij > 9 lnn

)
sup

S
R̂S(X1[1]) + ES

[
R̂S(X1[1])

∣∣∣∣max
ij

sij ≤ 9 lnn

]
≤ 1

|S| ·
2√
|S|

+
2
|S|K(lnm)

1
4 ES

[
max

i
|si·| + max

j
|s·j |

∣∣∣∣max
ij

sij ≤ 9 lnn

]

≤ 2
|S|3/2

+
2K(lnm)

1
4

|S|
√

9 lnn

(√
6(

|S|
n

+ ln |S|) +

√
6(

|S|
m

+ ln |S|)
)

(6)

Taking the convex hull, scaling by M and rearranging terms:

Theorem 2. For some universal constant K, the expected Rademacher com-
plexity of matrices of trace-norm at most M , over uniform samplings of index

pairs is at most (for |S|/ lnn ≥ n ≥ m): Runiform
|S| (X [M]) ≤ K M√

nm

√
(n+m) ln3/2 n

|S|

Applying Theorem 2 of [11]3:

Theorem 3. For any L-Lipschitz loss function, target matrix Y , δ > 0, M > 0
and sample sizes |S| > n log n, and for a uniformly selected sample S of |S|
entries in Y , with probability at least 1−δ over the sample selection, the following
holds for all matrices X ∈ Rn×m with ‖X‖Σ√

nm
≤ M :

D(X;Y) < DS(X;Y) + KL

√
M2(n + m) ln3/2n − log δ

|S|

Where K is a universal constant that does not depend on Y ,n,m, the loss func-
tion, or any other quantity.

3.3 Low Max-Norm Matrices

Since the max-norm gives us a bound on the trace-norm, we can apply Theorems
2 and 3 also to matrices of bounded max-norm. However, when the max-norm is

3 By bounding the zero-one sign-agreement error with the 1-Lipschitz function
g(x, y) = max(0, min(yx − 1, 1)), which in turn is bounded by the margin sign-
agreement error, generalization error bounds in terms of the margin can be obtained
from bounds in terms of the Lipschitz constant.

Rank, Trace-Norm and Max-Norm 553

bounded it is possible to obtain better bounds, avoiding the logarithmic terms,
and more importantly, bounds that hold for any sampling distribution.

As we did for low trace-norm matrices, we bound the Rademacher complex-
ity of low max-norm matrices by characterizing the unit ball of the max-norm
Bmax = {X| ‖X‖max ≤ 1} as a convex hull. Unlike the trace-norm unit ball, we
cannot exactly characterize the max-norm unit ball as a convex hull. However,
using Grothendiek’s Inequality we can bound the unit ball with the convex hull
of rank-one sign matrices X± = {X ∈ {±1}n×m| rankX = 1}.

Theorem 4 (Grothendieck’s Inequality [12–page 64]). There is an ab-
solute constant 1.67 < KG < 1.79 such that the following holds: Let Aij be a
real matrix, and suppose that |

∑
i,j Aijsitj | ≤ 1 for every choice of reals with

|si|, |tj | ≤ 1 for all i, j. Then
∣∣∣∑i,j aij 〈xi, yj〉

∣∣∣ ≤ KG, for every choice of unit
vectors xi, yj in a real Hilbert space.

Corollary 2. convX± ⊂ Bmax ⊂ KGconvX±
Proof. Noting that the dual norm to the max-norm is:

‖A‖∗max = max
‖B‖max≤1

〈A,B〉 = max
xi,yj∈Rk:|xi|,|yj |≤1

∑
i,j

aijx
′
iyj . (7)

where the maximum is over any k, we can restate Grothendieck’s inequality as
‖A‖∗max ≤ KG‖A‖∞→1 where ‖A‖∞→1 = maxsi,tj∈R:|si|,|tj |≤1

∑
i,j aijsitj . We

also have ‖A‖∞→1 ≤ ‖A‖∗max, and taking the duals:

‖A‖∗∞→1 ≥ ‖A‖max ≥ KG‖A‖∗∞→1 (8)

We now note that ‖A‖∞→1 = maxB∈X± 〈A,B〉 and so X± is the unit ball of
‖A‖∗∞→1 and (8) establishes the Corollary. ��

The class of rank-one sign matrices is a finite class of size |X±| = 2n+m−1,
and so its empirical Rademacher complexity (for any sample) can be bounded by

R̂S(X±) <
√

7 2(n+m)+log |S|
|S| [9]. Taking the convex hull of this class and scaling

by 2M we have (for 2 < |S| < nm):

Theorem 5. The Rademacher complexity of matrices of max-norm at most M ,
for any index-pair distribution, is bounded by4: R|S|(Xmax[M]) ≤ 12M

√
n+m
|S|

Theorem 6. For any L-Lipschitz loss function, any matrix Y , any distribution
P of index pairs (i, j), n,m > 2, δ > 0 and M > 0, with probability at least 1− δ
over choosing a set S of |S| index pairs according to P, for all matrices X with
‖X‖max ≤ M :

DP(X;Y) < DS(X;Y) + 17

√
M2(n + m) − log δ

|S|

4 For large enough n, m, the constant 12 can be reduced to KG

√
8 ln 2 < 4.197.

554 N. Srebro and A. Shraibman

4 Between the Max-Norm and the Rank

We have already seen that the max-norm bounds the trace-norm, and so any
low max-norm approximation is also a low trace-norm approximation. Although
the max-norm does not bound the rank (e.g. the identity matrix has max-norm
one but rank n), using random projections, a low max-norm matrix can be
approximated by a low rank matrix [3]. Ben David et al [4] used this to show
that dc(Y) = O(mc2(Y) log n). Here, we present a slightly more general analysis,
for any Lipschitz continuous loss function.

Lemma 5. For any X ∈ Rn×m and any ‖X‖max > ε > 0, there exists X ′ such
that |X −X ′|∞ < ε and rankX ≤ 9(‖X‖max /ε)2 log(3nm).

Proof. Set M = ‖X‖max and let X = UV ′ with ‖U‖2
2→∞ = ‖V ‖2

2→∞ = M . Let
A ∈ Rk×d be a random matrix with independent normally distributed entries,
then for any u, v with u′ = Auandv′ = Av we have [3]:

Pr (1 − ε) |u − v|2 ≤ |u′ − v′|2 ≤ (1 + ε) |u − v|2 ≥ 1 − 2e−k(ε2−ε3)/4 (9)

Set ε = 2ε
3M and k = 4 ln(3nm)/ε2 = 9(M/ε)2 ln(3nm). Taking a union bound

over all pairs (Ui, Vj) of rows of U and V , as well as all pairs (Ui, 0) and (Vj , 0),
we get that with positive probability, for all i, j,

∣∣U ′
i − V ′

j

∣∣2, |U ′
i |

2 and
∣∣V ′

j

∣∣2 are
all within (1±ε) of |Ui − Vj |2, |Ui|2 ≤ M and |Vj |2 ≤ M , respectively. Expressing
U ′

iV
′
j in terms of these norms yields UiVj − 3Mε/2 ≤ U ′

iV
′
j ≤ UiVj + 3Mε/2,

and so |UV ′ −X|∞ ≤ 3Mε/2 = ε and rankUV ≤ k = 9(M/ε)2 ln(3nm). ��

Corollary 3. For any L-Lipschitz continuous loss function, any matrices X,Y ,
and any ‖X‖max > ε > 0, there exists X ′ such that D(X ′;Y) ≤ D(X;Y)+ ε and
rankX ′ ≤ 9 ‖X‖2

max (L/ε)2 log(3nm).

Corollary 4. For any sign matrix Y , dc(Y) ≤ 10mc2(Y) log(3nm).

Proof. For X ∈ SP1(Y), setting ε =
√

0.9 ensures signX ′ = signX = Y . ��

Using Lemma 5 and Theorem 1 it is possible to obtain a generalization er-
ror bound similar to that of Theorem 6, but with additional log-factors. More
interestingly, Corollary 4 allows us to bound the number of matrices with low
max-complexity5:

Lemma 6. log |{Y ∈{±1}n×m|mc(Y) ≤ M}| < 10M2(n+m) log(3nm) log(m
M2)

Noting that Y ∈ {±1}n×m with at most M “1”s in each row has mc(Y) ≤ M
establishes that this bound is tight up to logarithmic factors:

Lemma 7. For M2 < n/2, log |{Y ∈ {±1}n×n|mc(Y) ≤ M}|≥M2n log(n/M2)

5 A tighter analysis, allowing the random projection to switch a few signs, can reduce
the bound to 40M2(n + m) log2(m/M2).

Rank, Trace-Norm and Max-Norm 555

A Gap Between dc(Y) and mc(Y). We have seen that dc(Y) can be bounded
in terms of mc2(Y) and that both yield similar generalization error bounds. We
now consider the inverse relationship: can mc2(Y) be bounded in terms of dc(Y)?

The Hadamard matrix Hp ∈ Rn×n (n = 2p) is an example of a matrix with a
polynomial gap between mc2(Hp) = n and

√
n ≤ rank(Hp) < n0.8. This gap still

leaves open the possibility of a weaker polynomial bound. The triangular matrix
Tn ∈ {±1}n×n with +1 on and above the diagonal and −1 below it, exhibits
a non-polynomial gap: dc(Tn) = 2 while mc(Tn) = θ(log n) [5–Theorem 6.1].
But we may ask if there is a polynomial relation with logarithmic factors in n.
In order to show that mc(Y) is not polynomially bounded by dc(Y), even with
poly log n factors, we examine tensor exponents6 of triangular matrices (note
that H1 = T2, and so Hp = T⊗p

2 , up to row and column permutations).

Theorem 7. For any r > 0, there exists an n × n sign matrix Y such that
mc(Y) > (dc(Y)log(n))r.

To prove the Theorem, we will use the following known results:

Lemma 8. For any four matrices A,B,C,D: (A⊗B)(C⊗D) = (AC)⊗ (BD).

Theorem 8 ([5–Theorem 4.1]). Let Y be a sign matrix, and let Y = UDV

be its SVD. If the matrix UV has the same signs as Y then ‖Y ‖Σ√
nm

≤ mc(Y). If

in addition all the rows of the matrix U
√

D, and all the columns of the matrix√
DV have equal length, then ‖Y ‖Σ√

nm
= mc(Y).

Theorem 9 ([5]). Denote by Tn the triangular n × n matrix and Tn = UDV
its SVD decomposition, then UV is signed as Tn and all the rows of the matrix
U
√

D, and all the columns of the matrix
√

DV have equal length.

Proof of Theorem 7. To prove the theorem we first show that if two matrices
A and B satisfy the properties that are guarantied by Theorem 9 for triangular
matrices, then the tensor product A⊗B also satisfies this properties. And thus
tensor products of triangular matrices have these properties. This follows from
the following applications of Lemma 8:

1. Let UADAVA = A and UBDBVB = B be the SVD of A and B respectively,
then (UA ⊗ UB)(DA ⊗ DB)(VA ⊗ VB) is the SVD of A ⊗ B, since if vA is a
eigenvector of AAt with eigenvalue μA and vB is an eigenvector of BBt with
eigenvalue μB then

(A⊗B)(A ⊗B)t(vA ⊗ vB) = (AAt) ⊗ (BBt)(vA ⊗ vB)

= (AAtvA) ⊗ (BBtvB) = μAvA ⊗ μBvB = μAμB(vA ⊗ vB).

Thus vA ⊗ vB is an eigenvector of (A ⊗B)(A⊗B)t with eigenvalue μAμB .

6 A ⊗ B and A⊗p denotes tensor products and exponentiation.

556 N. Srebro and A. Shraibman

2. If the matrix UAVA has the same signs as A, and the matrix UBVB as the
same signs as B then the matrix (UA⊗UB)(VA⊗VB) = (UAVA)⊗(VAVB) has
the same signs as A⊗B, since the sings of the tensor product is determined
only by the signs of the matrices in the product.

3. If the rows of UA

√
DA have equal length and so does the rows of UB

√
DB ,

and equivalently the columns of
√

DAVA and
√

DBVB , then the rows of the
matrix (UA⊗UB)

√
DA ⊗DB , and the columns of the matrix

√
DA ⊗DB(VA⊗

VB) have equal length, since rows (equiv. columns) of P ⊗Q are tensor prod-
ucts of rows (equiv. columns) in P and Q.

For any t > 0 and integer p > 0, let k = 22t

and n = 2p2t

and consider
T⊗p

k ∈ {±1}n×n. By the above considerations and Theorems 8 and 9, mc(T⊗p
k) =

mc(Tk)p ≥ (c2t)p for some c > 0, while dc(T⊗p
k) = dc(Tk)p ≤ 2p. For any r > 0

we can choose t = p > max(6r,−2 log c) and so:

(dc(T⊗p
k)log(n))r ≤ 2r(p+t+log p) < 22tp < 2p(t+log c) ≤ mc(T⊗p

k) ��

Matrices with Bounded Entries. We note that a large gap between the
max-complexity and the dimensional-complexity is possible only when the low-
rank matrix realizing the dimensional-complexity has entries of vastly varying
magnitudes: For a rank-k matrix X with entries bounded by R, Awerbuch and
Kleinberg’s Barycentric spanner [13] construction can be used to obtain a fac-
torization X = UV ′, U ∈ Rn×k, V ∈ Rm×k, such that the entries of U and
V are bounded by

√
R. This establishes that ‖X‖max ≤ |X|∞ rankX. Now, if

X ∈ SP(Y) with rankX = k and maxij |Xij |
minij |Xij | ≤ R, we can scale X to obtain

X ′ ∈ SP1(Y) with ‖X ′‖max ≤ |X ′|∞ rankX ′ ≤ Rk.

5 Between the Trace-Norm and the Max-Norm or Rank

The generalization error bounds highlight an important distinction between the
trace-norm and the other two measures: the trace-norm is an on average measure
of complexity, and leads to generalization error bounds only with respect to a
uniform sampling distribution. This is not an artifact of the proof techniques.
To establish this, consider:

Lemma 9. For any k < n and Y ∈ {±1}n×n such that Yij = 1 for i > k or j >
k (i.e. except on the leading k × k submatrix): tc(Y) ≤ ‖Y ‖Σ /n ≤ k3/2/n +

√
2

Proof. Write Y = X1 + X2 where X1 is 0 on the leading k × k submatrix and 1
elsewhere: ‖Y ‖Σ ≤ ‖X1‖Σ +‖X2‖Σ ≤

√
rankX1 ‖X1‖Fro +

√
rankX2 ‖X2‖Fro ≤√

kk +
√

2n. ��

Corollary 5. |{Y ∈ {±1}n×n|tc(Y) ≤ M}| ≥ 2((M−
√

2)n)4/3

Rank, Trace-Norm and Max-Norm 557

Consider fitting an n×n binary target matrix, where entries are sampled only
in the leading n2/3×n2/3 submatrix. A matrix X with ‖X‖Σ /n < 3 is sufficient
to get all possible values in the submatrix, and so even with |S| = Θ(n4/3) we
cannot expect to generalize even when ‖X‖Σ /n is constant.

Using Lemma 9 we can also describe matrices Y with large gaps between
tc(Y) and both mc(Y) and dc(Y). An n × n sign matrix with a Hadamard
matrix in the leading k × k subspace and ones elsewhere provides an example
where mc(Y) = Θ((tc(Y)n)1/3), e.g. tc(Y) < 3 and tc(Y) = n1/3. Counting
arguments ensure a similar gap with

√
dc(Y). We show that this gap is tight:

Theorem 10. For every n × n sign matrix Y , mc(Y) ≤ 3(tc(Y)n)1/3.

Recall that 1 ≤ tc(Y) ≤ mc(Y) ≤
√

n. The bound in meaningful even for
matrices with large tc(Y), up to

√
n/27. To prove the Theorem, we first show:

Lemma 10. Let X ∈ Rn×n with ‖X‖Σ = M , then X can be expressed as
X = B + R + C, where ‖B‖max ≤ (M1/3, R has at most M2/3 rows that are
non-zero and C has at most M2/3 columns that are non-zero. Furthermore, for
every i, j, at most one of Bij, Rij and Cij is non-zero.
Proof. Let X = UV ′ be a decomposition of X s.t. ‖U‖2

Fro = ‖V ‖2
Fro = M . At

most M2/3 of the rows of U and M2/3 of the rows of V have squared norms
greater than M1/3. Let Rij = Xij when |Ui|2 > M1/3 and zero otherwise. Let
Cij =Xij−Rij when |Vj |2 > M1/3, zero otherwise. Let B=X−R−C. Zeroing the
rows of U and V with squared norms greater than M1/3 leads to a factorization
of B with maximal squared row-norm M1/6, establishing ‖B‖max ≤ M1/3. ��

To prove the Theorem, let X ∈ SP1(Y) with tc(Y) = ‖X‖Σ /n and let X =
B + R + C as in Lemma 10, and note that B + signR + signC ∈ SP1(Y)
(signR, signC are zero where R,C are zero). Writing (signR) = I(signR) es-

tablishes ‖signR‖max ≤ ‖I‖2→∞ ‖signR‖2→∞ = 1
√

‖X‖2/3
Σ = ‖X‖1/3

Σ and sim-

ilarly ‖signC‖max ≤ ‖X‖1/3
Σ . Using the convexity of the max-norm:

mc(Y) ≤ ‖B + signR + signC‖Σ ≤ 3 ‖X‖1/3
Σ = 3(ntc(Y))1/3 ��

Since dc(Y) = O(mc2(Y)log(n)), Theorem 10 also provides a tight (up to log
factors) bounds on the possible gap between dc and tc.

Using Lemma 6, Theorem 10 provides a non-trivial upper bound on the
number of sign matrices with low trace-complexity, but a gap of 3

√
M2/n still

remains between this upper bound and the lower bound of Corollary 5:

Corollary 6. log |{Y |tc(Y) ≤ M}| < 7M2/3n5/3 log(3nm) log(n/M2)

6 Discussion

The initial motivation for the study reported here was to obtain a better un-
derstanding and a theoretical foundation for “Maximum Margin Matrix Fac-
torization” (MMMF) [1], i.e. learning with low trace-norm and low max-norm

558 N. Srebro and A. Shraibman

matrices. We see as the main product of this study not the generalization er-
ror bounds as numerical bounds, but rather the relationships between the three
measures, and the way in which they control the “complexity”, as measured
in terms of their generalization ability. The generalization error bounds display
the similar roles of rankX, ‖X‖2

max and ‖X‖2
Σ /nm in controlling complexity

and highlight the main difference between the trace-norm and the other two
measures. We note the interesting structure of the two hierarchies of classes of
low dimensional-complexity and max-complexity matrices: Any class of matrices
with bounded max-complexity is a subset of a class of matrices with bounded
dimensional-complexity of “roughly” the same size (logarithm of size differs only
by logarithmic factors). But this class of bounded dimensional-complexity ma-
trices includes matrices with very high max-complexity.

Open Issues. Although we show that the dimensional-complexity can not
bound the max-complexity, it might still be the case that changing a few entries of
a low-dimensional-complexity matrix is enough to get to to a low-max-complexity
matrix. Beyond sign matrices, we can ask whether for any X and ε there exists X ′

with ‖X ′‖2
max ≤ O(rankX(1/ε)2poly log n) and δ(X,X ′) ≤ ε for some error mea-

sure δ. Theorem 7 precludes this possibility for δ(X,X ′) = |X −X ′|∞, but it is
possible that such a relationship holds for, e.g., δ(X,X ′) = 1

nm

∑
ij |Xij − X ′

ij |.
Such results might tell us that when enough discrepancy is allowed, approximat-
ing with the rank is not very different then approximating with the max-norm. On
the other hand, it would be interesting to understand if, for example, the matrices
T⊗p

t do not have any low max-norm matrix in their vicinity.
Throughout the paper we have largely ignored log-factors, but these can

be very significant. For example, tighter bounds on the number of low max-
complexity matrices can help us understand questions like the median max-
complexity over all matrices.

References

1. Srebro, N., Rennie, J., Jaakkola, T.: Maximum margin matrix factorization. In:
Advances In Neural Information Processing Systems 17. (2005)

2. Srebro, N., Alon, N., Jaakkola, T.: Generalization error bounds for collaborative
prediction with low-rank matrices. In: Advances In Neural Information Processing
Systems 17. (2005)

3. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: Robust concepts
and random projection. In: Proc. of the 40th Foundations of Computer Science.
(1999)

4. Ben-David, S., Eiron, N., Simon, H.U.: Limitations of learning via embeddings in
euclidean half spaces. JMLR 3 (2002) 441–461

5. Forster, J., Schmitt, N., Simon, H.U., Suttorp, T.: Estimating the optimal margins
of embeddings in euclidean half spaces. Machine Learning 51 (2003) 263–281

6. Forster, J., Simon, H.U.: On the smallest possible dimension and the largest pos-
sible margin of linear arrangements representing given concept classes uniform
distribution. In: Proceedings of the 13th International Conference on Algorithmic
Learning Theory, Springer-Verlag (2002) 128–138

Rank, Trace-Norm and Max-Norm 559

7. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures
of sign matrices. www.cs.huji.ac.il/~nati/PAPERS (2004)

8. Alon, N., Frankl, P., Rödel, V.: Geometrical realization of set systems and proba-
bilistic communication complexity. In: Proceedings of the 26th Annual Symposium
on the Foundations of Computer Science (FOCS). (1985) 227–280

9. Srebro, N.: Learning with Matrix Factorization. PhD thesis, Massachusetts Insti-
tute of Technology (2004)

10. Seginer, Y.: The expected norm of random matrices. Comb. Probab. Comput. 9
(2000) 149–166

11. Panchenko, D., Koltchinskii, V.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Annals of Statistics 30 (2002)

12. Pisier, G.: Factorization of linear operators and geometry of Banach spaces. Vol-
ume 60. Conference Board of the Mathemacial Sciences (1986)

13. Awerbuch, B., Kleinberg, R.: Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In: Proceedings of the 36th ACM
Symposium on Theory of Computing (STOC). (2004)

A Consolidating Signs of Repeated Points

We show that for any function class and distribution, the Rademacher complexity
can be bounded from above by consolidating all random signs corresponding to
the same point into a single sign. We first show that consolidating a single sign
can only increase the Rademacher complexity:
Lemma 11. For any function class F and sample S = (x1, . . . , xn) with x1 =x2:

Eσ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]
≤ Eσ

[
sup
f∈F

∣∣∣∣∣σ22f(x2) +
n∑

i=3

σif(xi)

∣∣∣∣∣
]

where σi are i.i.d. unbiased signs.

Proof. We first note that removing x1, x2 can only decrease the expectation:

E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

= E
σ3:n

[
E

σ1,2

[
sup
f∈F

∣∣∣∣∣σ1f(x1) + σ2f(x2) +
n∑

i=3

σif(xi)

∣∣∣∣∣
]]

≥ E
σ3:n

[
sup
f∈F

∣∣∣∣∣ E
σ1,2

[σ1f(x1) + σ2f(x2)] +
n∑

i=3

σif(xi)

∣∣∣∣∣
]

= E
σ3:n

[
sup
f∈F

∣∣∣∣∣
n∑

i=3

σif(xi)

∣∣∣∣∣
]

Using this inequality we can now calculate:

E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]
≤ 1

2
E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

+
1
2
Eσ

[
sup
f∈F

∣∣∣∣∣σ22f(x2) +
n∑

i=3

σif(xi)

∣∣∣∣∣
]

Subtracting the first term on the right-hand side from the original left-hand side
gives us the desired inequality. ��

560 N. Srebro and A. Shraibman

By iteratively consolidating identical sample points, we get:

Lemma 12 (Sign Consolidation). For any function class F and sample S =
(x1, . . . , xn), denote by sx the number of times a sample appears in the class,
and let σx be i.i.d. unbiased random signs. Then:

RS(F) ≤ Eσ

[
sup
f∈F

∣∣∣∣∣ 2
|S|

∑
x∈S

σxsxf(x)

∣∣∣∣∣
]

Learning a Hidden Hypergraph

Dana Angluin and Jiang Chen

Department of Computer Science, Yale University
{angluin, criver}@cs.yale.edu

Abstract. We consider the problem of learning a hypergraph using
edge-detecting queries. In this model, the learner may query whether a
set of vertices induces an edge of the hidden hypergraph or not. We show
that an r-uniform hypergraph with m edges and n vertices is learnable
with O(24rm · poly(r, log n)) queries with high probability. The queries
can be made in O(min(2rr2 log2 n, r3 log3 n)) rounds. We also give an
algorithm that learns a non-uniform hypergraph whose minimum edge
size is r1 and maximum edge size is r2 using O(f1(r1, r2) ·m(r2−r1+2)/2 ·
poly(log n)) queries with high probability, and give a lower bound of
Ω(f2(r1, r2) · m(r2−r1+2)/2) for this class of hypergraphs, where f1 and
f2 are functions depending only on r1 and r2. The queries can also be
made in O(min(2r2r2

2 log2 n, r3
2 log3 n)) rounds.

1 Introduction

A hypergraph H = (V,E) is given by a set of vertices V and a set of edges
E, which is a subset of the power set of V (E ⊆ 2V). The dimension of
a hypergraph H is the cardinality of the largest set in E. H is said to be
r-uniform if E contains only sets of size r. In this paper, we are interested
in learning a hidden hypergraph use edge-detecting queries of the following
form

QH(S) : does S include at least one edge of H?

where S ⊆ V . The query QH(S) is answered 1 or 0, indicating whether S con-
tains all vertices of at least one edge of H or not. We abbreviate QH(S) to
Q(S) whenever the choice of H is clear from the context. This type of query
may be motivated by the following scenario. We are given a set of chemi-
cals, some groups of chemicals of which react and others don’t. When multi-
ple chemicals are combined in one test tube, a reaction is detectable if and
only if at least one group of chemicals in the tube react. Considerable effort
[1, 2, 3, 4, 5] has been devoted to the case when the underlying network is a
graph. Among them, Grebinski and Kucherov [5], Alon et al.[2] and Beigel
et al.[4] study the case when the underlying networks are Hamiltonian cy-
cles or matchings, which have specific applications to genome sequencing. In
this application, DNA sequences are aligned according to the reactions that

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 561–575, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

562 D. Angluin and J. Chen

involve the two ends of pairs of DNA sequences in certain experimental set-
tings. The reaction graph can be characterized as either a Hamiltonian cycle
or path (if you consider each DNA sequence as a vertex) or a matching (if
you consider each end of a DNA sequence as a vertex). Implementations of
some of these algorithms are in practical use. Angluin and Chen [3] general-
ize the problem to general reaction graphs and show general graphs are effi-
ciently learnable. In this work, we consider a more general problem when the
chemicals react in groups of size more than 2, i.e. the underlying reaction net-
work is a hypergraph. In [3], Angluin and Chen give an adaptive algorithm
which takes O(log n) queries per edge, where n is the number of vertices. This
is nearly optimal as we can easily show using an information-theoretic argu-
ment. As a matter of fact, with the same information-theoretic argument, we
can show that linear dependency on the number of edges is optimal for learn-
ing hypergraphs with bounded number of edges and bounded dimension as
well. However, the lower bound is not achievable for the class of hypergraphs
with bounded number of edges and bounded dimension. It is shown in [3]
that Ω((2m/r)r/2) edge-detecting queries are required to learn a general hy-
pergraph of dimension r and with m edges. In the heart of the construction
of [3], edges of size 2 are deliberately arranged to hide an edge of size r. The
discrepancy in sizes of different coexisting edges is the main barrier for the
learner. However, this lower bound does not deny efficient algorithms for classes
of hypergraphs whose edges sizes are close. In particular, the question whether
there is a learning algorithm for uniform hypergraphs using queries only lin-
ear in the number of edges is still left open, which is the main subject of this
paper.

In this paper, we are able to answer this question affirmatively. Let n be the
number of vertices and m be the number of edges in the hypergraph. We show
that an r-uniform hypergraph is learnable with O(24rm ·poly(r, log n) · log(1/δ))
queries with probability at least 1 − δ.

We also obtain results for learning the class of hypergraphs that is slightly
non-uniform. Formally speaking,

Definition 1. A hypergraph is (r1, r2)-uniform, where r1 ≤ r2, if its minimum
and maximum edge sizes are r1 and r2 respectively.

The class of hypergraphs used in the construction of the lower bound in [3]
is in fact (2, r)-uniform. Therefore, they show that Ω((2m/r)r/2) edge-detecting
queries are required to learn a (2, r)-uniform hypergraph. Based on this result, we
show by a simple reduction that Ω(f2(r1, r2) ·m(r2−r1+2)/2) queries are required
to learn the class of (r1, r2)-uniform hypergraphs, where f2 is a function that
depends only on r1 and r2. On the other hand, we extend the algorithm that
learns uniform hypergraphs to learning the class of (r1, r2)-uniform hypergraphs
with O(f1(r1, r2) · m(r2−r1+2)/2 · poly(log n) · log(1/δ)) queries with probability
at least 1− δ, where f1 depends only on r1 and r2. The upper bound and lower
bound have the same dependence of m.

Another important issue studied in the literature is the parallelism of al-
gorithms. Since the queries are motivated by experiment design scenario, it

Learning a Hidden Hypergraph 563

is desirable that experiments can be conducted in parallel. Alon et al.[2] and
Alon et al.[1] give lower and upper bounds for 1-round algorithms for certain
types of graphs. Beigel et al.[4] describe an 8-round algorithm for learning a
matching. Angluin and Chen [3] give a 5-round algorithm for learning a gen-
eral graph. In this paper, we show that in our algorithm for r-uniform hy-
pergraphs, queries can be made in O(min(2rr2 log2 n, r3 log3 n)) rounds, and
in our algorithm for (r1, r2)-uniform hypergraphs, queries can be made in
O(min(2r2r2

2 log2 n, r3
2 log3 n)) rounds.

In the paper, we also introduce an interesting combinatorial object, which we
call an independent covering family. Basically, an independent covering family
of a hypergraph is a collection of independent sets that cover all non-edges. An
interesting observation is that the set of negative queries of any algorithm that
learns a hypergraph drawn from a class of hypergraphs that is closed under the
operation of adding an edge is an independent covering family of that hyper-
graph. Note both the class of r-uniform hypergraphs and the class of (r1, r2)-
uniform hypergraphs are closed under the operation of adding an edge. This
implies that the query complexity of learning the hypergraph is bounded be-
low by the minimum size of its independent covering families. In the opposite
direction, we give a subroutine to find one arbitrary edge from a hypergraph.
With the help of this subroutine, we show that if we can construct small-sized
independent covering families for some class of hypergraphs, we are able to ob-
tain an efficient learning algorithm for it. In this paper, we give a randomized
construction of an independent covering family of size O(r22rm log n) for an
r-uniform hypergraphs with m edges. This yields a learning algorithm using
queries quadratic in m, which is further improved to give an algorithm using
queries linearly in m.

As mentioned in [3] and some other papers, the hypergraph learning problem
may also be viewed as the problem of learning a monotone disjunctive normal
form (DNF) boolean formula using membership queries only. Each vertex of H
is represented by a variable and each edge by a term containing all variables
associated with the vertices of the edge. A membership query assigns 1 or 0 to
each variable, and is answered 1 if the assignment satisfies at least one term, and
0 otherwise, that is, if the set of vertices corresponding to the variables assigned
1 contains all vertices of at least one edge of H. An r-uniform hypergraph cor-
responds to a monotone r-DNF. An (r1, r2)-uniform hypergraph corresponds to
a monotone DNF whose terms are of sizes in the range of [r1, r2]. Thus, our re-
sults apply also to learning the corresponding classes of monotone DNF formulas
using membership queries.

The paper is organized as follows. In section 3, we formally define the concept
of independent covering family and give a randomized construction of indepen-
dent covering families for general r-uniform hypergraphs. In section 4, we show
how to efficiently find an arbitrary edge in a hypergraph and give a simple learn-
ing algorithm using queries quadratic in the number of edges. In section 5, we
give an algorithm that learns r-uniform hypergraphs using queries linear in the
number of edges. Finally, we give upper and lower bounds for learning the class
of (r1, r2)-uniform hypergraphs in section 6.

564 D. Angluin and J. Chen

2 Preliminaries

Let H = (V,E) be a hypergraph. In this paper, we assume that edges do not
contain each other, as there is no way to detect the existence of the edges that
contain other edges using edge-detecting queries. A subset of V is an independent
set of H if it contains no edge of H. We use the term non-edge to denote any set
that is a candidate edge in some class of hypergraphs but is not an edge in the
target hypergraph. For example, in an r-uniform hypergraph, any r-set that is
not an edge is a non-edge. In an (r1, r2)-uniform hypergraph, any set of size in
the range of [r1, r2] that is not an edge is a non-edge. The degree of a set χ in a
hypergraph H denoted as dH(χ) is the number of edges of H that contain χ. In
particular, dH(∅) = |E| is the number of all edges in H.

Throughout the paper, we omit the ceiling and floor signs whenever they are
not crucial.

3 An Independent Covering Family

Definition 2. An independent covering family of a hypergraph H is a collection
of independent sets of H such that every non-edge not containing an edge is
contained in one of these independent sets, i.e. the independent covering family
covers all the non-edges that does not contain an edge.

When H is a uniform hypergraph, the above only requires that every non-
edge is contained in one of the independent sets in the independent covering
family. An example is shown below.

Example 1. Let V = [1, 6]. Let H = (V, {{1, 2, 3} , {4, 5, 6} , {2, 4, 5}}) be a 3-
uniform hypergraph.

F = {{1, 2, 4, 6} , {1, 2, 5, 6} , {1, 3, 4, 5} , {1, 3, 4, 6} , {2, 3, 4, 6} , {2, 3, 5, 6}}

is an independent covering family of H. As we can easily verify, all sets in F are
independent sets. And every 3-set except {1, 2, 3} , {4, 5, 6} , {2, 4, 5} is contained
in some set in F .

The concept of independent covering families is central in this paper. This
can be appreciated from two aspects.

First, we observe that if the target hypergraph is drawn from a class of hy-
pergraphs that is closed under the operation of adding an edge (e.g. the class
of all r-uniform hypergraphs), the set of negative queries of any algorithm that
learns it is an independent covering family of this hypergraph. This is because
if there is a non-edge not contained in any of the sets on which these negative
queries are made, we will not be able to distinguish between the target hyper-
graph and the hypergraph with this non-edge being an extra edge. Therefore,
the minimum size of independent covering families bounds the query complexity
from below. Furthermore, any learning algorithm gives a construction of an in-
dependent covering family of the target hypergraph. Therefore, in order to learn

Learning a Hidden Hypergraph 565

the hypergraph, we have to be able to construct an independent covering family
for it.

Second, although the task of constructing an independent covering family
seems substantially easier than that of learning, since the hypergraph is known
in the construction task, we show that efficient construction of small-sized in-
dependent covering families yields an efficient learning algorithm. In section 4,
we will show how to find an arbitrary edge out of a hypergraph of dimension r
using O(r log n) queries. Imagine a simple algorithm in which at each iteration
we maintain a sub-hypergraph of the target hypergraph which contains edges
that we have found, and construct an independent covering family for it and ask
queries on all the sets in the family. If there is a set whose query is answered
positively, we can find at least one edge out of this set. The edge must be a new
edge as the set is an independent set of the sub-hypergraph that we have found.
We repeat this process until there is no edges left, or in other words we have
collected all the edges in the target hypergraph, in which case the independent
covering family we construct is a proof of this fact. Suppose that we can con-
struct an independent covering family of size at most f(m) for any hypergraph
with at most m edges. The above algorithm learns this class of hypergraphs
using only O(f(m) · m · r log n) queries.

In the rest of this section, we give a randomized construction of an linear-
sized (linear in the number of edges) independent covering family of an r-uniform
hypergraph which succeeds with probability at least 1/2. By the standard prob-
abilistic argument, the construction proves the existence of an independent cov-
ering family of size linear in the number of edges for any uniform hypergraph.
This construction leads to a quadratic algorithm described in section 4, and is
also a central part of our main algorithm given in section 5.

Our main theorem in this section is as follows.

Theorem 1. Any r-uniform hypergraph with m edges has an independent cov-
ering family of size O(r22rm log n).

Before giving the construction, we introduce some notation and definitions.
Let pH(χ) = 1/(2r+1dH(χ))1/(r−|χ|), where χ ⊆ V . We will call pH(χ) the
discovery probability of χ. We say that

Definition 3. χ is minimal if it has the minimum discovery probability among
its subsets. i.e. ∀χ′ ⊂ χ, pH(χ) < pH(χ′).

Definition 4. A (χ, p)-sample is a random set of vertices that contains χ and
contains each other vertex independently with probability p.

We will abbreviate (χ, p)-sample as χ-sample when the choice of p is clear or
not important in the context. We call a vertex set relevant if it is contained in
at least one hyperedge in the hypergraph. Similarly, a vertex is relevant if it is
contained in at least one hyperedge in the hypergraph.

In the construction, we draw (χ, pH(χ))-samples independently for each rel-
evant set χ. Each (χ, pH(χ))-sample deals only with non-edges that contain χ.

566 D. Angluin and J. Chen

Let us take look at the probability that a (χ, pH(χ))-sample Pχ covers some
non-edge z ⊇ χ while excluding all edges. Due to our choice of pH(χ),

Pr[z ⊆ Pχ] = pH(χ)r−|χ| =
1

2r+1dH(χ)

If we draw 2r+1dH(χ) many χ-samples, the probability that z is covered by at
least one χ-sample is Ω(1). However, a (χ, pH(χ))-sample that covers z may
not be an independent set. If z contains a high degree set χ′, sampling with
probability pH(χ) may not be sufficient to exclude all the edges that contain χ′

with reasonable probability. But since we will also draw (χ′, pH(χ′))-samples, it
is reasonable to hope that a (χ′, pH(χ′))-sample has better chance of success in
dealing with z. In fact, in our construction, we show that the set of χ-samples,
where χ ⊆ z has the minimum discovery probability among all relevant subsets
of z, has an independent set that covers z w.h.p. Thus, we only need to draw
samples for those sets that are minimal.

The construction is given below.

Algorithm 1 Construction of an independent covering family of an r-uniform
hypergraph H

1: FH ← a set containing 4(ln 2 + r ln n) · 2rdH(χ) (χ, pH(χ))-samples drawn inde-
pendently for every minimal relevant set χ.

2: Output the family of independent sets of FH .

Lemma 1. FH contains an independent covering family of H with probability
at least 1/2.

Proof. Suppose z is a non-edge and χ is a subset of z with the minimum discovery
probability. It is easy to see that χ is minimal. Let Pχ be a χ-sample. As argued
before,

Pr[z ⊆ Pχ] =
1

2r+1dH(χ)
Since χ has the minimum discovery probability among all subsets of z, the degree
of any subset χ′ ⊆ z is at most 1/(2r+1pH(χ)r−|χ′|). By the union bound,

Pr[Pχ is independent|z ⊆ Pχ] ≥ 1 −
∑
χ′⊆z

dH(χ′)pH(χ)r−|χ′|

≥ 1 −
∑
χ′⊆z

1
2r+1pH(χ)r−|χ′| pH(χ)r−|χ′|

≥ 1/2

The probability that a χ-sample contains z and is independent is at least
1/(2r+2dH(χ)). The probability that such a χ-sample exists in FH is at least
1−2n−r. Thus, the probability that every non-edge is contained in some negative
sample in FH is at least 1 −

(
n
r

)
/(2nr) ≥ 1/2. ��

Since the size of FH is bounded by
∑

χ 4(ln 2+r lnn)·2rdH(χ) = O(r22rm log n),
using a standard probabilistic argument, this proves Theorem 1.

Learning a Hidden Hypergraph 567

4 A Simple Quadratic Algorithm

In this section, we give an algorithm that finds an arbitrary edge in a hypergraph
of dimension r using only r log n edge-detecting queries. Combining this with a
slightly modified version of the construction in the previous section, we obtain
an algorithm using queries quadratic in m that learns r-uniform hypergraphs
with m edges w.h.p.

4.1 Find One Edge

We start with a simpler task, finding just one relevant vertex in the hypergraph.
The algorithm is shown in Algorithm 2.

Algorithm 2 FIND-ONE-VERTEX
1: S = V , A = V .
2: while |A| > 1 do
3: Divide A arbitrarily into A1 and A2, such that |A1| = �|A|/2�, |A2| = �|A|/2�.
4: if Q(S\A1) = 0 then
5: A = A1.
6: else
7: A = A2, S = S\A1.
8: end if
9: end while

10: Output the element in A.

Lemma 2. FIND-ONE-VERTEX finds one relevant vertex in a non-empty hy-
pergraph with n vertices using at most log n edge-detecting queries.

Proof. First we show that the following conditions hold for each iteration. These
conditions guarantee that A contains at least one relevant vertex.

Q(S) = 1, Q(S\A) = 0

Since we assume that the hypergraph is non-empty, the above conditions clearly
hold for our initial assignment of S and A. Let’s assume Q(S)=1 and Q(S\A)=0
at the beginning of an iteration. There are two cases:

Case 1: Q(S\A1) = 0, clearly the conditions hold for S and A1.
Case 2: Q(S\A1) = 1, since Q((S\A1)\A2) = Q(S\(A1 ∪ A2)) = Q(S\A) = 0,

the conditions hold for S\A1 and A2.

Since the size of A halves at each iteration, after at most logn iterations, A
has exactly one relevant vertex. The algorithm takes at most log n edge-detecting
queries in total, as it makes one query each iteration. ��

With the help of FIND-ONE-VERTEX, we are able to find one edge from a
non-empty hypergraph, which is not necessarily uniform.

568 D. Angluin and J. Chen

Lemma 3. There is a deterministic adaptive algorithm that finds one hyperedge
in a non-empty hypergraph of dimension r with n vertices using r log n edge-
detecting queries.

Proof. When r = 1, the problem is exactly the problem of finding one relevant
vertex and hence solvable using logn queries. Assume inductively the lemma is
true when r = k−1. When r = k, we first find one relevant vertex v using FIND-
ONE-VERTEX, in the meantime we also obtain a set S such that Q(S) = 1
and Q(S\{v}) = 0. Thus S contains only hyperedges incident with v. Consider
the induced (k − 1)-uniform hypergraph on S with v removed. By inductive
assumption, we are able to find one hyperedge ek−1 in the induced hypergraph
using (k− 1) log n queries. ek−1 ∪{v} is a hyperedge in the original hypergraph.
The query complexity is therefore k log n as desired. ��

We will refer to the algorithm described in Lemma 3 as FIND-ONE-EDGE.

4.2 A Quadratic Algorithm

Let H = (V,E) be the hypergraph the algorithm has found so far. Let δ′ = δ/m.
An algorithm that learning a uniform hypergraph with probability at least 1− δ
is given in Algorithm 3.

Algorithm 3 A Quadratic Algorithm
1: e ← FIND-ONE-EDGE(V). E ← {e}.
2: repeat
3: FH ← 4(ln 1

δ′ +r ln n) ·2rdH(χ) (χ, p(χ))-samples drawn independently for every
minimal relevant set χ in H.

4: Make queries on sets on FH that are independent in H.
5: Call FIND-ONE-EDGE on one positive sample if there exist any. Let e be the

edge found.
6: E ← E ∪ {e}.
7: until no new edge found

In the algorithm we draw 4(ln(1/δ′)+r lnn)·2rdH(χ) χ-samples. Using essen-
tially the same argument as in section 3, we can guarantee that FH contains an
independent covering family with probability at least 1− δ′. Since the algorithm
takes at most m iterations, the algorithm succeeds with probability at least 1−δ.
The query complexity of this algorithm is O(22rm2 · poly(r, log n) · log 1/δ).

5 A Linear-Query Algorithm

Reconstructing an independent covering family at the discovery of every new
edge is indeed wasteful. In this section we show how to modify the quadratic
algorithm to obtain an algorithm using queries only linear in the number of
edges. Our algorithm is optimal in the dependency on m. Moreover, the queries
can be made in O(min(r22r log2 n, r3 log3 n)) parallel rounds.

Learning a Hidden Hypergraph 569

Before we begin to describe our algorithm, we introduce some notation and
make some definitions. First we reduce the discovery probabilities. Let

pH(χ) = 1/(2r+|χ|+2dH(χ))1/(r−|χ|)

Let the best discovery probability of χ be the minimum discovery probability
among all its subsets. That is,

p∗H(χ) = min
χ′⊆χ

pH(χ′)

Definition 5. Let ρ(χ, p) be the probability that a (χ, p)-sample is positive,
where χ is a vertex set of size less than r.

Remark 1. ρ(χ, p) is continuous and monotonic increasing [3].

Definition 6. Let pχ = min
{
p|ρ(χ, p) = 1/2r+1

}
be the threshold probability

of χ.

Remark 2. Due to the fact that ρ(χ, 0) = 0, ρ(χ, 1) = 1 and that ρ(χ, p) is
continuous and monotonic increasing, the threshold probability uniquely exists.

In the quadratic algorithm, an “obvious” improvement we can make is that
instead of calling FIND-ONE-EDGE on one positive samples, we can call it on
all positive samples. It is plausible that it will yield more edges. However, there
is no guarantee that different calls to FIND-ONE-EDGE will output different
edges. For instance, if two sets contain the same edge, in the worst case, calls to
FIND-ONE-EDGE on these two sets will produce the same edge. We use sev-
eral standard tricks to circumvent this obstacle. In fact, the family of samples
constructed here is more complex that that used in section 4, so as to ensure
w.h.p. that the algorithm will make a certain amount of progress at each iter-
ation. By doing so, we are able to reduce the number of iterations from m to
O(min(2rr log n, r2 log2 n)), hence reduce the number of queries.

First of all, the sampling probabilities are halved in order to accommodate
more edges. More precisely, imagine that we draw (χ, 0.5p(χ))-samples instead
of (χ, p(χ))-samples in the quadratic algorithm. At any iteration, take a look at
a sample drawn several iterations ago, which the quadratic algorithm did not
call FIND-ONE-EDGE on. Such a sample will still have reasonable probability
of excluding all the edges that have been found, as long as the degree of χ has
not been increased by a factor of 2r−|χ| or equivalently the discovery probability
of χ has not been decreased by half.

Second, the algorithm draws samples for all relevant sets instead of just min-
imal relevant sets. Roughly speaking, the smaller the discovery probability of a
relevant set in the target hypergraph the more important it is to the algorithm.
However, the hypergraph that have been found at each iteration may be far
from the target hypergraph. Hence the algorithm is not able tell the potential

570 D. Angluin and J. Chen

importance of each relevant sets. Therefore, the algorithm draws samples for all
relevant sets. The algorithm uses the best discovery probability for each relevant
set so as to exclude the edges that have been found with reasonable probability.

Finally, besides samples that are drawn proportional to degrees, the algorithm
also draws samples proportional to contributions of each relevant set. The idea
is simple. Draw more samples for those relevant sets that are more likely to
produce a new edge. The algorithm maintains a contribution counter c(χ) for
each relevant set χ, which records the number of new edges that χ-samples
have produced. As we have already said, different calls to FIND-ONE-EDGE at
each iteration may output the same edge. As all calls to FIND-ONE-EDGE at
each iteration are made in parallel, it is not clear which sample each new edge
should be attributed to. To solve this problem, the algorithm process the calls
to FIND-ONE-EDGE sequentially in an arbitrary order. We say that a call to
FIND-ONE-EDGE produces a new edge if it outputs an edge that is not output
by any previous calls in this order. Similarly we say that a sample P produces a
new edge if it is positive and FIND-ONE-EDGE(P) outputs a new edge.

Therefore, FH consists of two parts: F1
H and F2

H . In F1
H , the algorithm

draws samples proportional to the contribution of each relevant set. F2
H is closer

to that of FH in the section 4. Intuitively, the algorithm uses samples in F1
H

to find edges while samples in F2
H are mainly used to cover non-edges of H.

F2
H not only gives a short proof when H is the target hypergraph, but also

finds important relevant sets efficiently. Discovering important relevant sets is
essential simply because the algorithm may not be able to find an edge or cover
a non-edge if all its important relevant subsets are not known. Note at beginning
of the algorithm, the only known relevant set is ∅. The design of F2

H guarantees
that if the contribution of the most important subset of an edge or a non-edge
stops doubling, a more important relevant subset of the edge or non-edge will
be discovered w.h.p.

Let H = (V,E) be the hypergraph the algorithm has found so far. δ′ is
a parameter we will decide later. The algorithm named LINEAR-QUERY is
shown in Algorithm 4. At each iteration, the algorithm operates in two phases,
the query phase and computation phase. In the query phase, the algorithm draws
random samples and make queries on them. Queries in this phase can be made
in r log n+1 parallel rounds. In the computation phase, the algorithm processes
the query results of the query phase to update the contribution counter of each
set.

We will show that the algorithm terminates in O(min(r2r log n, r2 log2 n))
iterations w.h.p. Since

∑
χ dH(χ) ≤ 2rm and

∑
χ c(χ) ≤ (2r + 1)m (note that

c(χ) is one more than the number of new edges χ-samples in F1
H produce), the

number of queries made at each iteration is at most O(r24rm log(1/δ′) log n).
Therefore, the total number of queries will be linear in the number of edges
w.h.p. as desired.

Consider some iteration of the algorithm. Let H0 be the hypergraph the
algorithm has found at the beginning of the iteration. Let z be an edge that has
not yet been found. Suppose χ has the minimum threshold probability among all

Learning a Hidden Hypergraph 571

Algorithm 4 LINEAR-QUERY
1: e ← FIND-ONE-EDGE(V).
2: E ← {e}. c(∅) ← 1.
3: repeat

QUERY PHASE
4: Let F1

H be a family that for every known relevant set χ contains c(χ) · 2r+2 ln 1
δ′

(χ, 0.5p∗
H(χ))-samples.

5: Let F2
H be a family that for every known relevant set χ contains 23r+3dH(χ) ln 1

δ′
(χ, 0.25p∗

H(χ))-samples.
6: Let FH = F1

H ∪ F2
H . Make queries on sets in FH that are independent in H.

7: Call FIND-ONE-EDGE on all positive samples.
COMPUTATION PHASE

8: For each relevant set χ, divide χ-samples in F1
H in c(χ) groups of size 2r+2 ln 1

δ′ .
9: Process the samples in F1

H group by group in an arbitrary order. Increase c(χ)
by the number of new edges that χ-samples produce. Add newly found edges to
E.

10: Process the samples in F2
H in an arbitrary order. Add newly found edges to E.

11: For every newly found relevant set χ, c(χ) ← 1.
12: until no new edge is found

relevant subsets of z. χ can be either active, in which case a group of χ-samples
likely to hit an edge or inactive otherwise. Formally speaking,

Definition 7. We say that χ is active if ρ(χ, 0.5p∗H0
(χ)) ≥ 1/2r+1 and inactive

otherwise.

The following two assertions serve as the goals for each iteration.

Assertion 1. Consider one group of χ-samples G in F1
H0

. Let H be the hyper-
graph the algorithm has found before this group is processed. If χ is active, either
p∗H(χ) < 0.5p∗H0

(χ) or G will produce a new edge.

Assertion 2. If χ is inactive, at the end of this iteration, either z has been
found or a new subset of z whose threshold probability is at most 0.5pχ has been
found relevant (a set is found relevant if an edge that contains it is found).

The following two lemmas show that both assertions hold w.h.p.

Lemma 4. Assertion 1 is true with probability at least 1 − δ′.

Proof. If p∗H(χ) ≥ 0.5p∗H0
(χ), the probability a (χ, 0.5p∗H0

(χ))-sample contains
an edge in H is at most∑

χ′⊆χ

dH(χ′)(0.5p∗H0
(χ))r−|χ′| ≤

∑
χ′⊆χ

dH(χ′)p∗H(χ)r−|χ′| ≤ 2|χ|

2r+|χ|+2
=

1
2r+2

Since ρ(χ, 0.5p∗H0
(χ))) ≥ 1/2r+1, the probability that a (χ, 0.5p∗H0

(χ))-sample is
positive but contains no edge in H is at least 1/2r+1 − 1/2r+2 = 1/2r+2. Recall
that G contains 2r+2 ln(1/δ′) (χ, 0.5p∗H0

(χ))-samples. Therefore, with probability
at least 1 − δ′ there exists at least one such (χ, 0.5p∗H0

(χ))-sample in G, which
will produce a new edge. ��

572 D. Angluin and J. Chen

Lemma 5. Assertion 2 is true with probability at least 1 − δ′.

Proof. Let χ∗ ⊆ χ have the minimum discovery probability among all subsets
of χ at the beginning of the iteration. Therefore, pH0

(χ∗) = p∗H0
(χ) by the

definition. We have ρ(χ, 0.5pH0
(χ∗)) < 1/2r+1 and hence 0.5pH0

(χ∗) < pχ due
to the fact ρ(χ, p) is monotonic increasing in p. Let Aχ be the collection of all
subsets of z whose threshold probabilities are at least 0.5pχ. Thus,

∀χ′ ∈ Aχ, ρ(χ′, 0.25pH0
(χ∗)) < ρ(χ′, 0.5pχ) ≤ ρ(χ′, pχ′) = 1/2r+1.

Let Pχ∗ be a χ∗-sample. We have

Pr[z ⊆ Pχ∗]=(0.25pH0
(χ∗))r−|χ∗|=

1
2r+|χ∗|+2+2r−2|χ∗|dH0(χ∗)

≥ 1
23r+2dH0(χ∗)

and

Pr[∃ an edge e ⊆ Pχ∗ , e ∩ z ∈ Aχ|z ⊆ Pχ∗] ≤
∑

χ′∈Aχ

ρ(χ′, 0.25pH0
(χ∗)) ≤ 1/2.

With probability at least 1/(23r+3dH0(χ
∗)), Pχ∗ contains no edge whose in-

tersection with z is in Aχ. The probability that there exists such a Pχ∗ in F2
H0

is at least 1 − δ′, as we draw at least 23r+3dH0(χ
∗) ln(1/δ′) (χ∗, 0.25pH0(χ

∗))-
samples.

Suppose indeed Pχ∗ is such a sample. If Pχ∗ contains only one edge, namely
z, z will be found. Otherwise, FIND-ONE-EDGE(Pχ∗) produces an edge whose
intersection with z has threshold probability at most 0.5pχ. Since χ has the
minimum threshold probability among all known relevant subsets of z, we find
a new relevant subset of z. ��

Let H1 be the hypergraph that has been found at the end of the iteration.
Let cH0

(χ) and cH1
(χ) be the values of c(χ) at the beginning and end of the

iteration respectively. The following lemma is easy to verify.

Lemma 6. At each iteration, if no assertion is violated, one of the following
two events happens.

1. either cH1
(χ) ≥ 2cH0

(χ) or p∗H1
(χ) < 0.5p∗H0

(χ).
2. either z has been found or a new subset of z whose threshold probability is

at most 0.5pχ has been found relevant.

Proof. There are two cases:

– χ is active:
If every group of χ-samples yields a new edge, c(χ) at least doubles during
the iteration. Otherwise, there is a group of queries that doesn’t yield a new
edge. Suppose H is the hypergraph that has been found when this happens.

Learning a Hidden Hypergraph 573

By Assertion 1, we have p∗H(χ) < 0.5p∗H0
(χ). Clearly, p∗H1

(χ) ≤ p∗H(χ) <
0.5p∗H0

(χ).
– χ is inactive:

This is direct consequence of Assertion 2. ��

The minimum and maximum possible values for both discovery probabilities
and threshold probabilities are 1/(22r+1m) and 1/2 respectively. The minimum
and maximum possible values for c(χ) are 1 and m + 1. And there are at most
2r subsets of z. It follows that

Corollary 1. Assuming no assertion is violated, the algorithm terminates in
O(min(r2r log n, r2 log2 n)) iterations.

Now we bound the total number of assertions we need to satisfy before the
algorithm succeeds. There is one assertion of type 1 for each group of queries.
The total number is bounded by

∑
χ c(χ) = O(2rm) per iteration. There is one

assertion of type 2 associated with every edge per iteration. The total number
is bounded by m per iteration. Thus the total number of assertions we need
to satisfy before the algorithm succeeds is bounded by O(r22rm log2 n). Choose
δ′ = Θ(δ/(r22rm log2 n)) and the algorithm will succeed with probability at
least 1− δ. Since queries at each iteration are made in O(r log n) paralle rounds,
it follows that

Theorem 2. With probability at least 1 − δ, LINEAR-QUERY learns an r-
uniform hypergraph with m edges and n vertices, using O(24rm · poly(r, log n) ·
log(1/δ)) queries, in O(min(r22r log2 n, r3 log3 n)) parallel rounds.

6 Non-uniform Hypergraphs

In this section, we extend our results to learning (r1, r2)-uniform hypergraphs.
The following theorem is proved in [3].

Theorem 3. Ω((2m/r)r/2) edge-detecting queries are required to identify a hy-
pergraph drawn from the class of all (2, r)-uniform hypergraphs with n vertices
and m edges.

We show that by a simple reduction this gives us a lower bound for general
(r1, r2)-uniform hypergraphs.

Theorem 4. Ω((2m/(r2 − r1 + 2))(r2−r1+2)/2) edge-detecting queries are re-
quired to identify a hypergraph drawn from the class of all (r1, r2)-non-uniform
hypergraphs with n vertices and m edges.

Proof (Proof sketch). Given a (2, r2 − r1 + 2)-uniform hypergraph H = (V,E).
Let H ′ = (V ∪ V ′, E′) be an (r1, r2)-uniform hypergraph, where |V ′| = r2 − 2,
V ′ ∩ V = φ and E′ = {e ∪ V ′|e ∈ E}. Any algorithm that learns H ′ can be
converted to learn H with the same number of queries. ��

We now show that a modified version of LINEAR-QUERY gives an upper
bound which is optimal in terms of the dependency on m.

574 D. Angluin and J. Chen

Theorem 5. There is a randomized algorithm that learns an (r1, r2)-uniform
hypergraph with m edges and n vertices with probability at least 1 − δ, using
O(2r2

2m(r2−r2+2)/2 · poly(2r2 , log n) · log(1/δ)) queries. Furthermore, the queries
can be made in O(min(2r2r2

2 log2 n, r3
2 log3 n)) rounds.

Proof. We have been choosing the discovery probability for χ to be inversely
proportional to the (r − |χ|)th root of d(χ) for r-uniform hypergraphs. It is so
chosen that a χ-sample has good chance of excluding edges that contain χ. In
non-uniform hypergraphs, the edges are not of the same size any more. We need
to set new discovery probabilities, while the purpose remains as before. In other
words, we would like to choose p such that

∑
e∈E,e⊇χ p|e\χ| ≤ 1/2r+2. Similarly,

we would like to choose p to be inversely proportional to wth root of d(χ), where
w = mine⊇χ |e\χ|. When |χ| < r1, the minimum size of e\χ is r1 − |χ|. When
|χ| ≥ r1, the minimum size is 1. However, the case when |e\χ| = 1 is special.
Let Pχ be a (χ, p)-sample for a set χ of size that does not contain an edge. In
order to exclude e from Pχ, we have to exclude the vertex in e\χ. On the other
hand, if we exclude all the vertices whose union with χ contains an edge, we can
easily exclude all the corresponding edges from Pχ. Therefore, we can construct
a modified (χ, p)-sample by removing from a (χ, p)-sample those vertices whose
union with χ contains an edge of the known hypergraph H. The new algorithm
draws only modified samples. In the modified samples, we need only consider the
edge e such that |e\χ| ≥ 2. Therefore, we define the new discovery probability
as below.

pH(χ) =

{
1/(2r2+|χ|+2dH(χ))1/(r1−|χ|), if |χ| ≤ r1 − 2

1/(2r2+|χ|+2dH(χ))1/2, otherwise

In the modified algorithm we will use r2 whenever r is used. It differs from
LINEAR-QUERY only in step 4 and 5. F1

H is constructed as before but
with the new discovery probabilities and modified samples. F2

H consists of
2(4/pH(χ))r2−|χ| ln(1/δ′) modified (χ, 0.25pH(χ))-samples. Note that the dis-
covery probabilities are chosen as if all the edges were of minimum size, while
the numbers of samples drawn in F2

H are chosen as if all the non-edges of H (or
potential edges in the target hypergraph) were of the maximum size. It is easy
to verify that Assertion 1 and Assertion 2 are still true with probability at least
1 − δ′. Therefore, we have the same bound on the number of iterations w.h.p,
which is at most O(min(2r2r2 log n, r2

2 log2 n)). It is easy to see the number of
samples in F2

H dominates. At each iteration, the number of χ-samples in F2
H is

at most

2(4/pH(χ))r2−|χ| ln(1/δ′) =

⎧⎨⎩ O(2r2
2dH(χ)

r2−|χ|
r1−|χ| · log(1/δ)) if |χ| ≤ r1 − 2

O(2r2
2dH(χ)

r2−r1+2
2 · log(1/δ)) otherwise

Note that (r2 − |χ|)/(r1 − |χ|) is at most (r2 − r1 + 2)/2 when |χ| ≤ r1 − 2.
The number of modified χ-samples we draw in the algorithm is bounded by
O(2r2

2dH(χ)(r2−r1+2)/2 · poly(2r2 , log n) · log(1/δ)). Because
∑

χ dH(χ) ≤ 2r2m

Learning a Hidden Hypergraph 575

and ∀χ, dH(χ) ≤ m, we have
∑

χ dH(χ)(r2−r1+2)/2 ≤ 2r2m(r2−r1+2)/2. Therefore,
the new algorithm uses O(2r2

2m(r2−r1+2)/2 ·poly(2r2 , log n)·log(1/δ)) queries, and
the queries can be made in O(min(2r2r2

2 log2 n, r3
2 log3 n)) rounds. ��

Acknowledgement

The authors would like to thank the referees for helpful comments.

References

1. Alon, N., Asodi, V.: Learning a hidden subgraph. In: 31st International Colloquium
on Automata, Languages and Programming. (2004) 110–121

2. Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning a hidden matching.
In: The 43rd Annual IEEE Symposium on Foundations of Computer Science. (2002)
197–206

3. Angluin, D., Chen, J.: Learning a hidden graph using O(log n) queries per edge.
In: The 17th Annual Conference on Learning Theory, Springer (2004) 210–223

4. Beigel, R., Alon, N., Kasif, S., Apaydin, M.S., Fortnow, L.: An optimal procedure
for gap closing in whole genome shotgun sequencing. In: RECOMB. (2001) 22–30

5. Grebinski, V., Kucherov, G.: Optimal query bounds for reconstructing a Hamil-
tonian Cycle in complete graphs. In: Fifth Israel Symposium on the Theory of
Computing Systems. (1997) 166–173

On Attribute Efficient and Non-adaptive
Learning of Parities and DNF Expressions

Vitaly Feldman�

Harvard University, Cambridge, MA 02138
vitaly@eecs.harvard.edu

Abstract. We consider the problems of attribute-efficient PAC learning
of two well-studied concept classes: parity functions and DNF expressions
over {0, 1}n.

We show that attribute-efficient learning of parities with respect to
the uniform distribution is equivalent to decoding high-rate random lin-
ear codes from low number of errors, a long-standing open problem in
coding theory.

An algorithm is said to use membership queries (MQs) non-adaptively
if the points at which the algorithm asks MQs do not depend on the
target concept. We give a deterministic and a fast randomized attribute-
efficient algorithms for learning parities by non-adaptive MQs.

Using our non-adaptive parity learning algorithm and a modifica-
tion of Levin’s algorithm for locating a weakly-correlated parity due to
Bshouty et al., we give the first non-adaptive and attribute-efficient al-
gorithm for learning DNF with respect to the uniform distribution. Our
algorithm runs in time Õ(ns4/ε) and uses Õ(s4/ε) non-adaptive MQs
where s is the number of terms in the shortest DNF representation of
the target concept. The algorithm also improves on the best previous
algorithm for learning DNF (of Bshouty et al.).

1 Introduction

The problems of PAC learning parity functions and DNF expressions are among
the most fundamental and well-studied problems in machine learning theory.
Along with running time efficiency, an important consideration in the design of
learning algorithms is their attribute efficiency. A class C of Boolean functions is
said to be attribute-efficiently learnable if there is an efficient algorithm which can
learn any function f ∈ C using a number of examples which is polynomial in the
“size” (description length) of the function f to be learned, rather than in n, the
number of attributes in the domain over which learning takes place. Attribute-
efficiency arises naturally from a ubiquitous practical scenario in which the total
number of potentially influential attributes is much larger than the number of

� Supported by grants from the National Science Foundation NSF-CCF-9877049, NSF-
CCF-0432037, and NSF-CCF-0427129.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 576–590, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Attribute Efficient and Non-adaptive Learning of Parities 577

relevant attributes (i.e., the attributes on which the concept actually depends),
whereas examples are either scarce or expensive to get.

Learning of DNF expressions and attribute-efficient learning of parities from
random examples with respect to the uniform distribution are both long-standing
challenges in learning theory. Lack of substantial progress on these questions has
resulted in attempts to solve them in stronger learning models. The most well-
studied such model is one in which a membership query oracle is given to the
learner in addition to the example oracle. The learning algorithm may query this
oracle for a value of the target function at any point of its choice. Jackson gave
the first algorithm that learns DNF from membership queries (MQs) under the
uniform distribution [13] and later Bshouty, Jackson and Tamon gave a more
efficient and attribute-efficient algorithm for learning DNF in the same setting
[4]. The first algorithm for attribute-efficient learning of parities using MQs is
due to Blum, Hellerstein and Littlestone [1], and their result was later refined
by Uehara et al. [19].

A number of later works gave learning algorithms for DNF expressions in
models where the learning algorithm is more passive than in the MQ model
[15, 2, 5]. A restricted model of membership queries, which addresses some of
the disadvantages of the MQ model, is the model in which MQs are asked non-
adaptively. An algorithm is said to use MQs non-adaptively (in our context we
will often call it non-adaptive for brevity) if the queries of the algorithm do
not depend on the target concept. In other words the learning algorithm can
be split into two stages. The first stage, given the learning parameters, gener-
ates a set S of queries for the membership oracle. The second one, given the
answers to the queries in S, produces a hypothesis (without further access to
the oracle). An immediate advantage of this model (over the usual MQ) is the
fact that the queries to the membership oracle can be parallelized. This, for
example, is crucial in DNA sequencing and other biological applications where
tests are very time-consuming but can be parallelized (cf. [7, 6] and references
therein). Another advantage of a non-adaptive learner is that the same set of
points can be used to learn numerous concepts. This seems to be happening
in human brain where a single example can be used in learning of several dif-
ferent concepts and hence systems that aim to reproduce learning abilities of
the human brain need to possess this property [21, 22, 23]. It is important to
note that in the two practical applications mentioned above, attribute-efficiency
is also a major concern. It is therefore natural to ask: which classes can be
PAC learned attribute-efficiently by non-adaptive MQs? We refer to this model
of learning as ae.naMQ learning. This question was first explicitly addressed
by Damaschke [6] who proved that any function of r variables is ae.naMQ
learnable when it is represented by the truth table of the function (requiring
r log n + 2r bits). Later Guijarro et al. gave an algorithm for learning func-
tions of at most log n variables in the decision tree representation [11]. But
the question remains open for numerous other representations used in learning
theory.

578 V. Feldman

1.1 Our Results

We first establish the equivalence between attribute-efficient learning of parities
from random uniform examples [1] and decoding high-rate random linear codes
from low number of errors. The latter is a long-standing open problem in coding
theory widely believed intractable. Thus we may consider this equivalence as
a new evidence of the hardness of attribute-efficient learning of parities from
random examples only.

We show how a similar equivalence yields an efficient deterministic algorithm
that learns parities from r log n non-adaptive MQs improving on the algorithm
by Uehara et al. [19]. We also give a fast randomized algorithm for ae.naMQ
learning of parities.

We give the first ae.naMQ algorithm for learning DNF expressions with re-
spect to the uniform distribution. It runs in time Õ(ns4/ε) and uses Õ(s4log2 n/ε)
MQs (where s is the DNF-size of the target concept). The algorithm improves on
the Õ(ns6/ε2)-time and Õ(ns4 log n/ε2)-query algorithm of Bshouty et al. Our
improvement is achieved via an application of our randomized ae.naMQ algo-
rithm for learning parities and two independent modifications of the algorithm
by Bshouty et al.

1.2 Previous Results

Blum et al. were the first to ask whether parities are learnable attribute-efficiently
(in the related on-line mistake-bound model) [1]. They also presented the first
algorithm to learn parity functions attribute-efficiently using MQs. Their al-
gorithm is based on the following approach. First all the relevant attributes
are identified and then a simple (not attribute-efficient) algorithm restricted to
the relevant variables is used to learn the concept. Since then other algorithms
were proposed for attribute-efficient identification of relevant variables [3, 12].
All the algorithms are based on a binary search for a relevant variable given
a positive and a negative example. Binary search and the fact that queries in
the second stage depend on the variables identified in the first stage only al-
lows for the construction of adaptive algorithms via this approach. Uehara et al.
gave several algorithms for attribute-efficient learning of parities that again used
adaptiveness in an essential way [19]. Among other results they gave the first
attribute-efficient deterministic algorithm for learning parities using O(r4 log n)
MQs where r denotes the number of relevant variables.

Little previous work has been published on attribute-efficient learning of par-
ities from random examples. Indeed, the first non-trivial result in this direction
has only recently been given by Klivans and Servedio [17]. They prove that
parity functions on at most k variables are learnable in polynomial time using
O(n1− 1

k log n) examples.
Efficient learning of unrestricted DNF formulas under the uniform distribu-

tion begins with a famous result by Jackson [13]. The algorithm, while
polynomial-time, is somewhat impractical due to the Õ(ns10/ε12) bound on
running time. By substantially improving the key components of Jackson’s algo-
rithm the works of Freund [9], Bshouty et al. [4], and Klivans and Servedio [16]

On Attribute Efficient and Non-adaptive Learning of Parities 579

resulted in an algorithm that learns DNF in time Õ(ns6/ε2) and uses Õ(ns4/ε2)
MQs1. This algorithm is non-adaptive but also not attribute-efficient. Using the
algorithm for identification of relevant variables by Bshouty and Hellerstein men-
tioned above Bshouty et al. gave an attribute-efficient version of their algorithm
running in time Õ(rs6/ε2 + n/ε) and using Õ(rs4 log n/ε2) adaptive MQs.

2 Preliminaries

General. For vectors x, y ∈ {0, 1}n we denote by x|y the vector obtained by
concatenating x with y; by x⊕y the vector obtained by bitwise XOR of x and y;
by [k] the set {1, 2, . . . , k}; by ei a vector with 1 in i-th position and zeros in the
rest; by xi the i-th element of vector x; by Mi the i-th column of matrix M ; and
define x[i,j] = xi|xi+1| · · · |xj . Dot product x · y of vectors x, y ∈ {0, 1}n denotes∑

i xiyi (mod 2) or simply vector product xyT over GF(2) (with vectors being
row vectors by default). By wt(x) we denote the Hamming weight of x and we
define dist(x, y) = wt(x ⊕ y).

To analyze accuracy and confidence of estimates produced by random sam-
pling besides the more standard Chernoff and Hoeffding bounds, we use Bien-
aymé-Chebyshev’s inequality for pairwise independent samples.

Lemma 1 (Bienaymé-Chebyshev). Let X1, . . . , Xm be pairwise independent
random variables all with mean μ and variance σ2. Then for any λ ≥ 0,

Pr

[∣∣∣∣∣ 1
m

m∑
i=1

Xi − μ

∣∣∣∣∣ ≥ λ

]
≤ σ2

mλ2
.

We study learning of Boolean functions on the Boolean cube {0, 1}n. Our
Boolean functions take values +1 (true) and −1 (false). Our main interest are
the classes of parity functions and DNF expressions. Parity function χa(x) for
a vector a ∈ {0, 1}n is defined as χa(x) = (−1)a·x. We refer to the vector
associated with a parity function as its index. We denote the concept class of
parity functions {χa | a ∈ {0, 1}n} by PAR and the class of all the parities on
at most k variables by PAR(k). We represent a parity function by listing all the
variables on which it depends. This representation for a parity on k variables
requires θ(k log n) bits.

For the standard DNF representation and any Boolean function f we denote
by DNF-size(f) the number of terms in a DNF representation of f with the
minimal number of terms. In context of learning DNF this parameter is always
denoted s. The uniform distribution over {0, 1}n is denoted U .

Boolean Linear Codes. By saying that C is a random [N,K]2 code we mean
that C is defined by choosing randomly, uniformly and independently K vectors
in {0, 1}N that form the basis of C. Alternatively, we can say that the generator

1 Bshouty et al. claimed sample complexity Õ(ns2/ε2) but this was in error as ex-
plained in Remark 11.

580 V. Feldman

matrix G of C was chosen randomly with each entry equal to 1 with probability
1/2 independently of others. We denote this distribution by UK×N .

Standard definitions of the PAC model and the Fourier transform are omitted
(cf. [2]).

Learning by Non-adaptive Membership Queries. We say that an algo-
rithm A uses MQs non-adaptively if it can be split into two stages. The first
stage, given all the parameters of learning, (n, ε and δ) and a bound on the size
of the target concept, generates a set of points S ⊆ {0, 1}n. The second stage,
given the answers from MEM(c) on points in S, i.e. the set {(x, c(x)) | x ∈ S},
computes a hypothesis (or, in general, performs some computation). Neither of
the stages has any other access to MEM(c). We note that in the general defi-
nition of PAC learning we did not assume that size of the target concept (or a
bound on it) is given to the learning algorithm. When learning with adaptive
queries a good bound can be found via the “guess-and-double” technique but
for adaptive algorithms we will assume that this bound is always given. Clearly
the same “guess-and-double” technique can be used to produce a sequence of
independent and non-adaptive executions of the learning algorithm.

3 Attribute-Efficient Learning of Parities

In this section we would like to show that there exist non-adaptive and attribute-
efficient algorithms for learning of parity functions and also to give evidence that
without MQs the problem is likely to be hard. Unlike in the rest of the paper
in this section we will use parities as 0, 1 functions. To emphasize this we use χ̇
instead of χ.

Theorem 2. Assume that there exists an algorithm RandDec that for a ran-
domly chosen [N,K]2 code C and any y ∈ {0, 1}N such that ∃x ∈ {0, 1}K ,
dist(C(x), y) ≤ E, runs in polynomial (in N) time and, with probability at least
1/2 (over the choice of C and the random choices of RandDec), finds x. Then
PAR(E) over {0, 1}K is efficiently learnable from O((N −K) log (1/δ)) random
examples.

Proof. Let χ̇c ∈ PAR(E) be the target function. We first choose randomly and
uniformly vectors v1, v2, . . . , vK ∈ {0, 1}K and assume (for simplicity) that the
obtained vectors span {0, 1}K . We then ask for N − K random examples from
EXU (χ̇c). We denote them by (w1, a1), . . . , (wN−K , aN−K). Let V be the matrix
formed by taking vectors v1, v2, . . . , vK as its columns, that is Vi,j = vj

i and let
W be the matrix formed similarly by taking vectors w1, w2, . . . , wN−K as its
columns. Let G = (V | V W) and let y = (0K , a1, a2, . . . , aN−K). By the defini-
tion of W , (cV −1)G = (c|a1|a2| · · · |aN−K) and therefore dist(cV −1G, y) ≤ E.
All the entries of G are random and independent and therefore with probability
at least 1/2, RandDec will return t = cV −1. Consequently we can obtain c with
probability at least 1/2. By repeating this procedure log (1/δ) times we will get
the target function with the desired probability.

On Attribute Efficient and Non-adaptive Learning of Parities 581

Now we examine the case that v1, v2, . . . , vK do not span {0, 1}K . With
probability at least 2/3, the rank of V is at least K − 1 (the proof of this simple
lemma is omitted due to space limitations). Let U be full rank K × K matrix
such that V = UR and R is in row echelon form. Let G = (V | UW) (all the
entries are still randomly and independently chosen). Without loss of generality
assume that first K − 1 columns of R are equal to those of identity matrix IK .
Let b = χ̇c(RK). Then cU−1G = (c1| · · · |cK−1|b|a1| · · · |aN−K). We can therefore
try to decode as before for 2 possibilities of b. That is, for each b ∈ {0, 1} we try
to decode vector (0K−1|b|a1| · · · |aN−K). The probability that RandDec fails is
< 1/2 and therefore the probability of failure when the rank of V is at least K−1
is < 3/4. Therefore with probability at least 1/4 this procedure will return c. ��

Interestingly, the opposite direction is also true. Attribute-efficient learning
of parities implies efficient decoding of random linear codes from relatively low
number of errors.

Theorem 3. Assume that there exists an algorithm A that efficiently learns
PAR(k) using at most t(k, log n, log (1/δ)) queries and k · t(k, log n, 2) = o(n).
Then there exists an algorithm RandDec that for a randomly chosen [N,K]2
code C with K = n and N = n + t(k, log n, 2) and any y ∈ {0, 1}N such that
∃x ∈ {0, 1}K , dist(C(x), y) ≤ k, runs in polynomial (in N) time and, with
probability at least 1/2, (over the choice of C and the random choices of RandDec)
finds x.

Proof. The idea of the reduction is to split the positions of code in two parts.
The first large part has information about the message and is corrupted by at
most k errors. The other small part does not have errors and is used to locate
the errors by providing the parity of indices with errors on random examples.

Let G be the random generator matrix of C. We choose a random set of indices
I ⊂ [N] of size K. Let V be a K × K matrix formed by taking all columns of
G with indices in I, and W by taking the columns with indices not in I. Let
G′ = (V | W). From definition of G′ it is G with its columns permuted. We
denote this permutation by σ and let y′ be y with the order of its bits permuted
by σ (y′σ(i) = yi). As in the proof of Theorem 2, we assume for simplicity that
V has full rank (the more general case is handled as in the proof of Theorem 2
and we omit it for brevity). The standard form generator matrix of C permuted
by σ is H = (IK | V −1W). The reduction is based on this matrix as it was done
in the proof of Theorem 2.

For each i let ai = y′K+i ⊕ (y′[1,K] · (V −1Wi)) or in, equivalently in the vector
form, a = y′[K+1,N] ⊕ (y′[1,K]V

−1W). We run A(n, k, δ = 1/4). When A requests
i-th example we return (V −1Wi, ai). It is clear that V −1Wi’s are uniformly and
independently distributed over {0, 1}n. Let χ̇ch

be parity function returned by
A. RandDec returns (y′[1,K] · ch)V −1.

To see that RandDec defined as above will find the message we denote by
J the set of indices in which xG differs from y (i.e., has errors). Expected size
of J ∩ ([N]\I) equals (N − K)|J |/N ≤ kt(k, log n, 2)/N = o(1). Therefore with

582 V. Feldman

probability at least 1−o(1) the size of this intersection is zero, i.e., all the errors
have occurred in indices in I and none in [N]\I. Let c be the vector in {0, 1}K

such that ci = 1 iff i ∈ σ(J) and let z = xV . By the definition of z and c,

zV −1G′ = xG′ = (y′[1,K] ⊕ c)|y′[K+1,N] .

On the other hand

zV −1G′ = z(I | V −1W) = z|zV −1W .

We can therefore derive that z = y′[1,K] ⊕ c and

y′[K+1,N] = zV −1W = (y′[1,K] ⊕ c)V −1W = (y′[1,K]V
−1W) ⊕ (cV −1W).

This implies that

a = y′[K+1,N] ⊕ (y′[1,K]V
−1W) = cV −1W

or, in other words, the examples that were supplied to A correspond to parity χ̇c

on columns of V −1W . Hence with probability at least 3/4, ch = c. Given c, we
know that x = zV −1 = (y′[1,K] ⊕ c)V −1 which is exactly the output of RandDec.

��

Notice that for k = nΩ(1) the trivial Gram-Schmidt algorithm is attribute-
efficient. It is therefore natural to expect that this case will not yield any non-
trivial decoding procedure. On the other hand, for k = no(1) any attribute-
efficient algorithm will satisfy the condition kt(k, log n, 2) = o(n) and hence
will give a non-trivial error-correcting algorithm. The algorithm of Klivans and
Servedio [17], while not attribute-efficient, gives an algorithm that corrects up
to k errors for random codes of rate 1

1+O(n− 1
k log n)

where k is o(log n
log log n).

A straightforward simplification of Theorems 2 and 3 also implies equiva-
lence of linear binary codes with efficient error-correcting decoding procedure
to ae.naMQ learning of parities. From this equivalence together with BCH or
Reed-Solomon codes we obtain the following result (the proof is omitted due to
space limitations).

Theorem 4. For each k ≤ n there exists a deterministic algorithm that
ae.naMQ learns the class PAR(k). It asks k log n MQs and runs in time O(n3).

We next present a simple randomized algorithm.

Theorem 5. For each k ≤ n there exists an algorithm that ae.naMQ learns the
class PAR(k) in time O(nk log(n/δ)) and asks O(k log(n/δ)) MQs.

Proof. Let χc be the target concept (such that wt(c) ≤ k). We define D 1
t

to be
the product distribution such that for each i, Pr[xi = 1] = 1

t . Let us draw a
point x randomly according to distribution D 1

4k
. Then for each i ≤ n

PrD 1
4k

[xi = 1 and χ̇c(x) = 1] = PrD 1
4k

[χ̇c(x) = 1 | xi = 1] PrD 1
4k

[xi = 1]

=
1
4k

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] .

On Attribute Efficient and Non-adaptive Learning of Parities 583

Our second observation is that for any set of indices B ⊆ [n] and the corre-
sponding parity function χ̇b,

PrD 1
4k

[χ̇b(x) = 1] ≤ 1 − PrD 1
4k

[∀i ∈ B, xi = 0] = 1 − (1 − 1
4k

)|B| ≤ |B|
4k

.

We now assume that ci �= 1 and therefore does not influence χ̇c. Then by the
second observation

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c(x) = 1] ≤ k

4k
≤ 1/4 .

Now assume that ci = 1 and let c′ = c ⊕ ei. Then χ̇c(x) = 1 if and only if
χ̇c′(x) = 0 and χ̇c′(x) is independent of xi. Therefore

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c′(x) = 0 | xi = 1]

= 1 − PrD 1
4k

[χ̇c′(x) = 1] ≥ 1 − k − 1
4k

> 3/4 .

Hence estimation of PrD 1
4k

[xi = 1 and χ̇c(x) = 1] within the half of the

expectation can be used to find out whether ci = 1. By taking αk log (n/δ)
independent samples2 with respect to D 1

4k
(for some constant α ≥ 32 ln 2) we

will get that each estimate is correct with probability at least 1 − δ/n and
therefore we will discover c with probability at least 1 − δ. The running time of
resulting algorithm is clearly O(nk log (n/δ)). ��

4 Weak Parity Learning

The original Jackson’s algorithm for learning DNF expressions with respect
to the uniform distribution is based on a procedure that weakly learns DNF
with respect to the uniform distribution [13]. The procedure for weak learn-
ing is essentially an algorithm that, given a Boolean function f finds one of
its heavy Fourier coefficients, if one exist. Jackson’s algorithm is based on a
technique by Goldreich and Levin for finding a heavy Fourier coefficient [10].
Bshouty, Jackson, and Tamon used a later algorithm by Levin [18] to give
a significantly faster weak learning algorithm [4]. Below we briefly describe
Levin’s algorithm with improvements by Bshouty et al. . Detailed proofs of
all the statements and smaller remarks can be found in the paper by Bshouty
et al. [4](Sect. 4) (we follow their definitions and notation to simplify the
reference).

A Fourier coefficient f̂(a) of a function f : {0, 1}n → {−1,+1} is said to be
θ-heavy if |f̂(a)| ≥ θ.

2 It is important to use the multiplicative and not the additive form of Chernoff bounds
to get linear dependence on k.

584 V. Feldman

Definition 6 (Weak Parity Learning). Given θ > 0 and access to MEM(f)
for a Boolean function f that has at least one θ-heavy Fourier coefficient the
weak parity learning problem consists of finding the index a θ/3-heavy Fourier
coefficient of f .

We will only consider algorithms for weak parity learning that are efficient,
that is, produce the result with probability at least 1 − δ in time polynomial
in n, θ−1 and log (1/δ). In addition we are interested in weak parity learning
algorithms that are attribute-efficient.

Definition 7 (Attribute-Efficient Weak Parity Algorithm). Attribute-
efficient weak parity algorithm is an algorithm that given k, θ, δ, and MEM(f)
for f that has a θ-heavy Fourier coefficient of degree at most k efficiently solves
weak parity learning problem and asks polynomial in k, log n, θ−1, and log (1/δ)
number of MQs.

Attribute-efficient weak learning of DNF can be obtained from attribute-
efficient weak parity algorithm via the following lemma by Bshouty and Feldman.

Lemma 8 ([2](Lemma 18)). For any Boolean function f of DNF-size s and
a distribution D over {0, 1}n there exists a parity function χa such that

|ED[fχa]| ≥ 1
2s + 1

and wt(a) ≤ log ((2s + 1)L∞(2nD)) .

Levin’s algorithm is based on estimating a Fourier coefficient f̂(a) by sam-
pling f on randomly-chosen pairwise independent points. More specifically, the
following pairwise independent distribution is generated. For a fixed k, a random
m-by-n 0-1 matrix R is chosen and the set Y = {pR | p ∈ {0, 1}m − {0m}} is
formed. Bienaymé-Chebyshev’s inequality implies that

PrR

[
|
∑

x∈Y f(x)χa(x)
2m − 1

− f̂(a)| ≥ γ

]
≤ 1

(2m − 1)γ2
(1)

Therefore using a sample for m = log (9ρ−1θ−2 + 1),
∑

x∈Y f(x)χa(x) will,
with probability at least 1 − ρ, approximate f̂(a) within θ/3.

On the other hand,
∑

x∈Y f(x)χa(x) is a summation over all (but one3)
elements of a linear subspace of {0, 1}n and therefore can be seen as a Fourier
coefficient of f restricted to the subspace Y . That is, if we define fR(p) = f(pR)
then, by definition of Fourier transform, for every z ∈ {0, 1}m

f̂R(z) = 2−m
∑

p∈{0,1}m

fR(p)χz(p) .

This together with equality χa(pR) = χaRT (p) implies that f̂(a) is approximated
by f̂R(aRT) (with probability at least 1 − ρ).

3 The value at 0m does not influence the estimation substantially and therefore can
be offset by slightly increasing the size of sample space Y [4].

On Attribute Efficient and Non-adaptive Learning of Parities 585

All the coefficients f̂R(z) can be computed exactly in time |Y | log |Y | via the
FFT algorithm giving estimations to all the Fourier coefficients of f .

Another key element of the weak parity algorithm is the following equation.
For c ∈ {0, 1}n let fc(x) = f(x ⊕ c). Then

f̂c(a) = 2−n
∑

x∈{0,1}n

f(x ⊕ c)χa(x) = 2−n
∑

x∈{0,1}n

f(x)χa(x ⊕ c) = f̂(a)χa(c) .

(2)
Assuming that f̂(a) ≥ θ estimation of f̂(a) within θ/3 (when successful) has the
same sign as f̂(a). Similarly we can obtain the sign of f̂c(a). The sign of the
product f̂(a)f̂c(a) then is equal to χa(c). This gives a way to make MQs for χa

using the values f̂c,R(aRT) for a random R and leads to the following result.

Theorem 9. Let B(k, δ) be an ae.naMQ algorithm for learning parities that
runs in time t(n, k, log (1/δ)) and uses q(log n, k, log (1/δ)) MQs. Then there ex-
ists an attribute-efficient weak parity learning algorithm WeakDNF−U(θ, k, δ) that
runs in time Õ

(
θ−2 · t(n, k, 2) · q(log n, k, 2)

)
and asks Õ

(
θ−2 · q2(log n, k, 2)

)
non-adaptive MQs.

Proof. Let S be the set of MQs for execution of B(k, 1/4). Choose randomly a
m-by-n matrix R for m = log (9θ−2 · 4 · (q(log n, k, 2) + 1) + 1) and compute the
Fourier transforms of fR and fy,R for each y ∈ S.

Then, for each z ∈ {0, 1}m such that |f̂R(z)| ≥ 2θ/3, we run B(k, 1/4) with
the answer to MQ y ∈ S equal to sign(f̂R(z)f̂y,R(z)) (here the non-adaptiveness
of parity learning algorithm is essential). If the output of B(k, 1/4) is a parity
function on at most k variables we add it to the set of hypotheses H.

By Lemma 1, for a such that |f̂(a)| ≥ θ and wt(a) ≤ k, with probability at
least 1− 1

4(q(log n,k,2)+1) , each of the estimations f̂y,R(aRT) for y ∈ S∪{0k} will be

within θ/3 of f̂y(a). In particular, all of them will have the right sign with prob-
ability at least 3/4. When all the signs used for B’s MQs are correct, B(k, 1/4)
succeeds with probability at least 3/4. Therefore a will pass the magnitude test
and will be added as a possible hypothesis with probability at least 1/2. On the
other hand for any f̂(b) ≤ θ/3 it will not pass the magnitude test with proba-
bility at least 1 − 1

4(q(log n,k,2)+1) ≥ 3/4. Therefore by repeating this procedure
O(log (1/δ)) times (for independent R’s and S’s) we will find a θ/3-heavy coeffi-
cient with probability at least 1−δ. It can be easily verified that time and sample
complexity of the algorithm are as stated and its MQs are non-adaptive. ��

Another way to see Theorem 9 is as a way to convert an ae.naMQ algorithm
for learning parities to an attribute-efficient algorithm for learning parities with
malicious noise (with respect to U) of rate arbitrarily close to 1/2. This follows
from the fact that a parity function χc corrupted by noise of rate η has Fourier
coefficient on c of weight at least 1 − 2η.

We can now use the randomized parity learning algorithm and Theorems 8, 9
to get an algorithm for weakly learning DNF with the following properties.

586 V. Feldman

Theorem 10. There exist an algorithm WeakDNF-U that for a Boolean function
f of DNF-size s given n, s, δ, and access to MEM(f), with probability at least
1 − δ, finds a (1

2 − Ω(1
s))-approximator to f with respect to U . Furthermore,

WeakDNF-U runs in time Õ
(
ns2

)
and asks Õ

(
s2 log2 n

)
non-adaptive MQs.

The previous weak learning algorithm by Bshouty et al. requires Õ
(
ns2

)
MQs and runs in time4 Õ

(
ns2

)
.

5 Learning DNF Expressions

Jackson’s DNF learning paper gives a way to use a weak DNF learning algorithm
with respect to the uniform distribution to obtain a (strong) DNF learning al-
gorithm. It consists of generalizing a weak parity algorithm to work for any
real-valued function (and not only Boolean functions). An important property
of the generalized algorithm is that its running time depends polynomially on
the L∞ norm of the function. This algorithm is then used with a boosting al-
gorithm that produces distributions that are polynomially-close to the uniform
distribution; that is, the distribution function is bounded by p2−n where p is
a polynomial in learning parameters (such boosting algorithms are called p-
smooth). In Jackson’s result Freund’s boost-by-majority algorithm [8] is used
to produce distribution functions bounded by O(ε−(2+ρ)) (for arbitrarily small
constant ρ). More recently, Klivans and Servedio have observed [16] that a later
Freund’s algorithm [9] produces distribution functions bounded by Õ(ε), thereby
improving the dependence of running time and sample complexity on ε. This im-
provement together with improved weak DNF learning algorithm due to Bshouty
et al. gives DNF learning algorithm that runs in (ns6/ε2) time and has sample
complexity of Õ(ns4/ε2).

Remark 11. Bshouty et al. claimed sample complexity of Õ(ns2/ε2) based on
erroneous assumption that sample points for weak DNF learning can be reused
across boosting stages. A distribution function Di in i-th stage depends on hy-
potheses produced in previous stages. The hypotheses depend on random sample
points and therefore in i-th stage the same set of sample points cannot be con-
sidered as chosen randomly and independently of Di [14]. This implies that new
and independent points have to be sampled for each boosting stage and increases
the sample complexity of the algorithm by Bshouty et al. by a factor of O(s2).

We now briefly describe the generalization of weak parity learning and the
boosting step, stressing only the points relevant to our improvements. Let f be
the target DNF expression of size s. Lemma 8 states that f has an Ω(1/s)-
correlated parity of degree bounded by O (log (sL∞(2nD))). This implies that
function f(x)2nD(x) has an Ω(1/s)-heavy Fourier coefficient of degree bounded

4 The running time bound is based on use of a membership query oracle, that given
any two vectors x, y ∈ {0, 1}n, passed to it “by reference”, returns f(x ⊕ y) in O(1)
time.

On Attribute Efficient and Non-adaptive Learning of Parities 587

by O (log (sL∞(2nD))). Therefore one can expect that weak parity algorithm
WeakDNF-U applied to function f2nD should find the desired parity. By revisiting
the proof of Theorem 9 we can see that the only concern is Equation 1 in which
we used the fact that the random variable f(y) ∈ {−1,+1} has variance σ2 ≤ 1.
This is likely to be wrong for random variable f(y)2nD(y). Instead we can derive
that (expectations are by default for x chosen randomly from U)

σ2 = Var(f(x)2nD(x)) = E[(f(x)2nD(x))2] − E2[f(x)2nD(x)] (3)
≤ L∞(2nD(x))E[2nD(x)] − E2[2nD(x)] < L∞(2nD(x)) (4)

This bound on variance relies essentially on the fact that D(x) is a distribution5

and is better than L2
∞(2nD(x)) bound for an unrestricted function D(x) that was

used in analysis of previous weak DNF learning algorithms [13, 4]. The only thing
that has to be done to offset this higher variance is to use larger sample space
(by L∞(2nD(x)) times). This yields the following weak DNF learning result.

Theorem 12. There exist an algorithm WeakDNF that for a Boolean function f
of DNF-size s and any distribution D(x), given n, s, δ, and access to MEM(f),
with probability at least 1− δ, finds a (1

2 −Ω(1
s))-approximator to f with respect

to D. Furthermore, WeakDNF

– runs in time Õ
(
ns2L∞(2nD(x)) + tD

)
where tD is a bound on the time

required to estimate D(x) on all the points used as MQs of WeakDNF;
– asks Õ

(
s2 log2 n · L∞(2nD(x))

)
non-adaptive MQs;

– returns a parity function on at most O(log (s · L∞(2nD(x))) variables or its
negation.

Our next observation specifically addresses the bound tD. Evaluation of distri-
bution function Di(x) at boosting stage i usually involves evaluation of i − 1
previous hypotheses on x and therefore, in a general case, for a sample of size q
will require Ω(i·q) steps making the last stages of boosting noticeably slower. We
show that, in fact, for most known boosting methods the complexity of boosting
a weak learner based on Levin’s algorithm (in particular the weak learning algo-
rithm by Bshouty et al. and WeakDNF) can be significantly reduced. The idea is
to use the fact that most boosting algorithms compose weak hypotheses linearly,
the samples come from a linear subspace of low dimension, and parities are linear
functions.

Lemma 13. Let {c1, c2, . . . , ci} be a set of vectors in {0, 1}n of Hamming weight
at most w; ᾱ ∈ IRi be a real-valued vector, and R be a m-by-n 0-1 matrix. Then
the set of pairs

S = {〈p,
∑
j≤i

αjχcj
(pR)〉 | p ∈ {0, 1}m}

can be computed in time Õ(i · w log n + 2m).

5 Actual D(x) given to a weak learner will be equal to cD′(x) where D′(x) is a dis-
tribution and c is a constant in [2/3, 4/3] [4]. This modifies the bound above by a
small constant factor.

588 V. Feldman

Proof. We define g(x) =
∑

j≤i αjχcj
(x) and for p ∈ {0, 1}m we define gR(p) =

g(pR) (as in Sect. 4). Our goal is to find the values of function g on all the points
of some k-dimensional subspace of {0, 1}n. The function is given as a linear
combination of parities, or in other words, we are given its Fourier transform.
Hence the problem is simply to compute the inverse Fourier transform or g. This
task can be performed in O(k2k) steps using the FFT algorithm. Naturally, the
transform has to be done from the Fourier coefficients of gR and not g (as we
are given). But the relation between the complete and restricted transforms is
simple and follows from the formula below.

gR(p) =
∑
j≤i

αjχcj
(pR) =

∑
j≤i

αjχcjRT (p) =
∑

z∈{0,1}m

⎡⎣(
∑

j≤i; cjRT =z

αj)χz(p)

⎤⎦
Hence ĝR(z) =

∑
j≤i; cjRT =z αj . To compute the Fourier transform of gR we

need to compute cjR
T for each j ≤ i and sum the ones that correspond to the

same z. Given that each cj is of Hamming weight w, cjR
T can be computed in

O(wm log n) steps. Therefore the computation of the Fourier transform and the
inversion using the FFT algorithm will take O(i · w log n + m2m) steps. ��

Corollary 14. Let {b1χc1 , b2χc2 , . . . , biχci
} be a set of hypotheses returned by

WeakDNF in i stages of a certain L-smooth boosting algorithm (bj ∈ {−1,+1} is
a sign of χcj

); ᾱ ∈ IRi be a real-valued vector; and W be a set of queries for the
(i + 1)-th execution of WeakDNF. Then the set of pairs

S = {〈y,
∑
j≤i

αjbjχcj
(z)〉 | z ∈ W}

can be computed in time Õ(i + s2L log2 n).

Proof. As can be seen from the proof of Theorem 9, WeakDNF asks queries on set
Y = {pR | p ∈ {0, 1}m} for a randomly chosen R and 2m = Õ(s2L log2 n) to com-
pute the Fourier transform of (f2nDi+1)R and then for each query y of ae.naMQ
parity learning algorithm it computes the Fourier transform of (f2nDi+1)y,R by
asking queries on points in the set Yy = {z ⊕ y | z ∈ Y }. The set Yy is a subset
of linear subspace of dimension m + 1 spanned by the rows of R and vector
y. Therefore by using Lemma 13 on subspace Y and then on each Yy we can
compute the set S in Õ(i + s2L log2 n) time. ��

To apply these observations to the computation of distribution function Di

generated while learning DNF we need to look closer at Freund’s boosting al-
gorithm BComb [9, 16]. It is based on a combination of two other boosting al-
gorithms. The first one F1 is used to boost from accuracy 1

2 − γ to accuracy
1/4. The output of the first booster is used as a weak learner by the second
boosting algorithm BFilt. Each of the executions of F1 has O(γ−2) stages and
BFilthas O(log (1/ε)) stages. Accordingly, the distribution function can be de-
composed into Di,j(x) = DFilt

i · DF1
j . In both boosting algorithms by Freund

On Attribute Efficient and Non-adaptive Learning of Parities 589

the weight of a point equals to wi(N(x))/α where N(x) is the number of previ-
ous hypotheses that are correct on x, wi is a certain real-valued function, and
α is a normalization factor independent of x. Therefore the only information
about the previous hypotheses that is needed to compute DF1

j is the number
of them that are correct on x. Let b1χc1 , b2χc2 , . . . , bj−1χcj−1 be the hypothe-

ses generated by previous stages of F1. Then N(x) =
f(x)(∑ l≤j−1 blχcl

(x))+j−1

2 ,
that is, given

∑
l≤j−1 blχcl

(x) and f(x), N(x) can be computed in O(1) steps.
Therefore Cor. 14 implies that DF1

j (x) for all the points needed by WeakDNF can
be computed in Õ(s2 log2 n/ε) steps (values of f for all the points in the sample
are available in WeakDNF).

Let h1, h2, . . . , hi−1 be the previous hypotheses needed for computation of
DFilt

i . For each l ≤ i − 1, hl is output of F1 or a random coin flip. Majority
of O(s2) parities (or their negations) is simply the sign of their sum. Hence by
Cor. 14, hl(x) for all the points in the sample for WeakDNF can be computed in
Õ(s2 log2 n/ε) time. BFilthas O(log (1/ε)) stages and therefore all the previous
hypotheses can be computed in Õ(s2/ε) time and consequently DFilt

i (x) can
be computed in Õ(s2/ε) time.

Altogether we have obtained a learning algorithm for DNF expressions with
the following properties.

Theorem 15. There exists an algorithm AENALearnDNF that for any Boolean
function f of DNF-size s, given n, s, ε, δ and access to MEM(f), with probability
at least 1 − δ, finds an ε-approximator to f with respect to U . Furthermore,
AENALearnDNF runs in time Õ

(
ns4/ε

)
and asks Õ

(
s4 log2 n/ε

)
non-adaptive

MQs.

The improvements to the algorithm by Bshouty et al. are summarized below.

– The use of attribute-efficient weak learning improves the total sample com-
plexity from Õ

(
ns4/ε2

)
to Õ

(
s4 log2 n/ε2

)
and the same running time is

achieved without assumptions on the MQ oracle (see Theorem 10).
– Faster computation of distribution functions used in boosting improves the

total running time from Õ
(
ns6/ε2

)
to Õ

(
ns4/ε2

)
(see Corollary 14).

– Tighter estimation of variance improves the dependence of running time and
sample complexity on ε from 1/ε2 to 1/ε (3).

Acknowledgments

We thank Leslie Valiant for his advice and encouragement of this research. We
are grateful to Jeffrey Jackson for discussions and clarifications on the DNF
learning algorithm of Bshouty et al. We also thank Alex Healy, Dmitry Gavinsky
and anonymous COLT reviewers for valuable comments and proofreading of the
earlier version of this paper.

590 V. Feldman

References

[1] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely
or infinitely many irrelevant attributes. JCSS, 50:32–40, 1995.

[2] N. Bshouty and V. Feldman. On using extended statistical queries to avoid mem-
bership queries. Journal of Machince Learning Research, 2:359–395, 2002.

[3] N. Bshouty and L. Hellerstein. Attribute efficient learning with queries. Journal
of Computer and System Sciences, 56:310–319, 1998.

[4] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with
membership queries under the uniform distribution. In Proceedings of COLT ’99,
pages 286–295, 1999.

[5] N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from ran-
dom walks. In Proceedings of FOCS ’03, pages 189–199, 2003.

[6] P. Damaschke. Adaptive versus nonadaptive attribute-efficient learning. In Pro-
ceedings of STOC ’98, pages 590–596. ACM Press, 1998.

[7] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan. Group testing problems
in experimental molecular biology. In Proceedings of Sequences ’97, 1997.

[8] Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of
the Third Annual Workshop on Computational Learning Theory, pages 202–216,
1990.

[9] Y. Freund. An improved boosting algorithm and its implications on learning com-
plexity. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 391–398, 1992.

[10] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In
Proceedings of STOC ’89, pages 25–32, 1989.

[11] D. Guijarro, V. Lavin, and V. Raghavan. Exact learning when irrelevant variables
abound. In Proceedings of EuroCOLT ’99, pages 91–100, 1999.

[12] D. Guijarro, J. Tarui, and T. Tsukiji. Finding relevant variables in PAC model
with membership queries. Lecture Notes in Artificial Intelligence, 1720:313 – 322,
1999.

[13] J. Jackson. An efficient membership-query algorithm for learning DNF with re-
spect to the uniform distribution. In Proceedings of STOC ’94, pages 42–53, 1994.

[14] J. Jackson. Personal communication, 2004.
[15] J. Jackson, E. Shamir, and C. Shwartzman. Learning with queries corrupted by

classification noise. In Proceedings of the Fifth Israel Symposium on the Theory
of Computing Systems, page 45. IEEE Computer Society, 1997.

[16] A. Klivans and R. Servedio. Boosting and hard-core set construction. Machine
Learning, 51(3):217–238, 2003.

[17] A. Klivans and R. Servedio. Toward attribute efficient learning of decision lists
and parities. In Proceedings of COLT ’04, pages 234–248, 2004.

[18] L. Levin. Randomness and non-determinism. Journal of Symbolic Logic,
58(3):1102–1103, 1993.

[19] R. Uehara, K. Tsuchida, and I. Wegener. Optimal attribute-efficient learning of
disjunction, parity, and threshold functions. In Proceedings of EuroCOLT ’97,
pages 171–184, 1997.

[20] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[21] L. Valiant. Circuits of the Mind. Oxford University Press, 1994.
[22] L. Valiant. A neuroidal architecture for cognitive computation. Journal of ACM,

47(5):854–882, 2000.
[23] L. Valiant. Knowledge infusion (unpublished manuscript). 2005.

Unlabeled Compression Schemes
for Maximum Classes�,��

Dima Kuzmin and Manfred K. Warmuth

Computer Science Department, University of California,
Santa Cruz

{dima, manfred}@cse.ucsc.edu

Abstract. We give a compression scheme for any maximum class of VC
dimension d that compresses any sample consistent with a concept in the
class to at most d unlabeled points from the domain of the sample.

1 Introduction

Consider the following type of protocol between a
learner and a teacher. Both agree on a domain and
a class of concepts (subsets of the domain). For in-
stance, the domain could be the plane and a concept
the interior of an axis-parallel rectangle (see Fig. 1).
The teacher gives a set of training examples (labeled
domain points) to the learner. The labels of this set
are consistent with a concept (rectangle) that is hid-
den from the learner. The learner’s task is to predict
the label of the hidden concept on a new test point.

Intuitively, if the training and test points are
drawn from some fixed distribution, then the labels
of the test point can be predicted accurately provided
the number of training examples is large enough. The
sample size should grow with the inverse of the de-
sired accuracy and with the complexity or “dimen-
sion” of the concept class. The most basic notion of
dimension in this context is the Vapnik-Chervonenkis
dimension. This dimension is the size d of the maxi-
mum cardinality set such that all 2d labeling patterns
can be realized by a concept in the class. So with axis-

+

+

+

+
+

-

- -

-

-

-

-

-

-

-

-

-

-

x

+

+
++

+

hidden
smallest

test

Fig. 1. An example set
consistent with some axis-
parallel rectangle. Also
shown is the smallest axis-
parallel rectangle contain-
ing the compression set
(circled points). This rect-
angle is consistent with
all examples. The hidden
rectangle generating the
data is dashed. “x” is the
next test point

parallel rectangles, it is possible to label any set of 4 points in all possible ways
as longs as no subset of 3 lies on a line. However for any 5 points, at least one

� Supported by NSF grant CCR CCR 9821087.
�� Some work on this paper was done while authors were visiting National ICT

Australia.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 591–605, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

592 D. Kuzmin and M.K. Warmuth

of the points lies inside the smallest rectangle of the remaining 4 points and this
disallows at least one of the 25 patterns.

The idea of sample compression in learning ((LW86)) stems from the obser-
vation that you can often select a subset of the training examples to represent
a hypothesis consistent with all training examples. For instance in the case of
rectangles, it is sufficient to keep only the uppermost, lowermost, leftmost and
rightmost positive point. There are up to 4 points in the compression set (since
some of the 4 extreme points might coincide.) Assume the compression set rep-
resents the smallest rectangle that contains it. This rectangle will always be
consistent with the entire sample.

Note that in the case of rectangles we need to keep at most 4 points and 4 also
is the Vapnik-Chervonenkis dimension of that class. One of the most tantalizing
conjectures in learning theory is the following ((FW95; War03)): For any concept
class of VC dimension d, there is a compression scheme that keeps at most VC
dimension many examples.

The maximum size of the compression sets also replaces the VC dimension in
the PAC sample size bounds ((LW86; FW95; Lan03)). In the case of compression
schemes, the proofs of these bounds are strikingly simple. There are many practi-
cal algorithms that use compression scheme techniques (e.g. (MST02; MST03)).
In particular Support Vector Machines can be interpreted as a compression
scheme where the essential support vectors are the compression set ((vLBS04)).
Also any algorithm with mistake bound M leads to a compression scheme of size
M (FW95).

The above conjecture was proven for maximum classes over a finite domain,
which are classes where the number of concepts coincides with a certain up-
per bound. In (FW95) it was shown that for such classes there always exist
compression schemes that compress to exactly d labeled examples. In this
paper, we give an alternate compression scheme for maximum classes. Even
though we do not resolve the conjecture for arbitrary classes, we uncovered a
great deal of new combinatorics. Our new scheme compresses any sample con-
sistent with a concept to at most d unlabeled points from the sample. If m
is the size of the sample, then there are

(
m
≤d

)
sets of points of size up to d. For

maximum classes, the number of different labeling induced on any set of size
m is also

(
m
≤d

)
. Thus our new scheme is “tight”. In the previous scheme the

number of all possible compression sets was much bigger than the number of
concepts.

Our new scheme reveals a lot of interesting combinatorial structure. Let us
represent finite classes as a binary table (see Fig. 2) where the rows are concepts
and the columns are the all points in the domain. Our compression scheme
represents concepts by subsets of size at most d. For any size k ≤ d, the concepts
represented by subsets of size up to k will be a maximum class of VC dimension
k. Our scheme “compresses” as follows: After receiving a set of examples we first
restrict ourselves to concepts that are consistent with the sample. We will show
that for our choice of representatives, there always will be exactly one of the
consistent concepts whose representative is completely contained in the sample

Unlabeled Compression Schemes for Maximum Classes 593

domain. Thus we simply compress to this representative and use the associated
concept as the hypothesis (see Fig. 2).

Concept classes can also be represented by cer-
tain undirected graphs called the one-inclusion
graphs (see, for instance, (HLW94)): The vertices
are the possible labelings of the example points
and edges are between concepts that disagree on
a single point. Note that each edge is naturally
labeled by the single point on which the incident
concepts disagree (see Fig. 4). Each prediction al-
gorithm can be used to orient the edges of the one-
inclusion graphs as follows: Assume we are given
a labeling of some m points x1, . . . , xm and an un-
labeled test point x. If there is still an ambigu-
ity as to how x should be labeled, then this cor-
responds to an edge (with label x) in the one-
inclusion graph for x1, . . . , xm, x. This edge con-
nects the two possible extensions of the labeling
of x1, . . . , xm to the test point x. If the algorithm
predicts b, then orient the edge towards the con-
cept that labels x with bit b.

The vertices in the one-inclusion graph corre-
spond to the possible target concepts and if the
prediction is averaged over a random permutation
of the m + 1 points, then the probability of pre-
dicting wrong is D

m+1 , where D is the out-degree
of the target. Therefore the canonical optimal al-
gorithm predicts with an orientation of the one-
inclusion graphs that minimizes the maximum
out-degree (HLW94; LLS02) and in (HLW94) it
was shown that this outdegree is at most the VC
dimension d.

How is this all related to our new compression
scheme for maximum classes? We show that for
any edge labeled with x, exactly one of the two
representatives of the incident concepts contains

x1 x2 x3 x4 r(c)
c1 0 0 0 0 ∅
c2 0 0 1 0 {x3}
c3 0 0 1 1 {x4}
c4 0 1 0 0 {x2}
c5 0 1 0 1 {x3, x4}
c6 0 1 1 0 {x2, x3}
c7 0 1 1 1 {x2, x4}
c8 1 0 0 0 {x1}
c9 1 0 1 0 {x1, x3}
c10 1 0 1 1 {x1, x4}
c11 1 1 0 0 {x1, x2}

Fig. 2. Illustration of the
unlabeled compression scheme
for some maximum concept
class. The representatives for
each concept are indicated in
the right column and also by
underlining the corresponding
positions in each row. Suppose
the sample is x3 = 1,x4 = 0.
The set of concepts consistent
with that sample is {c2, c6, c9}.
The representative of exactly
one of these concepts is en-
tirely contained in the sample
domain {x3,x4}. For our
sample this representative
is {x3} which represents c2.
So the compressed sample
becomes {x3}

x. Thus by orienting the edges towards concept that does not have x, we immedi-
ately obtain an orientation of the one-inclusion graph with maximum outdegree
d (which is the best possible).

Again such a d-orientation immediately leads to prediction algorithms with
expected error d

m+1 , where m is the sample size (HLW94), and this bound is
optimal1 (LLS02).

1 Predicting with a d-orientation of the one-inclusion graph is also conjectured to lead
to optimal algorithms in the PAC model of learning (War04).

594 D. Kuzmin and M.K. Warmuth

Regarding the general case: It suffices to show the conjec-
ture for maximal classes (i.e. classes where adding any con-
cept would increase the VC dimension). We don’t know of
any natural example of a maximal concept class that is not
maximum even though it is easy to find small artificial cases
(see Fig. 3). We believe that much of the new methodology
developed in this paper for maximum classes will be useful
in resolving the general conjecture in the positive and think
that in this paper we made considerable progress towards this
goal. In particular, we developed a refined recursive structure
of concept classes and made the connection to orientations of
the one-inclusion graph. Also our scheme constructs a certain
unique matching that is interesting in its own right.

Even though the unlabeled compression schemes for max-
imum classes are tight in some sense, they are not unique.
There is a strikingly simple algorithm that always seems to
produces a valid unlabeled compression scheme for maximum
classes: Construct a one-inclusion graph for the whole class;
iteratively remove a lowest degree vertex and represent this
concept by its set of incident dimensions (see Fig. 4 for an
example run). We have no proof of correctness of this algo-
rithm and the resulting schemes do not have as much recur-

x1 x2 x3 x4

c1 0 0 1 0
c2 0 1 0 0
c3 0 1 1 0
c4 1 0 1 0
c5 1 1 0 0
c6 1 1 1 0
c7 0 0 1 1
c8 0 1 0 1
c9 1 0 0 0
c10 1 0 0 1

Fig. 3. A max-
imal classes of
VCdim 2 with
10 concepts.
Maximum con-
cept classes of
VCdim 2 have(

4
≤2

)
= 11 con-

cepts (see Fig. 2)

sive structure as the one presented in this paper. For the small example given
in Fig. 4 both algorithms can produce the same scheme.

Finally, we are reasonably confident that the conjecture holds in general be-
cause we did a brute-force search for compression schemes in maximal classes
of domain size up to 6. In doing so we noticed that maximal classes have many
more solutions than maximum ones.

2 Definitions

Let X be an instance domain (we allow X = ∅). A concept c is a mapping from
X to {0, 1}. Or we can view c as a characteristic function of a subset of its
domain X, denoted as dom(c), where c(x) = 1 iff the instance x ∈ dom(c) lies
in c. A concept class C is a set of concepts over the same domain (denoted as
dom(C)). Such a class is represented by a binary table (see Fig. 2), where the
rows correspond to concepts and the columns to the instances.

We denote the restriction of a concept c onto A ⊆ dom(c) as c|A. This concept
has domain A and labels that domain consistently with c. The restriction of an
entire class is denoted as C|A. This restriction is produced by simply removing
all columns not in A from the table for C and collapsing identical rows. 2 We
use C − x as shorthand for C|(dom(C) � {x}) (removing column x from the

2 We define c|∅ = ∅. Note that C|∅ = {∅} if C �= ∅ and ∅|∅ = ∅.

Unlabeled Compression Schemes for Maximum Classes 595

11|0000

10|0010

7|0011

5|0100

1|0101 3|0110

2|0111

9|1000

8|1010

6|1011

4|1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

x2 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x2 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0

C − x1 Cx1

x1 x2 x3 x4

0 1 0 1
0 1 1 0
0 1 1 1
tailx1(C)

Fig. 4. One-inclusion graph for the concept class from
Fig. 2: edges are labeled with the differing dimension. To
construct an unlabeled compression scheme, iteratively
remove a concept of minimum degree (numbers indicate
order of removal). The underlined dimensions indicate
the representative of each concept (the incident dimen-
sions when the concept was removed). Arrows show the
d-orientation derived from the scheme. In this case our
recursive algorithm can produce the same scheme

Fig. 5. The reduction, re-
striction and the tail of con-
cept class from Fig. 2 wrt
dimension x1

table) and C − A for C|(dom(C) � A) (see Fig. 5). A sample of a concept c is
any restriction c|A for some A ⊆ dom(c).

The reduction Cx of a concept class C wrt a dimension x ∈ dom(C) is
a special subset of C − x that also has domain X − {x}. It consists of all
those concepts in C − x that have two possible extensions onto concepts in
C and thus correspond to an edge labeled with x in the one-inclusion graph (see
Fig. 5).

The tail of concept class C on dimension x consists of all concepts that don’t
have an edge labeled with x. We denote this subset of C as tailx(C). Note that
tails have the same domain as the original class.

A finite set of dimensions A ⊆ dom(C), is shattered by a concept class C if
for any possible labeling of A, the class C contains a concept consistent with
that labeling (i.e. size(C|A) = 2|A|).3 The Vapnik-Chervonenkis dimension of
a concept class C is the size of a maximum subset that is shattered by that
class ((Vap82)). We denote this size with V Cdim(C). Note that if |C| = 1, then
V Cdim(C) = 0.4

3 size(A) and |A| denote the number of elements in set A.
4 V Cdim({∅}) = 0 and V Cdim(∅) is defined to be −1.

596 D. Kuzmin and M.K. Warmuth

This paper makes some use of binomial coefficients
(
n
d

)
, for integers n ≥ 0

and d.5 We use the following identity which holds for n > 0:
(
n
d

)
=

(
n−1

d

)
+
(
n−1
d−1

)
.

Let
(

n
≤d

)
be a shorthand for

∑d
i=0

(
n
i

)
. Then we have a similar identity for the

binomial sums (n > 0):
(

n
≤d

)
=

(
n−1
≤d

)
+

(
n−1
≤d−1

)
.

From (VC71) and (Sau72) we know that for all concept classes with
V Cdim(C) = d: |C| ≤

(|dom(C)|
≤d

)
(Sauer’s lemma). A concept class C with

V Cdim(C) = d is called maximum if ∀Y ⊆ dom(C), |Y | < ∞ : size(C|Y) =(|Y |
≤d

)
. For finite domains it is sufficient to check just the size of class itself. Addi-

tionally, if C is a maximum class with d = V Cdim(C), then ∀x ∈ dom(C), C−x
and Cx are also maximum classes with VC dimensions d and d− 1 respectively
((Wel87)).

A concept class C is called maximal if adding any other concept to C will
increase its VC dimension. A maximum class on a finite domain is also maximal
((Wel87)). But there exist finite maximal classes, which are not maximum (see
Fig. 3 for an example).

From now on we only consider finite classes.

3 Unlabeled Compression Scheme

Our unlabeled compression scheme for maximum classes “represents” the con-
cepts as unlabeled subsets of dom(C) of size at most d. For any c ∈ C we call
r(c) its representative. Intuitively we want concepts to disagree on their rep-
resentatives. We say that two different concepts clash wrt r if c|r(c) ∪ r(c′) =
c′|r(c) ∪ r(c′).

Main Definition: A representation mapping r of a maximum concept class C
must have the following two properties:

1. r is a bijection between C and subsets of dom(C) of size at most V Cdim(C)
and

2. no two concepts in C clash wrt r.

The following lemma shows how the non-clashing requirement can be used
to find a unique representative for each sample.

Lemma 1. Let r be any bijection between a finite maximum concept class C of
VC dimension d and subsets of dom(C) of size at most d. Then the following
two statements are equivalent:

1. No two concepts clash wrt r.
2. For all samples s from C there is exactly one concept c ∈ C that is consistent

with s and r(c) ⊆ dom(s).

5 Boundary values: for d > n or d < 0,
(

n
d

)
= 0; also

(
0
0

)
= 1.

Unlabeled Compression Schemes for Maximum Classes 597

Based on this lemma it is easy to see that a representation mapping r for
a maximum concept class C defines a compression scheme as follows. For any
sample s of C we compress s to the unique representative r(c) such that c is
consistent with s and r(c) ⊆ dom(s). Reconstruction is even simpler, since r
bijective. If s is compressed to the set r(c), then we reconstruct to the concept
c. See Fig. 2 for an example of how compression and reconstruction works.

Proof of Lemma 1

2 ⇒ 1 : Proof by contrapositive. Assume ¬1, i.e. there ∃c, c′ ∈ C, c �= c′ s.t.
c|r(c)∪ r(c′) = c′|r(c)∪ r(c′). Then let s = c|r(c)∪ r(c′). Clearly both c and
c′ are consistent with s and r(c), r(c′) ⊆ dom(s). This negates 2.

1 ⇒ 2 : Assume ¬2, i.e. there is a sample s for which there either zero or (at
least) two consistent concepts c for which r(c) ⊆ dom(s). If two concepts
c, c′ ∈ C are consistent with s and r(c), r(c′) ⊆ dom(s), then c|r(c)∪ r(c′) =
c′|r(c) ∪ r(c′) (which is ¬1). If there is no concept consistent c with s for
which r(c) ⊆ dom(s), then since

size(C|dom(s)) =
(
|dom(s)|

≤ d

)
= |{c : r(c) ⊆ dom(s)}| .

there must be another sample s′ with dom(s′) = dom(s) for which there are
two such concepts. So again ¬1 is implied. �

We first show that a representation mapping r for a maximum classes can
be used to derive a d-orientation of the one-inclusion graph of class (i.e. an
orientation of the edges such that the outdegree of every vertex is ≤ d).

Lemma 2. For any representation mapping r of a maximum concept class C
and any edge c

x→ c′, the dimension x is contained in exactly one of the repre-
sentatives r(c) or r(c′).

Proof. Since c and c′ differ only on dimension x and c|r(c)∪r(c′) �= c′|r(c)∪r(c′),
x lies in at least one of r(c), r(c′). Next we will show that x lies in exactly one.

We say an edge charges its incident concept if the dimension of the edge lies in
the representative of this concept. Every edge charges at least one of its incident
concepts and each concept c can receive at most |r(c)| charges. So the number
of charges is lower bounded by the number of edges and upper bounded by the
total size of all representations. The number of edges in C is N

(
N−1
≤d−1

)
, where

N = |dom(C)|, d = V Cdim(C). 6 However, the total size of all representatives
is the same number because:∑

c∈C

|r(c)| =
d∑

i=0

i

(
N

i

)
= N

d∑
i=1

(
N − 1
i − 1

)
= N

(
N − 1
≤ d − 1

)
.

This means that no edge can charge both of its incident concepts. ��

6 Number of edges is the size of Cx times the domain size.

598 D. Kuzmin and M.K. Warmuth

Corollary 1. For any representation mapping of a maximum class, directing
each edge away from the concept whose representative contains the dimension of
the edge, creates a d-orientation of the one-inclusion graph for the class.

Proof. The outdegree of every concept is equal to size of its representative, which
is ≤ d. ��

4 Recursive Algorithm for Constructing a Compression
Scheme

The unlabeled compression scheme for any maximum class can be found by the
recursive algorithm given in Fig. 6. This algorithm first finds a representation
mapping r for Cx (to subsets of size up to d − 1 of dom(C) − x). It then uses
this mapping for one copy of Cx in C and adds x to all the representatives in
the other copy. Finally the algorithm completes r by finding the representatives
for tailx(C) via yet another recursive procedure given in Fig. 7.

Recursive Algorithm
Input: a maximum concept class C
Output: a representation mapping r for C

1. If V Cdim(C) = 0 (i.e. C contains only one concept c), then r(c) := ∅.
Otherwise, pick any x ∈ dom(C) and recursively find a representation
mapping r for Cx.

2. Extend that mapping to 0Cx ∪ 1Cx:

∀c ∈ Cx : r(c ∪ {x = 0}) := r(c) and r(c ∪ {x = 1}) := r(c) ∪ x

3. Extend r to tailx(C) via the recursive process described in Fig. 7.

Fig. 6. The recursive algorithm for constructing an unlabeled compression scheme for
maximum classes

To prove the correctness of this algorithm (i.e. show that the constructed
mapping satisfies both conditions of the main definition) we need some additional
definitions and a sequence of lemmas.

Let aCx, a ∈ {0, 1} denote a concept class formed by extending all the
concepts in Cx back to dom(C) by setting the x dimension to a. Similarly, if
c ∈ Cx or c ∈ C − x, then ac denotes a concept formed from c by extending
it with the x dimension set to a. It is usually clear from the context what the
missing dimension is. Each dimension x ∈ dom(C) can be used to split class C

into three disjoint sets: C = 0Cx
�
∪ 1Cx

�
∪ tailx(C).

A forbidden labeling (FW95) for some class C is a sample s with dom(s) ⊆
dom(C) that is not consistent with any concept in C. We first note that for a

Unlabeled Compression Schemes for Maximum Classes 599

Recursive Tail Algorithm
Input: a maximum concept class C, x ∈ dom(C)
Output: an assignment of representatives to tailx(C)

1. If V Cdim(C) = 0 (i.e. C = {c}), then r(c) := ∅.
If V Cdim(C) = |dom(C)|, then r := ∅.
Otherwise, pick some y ∈ dom(C), y �= x and recursively find representa-
tives for tailx(Cy) and tailx(C − y).

2. ∀c ∈ tailx(Cy) � tailx(C − y), find c′ ∈ tailx(C), s. t. c′ − y = c. Output:
r(c′) := r(c) ∪ {y}.

3. ∀c ∈ tailx(Cy) ∩ tailx(C − y), consider the concepts 0c, 1c ∈ tailx(C).
Let r1 be the representative for c from tailx(Cy) and r2 be the one from
tailx(C − y). Suppose, wlog, that 0c|r1 ∪ {y} is a sample not consistent
with any concept in Cx. Then r(0c) := r1 ∪ {y}, r(1c) := r2.

Fig. 7. the Recursive Tail Algorithm for finding tail representatives

maximum class of VC dimension d there is exactly one forbidden labeling for
each set A of d+1 dimensions. This is because C|A is maximum with dimension
d and its size is thus 2d+1 − 1. Our recursive procedure for the tail assigns all
concepts in tailx(C) a forbidden label of Cx (i.e. c|r(c) is a forbidden labeling
for Cx of size d). Then clashes between the tailx(C) and Cx are automatically
prevented.

Note the number of such forbidden labelings is
(
n−1

d

)
and we will now reason

that tailx(C) is of the same size. |dom(C)| = n. Since C−x = Cx
�
∪ tailx(C)−x

and Cx and C − x are maximum classes, we have (n = |dom(C)|)

|tailx(C)| = |C − x| − |Cx| =
(
n − 1
≤ d

)
−

(
n − 1
≤ d − 1

)
=

(
n − 1

d

)
.

We now reason that every tail concept contains some forbidden labeling of
Cx (of size d) and each forbidden labeling occurs in some tail concept. Since
any finite maximum class is maximal, adding any concept increases the VC
dimension. Adding any concept in tailx(C) to Cx increases the dimension of Cx

to d. Therefore all concepts in tailx(C) contain at least one forbidden labeling
of size d for Cx. Furthermore, since C −x shatters all sets of size d and C −x =

Cx
�
∪ tailx(C) − x all forbidden labels of Cx appear in the tail. Our recursive

procedure for the tail actually construct a matching between forbidden labelings
of size d for Cx and tail concepts that contain them. It remains to be shown that
such

1. the Recursive Tail Algorithm of Fig. 7 finds a matching and that
2. if the matched forbidden labelings are used as representatives, then there

are no clashes between tail concepts.

The following sequence of lemmas culminating in Theorem 1 establishes
Part 1. The theorem actually shows that the matching between concepts in
the tail and forbidden labels of Cx is unique.

600 D. Kuzmin and M.K. Warmuth

Lemma 3. Let C be a maximum class and x �= y be two dimensions in dom(C).
Let the concepts of tailx(Cy) be indexed by i (i.e tailx(Cy) = {ci}) and let
tailx(C − y) = {cj}. Then there exist bit values ai, aj for the y dimension such
that tailx(C) = {aici} ∪ {ajcj}. (see Fig. 8 for an example).

Proof. First note that the sizes add up as they should:

|tailx(C)| =
(
n − 1

d

)
=

(
n − 2
d − 1

)
+

(
n − 2

d

)
= |tailx(Cy)| + |tailx(C − y)| .

Next we will show that any concept in tailx(Cy) and tailx(C − y) can be
mapped to a concept in tailx(C) by extending it with a suitable y bit. We
also have to account for the possibility that there can be some concepts c ∈
tailx(Cy) ∩ tailx(C − y). These will need to be mapped back to two different
concepts of tailx(C).

Consider some concept c ∈ tailx(Cy). Since c ∈ Cy, both extensions 0c and
1c exist in C. (Note that the first bit is the y position.) If at least one of the
extensions lies in tailx(C), then we can choose one of the extensions and map c to
it. Assume that neither 0c and 1c lie in tailx(C). This means that these concepts
both have an x edge to some concepts 0c′, 1c′. But then c′ ∈ Cy and there is a
x edge between c and c′. Thus c /∈ tailx(Cy), which provides a contradiction.

Now consider a concept c ∈ tailx(C−y). It might have one or two extensions
back onto the full domain. In either case, any of these extensions will be in
tailx(C), because removing a y dimension will not hurt an existing x edge (e.g.
suppose 0c was the extension and was not in the tail possessing an x edge to
some 0c′, then c, c′ is an x edge in C − y).

Finally we need to avoid mapping back to the same concept. This can only
happen for concepts in tailx(Cy)∩ tailx(C − y). These concepts have two exten-
sions back to C and from the previous paragraph it follows that both of these
extensions are in tailx(C). So we can arbitrarily choose one of the extensions to
be mapped back from tail(Cy) and the other from tail(C − y). ��
Lemma 4. Cx − y = (C − y)x (see Fig. 9 for an illustration)

Proof. First, we show that Cx − y ⊂ (C − y)x. Take any c ∈ Cx − y. By the
definition of restriction there exists ay such that ayc ∈ Cx. Next, concepts in
Cx have two extensions back onto C: 0ayc, 1ayc ∈ C. From this we immediately
have by definition restriction that 0c, 1c ∈ C − y and c ∈ (C − y)x.

Both (C−y)x and Cx−y are maximum classes with domain size |dom(C)|−2
and VC dimension d − 1, thus they have the same size. This plus the fact that
Cx − y ⊂ (C − y)x means that they are in fact equal. ��

Corollary 2. Any forbidden labeling of (C − y)x is also a forbidden labeling
of Cx.

Proof. Forbidden labelings of (C−y)x do not include a label for y. Any forbidden
labeling of Cx that does not include y is then a forbidden labeling of Cx − y. By
Lemma 4, (C − y)x = Cx − y and thus these two classes have exactly the same
forbidden labelings. ��

Unlabeled Compression Schemes for Maximum Classes 601

x1 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

0 0 1

x1 x3 x4

0 0 0
1 0 0

0 1 0
0 1 1

x1 x2 x3 x4

0 1 0 1 tailx1(C − x2)
0 1 1 0 tailx1(C

x2)
0 1 1 1 tailx1(C

x2)

C − x2 Cx2 tailx1(C)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

0 0 0
0 1 0
0 1 1
1 0 0

0 0
1 0
1 1

C − x2 Cx1 Cx1−x2 =(C − x2)
x1

Fig. 8. Illustration of Lemma 3. tailx1(C) can
be composed from tailx1(C

x2) and tailx1(C −
x2); class C is from figure 2, tails in classes
are boxed and the last column for tailx1(C)
indicates whether the concept comes from
tailx1(C

x2) or tailx1(C − x2)

Fig. 9. Illustration of the
statement of Lemma 4 -
Cx1 − x2 = (C − x2)

x1 ;
class C is given in Fig. 2

Lemma 5. If we have a forbidden labeling for Cxy of size d−1, then there exists
a value for the y dimension such that extending this forbidden labeling with this
value gives us a forbidden labeling of size d for Cx.

Proof. We will establish a bijection between forbidden labelings of Cx of size
d that involve y and forbidden labelings of size d − 1 for Cxy. Since Cx is a
maximum class of VC dimension d−1 it has

(
n−1

d

)
forbidden labelings of size d -

one for every set of d coordinates. If we look only at the labelings that involve y,
there will be

(
n−2
d−1

)
of them. This is also the total number of forbidden labelings

of size d − 1 for Cxy.
A mapping is constructed as follows: A forbidden labeling of size d for Cx

that involves a y dimension becomes a forbidden labeling of size d − 1 for Cxy

by discarding the y dimension. Assume that the newly formed labeling is not
forbidden in Cxy. Then by extending the concept that contains it with both
one and zero back to Cx, we will hit the original forbidden set, thus forming a
contradiction.

Every forbidden set is mapped to a different forbidden labeling and by the
counting argument above we see that all forbidden sets are covered. Thus the
mapping is a bijection and the inverse of this mapping realizes the statement of
the lemma. ��
Theorem 1. For any maximum class C of VC dimension d and any x ∈
dom(C) it is possible to find a unique matching between the

(
n−1

d

)
concepts in

tailx(C) and the
(
n−1

d

)
forbidden labelings of size d for Cx, such that every con-

cept is matched to some forbidden labeling it contains and all forbidden labelings
are matched.

Proof. The proof will proceed by induction on d and n = |dom(C)|.
Base cases: If n = d, then we have a complete hypercube which has no tail

and the matching is empty. If d = 0, then there is a single concept which is the
tail and this concept is matched to the empty set.

602 D. Kuzmin and M.K. Warmuth

Inductive hypothesis: For any maximum class C ′, such that V Cdim(C ′) < d
or |dom(C ′)| < n, the statement of the theorem holds.

Inductive step. Let x, y ∈ dom(C) and x �= y. By Lemma 3, we can com-
pose tailx(C) from tailx(Cy) and tailx(C − y). Since V Cdim(Cx) = d − 1 and
|dom(C − x)| = n− 1, we can use the inductive hypothesis for these classes and
assume that the desired matchings already exist for tailx(Cy) and tailx(C − y).

Now we need to combine these matchings to form a matching for tailx(C).
See Fig. 7 for a description of this process. Concepts in tailx(C−y) are matched
to forbidden labelings of (C− y)x of size d. By Lemma 2, any forbidden labeling
of (C − y)x is also a forbidden labeling of Cx. Thus this part of the matching
transfers to the appropriate part of tailx(C) without alterations. On the other
hand, tailx(Cy) is matched to labelings of size d−1. We can make them labelings
of size d by adding some value for the y coordinate. Some care must be taken
here. Lemma 5 tells us that one of the two extensions will in fact have a forbidden
labeling of size d (that includes the y coordinate). In the case where just one
of two possible extensions of a concept in tailx(Cy) is in the tailx(C), there are
no problems (i.e. that concept will be the concept of Lemma 5, since the other
concept is in Cx and thus does not contain any forbidden labelings). There still
is the possibility that both extensions are in tailx(C). From the proof of Lemma
3 we see that this only happens to the concepts that are in tailx(Cy)∩ tailx(C−
y). Then, by Lemma 5 we can figure out which extension corresponds to the
forbidden labeling involving y and use that for the tailx(Cy) matching. The
other extension will correspond to the tailx(C − y) matching. Essentially, where
before the Lemma 3 told us to map the intersection tailx(Cy)∩tailx(C−y) back
to tailx(C) by assigning a bit arbitrarily, now we choose a bit in a specific way.

Now we know that a matching exists. Uniqueness of the matching can also be
argued from inductive assumptions on uniqueness for tailx(Cy) and tailx(C−y).

��

Theorem 2. The Recursive Algorithm of Fig. 6 returns a representation map-
ping that satisfies both conditions of the Main Definition.

Proof. Proof by induction on d = V Cdim(C). The base case is d = 0: this class
has only one concept which is represented by the empty set.

The algorithm recurses on Cx and V Cdim(Cx) = d−1. Thus we can assume
that it has a correct representation mapping for Cx that uses sets of size at most
d − 1 for the representatives.

Bijection condition: It is easily seen that the algorithm uses all possible sets
that don’t involve x and are of size < d as representatives for 0Cx. The concepts
of 1Cx are represented by all sets of size ≤ d that contain x. Finally the concepts
in tailx(C) are represented by sets of size equal d that don’t contain x. This shows
that all sets of size up to d represent some concept.

No clashes condition: By the inductive assumption there cannot be any
clashes internally within each of the subclasses 0Cx and 1Cx. Clashes between
0Cx and 1Cx cannot occur because such concepts are always differentiated on
the x bit and x belongs to all representatives of 1Cx. By Theorem 1, we know

Unlabeled Compression Schemes for Maximum Classes 603

that concepts in the tail are assigned to representatives that define a forbid-
den labeling for Cx, thus clashes between the tail and 0Cx, 1Cx are prevented.
Finally, we need to argue that there cannot be any clashes internally within
the tail. By Theorem 1, the matching between concepts in tailx(C) and forbid-
den labeling of Cx is unique. So if this matching would result in a clash, i.e.
c1|r1 ∪ r2 = c2|r1∪ r2, then both c1 and c2 contain the forbidden labelings speci-
fied by representative r1 and r2. By swapping the assignment of forbidden labels
between c1 and c2 (i.e c1 is assigned to c1|r2 and c2 to c2|r1) we create a new
valid matching, thus contradicting the uniqueness. ��

5 Miscellaneous Lemmas

We conclude with some miscellaneous lemmas. The first one shows that the
representatives constructed by our algorithm induce a nesting of maximum
classes. The algorithm that iteratively removes a lowest degree vertex (see in-
troduction and Fig. 4) is not guaranteed to construct representatives with this
property.

Lemma 6. Let C be a maximum concept class with VC dimension d and let
r be a representation mapping for C produced by the Recursive Algorithm. Let
Ck = {c ∈ C s. t. |r(c)| ≤ k}. Then Ck is a maximum concept class with VC
dimension k.

Proof. Proof by induction on d. Base case d = 0, class has only one concept and
the statement is trivial.

Let x ∈ dom(C) be the first dimension along which the Recursive Algorithm
works (i.e. it first recursively finds representatives for Cx). Then we can use the
inductive assumption for Cx.

Let 0 < k < d (extreme values of k are trivial). Consider which concepts
in C get representatives of size ≤ k. They are all the concepts in 0Cx that
got representatives of size ≤ k in the mapping for Cx plus all the concepts in
1Cx that got representatives of size ≤ k − 1 (as 1Cx representatives have size
+1 compared to the 0Cx representatives). Thus, our class Ck is formed in the
following manner - Ck = 0Cx

k ∪ 1Cx
k−1. By inductive assumption Cx

k and Cx
k−1

are maximum classes with VC dimension k and k − 1. Furthermore, definition
of Ck implies that Cx

k−1 ⊂ Cx
k .

|Ck| = |0Cx
k |+ |1Cx

k−1| =
(
n−1
≤k

)
+

(
n−1
≤k−1

)
=

(
n
≤k

)
. Thus Ck has the right size

and V Cdim(Ck) ≥ k. It remains to show that Ck does not shatter any set of
size k + 1. Consider all sets of dimensions of size k + 1 that does not involve x.
It would have to be shattered by Ck − x = Cx

k ∪ Cx
k−1 = Cx

k , which is impossi-
ble. Now consider sets of size k + 1 that do involve x. All the 1 values for the
x coordinate happen in the 1Cx

k−1 part of Ck. Thus removing the x coordinate
we see that Cx

k−1 would have to shatter a set of size k, which is again
impossible. ��

It was known previously that the one-inclusion graph for maximum classes is
connected ((Gur97)). We are able to extend that statement to a stronger one in

604 D. Kuzmin and M.K. Warmuth

Lemma 8. Furthermore, this lemma is a known property of simple linear arrange-
ments, which are restricted maximum classes (i.e. not all maximum classescan
be represented as a simple linear arrangement (Flo89)). But first a necessary
technical lemma is proven.7

Lemma 7. For any maximum class C and x ∈ dom(C), restricting wrt x
does not change the incident dimension sets of concepts in tailx(C), i.e. ∀c ∈
tailx(C), IC(c) = IC−x(c− x)

Lemma 8. In the one-inclusion graph for a maximum concept class C, the
length of the shortest path between any two concepts is equal to their Hamming
distance.

Proof. From Lemma 7 it follows that there are no edges between any concepts
in tailx=0(C) − x and concepts in tailx=1(C) − x.

The proof will proceed by induction on |dom(C)|. The lemma trivially holds
when |dom(C)| = 0 (i.e. C = ∅). Let c, c′ be any two concepts in a maximum
class C of domain size n > 0 and let x ∈ dom(C). Since C − x is a maximum
concept class with a reduced domain size, there is a shortest path P between
c − x and c′ − x in C − x of length equal their Hamming distance. The class
C − x is partitioned into Cx and tailx(C) − x. If ĉ is the first concept of P in
Cx and ĉ′ the last, then by induction on the maximum class Cx (also of reduced
domain size) there is a shortest path between ĉ and ĉ′ that only uses concepts of
Cx. Thus we can assume that P begins and ends with a segment in tailx(C)−x
and has a segment of Cx concepts in the middle (Some of the three segments
may be empty).

Note that since there are no edges between concepts in tailx=0(C) − x and
tailx=1(C)− x, any segment of concepts in tailx(C)− x must be from the same
part of the tail. Also if the initial segment and final segment of P are both non-
empty and from different parts of the tail, then the middle Cx segment can’t be
empty.

We can now construct a shortest path P ′ between c and c′ from the path P .
When c(x) = c′(x) we can extend the concepts in P with x = c(x) to obtain
a path P ′ between c and c′ in C of the same length. Note that from the above
discussion all concepts of P from tailx(C) − x must be concepts that label x
with bit c(x).

If c(x) �= c′(x), let P be as above. We first claim that P must contain a concept
c̃ in Cx, because if all concepts in P lied in tailx(C) then this would imply an
edge between a concept in tailx=0(C) − x and a concept in tailx=1(C) − x. We
now construct a new path P ′ in C as follows: Extend the concepts up to c̃ in P
with x = c(x); then cross to the sibling concept c̃′ which disagrees with c̃ only
on its x-dimension; finally extend the concepts in path P from c̃ onwards with
x = 1. ��

7 Additional notation is as follows. IC(c) - is the set of incident dimensions, that is
set of labels for all edges of c in C. E(C) - set of all edges in a class.

Unlabeled Compression Schemes for Maximum Classes 605

Acknowledgments. Thanks to Sally Floyd for personal encouragement and
brilliant insights and to Sanjoy DasGupta for discussions leading to Lemma 8.

References

[Flo89] S. Floyd. Space-bounded learning and the Vapnik-Chervonenkis Dimension
(Ph.D). PhD thesis, U.C. Berkeley, December 1989. ICSI Tech Report
TR-89-061.

[FW95] S. Floyd and M. K. Warmuth. Sample compression, learnability, and the
Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.

[Gur97] Leonid Gurvits. Linear algebraic proofs of VC-dimension based inequalities.
In Shai Ben-David, editor, EuroCOLT ’97, Jerusalem, Israel, March 1997,
pages 238–250. Springer Verlag, March 1997.

[HLW94] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0, 1} functions
on randomly drawn points. Information and Computation, 115(2):284–293,
1994. Was in FOCS88, COLT88, and Univ. of California at Santa Cruz TR
UCSC-CRL-90-54.

[Lan03] John Langford. Tutorial on practical prediction theory for classification.
ICML, 2003.

[LLS02] Y. Li, P. M. Long, and A. Srinivasan. The one-inclusion graph algorithm is
near optimal for the prediction model of learning. Transaction on Informa-
tion Theory, 47(3):1257–1261, 2002.

[LW86] N. Littlestone and M. K. Warmuth. Relating data compres-
sion and learnability. Unpublished manuscript, obtainable at
http://www.cse.ucsc.edu/˜manfred, June 10 1986.

[MST02] Mario Marchand and John Shawe-Taylor. The Set Covering Machine. Jour-
nal of Machine Learning Research, 3:723–746, 2002.

[MST03] Mario Marchand and John Shawe-Taylor. The Decision List Machine. In Ad-
vances in Neural Information Processing Systems 15, pages 921–928. MIT-
Press, Cambridge, MA, USA, 2003.

[Sau72] N. Sauer. On the density of families of sets. Journal of Combinatorial
Theory (A), 13:145–147, 1972.

[Vap82] V. N. Vapnik. Estimation of Dependences Based on Empirical Data.
Springer-Verlag, New York, 1982.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probab. and
its Applications, 16(2):264–280, 1971.

[vLBS04] Ulrike von Luxburg, Olivier Bousquet, and Bernard Schölkopf. A com-
pression approach to support vector model selection. Journal of Machine
Learning Research, 5(Apr):293–323, 2004.

[War03] M. K. Warmuth. Compressing to VC dimension many points. COLT open
problems, 2003.

[War04] M. K. Warmuth. The optimal PAC algorithm. COLT open problems, 2004.
[Wel87] E. Welzl. Complete range spaces. Unpublished notes, 1987.

Trading in Markovian Price Models

Sham M. Kakade and Michael Kearns

Department of Computer and Information Science,
University of Pennsylvania,

Philadelphia, PA 19104

Abstract. We examine a Markovian model for the price evolution of a
stock, in which the probability of local upward or downward movement
is arbitrarily dependent on the current price itself (and perhaps some
auxiliary state information). This model directly and considerably gen-
eralizes many of the most well-studied price evolution models in classical
finance, including a variety of random walk, drift and diffusion models.
Our main result is a “universally profitable” trading strategy — a sin-
gle fixed strategy whose profitability competes with the optimal strategy
(which knows all of the underlying parameters of the infinite and possibly
nonstationary Markov process).

1 Introduction

We examine a Markovian model for the price evolution of a stock, in which
the probability of local upward or downward movement is arbitrarily dependent
on the current price itself (and perhaps some auxiliary state information). Our
main result is a “universally profitable” trading strategy — a single fixed strat-
egy whose profitability competes with the optimal strategy (which knows all
of the underlying parameters of the infinite and possibly nonstationary Markov
process). While we shall make this statement more precise shortly, our strategy
is provably profitable whenever the optimal strategy has significant profits.

The strategy itself is efficient and simple, and employs a “best expert” weight-
ing scheme (Cesa-Bianchi et al. [1997]) over two substrategies — one of which
attempts to do rudimentary learning from past observations (which may be ex-
tremely sparse), and one of which tries to spot significant directional trends
in price. Our main technical contribution is a proof that in our model, one of
these two strategies must always have a profit that compares favorably with the
optimal strategy.

There are several motivations for the model we introduce. The language of
Wall Street and finance is riddled with suggestions that the dynamics of price
movement may depend strongly on price itself. Professionals and articles discuss
“support” and “resistance” levels for a stock — specific prices or ranges of prices
below or above which the market will apparently not let the share price fall or
rise, respectively. The field of technical analysis is dominated by price patterns
whose appearance is thought to signal future behavior. The common notion of

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 606–620, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Trading in Markovian Price Models 607

price uptrends or downtrends is predicated on a series of price levels in which
the directional bias is nonzero.

There are also many less speculative reasons price dynamics may change
dramatically with price. For example, one might expect there to be support for
the share price at the level at which market capitalization (share price times
number of outstanding shares, which is essentially the cost of buying the entire
company) equals the liquid assets of the company. Similarly, many investors
become uncomfortable if the ratio of the share price to a company’s earnings
(P/E ratio) becomes excessively large compared to its sector average. Note that
in these cases there may be many factors aside from price influencing trading
behavior (market cap, P/E) — but such factors may nevertheless lead to different
price dynamics at different prices.

From the perspective of related literature on trading algorithms, we are par-
ticularly interested in price models that fall in between the highly adversarial
assumptions typical of competitive analysis and universal portfolio work in com-
puter science (Cover and Ordentlich [1996], Blum and Kalai [1999], El-Yaniv et
al. [2001], Helmbold et al. [1996]), and the strong statistical assumptions typical
of classical finance random walk and diffusion models and their generalizations
(reviewed in Section 3). Our model and result can be thought of as exhibiting
a “sweet spot” in the pantheon of price models, in the sense that it contains
an extremely rich range of statistical behaviors, yet still permits a universally
profitable trading strategy.

We emphasize from the outset that while our model is a gross oversimplifica-
tion of all the complexities that enter into real-world price formation, it directly
and considerably generalizes many of the most well-studied price evolution mod-
els in classical finance, including a variety of random walk, drift and diffusion
models (see Section 3). To our knowledge, our model has not been explicitly con-
sidered before in the finance literature, especially in an algorithmic and learning
context.

The outline of the paper follows. In Section 2, we provide the formal definition
of our model and the optimal trading strategy that knows the process parame-
ters. In Section 3, we briefly review some of the most common price evolution
models in the finance and computer science literatures and relate our model to
these. In Section 4, we discuss a number of interesting properties of the model
and give simulation results for a particular instance that demonstrates these
properties. Section 5 contains our main result. In Section 6 we generalize our
result to permit simple extensions of the state.

2 Model and Definitions

In the most basic version of our model, the probabilistic dynamics of directional
price movement depend only on the current price. More precisely, we assume that
for every integer p between −∞ and +∞ , there is a bias value ε(p) ∈ [−1

2 ,
1
2].

The interpretation of this bias is as follows: if the price at time t is pt, then with
probability 1

2 + ε(pt) we have pt+1 = pt + 1, and with probability 1
2 − ε(pt) we

608 S.M. Kakade and M. Kearns

have pt+1 = pt−1. Note that in this model, |pt+1−pt| = 1 always; it will be clear
that all of our results hold with only slight degradation in a more general setting
in which pt+1 must only remain in a bounded range around pt, including the
possibility of no movement. In our model, price movements are additive, prices
are always integer values, and negative prices are allowed for convenience, as all
that will matter are the profits made from price movements. (In the long version
of this paper we will discuss a generalization of our results when pt represents the
log price. For this case, the price remains positive.) Without loss of generality,
we always assume the initial price p1 is 0.

The complete probabilistic dynamics of price movement at all possible prices
are given by the infinite vector of biases ε(p) for all integers p, which we shall de-
note simply by ε. A model in our class is thus a countably infinite-state Markov
process. (Note that ε = 0 corresponds to an unbiased random walk.) We em-
phasize that this Markov process may be nonstationary and non-recurrent — an
infinite walk may never return to its origin, and may forever visit new prices.

In this paper, we will be concerned with trading algorithms that have no
a priori information about ε, yet can compete with the optimal algorithm that
knows the full vector of biases. In order to make such comparisons, it is necessary
to somehow limit the amount of risk the optimal algorithm can assume. For
instance, if ε(p) = 1/2 for some price p, so upward movement at price p is a
certainty, the “optimal” algorithm should purchase an infinite number of shares.
We shall thus limit our attention to trading strategies whose share position
(number of shares owned (long) or owed (short)) at any time is at most 1. Other
restrictions are possible, but this one has especially natural properties.

With this restriction, then, the optimal algorithm Aopt = Aopt(ε) is straight-
forward. If the current price is pt and ε(pt) > 0, then Aopt buys one share; and
if ε(pt) < 0 then Aopt sells (shorts) 1 share. If ε(pt) = 0, then Aopt takes no
action. Whichever action Aopt takes at time t, at the next time step t + 1, Aopt

reverses its action by selling the share bought or buying the share sold at time
t, and then repeating the process on pt+1. Thus after each time step, Aopt either
earns +1 (if it bought a share and the price rose, or it sold a share and the
price fell), or loses -1. Thus, we can view Aopt as an algorithm for 1-step binary
prediction of price movements on the probabilistic sequence of prices. Note that
if the price enters a long period of upwards price movement (for example) that
Aopt correctly predicts, then Aopt will be repeatedly buying a share, selling it
at the next step and immediately buying another share, etc. This behavior is
formally equivalent to buying a single share and holding it for the same period.

For any given bias vector ε and number of steps T , we let p = (p1, p2, . . . , pT)
be a random variable that is a sequence of T prices generated according to ε.
Without loss of generality, we assume p1 = 0. For any trading algorithm A and
price sequence p, we let V (A,p) denote the total amount earned or lost by A
on p divided by T (so that earnings are normalized to per-step averages) and
V (A, ε, T) = Eε,T [V (A,p)] is thus the expected per-step earnings or losses of
A over T -step sequences p distributed according to ε. We consider both cases
where A may or may not have knowledge of T . We limit ourselves to only consider

Trading in Markovian Price Models 609

algorithms A which limit their share position to at most 1 share, and so it is
easy to see that V (A, ε, T) is between −1 and 1. We note that V (A, ε, T) can
be highly dependent on the specific value of T , since we are in an infinite-state
Markov process: larger values of T may cause us to visit new price levels whose
dynamics are entirely unlike those seen on smaller time scales.

With these definitions, it is easy to show that V (Aopt, ε, T) is in fact the
optimal expected value among all trading algorithms whose position is at most
1 share at all times, which we shall thus also denote with the shorthand V ∗(ε, T).
Note that V ∗(ε, T) ∈ [0, 1] always.

For any sequence p, we define #(p) to denote the number of unique prices
appearing in p. Thus Eε,T [#(p)] is the expected number of unique prices, and
Eε,T [#(p)/T] is the expected fraction of steps that are first visits to some price.
This expectation will play a crucial role in our analysis.

3 Related Models

There is a rich history of mathematical models for the evolution of price time
series. Perhaps the most basic and well-studied of these are variants of standard
random walk or diffusion processes, often referred to in the literature as Wiener
processes. Among others, this category includes pure unbiased random walks of
price and random walks with overall upward or downward drifts (for instance,
to model the overall growth of the securities markets historically). Perhaps the
most general in this line of models is the Ito process, in which the instantaneous
drift and variance may depend arbitrarily on both the current price and the
time. A good overview of all of these models can be found in Hull [1993].

Our model can be viewed as being considerably more general than a Wiener
process with drift, but considerably less general than a general Ito process. In
particular, it will be easy to see that our results do not hold in the latter model.
Broadly speaking, if the price process is allowed to depend arbitrarily on time,
it is impossible to compete with the profitability of an omniscient party that
knows exactly the nature of this time dependence.

The popularity of the various random walk models stems in part from their
consistency with broader economic theory, most notably the Efficient Market
Hypothesis (EMH), the thesis that individual trader rationality should drive
all (expected) profit and arbitrage opportunities out of the market for a stock
(or at least all those opportunities beyond those implied by consistent long-
term growth, inflation, or drift). However, a long line of relatively recent works
have carefully questioned and refuted random walk models and their variants,
primarily on the basis of observed conflicts between historical price data and
model predictions (Lo and MacKinlay [1999]). Some of these studies have sug-
gested behavioral explanations for the deviations between historical prices and
the EMH, which are certainly in the spirit of our model, where the market may
react differently to different prices for psychological reasons.

The extensive field of technical analysis (Murphy [1999]), which suggests
that certain price (and other) patterns may presage market behavior, is also

610 S.M. Kakade and M. Kearns

clearly at odds with the EMH, at least in its strongest form. The long-term
statistical profitability of certain technical indicators has been argued based on
historical data (Brock et al. [1992]). The implicit assumptions of many technical
strategies is that price dynamics are largely determined by the current price and
some simple auxiliary state information (such as whether the recent price has
shown an uptrend or downtrend, or the high and low prices over some recent
time window). While our basic model permits only the current price as the
Markovian state, in Section 6 we generalize our main result to hold for simple
generalizations that incorporate many common technical indicators.

As noted in the Introduction, our model is also considerably more specialized
(in terms of the allowed price behavior) than the worst-case price models often
examined in computer science and related fields (Cover and Ordentlich [1996],
Blum and Kalai [1999], El-Yaniv et al. [2001], Helmbold et al. [1996]). Indeed,
in such models, one could never prove that any fixed collection of strategies
always contained one competing with the optimal strategy that knew the price
generation process. The precise point of our model and result is the introduction
of a more limited but still quite powerful statistical model for price evolution,
along with the proof that a fixed and simple strategy that mixes rudimentary
learning and trend-spotting must always be competitive.

4 Properties of the Model, and an Example

Let us now enumerate a few properties (or in some cases, non-properties) of
our model that are noteworthy and that distinguish it from some of the more
classical models discussed in Section 3:

– As already noted, setting all ε(p) = 0 yields a standard (additive) random
walk, while all ε(p) = α for some nonzero α yields a random walk with drift.

– One can also program rich mixtures of uptrends, downtrends, unbiased ran-
dom walks, support and resistance levels, and other features in a single in-
stance of our model.

– While our model does not allow the detailed specification of time-dependent
events (and indeed, our main result would not hold in models such as a
general Ito process), one can program rich temporal behaviors in expectation.
We shall see examples shortly.

– None of the standard random variables of interest — such as the price after
T steps, the maximum and minimum prices over T steps, or the profitability
of fixed trading strategies — are (necessarily) unimodal in distribution or
sharply peaked around their means.

– The optimal per-step profitability V ∗(ε, T) may be nonmonotonic in T .

We now examine a concrete instance of our model. Since all we are concerned
with is the additive movements of the price, without loss of generality we assume
that the initial price is zero. Now consider the following instance of our model,
which will be shown in simulation in Figures 1 through 3.

Trading in Markovian Price Models 611

– For p = −25, . . . , 25, ε(p) = 0. Thus, on either side of the initial price, there
is a bounded region of unbiased random walk.

– For p = 26, . . . , 40, ε(p) = 0.1. Thus, above the random walk region around
the initial price, there is a small region of uptrend.

– For p > 40, ε(p) = −0.1. Thus, above the uptrend there is an infinite region
of probabilistic resistance to further upward movement.

– For p = −100, . . . ,−26, ε(p) = −0.1. Thus, below the random walk region
around the initial price, there is a large but bounded region of downtrend.

– For p < −101, ε(p) = 0. Thus, below the downtrend there is an infinite
region of unbiased random walk.

Figures 1 through 3 each show 16 randomly sampled time series from the model ε
described above. Each figure shows samples from one of the four time scales T =
100, 1000, 10000. Horizontal lines are used to delineate the different regimes of
price behavior enumerated above. All of the behaviors identified at the beginning
of this section are clearly exhibited, and are discussed in the figure captions.

5 Main Result

In this section, we develop our main result: a trading strategy that knows nothing
about the underlying model parameters ε, but whose per-step profitability can be
provably related to V ∗(ε, T). While the analysis is rather involved, the strategy
itself and the intuition behind it are appealingly simple and are now sketched
briefly.

The key to the analysis is the quantity Eε,T [#(p)/T], the expected fraction of
first visits to prices. The first insight is that if this expectation is “small”, then we
make “enough” repeat visits to prices to obtain a slight advantage in estimating
the biases. For the final result to work out, we must show that this intuition
holds even when the average number of visits per state is far too small (such
as a constant) to apply concentration inequalities such as the Chernoff bound.1

Essentially, while we may not have large enough samples to assert an advantage
in estimating the bias of any particular price, we prove that an advantage exists
on average across the prices visited. In this case a rather rudimentary learning
strategy fares well.

The second insight is that if Eε,T [#(p)/T] is “large”, the price must be
following a strong trend that is driven by an overall directional bias, and cannot
be easily reversed on a comparable time scale (even though it may be reversed
on much longer time scales). In this case a simple trend-following or momentum
strategy is profitable.

The challenge in the analysis is to make these intuitions precise, and to prove
that competing with optimal is possible for all values of Eε,T [#(p)/T]. In Sec-

1 Roughly speaking, if the bias vector ε is such that the model behaves in a manner
similar to a random walk, yet still permitting profit by the optimal algorithm, the
number of visits to a price will usually not be frequent enough to obtain a benefit
from using concentration inequalities.

612 S.M. Kakade and M. Kearns

tion 5.1 we provide the analysis for the case of “small ” values for Eε,T [#(p)/T],
and in Section 5.2 we consider the case of large values. Section 5.3 stitches the
pieces together to give our main result, which we now state:

Theorem 1. (Main Result) Let γ > 0, and let T ′ satisfy T ′e−γ2T ′/100 < γ/32
(which is satisfied for T ′=Ω((1/γ2) ln(1/γ))). There exists an algorithm Amaster,
taking input γ, such that for all ε and T ≥ T ′, as long as V ∗(ε, T) ≥ 2

√
γ, we

have
V (Amaster(γ), ε, T) ≥ γ

4
V ∗(ε, T) −

√
2 ln(2)/T . (1)

Let us interpret this result briefly. If the profitability of the optimal algorithm
is too small (quantified as being below 2

√
γ), we simply “give up” and are not

competitive. The parameter γ thus provides a trade-off to the user of Amaster.
Smaller values of γ will cause the lower bound on V (Amaster, ε, T) to take effect
at smaller values of V ∗(ε, T), but the competitive ratio (which is essentially
γ/4) degrades accordingly. Larger values of γ cause us to not compete at all for
a wider range of V ∗(ε, T), but give a better competitive ratio when V ∗(ε, T) is
sufficiently large.

Note also that Theorem 1 provides an “anytime” result, in that the strategy
Amaster is competitive simultaneously on all time scales, and does not require
T as an input. This is important in light of the fact that V ∗(ε, T) may be
nonmonotonic in T .

The remainder of this section is devoted to developing Amaster and proving
Theorem 1.

5.1 A Statistical Strategy

We now define a simple trading algorithm that makes minimal use of past ob-
servations. We shall denote this algorithm Astat. If the current price pt is being
visited for the first time (that is, time t is the earliest appearance of price pt in
the sequence p), Astat makes no trade. In this case, after pt+1 is revealed, Astat

stores a first-visit record consisting of the price pt along with an indication of
whether pt+1 went up or down from pt.

If t is not the first time price pt has been visited, then Astat looks up the
first-visit record for pt and trades according to this record — that is, if after the
first visit to pt the price went up, Astat buys one share, otherwise it sells one
share, respectively. To obey the 1-share position limit, at time t + 1 Astat sells
off or buys back the position it accumulated and repeats the process on pt+1.

Thus, Astat is the algorithm that makes perhaps the least possible use of
statistical history, simply predicting that what happened after the very first
visit to a price will continue to happen. Obviously, it would make more intuitive
sense to collect statistics on all the visits to a given price, and trade based
on these cumulative statistics. But it turns out that Astat must operate with
sample sizes that are far too small to usefully apply large-deviation bounds such
as the Chernoff inequality. Thus we cannot provide a general bound in which
our expected value is a linear fraction of the optimal value. Instead, we compete

Trading in Markovian Price Models 613

against the square of the optimal value (which we conjecture is the best possible).
More formally, we have:

Theorem 2. (Statistical Strategy) For any biases ε and any T ,

V (Astat, ε, T) ≥ V ∗(ε, T)2 − Eε,T [#(p)/T]. (2)

Proof. Let us first write down an explicit expression for the T -step optimal value
V ∗(ε, T). At each time step t, the optimal algorithm examines the bias ε(pt) to
decide how to trade. Abusing notation slightly, let us denote ε(t) = ε(pt) when t
is a time value and not a price value and thus there is no risk of confusion. The
expected profit of Aopt at time t is then(

1
2

+ |ε(t)|
)

(+1) +
(

1
2
− |ε(t)|

)
(−1) = 2|ε(t)|. (3)

Now recall that V ∗(ε, T) = Eε,T [V (Aopt,p)]. Since V (Aopt,p) is a sum of T
1-step returns, by linearity of expectation we may write

V ∗(ε, T) =
1
T

T∑
t=1

∑
p:|p|=t

Pr
ε,t

[p](2|ε(t)|) (4)

where each inner sum over sequences p of length t ≤ T is the expected profit of
Aopt on the step t.

Let us now analyze the 1-step expected profit of algorithm Astat at time t.
If t is the first visit to the price pt in the sequence p, then the profit of Astat

is 0. Otherwise, the profit depends on whether the first visit to pt revealed the
correct or incorrect sign of ε(pt). More precisely, the expected return of Astat on
non-first visits to pt may be written(

1
2

+ |ε(t)|
)

(2|ε(t)|) +
(

1
2
− |ε(t)|

)
(−2|ε(t)|) = 4|ε(t)|2. (5)

The logic here is that with probability 1
2 + |ε(t)|, the first visit to pt reveals the

correct sign of the bias, in which case on all subsequent visits, Astat will behave
the same as Aopt and receive 2|ε(t)| in expected profits; and with probability
1
2 − |ε(t)|, the first visit to pt reveals the incorrect sign, in which case on all
subsequent visits, Astat will receive −2|ε(t)|. Thus the expectation is taken over
both the randomization on the current visit to pt, and the randomization on the
first visit.

We would now like to apply this observation on the 1-step profit of Astat to
obtain an expression for V (Astat, ε, T); the main challenge is in dealing with the
dependencies introduced by conditioning on the number of visits to each price
level. The following inequality can be shown (details omitted):

V (Astat, ε, T) ≥ 1
T

T∑
t=1

∑
p:|p|=t

Pr
ε,t

[p](4|ε(t)|2) − Eε,T [#(p)/T] (6)

614 S.M. Kakade and M. Kearns

Combining Equation (4) and Equation (6), we now have:

V (Astat, ε, T) − V ∗(ε, T)2 ≥

4
T

T∑
t=1

∑
p:|p|=t

Pr
ε,t

[p]|ε(t)|2 −

⎛⎝ 2
T

T∑
t=1

∑
p:|p|=t

Pr
ε,t

[p]|ε(t)|

⎞⎠2

− Eε,T [#(p)/T] (7)

It remains to show that the first two terms are positive.
Recall that each ε(t) = ε(pt) is actually the bias at some price level pt. Let

us define for each price q

w(q) =
1
T

T∑
t=1

∑
p:|p|=t,p(t)=q

Pr
ε,t

[p]. (8)

It is easy to see that since the price must remain in the range [−T, T] on sequences
of length at most T , the values w(−T), . . . , w(T) sum to 1 and are all positive,
and thus can be interpreted as a distribution. The first two terms in Equation
(7) may be rewritten as

4

⎛⎜⎝ T∑
q=−T

w(q)|ε(q)|2 −

⎛⎝ T∑
q=−T

w(q)|ε(q)|

⎞⎠2
⎞⎟⎠ (9)

This difference is non-negative as desired, by the convexity of the function f(x) =
x2. (Interestingly, note that this difference has the form of the variance of ε(q)
with respect to the distribution w(q).) ��

5.2 A Momentum Strategy

We now turn attention to a strategy that will succeed for large values of the
quantity Eε,T [#(p)/T]. For any given values of γ and T , the momentum strategy
Amom(γ, T) can be described as follows:

1. For all p ∈ (−γT/4, γT/4), take no action.
2. For all p ≥ γT/4, purchase one share and sell it back at the next time step.
3. For all p ≤ −γT/4, sell one share and purchase it back at the next time step.

Note this strategy uses knowledge of the time T ; however, this dependency
can be removed (details omitted) to yield an algorithm that is competitive on
all time scales simultaneously.

The following definitions will be necessary in our analysis of Amom. For the
remainder of this subsection, p will denote a price sequence of length T for
some fixed T . Let max(p) (min(p), respectively) be the maximum (minimum,
respectively) price reached on p. Let drop(p) be the absolute value of the dif-
ference between max(p) and the smallest price reached on p after the first visit
to max(p). Thus, drop(p) measures the “fall” from the high price. Similarly, we

Trading in Markovian Price Models 615

define rise(p) to be the absolute value of the difference between min(p) and the
largest price reached on p after the first visit to min(p).

Amom enjoys the following performance guarantee.

Theorem 3. (Momentum Strategy) Let γ > 0, and let T ′ satisfy T ′e−γ2T ′/48 <
γ/16. If T > T ′ and if either Eε,T [max(p)/T] ≥ γ or Eε,T [|min(p)/T |] ≥ γ then

V (Amom(γ, T), ε, T) ≥ γ

2
≥ γ

2
V ∗(ε, T) (10)

Note that unlike the guarantee for Astat, Amom must be run for a time larger
than some threshold time. Essentially, this time is the time long enough to
discover the trend. Also, note that we always must have either Eε,T [max(p)] ≥
Eε,T [#(p)]/2 or Eε,T [|min(p)|] ≥ Eε,T [#(p)]/2.

At the heart of the proof of Theorem 3 is the following simple probabilistic
lemma. The lemma essentially states that if the price makes large moves on some
time scale, then with high probability it cannot return to its starting value on a
comparable time scale.

Lemma 1. For any constant a > 0, we have

1. For all ε, T and z ≥ aT , Prε,T [max(p) = z and drop(p) ≥ aT/2] ≤ e−a2T/12.
2. For all ε, T and z ≤ −aT , Prε,T [min(p) = z and rise(p) ≥ aT/2] ≤

e−a2T/12.

Proof. (Sketch) We sketch only Part 1, as Part 2 is entirely symmetric. First
let us suppose that among the biases ε(0), . . . , ε(z) there are more than aT/4
which are negative. In this case we show that the probability of max(p) even
reaching the price z is small. In order for the price to reach z, it clearly must
“get through” these negative biases — in other words, the price must have a net
upwards movement of at least aT/4 even when restricted only to those visits to
prices with negative bias. If we modify all of these negative biases to be equal to
0 (unbiased), we can clearly only increase the probability that max(p) reaches
the price z.

We can thus bound Prε,T [max(p) = z] by the probability that in T indepen-
dent flips of a fair coin, we would see an excess of heads over tails of at least
aT/4. By the standard Chernoff bound, the probability of seeing such an excess
in T flips is at most e−(a2/2)2T/3 = e−a2T/12. Since the probability of max(p)
even reaching z has been thus bounded, the lemma holds in this case.

Otherwise, we must have that at most aT/4 of the biases ε(0), . . . , ε(z) are
negative. In this case we show that Prε,T [drop(p) ≥ aT/2] is small. Since the
price can drop by a net amount of at most aT/4 when restricted only to visits
to prices with negative biases, in order to drop by a total of at least aT/2, it
must drop a further net amount of at least aT/4 when restricted only to visits
to prices with positive biases. Using a similar argument, it is straightforward to
see that this probability is bounded by e−a2T/12. ��

Lemma 1 is used to prove the following result (and a similar result holds in
terms of Eε,T [min(p)/T]).

616 S.M. Kakade and M. Kearns

Lemma 2. Let γ > 0, and let T ′ be such that T ′e−γ2T ′/48 < γ/16. If T > T ′,
then for any biases ε

V (Amom(γ, T), ε, T) ≥ Eε,T [max(p)/T] − γ/2 (11)

Proof. (Sketch) First, using an argument that is similar to the proof of the
Markov inequality, one can show:∑

x>γT/4

Pr
ε,T

[max(p) = x](x − γT/4) ≥ Eε,T [max(p)] − γT/4. (12)

Informally, this summation is the expected profit from the cases in which the
maximum price exceeds γT/4, conditioned on the subsequent drop being at most
γT/4.

Now one can use Lemma 1 to show that the value of Amom is close to the
above. This argument is somewhat involved and is included in the long version
of this paper. ��

Theorem 3 follows from Lemma 2 under the assumption that Eε,T [max(p)] >
γT , and noting that V ∗(ε, T) ≤ 1.

5.3 Putting the Pieces Together

Theorems 2 and 3 establish that for any biases ε and any T , at least one of
the two strategies Astat and Amom must have an expected profit that compares
“favorably” with that of the optimal algorithm that knows ε. We now wish to
define a single strategy accomplishing this same criterion. Of course, one way
of doing this is to have a strategy that simply flips a fair coin at the outset of
trading to decide wether to use Astat or Amom for the duration of the sequence, at
a cost of a factor of 2 in our expected return in comparison to V ∗(ε, T). While
this cost is insignificant in light of the other constant factors we are already
absorbing, we prefer to apply the so-called “experts” methods of worst-case on-
line analysis. When we generalize our results to permit the biases ε to depend
on an underlying state variable more complex than just the current price, the
experts methodology will be necessary.

In order to apply the experts framework, it is important to recall the ob-
servation made in Section 2 that our trading model can really be viewed as
an instance of on-line binary prediction. We view trading strategies (and Astat,
Amom and the optimal trading algorithm in particular) as making a series of
trades or predictions, each of which wins or loses immediately. We can thus im-
mediately apply the on-line weighting scheme of Cesa-Bianchi et al. [1997] to
the strategies Astat and Amom (in this case, an especially small set of experts);
let us call the resulting strategy Amaster, since it can be viewed as a “master”
strategy allocating capital between the two subordinate strategies. Combining
Theorem 16 of Cesa-Bianchi et al. [1997] with Theorems 2 and 3 allows one to
show that

V (Amaster, ε, T) ≥ min
(
V ∗(ε, T)2 − γ,

γ

4
V ∗(ε, T)

)
−

√
2 ln(2)/T (13)

Trading in Markovian Price Models 617

always holds. Notice that this lower bound may actually be near zero for small
values of V ∗(ε, T). From this equation, Theorem 1 follows.

6 Extending the State

So far we have focused exclusively on a model in which the directional bias of
the price movement may depend arbitrarily on the current price itself. In this
section we generalize our results to a considerably richer class of models, in which
the directional bias ε = ε(p, s) may depend on both price p and some auxiliary
information s. For example, one might posit that a more realistic model for price
dynamics is that the directional bias depends not only on the current price, but
also on whether the current price was arrived at from below or above. We can
model this by letting the probability that pt+1 = pt + 1 be 1

2 + ε(pt, st), where
ε(pt, st) ∈ [− 1

2 ,
1
2] and st ∈ {0, 1} equals 1 if pt = pt−1 + 1 (uptrend) and 0 if

pt = pt−1 − 1 (downtrend). We again have an infinite Markov process, but with
the Markovian state now being the pairs (p, s) rather than just p alone. We will
continue to use the notation ε to denote the infinite set of biases ε(p, s) for all
integer prices p and binary trend indicators s.

We now outline why the results of Section 5 continue to hold with some
additional machinery, after which we will provide a more general and formal
statement. Let p be the sequence of prices pt, and let s be the corresponding
sequence of auxiliary values st. Let us define #(p, s) to be the number of unique
states (pt, st) visited on (p, s). Then it is easily verified that Theorem 2 holds
with Eε,T [#(p)/T] replaced by Eε,T [#(p, s)/T]. In this case, the obvious mod-
ification of strategy Astat — namely, to always trade according to the observed
behavior of the price on the first visit to state (p, s) — permits an identical
analysis.

The extension of Theorem 3 is slightly more involved. In particular, in our
new model Lemma 1 simply no longer holds — we can now easily “program”
behavior that (for example) causes the price to deterministically rise to some
price and then deterministically fall back to its starting value. In the price-
only model, such behavior was excluded by Lemma 1, which states that the
probability of the conjunction of a steep rise in price and a subsequent drop is
exponentially small.

However, in the new model it remains true that if Eε,T [#(p, s)/T] is larger
than γ, then either Eε,T [max(p)] or Eε,T [min(p)] must be large — namely, one
of them must be at least γT/4 (as opposed to γT/2 in the price-only model).
This is because for every n unique states we visit, we must visit at least n/2
unique prices as well, since for each price p there are only two associated states
(p, 0) and (p, 1). To exploit this, despite the fact that Lemma 1 no longer holds,
we make richer use of the Cesa-Bianchi et al. [1997] results. For each 1 ≤ i ≤ T ,
we introduce two simple trading strategies, A+i and A−i. Strategy A+i buys a
single share at the outset of trading, and sells it back if and only if the price
reaches the value i above its starting point. Strategy A−i sells a single share
at the outset of trading, and buys it back if and only if the price reaches the

618 S.M. Kakade and M. Kearns

value i below its starting point. If either Eε,T [max(p)] or Eε,T [min(p)] is at least
γT/4, then clearly the expected maximum per-step profit among the strategies
{A+i, A−i}1≤i≤T is at least γ/4.

The new overall algorithm is thus to apply the weighting scheme of Cesa-
Bianchi et al. [1997] to the strategies {A+i, A−i}1≤i≤T along with the strategy
Astat. Regardless of the value of Eε,T [#(p, s)/T], one of these 2T + 1 strategies
will be profitable.

To generalize the analysis above, note that the only property we required of
the state space (p, s) is that each possible price p has only a “small” number
of possible extensions s (2 in the analysis above). This motivates the following
definition: for any price p, let us define κ(p) to be |{(p, s) ∈ S}|, where S is
the set of possible states. For instance, in the example above, for any given p,
only the states (p, 0) and (p, 1) are possible, so κ(p) = 2 always. We then define
κmax = maxp{κ(p)}. Note that κmax can be finite and small even though an
infinite number of values of s are possible as we range over all values of p. For
example, if s is defined to be the maximum price in the last � time steps, then
for any p, there are at most 2� possible values for s; but the domain of s is all
the integers.

Let Ageneral(T) refer to this more general algorithm which takes T as an input
and which weights the strategies Astat and {A+i, A−i}1≤i≤T as discussed above.
Then we have the following theorem.

Theorem 4. (Main Result, Extended State) Let κmax be as defined above. Let
γ > 0, and let T ′ be such that T ′e−γ2T ′/100 < γ/32 (which is satisfied for T ′ =
Ω((1/γ2) ln(1/γ))). If T ≥ T ′, then for any ε and as long as

V ∗(ε, T) ≥ 2
√

(γ2/4κmax) + 4γ (14)

we have

V (Ageneral(T), ε, T) ≥ γ

2κmax
V ∗(ε, T) −

√
2 ln(T)/T . (15)

Note that this differs from the price-only result of Theorem 1 in that our
competitive ratio is now proportional to γ/κmax rather than γ, and the regret
term

√
2 ln(T)/T of the weighting scheme now has ln(T) replacing ln(2). Also,

this result is not anytime since Ageneral takes as input the time T .
Thus for constant κmax, our bound essentially suffers only a constant factor

degradation.

Acknowledgments

We give to warm thanks to Adam Kalai and Sebastian Seung for valuable dis-
cussions on the material presented here. We also thank the reviewers for their
numerous helpful comments and suggestions.

Trading in Markovian Price Models 619

References

A. Blum and A. Kalai. Universal portfolios with and without transaction costs. Ma-
chine Learning, 35(3):193–205, 1999.

A. Brock, J. Lakonishok, and B. Lebaron. Simple technical trading rules and the
stochastic properties of stock returns. Journal of Finance, (47):1731–1764, 1992.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):
427–485, 1997. ISSN 0004-5411.

T. Cover and E. Ordentlich. Universal portfolios with side information. IEEE Trans-
actions on Information Theory, 42(2), 1996.

R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way trading
online algorithms. Algorithmica, 30:101–139, 2001.

David P. Helmbold, Robert E. Schapire, Yoram Singer, and Manfred K. War-
muth. On-line portfolio selection using multiplicative updates. In In-
ternational Conference on Machine Learning, pages 243–251, 1996. URL
citeseer.ist.psu.edu/article/helmbold98line.html.

J. Hull. Options, Futures, and Other Derivative Securities. Prentice Hall, 1993.
A. Lo and A.C. MacKinlay. A Non-Random Walk Down Wall Street. Princeton Uni-

versity Press, 1999.
J. Murphy. Technical Analysis of the Financial Markets. New York Institute of Finance,

1999.

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

0 50 100
−100

−50

0

50

Fig. 1. 16 sampled walks of length T = 100 from the model described in Section 4. On
this short time scale, with high probability, the walk remains in the unbiased region
between p = −25 and p = 25

620 S.M. Kakade and M. Kearns

0 500 1000
−200

−100

0

100

0 500 1000
−100

−50

0

50

0 500 1000
−100

0

100

0 500 1000
−100

−50

0

50

0 500 1000
−100

−50

0

50

0 500 1000
−100

0

100

0 500 1000
−100

0

100

0 500 1000
−100

−50

0

50

0 500 1000
−100

−50

0

50

0 500 1000
−100

0

100

0 500 1000
−200

−100

0

100

0 500 1000
−100

−50

0

50

0 500 1000
−200

−100

0

100

0 500 1000
−200

−100

0

100

0 500 1000
−100

−50

0

50

0 500 1000
−100

−50

0

50

Fig. 2. 16 sampled walks of length T = 1000. Most walks either enter the uptrend
region above p = 25 and are lifted to the resistance level at p = 40 (plot in row 1,
column 3, denoted (1, 3) in the sequel), or enter the downtrend region below p = −25
(plot (1, 2)). Some walks enter the uptrend or downtrend only very late (plot (2, 1)),
or do not even leave the unbiased region (plot (3, 1))

0 5000 10000
−400

−200

0

200

0 5000 10000
−200

−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−400

−200

0

200

0 5000 10000
−100

0

100

0 5000 10000
−200

−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−100

0

100

0 5000 10000
−200

−100

0

100

0 5000 10000
−200

−100

0

100

0 5000 10000
−200

−100

0

100

0 5000 10000
−200

−100

0

100

0 5000 10000
−200

−100

0

100

Fig. 3. 16 sampled walks of length T = 10000. Now all walks either traverse the
uptrend and remain near the p = 40 resistance level, or traverse the downtrend and
follow an unbiased random walk below p = −100, the bottom of the downtrend region.
On this time scale, some of the uptrend walks are starting to show “cracks” in the form
of dips back into the original unbiased region (plots (2, 2), (2, 4) and (3, 2)). Eventually
these cracks will pull the price back through the original unbiased region and into the
downtrend; asymptotically, all walks eventually spend most of their lives in the lower
unbiased region below p = −100

From External to Internal Regret

Avrim Blum1,� and Yishay Mansour2,��

1 School of Computer Science, Carnegie Mellon University,Pittsburgh, PA 15213
avrim@cs.cmu.edu

2 School of Computer Science, Tel-Aviv University, Israel
mansour@cs.tau.ac.il

Abstract. External regret compares the performance of an online al-
gorithm, selecting among N actions, to the performance of the best of
those actions in hindsight. Internal regret compares the loss of an online
algorithm to the loss of a modified online algorithm, which consistently
replaces one action by another.

In this paper, we give a simple generic reduction that, given an algo-
rithm for the external regret problem, converts it to an efficient online
algorithm for the internal regret problem. We provide methods that work
both in the full information model, in which the loss of every action is
observed at each time step, and the partial information (bandit) model,
where at each time step only the loss of the selected action is observed.
The importance of internal regret in game theory is due to the fact that
in a general game, if each player has sublinear internal regret, then the
empirical frequencies converge to a correlated equilibrium.

For external regret we also derive a quantitative regret bound for a
very general setting of regret, which includes an arbitrary set of modi-
fication rules (that possibly modify the online algorithm) and an arbi-
trary set of time selection functions (each giving different weight to each
time step). The regret for a given time selection and modification rule
is the difference between the cost of the online algorithm and the cost
of the modified online algorithm, where the costs are weighted by the
time selection function. This can be viewed as a generalization of the
previously-studied sleeping experts setting.

1 Introduction

The motivation behind regret analysis might be viewed as the following: we de-
sign a sophisticated online algorithm that deals with various issues of uncertainty
and decision making, and sell it to a client. Our online algorithm runs for some

� This work was supported in part by NSF grants CCR-0105488 and IIS-0312814.
�� The work was done while the author was a fellow in the Institute of Advance studies,

Hebrew University. This work was supported in part by the IST Programme of the
European Community, under the PASCAL Network of Excellence, IST-2002-506778,
by a grant no. 1079/04 from the Israel Science Foundation and an IBM faculty award.
This publication only reflects the authors’ views.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 621–636, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

622 A. Blum and Y. Mansour

time and incurs a certain loss. We would like to avoid the embarrassment that
our client will come back to us and claim that in retrospect we could have in-
curred a much lower loss if we used his simple alternative policy π. The regret of
our online algorithm is the difference between the loss of our algorithm and the
loss using π. Different notions of regret quantify differently what is considered
to be a “simple” alternative policy.

At a high level one can split alternative policies into two categories. The first
consists of alternative policies that are independent from the online algorithm’s
action selection, as is done in external regret. External regret, also called the
best expert problem, compares the online algorithm’s cost to the best of N ac-
tions in retrospect [19, 15, 24, 17, 18, 6]. This implies that the simple alternative
policy performs the same action in all time steps, which indeed is quite simple.
Nonetheless, one important application of external regret to online algorithm
analysis is a general methodology of developing online algorithms whose per-
formance matches that of an optimal static offline algorithm by modeling the
possible static solutions as different actions.

The second category are those alternative policies that consider the online
sequence of actions and suggest a simple modification to it, such as “every time
you bought IBM, you should have bought Microsoft instead.” This notion is
captured by internal regret [13]. Specifically, internal regret allows one to modify
the online action sequence by changing every occurrence of a given action i by
an alternative action j. Specific low internal regret algorithms were derived in
[20, 12, 13, 14, 7], where the use of the approachability theorem [4] has played an
important role in some of the algorithms [20, 12, 14].

One of the main contributions of our work is to show a simple online way to
efficiently convert any external regret algorithm into an internal regret algorithm.
Our guarantee is somewhat stronger than internal regret and we call it swap
regret, which allows one to simultaneously swap multiple pairs of actions. (If
there are N actions total, then swap-regret is bounded by N times the internal
regret.) Using known results for external regret we can derive a swap regret
bound of O(N

√
T log N + N log N), and with additional optimization we are

able to reduce this regret bound to O(
√

NT log N + N log N log T). We also
show an Ω(

√
NT) lower bound for the case of randomized online algorithms

against an adaptive adversary.
The importance of internal regret is due to its tight connection to correlated

equilibria [3]. For a general-sum game of any finite number of players, a distri-
bution Q over the joint action space is a correlated equilibrium if every player
would have zero internal regret when playing it. In a repeated game scenario, if
each player uses an action selection algorithm whose internal regret is sublinear
in T , then the empirical distribution of the players actions converges to a corre-
lated equilibrium (see, e.g. [20]). In fact, we point out that the deviation from
a correlated equilibrium is bounded exactly by the average swap regret of the
players.

We also extend our internal regret results to the partial information model,
also called the adversarial multi-armed bandit (MAB) problem [2]. In this model,

From External to Internal Regret 623

the online algorithm only gets to observe the loss of the action actually se-
lected, and does not see the losses of the actions not chosen. For example, if
you are driving in rush-hour traffic and need to select which of several routes to
take, you only observe the travel time on the route actually taken. If we view
this as an online problem, each day selecting which route to take on that day,
then this fits the MAB setting. Furthermore, the route-choosing problem can
be viewed as a general-sum game: your travel time depends on the choices of
the other drivers as well. Thus, if every driver uses a low internal-regret algo-
rithm, then traffic patterns will converge to a correlated equilibrium. For the
MAB problem, our combining algorithm requires additional assumptions on the
base external-regret MAB algorithm: a smoothness in behavior when the actions
played are taken from a somewhat different distribution than the one proposed
by the algorithm. Luckily, these conditions are satisfied by existing external-
regret MAB algorithms such as that of Auer et al. [2]. For the multi-armed
bandit setting, we derive an O(

√
N3T log N + N2 log N) swap-regret bound.

Thus, after T = O(1
ε2 N

3 log N) rounds, the empirical distribution on the his-
tory is an ε-correlated equlibrium. (The work of [21] also gives a multi-armed
bandit algorithm whose internal regret is sublinear in T , but does not derive
explicit bounds.)

One can also envision broader classes of regret. Lehrer [23] defines a notion of
wide range regret that allows for arbitrary action-modification rules, which might
depend on history, and also Boolean time selection functions (which determine
which subset of times is relevant). Using the approachability theorem [4], he
shows a scheme that in the limit achieves no regret (regret is sublinear in T).
While [23] derives the regret bounds in the limit, we derive finite-time regret
bounds for this setting. We show that for any family of N actions, M time
selection functions and K modification rules, the maximum regret with respect to
any selection function and modification rule is bounded by O(

√
TN log(MK)+

N log(MK)). Our model also handles the case where the time selection functions
are not Boolean, but rather reals in [0, 1].

This latter result can be viewed as a generalization of the sleeping experts
setting of [5, 16]. In the sleeping experts problem, we again have a set of experts,
but on any given time step, each expert may be awake (making a prediction)
or asleep (not predicting). This is a natural model for combining a collection
of if-then rules that only make predictions when the “if” portion of the rule is
satisfied, and this setting has had application in domains ranging from man-
aging a calendar [5] to text-categorization [11] to learning how to formulate
web search-engine queries [10]. By converting each such sleeping-expert into a
pair 〈expert, time-selection function〉, we achieve the desired guarantee that for
each sleeping-expert, our loss during the time that expert was awake is not much
more than its loss in that period. Moreover, by using non-Boolean time-selection
functions, we can naturally handle prediction rules that have varying degrees
of confidence in their predictions and achieve a confidence-weighted notion of
regret.

624 A. Blum and Y. Mansour

We also study the case of deterministic Boolean prediction in the setting
of time selection functions. We derive a deterministic online algorithm whose
number of weighted errors, with respect to any time selection function from our
class of M selection functions is at most 3OPT +1+2 log M , where OPT is the
best constant prediction for that time selection function. (For lack of space, the
proof is omitted in this extended abstract.)

Recent Related Work. It was brought to our attention [25] that comparable re-
sults can be achieved based on independent work appearing in the journal version
of [26]: specifically, the results regarding the relation between external and in-
ternal regret [27] and the multi-armed bandit setting [8]. In comparison to [27],
we are able to achieve a better swap regret guarantee in polynomial time (a
straightforward application of [27] to swap regret would require time-complexity
Ω(NN); alternatively, they can achieve a good internal-regret bound in poly-
nomial time, but then their swap regret bound becomes worse by a factor of√

N). On the other hand, work of [27] is applicable to a wider range of loss
functions, which also capture scenarios arising in portfolio selection. We should
stress that the above techniques are very different from the techniques proposed
in our work.

2 Model and Preliminaries

We assume an adversarial online model where there are N available actions
{1, . . . , N}. At each time step t, an online algorithm H selects a distribution pt

over the N actions. After that, the adversary selects a loss vector �t ∈ [0, 1]N ,
where �t

i ∈ [0, 1] is the loss of the i-th action at time t. In the full information
model, the online algorithm receives the loss vector �t and experiences a loss
�t
H =

∑N
i=1 pt

i�
t
i. In the partial information model, the online algorithms receives

(�t
kt , kt), where kt is distributed according to pt, and �t

H = �t
kt is its loss. The

loss of the i-th action during the first T time steps is LT
i =

∑T
t=1 �t

i, and the loss
of H is LT

H =
∑T

t=1 �t
H . The aim for the external regret setting is to design an

online algorithm that will be able to approach the best action, namely, to have
a loss close to LT

min = mini L
T
i . Formally we would like to minimize the external

regret R = LT
H − LT

min.
We introduce a notion of a time selection function. A time selection function

I is a function over the time steps mapping each time step to [0, 1]. That is, I :
{1, . . . , T} → [0, 1]. The loss of action j using time-selector I is LT

j,I =
∑

t I(t)�t
j .

Similarly we define LH,I , the loss of the online algorithm H with respect to
time selection function I, as LT

H,I =
∑

t I(t)�t
H , where �t

H is the loss of H at
time t. This notion of experts with time selection is very similar to the notion
of “sleeping experts” studied in [16]. Specifically, for each action j and time
selection function I, one can view the pair (j, I) as an expert that is “awake”
when I(t) = 1 and “asleep” when I(t) = 0 (and perhaps “partially awake” when
I(t) ∈ (0, 1)).

From External to Internal Regret 625

We also consider modification rules that modify the actions selected by the
online algorithm, producing an alternative strategy we will want to compete
against. A modification rule F has as input the history and an action choice and
outputs a (possibly different) action. (We denote by F t the function F at time
t, including any dependency on the history.) Given a sequence of probability
distributions pt used by an online algorithm H, and a modification rule F ,
we define a new sequence of probability distributions f t = F t(pt), where f t

i =∑
j:F t(j)=i p

t
j . The loss of the modified sequence is LH,F =

∑
t

∑
i f

t
i �

t
i. Similarly,

given a time selection function I and a modification rule F we define LH,I,F =∑
t

∑
i I(t)f t

i �
t
i.

In our setting we assume a finite class of N actions, {1, . . . , N}, a finite set
F of K modification rules, and a finite set I of M time selection function. Given
a sequence of loss vectors, the regret of an online algorithm H with respect to
the N actions, the K modification rules, and the M time selection functions, is

RI,F
H = max

I∈I
max
F∈F

{LH,I − LH,I,F }.

Note that the external regret setting is equivalent to having a single time-
selection function (I(t) = 1 for all t) and a set Fex of N modification rules Fi,
where Fi always outputs action i. For internal regret, the set F in consists of
N(N − 1) modification rules Fi,j , where Fi,j(i) = j and Fi,j(i′) = i′ for i′ �= i.
That is, the internal regret of H is

max
F∈Fin

{LH − LH,F } = max
i,j

∑
t

pt
i(�

t
i − �t

j).

We define a slightly extended class of internal regret which we call swap regret.
This case has Fsw include all NN functions F : {1, . . . , N} → {1, . . . , N}, where
the function F swaps the current online action i with F (i) (which can be the
same or a different action).

A few simple relationships between the different types of regrets: since Fex ⊆
Fsw and F in ⊆ Fsw, both external and internal regret are upper-bounded by
swap-regret. Also, swap-regret is at most N times larger than internal regret.
On the other hand, even with N = 3, there are simple examples which separate
internal and external regret [26].

2.1 Correlated Equilibria and Swap Regret

We briefly sketch the relationship between correlated equilibria [3] and swap
regret.

Definition 1. A general-sum game 〈M, (Ai), (si)〉 has a finite set M of m play-
ers. Player i has a set Ai of N actions and a loss function si : Ai × (×j �=iAj) →
[0, 1] that maps the action of player i and the actions of the other players to a
real number. (We have scaled losses to [0, 1])

The aim of each player is to minimize its loss. A correlated equilibrium [3] is a
distribution P over the joint action space with the following property. Imagine a

626 A. Blum and Y. Mansour

correlating device draws a vector of actions a using distribution P over ×Ai, and
gives player i the action ai from a. (Player i is not given any other information
regarding a.) The probability distribution P is a correlated equilibria if for each
player it is its best response to play the suggested action (provided that the
other players do not deviate).

We now define an ε-correlated equilibrium.

Definition 2. A joint probability distribution P over ×Ai is an ε-correlated
equilibria if for every player j and for any function F : Aj → Aj, we have
Ea∼P [sj(aj , a

−j)] ≤ Ea∼P [sj(F (aj), a−j)] +ε, where a−j denotes the joint ac-
tions of the other players.

The following theorem relates the empirical distribution of the actions per-
formed by each player, their swap regret and the distance from a correlated
equilibrium (see also, [12, 13, 20]).

Theorem 1. Let G =< M, (Ai), (si) > be a game and assume that for T time
steps each player follows a strategy that has swap regret of at most R(T,N).
The empirical distribution Q of the joint actions played by the players is an
(R(T,N)/T)-correlated equilibrium, and the loss of each player equals, by defi-
nition, its expected loss on Q.

The above states that the payoff of each player is its payoff in some ap-
proximate correlated equilibrium. In addition, it relates the swap regret to the
distance from a correlated equilibria. Note that if the average swap regret van-
ishes then the procedure converges, in the limit, to a correlated equilibria (see
[20, 12, 14]).

3 Generic Reduction from External to Swap Regret

We now give a black-box reduction showing how any algorithm A achieving
good external regret can be used as a subroutine to achieve good swap regret
as well. The high-level idea is as follows. We will instantiate N copies of the
external-regret algorithm. At each time step, these algorithms will each give us
a probability vector, which we will combine in a particular way to produce our
own probability vector p. When we receive a loss vector �, we will partition it
among the N algorithms, giving algorithm Ai a fraction pi (pi is our probability
mass on action i), so that Ai’s belief about the loss of action j is

∑
t p

t
i�

t
j , and

matches the cost we would incur putting i’s probability mass on j. In the proof,
algorithm Ai will in some sense be responsible for ensuring low regret of the
i → j variety. The key to making this work is that we will be able to define the
p’s so that the sum of the losses of the algorithms Ai on their own loss vectors
matches our overall true loss.

To be specific, let us formalize what we mean by an external regret algorithm.

Definition 3. An algorithm A has external regret R(Lmin, T,N) if for any se-
quence of T losses �t such that some action has total loss at most Lmin, for any
action j ∈ {1, . . . , N} we have

From External to Internal Regret 627

LT
A =

T∑
t=1

�t
A ≤

T∑
t=1

�t
j + R(Lmin, T,N) = LT

j + R(Lmin, T,N)

We assume we have N algorithms Ai (which could all be identical or different)
such that Ai has external regret Ri(Lmin, T,N). We combine the N algorithms
as follows. At each time step t, each algorithm Ai outputs a distribution qt

i ,
where qt

i,j is the fraction it assigns action j. We compute a vector p such that
pt

j =
∑

i p
t
iq

t
i,j . That is, p = pQ, where p is the row-vector of our probabilities

and Q is the matrix of qi,j . (We can view p as a stationary distribution of
the Markov Process defined by Q, and it is well known such a p exists and is
efficiently computable.) For intuition into this choice of p, notice that it implies
we can consider action selection in two equivalent ways. The first is simply using
the distribution p to select action j with probability pj . The second is to select
algorithm Ai with probability pi and then to use algorithm Ai to select the
action (which produces distribution pQ).

When the adversary returns �t, we return to each Ai the loss vector pi�
t. So,

algorithm Ai experiences loss (pt
i�

t) · qt
i = pt

i(q
t
i · �t).

Now we consider the guarantee that we have for algorithm Ai, namely, for
any action j,

T∑
t=1

pt
i(q

t
i · �t) ≤

T∑
t=1

pt
i�

t
j + Ri(Lmin, T,N) (1)

If we sum the losses of the N algorithms at any time t, we get
∑

i p
t
i(q

t
i · �t) =

ptQt�t, where pt is the row-vector of our probabilities, Qt is the matrix of qt
i,j ,

and �t is viewed as a column-vector. By design of pt, we have ptQt = pt. So, the
sum of the perceived losses of the N algorithms is equal to our actual loss pt�t.

Therefore, summing equation (1) over all N algorithms, the left-hand-side
sums to LT

H and so we have that for any function F : {1, . . . , N} → {1, . . . , N},

LT
H ≤

N∑
i=1

T∑
t=1

pt
i�

t
F (i) +

N∑
i=1

Ri(Lmin, T,N).

We have therefore proven the following theorem.

Theorem 2. For any N algorithms Ai with regret Ri, for every function F :
{1, . . . , N} → {1, . . . , N}, the above algorithm satisfies

LH ≤ LH,F +
N∑

i=1

Ri(Lmin, T,N),

i.e., the swap-regret of H is at most
∑N

i=1 Ri(Lmin, T,N).

A typical optimized experts algorithm [24, 17, 2, 6] will have R(Lmin, T,N) =
O(

√
Lmin log N + log N). (Alternatively, Corollary 4 can be also used to deduce

the above bound.) We can immediately derive the following corollary.

628 A. Blum and Y. Mansour

Corollary 1. Using an optimized experts algorithm as the Ai, for every function
F : {1, . . . , N} → {1, . . . , N}, we have that

LH ≤ LH,F + O(N
√

T log N + N log N)

We can perform a slightly more refined analysis of the bound by having Li
min

be the minimum loss for an action in Ai. Since
∑N

i=1

√
Li

min ≤
∑N

i=1 Li
min, and

this is bounded by T since we scaled the losses given to algorithm Ai at time t
by pt

i, this implies the worst case regret is O(
√

TN log N + N log N). The only
problem is that algorithm Ai needs to “know” the value of Li

min to set its internal
parameters correctly. One way to avoid this is to use an adaptive method [1].
We can also avoid this problem using the standard doubling approach of starting
with Lmin = 1 and each time our guess is violated, we double the bound and
restart the online algorithm. The external regret of such a resetting optimized
experts algorithm would be

logLmin∑
j=1

O(
√

2j log N + logN) = O(
√

Lmin log N + logLmin log N).

Going back to our case of N multiple online algorithms Ai, we derive the fol-
lowing,

Corollary 2. Using resetting optimized experts algorithms as the Ai, for every
function F : {1, . . . , N} → {1, . . . , N}, we have that

LH ≤ LH,F + O(
√

TN log N + N log N log T)

One strength of the above general reduction is it ability to accommodate new
regret minimization algorithms. For example, using the algorithm of [9] one can
get a more refined regret bound, which depends on the second moment.

3.1 Lower Bounds for Swap Regret

Notice that while good algorithms for the experts problem achieve external regret
roughly O(

√
T log N), our swap-regret bounds are roughly O(

√
TN log N). Or,

to put it another way, for external regret one can achieve regret εT by time
T = O(ε−2 log N), whereas we need T = O(ε−2N log N) to achieve swap-regret
εT (or an ε-correlated equilibrium). A natural question is whether this is best
possible. We give here a partial answer.

First, one tricky issue is that for a given stochastic adversary, the optimal pol-
icy for minimizing loss may not be the optimal policy for minimizing swap-regret.
For example, consider a process in which losses are generated by an almost un-
biased coin, with slight biases so that the optimal policy for minimizing loss uses
each action T/N times. Because of the variance of the coin flips, in retrospect,
most actions can be swapped with an expected gain of Ω(

√
(T log N)/N) each,

giving a total swap-regret of Ω(
√

TN log N) for this policy. However, a policy

From External to Internal Regret 629

that just picks a single fixed action would have swap-regret only O(
√

T log N)
even though its expected loss is higher.

We show a lower bound of Ω(
√

TN) on swap regret, but in a different model.
Specifically, we have defined swap regret with respect to the distribution pt pro-
duced by the player, rather that the actual action at selected from that distribu-
tion. In the case that the adversary is oblivious (does not depend on the player’s
action selection) then the two models have the same expected regret. However
we will consider a dynamic adversary, whose choices may depend on the player’s
action selection in previous rounds. In this setting (dynamic adversary and re-
gret defined with respect to the action selected from pt rather than pt itself) we
derive the following theorem.

Theorem 3. There exists a dynamic adversary such that for any randomized
online algorithm A, the expected swap regret of A is (1−λ)

√
TN/128, for T ≥ N

and λ = NTe−cN for some constant c > 0.

Proof. (sketch) The adversary behaves as follows. At each time step t, for any
action that has been played less than 8T/N times by A, the adversary flips a
fair coin to set its loss to 0 or 1 (call these random-loss actions). However, once
an action has been played 8T/N times by A, then its loss is 1 from then on (call
these 1-loss actions). Note that at most N/8 actions ever become 1-loss actions.

Now, if A in expectation plays 1-loss actions more than 1/4 of the time, then
A will incur such a high loss that it will even have a large external regret. Specif-
ically, A will have an expected loss at least 5T/8, whereas with high probability
there will exist some action of total loss at most T/2, and this gap exceeds the
bounds of the theorem. On the other hand, if A plays random-loss actions at
least 3/4 of the time, then there must be a large number (at least N/16) actions
that are played at least T/(4N) times by A. However, in the subset of Ti time-
steps that A plays some action i, there is a high probability that some other
action has loss only 1

2Ti − 1
4

√
Ti, even if A were able to choose which actions to

make 1-loss actions (and thereby remove from consideration) after the fact. On
the other hand, A’s expected loss is 1

2Ti. Thus, A has expected swap-regret at
least (N/16)(1

4

√
T/(4N)) =

√
TN/128. The (1 − λ) factor is to guarantee that

the realized values are close to their expected value, with high probability. ��

4 Reducing External to Swap Regret in the Partial
Information Model

In the full information setting the learner gets, at the end of each time step, full
information on the costs of all the actions. In the partial information (bandit)
model, the learner gets information only about the action that was selected. In
some applications this is a more plausible model regarding the information the
learner can observe.

The reduction in the partial information model is similar to the one of the
full information model, but with a few additional complications. We are given N

630 A. Blum and Y. Mansour

partial information algorithms Ai. At each time step t, each algorithm Ai gives
a distribution qt

i . Our master online algorithm combines them to some distri-
bution pt which it uses. Given pt it receives a feedback, but now this includes
information only regarding one action, i.e., it receives (�t

kt , kt), where kt is dis-
tributed according to pt. We take this feedback and distribute to each algorithm
Ai a feedback (bt

i, k
t), such that

∑
i b

t
i = �t

kt . The main technical difficulty is
that now the action selected, kt, is distributed according to pt and not qt

i . (For
example, it might be that Ai has qt

i,j = 0 but it receives a feedback about ac-
tion j. From Ai’s point of view this is impossible! Or, more generally, Ai might
start noticing it seems to have a very bad random-number generator.) For this
reason, for the reduction to work we need to make a stronger assumption about
the guarantees of the algorithms Ai, which luckily is implicit in the algorithms
of [2]. Our main result is summarized in the following theorem.

Theorem 4. Given a multi-arm bandit algorithm satisfying Lemma 1 below (such
as the algorithm of [2]), it can be converted to a master online algorithm Int MAB,
such that for every function F : {1, . . . , N} → {1, . . . , N}, we have that

Ept [LInt MAB] ≤ Ept [LInt MAB,F] + N · RMAB(T, T,N)

where RMAB(C, T,N) = O(
√

CN log N + N log N).

Proof. Since results of [2] are stated in terms of maximizing gain rather then
minimizing loss we will switch to this notation, and later derive the loss mini-
mization results.

At each time step t the multi-arm bandit algorithm Ai gives a selection
distribution qt

i over actions, and given all the selection distributions we compute
an action distribution pt. We would like to keep two sets of gains, one is the
real gain, denoted by bt

i, and the other is the gain that the MAB algorithm Ai

observes gt
Ai

. Given the action distribution pt the adversary selects a vector of
real gains bt

i. Our MAB algorithm Int MAB receives a single feedback (bt
kt , kt)

where kt is a random variable that with probability pt
j equals j. Given bt it

returns to each Ai the pair (gt
Ai

, kt), where the observed gain gt
Ai

is based on bt,
pt and qt

i . Note that kt is distributed according to pt, which may not equal qt
i :

it is for this reason we need to use an MAB algorithm that satisfies Lemma 1.
In order to specify our MAB algorithm, Int MAB, we need to specify how

it selects the action distribution pt and the observed gains gt
Ai

. At each time
step t, each algorithm Ai outputs a selection distribution qt

i , where qt
i,j is the

probability it assigns action j. We compute an action distribution pt such that
pt

j =
∑

i p
t
iq

t
i,j . That is, p = pQ, where p is the row-vector of our probabilities

and Q is the matrix of qi,j . Given pt the adversary returns a real gain (bt
kt , kt),

namely, the real gain is of our algorithm bt
kt . We return to each algorithm Ai an

observed gain of gt
Ai

= pt
ib

t
ktqi,kt/pt

kt . (In general, define gt
i,j = pt

ib
t
jq

t
i,j/p

t
j , where

bt
j = 0 if j �= kt.) First, we will show that

∑N
i=1 gt

Ai
= bt

kt and that gt
Ai

∈ [0, 1].
From the property of the distribution pt we have that,

From External to Internal Regret 631

N∑
i=1

gt
Ai

=
N∑

i=1

pt
ib

t
ktqi,kt

pt
kt

=
pt

ktbt
kt

pt
kt

= bt
kt .

This shows that we distribute our real gain between the algorithms Ai, namely
that the sum of the observed gains equals the real gain. In addition, it bounds
the observed gain that each algorithm Ai receives. Namely, 0 ≤ gt

Ai
≤ bt

kt ≤ 1.
In order to describe the guarantee that each external regret multi-arm bandit

algorithm Ai has, for our application, we need the following additional definition.
At time t let Xt

i,j be a random variable such that Xt
i,j = gt

i,j/q
t
i,j = pt

ib
t
j/p

t
j if

j = kt and Xt
i,j = 0 otherwise. The expectation of Xt

i,j is

Ekt∼pt [Xt
i,j] = pt

j

pt
ib

t
j

pt
j

= pt
ib

t
j

Lemma 1 ([2]). There exists a multi-arm bandit algorithm, Ai, such that for
any sequence of observed gains gt

i,j ∈ [0, 1], for any sequence of selected actions
kt, and any action r and parameter γ ∈ (0, 1], the expected observed gains is
bounded by,

GAi,gt ≡
T∑

t=1

gt
Ai

≡
T∑

t=1

gt
kt ≥ (1 − γ)

T∑
t=1

Xt
i,r −

N lnN

γ
− γ

N

T∑
t=1

N∑
j=1

Xt
i,j (2)

We now use Lemma 1. Note, in Auer et al. [2] the action distribution is
identical to the selection distribution, i.e. pt = qt, and the observed and real gain
are identical, i.e., gt = bt. Auer et al. [2] derive the external regret bound by
taking the expectation with respect to the action distribution (which is identical
to the selection distribution). In our case we will like to separate the real gain
from the observed gain.

Let the total observed gain of algorithm Ai be GAi
=

∑T
t=1 gt

Ai
=

∑T
t=1 gt

i,kt .
Since we distribute our gain between the Ai, i.e.,

∑N
i=1 gt

Ai
= bt

Int MAB , we have
that BInt MAB =

∑T
t=1 bt

Int MAB =
∑N

i=1 GAi
. Since gt

i,j ∈ [0, 1], by Lemma 1,
this implies that for any action r we have

Ept [GAi
] ≥ (1 − γ)

T∑
t=1

Ept [Xt
i,r] −

N lnN

γ
− γ

N

T∑
t=1

N∑
j=1

Ept [Xt
i,j]

= (1 − γ)
T∑

t=1

pt
ib

t
r −

N lnN

γ
− γ

N

T∑
t=1

N∑
j=1

pt
ib

t
j

≥ (1 − γ)Bi,r −
N lnN

γ
− γ

N

N∑
j=1

Bi,j

≥ Bi,r −O(
√

BmaxN lnN + N lnN) = Bi,r −RMAB(Bmax, N, T)

where Bi,r =
∑T

t=1 pt
ib

t
r, Bmax = maxi,j Bi,j and γ = min{

√
(N lnN)/Bmax, 1}.

632 A. Blum and Y. Mansour

Note that the expected benefit of our algorithm is E[BInt MAB,bt] =
∑N

i=1

Bi,i. For the regret we like to compare the gain of Bi,i to that of Bi,r, which is
the change in our benefit if each time we play action r rather than i. For swap
regret, we compare our expected benefit to that of

∑N
i= Bi,F (i), for some function

F . Therefore, we have that for any function F : {1, . . . , N} → {1, . . . , N},

Ept [BT
Int MAB] =

N∑
i=1

Ept [GAi
] ≥

N∑
i=1

Bi,F (i) −N ·RMAB(Bmax, T,N).

For the case of losses let bt
j = 1−ct

j . Then BMAB = T −LMAB and we derive
Theorem 4. ��

5 External Regret with Time-Selection Functions

We now present a simple online algorithm that achieves a good external regret
bound in the presence of time selection functions, generalizing the sleeping ex-
perts setting. Specifically, our goal is for each action a, and each time-selection
function I, that our total loss during the time-steps selected by I is not much
more than the loss of a during those time steps (or more generally, the losses
weighted by I when I(t) ∈ [0, 1]). The idea of the algorithm is as follows. Let Ra,I

be the regret of our algorithm with respect to action a and time selection func-
tion I. That is, Ra,I =

∑
t I(t)(�t

H −�t
a). Let R̃a,I be a less-strict notion of regret

in which we multiply our loss by some β < 1, that is, R̃a,I =
∑

t I(t)(β�t
H − �t

a).
What we will do is give to each action a and time selection function I a weight
wa,I that is exponential in R̃a,I . We will prove that the sum of our weights never
increases, and thereby be able to easily conclude that none of the R̃a,I can be
too large.

Specifically, for each of the N actions and the M time selection functions
we maintain a weight wt

a,I . We update these weights using the rule wt+1
a,I =

wt
a,Iβ

I(t)(
t
a−β
t

H), where �t
H is the loss of our online algorithm H at time t.

(Initially, w0
a,I = 1.) Equivalently, wt

a,I = β−R̃t
a,I , where R̃t

a,I is the “less-strict”
regret mentioned above up to time t.

At time t we define wt
a =

∑
I I(t)wt

a,I , W t =
∑

a wt
a and pt

a = wt
a/W

t. Our
distribution over actions at time t is pt.

Claim. At any time t we have 0 ≤
∑

a,I wt
a,I ≤ NM .

Proof. Initially, at time t = 0, the claim clearly holds. Observe that at time t we
have the following identity,

W t�t
H = W t

∑
a

pt
a�

t
a =

∑
a

wt
a�

t
a =

∑
a

∑
I

I(t)wt
a,I�

t
a. (3)

For the inductive step we show that the sum of the weights can only decrease.
Note that for any β ∈ [0, 1], for x ∈ [0, 1] we have βx ≤ 1 − (1 − β)x, and for
x ∈ [−1, 0] we have βx ≤ 1 + (1 − β)|x|/β.

From External to Internal Regret 633∑
a

∑
I

wt+1
a,I =

∑
a

∑
I

wt
a,Iβ

I(t)(
t
a−β
t

H)

≤
∑

a

∑
I

wt
a,I(1 − (1 − β)I(t)�t

a)(1 + (1 − β)I(t)�t
H)

≤ (
∑

a

∑
I

wt
a,I) − (1 − β)(

∑
a,I

wt
a,I�

t
a) + (1 − β)(

∑
a,I

I(t)wt
a,I�

t
H)

= (
∑

a

∑
I

wt
a,I) − (1 − β)W t�t

H + (1 − β)W t�t
H (using eqn. (3))

= (
∑

a

∑
I

wt
a,I). ��

Corollary 3. For every action a and time selection I we have

wt
a,I = βLa,I−βLH,I ≤ MN,

where LH,I =
∑

t I(t)�t
H is the loss of the online algorithm with respect to time-

selection function I.

A simple algebraic manipulation of the above implies the following theorem

Theorem 5. For every action a and every time selection function I ∈ I we
have

LH,I ≤ La,I + (log NM)/ log(1/β)
β

We can optimize for β in advance, or do it dynamically using [1], establishing:

Corollary 4. For every action a and every time selection function I ∈ I we
have

LH,I ≤ La,I + O(
√

Lmin log NM + logMN),

where Lmin = maxI mina{La,I}.

6 Arbitrary Time Selection and Modification Rules

In this section we combine the techniques from Sections 3 and 5 to derive a
regret bound for the general case where we assume that there is a finite set I of
M time selection functions, and a finite set F of K modification rules. Our goal
is to design an algorithm such that for any time selection function I ∈ I and
any F ∈ F , LH,I is not too much larger than LH,I,F .

We maintain at time t, a weight wt
j,I,F per action j, time selection I and

modification rule F . Initially w0
j,I,F = 1. We set

wt+1
j,I,F = wt

j,I,F βpt
jI(t)(
t

F (j)−β
t
H,j),

where W t
j,F =

∑
I I(t)wt

j,I,F , W t
j =

∑
F W t

j,F , and �t
H,j =

∑
F W t

j,F �t
F (j)/W

t
j .

634 A. Blum and Y. Mansour

We use the weights to define a distribution pt over actions as follows. We
select a distribution pt such that

pt
i =

N∑
j=1

pt
j

∑
F :F (j)=i

W t
j,F /W t

j . (4)

I.e., p is the stationary distribution of the associated Markov chain. Notice that
the definition of p implies that the loss of H at time t can either be viewed
as

∑
i p

t
i�

t
i or as

∑
j pj

∑
F (W t

j,F /W t
j)�t

F (j) =
∑

j pt
j�

t
H,j . The following Claim,

whose proof is omitted, bounds the magnitude of the weights.

Claim. For every action j, at any time t we have 0 ≤
∑

I,F wt
j,I,F ≤ MK

The following theorem (proof omitted) derives the general regret bound.

Theorem 6. For every time selection I ∈ I and modification rule F ∈ F , we
have that

LH,I ≤ LH,I,F + O(
√

TN log MK + N log MK)

7 Conclusion and Open Problems

In this paper we give general reductions by which algorithms achieving good
external regret can be converted to algorithms with good internal (or swap)
regret, and in addition develop algorithms for a generalization of the sleeping
experts scenario including both real-valued time-selection functions and a finite
set of modification rules.

A key open problem left by this work is whether it is possible to achieve
swap-regret that has a logarithmic or even sublinear dependence on N . Specif-
ically, for external regret, existing algorithms achieve regret εT in time T =
O(1

ε2 log N), but our algorithms for swap-regret achieve regret εT only by time
T = O(1

ε2 N log N). We have shown that sublinear dependence is not possible
in against an adaptive adversary with swap-regret defined with respect to the
actions actually chosen from the algorithm’s distribution, but we do not know
whether there is a comparable lower bound in the distributional setting (where
swap-regret is defined with respect to the distributions pt themselves), which is
the model we used for all the algorithms in this work. In particular, an algorithm
with lower dependence on N would imply a more efficient (in terms of number
of rounds) procedure for achieving an approximate correlated equilibrium.

References

1. Peter Auer, Nicolò Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident
on-line learning algorithms. JCSS, 64(1):48–75, 2002. A preliminary version has
appeared in Proc. 13th Ann. Conf. Computational Learning Theory.

From External to Internal Regret 635

2. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–
77, 2002.

3. R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics, 1:67–96, 1974.

4. D. Blackwell. An analog ofthe mimimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956.

5. A. Blum. Empirical support for winnow and weighted-majority based algorithms:
results on a calendar scheduling domain. Machine Learning, 26:5–23, 1997.

6. Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. In STOC, pages
382–391, 1993. Also, Journal of the Association for Computing Machinery, 44(3):
427-485 (1997).

7. Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line pre-
diction and game theory. Machine Learning, 51(3):239–261, 2003.

8. Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under
partial monitoring. unpublished manuscript, 2004.

9. Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order
bounds for prediction with expert advice. In COLT, 2005.

10. W. Cohen and Y. Singer. Learning to query the web. In AAAI Workshop on
Internet-Based Information Systems, 1996.

11. W. Cohen and Y. Singer. Context-sensitive learning methods for text categoriza-
tion. ACM Transactions on Information Systems, 17(2):141–173, 1999.

12. D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games
and Economic Behavior, 21:40–55, 1997.

13. D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379–390, 1998.
14. D. Foster and R. Vohra. Regret in the on-line decision problem. Games and

Economic Behavior, 29:7–36, 1999.
15. Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts.

Operations Research, 41(4):704–709, July–August 1993.
16. Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combining pre-

dictors that specialize. In Proceedings of the 29th Annual Symposium on Theory
of Computing, pages 334–343, 1997.

17. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Euro-COLT, pages 23–37. Springer-
Verlag, 1995. Also, JCSS 55(1): 119-139 (1997).

18. Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999. A preliminary version
appeared in the Proceedings of the Ninth Annual Conference on Computational
Learning Theory, pages 325–332, 1996.

19. J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

20. S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68:1127–1150, 2000.

21. S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilib-
rium. In Wilhelm Neuefeind Gerard Debreu and Walter Trockel, editors, Economic
Essays, pages 181–200. Springer, 2001.

22. Mark Herbster and Manfred K. Warmuth. Tracking the best expert. In Interna-
tional Conference on Machine Learning, pages 286–294, 1995.

636 A. Blum and Y. Mansour

23. E. Lehrer. A wide range no-regret theorem. Games and Economic Behavior,
42:101–115, 2003.

24. Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Information and Computation, 108:212–261, 1994.

25. Gilles Stoltz. Private communication.
26. Gilles Stoltz and Gábor Lugosi. Internal regret in on-line portfolio selection. In

COLT, 2003. To appear in Machine Learning Journal.
27. Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with com-

pact sets of strategies. submitted to Games and Economic Behavior, 2004.

Separating Models of Learning from Correlated
and Uncorrelated Data

Ariel Elbaz, Homin K. Lee, Rocco A. Servedio�,
and Andrew Wan

Department of Computer Science,
Columbia University

{arielbaz, homin, rocco, atw12}@cs.columbia.edu

Abstract. We consider a natural framework of learning from correlated
data, in which successive examples used for learning are generated ac-
cording to a random walk over the space of possible examples. Previous
research has suggested that the Random Walk model is more powerful
than comparable standard models of learning from independent exam-
ples, by exhibiting learning algorithms in the Random Walk framework
that have no known counterparts in the standard model. We give strong
evidence that the Random Walk model is indeed more powerful than
the standard model, by showing that if any cryptographic one-way func-
tion exists (a universally held belief in public key cryptography), then
there is a class of functions that can be learned efficiently in the Ran-
dom Walk setting but not in the standard setting where all examples are
independent.

1 Introduction

It is a commonly held belief in machine learning that having access to correlated
data – for example, having random data points that differ only slightly from
each other – is advantageous for learning. However, we are not aware of research
that rigorously validates this belief from the vantage point of the abilities and
limitations of computationally efficient learning. Our work is motivated by this
disparity.

We study a natural model of learning from correlated data, by considering
a framework in which the learning algorithm has access to successive examples
that are generated by a random walk. We give strong evidence that learning
is indeed easier, at least for some problems, in this framework of correlated
examples than in the standard framework in which no correlations exist between
successive examples.

� Supported in part by NSF CAREER award CCF-0347282 and a Sloan Foundation
Fellowship.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 637–651, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

638 A. Elbaz et al.

1.1 Background

In the well-known Probably Approximately Correct (PAC) learning model intro-
duced by Valiant [16], a learning algorithm is given access to a source EXD(c)
of labelled examples each of which is drawn independently from a fixed probabil-
ity distribution D over the space of possible instances. The goal of the learning
algorithm is to construct (with high probability) a high-accuracy hypothesis for
the target concept c with respect to D.

Aldous and Vazirani [1] introduced and studied a variant of the PAC learning
model in which successive examples are generated according to a Markov process,
i.e. by taking a random walk on an (exponentially large) graph. Subsequent work
by Gamarnik [8] extended this study to infinite Markov chains and gave bounds
on the sample complexity required for learning in terms of the VC dimension
and certain mixing properties of the underlying Markov chain. Neither [1] nor
[8] considered computational issues for learning algorithms in the Random Walk
framework.

In this paper we consider an elegant model of learning from Random Walk
examples that is well suited for computational analyses. This model was intro-
duced by Bartlett, Fischer and Höffgen [2] and subsequently studied by Bshouty
et al. [6]. In this framework (described in detail in Section 2), successive examples
for the learning algorithm are produced sequentially according to an unbiased
random walk on the Boolean hypercube {0, 1}n. The PAC goal of constructing
a high-accuracy hypothesis for the target concept with high probability (where
accuracy is measured with respect to the stationary distribution of the random
walk, i.e. the uniform distribution on {0, 1}n) is unchanged. This is a natural way
of augmenting the model of uniform distribution PAC learning over the Boolean
hypercube (which has been extensively studied, see e.g. [4, 5, 7, 12, 13, 14, 15, 17]
and references therein) with the ability to exploit correlated data.

Bartlett et al. gave polynomial-time learning algorithms in this model for sev-
eral concept classes including Boolean threshold functions in which each weight
is either 0 or 1, parities of two monotone conjunctions over x1, . . . , xn, and
Disjunctive Normal Form (DNF) formulas with two terms. These learning algo-
rithms are proper, meaning that in each case the learning algorithm constructs a
hypothesis representation that belongs to the class being learned. Since proper
learning algorithms were not known for these concept classes in the standard
uniform distribution model, this gave the first circumstantial evidence that hav-
ing access to random walk examples rather than uniform independent examples
might bestow a computational advantage.

More recently, Bshouty et al. [6] gave a polynomial-time algorithm for learn-
ing the unrestricted class of all polynomial-size DNF formulas over {0, 1}n in
the Random Walk model. Since no comparable polynomial-time algorithms are
known in the standard uniform distribution model (and their existence is a well-
studied open question for which an affirmative answer would yield a $1000 prize,
see [3]), this gives stronger evidence that the Random Walk model is strictly more
powerful than the normal uniform distribution model. Thus, it is natural to now
ask whether the perceived superiority of random walk learning over uniform

Separating Models of Learning from Correlated and Uncorrelated Data 639

distribution learning can be rigorously established under some widely accepted
hypothesis about efficient computation.1

1.2 Our Results

In this work we give such a separation, under a generic cryptographic hardness
assumption, between the Random Walk model and the uniform distribution
model. Our main result is a proof of the following theorem:

Theorem 1. If any cryptographic one-way function exists, then there is a con-
cept class over {0, 1}n that is PAC learnable in poly(n) time in the Random
Walk model but is not PAC learnable in poly(n) time in the standard uniform
distribution model.

We emphasize that the separation established by Theorem 1 is computational
rather than information-theoretic. It will be evident from our construction that
the concept class of Theorem 1 has poly(n) VC dimension, and thus the class can
be learned using poly(n) many examples even in the distribution-independent
PAC learning model; the difficulty is in obtaining a polynomial-time algorithm.

We remind the reader that while the existence of any one-way function is
a stronger assumption than the assumption that P�=NP (since at this point
it is conceivable that P�=NP but one-way functions do not exist), it is an al-
most universally accepted assumption in cryptography and complexity theory.
(In particular, the existence of one-way functions is the weakest of the many
assumptions on which the entire field of public-key cryptography is predicated.)
We also remind the reader that all known representation-independent compu-
tational hardness results in learning theory (where any efficiently evaluatable
hypothesis representation is allowed for the learning algorithm, as is the case
in Theorem 1 above) rely on cryptographic hardness assumptions rather than
complexity-theoretic assumptions such as P �=NP.

The rest of the paper is structured as follows: Section 2 gives necessary defini-
tions and background from cryptography and the basics of our random walk model.
Section 3 gives a partial separation, and in Section 4 we show how the construction
from Section 3 can be used to achieve a total separation and prove Theorem 1.

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, . . . , n}. For an n-bit string r ∈ {0, 1}n and an
index i ∈ [n], the i-th bit of r is denoted r[i]. We write U to denote the uniform
distribution on {0, 1}n.

1 Note that it is necessary to make some computational hardness assumption in order
to separate these two learning models. It is easy to see that if P=NP, for instance,
then the concept class of all polynomial-size Boolean circuits would be efficiently
learnable in both these models (as well as far weaker models), and essentially all
considerations about the computational complexity of learning would become trivial.

640 A. Elbaz et al.

2.2 Learning Models

Recall that a concept class C = ∪n∈NCn is a collection of Boolean functions where
each f ∈ Cn maps {0, 1}n → {0, 1}. A uniform example oracle for f is an oracle
EXU (f) which takes no inputs and, when invoked, outputs a pair 〈x, f(x)〉 where
x is drawn uniformly and independently from {0, 1}n at each invocation.

Definition 1 (PAC learning). A concept class C is uniform distribution PAC-
learnable if there is an algorithm A with the following property: for any n, any
target concept f ∈ Cn, and any ε, δ > 0, if A is given access to oracle EXU (f)
then A runs for poly(n, 1

ε ,
1
δ) time steps and with probability 1 − δ outputs a

Boolean circuit h such that Prx∈U [h(x) �= c(x)] ≤ ε.

In the (uniform) Random Walk model studied in [2, 6], a random walk or-
acle is an oracle EXRW (f) which, at its first invocation, outputs an example
〈x, f(x)〉 where x is drawn uniformly at random from {0, 1}n. Subsequent calls
to EXRW (f) yield examples generated according to a uniform random walk on
the hypercube {0, 1}n. That is, if x is the i-th example, the i+1-st example is x′,
where x′ is chosen by uniformly selecting one of the n bits of x and flipping it.

Definition 2 (PAC learning in the Random Walk model). A concept
class C is PAC-learnable in the Random Walk model if there is an algorithm A
that satisfies Definition 1 above but with EXRW (f) in place of EXU (f).

As in [6], it is convenient for us to work with a slight variant of the Random
Walk oracle which is of equivalent power; we call this the updating Random Walk
oracle and denote it by EXURW (f). If the last example generated by EXURW (f)
was x ∈ {0, 1}n, the updating Random Walk oracle chooses a uniform index
i ∈ [n], but instead of flipping the bit x[i] it replaces x[i] with a uniform random
bit from {0, 1} (i.e. it flips the bit with probability 1/2 and leaves x unchanged
with probability 1/2) to obtain the new example x′. We say that such a step
updates the i-th bit position.

An easy argument given in [6] shows that the Random Walk oracle can ef-
ficiently simulate the updating Random Walk oracle and vice versa, and thus
any concept class that is efficiently learnable from one oracle is also efficiently
learnable from the other. We introduce the updating Random Walk oracle be-
cause it is easy to see (and well known) that the updating random walk on the
hypercube mixes rapidly. More precisely, we have the following fact which will
be useful later:

Fact 1. Let 〈x, f(x)〉 be a labeled example that is obtained from EXURW (f),
and let 〈y, f(y)〉 be the labeled example that EXURW (f) outputs n ln n

δ draws
later. Then with probability at least 1− δ, the two strings x, y are uniformly and
independently distributed over {0, 1}n.

Proof. Since it is clear that x and y are each uniformly distributed, the only thing
to check for Fact 1 is independence. This follows since y will be independent of
x if and only if all n bit positions are updated in the n ln n

δ draws between x

Separating Models of Learning from Correlated and Uncorrelated Data 641

and y. For each draw, the probability that a particular bit is not updated is
(1 − 1

n). Thus after n ln n
δ draws, the probability that any bit of r has not been

updated is at most n(1 − 1
n)n ln n

δ ≤ δ.. This yields the fact. �

Note that Fact 1 implies that any concept class C that is uniform distribution
PAC-learnable is also PAC-learnable in the Random Walk model, since we can
obtain independent uniform random examples in the Random Walk model with
essentially just a Θ(n log n) slowdown.

2.3 Background from Cryptography

We write Rn to denote the set of all 22n

Boolean functions from {0, 1}n to
{0, 1}. We refer to a function f chosen uniformly at random from Rn as a truly
random function. We write Df to denote a probabilistic polynomial-time (p.p.t.)
algorithm D with black-box oracle access to the function f .

Informally, a one-way function is a function f : {0, 1}n → {0, 1}n that is
computable by a poly(n) time algorithm but is hard to invert in the sense that no
poly(n)-time algorithm can successfully compute f−1 on a nonnegligible fraction
of outputs of f. (See [9] for a detailed definition and discussion of one-way
functions.) In a celebrated result, H̊astad et al. [11] showed that if any one-way
function exists, then pseudorandom function families must exist as well.

Definition 3. A pseudorandom function family [10] is a collection of functions
{fs : {0, 1}|s| → {0, 1}}s∈{0,1}∗ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms D,
and all sufficiently large n, we have that∣∣∣∣ Pr

f∈Rn

[Df (1n) outputs 1] − Pr
s∈{0,1}n

[Dfs(1n) outputs 1]
∣∣∣∣ <

1
Q(n)

.

The argument 1n indicates that the “distinguisher” algorithm D must run
in poly(n) time steps since its input is of length n. Intuitively, condition (2)
above states that a pseudorandom function cannot be distinguished from a truly
random function by any polynomial-time algorithm that has black-box access to
the pseudorandom function with an inverse polynomial advantage over random
guessing.

3 A Partial Separation

3.1 A First Attempt

It is clear that in the Random Walk model a learning algorithm will get many
pairs of examples that are adjancent vertices of the Hamming cube {0, 1}n,
whereas this will not be the case for a learner in the standard uniform distribu-
tion model (with high probability, a set of poly(n) many independent uniform

642 A. Elbaz et al.

examples from {0, 1}n will contain no pair of examples that have Hamming dis-
tance less than n/2−O(

√
n log n)). Thus, in attempting to separate the random

walk model from the standard uniform distribution model, it is natural to try
to construct a concept class using pseudorandom functions fs but altered in
such a way that seeing the value of the function on adjacent inputs gives away
information about the seed s.

One natural approach is the following: given a pseudorandom function family
{fs : {0, 1}k → {0, 1}}s∈{0,1}k , one could define a concept class of functions
{f ′

s : {0, 1}k × {0, 1}log k × {0, 1} → {0, 1}}s∈{0,1}k as follows:

f ′
s(x, i, b) =

{
fs(x) if b = 0
fs(x) ⊕ s[i] if b = 1

where x is a k-bit string, i is a (log k)-bit string encoding an integer between 1
and k, and b is a single bit. A learning algorithm in the Random Walk model
will be able to obtain all bits s[1], . . . , s[k] of the seed s (by waiting for pairs
of successive examples (x, i, b), (x, i, 1 − b) in which the final bit b flips for all k
possible values of i), and will thus be able to exactly identify the target concept.
However, even though a standard uniform distribution learner will not obtain
any pair of inputs that differ only in the final bit b, it is not clear how to show
that no algorithm in the standard uniform distribution model can learn the
concept class to high accuracy. Such a proof would require one to show that
any polynomial-time uniform distribution learning algorithm could be used to
“break” the pseudorandom function family {fs}, and this seems difficult to do.
(Intuitively, this difficulty arises because the b = 1 case of the definition of f ′

s

“mixes” bits of the seed with the output of the pseudorandom function.) Thus,
we must consider alternate constructions.

3.2 A Partial Separation

In this section we describe a concept class and prove that it has the following
two properties: (1) A randomly chosen concept from the class is indistinguishable
from a truly random function to any polynomial-time algorithm which has an
EXU (·) oracle for the concept (and thus no such algorithm can learn to accuracy
ε = 1

2−
1

poly(n)); (2) However, a Random Walk algorithm with access to EXRW (·)
can learn any concept in the class to accuracy 3

4 . In the next section we will
extend this construction to fully separate the Random Walk model from the
standard uniform model and thus prove Theorem 1.

Our construction uses ideas from Section 3.1; as in the construction proposed
there, the concepts in our class will reveal information about the seed of a pseu-
dorandom function to learning algorithms that can obtain pairs of points with
only the last bit flipped. However, each concept in the class will now be defined
by two pseudorandom functions rather than one; this will enable us to prove that
the class is indeed hard to learn in the uniform distribution model (but will also
prevent a Random Walk learning algorithm from learning to high accuracy).

Separating Models of Learning from Correlated and Uncorrelated Data 643

Let F be a family of pseudorandom functions {fr : {0, 1}k → {0, 1}}r∈{0,1}k .
We construct a concept class G = {gr,s : r, s ∈ {0, 1}k}, where gr,s takes an n-bit
input that we split into four parts for convenience. As before, the first k bits
x give the “actual” input to the function, while the other parts determine the
mode of function that will be applied.

gr,s(x, i, b, y) =

⎧⎪⎨⎪⎩
fs(x) if y = 0, b = 0
fs(x) ⊕ r[i] if y = 0, b = 1
fr(x) if y = 1

(1)

Here b and y are one bit and i is log k bits to indicate which bit of the seed r
is exposed. Thus half of the inputs to gr,s are labeled according to fr, and the
other half are labeled according to either fs or fs ⊕ r[i] depending on the value
of b.

The following lemma establishes that G is not efficiently PAC-learnable under
the uniform distribution, by showing that a random function from G is indistin-
guishable from a truly random function to any algorithm which only has EXU (·)
access to the target concept. (A standard argument shows that an efficient PAC
learning algorithm can be used to obtain an efficient distinguisher simply by run-
ning the learning algorithm and using its hypothesis to predict a fresh random
example. Such an approach must succeed with high probability for any function
from the concept class by virtue of the PAC criterion, but no algorithm that
has seen only poly(n) many examples of a truly random function can predict its
outputs on fresh examples with probability nonnegligibly greater than 1

2 .)

Lemma 1. Let gr,s : {0, 1}n → {0, 1} be a function from G chosen by selecting
r and s uniformly at random from {0, 1}k, where k satisfies n = k+log k+2. Let
f be a truly random function. Then for any ε = Ω(1

poly(n)), no p.p.t. algorithm
can distinguish between having oracle access to EXU (gr,s) versus oracle access
to EXU (f) with success probability greater than 1

2 + ε.

Proof. The proof is by a hybrid argument. We will construct two intermedi-
ate functions, hr and h′

r. We will show that EXU (gr,s) is indistinghable from
EXU (hr), EXU (hr) from EXU (h′

r), and EXU (h′
r) from EXU (f). It will then

follow that EXU (gr,s) is indistinguishable from EXU (f).
Consider the function

hr(x, i, b, y) =

⎧⎪⎨⎪⎩
f(x) if y = 0, b = 0
f(x) ⊕ r[i] if y = 0, b = 1
fr(x) if y = 1

. (2)

Here we have simply replaced fs with a truly random function. We claim that
no p.p.t. algorithm can distinguish oracle access to EXU (gr,s) from oracle access
to EXU (hr); for if such a distinguisher D existed, we could use it to obtain an
algorithm D′ to distinguish a randomly chosen fs ∈ F from a truly random

644 A. Elbaz et al.

function in the following way. D′ picks r at random from {0, 1}k and runs D,
answering D’s queries to its oracle by choosing i, b and y at random, querying its
own oracle to receive a bit q, and outputting q when both y and b are 0, q⊕r[i]
when y = 0 and b = 1, and fr(x) when y = 1. It is easy to see that if D′’s oracle
is for a truly random function f ∈ R then this process perfectly simulates access
to EXU (hr), and if D′’s oracle is for a randomly chosen fs ∈ F then this process
perfectly simulates access to EXU (gr,s) for r, s chosen uniformly at random.

We now consider the intermediate function

h′
r(x, i, b, y) =

{
f(x) if y = 0
fr(x) if y = 1

and argue that no p.p.t. algorithm can distinguish oracle access to EXU (hr)
from access to EXU (h′

r). When y = 1 or both y = 0 and b = 0, both hr and
h′

r will have the same output. Otherwise, if y = 0 and b = 1 we have that
hr(x, i, b, y) = f(x) ⊕ ri whereas h′

r(x, i, b, y) = f(x). Now, it is easy to see that
an algorithm with black-box query access to hr can easily distinguish hr from h′

r

(simply because flipping the penultimate bit b will always cause the value of hr

to flip but will only cause the value of h′
r to flip half of the time). But for an

algorithm that only has oracle access to EXU (·), conditioned on never receiving
the same string x twice (a condition that fails to hold only with negligible – in
fact, inverse exponential – probability), it is easy to see that whether the oracle is
for hr or h′

r, each output value that the algorithm sees on inputs with y = 0 and
b = 1 will be a fresh independent uniform random bit. (This is simply because
a random function f can be viewed as tossing a coin to determine its output on
each new input value, so no matter what r[i] is, XORing it with f(x) yields a
fresh independent uniform random bit.)

Finally, it follows from the definition of pseudorandomness that no p.p.t.
algorithm can distinguish oracle access to EXU (h′

r) from access to EXU (f).
We have thus shown that EXU (gr,s) is indistinghable from EXU (hr), EXU (hr)
from EXU (h′

r), and EXU (h′
r) from EXU (f). It follows that EXU (gr,s) is indis-

tinguishable from EXU (f), and the proof is complete. �
We now show that gr,s is learnable to accuracy 3

4 in the Random Walk model:

Lemma 2. There is an algorithm A with the following property: for any δ >
0 and any concept gr,s ∈ G, if A is given access to a Random Walk oracle
EXRW (gr,s) then A runs in time poly(n, log(1/δ)) and with probability at least
1 − δ, algorithm A outputs an efficiently computable hypothesis h such that
PrU [h(x) �= gr,s(x)] ≤ 1

4 .

Proof. As described in Section 2, for convenience in this proof we will assume
that we have an updating Random Walk oracle EXURW (gr,s).

We give an algorithm that, with probablity 1−δ, learns all the bits of r. Once
the learner has obtained r she outputs the following (randomized) hypothesis h:

h(x, i, b, y) =

{
$ if y = 0
fr(x) if y = 1

Separating Models of Learning from Correlated and Uncorrelated Data 645

where $ denotes a random coin toss at each invocation. Note that h incurs zero
error relative to gr,s on inputs that have y = 1, and has error rate exactly 1

2 on
inputs that have y = 0. Thus the overall error rate of h is exactly 1

4 .
We now show that with probability 1−δ (over the random examples received

from EXURW (gr,s)) the learner can obtain all of r after receiving T = O(n2k ·
log2(n/δ)) many examples from EXURW (gr,s). The learner does this by looking
at pairs of successive examples; we show (Fact 4 below) that after seeing t =
O(nk · log(k/δ)) pairs, each of which is independent from all other pairs, we
obtain all of r with probability at least 1 − δ

2 . To get t independent pairs of
successive examples, we look at blocks of t′ = O(n log(tn/δ)) many consecutive
examples, and use only the first two examples from each such block. By Fact 1
we have that for a given pair of consecutive blocks, with probability at least
1 − δ

2t the first example from the second block is random even given the pair of
examples from the first block. A union bound over the t blocks gives total failure
probability at most δ

2 for independence, and thus an overall failure probability
of at most δ.

We have the following simple facts:

Fact 2. If the learner receives two consecutive examples w = (x, i, 0, 0), w′ =
(x, i, 1, 0) and the corresponding labels gr,s(w), gr,s(w′), then the learner can ob-
tain the bit r[i].

Fact 3. For any j ∈ [k], given a pair of consecutive examples from EXURW (gr,s),
a learning algorithm can obtain the value of r[j] from this pair with probability
at least 1

4kn .

Proof. By Fact 2, if the first example is w = (x, i, b, y) with i = j, y = 0 and
the following example differs in the value of b, then the learner obtains r[j]. The
first example (like every example from EXURW (gr,s)) is uniformly distributed
and thus has i = j, y = 0 with probability 1

2k . The probability that the next
example from EXURW (gr,s) flips the value of b is 1

2n . �

Fact 4. After receiving t = 4kn · log(k/δ′) independent pairs of consecutive ex-
amples as described above, the learner can obtain all k bits of r with probability
at least 1 − δ′.

Proof. For any j ∈ [k], the probability that r[j] is not obtained from a given pair
of consecutive examples is at most (1 − 1

4kn). Thus after seeing t independent
pairs of consecutive examples, the probability that any bit of r is not obtained
is at most k(1 − 1

4kn)t. This yields the fact. �

Thus the total number of calls to EXURW (gr,s) that are required is

T = t · t′ = O(nk log(k/δ)) · O(n log(tn/δ)) = O(n2k log2(n/δ)).

Since k = O(n), Lemma 2 is proved. �

646 A. Elbaz et al.

4 A Full Separation

We would like to have a concept class for which a Random Walk learner can
output an ε-accurate hypothesis for any ε > 0. The drawback of our construction
in Section 3.2 is that a Random Walk learning algorithm can only achieve a
particular fixed error rate ε = 1

4 . Intuitively, a Random Walk learner cannot
achieve accuracy better than 3

4 because on half of the inputs the concept’s value
is essentially determined by a pseudorandom function whose seed the Random
Walk learner cannot discover. It is not difficult to see that for any given ε =

1
poly(n) , by altering the parameters of the construction we could obtain a concept
class that a Random Walk algorithm can learn to accuracy 1−ε (and which would
still be unlearnable for a standard uniform distribution algorithm). However, this
would give us a different concept class for each ε, whereas what we require is a
single concept class that can be learned to accuracy ε for each ε > 0.

In this section we present a new concept class G′ and show that it achieves this
goal. The idea is to string together many copies of our function from Section 3.2
in a particular way. Instead of depending on two seeds r, s, a concept in G′ is
defined using k seeds r1, . . . , rk and k− 1 subfunctions gr1,r2 , gr2,r3 , . . . , grk−1,rk

.
These subfunctions are combined in a way that lets the learner learn more and
more of the seeds r1, r2, . . . , and thus learn to higher and higher accuracy, as
she receives more and more examples.

4.1 The Concept Class G′

We now describe G′ in detail. Each concept in G′ is defined by k seeds r1, . . . , rk,
each of length k. The concept g′r1,...,rk

is defined by

g′r1,...,rk
(x, i, b, y, z) =

{
grα(z),rα(z)+1(x, i, b, y) if α(z) ∈ {1, . . . , k − 1}
frk

(x) if α(z) = k

As in the previous section x is a k-bit string, i is a log k-bit string, and b and y
are single bits. The new input z is a (k − 1)-bit string, and the value α(z) ∈ [k]
is defined as the index of the leftmost bit in z that is 1 (for example if z =
0010010111 then α(z) = 3); if z = 0k−1 then α(z) is defined to be k. By this
design, the subfunction grj ,rj+1 will be used on a 1/2j fraction of the inputs to
g′. Note that g′ maps {0, 1}n to {0, 1} where n = 2k + log k + 1.

4.2 Uniform Distribution Algorithms Cannot Learn G′

We first show that G′ is not efficiently PAC-learnable under the uniform distri-
bution. This is implied by the following lemma:

Lemma 3. Let g′r1,...,rk
: {0, 1}n → {0, 1} be a function from G′ chosen by

selecting r1, . . . , rk uniformly at random from {0, 1}k, where k satisfies n =
2k+log k+1. Let f be a truly random function. Then for any ε = Ω(1

poly(n)), no
p.p.t. algorithm can distinguish between having access to EXU (g′r1,...,rk

) versus
access to EXU (f) with success probability greater than 1

2 + ε.

Separating Models of Learning from Correlated and Uncorrelated Data 647

Proof. Again we use a hybrid argument. We define the concept classes H(�) =
{hr1,...,r�;f : r1, . . . , r
 ∈ {0, 1}k, f ∈ Rk} for 2 ≤ � ≤ k. Each function hr1,...,r�;f

takes the same n-bit input (x, i, b, y, z) as g′r1,...,rk
. The function hr1,...,r�;f is

defined as follows:

hr1,...,r�;f (x, i, b, y, z) =

{
grα(z),rα(z)+1(x, i, b, y) if α(z) < �

f(x) otherwise.

Here as before, the value α(z) ∈ [k] denotes the index of the leftmost bit of z
that is one (and we have α(z) = k if z = 0k−1).

We will consider functions that are chosen uniformly at random from H(�),
i.e. r1, . . . , r
 are chosen randomly from {0, 1}k and f is a truly random function
from Rk. Using Lemma 1, it is easy to see that for a distinguisher that is given
only oracle access to EXU (·), a random function from H(2) is indistinguishable
from a truly random function from Rn. We will now show that, for 2 ≤ � < k, if
a random function from H(�) is indistinguishable from a truly random function
then the same is true for H(� + 1). This will then imply that a random function
from H(k) is indistinguishable from a truly random function.

Let hr1,...,r�+1 be taken randomly from H(� + 1) and f be a truly random
function from Rn. Suppose we had a distinguisher D that distinguishes between
a random function from H(� + 1) and a truly random function from Rn with
success probability 1

2 + ε, where ε = Ω(1
poly(n)). Then we can use D to obtain

an algorithm D′ for distinguishing a randomly chosen fs ∈ F from a randomly
chosen function f ∈ Rk in the following way. D′ first picks strings r1, . . . , r
 at
random from {0, 1}k. D′ then runs D, simulating its oracle in the following way.
At each invocation, D′ draws a random (x, i, b, y, z) and behaves as follows:

– If α(z) < �, then D′ outputs 〈(x, i, b, y, z), grα(z),rα(z)+1(x, i, b, y)〉.
– If α(z) = �, then D′ calls its oracle to obtain 〈x′, β〉. If y = b = 0 then D′ out-

puts 〈(x′, i, b, y, z), β〉. If y = 0 but b = 1 then D′ outputs 〈(x′, i, b, y, z), β ⊕
r
[i]〉. If y = 1 then D′ outputs 〈(x′, i, b, y, z), fr�

(x)〉.
– If α(z) > �, D′ outputs the labelled example 〈(x, i, b, y, z), r(x)〉 where r(x)

is a fresh random bit for each x. (The pairs (x, r(x)) are stored, and if any
k-bit string x is drawn twice – which is exponentially unlikely in a sequence
of poly(n) many draws – D′ uses the same bit r(x) as before.)

It is straightforward to check that if D′’s oracle is EXU (fs) for a random fs ∈ F ,
then D′ simulates an oracle EXU (hr1,...,r�+1) for D, where hr1,...,r�+1 is drawn
uniformly from H(� + 1). On the other hand, we claim that if D′’s oracle is
EXU (f) for a random f ∈ Rk, then D′ simulates an oracle that is indistinguish-
able from EXU (hr1,...,r�

) for D, where hr1,...,r�
is drawn uniformly from H(�).

Clearly the oracle D′ simulates is identical to EXU (hr1,...,r�
) for α(z) �= �. For

α(z) = �, D′ simulates the function hrl
as in Equation 2 in the proof of Lemma 1,

which is indistinguishable from a truly random function as proved in the lemma.
Thus the success probability of the distinguisher D′ is the same as the prob-

ability that D succeeds in distinguishing H(�+1) from H(�). Recall that H(�) is

648 A. Elbaz et al.

indistinguishable from a truly random function, and that D succeeds in distin-
guishing H(� + 1) from a truly random function with probability at least 1

2 + ε
by assumption. This implies that D′ succeeds in distinguishing a randomly cho-
sen fs ∈ F from a randomly chosen function f ∈ Rk with probability at least
1
2 + ε− 1

ω(poly(n)) , but this contradicts the pseudorandomness of F .

Finally, we claim that for any p.p.t. algorithm, having oracle access to a
random function from H(k) is indistinguishable from having oracle access to
a random function from G′. To see this, note that the functions hr1,...,r�;f and
g′r1,...,r�

differ only on inputs (x, i, b, y, z) that have α(z) = k, i.e. z = 0k−1 (on
such inputs the function gr1,...,r�

will output frk
(x) whereas hr1,...,r�;f will output

f(x)). But such inputs are only a 1
2Ω(n) fraction of all possible inputs, so with

overwhelmingly high probability a p.p.t. algorithm will never receive such an
example. �

4.3 Random Walk Algorithms Can Learn G′

The following lemma completes the proof of our main result, Theorem 1.

Lemma 4. There is an algorithm B with the following property: for any ε, δ > 0,
and any concept gr1,...,rk

∈ G′, if B is given access to a Random Walk oracle
EXRW (gr1,...,rk

), then B runs in time poly(n, log(1/δ), 1/ε) and can with proba-
bility at least 1 − δ output a hypothesis h such that PrU [h(x) �= gr1,...,rk

(x)] ≤ ε.

Proof. The proof is similar to that of Lemma 2. Again, for convenience we will
assume that we have an updating Random Walk oracle EXURW (gr1,...,rk

). Recall
from Lemma 2 that there is an algorithm A that can obtain the string rj with
probability at least 1 − δ′ given t′ = O(nk · log(n/δ′)) independent pairs of
successive random walk examples(

〈w, grj ,rj+1(w)〉, 〈w′, grj ,rj+1(w
′)〉

)
.

Algorithm B works in a sequence of v stages. In stage j, the algorithm sim-
ply tries to obtain t′ independent example pairs for grj ,rj+1 and then uses Algo-
rithm A. Assuming the algorithm succeeds in each stage, after stage v algorithm
B has obtained r1, . . . , rv. It follows directly from the definition of G′ that given
r1, . . . , rv, Algorithm B can construct a hypothesis that has error at most 3

2v+2

(see Figure 1) so we may take v = log 1
ε + 1 to obtain error at most ε. (Note

that this implicitly assumes that log 1
ε + 1 is at most k; we deal with the case

log 1
ε + 1 > k at the end of the proof.)
If the learner fails to obtain r1, . . . , rv, then either:

1. Independence was not achieved between every pair of examples;
2. Algorithm B fails to acquire t′ pairs of examples for grj ,rj+1 in some stage

j; or
3. Algorithm B acquires t′ pairs of examples for grj ,rj+1 but Algorithm A fails

to obtain rj in some stage j.

Separating Models of Learning from Correlated and Uncorrelated Data 649

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

r1 r2

gr1,r2

r2 r3

gr2,r3

r3 r4

gr3,r4

Fig. 1. Stages 1, 2 and 3 of Algorithm B. Each row represents the output values
of g′

r1,...,rk
. After stage j the algorithm “knows” r1, . . . , rj and can achieve perfect

accuracy on the shaded region

We choose the total number of examples so that each of these probabilities
is bounded by δ/3 to achieve an overall failure probability of at most δ.

As will be clear from the analysis of cases (2) and (3) below, in total Algorithm
B will use 4 · 2v+1t′ pairs of examples in stages 1 through v, where t′ will be
bounded later. Each pair of examples is obtained by using the first two examples
from a block of s = O(n log(v · 2v+1t′n/δ)) many consecutive examples from the
updating Random Walk oracle. With this choice of s, the same argument as in
the proof of Lemma 2 shows that the total failure probability for independence
is at most δ

3 .
We bound (2) assuming full independence between all pairs of examples. In

stage j, Algorithm B uses 4 · 2jt′ pairs of examples. Observe that each pair of
examples has both examples from grj ,rj+1 with probability at least 2−(j+1). By
a Chernoff bound, the probability that less than t′ of the example pairs in stage
j are from grj ,rj+1 is at most e−

t′
8 . Thus the overall probability of failure from

condition (2) is at most ve−
t′
8 which is at most δ/3 for t′ ≥ ln(3v/δ).

We bound (3) assuming full independence between all pairs of examples as
well. In stage j, we know by Fact 4 that after seeing t′ = O(nk log(3vk/δ)) pairs
of examples for grj ,rj+1 , the probability of failing to obtain rj is at most δ/3v.
Hence the overall failure probability from condition (3) is at most δ

3 .
We thus may take t′ = O(nk log(3vk/δ)) and achieve an overall failure prob-

ability of δ for obtaining r1, . . . , rv. It follows that the overall number of ex-

650 A. Elbaz et al.

amples required from the updating Random Walk oracle is poly(2v, n, log 1
δ) =

poly(n, 1
ε , log 1

δ), which is what we required.
Finally, we observe that if log 1

ε + 1 > k, since k = n
2 − O(log n) a poly(1

ε)-
time algorithm may run for, say, 22n time steps and thus build an explicit truth
table for the function. Such a table can be used to exactly identify each seed
r1, . . . , rk and output an exact representation of the target concept. �

Acknowledgements

We warmly thank Tal Malkin for helpful discussions.

References

[1] D. Aldous and U. Vazirani. A Markovian extension of Valiant’s learning model. In
Proceedings of the Thirty-First Symposium on Foundations of Computer Science,
pages 392–396, 1990.

[2] P. Bartlett, P. Fischer, and K.U. Höffgen. Exploiting random walks for learning.
Information and Computation, 176(2):121–135, 2002.

[3] A. Blum. Learning a function of r relevant variables (open problem). In Proceed-
ings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
pages 731–733, 2003.

[4] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly
learning DNF and characterizing statistical query learning using Fourier analysis.
In Proceedings of the Twenty-Sixth Annual Symposium on Theory of Computing,
pages 253–262, 1994.

[5] N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with
membership queries under the uniform distribution. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, pages 286–295, 1999.

[6] N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from Ran-
dom Walks. In Proceedings of the 44th IEEE Symposium on Foundations on
Computer Science, pages 189–198, 2003.

[7] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.
Journal of the ACM, 43(4):747–770, 1996.

[8] D. Gamarnik. Extension of the PAC framework to finite and countable Markov
chains. In Proceedings of the 12th Annual Conference on Computational Learning
Theory, pages 308–317, 1999.

[9] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, New York, 2001.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33(4):792–807, 1986.

[11] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[12] J. Jackson. An efficient membership-query algorithm for learning DNF with re-
spect to the uniform distribution. Journal of Computer and System Sciences,
55:414–440, 1997.

[13] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings
of the 34th ACM Symposium on Theory of Computing, 2002.

Separating Models of Learning from Correlated and Uncorrelated Data 651

[14] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In Pro-
ceedings of the Twenty-Fifth Annual Symposium on Theory of Computing, pages
372–381, 1993.

[15] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform
and learnability. Journal of the ACM, 40(3):607–620, 1993.

[16] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[17] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial
time. In Proceedings of the Third Annual Workshop on Computational Learning
Theory, pages 314–326, 1990.

Asymptotic Log-Loss of Prequential Maximum
Likelihood Codes

Peter Grünwald1 and Steven de Rooij2

1 CWI Amsterdam
Peter.Grunwald@cwi.nl

www.grunwald.nl
2 CWI Amsterdam
S.de.Rooij@cwi.nl

www.cwi.nl/~rooij

Abstract. We analyze the Dawid-Rissanen prequential maximum like-
lihood codes relative to one-parameter exponential family models M. If
data are i.i.d. according to an (essentially) arbitrary P , then the redun-
dancy grows at rate 1

2
c ln n. We show that c = σ2

1/σ2
2 , where σ2

1 is the
variance of P , and σ2

2 is the variance of the distribution M∗ ∈ M that
is closest to P in KL divergence. This shows that prequential codes be-
have quite differently from other important universal codes such as the
2-part MDL, Shtarkov and Bayes codes, for which c = 1. This behavior
is undesirable in an MDL model selection setting.

1 Introduction

Universal coding lies at the basis of on-line prediction algorithms for data com-
pression and gambling purposes. It has been extensively studied in the COLT
community, typically under the name of ‘sequential prediction with log loss’,
see, for example [8, 1, 3]. It also underlies Rissanen’s theory of MDL (minimum
description length) learning [2, 9] and Dawid’s theory of prequential model as-
sessment [6]. Roughly, a code is universal with respect to a set of candidate
codes M if it achieves small redundancy : it allows one to encode data using not
many more bits than the optimal code in M. The redundancy is very closely
related to the expected regret, which is perhaps more widely known within the
COLT community – see Section 4. The main types of universal codes are the
Shtarkov or NML code, the Bayesian mixture code, the 2-part MDL code and the
prequential maximum likelihood (ML) code, also known as the ‘ML plug-in code’
or the ‘predictive MDL code’ [2, 9]. This code was introduced independently
by Rissanen [14] and by Dawid [6], who proposed it as a probability forecast-
ing strategy rather than directly as a code. The main ideas are explained in
Section 2. Here we study the case where no code in M corresponds to the data-
generating distribution P , for the wide class of 1-parameter exponential families
M. We find that then the redundancy of the prequential code can be quite differ-
ent from that of the other methods: the redundancies are 1

2c lnn + O(1). Under

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 652–667, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 653

regularity conditions on P and M, we find c = 1 for Bayes, NML and 2-part
codes, whereas for the prequential ML codes, we can get any c > 0, depending
on P and M.

Relevance: As discussed in Section 5, the result has interesting consequences
for parameter estimation and practical data compression. The most important
and surprising consequence is for MDL learning and model selection, where our
result implies that the prequential ML code may behave suboptimally even if
one of the models under consideration is correct after all!

Contents. In Section 2 we informally state and explain our result. Section 3
contains the formal statement of our main result (Theorem 1), as well as a
proof. Section 4 provides Theorem 2, which implies that a version of our result
still holds if ‘redundancy’ is replaced by ‘expected regret’. We discuss further
issues, including relevance of the result and related work, in Section 5. Section 6
states and proves various lemma’s needed in the proofs of Theorem 1 and 2. We
provide a lot more discussion, and discuss the proofs in much greater detail, in
the technical report [10].

2 Main Result, Informally

Suppose M = {Mθ : θ ∈ Θ} is a k-dimensional parametric family of distribu-
tions, which we use to model some distribution P from which we sample i.i.d.
outcomes Z1, Z2, . . . A code is universal for M if it is almost as efficient at coding
the outcomes from P as the best element of M. (We use codes and distributions
interchangeably.) The redundancy of a universal code U with respect to P is
defined as

RU (n) := EP [LU (Z1, . . . , Zn)] − inf
θ∈Θ

EP [− lnMθ(Z1, . . . , Zn)], (1)

where LU is the length function of U and Mθ(Z1, . . . , Zn) denotes the probability
mass or density of Z1, . . . , Zn under distribution Mθ; these and other notational
conventions are detailed in Section 3. Often, P is assumed to be an element of
the model. If such is the case, then by the information inequality [5] the second
term is minimized for Mθ = P , so that

RU (n) = EP [LU (Z1, . . . , Zn)] − EP [− lnP (Z1, . . . , Zn)], (2)

We use nats rather than bits as units of information to simplify equations; a nat
can be thought of as the amount of information needed to distinguish between e
rather than 2 alternatives. Thus, (2) can be interpreted as the expected number
of additional nats one needs to encode n outcomes if one uses the code U instead
of the optimal (Shannon-Fano) code with lengths − lnP (Z1, . . . , Zn). A good
universal code achieves small redundancy (or regret, see Section 4) for all or
‘most’ P ∈ M.

The four major types of universal codes, Bayes, NML, 2-part and prequential
ML, all achieve redundancies that are (in an appropriate sense) close to optimal.
Specifically, under regularity conditions on M and its parameterization, these
four types of universal codes all satisfy, for all P ∈ M,

654 P. Grünwald and S. de Rooij

R(n) =
k

2
lnn + O(1), (3)

where the O(1) may depend on θ and the universal code used. (3) is the famous
‘k over 2 log n formula’, refinements of which lie at the basis of most practical
approximations to MDL learning, see [9].

In this paper we consider the case where the data are i.i.d. according to an
arbitrary P not necessarily in the model M. It is now appropriate to rename
the redundancy to relative redundancy, since we measure the number of nats
we lose relative to the best element in the model, rather than relative to the
generating distribution P . The definition (1) remains unchanged. It can no longer
be rewritten as (2) however: Assuming it exists and is unique, let Mθ∗ be the
element of M that minimizes KL divergence to P :

θ∗ := arg min
θ∈Θ

D(P‖Mθ) = arg min
θ∈Θ

EP [− lnMθ(Z)],

where the equality follows from the definition of the KL divergence [5]. Then the
relative redundancy satisfies

RU (n) = EP [LU (Z1, . . . , Zn)] − EP [− lnMθ∗(Z1, . . . , Zn)]. (4)

It turns out that for the NML, 2-part MDL and Bayes codes, the relative
redundancy (4) with P �∈ M, still satisfies (3), at least under conditions on M
and P (Section 4). In this paper, we show for the first time that (3) does not hold
for the prequential ML code. The prequential ML code U works by sequentially
predicting Zi+1 using a (slightly modified) ML or Bayesian MAP estimator θ̂i =
θ̂(zi) based on the past data, that is, the first i outcomes zi = z1, . . . , zi. The
total codelength LU (zn) on a sequence zn is given by the sum of the individual
‘predictive’ codelengths (log losses): LU (zn) =

∑n−1
i=0 [− lnMθ̂i

(zi+1)]. In our
main theorem, we show that if LU denotes the prequential ML code length, and
M is a regular one-parameter exponential family (k = 1), then

RU (n) =
1
2

varP X

varMθ∗X
lnn + O(1), (5)

where X is the sufficient statistic of the family. Example 1 below illustrates the
phenomenon. Note that if P ∈ M, then Mθ∗ = P and (5) becomes the familiar
expression. The result holds as long as M and P satisfy a mild condition that is
stated and discussed in the next section. Section 5 discusses the consequences of
this result for compression, estimation and model selection, as well as its relation
to the large body of earlier results on prequential ML coding.

Example 1. Let M be the family of Poisson distributions, parameterized by their
mean μ. Since neither the NML universal code nor Jeffreys’ prior are defined for
this model it is attractive to use the prequential ML code as a universal code
for this model. The ML estimator μ̂i is the empirical mean of z1, . . . , zi.

Suppose Z, Z1, Z2, . . . are i.i.d. according to a degenerate P with
P (Z = 4) = 1. Since the sample average is a sufficient statistic for the Poisson

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 655

family, μ̂i will be equal to 4 for all i ≥ 1. On the other hand, μ∗, the parameter
(mean) of the distribution in M closest to P in KL-divergence, will be equal to
4 as well. Thus the redundancy (4) of the prequential ML code is given by

RU (n) = − lnMμ̂0(4) + lnM4(4) +
n−1∑
i=1

[− lnM4(4) + lnM4(4)] = O(1),

assuming an appropriate definition of μ̂0. In the case of the Poisson family, we
have Z = X in (5). Thus, since varP Z = 0, this example agrees with (5).

Now suppose data are i.i.d. according to some Pτ , with Pτ (Z = z) ∝ (z+1)−3

for all z smaller than τ , and Pτ (Z = z) = 0 for z ≥ τ . It is easy to check that,
for τ → ∞, the entropy of Pτ converges to a finite constant, but the variance of
Pτ tends to infinity. Thus, by choosing τ large enough, the regret obtained by
the Poisson prequential ML code can be made to grow as c log n for arbitrarily
large c.

Example 2. The Hardy-Weinberg model deals with genotypes of which the alleles
are assumed independently Bernoulli distributed according to some parameter
p. There are four combinations of alleles, usually denoted ‘aa’, ‘AA’, ‘aA’, ‘Aa’;
but since ‘aA’ and ‘Aa’ result in the same genotype, the Hardy-Weinberg model
is defined as a probability distribution on three outcomes. We model this by
letting X be a random variable on the underlying space, that maps ‘aA’ and
‘Aa’ to the same value: X(aa) = 0, X(aA) = X(Aa) = 1

2 and X(AA) = 1. Then
P (X = 0) = (1 − p)2, P (X = 1

2) = 2p(1 − p) and P (X = 1) = p2. The Hardy-
Weinberg model is an exponential family with sufficient statistic X. To see this,
note that for any parameter p ∈ [0, 1], we have EX = μ = P (A) = p, so we can
parameterize the model by the mean of X. The variance of the distribution with
parameter μ is 1

2μ(1 − μ). Now suppose that we code data in a situation where
the Hardy-Weinberg model is wrong and the genotypes are in fact distributed
according to P (X = 1

2) = P (X = 1) = 1
2 and P (X = 0) = 0, such that mean

and variance of X are 3
4 and 2

32 respectively. The closest distribution in the
model has the same mean (since the mean is a sufficient statistic), and variance
3
32 . Thus the prequential ML code will achieve an asymptotic regret of 1

3 lnn
rather than 1

2 lnn (up to O(1)).

3 Main Result, Formally

In this section, we define our quantities of interest and we state and prove our
main result. Throughout this text we use nats rather than bits as units of in-
formation. Outcomes are capitalized if they are to be interpreted as random
variables instead of instantiated values. A sequence of outcomes z1, . . . , zn is
abbreviated to zn. We write EP as a shorthand for EZ∼P , the expectation of
Z under distribution P . When we consider a sequence of n outcomes indepen-
dently distributed ∼ P , we use EP even as a shorthand for the expectation
of (Z1, . . . , Zn) under the n-fold product distribution of P . Finally, P (Z) de-
notes the probability mass function of P in case Z is discrete-valued, and it

656 P. Grünwald and S. de Rooij

denotes the density of P , in case Z takes its value in a continuum. When we
write ‘density function of Z’, then, if Z is discrete-valued, this should be read
as ‘probability mass function of Z’. Note however that in our main result, The-
orem 1 below, we do not assume that the data-generating distribution P admits
a density.

Let Z be a set of outcomes, taking values either in a finite or countable set,
or in a subset of k-dimensional Euclidean space for some k ≥ 1. Let X : Z → R

be a random variable on Z, and let X = {x ∈ R : ∃z ∈ Z : X(z) = x} be the
range of X. Exponential family models are families of distributions on Z defined
relative to a random variable X (called ‘sufficient statistic’) as defined above,
and a function h : Z → [0,∞). Let Z(η) :=

∫
z∈Z e−ηX(z)h(z)dz (the integral to

be replaced by a sum for countable Z), and Θη := {η ∈ R : Z(η) < ∞}.

Definition 1 (Exponential family). The single parameter exponential family
[12] with sufficient statistic X and carrier h is the family of distributions with
densities Mη(z) := 1

Z(η)e
−ηX(z)h(z), where η ∈ Θη. Θη is called the natural

parameter space. The family is called regular if Θη is an open interval of R.

In the remainder of this text we only consider single parameter, regular exponen-
tial families with a 1-to-1 parameterization, but this qualification will henceforth
be omitted. Examples include the Poisson, geometric and multinomial families,
and the model of all Gaussian distributions with a fixed variance or mean.

The statistic X(z) is sufficient for η [12]. This suggests reparameterizing the
distribution by the expected value of X, which is called the mean value pa-
rameterization. The function μ(η) = EMη

[X] maps parameters in the natural
parameterization to the mean value parameterization. It is a diffeomorphism (it
is one-to-one, onto, infinitely often differentiable and has an infinitely often dif-
ferentiable inverse) [12]. Therefore the mean value parameter space Θμ is also
an open interval of R. We note that for some models (such as Bernoulli and
Poisson), the parameter space is usually given in terms of the a non-open set
of mean-values (e.g., [0, 1] in the Bernoulli case). To make the model a reg-
ular exponential family, we have to restrict the set of parameters to its own
interior. Henceforth, whenever we refer to a standard statistical model such as
Bernoulli or Poisson, we assume that the parameter set has been restricted in
this sense.

We are now ready to define the prequential ML model. This is a distri-
bution on infinite sequences z1, z2, . . . ∈ Z∞, recursively defined in terms of
the distributions of Zn+1 conditioned on Zn = zn, for all n = 1, 2, . . ., all
zn = (z1, . . . , zn) ∈ Zn. In the definition, we use the notation xi := X(zi).

Definition 2 (Prequential ML model). Let Θμ be the mean value parameter
domain of an exponential family M = {Mμ | μ ∈ Θμ}. Given M and constants
x0 ∈ Θμ and n0 > 0, we define the prequential ML model U by setting, for all
n, all zn+1 ∈ Zn+1:

U(zn+1 | zn) = Mμ̂(zn)(zn+1),

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 657

where U(zn+1 | zn) is the density/mass function of zn+1 conditional on Zn = zn,

μ̂(zn) :=
x0 · n0 +

∑n
i=1 xi

n + n0
,

and Mμ̂(zn)(·) is the density of the distribution in M with mean μ̂(zn).

We henceforth abbreviate μ̂(zn) to μ̂n. We usually refer to the prequential ML
model in terms of the corresponding codelength function

LU (zn) =
n−1∑
i=0

LU (zi+1 | zi) =
n−1∑
i=0

− lnMμ̂i
(zi+1).

To understand this definition, note that for exponential families, for any sequence
of data, the ordinary maximum likelihood parameter is given by the average
n−1

∑
xi of the observed values of X [12]. Here we define our prequential model

in terms of a slightly modified maximum likelihood estimator that introduces
a ‘fake initial outcome’ x0 with multiplicity n0 in order to avoid infinite code
lengths for the first few outcomes (a well-known problem called by Rissanen
the “inherent singularity” of predictive coding [16, 10]) and to ensure that the
prequential ML code of the first outcome is well-defined. In practice we can take
n0 = 1 but our result holds for any n0 > 0. The justification of our modification
to the ML estimator is discussed further in Section 5 and in [10].

Theorem 1 (Main result). Let X,X1, X2, . . . be i.i.d. ∼ P , with EP [X] = μ∗.
Let M be a single parameter exponential family with sufficient statistic X and
μ∗ an element of the mean value parameter space. Let U denote the prequential
ML model with respect to M. If M and P satisfy Condition 1 below, then

RU (n) =
varP X

varMμ∗X

1
2

lnn + O(1). (6)

To reconcile this with (5), note that Mμ∗ is the element of M achieving smallest
expected codelength, i.e. it achieves infμ∈Θμ

D(P‖Mμ) [12].

Condition 1 We require that the following holds both for T := X and T := −X:

– If T is unbounded from above then there is a k ∈ {4, 6, . . .} such that the first
k moments of T exist under P and that d4

dμ4 D(Mμ∗‖Mμ) = O
(
μk−6

)
.

– If T is bounded from above by a constant g then d4

dμ4 D(Mμ∗‖Mμ) is polyno-
mial in 1/(g − μ).

The condition implies that Theorem 1 can be applied to most single-parameter
exponential families that are relevant in practice. To illustrate, in [10] we have
explicitly computed the fourth derivative of the divergence for a number of ex-
ponential families: the Poisson, geometric, Normal, Bernoulli, exponential and
Pareto families; all parameters beside the mean are treated as fixed values. As can
be seen from [10–Figure 1], for these exponential families, our condition applies
whenever the fourth moment of P exists. We explain the need for Condition 1
directly after the proof of Theorem 1:

658 P. Grünwald and S. de Rooij

Proof. (of Theorem 1) Here we only give the proof for the special case that
X = Z, i.e. the sufficient statistic of M is equal to the observed outcome.
Extension to the general case is trivial, see [10]. Thus, in the proof of Theorem 1
as well as all the Lemmas and Propositions it makes use of, it is implicitly
understood that X = Z. The proof relies on Lemma 2 (Section 6), which has a
complicated and lengthy proof. But as we shall see, once one takes Lemma 2 for
granted, the proof becomes quite straightforward:

We abbreviate δi = μ̂i−μ∗ and dk

dμk D(Mμ∗‖Mμ) = D(k)(μ). That is, D(k)(μ)
is the k-th derivative of the function f(μ) := D(Mμ∗‖Mμ). The proof is based
on a Taylor expansion of the KL divergence D(Mμ∗‖Mμ̂i

) around μ∗:

D(Mμ∗‖Mμ̂i
) = 0 + δiD

(1)(μ∗) +
δi

2

2
D(2)(μ∗) +

δi
3

6
D(3)(μ∗) +

δi
4

24
D(4)(μ)

The last term is the remainder term of the Taylor expansion, in which μ ∈
[μ∗, μ̂i]. The second term D(1)(μ∗) is zero, since D(μ∗‖μ) has its minimum at
μ = μ∗ [12]. As is well-known [12], for exponential families the term D(2)(μ)
coincides precisely with the Fisher information I(μ) evaluated at μ. Another
standard result [12] for the mean-value parameterization says that for all μ,

I(μ) =
1

varMμ
X

. (7)

Therefore:

D(Mμ∗‖Mμ̂i
) =

1
2
δi

2/varMμ∗ (X) +
1
6
δi

3D(3)(μ∗) +
1
24

δi
4D(4)(μ) (8)

We now compute the expected sum of (8), where μ̂i (and therefore δi) is a
random variable that takes on values according to P , while μ∗ is fixed. We get:

n−1∑
i=0

E
μ̂i∼P

[D(Mμ∗‖Mμ̂i
)] =

1
2varMμ∗ (X)

n−1∑
i=0

EP

[
δi

2
]
+ R(n), (9)

where the remainder term R(n) is given by

R(n) =
n−1∑
i=0

E
μ̂i∼M∗

[
1
6
δi

3D(3)(μ∗) +
1
24

δi
4D(4)(μ)

]
(10)

where μ and δi are random variables depending on μ̂i and i. Theorem 1 now
follows by rewriting the term on the left and the two terms on the right in (9):

1. Lemma 1 (Section 6) shows that RU (n) =
∑n−1

i=0 Eμ̂i∼P [D(Mμ∗‖Mμ̂i
)] , so

that the left-hand side of (9) is equal to the left-hand side of (6).
2. Lemma 2 (Section 6) shows that R(n) = O(1).
3. To evaluate the remaining term 1

2varMμ∗ (X)

∑n−1
i=0 EP

[
δi

2
]

in (9), note that

μ̂i is almost the ML estimator. This suggests that each term in the sum

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 659∑n−1
i=0 EP

[
δi

2
]

should be almost equal to the variance of the ML estimator,
which is varX/i. Because of the slight modification that we made to the
estimator, the variance becomes varX/(i + 1) + O((i + 1)−2) (this is easy to
verify; an explicit proof is given as Theorem 5 in [10]). We then get:

n−1∑
i=0

EP

[
(μ̂i − μ∗)2

]
=

n−1∑
i=0

O
(
(i + 1)−2

)
+ varP (X)

n−1∑
i=0

(i + 1)−1

= O(1) + varP (X) lnn, (11)

so that Theorem 1 follows with items (1) and (2) above.

Discussion. Lemma 1 follows relatively easily by rewriting the sum using the
chain rule for relative entropy and the fact that X is a sufficient statistic. The
truly difficult part of the proof is Lemma 2. It involves infinite sums of expec-
tations over unbounded fourth-order derivatives of the KL divergence. To make
this work, we (1) slightly modify the ML estimator by introducing the initial
fake outcome x0. And (2), we need to impose Condition 1. To understand it,
consider the case T = X, X unbounded from above. The condition essentially
expresses that, as μ̂ increases to infinity, the fourth order Taylor-term does not
grow too fast. Similarly, if X is bounded from above by g, the condition ensures
that the fourth-order term grows slowly enough as μ̂ ↑ g. The same requirements
are imposed for decreasing μ̂.

4 Redundancy vs. Regret

The ‘goodness’ of a universal code relative to a model M can be measured
in several ways: rather than using redundancy (as we did here), one can also
choose to measure codelength differences in terms of regret, where one has a
further choice between expected regret and worst-case regret [2]. Here we only
discuss the implications of our result for the expected regret measure.

Let M = {Mθ | θ ∈ Θ} be a family of distributions parameterized by Θ.
Given a sequence zn = z1, . . . , zn and a universal code U for M with lengths
LU , the regret of U on sequence zn is defined as

LU (zn) − inf
θ∈Θ

[− lnMθ(zn)]. (12)

Note that if the (unmodified) ML estimator θ̂(zn) exists, then this is equal to
LU (zn)+lnMθ̂(zn)(z

n). Thus, one compares the codelength achieved on zn by U
to the best possible that could have been achieved on that particular zn, using
any of the distributions in M. Assuming Z1, Z2, . . . are i.i.d. according to some
(arbitrary) P , one may now consider the expected regret

R̂U (n) := EP [LU (Zn) − inf
θ∈Θ

[− lnMθ(Zn)]],

To quantify the difference with redundancy, consider the function

d(n) := inf
θ∈Θ

EP [− lnMθ(Zn)] − EP [inf
θ∈Θ

[− lnMθ(Zn)]],

660 P. Grünwald and S. de Rooij

and note that for any universal code, RU (n) − R̂U (n) = d(n). In case P ∈ M,
then under regularity conditions on M and its parameterization, it can be shown
[4] that limn→∞ d(n) = k

2 where k is the dimension of M. In our case, where P
is not necessarily in M, we have the following :

Theorem 2. Let X be finite. Let P , Mμ and μ∗ be as in Theorem 1. Then

lim
n→∞

d(n) =
1
2

varP X

varMμ∗X
. (13)

For lack of space we have to omit the proof. It can be found in [10]. Note that
the previous result for one-dimensional models M with P ∈ M, d(n) → 1/2, is a
special case of (13). We conjecture that, under a condition similar to Condition 1,
the same result still holds for general, not necessarily finite or countable or
bounded X , but at the time of writing this submission we did not yet find the
time to sort out the details. In any case, our result is sufficient to show that in
some cases (namely, if X is finite), we have

R̂U (n) =
1
2

varP X

varMμ∗X
lnn + O(1),

so that, up to O(1)-terms, the redundancy and the regret of the prequential ML
code behave in the same way.

Incidentally, Theorem 2 can be used to substantiate the claim we made in
Section 2, which stated that the Bayes (equipped with a strictly positive differen-
tiable prior), NML and 2-part codes still achieve relative redundancy of 1

2 lnn if
P �= M, at least if X is finite. Let us informally explain why this is the case. It is
easy to show that Bayes, NML and (suitably defined) 2-part codes achieve regret
1
2 lnn+O(1) for all sequences z1, z2, . . . such that θ̂(zn) is bounded away from the
boundary of the parameter space M , for all large n [2, 9]. It then follows using,
for example, the Chernoff bound that these codes must also achieve expected
regret 1

2 lnn + O(1) for all distributions P on X that satisfy EP [X] = μ∗ ∈ Θμ.
Theorem 2 then shows that they also achieve relative redundancy 1

2 lnn + O(1)
for all distributions P on X that satisfy EP [X] = μ∗ ∈ Θμ. We omit further
details.

5 Discussion

1. Variations of Prequential Coding. As discussed in [10], in order to apply the
prequential ML code, either the ML estimator has to be slightly modified, or,
[6], the first few outcomes have to be ignored. While our modification of the ML
estimator can be re-interpreted in terms of the second, more common solution
to the ‘startup problem’, it has an additional advantage: our modified ML esti-
mators are equivalent to (a) Bayesian MAP estimators with a conjugate prior,
and (b) Bayesian mean estimators resulting from a variation of conjugate priors.
Thus, for a large class of priors, our result continues to hold if one uses ‘pre-
quential Bayes MAP’ or ‘prequential Bayes mean’ rather than prequential ML

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 661

coding [10]. Rissanen’s predictive MDL code behaves differently for unordered
data, but our result implies that Rissanen’s scheme cannot achieve redundancy
1
2 lnn + O(1) for arbitrary P either [10]. In fact, we conjecture:

Conjecture 1. Let M be a regular exponential family with sufficient statistic X
and let P be the set of distributions on Z such that EP [X4] exists. There exists
no “in-model” estimator such that the corresponding prequential code achieves
redundancy 1

2 lnn + O(1) for all P ∈ P.
Here, by an in-model estimator we mean an algorithm that takes as in-

put any sample of arbitrary length and outputs an M ∈ M. Let us contrast
this with “out-model estimators”: fix some prior on the parameter set Θμ and
let P (μ | z1, . . . , zn−1) be the Bayesian posterior with respect to this prior
and data z1, . . . , zn−1. One can think of the Bayesian predictive distribution
P (zn | z1, . . . , zn−1) :=

∫
μ∈Θμ

Mμ(zn)P (μ | z1, . . . , zn−1)dμ as an estimate of
the distribution of Z, based on data z1, . . . , zn−1. But unlike estimators as de-
fined in the conjecture above, the resulting Bayesian predictive estimator will in
general not be a member of M, but rather of its convex closure: we call it an
out-model estimator. The redundancy of the Bayesian universal model is equal
to the accumulated Kullback-Leibler (KL) risk of the Bayesian predictive esti-
mator [10]. Thus, the accumulated KL risk of the Bayesian predictive estimator
is 1

2 lnn+O(1) even under misspecification. Thus, if our conjecture above holds
true, then in-model estimators behave in a fundamentally different way from
out-model estimators in terms of their asymptotic risk.

Example 3. The well-known Laplace and Krichevsky-Trofimov estimators for the
Bernoulli model [9] define prequential ML models according to Definition 2: they
correspond to x0 = 1/2, n0 = 2, and x0 = 1/2, n0 = 1 respectively. Yet, they also
correspond to Bayesian predictive distributions with uniform prior or Jeffreys’
prior respectively. This implies, for example, that the codelength achieved by
the Bayesian universal model with Jeffreys’ prior and the prequential ML model
with x0 = 1/2, n0 = 1 must coincide. We claimed before that the expected
regret for a Bayesian universal model is 1

2 log n + O(1) if data are i.i.d. ∼ P , for
essentially all distributions P . This may seem to contradict our result which says
that the expected regret of the prequential ML model can be 0.5c log n + O(1)
with c �= 1 if P �∈ M. But there really is no contradiction: since the Bernoulli
model happens to contain all distributions P on {0, 1}, we cannot have P �∈ M
so Theorem 1 indeed says that c = 1 no matter what P we choose. But with
more complicated models such as the Poisson or Hardy-Weinberg model, it is
quite possible that P �∈ M. Then the Bayesian predictive distribution will not
coincide with any prequential ML model and we can have c �= 1.

2. Practical Relevance. We just discussed the theoretical relevance of Theorem 1.
But, as discussed in [10], it also has important practical consequences for data
compression and MDL model selection. We first consider data compression. Our
result indicates that the redundancy can be both larger and smaller than 1

2 lnn,
depending on the variance of the ‘true’ P . In practical data compression tasks,
it is often the case that P �∈ M. Then, the prequential ML can behave either

662 P. Grünwald and S. de Rooij

better or worse than the Bayesian code, depending on the situation. Let us
now consider the interesting case of MDL model selection (which is not the
same as ¿data compression!) between two non-overlapping parametric models
M1 and M2 where one of the two models is correct : we observe some data zn

generated by a distribution from either M1 or M2. We pick the model such
that the corresponding prequential codelength of zn is minimized. Without loss
of generality, assume P ∈ M1. Then P cannot be in M2. By Theorem 1, the
prequential codelength relative to M1 is approximately equal to the Bayesian
codelength, whereas relative to M2 the codelengths are quite different. It follows
that prequential ML model selection will behave differently from Bayesian model
selection. In [7] we performed some model selection experiments between the
Poisson and geometric model. The results strongly suggest that the prequential
ML codes typically behave worse (and never better!) than the Bayesian or NML
codes; we provide a theoretical explanation for this phenomenon (but no formal
proof) in [7]. These experiments thus show that under misspecification our result
is relevant even in a well-specified context!

3. Related Work. There are a plethora of results concerning the redundancy
and/or the regret for the prequential ML code, for a large variety of models
including multivariate exponential families, ARMA processes, regression models
and so on. Examples are [15, 11, 17, 13]. In all these papers it is shown that either
the regret or the redundancy grows as k

2 lnn + o(lnn), either in expectation or
almost surely. [13] even evaluates the remainder term explicitly. The reason that
these results do not contradict ours, is that they invariably concern the case
where the generating P is in M, so that automatically varM∗(X) = varP (X).

6 Proofs

Lemma’s 1 and 2, used in the proof of Theorem 1, are stated and proved, respec-
tively, in Section 6.1 and 6.2. But we first provide some general results about
deviations between average and mean, on which the proofs of Lemma 2 and
Theorem 2 are based.

Theorem 3. Suppose X,X1, X2, . . . are i.i.d. with mean 0. If the first k ∈ N

moments of X exist, then we have Then E
[
(
∑n

i=1 Xi)
k
]

= O
(
n� k

2 �
)
.

Remark. It follows as a special case of Theorem 2 of [18] that E
[
|
∑n

i=1 Xi|k
]

=
O(n

k
2) which almost proves this theorem and which is in fact sufficient for our

purposes, as can be seen from the proof of Lemma 2. The advantage of Theorem 3
over Theorem 2 of [18] is that Theorem 3 has an elementary proof. Unfortunately,
we had to omit this proof for lack of space. It can be found in [10].

Theorem 4. Let X,X1, . . . be i.i.d., let μ̂n := (n0 ·x0 +
∑n

i=1 Xi)/(n+n0) and
μ∗ = E[X]. If the first k moments of X exist, then E[(μ̂n − μ∗)k] = O(n− k

2 �).

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 663

Proof. We define Yi := Xi − μ∗; this can be seen as a new sequence of i.i.d.
random variables with mean 0, and y0 := x0 − μ∗. Rewrite E

[
(μ̂n − μ∗)k

]
as

E

⎡⎣(
n0y0 +

n∑
i=1

Yi

)k
⎤⎦ (n+n0)−k = O

(
n−k

) k∑
p=0

(
k

p

)
(n0y0)pE

⎡⎣(
n∑

i=1

Yi

)k−p
⎤⎦

= O
(
n−k

) k∑
p=0

(
k

p

)
(n0y0)p ·O

(
n�

k−p
2 �

)
,

where in the last step we used Theorem 3. We sum k + 1 terms of which the
term for p = 0 grows fastest in n, so the expression is O(n− k

2 �) as required.

Theorem 5. Let X,X1, . . . be i.i.d. random variables, define μ̂n := (n0 · x0 +∑n
i=1 Xi)/(n + n0) and μ∗ = E[X]. Let k ∈ {0, 2, 4, . . .}. If the first k moments

exists then P (|μ̂n − μ∗| ≥ δ) = O
(
n− k

2 �δ−k
)
.

Proof. Using Markov’s inequality and Theorem 4 we get:
P (|μ̂n − μ∗| ≥ δ) = P

(
(μ̂n − μ∗)k ≥ δk

)
≤ E

[
(μ̂n − μ∗)k

]
δ−k = O

(
n− k

2 δ−k
)
.

6.1 Lemma 1: Redundancy for Exponential Families

Lemma 1. Let U be a prequential ML model and M be an exponential family
as in Theorem 1. We have RU (n) =

∑n−1
i=0 Eμ̂i∼P [D(Mμ∗ ‖ Mμ̂i

)] .

Proof. We have:

arg inf
μ

EP [− lnMμ(Xn)] = arg inf
μ

EP

[
ln

Mμ∗(Xn)
Mμ(Xn)

]
= arg inf

μ
D(Mμ∗ ‖ Mμ).

In the last step we used Proposition 1 below. The divergence is minimized when
μ = μ∗ [12], so we find that (the last step following again from Proposition 1):

RU (n) = EP [− lnU(Xn)] − EP [− lnMμ∗(Xn)] = EP

[
ln

Mμ∗(Xn)
U(Xn)

]
= EP

[
n−1∑
i=0

ln
Mμ∗(Xi)
Mμ̂i

(Xi)

]
=

n−1∑
i=0

EP

[
ln

Mμ∗(Xi)
Mμ̂i

(Xi)

]
=

n−1∑
i=0

E
μ̂i∼P

[D(Mμ∗ ‖ Mμ̂i
)] .

Proposition 1. Let X ∼ P with mean μ∗, and let Mμ index an exponential
family with sufficient statistic X, so that Mμ∗ exists. We have:

EP

[
− ln Mμ∗ (X)

Mθ(X)

]
= D(Mμ∗ ‖ Mθ).

Proof. Let η(·) denote the function mapping parameters in the mean value pa-
rameterization to the natural parameterization. (It is the inverse of the function
μ(·) which was introduced in the discussion of exponential families.) By work-
ing out both sides of the equation we find that they both reduce to η(μ∗)μ∗ +
ln Z(η(μ∗)) − η(θ)μ∗ − ln Z(η(θ)).

664 P. Grünwald and S. de Rooij

6.2 Lemma 2: Convergence of the Sum of the Remainder Terms

Lemma 2. Let R(n) be defined as in (10). Then R(n) = O(1).

Proof. We omit irrelevant constants and the term for the first outcome, which
is well-defined because of our modification of the ML estimator. We abbreviate
dk

dμk D(Mμ∗‖Mμ) = D(k)(μ) as in the proof of Theorem 1. First we consider
the third order term. We write Eδi∼P to indicate that we take the expectation
over data which is distributed according to P , of which δi is a function. We use
Theorem 4 to bound the expectation of δi

3; under the condition that the first
three moments exist, which is assumed to be the case, we obtain,

n−1∑
i=1

E
δi∼P

[
δi

3D(3)(μ∗)
]

= D(3)(μ∗)
n−1∑
i=1

E[δ3
i] = D(3)(μ∗)

n−1∑
i=1

O(i−2),

which is O(1), since the constants implicit in O(·) are the same across terms.
The fourth order term is more involved, because D(4)(μ) is not necessarily

constant across terms. To compute it we first distinguish a number of regions in
the value space of δi: let Δ− = (−∞, 0) and let Δ0 = [0, a) for some constant
value a > 0. If the individual outcomes X are bounded on the right hand side
by a value g then we require that a < g and we define Δ1 = [a, g); otherwise we
define Δj = [a + j − 1, a + j) for j ≥ 1. Now we must establish convergence of:

n−1∑
i=1

E
δi∼P

[
δi

4D(4)(μ)
]

=
n−1∑
i=1

∑
j

P (δi ∈ Δj) E
δi∼P

[
δi

4D(4)(μ) | δi ∈ Δj

]
If we can establish that the sum converges for all regions Δj for j ≥ 0, then

we can use a symmetrical argument to establish convergence for Δ− as well, so
it suffices if we restrict ourselves to j ≥ 0. First we show convergence for Δ0. In
this case, the basic idea is that since the remainder D(4)(μ) is well-defined over
the interval μ∗ ≤ μ < μ∗ + a, we can bound it by its extremum on that interval,
namely m := supμ∈[μ∗,μ∗+a)

∣∣D(4)(μ)
∣∣. Now we get:∣∣∣∣∣

n−1∑
i=1

P (δi ∈ Δ0)E
[
δi

4D(4)(μ) | δi ∈ Δ0

]∣∣∣∣∣ ≤
∣∣∣∣∣
n−1∑
i=1

1 · E
[
δi

4
∣∣∣D(4)(μ)

∣∣∣]∣∣∣∣∣ ,
which is less or equal than

∣∣m∑
i E

[
δi

4
]∣∣. Using Theorem 4 we find that E[δi

4]
is O(i−2), the sum of which converges. Theorem 4 requires that the first four
moments of P exist, but this is guaranteed to be the case: either the outcomes
are bounded from both sides, in which case all moments necessarily exist, or the
existence of the required moments is part of the condition on the main theorem.

Now we distinguish between the unbounded and bounded cases. First we
assume X is unbounded from above. In this case, we must show convergence of:∣∣∣∣∣∣

n−1∑
i=1

∞∑
j=1

P (δi ∈ Δj)E
[
δi

4D(4)(μ) | δi ∈ Δj

]∣∣∣∣∣∣

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 665

We bound this expression from above. The δi in the expectation is at most
a + j. Furthermore D(4)(μ) = O(μk−6) by assumption on the main theorem,
where μ ∈ [a + j − 1, a + j). Depending on k, both boundaries could maximize
this function, but it is easy to check that in both cases the resulting function is
O(jk−6). So we get:

. . . ≤
n−1∑
i=1

∞∑
j=1

P (|δi| ≥ a + j − 1)(a + j)4O(jk−6)

Since we know from the condition on the main theorem that the first k ≥ 4
moments exist, we can apply Theorem 5 to find that P (|δi| ≥ a + j − 1) =
O(i− k

2 �(a + j − 1)−k) = O(i−
k
2)O(j−k) (since k has to be even); plugging this

into the equation and simplifying we obtain
∑

i O(i−
k
2)

∑
j O(j−2). For k ≥ 4

this expression converges.
Now we consider the case where the outcomes are bounded from above by g.

This case is more complicated, since now we have made no extra assumptions as
to existence of the moments of P . Of course, if the outcomes are bounded from
both sides, then all moments necessarily exist, but if the outcomes are unbounded
from below this may not be true. To remedy this, we map all outcomes into a
new domain in such a way that all moments of the transformed variables are
guaranteed to exist. Any constant x− defines a mapping g(x) := max{x−, x}.
We define the random variables Yi := g(Xi), the initial outcome y0 := g(x0) and
the mapped analogues of μ∗ and μ̂i, respectively: μ† is defined as the mean of
Y under P and μ̃i := (y0 ·n0 +

∑i
j=1 Yj)/(i+n0). Since μ̃i ≥ μ̂i, we can bound:

∣∣∣∣∣∑
i

P (δi ∈ Δ1)E
[
δi

4D(4)(μ) | δi ∈ Δ1

]∣∣∣∣∣ ≤ ∑
i

P (μ̂i−μ∗ ≥ a) sup
δi∈Δ1

∣∣∣δi
4D(4)(μ)

∣∣∣
≤

∑
i

P (|μ̃i − μ†| ≥ a + μ∗ − μ†)g4 sup
δi∈Δ1

∣∣∣D(4)(μ)
∣∣∣ (14)

By choosing x− small enough, we can bring μ† and μ∗ arbitrarily close to-
gether; in particular we can choose x− such that a + μ∗ − μ† > 0 so that appli-
cation of Theorem 5 is safe. It reveals that the summed probability is O(i−

k
2)

for any even k ∈ N. Now we bound D(4)(μ) which is O((g − μ)−m) for some
m ∈ N by the condition on the main theorem. Here we use that μ ≤ μ̂i; the lat-
ter is maximized if all outcomes equal the bound g, in which case the estimator
equals g − n0(g − x0)/(i + n0) = g − O(i−1). Putting all of this together, we
get sup

∣∣D(4)(μ)
∣∣ = O((g − μ)−m) = O(im); if we plug this into the equation we

obtain:
. . . ≤

∑
i

O(i−
k
2)g4O(im) = g4

∑
i

O(im− k
2)

This converges if we choose k ≥ 6m. We can do this because the construction of
g(·) ensures that all moments exist, and therefore certainly the first 6m.

666 P. Grünwald and S. de Rooij

7 Conclusion and Future Work

We established two theorems about the relative coding redundancy. The two the-
orems combined state, essentially, that the expected regret of exponential family
models behaves differently for the prequential plug-in universal code than for
the Bayes, NML/Shtarkov and 2-part codes. This has consequences for coding,
for MDL model selection, and for the behavior of the Kullback-Leibler risk. We
conjecture that a similar result holds if the prequential code is not based on
the ML but any other asymptotically consistent estimator, as long as each es-
timate is required to lie in the model M. In future work, we hope to extend
Theorem 2 to general 1-parameter exponential families with arbitrary sample
spaces.

Acknowledgment. This work was supported in part by the IST Program of
the European Community, under the PASCAL Network of Excellence, IST-2002-
506778. This publication only reflects the authors’ views.

References

1. K. Azoury and M. Warmuth. Relative loss bounds for on-line density estimation
with the exponential family of distributions. Machine Learning, 43(3), 2001.

2. A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in
coding and modeling. IEEE Trans. Inf. Theory, 44(6):2743–2760, 1998.

3. N. Cesa-Bianchi and G. Lugosi. Worst-case bounds for the logarithmic loss of
predictors. Journal of Machine Learning, 43(3):247–264, 2001.

4. B.S. Clarke and A.R. Barron. Information-theoretic asymptotics of Bayes methods.
IEEE Trans. Inf. Theory, IT-36(3):453–471, 1990.

5. T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 1991.
6. A.P. Dawid. Present position and potential developments: Some personal views,

statistical theory, the prequential approach. Journal of the Royal Statistical Society,
Series A, 147(2):278–292, 1984.

7. S. de Rooij and P. Grünwald. An empirical study of MDL model selec-
tion with infinite parametric complexity. Available at the CoRR arXiv at
http://xxx.lanl.gov/abs/cs.LG/0501028abs.cs.LG/0501028, 2005.

8. Y. Freund. Predicting a binary sequence almost as well as the optimal biased coin.
In Proc. Ninth Annual Conf. on Comp. Learning Theory (COLT’ 96), 1996.

9. P. Grünwald. MDL tutorial. In P. Grünwald, J. Myung, and M. Pitt, editors,
Advances in Minimum Description Length. MIT Press, 2005.

10. P. Grünwald and S. de Rooij. Asymptotic log–loss of prequential maximum likeli-
hood codes. Available at the CoRR arXiv at http://xxx.lanl.gov/, 2005.

11. E.M. Hemerly and M.H.A. Davis. Strong consistency of the PLS criterion for order
determination of autoregressive processes. Ann. Statist., 17(2):941–946, 1989.

12. R. Kass and P. Vos. Geometric Foundations of Asymptotic Inference. Wiley, 1997.
13. L. Li and B. Yu. Iterated logarithmic expansions of the pathwise code lengths for

exponential families. IEEE Trans. Inf. Theory, 46(7):2683–2689, 2000.
14. J. Rissanen. Universal coding, information, prediction and estimation. IEEE Trans.

Inf. Theory, 30:629–636, 1984.

Asymptotic Log-Loss of Prequential Maximum Likelihood Codes 667

15. J. Rissanen. A predictive least squares principle. IMA Journal of Mathematical
Control and Information, 3:211–222, 1986.

16. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.
17. C.Z. Wei. On predictive least squares principles. Ann. Statist., 20(1):1–42, 1990.
18. P. Whittle. Bounds for the moments of linear and quadratic forms in independent

variables. Theory of Probability and its Applications, V(3), 1960.

Teaching Classes with High Teaching Dimension
Using Few Examples

Frank J. Balbach

Institut für Theoretische Informatik, Universität zu Lübeck,
Ratzeburger Allee 160, 23538 Lübeck, Germany

balbach@tcs.uni-luebeck.de

Abstract. We consider the Boolean concept classes of 2-term DNF and
1-decision lists which both have a teaching dimension exponential in the
number n of variables. It is shown that both classes have an average
teaching dimension linear in n. We also consider learners that always
choose a simplest consistent hypothesis instead of an arbitrary consistent
one. Both classes can be taught to these learners by efficient teaching
algorithms using only a linear number of examples.

1 Introduction

In learning from examples, a learner typically knows only little about the source
of these examples. In addition, the learner is required to learn from all such
sources, regardless of their quality. Even in the query model [1, 2], the burden of
learning rests almost exclusively on the part of the learner, because the oracle,
although answering truthfully, is assumed to behave adversarially whenever pos-
sible. Helpful teachers who are honestly interested in the learner’s success have
been studied in several ways, though.

Within the inductive inference paradigm, Freivalds, Kinber, and Wiehagen [7]
and Jain, Lange, and Nessel [15] developed a model in which the learner is
provided with good examples chosen by an implicitly given teacher.

Jackson and Tomkins [14] as well as Goldman and Mathias [10, 17] defined
models of teacher/learner pairs where teachers and learners are constructed ex-
plicitly. The requirement to construct both learners and teachers leads to the
problem of collusion. For preventing the teacher to simply encode the target
concept, all models mentioned so far use some kind of adversary who disturbs
the teaching process and makes it more challenging. Angluin and Kriķis’ [3, 4]
model prevents collusion by giving incompatible hypothesis spaces to teacher
and learner. This makes simple encoding of the target concept impossible.

A different notion of helpful teacher was introduced by Goldman, Rivest, and
Shapire [8, 11] and Goldman and Kearns [9], and independently by Shinohara
and Miyano [20]. Here, a teacher is an algorithm that, given a target concept c
from a concept class C, produces a sequence of examples for c. It is different from
the aforementioned models in that now the teacher is considered successful if its
examples force every consistent learning algorithm to output the target concept.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 668–683, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Teaching Classes with High Teaching Dimension Using Few Examples 669

This is equivalent to saying that c must be the only concept in C consistent with
the teacher’s examples.

The minimum number of examples necessary to teach a concept c is called
its teaching dimension [9] (or key size [20], or specification number [5]). The
maximum teaching dimension over all concepts in C is the teaching dimension
of C. This value has been studied as a measure for the difficulty to teach C [13].

The following example shows that this measure does not always capture our
intuition. Consider the concept class consisting of all singleton concepts and
the empty concept. To successfully teach the empty concept, a teacher has to
rule out all singleton concepts. This can only be done by providing all negative
examples. The teaching dimension then is the maximum possible which does not
properly reflect the easy teachability one would expect from this class.

Two reasons for this implausible result are obvious. First, the teaching di-
mension of the class is determined by the worst case teaching dimension over
all concepts. Easily learnable concepts are not taken into account. Second, the
teacher has to teach all consistent learners and among them there are unreason-
able ones. In the above example, as long as the teacher leaves out at least one
negative example, there is a learner outputting a singleton concept containing a
left out example. This clearly is not a plausible learner and one can expect to
simplify teaching by requiring learners to be a little more “sensible.”

In this paper, we take a look at the two obvious remedies. First, we consider
the average teaching dimension instead of the worst case teaching dimension.
This has been done previously by Anthony, Brightwell and Shawe-Taylor [5]
for the class of linearly separable Boolean functions and by Kuhlmann [16] for
classes of VC-dimension 1.

Second, we restrict the class of admissible learners by imposing an additional
constraint besides that of consistency, namely that of preferring simple hypothe-
ses over complex ones. This principle, well known as Occam’s Razor, is of such
great importance in learning theory that frequently the process of learning is
even equated with finding a simple hypothesis. To apply this principle, we first
assign a complexity to each concept. We then admit only those learners who
output consistent hypotheses of least complexity.

Note that restricting the admissible learners in such a way presents a middle
course between teaching all learners and teaching only one learner.

Our presentation focuses on two concept classes: 2-term DNF and 1-decision
lists. In the monotone variant both classes have already been studied by Goldman
and Kearns [9] who proved their teaching dimension to be linear in the number of
Boolean variables. The general (non-monotone) variants are easily seen to have
a teaching dimension exponential in the number of variables and are therefore
well suited objects for our study.

As we shall see, both classes exhibit another questionable property of the
teaching dimension. After introducing natural complexity measures for the con-
cepts, one finds that with growing complexity the teaching dimension decreases.
This undesired phenomenon disappears when the learners obey the Occam’s
Razor principle.

670 F.J. Balbach

2 Notations and Definitions

Let Xn = {0, 1}n be the set of all assignments to n Boolean variables. We
consider concepts c : Xn → {0, 1}, or equivalently c ⊆ Xn, and concept classes
Cn ⊆ 2Xn . Elements from Xn are called instances and pairs (x, y) ∈ Xn × {0, 1}
of an instance and a Boolean value are called examples. A concept c is consistent
with a set S = {(x1, y1), . . . , (xm, ym)} of examples if c(xi) = yi for all i =
1, . . . ,m.

A set S of examples is a teaching set [9, 20] for c with respect to C if c is the
only concept in C consistent with S. The teaching dimension of c is defined as the
size of its smallest teaching set: TD(c) = min{|S| : S is teaching set for c wrt C}.
The teaching dimension of C is defined as the maximum teaching dimension
over all concepts: TD(C) = max{TD(c) : c ∈ C}. Finally, we define the average
teaching dimension TD(C) = 1

|C|
∑

c∈C TD(c).
A teacher providing a teaching set for c makes sure that every consistent

learner outputting only hypotheses from C successfully learns c from the given
examples. We now restrict the class of learners that must be successful to those
that output consistent hypotheses from C of minimal complexity.

Let K : C → map each concept to a natural number interpreted as its
complexity. A K-learner is now required to output a consistent hypothesis with
minimal complexity among all consistent hypotheses. In order to teach a concept
c to those K-learners, a teacher has to provide enough examples to rule out all
concepts with complexity less or equal to K(c).

We call a set S of examples a K-set for c if c is consistent with S and for all
c′ ∈ C \ {c} consistent with S, K(c′) > K(c). The K-dimensions are defined as:
KD(c) = min{|S| : S is K-set for c wrt C} and KD(C) = max{KD(c) : c ∈ C}.
It is clear from the definitions that the K-dimension depends on the measure K.

Let Dn be the class of all concepts representable by a 1-decision list [19]
over n variables. A 1-decision list is a list D = 〈(�1, b1), . . . , (�m, bm), (∗, bm+1)〉
of nodes consisting of literals �i and labels bi ∈ {0, 1}. A node (�, b) is called
positive if b = 1, negative otherwise. The node (∗, b) is the default node. The
concept cD represented by D is defined by: cD(x) = bj for the minimum j ≤ m
such that x satisfies �j and cD(x) = bm+1 if no such j exists. We say (�, b)
absorbes an instance x, if � is the first literal in D satisfied by x. We define the
length of a decision list as the number of nodes (not counting the default node),
i. e., len(D) = m and the length of a concept c ∈ Dn as the length of its shortest
decision list: len(c) = minc=cD

len(D).
Let Ck

n be the class of all concepts representable by a k-term DNF, that is
a disjunction of no more than k monomials over n variables. Note that Ck

n ⊃
Ck−1

n ⊃ · · · ⊃ C0
n = {∅}.

We use Boolean variables v1, . . . , vn and denote by v0 or v̄ negative literals,
and by v1 or v positive literals. A monomial over n variables is represented
by a string M ∈ {0, 1, ∗}n, where the i-th character of M is denoted by M [i].
M [i] = 0, 1, ∗ specifies whether vi occurs negated, unnegated, or not at all.
One yields the set of satisfying assignments by replacing every ∗ with arbitrary

Teaching Classes with High Teaching Dimension Using Few Examples 671

values from {0, 1}. Every monomial, except for the contradictory one, can be
represented this way. Sometimes we identify M with the set of its satisfying
assignments. Note that M1 ⊆ M2 iff for all i, M1[i] = M2[i] or M2[i] = ∗.

When we consider two monomials M1,M2 we say that they have a strong
difference at i if {0, 1} + M1[i] �= M2[i] ∈ {0, 1}. They have a weak difference
at i if either M1[i] = ∗ and M2[i] ∈ {0, 1} or M2[i] = ∗ and M1[i] ∈ {0, 1}.
Two weak differences, at positions i and j, are said to be of the same kind if
Mq[i] = Mq[j] = ∗ for a q ∈ {1, 2}, that is if both ∗ occur in the same monomial;
they are called of different kind otherwise.

For a string M ∈ {0, 1, ∗}n we denote by M [∗0] and M [∗1] the string resulting
from substitution of all ∗ by 0 and 1, respectively. Strings s, s′ ∈ {0, 1}n are
called neighbors if they differ in only one bit and i-neighbors if they differ only
in the i-th bit. For z ∈ {0, 1} we define z̄ = 1 − z.

3 Average Teaching Dimension

In this section we show that 2-term DNFs as well as 1-decision lists have a linear
average teaching dimension, although their teaching dimension is 2n. A similar
result was given by Anthony et. al. [5] who prove an n2 upper bound for the
average teaching dimension of linearly separable concepts.

3.1 2-Term DNF

We start by looking at the simpler class of 1-term DNF (monomials). Goldman
and Kearns [9] showed the class of monomials (without the empty concept) to
have a teaching dimension of n + 1. Adding the empty concept does not change
the teaching dimension of the non-empty concepts since their optimal teaching
sets always contain a positive example that rules out the empty concept. The
empty concept has a teaching dimension of 2n since each of the 2n singleton
concepts is contained in C1

n and one example can only rule out one such concept.
There are 3n non-empty concepts representable by monomials and therefore

TD(C1
n) ≤ 2n + 3n · (n + 1)

3n + 1
≤

(
2
3

)n

+ n + 1 ≤ n + 2 .

If we turn towards the 2-term DNF, we have a similar situation. The empty
concept has a teaching dimension of 2n. Concepts representable as monomial
have a teaching dimension wrt C2

n at least as large as the number of negative
examples (i. e., not satisfying instances), hence TD(c) > 2n−1 for c ∈ C1

n.
To prove an average teaching dimension linear in n we have to show two

things about the remaining concepts in C2
n \ C1

n (the true 2-term DNF), namely
that they are numerous enough and that their teaching dimension is at most
linear in n.

We start with the latter. The basic idea is similar to teaching a single mono-
mial M (cf. [9]). We provide two complementary positive examples per mono-
mial. They ensure that a monomial P consistent with them must at least en-
compass M . All neighbors of an arbitrary positive example that do not satisfy

672 F.J. Balbach

the monomial are then chosen as negative examples. They ensure that P cannot
be a proper superset of M .

Things are more complicated with two monomials, since they need not to be
disjoint and, furthermore, many concepts in C2

n can be represented by more than
one 2-term DNF.

Lemma 1. Let M1,M2 be two monomials and let c ∈ C2
n \ C1

n be represented by
the 2-term DNF M1 ∨M2. Then TD(c) ≤ 2n + 4.

Proof. In the following we distinguish five cases according to the number and
kind of differences between M1 and M2 (see Fig. 1).

Case 1. M1 and M2 have at least two strong differences.
By symmetry, without loss of generality we can assume two strong differences
occuring at position 1 and 2: ∗ �= M1[1] �= M2[1] �= ∗ and ∗ �= M1[2] �= M2[2] �= ∗.

First we define a set S = S+ ∪ S− of cardinality at most 4 + 2n and then we
show that S is a teaching set for M1 ∨M2.

Let s1 = M1[∗0], s′1 = M1[∗1], s2 = M2[∗0], s′2 = M2[∗1]. Then S+ = {(s1, 1),
(s′1, 1), (s2, 1), (s′2, 1)}. S− consists of all neighbors of s1 or s2 that neither satisfy
M1 nor M2 and thus can serve as negative examples. Obviously, |S| ≤ 4 + 2n.

In order to show that S is a teaching set, we consider a 2-term DNF consistent
with S with monomials P1, P2. We assume without loss of generality that s1

satisfies P1.

Claim: s1, s
′
1 ∈ P1 \ P2 and s2, s

′
2 ∈ P2 \ P1.

First, we show s2, s
′
2 /∈ P1. Suppose s2 ∈ P1. From s1, s2 ∈ P1, s1[1] �= s2[1] and

s1[2] �= s2[2] we get that P1[1] = P2[2] = ∗. Then P1 also contains the 1-neighbor

1)

4)

2)

5)

3)

v1

v2

v3

v1

v2

v3

v1

v2

v1

v2

v3

v1

v2

v3

v4 v4 v4

v3

v4 v4

Fig. 1. Karnaugh diagrams of five 2-term DNFs over four variables according to the five
cases distinguished in Lemma 1. Positive instances are marked by a gray background.
Examples included in the teaching set are marked by a circle

Teaching Classes with High Teaching Dimension Using Few Examples 673

s of s1. On the other hand, s /∈ M1 ∨M2 and hence s ∈ S−. Thus P1 is satisfied
by a negative example, a contradiction. This proves the claim.

Analogously one can show that s′2 /∈ P1. This implies s2, s
′
2 ∈ P2. In a sym-

metric way one proves s1, s
′
1 /∈ P2.

The Claim implies P1[i] = ∗ for all i with M1[i] = ∗ and P1[i] ⊇ M1[i] for
all other i. It remains to show that P1[i] = M1[i] for all i with M1[i] �= ∗ and
analogously for P2 and M2.

Suppose there is an i such that P1[i] = ∗ �= M1[i]. Let s be the i-neighbor
of s1. Then s ∈ P1 \ M1. Additionally s /∈ M2, since s certainly differs from M2

at the first or second bit (not necessarily at both, since one of them could be
i). Thus, s ∈ S− and since P1 is consistent with S−, s ∈ P1 cannot be true, a
contradiction.

By the same arguments, one shows that P2[i] = M2[i] for all i with M2[i] �= ∗.
We have now proved P1 = M1 and P2 = M2, hence S is a teaching set for c.

We will not present Cases 2 to 5 in full length, but confine ourselves to
defining teaching sets of size at most 2n + 4.

Case 2. M1,M2 have one strong difference and two weak differences of different
kind.
Without loss of generality M1 = z1 ∗ z3μ1 and M2 = z̄1z2 ∗ μ2 with μ1, μ2 ∈
{0, 1, ∗}∗ and z1, z2, z3 ∈ {0, 1}.

We define the positive examples as s1 = z1z̄2z3μ1[∗0], s′1 = z1z2z3μ1[∗1], s2 =
z̄1z2z̄3μ2[∗0] and s′2 = z̄1z2z3μ2[∗1]. The negative examples are again all neighbors
of s1 or s2 that do not satisfy M1 ∨M2.

Case 3. M1,M2 have one strong difference, at least two weak differences of the
same kind, and no differences of different kind.
Without loss of generality M1 = z1z2z3μ1, M2 = z̄1 ∗ ∗μ2 with μ1 ⊆ μ2. Note
that there is a different but equivalent 2-term DNF: M1 ∨ M2 ≡ M̂1 ∨ M2 with
M̂1 := ∗z2z3μ1.

We define the positive examples as s1 = z1z2z3μ1[∗0], s′1 = z1z2z3μ1[∗1],
s2 = z̄1z̄2z3μ2[∗0] and s′2 = z̄1z2z̄3μ2[∗1]. The negative examples are again those
neighbors of s1 or s2 that do not satisfy M1 ∨M2.

Case 4. M1,M2 have exactly one strong difference and exactly one weak differ-
ence.
Without loss of generality M1 = z1z2μ and M2 = z̄1 ∗ μ with μ ∈ {0, 1, ∗}∗.
Note that the concept has three equivalent representations. With m1 = z1z2μ,
M̂1 = ∗z2μ, m2 = z̄1z̄2μ, M̂2 := z̄1 ∗μ we have m1 ∨ M̂2 ≡ M̂1 ∨ M̂2 ≡ M̂1 ∨m2.

We define five positive examples as z1z2μ[∗0], z1z2μ[∗1], z̄1z̄2μ[∗0], z̄1z̄2μ[∗1],
z̄1z2μ[∗0], and a single negative example by z1z̄2μ[∗0].

So far all cases with at least one strong difference are covered. The cases
without strong difference still remain. Since among true 2-term DNF neither
term can be subterm of the other, we only need to consider situations with at
least two weak differences of different kind.

Some of these cases are already covered. Case 4 treats the case of exactly
two differences of different kind (and otherwise identical terms), Case 3 treats

674 F.J. Balbach

the case of exactly two differences of different kind plus exactly one more weak
difference. Thus, only the following case remains.

Case 5. M1,M2 have at least two disjoint pairs of weak differences of different
kind.
Without loss of generality, M1 = z1z2 ∗ ∗μ1 and M2 = ∗ ∗ z3z4μ2.

We define the positive examples s1 = z1z2z̄3z4μ1[∗0], s′1 = z1z2z3z̄4μ1[∗1],
s2 = z̄1z2z3z4μ2[∗0] and s′2 = z1z̄2z3z4μ2[∗1]. As negative examples we use all
neighbors of s1 or s2 that do not satisfy M1 ∨M2. ��

Theorem 2. TD(C2
n \ C1

n) ≤ 2n + 4.

Proof. Lemma 1 presents a complete distinction of cases for the class C2
n \ C1

n

and in each case the teaching dimension is bounded by 2n + 4. ��

The previous lemma proves a bound for the teaching dimension not only
with respect to C2

n \C1
n, but in fact with respect to C2

n. The next lemma provides
bounds for the number of concepts in C2

n \ C1
n.

Lemma 3. 1
3 · 9n ≤ |C2

n \ C1
n| ≤ 2

3 · 9n for all n ≥ 10.

Proof. All 2-term DNFs of the form considered in Case 1 of Lemma 1 represent
pairwise different concepts (modulo permutation of the monomials). Each such
DNF can be described by the number i of strong differences (2 ≤ i ≤ n), their
kind (two possibilities: 0/1 or 1/0), and the kind of the positions without strong
differences (n− i positions with seven possibilities each: 0/0, 1/1, 0/∗, 1/∗, ∗/∗,
∗/0, ∗/1). The number of concepts represented by such 2-term DNFs is thus
1
2 ·

∑n
i=2

(
n
i

)
· 2i · 7n−i = 1

2 · (9n − 7n − 2n · 7n−1) which proves the lower bound.
There are (3n + 1)2 syntactically different 2-term DNFs of which the 3n + 1

ones with two identical monomials do not represent true 2-term DNFs. The
remaining 3n(3n+1) 2-term DNFs represent 1

2 ·3n(3n+1) = 1
2 (9n+3n) concepts.

This number is therefore an upper bound for |C2
n \ C1

n|. We omit the details. ��

The above proof actually shows the number of true 2-term DNF concepts to
be asymptotically equal to 1

2 · 9n. We are now ready to calculate the average
teaching dimension of C2

n.

Theorem 4. TD(C2
n) ≤ 4n + 10 for all n ≥ 10.

Proof. The teaching dimension of the 3n+1 concepts in C1
n can be upper-bounded

by 2n and that of the other concepts by 2n + 4. Therefore for almost all n

TD(C2
n) ≤

(3n + 1) · 2n + 2
3 · 9n · (4 + 2n)

(3n + 1) + 1
3 · 9n

≤ 9n + 9n · (4 + 2n)
1
2 · 9n

= 4n + 10. ��

3.2 1-Decision Lists

The class of 1-decision lists has a teaching dimension of 2n (cf. [14]). We use
a result from Anthony et. al. [5] which gives an upper bound for the teaching
dimension of decision lists in dependence of their length.

Teaching Classes with High Teaching Dimension Using Few Examples 675

Lemma 5. TD(c) ≤ (len(c) + 1) · 2n−len(c) for all c ∈ Dn.

The teaching dimension of the concepts grows roughly exponentially as their
length decreases. In this section we show that the number of concepts of a certain
length grows faster, thus leading to a small average teaching dimension. We
denote the number of length m concepts in Dn by An

m.
As usual we assume decision lists to be in reduced form, i. e., each variable

occurs at most once (either negated or not) and the default node and its pre-
decessor (if any) have different labels. It is known that a 1-decision list can be
transformed into an equivalent reduced 1-decision list in linear time (cf. [10])
and that reduced decision lists are of minimal length (see [21]).

Both properties persist if we further restrict decision lists to end in a positive
node and a negative default node. We call these lists normal form decision lists
(NFDL). Note that only concepts of length at least one can be represented by
an NFDL. Every reduced decision list either is an NFDL or can be transformed
into one by inverting the default label and the last node’s label and literal.

In order to determine An
m it suffices to count the number of inequivalent

NFDLs of length m. To do so, we first derive an equivalence criterion for NFDLs.
It is clear that if consecutive nodes with the same label are permuted, the

represented concept remains the same. However, the converse is not true, even
when only NFDLs are considered. For example, the decision lists 〈(v1, 0), (v2, 1),
(∗, 0)〉 and 〈(v̄2, 0), (v̄1, 1), (∗, 0)〉 are equivalent, but cannot be transformed into
one another by permuting consecutive nodes with the same label.

One way to yield a converse of the statement is to allow permutations of the
last (positive) node with one of its negative predecessors. In order to prove this,
we need some definitions.

Definition 6. Let D be an NFDL with label sequence b1, . . . , bm. The segments
of D are the longest sequences of consecutive nodes with the same label. There
is one exception in case m ≥ 2: The last node never forms a segment of its own,
but is always attached to the next to last node’s segment.

A segment is homogenous if all nodes in it have the same label, otherwise it
is inhomogenous.

Some examples of label sequences with marked segment boundaries are:
|000|11|0001|, |11|0|1|0|111|, |0|11|00|11|01|. Note that the segmentation is unique
and that inhomogenous segments can only occur last.

Definition 7. Two segments G = 〈(xα1
1 , b1), . . . , (xαr

r , br)〉 and H = 〈(yβ1
1 , b1),

. . . , (yβr
r , br)〉 are equivalent (G ≡ H), if there is a permutation π, such that

(1) ∀i : xi = yπ(i) and (2) ∀i : αi =
{

βπ(i), if bi = bπ(i),
1 − βπ(i), if bi �= bπ(i).

For homogenous segments the definition is equivalent to {xα1
1 , . . . , xαr

r } =
{yβ1

1 , . . . , yβr
r }. Two inhomogenous segments are equivalent if they contain the

same variables and each variable that occurs in the positive node of one segment
has its sign inverted if it occurs in a negative node in the other segment.

676 F.J. Balbach

The next lemma which presents an equivalence criterion for NFDLs shows
that Definitions 6 and 7 are indeed useful.

Lemma 8. Two decision lists D and E in normal form are equivalent if and
only if their label sequences are equal and for their segmentations D = D1, . . . , Dr

and E = E1, . . . , Er, Di ≡ Ei for all i.

Proof. For the if part, let D = D1, . . . , Dr and E = E1, . . . , Er be two NFDLs
with equal label sequences and equivalent segments. Let 1 ≤ i ≤ r. We prove

Claim 1. For all instances z ∈ {0, 1}n both segments, Di and Ei, behave equiv-
alently, that is they either classify z in the same way (positive or negative) or
they don’t classifiy z at all.

Proof. First, we consider homogenous segments Di, Ei with label b. If z satisfies a
literal in Di then it also satisfies a literal in Ei and hence both segments classify
z as b. If z does not satisfy any literal in Di, the same is true for Ei and neither
segment classifies z.

Next, consider inhomogenous segments Di = 〈(�1, 0), . . . , (�s−1, 0), (�s, 1)〉
and Ei. Since such segments can only occur at the end of an NFDL, each z is
classified by Ei and Di (or by the negative default node common to both lists).
If z is classified positive by Di it passes all nodes �1, . . . , �s−1 and is absorbed
by the last node (�s, 1). Now consider the permutation π from the definition of
Di ≡ Ei. If π lets �s in its place, z still reaches �s and is classified as positive. If,
however, �s is exchanged with some literal �j (j �= s), then the signs of �s and �j

are both inverted and hence z still passes all negative nodes (in particular (�̄s, 0)),
reaches the last node (�̄j , 1), and is classified as positive. The same arguments
show that if z is classified as positive by Ei than also by Di. This proves Claim 1.

Now it is easy to prove by induction that an instance z reaches a segment
Di iff it reaches the corresponding segment Ei. And since Di and Ei behave
equivalently, D and E must be equivalent.

For the only if part, let D,E be two equivalent NFDLs. Let b1, . . . , bm be
the label sequence of D. The number of instances classified as positive by D is∑m

i=1 bi2n−i. Since E is equivalent to D, it must have the same number of positive
instances and therefore the same label sequence. Hence both lists are segmented
into the same number of segments, D = D1, . . . , Dr and E = E1, . . . , Er, and
corresponding segments are of equal length.

It remains to prove Di ≡ Ei for all i ≤ r. We show:

Claim 2. If the instances reaching Di are the same as those reaching Ei then
Ei ≡ Di and the instances leaving Di are the same as those leaving Ei.

Proof. Let Z be the set of instances reaching both Di and Ei. First we con-
sider homogenous segments, Di = 〈(xα1

1 , b), . . . , (xαs
s , b)〉 and Ei = 〈(yβ1

1 , b), . . . ,
(yβs

s , b)〉 with b ∈ {0, 1}. Let 〈(yβ , b̄)〉 be the first node after Ei in E.
Suppose that there is a literal xα in Di, but not in Ei. Since none of the

variables x1, . . . , xs, y1, . . . , ys, y appears in one of the first i − 1 segments (D
and E are NFDLs), for each assignment to these variables there must be an
instance in Z. Let z be an assignment satisfying yβ and xα, but no one of y

βj

j

Teaching Classes with High Teaching Dimension Using Few Examples 677

for all j. This z is then classified as b by D and as b̄ by E, a contradiction. It
follows that every literal in Di is also contained in Ei, that is both segments are
permutations of each other.

Now let Di and Ei be inhomogenous. Then both segments come last in their
decision list, i. e. i = r. The classification of the instances in Z by D depends
only on the variables in Dr and all these variables are indeed relevant. Therefore
Er must contain the same variables.

It remains to show Condition (2) of the definition of Er ≡ Dr. Let xα be the
literal in the last node of Dr. If xα remains the last node after permuting (i. e.,
in Er) its sign has to remain unchanged. Otherwise all instances in Z classified
as positive by Dr would be classified differently by Er. The other literals in Dr

have to keep their sign as well.
If x is moved to a negative node in Er, it has to appear as x1−α. Otherwise all

instances in Z satisfying xα would be classified as negative by Er, although there
is such an instance classified as positive by Dr. Additionally, all other literals in
Dr (except the one moved to the last position) keep their sign. Suppose there
is a literal � occuring as �̄ in Er. Then we choose an instance z ∈ Z satisfying �
and classified as positive by Dr. This z would then be classified as negative by
Er. Altogether Er ≡ Dr. This proves Claim 2.

Since all instances in {0, 1}n reach D1 and E1, Claim 2 can be used to prove
by induction that Di ≡ Ei for all i. ��

Now that we can use Lemma 8 to recognize inequivalent NFDLs, we can
analyze An

m more closely.

Lemma 9. For all n and 2 ≤ m ≤ n, An
m ≥ 2(n −m + 1) ·An

m−1.

Proof. Let n ≥ 2 and 2 ≤ m ≤ n. We consider An
m−1 pairwise inequivalent

NFDLs of length m − 1 and prove that each of them can be extended to an
NFDL of length m in 2(n−m+1) ways such that all extended lists are mutually
inequivalent.

We first consider the case m = 2 which somewhat differs from the general
case. An NFDL of length 1 consists of exactly one positive node (vα

j , 1) (with
negative default). We get 2(n− 1) NFDL of length 2 by prepending the positive
nodes (vi, 1) or (v̄i, 1) for each i �= j. This yields n− 1 distinct concepts since in
every new list the two nodes can be permuted without changing the represented
concept. Similarly we get n−1 concepts by prepending the negative nodes (vi, 0)
or (v̄i, 0) for i �= j. Each of the former n− 1 new concepts is different from each
of the latter n− 1 ones since a segment with labels 1, 1 cannot be equivalent to
one with labels 0, 1 (Lemma 8). This proves An

2 ≥ 2(n − 1) ·An
1 .

Now let m > 2. Let D be an NFDL of length m − 1 and let b1 be the label
of the first node. D contains exactly m − 1 different variables, hence there are
n−m + 1 variables left. By prepending each of these variables (negated or not)
as nodes with label b̄1 we get 2(n −m + 1) new NFDLs of length m.

The prepended node certainly forms a segment of its own, because its la-
bel is different from that of the second node. (The first node cannot form an
inhomogenous segment with the second in the case m > 2.)

678 F.J. Balbach

In this way we get 2(n − m + 1) · An
m−1 NFDLs of length m. These are all

mutually inequivalent since they either differ in their first segment, or if their
first nodes are equal they are extension of two already inequivalent NFDLs. ��

The following corollary relates the number of NFDLs of a certain length to
the total number

∑n
m′=1 An

m′ of NFDLs.

Corollary 10. For n ≥ 2 and 1 ≤ m ≤ n:
∑n

m′=1 An
m′ ≥ 2n−m · (n−m)! ·An

m.

Theorem 11. The average teaching dimension of Dn is linear in n.

Proof. We first prove the statement for the concept class of NFDLs. Then we
argue that the inclusion of the missing concepts, ∅ and Xn, does not matter.

Using Lemma 5 we bound the average teaching dimension from above by∑n
m=1(m + 1)2n−m · An

m∑n
m=1 An

m

=
n∑

m=1

(m + 1)2n−m · An
m∑n

m′=1 An
m′

.

Now we apply Corollary 10 to the fraction and get a new upper bound of

n∑
m=1

(m + 1)2n−m · 1
2n−m · (n −m)!

=
n∑

m=1

m + 1
(n −m)!

=
n−1∑
m=0

n + 1 −m

m!
.

To see that this value grows linearly in n, we divide by n and obtain

1
n

n−1∑
m=0

n + 1 −m

m!
≤ n + 1

n

n−1∑
m=0

1
m!

which converges to Euler’s number as n → ∞.
Since |Dn| grows faster than 2n, the two missing concepts amount only to

a fraction of less than 21−n of all concepts. Their teaching dimension of 2n

increases the average teaching dimension therefore by less than 2. ��

Given Theorems 11 and 4, we conclude that 1-decision lists and 2-term DNFs
are rather simple to teach despite their high teaching dimension. We are now
going to judge the classes’ teachability again, but in a different way.

4 Complexity Based Learners

We begin with a simple general fact. Let C be a concept class and let K : C →
be a complexity measure. Such a K implies a partitioning of C: C=k = {c ∈ C :
K(c) = k}. Additionally we define C≤k = {c ∈ C : K(c) ≤ k}. A teacher who
wants to teach a concept c ∈ C=k to K-learners has to give enough examples to
uniquely specify c among all the concepts in C≤k. Concepts with higher K-value
need not be ruled out by the examples. The following lemma is therefore obvious.

Lemma 12. For all c ∈ C=k, KD(c) = TD(c), where the teaching dimension is
taken with respect to C≤k.

Teaching Classes with High Teaching Dimension Using Few Examples 679

4.1 2-Term DNF

There are many natural ways to measure the complexity of concepts repre-
sentable by k-term DNF. Here we shall use the minimal number of terms nec-
essary to represent a concept. Formally, K(c) = 0, if c = ∅, K(c) = 1, if c ∈
C1

n \ {∅}, K(c) = 2, if c ∈ C2
n \ C1

n. It is possible to use results from Sect. 3.1 to
calculate the K-dimension of C2

n.

Theorem 13. KD(C2
n) ≤ 2n + 4.

Proof. If we denote the set of 2-term DNF by Cn, we have, with the notations
introduced above, C=0

n = C0
n, C≤1

n = C1
n, C≤2

n = C2
n. In order to apply Lemma 12,

we have to compute several teaching dimensions.

– TD(∅) = 1 wrt C0
n, hence KD(∅) = 1;

– For c ∈ C=1
n , TD(c) ≤ n + 1 wrt C≤1

n (see beginning of Sect. 3.1), hence
KD(c) ≤ n + 1;

– For c ∈ C=2
n , TD(c) ≤ 2n+4 wrt C≤2

n (see reasoning after Theorem 2), hence
KD(c) ≤ 2n + 4. ��
The last theorem, when compared to TD(C2

n) = 2n, illustrates that teaching
concepts to complexity based learners can be significantly simpler in terms of
the number of examples. Another point in favor of the K-learners is that now
more complex concepts (as measured by K) are harder to teach (as measured by
the number of examples). In contrast, the teaching dimension for C=0

n , C=1
n , and

C=2
n is 2n, at least 2n−1, and at most 2n + 4, respectively, and hence decreases

as the concepts become more complex.
The greater plausibility comes at almost no cost regarding computational

complexity on the part of the teacher. From Lemma 1 one can easily build an
efficient teaching algorithm T computing K-sets for 2-term DNF concepts.

One can argue, however, that there is a cost on the part of the learner. The
learner has not only to find a consistent hypothesis, but a minimal one. This can
be an intractable problem. In fact, finding an arbitrary consistent 2-term DNF
is already NP complete (cf. [18]).

On the other hand, K-learners only have to solve the problem of finding
minimal consistent hypotheses restricted to those example sets provided by the
teacher. The teacher T , for instance, outputs example sets from which the target
concept can be inferred efficiently.

The number of positive examples determines whether a 0-, 1-, or 2-term DNF
has to be learned. In the only non-trivial case, 2-term DNF, there are at most
five positive examples and at most 30 ways to select two pairs of them. For each
such selection the learner computes the minimum monomial for each pair and
checks the resulting 2-term DNF for consistency with all examples. The learner
then outputs the first consistent 2-term DNF it encounters.

4.2 1-Decision Lists

A natural measure of complexity for 1-decision lists is their length. We thus define
for c ∈ Dn: K(c) = len(c). The next theorem describes K-sets for 1-decision lists.

680 F.J. Balbach

v1 v2 v3 v4 v5 v6 v7 ∗
+ − − − + + + −
0 0 0 0 0 0 0, −
0 0 0 0 0 0 1, +
0 0 0 0 0 1 0, +
0 0 0 0 1 0 0, +
0 0 0 1 1 1 1, −
0 0 1 0 1 1 1, −
0 1 0 0 1 1 1, −
1 1 1 1 1 1 1, +

v1 v2 v3 v4 v5 v6 v7 ∗
+ + + − − − + −
0 0 0 0 0 0 0, −
0 0 0 0 0 0 1, +
0 0 0 0 0 1 1, −
0 0 0 0 1 0 1, −
0 0 0 1 0 0 1, −
0 0 1 1 1 1 0, +
0 1 0 1 1 1 0, +
1 0 0 1 1 1 0, +

Fig. 2. K-sets for two 1-decision lists. Positive nodes and examples are marked with +,
negative ones by −. Each row corresponds to one example. A 1 or 0 specifies whether
or not the instance satisfies the node’s literal

Theorem 14. KD(Dn) ≤ n + 1 and for all c ∈ Dn: KD(c) ≤ len(c) + 1.

Proof. It suffices to show KD(c) ≤ len(c)+1 for all c ∈ Dn. To teach the concepts
∅ and Xn to K-learners one arbitrary example suffices, because these concepts
are representable by length 0 decision lists.

Let c ∈ Dn be representable by an NFDL D with segments D1, . . . , Dr. We
define a set S of examples containing exactly one example for each node in D,
including the default node. We will not present a formal proof that S is a K-set,
but we shall give reasons for this during the construction of S (see also Fig. 2).

We start at the end of D. For the default node we include an arbitrary in-
stance reaching the default node. Now, assume the last segment, Dr, is homoge-
nous (with label 1). For each node (�, 1) in Dr we include exactly one example,
namely one that satisfies only � and therefore reaches the node. With these ex-
amples included, we ensure that nodes of the form (�̄, 1) or (�, 0) or (�̄, 0) are
not consistent with S. Besides (�, 1) only nodes with variables not occurring in
Dr are possible. An NFDL consistent with S as defined so far therefore contains
only nodes from Dr plus some nodes with irrelevant variables.

Dr−1 is homogenous with label 0. For each node (�, 0) in Dr−1 we include a 0-
classified instance that satisfies only � among the literals in Dr−1 and satisfies all
literals in Dr. The other literals in D remain unsatisfied. This ensures two things.
First, for (�, 0) in Dr−1, nodes of the form (�̄, 0) or (�, 1) or (�̄, 1) are inconsistent
with S. Second, nodes with variables from Dr are inconsistent as well. To see
the latter, assume a node (�, 1) in Dr. It is inconsistent with S since there is
a positive example satisfying � and a negative one. This also excludes (�, 0).
Similarly, (�̄, 0) and (�̄, 1) are inconsistent with S as witnessed by the negative
default node’s example that satisfies �̄ and by a positive example satisfying �̄
from the set of examples for Dr.

An NFDL E consistent with S defined so far starts with nodes from Dr−1.
Each such node removes exactly one example from the Dr−1 set. Only when all
these examples are removed, and hence all nodes from Dr−1 have been selected,
the nodes from Dr become elligible. In addition, nodes with irrelevant variables
can occur at arbitrary positions of E. They do not remove any examples.

Teaching Classes with High Teaching Dimension Using Few Examples 681

If we proceed in this manner for all other segments Dr−2, . . . , D1 we get a
set S with len(D) + 1 examples. From the above reasoning it follows that an
NFDL E consistent with S consists of segments E1, . . . , Er such that each Ei

contains all nodes from Di plus zero or more nodes with irrelevant variables. A
shortest such E obviously contains exactly zero irrelevant nodes and is therefore
equivalent to D (Lemma 8). But then S is a K-set for D.

A very similar, but slightly more complicated, reasoning applies in case of an
inhomogenous segment Dr. ��

A comparison between teaching 1-decision lists to arbitrary learners (Sect.
3.2) and teaching them to complexity based learners (Theorem 14) shows that
the latter yields again more plausible results. Teaching decision lists to K-
learners requires much less examples and moreover the difficulty of teaching
grows as the complexity of the concepts increases (cf. Lemma 5).

Furthermore, a teacher T producing the K-sets defined in Theorem 14 can
be realized as a polynomial time algorithm.

Similar to the situation with 2-term DNFs, one can object that it is probably
intractable to even approximate the shortest consistent 1-decision list (cf. [12]),
whereas it is possible to find an arbitrary consistent 1-decision list efficiently (cf.
[19, 6]). Thus, once again K-learners face a much harder problem.

Another similarity to teaching 2-term DNFs is, however, that the problem for
the K-learners becomes efficiently solvable if it is restricted to those examples
actually given by the teacher. In fact, Rivest’s algorithm [19] does find a minimal
hypothesis when taught by T .

We can interpret this as a teacher whose good examples enable the learner
to solve an otherwise intractable learning problem.

Finally, we want to demonstrate a relation between teaching K-learners and
the trusted information teaching model of Jackson and Tomkins [14]. In this
model the teacher provides not only a set of examples, but also additional in-
formation about the target. The size of this additional information must be
logarithmic in the size of the target concept. Since K(c) is the representation
size of a c ∈ Dn, the teacher is allowed to add logK(c) bits of information and
can thus communicate the length of c to the learner.

The learner, on the other hand, is required not only to produce a correct
hypothesis, but also to detect whether its input was given by the “true” teacher
or by an adversary. A small modification of Rivest’s algorithm, which after pro-
ducing a hypothesis h on input sample S simulates the true teacher on h and
compares T (h) with S, does both in polynomial time.

Corollary 15. The concept class of 1-decision lists is polynomially teachable
with trusted information.

From previous results it only follows that 1-decision lists are not polynomially
teachable without trusted information and that they are teachable by a compu-
tationally unbounded teacher with trusted information (cf. [14]). In some sense,
Corollary 15 completes the teachability results for 1-decision lists in the trusted
information model.

682 F.J. Balbach

Conclusion. A closer look at two concept classes with worst case teaching
dimension has revealed that they are not as hard to teach as their teaching
dimension suggests. The average teaching dimension and the K-dimension, which
are both linear, seem to be more appropriate measures of teachability
since they properly reflect our intuition that both classes should be easily
teachable.

Acknowledgments. The author heartily thanks the anonymous referees for
many valuable comments.

References

1. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
2. D. Angluin. Queries revisited. In ALT 2001, Proceedings, volume 2225 of Lecture

Notes in Artificial Intelligence, pages 12–31. Springer, 2001.
3. D. Angluin and M. Kriķis. Teachers, learners and black boxes. In Proceedings

COLT 1997, pages 285–297. ACM Press, New York, NY, 1997.
4. D. Angluin and M. Kriķis. Learning from different teachers. Machine Learning,

51(2):137–163, 2003.
5. M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying boolean functions

by labelled examples. Discrete Applied Mathematics, 61(1):1–25, 1995.
6. T. Eiter, T. Ibaraki, and K. Makino. Decision lists and related Boolean functions.

Theoretical Computer Science, 270(1–2):493–524, 2002.
7. R. Freivalds, E. B. Kinber, and R. Wiehagen. On the power of inductive inference

from good examples. Theoretical Computer Science, 110(1):131–144, 1993.
8. S. Goldman. Learning Binary Relations, Total Orders, and Read-Once Formu-

las. PhD thesis, MIT Dept. of Electr. Engineering and Computer Science, Sept.
1990.

9. S. A. Goldman and M. J. Kearns. On the complexity of teaching. J. of Comput.
Syst. Sci., 50(1):20–31, 1995.

10. S. A. Goldman and H. D. Mathias. Teaching a smarter learner. J. of Comput.
Syst. Sci., 52(2):255–267, 1996.

11. S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and
total orders. SIAM J. Comput., 22(5):1006–1034, Oct. 1993.

12. T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bound on learning decision lists
and trees. Inform. Comput., 126(2):114–122, 1996.

13. T. Hegedüs. Generalized teaching dimensions and the query complexity of learning.
In Proceedings COLT 1995, pages 108–117. ACM Press, New York, NY, 1995.

14. J. Jackson and A. Tomkins. A computational model of teaching. In Proceedings
COLT 1992, pages 319–326. ACM Press, New York, NY, 1992.

15. S. Jain, S. Lange, and J. Nessel. Learning of r.e. languages from good examples.
In ALT ’97, Proceedings, volume 1316 of LNAI, pages 32–47. Springer, 1997.

16. C. Kuhlmann. On teaching and learning intersection-closed concept classes. In
Proceedings EuroCOLT ’99, volume 1572 of LNAI, pages 168–182. Springer, 1999.

17. H. D. Mathias. A model of interactive teaching. J. of Comput. Syst. Sci., 54(3):
487–501, 1997.

18. L. Pitt and L. G. Valiant. Computational limitations on learning from examples.
J. ACM, 35(4):965–984, 1988.

Teaching Classes with High Teaching Dimension Using Few Examples 683

19. R. L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.
20. A. Shinohara and S. Miyano. Teachability in computational learning. New Gen-

eration Computing, 8(4):337–348, 1991.
21. H. U. Simon. Learning decision lists and trees with equivalence-queries. In Euro-

COLT ’95, Proceedings, number 904 in LNAI, pages 322–336. Springer, 1995.

Optimum Follow the Leader Algorithm

Dima Kuzmin and Manfred K. Warmuth

University of California - Santa Cruz

Consider the following setting for an on-line algorithm (introduced in [FS97])
that learns from a set of experts: In trial t the algorithm chooses an expert with
probability pt

i. At the end of the trial a loss vector1 Lt ∈ [0, R]n for the n experts
is received and an expected loss of

∑
i p

t
iL

t
i is incurred. A simple algorithm for

this setting is the Hedge algorithm which uses the probabilities pt
i ∼ exp−ηL<t

i .
This algorithm and its analysis is a simple reformulation of the randomized
version of the Weighted Majority algorithm (WMR) [LW94] which was designed
for the absolute loss. The total expected loss of the algorithm is close to the
total loss of the best expert L∗ = mini L

≤T
i . That is, when the learning rate

is optimally tuned based on L∗, R and n, then the total expected loss of the
Hedge/WMR algorithm is at most

L∗ +
√

2
√

L∗R log n + O(log n).

The factor of
√

2 is in some sense optimal [Vov97].
A new randomized algorithm for choosing the expert was given in [KV05]:

perturb the losses of the experts by adding noise νi to L<t
i and then choose

the expert with minimum perturbed loss. This Following the Perturbed Leader
(FPL) algorithm has the same total expected loss bound except that the

√
2

factor is replaced by 2.
So the first question is whether there is an alternate way to perturb the losses

in FPL which realizes WMR (with the optimal factor on the second term). In
FPL the noise parameters of the additive noise only depend on the overall learn-
ing rate. But if you replace the entire loss L<t

i by a randomized loss depending
on the learning rate and L<t

i , then WMR can be realized:

Lemma 1. Let Zi be independent exponential random variables with parameters
λi = e−ηL<t

i and I = arg mini Zi. Then P (I = i) ∼ exp−ηL<t
i .

Proof. mini Zi is an exponential random variable with parameter
∑

i λi and
P (I = i) = λi∑

j λj
. ��

However we know of no efficient implementation of WMR for the following rep-
resentative application introduced in [TW03]: We have a directed graph with a
source and a sink. The experts are the acyclic source to sink paths and the loss
of a path is additive in the sense that it is the sum of the losses of its edges. The
goal is again to incur loss close the best expert/path.

It is easy to implement the original FPL algorithm [KV05] (which has the
worse constant): the loss of each edge is perturbed by some additive noise and

1 It suffices to require that (maxi Lt
i − mini Lt

i) ≤ R.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 684–686, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimum Follow the Leader Algorithm 685

the algorithm predicts with the path of minimum loss. However, we don’t know
how to implement WMR without computing the following type of quantity: the
sum of acyclic paths from a start vertex to the sink. In [TW03] this problem is
avoided by enlarging the set of path experts to all source to sink paths2. With
the enlarged pool of experts, the path weights can be summed via dynamic
programming.

So the natural open problem is whether there is a way to perturb the losses
of the edges so that choosing the shortest path realizes WMR. That is, does
there exist a distribution D, parameterized by L, satisfying the following two
conditions.

1. If Z1 ∼ D(L1), . . . , Zn ∼ D(Ln) are independent random variables, then

P(arg min(Z1, . . . , Zn) = i) ∼ exp−Li

2. If Z1 ∼ D(L1) and Z2 ∼ D(L2) are independent random variables, then

Z1 + Z2 ∼ D(L1 + L2)

There are many distributions that satisfy one of the two properties (e.g. the
exponential satisfies 1 and the gamma satisfies 2). The first condition seems to
correspond to closure of the distribution under the minimum operation. Specifi-
cally, all the distributions that we know to satisfy 1, also satisfy min(Z1, . . . ,Zn)∼
D(e−L1 + . . . + e−Ln). We did not however establish formally whether closure
under minimum and condition 1 are equivalent.

The solution has to avoid the following caveat. Consider for instance a case
where losses of all edges (and paths) are zero. Then choosing a shortest path
yields a random variable whose parameter is related to the number of paths.
So if the parameter can be accurately estimated by sampling, then this solves a
#P-complete problem [Val79].

Essentially, the original FPL is efficient if an expert with minimum perturbed
loss can be found efficiently. Is the same true for Hedge/WMR which has the
optimum constant before the square root term? Or, what is the best constant
achievable by any algorithm that efficiently computes the minimum w.r.t. a
perturbed loss?

References

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, August 1997.

[KV05] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. J. Computer System Sci, 2005. To appear.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Infor-
mation and Computation, 108(2):212–261, 1994.

2 It suffices to consider paths of length at most �, where � is the longest acyclic path
from the source to the sink.

686 D. Kuzmin and M.K. Warmuth

[TW03] E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates.
Journal of Machine Learning Research, 4:773–818, October 2003.

[Val79] Leslie Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410–421, 1979.

[Vov97] V. Vovk. A game of prediction with expert advice. J. Computer System Sci,
1997.

The Cross Validation Problem

John Langford

TTI-Chicago
jl@hunch.net

1 The Method

K-fold cross validation is a commonly used technique which takes a set of m examples
and partitions them into K equal-size sets (folds) of size m/K. For each set, a classifier
is trained on the other sets.

2 The Problem

Assume only that samples are drawn iid from a distribution D on classification example
X × {0, 1} where X is a feature and {0, 1} is a label. Derive a classifier from the K
classifiers with a lower true error rate bound than other approaches (discussed in section
3). The bound should have the form: For all learning algorithms A, number of sets K,

Pr
S∼Dm

(e(D,h) ≤ f(S, h, h1, ..., hK)) ≥ 1 − δ

where h is the classifier derived from the cross validation process on m examples pro-
ducing classifiers h1, ..., hK , f is the bound (a computable function), and e(D,h) =
Pr(x,y)∼D(h(x) �= y) is the true error rate of h.

3 Past Work

1. Devroye, Rogers, and Wagner analyzed cross validation and found algorithm spe-
cific bounds for nearest neighbor and space partitioning algorithms. Much of this
is documented here [1].

2. Michael Kearns and Dana Ron [2] analyzed cross validation and found that under
additional stability assumptions the bound for the classifier which learns on all the
data is not much worse than for a test set of size m/K.

3. Avrim Blum, Adam Kalai, and John Langford [3] analyzed cross validation and
found that you can do at least as well as a test set of size m/K using the randomized
classifier which draws uniformly from the K learned classifiers.

4. Yoshua Bengio and Yves Grandvalet [4] analyzed cross validation and concluded
that there was no unbiased estimator of variance.

5. Matti Kaariainen [5] noted that you can safely derandomize a stochastic classifier
(such as one that randomizes over the K sets) using unlabeled data without addi-
tional assumptions.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 687–688, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

688 J. Langford

4 Some Extreme Cases to Sharpen Intuition

1. Suppose on every set the learned classifier is the same. Then, the cross-validation
error should behave something like a test set of size m. This is radically superior to
a test set of size m/K. Behavior like this is often observed in practice.

2. Consider leave-one-out cross validation. Suppose we have a “learning” algorithm
that uses the classification rule “always predict the parity of the labels on the train-
ing set”. Suppose the learning problem is defined by a distribution which picks y=1
with probability 0.5. Then, with probability 0.5, all leave-one-out errors will be 0
and otherwise 1 (like a single coin flip). This example suggests that incorporat-
ing information about the stochastic difference between the classifier may yield a
tighter bound.

5 Impact

On any individual problem, solving this might have only have a small impact due to
slightly improved judgement of success. But, because cross validation is used very ex-
tensively, the overall impact of a good solution might be very significant.

References

1. Luc Devroye, Laszlo Gyorfi, and Gabor Lugosi, “A Proabibilistic Theory of Pattern Recogni-
tion”, Springer, 1996.

2. Michael Kearns and Dana Ron, “Algorithmic Stability and Sanity-Check Bounds for Leave-
One-Out Cross-Validation”, Neural Computation 11(6), pages 1427-1453. 1999.

3. Avrim Blum, Adam Kalai, and John Langford, “Beating the Holdout: Bounds for KFold and
Progressive Cross-Validation”, COLT 1999, pages 203-208.

4. Yoshua Bengio and Yves Grandvalet “No unbiased estimator of the variance of K-fold cross-
validation”, Journal of Machine Learning Research, 5, 1089-1105, 2004.

5. Matti Kaariainen, “Generalization Error Bounds Using Unlabeled Data”, COLT 2005.

Compute Inclusion Depth of a Pattern

Wei Luo

School of Computing Science, Simon Fraser University,
Vancouver, Canada

wluoa@cs.sfu.ca

1 Problem Description

We define a concept of inclusion depth (see Definition 1) to capture mind-change com-
plexity [3, 1] of pattern identification problems [2]. Our basic question is whether the
inclusion depth for any pattern is computable. We conjecture a combinatorial charac-
terization that, if true, leads to a linear time algorithm to compute inclusion depth.

Let X be a set of variable (e.g., x1, x2, . . .) and Σ be a finite set of alphabet con-
taining at least two symbols (e.g., {0, 1}). A pattern, denoted by p, q etc., is a finite
non-null sequence over X ∪ Σ. The language of a pattern p with alphabet Σ, denoted
by LΣ(p), is the set of ground strings that are consequences of p by substituting each
variable in p with a string in Σ+. For example, if Σ = {0, 1}, strings 010 and 10110
are in LΣ(x1x2x1), but 1010 �∈ LΣ(x1x2x1).

Definition 1. The inclusion depth of a pattern p with alphabet Σ, denoted by IDΣ(p),
is the length of the longest inclusion chain connecting the language of the universal
pattern LΣ(x1) and the language LΣ(p).

For example, if p = 0x11 and Σ = {0, 1}, then

LΣ(x1) ⊃ LΣ(x1x2) ⊃ LΣ(x11) ⊃ LΣ(x1x21) ⊃ LΣ(0x11)

is an inclusion chain connecting LΣ(x1) and LΣ(0x11); it is routine though tedious to
verify that there exists no longer inclusion chain connecting the two. Thus the inclusion
depth IDΣ(0x11) is equal to 4.

Question 1. Is there an algorithm to compute IDΣ(p) for any pattern p and any alphabet
Σ? If yes, is there a polynomial time algorithm?

Question 2. Is it true that, for every alphabet Σ with at least two symbols,

IDΣ(p) = 2|p| − #var(p) − 1 (1)

where |p| is the length (number of variables and constants) of p and #var(p) the number
of distinct variables in p. If the answer to this question is yes, then we have a linear time
algorithm that computes inclusion depth using Eq. (1), and hence a positive answer to
Question 1.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 689–690, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

690 W. Luo

2 Motivation

Inclusion depth captures the mind change complexity of the pattern identification prob-
lem given some initial evidence. If there exists an algorithm to compute the inclusion
depth of a pattern, then we can use it to compute the mind change bound1 of a pat-
tern identification problem given some initial evidence. Moreover, we can construct a
uniformly mind-change optimal learner [6].

3 Partial Solution and Difficulties

It is known that pattern inclusion is undecidable [5]. However, to compute the inclusion
depth, we may not need to decide inclusion for any two patterns.

Intuitively, patterns with longer length are more constrained, and so are patterns
with fewer distinct variables. With observing some shorter examples, this suggests a
conjecture that for a pattern p, the inclusion depth ID(p) is related to the length |p| and
the number of distinct variables #var(p) by Eq. (1). To prove this equation, it suffices
to establish the following conjecture.

Conjecture 1. Let p and q be two patterns. If L(p) ⊂ L(q), then

2|p| − #var(p) > 2|q| − #var(q). (2)

To see why the reference to alphabet Σ is dropped, note that if LΣ(p) ⊆ LΣ(q),
then for every Σ′ ⊆ Σ, we have that LΣ′(p) ⊆ LΣ′(q). Therefore, we need to consider
only the case that Σ contains exactly two symbols.

Exhaustive computation of my program shows that Eq. (2) holds for patterns of the
length less than or equal to 7; computation for longer patterns has been computationally
impractical for us. Therefore, if two patterns p and q form a counterexample to Eq. (2),
one of them must be longer than 7.

References

1. A. Ambainis, S. Jain, and A. Sharma. Ordinal mind change complexity of language identifi-
cation. Theor. Comput. Sci., 220(2):323–343, 1999.

2. D Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,
1980.

3. R. Freivalds and C. H. Smith. On the role of procrastination in machine learning. Inf. Comput.,
107(2):237–271, 1993.

4. E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

5. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Inclusion is undecidable for pattern languages.
In A. Lingas, R. Karlsson, and S. Carlsson, editors, ICALP93, volume 700 of LNICS, pages
301–312, 1993.

6. W. Luo and O. Schulte. Mind change efficient learning. to appear in COLT 2005.

1 In problems of learning languages with positive data, mind-change bound [1] measures the
worst-case number of mind-changes a learner has to make before it converges to the correct
answer in the sense defined by Gold in [4].

Author Index

Achlioptas, Dimitris 458
Agarwal, Shivani 16, 32
Angluin, Dana 561
Antos, András 531
Argyriou, Andreas 338
Audibert, Jean-Yves 470
Awerbuch, Baruch 233

Balbach, Frank J. 668
Balcan, Maria-Florina 111
Bartlett, Peter L. 143
Belkin, Mikhail 486
Beygelzimer, Alina 158
Beznosova, Olexandra 295
Blum, Avrim 111, 621

Carlucci, Lorenzo 382
Cesa-Bianchi, Nicolò 217
Chen, Jiang 561
Clémençon, Stéphan 1
Cortes, Corinna 63
Crammer, Koby 48

Dasgupta, Sanjoy 249
de Rooij, Steven 652
Drineas, Petros 323

Elbaz, Ariel 637

Feldman, Vitaly 576

Golland, Polina 501
Grünwald, Peter 652
György, András 204

Hein, Matthias 470

Jain, Sanjay 382

Kääriäinen, Matti 127
Kakade, Sham M. 606
Kalai, Adam Tauman 249
Kalnishkan, Yuri 188
Kannan, Ravindran 444
Kearns, Michael 606

Kinber, Efim 382
Kleinberg, Robert D. 233
Koltchinskii, Vladimir 295
Kuzmin, Dima 591, 684

Langford, John 158, 687
Lee, Homin K. 637
Leskes, Boaz 95
Liang, Feng 501
Linder, Tamás 204
List, Nikolas 308
Long, Philip M. 79
Lugosi, Gábor 1, 204
Luo, Wei 398, 689

Mahoney, Michael W. 323
Mansour, Yishay 217, 621
Martin, Eric 413
McSherry, Frank 458
Mendelson, Shahar 353, 429
Micchelli, Charles A. 338
Mohri, Mehryar 63
Monteleoni, Claire 249
Mukherjee, Sayan 501

Niyogi, Partha 32, 486

Pajor, Alain 429
Panchenko, Dmitry 501
Pontil, Massimiliano 338

Roth, Dan 16
Rudin, Cynthia 63

Salmasian, Hadi 444
Schapire, Robert E. 63
Schulte, Oliver 398
Scovel, Clint 279
Servedio, Rocco A. 79, 637
Shalev-Shwartz, Shai 264
Sharma, Arun 413
Shraibman, Adi 545
Simon, Hans Ulrich 308
Singer, Yoram 48, 264
Srebro, Nathan 545

692 Author Index

Steinwart, Ingo 279
Stephan, Frank 382
Stoltz, Gilles 217

Tewari, Ambuj 143

Vayatis, Nicolas 1
Vempala, Santosh 444

Vishwanathan, S.V.N. 366
von Luxburg, Ulrike 470
Vyugin, Michael V. 188

Wan, Andrew 637
Warmuth, Manfred K. 366, 591, 684

Zhang, Tong 173, 516

	Frontmatter
	Learning to Rank
	Ranking and Scoring Using Empirical Risk Minimization
	Learnability of Bipartite Ranking Functions
	Stability and Generalization of Bipartite Ranking Algorithms
	Loss Bounds for Online Category Ranking

	Boosting
	Margin-Based Ranking Meets Boosting in the Middle
	Martingale Boosting
	The Value of Agreement, a New Boosting Algorithm

	Unlabeled Data, Multiclass Classification
	A PAC-Style Model for Learning from Labeled and Unlabeled Data
	Generalization Error Bounds Using Unlabeled Data
	On the Consistency of Multiclass Classification Methods
	Sensitive Error Correcting Output Codes

	Online Learning I
	Data Dependent Concentration Bounds for Sequential Prediction Algorithms
	The Weak Aggregating Algorithm and Weak Mixability
	Tracking the Best of Many Experts
	Improved Second-Order Bounds for Prediction with Expert Advice

	Online Learning II
	Competitive Collaborative Learning
	Analysis of Perceptron-Based Active Learning
	A New Perspective on an Old Perceptron Algorithm

	Support Vector Machines
	Fast Rates for Support Vector Machines
	Exponential Convergence Rates in Classification
	General Polynomial Time Decomposition Algorithms

	Kernels and Embeddings
	Approximating a Gram Matrix for Improved Kernel-Based Learning
	Learning Convex Combinations of Continuously Parameterized Basic Kernels
	On the Limitations of Embedding Methods
	Leaving the Span

	Inductive Inference
	Variations on U-Shaped Learning
	Mind Change Efficient Learning
	On a Syntactic Characterization of Classification with a Mind Change Bound

	Unsupervised Learning
	Ellipsoid Approximation Using Random Vectors
	The Spectral Method for General Mixture~Models
	On Spectral Learning of Mixtures of Distributions
	From Graphs to Manifolds -- Weak and Strong Pointwise Consistency of Graph Laplacians
	Towards a Theoretical Foundation for Laplacian-Based Manifold Methods

	Generalization Bounds
	Permutation Tests for Classification
	Localized Upper and Lower Bounds for Some Estimation Problems
	Improved Minimax Bounds on the Test and Training Distortion of Empirically Designed Vector Quantizers
	Rank, Trace-Norm and Max-Norm

	Query Learning, Attribute Efficiency, Compression Schemes
	Learning a Hidden Hypergraph
	On Attribute Efficient and Non-adaptive Learning of Parities and DNF Expressions
	Unlabeled Compression Schemes for Maximum Classes

	Economics and Game Theory
	Trading in Markovian Price Models
	From External to Internal Regret

	Separation Results for Learning Models
	Separating Models of Learning from Correlated and Uncorrelated Data
	Asymptotic Log-Loss of Prequential Maximum Likelihood Codes
	Teaching Classes with High Teaching Dimension Using Few Examples

	Open Problems
	Optimum Follow the Leader Algorithm
	The Cross Validation Problem
	Compute Inclusion Depth of a Pattern

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

